ARTIFICIAL INTELLIGENCE
OF THINGS (AloT)

NEW STANDARDS, TECHNOLOGIES
AND COMMUNICATION SYSTEMS

Edited by Kashif Naseer Qureshi
and Thomas Newe

@ CRC Press
Taylor & Francis Group




Artificial Intelligence
of Things (AloT)

This book is devoted to the new standards, technologies, and communication systems for Artificial
Intelligence of Things (AIoT) networks. Smart and intelligent communication networks have gained
significant attention due to the combination of Al and IoT networks to improve human and machine
interfaces and enhance data processing and services. AloT networks involve the collection of data
from several devices and sensor nodes in the environment. AI can enhance these networks to make
them faster, greener, smarter, and safer. Computer vision, language processing, and speech recogni-
tion are some examples of AloT networks.

Due to a large number of devices in today’s world, efficient and intelligent data processing is essential
for problem-solving and decision-making. AI multiplies the value of these networks and promotes
intelligence and learning capabilities, especially in homes, offices, and cities. However, several chal-
lenges have been observed in deploying AloT networks, such as scalability, complexity, accuracy,
and robustness. In addition, these networks are integrated with cloud, 5G networks, and blockchain
methods for service provision. Many different solutions have been proposed to address issues related
to machine and deep learning methods, ontology-based approaches, genetic algorithms, and fuzzy-
based systems.

This book aims to contribute to the state of the art and present current standards, technologies, and
approaches for AloT networks. This book focuses on existing solutions in AIoT network technolo-
gies, applications, services, standards, architectures, and security provisions. This book also intro-
duces some new architectures and models for AloT networks.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

Artificial Intelligence
of Things (AloT)

New Standards, Technologies
and Communication Systems

Edited by
Kashif Naseer Qureshi and Thomas Newe

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business




Designed cover image: Shutterstock

First edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 selection and editorial matter, Kashif Naseer Qureshi and Thomas Newe; individual
chapters, the contributors

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know
so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not
available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

ISBN: 9781032552996 (hbk)
ISBN: 9781032553078 (pbk)
ISBN: 9781003430018 (ebk)

DOI: 10.1201/9781003430018

Typeset in Minion
by KnowledgeWorks Global Ltd.


https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003430018

Contents

Preface, vii
Acknowledgements, ix
About the Editors, xi

Part | Artificial Intelligence Evolution in Internet of
Things Networks and Its Fundamental Concepts

CHapTER T = Artificial Internet of Things: A New Paradigm
of Connected Networks

KAsHIF NASEER QURESHI AND THOMAS NEWE

CHAPTER 2w Advanced AloT Applications and Services

21

RajaA WASEEM ANWAR, ALAA [SMAEL, AND KASHIF NASEER QURESHI

CHAPTER 3 = Tri-Tier Architectures for AloT Networks

34

MUHAMMAD AHMED AND KASHIF NASEER QURESHI

CHAPTER 4w Standards and Policies Adoption for AloT
Networks

49

ADIL HUSSAIN AND KASHIF NASEER QURESHI

CHAPTER 5 = AloT as New Paradigm for Distributed Network

77

SHEETAL HARRIS, HASSAN JALIL HADI, YUE CAoO,
AND KASHIF NASEER QURESHI

ParT Il Data Communication Systems for AloT Networks

CHAPTER 6 = Networking and Protocols for AloT Networks

93

SALEEM IQBAL, SYED AMAD HUSSAIN SHAH, SAQIB MAJEED,
AND SAUD ALTAF



vi m Contents

CHaPTER 7 = Novel Machine, and Deep Learning, and Training
Techniques for AloT 109

MUHAMMAD SAIDU ALIERO, YAKUBU AMINU Dopo,
AND KAsHIF NASEER QURESHI

CHAPTER 8 = Role of Blockchain Models for AloT Communication
Systems 122

IBRAHIM TARIQ JAVED AND KASHIF NASEER QURESHI

CHAPTER 9« Big Data Analytics for AloT Network 140

Fa1saL REHMAN, MUHAMMAD ANWAR, ANEES UL MUJTABA,
HANAN SHARIF, AND NAVEED Ri1AZ

CHAPTER 10 = Green Communication Systems for AloT Networks 164

A1zAz RAZ1Q, KAsHIF NASEER QURESHI, AND MUZAFFAR Rao

CHaPTER 11 = Cybersecurity Standards for AloT Networks 179

UsMAN AHMAD, HASSAN ZA1B, AND KASHIF NASEER QURESHI

CHAPTER 12 = Future Privacy and Trust Challenges for
AloT Networks 198

AYESHA AsLAM, KASHIF NASEER QURESHI, AND THOMAS NEWE

INDEX, 217



Preface

In today’s hyperconnected world, where technology permeates every aspect of our
lives, the Artificial Internet of Things (AIoT) has emerged as a transformative force.
With billions of devices connected to the internet, ranging from household appliances
to industrial machinery, people, processes, data, and things to modernize activities,
the AIoT has brought unprecedented convenience and efficiency. However, it has also
exposed us to new challenges in terms of scalability, routing, resource allocation, and
security. Artificial Intelligence of Things (AIoT): New Standards, Technologies and
Communication Systems is a timely and essential book that delves into the intricate
world of AIoT. As we continue to witness the rapid proliferation of connected devices,
it is crucial to understand the existing network demands, especially of the artificial
intelligence integration. This book serves as a comprehensive guide for individuals
and organizations seeking to navigate the ever-evolving landscape of AloT processes
and services.

The authors of this book, with their deep expertise and extensive experience in the field
of AI and IoT, provide valuable insights into the unique requirements, challenges, and
risks associated with the AIoT. They meticulously analyze the diverse range of devices,
networks, and applications that constitute the AloT, shedding light on potential AI-based
applications, standards, and protocols. By presenting real-world case studies and practical
examples, they offer actionable strategies to adopt Al in IoT networks for better services
and data communication.

This book suggests two parts of security fundamentals: Part I—Artificial Intelligence
Evolution in Internet of Things Networks and Its Fundamental Concepts, and Part IT—
Data Communication Systems for AIoT Networks. These security fundamentals go beyond
theoretical concepts, equipping readers with the necessary knowledge and tools to proac-
tively address different areas of AIoT. The book explores cutting-edge technologies, such
as artificial intelligence and blockchain, and their application in enhancing AloT security.
It emphasizes the importance of adopting a holistic approach to cybersecurity, encom-
passing not only technical measures but also organizational policies, user awareness, and
regulatory frameworks. As the digital landscape continues to evolve, AI becomes para-
mount. The interconnected nature of the AIoT presents both immense opportunities and
profound risks.

This book serves as a beacon of knowledge and guidance, empowering readers to
understand the AI functionalities in the AIoT ecosystem. I commend the authors for

vii
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their comprehensive research, diligent analysis, and commitment to advancing Al in the
context of the IoT. Their work will undoubtedly make a significant contribution to the
field and will serve as a valuable resource for Al and IoT professionals, researchers, and
policymakers alike. I encourage readers to delve into the pages of Artificial Intelligence of
Things (AloT): New Standards, Technologies and Communication Systems and embark on
a journey towards understanding the intricate challenges and developing robust solutions
for increasingly interconnected world.

I believe that Artificial Intelligence of Things (AloT): New Standards, Technologies and
Communication Systems will be useful to readers who are beginning to approach this com-
plex technical topic, since it puts together many different perspectives, application exam-
ples, and specific solutions. At the same time, it will be a useful reference for the more
experienced researcher who aims at going deeper into a specific vertical application of
AloT networks, or who looks for possible open questions and/or future research topics to
be explored.

Dr. Kashif Naseer Qureshi
Department of Electronic & Computer Engineering,
University of Limerick, Limerick, Ireland
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CHAPTER 1

Artificial Internet of Things

A New Paradigm of Connected Networks

Kashif Naseer Qureshi and Thomas Newe

Department of Electronic & Computer Engineering, University of Limerick,
V94 T9PX Limerick, Ireland

1.1 INTERNET OF THINGS

The Internet of Things (IoT) is one of the demanding and emerging technologies, where

billions of devices are communicating for different services. These networks are based on
integrated and heterogeneous networks. The popularity of IoT has multiplied swiftly due
to its usage in all fields of life such as transportation, education, and enterprise develop-
ment. Devices are connected over the internet and can communicate with each other with
or without human support. Recently, the concepts of smart homes, smart industries, and
smart cities have changed the lifestyle where everything is connected like home appliances,
communication devices, smart meters, smart watches, and smart cars. Different enabling
technologies are involved in IoT networks including the following: embedded systems,
cloud and edge computing, blockchain, data analytics methods, and Al networks. Around
the globe, the adoption of IoT in the form of different projects has achieved milestones
in terms of demand, popularity, efficiency, and usage (Khalid et al. 2023). IoT networks
transform the world into digital, smart, and modern networks. Different smart devices and
intelligent systems are integrated by using cloud and edge networks. These networks also
generated the big data which is streamed to the cloud services for further data management
and analysis. There are several cloud services adopted and popular for data handling such
as Google Cloud Platform, Microsoft Azure, Oracle, and IMB Waston Cloud. Fog comput-
ing is introduced as a horizontal system-level architecture for data distribution where data
control, storage, and networking functions are closer to the network. Edge computing is
another concept that is closer to end users and networks (Naseem et al. 2022). Fog and
edge computing are used for better latency, security, and data reliability, and have bet-
ter response time. Standard protocols are used for communication like Open Platform
Communication United Architecture (OPC-UA). IoT solutions require data handling
systems for data management like Not Only SQL (NoSQL). Another service Google IoT
framework is used for easy and secure data management services.

DOI: 10.1201/9781003430018-2 3
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1.2 ARTIFICIAL INTELLIGENCE

AT has changed the traditional IoT networks, converted the services into more intelligent

networks, and received tremendous interest from communities and industries. The amaz-
ing and attractive services of Al technology have resulted in the adoption of more advanced
communication applications. Machine and deep learning methods have been adopted to
meet real-time processing demands. Al also provides human intelligence in machines,
allowing them to perform multiple and complex tasks. This field is a multidisciplinary area
of computer science to make machines smarter and more capable of learning, reasoning,
and perceiving in order to solve problems. Al is categorized into two main types: narrow
and general. The narrow Al performs specific tasks within limited domains like virtual
personal assistance, image recognition, and recommendation systems. Popular examples
of narrow Al are Siri and Alexa. On the other hand, general AI provides strong Artificial
General Intelligence (AGI) which is able to perform any task that human beings can do.
AGI functions like human intelligence to perform tasks, to understand and learn, and to
apply this intelligence in different domains. Machine Learning (ML) methods are involved
to train models and perform tasks such as predict and data analysis. Some other AI meth-
ods are natural language processing, robotics, expert systems, and computer vision. The Al
methods are useful to improve the industry’s processes, decision-making, fast automation,
and solve complex challenges.

1.3 ARTIFICIAL INTERNET OF THINGS

Artificial Internet of Things (AIoT) is a new concept where machine and deep learning
technologies meet the new application requirements in real-time manners. IoT network
devices have limited resources in terms of storage, energy, and processing capabilities.
These constraints increase the different Quality of Service (QoS) challenges and issues. The
combination of Al and IoT enhances the sensing and communication services to achieve
high performance. The intelligence is used at macro and micro levels in AIoT networks.
This intelligence starts with self-driving to control home appliances. In AIoT networks,
several smart devices, sensor nodes, data storage devices, and data processing capabilities
are interconnected with cloud and edge networks (Qureshi and Abdullah. 2014). AloT
devices sense the surroundings and store, transmit, and broadcast the data. The traditional
IoT networks without AI devices have limited features in terms of data analysis, automa-
tion, and adaptation, whereas the Al-based IoT networks offer voice services for users.
These devices can answer queries as per user and application requirements such as calling
cabs, playing music, controlling smart home appliances, making restaurant reservations,
and more functions. Alexa is one of the voice services used for products like Amazon Echo.
Siri and Google are other examples of voice assistance with some extra features like a con-
versation with users. These AI based IoT applications are used for multiple tasks such as
wake word detection, text and speech conversion, contextual reasoning, question answer-
ing, and dialogue management.

Another usage of AI in IoT is robotics which can interact with human beings. These
applications are capable of understanding, expressing, and reciprocating certain human
emotions. The recent development in the field of robotics makes these machines more
responsive to understanding human emotions, body movements, facial expressions, and
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High Performance Computing Artificial Internet of Things LN
High-performance computing uses supercomputers Cognitive Science :“

and computer clusters to solve advanced
computation problems in AIoT networks.

Study of the mind and its processes with
input from linguistics, psychology,
neuroscience, philosophy, computer
science/artificial intelligence, and
anthropology.

Embedded Systems

Combination of a computer
processor, memory, input/output,
peripheral

Software

Platforms, partner
systems, and
middleware.

Actuators

Responsible for moving and
controlling a mechanism

Network Control

Big Data Analytics

The process of uncovering trends, patterns, and
correlations in large amounts of raw data to help make
data-informed decisions..

Large number of interconnected
devices that exchange data

through communication networks.  YAJSN Machine Learning
Used to monitor and A branch of Al focuses on the
~  record the physical use of data and algorithms to
conditions of the imitate the way that humans
environment learn, gradually improving its

accuracy.

FIGURE 1.1  Emerging fields of AIoT networks.

tone of voice. These Al-based machines recognized four human emotions including sadness,
joy, surprise, and anger. Sophia is one of the examples and considered a social humanoid
robot. This robot is capable of expressing emotions through its eyes and facial expressions.
Sophia is the world’s first robot who received citizenship of a country. Another example is
the robotic kitchen which is a fully functional robot with arms, a hob, an oven, and a touch-
screen. This robot is able to prepare food and has a food recipe repository. Al-enabled smart
devices are also used in smart homes for monitoring and identification, by using neural net-
works, deep learning and computer vision, and transfer learning. Smart ovens, smart elec-
tric meters, smart refrigerators, and light systems are used to manage and predict the usage
and processes of users. Security systems like Skybell, which can answer the door by using
a voice assistant feature system, are another example. An additional Al-enabled example is
effective as a cabin sensor for automobile networks. Industries are another beneficial area
where Al-based applications provide financial and statistical analysis for better prediction
and decision-making. Figure 1.1 shows the emerging fields in AlIoT networks.

1.4 APPLICATIONS

There are a number of IoT applications especially designed for industries, smart homes,
transportation, education, and healthcare systems that have gained popularity. The smart
factories concept is used where the machinery or industrial devices are equipped with
smart sensors and devices for sensing and monitoring the operations of the machine. The
machines are connected to infrastructure or central control systems and provide real-

time access to information and control capabilities. Industrial AIoT applications increase
the productivity, real-time operations, efficiency and the quality of products. There is
a wide range of industrial AIoT applications such as predictive maintenance, tracking
and management, remote monitoring, quality control, energy management, and safety
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and security applications. These AloT applications are providing real-time machinery
monitoring and management control systems. The data are analyzed and collected from
different sensors and used for further prediction and analysis. The tracking of machin-
ery faults and other complexity issues have also been resolved by using the tracking
applications like inventory tools, equipment, and device connectivity. Energy control
is another tremendous application of AloT in industries where energy consumption is
monitored. This is accomplished by analyzing data patterns and establishing optimized
usage, distribution, and smart management practices. Quality is always a main concern
for industries, and quality is more manageable by using AIoT applications where the data
are collected from various stages and processed accordingly. Supply chain optimization
is also achieved using AIoT applications for shipment tracking and monitoring the tem-
perature and humidity.

Smart homes AloT applications also offer real-time automation and control man-
agement systems such as lighting control, security cameras, appliances control, energy
management, and security control systems. Users can control all their home appliances
remotely through smart mobile devices. The most prominent IoT applications for smart
homes are energy control, energy management, smart metering, and security control
systems. The IoT-based security system integrates motion sensors, cameras, door and
window sensors, and smart lock systems to control access. Energy management IoT
applications also help the users to control or optimize energy use by using adjustment
temperature settings of central heating or air condoning systems. Smart lighting control
and management systems also provide ways to automate the systems based on schedule,
preferences, or motion detection data. These strategies reduce energy bills and costs and
create ambiance and enhance users’ convenience. Another example of an AloT applica-
tion is voice assistance, like Amazon Alexa or Apple Siri, to control the home thermostat
and temperature.

The use of Al in IoT networks has gained popularity due to numerous benefits and exist-
ing applications services and efficiencies. AI improves the IoT network’s reliability, intel-
ligence, and efficiency to process and analyze the data locally and make decisions. How
various AloT applications are deployed is discussed as follows:

1. Data Analytics: AIoT devices generate a vast amount of data that need analysis and
interpretation. Al is integrated into this area where ML can be used to identify pat-
terns, anomalies, and trends. These services provide valuable insight to users to avoid
any potential failures.

2. Decision Making: The Al methods are integrated with IoT devices which are con-
nected with edge and cloud computing for decision-making processes. The AI meth-
ods improve this process in real-time and provide better decision-making.

3. Prediction Processes: The Al applications are used to predict the equipment condi-
tion and failure status before any emergency situation. ML models are used to identify
patterns by analyzing the sensor’s data. These applications are reducing downtime
and increasing production.



Artificial Internet of Things m 7

4. Energy Management: These applications are used to optimize energy consumption
in AIoT networks by dynamically adjusting the power usage based on patterns and
energy demand. These applications save and manage energy.

5. Security Applications: The AI models also improve IoT networks and provide secu-
rity by detecting threats and anomalies in real-time. The AI models are used to
detect unusual behavior and trigger alerts or take prevention measures to stop data
breaches.

6. Language Processing: These applications use natural language processing tech-
niques in AloT devices where users interact by using voice commands or written
text. These applications are making the user experience more efficient and intuitive.

7. Smart Home Management: Al-based smart home applications are used to check
the user’s preferences and habits to manage smart home services. The most popular
Al-based applications are temperature control, appliance management, and person-
alized home device management.

8. Traffic and Parking Management: These Al-based applications are used to optimize
traffic flow, especially in urban areas, by using different resources like GPS, cameras,
and sensors. Another AI application is traffic prediction and providing data analy-
sis for decision-making. These applications are used to reduce congestion issues and
improve traffic efficiency.

9. Smart Healthcare: These Al-based applications are used to monitor the patient’s
health conditions and vital signs such as temperature, heart rate, and body move-
ment. The collected data are also analyzed and provide timely alerts to healthcare
professionals in case of an emergency.

10. Environmental Monitoring: The IoT sensors are integrated with AI and used for
monitoring environmental factors like water quality, weather conditions, and air
quality. These applications are also managing a potential disaster situation by pre-
dicting environmental changes and signs.

1.5 THE CONVERGENCE OF AloT

Advanced technologies have brought significant advancement in all fields of life. These
technologies transform processes from the fields of healthcare to those of smart living

systems. The new area of AloT is another step and advancement where the convergence of
these technologies opens new innovations, revolutionizes industries, and overall enhances
the quality of life. This convergence also opens new research and concepts for the future.
The convergence of Al and IoT creates a symbolic ecosystem where smart devices and sen-
sors collect, process, and analyze the data and initiate automated actions. AI algorithms
are used to connect and gather data from smart devices and create a link between the
physical and virtual worlds. There are various advantages of the AI and IoT convergence,
but one of the key advantages is its ability to enhance connectivity and provide deeper
insight into the data. The traditional IoT networks are generating massive data which need
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more advanced systems for data analysis. The AI systems provide real-time data analytics
for possible meaningful patterns. This new concept also empowers business and individu-
als toward better decision-making and increases the system’s productivity and efficiency.

This convergence also improves the automation and efficiency of processes and tasks.
The AT algorithms can identify patterns and predict future events for quick decisions and
reduce the need for human intervention in daily activities. Intelligent automation not only
improves the processes but also minimizes human errors and monitoring tasks. The inte-
gration of Al and IoT also revolutionizes the way technologies can interact. Data analysis
also provides an adaptive experience to enhance the user’s engagement and satisfaction.
These systems also have a positive impact on transforming industries’ automation and
manufacturing processes. In the agriculture sector, AIoT systems can optimize irrigation
systems for better crop management and improve productivity with less waste. In health-
care systems, smart AloT applications are used to monitor patients remotely on a real-time
basis for their diagnosis and personal treatments. With advanced Al-enabled devices, the
manufacturing sector can also streamline its production processes to enhance produc-
tivity and supply chain management systems. These systems reduce the cost, minimize
downtime, and provide greater sustainability. Table 1.1 describes the new convergence of
AloT networks and other areas.

TABLE 1.1 New Convergence of AIoT Networks with Other Areas

AloT-based Convergence Technologies and
Solutions Architecture Used Methods Description
Architecture Convergence
ThriftyEdge Architecture for ~ Delay-aware task graph Proposed a resource-
(Chen et al. 2018) Edge and Fog partition algorithm for efficient computational
Computing resource occupancy offloading mechanism
Application-Aware Model for Edge  Used deep learning Proposed an application-
Real-Time Edge Networks algorithms on IoT aware real-time edge
Convolutional Neural devices acceleration of CNNs
Network (AWARE-CNN5s) Accelerators for real-time
(Sanchez et al. 2020) applications
Edge AI for IoT (Sivabalan ~ Al-based Model ~ Used ML Technologies Proposed Al-based ML
and Minue. 2022) for Edge model to transform the raw
Networks data into events

Sensing and Monitoring Convergence

Sensing and Deep Edge-enabled Deep Deterministic Policy =~ Propose a quality of
Reinforcement Learning IoT Gradients (DDPG) experience model for
(DRL) (Zhang et al. 2020) algorithm and Double- computational offloading.

dueling-deterministic
Policy Gradients (D3PG)

Multi-hop ad hoc IoT Al-enabled IoT = Deep reinforcement Propose a multi-hop based
(Kwon, Lee and networks learning approach on a deep reinforcement
Park. 2019) learning approach for

devices’ connectivity

5G Intelligent Internet of Cellular and Big data mining, Deep Propose a solution for the
Things (5G I-1oT) IoT Networks learning, and effective utilization of

(Wang et al. 2018) Reinforcement learning channels and QoS
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1.6 Alol ARCHITECTURE

AloT architecture is based on two main modules including Mobile Edge Computing
(MEC) and AI These two main areas are further categorized into several techniques and
standards. This section discusses both modules’ components, functionalities, applications,
and processes. The main objective of AloT architecture is to process and analyze data by
using two cutting-edge technologies. The interconnection of devices unlocks new and
enhanced decision-making, real-time, and predictive analytics. The MEC module con-
tains several components, like sensors and devices, to collect and sense the data from the
environment and transmit it over the network. The devices are connected to each other

and further connected with cloud and edge computing for synchronized and controlled
transfer of the data. Edge computing is one of the concepts where the processing is closer
to the network. Edge computing also reduces latency and bandwidth consumption and
enhances network privacy and security, whereas cloud computing serves as a centralized
repository to handle the data and provides the computational power required for complex
AT algorithms and ML models. On the other hand, the second module is based on Al and
ML techniques processing massive data to derive meaningful data patterns and predic-
tions. The sensed data from the first module is further managed by using AI analysis.

1.6.1 Mobile Edge Computing Module

Different smart technologies are used in this module like sensor nodes, actuators, and
devices. These devices are integrated with information systems and further linked with
edge and cloud computing. The IoT network devices generate the data from different
applications and forward it for further processing. The cloud, edge, and fog networks are
used to maintain the data. Edge computing addresses the limitation of cloud computing.
Fog computing is another extension of cloud computing and is located between edge and
cloud computing modules. This concept provides low latency computation by using the
horizontal, system-level architecture to distribute the data storage, control, and network-
ing functions closer to the local networks. The objective of fog is the same as edge and
cloud, but only fog offers the distributed architecture with low bandwidth and latency.
Whereas, fog computing has suffered from high scalability issues. To address this concept,
edge computing is used where the shared processes and computing provide the services
at the device level and reduces the data movement toward cloud computing. The edge
devices are used as tools for computing power movement and offloading computational
capabilities from cloud to edge (Ali et al. 2022). Fog and edge computing are integrated
with IoT networks and use different standards and protocols. The well-known protocols
used in these modules are Machine-to-Machine (M2M), Open Platform Communication
United Architecture (OPC UA), Highway Addressable Remote Transducer Protocol
(HART), and WirelessHart and Data-Distribution Service (DSS) (Vaclavova et al. 2022.;
Wang, Nixon and Boudreaux. 2019). Big Data Analytics (BDA) is also one of the require-
ments of this module.

Routing and communication are also performed in this module where the network
needs in-time data delivery and an efficient routing mechanism. As with the integration
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of Al in IoT, there is a need to adopt more advanced architecture. This module also uti-
lizes the Software Defined Network (SDN), Network Function Virtualization (NFV), and
Content Delivery Network (CDN). The SDN networks provide flexible and cost-effective
solutions for AloT networks and dynamically handle IoT data. The 5G and 6G technologies
are also adopted to deploy complex devices and manage communication channels.

1.6.2 Al Module

This module utilizes AT for better decision-making processes for IoT applications and
services. The Al methods have solved multiple issues of traditional networks such as
fast decision-making, optimization, and data management (Song et al. 2020). There are
some other challenges related to access to IoT devices, signal processing, and resource
management whenever the IoT devices access the resources by using a contention-based
random-access procedure. Random-access selection leads to access collisions, latency;,
interference, and outage. AI Deep Reinforcement Learning (DRL) is used to address
these issues in traditional IoT networks by making a proper decision on random access
processes. This module has an Al-based contusion random access to improves the ini-
tial access of the network. Another AI feature for IoT networks is used in this module
to adjust the transmission parameters and improve the QoS. AT helps to adjust the fre-
quency bands and set the users’ priorities as per their needs and requirements. The Deep
Q-Networks (DQN)-based spectrum access strategy is used to set the spectrum sensing
and its distribution (Chander et al. 2022). This module is also utilizing the central con-
troller by using the ML technique for effective base station selection. The ML models
are also used to train the statistical model for wireless networks. The AT and ML meth-
ods are also used for more precise modeling of the interference. Resource allocation is
another issue that increases the number of devices. The ML-based clustering method is
used to address this issue by forming clusters.

Open radio access controllers are also used in ML methods for network functions.
Implementation of Deep Learning (DL) in radio networks provides better resource allo-
cation, spectrum, and mobility management. There are different AI methods like Long
Short-Terms Memory (LSTM), Reinforcement Learning (RL), and Deep Neural Networks
(DNN) utilized for resource allocation in AIoT networks.

1.7 COMMUNICATION AND NETWORKS

Wireless communication in AloT uses different multiple access techniques like
Frequency Division Multiplexing (FDM), Orthogonal Frequency-Division Multiple
Access (OFDMA), and Code-Division Multiple Access (CDMA). These standards are
used for short messages and voice calls in the networks. The 5G networks are used in
IoT networks for smart services by using the Mobile Broadband (eMBB) and Ultra-
Reliable and Low Latency Communication (URLLC) standards for communications.
The 6G concept for AIoT uses networks with 1 GHz. up to 1 Tbps bandwidth. The
6G also provides low latency services which are ten times less than 5G. The routing
protocols for data communication play a crucial role in AIoT networks. The scalable
routing protocols are used in these networks due to a massive number of smart devices
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and sensor nodes. Many AloT application requirements are in-time data delivery on
a real-time basis. Low latency is required for timely delivery of the data because of
time-sensitive AI applications, as resources are limited in smart devices in terms of
storage, processing power, and energy, energy-efficient routing protocols are needed
to improve the node’s battery lifetime and extend the operational time. There are
different routing protocols designed to address the energy issues in these networks.
Reliability and QoS are needed for AloT applications, especially for smart healthcare,
transportation, and disaster management applications. Some applications prioritize
low latency whereas some need to prioritize high data throughput. The routing pro-
tocols must be able to provide reliable QoS support as per the application’s needs. The
AToT networks are heterogeneous and dynamic and use adaptable routing protocols to
handle diverse data types. Security is another main requirement to protect data integ-
rity, user confidentiality, and system availability. Context-aware routing is needed for
better decisions based on real-time information as per application requirements and
network conditions. Resource awareness is another requirement of any routing proto-
col to avoid overburdening certain nodes and to optimize resource utilization. AIoT
networks can benefit from various existing routing protocols like OLSR (Optimized
Link State Routing Protocol), and RPL (Routing Protocol for Low-power and Lossy
Networks) (A. Ahmed et al. 2017). The choice of the routing protocol depends on the
specific use case, network architecture, and the desired performance metrics.

1.7.1 Al Usage in Communication Systems

Several Al methods have been adopted for communication systems and fulfill the AloT
network requirements. Figure 1.2 shows the layer-wise operations with AT and ML-based
algorithms.

Several Al and ML-based solutions have been proposed for AIoT networks to estab-
lish reliable and secure data communication services. Heuristic algorithms are used to
find the heuristic value of artificial network nodes. This type of method is applicable
where there is no solution to the existing problem. Some examples of heuristic algo-
rithms are Generic Algorithm (GA), Ant Colony Optimization (ACO), and Particle
Swarm Optimization (PSO) (Qureshi, Ahmad, et al. 2020). Supervised learning is also
used for mapping the input and output variables by using training datasets. Examples
of supervised learning are Support Vector Machine (SVM) and K-Nearest Neighbour
(KNN). On the other hand, the unsupervised learning method is used without training
the dataset by computing the input data for output. The well-known unsupervised meth-
ods are Principle Component Analysis (PCA) and K-mean clustering. Reinforcement
learning is also utilized by using different elements like agent, environment, action, and
state. Some well-known examples of reinforcement methods are Q-Learning, and State
Action Reward State Action (SARSA). DL methods are used to analyze the data sets for
device localization, routing optimization, network access, and channel estimation. DRL
and Federated Learning (FL) are also used for different applications in AIoT networks.
These methods are used to solve complex problems, such as resource allocation, and
ensure security and privacy (Qureshi and Iftikhar. 2020).
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FIGURE 1.2 Layer wise operations with Al and ML-based algorithms.

1.8 EXISTING CHALLENGES AND ISSUES

While offering a number of benefits, AIoT technologies also possess new challenges and con-
cerns. As communication systems, fixed and mobile networks, wired and wireless enable
technologies, and the open nature of network architecture are developed, they open various
communication, connectivity, resource allocation, and security challenges (Qureshi, Din,
et al. 2020). As these networks combine the features of Al and IoT, networks and systems are
more complex and interconnected. The existing challenges need to be addressed for better
services and network operations. The details of some major challenges are as follows:

1. Data Routing: The smart devices are communicating with each other by using wired
and wireless networks. The routing is always a major issue especially when the net-
work is congested or fewer resources are available (Qureshi, Abdullah, et al. 2014).
Disconnectivity, best pathfinding, delay, and network overhead are always the main
concern of IoT networks. As Al processes are integrated with IoT networks and need
real-time decisions, so routing needs more smart systems and standards for better
data communication processes.

2. Data Storage and Management: AloT networks generate a large amount of data
from different smart and fixed devices. Data storage and its management are always a
major issue for these networks. These networks require scalable storage management



Artificial Internet of Things m 13

systems and effective architecture to avoid overwhelming the network and ensure
timely processes.

. Privacy and Security: This challenge is one of the top priorities of the system due
to the increased number of interconnected smart devices and the exchange of user
data. Security is always a major concern of these networks for different reasons, such
as new vulnerabilities and malware, and lack of security solutions and awareness.
AloT networks are vulnerable to cyber-attacks, privacy violations, and cyber-attacks.
There is a need to adopt more smart encryption methods, strong authentication, and
robust access controls to safeguard the network and its data.

. Interoperability: Interoperability and scalability are always challenges due to dif-
ferent manufacturers and their protocols and standards. Compatibility is always an
issue especially when different companies have their own standards, protocols, and
processes. There is a need to design the devices to create cohesive and functional
AloT networks.

. Real-time Data Processing: Real-time data processing is always a major requirement
of these networks. The different areas are integrated with smart devices like autono-
mous vehicular systems, industrial automation, smart homes, and smart healthcare.
These areas need real-time data processing with low latency and high throughput to
maintain the requirements of the network for responsive AlIoT systems.

. Energy Management: Traditional IoT devices are often constrained by limited
energy resources. This issue increases when the Al system is integrated with more
capabilities due to additional strain on energy requirements (ALiero et al. 2021).
Energy management and solutions are needed to address this issue in terms of mod-
els, architecture, and protocols. The energy management solutions require extending
operational lifetime and reducing environmental impact.

. Resource Allocation: Al algorithms are used in IoT networks and require more
resources such as processing power, storage, energy, and communication require-
ments. Resource allocation is always a major concern of these networks especially
when the resources are limited to handle complex algorithms. Optimizing AI models
for better deployment on resource-constrained devices is a significant challenge.

. Data Management: The AloT applications need high-quality and reliable data for
better, in-time, and accurate decisions. The networks must require that data integrity
is maintained and that cleaning is performed to address the issues like data bias, data
drift, and anomalies to ensure the network performance and trustworthiness of Al
models in IoT networks.

. Ethical and Legal Challenges: There are various ethical and legal challenges related
to ownership, transparency, and consent in AIoT networks. There is a pressing need
to establish new laws and rules to ensure data integrity where the AI decisions are
unbiased and align with ethical laws and regulations. Mature ethical policies gain the
public and users’ trust and avoid potential legal issues.
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Addressing the above-discussed challenges and issues in the AIoT network needs strong
collaboration among all stakeholders. The technology developers, policymakers, indus-
tries, and end users should consider the discussed challenges to propose any new system
for these networks. These networks are evolving with new effective solutions and reaching
full potential with fewer risks and maximum benefits.

1.9 SECURITY IN AloT NETWORKS

Security is one of the main concerns due to the rapid growth of malware, spam, and secu-

rity attacks. AloT networks are in use across the globe and are interconnected with other
cloud and edge-based technologies. To ensure security, users’ privacy and trust establish-
ment are crucial at the large-scale network level. Security attacks need detection and preven-
tion solutions to monitor the unauthorized access of networks and systems and to protect
them from any alteration or breach. There are many well-known attacks that exist in AloT
networks such as Denial of Service (DoS) attacks, micro probing, and reverse engineering
attacks. DoS attacks occur when a service is made unavailable for the user by an attacker
by the attacker overloading the capacity of the infrastructure. This attack results in a loss
of reputation for the vendor. A DoS attack is conducted by botnets targeting a single target
from different IPs. DoS attacks can be carried out using User Datagram Protocol (UDP),
Internet Control Message Protocol (ICMP), Simple Network Management Protocol (SNMP),
and Transmission Control Protocol (TCP) protocol packets. These packets are flooded into
the system such that the system becomes unavailable to genuine requests (Carl et al. 2006).
The micro-probing attack is performed by an attacker who has complete physical access to
the hardware. The attacker gains access to the semiconductor chip directly so that he can
observe and interfere with the hardware’s low-level configurations. These attacks may exploit
the one-time programmable OTP memories, rewrite passwords in memories using UV light
rays, fuse polysilicon read and write using advanced tools, and inject fault in the system con-
troller IC (Shi et al. 2016). Reverse engineering is used to get information about the hardware
type, algorithms, and authentication being used. These are invasive attacks which can give
an insight into the inner surface of hardware, and the system can be cloned after reverse
engineering. A system or a node can be replicated and introduced in the original network to
spy or divert the traffic from the destination. There are many other security attacks that exist
and disturb AIoT network’s operations.

1. Network Attacks: A Network is vulnerable to attack because an illegitimate user
can pretend to be an authorized user and can compromise traffic. Network attackers
can get access to the central device or system and manipulate themselves as original
users and can sniff packets and generate fake packets towards the nodes resulting in
an increase in illegitimate traffic, performance effects, and stealing key parameters
of a system.

2. Node Capture Attacks: A node capture attacker steals the security parameters of a
device from memory and can then exploit either hardware or software configurations
for the purpose of launching further attacks or eavesdropping on the communication
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of the network. Node capture can be a result of vulnerabilities in the configuration
of the device, unauthorized access to the central controller, or reverse engineering
(Shaukat et al. 2014).

. Monitoring and Eavesdropping: Eavesdropping is to intercept traffic or sniff it to

steal information that can be useful to gain further unauthorized access and know
about the system infrastructure. After getting such critical security parameters, an
attacker can do the most impactful attack. Monitoring a system actively on live traffic
also helps attackers to find out vulnerabilities in the network.

. Traffic Analysis: Network traffic analysis is performed passively on captured traffic

to analyze the network traffic pattern. This analysis helps the attacker to understand
the network speed, size, origin, type, and content of files being shared on the net-
work. This is achieved by network state monitoring tools.

. Replication Attacks: Sensor nodes are captured, and reconfigured using secure

parameters such as code, id, and keys, and then these nodes are sent to the network.
An attacker can now eavesdrop and monitor the network communication or may
handle the whole network, insert wrong information, shut down some nodes, etc.
This replication is camouflaged, and till the time the system detects some vulnerabili-
ties, massive harm to the network may have occurred (Khurum. 2019).

. Side Chanel Attack: Side channel attacks are based on power, traffic, system time,

and fault analysis rather than utilizing vulnerability in the hardware or algorithm
level implementation. The attacker wants to get security critical parameters using this
method (Zhou and Feng. 2005).

. Power Analysis: This analysis provides a solution to analyze the power consumption

by using oscilloscope power traces when cryptographical operations are performed
in the device. Correlational power analysis is used to derive the secret key. Power con-
sumption is analyzed, and the algorithm estimated using power consumption peaks
against each instruction or subset of instructions. The power consumption of a few
instructions is known to estimate unknown parameters.

. Traffic Analysis: Traffic analysis can be considered as a type of side-channel analysis

in which metadata of traffic transmitted in the medium is analyzed to get informa-
tion about the system. It can be used as a fingerprinting technique to gather criti-
cal information about infrastructure. This attack is like eavesdropping and traffic
analysis.

. Timing Analysis: This is a side-channel attack in which an attacker tries to get the

time of execution of cryptographic operations. If a precise measurement of time for
each operation is known, an attacker can backtrace to the input and hence crypto-
graphic keys are obtained and the system is compromised.

Fault Analysis: Flawless algorithm implementation cannot be guaranteed. A sin-
gle fault can be exploited to generate false projected output, and even a calculated
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disturbance in a system can cause a change in a program counter and cause a pro-
gram to exhibit more and missed instructions.

Software Attack: Third-party, malicious software and spyware through the internet
or email attachment (phishing), or other cleverly disguised software instructions are
software attacks that are very harmful to the system.

Trojan Horse Attacks: A Trojan horse usually comes from some form of social engi-
neering. It creates a backdoor for a command and control server to further exploit
vulnerabilities in the system already created by a Trojan. Complete user system access
can be gained by hackers using this.

Logic Bombs: A logic bomb is like a malicious logic programme meant to
cause harm at some point in the future but inactive at the present. A time and date
are specified when that part of the code activates. These attacks exploit AloT soft-
ware architecture and configuration and damage to the whole infrastructure unless
the system is recovered.

Worms and Viruses: Viruses are typically Portable Executable (PE) files or are
attached as plugins to either Word files or pdf files. The infected host file should
be removed to get rid of the virus attack. A worm, however, is application inde-
pendent and does not need the support of any other Word or pdf files. Worms
spread through internet connectivity. Each worm can grow its infection in the
network itself.

Denial of Services Attacks: A DoS attack is accomplished by flooding traffic, e.g.,
ICMP or too many TCP connection requests. These attacks are malicious attempts
to disrupt the normal functioning of a targeted server, service, or network, making it
temporarily or indefinitely unavailable to its intended users.

Crypto-Analysis Attack: Crypto-analysis or cryptanalysis leads to the identification
of the type of crypto algorithm and the decoding of key parameters to break the fully
or partially cryptographic algorithm. It is the study of cipher types and cryptosys-
tems. Many algorithms based on ML and pattern matching exist for such attacks
(A. W. Ahmed et al. 2017).

Cipher Text only Attack: During a cipher text-only attack, the attacker just has
obtained cipher text from a target. The goal is to recover plain text so that the secret
key may be guessed to further decrypt all the cipher messages. A number of pos-
sible strings are saved, and the output of the algorithm is generated. The two most
important methods which are based on given text are attack on two-time pad and
frequency analysis.

Known Plain Text Attack: In a Known Plain text attack, the attacker has access to
the plain text as well as its corresponding cipher text. The goal is to guess the secret
key used behind it. It provides more opportunities to guess accurate keys. A simple
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substitution can easily be detected using this attack. Enigma cipher and the simple
XOR cipher can easily be detected.

Chosen Plain Text Attacks: During chosen plain text attacks, a cryptanalyst can
choose random plain text to pass to the device and receives corresponding cipher
text. The goal is to acquire an encryption key or alternatively to create an algorithm
even if the key is not acquainted. The attacker is analyzing behavior with respect to
input and output.

Man in the Middle Attack: A MITM attack is difficult to intercept. A controlled
device is inserted between the inbound and outbound network flow of the system by
which the attacker can gain the transcript of whole communication between the two
parties.

These attacks are a deep concern of the AloT networks. Companies need to adapt
advanced systems and technology to protect their privacy and data. AloT services are
needed without delay. Because of unavailability and compromised traffic, these attacks are
becoming more advanced and critical for the systems.

1.10 loT SECURITY CHALLENGES AND SOLUTIONS

Table 1.2 represents security issues, addressed vulnerabilities, identity of the affected
layer in networks, the threat or attack’s security level, and the threat or attack’s proposed
solution.

TABLE 1.2 Security Issues and Proposed Solutions for AIoT Networks

Security Threats

S.No. and Attacks Consequences Affected Layers AloT Levels  Proposed Solutions

1. Unavailability Service Network layer Mid-Level =~ Timestamp and nonce
and interruption attributes allow for
redundancy protecting layers from

replay attacks and
verification of
fragmentation by
hashing chains.

2. Insecurity of Spoofing of Network layer Mid-Level  Authenticate using
internal source IP Elliptic curve SS
network

3. Buffer overflow  Unavailability Network layer Mid-level Sending complete

of buffer fragmented packets
using split buffer

4. Internet service ~ Man-in-the- Network layer Mid-level Packet filtering on a
provider middle attacks behavior basis
interruption

5. Network Violation in Transport and Mid-level Using cryptographic
security for data Network layer encryption algorithms
authenticating  confidentiality and hash functions like

user

RSA, SHA.
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TABLE 1.2 (Continued) Security Issues and Proposed Solutions for AIoT Networks

S.No.
6.

10.

11.

Security Threats
and Attacks

Security threats
on the
transport layer

Session
creation and
renewal

Constrained
internet
application
protocol

Vulnerable
graphical user
interfaces

Vulnerable
software

Middleware
security

Consequences

Violation in
confidentiality

DOS attack

DoS

Violation of
privacy, DoS,
interruption
in the network

Violation of
privacy, DoS,
interruption
in the network

Violation of
privacy, DoS,
interruption
in the network

Affected Layers

Network and
Transport
layer

Network layer

Application and
Network layer

Application
layer

Network,
Transport, and
Application
layer

Network,
Transport, and
Application
layer

AloT Levels
Mid-level

Mid-level

High and
Mid-level

High level

All security
levels

All security
levels

Proposed Solutions

Using AES/Sha-based
cipher, IPSEC
compression, DTLS
header compression,
Identification, and
authorization using
AES/CCM-based
security

Authorization using a
private key and
encryption based on a
symmetric key.

Tunnel filtering method

Allow only strong
passwords, and identify
backdoors, and
vulnerabilities using
SQL injection and
cross-site scripting.

Software should be
updated every time, use
encryption techniques
with validation and
verification

Implementation of
security policies, crypto
key management
techniques, use of
authentication
approaches

111 CONCLUSION

AIoT is one of the new concepts for smart networks. These networks provide monitor-

ing, sensing, and data communication services by using AI methods for better predic-

tion, data analysis, and decision-making. AloT applications use intelligent and enabling

technologies, smart architectures, complex network topologies, and intelligent informa-
tion systems. This chapter discussed AloT network architecture in detail including data
communication, Al, and edge and cloud modules. It also covered layer-wise AI usage in
IoT networks where several ML and DL methods are presented in detail. This chapter
also covered the applications, Al usage in IoT networks, existing issues, and challenges.
Security and existing attacks and their behavior are also discussed to understand the net-
work requirements. This chapter will help new researchers in this area to understand all

the operations, Al usage, and other concerns.
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2.1 INTRODUCTION

In the evolution of contemporary civilization, Artificial Intelligence (AlI) is a key technol-
ogy that has the potential to enhance human potential and bring about significant ben-
efits. In the meantime, the IoT has the potential to build a massive network of connected
intelligent devices. It can handle a variety of relationships between people and things and
has a sizable capacity. Additionally, it is capable of facilitating the quick transmission of a
variety of information to greatly improve people’s quality of life and productivity. If these
two technologies can be effectively paired, it will have a favourable impact on the design
and advancement of industrial equipment. Autonomous vehicles, smart homes, and com-
puter network businesses all can benefit from the use of the IoT and AI (Mukhopadhyay
et al. 2021). Al is a method that enables machines to function and behave like people. In
1956, Dartmouth University introduced the concept of “artificial intelligence” for the first
time. The idea of AI has since been gradually expanded and gained attention due to fast,
intelligent, and cost-effective processes. Although the development of AI is taking longer
than predicted, and it has not had a lengthy history, its development has never come to a
halt. Many new Al systems are being developed now, having been first developed 40 years
ago, and they are having an impact on the advancement of other technologies (Yao. 2019).

The devices are connected via a vast network called the IoT. These devices collect and
disseminate the information as per their usage and deployment. With the advancement in
communication systems, IoT-based applications and technologies that are built on Al are
assisted by a variety of different sorts of sensors. In recent decades, with continuous evolu-
tion in smart and digital technologies, AIoT has attracted the attention of many academ-
ics and emerged among the most widely used technologies due to their offered benefits,
such as maximizing data collection, processing, and decision-making. AloT has a wide
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FIGURE 2.1 Al-based sensors for IoT applications.

range of offered benefits such as enhancing operational efficiencies through precise pre-
dictions based on collected and historical data, increased scalability among different IoT
domains and deployed services, improved productivity with enhanced risk management,
and reduced downtime (Slusarczyk. 2018). The fundamental convergence of Al and IoT
applications is depicted in Figure 2.1.

Almost all systems today employ sensors. The existing networks are found in smart homes,
places of employment, retail establishments, and healthcare facilities, and smartphones are
using smart sensor nodes for sensing and monitoring the surrounding environment. The
IoT ecosystem cannot exist without sensors. In many applications and disciplines, such as
device and data management, computation, security, trust, and privacy, the expansion of IoT
networks creates important concerns. The growth of the digital economy is directly linked to
this expansion. Smart cities, smart businesses, remote monitoring, smart meters, and auto-
mated processes are all made possible by the IoT (Phan et al. 2023). Applications and services
offered by the IoT today and in the future have the potential to dramatically ease, accelerate,
and enrich users’ lives due to the integration of AI (Kuzlu, Fair and Guler. 2021).

Utilizing AT algorithms to analyze the enormous volumes of data that IoT sensors produce
inavariety of applications is an emerging trend in the integration of AI with IoT. Additionally,
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by providing innovative opportunities and features while dramatically minimizing human
contact, this integration speeds up the processes. Al and IoT have been combined to make
it possible to give machines intelligence to perform activities that previously required the
human mind. Additionally, AI-based systems are developing quickly in terms of their versa-
tility, adaptability, processing speed, and ability to make decisions. AI, employed in comput-
ers, will eventually be able to reason similarly to humans. This trend, which will speed up the
digital transformation of industries, will benefit several IoT-based applications.

2.2 ARTIFICIAL INTELLIGENCE AND ITS IMPORTANCE

Studying AT aims to make computers more capable and to behave more like humans. The

digital transformation of smart industries has adopted this new technology and changed
the traditional data communication process. Furthermore, AI entails computational
devices capable of replacing human expertise in performing specific tasks. Through col-
laborations across many other disciplines, AI has become more interdisciplinary and is
used in many disciplines, such as philosophy, computer science, mathematics, statistics,
biology, physics, sociology, and psychology (Qureshi et al. 2013). The adoption of Al-based
solutions in the IoT is rapidly transforming the entire process because the devices pro-
duce an enormous amount of data that can be leveraged by using data-driven technology.
Through improved efficiency and helpful decision-making, Al and the technology that
makes up IoT subset have improved accessibility, integrity, availability, scalability, confi-
dentiality, and interoperability for connecting devices (Anwar and Ali. 2022). Consisting
only of a piece of hardware with a sensor node that sends data and equipped with location
services like GPS, these systems utilize fewer resources and are cost-effective due to smart
and tiny size sensor nodes (Lu and Da Xu. 2018).

Over the past few years, the IoT has made considerable advancements. According to the
International Data Corporation (IDC), there will be 41.6 billion IoT devices, or “things,” by
2025, and 79.4 ZB of data will be generated as a result (Li, Xu and Zhao. 2015). Because IoT
connects multiple items to networks for intelligent services and permits interaction between
the real world and computer communication networks, future IoT systems must take pri-
vacy and security precautions (Hajjaji et al. 2021). IoT is unquestionably raising the bar for
innovation and productivity in both the industrial sector and daily life. It shows a sizable net-
work where individuals, gadgets, and objects are all linked for data exchange and interaction.

AloT networks have a significant impact in different fields of life, such as better governance,
economics, transportation, and healthcare systems. Through work automation, increased
productivity, anxiety reduction, smart homes and cities, among other contexts, AIoT net-
works have the potential to make life better. IoT-enabled devices are used to monitor, recog-
nize, and comprehend a scenario of environmental circumstance without the assistance of
a human. It is now possible to design and manage cutting-edge apps and improvements by
using Al to evaluate the massive amount of IoT data that is now available. The emergence of
Al coincides with a technological earthquake that enhances human welfare and well-being.
It has been shown that AT is highly capable in a variety of domains, including face recogni-
tion, credit scoring, decision-making, and autonomous driving (Naseem et al. 2022).

Since its inception, the IoT has benefited from the convergence of three visions: things-,
internet-, and semantic-orientation. IoT is a “global network of interconnected objects,”
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to use semantic terminology. The fundamental objective of AloT is to make it easier for
autonomous networked actors to share real-time information.

2.2.1 Convergence of loT and Atrtificial Intelligence

The study of Al focuses on how to make computers smart so they can carry out tasks
that earlier needed human intelligence. AI systems have grown rapidly in terms of their
capacity, functionality, flexibility, and computational efficiency. IoT is a network of physi-
cal items, or “things,” that are equipped with software, sensors, and other features to allow
for online communication with other things. Al and IoT will become more and more inte-
grated (Alshehri and Muhammad. 2020). The intimate integration of Al technology and
the IoT creates new possibilities for the IoT in various domains. Figure 2.2 depicts the
layered technologies in AloT networks.

AloT is made up of many different kinds of hardware, software, and networking
protocols, and they all have security flaws. As a result, the attack surface for the entire
network has increased. The IoT is also a decentralized network of intelligent items that
can sense, process, and talk to each other. The main idea behind AIoT is to use cutting-
edge technology and make it a natural part of everyday life. Yet, it is anticipated that
the development of smart gadgets will lead to the definition of new lifestyle standards,
norms, and services (Anwar, Zainal, Outay, et al. 2020). Every AIoT component works
with clearly defined objectives and is largely self-sufficient. However, it is challeng-
ing to design generic architecture for smart cities due to the wide variety of devices,
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underlying technology, and need to integrate components. The fundamental framework
for communication in a smart city has three layers: the Network layer, the Application
layer, and the Hardware or Perception layer. Together, these levels enable communica-
tion between diverse entities and other network elements (Anwar, Zainal, Abdullah,
et al. 2019).

a. The convergence of Al at the Application Layer: At this layer, consumers can directly
access numerous applications, but there are new challenges due to the exponential
growth of applications as well as the varied and personalized service requirements.
For example, even when consumers are looking for the same information, their needs
may vary. However, Al contributes to helping understand personalized services and
enhances user satisfaction. Also, user profiles help significantly in providing adaptive
services. The Application layer of AI provides users with adaptive services. AI may
assist with in-depth user profile analysis and learn hidden information with data
mining techniques when users suggest a specific requirement for a particular applica-
tion (Jabraeil Jamali et al. 2020).

b. The Convergence of AI at the Network Layer: The second layer and core element
of IoT architecture is the Network layer, which connects the Application and the
Perception layers. Data aggregation from different sensors is the main duty of the
Network layer. The Network layer’s communication efficiency can be increased by
choosing the best routing path, which is crucial. Most prefer to select a routing path
for lightweight networks, like Wireless Sensor Networks (WSN), based on predeter-
mined rules or information. Through knowledge-enabled and data-driven techniques,
AT significantly contributes to optimal routing path selection, network scheduling
optimization, Quality of Service (QoS) improvement, effective connection establish-
ment, and effective communication (Ghosh, Chakraborty, and Law. 2018).

c. The Convergence of Al at the Perception Layer: The Perception layer is the founda-
tional element of the architecture, sometimes referred to as recognition. It takes in
the surrounding environment, collects real-time information, then delivers it to the
Network layer for processing. Data is the fundamental building block of IoT and Al,
which open up an enormous number of possibilities for mining value-added services.
When Al converges at the Perception layer, it enables technological advances in han-
dling exploding data. Al is appearing at an opportune time (Chang et al. 2021).

AloT applications produce a lot of information. As a result, it is crucial to develop and
implement reliable AI techniques for dimensionality reduction, noise reduction, and
potentially redundancy removal in data pre-processing and preparation. In order to facili-
tate the creation of AloT applications, we believe that the network compositional layers
will continue to evolve Al approaches and methodologies. The field of AI encompasses a
number of technological developments, such as machine learning, deep learning, and nat-
ural language processing. The architecture of interconnected IoT systems is improved by
combining Al-based techniques at various IoT compositional layers to handle a variety of
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data for self-management activities. Innovations (AI, bots, and Augmented Reality/Virtual
Reality (AR/VR)) use combined IoT knowledge to make intelligent judgments, enhancing
human capabilities and improving machine/thing capabilities to better manage and gov-
ern IoT and other areas such as fog and edge computing (Lai et al. 2021).

