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This book is devoted to the new standards, technologies, and communication systems for Artificial 
Intelligence of Things (AIoT) networks. Smart and intelligent communication networks have gained 
significant attention due to the combination of AI and IoT networks to improve human and machine 
interfaces and enhance data processing and services. AIoT networks involve the collection of data 
from several devices and sensor nodes in the environment. AI can enhance these networks to make 
them faster, greener, smarter, and safer. Computer vision, language processing, and speech recogni-
tion are some examples of AIoT networks.

Due to a large number of devices in today’s world, efficient and intelligent data processing is essential 
for problem-solving and decision-making. AI multiplies the value of these networks and promotes 
intelligence and learning capabilities, especially in homes, offices, and cities. However, several chal-
lenges have been observed in deploying AIoT networks, such as scalability, complexity, accuracy, 
and robustness. In addition, these networks are integrated with cloud, 5G networks, and blockchain 
methods for service provision. Many different solutions have been proposed to address issues related 
to machine and deep learning methods, ontology-based approaches, genetic algorithms, and fuzzy-
based systems.

This book aims to contribute to the state of the art and present current standards, technologies, and 
approaches for AIoT networks. This book focuses on existing solutions in AIoT network technolo-
gies, applications, services, standards, architectures, and security provisions. This book also intro-
duces some new architectures and models for AIoT networks.
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Preface

In today’s hyperconnected world, where technology permeates every aspect of our 
lives, the Artificial Internet of Things (AIoT) has emerged as a transformative force. 
With billions of devices connected to the internet, ranging from household appliances 
to industrial machinery, people, processes, data, and things to modernize activities, 
the AIoT has brought unprecedented convenience and efficiency. However, it has also 
exposed us to new challenges in terms of scalability, routing, resource allocation, and 
security. Artificial Intelligence of Things (AIoT): New Standards, Technologies and 
Communication Systems is a timely and essential book that delves into the intricate 
world of AIoT. As we continue to witness the rapid proliferation of connected devices, 
it is crucial to understand the existing network demands, especially of the artificial 
intelligence integration. This book serves as a comprehensive guide for individuals 
and organizations seeking to navigate the ever-evolving landscape of AIoT processes 
and services.

The authors of this book, with their deep expertise and extensive experience in the field 
of AI and IoT, provide valuable insights into the unique requirements, challenges, and 
risks associated with the AIoT. They meticulously analyze the diverse range of devices, 
networks, and applications that constitute the AIoT, shedding light on potential AI-based 
applications, standards, and protocols. By presenting real-world case studies and practical 
examples, they offer actionable strategies to adopt AI in IoT networks for better services 
and data communication.

This book suggests two parts of security fundamentals: Part I—Artificial Intelligence 
Evolution in Internet of Things Networks and Its Fundamental Concepts, and Part II—
Data Communication Systems for AIoT Networks. These security fundamentals go beyond 
theoretical concepts, equipping readers with the necessary knowledge and tools to proac-
tively address different areas of AIoT. The book explores cutting-edge technologies, such 
as artificial intelligence and blockchain, and their application in enhancing AIoT security. 
It emphasizes the importance of adopting a holistic approach to cybersecurity, encom-
passing not only technical measures but also organizational policies, user awareness, and 
regulatory frameworks. As the digital landscape continues to evolve, AI becomes para-
mount. The interconnected nature of the AIoT presents both immense opportunities and 
profound risks.

This book serves as a beacon of knowledge and guidance, empowering readers to 
understand the AI functionalities in the AIoT ecosystem. I commend the authors for 
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their comprehensive research, diligent analysis, and commitment to advancing AI in the 
context of the IoT. Their work will undoubtedly make a significant contribution to the 
field and will serve as a valuable resource for AI and IoT professionals, researchers, and 
policymakers alike. I encourage readers to delve into the pages of Artificial Intelligence of 
Things (AIoT): New Standards, Technologies and Communication Systems and embark on 
a journey towards understanding the intricate challenges and developing robust solutions 
for increasingly interconnected world.

I believe that Artificial Intelligence of Things (AIoT): New Standards, Technologies and 
Communication Systems will be useful to readers who are beginning to approach this com-
plex technical topic, since it puts together many different perspectives, application exam-
ples, and specific solutions. At the same time, it will be a useful reference for the more 
experienced researcher who aims at going deeper into a specific vertical application of 
AIoT networks, or who looks for possible open questions and/or future research topics to 
be explored.

Dr. Kashif Naseer Qureshi
Department of Electronic & Computer Engineering,  

University of Limerick, Limerick, Ireland
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C h a p t e r  1

Artificial Internet of Things
A New Paradigm of Connected Networks

Kashif Naseer Qureshi and Thomas Newe
Department of Electronic & Computer Engineering, University of Limerick,  
V94 T9PX Limerick, Ireland

1.1  INTERNET OF THINGS
The Internet of Things (IoT) is one of the demanding and emerging technologies, where 
billions of devices are communicating for different services. These networks are based on 
integrated and heterogeneous networks. The popularity of IoT has multiplied swiftly due 
to its usage in all fields of life such as transportation, education, and enterprise develop-
ment. Devices are connected over the internet and can communicate with each other with 
or without human support. Recently, the concepts of smart homes, smart industries, and 
smart cities have changed the lifestyle where everything is connected like home appliances, 
communication devices, smart meters, smart watches, and smart cars. Different enabling 
technologies are involved in IoT networks including the following: embedded systems, 
cloud and edge computing, blockchain, data analytics methods, and AI networks. Around 
the globe, the adoption of IoT in the form of different projects has achieved milestones 
in terms of demand, popularity, efficiency, and usage (Khalid et al. 2023). IoT networks 
transform the world into digital, smart, and modern networks. Different smart devices and 
intelligent systems are integrated by using cloud and edge networks. These networks also 
generated the big data which is streamed to the cloud services for further data management 
and analysis. There are several cloud services adopted and popular for data handling such 
as Google Cloud Platform, Microsoft Azure, Oracle, and IMB Waston Cloud. Fog comput-
ing is introduced as a horizontal system-level architecture for data distribution where data 
control, storage, and networking functions are closer to the network. Edge computing is 
another concept that is closer to end users and networks (Naseem et al. 2022). Fog and 
edge computing are used for better latency, security, and data reliability, and have bet-
ter response time. Standard protocols are used for communication like Open Platform 
Communication United Architecture (OPC-UA). IoT solutions require data handling 
systems for data management like Not Only SQL (NoSQL). Another service Google IoT 
framework is used for easy and secure data management services.

https://doi.org/10.1201/9781003430018-2
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1.2  ARTIFICIAL INTELLIGENCE
AI has changed the traditional IoT networks, converted the services into more intelligent 
networks, and received tremendous interest from communities and industries. The amaz-
ing and attractive services of AI technology have resulted in the adoption of more advanced 
communication applications. Machine and deep learning methods have been adopted to 
meet real-time processing demands. AI also provides human intelligence in machines, 
allowing them to perform multiple and complex tasks. This field is a multidisciplinary area 
of computer science to make machines smarter and more capable of learning, reasoning, 
and perceiving in order to solve problems. AI is categorized into two main types: narrow 
and general. The narrow AI performs specific tasks within limited domains like virtual 
personal assistance, image recognition, and recommendation systems. Popular examples 
of narrow AI are Siri and Alexa. On the other hand, general AI provides strong Artificial 
General Intelligence (AGI) which is able to perform any task that human beings can do. 
AGI functions like human intelligence to perform tasks, to understand and learn, and to 
apply this intelligence in different domains. Machine Learning (ML) methods are involved 
to train models and perform tasks such as predict and data analysis. Some other AI meth-
ods are natural language processing, robotics, expert systems, and computer vision. The AI 
methods are useful to improve the industry’s processes, decision-making, fast automation, 
and solve complex challenges.

1.3  ARTIFICIAL INTERNET OF THINGS
Artificial Internet of Things (AIoT) is a new concept where machine and deep learning 
technologies meet the new application requirements in real-time manners. IoT network 
devices have limited resources in terms of storage, energy, and processing capabilities. 
These constraints increase the different Quality of Service (QoS) challenges and issues. The 
combination of AI and IoT enhances the sensing and communication services to achieve 
high performance. The intelligence is used at macro and micro levels in AIoT networks. 
This intelligence starts with self-driving to control home appliances. In AIoT networks, 
several smart devices, sensor nodes, data storage devices, and data processing capabilities 
are interconnected with cloud and edge networks (Qureshi and Abdullah. 2014).  AIoT 
devices sense the surroundings and store, transmit, and broadcast the data. The traditional 
IoT networks without AI devices have limited features in terms of data analysis, automa-
tion, and adaptation, whereas the AI-based IoT networks offer voice services for users. 
These devices can answer queries as per user and application requirements such as calling 
cabs, playing music, controlling smart home appliances, making restaurant reservations, 
and more functions. Alexa is one of the voice services used for products like Amazon Echo. 
Siri and Google are other examples of voice assistance with some extra features like a con-
versation with users. These AI based IoT applications are used for multiple tasks such as 
wake word detection, text and speech conversion, contextual reasoning, question answer-
ing, and dialogue management.

Another usage of AI in IoT is robotics which can interact with human beings. These 
applications are capable of understanding, expressing, and reciprocating certain human 
emotions. The recent development in the field of robotics makes these machines more 
responsive to understanding human emotions, body movements, facial expressions, and 
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tone of voice. These AI-based machines recognized four human emotions including sadness, 
joy, surprise, and anger. Sophia is one of the examples and considered a social humanoid 
robot. This robot is capable of expressing emotions through its eyes and facial expressions. 
Sophia is the world’s first robot who received citizenship of a country. Another example is 
the robotic kitchen which is a fully functional robot with arms, a hob, an oven, and a touch-
screen. This robot is able to prepare food and has a food recipe repository. AI-enabled smart 
devices are also used in smart homes for monitoring and identification, by using neural net-
works, deep learning and computer vision, and transfer learning. Smart ovens, smart elec-
tric meters, smart refrigerators, and light systems are used to manage and predict the usage 
and processes of users. Security systems like Skybell, which can answer the door by using 
a voice assistant feature system, are another example. An additional AI-enabled example is 
effective as a cabin sensor for automobile networks. Industries are another beneficial area 
where AI-based applications provide financial and statistical analysis for better prediction 
and decision-making. Figure 1.1 shows the emerging fields in AIoT networks.

1.4  APPLICATIONS
There are a number of IoT applications especially designed for industries, smart homes, 
transportation, education, and healthcare systems that have gained popularity. The smart 
factories concept is used where the machinery or industrial devices are equipped with 
smart sensors and devices for sensing and monitoring the operations of the machine. The 
machines are connected to infrastructure or central control systems and provide real-
time access to information and control capabilities. Industrial AIoT applications increase 
the productivity, real-time operations, efficiency and the quality of products. There is 
a wide range of industrial AIoT applications such as predictive maintenance, tracking 
and management, remote monitoring, quality control, energy management, and safety 

FIGURE 1.1  Emerging fields of AIoT networks.
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and security applications. These AIoT applications are providing real-time machinery 
monitoring and management control systems. The data are analyzed and collected from 
different sensors and used for further prediction and analysis. The tracking of machin-
ery faults and other complexity issues have  also been resolved by using the tracking 
applications like inventory tools, equipment, and device connectivity. Energy control 
is another tremendous application of AIoT in industries where energy consumption is 
monitored.  This is accomplished by analyzing data patterns and establishing optimized 
usage, distribution, and smart management practices. Quality is always a main concern 
for industries, and quality is more manageable by using AIoT applications where the data 
are collected from various stages and processed accordingly. Supply chain optimization 
is also achieved using AIoT applications for shipment tracking and monitoring the tem-
perature and humidity.

Smart homes AIoT applications also offer real-time automation and control man-
agement systems such as lighting control, security cameras, appliances control, energy 
management, and security control systems. Users can control all their home appliances 
remotely through smart mobile devices. The most prominent IoT applications for smart 
homes are energy control, energy management, smart metering, and security control 
systems. The IoT-based security system integrates motion sensors, cameras, door and 
window sensors, and smart lock systems to control access. Energy management IoT 
applications also help the users to control or optimize energy use by using adjustment 
temperature settings of central heating or air condoning systems. Smart lighting control 
and management systems also provide ways to automate the systems based on schedule, 
preferences, or motion detection data. These strategies reduce energy bills and costs and 
create ambiance and enhance users’ convenience. Another example of an AIoT applica-
tion is voice assistance, like Amazon Alexa or Apple Siri, to control the home thermostat 
and temperature.

The use of AI in IoT networks has gained popularity due to numerous benefits and exist-
ing applications services and efficiencies. AI improves the IoT network’s reliability, intel-
ligence, and efficiency to process and analyze the data locally and make decisions. How 
various AIoT applications are deployed is discussed as follows:

1.	Data Analytics: AIoT devices generate a vast amount of data that need analysis and 
interpretation. AI is integrated into this area where ML can be used to identify pat-
terns, anomalies, and trends. These services provide valuable insight to users to avoid 
any potential failures.

2.	Decision Making: The AI methods are integrated with IoT devices which are con-
nected with edge and cloud computing for decision-making processes. The AI meth-
ods improve this process in real-time and provide better decision-making.

3.	Prediction Processes: The AI applications are used to predict the equipment condi-
tion and failure status before any emergency situation. ML models are used to identify 
patterns by analyzing the sensor’s data. These applications are reducing downtime 
and increasing production.
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4.	Energy Management: These applications are used to optimize energy consumption 
in AIoT networks by dynamically adjusting the power usage based on patterns and 
energy demand. These applications save and manage energy.

5.	Security Applications: The AI models also improve IoT networks and provide secu-
rity by detecting threats and anomalies in real-time. The AI models are used to 
detect unusual behavior and trigger alerts or take prevention measures to stop data 
breaches.

6.	Language Processing: These applications use natural language processing tech-
niques in AIoT devices where users interact by using voice commands or written 
text. These applications are making the user experience more efficient and intuitive.

7.	Smart Home Management: AI-based smart home applications are used to check 
the user’s preferences and habits to manage smart home services. The most popular 
AI-based applications are temperature control, appliance management, and person-
alized home device management.

8.	Traffic and Parking Management: These AI-based applications are used to optimize 
traffic flow, especially in urban areas, by using different resources like GPS, cameras, 
and sensors. Another AI application is traffic prediction and providing data analy-
sis for decision-making. These applications are used to reduce congestion issues and 
improve traffic efficiency.

9.	Smart Healthcare: These AI-based applications are used to monitor the patient’s 
health conditions and vital signs such as temperature, heart rate, and body move-
ment. The collected data are also analyzed and provide timely alerts to healthcare 
professionals in case of an emergency.

10.	Environmental Monitoring: The IoT sensors are integrated with AI and used for 
monitoring environmental factors like water quality, weather conditions, and air 
quality. These applications are also managing a potential disaster situation by pre-
dicting environmental changes and signs.

1.5  THE CONVERGENCE OF AIoT
Advanced technologies have brought significant advancement in all fields of life. These 
technologies transform processes from the fields of healthcare to those of smart living 
systems. The new area of AIoT is another step and advancement where the convergence of 
these technologies opens new innovations, revolutionizes industries, and overall enhances 
the quality of life. This convergence also opens new research and concepts for the future. 
The convergence of AI and IoT creates a symbolic ecosystem where smart devices and sen-
sors collect, process, and analyze the data and initiate automated actions. AI algorithms 
are used to connect and gather data from smart devices and create a link between the 
physical and virtual worlds. There are various advantages of the AI and IoT convergence, 
but one of the key advantages is its ability to enhance connectivity and provide deeper 
insight into the data. The traditional IoT networks are generating massive data which need 
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more advanced systems for data analysis. The AI systems provide real-time data analytics 
for possible meaningful patterns. This new concept also empowers business and individu-
als toward better decision-making and increases the system’s productivity and efficiency.

This convergence also improves the automation and efficiency of processes and tasks. 
The AI algorithms can identify patterns and predict future events for quick decisions and 
reduce the need for human intervention in daily activities. Intelligent automation not only 
improves the processes but also minimizes human errors and monitoring tasks. The inte-
gration of AI and IoT also revolutionizes the way technologies can interact. Data analysis 
also provides an adaptive experience to enhance the user’s engagement and satisfaction. 
These systems also have a positive impact on transforming industries’ automation and 
manufacturing processes. In the agriculture sector, AIoT systems can optimize irrigation 
systems for better crop management and improve productivity with less waste. In health-
care systems, smart AIoT applications are used to monitor patients remotely on a real-time 
basis for their diagnosis and personal treatments. With advanced AI-enabled devices, the 
manufacturing sector can also streamline its production processes to enhance produc-
tivity and supply chain management systems. These systems reduce the cost, minimize 
downtime, and provide greater sustainability. Table 1.1 describes the new convergence of 
AIoT networks and other areas.