2.2.2 Artificial Intelligence in loT Applications

In a variety of IoT scenarios, Al techniques are enabling hundreds of different applications.
Smart cities, smart buildings, smart homes, smart transportation, smart healthcare, envi-
ronmental monitoring, agriculture, and smart grids are some of the AI applications in the
consumer and industrial IoT. More specifically, by assisting with application design and
development as well as infrastructure and application maintenance, Al has demonstrated
its effectiveness in numerous areas. Artificial neural networks (such as deep learning tech-
niques), fuzzy logic, and evolutionary computation are currently the most widely used Al
technologies in IoT applications. These technologies are used for a variety of tasks, includ-
ing regression, classification, multidimensional signal processing, sensor calibration, mea-
surement, data fusion, prediction, decision support, security, and data transmission (Deng
et al. 2020). In addition, every IoT application uses a unique set of communication proto-
cols and has the option to include security and privacy protection measures.

Also, production from the AIoT is significant. AIoT devices regularly produce more data
than any human being can handle or use productively, including data on health, the envi-
ronment, warehouses, and logistics. Additionally, these IoT components benefit greatly
from AI approaches. Due to restrictions in communication technologies, a sizable num-
ber of IoT applications are created on portable, lightweight, and energy-efficient devices.
Al-based IoT has many applications across numerous industries and offers many benefits
like increased productivity, cost savings, and positive user experiences. Al programs can
gradually learn the most significant patterns and trends. They are capable of detecting cer-
tain occurrences that require human intervention (Herath, Karunasena and Herath. 2021).

« Smart Cities: A smart city is a big concept that includes both the city’s physical
infrastructure and concerns affecting its residents and society. A community that
plans adequate investments in public transportation and services could offer bet-
ter life quality and resource management that enable thoughtful and sustainable
socioeconomic growth (Kassens-Noor and Hintze. 2020). There are several uses for
Al including security, the stock market, search and rescue, and transportation. The
creation of smart cities involves a number of intricate factors, including economic
restructuring, environmental protection, governance, and transportation concerns
(Kar et al. 2019). Smart buildings can be constructed sustainably by leveraging elec-
tronic devices, software-driven systems, or other cutting-edge technologies in the
form of Al that can adapt to the surroundings of the building in order to optimize or
increase the system’s performance.

« Smart Healthcare: The term “smart healthcare” refers to platforms for health sys-
tems that connect people, resources, and organizations while making it simple to
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enter health records using devices like wearable appliances, the IoT, and the mobile
Internet. An important component of connected life is smart healthcare. One of our
fundamental needs is healthcare, and it’s anticipated that in the near future, smart
healthcare will generate several billion dollars. The IoT, the Internet of Medical Things
(IoMT), medical sensors, Al edge computing, cloud computing, and next-generation
wireless communication technology are a few of the components of smart health-
care (Bellini, Nesi and Pantaleo. 2022; Ahmed et al. 2022). Al-integrated healthcare
systems now significantly benefit from the IoT. The detection method for diabetes
and heart-related disorders uses a convergence of IoT and Al technologies. However,
there are many obstacles standing in the way of next-generation healthcare, includ-
ing reliability, network latency, and bandwidth.

Smart Agriculture: IoT networks have the potential to transform agriculture by pro-
viding crop, weather, and soil conditions in real time. This will allow for precision
agriculture and the efficient use of resources like water and fertilizer. Automation in
agriculture is a hot topic and a significant source of concern worldwide. The need for
food and employment grows along with the global population. The conventional farm-
ing techniques are insufficient to achieve these objectives. With the use of AI, new auto-
mated procedures have been created that have changed agriculture (Ciruela-Lorenzo
et al. 2020). Social, economic, and environmental sustainability are all being improved
by smart agriculture in the agricultural sector. Thanks to Wireless Sensor Networks’
(WSN) explosive expansion, the IoT has been shown to be a useful tool for automating
agriculture and making judgments. IoT devices that can trigger responses to changes
in plants and environmental circumstances are created by using AI techniques on IoT
devices to regulate smart irrigation, harvesting, and greenhouse factors.

Smart Manufacturing: Sensors, which are embedded in all the parts connected to
the manufacturing process, are a crucial aspect of AIoT. These sensors serve as the
“senses” for gathering information about a product’s availability, production, storage,
distribution, and consumption in order to promote industrial supply chain optimiza-
tion, proactive maintenance, and product quality control. IoT with AI provides auto-
mation, preventive maintenance, and real-time monitoring of production processes
in the industrial sector, which makes Industry 4.0 deployment easier. This results in
greater efficacy, less downtime, and better product quality (Ghahramani et al. 2020).

Smart Transportation: AloT networks can benefit the transportation sector
through intelligent traffic management, Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication, and the development of autonomous vehicles.
The majority of the world’s biggest cities encounter logistical, traffic, and transporta-
tion issues. Using Al in the creation and management of a sustainable transportation
system might be highly beneficial. The intelligent transportation system is a collec-
tion of control systems, sensors, actuators, and Information and Communication
Technologies (ICTs) that generates massive amounts of data and will significantly
affect future transportation in the modern smart city (Qureshi and Abdullah. 2013).
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The handling of real time traffic flow data in urban environments, which is a crucial
component of the development of smart transportation systems, effectively requires
the employment of ML, Al and Deep Reinforcement Learning (DRL) approaches.
Intelligent public transportation, traffic management, manufacturing, safety man-
agement, and logistics are all impacted by Al

« Smart Retail: AloT networks can improve customer experiences in the retail industry
by enabling tailored marketing, in-the-moment inventory management, and intel-
ligent payment systems. An increasing number of businesses and customers are now
emphasizing the effectiveness and experience of shopping. The growth of IoT and Al
as well as the uptake of smartphones and mobile payments, are driving the increase in
unstaffed retail purchases (De Vass, Shee and Miah. 2021). Utilizing AI and machine
learning gained from production data can result in intelligent automation.

« Environmental Monitoring: Environmental monitoring is the idea of designing a
space with integrated sensors, displays, and computer equipment to aid users in com-
prehending and managing their surroundings. For example, artificial neural net-
works are used to interpret data from AIoT sensors to analyze the data collected from
networks (Shaikh, Naidu and Kokate. 2021). Neural networks and deep learning are
the AI methods used most often in this situation.

« Smart Mobility: An intelligent transportation and mobility network is known as
a smart mobility network. Parking, intelligent routing, autonomous and sustain-
able transportation, supply chain resilience, and traffic management are some of the
essential elements of smart mobility (Herath, Karunasena and Herath. 2021).

« Smart Education: Due to the significant role that AI applications have played in a
range of educational disciplines, the education sector has gotten a lot of attention
lately. Utilizing IT and its AI-based applications is one of the major advancements in
smart education (Qureshi et al. 2023).

« Smart Governance: [oT networks have the potential to change a variety of industries
and improve quality of life by fostering a more connected, efficient, and intelligent
society. Additionally, smart governance refers to the application of technology and
innovation to improve planning and decision-making in governing bodies. Smart
governance is made possible by the IoT. Bringing together data from several govern-
ment departments can give authorities access to a wealth of information from a vari-
ety of sensor data (from weather-related data to environment-related data) (Zhou and
Kankanhalli. 2021). The integration of IoT and AI helps in urban planning, disaster
management, decision making, and e-governance.

2.3 SECURITY REQUIREMENTS FOR loT APPLICATIONS

The most important issue for new and advanced AloT applications is cybersecurity. Any
security breach can have disastrous consequences, including loss of money, information,
bodily injury (if the wrong data is entered into the system), disrupting other activities,
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and impairing decision making. Without sacrificing security or intelligence, AIoT’s secure
infrastructure can be expanded. Due to the configuration of these environments, particu-
larly the weak connections and open data interchange, they are exposed to a variety of
threats and serious security concerns (Singh et al. 2022).

Protecting physical assets, data, and networks from threats, attacks, and vulner-
abilities, both known and undiscovered, is the primary objective of IoT security.
Additionally, a huge amount of information is produced by a diverse variety of devices,
and this information is used for decision making. Furthermore, the acquired data is
regarded as the most valuable asset and requires adequate security to safeguard data
Confidentiality, Integrity, and Availability (CIA). While integrity ensures that tasks are
carried out by the person who is authorized to do them, it also involves belief in the
veracity of the resources within a system. Table 2.1 lists the numerous security require-
ments that the various AIoT components must take into account during the design and
authentication phases (Zikria et al. 2021).

The AloT environment must protect its data’s integrity and take the required secu-
rity measures to prevent attackers from harming or tapping into communications. The
secrecy of data and system communications, as well as total security, must be maintained
in order to help make data and transactions feel more readily available, legitimate, and
validated. Additionally, it can be challenging or impossible for AIoT devices to carry out
computation-intensive and latency-sensitive security activities, especially for massive data
streams, due to their limited memory, computational power, radio bandwidth, and battery
resources (Li et al. 2018).

TABLE 2.1  Security Requirements for IoT

Security Requirements Description

Confidentiality The data is safe and only accessible to authorized users because unlawful access
is prevented.

Integrity End-to-end encryption and digital signatures can be used to ensure data
integrity in an IoT setting.

Availability The term “availability” refers to the process of ensuring timely and dependable
access to and use of data, tools, and services.

Authentication A network of interconnected things, including devices, people, services,
providers, and processing units, is known as the IoT. Each IoT device needs to
be able to recognize and authenticate other IoT devices.

Authorization Only those with authorization may access the provided tools and services.

Non-repudiation An IoT network requirement for cyber-security is non-repudiation, which
provides evidence of what entities have done.

Data Freshness Allowing for the assurance that all data produced by devices are up-to-date,
time-tamped, and unaffected by an opponent who might have manipulated
the data or retransmitted older communications.

Anonymity Anonymity refers to ensuring the privacy and security of the data against
possible adversaries.

Scalability The system’s ability to keep its current devices and services while adding new
ones.

Attack Resistance Ability to defend against a variety of potential attackers.
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2.4 SECURITY ATTACKS IN loT APPLICATIONS

Because many IoT devices lack proper security, hackers have developed a variety of meth-

ods to attack them from different angles. The IoT device itself, as well as its hardware and
software, the network to which it is attached, and the application with which it communi-
cates, all serve as potential attack surfaces (Domingo. 2021). Before attempting an attack
on a particular device, IoT attackers usually investigate it to identify any vulnerabilities.
The most common way to do this is to buy an identical IoT device. The adversary then
builds a test attack using reverse engineering to analyze the device’s outputs and available
attack possibilities. This can be done, for instance, by disassembling the device and exam-
ining the internal hardware to understand the software (such as the flash memory), or by
fiddling with the microcontroller to find sensitive data or trigger undesirable behavior.
To prevent reverse engineering, it is essential that IoT devices implement hardware-based
security. Many cybersecurity experts are looking to Al to protect systems against cyberat-
tacks. Here are a few hazardous attacks that could harm IoT devices if they were installed
by someone with malicious intent (Radanliev et al. 2020).

a. Physical Attack: Physical attacks, which are typical of the low-tech variety, make
use of the target device’s hardware in some way to the attacker’s advantage. There are
numerous sorts of physical attacks. These include attacks like network outages, in
which the device’s connection to the network is cut off to interfere with its operations,
cause physical damage, or inject malicious code that prohibits correct performance
(Abdul-Ghani, Konstantas and Mahyoub. 2018).

b. Man-in-the-Middle (MITM) Attack: MITM attacks are among the most com-
mon ones against IoTs. In terms of computers in general, an MITM attack allows
the attacker to act as a proxy by intercepting communication between two nodes. In
this attack, transmitted communications can be intercepted, their contents can be
changed or erased, and harmful content can even be added. This is done so that the
recipient is unaware of these facts and will therefore treat any messages it receives as
though they were sent with authorization (Cekerevac et al. 2017).

c. False Data Injection Attacks: False Data Injection (FDI) attacks may be used by
an attacker after a MITM attack to get access to any or all of the devices on an IoT
network. An FDI attack involves the attacker subtly altering IoT sensor readings to
fabricate data in order to avoid detection (Zhang et al. 2021).

d. Sybil Attack: In this attack, once an adversary seizes control of an IoT node, the
perpetrator may attempt to assume a new identity near another node. A single rogue
node impersonates a huge number of other nodes in this kind of attack (Arshad
et al. 2021).

e. Botnets: Another frequent attack on IoT devices is the deployment of a large num-
ber of devices to build botnets and perform Distributed Denial of Service (DDoS)
attacks. A DDoS uses attacks from numerous entities to achieve this objective. A
Denial of Service (DoS) attack is a deliberate effort to hinder lawful usage of a service.
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DDoS attacks seek to overwhelm the target service’s infrastructure and obstruct
regular data flow. The four steps of a DDoS attack are typically recruiting, exploita-
tion and infection, communication, and attack. In the recruitment stage, the attacker
looks for vulnerable machines to use in the DDoS attack against the target; in the
exploitation and infection stage, the attacker takes advantage of the weak points and
injects malicious code; the attacker evaluates the infected machines, determines
which are online, and chooses when to schedule attacks or upgrade the devices dur-
ing the communication stage; and throughout the attack, the attacker sends com-
mands to the affected machines (Om Kumar and Sathia Bhama. 2019).

Despite the fact that AloT offers a lot of conveniences, it is vulnerable to security and
privacy problems such as malicious attacks and privacy leakage. IoT devices tend to
be vulnerable to malicious techniques, such as bogus data injection attacks and DDoS
attacks, but can still be successful in IoT contexts since they have limited processing and
storage resources. However, to protect IoT applications from these malicious attacks,
it is necessary to explore other security solutions, such as using the blockchain along
with AL

2.5 CONCLUSION

With the ongoing growth of data, connections, and services, IoT has entered a period of
significant challenges. It is vital to address these problems and achieve high efficiency
with the current infrastructure, given the conflict between scarce resources and extremely

demanding criteria. Applications with an IoT focus are assisting in gathering huge amounts
of sensor fusion data from many sources. However, the fusion of AI and IoT can reshape
how data can be managed, allowing for intelligent responses from corporations, econo-
mies, and enterprises. Increasingly more IoT' devices are producing data, which makes
it increasingly challenging to collect, process, and analyze data in real time. Individuals’
fundamental needs benefit from the convergence of IoT and AI streams to govern smart
sensing systems. The collaborative integration of AI with IoT has significantly advanced
the development of AIoT systems that assess and respond to environmental stimuli more
intelligently without human intervention.
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3.1 INTRODUCTION

Over the years, research and advancement in the field of the internet has now proven the
success of it in every single field of science and the day-to-day life of every person. This has
provided the advancement and betterment to the society. The Artificial Internet of Things
(AIoT) is an emerging technology in the areas of the internet, networking, and commu-
nication. This new technology is bringing to light the experience of the intelligent pres-
ence of internet-based physical devices which can not only communicate with humans but
also with each other (machine-to-machine). The existence of such a developed and inter-
networking environment has massive scope, and it will provide great opportunities in terms
of growth in every business, market, and industry. All that advancement in technology will
improve quality of life. Since it is an emerging area of research, it is too early to define the
impact of AloT applications in different domains and fields. There are some formal archi-
tectures available for the AIoT environment; working on them and using their existing
protocol suits could provide us with grounds for the development of AIoT and ensure the co-
existence and cooperation of different technologies. With the great interest in AIoT and the
large amount of research on it, there are many proposed architecture designs.

One of the main reasons for the growth toward 5G technology is the rapidly increased
number of interconnected computing devices. These devices include embedded devices
which could be assigned and attached to other objects. Billions of devices are expected
every year on cellular networks; about 28 billion devices were added just in 2017 (Liyanage,
Braeken, et al. 2020). IoT is described as the worldwide network of billions of physical
devices that are linked together.

In addition, with highly computational and resourceful devices like computers
and smartphones, the IoT environment enables heterogeneous devices and objects to
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communicate over the Internet. Through this networking model, IoT makes the entire
internet a working area for the devices. This inter-communicative heterogeneous environ-
ment makes the devices smart, that is, able to access, gather, and process data, and then
take action on that data accordingly. This interconnected and intercommunicating IoT
environment is going to increase the data and computational resources all over the internet.
To accommodate such technology, the internet demands an infrastructure and technolo-
gies which can co-exist with the existing infrastructure and computational technologies.
One such alteration is Multi-Access Edge Computing (MEC) formerly known as Mobile
Edge Computing (Liyanage, Ahmad, et al. 2018). Analogically, IoT devices are the nervous
system of the new information area while the computational brain power of IoT devices
resides in the decision-making technologies like Artificial Intelligence (AI), Machine
Learning (ML), edge computing, cloud computing, etc.

At the start, computer networking aimed to access and share expensive resources effi-
ciently and economically. However, with the emergence of Transmission Control Protocol/
Internet Protocol (TCP/IP) protocol suites, it grew enormously, resulting in a huge worldwide
network known as the Internet. All this time, the internet has been evolving, and advance-
ments are occurring in it. These years of advancements and developments in the internet
have paved the path for new technologies like IoT (Perera et al. 2013). IoT’s path is similar to
that of the Internet; it is the result of a merger of several perspectives, including those that are
Things-oriented, Internet-oriented, and Semantic-oriented (Atzori, Iera and Morabito. 2017).
AloT, as described, allows people, things, and Al methods to connect anytime, anywhere,
with anything, and with anybody, potentially through any connection, network, or service.

3.2 ARTIFICIAL INTELLIGENCE

Al is the term used to describe a machine’s capacity to emulate or enhance human intel-
ligence, such as reasoning and learning through experience. Although AI has long been
employed in computer programs, now it is applied and integrated into about every com-
puter-related service and product (Abhishek. 2022). Al is a subfield of computer science that
studies how to utilize computers to replicate and enhance human brain function. Its defini-
tion is “A computer system and human knowledge and behavior with capabilities such as
learning, inference, judgment, resolving the issue, memory, knowledge and understanding
of the human natural language” (Li. 2009). AI can be divided into two parts: theoretical
research and engineering studies. Theoretical research deals with the understanding of the
human brain and the development of these patterns and intelligent theories for machines.
Engineering studies deal with the design and development of theoretical research.

The field of AI covers numerous fields of study and has recently gained popularity in
the public, business, and academic sectors (Boyd and Wilson. 2017). In particular, the self-
learning algorithm serves as the foundation of the present AI evolution and can have signif-
icant implications across many fields (Holdren and Smith. 2016). The importance of artifi-
cial intelligence is being highlighted by the rapid changes brought about by the digitization
of information in the workplace, especially in the business sector (Castro and New. 2016).
AT has the potential to increase the economic growth of developed countries by 2 percent
within 15 years (Purdy and Daugherty. 2016). AI can provide benefits and bring change in
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both the public and private sectors. By maximizing its support of industry, Al could pro-
vide the intelligent automation of systems and virtual workforces which could be a cost-
efficient approach for industries (Bataller and Harris. 2016). Another way to define Al is as
a capital-labor hybrid to replicate labor activities at a much greater scale and speed, and
even to perform some tasks beyond the capabilities of humans (GSS Asia, 2017). For these
reasons, nearly every major IT firm is investing more in the research and development of
AT and related technologies (Horvitz. 2016).

3.2.1 Applications of Artificial Intelligence

The rapid development of Al across all technological domains has opened up numerous
avenues for boosting productivity across all sectors of the economy. Artificial intelligence
provides highly advanced, self-aware computational programs that pretend to work like a
human brain. Applications of AI are present in about every field of technology. Following
are some applications in different fields.

There are several cases where understanding the connections between transportation sys-
tem characteristics is challenging, AI can solve those complex problems which existing tradi-
tional techniques cannot solve. Usage of Al techniques in the transportation sector provides
many advantages. Research shows the benefit of Al in transportation by transforming the
roadside traffic sensors into smart grid agents which can automatically detect any accident on
the road and can also forecast future traffic conditions (Kliigl, Bazzan and Ossowski. 2010).
Alisalso bringing rapid improvement in the field of Intelligent Transportation Systems (ITS).
These systems use a wide range of technologies and forms of communication to accomplish
their goals of easing traffic and enhancing drivers’ experiences on the road. They gather cru-
cial information that can be used by ML systems. (Liu et al. 2018) developed a system that
uses reinforcement learning techniques to enhance traffic control policies in real-time.

To help traffic managers reduce congestion, numerous attempts have been under-
taken to pinpoint exactly when and where an incident occurred, as well as what caused
it. These attempts could be manual (reported by humans) or could be automated by
neural networks. Manual reports can have delays, but the automated reports gathered
by Al systems can be more rapidly responsive. Furthermore, the implanted sensors on
the roads allow the AI system to measure the characteristic flow before and after the
incident. A system was designed and tested which uses a classification neural network
approach to detect any incident on the freeway (Dia and Rose. 1997). Through AI deep
learning techniques, we can detect real-time incidents from social media (Gu, Qian and
Chen. 2016). Twitter has proven to be an effective, low-cost approach for monitoring
motorways and major routes for incidents.

The use of Al in airline operations has been acknowledged. ML, software/hardware,
and applications (such as smart maintenance and flight route optimization) could all ben-
efit from the use of AL. Authors Oza, Castle, and Stutz. 2009 developed a system which is
called Aviation Safety Reporting System (ASRS). The system was created to collect data from
extremely dense aviation reports and adapt the Support Vector Machine (SVM) and Mariana
algorithms. The results show the effectiveness of the SVM) technique to perform the consis-
tent document classifications. Authors, Budalakoti, Srivastava and Otey, demonstrated that
the unsupervised ML approach is reliable for application in increasing landing safety.
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3.3 Al USAGE IN AloT NETWORKS

Al is an extensive field that includes a variety of ideas. Most of the recent research
focuses on Al technologies. Both the private and public sectors, including industries
looking upon the use of AI technologies (Prediger. 2017) for healthcare, manufactur-
ing, business, and even the auto sector, have all benefited from the application of Al
With the benefits of AI there are also some issues involved such as cybersecurity and
cyberattacks (Dilek, Cakir and Aydin. 2015). AI has also contributed new technolo-
gies and ideas to the field of computing and information technology. These approaches,
techniques, and models use AI techniques which make them the sub-branches of Al
Some of these models are Natural Language Processing, Deep Learning, Robotics, and
Computer Vision (Ashley; Jackson. 2017). The purpose of Al is to develop computer sys-
tems with human-like intelligence. Al has provided significant advancement in indus-
tries where robots are working in the fields of manufacturing and assembling. All these
robots use Al techniques to do the given task like a human does.

ML is a form of Al that analyzes a system’s data and its patterns to draw conclusions
(Alpaydin. 2020). Another branch of Al is robotics, which involves the engineering of
autonomous machines to carry out formerly human-only jobs (Patil. 2016; Dirican. 2016).
The advancement in robotics with the help of Al is leading engineers to create self-driven
intelligent vehicles (Makridakis. 2017).

3.3.1 Machine and Deep Learning

An emerging field of Al is ML. The machine learning paradigm uses different AT models
and approaches to allow system automation (Marsland; Alpaydin. 2011). The techniques
of ML focus on computer data programs that access and understand data. ML enables
the system to learn new things on its own (Acemoglu and Restrepo. 2018). ML uses Al
approaches to learn from experiences (Qureshi, Ahmad, et al. 2020). Deep Learning (DL)
is an Al technique that mimics the working of the human brain, its pattern creation, and
how it processes the data. DL techniques use this information to make strategic decisions
like humans. Because DL can learn unsupervised data from unstructured data, it is also
known as a Deep Neural Network. Deep knowledge facilitates the gathering of massive
amounts of unstructured data, which is very hard for humans to understand and analyze
(Mathew, Amudha and Sivakumari. 2021).

3.3.2 Biometrics

With the advancement of technology, the systems have become so much more complicated
that the security of the data systems has become a priority for many enterprises. The
use of biometric identification has been a game changer in terms of data system security.
Biometric technology makes use of several physical characteristics which are unique in
every person and uses them as security features for that specific person.. Al can use these
unique human properties, such as fingerprints, iris, and facial structures, for the security
recognition of that specific person (Akhtar et al. 2018; Rodgers. 2018). The data collected
from these unique human properties are then sent to different specific nodes, which the
AT system can easily comprehend, to perform required actions on it.
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3.3.3 Artificial Intelligence in Vehicles

An important development of Al is in the field of transportation and making an Intelligent
Transportation System (ITS) (Qureshi and Abdullah. 2013). The ITS makes a transporta-
tion system intelligent through the communication between transportation units for further
decision making. In Vehicular Ad Hoc Networks (VANETs), vehicles use wireless commu-
nication to get run time information of the environment to make transportation better and
safer (Taherkhani and Pierre. 2015). Research aiming at network traffic prediction using the
relationship between road and network traffic parameters shows that the machine learning
technique random forest (RM) is the best option to solve the traffic flow prediction problems
in VANETSs (Sepasgozar and Pierre. 2022). (A new approach was developed to improve the
network traffic prediction in Aldhyani et al. 2020) Using sequence mining, the proposed
approach predicts the traffic of the network intelligently. Adaptive Neuro-Fuzzy Inference
System (ANFIS) and Long Short-Term Memory (LSTM) were used as a time series model. A
new technique for the prediction of network traffic in Long-Term Evolution (LTE) is proposed
by Stepanov et al. 2020. To predict the traffic in a network the model uses three machine
learning algorithms SVM, Bagging, and Radio Frequency (RF) on cellular traffic datasets.

IoT is a very vast and emerging field with the capability of interconnecting and process-
ing the data of billions of devices like sensors and actuators. Every IoT device can perform
basic functions on data, such as gathering, storing, transmitting, and processing, in order
to take required actions. The processing capability of an IoT-enabled device decides the
smartness of that device. A non-smart device has limited capabilities in processing data in
comparison with smart devices which have a much greater level of processing and can take
actions accordingly. A better IoT system, on the other hand, will contain artificial intel-
ligence and may serve the true purpose of automation and adaptation.

3.3.4 Al-Enabled Voice Assistants

Voice Assistants are cloud-based services. Users can use them as personal assistants. They
carry out a variety of functions by engaging with applications developed by third parties
and other smart devices available in the surroundings. Using the user’s vocal instructions,
they may do a variety of functions, including responding to questions, turning on/oft light-
ing, contacting cabs, playing music, etc.

Some famous voice assistants are the following:

« Amazon created the famous voice assistant ALEXA, it can be utilized in products
such as Amazon Echo, Amazon Tap, and others. Alexa has a kit called Alexa Skills
Kit (ASK) that can be used to improve specific skills by personalizing it according to
the user’s needs and requirements.

o Siri, which is the production of Apple Inc., also serves the same purpose and is used
in the Apple Home pod.

+ Google Assistant on Google Home has extra features that allow it to recognize six
different people and obtain their information to speak with them.
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3.3.5 Robots

Recent developments in robotics have led to the creation of more human-like machines
that can interact with people while understanding, recreating, and expressing human emo-
tions. Robots are a fine example of IoT as different sensors, actuators, and AI approaches
help them to grow and evolve with time which means that they can continuously learn
new things.

 SoftBank Robotics developed a humanoid robot which is named Pepper. That robot
can communicate with humans and act as a human companion. It can understand
human emotions through facial expressions, bodily movements, tone of voice,
and phrases, among other things. Furthermore, Pepper can detect four different
emotions: happiness, sorrow, rage, and surprise. It also reacts according to the
detected emotion with touch, and expressions. It also has the functions of IoT and
can connect to other devices. It can also be used commercially as a customer care
representative.

« Sophia from Hanson Robotics is a socially active robot. It can effectively communi-
cate with humans as it has a wide range of facial expressions, the ability to make con-
tact according to the situation, and can conduct an interesting conversation. It’s the
first robot that owns citizenship. It has given many interviews on different platforms
and performed on stage by singing songs.

« The robotic kitchen from Moley Robotics is a kitchen integrated with various robots.
It has a wide range of recipe libraries. It has a touch screen to select your desired
recipe to prepare. After selection, it can use its robotic arms, hob, and oven to prepare
food like an expert cook.

3.3.6 Smart Devices

Other than robots and Voice Assistants, smart devices/objects are also being used to make
human tasks simpler and easier. Such devices are Al-enabled and can perform voice recog-
nition, facial recognition, object identification, speech identification, and expression detec-
tion by using neural networks, Computer Vision, etc.

« Smart Oven by June acts as a perfect cook. According to the user requirements, it
can cook food precisely by watching it in the oven using an HD camera and built-in
thermometer. The oven can be operated through Alexa too.

» Honeywell created a doorbell that is HD Wi-Fi enabled named SkyBell. The doorbell
can operate the door opening or closing function by using a smartphone or Voice
Assistant. It can send a live transmission to the user’s phone by using its live camera.
Users can even communicate with the person at the door from a remote location.

 Smart Lights by Deako can connect with Alexa and Google Assistant. Users can con-
trol the light’s colour and intensity with just a voice command.
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+ Affective Created Automotive Al uses Al to enable the use of taxis called robo-taxis. It is
an in-cabin sensor Al model which is utilized in high-performance automobiles. This Al
system can detect road signs and decrease or increase its speed accordingly which reduces
the risk of accidents. It has built-in microphones and a camera that can detect the facial
expressions and cognitive state of the occupants and can therefore react accordingly.

3.4 ARCHITECTURE OF AloT

AloT has provided an environment where billions and trillions of devices can interconnect
through the internet. With the increase of AloT, these numbers are expected to grow expo-
nentially. By the end of 2025, the number of devices is expected to grow to 75.44 billion,
with an anticipated increase of 10 devices per person (Alavi et al. 2018). As these devices are
exceptionally large in number and heterogeneous in nature, IoT requires a flexible layered
architecture for seamless connectivity between them. AloT functions at the Application layer,
Network layer, and Perception layer (Atzori et al. 2017; Lin et al. 2017, Wu et al. 2010) Figure 3.1
shows the flow of information between these three layers in the architecture of the AIoT.

+ Perception Layer: Since the Perception layer is concerned with smart devices, such
as tags or sensors, whose purpose is to collect data about physical objects, it is also
known as the Device layer. The main roles of this layer are to collect data, update the
state of the smart device, and send that data to the next layer.

+ Network Layer: The Network layer is the layer that uses different connecting devices
(switches, routers, etc.) for data communication between different heterogeneous net-
works. It provides the best routing paths for seamless data transmission. Depending
upon the environment, it uses different communication technologies which could be
Wi-Fi, LTE, fibre optics, and Bluetooth.

« Application Layer: The Application layer processes and analyzes the gathered data
from the Perception layer, and then by using that data, performs the required services
and necessary actions. It provides services in different domains including intelligent
transportation, smart homes, smart cities, and e-health systems.

Application Layer
@ Cloud/Servers

!

P— =
Network Layer >

T Routers and Gateways CEs=o)
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# A & Sensors and Actuators

FIGURE 3.1 Tri-Tier AloT architecture.
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3.4.1 Cloud Computing

Cloud computing is a network access approach that allows for ubiquitous, on-demand,
and affordable access to a shared pool of programmable computing resources like stor-
age, processing, services, and on-demand applications. These cloud resources can be eas-
ily deployed and monitored with minimal management (Mell and Grance. 2011). Cloud
computing can be referred to as network-enabled services which offer adaptable Quality of
Services (QoS) on demand via the Internet (Hu et al. 2011). Cloud computing services are
on-demand resources for sharing on the internet. The entity or organization that shares
these resources with the clients is called a Cloud Service Provider (CSP). The client access-
ing the cloud can use those shared resources on demand (Hu et al. 2011). Cloud computing
focuses on the client-server model, and on that basis, it provides three main service mod-
els, namely Software-as-a-service, Platform-as-a-service, and Infrastructure-as-a-service.
The client requests the service using software or hardware of the Abstraction layer from the
CSP) which then provides the requested service from the above three models (Ali, Khan
and Vasilakos. 2015). Figure 3.2 shows the cloud architecture for AIoT networks.

AloT is the next booming technology of the internet which is going to revolutionize
the internet. AIoT allows the world’s billions of internet-connected devices to connect,
exchange data, and ultimately enhance the quality of human lives. Cloud computing pro-
vides on-demand computational power and scalable network access. With the collabora-
tion of IoT and cloud computing, a new area of the internet is going to explode all over the
world. It is critical to investigate the common characteristics of computing technologies.
The same is the case with AIoT and cloud computing, as both of these technologies have
common features. Their integration can improve and enhance both technologies (Buyya
et al. 2009). Cloud computing provides the platform to share computational resources all
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FIGURE 3.2 Cloud architecture for AIoT networks.
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over the internet. Through providing on-demand resources, cloud computing has solved
many ongoing problems on the internet. But with the combination of both AloT and cloud
computing, the future environment of the internet is going to change (Babu, Lakshmi
and Rao. 2015).

Application and data exchange are two key components of the cloud-based AloT con-
cept. AIoT enables the transmission of worldwide applications, while automation facilitates
the distribution and collection of data at minimal cost. The cloud is an efficient and inex-
pensive method of linking, administering, and monitoring the data through built-in apps
and custom portals (Rao et al. 2012).

The cloud-based IoT platforms are available for different networks, like in the eHealth
sector (Dang et al. 2019). The purpose of new research and the integration of cloud with
smart networks is to explore the different internet technologies to enhance the eHealth
sector and other services.

3.4.2 Edge Computing

Edge computing is a data networking paradigm that emphasizes processing data as close
to the network as feasible. This helps to minimize latency and data transfer needs (Cao
etal. 2020). According to Shi et al. 2016, “Edge computing is a distributed computing para-
digm that brings computation and data storage closer to the location where it is needed,
to improve response times and save bandwidth.” Figure 3.3 shows the architecture of edge
computing for AIoT networks.

Edge computing transmits the data that is processed and handled by millions of
AloT devices (Zhao et al. 2020). With time, as the internet evolves, emerging tech-
nologies require real-time computational power and resources. Cloud computing and
real-time cloud services tend to provide promising solutions (Papcun et al. 2020).
Edge computing provides an approach to evaluate the data of IoT devices on the edge
before reaching to the main cloud or fog. That approach provides more rapid and
scalable IoT processing.
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FIGURE 3.3 Edge computing for AloT networks.
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3.5 Al BASED SOFTWARE DEFINE NETWORK

The Software Define Network (SDN) is a model where all the decision-making of the over-
all network behaviour is done by a central software program. SDN divides the network
into two-parts: data planes and control planes. All network devices that become packet-
forwarding devices are included in the data plane. Decision-making control logic is carried

out in the controller, which becomes the control plane. The SDN uses a software program
to manage the network, hence it is very easy to introduce new technologies in the SDN
network without disrupting existing programs. It is also easy to use a software program
to manage the network rather than using a fixed set of commands in network devices
(Qureshi, Alhudhaif, et al. 2020). Another advantage of the SDN is that it provides a central
approach to control and configure the network rather than configuring it on every device
of the network individually. The controller is used for that purpose since it has global
knowledge of the network and can make network-wide forwarding decisions for the net-
work traffic (Kim and Feamster. 2013; McKeown. 2013). Figure 3.4 shows the architecture
of SDN for AloT networks.

Open-Flow (OF) is a very suitable and effective approach for SDN-related networks (Lee
et al. 2014; McKeown et al. 2009). In OF, the provider can test the new protocols in the
deployed network without disturbing and affecting the production application. There are
three main parts of the OF which are as follows:

o Flow Tables: These are installed in the switches.
o OF Controller: The Controller is the remote host machine.
« OpenFlow Protocol: This allows the controller to securely communicate with

switches.

As the interest in AIoT grows, the demand for wide-area deployments of subnet-
works also grows. These subnetworks can make it possible to have multiple hetero-
geneous wireless technologies coexist in the same place in a single environment.

Management Plane ‘ HNelwork Network ‘

Application 1 Application 2

______________________________ III

Control Plane

________________________________________ I I

Data Plane Routers and Routers and
Switches Switches

FIGURE 3.4 SDN architecture for AIoT networks.



44 wm Artificial Intelligence of Things (AloT)

For seamless communication and management between such different technologies in
IoT, SDN provides its layered architectural platform to manage such distributed het-
erogeneous networks easily. The authors developed an SDN-based approach to provide
differentiated quality levels in heterogeneous IoT environments to complete differ-
ent tasks (Qin et al. 2014). To promote interoperability in heterogeneous smart home
devices, an SDN-based intelligent support system for IoT was developed (Qureshi,
Alhudhaif, et al. 2022)

To solve various problems, several ML and Al techniques have been used; these problems
include routing (Nazar et al. 2022), traffic classification (Soysal and Schmidt. 2010), flow
clustering (McGregor et al. 2004), intrusion detection (Xu and Wang. 2005), load balanc-
ing (Kim and Kim. 2013), fault detection (Moustapha and Selmic. 2008), QoS and Quality
of Experience (QoE) optimization (Mushtaq, Augustin and Mellouk. 2012), and admission
control and resource allocation (Testolin et al. 2014). Recent studies have revealed a signifi-
cant tendency in the scientific community to use AI methods in SDNs.

The supervised techniques mostly used for AI-based SDN networks are supervised
DL, SVM, Neural Networks (NNs), ensemble methods, and Decision Tree (DTs).
Authors, Chen and Yu, developed a Collaborative Intrusion Prevention Architecture
(CIPA). CIPA architecture uses the NN technique and provides a distributed intrusion
prevention system. The CIPA system has simple and parallel computational abilities
whereby it has low computational overhead. Authors, Bendriss et al. 2017 Bendriss,
Yahia. and Zeghlache. 2017, developed a novel method for implementing Service Level
Agreement (SLA) in SDN and Virtualized Network Functions (NFV). Their research
focused on predicting service level objective violations for streaming services via NFV
and SDN. The findings demonstrated that Long Short-Term Memory (LSTM) is more
reliable and effective than Feedforward Neural Networks (FFNNs). Authors, Phan, Bao
and Park. 2016, by combining SOM with SVM developed a new method that gives 97.6%
effectiveness of Distributed Denial of Service (DDoS) detection in SDN. Authors in
Rego et al. produced a multimedia transmission system which detects the problem
and corrects the errors from the transmission in the SDN-based IoT environment. The
system consists of two parts; the first one uses the SVM technique to detect the network
traffic type. The second one tells the SDN controller which action is required to perform
on the data to ensure the QoS.

3.6 CONCLUSION

Typical IoT architectures provide data communication and sensing services to the users.
The integration of Al and their ML and DL methods have changed the traditional IoT net-
works into smarter, more cost-effective, and intelligent AIoT networks. There are some spe-
cial requirements of AIoT networks, such as proper architectures based on SDN networks,
cloud, edge-based networks, and mobility-based architectures. This chapter discussed tra-
ditional IoT networks and the emergence of Al in IoT networks. This chapter also proposed
a tri-tier architecture for AIoT networks for more scalable, flexible, energy-efficient, and
interoperable-based architectures where the systems can serve better. Al-empowered IoT
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architecture is based on emerged cloud, fog, and edge systems tailored with ML and DL
methods and capabilities. The functions and technologies are discussed to understand the
functionalities of the proposed architecture. The proposed architectures support and pro-
vide all the required services of AloT networks.
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4.1 OVERVIEW

This chapter presents a comprehensive overview of the standards and protocols used
in Artificial Internet of Things (AloT) networks, focusing on the advantages they offer
and the bodies responsible for standards creation. International organizations develop-

ing standards and protocols for AIoT networks are explained briefly. The session layer,
Datalink layer, and Network layer are discussed in detail in terms of routing protocols
and standards. The ongoing attempts to establish management and security benchmarks
for each of these layers as well as the opportunities for future research and the difficulties
faced by AloT are also discussed in this chapter.

4.2 INTRODUCTION

The Internet of Things (IoT) has been the subject of extensive study in many different fields,
such as transportation, urban planning, healthcare, residential automation, and industrial

automation. Users, devices, and information resources all participate in an IoT" ecosys-
tem by connecting with services. Therefore, interoperability is necessary to ensure smooth
communication and compatibility among these components. Security must also be taken
into account while discussing interoperability to safeguard information and maintain con-
fidentiality. U.S. industrial firms see interoperability as the primary barrier to implement-
ing IoT technologies (Hahn. 2017). The development of IoT architecture faces big problems
with interoperability and security. To successfully integrate IoT in real-world applications,
there is a need to address interoperability and security concerns. In addition, a partnership
of European business and academic concerns has recently been formed to tackle interoper-
ability and security issues in developing IoT frameworks.
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Furthermore, it is anticipated that these partnerships will assume supplementary
functions aimed at enhancing the overall quality of life, facilitating business operations,
and optimizing the functionality of smart homes (ALiero et al. 2021). One instance of a
presently accessible IoT ecosystem is represented by smart homes, which employ sensors
designed to remotely regulate temperature, heating, and air conditioning within residen-
tial dwellings. Potential future expansions of this system encompass a range of functional-
ities, including the ability to brew coffee, regulate television usage, monitor health metrics,
and operate motor vehicles. The utilization of these applications present additional com-
plexities and necessitate the establishment of standardized protocols to effectively address
the wide range of application demands (Hassan. 2018).

AloT is the idea of combining Artificial Intelligence (AI) technology with IoT communi-
cations to improve network processes, human-machine interactions, data organization, and
analytics (Chang et al. 2021). IoT devices serve as the brain of the system, while AI controls
its every digital action. When AI is combined with IoT, connected devices may perform
complex analyses, reach independent conclusions, and conduct independent actions with
little to no human intervention. Efficiency and effectiveness are mostly driven by “smart”
gadgets. The optimization of systems, the generation of important insights into perfor-
mance, and the facilitation of informed decision-making are all made possible by the data
analytics supplied by AloT. In addition, AT improves IoT by employing Machine Learning
(ML) methods and bolstering decision-making (Phan et al. 2023). Connectivity, commu-
nication, and data exchange are all areas in which IoT helps AI. AloT, the combination of
smart devices, has a transformational effect that helps both technologies. The proliferation
of IoT technologies across multiple sectors has increased the amount of unstructured data
produced by humans and machines alike. The abundance of data generated by the IoT can
be put to good use with the help of data analytics solutions, which can be provided by AloT.

A more intelligent IoT system would incorporate Al and may achieve the desired outcomes of
automation and adaptability. Standards are viewed by many in the business community as the
greatest obstacle to widespread adoption. This is a natural consequence of the introduction of any
novel technical format or concept. The battle between Betamax and VHS and the one between
HD DVD and Blu-ray are two examples of standards wars that resulted in an undisputed mar-
ket leader. The growth of the Transmission Control Protocol/Internet Protocol (TCP/IP) model,
which enabled the original internet, will serve as a template for discussions surrounding IoT
standards. The format is less important than overall utility and functionality (Hagiq et al. 2022).

4.3 OVERVIEW OF STANDARDS AND ORGANIZATIONS

One definition of a standard is a document developed and adopted by consensus of appro-
priate organizations. Its goal is to standardize a process or create a set of principles for a
particular field so that everyone can perform at their best. In the field of Information and
Communication Technology (ICT), the term standard typically refers to a set of agreed-
upon protocols that facilitate the transmission of information and communication ser-
vices and their use by multiple, distributed computer systems over a shared network.
Consequently, standards play a crucial role in facilitating the development and deployment
of IT (Hasan and Qureshi. 2018). In essence, a standard can be defined as a predetermined
specification, and the standardization process pertains to the methods or actions used to




Standards and Policies Adoption for AloT Networks m 51

establish and determine these standards. Furthermore, organizations responsible for set-
ting standards can classify them as either de jure or de facto.

ICT international standards include rules and guidelines that make it easier for information
technologies to progress and be used. Thus, adhering to these standards can facilitate the suc-
cessful implementation of ICT systems. So, it’s important to think about the standards not only
when doing the work, but also when doing the study. Several well-known standards, such as
network protocols and data formats, have been used to build systems in the IoT area. A number
of well-known international standardization bodies, such as the International Organization for
Standardization (ISO), the International Electrotechnical Commission (IEC), the International
Telecommunication Union (ITU), and the Internet Engineering Task Force (IETF), are also
helping to make standards for the IoT networks. These standards, which have been extensively
disseminated through a number of publications, cover a vast array of topics, including archi-
tecture, framework, network protocols, and definitions. In addition, adopting standardized
protocols can effectively improve both interoperability and security. These protocols offer a
dependable structure to guarantee compatibility and safeguarding measures (E. Lee et al. 2021).

4.3.1 Standards and Organizations

This section overviews the standards groups involved in developing IoT standards.
Furthermore, it elucidates the characteristics of their endeavors towards standardization.
Standards encompass diverse information, from granular details to abstract concepts, con-
tingent upon their intended objectives. Specific standards offer comprehensive specifications
to ensure precise interoperability among various systems or representations without any loss
of information. Example network protocol measures that provide thorough specifications for
facilitating efficient communication between a sender and a receiver include IEEE 802.11,
CoAP, and WebSocket. Similar to how documents within web pages can be described using
structured formats like HTML, CSS, and XML, which are all part of Web standards, if net-
work standards are applied correctly, interoperability and security can be ensured.

However, particular standards provide abstract information, such as a software’s frame-
work, reference model, and architectural design. The fundamental goal of these guidelines
is to provide high-level ideas that may be applied across a wide range of software, system,
and environment development projects. Additionally, the standards are created by experts
in their respective disciplines. Therefore, conceptual norms offer practical constraints for
developing software and infrastructure. As a result, abstract standards can improve pro-
ductivity, reduce development and management times, and reduce risks. Furthermore,
applying contemporary technologies that adhere to these established standards is straight-
forward. The benefits of implementing standards are outlined as follows:

« Standards facilitate the seamless exchange of operations and information, ensuring
compatibility and preventing any loss of information through adherence to stan-
dardized formats.

« Standards can assure security.

« Providing reasonable criteria is essential for developing and managing systems,
frameworks, software, and environments.
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« Implementing standards can significantly enhance the efficiency of development pro-
cesses by reducing time and mitigating risks.

The application of contemporary technologies can be predicated upon adherence to
these established standards.

4.3.1.1 International Organization for Standardization
In the realm of information technology, the ISO (International Organization for
Standardization)/IEC (International Electro-Technical Commission) JTC (Joint Technical
Committee ) is a joint body charged with developing global benchmarks. In 1987, the ISO
and the IEC formed a JTC 1 to work out any discrepancies or overlaps among their respective
standards. In 2016, during the first JTC meeting, Subcommittee 41 (SC 41) was established
to deal solely with IoT-related issues. SC 41 is mostly interested in industrial IoT, real-time
IoT, edge computing, sensor networks, reliability, requirements, and wearables. There are
currently twenty-one written standards and nineteen work programs that are being used.
Not only does SC 41 contribute to establishing standards for the IoT, but several other sub-
committees (SCs) and working groups (WGs) play a significant role in this regard as well. SC
31 emphasizes the implementation of automatic identification and data capture techniques.
Additionally, SC 31 is involved in an IoT project that aims to establish a system for unique
identification, as outlined in standard 29161:2016 (ISO/IEC). Information security, cyber-
protection, and personal data privacy standards are currently being developed by Standard
Committee 27 (SC 27). One such standard is 27030 (ISO—ISO/IEC), which defines best
practices for protecting users’ data and identities when using IoT. The ITU has released a
standard known as SG6, which pertains to telecommunications and the exchange of infor-
mation among systems. This standard, referred explicitly to as TR 29181-9:2017 (ISO), falls
under the domain of IT and addresses the concept of the network of everything. Its goal
is to define the networking of everything as a problem and to specify what must be done
to solve it in the context of future networks. The IoT is just one part of a larger whole, and
network standards define all of its characteristics. Standardized architecture evaluation
frameworks have been built in the fields of software and systems engineering, specifically
SC 7. This framework, known as ISO/IEC/IEEE 42030:2019 (ISO/IEC/IEEE), encompasses
the evaluation of architectures, including those about the IoT.

4.3.1.2 Electrical and Electronics Engineers Standards Association
The Institute of Electrical and Electronics Engineers (IEEE) is dedicated to advancing elec-
tronic and electrical engineering. Within this institute, a Standards Association (SA) known as
IEEE-SA has been established to focus specifically on developing and implementing standard-
ized practices, The IEEE-SA is an authoritative standardization organization that is responsible
for the development of international standards in diverse domains of electronic and electrical
engineering, encompassing areas such as ICT, including software and system engineering, wired
and wireless communications, healthcare, smart grids, and computer technology, among others.
The IEEE-SA has formed IEEE P2413, a working group dedicated to creating IoT stan-
dards. Standards for an architectural framework that can be used for IoT systems are the
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primary emphasis of IEEE P2413. The architectural framework separates out unique IoT
abstractions and then finds commonalities among them (Logvinov et al. 2016). In addition,
the IEEE-SA has compiled 80 IoT guidelines (E. Lee et al. 2016). In addition to networks,
data types, electric power management, interfaces, Wireless Access in Vehicle Settings
(WAVE), terminology definition, and health informatics, these guidelines cover a vast array
of topics. The IEEE-SA offers a variety of network-related standards designed for IoT and
RFID (IEEE 21451-7), WiMAX (IEEE 802.16), and Wi-Fi (IEEE 802.11) technologies. In
addition, the IEEE P1901 committee is developing standards to improve the functionality
and efficacy of broadband over power line networks in IoT applications. Also, IEEE-SA has
compiled a comprehensive list of the 46 IoT standards currently in development (Kiyani
et al. 2022). Emerging standards include interoperability, network infrastructure, interface
protocols, security, WAVE, and smart grid systems.

4.3.1.3 International Telecommunication Union

Since its founding in 1865, the ITU has functioned as a United Nations (UN) special-
ized organization concerned with telecommunications and related technologies. There are
three divisions within the ITU: research and development (ITU-D), radio communication
(ITU-R), and standardization (ITU-T). The ITU-T brings together specialists to develop
international standards. The standards that establish normative guidelines in this context
are called ITU-T recommendations. It is important to note that these recommendations
are not mandatory until they are officially incorporated into the legal frameworks of indi-
vidual nations. ITU-T publishes both normative standards and non-normative content in
the form of technical papers and reports on a broad spectrum of topics. In addition, this
division of the ITU is responsible for publishing the ITU-T Handbooks on a variety of top-
ics pertaining to information and communication technologies. The operation, network
planning, quality of service, implementation guide, outside plant, electromagnetic effect
protection, measurement methods, security, mobile systems, formal languages, and formal
language usage could be among the topics covered.

The ITU-T consists of eleven study groups dedicated to standardizing various aspects of
ICT. These study groups encompass a range of topics and areas of focus. For instance, SG2
examines operational aspects, while SG3 is concerned with economic and policy matters.
SG5 is concerned with the environment and the circular economy, while SG9 is dedicated to
high-speed Internet and television. While SG12 focuses on performance, service quality, and
user experience, SG11 is in charge of establishing protocols and test requirements. Transport,
access, and home networks are the focus of SG15, while the future of networking and cloud
computing is investigated by SG13. The IoT, smart cities, and communities are the focus of
SG20: multimedia is the primary concern of SG16 and SG17. The standardization of IoT tech-
nologies falls under the purview of SG20. This includes fostering machine-to-machine (M2M)
communication and setting up pervasive sensor networks, as well as developing more exten-
sive frameworks for IoT and techniques to ensure compatibility among IoT applications.

Additionally, it is noteworthy that the ITU-T encompasses a diverse range of study
groups specifically focused on the standardization efforts pertaining to the IoT. The sig-
naling requirements, protocols, and test specifications fall under the purview of SG 11.
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The primary objective of SGI11 is to standardize the process of developing test specifica-
tions to address global interoperability testing challenges. This includes many things, such
as technical means, services, Quality of Service (QoS), and testing factors. Moreover, the
IoT ecosystem is emphasized in SG11. Standards for next-generation networks are being
developed by SG 13 of the ITU, with a focus on meeting the connectivity needs of the IoT.
Moreover, SG11 standards are primarily concerned with ensuring sufficient support for
the IoT over future networks via cloud computing. Multiple ITU Study Groups, including
those concerned with the IoT, collaborate under Study Group 16 to develop standards for
multimedia coding, systems, and applications. Furthermore, Study Group 17 (SG17) per-
tains to the examination of security matters, with a particular emphasis on safeguarding
applications and services within the realm of the IoT, from a security perspective.

4.3.1.4 Internet Engineering Task Force

There is a worldwide group called the Internet Engineering Task Force (IETF) whose mis-
sion is to improve the Internet. It actively promotes the adoption of voluntary standards for
things like automated network management, the IoT, upcoming transport technologies,
and privacy and security on the Internet. IETF encompasses more than 100 active work-
ing groups. Among these working groups, a subset is dedicated to developing protocols
tailored to the IoT. In October 2014, the IETF formed an advisory group called the IoT
Directorate (IOTDIR). This division is heavily involved in IoT standardization work. The
IETF divides its standards into two distinct groups, proposed standards and Internet stan-
dards. These standards are seen as being well understood and described as having a stable
specification because it addresses recognized design choices. As a result of widespread
scrutiny and widespread attention, it has been declared valuable. However, it is essential to
note that different experiences could potentially lead to a modification or even withdrawal
of the specification, as mentioned earlier, before its progression.

The definition of the Internet standard refers to a specification or protocol that has been
widely adopted and recognized as a standard for the Internet. It stands out because of its
advanced technology and the widespread opinion that the protocol or service in question
offers the Internet community many benefits. The IETF also provides research and stan-
dardization-relevant information in the form of nonstandard publications. Informational
specifications, experimental specifications, and historical specifications are the three main
categories of nonstandard specifications. An informational specification is defined as a
document published for the benefit of the Internet community at large. It should be noted
that this specification does not necessarily reflect a consensus or recommendation from
the Internet community. The experimental specification is defined as a component of a
research or development endeavor. The term historic specification refers to a specification
rendered obsolete due to the introduction of a more recent specification or for other rea-
sons. A specification is given a number in the Internet Standard (STD) series by the IETF
before it is officially recognized as an Internet standard. Meanwhile, RFC numbers are
given to any and all additional specifications, whether they be proposed standards or not.

The IETF includes the Internet Research Task Force (IRTF), which, along with the
Association for Computing Machinery (ACM), organizes yearly workshops on applied
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networking research. There are now 14 active sub-study groups within the IRTF, each ded-
icated to investigating a certain aspect of the Internet. These communities discuss a wide
range of issues, from protocols to applications, to architecture, to technology. Different
groups are looking into different aspects of the Internet, such as the crypto forum, net-
work computing, decentralized Internet infrastructure, universal Internet access, human
rights protocol considerations, Internet congestion control, information-centric network-
ing, measurement and analysis for protocols, network management, coding for efficient
network communications, path-aware networking, privacy enhancements and assess-
ments, and quantum Inter, to name a few. The Thing-to-Thing Research Group’s (T2TRG)
primary focus is on examining open questions in the field of IoT. The group is especially
interested in architectures and Application Programming Interfaces (APIs) that improve
IP-to-API communication.

4.3.1.5 One Machine-to-Machine
Since 2012, the multinational group known as oneM2M has been working toward a unified
global standard for machine-to-machine (M2M) and IoT communications. Eight groups
working on ICT standards have joined forces. The oneM2M program is distinguished by
its extensive network, which includes roughly 200 partners and members. The Technical
Plenary (TP) within the oneM2M framework assumes the responsibility of develop-
ing and overseeing the creation of technical specifications and reports that cater to the
market requirements of oneM2M. This is achieved by establishing three distinct working
groups, each focused on specific topics. The first WG is responsible for creating the RDM
(Requirements and Domain Models), while the second WG is in charge of the SDS (System
Design and Security). Working Group 3’s overarching mission is to investigate and assess
the Testing and Developers Ecosystem (TDE).

oneM2M is responsible for the creation, endorsement, and maintenance of technical
specifications, which are also known as standards and technical reports. The Machine-
to-Machine (M2M) and IoT industries have distinct requirements, so these standards and
studies address interoperability and security to meet those requirements. There have been
five separate occasions on which oneM2M has released technical papers and specifica-
tions. The initial and subsequent versions were amended in the succeeding iterations, with
the subsequent iteration being officially authorized by the oneM2M Technical Plenary in
December 2018. The current versions (drafts 4 and 5) are only useful for research because
they need to be revised before they can be published.

4.3.1.6 Open Connectivity Foundation

The Open Connectivity Foundation (OCF) is a group of businesses working together to
create universally acknowledged standards for IoT ecosystem interoperability. The OCF’s
standardization initiatives have the support of a number of major players in the telecommu-
nications and device industries. The primary areas of focus for the organization are twofold.
Firstly, it aims to assist manufacturers with materials such as specifications, codes, and certi-
fied programs that enable interoperability among IoT devices and legacy systems. Secondly,
it seeks to improve the user experience with machines that comply with the OCF standards.
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The OCF has formulated specifications, also known as standards, to facilitate the pro-
cess of certification and interoperability. There are five basic categories of specifications,
including those for frameworks, security, bridges, resources, and onboarding. Several
ISO/IEC JCT 1 standards, including the ISO/IEC 30118 family of papers, were developed
using OCF requirements. With the support of the OCF, an open-source project known as
IoTivity (Mandza and Raji. 2021) was developed. The initiative’s overarching objective is to
hasten the adoption of interoperability standards and certification programs for the IoT.

4.4 loT ECOSYSTEM

The structure of the IoT ecosystem, illustrated in Figure 4.1, consists of the Market,

Acquisition, Interconnection, Integration, Analytics, Application, and Services layers.
Smart grids, smart homes, and smart healthcare are just a few examples of the application
domain’s Market layer. Applications rely heavily on the second layer, Acquisitions, which
is made up of sensors and smart devices. The classification and spatial arrangement of sen-
sors exhibit variability contingent upon the particular applications. Temperature sensors,
humidity sensors, electricity meters, and webcams are just a few examples of the many uses
for sensors. The third layer, known as the Interconnection layer, is responsible for relay-
ing sensor data to a central server or the cloud. In this context, the data is integrated with
additional datasets, including geographical, population, and economic data.

Moreover, the aggregated data undergoes thorough examination using ML and data
mining methodologies. There is a need for the development of sophisticated collaboration
and communication software at the application level to facilitate the operation of exten-
sive distributed applications, such as Software Defined Networking (SDN) and Services
Oriented Architecture (SOA). Ultimately, the upper layer consists of all the services of

Services Energy, Entertainment, Health, Education, Transportation...
Apps and SW SDN, SOA, Collaboration, Apps, Clouds
Analytics Machine Learning, Predictive Analysis, Data Mining, ...
Integration Sensor Data, Economy, Population, GIS, ...
Interconnection DECT/ULE, WiFi, Bluetooth, ZigBee, NFC, ....
Acquisition Sensors, Cameras, GPS, Meters, Smart Phones, ...
Market Smart Homes, Smart Grids, Smart Cities, Smart Health, ....

FIGURE 4.1 IoT ecosystem.
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ecosystems. Among these are energy management, health management, schooling, and
transportation, among others. Security and management are important parts of all seven
layers, which are stacked in a hierarchy, and are shown together.

4.5 LAYER WISE COMMUNICATION STANDARDS

Standards are proposed for all five layers by various prominent organizations such as
the IEEE and IETF. IEEE is focused on data links; IETF on networks; and session, secu-
rity, and management are handled by other organizations. The Datalink layer establishes
a connection between two IoT system elements: two sensors or one sensor and a gadget
called a “gateway” that connects a group of sensors to the Internet. Before sending data to
the Internet, multiple monitors need to talk to each other and put together a lot of data.
Protocols have been made to help with sensor handling, and these protocols are important
parts of the Network layer. The communication among different parts of the IoT commu-
nication subsystem is facilitated by Session layer protocols. Also, the network and session
layers show various protocols for the security and management of IoT. The protocols and
standards for IoT are illustrated in Figure 4.2.

4.5.1 Datalink Layer Standards

In this section, the Datalink layer protocol standards, including physical (PHY) and Media
Access Control (MAC) layer protocols, are discussed.

4.5.1.1 IEEE 802.15.4e

The IEEE 802.15.4 standard is widely employed in the MAC layer for datalink
communication. The standard specifies the framework’s configuration, encompassing the
construction of headers, the assignment of destination address and source address, and

MQTT, SMQTT, CoRE, DDS, AMQP, XMPP, CoAP. IEC, ....

M)
Net K Enapsulation: 6LowPAN, 6TiSCH, 6Lo, Thread, .....
etwon Routing: RPL, CORPL, CARP
—
)
WiFi, Bluetooth, LowEnergy, Z-Wave, ZigBee Smart,
DataLink DECT/ULE, 3G/LTE, NFC, Weightless, HomePlug GP,
802.11ah, 802.15.4e, G.9959, WirelessHART, DASH7,
ANT+, LTE-A, LoRaWAN, ISA 100.11a, DigiMesh, WiMAX.
————
)
ineEstion IEEE, 1888.3, TCG, OAuth2.0, SMACK, SASL, EDSA,
8 ace, DTLS, Dice, ....
N/
Management |IEEE 1905. IEEE 1451, TR-069, OMA-DM, LWM2M, IEEEE
g 1377, LEEE P1828, |IEEE P1856

FIGURE 4.2 IoT standards and protocols.
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the establishment of communication protocols among nodes. The conventional frame
formats employed in networking are ill-suited for IoT devices with limited power
resources. The year 2008 witnessed the development of IEEE 802.15.4e, an extension of
the existing IEEE 802.15.4 standard, with the primary objective of facilitating low-power
communication. The utilization of time synchronization and channel hopping facili-
tates the establishment of reliable and cost-effective communication in IoT datalinks.
The specific features of the MAC protocol include a Slot Frame Structure, Scheduling,
Synchronization, Channel Hopping, and Network Formation (Mirzoev. 2014).

4.5.1.2 IEEE 802.11ah

IEEE 802.11ah is the version of the IEEE 802.11 standard with the lowest overhead
and that meets IoT requirements. The IEEE 802.11 standards, commonly called Wi-Fi,
are widely utilized wireless standards within conventional networking. Digital devices,
such as digital T.V.s, laptops tablets, and mobiles, have experienced widespread adop-
tion. But the current Wi-Fi standards aren’t good enough for IoT apps because they
have too much frame overhead and use a lot of power. So, the IEEE 802.11 working
group created the 802.11ah task group with the goal of coming up with a standard
that lets sensors and other small devices communicate in a way that is both effective
and uses little energy (Park. 2015). IEEE 802.11ah’s MAC layer has a Synchronization
Framework, an Efficient Bidirectional Packed Exchange Method, a Short MAC Frame
Structure, and Null Data Packets.

4.5.1.3 Wireless HART

Wireless HART is a MAC layer standard that utilizes the IEEE 802.15.4 PHY as its
underlying technology, with its MAC layer implementing Time Division Multiple Access
(TDMA). It encrypts messages with sophisticated encryption techniques and verifies their
integrity. This makes it safer and more trustworthy than alternatives. The system is made
up of different parts, such as the network manager, the security manager, the gateway
that connects the wired and wireless networks, and the wireless devices that serve as field
devices, routers, adapters, and access points. This standard offers a wide range of security
methods, such as end-to-end, peer-hop, and peer-to-peer. Peer-hop methods protect the
connection until the next hop (Kim et al. 2012; Nobre. 2015, Silva and Guedes. 2020), while
end-to-end mechanisms secure the connection.

4.5.1.4 Z-Wave

The Z-Wave protocol is a standard for low-power MAC that was originally developed for
home automation. However, it has since acquired significant popularity and is now widely
employed in numerous IoT applications, such as smart homes and small commercial set-
tings. It’s ideal for short communications and works up to 30 meters away in a point-to-point
fashion. It employs Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
for media access and uses short acknowledgement (ACK) messages for dependable trans-
mission. It’s organized in a master/slave fashion, where one node issues commands to oth-
ers and coordinates the network’s schedule (Z-Wave).
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4.5.1.5 Bluetooth Low Energy

Bluetooth Low Energy, also known as Bluetooth Smart, is a popular short-range
communication standard for the Datalink layer in IoT. Its primary application is in
car networking. It has a very low latency, 15 times lower than the first generation of
Bluetooth. Energy consumption is reduced by as much as ten times compared to stan-
dard Bluetooth. An access control mechanism that is contention-free, characterized by
low latency and rapid transmission, is employed. The system employs a master/slave
configuration and offers two distinct types of frames, namely advertising frames and
data frames. The utilization of the advertising framework by slaves involves disseminat-
ing it through dedicated channels specifically designated for this objective. To locate
and link slave nodes, master nodes use advertisement sensing channels. When the two
devices are finally linked, the master will share his wake time and daily routine with the
slave. To conserve energy, nodes typically only become active during communication
(Gomez, Oller, and Paradells. 2012).

4.5.1.6 ZigBee Smart Energy

ZigBee is one of the IoT protocols that is used the most. It is made for things like smart
homes, remotes, and health care systems that need to talk to each other from a middle dis-
tance. This network has a few different types of topologies, such as the Star, peer-to-peer,
and cluster-tree topologies. In a star topology, the center node is the coordinator. In a tree
or cluster topology, on the other hand, the coordinator is at the root. Conversely, in a peer-
to-peer topology, the coordinator has the flexibility to be positioned at any place within
the network. The ZigBee standard defines two stack profiles: ZigBee and ZigBee Pro. These
stack profiles are suitable for low-memory and low-processing-power implementations and
offer full-mesh networking. Additional features offered by ZigBee Pro include symmetric-
key exchange for increased security, stochastic address assignment for greater scalability,
and efficient many-to-one routing for better performance (Zigbee. 2016).

4.5.1.7 DASH7

The DASH7 wireless communication protocol is a new standard for active RFID devices
that uses the internationally accessible Industrial Scientific Medical (ISM) band. DASH7
is designed for high-speed, long-range outdoor service that can be expanded. It’s an
inexpensive option that allows for both IPv6 addresses and encryption. It’s well-suited
to the IoT since it has a master/slave architecture and can handle bursts of light, asyn-
chronous, transitory traffic. Filtering, Address, and Frame Format are all MAC layer
features.

4.5.1.8 HomePlug

The HomePlug Green PHY (HomePlugGP) is a MAC protocol developed by the HomePlug
Powerline Alliance, with a primary focus on its application in home automation systems.
The HomePlug bundle, which encompasses both HomePlug-AV and HomePlug-AV2, is
designed to cater to the PHY and MAC layers. HomePlug-AV serves as the fundamen-
tal framework for power line communication. It uses Orthogonal Frequency Division
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Multiplexing or OFDM, and it can be modulated in four different ways. It also uses
MAC layer techniques called Time-Division Multiple Access (TDMA) and CSMA/CA.
Furthermore, HomePlug-AV possesses the capability to adapt its transmission rate in
response to the prevailing ambient noise level. IoT" applications, including smart homes
and smart grids, are the focus of HomePlugGP’s development. Its primary goal is to make
HomePlug-AV more affordable without sacrificing its interoperability, dependability, or
coverage. Therefore, it employs OFDM, with a single modulation just like HomePlug, but
it employs secure OFDM encoding to allow for low transmission rates and exceptional
dependability. While CSMA is used exclusively by HomePlug-AV at the MAC layer,
HomePlugGP makes use of both CSMA and TDMA. Furthermore, HomePlugGP provides
a mode that saves energy by simultaneously employing sleeping nodes and awakening
them as needed (H. Alliance. 2007).

4.5.1.9 G.9959

This ITU MAC layer standard is for trustworthy, low-bandwidth, half-duplex communi-
cation at minimal cost. Because of its great reliability and low power consumption, it is
ideal for time-sensitive applications. To conserve power, nodes on the MAC layer can go
to sleep when they are out of communication and wake up when they are back in range,
and collision avoidance mechanisms, back-off time in the event of a collision, automatic
retransmission to guarantee reliability, and a dedicated wakeup pattern are all part of the
MAC layer. Unique channel access, frame validation, (ACK, and retransmission (RT) are
all features of the G9959 MAC layer (Brandt and Buron. 2015).

4.5.1.10 LTE-A

LTE-A, or long-term evolution advanced, is a set of cellular networking standards created
to accommodate IoT and M2M communications. It is the most economical and scalable
protocol compared to other cellular protocols. Since its inception in 2009, LTE-A has had
many versions that add support for new technologies. The frequency is typically divided
into numerous subcarriers, and the medium access technology is Orthogonal Frequency
Division Multiple Access (OFDMA). Mobile nodes, the Radio Access Network (RAN), and
the Core Network (CN) make up LTE-A’s architecture. The CN. monitors and manages
mobile devices by recording their IP addresses. Management and data planes, as well as
wireless connectivity and radio-access management, are all responsibilities of the RAN.
The S1 connection is used for communication between the RAN and the CN Additionally,
LTE Rel-13 and LTE Rel-14, the newest iterations of LTE-A, have been designed with special
features to accommodate 5G (J. Lee et al. 2016). There are three major new additions in
Rel-13: new machine-type communication services, enhanced frequency and carrier aggre-
gation, and enhanced Full-Dimensional Multiple Input Multiple Output (FD-MIMO). To
maximize spectrum efficiency, FD-MIMO employs a large number of base station antenna
ports. More frequency resources are being consumed by the use of unlicensed spectrum
in addition to the licensed spectrum bands. This way, more rounds can be used, and old
devices can still work with the new ones. In LTE-A, carrier aggregation was also improved
by increasing the peak rate and using frequency resources best. Reduced prices, expanded
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coverage support, indoor positioning, and the ability to broadcast and multicast in a single
cell are just some of the benefits of LTE Rel-13’s new services for M2M transmissions.
More antenna ports, improved transmission reliability, and decreased feedback are just
some of the ways in which LTE Rel-14 is expected to advance FD-MIMO. Reduced latency,
vehicle-to-anything, and downlink multi-user transmission were all deemed feasibility
studies in Rel-14 (Hoymann et al. 2016), but are now scheduled to be standardized in the
upcoming version.

4.5.1.11 LoRaWAN

LoRaWAN is a novel wireless long-distance wide-area network technology that meets the
needs of IoT apps by providing low cost, mobility, security, and two-way communication.
It is an optimized system for wireless network devices that use little power. It supports
technologies such as redundant operation, location-free operation, low cost, low power,
and energy harvesting to satisfy the future needs of the IoT while allowing for mobility and
user-friendliness (Vangelista and Centenaro. 2019).

4.5.1.12 Weightless

Weightless is a newly developed wireless technology for the IoT MAC layer. It is provided
by the Special Interest Group (SIG), a global non-profit organization. Weightless-N was the
initial standard to satisfy IoT requirements. To reduce interference, TDMA and frequency
hopping are employed. It employs extremely narrow Industrial, Scientific and Medical
(ISM) frequency channels below 1 GHz. Weightless-W, on the other hand, shares the same
characteristics but employs television band frequencies (Poole. 2014).

4.5.1.13 DECT/ULE

Digital Enhanced Cordless Telecommunications (DECT) is a European cordless phone
worldwide standard. DECT/ULE (Ultra-Low Energy), a form of extension, was recently
added as a new feature. IoT applications can utilize the low-power, low-cost air interface
technology described by LTE-A architecture. This standard has a specialized channel and
can handle interference and congestion much better. The original DECT protocol did not
allow FDMA, TDMA, or time division multiplexing, but DECT/ULE does (Bush. 2015).

4.5.1.14 EnOcean

EnOcean is a wireless energy-saving technology that is mostly used for automation, but it
can also be utilized for other IoT applications. To put it simply, converters can be used to
transform kinetic energy or energy from other natural sources into usable forms. This pro-
tocol is often deployed in HVAC IoT apps due to its compact packet size (E. Alliance. 2015).
Instead of traditional data lines, standards such as Near Field Communication (NFC), and
the International Society of Automation (ISA) 100.11a can be utilized. However, the declin-
ing usefulness of these standards in comparison to the developing ones outlined in this sec-
tion means that they are not widely used in the IoT. NFC is mostly used for short-range, ad
hoc communication. It uses radio frequency identification to activate the receiver and kick
off peer-to-peer connectivity at low frequencies (Kshetrimayum. 2009). In contrast, ANT
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is a wireless multicast system that uses a master-slave architecture. It operates at 2.4 GHz
and is functionally comparable to Bluetooth low energy (Evanczuk. 2013) which finds its
primary application in wireless sensor networks. The ISA standard for wireless networking
in industrial automation control is ISA100.11a (Serizawa et al. 2016).

This section briefly discussed the main differences between the different datalink proto-
cols and how they can be used in IoT medium access. In general, Bluetooth and ZigBee are
the IoT technologies that are used the most. However, IEEE 802.11ah is the wireless stan-
dard that is most compatible with IEEE 802.11, the standard wireless network architecture.
HomePlug is used to connect to the Local Area Network (LAN) by various service provid-
ers and IoT markets because it is a more secure and stable option. The new technology of
LoRaWAN might prove useful in the great outdoors.

4.6 NETWORK LAYER STANDARDS

This section provides a quick overview of some IoT routing standards and protocols. The
Network layer of the networking hierarchy consists of two sublayers: the Routing layer,
which transmits packets from source to destination, and the Encapsulation layer, which
binds packets together.

4.6.1 RPL

The IETF created the Routing Protocol for Low-Power and Lossy Networks (RPL) expressly
for use in IoT routing. It’s compatible with all the MAC layer protocols we’ve spoken about,
plus a few extras that weren’t made with IoT in mind. It is built on Destination-Oriented
Directed Acyclic Graphs (DODAGs), which are directed acyclic graphs with just one path
from each leaf node to the root and are used to direct traffic. At the outset, every node broad-
casts a DODAG Information Object (DIO), claiming to be the network’s starting point. Over
time, the network will spread DIO, and the whole DODAG will be constructed. A node com-
municating with another node sends a Destination Advertisement Object (DAO) to parents,
and then it is forwarded to the roots. Sending a DODAG Information Solicitation (DIS) is the
first step for new nodes joining the network, and receiving a DAO Acknowledgement (DAO-
ACK) from the root is confirmation that they have been accepted. An RPL network node
can be either stateless (the default) or stateful. A stateless node simply remembers its parent
nodes. Only Root knows everything there is to know about the DODAG. Therefore, the Root
is the hub of all communication. A stateful node remembers its parent and child relationships
to bypass the root node in a Directed Acyclic Graph (DAG) (Winter et al. 2012).

4.6.2 CORPL

CORPL, or Cognitive RPL, is an extended RPL protocol that uses the same DODAG tech-
nology. First, it implements opportunistic forwarding, which allows a packet to specify
several forwarders while still being sent only to the best next hop. Then, instead of just
keeping track of its parent, each node also keeps track of any of its neighbors’ changes via
DIO messages. Each node dynamically adjusts its neighbors to the collection of forwarders
based on the most recent data (Aijaz and Aghvami. 2015).
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4.6.3 CARP and E-CARP

The Channel-Aware Routing Protocol (CARP) designed for underwater communication
is a distributed network-based routing protocol. Because of its efficiency as a lightweight
packet forwarding in IoT networks, when deciding which path to forward data along, it
takes into account past measures of consideration protocols that should account for net-
work start-up and data transmission. When a network is set up, the sink sends a HELLO
packet to every other node. The data travels from the sensor to sink via intermediate nodes
in data forwarding. The subset of the data forwarding process, CARP, doesn’t support data
recycling. For this reason, CARP data forwarding may not be helpful for applications that
need sensor data only when substantial unhelpful changes. E-CARP is an improvement on
CARP because it stores previously received sensory data at the sink node. E-CARP uses a
ping packet to request updates from the sensor nodes, which are then sent back. Therefore,
E-CARRP significantly lessens the burden of communication (Basagni et al. 2015).

This section covered three routing protocols applicable to IoT routing sublayers. The
most popular and standard distance vector protocol is called RPL. CORPL uses oppor-
tunistic forwarding to forward packets at each hop and is used for cognitive networks
because it is a nonstandard RPL extension. However, E-CARP stands alone as the only
distributed link quality assessment meant specifically for Internet assessment-based net-
works. E-CARP is mainly employed for submerged communication. The lack of standards
prevents its deployment in some IoT contexts.

4.7 NETWORK LAYER ENCAPSULATION PROTOCOLS

The need to adapt IPv6 long addresses for IoT devices within compact and lightweight IoT
datalink frames is a matter of concern for standardization efforts. The IETF is working on
a set of frame formatting standards at the moment. The goal of these norms is to package

IPv6 datagrams into smaller data connection frames appropriate for use in IoT scenarios.

4.71 6LOWPAN

IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) is an early and
widely adopted IETF specification in this field. IPv6 headers with large sizes are com-
pressed into a maximum size of 128-byte size of IEEE802.15.4 MAC packets (Culler and
Chakrabarti. 2009). Specifications for 6LoOWPAN enable a wide range of properties related
to addresslength, networking topology, bandwidth, power consumption, cost-effectiveness,
scalability, portability, dependability, and sleep duration. The standards use header com-
pression to decrease the transmission overhead, fragmentation to adhere to IEEE802.15.4s
limit frame length of 128 bytes, and multi-hop delivery to get the message to its destina-
tion as a quick multi-hop. There are four types of headers used in 6LoWPAN frames: No
6LoWPAN Header (00), Dispatch Header (01), Mesh Header (10), and Fragmentation Header
(11). In the No 6loWPAN header case, frames that don’t meet the standards of 6loWPAN
are dropped. Multicasting and IPv6 header compression both make use of the dispatch
header. The Fragmentation Header is used to split down the large IPv6 header into smaller
128-byte chunks, while the Mesh Header is used for broadcasting.
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4.7.2 6TiSCH

A new IETF standard, IPv6 Time Slotted Channel Hopping (6TiSCH), was created by
the 6TiSCH working group. It describes the TSCH mode for transmitting lengthy IPv6
headers over IEEE 802.15.4e data lines. A channel distribution usage matrix stores
the frequencies and time slots in this configuration. Each node in the network has
access to a subset of this matrix that includes localized time and frequency informa-
tion. Nodes within the same interference area work together through coordination
and negotiation of transmission times. When numerous surrounding nodes use the
same application, scheduling becomes an optimization challenge in which time slots
must be assigned. The standard does not specify how scheduling can be accomplished,
allowing IoT applications to be as flexible as possible. Instead, it considers schedul-
ing to be an issue unique to each application. Depending on the requirements of the
application or the configuration of the MAC layer, scheduling can be centralized or
distributed (Dujovne et al. 2014).

4.7.3 6lLo

IPv6 over networks of resource-constrained nodes (6Lo), a newly-assigned IETF group,
is working to propose a set of standards for IPv6 frame transmission over various data
connections. Even though encapsulation standards like 6LoWPAN and 6TiSCH were cre-
ated, it is now apparent that additional standards are required to accommodate all types
of data communication. For this reason, IEFT established 6Lo. Most of the 6Lo specs are
still being worked on and are not yet completed. IPv6 over DECT/ULE, IPv6 over NFC,
IPv6 over IEEE 802.11ah, IPv6 over IEEE 485 Master-Slave/Token Passing (MS/TP) net-
works, and IPv6 over Wireless Networks for Iindustrial Automation Process Automation
(WIA-PA) (Hong et al. 2017) are all examples of datalinks for which drafts are currently
being developed for the purpose of IPv6 datagrams transmission.

4.7.4 IPv6 over G.9959

When using G.9959 data connections, IPv6 packets must adhere to the frame format estab-
lished in IETF RFC 7428. Each G.9959 node will be given a unique home network identi-
fier of 32-bit and a controller using a host identifier of 8-bit. So that it can fit in a G.9959
frame, an IPv6 link-local address must be built from an 8-bit host identification from the
link layer. In addition, IPv6 packets compress like the headers of 6LOWPAN to fit within
frames of G.9959. Regarding security, it’s worth noting that RFC 7428 permits encryption
purposes using a shared network key. However, end-to-end encryption and authentication
are required for security-critical applications, often handled by higher-layer security meth-
ods and other protocols (Qureshi, Jeon and Piccialli. 2020).

4.7.5 IPv6 over Bluetooth Low Energy

RFC 7668 (Nieminen et al. 2015) defines the IPv6 over the Bluetooth low energy format.
On Bluetooth, fragmentation occurs at the L2ZCAP sublayer, which stands for Adaptation
Protocol and Logical Link Control. Therefore, 6LOWPAN’s fragmentation function is
being bypassed. Furthermore, multi-hop network generation currently not used effectively
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by Bluetooth low energy. Instead, the weaker nodes on the edges are routed through a core
node. As a result, 6LoOWPAN’s multi-hop functionality is underutilized.

4.7.6 Summary

This section described the encapsulation of lengthy IPv6 datagrams into small MAC
frames. It began with discussing IPv6 over 802.15.4 and 802.15.4e using 6LoOWPAN and
6TiSCH. Due to 802.15.4¢’s prominence as the de facto standard encapsulation frame-
work for IoT; such protocols are crucial. Then, 6Lo specifications are quickly and gen-
erally reviewed to demonstrate their presence in IETF standards. These documents deal
with 6LoWPAN specifications for transferring IPv6 datagrams through various channel
access techniques. Two of the 6Lo specifications that eventually became IETF Requests for
Comments are then examined further. The presentation of these standards is significant
because it draws attention to the difficulty of achieving interoperability among the many
layers of a networking stack, a problem made more complicated by the wide variety of
datalink protocols.

4.8 SESSION LAYER PROTOCOLS

Various Session layer protocols for the IoT used for messaging are discussed, including
some defined by multiple bodies. The IoT relies on TCP and User Datagram Protocol
(UDP), two widely used protocols of the Transport layer. However, different IoT applica-
tions call for different sets of message distribution options. Ideally, these features should
be implemented via industry-accepted, consistent standards. In this section, we will go
over what is commonly called “Session layer” protocols.

4.81 MQTT

The Message Transfer Protocol for Telemetry (MQTT) is a standard developed in 2013 by the
Organization for the Advancement of Structured Information Standards (OASIS). IBM first
debuted it in 1999 (Standard “Mqtt Version 3.1. 1”; Karagiannis et al. 2015). It links together
the Application layer, the User layer, the Network layer, and the Communication layer.
As can be seen in Figure 4.3, the architecture is a publish/subscribe one, with the three
primary parts being Publisher, Subscriber, and Broker. A Publisher in the IoT is a light-
weight sensor that links up with the Broker, transmits data, and then falls back to sleep.
The applications that are interested in a specific topic or sensory data collection can only
subscribe for Broker updates. The Brokers organize sensory input into distinct subjects and
distribute them to specific groups of subscribers.

4.8.2 SMQTT

Secure MQTT (SMQTT) is a new and secure version of MQTT (Singh et al. 2015), which allows
lightweight attribute-based encryption. This encryption method is widely deployed in IoT
software. The encrypted message is broadcast to many additional nodes at once using the
multicast feature. The technique can be divided into four phases: preparation, encryp-
tion, dissemination, and decryption. During the preparation step, the Broker signed up
by the subscribers and publishers will receive a secret master key generated using the key
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FIGURE 4.3 MQTT architecture.

generation algorithm selected by the developer. Afterward, the Broker encrypts the data
before sending the data to subscribers. Decryption is the final step in the process at the
end users’ end, provided they share the same master secret key. There is no consensus on
how to standardize key generation and encryption techniques.

4.8.3 AMQP

The Advanced Message Queuing Protocol (AMQP) is an OASIS standard developed for the
banking sector. It employs a Publish/subscribe Architecture based on TCP. As shown in
Figure 4.4, the primary distinction between these standards is the Broker’s separation into
exchanges and queues. The Exchange Component receives the Publisher messages, which
then routes them to appropriate queues based on the Publishers’ assigned roles. Sensory
data is made available to subscribers anytime by connecting them to queues for various
subjects (Standard “Oasis Advanced Message Queuing Protocol (Amqp) Version 1.0”).

4.8.4 CoAP

Constrained Application Protocol (CoAP) is another Session layer protocol developed in
the IETF-constrained RESTful environment (CORE working group, and it aims to provide
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alow overhead RESTful HTTP interface. The most popular interface for modern web appli-
cations is Representational State Transfer (REST). The high cost and power requirements
of REST, however, make it inappropriate for IoT platforms. CoAP was created to address
issues with REST and open the door for RESTful service usage in IoT applications. Instead
of using TCP, it is based on UDP and employs a lightweight technique to ensure depend-
ability. CoAP’s structure consists of Message and Request/response layers. The Request/
response sublayer is in charge of the actual information exchange, while the Messaging
sublayer is responsible for message redundancy and delivery. Confirmable messages, non-
confirmable messages, piggyback messages, and standalone messages are the four types of
messages that CoAP can handle. Various confirmable and non-confirmable (representing
dependable and unreliable transmissions, respectively) request/response communications
make use of various modes. In piggyback, the server responds to a message from a client
immediately after receiving it within the acknowledgment message. With CoAP messages,
the server may take some time to send the acknowledgment. Thus, it is utilized in a sepa-
rate mode when the answer includes a message that is not part of the acknowledgment.
CoAP, as are PUT, PUSH, GET and Delete requests, is used in HT'TP to create, insert,
retrieve, and delete, respectively (Karagiannis et al. 2015).

4.8.5 XMPP

The Extensible Messaging and Presence Protocol (XMPP) was initially developed to com-
municate among various chat and message exchange programs. Standardized by IETF
over a decade ago, it is based on the XML markup language. Its efficiency and widespread
acceptance make it ideal for online deployment. Due to the standardization of XML, it
has recently seen an increase in its use for IoT and SDN applications. The decision as to
which architecture to adopt in an XMPP implementation is made by the application’s
developer. Its low-latency support for short messages is optimized for real-time use cases.
It is impractical for M2M communications since it does not ensure a certain level of service
quality. Additionally, the power consumption crucial for IoT applications is increased by
the extra overhead created by XML messages’ many headers and tag types. While XMPP’s
design currently doesn’t lend itself well to IoT uses, there is some interest in expanding its
functionality to accommodate such uses (Saint-Andre. 2011).

4.8.6 DDS

A messaging standard Data Distribution Service (DDS) was developed by Object
Management Group (OMG). It is mainly employed in M2M communications and has a
publish/subscribe design (O. Group). This protocol’s greatest strengths are its suitability
for Broker-less architectures like the IoT and M2M communication and its excellent
Quality of Service (QoS) levels. With its 23 QoS tiers, it can meet many standards for
quality, such as those related to safety, timeliness, priority, longevity, dependability, etc. It
specifies a Publish-subscribe sublayer focused on the data and a Reconstruction sublayer
local to the data. The first is required and is in charge of relaying messages to subscrib-
ers, while the second is discretionary and facilitates DDS’s easy incorporation into the
Application layer. The sensory data distribution falls under the Publisher layer’s purview.
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The Data Writer communicates with the Publishers to reach a consensus on what infor-
mation and updates should be given to subscribers. Sensory information generated by IoT
devices is sent to subscribers. In this context, “topics” refer to the many categories of data
that are being distributed to subscribers via “Data Readers,” while “data types” refer to
the specific categories of data that are being distributed. In other words, in Broker-based
architectures, the Broker’s role is assumed by the Data Writer and Data Reader.

This section briefly discussed many IoT Session layer standards and protocols. These
standards are chosen depending on the applications being used. IoT uses MQTT the most
because of the low overhead and power consumption; the choice to be made among these
standards is dependent on the organization and the application. XMPP may be the best
Session layer protocol for an application designed using XML that can tolerate header over-
head. MQTT is suitable for overhead and power-sensitive applications that require Broker
implementation. CoAP is the best, if not the only, solution for HTTP-based applications
that need REST capability.

4.9 lolT MANAGEMENT STANDARDS

Several management protocols are utilized in the IoT to allow for the management and
communication of fundamentally different devices. This section discusses two proto-
cols for dealing with heterogeneity in datalinks and some specific protocols for manag-
ing remote devices, emphasizing their applicability in M2M and IoT scenarios. Due to
the variety of IoT devices and the requirements at various networking tiers, management
protocols play a crucial role in the success of the IoT. IoT applications depend on quickly
and efliciently exchanging data among protocols operating at the same or different tiers.
Communication among protocols in different layers of the IoT remains difficult despite

existing standards for doing so at the same layer.

4.9.1 IEEE 1905.1

Interoperability among the multiple MAC layer protocols used in IoT is essential because of
the wide variety of these protocols. The IEEE standard would manage this type of interop-
erability by adding an abstraction layer on top of the many MAC protocols now in use (I. W.
Group). By disguising their differences, the various protocols can communicate with one
another without requiring any changes to their design thanks to this abstraction. Control
Message Data Units (CMDUs) are communications that can be sent and received between
any two devices that adhere to the same communication standards. All devices that con-
form to IEEE 1905.1 can communicate using a standard “Abstraction Layer Management
Entity (ALME)” protocol, the features of which are the following: finding nearby neigh-
bors, exchanging topologies, notifying each other of topology changes, exchanging mea-
sured traffic data, exchanging flow forwarding rules, and associating security policies.

4.9.2 Smart Transducer Interface

MAC layer protocols in IoT are diverse and numerous; therefore, interoperability among
these standards is essential. This IEEE standard (Malar and Kamaraj. 2014) is meant to
manage such interoperability by providing an Abstraction layer on top of all these diverse
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heterogeneous MAC protocols. Because of this abstraction, disparate protocols can talk to
one another while preserving their original designs. CMDUs can be transmitted among
devices that adhere to the same protocol. All devices that meet the requirements of IEEE
1905.1 have a common understanding of the ALME protocol. This protocol allows for a
variety of services to be provided, such as the discovery of neighbors, sharing of topologies,
notification of topology changes, sharing of measured traffic statistics, forwarding of flows,
and protection against unauthorized access.

4.9.3 TR-069

Customer-Premises Equipment (CPE) WAN Management Protocol (CWMP), published
by the Broadband Forum, is an industry-standard for HTTP-based remote management of
M2M devices. The server communicates with the clients or target devices via HTTP mes-
sages in this specification. Despite its importance for M2M devices, the standard has had
limited adoption in IoT thus far because it relied on HTTP messages (Stusek et al. 2016).

4.9.4 OMA-DM

The Open Mobile Alliance (OMA) created the OMA device management protocol. It
is deployed remotely to M2M devices for provisioning, upgrading, and fault manage-
ment. It’s based on XML messages sent over HTTP and may be used with XMPP or any
other XML-based transport protocol. Despite this, resource-constrained IoT devices still
have difficulty deciphering the protocol’s messages (O. M. Alliance Device Management
Architecture).

4.9.5 LWM2M

The OMA protocol Lightweight M2M (LWM2M) was developed with the management
of IoT devices in mind. JASON (JavaScript Object Notation) messages are used for data
exchange among clients and servers in certain protocols. It relies heavily on the CoAP
session protocol but can also be used with others. The functionalities of devices can be
managed across the network using this protocol, and data can be transferred from the
server to the devices using this protocol (O. M. Alliance “Lightweight Machine to Machine
Architecture”).

Several management protocols allowing for the compatibility and diversity of IoT
protocols have been highlighted. Transducer and sensor management are handled by
IEEE-1451, whereas the variety of IoI MAC layer protocols are handled by IEEE-1905.1.
Regarding remote management protocols, LWM2M is preferred and more extensively used
for the IoT than TR-069 and OMA-DM. The coordination of IoT protocol stacks at various
communication levels remains an open problem.

4.10 loT PROTOCOLS SECURITY

Securing IoT systems presents a new set of difficulties at each of the networking layers
we’ve discussed so far. Due to their complexity and resource needs, typical security mea-
sures like encryption and public critical infrastructure don’t seem viable options for IoT
devices. This has prompted the development of streamlined security protocols.
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4.10.1 Security within loT Protocol Layers

IoT security is threatened at all levels, including the Datalink, network, Session, and
Application layers. This means that security has to be built into the standards we’ll talk
about in this chapter. 802.15.4e, WirelessHART, 6LoWPAN, and RPL are just a few of the
protocols whose Communication layers have built-in security features. Multiple options
for security are available in MAC 802.15.4e, and they are activated by setting the “secu-
rity enabled bit” in the frame control field of the header. Privacy, authentication, integrity,
access control, and precisely synchronized temporal communications are all essential for
system security. In order to provide its users with the utmost security, the WirelessHART
standard uses both established and state-of-the-art cryptographic methods. Indicators for
unsuccessful data access, report production on message integrity and authentication, and
AES-128 encryption are only a few examples. This means WirelessHART may give vary-
ing degrees of protection using the most up-to-date techniques, as needed by the many
applications it serves.

Several IETF documents address the security concerns and needs of 6LoWPAN and offer
recommendations for mitigating those concerns. EUI-64 interface addresses, for instance, are
expected to be unique, although RFC 4944 mentions the potential of duplicates (Montenegro
et al. 2007). Security concerns brought forth by RFC 4944 (Hui and Thubert. 2011) are
addressed in RFC 6282. Security techniques for resource-limited wireless sensor systems are
discussed in RFC 6568 (Kim, Kaspar and Vasseur. 2012). The “Security” header of RPL docu-
ments indicates the available security settings. This field specifies the encryption algorithm
and strength necessary for the encryption of a message. RPL helps with legitimate data, safe-
guarding against replay attacks, semantic security, privacy, and managing keys. Unsecured,
preloaded, and authenticated RPL security levels exist. Selective forwarding, sinkholes, Sybils,
hello floods, wormholes, and DoS attacks are all potential dangers for RPLs. Confidentiality,
availability, integrity attacks, and possible defenses against them, are all covered in RFC 7416
(Tschofenig and Fossati. 2016).

4.10.2 TLS/DTLS

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are two
common security protocols. Their primary usage is in Transport layer protocols like CoAP,
where they guarantee security and privacy. Security services are provided through TLS
over TCP transmission and DTLS over UDP/datagram transfer, respectively. The encap-
sulation and authentication in TLS and DTLS are handled by two separate protocol layers:
Record and Handshaking. These standards’ privacy and security methods are discussed
in depth in RFC 7925 (Tschofenig and Fossati. 2016). Traditional security techniques such
as credentials, signatures, and error handling can be adapted to work with the limited
resources of IoT devices utilizing these standards.

4.10.3 Ubiquitous Green Community Control Network Security

The Ubiquitous Green Community Control Network protocol is protected according
to standards outlined by IEEE Standard 1888.3. The mechanisms provided by these
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networks are high quality, energy-eflicient, and secure, making them ideal for the IoT.
The information must be protected, private, confidential, authenticated, and controlled
for access. To ensure safety in such a system, the standard specifies the appropriate
architectures and components that must be used. Handshaking, authentication, and
access control techniques are only a few of the security mechanisms specifically out-
lined in the standard.

4.10.4 TCG

Using a variety of use cases and security approaches, the Trusted Computing Group (TCG)
has developed guidelines for securing IoT-based heterogeneous applications. Among
these measures are those that provide availability, confidentiality, and integrity, as well as
those that prevent middleware infections by leveraging Transport Layer Security (TLS).
TCGcompatible devices employ these methods, which include Root of Trust for Update
(RTU) and Trusted Platform Module (TPM). It is up to the developer to find a happy medium
between system security and the complexity and resource requirements of the system; how-
ever, standards can help steer developers of IoT applications toward more secure solutions.

4.10.5 OAuth 2.0

In IETF RFC 6749, an authorization system known as OAuth is outlined. It allows reliable
third-party servers to manage who can access what. Thanks to this specification, clients
can make access requests to owners via an authorization server. Such a server verifies the
client’s identity and permission levels before granting access. This framework uses HTTP-
based messages, which are rarely used for the IoT due to their high overhead (Hardt. 2012).
New security concepts and countermeasures are described in RFC 6819 (Lodderstedt,
McGloin and Hunt. 2013), which expands OAuth. When OAuth 2.0 is released, there are
still dangers and open security vulnerabilities in the protocol that need to be fixed in sub-
sequent iterations. Some instances of these threats include credential leakage, injections,
and worries about authorization servers hosted by other parties.

4.10.6 SASL

The IETF has developed the Simple Authentication and Security Layer (SASL) security
architecture to facilitate server-based authentication for IoT applications. It employs
straightforward messages to authenticate clients using application-level security measures,
thus decoupling the application from the authentication procedure. MQTT and AMQP
(Melnikov and Zeilenga. 2006) are Session layer protocols that support TLS and SSL.

4.10.7 ACE

IoT platforms can use Authentication and authorization in constrained environments
(ACE) security because it is tailored to low-resource devices. In terms of ideas, it’s similar
to OAuth. However, it is more suited to the IoT because it is based on CoAP communica-
tions. The standards have been approved in IETF RFC 7744 (Ludwig et al. 2016), and a new
draft is now being worked on (Gerdes et al. 2018).



72 = Artificial Intelligence of Things (AloT)

4.10.8 Blockchain for loT Security

The use of Blockchain in developing smart contracts and safeguarding IoT platforms is a
freshly emerging field of study in IoT security. Distributed ledger technology, like Blockchain,
offers built-in security without relying on a single central authority (Tasatanattakool and
Techapanupreeda. 2018). It has been studied in various fields, including IoT, but is most known
for its application in Bitcoin and other virtual cryptocurrency platforms. IBM and other IoT
companies are considering Blockchain solutions for IoT security. Privacy protection in IoT
platforms is another area where Blockchain can be helpful (Kianmajd, Rowe and Levitt. 2016).

Due to the importance of addressing vulnerabilities in IoT systems, several proposals,
standards, drafts, and studies have emerged to do so. While there are security features built
into IoT protocols, these cannot guarantee the system’s integrity by themselves. Several
protocols, such as ACE and TLS/DTLS, have been proposed by the IETF to increase secu-
rity and safety in IoT environments. There are other notable continuing drafts that deal
with the difficulties and dangers of IoT security. It’s worth noting that the IETF has formed
a specialized group called DTLS in Limited Contexts (DICE) to address security con-
cerns specific to the IoT. Recent research on improving IoT systems has also been widely
discussed.

4.11 CHALLENGES TO ADOPT STANDARDS AND PROTOCOLS

A lot of research has been conducted and standards have been established for the IoT,
but creating a useful IoT application is still tricky. Some challenges (Kumar, Vealey and
Srivastava. 2016) include mobility, reliability, scalability, management, availability, interop-
erability, dependability, cost and complexity, and energy harvesting.

4.11.1 Mobility

IoT devices are expected to dynamically switch IP addresses and network affiliations to
adapt to their surroundings. Therefore, routing protocols like RPL incur significant over-
head whenever a leaf joins the network since they must reconstruct the DODAG. Because
of potential disruptions in service and gateway changes, switching service providers is yet
another possible complication of mobility.

4.11.2 Reliability

Maintaining a fully functional system that delivers as promised in an emergency response
setting is paramount. As a result, the system must be very dependable and quick to collect
data, communicate it, and make decisions in IoT applications. The consequences of poor
decision-making can be severe.

4.11.3 Scalability

The scalability of an IoT application becomes an issue if millions or even trillions of linked
devices are added. Keeping track of where devices are placed and what they can do may be
daunting. Also, IoT applications’ accommodation for adding new services and devices to
the network without interruption is necessary.
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4.11.4 Management

The management of IoT devices remotely can be performed using various protocols, but
it is still a significant difficulty to manage all IoT applications. A provider’s networked
devices’ failures, configuration, accounting, performance, and security (FCAPS) must be
handled.

4.11.5 Availability

IoT platforms must provide services to users and subscribers through software and hard-
ware availability all the time. When software is available, users continue to receive ser-
vices despite interruptions. The existing devices are readily accessible and support multiple
protocols, which is what we mean by “hardware availability.” It is also essential that these
protocols are small enough to be integrated into the limited IoT devices.

4.11.6 Interoperability

Heterogeneous devices and protocols must be able to communicate with one another to
achieve interoperability. The wide variety of IoT platform types makes this a difficult task.
Developers and manufacturers should work together to provide interoperability so that
users may receive services regardless of the platform or hardware they’re using.

4.11.7 Cost and Complexity

Despite the low cost of sensors and smart transducers, it’s still expensive to construct an
IoT application. Due to the high complexity involved in integrating many protocols and
standards, IoT applications are currently unavailable to the general public. One of the big-
gest obstacles is simplifying the process while cutting costs.

4.11.8 Power Harvesting

IoT devices are still facing power harvesting problems because for small devices with lim-
ited resources, there aren’t many harvesting solutions. Power management is a concern
since IoT devices often need to operate for years without recharging and may be perma-
nently attached to a person’s body or environment. Therefore, it appears that a crucial
answer for such devices is for energy gathering through motion or another source and
transferring it into stored energy. However, the size and power requirements of such con-
verters and collection devices prevent their application to miniature devices.

This section addressed numerous current IoT challenges like reliability, scalability,
availability, interoperability, dependability, etc., and mercy efforts that have been made to
address businesses’ difficulties with mobility, scalability, and management. Furthermore,
security remains an unanswered research question.

4.12 CONCLUSION

The Internet of Things (IoT) is being utilized for the development of cities, homes, and
more. The combination of Artificial Intelligence (AI) and IoT is becoming very famous.
The capability of the sensors of the IoT environment to make decisions is becoming greater.
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The adoption of the technology by businesses or consumers is still a valid concern. More
and more standards and protocols are being developed to ensure the security, availability,
and interoperability of IoT networks. The standards and protocols are designed based on
the IoT ecosystem involving Network layer, Session layer, Datalink layer, Management,
and Security integration. Many organizations are focusing on the standards and protocols
designed for the wide adoption of AIoT. The standards and protocols are designed based on
the requirements of the network to make it reliable, secure, and better for the consumers.
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5.1 INTRODUCTION

In 1956, John McCarthy coined the phrase Artificial Intelligence (AI) in a symposium
at Dartmouth College. He is credited with starting current AI research and a new sci-
entific field. The advancement in the years that followed is surprising. The researchers
concentrated on automated reasoning and utilized AI for algebraic problem-solving and
mathematical theorems. The computer software Logic Theorist proved many sophisticated
theorems in Principia Mathematica (McCorduck and Cfe. 2004). These achievements filled AT
pioneers with unbridled hope and supported their conviction that AI was here to stay
and flourish. They soon discovered, however, that much work remained to be done before
machines could exhibit intellect comparable to that of humans. The logic-based programs
were unable to solve many significant tasks. The lack of computational resources to solve
ever-more complex issues was another difficulty. As a result, organizations and funding
sources ceased sponsoring these underwhelming Al efforts.

In the 1980s, several research-focused organizations and colleges developed an Al
systems those compiles significant basic principles from expert knowledge, which fur-
ther assisted non-experts in making predictions and extrapolations. The systems were
widely known as expert systems: for example, Stanford University designed MYCIN and
the Carnegie Mellon University designed XCON. Expert knowledge was used to develop
logical rules which were then implemented in real-world situations. The information that
made computers “smarter” lies at the heart of this era’s Al research. There were certain
drawbacks, for example adaptability, privacy, high maintenance costs, low versatility, etc.
Meanwhile, the Fifth Generation Computer Project, supported and funded by the Japanese
government, fell short of the majority of its initial objectives. This resulted in the refusal
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and rejection of further aid for AI research once again, and the field was in its second-
lowest position ever. Figure 5.1 shows the general Al framework.

Authors LeCun, Bengio, and Hinton proposed a method for developing deeper neural net-
works and a strategy to prevent gradients from disappearing during training. As a result, Deep
Learning (DL) algorithms have emerged as a significant field in Al research. Machine Learning
(ML) enables an Information Security (IS) and applications to learn and develop intelligence
and make predictions without human interaction. DL, a subset of ML, is based on many layers
of neural networks with representation learning. Therefore, “learn” is the essential phrase for
Al research currently. Big data technologies and the increase in processing power have further
developed the effectiveness of information and feature extraction from large datasets.

To enhance the learning capability of DL and its applications, various advanced net-
work architectures and training techniques have been established. For a selected dataset
related to a problem, Computer Vision (CV), Natural Language Processing (NLP) and DL
techniques match and surpass human skills. In every sphere of life, AI technologies have
had tremendous success. They have also demonstrated their worth as the foundation of sci-
entific inquiry, real-time processing, and applications. ML has a significant broad impact
across various areas of the pure sciences, social science, technology, and science within Al
This is because ML methods perform data analysis and classification tasks, and their pre-
dictions and decisions are based on evidence. It is more convenient to train a classifier or a
model by giving it examples of desirable input-output behavior than to manually program
it by anticipating the intended response for every possible input.

The overwhelming majority of IoT allows wider proliferation in healthcare, transpor-
tation, manufacturing, and other industries. With the explosion of the number of IoT
devices and sensors connected over the internet, interconnected devices have restrained
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the distributed sensor network infrastructure that has spread everywhere. Therefore, the
prerequisite of intelligent techniques and emerging technologies is to ease the strain on
the existing demands. AIoT emanated from the emergence of new demands and effec-
tive responses to IoT development and proliferation. It aims to ensure efficacious human-
machine interactions, IoT operations, quick response mechanisms from loads of data, and
sophisticated data management (Phan et al. 2023). The impetus to adopt AloT applica-
tions and widespread integration has attracted researchers and industry. In addition, AIoT
applications require extensive computing resources for real-time processing using ML
and DL algorithms. The design and implementation of AIoT devices and applications to
accomplish Quality-of-Service (QoS) requirements for resource-constrained (communica-
tion, computation, and storage) IoT devices are challenging.

The AloT paradigm avails itself of the ML approach and the edge computing paradigm
for sensing and Device layer, such as Transfer Learning (TL) (Shao, Zhu and Li. 2014),
Active Learning (AL) (Qian, Sengupta and Hansen. 2019), and Federated Learning (FL)
(Hao et al. 2019). The pre-trained models are used to ensure high performance and pre-
dictions that are created at the edge servers by using TL. The random data across the IoT
network are controlled by using AL techniques. Lastly, FL offers the required level of pri-
vacy for information processing. The AloT paradigm can benefit from recently developed
communication networks and technologies, such as 5G/6G cellular communications and
Software-Defined Networking (SDN) at the communication and Network layer (Igbal
et al. 2021).

Due to the complexity of AIoT networks, security is one of the challenges. AIoT net-
works are extremely vulnerable to security attacks because of the diverse devices and
heterogeneous nature of the network. To secure the data in these networks is also challeng-
ing due to devices’ mobility, networks topologies, and open systems. AIoT networks are
based on 5G standards and offer high speed, low latency, and enormous bandwidth. These
advantages also open many doors for attackers in the network. Therefore, they can easily
access the Personal Identifiable Information (PII) of a customer during an attack (Khalid
et al. 2023). Traditional security measures, particularly those that address rising security
risks, are ineffective at resolving security challenges in these networks. The security solu-
tions are now more effective and eflicient because of the integration of AI technologies
with IoT (Kiyani et al. 2023). AlIoT general layer architecture, shown in Figure 5.2, consists
of three layers: a Sensor and Device layer, a Communication and Network layer, and an
Application layer.

AloT applications can be widely used in planning smart urban cities, smart home appli-
ances, and automobiles. Smart home appliances and medical devices with sensors and
intelligence learn a user’s behaviors through smart TVs, lighting, thermostats, refrigerators,
wearables, and connected spirometers. The intelligence is best utilized to automate house-
holds and organize assistance for routine tasks, such as reducing energy consumption, at
home and in offices. The sensors for face recognition restrict access and are widely used
for access control management (Sodhro et al. 2020). The innovative paradigm for resource
allocation and task offloading has been established for intelligent driving using AIoT and
edge computing. It highly increases sensors efficacy to perform offload jobs as instructed.
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5.2 THE CONFLUENCE OF METHODS, PLATFORMS,
AND ARCHITECTURES FOR AIOT

The confluence of platforms, methods, and architectures for AIoT can be viewed from two
perspectives: AIoT architecture based on fog, edge, and Mobile-Edge Computing (MEC)
architectures, and ML training methods. A method for resource-efficient edge computing,
called ThriftyEdge, is proposed by X. Chen et al. 2018. An effective topology sorting-based
task graph partition algorithm is provided as part of a device-centric approach to edge
computing in order to reduce the consumption of cloud resources and meet QoS crite-
ria. To fulfil QoS requirements and reduce edge resource occupancy of AloT devices, the
Virtual Machine (VM) selection method is also determined. To use the graph partition
algorithm, VM types are sorted, rated, and designated according to their ranking.

By using the computational power of a MEC server installed on an Unmanned Aerial
Vehicle (UAV), for data communication as suggested in Gong et al. 2020, is an AI-MEC
architecture for IoT applications. Based on a game-theoretic model, this study developed
the best offloading tactics for the UAV MEC servers. The theory of submodular games
is used to discover the Pure Nash Equilibrium (PNE) strategies. The performance and
operational properties of the models were shown by their experimental findings. Another
method, known as Intelligent Cooperative Edge (ICE) is presented by Gong et al. 2020.
Their method involves redesigning AI computations from the cloud and running on
edge devices. Lightweight pipelines for edge reconstruction and cloud compression are
used as the distribution strategy. The study and prototype suggested that the method
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could make it possible to combine AI with edge computing in beneficial ways as shown
in Figure 5.3.

The efficient distribution of computing tasks remains the limitation of a DL system.
The study by Zhou et al. 2019 introduced a technique known as accelerating AloT and dis-
tributes inference computation. Using this method, data is gathered, processed at the first
layer, and transmitted to the subsequent device. This method is revised for each device, and
the outcome is transmitted back to the initial device. Each layer’s actions are based on the
outcomes of the layer before it.