TABLE 1.1  New Convergence of AIoT Networks with Other Areas

AIoT-based Convergence 
Solutions

Technologies and 
Architecture Used Methods Description

Architecture Convergence
ThriftyEdge 
(Chen et al. 2018)

Architecture for 
Edge and Fog 
Computing

Delay-aware task graph 
partition algorithm for 
resource occupancy

Proposed a resource-
efficient computational 
offloading mechanism

Application-Aware 
Real-Time Edge 
Convolutional Neural 
Network (AWARE-CNNs) 
(Sanchez et al. 2020)

Model for Edge 
Networks

Used deep learning 
algorithms on IoT 
devices

Proposed an application-
aware real-time edge 
acceleration of CNNs

Accelerators for real-time 
applications

Edge AI for IoT (Sivabalan 
and Minue. 2022)

AI-based Model 
for Edge 
Networks

Used ML Technologies Proposed AI-based ML 
model to transform the raw 
data into events

Sensing and Monitoring Convergence
Sensing and Deep 
Reinforcement Learning 
(DRL) (Zhang et al. 2020)

Edge-enabled 
IoT

Deep Deterministic Policy 
Gradients (DDPG) 
algorithm and Double-
dueling-deterministic 
Policy Gradients (D3PG)

Propose a quality of 
experience model for 
computational offloading.

Multi-hop ad hoc IoT 
(Kwon, Lee and 
Park. 2019)

AI-enabled IoT 
networks

Deep reinforcement 
learning approach

Propose a multi-hop based 
on a deep reinforcement 
learning approach for 
devices’ connectivity

5G Intelligent Internet of 
Things (5G I-IoT) 
(Wang et al. 2018)

Cellular and 
IoT Networks

Big data mining, Deep 
learning, and 
Reinforcement learning

Propose a solution for the 
effective utilization of 
channels and QoS
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1.6  AIoT ARCHITECTURE
AIoT architecture is based on two main modules including Mobile Edge Computing 
(MEC) and AI. These two main areas are further categorized into several techniques and 
standards. This section discusses both modules’ components, functionalities, applications, 
and processes. The main objective of AIoT architecture is to process and analyze data by 
using two cutting-edge technologies. The interconnection of devices unlocks new and 
enhanced decision-making, real-time, and predictive analytics. The MEC module con-
tains several components, like sensors and devices, to collect and sense the data from the 
environment and transmit it over the network. The devices are connected to each other 
and further connected with cloud and edge computing for synchronized and controlled 
transfer of the data. Edge computing is one of the concepts where the processing is closer 
to the network. Edge computing also reduces latency and bandwidth consumption and 
enhances network privacy and security,  whereas cloud computing serves as a centralized 
repository to handle the data and provides the computational power required for complex 
AI algorithms and ML models. On the other hand, the second module is based on AI and 
ML techniques processing massive data to derive meaningful data patterns and predic-
tions. The sensed data from the first module is further managed by using AI analysis.

1.6.1  Mobile Edge Computing Module

Different smart technologies are used in this module like sensor nodes, actuators, and 
devices. These devices are integrated with information systems and further linked with 
edge and cloud computing. The IoT network devices generate the data from different 
applications and forward it for further processing. The cloud, edge, and fog networks are 
used to maintain the data. Edge computing addresses the limitation of cloud computing. 
Fog computing is another extension of cloud computing and is located between edge and 
cloud computing modules. This concept provides low latency computation by using the 
horizontal, system-level architecture to distribute the data storage, control, and network-
ing functions closer to the local networks. The objective of fog is the same as edge and 
cloud, but only fog offers the distributed architecture with low bandwidth and latency. 
Whereas, fog computing has suffered from high scalability issues. To address this concept, 
edge computing is used where the shared processes and computing provide the services 
at the device level and reduces the data movement toward cloud computing. The edge 
devices are used as tools for computing power movement and offloading computational 
capabilities from cloud to edge (Ali et al. 2022). Fog and edge computing are integrated 
with IoT networks and use different standards and protocols. The well-known protocols 
used in these modules are Machine-to-Machine (M2M), Open Platform Communication 
United Architecture (OPC UA), Highway Addressable Remote Transducer Protocol 
(HART), and WirelessHart and Data-Distribution Service (DSS) (Vaclavova et al. 2022.; 
Wang, Nixon and Boudreaux. 2019). Big Data Analytics (BDA) is also one of the require-
ments of this module.

Routing and communication are also performed in this module where the network 
needs in-time data delivery and an efficient routing mechanism. As with the integration 
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of AI in IoT, there is a need to adopt more advanced architecture. This module also uti-
lizes the Software Defined Network (SDN), Network Function Virtualization (NFV), and 
Content Delivery Network (CDN). The SDN networks provide flexible and cost-effective 
solutions for AIoT networks and dynamically handle IoT data. The 5G and 6G technologies 
are also adopted to deploy complex devices and manage communication channels.

1.6.2  AI Module

This module utilizes AI for better decision-making processes for IoT applications and 
services. The AI methods have solved multiple issues of traditional networks such as 
fast decision-making, optimization, and data management (Song et al. 2020). There are 
some other challenges related to access to IoT devices, signal processing, and resource 
management whenever the IoT devices access the resources by using a contention-based 
random-access procedure. Random-access selection leads to access collisions, latency, 
interference, and outage. AI Deep Reinforcement Learning (DRL) is used to address 
these issues in traditional IoT networks by making a proper decision on random access 
processes. This module has an AI-based contusion random access to improves the ini-
tial access of the network. Another AI feature for IoT networks is used in this module 
to adjust the transmission parameters and improve the QoS. AI helps to adjust the fre-
quency bands and set the users’ priorities as per their needs and requirements. The Deep 
Q-Networks (DQN)-based spectrum access strategy is used to set the spectrum sensing 
and its distribution (Chander et al. 2022). This module is also utilizing the central con-
troller by using the ML technique for effective base station selection. The ML models 
are also used to train the statistical model for wireless networks. The AI and ML meth-
ods are also used for more precise modeling of the interference. Resource allocation is 
another issue that increases the number of devices. The ML-based clustering method is 
used to address this issue by forming clusters.

Open radio access controllers are also used in ML methods for network functions. 
Implementation of Deep Learning (DL) in radio networks provides better resource allo-
cation, spectrum, and mobility management. There are different AI methods like Long 
Short-Terms Memory (LSTM), Reinforcement Learning (RL), and Deep Neural Networks 
(DNN) utilized for resource allocation in AIoT networks.

1.7  COMMUNICATION AND NETWORKS
Wireless communication in AIoT uses different multiple access techniques like 
Frequency Division Multiplexing (FDM), Orthogonal Frequency-Division Multiple 
Access (OFDMA), and Code-Division Multiple Access (CDMA). These standards are 
used for short messages and voice calls in the networks. The 5G networks are used in 
IoT networks for smart services by using the Mobile Broadband (eMBB) and Ultra-
Reliable and Low Latency Communication (URLLC) standards for communications. 
The 6G concept for AIoT  uses networks with 1 GHz. up to 1 Tbps bandwidth. The 
6G also provides low latency services which are ten times less than 5G. The routing 
protocols for data communication play a crucial role in AIoT networks. The scalable 
routing protocols are used in these networks due to a massive number of smart devices 
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and sensor nodes. Many AIoT application requirements are in-time data delivery on 
a real-time basis. Low latency is required for timely delivery of the data because of 
time-sensitive AI applications, as resources are limited in smart devices in terms of 
storage, processing power, and energy, energy-efficient routing protocols are needed 
to improve the node’s battery lifetime and extend the operational time. There are 
different routing protocols designed to address the energy issues in these networks. 
Reliability and QoS are needed for AIoT applications, especially for smart healthcare, 
transportation, and disaster management applications. Some applications prioritize 
low latency whereas some need to prioritize high data throughput. The routing pro-
tocols must be able to provide reliable QoS support as per the application’s needs. The 
AIoT networks are heterogeneous and dynamic and use adaptable routing protocols to 
handle diverse data types. Security is another main requirement to protect data integ-
rity, user confidentiality, and system availability. Context-aware routing is needed for 
better decisions based on real-time information as per application requirements and 
network conditions. Resource awareness is another requirement of any routing proto-
col to avoid overburdening certain nodes and to optimize resource utilization. AIoT 
networks can benefit from various existing routing protocols like OLSR (Optimized 
Link State Routing Protocol), and RPL (Routing Protocol for Low-power and Lossy 
Networks) (A. Ahmed et al. 2017). The choice of the routing protocol depends on the 
specific use case, network architecture, and the desired performance metrics.

1.7.1  AI Usage in Communication Systems

Several AI methods have been adopted for communication systems and fulfill the AIoT 
network requirements. Figure 1.2 shows the layer-wise operations with AI and ML-based 
algorithms.

Several AI and ML-based solutions have been proposed for AIoT networks to estab-
lish reliable and secure data communication services. Heuristic algorithms are used to 
find the heuristic value of artificial network nodes. This type of method is applicable 
where there is no solution to the existing problem. Some examples of heuristic algo-
rithms are Generic Algorithm (GA), Ant Colony Optimization (ACO), and Particle 
Swarm Optimization (PSO) (Qureshi, Ahmad, et al. 2020). Supervised learning is also 
used for mapping the input and output variables by using training datasets. Examples 
of supervised learning are Support Vector Machine (SVM) and K-Nearest Neighbour 
(KNN). On the other hand, the unsupervised learning method is used without training 
the dataset by computing the input data for output. The well-known unsupervised meth-
ods are Principle Component Analysis (PCA) and K-mean clustering. Reinforcement 
learning is also utilized by using different elements like agent, environment, action, and 
state. Some well-known examples of reinforcement methods are Q-Learning, and State 
Action Reward State Action (SARSA). DL methods are used to analyze the data sets for 
device localization, routing optimization, network access, and channel estimation. DRL 
and Federated Learning (FL) are also used for different applications in AIoT networks. 
These methods are used to solve complex problems, such as resource allocation, and 
ensure security and privacy (Qureshi and Iftikhar. 2020).



12    ◾    Artificial Intelligence of Things (AIoT)

1.8  EXISTING CHALLENGES AND ISSUES
While offering a number of benefits, AIoT technologies also possess new challenges and con-
cerns. As communication systems, fixed and mobile networks, wired and wireless enable 
technologies, and the open nature of network architecture are developed, they open various 
communication, connectivity, resource allocation, and security challenges (Qureshi, Din, 
et al. 2020). As these networks combine the features of AI and IoT, networks and systems are 
more complex and interconnected. The existing challenges need to be addressed for better 
services and network operations. The details of some major challenges are as follows:

1.	Data Routing: The smart devices are communicating with each other by using wired 
and wireless networks. The routing is always a major issue especially when the net-
work is congested or fewer resources are available (Qureshi, Abdullah, et al. 2014). 
Disconnectivity, best pathfinding, delay, and network overhead are always the main 
concern of IoT networks. As AI processes are integrated with IoT networks and need 
real-time decisions, so routing needs more smart systems and standards for better 
data communication processes.

2.	Data Storage and Management: AIoT networks generate a large amount of data 
from different smart and fixed devices. Data storage and its management are always a 
major issue for these networks. These networks require scalable storage management 

FIGURE 1.2  Layer wise operations with AI and ML-based algorithms.
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systems and effective architecture to avoid overwhelming the network and ensure 
timely processes.

3.	Privacy and Security: This challenge is one of the top priorities of the system due 
to the increased number of interconnected smart devices and the exchange of user 
data. Security is always a major concern of these networks for different reasons, such 
as new vulnerabilities and malware, and lack of security solutions and awareness. 
AIoT networks are vulnerable to cyber-attacks, privacy violations, and cyber-attacks. 
There is a need to adopt more smart encryption methods, strong authentication, and 
robust access controls to safeguard the network and its data.

4.	Interoperability: Interoperability and scalability are always challenges due to dif-
ferent manufacturers and their protocols and standards. Compatibility is always an 
issue especially when different companies have their own standards, protocols, and 
processes. There is a need to design the devices to create cohesive and functional 
AIoT networks.

5.	Real-time Data Processing: Real-time data processing is always a major requirement 
of these networks. The different areas are integrated with smart devices like autono-
mous vehicular systems, industrial automation, smart homes, and smart healthcare. 
These areas need real-time data processing with low latency and high throughput to 
maintain the requirements of the network for responsive AIoT systems.

6.	Energy Management: Traditional IoT devices are often constrained by limited 
energy resources. This issue increases when the AI system is integrated with more 
capabilities due to additional strain on energy requirements (ALiero et al. 2021). 
Energy management and solutions are needed to address this issue in terms of mod-
els, architecture, and protocols. The energy management solutions require extending 
operational lifetime and reducing environmental impact.

7.	Resource Allocation:  AI algorithms are used in IoT networks and require more 
resources such as processing power, storage, energy, and communication require-
ments. Resource allocation is always a major concern of these networks especially 
when the resources are limited to handle complex algorithms. Optimizing AI models 
for better deployment on resource-constrained devices is a significant challenge.

8.	Data Management: The AIoT applications need high-quality and reliable data for 
better, in-time, and accurate decisions. The networks must require that data integrity 
is maintained and that cleaning is performed to address the issues like data bias, data 
drift, and anomalies to ensure the network performance and trustworthiness of AI 
models in IoT networks.

9.	Ethical and Legal Challenges: There are various ethical and legal challenges related 
to ownership, transparency, and consent in AIoT networks. There is a pressing need 
to establish new laws and rules to ensure data integrity where the AI decisions are 
unbiased and align with ethical laws and regulations. Mature ethical policies gain the 
public and users’ trust and avoid potential legal issues.



14    ◾    Artificial Intelligence of Things (AIoT)

Addressing the above-discussed challenges and issues in the AIoT network needs strong 
collaboration among all stakeholders. The technology developers, policymakers, indus-
tries, and end users should consider the discussed challenges to propose any new system 
for these networks. These networks are evolving with new effective solutions and reaching 
full potential with fewer risks and maximum benefits.

1.9  SECURITY IN AIoT NETWORKS
Security is one of the main concerns due to the rapid growth of malware, spam, and secu-
rity attacks. AIoT networks are in use across the globe and  are interconnected with other 
cloud and edge-based technologies. To ensure security, users’ privacy and trust establish-
ment are crucial at the large-scale network level. Security attacks need detection and preven-
tion solutions to monitor the unauthorized access of networks and systems and to protect 
them from any alteration or breach. There are many well-known attacks that exist in AIoT 
networks such as Denial of Service (DoS) attacks, micro probing, and reverse engineering 
attacks. DoS attacks occur when a service is made unavailable for the user by an attacker 
by the attacker overloading the capacity of the infrastructure. This attack results in a loss 
of reputation for the vendor. A DoS attack is conducted by botnets targeting a single target 
from different IPs. DoS attacks can be carried out using User Datagram Protocol (UDP), 
Internet Control Message Protocol (ICMP), Simple Network Management Protocol (SNMP), 
and Transmission Control Protocol (TCP) protocol packets. These packets are flooded into 
the system such that the system becomes unavailable to genuine requests (Carl et al. 2006). 
The micro-probing attack is performed by an attacker who has complete physical access to 
the hardware. The attacker gains access to the semiconductor chip directly so that he can 
observe and interfere with the hardware’s low-level configurations. These attacks may exploit 
the one-time programmable OTP memories, rewrite passwords in memories using UV light 
rays, fuse polysilicon read and write using advanced tools, and inject fault in the system con-
troller IC (Shi et al. 2016). Reverse engineering is used to get information about the hardware 
type, algorithms, and authentication being used. These are invasive attacks which can give 
an insight into the inner surface of hardware, and the system can be cloned after reverse 
engineering. A system or a node can be replicated and introduced in the original network to 
spy or divert the traffic from the destination. There are many other security attacks that exist 
and disturb AIoT network’s operations.

1.	Network Attacks: A Network is vulnerable to attack because an illegitimate user 
can pretend to be an authorized user and can compromise traffic. Network attackers 
can get access to the central device or system and manipulate themselves as original 
users and can sniff packets and generate fake packets towards the nodes resulting in 
an increase in illegitimate traffic, performance effects, and stealing key parameters 
of a system.

2.	Node Capture Attacks: A node capture attacker steals the security parameters of a 
device from memory and can then exploit either hardware or software configurations 
for the purpose of launching further attacks or eavesdropping on the communication 
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of the network. Node capture can be a result of vulnerabilities in the configuration 
of the device, unauthorized access to the central controller, or reverse engineering 
(Shaukat et al. 2014).

3.	Monitoring and Eavesdropping: Eavesdropping is to intercept traffic or sniff it to 
steal information that can be useful to gain further unauthorized access and know 
about the system infrastructure. After getting such critical security parameters, an 
attacker can do the most impactful attack. Monitoring a system actively on live traffic 
also helps attackers to find out vulnerabilities in the network.