5.3 NEW ML AND TRAINING METHODS FOR AloT

AloT aims to escalate and accentuate the training method for devices by using
ML and DL for an AloT environment. A hierarchical training framework called
HierTrain was presented by Liu et al. 2020 and has the potential to apply deep neural
network training tasks on the Mobile-Edge-Cloud Computing architecture effectively.
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The HierTrain framework is divided into three phases: profiling, optimization, and
hierarchical training stages. The first stage profiles processing time for various lay-
ers on the cloud, edge, device, or relevant computing models. Secondly, the optimal
partition model is selected that evaluates the training data for the devices and relevant
servers. In the third stage, the samples are sent to the relevant servers, respectively.
The implementation of the method on a hardware prototype collectively demonstrates
that HierTrain could achieve a better performance speed, i.e., 6.9 times faster than the
cloud-based approach.

For Industrial Internet of Things (IIoT) applications, the study of Liu et al. 2020 sug-
gested a combined Federated Active Transfer Learning (FATL) model. The suggested FATL
model aims to accelerate the learning process of the models by using ML approaches that
limit the amount of labelled data used for training. TL is used for the pre-trained Artificial
Neural Network (ANN), and FL is used for scheduling various devices over the edge IIoT
architecture. Lastly, AL is used for end devices. The suggested FATL architecture provided
high performance and simulation results.

The potential of AIoT for practical applications lies in additional research on the devel-
opment of MEC architectures, edge, and fog computing. Future research directions, in
terms of AloT architectures and methodologies, are as follows:

« The creation of architectures that will sustain the use of distributed ML algorithms and
methods in AloT would be a crucial prerequisite for the advancement of AIoT. The study
by Savaglio et al. 2019 evaluated the implementation method of dispersed data mining
on edge devices, whereas authors in Teerapittayanon, McDanel and Kung proposed the
method for deploying distributed deep neural networks over cloud and edge devices.

 The development and growth of AloT architecture, strategies, and platforms depend
upon the security and robust response to an adversarial attack on AloT (Guin, Cui
and Skjellum. 2018). Utilizing Blockchain technology to safeguard against duplicate,
counterfeit nodes or devices, and the need for confirmation of validity would be an
intriguing research direction.

« The creation of methods and tools for data mining and data collection within the
AloT would be a third area of attention. This is crucial for the AIoT, which includes
diverse nodes and devices.

+ Creating methods and tools for data mining and data collection on heterogeneous
nodes and devices of AIoT would be the fourth area of future research.

5.4 THE CONFLUENCE OF DEVICES, ENERQGY,
AND SENSORS METHODS FOR AloT

Various Al-based devices, sensors, sensing methods, and other methodologies are
required to support AloT which is the combination of IoT and Al The study of Mukhopadhyay
et al. 2021 provided an analysis of Al-based sensors and their implementation for future
applications. The combination of sensors, devices, and sensing methods for AloT is discussed
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in this section with an emphasis on two key perspectives. Firstly, AIoT computing, scalable
sensing, and management, and secondly, energy harvesting methods and Wireless Power
Transfer (WPT) are contemplated.

With the rapid expansion and geographically widespread use of IoT devices, the flex-
ibility requirement for IoT sensing, computing, and administration is a crucial challenge.
Quality of Experience (QoE) with the benefits of the AIoT paradigm is offered to consum-
ers. However, challenges remain in instability and sluggish convergence with the present
computation offloading using ML and DL techniques. The study by Lu et al. 2020 deter-
mined a method for offloading computation by using DRL (Lu et al. 2020). To solve the
mentioned problems for DRL while providing consumers with a higher degree of QoE,
the authors suggested a method based on Double-Dueling Deterministic Policy Gradients
(D3PG). Various proposed features, such as task success rate, efficient energy, and compu-
tation consumption, can be integrated into models to address the issues.

A prospective solution for energy-efficient AIoT sensors is provided by Compressive
Sensing (CS) methods. There are certain limitations of this method, such as analysis in
the remote server and the overhead of signal reconstruction constraints. For implantable
neural decoding, the study of Xu et al. 2020 leverages a compressive sensing architecture
through DL. The proposed approach aims to moderate overheads with enhanced wireless
transmission efficiency. A two-stage classification process with a coarse-grained screening
module and a fine-grained analysis module is also propounded. The front-end classifica-
tion task is carried out by the screening module for fine-grained analysis, which transfers
compressed data to a remote server.

The study by Xu et al. 2020, suggested a method for managing decentralized IoT appli-
cations that makes use of the Edgence platform, i.e., an edge computing platform with
Blockchain support. In the Edgence platform, there are many master nodes, and each mas-
ter node is made up of a complete Blockchain node and a collateral. Edgence’s administra-
tion of decentralized Al training also updates AI models through feed-propagation and
back-propagation. The first layers are trained by using a user dataset, and the later layers
are trained at a remote cloud centre.

5.5 AUTOMOBILES, SMART TRANSPORT, AND AloT

Vehicles and transportation have benefited greatly from the use of AI algorithms and
methodologies incorporated into AIoT. Autonomous or self-driving cars are one example
of this application. Future modern self-driving automobiles will be equipped with a vari-
ety of sensing devices (such as radar, LIDAR, and cameras) and produce enormous vol-
umes of data (up to 120 GB ps) (Zhang and Letaief. 2019). An important problem that needs
to be overcome is the safe and timely dispensation of device data for an effective reply
mechanism to multifaceted scenarios like avoiding obstructions and velocity adaptation.
Potential solutions include federated ML, safe trust models, and AIoT organized at the
network edge. A method for leveraging Blockchain in intelligent driving edge systems has
been proposed (Xiao et al. 2020). In order to maximize edge computing user and service
provider satisfaction, a double auction method was used. The test results of Xiao et al. 2020
demonstrated that the strategy might provide greater resource use.
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FIGURE 5.4 Endogenous Trusted Network (ETN) AloT.

To assess the reliability of data produced by an intelligent transportation system based
on IoT, there are sensor nodes involved. Authors in Dass, Misra and Roy presented the
T-Safe trust evaluation scheme. Decision virtualization is a technique that is used by the
safety-as-a-services architecture to offer end users safety-related information based on
data produced by the sensing nodes. The authors assumed that the privacy of the iden-
tifying nodes, security, and reliability of data transmission determine the accuracy and
effectiveness of such information. Figure 5.4 shows the Endogenous Trusted Network
(ETN) for AloT.

To solve this issue, the authors created a model for evaluating trust. To update trust
measures on each node regularly, they made use of direct and indirect trust mechanisms.
The trust of each data item created by the network is then assessed by using the trust
measures. The authors developed an Integer Linear Programming (ILP) model to get the
best information for making decisions while minimizing the impact of illegal nodes. The
proposed system outperforms current techniques.

5.6 SMART HEALTHCARE AND AloT

The data created by the Internet of Medical Things (IoMT) have been managed and pro-
cessed using AIoT (Sun et al. 2020). An intelligent architecture was presented by Yang,
Liang and Ji to handle visual data obtained from health systems, assisted by IoT, for which a
processing method is required. Three modules make up their architecture: a cloud admin-
istration module, an edge control module, and an end processing module. The study of the
sensor, machine, and human attributes produced intelligence on the other side. An intel-
ligent measuring approach that the authors proposed is used to determine the intelligence
on the edge and cloud sides. The proposed strategy could perform better than the current
methods, as determined by their experimental findings. An IoT system based on Al is sug-
gested by Mustafa et al. 2020 for identifying and categorizing stress. Their method involved
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measuring the physiological features by using a wearable device that is fitted with a variety
of sensors. The user’s mobile device is used to send the physiological data collection to the
cloud. The data is analyzed by using an AI technique to determine the stress level. A mobile
phone notifies the user of the anticipated stress level. The user’s doctor would be notified in
a circumstance with a high level of stress so the doctor may take the appropriate measures.
Regarding real-time sensor data, their system achieved a binary classification performance
accuracy of 97.6%.

5.7 ECOLOGICAL, SMART FARMING, AND AloT

Smart agriculture, food processing, and environmental condition optimization have been
the main areas of research using AIoT technology to boost food output. RiceTalk, an AloT-
based method for detecting rice blast illness is proposed by W.L. Chen et al. 2019. The
plan is built on an IoT platform for soil cultivation. IoT sensors for agriculture are uti-
lized to collect data, which the AI system automatically learns and analyzes in real time.
Hyperspectral image or non-image data has been used in previous research to identify
plant illnesses; however, these studies required human labor to take the photos and collect
the data for analysis. The AI model is managed and treated as an IoT device by RiceTalk.
This dramatically reduces the cost of running the platform to provide real-time training
and prediction. The test results demonstrated that RiceTalk gives an accuracy of 89.4% for
predicting rice blast.

5.8 AUTOMATION AND COMPUTER VISION IN AloT

Robotics and computer vision applications have benefited greatly from AIoT. With the use
of sensors and AT algorithms, robots can now collect and learn from data, becoming more

intelligent. This has enabled robots to replace human expertise in healthcare, manufactur-
ing, and other industries to complete jobs at a faster pace and cheaper cost (Velasco-Montero
et al. 2019). Drones with AIoT capabilities are employed in smart cities for a variety of
surveillance tasks, including real-time traffic monitoring. The speed limits and timing of
the traffic signals are automatically adjusted based on the transmission, analysis, and usage
of traffic data to help make decisions about the best method to relieve congestion (Dilshad
etal. 2020). In order to respond to crisis circumstances when it is impractical to send work-
ers, Lee and Chien 2020 built an AIoT architecture to manage surface, underwater, and
aerial robots. The robots are used to gather information from a catastrophe scene and are
connected to an IoT network. The data are sent from the field information systems to the
cloud where a DL model is being trained over the IoT network. Once the model is trained
and verified, the model is sent back to the robots via the field workstations so that item
categorization may continue there. This will allow the robots to decide how to respond
as they repeatedly validate their identification with the environment. For an AloT set-
ting, Kim et al. 2020 suggested a technique called Continuous Virtual Emotion Detection
System (CONTVERB). IoT devices have wireless signal capabilities that allow them to
deliver a signal to a person within their range and to catch the signal’s reflection. There are
at least four main types of human emotion, melancholy, joy, pleasure, and rage, that may
be extracted from the reflected signal by the IoT devices through employing respiration
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procedures and a series of heartbeat segmentations. The effectiveness of the suggested sys-
tem was demonstrated through simulations and implementations.

In a smart city, parking space occupancy can be detected using an intelligent edge com-
puting approach (Ke et al. 2020). To spread out the compute load, edge Al and IoT are
used. The amount of data that would be broadcast is intended to be minimal in order to
accommodate bandwidth issues brought about by the real-time processing of video data.
A Single Shot Detector For Mobile Networks (SSD-MobileNet) detector is implemented on
IoT devices by using Tensorflow Lite, which is trained using the MIO-TCD dataset. On the
server end, a tracking system is implemented to track cars in parking garages. During its
three-month test period in a real-world setting, the system had a 96% accuracy rate.

A method which can be used for flaw identification in massive solar plants was put forth
by Li et al. 2020. The flaw identification process was carried out using edge computing and
UAVs in their method. In this study, the authors created a method for deployment on edge
devices with limited resources that combines DL and text mining with data augmentation.
In the network, methods were also employed to condense the model’s parameters and size.
The literature contains several other instances of AIoT for computer vision and robotics
utilizing different methodologies. An approach to forecasting the performance of CNNs
on vision-based AloT devices was put forth by Li et al. 2020 Systems that offer AIoT video-
based services presented a distributed learning strategy.

5.9 CYBER-SECURITY IN AloT

A crucial component of AIoT is security. The research demonstrates that AIoT enables
IoT devices to learn and make prompt responses in the presence of an anomaly or
abnormal activity patterns (Wu et al. 2020). The proposed architecture for the IoT-
enabled smart city that uses Al to prevent various current and imminent cyber-threats

is proposed by Chakrabarty and Engels. A diverse, sizable, and complicated smart city
system has a wide attack surface thanks to the widespread deployment of IoT in smart
cities. Authors in Suresh and Madhavu suggested an Intrusion Detection System (IDS)
with parallel processing and self-adaptation for an SDN network. The self-adaptive
energy Bat Algorithm (BAT) is used for developing the Al-based IDS. The software
layer analyzes incoming traffic packets in the early stages of their design process and
selects features. Then the system categorizes the packets, and if an attack is proven, it
controls and takes appropriate measures regarding network limits such as traffic man-
agement, routing, and resource allocation. The KDD CUP 99 dataset is used by the
authors for training, while data from a real-time IoT platform are used for testing. In
comparison to the swarm intelligence-based BAT algorithm, Al-based IDS performs
better in the identification of significant features with minimum time requirement as
a response mechanism along with a significant reduction in computational time and
energy prerequisite.

Pass ban is the name of an intelligent anomaly-based IDS that is suggested by
Eskandari et al. 2020. The system’s deployment on affordable IoT devices and capac-
ity for platform independence makes it unique. The authors wanted to make sure that
data are harvested extremely close to data sources, protected, and could be evaluated
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for anomaly detection. IDS training is conducted by using a typical network flow.
The trained model is stored in the internal memory of the gateway after training and
utilized to identify attacks in incoming network traffic. The efficiency of the system is
tested against prevalent cyber threats such as brute force attacks, port scanning, and
Synchronization (SYN) flood assaults.

5.10 CONCLUSION

The convergence of AIoT, which is the incorporation of sophisticated machine-learning
algorithms into resource-constrained IoT sensors and devices enabling broad and compli-

cated sensor deployments in IoT infrastructures, is discussed in this chapter. The subject
includes sensors and devices, communication, networking, and AIoT applications, among
other levels and features of AIoT. This chapter also looks at using cutting-edge technologies
to speed up the adoption of AloT, including edge, fog, MEC computing, SDN, and 5G and
6G cellular networks. In order to enable the practical implementation of AIoT in increas-
ingly varied and complex situations, the obstacles and concerns that must be handled are
highlighted in this chapter.
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6.1 A BLEND OF loT AND ARTIFICIAL INTELLIGENCE

A network of interconnected physical devices having sensors and other embedded systems

involving individuals and workflows is referred to as Internet of Things (IoT). These devices
establish communication and exchange information with one another through the Internet,
establishing a cohesive and interconnected system (Sung et al. 2021). The IoT has brought
about a paradigm shift in engagement with the tangible realm and is capable of reshaping
sectors like healthcare, production, transportation, and farming. The IoT enables enhanced
automation and eflicacy, increased safety and security, and elevated customer experiences.
However, there are certain challenges that also come into play such as considerations that
surround data privacy and security, as well as interoperability across diverse and converged
networks. With the increasing proliferation of such interconnected devices, it becomes
imperative to tackle these obstacles and necessary to establish standardized protocols to
ensure the complete realization of IoT advantages while mitigating associated risks.

Artificial Intelligence (AI) grants machines the capability to execute tasks that con-
ventionally require human engagement, encompassing aspects like acquiring knowledge
from the surroundings, rationalizing decision-making processes, resolving problems
based on accumulated information, and perceiving and comprehending specific scenarios
(Fanibhare and Sarkar. 2021). The design process incorporates Al and its input into the
computer through programs capable of scrutinizing and deciphering intricate scenarios,
recognizing patterns, and potentially rendering decisions based on the resulting analy-
sis (Nozari, Szmelter-jarosz and Ghahremani-nahr. 2022). Al finds utility in sectors like
healthcare, finance, transportation, and manufacturing. A visual depiction of a standard
IoT configuration is presented in Figure 6.1
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FIGURE 6.1 Elements composing the IoT.

AloT represents the fusion of two compelling technologies, Al and IoT (Naseem et al. 2022).
The making of AloT includes diverse AI algorithms which are incorporated into embed-
ded devices in order to elevate their intelligence and effectiveness (Seng and Ang. 2022).
AloT holds vast potential for diverse sectors encompassing the following:

a. Intelligent Residences: AloT enables the development of smart homes capable of
automatically adapting lighting, temperature, and other configurations in accor-
dance with user preferences and behavioural patterns (Nandyala and Kim. 2016).

b. Healthcare: AloT finds application in monitoring the real-time health of patients
through wearable devices equipped with sensors, aiding in the early identification of
health concerns, and delivering timely interventions. Additionally, it facilitates the
automation of administrative responsibilities, such as fixing patients’ appointments
and issuing them timely reminders (Anwar et al. 2017).

c. Manufacturing: In this sector, AIoT presents opportunities for improving manu-
facturing processes by obtaining and analyzing data from sensors and machinery to
forecast potential failures and proactively schedule maintenance. This aids in minimiz-
ing manufacturing plant downtime and enhancing overall system efficiency (Qureshi
et al. 2020).

d. Agriculture: Monitoring crop health conditions and soil quality, automating irriga-
tion systems, and forecasting weather patterns are some of the areas of the agricul-
ture sector in which AIoT can play its role. These applications empower producers to
optimize their crop yields while conserving water and other resources.

e. Energy Management: In most countries, especially underdeveloped and develop-
ing, energy management is one of the main challenges. The power of AIoT could be
utilized for energy consumption monitoring within buildings or cities and could
optimize its usage based on factors like occupancy or weather conditions. This
supports the reduction of energy expenses and promotes sustainable practices.

f. Transportation: A good transportation system in any country is considered the back-
bone that pushes the economy toward the fast track. The AIoT offers possibilities for
optimizing traffic flow, enhancing safety, and mitigating congestion (M. Ali et al. 2023).
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6.2 Alol NETWORKING STACK

The structure of AloT networking can be broadly classified into four tiers: the initial tier
is the Device layer, connected with the Network layer, followed by the Cloud layer, and
finally the Application layer. The layers are built upon the preceding ones to form a cohe-
sive framework as shown in Figure 6.2.

6.2.1 Device Layer

This layer is the base tier within AloT, encompassing tangible devices, sensors, or actuators
employed for collecting data from the physical environment (Lu et al. 2021). The sensors
are capable of measuring various factors, including but not limited to temperature, pres-
sure, humidity, motion, and light.

« Sensing: Data acquisition in the Device layer of AloT entails gathering informa-
tion from sensors integrated within IoT devices. These sensors have the capacity to
perceive and quantify multiple physical aspects, including temperature, humidity,
pressure, acceleration, and sound. Subsequently, Al algorithms analyze the collected
data, discerning patterns, and deviations.

« Partial Processing: At the Device layer of AIoT, local processing involves conduct-
ing data processing and analysis directly within the networked devices, contrary
to the usual practice of forwarding the data to the cloud for further processing.

Device Layer Network Layer Cloud Layer | Application Layer

ich

=
dd &

FIGURE 6.2 Networking stack architecture for IoT.
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This optimizes the AloT-based systems by minimizing the latency involved in
between the data collection and decision-making phases, facilitating instant actions,
and also lowering the dependence on cloud-based resources.

« Transmission: For the exchange of data from AloT devices to either the cloud or
edge computing devices, a proper transmission mechanism is required. Transmitting
data within the Device layer of AloT can present difficulties given the constrained
bandwidth and computational capabilities of IoT devices, alongside the imperative of
low latency and unwavering reliability. To tackle these hurdles, a range of techniques
can be employed, including data compression and edge caching mechanisms. The
Device layer encompasses an extensive array of components, spanning from basic
sensors and actuators to sophisticated entities such as machines, Unmanned Aerial
Vehicle (UAVs), and self-directed vehicles. These entities utilize diverse wireless and
wired communication protocols to establish connectivity within the network, includ-
ing but not limited to Wi-Fi, ZigBee, Bluetooth, Long Range Wide Area Network
(LoRaWAN), and Narrowband IoT (NB-IoTs).

In the context of AIoT, the Device layer performs a core function in the acquisition of
data and forwarding it to the Cloud layer for processing and deep analysis. The dependabil-
ity and precision of the data acquired from these devices are imperative for making valu-
able decisions and gaining practical information, which can subsequently be harnessed to
optimize functional operations, heighten efficiency, and curtail expenses. Consequently,
the Device layer acts as a fundamental building block of AIoT, and the selection of appro-
priate protocols for the devices becomes paramount in developing a successful AloT-
enabled system.

6.2.2 Network Layer

The Connectivity (Network) layer in AloT refers to the stratum facilitating the linkage
among devices and enabling reliable communication among them. This layer incorpo-
rates various networking protocols and technologies, not only facilitating data transmis-
sion between devices but also transmitting data to the Cloud layer for further processing
and analysis. There are different interacting technologies that find applicability within the
Network layer of an AIoT system, including the following:

o Mesh Networks: Mesh networks are a famous networking technology that finds util-
ity within AIoT systems. In this network, several devices collaborate to establish a
network infrastructure capable of relaying data between devices, thereby extending
the network’s range. In a Mesh network (Hameed et al. 2022), each device enables data
transmission and reception with other nodes. This attribute empowers Mesh net-
works to cover expansive areas and renders them valuable for diverse applications.
Mesh networks have the capability to operate utilizing diverse wireless communica-
tion protocols, with ZigBee being a notable example as a protocol of choice for estab-
lishing Mesh networks within AloT systems owing to its low-power consumption
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and capacity to support a substantial number of nodes. Additionally, Mesh networks
can be employed for device control purposes, such as managing smart home lighting
or overseeing industrial machinery in factory settings.

The major benefit of these networks in AloT environments lies in their inherent
self-healing capability. Should a node within the network experience a failure, other
nodes can reconfigure data routing paths through alternative paths and nodes in
order to ensure successful data delivery to its intended destination. This characteris-
tic endows Mesh networks with enhanced resilience and reliability.

Cellular Networks: The Cellular networks are considered best for ubiquitous
coverage; these networks leverage mobile communication technologies like 4G
or 5G to facilitate the transmission of data across extensive distances, rendering
them well-suited for deployment in remote areas or for devices necessitating the
requirement of high bandwidth. Additionally, Cellular networks are employed for
device control purposes, enabling remote activation or deactivation of equipment
and adjustment to device settings from a distant location. An inherent strength
of Cellular networks within AIoT systems lies in their expansive coverage area.
Cellular networks possess the capacity to span vast geographical regions, making
them highly advantageous for applications involving precision agriculture, eco-
logical monitoring, and smart automation. Another key benefit offered by Cellular
networks pertains to their robust security features. Advanced encryption technol-
ogies are employed to ensure the confidentiality and integrity of transmitted data
within Cellular networks. This attribute assumes particular significance within
AloT systems, where data privacy and security hold the utmost importance.
Employing Cellular networks in AloT systems does present certain limitations.
A primary constraint is the potential costliness associated with utilizing Cellular
networks, especially in big industries.

Wi-Fi Networks: Wireless networks, like Wi-Fi networks, are also considered a
compelling technology that finds applicability within AIoT systems. These networks
establish connections among devices as well as facilitate their connectivity to the
Internet (Famitafreshi and Afaqui. 2022). By leveraging Wi-Fi networks, data collec-
tion from sensors and other devices becomes achievable, subsequently allowing for
the transmission of such data to the Cloud layer for further processing. In the realm
of AloT systems, Wi-Fi networks find application in a diverse range of scenarios,
encompassing smart homes, healthcare, and retail domains. Notably, Wi-Fi networks
offer the advantage of high-speed data transmission capabilities. Furthermore, they
present ease of setup and versatility, enabling deployment in various environments
ranging from residential settings to commercial establishments to public spaces. A
key benefit associated with the utilization of Wi-Fi networks within AIoT systems
pertains to their extensive adoption and widespread availability. Wi-Fi networks have
achieved ubiquitous status, being pervasive in most households and public areas. This
ubiquity renders them a readily accessible and cost-effective option for device connec-
tivity. Moreover, Wi-Fi networks possess the capacity to accommodate a substantial
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number of devices concurrently, thereby making them well-suited for applications
necessitating multiple device connections.

However, there exist certain limitations when employing Wi-Fi networks in
AloT systems. One such constraint is their restricted coverage range, which may
render them unsuitable for extensive deployments or deployment in remote areas.
Additionally, Wi-Fi networks may be susceptible to interference and signal deteriora-
tion within specific settings, such as densely populated public spaces or structures
featuring thick walls.

o Low-Power Wide-Area Networks: The Low-Power Wide-Area Networks (LPWA)
refer to communication links planned to enable low power devices connectivity across
extensive distances while conserving energy. These networks also lend themselves to
device control, allowing remote operations such as activating or adjusting equipment
settings from a distant location. A notable advantage of LPWA networks in AloT
schemes lies in their energy efficiency. Furthermore, LPWA networks offer impres-
sive long-range capabilities, enabling data transmission over substantial distances
(Z. Alietal. 2023). This characteristic renders them suitable for applications in remote or
geographically dispersed locations. LPWA networks employ various wireless commu-
nication protocols, including LoRaWAN, Sigfox, and NB-IoT. However, it is impor-
tant to acknowledge certain limitations when employing LPWA networks in AloT
systems. For instance, these networks may exhibit limited bandwidth, which could
render them unsuitable for applications requiring high-speed data transmission.

o Ethernet Networks: Within AIoT systems, they serve as a means to link physi-
cal devices, such as cameras. These networks facilitate high-speed data transmission,
enabling real-time processing and analysis of applications. The key advantage of incor-
porating Ethernet networks into AloT systems lies in their substantial bandwidth. By
accommodating high-speed data transmission, Ethernet networks prove advantageous
in domains like video surveillance. An additional notable benefit of these networks is
their trustworthiness. In comparison to Wireless networks, Ethernet networks demon-
strate enhanced resilience against interference and signal degradation, rendering them a
more dependable and stable choice for mission-critical applications.

However, there exist certain constraints associated with employing Ethernet networks
in AloT systems. One such limitation pertains to their physical restrictions whereby the
installation of physical cables between devices becomes a necessity. Consequently, com-
pared to wireless networks, the implementation and maintenance of Ethernet networks
are more challenging and costly. Furthermore, Ethernet networks exhibit limitations in
the way of the reporting zone, as the cable size impacts the maximum distance achievable
between devices.

6.2.3 Cloud Layer

In the territory of AIoT networking, this layer typically refers to the infrastructure of cloud
computing, which supplies connected devices (specifically IoT devices) with computing
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resources and services for the determination of fact execution and storage (Okafor et al. 2017).
Additionally, this layer may encompass machine learning and AI algorithms capable of
executing actions based on the amalgamated data from the source, extracting invaluable
insights, and discerning patterns. Additionally, this layer possesses the capacity to facilitate
instantaneous communication and harmonization among devices, thereby enabling them
to collaborate seamlessly toward a shared objective. This layer undertakes the responsi-
bilities of managing and monitoring IoT devices, administering software and firmware
updates, as well as ensuring the security and confidentiality of data transmission (Raj. 2020).
Such functionalities hold significant relevance, particularly within AIoT applications such
as smart homes, where multiple devices must work in concert to deliver a smooth and inte-
grated user experience. All in all, the Cloud layer within AloT networking assumes a piv-
otal role by provisioning the requisite calculating assets, loading capabilities, and services
essential for the computing of substantial data flows conveyed by network nodes.

6.2.4 Application Layer

The Application layer in AloT systems serves as the repository of decision-making and
intelligence capabilities (Upadhyaya et al. 2022). It undertakes the task of processing data
acquired from lower layers, subjecting it to analysis through diverse algorithms and mod-
els, and subsequently furnishing meaningful insights and actionable outcomes based on
the findings. Overall, the Application layer assumes a pivotal function within the AloT
network by supplying invaluable facilities and discernments to end users, capitalizing on
the synergistic potential of Al and IoT technologies to amplify productivity, efficiency, and
overall excellence of life span (Perwej et al. 2019). Networking represents an indispensable
facet of AIoT, facilitating seamless data exchange and communication among AIoT devices
and also with the back-haul infrastructure (typically in the cloud contemporary scenarios).

6.3 AlolT COMPUTING LAYERS

Edge computing pertains to the processing of data in close proximity to the network’s
edge, specifically at the level of devices or sensors. Edge computing proves valuable in situ-
ations where the utmost importance is placed on minimal latency and immediate process-
ing. An illustrative example is the utilization of edge computing to handle data derived
from sensors within autonomous vehicles, as any delays in processing could potentially
result in hazardous incidents.

Fog computing pertains to the processing of data at the network’s periphery, in close
proximity to the source of the data rather than the cloud. This approach proves especially
beneficial when dealing with data generated by a multitude of devices, where the data vol-
ume exceeds the capacity for edge processing. Fog computing serves to minimize net-
work latency and enhance data privacy by locally processing the data. An instance where
fog computing can be applied is in processing data from intelligent grids, where a vast
array of sensors is employed to monitor energy usage. The concept of cloud computing
revolves around handling data on remote servers located on the internet. Cloud computing
proves notably advantageous in scenarios where substantial processing and storage capaci-
ties are indispensable. Its frequent application lies in analytics, deep learning, addressing
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situations, and machine learning where considerable data capacities necessitate processing.
This computing may be harnessed to analyze data from smart cities, wherein an extensive
array of sensors is deployed for monitoring traffic, air quality, and various environmental
parameters.

6.4 Alol PROTOCOLS

In the domain of AIoT, a group of methodologies has been adopted to elevate decision-
making processes (Nozari, Szmelter-jarosz and Ghahremani-nahr. 2022). A few instances
usually used are the following.

6.4.1 Machine Learning Algorithms

These algorithms play a pivotal role in scrutinizing data gleaned from AIoT devices and
sensors, enabling the identification of patterns and making predictions. Additionally,
Machine Learning (ML) aids in enhancing the precision of predictive maintenance and
quality control efforts. In the realm of AIoT, one can find an array of ML algorithms in
use (Dia, Ahvar and Lee. 2022), Here are a few examples of the commonly employed ones:

a. Regression Analysis: Regression Analysis (RA) finds practical application in predic-
tive maintenance, anomaly detection, and trend analysis (Yuhao Wang et al. 2022).
Below are a few instances showcasing how regression analysis serves AIoT:

o Predictive Maintenance: It enables foreseeing equipment failure through the
examination of historical data. By scrutinizing device data (Zhang and Tao. 2020),
encompassing pressure, temperature, and vibration, RA adeptly identifies
arrangements indicative of a possible disaster.

o Anomaly Detection: Benefits from the implementation of regression analysis
enables the identification of anomalies within sensor data. Through a comparison
of present sensor data with historical records, RA proficiently detects unforeseen
alterations in the data (Cook, Fan and Member. 2019).

o Trend Analysis: It offers a means to detect trends within sensor data as it evolves
over time. Through the scrutiny of historical data, RA adeptly discerns patterns
and trends that may elude a straightforward visual inspection. By analyzing his-
torical data, RA can identify patterns and trends that may not be visible with a
simple visual inspection. Generally, regression analysis is a powerful tool in AloT
for identifying patterns and relationships in data, and for making predictions
about future outcomes. However, it requires a good understanding of statistical
concepts and data analysis techniques to use them effectively.

b. Random Forest: It provides an ML technique that can be deployed in the domain of
AloT to enhance decision-making based on data collected from IoT devices and sen-
sors (Thaseen, Priya and Xiaochun. 2022). The algorithm operates by utilizing diverse
chunks of accessible data and structures. Every trained tree is on a distinct portion of
data and features, with the outcomes amalgamated to form the ultimate prediction.
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By employing different trees for different decisions, this algorithm yields more pre-
cise and resilient prognostications (Apat et al. 2022). Below are a few instances exem-
plifying how Random Forest finds application in AIoT:

Energy Optimization: Benefits from the potential of Random Forest include
offering an avenue to fine-tune energy consumption within intelligent build-
ings (Adli et al. 2023). Through the analysis of sensor data gathered from diverse
rooms and appliances, Random Forest adeptly identifies the most effective con-
figurations and dynamically adjusts them as needed (Forest et al. 2018).

Crop Yield Prediction: It finds effective implementation with the use of Random
Forest, enabling accurate projection of crop yields by analyzing environmental
data, including temperature, precipitation, and soil quality (Kumar et al. 2022).
Random Forest proves to be a formidable resource in AIoT for making predic-
tions using intricate and erratic data. Its proficiency extends to managing sub-
stantial datasets and feature spaces of elevated dimensions, rendering it suitable
for diverse applications. Nevertheless, achieving optimal performance necessi-
tates meticulous calibration of the hyper parameters, and its computational cost
may escalate for extensive datasets.

c. Support Vector Machines (SVM): SVM stands out as a well-liked ML algorithm
deployed within AIoT for both classification and regression analysis. SVMs prove par-
ticularly beneficial in addressing intricate challenges within feature spaces of elevated
dimensions (Padmaja et al. 2022). Their versatility extends to handling linear and non-
linear classification quandaries, and they find utility in both binary and multi-class cat-
egorization tasks. Below are a few instances illustrating the application of SVMs in AIoT:

Quality Control: In the domain of quality control, SVMs serve to categorize
products according to their attributes, encompassing size, weight, or colour.

Predictive Maintenance: Benefits from the competency of SVMs include the fact
that they can forecast equipment failure by analyzing sensor data. Through the
examination of historical data, SVMs adeptly recognize patterns and correla-
tions indicative of an impending failure. SVMs emerge as a formidable asset in
AloT, adept at addressing intricate classification challenges within feature spaces
of elevated dimensions. They excel in managing non-linear associations among
variables and exhibit considerable resilience to outliers.

. Neural Networks: These are a form of ML algorithm integral to the realm of AloT,

encompassing forecasting and governance (Mania. 2012). Each neuron undertakes
a basic calculation, akin to a subjective aggregation of ideas succeeded by a non-
linear activation mechanism. Below are a few instances showcasing the deployment
of Neural Networks within AloT:

Predictive Maintenance: Neural Networks have the potential to anticipate
equipment failure by leveraging sensor data analysis. Through the examination of
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historical data, Neural Networks adeptly assimilate intricate associations between
sensor readings and the probability of an impending malfunction.

« Energy Optimization: It finds a means of valuable implementation with Neural
Networks, as they offer the means to fine-tune energy consumption in intelligent
buildings (Himeur et al. 2020). Through the scrutiny of sensor data from diverse
rooms and appliances, Neural Networks can acquire insights into energy usage
patterns and make adaptive adjustments to the settings accordingly.

o Object Recognition: Object Recognition proves to be a domain where Neural
Networks excel, as they can be harnessed to identify substances within videos or
pictures acquired by IoT devices. Neural Networks stand as a formidable resource
in AloT, adept at resolving intricate and varied challenges (Liu et al. 2021).

6.4.2 Deep Learning Algorithms

Deep Learning (DL) algorithms make up a subset of ML algorithms that prove remark-
ably effective in addressing complex challenges within the domain of AIoT. DL algorithms
are tailored to assimilate multiple layers of data representations, thus enabling them to
encapsulate intricate connections and intricate patterns embedded within the data. Some
examples are provided below of DL algorithms frequently deployed in AIoT applications:

a. Convolutional Neural Networks (CNNs): The layers that exhibit full connectivity
are accountable for the ultimate classification or prognostication. Below are a few
instances exemplifying the application of CNNs in the realm of AIOTs:

o Object Recognition: Object recognition finds practical application with CNNs
(Yadava and Chouhan. 2022), enabling the identification of objects within videos
or pictures acquired by IoT strategies like scrutiny cameras or UAVs.

o Medical Image Analysis: Medical image analysis benefits significantly from
CNNs, as they offer the means to examine medical images like X-rays or MRI
scans for the detection of irregularities or disease diagnosis. Through training the
network on an extensive collection of labelled medical images, CNNs acquire the
expertise to discern subtle patterns and attributes that may signal the presence of
a disease or medical condition.

o Autonomous Vehicles: In self-driving vehicles, CNNs showcase their ability to
identify and categorize substances in the surroundings of a self-directed vehicle,
including other walkers, traffic signs, and automobiles. In scrutinizing pictures
obtained from diverse devices, CNNs furnish the vital data essential for the vehi-
cle to execute judicious and precise actions.

CNN s serve as a potent asset in AloTs for resolving intricate image and video rec-
ognition challenges. Their capacity to assimilate vast datasets and adapt to novel
scenarios renders them well-suited for broad applications. Still, achieving optimal
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performance may entail the availability of substantial training data and meticulous
tuning of the hyper parameters.

b. Recurrent Neural Networks (RNNs): By retaining an inner state that encodes the
setting of prior inputs, RNNs excel in apprehending temporal relationships within
the data Recognition. Their inherent ability to handle sequences of varying lengths
renders them compatible with deployment in AIoTs. Below are a few instances exem-
plifying how RNNs can prove their benefits for AIoT networks:

o Speech Recognition: In the territory of speech recognition, this algorithm
emerges as a formidable resource, enabling the identification of speech emanat-
ing from IoT devices like voice assistants or smart speakers.

o Natural Language Processing: In the domain of natural language processing,
RNNs demonstrate their prowess by catering to an extensive array of tasks,
encompassing emotion scrutiny (Sehovac, Member and Grolinger. 2020). By tak-
ing the text as input of an arrangement of characters or words, RNNs attain the
ability to grasp intricate connections and arrangements inherent in the language.

o Anomaly Detection: RNNs are capable of detecting anomalies in time series
data, including sensor data from IoT devices. RNNs can spot deviations from
expected behaviour and trigger alerts or perform remedial steps by combining
the data’s usual patterns and linkages.

RNNs serve as a potent asset in AloTs, excelling in handling evolving data and cap-
turing temporal relationships within the data. Their capacity to undergo extensive
training on substantial data volumes and adapt to novel scenarios renders them
highly suitable for such applications.

c. Generative Adversarial Networks (GANs): GANs are a type of DL with potential
application in AloT scenarios for synthesizing lifelike and assorted facts (Dutt. 2021).
The Generator Network is instructed to fabricate authentic data samples, such as sen-
sor data, audio, or images from casual noise as input. Below are some instances show-
casing the application of GANs in AloT:

o Data Augmentation: It gains from GANs as they serve to fabricate synthetic
data samples, amplifying the training dataset for ML models (Wickramaratne
and Mahmud. 2021). This augmentation aids in elevating the models’ precision
and resilience, particularly in scenarios where the availability of training data is
constrained.

« Image and Video Generation: The domain of image and video generation ben-
efits from GANSs since they excel in producing lifelike images and videos, proving
valuable in diverse applications like autonomous driving and video surveillance.
Through training, GANs acquire the ability to create novel samples that visually
resemble genuine data.
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« Anomaly Detection: The domain of GANs involves the creation of synthetic
data samples that closely resemble normal data, facilitating the identification
of real data anomalies that markedly differ from the synthetic counterparts.
Such a method finds utility in detecting uncommon events or malfunctions in
sensor data originating from IoT devices. On the other hand, training GANs
can present challenges and necessitates meticulous calibration of the hyper
parameters.

Within AloT, DL algorithms prove to be formidable assets, capable of resolving intri-
cate challenges entailing the handling of vast and intricate datasets. Nevertheless, they
entail significant computational demands and may necessitate substantial training data
and meticulous fine-tuning of the hyper parameters.

6.4.3 Reinforcement Learning

Reinforcement Learning (RL) operates on feedback signals. AloTs can effectively incorpo-
rate RL algorithms, allowing AIoT devices to acquire knowledge and dynamically adjust
to their surroundings as time progresses (Moerland, Broekens and Jonker. 2018). Here are
some examples of RL algorithms used in AIOTs:

o Q-learning: A widely utilized RL algorithm, Q-learning finds application in AloT
settings by empowering devices in learning ideal policies for jobs, resource dis-
tribution, power controlling, and path routing. In the context of Q-learning, the
agent acquires decision-making capabilities by continuously keeping informed of a
Q-table that holds probable prizes for various state-action pairs. The Bellman equa-
tion is employed to iteratively update the Q-table, thus recursively enhancing the
Q-function’s value in light of the anticipated future rewards. These adjustments
expand the horizons of Q-learning, enabling its application in diverse AIoT scenar-
ios, such as automated grid controlling and manufacturing devices.

o Deep Reinforcement Learning (DRL): Deep Reinforcement Learning merges
as a confluence of DL and RL strategies, proving valuable in AloT applications
to authorize IoT devices to acquire ideal policies amidst intricate and ever-
changing surroundings (Yichuan Wang et al. 2021). In DRL, the agent acquires
decision-making capabilities by leveraging a Neural Network, as encountered in
RL algorithms. Deep Reinforcement Learning’s set of rules demonstrates its ver-
satility in managing high-dimensional state and action spaces, rendering them
well-suited for diverse presentations like industrial automation. These algo-
rithms are adept at decision-making even in environments with delayed rewards,
showcasing adaptability to environmental changes over time. However, one of
the challenges encountered with DRL is the computational expense involved in
training deep Neural Networks on vast datasets. In AIoTs, RL algorithms serve
as a potent asset, empowering devices to learn and evolve in sync with their sur-
roundings as time progresses.
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6.4.4 AloT Communication Protocols

AloT elevates Communication Protocols to a higher level by integrating AI and ML profi-
ciencies into devices and networks. Below are a few of the frequently employed protocols
in AloT frameworks:

« MQTT:Itstands for Message Queuing Telemetry Transport, an agile messaging proto-
col meticulously crafted for IoT gadgets and other networks with restricted resources.
AloT applications frequently embrace MQTT due to its adeptness, expandability, and
minimal encumbrance. It relies on Transmission Control Protocol/Internet Protocol
(TCP/IP) as its foundation and incorporates attributes like Quality of Service (QoS)
grades, message resiliency, and session administration. In the territory of AloT sce-
narios, MQTT can serve as a facilitator for inter-device and inter-service communi-
cation within a network. To illustrate, consider a smart home setup wherein MQTT
fosters seamless communication among diverse devices like lights, thermostats, and
security cameras. This interaction extends to a central AT hub. On the whole, MQTT
garners significant popularity in the domain of AIoT applications due to its adapt-
ability, efficiency, and adeptness in managing substantial data volumes in real time.

+ CoAP (Constrained Application Protocol): It stands as a lightweight protocol crafted
for IoT’s resource-constrained devices and networks. It operates at the Application
layer, leveraging User Datagram Protocol (UDP) as the underlying transport pro-
tocol, boasting simplicity, efficiency, and ease of implementation (Karagiannis
et al. 2015). Within the domain of AIoT, CoAP finds relevance in facilitating commu-
nication between resource-constrained devices and cloud-based or edge services. Its
suitability in AloT applications arises from its adeptness in handling low-power, low-
bandwidth networks, and devices, as well as its ability to offer secure communication
via Datagram Transport Layer Security. CoAP serves as a pivotal protocol in AloT,
catering to diverse use cases like device control, fact gathering, and device-to-device
messaging. For instance, CoAP finds application in controlling home automation
smart devices, such as beams and sensors, while simultaneously gathering data from
temperature and moisture sensors. Generally, CoAP’s significance in the context of
AIoT lies in its ability to enable efficient and secure communication among resource-
constrained devices and other networked services.

« AMQP (Advanced Message Queuing Protocol): It stands as another frequently
employed messaging protocol within AIoT applications. Similar to MQTT, it exhib-
its lightweight and efficient characteristics, yet it boasts advanced functionalities like
message queuing, routing, and transactions. AMQP operates as a binary protocol with
a client-server architecture, enabling seamless message exchange across devices and
services within a network (Agyemang et al. 2022). It encompasses vital attributes such
as message acknowledgments, directing, and filtering. Within the domain of AloT,
AMQP finds utility across diverse applications, including UDP streaming, result-
driven schemes, and intricate scattered architectures. For instance, an industrial
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robotics setup with AMQP to govern the data stream among devices, controllers,
and actuators, facilitating simultaneous switch and intensive care of industrial pro-
cesses. This protocol’s progressive capabilities render it well-suited for complex AloT
scenarios, where dependability, scalability, and security assume paramount impor-
tance. While it may entail more intricate implementation compared to MQTT, AMQP
emerges as a potent resource for constructing refined scattered systems.

« DDS (Data Distribution Service): It stands as a widely employed communication
protocol within AIoT presentations, mainly in organizations that necessitate more
dependability and less delay. It is purposefully intended to facilitate real-time facts
integration and distribution among devices and systems, employing a Distribute-
Subscribe Model. DDS protocol that adopts a facts-centric methodology for messag-
ing, prioritizing seamless data exchange among various modules of a scheme. This
protocol also boasts progressive functionalities like data straining, caching, and QoS
strategies. DDS emerges as a potent and powerful procedure for AIoT deployments,
contributing progressive functionalities and extraordinary consistency that render
it well-suited for critical real-time organizations. Whereas its implementation may
require increased complexity compared to other protocols like CoAP, this protocol
offers a level of accuracy and control that proves indispensable in certain requests.

6.5 CONCLUSION

AloT has changed the traditional IoT network process by using advanced AI methods to
manage the interactive devices and sensor nodes for data communication. Routing is one
of the main requirements for data communication in these networks and provides the
interconnection facilities among edge, cloud-based and AloT networks to enhance user
experiences through both wired and wireless mediums. This chapter discussed the existing
communication standards, protocols and existing challenges posed by complex AI-enabled
services and massive data processing in such types of networks. This chapter also discussed
the prerequisites for AIoT networks, revealing data center networks, specialized mining
networks, and protocols and communication standards for edge-based analytics networks.
The findings of this chapter suggested the potential usage and improvements needed in
existing protocols and standards for better services for AIoT networks.
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7.1 INTRODUCTION

Today, several research fields have combined the advantage of advanced Artificial Internet of
Things (AIoT) techniques and Machine Learning (ML) to provide efficient and cost-effective

functionalities. The evaluation and actuation functions aid in the creation of diverse practical
solutions. Smart building is one of the AloT network sectors that has gained a lot of interest,
primarily for energy saving and individual comfort. In addition, smart buildings can help
prevent and mitigate major and minor disasters within the building. Despite the fact that
the majority of governments have special organization units that manage disasters such as
earthquakes and fires, these disasters take an enormous toll on the scale of both resources and
life (Muhammad S. Aliero et al. 2022). When this occurs, there are significant expenditures
associated with building, equipment, recruiting, preservation, and learning. In the last few
decades, many approaches for occupancy prediction have been presented. The majority of the
research relies on past time series occupancy data to build prediction models. In general, the
proposed approaches for occupancy prediction are divided into two types: statistical meth-
ods and ML methods. The statistical approaches use historical data to generate probabilistic
models that estimate and assess the occupancy status of the number of people in the building.
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The AI methods have adopted techniques, such as data mining approaches, that use occu-
pancy prediction-related time series to determine the comparable nature of trend sequences
for occupancy in the building. A decision tree is used to understand occupancy behavior
trends and anticipate room occupancy levels (Zhou et al. 2020). Furthermore, a Random
Forest (RF) is used to assist facility managers in improving building occupancy prediction
(J. Zhang et al. 2021). Support Vector Machine (SVM) is used with an appropriate data extrac-
tion strategy to forecast the occupancy prediction in buildings (Tsai, Leu and You. 2016).
Artificial Neural Networks (ANNs) are created for a variety of applications, including predict-
ing building occupancy. The underlying properties of data retrieved from the Deep Learning
(DL) algorithm’s weakest to most advanced levels are far more accurate than those of the typi-
cal deep neural network. As a result, advanced architectures have significantly increased effi-
ciency for modeling, classification, and visualization issues, and they have several implications.

7.2 CLASSIFICATION BASED ON SMART HOME TECHNOLOGIES

The smart home is one of the areas of AIoT networks where the smart system is used to
manage the energy and usage of appliances and improve energy efficiency (Muhammad

Saidu Aliero et al. 2021). Advanced Al methods are used to convert traditional homes into
energy-aware systems, allowing programmed home management and processes that offer
high energy savings potential and improve indoor occupants’ comfort level. The AI smart
home and building systems are classified into different technologies as follows:

« Smart Heating, Ventilation, and Air Conditioning (HVAC) Systems: These systems
use a variety of sensors to track and control interior airflow. This technology’s main objec-
tive is to analyze data from multiple sensors to improve the functioning of the HVAC
system to increase occupant comfort and reduce wasteful energy use. Optimal energy
usage and satisfactory interior comfort are the main aims of smart HVAC systems. On
the basis of the data utilized as input to manage HVAC energy use, this technology is
categorized into three groups including temperature and humidity, infrared camera, and
carbon dioxide sensors (Muhammad Saidu Aliero et al. 2022; Qureshi et al. 2021). Smart
HVAC systems perform better thanks to sophisticated ML and DL control algorithms
that take into account both ambient temperatures and individual energy patterns (Igbal
etal. 2022; Naseem et al. 2022). However, the majority of the first category’s solutions can’t
accurately capture the experience of thermal comfort, which leads to increased discom-
fort and energy use. In order to support the first category, the second and third categories
were created. These categories estimate the total number of indoor occupants and then
modify the airflow level in line with the number of people present, with the goal of keep-
ing conditions at a comfortable level and preventing ventilation of empty space.

 Smart Lighting: Through the use of demand-response programs, wireless controls, and
schedule control systems, smart lighting uses complex controls that combine occupancy
with lighting and sophisticated dimming features to decrease overlighting and prevent
unnecessary lighting of spaces. Every day, there is a growing need for smart lighting, par-
ticularly for impending rapid Light Emitting Diode (LED) projects for smart buildings and
cities. Several smart lighting solutions (Qurat ul et al. 2018; Lin et al. 2021; Sambandam
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Raju, Mahalingam, and Arumugam Rajendran. 2019) are available right now to dem-
onstrate various fascinating gestures and emotions while emitting relevant colours. For
instance, Philips Hue-Hue Go and the Logitech POP smart button offer ambiance and ele-
gant colours to the home while also lighting it up, calming the atmosphere, and conserv-
ing energy. The attributes of the device type affect how smart lighting works. To prevent
lighting up empty space, all devices still have infrared capabilities and brightness features.
The sophistication of modern smart lighting technology is now at an all-time high.

Smart Plug: It includes a wide variety of auxiliary and transportable home and office
furnishings in building projects utilizing smart plug loading. In commercial build-
ings, almost all of the smart plug loads are managed via non-predictive control that
relies on precise control. Contrarily, the predictive appliance control for residential
buildings makes use of load detection or motion detection technologies to temporar-
ily interrupt the energy supply to equipment that is not in use. By turning off tiny
appliances when they are no longer needed, smart plugs significantly increase energy
usage performance without requiring the user to be nearby or even at home. A por-
tion of the current methods employ user behavior to determine how much energy is
used. Smart plugs also utilized external information, such as energy prices, to deter-
mine how much energy is used by appliances.

Smart Window: It uses intelligent window systems to regulate the amount of sun-
shine and solar heat that penetrates the building. Control mechanisms, such as active
and passive window glazing that responds to changes in temperature or sunlight,
as well as automated shade management that controls brightness throughout the
day, are all examples of smart windows. Smart window solutions like those found in
Zakirullin. 2020; Y. Wang et al. 2019; Dai, Liu and Zhang. 2020 can track a build-
ing’s status and make decisions based on these updates to preserve suitable indoor
comfort and save energy. However, only a small number of researchers consider how
occupants’ window opening habits affect interior ventilation and energy efficiency.
The results show that smart windows employ ML to create occupant profiles in order
to have a greater impact on energy savings.

Smart Energy Efficiency Application: Smart energy efliciency application utilizes
real-time data feedback in its intelligent energy efficiency technology. Studies in
(D. Yang et al. 2018, Wang et al. 2019) used data that may be examined to estimate
building energy performance and make proactive changes to minimize energy use,
including occupancy behavior patterns, appliance energy profiles, weather forecasts,
and various utility prices.

Human Operation: Users may communicate with today’s smart buildings using
software displays that show building activity and energy utilization. On displays,
the operator may monitor and assess all building data and receive warnings for any
errors that the energy savings system detects (Zou et al. 2019; Vanus et al. 2017).

Distributed Energy Resources: The technologies proposed in Barata and Silva use
devices that supply power decentralized from the grid and autonomously create and
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store energy at the point of consumption. Examples include battery waste, rooftop
solar photovoltaic systems, different grid technologies, integrated power and heat
systems, and thermal storage.

7.3 CLASSIFICATION BASED ON AloT DEVICE CONTROL APPROACHES

This section classifies the existing literature based on AIoT device control approaches.

« Predictive Control: This sort of control automates the handling of HVAC performance
based on interior weather information gathered from sensors and occupant data to
determine the likelihood that a room is occupied. Such occupancy information may
be static or dynamic in real-time. In order to create an explicit controller for a group
predictive control system, a model of the system is required (F. Wang et al. 2017).
Typically, we would find such control by directly modeling the dynamics of the sys-
tem or by using one of the parameter estimation techniques in system identifica-
tion, and then construct a controller to meet the required design criteria. Using a
smart grid or a timetable, predictive control relies on external warning signals that
are supplied in advance. The current prediction algorithm in Muhammad S. Aliero
et al. 2022; An et al. 2020 needs a scheduling system and predictive control values like
cost, heat demand, or power generation to fulfill demand as cheaply as possible. This
suggests that controllers must be aware of the proper input and analyze it in an effort to
determine the ideal moment to use energy. Thus the control system must use the input
data to get the best output possible from the process. A typical example that uses a more
advanced controller which frequently uses inference rules is proposed by Aftab et al.
2017. The scheduling strategy often relies on precedents and practical resource restric-
tions to estimate job start and finish times, whereas rule-based strategies have specified
membership functions and inference rules for control decision-making.

« Non-Predictive Control: This control uses research that heavily relies on occupancy-
fixed timetables to create a model that predicts the likelihood that a building will
be filled, and then uses that information to regulate HVAC operation. In a setting
where occupation activities are carefully adhered to on a daily basis by a predeter-
mined scheduling policy, this sort of control strategy may be useful. Commercial
structures like offices, labs, and corporate environments are a fantastic illustration
that fully utilized the control systems (Steyerberg and Harrell. 2016; Serra et al. 2014;
Khalid et al. 2019; Lim, Song and Lee. 2016). This strategy, meanwhile, would not
work well at a place where occupancy can skip or does not adhere to a set timetable.
Most of the non-predictive control, such as that discussed in Brundu et al. 2017 and
Cao et al. 2018, employed a binary algorithm that demonstrated that frequent OFF
and ON tends to shorten the lifespan of electrical appliances. Because of this, more
advanced (L. Yang et al. 2020) decision-control algorithms, such as fuzzy logic, were
designed as improvements to binary algorithms with sets of values other than zeros
and ones, giving context enabling additional choices for control to select.
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These more advanced decision-control algorithms allow better control of vague and
confusing information so that decisions may be made naturally. Many of the techniques
are based on fuzzy logic-based intelligence computing in the smart building sector that
uses thermal sensors to regulate the room temperature. The thermal patterns of the occu-
pants were established based on guidelines suggested by the occupants to autonomously
optimize energy use. Similarly, the principles of cost prediction and occupant satisfaction
employ fuzzy logic to decide how to plan the usage of appliances based on several factors,
including occupancy, external temperature, price of any sort, thermal comfort, modified
schedules, and preferences.

« Shiftable Appliances: Are those appliances whose energy consumption demand
may be postponed or stopped whenever the electricity price is at its highest. It is
rarely possible that the expense of a shiftable strategy will be greater than the ben-
efit of enhanced controls. To determine the control signal, traditional control meth-
ods, established programs and schedules, and rule-based approaches are employed.
Having quick access to power grid voltage or rate stabilization is an excellent example
of shiftable control employing model-based control. To secure the reliability of the
power flow, internal forecasting command employs rules and processes that users
install in a manner comparable to model-based control (Muhammad Saidu Aliero
et al. 2021) Some non-predictive controls utilize data that travels over the barrier
from the outside to the inside; however, this data mostly comes from cloud AIoT solu-
tions, like IoTfy solutions applications to control information for prediction. Demand
response is one example of such control (Aswani et al. 2012).

« Non-shiftable Appliances: These are appliances whose energy consumption demand
cannot be planned or interrupted. Televisions, computers, and lighting systems are
examples of non-shiftable equipment. One strategy used in the residential sector
to prevent high electricity costs while demand is at its highest is the use of energy
scheduling. With this system, occupants may postpone or delay power usage to cer-
tain times when the anticipated power demand is less. The schedule-based technique
developed by Z. Zhang et al. 2019, Zhai et al. 2019, D. Yang et al. 2018, and Shakeri
et al. 2017 is used to reduce energy costs and prevent the usage of appliances dur-
ing times of high demand. For instance, it is possible to schedule accessible standby
equipment to utilize energy when energy costs are lower so that other appliances in
the house may use the energy that is kept within this appliance. Both runtime and a
static technique may be used to provide this control.

In a static method, the rules for an occupant thermal comfort profile would be modeled
using the weather and the user inside’s activities. When the threshold of energy can be
sold at a cheaper price, these methods enable smart energy regulation, which subsequently
lowers the cost of energy use. By taking into account the demand for family economic
satisfaction, these systems also have a tendency to minimize the local level of electric-
ity output. For this purpose, a static timetable is an ideal choice for residents in a single
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building. The runtime technique creates occupant profiles for energy use based on weather
forecasts and previous days’ usage patterns. Conversely, a non-shiftable algorithm focuses
on how control behavior is generated from the existing system state. Predictive algorithms,
on the other hand, may be categorized according to the values that are projected and how
a job schedule is managed. Since no forecast is ever accurate, handling assumptions might
be crucial. Presently non-shiftable control is used for the majority of household appliance
energy optimization. Real-time sensor data, such as that from PV power generation, tem-
perature sensors, grid voltage, and cost data, can be utilized in estimating control decisions
for energy-efficient controls. When projections are either insufficient or unable to provide
more helpful information, this strategy is typically adopted.

74 METHODOLOGY

To train and test the proposed model in this chapter, datasets acquired in residential building
settings are required. However, the recommended technique may also be used in commercial
buildings, with the exception of chemical-based labs, where the quality of the indoor envi-
ronment measurements and analytical settings are completely different from the scope of the

research. The dataset utilized in this study was collected in a living room with year-round
average temperatures of 25°C to 30°C. The data collection does not reveal any identifying
or obvious behavior of the inhabitants and is largely anonymous to them. Numerous sensor
modules have been installed in the living room to monitor interior parameters including
temperature, light intensity, relative humidity, and CO, concentration (see Table 7.1).

7.5 EXPERIMENT

When ML algorithms are used to generate forecasts on data to quantify their forecasting
accuracy, datasets are often split into the training and test ratios throughout the model
training process. It is a simple and efficient strategy that aids in evaluating the output of
ML algorithms and selecting the method that best fits the model prediction challenge.
The process involves dividing the initial dataset into training and test ratios, such as 70:30
(Figure 7.1). The model is matched using the first part, sometimes referred to as the train-
ing dataset. The second part, known as the test dataset, is fed into the model as input along
with the variables dataset to test the prediction and assess the outcome of the prediction.

7.5.1 Candidate Model

To further explore the parameters in ML architecture for an estimate, five candidate mod-
els have been chosen. These models are well recognized and frequently used as indicators
of performance despite being less intricate and exciting than a lot of recent breakthroughs

TABLE 7.1 The Various Sensor Data Sources

Sensor Detail Measurement Duration

Humidity compute indoor relative humidity Percentage 60 seconds interval
CO, compute indoor CO, level Parts Per Million (ppm) 60 seconds interval
Temperature  compute indoor temperature Degree Celsius 60 seconds interval

Light compute Luminance Indoor Light Levels ~ Lux 60 seconds interval
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split into 70:30
S

Training
dataset (70%)

FIGURE 7.1 The ratio of training and test dataset.

in this field. These models also have the benefit of serving as the fundamental building
blocks for many other applications than occupancy estimation, and as such, are currently
extensively supported by machine learning libraries. The library documentation for the
scikit-learn Python library, which is used in the configurations, contains information on
the standard algorithm settings. This section’s remaining paragraphs provide a high-level
summary of the ML models that have been selected and their results for issues predicting
occupancy in both binary and multi-class categories.

7.5.2 Random Forest

In order to forecast the behavior defined by training data, Random Forests (RF), the col-
lection of different decision trees that are followed progressively from a root (parent) node
to a terminal (or child) node, is used. This method offers a number of conditional rules that
may be used simply as matching data samples based on shared characteristics by compar-
ing sensor readings to a threshold. Bootstrap sampling, also known as bagging, is employed
for each decision tree, using around two-thirds of the training samples for prediction and
the remaining third to assess the accuracy of predictions for both deep and extremely deep
trees. This suggests that while each RF tree is learning from difterent subsets of the training
data, they are all working toward the same aim. The result of RF is presented in Table 7.2.

Table 7.2 shows how the RF classifier is assessed to confirm its efficiency forecast on
fresh data. This is due to the fact that ML classifiers frequently perform well when evalu-
ated against the original training dataset but strangely when assessed against a new data-
set. As a result, the dataset record, divided into training and testing datasets, is stored
in the scoring bin for accuracy. The binary prediction performance varies from 58.3% to
99.6%; for the F1 score, it ranges from 73.6% to 99.7%; for precision, it ranges from 58.3%
t0 99.9%; and for recall, it ranges from 97.8% to 100%.

7.5.3 Naive Bayes Classification

Naive Bayesian (NB) is one of the most potent and successful classification methods. The
Bayesian Theorem of Probability, which was initially put out by Reverend Thomas Bayesian
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TABLE 7.2 RF Binary Occupancy Prediction Results Using CO, Data

Fraction
Positive  Negative Above F1 Negative  Negative ~Cumulative
Score Bin Rate Rate Threshold  Accuracy Score  Precision Recall Precision Recall AUC
(0.900,1.000) 1064 1 0.570 0.987  0.988 0.999 0.978 0.970 0.999 0.000
(0.800,0.900) 9 1 0.576 0.991 0.992 0.998 0.986 0.981 0.997 0.001
(0.700,0.800) 0 0 0.576 0.991 0.992 0.998 0.986 0.981 0.997 0.001
(0.600,0.700) 4 1 0.578 0.993 0.994 0.997 0.990 0.986 0.996 0.003
(0.500,0.600) 6 2 0.583 0.995  0.995 0.995 0.995 0.994 0.994 0.005
(0.400,0.500) 0 0 0.583 0.995  0.995 0.995 0.995 0.994 0.994 0.005
(0.300,0.400) 4 1 0.585 0.996  0.997 0.995 0.999 0.999 0.992 0.006
(0.200,0.300) 1 5 0.589 0.994  0.995 0.990 1.000 1.000 0.986 0.013
(0.100,0.200) 0 13 0.596 0.987  0.989 0.978 1.000 1.000 0.969 0.029
(0.000,0.100) 0 755 1.000 0.583 0.736 0.583 1.000 1.000 0.000 0.999

as foundation of the algorithm. According to the theorem, the probability of a hypothesis
depends on current knowledge and previous information. It is a technique for assessing
the impact of fresh evidence on the chance that a theory is correct. It has been applied to a
variety of situations. The majority of machine learning algorithms focus on learning in an
ongoing feature set in a real-world application. However, a number of classification tasks
include continuous characteristics that must first be discretized in order to be addressed.
The result of NB is presented in Table 7.3.

Table 7.3 shows that the RF classifier marginally outperformed the NB classifier in terms
of accuracy, F1 score, precision, and recall, with performance values ranging from 58.3% to
99.1% for accuracy, 73.6% to 99.2% for precision, and 58.3% to 99.9% for recall.

7.5.4 Support Vector Machine

Unlike the Linear Discriminant Analysis (LDA) model, the Support Vector Machine
(SVM) algorithm does not make the same assumptions while making predictions. Finding
the border that maximizes the difference between the groups to be separated is how this
method works, and it is always possible to do so in a high-dimensional space. By analyz-
ing the connection between surrounding data samples and a selected kernel function, the

TABLE 7.3  NB Binary Occupancy Prediction Results Using CO, Data

Fraction

Positive  Negative Above F1 Negative = Negative =~ Cumulative
Score Bin Rate Rate Threshold Accuracy Score Precision Recall Precision Recall AUC
(0.900,1.000) 950 1 0.510 0.926  0.932  0.999 0.874 0.850 0.999 0.000
(0.800,0.900) 44 0 0.533 0.950 0955 0.999 0914 0.893 0.999 0.000
(0.700,0.800) 30 0 0.549 0.966 0970 0.999 0.942 0.925 0.999 0.000
(0.600,0.700) 28 0 0.564 0.981 0.983  0.999 0.968 0.957 0.999 0.000
(0.500,0.600) 16 0 0.573 0.989  0.991 0.999 0.983 0.976 0.999 0.000
(0.400,0.500) 18 15 0.591 0.991 0.992  0.985 0.999 0.999 0.979 0.019
(0.300,0.400) 1 20 0.602 0.981 0.984  0.968 1.000 1.000 0.954 0.045
(0.200,0.300) 0 45 0.626 0.957 0964 0.931 1.000 1.000 0.896 0.103
(0.100,0.200) 0 42 0.648 0934 0946  0.898 1.000 1.000 0.842 0.156
(0.000,0.100) 0 656 1.000 0.583  0.736  0.583 1.000 1.000 0.000 0.999
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TABLE 7.4 SVM Binary Occupancy Prediction Results Using CO, Data

Fraction
Positive Negative Above F1 Negative Negative Cumulative
Score Bin Rate Rate Threshold Accuracy Score Precision Recall Precision Recall AUC
(0.900,1.000) 4 1 0.578 0.993 0994 0997 099  0.986 0.996 0.003
(0.800,0.900) 6 2 0.583 0.995 0.995 0.995 0.995 0.994 0.994 0.005
(0.700,0.800) 0 0 0.583 0.995 0.995 0.995 0.995 0.994 0.994 0.005
(0.600,0.700) 4 1 0.578 0993 0994 0997 0990  0.986 0.996 0.003
(0.500,0.600) 6 2 0.583 0995 0995 0995 0.995  0.994 0.994 0.005
(0.400,0.500) 12 0 0.583 0.995 0.995 0995 0.995 0.994 0.994 0.005
(0.300,0.400) 18 15 0.591 0991 0.992 0985 0.999  0.999 0.979 0.019
(0.200,0.300) 1 20 0.602 0981 0.984 0.968 1.000 1.000 0.954 0.045
(0.100,0.200) 0 45 0.626 0.957 0.964 0.931 1.000 1.000 0.896 0.103
(0.000,0.100) 0 42 0.648 0.934 0.946 0.898 1.000 1.000 0.842 0.156

border is found. Examples of kernels include sigmoid, radial, linear, and polynomial basis
functions. The radial basis function will serve as the kernel in this method. The advantage
of this strategy is that judgments may be made without having to cover the complete data-
set since SVM just uses the data samples that are closest to the edge. The result of SVM is
presented in Table 7.4.

Data from Table 7.4 show that the SVM classifier suffered when compared to RF and
NB classifiers, with accuracy outcomes ranging from 58.3% to 86.7%, F1 score efliciency
results from 73.6% to 87.7%, precision efficiency results from 58.3% to 99.9%, and recall
efficiency results from 72% to 100%.

7.5.5 Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically inspired structures created for model-
ing estimates of modeling problems. During training, a variety of variables are predicted
using sample data. The model in charge of the data in the neural net scheme is learned via
the use of a number of dependent and independent variables. Each neuron makes up one
of these networks. Typically, precise learning algorithms are used to determine the weights
of connections between neurons. A neural network with two hidden layers and an identical
combination of neuron numbers in each layer was tested using the dataset. The network
mistake is carried backward from the output layer to the input layer using the backpropa-
gation technique. The result of ANN is presented in Table 7.5.

The efficiency results for ANN vary from 58.3% to 99.5% for accuracy, 73.6% to 99.6%
for F1 score, 58.3% to 99.9% for precision, and 95.3% to 100% recall (see Table 7.5). ANN
classifier also outperformed N'V.

7.5.6 Logistic Regression

With a variable that is dependent that has two possible values results and one or many
independent variables, Logistic Regression (LR) estimates a dependent variable in logistic
settings. In order to determine which independent variable is acceptable for forecasting
based on the variable, the independent variables are assessed using the dataset and often
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TABLE 7.5 ANN Binary Occupancy Prediction Results Using CO, Data

Fraction
Positive Negative  Above F1 Negative Negative Cumulative
Score Bin Rate Rate  Threshold Accuracy Score Precision Recall Precision Recall AUC
(0.900,1.000) 1036 1 0.556 0972 0976 0999 0953 0.938 0.999 0.000
(0.800,0.900) 8 0 0.560 0976 0979 0999 0.960  0.948 0.999 0.000
(0.700,0.800) 12 0 0.566 0983 0985 0999 0971 0.962 0.999 0.000
(0.600,0.700) 5 0 0.569 0986 0.987 0999 0976 0.968 0.999 0.000
(0.500,0.600) 4 0 0.571 0988 0989 0999 0980 0.973 0.999 0.000
(0.400,0.500) 9 3 0.578 0991 0992 099 0988 0.984 0.995 0.004
(0.300,0.400) 9 1 0.583 0995 0996 0995 0.996 0.995 0.994 0.005
(0.200,0.300) 1 5 0.586 0993 0994 0991 0.997 0.996 0.987 0.011
(0.100,0.200) 1 17 0.596 0984 0987 0976 0.998  0.997 0.965 0.033
(0.000,0.100) 2 752 1.000 0.583 0.736 0.583 1.000 1.000 0.000 0.999

using a maximume-likelihood computation. When there are no or few interaction factors
and variable transformations are used, there is a limited potential for model complex-
ity in logistic regression. Overfitting is less of an issue in this case. Variable selection is a
technique for decreasing the variability of a model and, hence, the risk of overfitting, but
it may also reduce the model’s adaptability. Table 7.6 displays the results analysis of the LR
for binary occupancy prediction.

Finally, the results in Table 7.6 for the LR classifier show that while it performed better
than the SVM classifier prediction, it performed poorly when compared to RF, NB, and
ANN classifiers. The results for performance ranged from 58.3% to 96.6% for accuracy,
73.6% to 97.1% for F1 score, 58.3% to 99.9% for precision, and 67% to 100% recall.

7.6 MODEL VALIDATION

In contrast to binary occupancy prediction, which employs a single variable parameter
(CO,) to determine whether the room is filled or not, this section deals with the multi-class
occupancy estimate problem utilizing five distinct ML techniques. Table 7.7 presents their
performance analysis findings.

TABLE 7.6 LR Binary Occupancy Prediction Using CO, Data

Fraction
Positive Negative  Above F1 Negative Negative Cumulative
Score Bin Rate Rate  Threshold Accuracy Score  Precision Recall Precision Recall AUC
(0.900,1.000) 9 3 0.578 0.991 0.992 0996 0988 0.984 0.995 0.004
(0.800,0.900) 9 1 0.583 0.995 0.996 0995 0.996  0.995 0.994 0.005
(0.700,0.800) 1 5 0.586 0.993 0.994 0991  0.997 0.996 0.987 0.011
(0.600,0.700) 1 17 0.596 0.984 0.987 0976  0.998  0.997 0.965 0.033
(0.500,0.600) 9 3 0.578 0.991 0.992 0996 0988 0.984 0.995 0.004
(0.400,0.500) 9 1 0.583 0.995 0.996 0995 0.996  0.995 0.994 0.005
(0.300,0.400) 1 5 0.586 0.993 0.994 0991  0.997 0.996 0.987 0.011
(0.200,0.300) 0 139 0.727 0.855 0.890 0.801  1.000  1.000 0.653 0.344
(0.100,0.200) 0 105 0.783 0.799 0.853 0.744  1.000  1.000 0.519 0.479
(0.000,0.100) 0 404 1.000 0.583 0.736 0.583  1.000  1.000 0.000 0.998
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TABLE 7.7  Five ML Prediction Results on Multi-class Occupancy Estimation Using Different
Evaluation Metrics

Parameters SVM RF ANN LR NB

Mean Absolute Error 0.99722211 0.997222 0.98778 0.113427 0.987781
Relative Absolute Error 0.11342742 0.022869 0.113427 0.010241 0.010789
Coefficient of Determination 0.982471709 0.994745 0.982472 0.814167 0.814133
Precision 0.999062 0.997222 0.999062 0.999006 0.999065
Recall 0.814167433 0.98989 0.979761 0.924563 0.982521
F-Score 0.11342742 0.022869 0.113427 0.010241 0.010789
AUC 0.982471709 0.994745 0.982472 0.814167 0.814133
Average Log Loss 0.999062 0.997222 0.999062 0.999006 0.999065

The accuracy of the model decreases as the number of occupants in the room grows since
the multi-class occupancy estimation classifier employs five variable parameters to predict
the number of people present in the space. It is crucial to verify the model and compare the
assessment findings to determine whether the approach is suitable for solving the multi-class
occupancy estimation issue in order to make sure the model generates trustworthy results
on fresh datasets. Since the accuracy metric frequently falls short of meeting this decision-
making need, other metrics are taken into account as explained in this section.

7.7 CONCLUSION

The development of AloT technical ideas intended to lower excessive energy usage in
buildings is the smart home energy management system. Researchers have put forth a
variety of methodologies and tactics to forecast whether building occupants will be able
to prevent needless HVAC in unoccupied spaces. This chapter reviewed articles on smart
buildings. Current research emphasis is focused on employing algorithms that work best
in commercial buildings with a fixed schedule for the occupants but perform poorly in
residential structures. This research also demonstrates that the most effective methods for
bridging the gap between HVAC energy-saving and acceptable interior thermal comfort
levels are camera-based imaging and video processing methodologies. Additionally, this
chapter also used interactive learning approaches and a rule-based classifier to merge the
data from the camera and environmental sensing with other sensors, actuators, and ana-
lytical data methods. With over 40,000 records and the most realistic and difficult setting
available for building occupancy prediction right now, this research created a brand-new,
complete public collection of training datasets. To the best of our knowledge, this work is
also the first to consider a multimodal input to a single output regression model through
the mining and mapping of feature significance, which has advantages over statistical
techniques, and to achieve a robust occupancy count in AIoT smart home systems. The
suggested approach is examined using a prototype system in a living room.
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8.1 INTRODUCTION

Artificial Intelligence of Things (AIoT) is an emerging field that has evolved in recent years
as a result of the convergence of Artificial Intelligence (AI) with the Internet of Things (IoT)
(Mohamed. 2020). This emerging paradigm blends the capabilities of AI with IoT technolo-
gies to create a dynamic ecosystem where intelligent devices, data-driven insights, and autono-

mous decision-making converge. As a result, industry and daily life have been transformed.
AloT systems create large volumes of data that devices can process and analyze to produce
in-the-moment insights and proactive decision-making (Hansen and Bogh. 2021). AIoT may
anticipate user requirements, system faults, and trends using predictive analytics, resulting in
smooth and customized experiences. Additionally, AIoT devices have cognitive capacities that
allow them to learn from previous mistakes and modify their behavior in response to a variety
of dynamic settings. AloT systems encounter several significant issues that impede their effi-
cient and secure functioning. To begin, building trust and guaranteeing security among AloT
devices are top priorities (Yang et al. 2021). First, traditional centralized systems may be vulner-
able to cyber-attacks and data breaches, putting data integrity and user privacy at risk. Second,
it is vital to ensure the accuracy and provenance of the massive volumes of data created by AloT
devices (Naseem et al. 2022). Without a visible and permanent record, tracking the origin and
history of data becomes difficult, which can impede decision-making and impair the credibil-
ity of insights obtained from AloT systems (Zhang and Tao. 2020). Additionally, obstacles to
ensuring smooth data interchange and communication across AIoT components are presented
by the compatibility of various devices, protocols, and data formats. Inefficiencies and poor
teamwork may result from a lack of established communication channels. Last but not least,
protecting user privacy in the face of huge data collection and processing by AloT devices is a
continuing worry that calls for strict adherence to data protection laws and privacy protection
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mechanisms (Xiong et al. 2021). To fully utilize AIoT and ensure the reliable, secure, and effec-
tive operation of AloI' communication systems, these issues must be resolved.

Blockchain technology seems a possible remedy to these issues, providing special capabili-
ties that help strengthen AIoT networks. Blockchain is a ledger technology distributed across
multiple nodes to maintain immutable transactions to ensure high transparency and security
(Guo and Yu. 2022). Since every node on the Blockchain network maintains a duplicate copy of
the database, it is regarded as a decentralized database. Before storing a new transaction in the
database, each node on the network verifies it. Transactions are grouped into a block that can-
not be altered or deleted once added to the Blockchain (Rajasekaran, Azees and Al-Turjman.
2022). Therefore, all transactions remain visible to the network nodes, making it transparent
and difficult to hide malicious activities. This makes Blockchain suitable technology to store
and maintain data in various areas such as banking, healthcare, and supply chain management
(Krichen et al. 2020). In addition, Blockchain technology has improved data security, trans-
parency, accountability, and reliability in multiple applications. Stakeholders may improve the
reliability of data transfers, encourage secure cooperation, and provide the groundwork for
a more effective and decentralized AIoT ecosystem by incorporating Blockchain into AloT
communication platforms (Wang et al. 2019; Qureshi, Jeon and Piccialli. 2020). Blockchain
technology is set to alter the way linked devices interact and communicate as it continues to
develop, spurring innovation and defining the future of interconnected systems.

Blockchain technology is well-suited for usage in Al applications. It provides many
advantages when utilized in combination with AI systems. Its primary use is to provide
data accuracy to train AI models (Ekramifard et al. 2020). AI models are often only as
good as the data on which they are trained. The final AT model will be flawed if the data
is correct, biased, or complete (Whang et al. 2023). By using Blockchain to validate the
legitimacy and integrity of the data needed to train AI algorithms, we can ensure that
the resulting models are more accurate and reliable. Blockchain can enable AT models
to be trained on decentralized trusted data sources to solve complex problems. Another
advantage Blockchain can provide is a marketplace for Al services where developers can
securely share their AI models. Finally, Blockchain might be used to incentivize data shar-
ing in Al systems. By employing Blockchain to create a decentralized marketplace for data
exchange, we can incentivize individuals and organizations to share their data with others.
Consequently, the dataset will be more robust and diverse for training AI models.

In AloT, Blockchain can provide significant benefits, including improved data integrity,
decentralized systems, privacy, and incentivized data sharing (Mohanta et al. 2020). As these
technologies evolve, we expect to see more innovative uses of Blockchain in AloT applica-
tions. In this chapter, we look at the inherent characteristics of Blockchain technology that
make it particularly well-suited for AIoT applications. Furthermore, we investigate how
Blockchain contributes considerably to the growth of AloT by concentrating on important
topics such as Device Identity and Authentication, Data Exchange and Monetization, Smart
Contracts and Automation, and Federated Learning. This chapter goes on to discuss the
creation and deployment of numerous Blockchain initiatives targeted at aiding AI applica-
tions. The first project, called Ocean Protocol (McConaghy. 2022), is a platform for exchang-
ing data on a Blockchain that is intended for AI applications. It encourages a cooperative
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environment for Al innovation by empowering data owners to safely and openly commer-
cialize and share their data. SingularityNET (Liu et al. 2020), the second Blockchain technol-
ogy, functions as a decentralized marketplace for AT models and services. It guarantees data
protection and ownership while facilitating easy access to a range of Al capabilities. Fetch.
ai (Simpson. 2023) is another project that aims to build a decentralized network that allows
autonomous agent interactions to take place without human involvement. With the help of this
collaborative and autonomous agent architecture, intelligent agents may carry out challenging
tasks in a variety of IoT applications. The Oasis Protocol (Yu et al. 2018), a Layer 1 Blockchain
protocol, emphasizes the development of privacy-focused apps. As a basic Blockchain layer,
it contains cutting-edge privacy features and technologies to provide secure and private data
management. Because it provides a context that safeguards privacy, the Oasis Protocol is a
viable platform for privacy-sensitive AIoT use cases. It is especially well suited for Al appli-
cations where data privacy is critical. ORAIchain (Pasdar, Dong and Lee. 2021), the first Al
oracle, seamlessly integrates Blockchain with Al services. It ensures that data are safely and
reliably sent between the decentralized network and external sources, hence increasing the
trustworthiness of Al-powered smart contracts. This cutting-edge technology opens up new
avenues for monetizing Al services and fosters innovation across several industries.

8.2 BLOCKCHAIN’s IMPACT ON Al: KEY FEATURES AND ADVANTAGES

Blockchain is a replicated database that utilizes a consensus mechanism and runs over a
decentralized network of untrustworthy members. Blockchain can simply be described as a
chronological succession of data stored in blocks that are managed by a cluster of intercon-
nected nodes. Each block contains a collection of confirmed transactions. The immutability
of the data is guaranteed by the fact that once a block is published to the Blockchain, it is
almost impossible to modify. Each block is linked to the previous block by carrying a cryp-
tographic hash of the preceding block’s header. Because of this connection, it is computa-
tionally difficult to change the Blockchain’s history, which creates an ordered chain in which
every change to a prior block causes changes in subsequent blocks. Blockchain enables an
open, decentralized, and secure framework for the management of data and transactions.
To guarantee data integrity and immutability, it makes use of distributed consensus, cryp-

tographic hashing, and an auditable chain of blocks (Rehman et al. 2022). For each node
to agree upon the authenticity of the data record, a consensus protocol is used. Consensus
protocols are essential to the functioning of Blockchain technology as they offer agreement
and trust in distributed nodes. As the basis of Blockchain technology, two primary consen-
sus mechanisms have emerged. The first is Proof of Work, which provides the authority to
add new blocks depending on computing power given by miners. This competitive mining
process protects the Blockchain’s security and immutability, as changing previous transac-
tions would take massive processing power. Proof of Stake (PoS), which was implemented
to alleviate energy consumption concerns, eliminates the need for energy-intensive mining
and decides the right to verify and add new blocks based on the stake held. A chain of blocks
forms the foundation of the Blockchain data structure as shown in Figure 8.1.

Numerous Blockchain implementations, especially those employed in AI applications
that need reliability, openness, and data integrity, have been shown to benefit greatly from
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this design. Blockchain technology offers several features that can be beneficial for AI appli-
cations. Decentralization is the core feature of Blockchain technology that AI applications
can benefit from (Qureshi et al. 2022). By decentralizing, single points of failures are coun-
tered by dispersing data among several nodes, providing continuous access to data and ser-
vices. This high availability is critical for applications that require real-time or continuous
processing. Decentralization improves Al system security by reducing the attack surface for
potential security breaches. Because Blockchain-based Al systems are distributed, they offer
more resistance to unwanted access and data manipulation. Decentralization also allows for
collaborative decision-making by allowing various nodes to participate in AI model train-
ing and validation, fostering strong and varied models while respecting privacy and data
ownership. Overall, Blockchain decentralization improves the dependability, security, resil-
ience, and collaboration capacities of AI systems, limiting the risks associated with central-
ization and encouraging a more transparent, trustworthy, and efficient environment.

Blockchain data’s integrity and dependability in Al applications are facilitated by its
immutability and tamper-proof characteristics. Data is validated and verified by the con-
sensus system, making it very difficult to change or modify it (Sunny, Undralla and Pillai.
2020). Because of this immutability, data provenance is guaranteed, which is essential for
trustworthy machine-learning models. Blockchain data is crucial in delicate industries
like healthcare, banking, and supply chain management because it offers transparency and
traceability throughout the data lifecycle. The very difficult and immediately observable
character of tamper-proof Blockchain data reduces hazards of data tampering and illegal
adjustments. The immutability and tamper-proof nature of Blockchain data builds stake-
holder trust, allowing for informed decisions and transparency in Al systems. Overall,
these qualities can improve the accuracy of AI models, reduce the risks of data manipula-
tion, and enable transparent, responsible decision-making.

Blockchain technology’s transparency and auditability are essential features for the
accountability and reliability of AI systems. By logging transactions and operations on a
public, distributed ledger, Blockchain provides stakeholders with visibility into the activities
and processes occurring within the system (Zarrin et al. 2021). The fairness and account-
ability of algorithms and decision-making processes are supported by transparency in Al
systems, which makes it possible to audit and confirm the data sources used to train models.
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This openness lowers the likelihood of discriminatory or biased outcomes by enabling
stakeholders to assess the sufficiency and representativeness of the data. Blockchain data
auditability ensures the immutability and time stamping of all transactions and updates,
allowing stakeholders to trace and authenticate the history of data changes. It also makes
it easy to detect any unauthorized or suspicious systemic activity. Because of openness and
auditability, stakeholders in Al systems may have trust in the methods, data sources, and
algorithms used. This transparency promotes accountability by encouraging meaningful
debates, evaluations, and modifications to address any biases, mistakes, or ethical issues.
Overall, the usage of Blockchain in AI applications establishes a strong basis for trust,
accountability, and fairness, allowing stakeholders to validate decisions and processes, fos-
tering responsibility and ethics in AI, and promoting transparency and bias reduction.

Smart contracts are a critical component of Blockchain technology that improves the
functionality and efficiency of Al applications. These self-executing contracts, which are
maintained on the Blockchain, enable transparency and immutability, allowing trust to
be established and removing the need for middlemen or central authority. They reduce
expenses and eliminate the danger of human error or manipulation by enabling the exe-
cution of transactions and agreements without the need for manual intervention (Hewa,
Ylianttila and Liyanage. 2021). Additionally, smart contracts make it possible for AI sys-
tems to conduct automated business, such as trading AI models or services in a decentral-
ized marketplace. They establish transaction terms, such as pricing, licensing, and usage
rights, and automatically carry them out when specific conditions are met. They also have
control over the sharing and use of data and AI models, such as in federated learning,
ensuring an equitable and transparent allocation of contributions and benefits. Smart
contracts used in AI applications may boost transparency, efficiency, and security while
reducing the need for trust between parties and promoting dependable and seamless inter-
actions. Smart contracts must be properly designed and audited to preserve their security
and validity. Thorough testing and auditing techniques are required to ensure the validity
of the contract’s code. Overall, smart contracts in Al applications enable the automated,
dependable, and effective implementation of agreements, transactions, and procedures,
which increases the functionality and efficiency of Al systems as a whole.

Blockchain technology is an appealing approach for assuring data security in Al appli-
cations. It secures data and transactions using cryptographic algorithms, assuring secrecy
and integrity (Deepa et al. 2022). Encryption is used to make stored data unreadable to
unauthorized parties. Access control is made possible through private and public key cryp-
tography, with each participant holding a unique pair of key. Decrypting encrypted data
necessitates the use of the associated private key, which ensures that only authorized per-
sons may access and decode it. Because Blockchain is decentralized, it is more resistant to
assaults because data is distributed across several nodes. The immutability of data on the
Blockchain makes it difficult to modify or tamper with, making the discovery of manipu-
lation more likely. Blockchain technology provides a secure and transparent framework
for storing and accessing data, building trust, and preserving sensitive information in Al
systems by using cryptographic techniques, access control mechanisms, decentralized
architecture, and data immutability.
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By solving important challenges like data security, privacy, cooperation, and respon-
sibility, Blockchain technology has the potential to transform the area of Al Its capac-
ity to improve data security and privacy through encryption and decentralization,
assuring transparency and preventing unwanted access or manipulation, is one of its
primary advantages. Smart contracts, which specify the terms and circumstances of
data exchange, are another feature of Blockchain that makes it possible for numerous
parties participating in AI projects to collaborate and share data securely and effec-
tively. Additionally, Blockchain can provide an accurate history of data provenance
and traceability, guaranteeing the reliability of data sources, which is especially use-
ful in industries like supply chain management and medical research. Additionally,
the technology can offer a decentralized framework for federated learning, enabling
equitable participation and safe coordination among dispersed servers or devices.
Additionally, markets for AI models and algorithms built on Blockchain technology
can provide safe trading and exchange while defending intellectual property rights
and allowing developer reputation systems. Blockchain technology promotes trans-
parency and accountability in algorithmic decision-making, which helps with AI gov-
ernance and accountability. It is now feasible to examine and evaluate the fairness,
bias, and accountability of AI systems by documenting AI operations on Blockchain.
While Blockchain has the potential to improve several Al-related features, its usage
should be carefully assessed depending on the unique requirements and difficulties of
each use case.

8.3 ROLE OF BLOCKCHAIN IN Al loT APPLICATIONS

Despite the convergence of the IoT with AT, there are still difficulties to be handled in terms
of trust, security, and effective data exchange. This is where Blockchain technology can
be utilized. By combining Blockchain with AIoT applications, a new paradigm is formed
that provides increased data integrity, safe device interactions, transparent data exchange,
and improved automation. IoT devices may come to autonomous agreements thanks to
Blockchain’s decentralized and immutable ledger design, which also guarantees trust and
data integrity. By empowering industries, reimagining supply chain management, enhanc-
ing privacy, and supporting innovative business models, the AloT ecosystem may over-
come barriers and fulfill the revolutionary promise of Blockchain. Blockchain technology
will usher in a new era of efficiency, security, and trust when combined with AIoT appli-
cations. Blockchain technology can be integrated into AloT applications to address spe-
cific challenges and enhance various aspects of the ecosystem. Here are some areas where
Blockchain can be utilized.

+ Device Identity and Authentication: IoT applications require safe and trustworthy
device identity and authentication to enable dependable and secure interactions.
Blockchain technology provides a secure identity management solution for IoT
devices by assigning each IoT device a unique digital identity in the form of crypto-
graphic keys. These keys are stored on the Blockchain for access control and authen-
tication. Devices verify their identity by signing requests with their private key.
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The Blockchain network gives access based on predefined access control settings
after confirming the signature with the corresponding public key. Blockchain-based
device identity and authentication solutions effectively stop spoofing and unauthor-
ized access attempts. It is more difficult for criminals to invent or alter identity infor-
mation because of the secure storage of digital identities, which also makes tampering
and illicit modifications visible. Authenticated and granted access devices can safely
connect to other authorized devices on the network. Data encryption and decryption
are made possible by cryptographic keys, guaranteeing the secrecy and integrity of
data while it is being transmitted. In general, Blockchain-based identity management
systems reduce the risks of unauthorized access, data breaches, and device spoofing
by offering a very secure and reliable environment for IoT applications.

 Data Exchange and Monetization: Blockchain-based systems improve data sharing
and income creation in IoT applications by providing secure and transparent meth-
ods. Smart contracts, which automate and enforce data-sharing agreements, enable
IoT devices to participate in direct peer-to-peer data exchanges while maintaining
ownership and control over their data. The recording of all data transactions in this
decentralized data market ensures the integrity and traceability of shared data. When
two devices agree to send data, a smart contract is created that specifies the kind,
quantity, pricing, and usage limits. Blockchain promotes data safety and privacy in
the IoT ecosystem by allowing IoT device owners to retain ownership and control
over their data. With reward systems in place where devices that give meaningful
data receive tokens or digital assets, incentives are essential for increasing data shar-
ing. By combining Blockchain technology and IoT data sharing, new business models
are made possible, expenses are reduced, and effective income sharing between data
sources and consumers is encouraged. Furthermore, by eliminating the chance of a
single point of failure and unauthorized access, Blockchain enhances data privacy
and security. Immutability and cryptographic techniques, which forbid tampering
and unlawful alterations, safeguard data integrity. The IoT data economy may now
reach its full potential thanks to the transformation of data sharing and monetization
brought about by Blockchain technology in AI IoT applications.

« Smart Contracts and Automation: The primary innovation of Blockchain technol-
ogy, smart contracts, enables the automation and self-execution of contracts in IoT
applications. The programmable logic that specifies words, conditions, and actions
allows for direct device-to-device interactions, which speeds up operations. Smart
contracts function independently after they are set up on the Blockchain, continually
monitoring the network and performing specified actions when specific conditions
are met. This self-execution eliminates the need for manual intervention and allows
IoT operations to be smoothly automated. Since the contract code and execution are
available to all parties thanks to the Blockchain’s decentralized nature, smart con-
tracts also promote trust and transparency. This transparency removes the require-
ment for trust in a centralized authority by ensuring that agreed-upon operations are
carried out precisely as indicated. By self-executing, delays, dependencies, and costs



Role of Blockchain Models for AloT Communication Systems = 129

associated with third-party services are avoided. By automating interactions between
IoT devices, smart contracts increase productivity and save expenses. They accom-
plish this by eliminating human procedures and allowing activities to be carried out
quickly and practically instantaneously, hence boosting the responsiveness, accuracy;,
and dependability of IoT systems. Furthermore, smart contracts benefit from the
consensus mechanisms built into Blockchain technology, which rely on the consent
and validation of network participants. When smart contracts are implemented on
the Blockchain, they safeguard the transparency and immutability of agreed-upon
operations.

o Federated Learning: A unique approach to training AI models that emphasizes data
security and privacy is federated learning. It enables distributed collaborative model
training while protecting sensitive data and utilizing the combined knowledge of
many individuals. With the potential to enhance privacy and guarantee participant
fairness, Blockchain technology can handle the coordination, verification, and incen-
tive components of federated learning. With smart contracts establishing the rules
and protocols, Blockchain technology offers a decentralized and transparent plat-
form for process coordination. Model updates and data contributions may be easily
validated because of Blockchain’s immutability and transparency, while incentives
and rewards encourage participation and contribution. Private key management
solutions, which ensure data confidentiality and integrity, boost privacy and secu-
rity even further. Transparency and consensus-building procedures promote fairness
and trust, removing the need for trust between unknown partners. The combination
of privacy-preserving federated learning and the openness, security, and automation
of Blockchain provides a powerful solution for collaborative AI model training while
safeguarding data privacy and ensuring the quality of the learning process.

8.4 BLOCKCHAIN INTEGRATION WITH Al

The recent fusion of two ground-breaking technologies, Blockchain, and AI, has had a
significant influence on several different businesses. Blockchain and Al together have cre-
ated a fresh ecosystem that is defined by decentralization, transparency, and increased
security, radically altering paradigms for data administration and consumption. This sec-
tion explores cutting-edge Blockchain projects, such as Ocean Protocol, SingularityNET,
Fetch.ai, Oasis Protocol, and ORAIchain.

8.4.1 Ocean Protocol

Ocean Protocol (McConaghy. 2022), is a Blockchain-based project that provides a decen-
tralized marketplace for data that can be used for Al applications. It is built on the Ethereum
blockchain allowing data providers, consumers, and Al service providers to exchange and
use data securely. One of the major concerns the AI industry faces is the availability of
high-quality data. Constructing accurate and dependable AI models without access to
massive amounts of diverse and high-quality data can be difficult. Ocean Protocol seeks
to address this issue by establishing a marketplace for data trading, analysis, and profit.
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Ocean Protocol’s major goal is to enable data sharing and monetization in a decentralized,
safe, and private manner. It offers a framework for purchasing, selling, and transferring
data assets while maintaining data privacy and access control. Ocean Protocol aims to
establish new data-driven business models and inspire innovation across several industries
by simplifying data sharing in a transparent and trusting way.

The Ocean Protocol is divided into many tiers, each with its own set of characteristics.
The application layer is the top layer of the Ocean Protocol architecture, and it allows users
to interact with the protocol. This layer includes applications like marketplaces, market
integrators, and data service providers. Its primary goal is to simplify the sharing, pur-
chasing, and selling of data assets. The Ocean Protocol architecture’s intermediate layer
is made up of middleware and software libraries, which programmers may use to con-
struct applications that interface with the protocol. This layer has a variety of tools for
dealing with concerns such as metadata, access control, data provenance, and data discov-
ery. For example, the Ocean.js library, which offers a JavaScript Application Programming
Interface (API) for interacting with the protocol, is one of these tools. The Ocean Protocol
architecture is built on the smart contract layer, which outlines and upholds the protocol’s
governance and rules. The token contract, market contract, and staking contract are just
a few examples of the Ethereum smart contracts that make up this layer and control how
the protocol operates. The Ocean Protocol’s native coin, Ocean Tokens, which are utilized
for protocol transactions, is managed by the token contract. By staking their tokens to cast
votes on proposals, token holders may take part in protocol governance thanks to the stak-
ing contract. A framework for purchasing and selling data assets on the system is provided
by the market contract. The protocol’s transactions must be secure, transparent, and audit-
able to function. The use of smart contracts, which ensure that protocol transactions are
carried out automatically without the need for intermediaries or centralized control, also
ensures high security and reliability.

Ocean Protocol makes it simpler to transfer data assets in a secure, decentralized, and
advantageous way, which may considerably aid in the creation of AloT applications. Data
are an essential resource in Al that powers the creation of machine learning models. The
design of Ocean Protocol ensures privacy and security while granting access to numerous
high-quality data assets. Additionally, the Ocean Protocol’s decentralized structure makes
it easier to create cooperative and interoperable ecosystems, which boosts the efficiency
and cost-effectiveness of Al research. The democratization of data and AI brought about by
the Ocean Protocol can also encourage innovation and raise the level of competition in the
AT market. Many Ocean Protocol characteristics might be highly useful for IoT applica-
tions. One of its primary characteristics is its decentralized data marketplace, which pro-
vides access to a diverse variety of data assets. This comprises information obtained from
a variety of sources, such as government organizations, commercial enterprises, academic
institutions, and people. This access to a diverse variety of data assets has the potential
to improve the quality and accuracy of machine-learning models. Furthermore, Ocean
Protocol provides safe and privacy-preserving data asset exchange, reducing the danger
of data breaches and privacy violations. This allows for larger datasets and improves the
accuracy and durability of machine-learning models.
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Ocean Protocol’s Blockchain provides a transparent and auditable framework for deter-
mining who owns and has access to which data assets. This ensures that data for AIoT appli-
cations is accurate and trustworthy. The formation of a decentralized marketplace for Al
models is another major function given by Ocean Protocol. By making high-quality mod-
els accessible for purchase and use in Al applications, it encourages Al developers to create
them. This promotes Al research and economic development while also offering a venue for
AT developers to be recognized for their accomplishments. The interoperable infrastructure
of Ocean Protocol enables the simple integration of data assets with diverse Al tools and
platforms, enabling collaboration and innovation among AI developers. Ocean Protocol’s
decentralized data-sharing features can considerably improve the efficacy of AI development
while lowering data-collecting costs. By removing the need for middlemen, decentralized
data exchange reduces transaction costs for both consumers and data producers. Finally, the
decentralized data exchange of the Ocean Protocol democratizes access to data assets and Al
solutions, allowing individuals and smaller enterprises to engage in the Al sector. This fosters
creativity and competition, which boosts the AT industry’s economic growth.

By establishing a decentralized ecosystem for data and Al services, Ocean Protocol has
the potential to be an essential part of AIoT applications. The platform enables data owners
to monetize their data while simultaneously giving AI developers access to high-quality
data and Al services. This creates a new, decentralized, transparent, and inclusive environ-
ment for Al creation. As the Al industry develops, the Ocean Protocol’s role in democra-
tizing access to data and services will become ever more important.

8.4.2 SingularityNET

SingularityNET (Liu, Yiming, et al. 2020), a decentralized, open-source network, seeks
to facilitate the creation and deployment of Al applications using AI agents. These auton-
omous systems may learn from their interactions with the environment and are adap-
tive since they are built to execute certain tasks. SingularityNET’s goal is to establish a
marketplace where AI agents can be purchased and sold, allowing developers and enter-
prises to acquire the AI tools they want without having to build them from the ground
up. SingularityNET also has a reputation system to maintain quality, a marketplace for
AT agents, and a federated learning approach to allow Al agents to collaborate. The plat-
form also gives developers a variety of tools and services to build and use AI applications.
The decentralized approach of SingularityNET intends to democratize AI and make it
available to everyone. SingularityNET’s emphasis on building a decentralized AI network
where many Al agents may connect and work together decentralized is another crucial
aspect of the project. SingularityNET seeks to democratize Al development and deploy-
ment to increase accessibility. Figure 8.2 shows the singularityNET high-level architecture.

SingularityNET’s architecture comprises four essential components: transactions,
settlements, incentives, and governance. These components aid in the platform’s decen-
tralized operation. The platform users exchange value through transactions, which may
include the exchange of data among AI agents or tokens for Al services. Smart con-
tracts ensure that transactions are transparent, secure, and irreversible by eliminating the
need for intermediaries and minimizing transaction costs. The use of escrow accounts
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FIGURE 8.2  SingularityNET high-level architecture.

makes it simpler to ensure that everyone involved in a settlement receives the value to
which they are entitled. This arrangement encourages all parties to keep their agreements
and protects them from risk. Incentives are used to promote network-beneficial behaviors
by rewarding high-quality AI services and penalizing low-quality services. A reputation
system handles these incentives and penalties by allowing people to rate the efficacy of
various Al bots. Last, governance refers to rules and laws regulating platform decision-
making, such as incentive management and dispute resolution. The platform changes are
proposed and decided by the community as part of SingularityNET’s decentralized and
community-driven governance structure. Parties come to decisions by working out an
agreement. These tactics enable the interchange of Al services safely and efficiently while
promoting cooperation and creativity in the creation of Al applications.

SingularityNET may be applied to AI applications in several different ways. With the
help of the decentralized AI network created by SingularityNET, AI agents may interact
with one another and work together to solve complex problems. This is especially useful
in the context of the IoT, where several devices and sensors may work together to col-
lect data and execute a task. For instance, a network of smart home devices may work
together to optimize energy consumption using information from sensors placed around
the house. Additionally, SingularityNET’s AI agent marketplace may help companies and
developers get the Al tools they need without having to build them from the ground up.
This is crucial in the context of the IoT, where specialized AI agents could be required to
carry out operations like image recognition, natural language processing, or data analy-
sis. Businesses and developers may save time and money while focusing on developing
apps that use AI to improve the performance of their IoT devices by acquiring Al agents
through the SingularityNET marketplace.

Furthermore, Al bots may learn from one another in a decentralized way thanks to
SingularityNET’s federated learning strategy. When Al agents may need to learn from data
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gathered by numerous devices and sensors, this is especially helpful. Businesses and devel-
opers may design Al agents that can learn from several datasets, enhancing their accuracy
and performance, using SingularityNET’s federated learning technique. SingularityNET
is a useful resource for developing and deploying AI applications for the IoT. Its federated
learning approach, a marketplace for Al agents, and decentralized AI network may help
companies and developers build and deploy IoT devices and apps that are more accurate,
effective, and profitable thanks to AL

8.4.3 Fetch.ai

Fetch.ai (Simpson et al. 2023) is a decentralized network that leverages Blockchain and
AT to connect digital and real goods. The project aims to create an open-source ecosystem
in which autonomous economic agents may interact with one another and the outside
world safely and successfully. The platform is built on a revolutionary consensus approach
known as “proof of useful work,” which rewards nodes for doing beneficial computations
that improve network functionality. Numerous use cases are supported by Fetch.ai such as
supply chains, smart cities, etc. Advanced machine learning and Al technologies are used
by Fetch.ai, to streamline user transactions and data sharing. The network is built to sup-
port a wide range of applications, including autonomous economic agents and distributed
autonomous groups. The ultimate goal of the project is to use Blockchain and Al together
to allow a more connected and intelligent future.

The Fetch.ai platform is divided into three layers: The Autonomous Economic Agent
(AEA layer), the Open Economic Framework (OEF layer), and the Open Economic Ledger
(OEL). The autonomous economic agents are found in the AEA layer. AEAs are computer
programs that can represent people or organizations and communicate with other AEAs
and digital and physical things in the real world. They can decentral negotiate contracts,
make judgments, and carry out activities. The AEA layer is created to be flexible and mod-
ular, enabling customization and specialization to satisfy the requirements of particular
use cases. The OEF layer provides the platform’s architecture for coordination and com-
munication. AEAs may find and connect with other agents and services on the network
thanks to this decentralized search engine. Additionally, the OEF offers AEAs a messag-
ing system for inter-AEA communication and a reputation system that helps ensure the
dependability and quality of services offered by agents. The OEL layer is the foundation of
Fetch.ai’s technical stack. This decentralized ledger maintains track of all AEA transac-
tions. The OEL ensures that the system is secure and impermeable and that all transactions
are transparent and irreversible. Furthermore, it enables the creation of a decentralized
marketplace where AEAs can trade value directly without intermediaries. Useful Proof
of Work (PoW), a novel consensus technique, combines conventional proof of work with
a framework of financial incentives to assure efficiency and security. Together, these three
layers form the architecture of Fetch.ai, enabling the creation of decentralized and autono-
mous systems that can coordinate and collaborate securely and efficiently.

By offering a decentralized and intelligent architecture that can facilitate autonomous
decision-making and effective resource allocation in IoT networks, Fetch.ai can play a vital
role in AloT applications. Managing, processing, and analyzing data effectively are some
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of the biggest issues facing IoT networks. By developing intelligent agents that can process
and analyze data from IoT devices and make autonomous decisions based on the informa-
tion they receive, Fetch.ai’s AEAs can assist in solving this challenge. These agents can
cooperate to enhance system performance and resource allocation. The lack of compatibil-
ity across various platforms and devices presents another difficulty for IoT networks. In the
technological stack of Fetch.ai, the OEF layer offers a platform for data sharing and con-
nectivity across various IoT systems and devices. This makes interoperability possible and
makes it possible to build a decentralized IoT ecosystem where devices may communicate
and work together to accomplish shared objectives. Another crucial component that might
be very helpful to AloT applications is Fetch.ai Smart Ledger. The integrity and transpar-
ency of AI applications are ensured by this high-performance Blockchain, which enables
the secure and effective exchange of money and data among Al agents. Furthermore, with
machine learning capabilities included in AI, AEAs may learn from their interactions and
experiences to enhance their performance over time. The agents’ ability to enhance their
performance and adjust to changing circumstances continually can result in a rise in the
accuracy and efficacy of Al applications.

8.4.4 Qasis Protocol

The Oasis Protocol (Yu, Shitang, et al. 2018) is a Layer 1 Blockchain platform for develop-
ing privacy-focused apps. It seeks to combine the benefits of Blockchain technology with
secure, private data processing and scalability. Oasis aims to provide a robust and user-
centric environment for conducting transactions, executing smart contracts, and utilizing
the potential of decentralization. It maintains control over sensitive data by combining
the benefits of Blockchain technology with privacy-preserving techniques such as secure
enclaves. The Oasis Protocol stands apart from other layer 1 Blockchains by combining pri-
vacy, scalability, and developer-friendly features singularly. By including secure enclaves,
it makes it possible to execute private smart contracts that safeguard sensitive data while
still allowing for verification. ParaTime, a hybrid consensus system, enables parallel run-
times with programmable rules, enhancing developer freedom. The protocol stands out in
part because it emphasizes privacy, offering a safe and secure environment. Oasis Protocol
is an appealing option for creating privacy-focused apps on the Blockchain because of
its emphasis on data protection, scalable speed, and extensive developer tools. Figure 8.3
shows the Oasis architecture with secure enclave.

One of the essential components of the Oasis Protocol’s architecture is the Trusted
Execution Environment (TEE) or the secure enclave. Secure enclaves offer a reliable execu-
tion environment for delicate data and calculations. These enclaves establish segregated
areas inside a processor, ensuring that private information stays encrypted and off-limits
to the public. One of the main advantages of secure enclaves is that they safeguard sensi-
tive data from unwanted access, ensuring data privacy. Additionally, safe enclaves provide
secure computing, enabling activities like data manipulation or cryptographic calculations
that protect user privacy. Verifiability is another feature of the Oasis Protocol that enables
third parties to check the precision of enclave operation without jeopardizing data privacy.
Smart contracts can use secure enclaves to offer privacy-preserving features, ensuring that
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FIGURE 8.3 Qasis architecture with secure enclave.

inputs, outputs, and interim outcomes are shielded from the network. While preserving
general privacy and security in the Oasis network, this privacy-focused method enables
delicate financial transactions, secure calculations, and other private processes.

A key component of the Oasis Protocol is secret smart contracts, which allow for privacy
and secrecy in Blockchain-based applications. These smart contracts in the Oasis Protocol
run in trusted execution environments for sensitive calculations, such as Intel SGX secure
enclaves. By hiding the contract’s inputs and outputs from the network, confidential smart
contracts offer privacy. To do this, cryptographic techniques are used to encrypt and secure
the data while allowing for the validity of the contract to be checked without revealing sen-
sitive information. The Oasis Protocol facilitates the secure processing of sensitive data and
private computations while upholding the network’s overall privacy and secrecy by execut-
ing smart contracts in secure enclaves. The Oasis Protocol is ideally suited for applications
that need secrecy, such as private lending, decentralized finance (DeFi) transactions, and
other use cases where data privacy is crucial.