4.	Traffic Analysis: Network traffic analysis is performed passively on captured traffic 
to analyze the network traffic pattern. This analysis helps the attacker to understand 
the network speed, size, origin, type, and content of files being shared on the net-
work. This is achieved by network state monitoring tools.

5.	Replication Attacks: Sensor nodes are captured, and reconfigured using secure 
parameters such as code, id, and keys, and then these nodes are sent to the network. 
An attacker can now eavesdrop and monitor the network communication or may 
handle the whole network, insert wrong information, shut down some nodes, etc. 
This replication is camouflaged, and till the time the system detects some vulnerabili-
ties, massive harm to the network may have occurred (Khurum. 2019).

6.	Side Chanel Attack: Side channel attacks are based on power, traffic, system time, 
and fault analysis rather than utilizing vulnerability in the hardware or algorithm 
level implementation. The attacker wants to get security critical parameters using this 
method (Zhou and Feng. 2005).

7.	Power Analysis: This analysis provides a solution to analyze the power consumption 
by using oscilloscope power traces when cryptographical operations are performed 
in the device. Correlational power analysis is used to derive the secret key. Power con-
sumption is analyzed, and the algorithm estimated using power consumption peaks 
against each instruction or subset of instructions. The power consumption of a few 
instructions is known to estimate unknown parameters.

8.	Traffic Analysis: Traffic analysis can be considered as a type of side-channel analysis 
in which metadata of traffic transmitted in the medium is analyzed to get informa-
tion about the system. It can be used as a fingerprinting technique to gather criti-
cal information about infrastructure. This attack is like eavesdropping and traffic 
analysis.

9.	Timing Analysis: This is a side-channel attack in which an attacker tries to get the 
time of execution of cryptographic operations. If a precise measurement of time for 
each operation is known, an attacker can backtrace to the input and hence crypto-
graphic keys are obtained and the system is compromised.

10.	Fault Analysis: Flawless algorithm implementation cannot be guaranteed. A sin-
gle fault can be exploited to generate false projected output, and even a calculated 
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disturbance in a system can cause a change in a program counter and cause a pro-
gram to exhibit more and missed instructions.

11.	Software Attack: Third-party, malicious software and spyware through the internet 
or email attachment (phishing), or other cleverly disguised software instructions are 
software attacks that are very harmful to the system.

12.	Trojan Horse Attacks: A Trojan horse usually comes from some form of social engi-
neering. It creates a backdoor for a command and control server to further exploit 
vulnerabilities in the system already created by a Trojan. Complete user system access 
can be gained by hackers using this.

13.	Logic Bombs: A logic bomb is like a malicious logic programme meant to  
cause harm at some point in the future but inactive at the present. A time and date 
are specified when that part of the code activates. These attacks exploit AIoT soft-
ware architecture and configuration and damage to the whole infrastructure unless  
the system is recovered.

14.	Worms and Viruses: Viruses are typically Portable Executable (PE) files or are 
attached as plugins to either Word files or pdf files. The infected host file should 
be removed to get rid of the virus attack. A worm, however, is application inde-
pendent and does not need the support of any other Word or pdf files. Worms 
spread through internet connectivity. Each worm can grow its infection in the 
network itself.

15.	Denial of Services Attacks: A DoS attack is accomplished by flooding traffic, e.g., 
ICMP or too many TCP connection requests. These attacks are malicious attempts 
to disrupt the normal functioning of a targeted server, service, or network, making it 
temporarily or indefinitely unavailable to its intended users.

16.	Crypto-Analysis Attack: Crypto-analysis or cryptanalysis leads to the identification 
of the type of crypto algorithm and the decoding of key parameters to break the fully 
or partially cryptographic algorithm. It is the study of cipher types and cryptosys-
tems. Many algorithms based on ML and pattern matching exist for such attacks  
(A. W. Ahmed et al. 2017).

17.	Cipher Text only Attack: During a cipher text-only attack, the attacker just has 
obtained cipher text from a target. The goal is to recover plain text so that the secret 
key may be guessed to further decrypt all the cipher messages. A number of pos-
sible strings are saved, and the output of the algorithm is generated. The two most 
important methods which are based on given text are attack on two-time pad and 
frequency analysis.

18.	Known Plain Text Attack: In a Known Plain text attack, the attacker has access to 
the plain text as well as its corresponding cipher text. The goal is to guess the secret 
key used behind it. It provides more opportunities to guess accurate keys. A simple 
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substitution can easily be detected using this attack. Enigma cipher and the simple 
XOR cipher can easily be detected.

19.	Chosen Plain Text Attacks: During chosen plain text attacks, a cryptanalyst can 
choose random plain text to pass to the device and receives corresponding cipher 
text. The goal is to acquire an encryption key or alternatively to create an algorithm 
even if the key is not acquainted. The attacker is analyzing behavior with respect to 
input and output.

20.	Man in the Middle Attack: A MITM attack is difficult to intercept. A controlled 
device is inserted between the inbound and outbound network flow of the system by 
which the attacker can gain the transcript of whole communication between the two 
parties.

These attacks are a deep concern of the AIoT networks. Companies need to adapt 
advanced systems and technology to protect their privacy and data. AIoT services are 
needed without delay. Because of unavailability and compromised traffic, these attacks are 
becoming more advanced and critical for the systems.

1.10  IoT SECURITY CHALLENGES AND SOLUTIONS
Table 1.2 represents security issues, addressed vulnerabilities, identity of the affected 
layer in networks, the threat or attack’s security level, and the threat or attack’s proposed 
solution.

TABLE 1.2  Security Issues and Proposed Solutions for AIoT Networks

S.No.
Security Threats 
and Attacks Consequences Affected Layers AloT Levels Proposed Solutions

1. Unavailability 
and 
redundancy

Service 
interruption

Network layer Mid-Level Timestamp and nonce 
attributes allow for 
protecting layers from 
replay attacks and 
verification of 
fragmentation by 
hashing chains.

2. Insecurity of 
internal 
network

Spoofing of 
source IP

Network layer Mid-Level Authenticate using 
Elliptic curve SS

3. Buffer overflow Unavailability 
of buffer

Network layer Mid-level Sending complete 
fragmented packets 
using split buffer

4. Internet service 
provider 
interruption

Man-in-the-
middle attacks

Network layer Mid-level Packet filtering on a 
behavior basis

5. Network 
security for 
authenticating 
user

Violation in 
data 
confidentiality

Transport and 
Network layer

Mid-level Using cryptographic 
encryption algorithms 
and hash functions like 
RSA, SHA.
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1.11  CONCLUSION
AIoT is one of the new concepts for smart networks. These networks provide monitor-
ing, sensing, and data communication services by using AI methods for better predic-
tion, data analysis, and decision-making. AIoT applications use intelligent and enabling 
technologies, smart architectures, complex network topologies, and intelligent informa-
tion systems. This chapter discussed AIoT network architecture in detail including data 
communication, AI, and edge and cloud modules. It also covered layer-wise AI usage in 
IoT networks where several ML and DL methods are presented in detail. This chapter 
also covered the applications, AI usage in IoT networks, existing issues, and challenges. 
Security and existing attacks and their behavior are also discussed to understand the net-
work requirements. This chapter will help new researchers in this area to understand all 
the operations, AI usage, and other concerns.

6. Security threats 
on the 
transport layer

Violation in 
confidentiality

Network and 
Transport 
layer

Mid-level Using AES/Sha-based 
cipher, IPSEC 
compression, DTLS 
header compression, 
Identification, and 
authorization using 
AES/CCM-based 
security

7. Session 
creation and 
renewal

DOS attack Network layer Mid-level Authorization using a 
private key and 
encryption based on a 
symmetric key.

8. Constrained 
internet 
application 
protocol

DoS Application and 
Network layer

High and 
Mid-level

Tunnel filtering method

9. Vulnerable 
graphical user 
interfaces

Violation of 
privacy, DoS, 
interruption 
in the network

Application 
layer

High level Allow only strong 
passwords, and identify 
backdoors, and 
vulnerabilities using 
SQL injection and 
cross-site scripting.

10. Vulnerable 
software

Violation of 
privacy, DoS, 
interruption 
in the network

Network, 
Transport, and 
Application 
layer

All security 
levels

Software should be 
updated every time, use 
encryption techniques 
with validation and 
verification

11. Middleware 
security

Violation of 
privacy, DoS, 
interruption 
in the network

Network, 
Transport, and 
Application 
layer

All security 
levels

Implementation of 
security policies, crypto 
key management 
techniques, use of 
authentication 
approaches

TABLE 1.2 (Continued)  Security Issues and Proposed Solutions for AIoT Networks

S.No.
Security Threats 
and Attacks Consequences Affected Layers AloT Levels Proposed Solutions
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2.1  INTRODUCTION
In the evolution of contemporary civilization, Artificial Intelligence (AI) is a key technol-
ogy that has the potential to enhance human potential and bring about significant ben-
efits. In the meantime, the IoT has the potential to build a massive network of connected 
intelligent devices. It can handle a variety of relationships between people and things and 
has a sizable capacity. Additionally, it is capable of facilitating the quick transmission of a 
variety of information to greatly improve people’s quality of life and productivity. If these 
two technologies can be effectively paired, it will have a favourable impact on the design 
and advancement of industrial equipment. Autonomous vehicles, smart homes, and com-
puter network businesses all can benefit from the use of the IoT and AI (Mukhopadhyay 
et al. 2021). AI is a method that enables machines to function and behave like people. In 
1956, Dartmouth University introduced the concept of “artificial intelligence” for the first 
time. The idea of AI has since been gradually expanded and gained attention due to fast, 
intelligent, and cost-effective processes. Although the development of AI is taking longer 
than predicted, and it has not had a lengthy history, its development has never come to a 
halt. Many new AI systems are being developed now, having been first developed 40 years 
ago, and they are having an impact on the advancement of other technologies (Yao. 2019).

The devices are connected via a vast network called the IoT. These devices collect and 
disseminate the information as per their usage and deployment.  With the advancement in 
communication systems, IoT-based applications and technologies that are built on AI are 
assisted by a variety of different sorts of sensors. In recent decades, with continuous evolu-
tion in smart and digital technologies, AIoT has attracted the attention of many academ-
ics and emerged among the most widely used technologies due to their offered benefits, 
such as maximizing data collection, processing, and decision-making. AIoT has a wide 
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range of offered benefits such as enhancing operational efficiencies through precise pre-
dictions based on collected and historical data, increased scalability among different IoT 
domains and deployed services, improved productivity with enhanced risk management, 
and reduced downtime (Ślusarczyk. 2018). The fundamental convergence of AI and IoT 
applications is depicted in Figure 2.1.

Almost all systems today employ sensors. The existing networks are found in smart homes, 
places of employment, retail establishments, and healthcare facilities, and smartphones are 
using smart sensor nodes for sensing and monitoring the surrounding environment. The 
IoT ecosystem cannot exist without sensors. In many applications and disciplines, such as 
device and data management, computation, security, trust, and privacy, the expansion of IoT 
networks creates important concerns. The growth of the digital economy is directly linked to 
this expansion. Smart cities, smart businesses, remote monitoring, smart meters, and auto-
mated processes are all made possible by the IoT (Phan et al. 2023). Applications and services 
offered by the IoT today and in the future have the potential to dramatically ease, accelerate, 
and enrich users’ lives due to the integration of AI (Kuzlu, Fair and Guler. 2021).

Utilizing AI algorithms to analyze the enormous volumes of data that IoT sensors produce 
in a variety of applications is an emerging trend in the integration of AI with IoT. Additionally, 

FIGURE 2.1  AI-based sensors for IoT applications.
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by providing innovative opportunities and features while dramatically minimizing human 
contact, this integration speeds up the processes. AI and IoT have been combined to make 
it possible to give machines intelligence to perform activities that previously required the 
human mind. Additionally, AI-based systems are developing quickly in terms of their versa-
tility, adaptability, processing speed, and ability to make decisions. AI, employed in comput-
ers, will eventually be able to reason similarly to humans. This trend, which will speed up the 
digital transformation of industries, will benefit several IoT-based applications.

2.2  ARTIFICIAL INTELLIGENCE AND ITS IMPORTANCE
Studying AI aims to make computers more capable and to behave more like humans. The 
digital transformation of smart industries has adopted this new technology and changed 
the traditional data communication process. Furthermore, AI entails computational 
devices capable of replacing human expertise in performing specific tasks. Through col-
laborations across many other disciplines, AI has become more interdisciplinary and is 
used in many disciplines, such as philosophy, computer science, mathematics, statistics, 
biology, physics, sociology, and psychology (Qureshi et al. 2013). The adoption of AI-based 
solutions in the IoT is rapidly transforming the entire process because the devices pro-
duce an enormous amount of data that can be leveraged by using data-driven technology. 
Through improved efficiency and helpful decision-making, AI and the technology that 
makes up IoT subset have improved accessibility, integrity, availability, scalability, confi-
dentiality, and interoperability for connecting devices (Anwar and Ali. 2022). Consisting 
only of a piece of hardware with a sensor node that sends data and equipped with location 
services like GPS, these systems utilize fewer resources and are cost-effective due to smart 
and tiny size sensor nodes (Lu and Da Xu. 2018).

Over the past few years, the IoT has made considerable advancements. According to the 
International Data Corporation (IDC), there will be 41.6 billion IoT devices, or “things,” by 
2025, and 79.4 ZB of data will be generated as a result (Li, Xu and Zhao. 2015). Because IoT 
connects multiple items to networks for intelligent services and permits interaction between 
the real world and computer communication networks,  future IoT systems must take pri-
vacy and security precautions (Hajjaji et al. 2021). IoT is unquestionably raising the bar for 
innovation and productivity in both the industrial sector and daily life. It shows a sizable net-
work where individuals, gadgets, and objects are all linked for data exchange and interaction.

AIoT networks have a significant impact in different fields of life, such as better governance, 
economics, transportation, and healthcare systems. Through work automation, increased 
productivity, anxiety reduction, smart homes and cities, among other contexts, AIoT net-
works have the potential to make life better. IoT-enabled devices are used to monitor, recog-
nize, and comprehend a scenario of environmental circumstance without the assistance of 
a human. It is now possible to design and manage cutting-edge apps and improvements by 
using AI to evaluate the massive amount of IoT data that is now available. The emergence of 
AI coincides with a technological earthquake that enhances human welfare and well-being. 
It has been shown that AI is highly capable in a variety of domains, including face recogni-
tion, credit scoring, decision-making, and autonomous driving (Naseem et al. 2022).

Since its inception, the IoT has benefited from the convergence of three visions: things-, 
internet-, and semantic-orientation. IoT is a “global network of interconnected objects,” 
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to use semantic terminology. The fundamental objective of AIoT is to make it easier for 
autonomous networked actors to share real-time information.

2.2.1  Convergence of IoT and Artificial Intelligence

The study of AI focuses on how to make computers smart so they can carry out tasks 
that earlier needed human intelligence. AI systems have grown rapidly in terms of their 
capacity, functionality, flexibility, and computational efficiency. IoT is a network of physi-
cal items, or “things,” that are equipped with software, sensors, and other features to allow 
for online communication with other things. AI and IoT will become more and more inte-
grated (Alshehri and Muhammad. 2020). The intimate integration of AI technology and 
the IoT creates new possibilities for the IoT in various domains. Figure 2.2 depicts the 
layered technologies in AIoT networks.

AIoT is made up of many different kinds of hardware, software, and networking 
protocols, and they all have security flaws. As a result, the attack surface for the entire 
network has increased. The IoT is also a decentralized network of intelligent items that 
can sense, process, and talk to each other. The main idea behind AIoT is to use cutting-
edge technology and make it a natural part of everyday life. Yet, it is anticipated that 
the development of smart gadgets will lead to the definition of new lifestyle standards, 
norms, and services (Anwar, Zainal, Outay, et al. 2020). Every AIoT component works 
with clearly defined objectives and is largely self-sufficient. However, it is challeng-
ing to design generic architecture for smart cities due to the wide variety of devices, 

FIGURE 2.2  AIoT layer architecture.
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underlying technology, and need to integrate components. The fundamental framework 
for communication in a smart city has three layers: the Network layer, the Application 
layer, and the Hardware or Perception layer. Together, these levels enable communica-
tion between diverse entities and other network elements (Anwar, Zainal, Abdullah, 
et al. 2019).

a.	The convergence of AI at the Application Layer: At this layer, consumers can directly 
access numerous applications, but there are new challenges due to the exponential 
growth of applications as well as the varied and personalized service requirements. 
For example, even when consumers are looking for the same information, their needs 
may vary. However, AI contributes to helping understand personalized services and 
enhances user satisfaction. Also, user profiles help significantly in providing adaptive 
services. The Application layer of AI provides users with adaptive services. AI may 
assist with in-depth user profile analysis and learn hidden information with data 
mining techniques when users suggest a specific requirement for a particular applica-
tion (Jabraeil Jamali et al. 2020).

b.	The Convergence of AI at the Network Layer: The second layer and core element 
of  IoT architecture is the Network layer, which connects the Application and the 
Perception layers. Data aggregation from different sensors is the main duty of the 
Network layer. The Network layer’s communication efficiency can be increased by 
choosing the best routing path, which is crucial. Most prefer to select a routing path 
for lightweight networks, like Wireless Sensor Networks (WSN), based on predeter-
mined rules or information. Through knowledge-enabled and data-driven techniques, 
AI significantly contributes to optimal routing path selection, network scheduling 
optimization, Quality of Service (QoS) improvement, effective connection establish-
ment, and effective communication (Ghosh, Chakraborty, and Law. 2018).

c.	The Convergence of AI at the Perception Layer: The Perception layer is the founda-
tional element of the architecture, sometimes referred to as recognition. It takes in 
the surrounding environment, collects real-time information, then delivers it to the 
Network layer for processing. Data is the fundamental building block of IoT and AI, 
which open up an enormous number of possibilities for mining value-added services. 
When AI converges at the Perception layer, it enables technological advances in han-
dling exploding data. AI is appearing at an opportune time (Chang et al. 2021).