For AI and IoT applications, the Oasis Protocol has certain clear advantages. Its confi-
dentiality-preserving features, such as the usage of secure enclaves, guarantee the secure
processing of sensitive data. The Oasis Protocol allows privacy by keeping inputs and
outputs concealed from the network by executing private smart contracts within these
enclaves. This guarantees that AIoT stakeholders may safely access data markets and
maintain control over their data. A distributed network can efficiently compute AI algo-
rithms because of the protocol’s scalability and modular architecture, which can handle
the massive amounts of data produced by IoT devices. The Oasis Protocol also encourages
transparency and trust through cryptographic verifiability, enabling participants to con-
firm the precision of private smart contract execution. As a result, trust is built up inside
the AI-IoT ecosystems, encouraging cooperation and accelerating the creation of safe mar-
ketplaces and rewards for data sharing and AI contributions. Overall, the Oasis Protocol
offers a solid framework for AI-IoT applications by integrating privacy, scalability, and
trust to support creative and safe deployments in this field.
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8.4.5 ORAlchain

ORAIchain (Pasdar et al. 2021), a Blockchain-based oracle network that serves as a criti-
cal connection between smart contracts and real-world data, enables decentralized apps
(dApps) to securely and reliably communicate with external data. Its primary job is to
provide exact and validated data inputs to smart contracts, allowing them to be executed
with trust. ORAIchain incorporates cutting-edge Al-based data validation algorithms to
verify the validity and accuracy of external data sources, ensuring data dependability and
tamper-resistant performance. The design of ORAIchain is committed to data privacy
and encryption, using strong privacy-preserving measures to protect sensitive data and
enabling authorized parties, such as smart contracts, to safely access specified informa-
tion. It is a flexible and useful addition to the Blockchain ecosystem that facilitates cross-
chain communication and data exchange thanks to its interoperability and scalability.
The expanding demands of decentralized applications across many industries may be
met thanks to ORAIchain’s capacity to handle large numbers of data requests effectively.
Overall, ORAIchain provides developers and companies looking for a trustworthy con-
nection between their smart contracts and real-world data with a verified and trusted data
source. Figure 8.4 shows the ORAIchain system architecture.

Users or smart contracts can submit requests by calling an Oracle script that is
accessible through the ORAI gateway or marketplace. The Oracle script includes test
cases, transaction costs, and data sources for Al for each request. A random validator
is selected to acquire data from AI providers and run test scenarios when a request is
made. To ensure the integrity of the data, requests are terminated if an AI provider
fails to test. The ORAIchain Blockchain records the outcomes of successful queries,
proving their execution and avoiding data manipulation. The API testing functional-
ity of ORAIchain is special since it is built on test cases. Testing is essential to regulate
the caliber of AI providers since ORAIchain focuses on AI APIs. To encourage Al
providers to increase the accuracy of their AI models, test providers might suggest
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FIGURE 8.4 ORAIchain system architecture.
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appropriate test cases. The ORAIchain community has the authority to rank vali-
dators’ performances in raising the caliber of AT APIs. Tokens will be reduced as a
punishment for improper behavior by validators, such as neglecting to run test cases
or validate AI providers. However, a large number of validators must be recruited,
and they must be encouraged to join and uphold the standard of their work in the
ORAIchain network through block rewards and transaction fees to ensure scalability
and high availability.

8.5 DISCUSSION

Blockchain technology, a distributed ledger, enables safe, open, and immutable record-
keeping. AloT has the potential to create vast amounts of data that may be exploited by
AT applications to give services to users. Blockchain technology can play an essential
role in AloT applications by enabling decentralized AI models and ensuring secure data
exchange. Blockchain’s safe and transparent way of tracking data ensures that data are
not exploited or altered. Blockchain can also help with monetization, allowing owners to
sell their data directly to interested parties. This chapter examines the characteristics of
Blockchain technology that make it especially applicable for applications related to the IoT,
emphasizing its function in maintaining data security and transparency. Furthermore, this
chapter explores the significant contribution that Blockchain technology makes to AloT,
highlighting crucial aspects such as Device Identity and Authentication, Data Exchange
and Monetization, Smart Contracts and Automation, and Federated Learning. To facili-
tate Al applications, several Blockchain projects are being developed and implemented.
The potential benefits of these Blockchain initiatives, namely Ocean Protocol, Fetch.ai,
SingularityNET, Oasis Protocol, and ORAIchain, for advancing the creation and use of
AloT applications are also discussed in this chapter. Ocean Protocol aims to create a data
economy where data can be shared and monetized in a privacy-preserving manner using
Blockchain technology. Fetch.ai, on the other hand, allows intelligent agents to perform
complex tasks by creating a decentralized AI network, whereas, SigularityNET allows the
sharing of AI models while maintaining data privacy and ownership. The Oasis Protocol
is a Layer 1 Blockchain platform for developing privacy-focused apps particularly suit-
able for AI applications. ORAIchain is the first layer 1 AI Oracle, facilitating connectivity
between Blockchains and real-world applications with Al and data-driven smart contracts.
The revolutionary effect of Blockchain on AIoT applications is highlighted in this chapter
by looking at these aspects, with a focus on the development of a decentralized, secure, and
trusted AloT ecosystem.

8.6 CONCLUSION

The fusion of AI and the IoT into the domain of AIoT has provided a potential frontier for
disruptive innovation across several sectors. Nonetheless, this rapid convergence of tech-
nologies faces several serious issues in terms of data security, openness, interoperability,
and privacy. In response to these challenges, Blockchain technology appears as a compel-
ling and practical alternative for fortifying the foundations and enhancing the capabilities
of AloT applications. The key features of Blockchain technology that make it particularly
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well-suited for integration inside AIoT applications have been carefully examined through-
out this chapter. This chapter emphasizes the critical function of Blockchain technology in
AloT applications, presenting a variety of use cases that maximize its potential and capa-
bilities in this area. We have also looked at several real-world Blockchain projects in this
chapter that demonstrate how AlIoT and Blockchain may work together to provide innova-
tive new solutions. These efforts show the real-world impacts of Blockchain on the devel-
opment of AloT. They range from empowering data owners to safely share and monetize
their data, to creating decentralized markets for AI services and models, to implementing
cutting-edge privacy measures for data. These projects also fill the gap between Blockchain
networks and real-world applications powered by smart contracts and Al
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9.1 INTRODUCTION

The pace at which data is being created in the digital world is amazing, and it’s just becom-
ing faster. Even though these “Big Data” have opened up innovative options to get a better
understanding of public health, they still contain far more promise for study and clinical use.
The increased number of Internet users producing an enormous volume of data is a direct
consequence of the technological revolution that has recently taken place as a result of the
growing usage of such gadgets. Specifically, distant sensors consistently create a large amount
of heterogeneous data that might be organized or unstructured. Big Data is distinguished by
three characteristics (a) the quantity and variety of the data; (b) the inability of the data to
be organized inside conventional relational databases; and (c) the speed with which the data
are created, recorded, and analyzed. Big Data has a lot of potential for commercial applica-
tions and is a fast-growing sector of the information technology industry. It has sparked a

substantial amount of interest in a variety of industries, including the production of medical
equipment, financial transactions, social networking, and satellite imagery (Ballin. 2016).

Researchers in the fields of decision-making, data sciences, commercial applications, and
government are paying a significant amount of attention to technological breakthroughs
and the availability of large volumes of data on the Internet. Researchers may make use of
a wide variety of opportunities afforded by the vast amounts of data collectively referred
to as “Big Data.” However, using Big Data requires a significant investment of time and
introduces great computing complexity (Che, Safran, and Peng. 2013).

AloT edge computing satisfies the essential requirements in terms of application intel-
ligence, real-time operations, and data and energy optimization. This is because of the
demand for IoT devices, which is expected to last for an estimated 10 years, between 2018
and 2027. The Internet of Things (IoT) is a network of physical devices, cars, buildings, and
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other items that are integrated with sensors, software, and connectivity, which enables them
to gather and share data. These objects may also communicate with one another across the
network (Silverio-Fernandez, Renukappa, and Suresh. 2018). Edge computing is a model
of distributed computing that moves processing and data storage closer to the devices and
sensors that create and utilize data in IoT systems. Edge computing is also known as “edge
analytics.” Fog computing is a computer paradigm that extends the advantages of edge com-
puting by adding a layer of intermediary nodes between the edge devices and the cloud,
allowing efficient data processing and administration (Iorga et al. 2018). Blockchain is a
distributed ledger technology that enables new business models and value propositions by
providing a safe and transparent method for storing and exchanging data in IoT devices.
Cybersecurity is the activity of securing IoT devices, networks, and data against unau-
thorized access, use, disclosure, interruption, modification, or destruction. Related terms
include information assurance, network security, and data protection (Di Pierro. 2017).

With the advent of new networking technologies such as Bluetooth, Wi-Fi, and Long-
Term Evolution (LTE), the IoT has expanded rapidly over the past twenty years. A wide
variety of products, from smart cameras, lights, bicycles and electricity meters, to wearables,
healthcare, smart grids, intelligent transportation (Qureshi and Abdullah. 2014), and smart
homes (Qureshi, Alhudhaif, et al. 2021), are just a few examples of IoT networks. There are
three levels of IoT networks including the “perception” layer, the “network” layer, and the
“application” layer (Chiang and Zhang. 2016). The sensors, actuators, and other devices that
make up the perception layer provide the foundation of the (IoT) architecture. Network
layers are the backbone of the I0T’s architecture, consisting of Local Area Networks (LANs)
cellular networks, the Internet, and devices like hubs, routers, and gateways enabled by vari-
ous communication technologies like Bluetooth, Wi-Fi, LTE, and fifth-generation mobile
networks (5G). The top IoT layer is the application layer, which relies on cloud computing
platforms as a means of individualized services to its end customers. In typical IoT imple-
mentations, sensors gather data, which is then sent to a network-based processing and anal-
ysis step in the cloud. The findings or instructions are sent to the end devices or actuators.

However, given the vast quantities of sensors deployed in different contexts, this central-
ized design presents substantial challenges. By 2025, there will be 50 billion IoT-connected
devices, creating 79.4 ZB of data (Abiodun et al. 2021). High latency is the consequence of the
transmission of this large volume of data, processing it in the cloud, and then delivering the
findings back to end devices. To remedy the situation, Cisco introduced the concept of “fog
computing,” which involves moving data storage, processing power, and networking resources
to the network’s periphery (e.g., to scattered routers and other fog nodes). For IoT applications,
fog computing provides low latency and high processing capability (Tordera et al. 2016). Edge
computing entails increasing computing capability deployment on control devices near actua-
tors and sensors (Zhang et al. 2019; Wang et al. 2019). It is worth noting that fog computing is
often seen as a subset of edge computing or that the terms are used interchangeably.

Recent years have seen a revival in deep learning-enhanced AL In recent years, Deep
Neural Networks (DNNs) have seen widespread use, including retrained models that
degenerate when examples are encountered in neither the label set nor the training set.
In the manufacturing sector, for instance, equipment might lose its initial settings or
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alter its operation mode over time. Because of this inability to adjust to variation, models
trained for the first mode suffer drops. There are many different types of Machine Learning
(ML); few-shot-learning, zero-shot-learning, metal learning, unattended, semi-supervised,
transfer, and domain adaptation are all related research topics in ML that address these
same kinds of problems. Progress in these areas has been facilitated by Deep Learning
(DL). This indicates that DL may be equally exploited to increase IoT system learning.
Reasoning and behavior are also critical for an IoT system to interact with its surround-
ings and people. A smart parking system can infer about the available places in the area.
The AI Chabot may then expose him to parking deals, auto maintenance services, and
local eateries. Recent developments in causal inference and discovery, graph-based reason-
ing, Reinforcement Learning (RL), and voice recognition and synthesis techniques (Yang
et al. 2020) may be useful in certain application situations. 5G networks and AI will pave
the way for ubiquitous connectivity (Khan et al. 2022). This will usher in the AloT age or
the age when Al meets IoT. Numerous AloT applications, which provide services and gen-
erate value, have been created thanks to substantial investment from both the academic
community and the business sector. Therefore, we conducted a literature review of this
developing field to show how Al technologies provide intelligence to inanimate objects and
improve software (Ashfaq et al. 2022).

9.2 EXISTING RESEARCH ON AloT NETWORKS

Research has often focused on a few aspects of the IoT networks, including but not lim-
ited to, computer systems, networks, programs, safety, security, and privacy (Un Nisa
et al. 2022). These authors provided a useful overview of the IoT paradigm by describ-
ing it from three perspectives: the “things” perspective, the “Internet” perspective, and
the “semantic” perspective, which correlate to devices networks, and data handling and
analysis, respectively. The authors examined security and privacy issues that still need to
be resolved. In addition, they examined the enabling technologies and IoT applications
in several fields. Authors Contreras-Castillo, Zeadally, and Guerrero Ibafez. 2017 pro-
vided an overview of IoT and highlighted current developments and obstacles. Authors
summarized the various common IoT architectures, such as Software Defined Networks
(SDN), Mobile First Design, and the IoT. They said that future IoT architecture will need
to scale well, be adaptive, and properly integrate and manage large numbers of connected
devices, both the traditional three-layer design (consisting of a “perception,” “network,”
and “application” layers) and the more recent service-oriented design as discussed in
Aslam, Michaelides, and Herodotou.

In Guan et al. 2017, various common IoT frameworks are discussed, such as the
Mobile First Design, the Cloud Things framework, and other frameworks based on SDN
networks. The authors argue that in the future, IoT designs need to be scalable, adap-
tive, interoperable, energy efficient, and secure to integrate and manage vast numbers
of linked devices. The three-tier design consists of a service-oriented architecture: a
perception layer, a network layer, and an application layer. Integration of cloud and
fog/edge computing (Chiang and Zhang. 2016) is gaining attention as a key component
of the IoT’s computing architecture. We are interested in cloud, fog, and Al-enhanced
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IoT, including edge computing designs for systems that can benefit from DL in the IoT.
Multiple networking methods are required to carry data at scale and connect many
devices to data centers. Edge analytics systems, cloud computing systems, and hyper-
converged systems, for massively parallel mining, enable real-time analyses of enormous
IoT data (Catarinucci et al. 2015). IoT also uses Wireless Sensor Networks (WSN) for
monitoring external or physical influences. 5G mobile networks, which are now under
development, may provide much more base station capacity and ultra-low latency. It is
expected that 5G will accelerate the development of IoT software in addition to boost-
ing the number of connected devices (Lamarre and May. 2019). Resource management
has become a hot topic as the amount of traffic and the number of connected devices in
IoT networks has exploded, with promising results from state-of-the-art deep learning
algorithms.) IoT networks enable the transmission and storage of massive amounts of
user data generated by pervasively connected devices. Faces, voices, and fingerprints are
all examples of biometric data included in these records. Because of the potential for
data leakage in the event of a cyberattack on an IoT system, data security, and privacy
have emerged as pressing issues in IoT deployments. To ensure the safety and privacy of
the I0T, researchers have recently analyzed the effectiveness of access control and trust
management (Qureshi, Iftikhar, et al. 2020).

9.3 AloT ARCHITECTURE

Computing-centric approaches like those discussed in Palomares et al. 2021, use a three-
tiered architecture. The approaches are simplified by referring to the three tiers of com-
puting as the cloud, the fog, and the edge. As discussed in Palomares et al. 2021, the edge
computing layer may serve similar duties like cloud computing. In addition, the edge layer
allows the management and operation of sensors and actuators. This layer’s ultimate goal
is to provide AIoT devices with enhanced perceptual and behavioral capabilities. Network
elements like hubs, routers, and gateways are all examples of fog nodes, which embody the
computational layer of fog networks. Similar to the application layer and the intelligent
integration block, the cloud computing layer supports several application services. Due to

their access to enormous amounts of information and extensive processing capabilities,
AloT systems greatly benefit from computers in the cloud and fog. Keep in mind that the
cloud plays a major role in an AIoT network. In addition, edge devices and fog nodes move
throughout the network.

1. Stack in the Cloud: Instead of investing in costly on-premises hardware for AloT
operations, businesses may leverage cloud computing to access computing resources
digitally via the Internet. This access may enable a wide variety of AloT applications
by providing dependable, scalable, and adaptable computing, storage, and network-
ing resources. Massive amounts of data from widely dispersed sensors and equip-
ment are often sent via the Internet to a distant cloud center. This is where they are
integrated, processed, and stored.

Figure 9.1 shows the three-tier computing architecture of AIoT networks.
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FIGURE 9.1 Diagram of three-tier computing architecture of AIoT.

1.1

The cloud makes it simple to set up a production environment for training and
deploying DNNs for processing enormous volumes of data. This is thanks to ML tools
and scalable computing capacity. Cloud computing’s elastic computing resources on
a pay-as-you-go basis are particularly well-suited to AloT services, which see wildly
varying volumes of user traffic. An additional benefit is that it is possible to utilize
information gathered from all devices in a network in IoT applications. This helps
to refine the representation and generalization skills of the deep models used in the
application’s training process.

Fog Computing Layer: Using fog computing, data may be stored, processed, and
sent at the network’s edge, right where the devices are. Fog nodes consist of a variety
of devices, Wi-Fi access points, routers, switches, and gateways that contribute to
a fog network. While comparable to cloud computing, fog computing’s proximity
to endpoints allows lower latency. Additionally, fog computing may provide service
continuity independent of the Internet. This is particularly useful for some internet-
dependent AloT applications, such as those used in the agricultural, mining, and
shipping industries. Since data may be stored locally on the LAN, fog computing also
protects user information confidentiality and security. Due to their limited storage
capacity and reliance on data from nearby devices, fog nodes are better suited to
DNN deployment than training.

1.2 Edge Computing Layer: While edge computing and fog computing are synonymous

in certain contexts (Zhang and Lu. 2021), alternatively, edge computing is used to
refer to a more general idea that includes fog (Shi et al. 2020). However, for clarity,
we will regard these two ideas as entirely separate throughout this chapter. We dif-
ferentiate between cloud computing at the network’s periphery (fog) and at device-
level (edge) processing. Edge computing refers to the technique of putting sensors
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and actuators physically near computation nodes. The capacity of edge computing to
turn data into compact, organized information locally, before transmission, is a sig-
nificant advantage over fog and cloud computing, particularly for AIoT applications
that make use of multimedia sensors. However, only lightweight DNNs can operate
on edge devices because of their low processing power. This has led to a rise in inter-
est in such areas of study as the creation of neural network architectures, the search
for optimal network configurations in a mobile environment, and network pruning,
compression, and quantification. To create an intelligent hybrid computing architec-
ture, it is usual practice to deploy several models onto cloud platforms, fog nodes, and
edge devices in an IoT system. It is anticipated that minimal latency may be achieved
while exploiting deep learning capacities for processing vast volumes of data by intel-
ligently oftloading some of the computing effort from edge devices to the fog nodes
and cloud. To identify vehicles in a live video feed, for instance, a lightweight model
may be used on edge devices. It may be used as a switch to send keyframes to the
cloud or fog nodes for processing.

9.3.1 Components and Programs

1. Hardware: The general-purpose Graphics Processing Unit (GPU) is a driving force in
the deep learning revolution, alongside DNNs and large data, because of the tremen-
dous computational power it transferred from its shading pipeline (e.g., for massive
vector operations). Using GPUs to execute parallelly several of the network’s opera-
tions, such as convolution, may significantly reduce the training and inference periods
of neural networks. Google has unveiled a neural network ML application-specific
integrated circuit. As a result of their efficiency and speed, Field-Programmable Gate
Arrays (FPGAs) have also found widespread use to accelerate DNNGs.

2. Software: Researchers and developers need streamlined processes for creating,
deploying, training, and using DNNs. For this reason, several open-source deep
learning frameworks have been created since its inception, ranging from those aimed
at novices like Caffel and MatConvNet2 to the more advanced and widely used
TensorFlow3 and PyTorch. Four convolutional neural networks may be implemented
with MatConvNet, a MATLAB toolkit. Caffe is fast, written in C++, and accessible
through Python and MATLAB, but it lacks distributed computing and mobile deploy-
ment. Caffe2 makes the necessary enhancements, which were ultimately included in
PyTorch. TensorFlow and PyTorch’s accessibility and popularity may be attributed
to their user-friendly features, such as dynamic computation graphs and automated
gradient calculation. By allowing hardware acceleration, quantization, and com-
pressed models they also help when installing models on mobile devices. Moving
models across frameworks is an important and helpful process. This is made possible
by the open standard for expressing ML models such as ONNXS5; TensorFlow and
PyTorch both support this format. NCNNO9 is a mobile device framework for infer-
ring using neural networks; competing deep learning frameworks include MXNet,
Theano, Paddle, and others.
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9.4 EVALUATION OF BIG DATA IN AloT

AT technology paves the way for IoT applications, with a specific emphasis on Deep
Learning (DL). This section explores the DL perception, and AIoT systems’ capabilities for
cognition, reasoning, and behavior.

9.4.1 Observing

Understanding the environment via different devices is essential for AIoT systems. This
understanding is only possible if objects are given the capacity to perceive their environ-
ments. Several interconnected themes emerge. This section focuses on image classification,
object identification and tracking, semantic segmentation, and text spotting. Image clas-
sification is the act of assigning a broad category to an image. DNNs have been shown to
outperform standard ML algorithms based on hand-crafted features on large-scale bench-
mark data sets like ImageNet, prompting a flurry of studies on DNN design including
more recent models, such as Alex Net (Rehman et al. 2019) and ResNet. Figure 9.2 shows a
conceptual map of AIoT perception-related issues.

To decrease network parameters and expand network depth, a stacked 33 convolutional
layer has been developed; an 11 convolutional layer has been implemented to decrease fea-
ture dimension; residual connections have been implemented to prevent thick connections;
and features have been created to recycle features from preceding layers and achieve gradi-
ent vanishing to increase network capacity. As the network depth and parameters increase,
the top 1 ImageNet dataset misclassification error decreases. The network structure is also
crucial. When compared to older networks like VGGNet, newer networks like ResNet and
DenseNet perform better. They require fewer model parameters and less computing com-
plexity. Artificial Neural Networks (ANNs) are preferred by AI applications that deploy
them to edge devices. Networks like Mobile Net have been developed recently that make
effective use of computing by using depth-wise convolutions, pointwise convolutions

Fingerprint Mapping IrisScan  Palm Veins Recognition

©6000

I
I
)
I
I
]
I
I
]
]
A B R 0 b e e e e e
I
I
]
I
|
I
| Object
I
I
I
I
I
I
I
I
|
[}
I
I
I
|
]
I
|
I

Faet F
Image v/ A 1 Zv.

Classification , /
/ /..
P

| |

! i

E Action ;

I 'Recognition * o i

Tracking S § ] E !
- = l i

| |

Do \ |

Lo Speech/ \ v !

Text L Voice {.“l."" :
Spotting ! | Recognition™~~_J ‘ i
[ |

Biometric
Recognition

FIGURE 9.2 A conceptual map of AIoT perception-related issues.



Big Data Analytics for AloT Network m 147

(Jin et al. 2020), or binary operations (Rehman et al. 2019). Many AloT applications may
take advantage of image recognition. These include smart education tools and toys that
employ cameras to aid and educate youngsters in exploring the world. Additionally, cer-
tain well-known smartphone apps that identify things like flowers, birds, foods, and calo-
ries benefit from these developments as well.

+ Object Detection: Recognizing an item’s category and position, also known as
generic object detection, is a necessary crucial first step in the direction of many later
household tasks, including expression recognition, person identification, posture
estimation, and behavior analysis. DNNs have revolutionized photo-identification
techniques. There are two types of cutting-edge techniques: those with two stages,
and those with just one. While the former follows the standard “proposal detec-
tion” paradigm, indirectly evaluating all potential item candidates before deliver-
ing detection results, the latter does so directly. In other words, the former assesses
detection through an intermediary evaluation of all potential candidates, while the
latter directly provides detection results (Riaz, Shah, Rehman, and Gilani. 2019). An
improved speed-accuracy trade-oft has recently been suggested for onboard detection
in AloT applications via one-stage anchor-free detectors (Riaz, Gilani, et al. 2020)
which describes item position substituting points or areas for anchors. Onboard
detection in AIoT applications refers to the capability of performing detection and
inference tasks directly on the edge devices or sensors without the need for external
processing or cloud-based services. An extensive study into the identification of par-
ticular types of objects, like people, cars, road traffic signs, and certificate plates, is
helpful for AIoT road traffic and public security monitoring, and self-directed driv-
ing. Many AloT systems with optical sensors depend on object detection for video
data structure. To achieve retrieval, verification, statistics, and analysis with minimal
expenses related to transmission, storage, and computing.

+ Object-Tracking: Traditional approaches to object-tracking fall into two categories:
very original and selective. The former looks for a place most like the target, whereas
the latter uses both the target and its surroundings to train a discriminative classifier
online (Floridi et al. 2019). Among the DL techniques introduced later to enhance
traditional techniques are end-to-end representation learning, multiresolution deep
features, and Siamese networks. For AloT applications, object trackers, which gen-
erally function substantially quicker than object detectors, might be used on edge
devices like video surveillance and autonomous driving, where creating trajectories
and predicting motion is necessary.

« Semantic Segmentation: Predicting an image’s category label at the pixel level is
known as “semantic segmentation” due to its ability to cascade convolution blocks
while keeping spatial correlation. The encoder-decoder architecture of Convolutional
Neural Network (CNN) has emerged as the standard method for semantic segmenta-
tion. To boost representational capacity and prediction accuracy, several deep models
have been suggested: first, embedded in context, then increased resolution, and lastly,
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refined boundaries. Modules like the global context pooling component of Parse Net
and the arousal-based spatial pyramid pooling are methods that successfully use
context information to create more accurate feature representations are provided,
such as the Deep Lab models and the pyramid pooling section of PSPNet. Increasing
feature map resolution may improve prediction accuracy, especially for small things.

« Text Spotting: Text detection and identification are both components of the larger
problem of text spotting. Although similar to generic object detection, text detection
has its unique challenges. Text, unlike generic objects, may vary in length and form
depending on the length and placement of the characters. Identical text can seem
quite different depending on the font, style, and context in which it is shown.

 Biometric Identifiers: The study of biometric identifiers such as the human face,
fingerprint, and iris has been ongoing for quite some time. We begin with a brief
history of facial recognition technology. The four main phases of detection using a
facial recognition system are alignment, representation, classification and verifica-
tion. There is hope for the subfield of object detection known as face detection thanks
to DL’s recent triumph in general object recognition. The enormous gap between
positive and negative recommendations, the incongruity between profile and front
view, occlusion, and motion blur all call for more research. The Viola-Jones method
is a well-known example of a classical algorithm,; it forms the basis for modern facial
recognition technology. Numerous DL methods model themselves after cascade clas-
sifiers (Jin et al. 2020).

o Person Re-Identification: Recognizing an individual from many disparate cam-
era perspectives is called “person reidentification,” a subfield of “image retrieval.”
Person reidentification is more difficult than face recognition in a controlled situa-
tion because of factors such as perspective, resolution, clothes, and background con-
text which are out of one’s control. Methods proposed to get around these problems
include employing human posture and a parsing mask as guidance, deep metric
learning with varying losses, integrating local features and context, and multitask
learning with additional attribute annotations (Li et al. 2011). Generative Adversarial
Networks (GANs) help bridge data that have recently been employed to produce
style-transferred pictures. When existing biometric recognition methods cannot be
used, such as in an uncontrolled and noncontact setting, there is a lot of potential for
human reidentification to be used in IoT applications like smart security. Although
more work is required to develop usable person reidentification systems with a human
overseer, Al may accomplish remarkable feats with little human input. Initial pro-
posal rating and filtering may be performed using the person reidentification model,
for instance, before being passed on to human experts for ultimate determination.

+ Recognizing Human Gestures and Actions from Estimated Pose: Estimating a
person’s posture from a single photograph is known as human key-point detection or
pose estimate. Top-down and bottom-up approaches estimate human posture tech-
niques. Although the latter immediately recognizes all key points from the picture
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and connects them with matching person instances, the former comprises two steps:
person finding and key point finding. Top-down approaches are often slower than
bottom-up approaches (Bonomi. 2011), even though they continue to top the score-
board example, MS COCO10. The following points sum up the state of the art in this
field today.

Crowd Counting: Indoor and outdoor population counts are essential for avoid-
ing congestion and accidents in video surveillance scenarios. WI-FI, Bluetooth, and
camera-based solutions have been presented for real-world AloT applications with
crowd-counting capability (Riaz, Shah, Rehman. 2020, Gilani, et al. 2019). These
techniques may roughly gauge how linked a mobile device is to a Wi-Fi hotspot or
Bluetooth beacon. Although it is possible to estimate the size of a crowd by count-
ing the number of visible faces or heads, this approach is limited by poor resolu-
tion and blurred individual instances in crowd images. Moreover, identifying a large
number of individuals simultaneously is computationally inefficient. Since Gaussian
density maps are used to construct the truth nodes, most CNN-based algorithms do
a straight regression on the population density map.

Probable Depth/Location/SLAM: Camera-based distance estimation has been studied
for along time (Macaulay, Buckalew, and Chung. 2015; Bonomi. 2015). Monocular cam-
eras, stereo cameras, and Multiview camera systems are only some of the possible AlIoT
setups in the real world. In recent times, there has been a lot of focus on camera location
estimation and depth estimation from monocular video when compared to methods
that rely on manual matching and optimization. Unsupervised or self-supervised DL
has several advantages in this field’s current research. The standard optimization target
includes matching error and photometric error. They build the self-supervisory sig-
nals using the re-projection Multiview’s well-defined geometry which allows for precise
measurements of light loss as a function of distance and camera orientation. Despite
CNN’s impressive representational prowess, it still faces obstacles including occlusions,
moving objects, and the scale problem (per-frame ambiguity and temporal inconsis-
tency). Both Visual Odometer (VO) and Visual-Inertial Odometer (VIO) (Chiang and
Zhang. 2016) seek to estimate consecutive camera postures of a person or thing utilizing
information from a camera and IMU sensor for camera posture estimation. Back-end
Simultaneous Localization and Mapping (SLAM) systems use nonlinear optimization
to estimate posture globally and drift-free. Of the pose graph, Front-end SLAM systems
always use VO and VIO. In old-style methods like Oriented FAST and Rotated BRIEF
Simultaneous Localization and Mapping (ORB-SLAM) (Lamarre and May. 2019), the
front and back ends are treated as separate entities. A novel, adaptable design, a neural
network optimizer, has just been developed for worldwide pose graph optimization. It
provides a complete neural network implementation of SLAM by combining it with a
local posture estimation model.

Image Enhancement: To improve a single attribute of a picture, whether its bright-
ness, contrast, or sharpness, is a job known as image enhancement. Images were taken
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with poor vision in dim light and blurred features because of inadequate incident
light or underexposure. Based on the Retinex hypothesis a picture may be broken
down into a reflectance map and an illumination map. After that, the illumination
map may be improved to restore proper lighting to the initial dark picture. However,
extracting the reflectance and illumination from a single picture is a classic exam-
ple of an ill-posed task. Various low-light enhancement strategies based on either
previous knowledge or learning have been suggested to solve this problem in recent
research. To refine the initial estimate, LIME utilizes a structural prior for the illumi-
nation map, while (another method) employs a piecewise smoothness constraint. To
estimate reflectance, light, and noise simultaneously, several strong Retinex models
have been constructed (Tordera et al. 2016). This is necessary since low-light pictures
often include noises that would be enhanced after using AI methods. The attenua-
tion and scattering effects of the haze result in dimly lit images. It is also a difficult
problem to recover a clear picture from a single foggy input, although this issue may
be tackled using either prior-based or learning-based approaches. Authors (Bonomi.
2011) introduced the first deep CNN model for photo defogging, which uses the supe-
rior representation capacity of CNNs to beat conventional prior-based approaches to
assess the transparency and realism techniques. Some methods, statistical priors, and
DL have been used to offer options with comparable functionality, including Optimal
Reflectance Prediction, Glow Separation, and Network Delay (ND-Net).

o Correction and Stitching of Images: Able to capture a wider area of the scene than
narrow field-of-view cameras, wide-angle cameras like fisheye cameras have found
widespread usage in a variety of AIoT applications, including surveillance cameras
and self-driving cars. The acquired pictures are flawed, however, since they fail to
conform to the expected perspective transformation. Correcting the problem upfront
will make subsequent processes easier. Camera calibration and distortion model
techniques are used in rectifying the problem. The former adjusts for perspective
distortion through camera calibration for both internal and external factors. The
formulation optimization constraints and loss functions in learning-based systems
leverage geometric signals like lines and vanishing spots. If conditions are right, fish-
eye pictures may form panoramas.

« Speech Recognition: Automatic Speech Recognition (ASR), or voice recognition, a
part of computational linguistics, attempts to automatically understand and translate
spoken language into text. DNNs have transformed complete ASR analysis outside of
a specialist’s area. Conventional ASR models use the process of feature engineering,
Hidden Markov Model (HMM) design, or an explicit reliance hypothesis based on
the cepstral value and the Hidden Markov System (HMS). To represent long-range
voice sequence relationships and decode text (Yang et al. 2020), Recurrent Neural
Networks (RNNs) are often utilized. However, RNN analyzes data sequentially,
rendering it inappropriate for parallel processing; additional work is required with
preferment training sequences so that the classification loss may be assessed inde-
pendently at each point in the sequence. The Connectionist Temporal Classification
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(CTCQ) is proposed as a solution for the first issue since it can optimize the likelihood
of the correct label sequence in an adaptable fashion. The other issue is solved by
the transformer architecture’s usage of scaled dot-product attention and multicolored
attention.

Speaker Recognition: In the same way that facial recognition attempts to identify
a person based on his or her appearance, speaker recognition does the same thing
by analyzing vocal characteristics. There are four main parts to a speech recogni-
tion system: voice input and output, the matching and classifying of patterns, the
representation of features, and the selection of features. Previously, a framework for
probabilistic linear discriminant analysis was based on an I-vector representation.
Ani-vector is a technique for extracting low-dimensional speaker embeddings from
adequate data. To outperform I-vector baselines, numerous comprehensive deep
speaker identification models have been developed. Advances in deep metric learn-
ing, such as using both face recognition and voice identification, benefit from the
use of large-scale data sets and the use of the loss functions of contrastive loss and
triplet loss to train discriminative speaker embeddings. Speaker recognition has sev-
eral potential applications within the realm of AI and the IoT, including automatic
transcription systems for big meetings, customized recommendation systems driven
by the use of audio forensics, and advanced speech recognition software. The devel-
opment of voice recognition and facial recognition may be combined for use in door
locks.

Machine Translation: Automatic text translation from one language to another is
another branch of computational linguistics called Machine Translation (MT). In
recent years, deep learning-based neural MT (NMT) has made significant strides,
outperforming more conventional statistical MT techniques and example-based
MT approaches by using the former’s potent representation capability and mas-
sive amounts of training data. The encoder-decoder architecture (Bonomi. 2011)
is widely used in NMT. Later, at each stage of RNN decoding, an attention mech-
anism is employed to focus on either every single word in the source (known as
the world is paying attention (or “global attention”)), or on a small group of words
(known as “local attention”). When it comes to joint alignment and translation,
attention may be a useful tool for learning target-relevant context components,
particularly for longer sentences. Unsupervised representation learning, using
methods like BERT to train embeddings that are both context-aware and infor-
mative, has shown encouraging performance on several downstream language
tasks. Unsupervised NMT, which can be trained with just monolingual corpora,
has also been the subject of a recent study. NMT has demonstrated success uti-
lizing BERT as contextual embedding by borrowing informative context from
the retrained model. Many AloT applications, including language instruction,
autonomous integration of MT with voice recognition, and speech synthesis have
the potential to revolutionize translation, transcription, and multilingual cus-
tomer assistance.
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o Multimedia and Multimodal Analysis: Multimedia content (containing text,
audio, image, and video) is increasingly being created on a broad range of internet
platforms, and keeping up with it is an expanding field of study. New studies on the
topic of cross-media retrieval and matching use DL, particularly adversarial learn-
ing, to semantically align the two domains. However, learning representations are
hampered by data that is unique to a certain modality. To solve this problem,
researchers have suggested disentangled representation learning, which attempts
to extract modality-independent features from shared feature embeddings across
modalities. Cross-modal matching includes the generative tasks of both image/
video captioning and text-to-image generation seeking to automate the process
of creating a textual description of an image or video based on a supplied tex-
tual description. Additional data modalities, such as depth pictures, LiDAR point
clouds, and thermal infrared images, may further help in scene interpretation
by providing supplementary information to the components already mentioned.
This diversified set of modalities enhances the richness of the data representa-
tion, enabling a more comprehensive and accurate understanding of the scene
through the incorporation of depth, spatial details from LiDAR, and thermal
information, thereby contributing to a more robust and context-aware interpre-
tation. Using RGB pictures, several practical applications have begun to include
cross-modal perception, such as scene parsing for autonomous driving object
identification, tracking in low-light circumstances, and action recognition. There
are three approaches to combining multimodal data: input-level fusion, feature-
level synthesis, and output-level synthesis. The most typical approach is to com-
bine information from several sources at the feature level, which may be further
subdivided into early fusion, late fusion, and multi-layer fusion. This approach
offers a multi-branch group fusion module to fuse features from RGB and thermal
infrared images, taking into account the fact that semantic information and visual
details vary at different levels. This ensures a comprehensive integration of both
modalities, allowing for a more nuanced representation that captures the diverse
characteristics present in RGB and thermal infrared data. Multimedia production
and cross-modal analysis are useful in certain AloT applications, such as speech-
described TV show retrieval and recommendation, a teaching helper in the class-
room, a Chabot’s insight into the world of e-commerce via automated (custom)
item description production, response to multimedia content, night-time object
detection and tracking for smart security, and action recognition for rehabilita-
tion monitoring and assessment. Multimedia coding is another area of study that
is related to AIoT and has benefited from DL.

o Network Compression and Neural Architecture Search (NAS): To make DNNs
more successful for AIoT applications where computing resources are limited,
network compression is a practical option. Four main methods are used includ-
ing pruning and quantizing networks, low-rank factorization, and distilling
information. To prune a network, one must first train a big network, apply a
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pruning criterion, and then retrain the network in terms of pruning criterion
Depending on the size of weights or responses shown, weight pruning, neuron
pruning, and filter pruning are all examples of finer-grained forms of network
pruning that adhere to the L1/L2 norm and channel pruning. Network quantiza-
tion may drastically decrease memory utilization and float point operations while
sacrificing just a small amount of accuracy by lowering the number of bits needed
for each weight in the original network’s representation. The network as a whole
will typically follow a uniform precision quantization scheme, where each layer
uses the same bit width. To make use of NAS’s capabilities, a mixed-precision
model quantization approach was recently presented (Macaulay, Buckalew, and
Chung. 2015) in which each layer/channel uses a unique bit width. The goal of
NAS is to eliminate the need for human network design by doing an automated
search of the architecture within a finite area (Bonomi. 2011). There are three
main types of NAS approaches: evolutionary, Reinforcement Learning (RL), and
gradient-based. A population of neural network designs must be trained before
evolutionary approaches may begin to develop them via recombination and muta-
tion. In RL-based techniques, the architecture generation model (for instance,
the RNN controller) is updated using RL algorithms, and the reward is the vali-
dation accuracy of the sampled network design. Both strategies are motivated by
the brain architecture’s reward or fitness system. When it comes to representing
architecture, gradient-based approaches instead use continuous relaxation. Since
gradient descent can be performed in a continuous space, this allows for much
quicker optimization of neural architecture.

9.4.2 Learning

Since the actual world is always changing, AIoT systems that rely on a static model are
likely to underperform. Therefore, giving objects the capacity to learn is crucial for AloT
so that it can adapt to new circumstances. Deep Unsupervised and Semi-Supervised
Learning (USL) uses DNNs, such as deep autoencoders, deep belief networks, and GAN,
to model probability distributions. Different GAN models have been presented recently,
each capable of producing high-resolution, photorealistic pictures from a vector distribu-
tion. To represent the probability distribution of data, DNNG, like deep autoencoders, deep
belief networks, and GAN, are used in deep USL. Different GAN models have been pre-
sented recently, each capable of producing high-resolution, photorealistic pictures from a
vector distribution. As a result, the models should have picked up an abstract comprehen-
sion of the training data’s semantics. Figure 9.3 shows an outline of AloT learning-related
concepts.

An encoder is used to train an input-to-latent space inverse mapping (Floridi et al. 2019);
the most recent Big Bidirectional Generative Adversarial Network (BigBiGAN) model may
acquire a discriminative visual representation with excellent performance transfer to down-
stream tasks. Completing predetermined pretext activities as a means of learning discrimi-
native visual representation is another area of ongoing research (Chiang and Zhang. 2016).
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FIGURE 9.3 An outline of AIoT’s learning-related concepts.

To fix target Task Learning (TL) with insufficient training data, TL applies what has
been learned in the context of a similar source task. Importantly, unlike SSL, which
requires that the source data distributions and the destination domains be similar,
TL does not impose this constraint. For quicker convergence and greater generaliza-
tion, it is common practice to fine-tune models that are retrained using ImageNet and
then applied to new problems. This is particularly true for semantic segmentation and
object recognition.

Significant empirical findings, such as which visual activities generalize easily to
various goals, and reusing monitoring, are straightforward across comparable activi-
ties to minimize labeled data while maintaining performance. Study of Data Analysis
(DA), which aims to transfer training of a model from one or more source domains
to a target domain where it excels at the same task, is ongoing and closely connected
to TL. Learning with Few or No Attempts is a kind of meta-learning (or “learning
how to learn”). Few or No Attempts Learning (FSL) seeks to train itself using mini-
mal annotated examples. Due to the limited size of the training set used for FSL, it
is possible to make use of previously acquired information to handle the problematic
empirical risk minimizer problem. Training data may be improved with the use of pre-
vious information in several ways. For instance, samples from the training set can be
transformed using prior knowledge, or an additional weakly labeled/unlabeled data set
can be employed. In addition, FSL is used to modify the search method in hypothesis
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space by imposing constraints on the range of possible hypotheses. Rare occurrences,
such as a vehicle accident, cyber-attack, or machine malfunction, must be detected by
Al models in practical AIoT applications. However, it is often challenging to gather and
annotate such extensive case data. So, in these cases, FSL may be used to train appropri-
ate models.

» Major Learning Paradigms: RL (Reinforcement Learning) uses an agent to interact
with its environment to maximize cumulative reward. Deep Reinforcement Learning
(DRL) has led to rapid advances. DNNs can acquire compressed and discriminative
feature representations from high-dimensional image and video data, improving
RL. A vast variety of AloT applications employ DRL’s capacity to offer inanimate
things the ability to interact with and adapt to their surroundings Such applica-
tions include autonomous driving in smart transportation (Tordera et al. 2016),
3-D landmark identification of CT scans, robot control in smart healthcare, course
recommendation in smart education, Real-Time Scheduling (RTS) for smart facto-
ries, load scheduling in smart grids, and plant monitoring. It has been shown that
Federated Learning’s (FL) privacy-friendly architecture can support DRL-based
learning (Tordera et al. 2016).

 Federated Learning: The original motivation for FL was to solve the learning chal-
lenge of confidentially brought about with sharing data across numerous devices.
When many data owners work together to train a model, that model should be as
effective as one trained with all of the data at once. In most implementations of FL, a
server (or collaborator) acts as the hub for a network of dispersed client devices. Each
client generates its gradients from its data, which are then transmitted to the server
to be aggregated (or concatenated) before being delivered back to clients to be used in
updating their models.

9.4.3 Reasoning

Internet data, medical records, financial activities, etc., all include a wealth of information
that may be utilized to infer patient cohorts or reason the answer to a query. As a species,
we have the capacity for causal thinking, which includes processes like causal inference and
discovery. For AIoT to make informed, auditable judgment calls, it must be endowed with
this level of reasoning capability. We provide a comprehensive discussion of Knowledge
Graph (KG) reasoning and causal reasoning here.

+ Knowledge Graph and Reasoning: KGs are a structured method of representing
knowledge in which nodes represent things and edges reflect relations (also known as
triples) as a representation of information (Entity, Relationship, and Ending Entity).
Knowledge reasoning has been employed in the development and implementation of
several prominent KGs, including Word Net, Freebase, YAGO, and NELL. Deducing
new information from old is called “knowledge reasoning,” and it includes tasks like
fixing errors, filling in blanks, finding answers to questions, and drawing conclusions.
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Ontology languages, first-order predicate logic, and probability and route reason-
ing are some of the rule-based systems traditionally used in knowledge reasoning.
KG embedding-based techniques have gained popularity in recent years (Palomares
et al. 2021). These methods attempt to map a KG onto a continuous vector space,
allowing for reasoning to be performed utilizing translational distance models and
semantic matching models.

« Causal Reasoning: Causality is the relationship between an effect and its underly-
ing cause, in which the cause partially accounts for the effect and the effect par-
tially relies on the cause. To arrive at an estimate of causal impact, causal inference
is a part of causal reasoning. In contrast, causal discovery is a part of causal reason-
ing that focuses on identifying causal relationships. Although expensive and time-
consuming, randomized controlled trials are a standard means of arguing causality
by comparing the results of a treatment group with those of a control group. There
has been a lot of interest as of late (Riaz, Gilani, et al. 2019) in the concept of learning
causality from observational data. Both the structural causal model and the prospec-
tive outcome framework are well-known causal models that may be used to learn
about causality (a.k.a. Rubin Causal Model). Several strategies for causal inference
using the POKER framework have been presented. These strategies include represen-
tation learning, multi-task learning, and mental earning.

9.4.4 Behaving

Whether an AloT system is passively monitoring and reacting to changes in its surround-
ings, actively searching for relevant information, or somewhere in between, the ability to
behave well is crucial. So, here we provide a quick overview of two areas associated with
behavior in AloT: control and interaction. Whether an AloT system is passively monitoring
and reacting to changes in its surroundings, actively searching for relevant information, or
somewhere in between, the ability to behave well is crucial. Therefore, in this overview, we
delve into two key areas associated with behavior in AIoT: control and interaction.

9.5 BIG DATA ANALYTICS FOR AloT APPLICATIONS

There is significant promise in the development of AI to provide perceptual, learning,
reasoning, and behavioral capabilities to the linked devices in AIoT networks. The ensu-
ing AloT systems have far-reaching effects on many facets of the economy and the places

where we live, including transportation, healthcare, education, industry, energy, agricul-
ture, and public safety. The Big Data sources encompass various networks that span dif-
ferent facets of the economy and the places we live. The purpose of intelligent safety is to
safeguard offline and online environments via the use of different forms of AI/OT technol-
ogy. Human-centric perception is one of the examples to identify people and evaluate their
actions to deter criminal behavior. Cloud/fog computing and edge computing have made
possible the deployment of facial recognition systems in public spaces like airports, train
stations, and building entrances. Data security and privacy preservation are key concerns
of these networks despite their usefulness. Person reidentification seeks to identify people
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and follow their trajectories in various cameras by using spatial and temporal human body
traits (such as form and gait), in addition to biometric data identification based on facial
features, fingerprints, and eyes.

AloT-enabled smart transportation encompasses traffic components (such as smart
Internet of Vehicle (IoV), transportation networks, and business uses. (e.g., smart, con-
nected logistics). Self-driving cars are one common use of AT’s ability to combine per-
ception, learning, reasoning, and behavior. An autonomous vehicle’s perception of its
surroundings includes things like road and traffic sign detection, pedestrian and vehicle
trajectory prediction, and traffic sign interpretation. In addition, SLAM should quantify
the stance and placement of landmarks (such as traffic signs). This data informs the auton-
omous vehicle’s driving policy and interactions with other vehicles on the road. Recently,
deep RL has been utilized to directly take in visual information (such as front-facing pic-
tures) to inform a driver’s strategy. However, it is too expensive to put the training into
practice in actual conditions. Monitoring, examination, surgery, and rehabilitation are just
a few of the many areas that may benefit from AIoT systems in smart healthcare. Human
activity recognition may be monitored using either cameras or wearable devices equipped
with motion sensors. Semantic segmentation and 3-D landmark recognition in CT scans
are only two examples of the medical image processing challenges to which deep learning
has been applied to avoid the high computational cost and privacy concerns of utilizing
public clouds. Hospitals generally deploy these models on their private cloud. Recent work
on 2D orthotropic gauze has employed deep RL to control multilateral cutting. It has also
been suggested that AIoT systems may be used to monitor and evaluate various forms of
rehabilitation including, for example, stroke therapy and ankle rehabilitation. Patients in
remote places may benefit from therapists’ ability to evaluate the progress of their reha-
bilitation using the linked 3-dimensional augmented reality/virtual reality (3-D AR/VR)
equipment. These days, it’s possible to get quick answers to health questions and even get a
second opinion from a robot doctor who works from home.

Children and students may benefit from Al technologies enabled by AloT items by
identifying new species, learning local or foreign languages, choosing customized learn-
ing materials, and learning through interactions with visually impaired individuals.
This AloT system allows instructors to command a Raspberry Pi to take pictures of the
blackboard/whiteboard with a single, static hand gesture, then convert those pictures
into an editable format that can be stored in a student’s desktop. Applications are backed
up to a private cloud where they may be accessed for additional modification or group
work. Using voice speech-to-text production, recognition of languages, and translations,
presents a solution for portable devices to do multilingual translation from written text
to spoken word. This also has offline functionality and provides helpful grammatical
information for other language students. Thanks to developments in AI technology like
deep learning, numerous new mobile translation solutions that can translate dozens of
languages have been introduced in time for the 2020 Consumer Electronics Show. Open
online courses for many people at once, like Coursera, have emerged as a popular alter-
native to traditional classroom instruction. Students access the content via the cloud
using their own devices.
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Industry 4.0’s smart factories may greatly benefit from digital twins, which are digital
copies of physical systems that can be used for monitoring the production process, iden-
tifying problems, and avoiding downtime. Connected sensors and actuators may gather
real-time data from production lines and communicate it to the digital twin running in
the cloud, making AIoT a crucial component in implementing digital twins. In addition,
AT technologies allow for sophisticated data analysis and aid in making sound judgments.
Smart grid AloT applications include cyber-threat detection, controlling and distribut-
ing workloads, and fault diagnostics. To classify and estimate the damage to electricity
distribution poles, UAVs (unmanned aerial vehicles) are deployed and connected to the
command center through the cellular network. Using images captured by UAVs and stored
in the cloud, a CNN model can estimate the extent of collapse, damage, and burns. On
top of that, certain so-called “industrial stethoscopes” are made to locate the origin of
abnormal noises in visual environments using a combination of cameras and other sen-
sors. Microphones, with the algorithm able to perform near-real-time monitoring on edge
devices, enable efficient data processing and analysis directly at the source. Recently, an
attention mechanism-equipped two-stream network for direct image-based sound source
localization was suggested. Fault diagnosis has also been aided by AI technologies. For
power transmission line fault detection using power and current information, for instance,
a convolutional sparse auto encoder-based USL technique has been presented. Its low
latency of 7 MS makes it suitable for use in practical settings. In addition, techniques for
defect detection and effect causal analysis in the power grid are investigated, including
knowledge representation and causal relationship identification. TL and deep RL algo-
rithms are presented for load monitoring and charging scheduling of electric vehicles

Precision agriculture, which uses sensors, autonomous agricultural tools, and geo-
graphic information systems to monitor, measure, and react to crop variability, has gained
traction in recent years as an example of the kind of “smart agriculture” made possible by
the AloT. Precision agriculture places a premium on issues like crop counting and pro-
duction estimates. Images of crops and fruits taken with UVAs are sent to the cloud for
tally purposes (Shi et al. 2020). Because fruits are tallied twice in neighboring frames, the
entire yield cannot be calculated by adding together the counting results over many picture
sequences. A detection tracking counting based approach is presented as a solution since
it can filter out anomalies and avoid counting the same fruit again. By taking pictures of
agricultural fields at regular intervals and aligning them in time, UAVs may likewise be
utilized for continuous crop monitoring. The above-mentioned activities, which have been
explored in the agricultural setting, rely heavily on UAVS’ capabilities for self-localization
and navigation.

“Smart” towns, houses, structures, and the smart industries just stated are connected to
AloT and may be fueled by the same kinds of Al technology. Here are a few instances that
illustrate the point. One example of smart security is continuously identifying the speaker
by programming smart home voice assistants to combine vibration cues from the speaker’s
body with the speech signals. Similar to this is how hand gesture recognition is utilized
in smart home HMI systems (e.g., control television) and how circulation sign language
recognition is used in smart transportation and in education.
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9.6 OPPORTUNITIES AND CHALLENGES

Problems arise in AloT systems while processing, sending, and storing multimodal
heterogeneous data because the large numbers of sensors of varying types and char-
acteristics provide a flood of data with unpredictable structure, volume, and timing.
A more efficient encoding approach may reduce network congestion and increase data
transmission rates. The video coding technique for machines is one such example of a
technique for video encoding with the potential to streamline future computer vision
projects. If compact and ordered representations of the data could be recovered, the
transmission and storage requirements of the AI perception technologies would be sig-
nificantly optimized. AIoT systems need deep CNN models placed on edge devices
to manage data streams in real-time with low latency. However, edge devices can’t do
much due to their limited resources. Thus, developing or autonomously searching for
lightweight, computationally efficient, and hardware-friendly DNN architectures is
useful yet challenging. Quantization, compression, and pruning in networks are also
crucial concepts to master.

AloT architecture often makes use of cloud servers, fog nodes, and edge devices.
Computational scheduling is a problem in real-world AIoT systems since certain intensive
computing may need to be oftfloaded from edge devices to the fog node or cloud center.
Data type and volume, network bandwidth, processing latency, performance accuracy,
energy consumption, and data security and privacy are all important considerations when
scheduling computation among multiple resources. Uneven data flow and fluctuating user
needs might be accommodated by a flexible scheduling approach. There is a tremendous
opportunity for DL to be applied to the large amounts of sensor data that permeate AloT
systems. Thanks to massive amounts of labeled data, deep-supervised learning algorithms
have seen great success in several fields of perception. However, the vast majority of AloT
data is unlabeled, and it would be prohibitively costly and time-consuming to name them
all. Future initiatives are likely to significantly use AloT data, particularly multimodal
data, even though self-supervised learning in particular has shown rapid advancement in
USL (Palomares et al. 2021). Because there isn’t a ton of labeled data to work with, TL, SSL,
and FSL may also help address issues brought on by the emergence of novel classes, the dis-
covery of unusual edge cases, and the gradual change in a device’s state that characterizes

AloT. Some other challenges are as follows:

« Data Monopoly: In the age of Al, data are a precious commodity for developing
innovative goods and enhancing existing ones. Companies acquire and use a lot of
data, which opens up new avenues for data mining. This virtuous cycle has the poten-
tial to create a data monopoly. This is when large amounts of confidential information
are held inaccessible by a few powerful organizations. As a result, there is a hurdle for
new entrants to get the piece of information.

 Privacy and Data Protection: As devices become more commonplace in places like
smart homes, hospitals, and cities, massive amounts of biometric data (such as a per-
son’s facial image, voice, activity, pulse, imaging data, etc.) may be captured from
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both educated and ignorant individuals via AIoT. This brings up serious issues with
the confidentiality and integrity of personal information.