AIoT applications produce a lot of information. As a result, it is crucial to develop and 
implement reliable AI techniques for dimensionality reduction, noise reduction, and 
potentially redundancy removal in data pre-processing and preparation. In order to facili-
tate the creation of AIoT applications, we believe that the network compositional layers 
will continue to evolve AI approaches and methodologies. The field of AI encompasses a 
number of technological developments, such as machine learning, deep learning, and nat-
ural language processing. The architecture of interconnected IoT systems is improved by 
combining AI-based techniques at various IoT compositional layers to handle a variety of 
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data for self-management activities. Innovations (AI, bots, and Augmented Reality/Virtual 
Reality (AR/VR)) use combined IoT knowledge to make intelligent judgments, enhancing 
human capabilities and improving machine/thing capabilities to better manage and gov-
ern IoT and other areas such as fog and edge computing (Lai et al. 2021).

2.2.2  Artificial Intelligence in IoT Applications

In a variety of IoT scenarios, AI techniques are enabling hundreds of different applications. 
Smart cities, smart buildings, smart homes, smart transportation, smart healthcare, envi-
ronmental monitoring, agriculture, and smart grids are some of the AI applications in the 
consumer and industrial IoT. More specifically, by assisting with application design and 
development as well as infrastructure and application maintenance, AI has demonstrated 
its effectiveness in numerous areas. Artificial neural networks (such as deep learning tech-
niques), fuzzy logic, and evolutionary computation are currently the most widely used AI 
technologies in IoT applications. These technologies are used for a variety of tasks, includ-
ing regression, classification, multidimensional signal processing, sensor calibration, mea-
surement, data fusion, prediction, decision support, security, and data transmission (Deng 
et al. 2020). In addition, every IoT application uses a unique set of communication proto-
cols and has the option to include security and privacy protection measures.

Also, production from the AIoT is significant. AIoT devices regularly produce more data 
than any human being can handle or use productively, including data on health, the envi-
ronment, warehouses, and logistics. Additionally, these IoT components benefit greatly 
from AI approaches. Due to restrictions in communication technologies, a sizable num-
ber of IoT applications are created on portable, lightweight, and energy-efficient devices. 
AI-based IoT has many applications across numerous industries and offers many benefits 
like increased productivity, cost savings, and positive user experiences. AI programs can 
gradually learn the most significant patterns and trends. They are capable of detecting cer-
tain occurrences that require human intervention (Herath, Karunasena and Herath. 2021).

•	 Smart Cities: A smart city is a big concept that includes both the city’s physical 
infrastructure and concerns affecting its residents and society. A community that 
plans adequate investments in public transportation and services could offer bet-
ter life quality and resource management that enable thoughtful and sustainable 
socioeconomic growth (Kassens-Noor and Hintze. 2020). There are several uses for 
AI, including security, the stock market, search and rescue, and transportation. The 
creation of smart cities involves a number of intricate factors, including economic 
restructuring, environmental protection, governance, and transportation concerns 
(Kar et al. 2019). Smart buildings can be constructed sustainably by leveraging elec-
tronic devices, software-driven systems, or other cutting-edge technologies in the 
form of AI that can adapt to the surroundings of the building in order to optimize or 
increase the system’s performance.

•	 Smart Healthcare: The term “smart healthcare” refers to platforms for health sys-
tems that connect people, resources, and organizations while making it simple to 
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enter health records using devices like wearable appliances, the IoT, and the mobile 
Internet. An important component of connected life is smart healthcare. One of our 
fundamental needs is healthcare, and it’s anticipated that in the near future, smart 
healthcare will generate several billion dollars. The IoT, the Internet of Medical Things 
(IoMT), medical sensors, AI, edge computing, cloud computing, and next-generation 
wireless communication technology are a few of the components of smart health-
care (Bellini, Nesi and Pantaleo. 2022; Ahmed et al. 2022). AI-integrated healthcare 
systems now significantly benefit from the IoT. The detection method for diabetes 
and heart-related disorders uses a convergence of IoT and AI technologies. However, 
there are many obstacles standing in the way of next-generation healthcare, includ-
ing reliability, network latency, and bandwidth.

•	 Smart Agriculture: IoT networks have the potential to transform agriculture by pro-
viding crop, weather, and soil conditions in real time. This will allow for precision 
agriculture and the efficient use of resources like water and fertilizer. Automation in 
agriculture is a hot topic and a significant source of concern worldwide. The need for 
food and employment grows along with the global population. The conventional farm-
ing techniques are insufficient to achieve these objectives. With the use of AI, new auto-
mated procedures have been created that have changed agriculture (Ciruela-Lorenzo 
et al. 2020). Social, economic, and environmental sustainability are all being improved 
by smart agriculture in the agricultural sector. Thanks to Wireless Sensor Networks’ 
(WSN) explosive expansion, the IoT has been shown to be a useful tool for automating 
agriculture and making judgments. IoT devices that can trigger responses to changes 
in plants and environmental circumstances are created by using AI techniques on IoT 
devices to regulate smart irrigation, harvesting, and greenhouse factors.

•	 Smart Manufacturing: Sensors, which are embedded in all the parts connected to 
the manufacturing process, are a crucial aspect of AIoT. These sensors serve as the 
“senses” for gathering information about a product’s availability, production, storage, 
distribution, and consumption in order to promote industrial supply chain optimiza-
tion, proactive maintenance, and product quality control. IoT with AI provides auto-
mation, preventive maintenance, and real-time monitoring of production processes 
in the industrial sector, which makes Industry 4.0 deployment easier. This results in 
greater efficacy, less downtime, and better product quality (Ghahramani et al. 2020).

•	 Smart Transportation: AIoT networks can benefit the transportation sector 
through intelligent traffic management, Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication, and the development of autonomous vehicles. 
The majority of the world’s biggest cities encounter logistical, traffic, and transporta-
tion issues. Using AI in the creation and management of a sustainable transportation 
system might be highly beneficial. The intelligent transportation system is a collec-
tion of control systems, sensors, actuators, and Information and Communication 
Technologies (ICTs) that generates massive amounts of data and will significantly 
affect future transportation in the modern smart city (Qureshi and Abdullah. 2013).  
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The handling of real time traffic flow data in urban environments, which is a crucial 
component of the development of smart transportation systems, effectively requires 
the employment of ML, AI, and Deep Reinforcement Learning (DRL) approaches. 
Intelligent public transportation, traffic management, manufacturing, safety man-
agement, and logistics are all impacted by AI.

•	 Smart Retail: AIoT networks can improve customer experiences in the retail industry 
by enabling tailored marketing, in-the-moment inventory management, and intel-
ligent payment systems. An increasing number of businesses and customers are now 
emphasizing the effectiveness and experience of shopping. The growth of IoT and AI, 
as well as the uptake of smartphones and mobile payments, are driving the increase in 
unstaffed retail purchases (De Vass, Shee and Miah. 2021). Utilizing AI and machine 
learning gained from production data can result in intelligent automation.

•	 Environmental Monitoring: Environmental monitoring is the idea of designing a 
space with integrated sensors, displays, and computer equipment to aid users in com-
prehending and managing their surroundings. For example, artificial neural net-
works are used to interpret data from AIoT sensors to analyze the data collected from 
networks  (Shaikh, Naidu and Kokate. 2021). Neural networks and deep learning  are 
the AI methods used most often in this situation.