Growing Energy Consumption in Data Centers: It is estimated that data centers
use more than a third of communication technologies’ power worldwide. Therefore,
for future sustainability, it is essential to improve data center energy efficiency. Some
data centers, for instance, set up shops in chilly regions to use the weather as air
conditioning. Servers may also be submerged in a bath of non-conductive oil or min-
erals, or cooled with water. Analysis of workload, planning of tasks, and consolida-
tion of virtual machines are three further areas of research into making data centers
more power efficient. Like the proliferation of AIoT use cases, cloud data centers are
expanding quickly. As a result, we need to keep up our efforts to reduce data center
energy use.

Capability for Neural Processing at the Edge: In many edge devices, the calculation
of neural networks is boosted by specialized processors (such as the graphics process-
ing units in smartphones and intelligent cameras). Therefore, it is very beneficial for
AloT applications to include neural processing capabilities in edge devices. For one,
it lessens wait times and saves bandwidth on the back end. With on-site processing of
sensing data, just a minimal quantity of managed data has to be transferred. Second,
it can keep your information safe and private. The danger of data leakage may be
reduced, for instance, if the biometric data of registered users is encrypted and kept
on local hardware, with just the built-in verification capability on the edge devices
accessible to the apps. Third, it allows for asymmetric and dispersed model train-
ing. Models may be trained across edge devices using their local sensor data and an
FL framework. Furthermore, distinct groups of strategies may choose various model
update procedures based on their respective use conditions.

Neuromorphic Computing with Event-based Sensors: Once activated, deep CNNs
receive a constant stream of data from traditional camera sensors, which is then pro-
cessed by GPUs. Since every one of those pixels goes towards the final tally, costs are
usually high. The use of neuromorphic computers and event-based sensors has been
proposed in recent suggestions. For instance, event-based cameras only save images
with a pixel-level brightness change, reducing the amount of data that is sent and
created. Event-based neuromorphic computers, unlike GPUs, can avoid perform-
ing dense and redundant computations on traditional sensory input by functioning
directly on sparse and asynchronous event streams. These may be used in many dif-
ferent areas of AloT because of their low latency and low power consumption.

Taking Deep Learning into the Real World: Embodied AI is useful in contexts
where regular AI would be impractical. Voyage Deepdrivel3, Open-air gym14, and
Habitat15 are only a few examples of 3D virtual platforms made specifically for deep
RL model training. Before using the trained model, the domain shift between digital
and physical domains must be resolved. There is a lot of interest in utilizing TL and
Data Analytics (DA) to solve this problem in USL and RL.
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« Data and Knowledge Integration for Perceiving: DL models’ ability to learn,
reason, and behave depends heavily on the quantity and quality of their training
data. However, people acquire new ideas by combining facts and their own stored
information. In a similar vein, past knowledge may be quite helpful when training
deep learning models with less data. For instance, Zero-Shot Learning (ZSL) for
novel ideas is made possible via attribute transfer thanks to the attribute-based class
description. Knowledge Graphs (KGs) are another example since they depict the
structural connections between things. KGs, knowledge-embedding representation
learning, and reasoning all benefit from knowledge extraction from unstructured
data. When combined, this is a possible method for achieving human-level cognitive
ability using question-and-answer DL (such as graph neural networks) which has a
wide variety of applications, including but not limited to system and fault/disease
diagnostics.

9.7 CONCLUSION

In this chapter, we examined the history of Big Data analytics for AloT, the computational
architectures that power it, the AI technologies that give the capability to observe, learn,
reason, and behave, the most promising applications of Big Data analytics in AIoT, and the
difficulties and possibilities that lie ahead for this field of study. While the AIoT’s three-tier
computing architecture offers a variety of computational resources for DL, it also intro-
duces additional issues, related to the creation and exploration of lightweight models, as
well as computation scheduling within the three-tier architecture. Various types of per-
ception have shown tremendous advancements because of DL, and it allows various AloT
applications. However, more work has to be done to enhance intelligence at the edge. DL
has gained popularity in unverified learning, helping A-IoT systems deal with complicated
and changing circumstances using predictive techniques like RL settings. Research on for
KG-based reasoning and causal analysis to attain human levels of cognitive ability is chal-
lenging. AloT acts in response to the ever-changing environment via control and interac-
tion; DL has proven useful for increasing control precision and allowing new kinds of
multimodal interactions. Many quick, smart, environmentally friendly, and secure AIoT
applications are anticipated to profoundly transform our society in the future, enabled by
rapidly developing AI technologies.
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10.1 OVERVIEW

The Internet of Things (IoT) technology is based on different network technologies and a
variety of electronic devices to perform signal sensing, signal processing, and data trans-

mission over the network. Artificial Intelligence (AI) based communication systems are
utilized to meet the different requirements of the communication systems as well as to
assist in resource management and high efficiency in performance. The AI methods are
used in IoT networks to minimize environmental impact and provide green communica-
tion methods. This chapter examines green communication systems designed for AloT
networks to address energy effectiveness and environmental compatibility.

10.2 ARTIFICIAL INTERNET OF THINGS

The Internet of Things (IoT) plays a significant part in connecting cyber and physical space,
for creating new services. IoT development has led to the digitization of the real world,

resulting in a high demand for the creation of novel applications and services. These new
inventions include Radio Frequency Identification (RFID) tags, ZigBee, and Wi-Fi stan-
dards for data communication. There is a wide variety of applications, including businesses,
homes, logistics, energy systems, cities, healthcare, and agriculture. The IoT can enable
physical objects to interact with one another and carry out tasks without human interven-
tion. It is predicted that in 2024 around 45% of internet traffic will be Machine-to-Machine
(M2M) traffic (Al-Fuqgaha et al. 2015). Figure 10.1 shows the advantages of IoT devices.

The goal of Artificial Intelligence (AI) is to create computers that are intelligent as peo-
ple. AT has long been used to optimize communication networks in a variety of configura-
tions. Machines can offer multiple, pre-defined choices and react to the environment in a
variety of different, yet deterministic ways, which is the first and most fundamental level
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FIGURE 10.1 Advantages of IoT devices.

of Al. One machine has the entire capability to interact with the environment, which is
the second complete level of AI (Li et al. 2017). AI usually has two places to fit into an IoT
system: the center and the edge. Implementing AI in IoT networks’ core components, such
as the cloud, may use the vast volumes of data from the entire network to produce more
precise predictive analytics or models. AI can be implemented locally or on edge servers in
IoT networks to improve security and privacy while reducing bandwidth and latency. The
edge intelligence framework is created by combining local and global intelligence by using
AT techniques to coordinate heterogeneous resources across different domains for network
energy savings, but it can also add a variety of new functions to IoT devices with minimal
energy consumption (W. Mao et al. 2021). Big data, deep learning, and Machine Learning
(ML) are adopted for modern networks. Many famous leading corporations, including
Microsoft, IBM, Google, and Amazon, are concentrating on Al to create their remarkable
products such as ChatGPT, Bing, and Dall-E, and give their customers a better overall
experience. Many research projects have used Al algorithms, particularly ML algorithms,
to determine the precise location of AIoT devices, to allocate resources quickly, to optimize
reliable resources, and to transmit data securely.

Huge quantities of data traffic are expected to be generated by new applications like high-
resolution video streaming, tactile Internet, remote monitoring, and real-time control sys-
tems. Due to the large size of the technological environment, the number of users, and the
number of devices, energy consumption levels have been alarming. Scientists predict extraor-
dinarily high data rates and enormous content sizes, 10,000 times greater than in 2010, at the
cost of extremely high environmental carbon emissions (Mahmoud AM Albreem et al. 2017).
The number of power transmitters grows as the number of connected electronic devices rises.
As a result of the impact, a large amount of energy will be consumed. Approximately 75.44
billion connected gadgets will be present worldwide by 2025 (Alam and Tanweer. 2018).

Rapid increases in battery consumption on AloT applications have a significant impact
on security performance. Secure transmission in AIoT networks requires energy efficiency.
Security, data storage from devices, energy consumption, data integration, and privacy
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are some of the existing issues with IoT network deployment. The battery of sensor nodes
runs out faster if there are no energy control systems in place. Therefore, the objective of
energy supply and management is to increase the network’s lifespan. The full adoption and
rising demand for smart services need power and bandwidth management rather than
more resources. Energy efficiency plays an important role because IoT devices constantly
gather and share data while operating on batteries or other limited power sources. IoT
devices’ energy consumption needs to be reduced because their batteries deplete quickly
(Maddikunta et al. 2020). By utilizing on-demand protocols, specialized optimization
algorithms, and AI techniques, the green AloT paradigm has emerged as an energy-sav-
ing and environmentally friendly way to cut down on power usage and carbon emissions.
The green planning, manufacturing, use, and disposal phases AIoT lifecycle are included
(Halabi, Bellaiche, and Fung. 2022).

An intelligent transmission process that improves energy efficiency and extends the life
of smart gadgets is required. IoT resource management and energy efficiency have drawn
a lot of research attention. To prevent resource waste or lessen the impact of the green pro-
cedure itself, new energy-efficient procedures (whether involving hardware or software)
should be implemented during the design of AloT services.

10.3 APPLICATION AND TECHNOLOGIES

Al is being used in many ways, from data collection to output optimization. The goal of
applying AI to the mobile sector is to provide seamless network operation and increase the
wireless network’s energy efficiency using real-time data from many modes of transporta-
tion, such as trains, buses, and vehicles, Al is utilized in road traffic management to assist
in data analysis. AI examines this data for trends that might point to security vulnerabili-
ties. This knowledge is then applied to identify solutions to lessen risks and the likelihood
of accidents. Long-term and short-term traffic trends are the two types of tendencies used
in Al-driven traffic prediction.

The most challenging procedure in networks is maintenance and monitoring. Maintaining
the network to keep up with consumer demand is a challenging operation since it is highly
challenging to analyze client requirements because they change dynamically. AI has a lot to
offer in network monitoring. The most typical application of Al in networks is anomaly detec-
tion. The practice of analyzing network behavior and separating genuine activities from cyber-

attacks is known as anomaly detection. Troubleshooting is enhanced with AI/ML, which also
accelerates problem resolution and offers remediation advice. It provides important insights to
enhance the user and application experience. AI technology is used to accurately analyze and
forecast the network behavior of 5G/6G to prevent energy waste. These analyses and forecasts
include network overhead and collision predictions (Anwar et al. 2018).

The use of Al in service monitoring can quickly analyze massive amounts of real-time
data to find anomalies and patterns that could affect service quality or user experience.
AT can anticipate potential problems before they become more serious by utilizing ML
algorithms, enabling proactive efforts to maintain the highest possible service levels.
This cutting-edge method improves monitoring accuracy while simultaneously lowering
downtime and minimizing service interruptions. There are many uses for green Al-based
communication in 5G/6G wireless communication. These involve massive antenna arrays
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and coordinating the transmission and receiving of signals from various sites (Qureshi,
Abdullah, et al. 2016).

Green AloT enables remote control of household appliances, including lighting, elec-
tronic devices, and heating, from a computer, smartphone, or laptop. A smart home gadget
may include a phone, television, computer, or other smart devices. There are a few new
factors for green AIoT to consider, such as green operation, green design, green reuse, and
green manufacturing, which will lessen environmental harm.

10.3.1 Mobile Edge Computing in M2M Communications

Mobile Edge Computing (MEC) is a developing technology which is essential for current
systems and servers running cloud computing and Information Technology (IT). It is very
important for new network technology of the next generation. MEC is capable of handling
critical computations in large networks, including content caching, scheduling, collabora-
tive processing, and several other activities. MEC relies heavily on Network Functions
Virtualization (NFV), Software Defined Networks (SDN), and cloud computing (Igbal
et al. 2020). Using MEC increases the responsiveness of the edge and the speed of services,
applications, and contents. This technology is more user-friendly than previous technolo-
gies and can analyze data from multiple IoT devices at once for the creation of new enter-
prises. The capabilities of MEC technology are very successful at advancing the idea of
smart cities and making it easier to analyze massive data, which helps cities become more
intelligent entities (Lv et al. 2021).

« On-grounds: MEC technology can operate only local sources and can be used inde-
pendently of other system components. It may be necessary for some allocations,
such as security and flexibility.

o Closeness: MEC has the potential to do computer tasks directly, which may be
appealing to some specialized applications. This occurs as a result of proximity to
data sources.

o Lesser Computing: MEC servers are located close to constrained clients, which
might aid in reducing computation time and provide other benefits including quick
processing, a positive customer experience, and less congestion.

o Network Framework Information: Network framework information is information
from the network that is used by many services and applications. Utilizing MEC
mobile service.

 Locality Understanding: MEC servers assist in supplying local information that
influences low-level signaling data to determine the positions of each linked device.

10.3.2 Wireless Network Virtualization and e-SIM in M2M Communications

For IoT services, scalability and flexibility features are primarily provided by virtualiza-
tion. Network virtualization is taking place at the same time as SDN and NFV. Cloud com-
puting, SND, and NFV are expected to operate together as a crucial enabling technology to
fundamentally alter how network operators design and benefit from their infrastructure.
The procedure comprises combining physical network hardware resources with embedded
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software’s operational capabilities and merging them into a single logical structure known
as a virtual network. Wireless Network Virtualization (WNV) is regarded as an effective
and dependable technique for managing network infrastructure and making use of net-
work resources. The hypervisor is a crucial part of WNV, which is maintained by the pri-
mary operating method, which analyses the network and links sources in terms of Quality
of Services (QoS) and applications or network requirements (Qureshi and Abdullah. 2013).
MNYV may aid in the improvement of new technologies and demonstrates greater flexibility
in the design of communication technologies like M2M technology. M2M communica-
tions technology is now employed in a variety of ways. The IoI’s virtualization mechanisms
enhance the system’s performance. This can also ensure the network’s adaptability, scalabil-
ity, dependability, and data throughput. Additionally, these methods are also helpful for low
energy consumption, great throughput, and minimal overhead (Ramakrishnan et al. 2020).

The Embedded Subscriber Identity Module (eSIM) has several notable benefits for M2M
communications in two areas. The first area is disconnecting the SIM module from a
Machine-Type Communication Device (MTCD). This process is difficult because the SIM
module is typically placed in remote areas. As a result, it is impossible to make the MTCD
move to a different virtual network using a SIM. The second area is the difficulty in ensur-
ing service continuity between networks due to an increase in MTCDs; conventional SIMs
may need to be changed in each separate location.

10.3.3 Al-Based Wireless Communication

As the demands for user data and data traffic rates increase, Al-based wireless commu-
nication systems have become a novel option. The addition of Al-driven technologies is
necessary for the traditional wireless communication techniques which are proving insuf-
ficient to handle this sudden increase in traffic. It’s important to recognize that wireless
communication systems currently make a major contribution to the overall energy con-
sumption of the information and communication technology industry, notwithstand-
ing any potential benefits they may have in the future. Numerous access technologies,
including Narrow-Band IoT (NB-IoT), IEEE 802.15.4, Wi-Fi, cellular communications,
backscatter communications, and others, have been developed for various Machine Type
Communication (MTC) scenarios. Unmanned Aerial Vehicles (UAVs) and satellites are
new platforms for connecting things to the Internet (Qureshi, Alhudhaif, et al. 2022; B.
Mao et al. 2021).

A significant portion of the total energy used in the field of information and commu-
nication technology is consumed by wireless communication systems. This shows how
urgent it is to create systems for communication that utilize green Al rules, ensuring the
best possible use of energy resources. The development of green Al-based communication
systems is urgently needed given the requirement for environmentally responsible behav-
iour. These cutting-edge systems not only use Al to improve performance but also place
a strong emphasis on energy saving. Green Al-based communication systems reduce the
demand for energy resources by intelligently optimizing network operations and signal
transmission and maintaining a sustainable balance between advancements in technology.
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10.4 CHALLENGES

The everyday lives of consumers have benefited from the IoT, and manufacturers have
been motivated to release new devices with more features and better designs due to con-
sumers’ excitement and accessibility. The green AloT is still in its infancy. The theory
behind green communication is that it uses very little energy and gives high performance.
Numerous issues need to be resolved as well as hurdles. Spectral efficiency, cost, energy
consumption, environment friendly hardware and battery, and bandwidth are just some
of the challenges. Heterogeneous Networks (HetNets) integration can be expensive, and
upgrading the infrastructure to handle this technology would be very expensive. Similar
to this, expenses may increase with the use of large-scale Multiple-Input Multiple-Output
(MIMO) systems. For some businesses, these costs can be an obstacle to implementation.
For others, the expenditure may be justified by the prospective advantages of these tech-
nologies, such as increased network capacity and coverage. Energy-efficient technology is
also expensive to produce. Cost is also a major obstacle to green communication (Jamil
et al. 2020). Figure 10.2 shows the challenges in AIoT networks.

In green communication networks, attaining high data throughput while preserving
energy efficiency is one of the problems. When developing and accessing communica-
tion systems, it is essential to take into account data throughput, commonly referred to as
Spectral Efficiency (SE). According to Shannon’s equation, the speed and amount of trans-
ferred power have a direct impact on the transmission rate. However, increasing speed and
strength might also result in higher energy usage. A major difficulty in developing green
communication networks is balancing these variables to maximize throughput while min-
imizing energy use (Jamil et al. 2020).

Utilizing the millimeter wave (mmWave) band for 5G/6G communication poses a
problem for green communication networks. While this band offers high data rates and
capacity, current antennas are inefficient at these frequencies. Phased-array antennas are
necessary for communication on the mm-wave frequency. However, designing and deploy-

ing phased-array antennas is a challenging task that needs a lot of resources and knowl-
edge. A significant difficulty for green communication networks is ensuring that these
antennas are energy-efficient while still offering good performance (Jamil et al. 2020).
Large volumes of data that are sensitive to privacy and security are generated, processed,
and exchanged by these systems, making them appealing targets for attacks. AIoT devices
are frequently poorly secured and vulnerable to cyberattacks such as distributed denial

Challenges

|| Cost || Energy || Hardware || Big Data II Bandwidth || Security || Etc.

FIGURE 10.2 Challenges in AIoT networks.
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of service or sabotage attempts. The overhead associated with cryptography techniques
is frequently too high. AIoT system overhead is further increased by the heterogeneity of
networks. Therefore, it is crucial to develop simple algorithms that ensure the security and
privacy of devices while using less energy (W. Mao et al. 2021).

For green communication networks, IoT and Al integration opens new challenges
for researchers. The complexity of this integration is boosting the existing issues such as
processing power, memory, and delay in real-time applications. Additionally, ensuring
compatibility and standardization may be challenging due to the heterogeneity of AloT
devices and networks (Mahmoud A Albreem et al. 2021). In a wireless setting, security
and privacy problems must also be addressed. It is crucial for the merging of IoT and Al
in green communication networks to successfully handle these issues. The difficulty with
huge data accumulation is predicting and estimating the amount of energy needed for
data analysis. Big data analysis performed quickly might be considered, but the cost and
resources needed for the analysis will increase exponentially as the volume of big data
rises. Consequently, big data analytics could be viewed as enhancing the prediction of
energy efficiency as opposed to the enhancement of the quality of life from the integration
of IoT devices with AI technology.

Hardware-related issues are raised by the integration of AI and IoT in green com-
munication networks. The processing and memory capabilities of IoT devices are fre-
quently constrained, which can make it challenging to deploy advanced AI algorithms
on the devices. Furthermore, for these devices to function well, their energy consump-
tion needs to be properly controlled. It might be difficult to guarantee the depend-
ability and endurance of IoT devices in challenging conditions. The system’s overall
sustainability may be compromised by the need for periodic hardware maintenance
and replacement. The successful integration of AIoT in green communication networks
depends on the development of hardware solutions that are dependable, long-lasting,
and energy eflicient.

10.5 GREEN COMMUNICATION SMART GRID SYSTEMS

Information and Communication Technologies (ICTs) are playing a crucial role in the
modernization of the electrical grid as a result of rising electricity prices, the depletion
of fossil fuels, and growing worries about Greenhouse Gas (GHG) emissions. Traditional
power management services have been altered by smart grids, which also provided
cutting-edge solutions. By regulating utility costs, these innovative integrated systems

make it more convenient to meet energy demand. By employing cellular and other data
communication networks, users of smart systems can share data about their energy use,
energy supply, and utility use. Energy distribution is always given top attention in smart
cities, and more advanced metering infrastructure is required for power generation to cus-
tomers. The smart grid is built on decentralized generation methods, as opposed to the
conventional grid’s centralized generation techniques. Additionally, human monitoring is
used in typical grids, and only limited, passive control is used.

Smart grids, on the other hand, use active control techniques and a self-monitoring
system. One aspect of manual and locally-based traditional grids and restoration systems
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is the power flow. They differ from the smart grid which manages electricity flow in two
directions and features a self-restoration mechanism (Qureshi and Jeon. 2021). Real-time
monitoring of energy consumption can be made possible via smart meters and commu-
nication networks, enabling consumers to make educated choices about their energy use.
Programs called “demand response” can be used to encourage energy efliciency by allow-
ing consumers to alter their energy usage during periods of high demand. Based on several
operations like electric generation, transmission, and distribution, the smart grid is an
important field. All of these processes use wireless technologies and more modern, inte-
grated communication standards.

To make the grid more flexible, strong, and decentralized, AI is a major contributor to
this revolution. The development of smart grids that can control far more complex power
generation and distribution is being fuelled by the application of AI technologies like IoT,
machine learning, and data analytics. These technologies are assisting in the resolution of
serious issues such as power outages and financial setbacks brought on by extreme weather
events. At the same time, they are offering crucial support to make it possible for renewable
energy sources to be seamlessly integrated into the grid infrastructure.

10.5.1 Smart Grid Architecture

The smart grid infrastructure is designed to offer a data communication medium for the
transmission of various signals for monitoring, measurement, control, and management.
The utility grid is integrated with the smart grid interface at any point, including microgrid
installations, transmission, distribution, consumption, and bulk generating. The commu-
nication medium and interface must offer transmission that is secure, effective, and reliable.
The smart grid is divided into three main categories: management systems, information,
and communication technologies, and commercial and residential modules. Within the
management systems category, there are three subcategories: monitoring management,
transmission and generation, and consumer-side management. Figure 10.3 shows the
smart energy management system’s architecture.

Monitoring and management of a smart grid refers to the procedures and tools used
to keep an eye on and regulate the many functions and elements of a smart grid system.
This is essential to guarantee the grid’s effective, dependable, and secure operation. Smart
grid monitoring delivers in-the-moment insights into equipment health, voltage levels,
and energy consumption patterns by continually collecting and analyzing data from vari-
ous grid elements. These data enable grid operators to make well-informed judgments,
act quickly in response to demand changes, and avert any disruptions. A key component
of a smart grid system that focuses on streamlining the transfer of electricity from power
production sources to consumers is transmission and generation management. The use of
smart grid technology includes several methods and tools designed to increase the effec-
tiveness, dependability, and environmentally friendly nature of energy generation and
transmission. Consumer-side management refers to a variety of tactics, tools, and pro-
grams created to empower and include customers in managing their electricity usage.
Consumers are given priority in this aspect of smart grid technology, giving them more
control, awareness, and engagement in the energy ecosystem.
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FIGURE 10.3 Smart grid architecture.

The ICT sublayer connects the management systems to the electricity network. It is
divided into three categories: Local Area Network (LAN), Field Area Network (FAN),
and Wide Area Network (WAN). In addition to metering, field-based equipment requires
monitoring and management from the utility’s point of view. The construction of a spe-
cialized network becomes necessary when the grid infrastructure deepens its coverage by
including a variety of important parts, from transformers and sensors to distribution auto-
mation systems. The critical task of effectively controlling and integrating these complex
components within the larger operational framework is taken on by this specialized net-
work. Therefore, a separate network known as the FAN is used to handle the equipment
in the field. The majority of the data transfer can be done using wireless communication
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techniques such as Wi-Fi, Global System for Mobile Communications (GSM), IEEE
802.15.4-based technologies, or 5G/6G communication technologies.

Electricity generation, transmission, and distribution are the three phases that make up
a smart grid, which is a system for distributing electricity. During the generation phase,
energy is produced utilizing massive, centralized power plants that are powered by a vari-
ety of natural resources, including coal, gas, or nuclear or hydroelectric systems (Qureshi
and Jeon. 2021). Modern hydrogenated generation systems combine heat and power sys-
tems. Electricity transmission, which occurs after electricity generation, involves moving
the energy from power plants to substations and end customers. The electricity is divided
between residential and industrial zones during the distribution phase. Smart meters play
an important partin the advancement of the smart grid. Smart meters are made to measure
power flowing in both directions, including into and out of the meter. In a process known
as net metering, users can import electricity from the grid as needed and also export any
excess renewable energy production to the main grid. One of the main goals of utilizing
smart meters is to give clients a real-time monitoring system, dynamic pricing, and the
ability to monitor energy consumption more effectively (Qureshi and Jeon. 2022).

Home Management Systems (HMSs), which are supported by service providers, can
be used to control residential loads in the context of smart grid applications. Many typi-
cal sensors, including, anemometers, current transducers, phase and flux sensors, volt-
age transducers, frequency sensors, pressure transducers, and power quality transducers,
are dispersed across the power network’s generation and transmission systems, and smart
meters are also used in systems for managing smart homes, which aims to give custom-
ers more secure and comfortable living conditions. The Commercial Management System
refers to a broad range of tactics, procedures, and tools used to streamline and improve
financial and commercial activities within the context of the energy distribution ecosys-
tem. The smart grid architecture includes a variety of elements such as digital systems to
increase real-time communication, supply management, distribution automation, renew-
able resources, demand-side resources, dynamic optimization, grid security, and smart
metering,

10.6 RELATED WORKS

Industrial AIoT places a high value on reliable, green communication. Unfortunately, it
is difficult to provide reliable transmission due to complex industrial environment. The
authors (Liu et al. 2017), proposed the Hybrid Transmission Protocol (HTP) to increase
longevity while preserving reliability. To reduce energy usage, the protocol uses the
Network-Coding-based Redundant Transmission (NCRT) technique with an adaptive
redundancy level in non-hotspot areas and the Send-Wait Automated Repeat-Request
protocol (SW-ARQ) in hotspot areas. They used the Omnet++ network simulator for
modeling and theoretical research to evaluate the effectiveness of the suggested approach.
The results of their algorithm showed that the SW-ARQ protocol can increase longevity
by 15% to 30% and dependability by 12% to 45% while maintaining the same reliability.
When it comes to Smart Sustainable Agriculture (SSA), there is a lack of progress
along with complicated challenges brought on by the division of agricultural techniques,
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including the management and control of data, interoperability, data storage, and large
data analysis. To overcome this issue, the author Alreshidi discussed analyses of current
IoT/AI technologies used for SSA in the first place and then establishes an IoT/AI techno-
logical architecture to support SSA platforms. The framework for AI and IoT includes the
following levels: SSA domain, IoT sensing, network, application, security, governance, Al
and data Management, physical hardware, and storage. Future studies will look into how
AT and IoT technologies are implemented for SSA by developing a prototype for the pro-
posed AT and IoT technological architecture to use in actual test cases.

By maximizing intra-cluster distance, methodically utilizing node energy, and lowering
hop count, a Genetic Algorithm (GA) based sustainable and safe green data collecting and
transmission technique for IoT-enabled Wireless Sensor Network (WSN) in healthcare has
been proposed by the authors Singh et al. 2021 Data communication is encrypted utilizing
a pseudo-randomly generated security key and stream ciphers for secure data transmis-
sion. Additionally, the hotspot issue is lessened by the suggested moveable sink and data
collection and transmission procedures since they reduce the communication distance
between the sink and Cluster Head (CH). When the sink nodes are physically closer to
the sensor nodes than they are to the CH, the direct data collection method facilitates
the direct transfer of data to the sink. Additionally, the integrated dynamic sensing range
reduces the sensing range’s overlap while significantly reducing transmission energy.

The majority of AI-driven applications require powerful servers to do difficult AI tasks,
which increases energy usage in Industrial Internet of Things (IIoT) systems. To develop
energy-efficient AI computing for IIoT applications, the authors Zhu, Ota, and Dong
2021 proposed intelligent edge computing as a cutting-edge technology. First, they pro-
posed that AI computing for IIoT applications should perform better overall and use less
energy as compared to traditional applications. The intelligent edge computing framework
decreases the load on servers and speeds up reaction times by shifting AI workloads from
servers to the network’s edge. By maximizing the utilization of computational resources,
the suggested method for scheduling Al activities improves energy efficiency even more.
As aresult, the system used for AI computing in IIoT applications becomes more effective
and sustainable.

The security of mobile IoT networks has numerous difficulties due to the complex-
ity of the wireless channels. In mobile IoT networks, energy efficiency is essential for
secure connectivity. The authors Xu et al. 2022 proposed a transmit antenna selection-
based secrecy scheme employing amplify and forward relaying. They begin by obtain-
ing exact expressions and evaluating the effectiveness of the physical layer of security.
After that, they then formulate the power allocation issue, which is a non-convex, chal-
lenging problem, to further increase energy efficiency. They provide a novel intelligent
power allocation optimization technique. The allocation parameter is calculated using
an Improved Grey Wolf Optimization (IGWO) algorithm based on the defined power
allocation function. The proposed IGWO algorithm outperforms conventional swarm
intelligence algorithms in terms of convergence precision and convergence speed. When
compared to other algorithms, IGWO reduces running time by 24% while keeping the
same optimization accuracy.
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The authors Chavhan et al. 2022 discussed the use of Al and IoT in the transportation sector
which has been made on a large scale to lower GHG emissions, enhance energy efficiency, and
improve service quality. They proposed a unique, energy-efficient, intelligent transport system
for smart cities based on a distributed multi-agent system and edge-based AI-IoT integration.
This has been accomplished by combining the DSRC-IEEE 802.11p communication stan-
dard protocol for Vehicle-to-Everything (V2X) with Radial Basis Function Neural Network
(RBF-NN), IoT, and Multi-Agent System (MAS) based real-time data collecting, analysis, pre-
diction, and sharing. Along with the edge computing units, an ideal number of Roadside Units
(RSUs) are installed at each zone. MAS installed at each RSU gathers a considerable amount
of data from numerous infrastructures, devices, and sensors. The edge computing device pro-
cesses, analyses, and predicts using the raw data from the MAS that has been acquired.

The environment in which green IoT devices operate is resource constrained. It is chal-
lenging to monitor, identify, and react to events in a partially or fully distributed ecosystem
that requires constant access to timely information. To overcome this issue, the authors
Chithaluru et al. 2023 proposed a neuro-fuzzy method used in an energy-efficient Dynamic
Clustering Routing (DCR) protocol to limit the resources of IoT devices. It builds dynamic
clusters in a network using a dynamically self-organizing neural network. One method for
extending network lifetime in a sustainable IoT is clustering. In terms of clustering tech-
niques, IoT is also employed for green applications to demonstrate a huge improvement
in each QoS. In each cluster, there will be a CH, which will receive data from the group
nodes and transmit it to a distant sink using high-energy transmission while also captur-
ing important data packets and sending them to the sink. By preventing all nodes from
processing, it lowers energy consumption and increases the network’s longevity.

Cloud-based IoT technologies enable remote patient monitoring and support. Making
healthcare systems environmentally friendly hasn’t gotten much attention in the current
environment. The authors Islam and Bhuiyan discussed cutting-edge technology to build
an interactive user experience while providing an integrated framework for green health-
care. A three-layered architecture for a healthcare system is proposed. The first layer is a
data-collecting layer based on IoT that collects data from patients and hospitals. The sec-
ond layer is an advanced cloud system that allows for enormous data analysis from indi-
vidual patients and facilities. This technique can be used to forecast potential diseases and
uncover patterns. Mobile application technology, the third and final layer, will boost real-
time data interchange and treatment efficiency. This is accomplished by analyzing data
collected through interactive patient monitoring systems. Overall, the suggested design
intends to improve healthcare by combining technology and data analysis.

The authors, Riskiawan et al. 2023, discussed a contemporary strategy for effectively
enhancing greenhouse control technology through automated environmental control. The
IoT and AI can be combined to create IoT devices that can forecast and be controlled on
their own. The system, which acts as the central processing hub for sensors and actuators,
is managed by a microcontroller. The microcontroller interprets the sensor data using a
Long Short-Term Memory (LSTM) technique to predict the output parameters for regulat-
ing actuators, such as misting, fan exhaust, and motor control. The outcomes of knowledge
acquired through the LSTM method are used to place intelligent control on a framework
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TABLE 10.1  Existing Protocols for Energy Efficiency

S.No  Protocols IoT Domains Objectives/Achievements

1 SW-ARQ & NCRT (Liu et al. 2017)  WSNs Ensuring reliability, extending the
lifetime, and decreasing the delay.

2 Optimized GA (Singh et al. 2021) Health Care To optimize intra-cluster distance,

efficiency in nodes’ energy, and reduce
the hop count
3 Al-driven IToT framework (Zhu, Industrial IoT to improve various computing
Ota and Dong. 2021) resources energy efficiency and
offload the majority of AI activities
from servers.

IGWO (Xu et al. 2022) Mobile IoT Increasing the energy efficiency
5 RBF-NN, IoT, and MAS (Chavhan ~ Transport System Increase energy efficiency in the
etal. 2022) for Smart Cities transport system and reduce
greenhouse gas emissions
6 Neuro-fuzzy logic (Chithaluru Clustering During the network planning stage,
et al. 2023) Selection for reduce consumption of energy and
IoT-based Smart increase network lifetime.
Cities
7 Hierarchical Clustering IoT health Care surpass current systems regarding,
Algorithms, Bluetooth Low Energy ~ system energy efficiency treatment planning,
(BLE) & cutting-edge technology data accessibility, and system
(Islam and Bhuiyan. 2023) architecture
8 modified LSTM (Riskiawan Al base JoT-Green =~ Manage an existing agricultural system
etal. 2023) House in a smart greenhouse using AI and

IoT technologies while also creating a
unique IoT sensor.

called Laravel rather than the embedded system directly. Table 10.1 shows the protocols
designed for different domains to manage energy issues.

10.7 CONCLUSION

An essential step toward developing sustainable IoT systems is the use of green communi-
cation technologies in AIoT networks. The development of conventional industries includ-
ing transportation, electricity, education, agriculture, and healthcare has benefited from
IoT devices. Energy-efficient data acquisition and communication are the goals of green
communication techniques. The design of reliable communication systems and centralized
as well as decentralized deployment of IoT systems have all attracted substantial research
interest. Scalability and latency problems are addressed via cloud computing, fog comput-
ing, and edge computing. Due to its capacity to increase response time and lower energy

consumption, methods like MEC have become more well-liked. There is great potential to
increase the energy efficiency of IoT systems by developing green communication meth-
ods for AIoT networks, which is an active field of research. Some research areas include
green network management, green network monitoring, green intelligent transportation
systems, green optical communications, switching, and networking, green software, hard-
ware, devices, and equipment, green scheduling for communications and computing, and
green storage, as well as fog and cloud computing.
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11.1 OVERVIEW

This chapter provides an overview of Artificial Intelligence of Things (AIoT) networks and
their associated security challenges. It emphasizes the importance of implementing cyber-
security standards to safeguard these networks from cyberattacks. This chapter covers var-
ious topics such as the introduction of AIoT, identification and authentication protocols,
data encryption, and integrity protection. It also discusses the challenges faced in imple-
menting cybersecurity standards for AloT networks, including the complexities introduced
by interconnected devices and emerging technologies. By addressing these challenges and
staying informed about emerging technologies, organizations can enhance the security of
AloT networks and protect sensitive data from unauthorized access or manipulation.

11.2 AloT

AloT is a paradigm that combines the power of Artificial Intelligence (AI) with the vast
connectivity and data-sharing capabilities of the Internet of Things (IoT). In AIoT systems,
AT algorithms and machine learning techniques are integrated into IoT devices and net-
works, enabling them to collect, analyze, and interpret data in real-time. This integration
empowers AloT systems to make intelligent decisions, adapt to changing environments,
and automate processes, leading to improved efficiency, accuracy, and responsiveness
(Hasan and Qureshi. 2018). AloT finds applications across various industries and sectors.
In manufacturing, AIoT enables smart factories where IoT devices equipped with AT algo-
rithms can monitor and optimize production lines, detect faults, and predict maintenance
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needs (Igbal et al. 2021). In healthcare, AIoT systems can enhance patient monitoring,
assist in remote diagnostics, and enable personalized treatment plans. Smart cities lever-
age AloT to optimize traffic management, enhance energy efficiency, and improve public
safety through intelligent surveillance and monitoring systems. Additionally, AIoT has
applications in agriculture, retail, transportation, and many other domains, revolution-
izing processes and creating new opportunities for innovation.

Several technologies enable the realization of AloT systems. IoI' devices, such as sen-
sors, actuators, and wearables, serve as the foundational components that collect and trans-
mit data. Cloud computing infrastructure provides the storage, processing, and scalability
required to handle the massive amount of data generated by IoT devices. Edge computing
complements cloud computing by bringing AT capabilities closer to the data source, reducing
latency, and enabling real-time decision-making. Machine learning algorithms, including
deep learning and reinforcement learning, are employed to extract insights, detect patterns,
and make predictions based on the collected data. These technologies work together to create
a powerful AloT ecosystem that drives intelligent automation and decision-making.

In conclusion, AlIoT combines AI and IoT technologies to create intelligent systems
that leverage data analysis and machine learning to make informed decisions and auto-
mate processes. With its diverse applications across industries, AIoT has the potential to
transform various sectors and drive innovation. The integration of IoT devices, cloud com-
puting, edge computing, and machine learning algorithms form the foundation of AloT
systems, enabling them to collect, process, and interpret data in real-time. As the capabili-
ties of AT and IoT continue to advance, the AIoT paradigm holds great promise for enhanc-
ing efficiency, accuracy, and responsiveness in a wide range of domains.

11.3 SECURITY CHALLENGES IN AIOT

AloT networks face numerous security challenges that need to be addressed to ensure the
integrity, confidentiality, and availability of the network and its data. These challenges include
vulnerability to cyberattacks, such as data breaches and unauthorized access due to the inter-
connected nature of devices and the large volume of data they generate. Privacy concerns
arise from the collection and analysis of sensitive data, requiring robust security measures and
compliance with data protection regulations. The complexity and scalability of AloT networks
pose difficulties in managing and securing numerous devices and data sources effectively.
The lack of standardization hinders the implementation of consistent security measures, while
resource constraints in IoI devices make it challenging to implement robust security without
compromising performance. Zero-day attacks and emerging threats add to the risks, neces-
sitating adaptive and proactive security measures (Kiyani et al. 2023). Addressing these chal-
lenges is crucial to ensure the trust, reliability, and resilience of AIoT networks.

11.3.1 Vulnerability to Cyberattacks

AloT networks are highly susceptible to various cyberattacks due to their interconnected nature
and the vast amount of data they generate and transmit. They face risks such as data breaches,
unauthorized access, and malicious manipulation. The distributed and diverse nature of AloT
devices makes it challenging to ensure the security of each device and the overall network.
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11.3.2 Privacy Concerns

AloT networks involve the collection, analysis, and storage of large amounts of personal
and sensitive data. This raises significant privacy concerns as the potential misuse or unau-
thorized access to this data can lead to severe consequences for individuals. Safeguarding
privacy in AloT networks requires robust security measures, encryption techniques, and
compliance with data protection regulations.

11.3.3 Complexity and Scalability

AToT networks are complex systems that consist of a multitude of devices, sensors, and
data sources. Managing and securing these networks at scale can be challenging. Each
device must be individually secured, and data transmission and storage points need to
be protected. The dynamic nature of AIoT networks, with devices joining and leaving
the network frequently, further adds to the complexity of security management.

11.3.4 Lack of Standardization

The lack of standardized security protocols and frameworks for AIoT networks poses chal-
lenges in implementing consistent and comprehensive security measures. Different devices
and platforms may have varying security capabilities and vulnerabilities, making it diffi-
cult to ensure a uniform security posture across the network. The absence of standards also
hinders interoperability and collaboration between different AIoT systems.

11.3.5 Resource Constraints

Many IoT devices in AloT networks have limited computational power, memory, and
energy resources. Implementing robust security measures while considering these con-
straints can be challenging. Resource-efficient security solutions that provide adequate
protection without significantly impacting device performance are required. This neces-
sitates the development of lightweight cryptographic algorithms, optimized protocols, and
efficient authentication mechanisms.

11.3.6 Zero-day Attacks and Emerging Threats

AloT networks face the risk of zero-day attacks, where new vulnerabilities are exploited
before security measures can be put in place. The rapid evolution of threats and emerg-
ing attack techniques make it crucial to have adaptive and proactive security measures.
Constant monitoring, threat intelligence, and timely updates to security systems are
necessary to detect and mitigate emerging risks effectively. Addressing these challenges
requires a comprehensive approach to security in AIoT networks. The following mea-
sures should be considered.

11.3.7 Strong Authentication and Access Control

Implementing robust authentication mechanisms, including two-factor authentication
and secure access control, ensures that only authorized devices and users can access the
network and its resources.
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11.3.8 Data Encryption and Integrity Protection

Employing encryption techniques, both for data transmission and storage, safeguards sen-
sitive information from unauthorized access. Additionally, integrity checks and measures
to detect and prevent data tampering are essential to maintain data integrity.

11.3.9 Intrusion Detection and Prevention Systems

Deploying intrusion detection and prevention systems helps identify and respond to
potential threats in real-time. These systems can monitor network traffic, identify anoma-
lies, and take proactive measures to mitigate risks (Hussain et al. 2023).

11.3.10 Security Audits and Penetration Testing

Regular security audits and penetration testing help identify vulnerabilities and weak-
nesses in AlIoT networks. Conducting these assessments allows organizations to take
remedial actions and strengthen security measures accordingly.

11.3.11 Collaboration and Standardization

Collaboration among industry stakeholders, regulators, and security experts is crucial
to develop standardized security frameworks, protocols, and best practices for AloT net-
works. This collaboration ensures consistent security implementation across different sys-
tems and promotes interoperability.

11.3.12 Security Awareness and Education

Promoting security awareness and education among users, employees, and stakeholders is
vital. Regular training programs and guidelines on cybersecurity practices help mitigate
human errors and improve overall security posture.

11.4 CYBERSECURITY STANDARDS FOR AloT NETWORKS

The capabilities of AI and the IoT are combined in AloT networks to produce intel-
ligent systems that can learn and adapt to their environments. The protection of these
networks is of the utmost importance because they are susceptible to a wide vari-
ety of cyberattacks. Cybersecurity has gained a lot of popularity over the past decade
because the complexity introduced by the proliferation of networked devices makes
it exceedingly difficult to monitor a big volume of data and maintain diversity. The
term “cybersecurity” refers to the overall framework of measures put in place to safe-
guard information systems, networks, applications, and data from malicious intrusion
(Rehman et al. 2022). At the application, network, host, and data levels, one can find
cyber-defensive techniques. Developing barriers to prevent unauthorized access, alter-
ation, or destruction of computing infrastructures, networks, applications, and data
is a primary focus of cybersecurity. The tremendous rise of data using interconnected

networks and technologies like big data, IoT, cloud computing, and fog/edge comput-
ing has led to the rapid development of cyberspace, which in return had impacted
changes in cyber-infrastructure.
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In recent years, layered security architecture has acquired global popularity, with intru-
sion detection systems playing a crucial part in network state monitoring. The architecture
of layered security demonstrates that there is no single active/passive security solution that
can defend against a wide variety of threats. Active security solutions, such as firewalls,
intrusion prevention systems, antivirus software, and access control lists, are commonly
deployed to address vulnerabilities and attacks at various Open Systems Interconnection
(OSI) model layers. Their ability to defend against innovative and zero-day threats is, how-
ever, severely constrained. Thus, passive monitoring plays a crucial role, and intrusion
detection systems at both the network and host level offer security professionals consid-
erable insight. Passive monitoring gives the Cyber Incident Response Team (CIRT) net-
work insight and directs them to upgrade their active security solutions by writing new
Intrusion Prevention System (IPS) rules, installing updated software patches, and adopting
new active solutions.

Today’s ever-evolving technological landscape presents an ever-present risk of
security being breached in service of malicious ends. People have experienced both
the benefits and drawbacks of technology over the years. Negative measures include
data theft, data manipulation, and making breaches in security that could in return
harm possible aspects in the concerned domain, while positive measures include
setting trends and bringing huge changes to fields like Machine Learning (Angelov
et al. 2019), the IoT (Gubbi et al. 2013), cybersecurity, and wireless sensor networks
(Wang and Balasingham. 2010).

Digital technologies demand new frameworks. All economically advanced nations view
Al development as essential to worldwide competitiveness and national security. Al is used
in education, personalized treatment, environmental preservation, and more. Al is now
crucial to any nation’s digital economy. Yet, the risks of AI technologies require legislative
safeguards for Al system security (Kseniia and Minbaleev. 2020). Table 11.1 illustrates the
existing standards and their description.

11.5 IMPORTANCE OF SECURITY FOR AloT

Integrating Al into IoT devices can bring many benefits, such as improved efficiency,

enhanced decision-making capabilities, and increased automation. However, it also
introduces new security concerns that must be addressed. Incorporating Al into IoT
devices enhances the attack surface, as more devices and data kinds are communi-
cated when Al is incorporated. This can make it easier for attackers to identify system
weaknesses.

1. Complex Algorithms: It can be hard to protect AI's complex algorithms from attacks
like adversarial attacks, in which an attacker changes the input data to trick the sys-
tem into making bad decisions.

2. Increased Attack Surface: Integrating Al in IoT devices increases the attack surface,
as there are more devices and more types of data being transmitted. This can make it
easier for attackers to find vulnerabilities in the system.
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TABLE 11.1  Existing Standards and Description

Standard/Regulation =~ Description Focus Areas

ISO/IEC 27001 Information Security Management System General cybersecurity management
(ISMS)

ISO/IEC 27019 Information security for energy/utility sectors ~ Critical infrastructure protection

NIST SP 800-183

NIST SP 800-183A
NIST SP 800-183B

Network of Things (NoT) - Cybersecurity
Framework

Security Capabilities of IoT Devices

IoT Non-Technical Supporting Capability
Baseline

TIoT device lifecycle

Device security features
Non-technical considerations

IEC 62443 Industrial Communication Networks Industrial IoT cybersecurity

EN 303 645 Cybersecurity for Consumer IoT Consumer IoT device security

EN 303 645-1 Requirements for Consumer IoT Baseline security requirements

EN 303 645-2 Guidelines for implementation Implementation guidelines

UL 2900 Software Cybersecurity for Network- Software security for connected
Connectable Products devices

CIS Controls Center for Internet Security (CIS) Controls  General cybersecurity best practices

CSA IoT Controls Cloud Security Alliance (CSA) IoT IoT security controls and guidelines

Framework Controls Framework

HIPAA Health Insurance Portability and Healthcare IoT data security
Accountability Act

GDPR General Data Protection Regulation Data protection and privacy

CCPA California Consumer Privacy Act Consumer data privacy (California)

3. Data Privacy: To learn and make choices, Al relies on vast volumes of data, which
may include sensitive information. This raises issues regarding the privacy of the data
as well as the possibility of data breaches.

. System Failure: Failure of a system can have severe repercussions, particularly when
it occurs in systems that are employed in essential infrastructure, such as those used
in the healthcare industry, the transportation industry, or the energy industry. It is
therefore of the utmost importance to make certain that Al systems are built to be
resilient and can continue to function if they are targeted by an attack.

. Human Error: Incorporating Al into IoT devices can also raise the danger of error
caused by humans, particularly if users are not adequately taught or do not compre-
hend how the system operates. This can result in the accidental disclosure of sensitive
information as well as various types of security flaws.

It is crucial to make certain that security is incorporated into the AIoT system from
the very beginning to help alleviate these security problems. This includes putting into
practice the concepts of security by design, carrying out regular security assessments, and
making certain that all devices are kept up to date with the latest security patches. In addi-
tion, it is essential to give users with the appropriate training and knowledge, as well as to
have response strategies in place, so that any security incidents may be rapidly contained
and mitigated.
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There are not enough precise standards for the security of AloT yet. Although numer-
ous broad cybersecurity standards can be applied to AIoT systems, there is a need for more
specific standards that meet the unique security issues that are presented by AIoT. The
necessity for decisions to be made in real-time is one of these problems, along with the
utilization of machine learning algorithms and the integration of AI with legacy systems.
Existing cybersecurity guidelines for AloT tend to place more emphasis on security and
preliminary risk evaluations than they do on privacy issues and do not offer any recom-
mendations regarding continuous monitoring and enhancement. There is a need for stan-
dards that address privacy problems such as the reduction of data, user consent, and the
retention of data, because of the vast amounts of personal and sensitive data that can be
acquired by AIoT devices.

Moreover, cybersecurity requirements and laws for AIoT vary greatly among nations
and regions, causing confusion and compliance issues for firms that operate in several
jurisdictions. Further international collaboration and harmonization are required to pro-
duce consistent and interoperable AloT security standards.

11.6 CYBERSECURITY STANDARDS FOR AloT NETWORKS

AloT networks combine the power of AI with the devices connected to the IoT, result-
ing in a complex system with its own set of unique security concerns. Several different
cybersecurity standards have been developed to guarantee the safety of [oT networks. As is
common knowledge, several Standard Development Organizations (SDOs) including the
International Organization for Standardization (ISO), the International Electrotechnical
Commission (IEC), the European Committee for Standardization (CEN), the European
Committee for Electrotechnical Standardization (CENELEC), and the European
Telecommunications Standards Institute (ETSI) are developing Al-related manuals and
standardization deliverables. Such investigations may aid in appreciating the nature of the
new and assessing if it is sufficiently distinct from what has come before to warrant or
necessitate the development and implementation of new methods. In addition, they could
guide the application of existing methods to new ones or describe new procedures to fill
in the gaps.

The following is a list of some of the most essential standards for the cybersecurity of

IoT networks:

11.6.1 NISTIR 8259A loT Device Cybersecurity Capability Core Baseline

The National Institute of Standards and Technology (NIST) report NISTIR 8259A provides
advice for controlling cybersecurity and privacy concerns in IoT devices. The research
addresses critical design and development considerations for IoT devices, including secu-
rity capabilities, data protection, and interoperability. In addition, it defines a risk man-
agement methodology for IoT devices, including methods for identifying, assessing, and
mitigating cybersecurity and privacy threats throughout the device lifecycle. The purpose
of this paper is to assist enterprises in formulating and implementing appropriate security
and privacy strategies for IoT devices (Michael Fagan (NIST). 2020).
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11.6.2 ESTI EN 303 645 Cybersecurity Standard for loT

The ETSI EN 303 645 standard specifies the minimum requirements for information secu-
rity in IoT devices. It outlines thirteen requirements that makers of IoT' devices need to
follow to make their products resistant to hacking attempts. These rules include require-
ments for unique default passwords, protection against known vulnerabilities, secure soft-
ware, firmware updates, and transparency in reporting security concerns to end users. The
purpose of the standard is to address concerns about the potential for cybercriminals to
exploit IoT devices and to improve the privacy and security of IoT devices. The standard
will also increase the privacy of IoT devices. It is relevant to all varieties of IoT devices,
including those for the smart home, those that may be worn, and those used in industry
(ETSI).

11.6.3 1SO 30141 loT Reference Architecture

ISO/IEC 30141:2018 is an international standard that defines an IoT reference architecture
(IoT). It lays out the fundamental components of an IoT system and offers recommen-
dations for implementing established standards and cutting-edge technologies. Concerns
for privacy and security have been incorporated into the standard, making it useful for
ensuring the interoperability, stability, and security of IoT devices. Stakeholders includ-
ing designers, implementers, and regulators can use it to guarantee the interoperability,
dependability, and security of IoT systems as it provides a standard language and structure
for understanding and developing such systems. Privacy and security in IoT systems are
also addressed, as well as the utilization of existing IoT standards and future technologies
(ISO “Iso/Iec 30141:2018 Internet of Things (Iot)—Reference Architecture”).

11.6.4 1SO 27400 loT Security and Privacy

The international standard ISO/IEC 27400 is a comprehensive document that offers rec-
ommendations for the management of cybersecurity risks in the context of the IoT. It
contains guidelines, protocols, and procedures for detecting, evaluating, treating, and
monitoring cybersecurity threats that are unique to IoT devices and systems. The objec-
tive of the standard is to provide businesses with guidance that will assist them in estab-
lishing and maintaining efficient cybersecurity risk management frameworks for their
respective IoT environments. Additionally, it offers direction on how to address the privacy
threats that are linked with the devices and systems of the IoT (ISO “Iso/Iec 27400:2022
Cybersecurity—Iot Security and Privacy—Guidelines”).

11.6.5 1SO 27000 Information Security Management Systems

ISO/IEC 27000 for Information Security Management provides an overview and frame-
work for enterprises implementing the ISO/IEC 27000 set of standards. The standards
include different elements of information security, such as risk management, security con-
trols, and legal and regulatory compliance. These standards outline the requirements for
an ISMS and provide a framework for managing and protecting sensitive data through
risk management processes. This framework comprises requirements for building and
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maintaining an information security management system, assessing and treating infor-
mation security risks, and applying security controls. This set of standards is widely rec-
ognized and accepted as a recommended practice for managing information security
by enterprises worldwide (ISO “Iso/Iec 27000:2018 Information Technology—Security
Techniques—Information Security Management Systems—Overview and Vocabulary”).

11.6.6 1SO 27001 & 27002

ISO/IEC 27701 standard is an extension of the ISO/IEC 27001 information security
management standard. ISO/IEC 27701 provides a framework for implementing a pri-
vacy information management system (PIMS) in organizations, with a focus on protect-
ing personal data. It specifies requirements and guidelines for managing privacy risks,
ensuring regulatory compliance, and demonstrating accountability to stakeholders. The
standard is designed to be integrated with the ISO/IEC 27001 management system and can
help organizations achieve compliance with privacy regulations such as the EU’s General
Data Protection Regulation (GDPR) (ISO “Iso/Iec 27001:2022 Information Security,
Cybersecurity and Privacy Protection—Information Security Management Systems—
Requirements”). The standards cover aspects such as risk management, security controls,
and legal compliance. ISO/IEC 27001 specifies requirements for an information security
management system, while ISO/IEC 27002 provides a code of practice for information
security management. These standards are widely adopted as best practices for managing
information security (Disterer. 2013).

11.6.7 1SO 27032 Guidelines for Cybersecurity

The ISO/IEC 27001 standard stipulates the standards for establishing, implement-
ing, maintaining, and continuously improving an organization’s ISMS. The standard is
intended to assist organizations in managing and protecting their information assets,
including customer data, financial data, and intellectual property, by recognizing risks
and adopting controls to mitigate them. The standard is widely recognized and accepted
as a best practice for managing information security by enterprises around the world
(ISO “Iso/Iec 27032:2012 Information Technology—Security Techniques—Guidelines for
Cybersecurity”).

11.6.8 I1SO 27033 Network Security

ISO 27033 is a series of network security standards from ISO. It guides network infrastruc-
ture security and data confidentiality, integrity, and availability. The three-part series ISO
27033-1 gives an introduction to network security and defines important ideas, models,
and architectures; ISO 27033-2 provides guidelines for the design, implementation, and
management of network security measures; and ISO 27033-3 addresses cloud computing
network security.

The ISO 27033 series can be used with ISO 27001 for information security manage-
ment and ISO 27002 for information security controls in enterprises of all sizes. The series
helps organizations build a comprehensive network security strategy that protects impor-
tant assets and information from internal and external threats (ISO “Iso/Iec 27033-1:2015
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Information Technology—Security Techniques—Network Security—Part 1: Overview
and Concepts”).

11.6.9 1SO 27034 Application Security

ISO 27034 sets application security requirements. It helps enterprises manage and
improve application security from design to testing and maintenance. ISO 27034-1
gives an overview of application security and describes the ideas, principles, and pro-
cesses essential to protecting applications; ISO 27034-2 provides guidelines for imple-
menting application security controls; and ISO 27034-3 guides managing application
security risks.

The ISO 27034 series can be used with ISO 27001 for information security manage-
ment and ISO 27002 for information security controls in enterprises of all sizes. The series
helps organizations develop a comprehensive application security strategy that protects
vital assets and information by addressing technical and non-technical elements (ISO “Iso/
Tec 27034-1:2011/Cor 1:2014 Information Technology—Security Techniques—Application
Security—Part 1: Overview and Concepts—Technical Corrigendum 17).

11.6.10 CEN CENELEC Joint Technical Committee JTC’s

JTC 13 and JTC 21 are the names of the two Joint Technical Committees (JTCs) that
are primarily responsible for AI and cybersecurity work at European Committee for
Standardization-European Committee for Electrotechnical Standardization (CEN-
CENELEC) (P. Bezombes. 2023). The topic of discussion in JTC 13 is something that
has been called the “limited scope” of cybersecurity. A list of standards from ISO-IEC
that are of interest for Al cybersecurity are selected and then CEN-CENELEC may
adopt or adapt these standards based on their agreement to technically cooperate. The
most prominent standards that have been identified are those that are part of the ISO
27000 series, which focuses on information security management systems. These stan-
dards may be supplemented by the ISO 15408 series, which focuses on the development,
evaluation, and/or procurement of information technology products that have security
functionality. Additionally, sector-specific guidance may be utilized. ISO 27001-27008,
ISO 27010-11, ISO 27013-14, ISO 27016-17, ISO 27021-23, ISO 27031-32, and ISO 27035
are some of the standards that are covered. These standards were identified by CEN-
CENELEC followed by ISO/TEC AWI 27090 Cybersecurity-Artificial Intelligence, which
addresses the loop holes and criteria in AI and ISO/IEC CD TR 27563. Cybersecurity-
Artificial Intelligence addresses the partial impact of Al in security at initial stages to
test systems impacts.

Trustworthiness features, data quality, artificial intelligence governance, artificial intel-
ligence management systems, etc. are all part of the broader cybersecurity topic that JTC
21 is tackling. Considering this: ISO/IEC 22989, ISO/IEC 23053, ISO/IEC TS 4213, ISO/
IEC DIS 42001 for AI management system, the ISO/IEC 23894 is for Guidance on AI risk
management, the ISO/IEC FDIS 24029-2 is for methodology for the use of formal meth-
ods, and ISO/IEC CD 5259 series are for data quality and for data analytics in Machine
Learning (ML) should be consider.
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11.7 IDENTIFICATION AND AUTHENTICATION PROTOCOLS

Due to the increase in the number of IoT devices, the security of these devices is very
important. IoT technology is a network of small, lightweight devices that is growing at a
very fast speed. Security concerns must be addressed for IoT deployment so that it is effec-
tive for daily life. Security concerns related to commercial and personal purposes must be
kept in mind while deploying these devices (Eijndhoven. 2020). To address these security
problems, authorization and identification protocols are applied. Ensuring the integrity of
the IoT network’s authorization control is an effective method as it prevents unauthorized
people from accessing these devices. To enhance the quality and to add automation in this
process, AloT networks are gaining popularity. Due to the increased number of devices
and complex networks, it is crucial to take help from the latest technologies of Artificial
Intelligence.

For this purpose, multiple protocols can be employed to enhance the security of AloT
networks. Some of these protocols are traditional like passwords and digital certificates.
Modern methods like biometric authentication and OAuth2 can add additional layers to
the security of the networks. Let’s examine each protocol more deeply.

11.7.1 Passwords

Passwords are one of the traditional methods of authentication to prevent unauthorized
activity in IoT networks. To gain access to the network, the user must put in a valid pass-
word. Although this prevalent method is effective to some extent, due to the presence of
brute-force attacks, this technique is susceptible. Once the user finds the right combination
of the characters as a valid password, the network will be compromised, and it can lead to
data and security breaches. Now this encourages us to find alternatives and more secure
authentication protocols.

11.7.2 Digital Certificates

Digital certificates are also used to detect the validity of the users. These certificates are
issued by a well-known third-party certification authority, and the certificates have criti-
cal information related to devices like devices name, public key, and expiry date. The cer-
tificates are widely used in web applications and IoT devices such as Secure Sockets Layer,
and Transport Layer Security (SSL/TLS) to enhance security. Digital certificates are also
vulnerable to cyber-attacks as intruders may hack third-party systems and tamper with
the information on the certificate (Lal, Prasad and Farik. 2016). Figure 11.1 shows the iden-
tification and authentication protocols.

11.7.3 Biometric Authentication

Biometric authentication involves the physical verification of the user. The user must pro-
vide fingerprints, facial recognition, or voice recognition to log into IoT networks. This
seems a more secure method as it involves the physical characteristics of the users, and it is
very difficult to change these features (Lal, Prasad and Farik. 2016). Although biometrics is
considered one of the safest methods to enhance the security of IoT devices, there are some
limitations to the effectiveness of this methodology.
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FIGURE 11.1  Identification and authentication protocols.

11.7.4 Kerberos Authentication

Kerberos Authentication is a third-party authentication system developed by MIT and is
considered very safe due to its complexity. It is mostly used in distributed networks where
users need access to different stations. Kerberos uses symmetric key encryption techniques
and a key distribution center (Baliello, Basso and Giusto. 2002).

11.7.5 OAuth2

OAuth?2 is an authentication protocol that is widely used due to its easiness. It enables users
to log into different online applications and networks using third-party software that has
the information of the user. This protocol is a kind of permission for the application to use
the data of the user on his behalf to log in to a new system (Richer and Sanso. 2017). This
methodology is frequently used in social media and cloud-based applications. In addi-
tion to these protocols for authentication, AIoT networks may use some other methods
like encryption, firewall, and intrusion detection systems. The range of these protocols
indicates that organizations should use different combinations for the authentication and
identification of the users. Figure 11.2 shows the general digital signature system.

11.8 DATA ENCRYPTION AND INTEGRITY PROTECTION

11.8.1 Data Encryption

IoT devices are producing large amounts of data in real-time. With the implementation
of cloud computing devices, this data is stored in cloud servers. Cloud computing is an
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emerging field that involves the storage and processing of the data produced by IoT devices
in complex networks. However, the data on the internet is at risk as intruders may attack
and steal the data. The resources needed for IoT devices are less compared to normal com-
puters as IoT devices consume less power and network bandwidth. To secure the data of
these devices, traditional encryption algorithms can be used like Advanced Encryption
Standard (AES), Data Encryption Standard (DES), and Triple Advanced Encryption
Standard (3AES). But, because these particular algorithms are very complex and need high
computation resources, these methods are not suitable especially for limited resources
enabled IoT devices (Mehmood et al. 2019).

Encryption is the process of converting normal text into encrypted text. This is help-
ful to prevent unauthorized access to the data being transformed. For each data transfer,
an encryption key is generated to protect the data. Mathematical functions are used to
transform the normal data into an unrecognizable form so it will not be understandable to
intruders. Once the data are reached, the destination decryption key is used to convert the
encrypted data back into its original form. In IoT devices, large amounts of data are being
transferred, so encryption methodologies are applied to protect the data. The unauthor-
ized persons will not be able to understand or decode the data being transferred. Different
combinations of symmetric and asymmetric algorithms are used to further protect the
systems. The following are some of the algorithms used for the data encryption of AloT
devices.
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11.8.2 Cryptography

Cryptography is considered one of the most powerful techniques to secure the data
transmitted over a network. The integrity of data can be protected with the help of
cryptography as no one can access and modify the data. Encryption and decryption are
the processes applied in cryptography. The data is transformed into an unrecognizable
form so the third party will not be able to understand the data even if they get access.
The data is then converted back to its original form with a decryption key. Symmetric
cryptography uses the same keys for encryption and decryption. On the other hand,
asymmetric cryptography uses different keys for the encryption and decryption
of the data.

11.8.3 Blockchain Based Encryption

In blockchain-based encryption, a Third-Party Authenticator (TPA) is involved to protect
the security of the data. It uses multiple blockchain groupings of information and signa-
ture keys of IoT networks. The data is protected with hash keys that are assigned randomly
in constant-size blocks. This methodology is cost-effective as it calculates the cost of the
IoT integrity from the central server to the device. Cross distribution and blockchain link-
age are applied to manage multiple devices at a time at a low cost (Sim and Jeong. 2021).

11.8.4 Public Key Infrastructure (PKI)

Public Key Infrastructure is a complex system to manage the AloT network’s credentials.
Due to millions of IoT devices, it is very difficult to manage a centralized system to allocate
security certificates to these devices. AloT devices have constraints like low power and
computation resources. PKI is a lightweight mechanism that provides the certificate for
AIoT devices. This enrolment process is very useful for devices with low battery and low
Random Access Memory (RAM) (Hoglund et al. 2020).

11.8.5 Message Authentication Code (MAC)

Generally, single cryptographic techniques lack security and integrity. With the growing
demand for IoT devices, the mechanism of encryption should be developed with the com-
bination of different methodologies to enhance security. Implicit message authentication
code (iMAC) is an encryption technique that is based on a combination of polygraphic
substitution, Exclusive OR (XoR), and simple columnar transportation to calculate MAC.
It also uses real-time environmental parameters like temperature, pressure, and Received
Signal Strength Indicator (RSSI) to create secret keys for data transportation (Ullah,
Meratnia and Havinga. 2020).

11.8.6 Secure Boot

Secure boot technology makes the device boot-up process protective which enables
security while the device is in boot state. It prevents intruders from making any
changes in the firmware or hardware settings of the devices. Secure boot is essential
in AloT networks as it provides security to devices in the booting process. Once the
device is booted successfully, the next process is trusted boot. It works on a digital
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signature that is used to verify the authenticity of the firmware and system settings.
The digital signature also confirms that the system is not infected with any malware
(Wang and Yan. 2022).

11.9 NETWORK SEGMENTATION AND ACCESS CONTROLS

Network segmentation and access controls are a very important part of the security of AloT.

Segmentation of the network is done by dividing the complex network into smaller net-
works or subnetworks. This is helpful in order to manage the network easily and improve
its performance. In the context of AloT devices, the segmentation is slightly different, as
it involves the separation of different components of the devices. AIoT devices are a com-
bination of different sensors, controllers, and actuators. By separating each component,
the security and integrity of these devices can be improved. Access controls are deployed
to permit access to the network settings to only authorized persons. In the AIoT network
context, access control is specifically applied to limit the access of the users to the network
settings of the devices.

Network segmentation is a very effective mechanism for dividing the network into sub-
networks and creating different layers. Most enterprises develop their network like a for-
tress. Different network security techniques are deployed to secure this fortress. Network
segmentation expands the idea of the fortress and creates multiple layers for the defence of
this fortress. The intruders and attackers will need more time to break these layers to get
into the settings of the network (Simpson and Foltz. 2021).

11.10 CHALLENGES TO IMPLEMENT CYBERSECURITY
STANDARDS FOR AloT NETWORKS

As most of the AIoT devices are built on the latest technologies, it is a challenge to connect
new devices to old networks. The newly built devices connected to traditional networks are
working on legacy protocols. Most of the old networks are working on protocols that were
specifically designed for computers and devices that have good computation resources. In

the case of AIoT devices, the computation resources are limited, which causes the devices
to have some vulnerabilities (Payne and Abegaz. 2018). Some of the reasons the attackers
prefer to attack IoT devices are the usage of default passwords, lack of encryption, non-
segmented networks, and lack of security updates. Most manufacturers use very weak
default passwords for the devices, and then these passwords are provided in user manuals,
so chances of intrusion into these devices are high. Very few users bother to change the
default passwords because of the complex user interfaces provided by the manufacturers
(Payne and Abegaz. 2018).

The lack of encryption of IoT networks encourages hackers to intrude on the devices and
steal commands to get into the data of the devices. In one DEF CON presentation in 2016,
testing revealed that almost 75% of the devices in the test were easily hackable with hardware
costing only $200 (Coldewey. 2016). As most users are not aware of the network segmenta-
tion techniques, it is difficult to segment the network, and this leads to security threats.
Internet Service Providers (ISPs) can provide this feature in the routers and networking
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devices to apply segmentation easily without any technical knowledge (Payne and Abegaz.
2018). Virtual Local Area Networks (VLANS) are mostly used in organizations and offices
that employ technical people to separate different devices and networks. But it is a challenge
for a non-technical user to do network segmentation to protect it (Payne and Abegaz. 2018).

11.11 EMERGING TECHNOLOGIES AND THEIR
IMPACT ON CYBERSECURITY

Cybersecurity concerns are increasing day by day due to the increase in the number of net-
work devices. [oT is being used in everyday life to automate different tasks. Protecting these
devices and networks from intruders is very important. With new technologies emerg-
ing, there should be a check on the impact of these technologies on cybersecurity. While
some of these technologies have the potential to improve cybersecurity, others may create
new challenges and threats. Following are some of the emerging technologies impacting
cybersecurity.

11.11.1 Artificial Intelligence (Al)

Artificial intelligence is being used in (IoT) devices to detect cyber threats and mitigate
cyber attacks automatically. With deep learning and unsupervised learning algorithms,
IoT devices can analyze big volumes of potential threats and problems. However, these Al
algorithms are available to hackers as well, and they can use them for harmful purposes.
Due to Al the number of cyberattacks is growing at a very high speed, and the nature of
the attacks is also very complex as hackers are using automated tools to create large vol-
umes of malicious traffic (Patel. 2023).

The purpose of emerging technologies is to develop intelligent systems with high
capabilities, like humans, to identify potential threats in IoT devices. In this digital
era, Al methodologies can help organizations and individuals to be safe from cyber
threats. The massive use of social media applications creates huge volumes of data. To
protect and analyze this data, the traditional methods will not be effective anymore.
Al rescues us in textual and graphical data analysis to extract meaningful data and
then protect it (Li. 2018).

A typical Machine Learning (ML) process consists of the following steps (Xin et al. 2018).

o Extraction of the features

Selection of the ML algorithm

 Training of the model

« Classification or prediction of the unknown using the trained model

Different ML algorithms are deployed for different situations and datasets. Common ML
algorithms for classification and prediction are Support Vector Machine (SVM), k-nearest

neighbour (k-NN), decision tree, and neural networks. It is important to select the right
algorithm for specific industrial problems (Li. 2018).
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11.11.2 Blockchain

Thelack of security protocols for IoT devices brings many challenges and risks. Blockchain
is distributed technology that can be deployed to secure IoT devices. A blockchain is a
combination of linked blocks that are cryptographically protected, and their data is saved
in a distributed and decentralized ledger. With many advantages over traditional meth-
ods, blockchain technology is considered one of the most secure to protect IoT devices
(Saxena, Bhushan and Ahad. 2021). First, blockchain technology solves the problem of
a single point of failure, provides fault tolerance abilities, and incorporates communica-
tion at both ends in devices. Second, the users of blockchain technology can verify the
other users for communication which protects the devices and data from unauthorized
access. Third, the storage capacity of blockchain servers is enough to handle and save
huge amounts of data with all the security updates for IoT devices (Saxena, Bhushan
and Ahad. 2021). Furthermore, blockchain technology enables the devices to secure the
data in immutable ledgers which cannot be changed by any unauthorized user (Saxena,
Bhushan and Ahad. 2021) (Wu et al. 2019).

Network security can be improved with access control using blockchain technology.
Multiple layers are applied to handle the data and protect it from intruders. These layers are
connected with a decentralized blockchain network. The data is protected in the multilayer
blockchain model and the records of the blockchain links are saved in a ledger (Axon and
Goldsmith. 2002).

11.12 CONCLUSION

To summarize, there are a lot of security-based standards available concerning IoT secu-

rity, although ISO 27000-based information security management systems have a complete
set of instructions for effective security measurement. Change in the trends for effective
security solutions using AI methods creates a gap to fill due to Al applications in a cyberse-
curity context. Al-based cybersecurity procedures are being developed to safeguard CPSs
from zero-day attacks. In cybersecurity, machine learning algorithms are used to manage
large amounts of heterogeneous data from many sources to generate attack patents and
accurately forecast future attacker behaviour. But this has brought to cyber experts’ atten-
tion the need to analyze cybersecurity standards after the integration of Al It is becoming
increasingly critical to ensure the safety of these connected devices as the number of linked
devices and reliance on IoT continues to rise. The difficulty of ensuring data privacy and
integrity in the IoT is further complicated by the integration of Al
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12.1 INTERNET OF THINGS

The development of the Internet of Things (IoT) has been a gradual process starting with
individual machines and evolving into networking and the emergence of the Internet. The

Internet encompasses a variety of personal and organizational computing devices, intranets,
and other related technologies. The emergence of wireless communication and the develop-
ment of compact computing devices have facilitated the realization of mobile computing.
The proliferation of diverse electronic devices, including sensors and actuators, has led to the
assumption that each device is equipped with intelligent sensing and computing capabilities,
thus heralding the advent of the IoT era. The IoT comprises three primary constituents: the
“things” themselves, encompassing a wide range of technologies, devices, items, animals,
and humans; the communication networks interconnecting these devices; and the computer
networks responsible for transmitting data from the Internet to the respective devices.

The IoT is a network of physical objects equipped with electronics, sensors, software,
and network connections, allowing them to collect and modify data. Its main benefit is its
significant impact on daily life and user behavior, such as home security systems enabling
remote temperature and lock status monitoring. The primary goal of the IoT is to gain
better insight into nearby or distant environments, allowing users to understand, manage,
and respond to the data collected to enhance human existence. The integration of objects
into the IoT has led to numerous business opportunities. However, addressing security
and privacy concerns, particularly about telecommunications and information technology
complexities, is necessary for technology advancement and success. Despite its momen-
tum as an evolving paradigm, IoT technology still faces security and privacy challenges
that must be resolved, as these are closely linked to IoT-connected devices.
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The impact of IoT is significant as it affects various aspects of life, such as people, processes,
data, and things. People are affected as IoT allows for more control, monitoring, and enhanc-
ing of their capabilities by connecting machines to humans. Processes are also impacted
as real-time communication between users and machines allows for quicker completion
of complex tasks. The enhanced capacity to gather data at increased frequencies and with
heightened dependability significantly influences the process of rational decision-making,
so illustrating an essential aspect of data’s impact. Furthermore, IoT significantly impacts
many entities, such as devices, sensors, processors, and actuators, enabling them to establish
communication channels and fulfill more substantial objectives. This adds value to objects
like mobile devices. The IoT market offers numerous opportunities for businesses in various
industries, and even minor variations can result in significant changes worth billions of dol-
lars in multiple areas within a few years.

The IoT can be seen as a significant data source affecting IT infrastructure. To take
advantage of this, improved data analysis techniques present unique and critical opportu-
nities for generating data (Ahlgren, Hidell, and Ngai. 2016). However, collecting, prepar-
ing, and analyzing massive amounts of data are challenging. First, the volume of data can
increase exponentially in just a few months. Second, this type of data is complex and has
unique characteristics. It has a vast range of variability and is often pseudo-structured or
unstructured. Evaluating and managing both structured and unstructured data are cru-
cial to obtaining a complete view of the data produced by sensors. Depending entirely on
a particular data template can substantially constrain the possibility of generating innova-
tive ideas. By conducting comprehensive data analysis, managers can acquire a strategic
perspective for making decisions about their business.

IoT devices, encompassing a range of technologies such as sensor data, smartphones,
intelligent software, and social media platforms, have the potential to offer significant
insights that can inform decision-making processes. In addition, consumer-oriented
products such as smart speakers, smart TVs, toys, smart appliances, and wearable
devices have the potential to provide relevant data for the examination of user behav-
ior and the identification of fraudulent actions. Big data derived from IoT devices can
create value for organizations, providing insights that help improve performance and
understanding of customer needs (Qureshi, Alhudhaif, et al. 2021). By using analyti-
cal tools such as predictive modeling, clustering, and classification, organizations can
unlock the full potential of generated data. The advent of IoT and its associated tech-
nologies, such as cloud computing, has facilitated the integration of data sources from
various fields, resulting in the development of diverse methods. Decision-makers have
the potential to enhance the performance of IoT and big data applications through the
integration of AI technology, such as machine learning or deep learning algorithms
(Alansari et al. 2018). The integration of Al in IoT has created a new area known as the
Artificial Internet of Things (AloT).

In the past, using intelligent computational systems was unfeasible due to the enor-
mous amount of data and computational power required. However, the emergence of
cloud computing and AIoT have enabled organizations to transform their processes and
enhance productivity by identifying faults through emerging platforms like business
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intelligence and data analysis platforms. With the speed of technological advancement
expected to accelerate even further, it is crucial to update AIoT technology, particularly
regarding software, hardware, and security. One promising security technology cur-
rently being used is Physically Unclonable Functions (PUFs), which use unique keys
and timestamps to authenticate AIoT objects. However, this approach has limitations,
including the need for significant computing power to authenticate all objects and mes-
sages in the AloT network and the potential for a bottleneck when using an authen-
tication server (Alhalafi and Veeraraghavan. 2019). The AloT field has experienced
substantial growth due to data sensors, processing and connectivity, software informa-
tion, and various intelligent services that collect and share data through the internet.
However, this expansion has led to numerous challenges for AIoT, such as connectivity,
scalability, big data, heterogeneity, security, and privacy, as indicated by various AloT
security assessments from different sources.

12.2 AloT SECURITY CHALLENGES

The field of AIoT security encompasses the various protective measures employed to
ensure the uninterrupted operation of devices, mitigate the risk of operational or han-
dling harm, and minimize vulnerability to distant cyber intrusions. In the context of
the increasing prevalence of ubiquitous computing, security and privacy issues have

emerged as significant areas of concern. The proliferation of AIoT devices and the wide-
spread adoption of cloud platforms have brought about a heightened concern regard-
ing data security. Furthermore, the proliferation of internet-connected devices has
led to a notable escalation in concerns around privacy. The escalating threat to AloT
devices emphasizes the need to identify viable solutions. There is a pressing need for
a pragmatic resolution to effectively tackle the growing problem of vulnerability and
significantly reduce the frequency at which cyber criminals operate. The occurrence of
Distributed Denial of Service (DDoS) attacks in 2016, which targeted AloT services and
devices worldwide, functioned as a significant event that alerted the IT community to
and confirmed the existence of security risks associated with the IoT rather than their
being merely hypothetical. However, the implementation of personal security measures
aimed at protecting equipment from both identified and unidentified cyber adversaries
can offer a potential resolution.

The IoT network has experienced substantial growth due to the emergence of intelli-
gent transportation, smart cities, smart homes, smart grids, smart healthcare, and various
other applications. The system in question is not just classified as a sensor network, but
rather a comprehensive framework that encompasses Wireless Sensor Networks (WSNs)
as a constituent component within its broader ecosystem (Qureshi and Abdullah. 2013).
The proliferation of Internet-connected devices gives rise to a multitude of worries about
AloT, particularly about its susceptibility to vulnerabilities. Concerns encompass a wide
range of difficulties, including the expansion of botnets, inadequate encryption measures,
the prevalence of weak passwords, connectivity challenges, financial breaches, inaccurate
detection techniques, scalability limitations, the management of massive datasets, hetero-
geneity, as well as security and privacy concerns.
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12.2.1 New Security Vulnerabilities

As businesses increasingly adopt AloT devices, new security vulnerabilities will continue
to emerge. These vulnerabilities are attributed to limitations in device/object capabilities
and include the following:

1. Rise of Botnets: Recently, there has been a surge in the use of botnets for attacks. Botnets
are groups of infected computers that malicious individuals control without the com-
puter owners’ knowledge. These internet-connected devices are remotely manipulated
by hackers who exploit the acquired information for illicit purposes. Organizations
such as hospitals can fall victim to botnets without the management’s awareness, as
their computer network devices can be hijacked and incorporated into the botnet.

2. Large Volume of IoT Devices: Cybersecurity professionals have mainly concentrated
on safeguarding computers and mobile devices. Nonetheless, public and private enti-
ties’ adoption of AloT devices has gained significant momentum. Presently, there are
approximately 7 billion gadgets; the figure could climb to 20 billion. The widespread
use of AloT devices has led to a surge in security vulnerabilities, which has compli-
cated the work of security specialists.

3. Lack of Encryption: While encryption is a potent measure against unauthorized
access to data by hackers, it poses a significant security challenge for AloT devices.
Unlike conventional computers, these devices may have limited processing and stor-
age capabilities. Therefore, hackers can easily manipulate the security algorithms
intended to safeguard AloT devices more frequently.

4. Outdated Legacy Security: Connected legacy systems pose an extra worry as they
seem outdated in an organization increasingly employing many AloT devices. Such
legacy systems, lacking updated security standards, could be vulnerable to a breach
due to a compromise in a single AIoT device on the network.

5. Weak Default Passwords: Most AIoT devices come with easily guessable default pass-
words, and despite the customary practice of updating passwords, some IT managers
need to pay more attention to this simple directive. As a result, an AIoT device with a
weak or predictable password could be vulnerable to a brute-force attack. This grave
issue is prevalent globally and requires urgent attention. For instance, California offi-
cials in the United States banned default passwords in 2018 as a proactive measure to
tackle this problem.

6. Unreliable Threat Detection Models: Numerous companies adopt diverse tech-
niques, such as monitoring user activity, scrutinizing indicators, and adhering to
security standards, to detect data breaches. However, the proliferation of AIoT devices
and their intricate nature challenge conventional threat control methods, rendering
them less effective.

7. Small-Scale Attacks: While cybersecurity professionals focus primarily on avert-
ing large-scale cyberattacks, the security issue of AIoT lies in small-scale attacks,
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which are relatively harder to detect and may take place without the organization’s
awareness. Hackers can potentially compromise various essential technologies, such
as cameras, scanners, and printers.

. Phishing Attacks: Phishing is a pervasive cybersecurity threat that targets all enter-

prise systems, and IoT devices could be the latest attack vector. Hackers may signal a
particular AloT device, leading to numerous problems. Even though it is one of the
most common cyberattacks, it is preventable. However, most organizations need to
educate their employees adequately about the current phishing risks and how to avoid
or handle such incidents in a worst-case scenario.

. Inability to Predict Threats: Some organizations need a versatile management system

to monitor activities and offer insights into potential hazards. Security experts must
adopt a more proactive approach to preempt AloT security vulnerabilities before they
arise. Without such a proactive strategy, an organization may fail to detect potential
breaches promptly.

Lack of Frequent Software Updates: Workers use frequent software updates to man-
age security on mobile devices and laptops. But some AIoT devices get different soft-
ware updates than other technologies, and certain companies need to give their AloT
devices essential security updates.

IoT Financial Breaches: When an institution, such as a bank, employs AloT devices
to facilitate electronic or e-payments, there is typically an inherent vulnerability that
exposes them to the potential threat of unauthorized access by hackers. This unau-
thorized access poses a significant danger of compromising sensitive information
and illicitly misappropriating funds. Numerous firms are taking proactive measures
to include machine learning or blockchain technology to mitigate financial fraud.
Nevertheless, there are still some businesses that have not embraced this method.

It vividly portrays the various hazards present in both hardware and software domains.
The dangers encompass a range of attack vectors: physical, software, network, and encryp-
tion. To effectively tackle these difficulties, the solution must provide a communication
method that is both adaptable and interoperable with the many devices involved.

User Privacy: Internal and external user data security is a top priority for organiza-
tions, especially given that many employees use IoT devices supplied by their employ-
ers. The enterprise’s reputation may be significantly impacted if a breach leads to data
compromise. Therefore, preserving privacy is a primary concern within the realm of
IoT security, necessitating prompt attention and resolution.

Heterogeneity of Connected Devices and Environment: The administration of
AIoT poses significant challenges, especially in terms of security management and
service functions, due to the heterogeneous environment of the connected system.
The heterogeneity of AloT devices and their surroundings makes effective and effi-
cient management challenging. Although AloT has numerous uses and has the
potential to enhance people’s quality of life, it also presents various obstacles that
must be addressed immediately for it to be widely adopted.
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FIGURE 12.1 Classification of AIoT attacks.

Figure 12.1 provides a comprehensive depiction of the classification of security attacks
in the context of the AloT.

A flexible and interoperable communication system for AloT devices must be developed
to address these challenges. AloT system holds promise in enhancing individuals’ quality of
life; nonetheless, it is imperative to confront these obstacles to facilitate widespread accep-
tance and implementation promptly. AloT is often regarded as the most influential techno-
logical advancement of this era after the establishment of the Internet. The quantity of linked
physical devices has risen considerably and exceeded the global human population in 2010.
Recently, there has been substantial progress in creating AloT-enabled devices. Technological
developments, particularly in terms of energy-efficient and resource-constrained devices,
have expanded internet access even for remote locations (Musaddiq et al. 2018; Kraijak and
Tuwanut. 2015). Table 12.1 shows the AlIoT attacks and countermeasures.

12.3 SECURITY REQUIREMENTS FOR AloT

Establishing security, privacy, and authentication measures is important for standard-
izing any mobile communication system. The security recommendations provided by

International Telecommunication Union - Telecommunication (ITU-T) encompass a
range of security aspects that serve to safeguard against significant security risks. The
security dimensions have several aspects, including user information, network infrastruc-
ture, and applications. Within the context of AIoT, the following dimensions are defined:

» Access Control: It is a fundamental and critical measure for AloT security that
ensures network resources can be accessed only by authorized devices while prohib-
iting unauthorized devices from accessing network elements, services, stored infor-
mation, and information flows.
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TABLE 12.1 Overview of AloT Attacks and Countermeasures
Category Attacks Countermeasures
Network Attacks Traffic Analysis Secure DNP3, PKI, SSL, encryption, authentication
RFID Spoofing IPsec will significantly cut down on the risk of spoofing.
RFID Cloning Encryption, authentication, unique identifiers, jamming
RFID unauthorized access  Device Authentication
Man in the Middle Secure DNP3, PKI, TLS, SSL, encryption, authentication
Software Attacks Phishing Attacks Antivirus, schedule signature updates
Worm, Spyware, and MAPE, Linear SVM, Hybrid Spyware Detection
Virus Attacks
Malicious Script Runtime Type, Checking, Firewall Checks
DoS Attack SIEM, IDS, flow entropy, signal strength, sensing time
measurement, transmission failure count, pushback,
reconfiguration methods
Physical Attacks Node Tempering Physically secure design
RF Interference Device Authentication
Node Jamming JADE, anti-jamming, IPsec Security channel
Malicious Node Injection DLP, IDS, SIEM, Anti-virus, Diversity technique
Social Engineering Secure DNP3, PKI, SSL, encryption, authentication
Malicious Code Use FileZilla as the FTP client.
Encryption Attacks ~ Side Channel Attacks Masking, EMI filtering, Noise addition
Cryptanalysis Attack Blowfish, RSA, ECC, DSA, AES
Man in the Middle Secure DNP3, PKI, TLS, SSL, encryption, authentication

Authentication: It verifies the identity of AIoT devices, validates their claimed iden-
tities, and prevents masquerade or replay attacks.

Nonrepudiation: It guarantees that neither the transmitter nor the receiver can deny
transmitted information.

Data Confidentiality: This safeguards data from unauthorized disclosure by AloT
devices and ensures that unauthorized devices cannot understand the content of
the data.

Data Integrity: It guarantees the accuracy and protection of data from unauthorized
creation, modification, deletion, and replication, providing indications of any unau-
thorized device activities related to data.

Communication Security: It ensures that only authorized AloT devices exchange
information and prevents unauthorized interception or diversion of information
during transit.

Availability: It ensures authorized AloT devices’ access to network resources, stored
information, or its flow, services, and applications.

Privacy: It safeguards the information of AIoT devices that may be inferred from
their activities.
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FIGURE 12.2 ITU-T security dimensions.

Despite significant advancements in computing power, energy capacity, and storage
capabilities, potential attacks on AloT can lead to severe negative consequences due to
inadequate enforcement of security requirements. In contrast to wired communications,
wireless networks possess susceptibility to external intrusions and lack the necessity of
physical connections. Consequently, wireless-enabled AloT devices are rendered more sus-
ceptible to attacks owing to the broadcast nature of wireless broadcasts. For instance, a
breach of confidentiality in an intelligent factory could reveal the manufacturing process.
At the same time, a lack of data integrity could result in false data injection, modifying
the manufacturing process and potentially causing safety issues. If availability cannot be
guaranteed, the plant could cease operating all its machinery, thereby establishing a state
of safety. Furthermore, the diverse nature of AIoT systems renders conventional trust and
authentication procedures potentially unsuitable. The security, privacy, and authentica-
tion of IoT devices pose essential issues in the realm of AloT. Hence, it is imperative to
understand alternative resolutions that offer a secure, privacy-conforming, and reliable
authentication mechanism for AIoT to streamline the establishment of safe AIoT systems.
Figure 12.2 shows the ITU-T security dimensions.

12.4 TRUSTWORTHINESS

Trustworthiness encompasses a wide range of meanings and subtleties that vary depend-
ing on the stakeholders, applications, and use cases involved. At its core, trustworthiness
refers to the level of confidence a user or stakeholder has in a product or system to perform
as intended. This definition applies to various technologies, systems, and domains. The
attributes of trustworthiness consist of dependability, accessibility, durability, security,
confidentiality, safety, answerability, clarity, soundness, genuineness, quality, ease of use,
and precision. In the AT domain, trustworthiness is a fundamental concern.
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The topic of digital trust, or trust in digital solutions, is a complex one. It’s not always
clear when users consider a digital product to be truly trustworthy. Additionally, with the
addition of physical product components, such as in the case of smart, connected prod-
ucts, the concept of trust becomes even more complicated. Although security is essential
for establishing digital trust, other factors, such as ethical considerations, data privacy,
quality, and robustness (such as dependability and resiliency), also play important roles.
Considering the potential direct physical influence that AloT-enabled items can have on
individuals’ well-being, ensuring safety becomes an additional crucial factor to be consid-
ered. Historically, the concept of safety has been closely linked to the practices of verifica-
tion and validation, as well as the notion of robustness. Hence, it is important to initially
comprehend the security-related obstacles associated with AIoT requirements to effectively
tackle the concerns about digital trust.

12.4.1 Security Concerns

The intentional targeting of AI-based systems can occur in various ways. The Belfer Center
recently released a report that identified two main categories of Al attacks: input attacks
and poisoning attacks.

1. Input Attack: It takes advantage of the fact that an AI model is unable to cover every
possible input, relying on statistical assumptions and mathematical functions derived
from training data to create a model of the real world. Adversarial attacks manipulate
input data to mislead the AI model, for instance, confusing a stop sign with a small
sticker to look like a green light, fooling an autonomous vehicle.

2. Poisoning Attack: It aims to corrupt the model during the training process. This can
be accomplished by malicious training data that inserts a backdoor into the model.
For example, it can be exploited to bypass a building security system or disrupt the
operation of a military drone.

In the case of AloT, security is a crucial requirement to uphold consumer trust. However,
security management is often neglected due to factors such as cost, size, and power limita-
tions. This leaves AIoT systems vulnerable to security attacks, which can result in signifi-
cant financial losses and reputational damage. Investors in AIoT technology will only invest
in state-of-the-art security measures as security is crucial for maintaining trust among
consumers. Cybersecurity typically follows the CIA model of confidentiality, integrity,
and availability. Attackers exploit vulnerabilities in communication protocols to launch
attacks, which jeopardize service providers’ reputations. Attacks affect all three aspects of
the CIA, leading to significant concerns for service providers (Un Nisa et al. 2022). AloT
devices generate data ranging from small to large scale depending on the application, and
this data can be critical, such as medical or military data. DDoS attacks pose a significant
threat to the cyber world as they can bring down victims, and AloT devices are well suited
for launching these attacks. Users may not realize their devices, such as baby monitors
and smart toys, are compromised because they may continue to work even when part of a
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botnet army. As the number of AIoT devices increases, it becomes crucial to detect botnet
attacks promptly and remove compromised devices.

12.4.2 Challenges in Technology Adoption

The combination of AT and IoT shows great promise in bringing about positive transforma-
tions in society and business. However, a significant challenge that many industries cur-
rently face is using cutting-edge technology without the necessary experience and digital
skills as more and more companies are connecting things. The rapid growth in the num-
ber of internet-connected “things” could result in several challenges related to technology
adoption. From a cyber-physical system viewpoint, the complexity of the interconnec-
tion of IoT devices with other systems presents a significant challenge to many compa-
nies (Nozari, Szmelter-Jarosz, and Ghahremani-Nahr. 2022). When it comes to technology
adoption, users have a range of problems, including limitations in budgetary resources, in
acquiring the essential tools and providing comprehensive training for the total system.
Insufficient knowledge and awareness present notable obstacles in the process of technol-
ogy adoption.

One of the challenges that may hinder the adoption of AIoT technology is the need
for increased trust in its reliability. Without confidence in AloT, adopting the technology
may lead to delays. Effective data handling relies heavily on accurate knowledge, which
may be challenging for farmers who need to become tech-savvy and may need experts
to understand and analyze the AloT system. However, hiring experts and professionals
with digital skills to implement and operate new systems and maintain new technology
operations can be difficult for the industry. Also, privacy and security concerns can delay
technology adoption (Qureshi, Sikandar and Dhawankar. 2022). The convergence of Al
and IoT can generate novel security vulnerabilities, such as data breaches and cyberattacks.
The increasing collection and transmission of substantial volumes of data by IoT devices
have raised considerable privacy concerns, necessitating enterprises adhering to pertinent
rules and regulations about data retention. The technology infrastructure holds significant
importance across various industries as it is a critical factor in facilitating the effective
integration of novel technological advancements (Ayaz et al. 2019). A company may be
perceived as using outdated AloT technology without proper infrastructure.

12.5 FUTURE TRENDS OF AloT

The proliferation of AloT devices has led to increased security challenges and threats.
While AT has immense transformative potential in various sectors, it is currently being
predominantly utilized for security purposes. Although AIoT is expected to be a signifi-
cant area, the risks involved cannot be overlooked. In complex scenarios involving mul-
tiple variables, AIoT is still far from replacing human labor. However, it can save time
and cost, optimize resource utilization, and provide intelligent solutions for traffic, homes,
cities, stores, etc. By leveraging its capability to analyze and comprehend a given context,
AT can facilitate the identification of anomalies, unusual activities, and early detection of
attacks, thereby enhancing security measures.
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Statista’s (2016) research predicts that the global number of connected IoT devices will
surpass 75 billion by 2025. The growing market is leading to an increase in the diversity
and complexity of IoT networks. This heterogeneity challenges security professionals and
researchers, as each manufacturer has their hardware and software, and numerous pro-
tocols are available for interconnecting objects. Consequently, AIoT networks are vulner-
able to cyberattacks, and implementing a security solution requires considering various
factors. However, no single security solution can safeguard all IoT devices from present
and future threats (Javaid et al. 2022). Due to their limited resources, traditional secu-
rity mechanisms and techniques like firewalls, intrusion detection systems, and anti-virus
software are unsuitable for AIoT devices. As a result, wireless devices are more vulnerable
to cyberattacks mainly because of their connection to computer networks and the Internet.
The limited resources of AloT systems have a direct impact on their IT security.

Although the security industry has started exploring the potential of AloT, much
remains to be done before it can reach its full potential. AT has progressed in advanced
theory, but developing it into a complex decision-making system that can handle complex
situations is still in its infancy. Despite this, many industry leaders believe that AI could
revolutionize the industry. One of the key security concerns for connected devices is the
lack of attention given to security during manufacturing. This has made it easier for hack-
ers to exploit weaknesses in the design and configuration of these devices. Moreover, the
complexity of AloT data communication makes it difficult for humans to understand and
predetermine normal data flow. Traditional security technologies can only protect against
known attacks and vulnerabilities, leaving the system vulnerable to resourceful and inno-
vative cyberattackers (Chen et al. 2021). To prevent exploiting AIoT devices, companies
should adopt a zero-trust policy and respond promptly to any signs of compromise. Al
technology plays a crucial role in identifying novel attacks and detecting blind spots by
recognizing typical behavior in a digital environment. While hardware-related AIoT vul-
nerabilities are debated, local attacks can expose other vulnerabilities, creating a chain of
compromises that can be exploited remotely.

It is important to note, however, that AI alone is not a complete security solution, espe-
cially if it is not well-designed. The effectiveness of an Al algorithm is highly dependent on
its training, available datasets, and the quality of the algorithm itself. Poor data quality can
result in weak AI, low detection rates, and poor security outcomes. To detect previously
unknown cybersecurity threats, machine learning is utilized with both supervised and
unsupervised algorithms. Supervised learning involves the analyst training the algorithm
on the conclusions it should draw, while unsupervised learning is more efficient, with the
algorithm generating information and making independent decisions about cyber threats
without human guidance.

Using AT technology can help address the issue of limited security resources, freeing up
security teams to focus on more critical tasks. This can also help mitigate the shortage of
skilled workers in the security industry. Additionally, the use of blockchain technology is
becoming more important in securing IoT devices, as it offers enhanced data storage secu-
rity and guarantees data accessibility, allowing users to store their data on different devices
and retrieve it as needed.
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12.5.1 AloT Implementation Advantage

The adoption of Al has the potential to provide numerous advantages. For instance, when
combined with network and monitoring systems, AI can function as an extra surveillance
mechanism. In the coming years, Al is expected to become a crucial necessity for busi-
nesses, promoting the creation of novel innovations and enhancing the performance of
current products (Husin et al. 2021; Massaoudi et al. 2021). There are several advantages to
using Al technology, including the following:

1. Cost-effectiveness: While AI technology may have high initial costs in some situa-
tions, it provides substantial cost benefits in the long run by avoiding expenses that
would arise without it.

2. Accuracy: Al machines are generally more accurate than humans, regardless of the
length of time they are utilized or the nature of the work.

3. Predictive capability: By continuously analyzing and immediately assessing diverse
data sets, Al can independently generate predictions, which can be used to proac-
tively service machines to prevent unnecessary downtime.

4. Reliability: AI offers reliable performance by eliminating the possibility of human
errors once programmed correctly, leading to a consistent quality of outcome.

5. Speed: Al technology’s ability to quickly identify patterns in repetitive processes
allows it to diagnose problems or identify fraudulent activities much faster than
human cognitive abilities, which are limited.

6. Autonomy: Once machines are programmed, they require minimal supervision for
repetitive tasks. Moreover, Al technology can continuously learn and perform algo-
rithms with high reliability and take corrective action when errors occur (Javaid,
Mohd, et al. 2022).

12.6 CURRENT OPEN CHALLENGES AND FUTURE DIRECTIONS

The integration of Al and IoT into AlIoT holds promise in delivering substantial conve-
nience to individuals through its diverse range of applications in everyday activities. While
the AloT is currently in its nascent phase of evolution, it exhibits considerable potential
for forthcoming progressions. Nevertheless, implementing AloT in practical scenarios

encounters various obstacles, including establishing a collaborative framework among
end devices, edge servers, and the cloud. This section analyzes the current challenges and
potential future directions for advancing AloT.

12.6.1 Heterogeneity and Interoperability

The perception layer of the AloT employs various devices, including Raspberry Pi and
Field-Programmable Gate Array (FPGA) based products, along with smartphones, to effec-
tively capture the intricacies of the physical environment (Qureshi, Qayyum, et al. 2021).
The AloT architecture’s heterogeneity is evident in deploying various sensors and devices
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on separate servers to cater to the diverse requirements of different applications or services.
This approach ensures a comprehensive perception of the environment, as each device is
specifically chosen to meet the specific needs of its corresponding application or service.
For instance, sensors designed for Advanced Driver (AD|) assistance systems are typically
deployed on Roadside Units (RSUs), whereas sensors intended for smart homes are typi-
cally positioned on intelligent gateways.

To facilitate intelligent decision-making, networked devices within the architecture of
the AIoT must engage in the interchange and consolidation of data across diverse net-
works such as Bluetooth, NB-IoT, ZigBee, Wi-Fi, HTTP/TCP, or UDP. Consequently, it is
anticipated that AIoT systems would exhibit a significant level of heterogeneity about the
diversity of devices, platforms, and frameworks. This emphasizes the criticality of ensur-
ing interoperability and coordination among different devices and platforms. Exploring
network software paradigms like Software Defined Network (SDN) (C. Wang et al. 2019;
Huang et al. 2019) and utilizing SDN and Network Function Virtualization (NFV) can
substantially improve efficiency and flexibility in managing systems. SDN solutions can
streamline management processes by providing a cohesive framework for administer-
ing diverse devices and sensors. Moreover, SDN can virtualize physical devices and offer
tailored services to tackle the issue of device heterogeneity. NFV employs virtualization
technologies to transform network node functions into software modules. In recent times,
there has been a notable endeavor to amalgamate SDN with NFV inside the realm of edge-
cloud computing. The primary objective of this integration is to augment the Quality of
Service (QoS) for applications driven by AloT (Lv and Xiu. 2019; M. Wang et al. 2019).

In addition, for effective communication in the network layer, a uniform communication
protocol is necessary for the diverse sensors and devices in the edge-cloud environment.
The Open Flow protocol is a prevalent means of communication between an SDN control-
ler and a switch, garnering significant interest from the academic community (Mondal,
Misra and Maity. 2019). Implementing Deep Learning (DL) models on a Graphics
Processing Unit (GPU) edge server can enhance their performance, but incorporating
NFV into a GPU is still challenging. To effectively implement these paradigms, further
research and development are required in domains like security, allocation of resources,
deployment of runtime services, and computational offloading.

12.6.2 Resource Management

The progress of AloT has led to the development of various applications, such as smart
homes and Internet of Vehicles (IoV). These systems use multiple sensors and devices that
are distributed across different locations to gather data. However, these sensors and devices
have limited computational and storage capabilities, and are often battery-powered, mak-
ing it difficult to perform low-latency computation tasks on them. To optimize the utiliza-
tion of distributed resources across edge nodes and devices, it is recommended to break
large AT models into smaller subtasks and assign them to various edge nodes and devices
for collaborative training. The service environments of numerous intricate and heteroge-
neous AloT applications, such as IoV, exhibit a significant degree of volatility, hence posing
challenges in accurately forecasting results. Although AIoT has numerous applications in
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our daily lives and offers significant convenience to people, it is still a nascent technology
with vast potential. To fully utilize the advantages of AIoT, numerous sensors, and devices
are distributed throughout the network to gather data. Due to their typical reliance on bat-
tery power and limited processing and storage capacities, the execution of latency-sensitive
tasks on the computing resources of these devices can present significant challenges. As
a result, intricate AI models are frequently partitioned into smaller subtasks and distrib-
uted to diverse edge nodes and devices to facilitate collaborative training. The ability to
orchestrate online edge resources and provision is essential to support substantial tasks
in the continuously changing service environments of sophisticated AIoT applications.
Comprehensive attention should be given to solutions that target the real-time optimi-
zation of coordination among heterogeneous end devices’ computation, networking, and
caching resources during the runtime (Sun et al. 2007). Two approaches are being taken
by researchers to optimize the performance of AloT systems. The initial approach focuses
on reducing bandwidth costs in a wireless multicast channel by implementing integrated
caching and computing strategies. The second methodology uses Al techniques, including
deep reinforcement learning (DRL), to effectively handle resource allocation and schedul-
ing (Tang, Zhou and Kato. 2020; Cheng et al. 2019).

12.6.3 Model Inference and Training

The process of optimizing various hyperparameters to enhance the compression and acceler-
ation of Al inference methods typically necessitates the utilization of empirical experiments
and expert knowledge. Consequently, it becomes crucial to fine-tune networks based on the
insights gained from these trials. Hence, developing adaptive or automatic compression and
acceleration techniques holds significant value, as seen by ongoing research endeavors in
this domain. However, acceleration technologies, like pruning and quantization, may reduce
performance, making it crucial to implement hardware acceleration to support the execution
of Al models. The challenge of training AI models in parallel arises from constraints on pro-
cessing, storage, and network resources. Federated Learning (FL) addresses the data-driven
prerequisites and privacy protection obstacles encountered by AI models within a distrib-
uted computing framework, offering advantages such as minimal data transmission traffic,
preservation of model quality, and data isolation. Nevertheless, it is essential to note that the
bandwidth of edge nodes is constrained and exhibits heterogeneity, characterized by vary-
ing computational capabilities and unevenly distributed data. Consequently, these factors
contribute to communication delays encountered during the distributed Stochastic Gradient
Descent (SGD) process. Therefore, exploring diverse parallel communication mechanisms
can improve efficiency further (Rothchild et al. 2020). Although existing quantization meth-
ods primarily apply to Al inference, fine-grained quantization-aware training can be utilized
for AloT applications (Chung, Chen and Chang. 2020).

12.6.4 Security and Privacy

AloT also faces security and privacy concerns, such as privacy breaches and malicious
attacks. Typically, Al models are deployed at the network’s edge or on end devices to offer
quick services. Unfortunately, edge servers and end devices frequently possess constrained



212 = Artificial Intelligence of Things (AloT)

computing and storage capabilities, rendering them susceptible to malevolent assaults,
including DDoS operations, such as the infamous Mirai attack. The flooding-based DDoS
attack continues to pose a significant concern within edge computing systems. Current
security methods require significant computation and communication loads, which are
impractical for resource-constrained end devices. Physical Unclonable Functions (PUFs)
have emerged as an up-and-coming field of study in the realm of security authentication
within edge computing environments. This is primarily due to their ability to provide
robust protection against physical intrusion while exhibiting advantages such as low com-
putational overhead, minimal resource utilization, straightforward implementation, and
distinctive physical characteristics. Furthermore, it is imperative to investigate hardware-
assisted protection techniques that are founded on the Reduced Instruction Set Computing
(RISC-V) architecture. Preliminary efforts have already commenced in this particular tra-
jectory (Long et al. 2019; De et al. 2020).

AloT systems are highly susceptible to privacy concerns, with data and firmware attacks
posing a severe threat to sensitive information, including user location and health records.
End users and devices frequently generate this data and store it locally, making its protec-
tion critical. In addition, data transmission between edge infrastructures can lead to pri-
vacy breaches, and sufficient and diverse data are required for designing and training AI
algorithms. One promising solution to address these issues is to use the FL method, which
performs distributed data training while preserving privacy.

Various technologies can be employed in the edge computing environment to ensure
privacy while creating AI models that share parameters. These technologies include
differential privacy, homomorphic encryption, and secure multiparty computation.
Blockchain technology is also significant in securing the AIoT and can be combined
with FL and other methods to enhance privacy preservation further. However, block-
chain technology developed for IoT networks may consume many network resources,
such as communication bandwidth and computational resources, leading to perfor-
mance issues. Researchers have proposed integrating blockchain with the AlIoT in the
upcoming 6G communication network, which can potentially improve AI, data storage,
and analytics (Sekaran et al. 2020). Therefore, more exploration is needed to develop
blockchain-based solutions that safeguard users and devices from malicious attacks in
the AloT.

12.6.5 Atrtificial Intelligence Ethics in AloT

AT algorithms in the AIoT environment can make decisions rapidly without human
supervision. Therefore, it is essential to develop algorithms that can autonomously
learn without causing harm or violating human rights. To effectively navigate the ethi-
cal implications associated with AI technology, it is imperative to consider a range of
design principles, including but not limited to justice, honesty, responsibility, safety,
and sustainability. Justice is widely regarded as the foremost value within this con-
text, encompassing the imperative to uphold fairness, prevent prejudice, and promote
diversity across several facets, including data, algorithms, implementation strategies,
and resultant consequences. Achieving Al justice involves avoiding prejudice and
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favoritism toward individuals. Honesty is an essential value that necessitates the pres-
ence of transparency, openness, and interpretability of data and technology to tackle
ethical concerns related to Al effectively.

Accountability must be established throughout the entire design and implementation
process, and Al developers, designers, and institutions must assume responsibility for the
actions and consequences of AI. The paramount objective of Al ethics is to ensure safety,
which encompasses the prioritization of accuracy, reliability, security, and robustness in
AT systems. To enhance security, it is imperative for AI designers to explicitly state their
commitment to preventing foreseen or inadvertent harm, including potential military
confrontations and malevolent cyberattacks.

Sustainability is another important part of Al ethics, which stresses the need to pro-
tect the environment and improve the ecosystem while building and using AI systems. It
is imperative to ensure that Al applications are meticulously created, implemented, and
managed to achieve these objectives, focusing on optimizing energy efficiency and mitigat-
ing their ecological footprint.

12.7 CONCLUSION

AloT is a new trend integrated with edge and cloud computing services. The rapid adop-
tion of these network applications leads to new security, privacy, and trust challenges.
These networks have suffered from new security and protection threats aimed at main-
taining end nodes’ or users’ privacy and trust against disruptive attacks designed to incur

financial losses. The existing services and security systems still suffer from many flaws and
need to design more efficient and lightweight trust and privacy solutions. In this chapter,
we discussed the privacy, trust, and security challenges and their possible solution. This
chapter also discusses the new trend and usage of blockchain and Al in AloT networks. For
future AIoT networks, there is a need to design more smart systems by using cost-effective,
lightweight, and energy-efficient solutions.
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