•	 Smart Mobility: An intelligent transportation and mobility network is known as 
a smart mobility network. Parking, intelligent routing, autonomous and sustain-
able transportation, supply chain resilience, and traffic management are some of the 
essential elements of smart mobility (Herath, Karunasena and Herath. 2021).

•	 Smart Education: Due to the significant role that AI applications have played in a 
range of educational disciplines, the education sector has gotten a lot of attention 
lately. Utilizing IT and its AI-based applications is one of the major advancements in 
smart education (Qureshi et al. 2023).

•	 Smart Governance: IoT networks have the potential to change a variety of industries 
and improve quality of life by fostering a more connected, efficient, and intelligent 
society. Additionally, smart governance refers to the application of technology and 
innovation to improve planning and decision-making in governing bodies. Smart 
governance is made possible by the IoT. Bringing together data from several govern-
ment departments can give authorities access to a wealth of information from a vari-
ety of sensor data (from weather-related data to environment-related data) (Zhou and 
Kankanhalli. 2021). The integration of IoT and AI helps in urban planning, disaster 
management, decision making, and e-governance.

2.3  SECURITY REQUIREMENTS FOR IoT APPLICATIONS
The most important issue for new and advanced AIoT applications is cybersecurity. Any 
security breach can have disastrous consequences, including loss of money, information, 
bodily injury (if the wrong data is entered into the system), disrupting other activities, 
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and impairing decision making. Without sacrificing security or intelligence, AIoT’s secure 
infrastructure can be expanded. Due to the configuration of these environments, particu-
larly the weak connections and open data interchange, they are exposed to a variety of 
threats and serious security concerns (Singh et al. 2022).

Protecting physical assets, data, and networks from threats, attacks, and vulner-
abilities, both known and undiscovered, is the primary objective of IoT security. 
Additionally, a huge amount of information is produced by a diverse variety of devices, 
and this information is used for decision making. Furthermore, the acquired data is 
regarded as the most valuable asset and requires adequate security to safeguard data 
Confidentiality, Integrity, and Availability (CIA). While integrity ensures that tasks are 
carried out by the person who is authorized to do them, it also involves belief in the 
veracity of the resources within a system. Table 2.1 lists the numerous security require-
ments that the various AIoT components must take into account during the design and 
authentication phases (Zikria et al. 2021).

The AIoT environment must protect its data’s integrity and take the required secu-
rity measures to prevent attackers from harming or tapping into communications. The 
secrecy of data and system communications, as well as total security, must be maintained 
in order to help make data and transactions feel more readily available, legitimate, and 
validated. Additionally, it can be challenging or impossible for AIoT devices to carry out 
computation-intensive and latency-sensitive security activities, especially for massive data 
streams, due to their limited memory, computational power, radio bandwidth, and battery 
resources (Li et al. 2018).

TABLE 2.1  Security Requirements for IoT

Security Requirements Description

Confidentiality The data is safe and only accessible to authorized users because unlawful access 
is prevented.

Integrity End-to-end encryption and digital signatures can be used to ensure data 
integrity in an IoT setting.

Availability The term “availability” refers to the process of ensuring timely and dependable 
access to and use of data, tools, and services.

Authentication A network of interconnected things, including devices, people, services, 
providers, and processing units, is known as the IoT. Each IoT device needs to 
be able to recognize and authenticate other IoT devices.

Authorization Only those with authorization may access the provided tools and services.
Non-repudiation An IoT network requirement for cyber-security is non-repudiation, which 

provides evidence of what entities have done.
Data Freshness Allowing for the assurance that all data produced by devices are up-to-date, 

time-tamped, and unaffected by an opponent who might have manipulated 
the data or retransmitted older communications.

Anonymity Anonymity refers to ensuring the privacy and security of the data against 
possible adversaries.

Scalability The system’s ability to keep its current devices and services while adding new 
ones.

Attack Resistance Ability to defend against a variety of potential attackers.
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2.4  SECURITY ATTACKS IN IoT APPLICATIONS
Because many IoT devices lack proper security, hackers have developed a variety of meth-
ods to attack them from different angles. The IoT device itself, as well as its hardware and 
software, the network to which it is attached, and the application with which it communi-
cates, all serve as potential attack surfaces (Domingo. 2021). Before attempting an attack 
on a particular device, IoT attackers usually investigate it to identify any vulnerabilities. 
The most common way to do this is to buy an identical IoT device. The adversary then 
builds a test attack using reverse engineering to analyze the device’s outputs and available 
attack possibilities. This can be done, for instance, by disassembling the device and exam-
ining the internal hardware to understand  the software (such as the flash memory), or by 
fiddling with the microcontroller to find sensitive data or trigger undesirable behavior. 
To prevent reverse engineering, it is essential that IoT devices implement hardware-based 
security. Many cybersecurity experts are looking to AI to protect systems against cyberat-
tacks. Here are a few hazardous attacks that could harm IoT devices if they were installed 
by someone with malicious intent (Radanliev et al. 2020).

a.	Physical Attack: Physical attacks, which are typical of the low-tech variety, make 
use of the target device’s hardware in some way to the attacker’s advantage. There are 
numerous sorts of physical attacks. These include attacks like network outages, in 
which the device’s connection to the network is cut off to interfere with its operations, 
cause physical damage, or inject  malicious code that prohibits correct performance 
(Abdul-Ghani, Konstantas and Mahyoub. 2018).

b.	Man-in-the-Middle (MITM) Attack: MITM attacks are among the most com-
mon ones against IoTs. In terms of computers in general, an MITM attack allows 
the attacker to act as a proxy by intercepting communication between two nodes. In 
this attack, transmitted communications can be intercepted, their contents can be 
changed or erased, and harmful content can even be added. This is done so that the 
recipient is unaware of these facts and will therefore treat any messages it receives as 
though they were sent with authorization (Cekerevac et al. 2017).

c.	False Data Injection Attacks: False Data Injection (FDI) attacks may be used by 
an attacker after a MITM attack to get access to any or all of the devices on an IoT 
network. An FDI attack involves the attacker subtly altering IoT sensor readings to 
fabricate data in order to avoid detection (Zhang et al. 2021).

d.	Sybil Attack: In this attack, once an adversary seizes control of an IoT node, the 
perpetrator may attempt to assume a new identity near another node. A single rogue 
node impersonates a huge number of other nodes in this kind of attack (Arshad 
et al. 2021).

e.	Botnets: Another frequent attack on IoT devices is the deployment of a large num-
ber of devices to build botnets and perform Distributed Denial of Service (DDoS) 
attacks. A DDoS uses attacks from numerous entities to achieve this objective. A 
Denial of Service (DoS) attack is a deliberate effort to hinder lawful usage of a service.  
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DDoS attacks seek to overwhelm the target service’s infrastructure and obstruct 
regular data flow. The four steps of a DDoS attack are typically recruiting, exploita-
tion and infection, communication, and attack. In the recruitment stage, the attacker 
looks for vulnerable machines to use in the DDoS attack against the target; in the 
exploitation and infection stage, the attacker takes advantage of the weak points and 
injects malicious code; the attacker evaluates the infected machines, determines 
which are online, and chooses when to schedule attacks or upgrade the devices dur-
ing the communication stage; and throughout the attack, the attacker sends com-
mands to the affected machines (Om Kumar and Sathia Bhama. 2019).

Despite the fact that AIoT offers a lot of conveniences, it is vulnerable to security and 
privacy problems such as malicious attacks and privacy leakage. IoT devices tend to 
be vulnerable to malicious techniques, such as bogus data injection attacks and DDoS 
attacks, but can still be successful in IoT contexts since they have limited processing and 
storage resources. However, to protect IoT applications from these malicious attacks,  
it is necessary to explore other security solutions, such as using the blockchain along 
with AI.

2.5  CONCLUSION
With the ongoing growth of data, connections, and services, IoT has entered a period of 
significant challenges. It is vital to address these problems and achieve high efficiency 
with the current infrastructure, given the conflict between scarce resources and extremely 
demanding criteria. Applications with an IoT focus are assisting in gathering huge amounts 
of sensor fusion data from many sources. However, the fusion of AI and IoT can reshape 
how data can be managed, allowing for intelligent responses from corporations, econo-
mies, and enterprises. Increasingly more IoT devices are producing data, which makes 
it increasingly challenging to collect, process, and analyze data in real time. Individuals’ 
fundamental needs benefit from the convergence of IoT and AI streams to govern smart 
sensing systems. The collaborative integration of AI with IoT has significantly advanced 
the development of AIoT systems that assess and respond to environmental stimuli more 
intelligently without human intervention.
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3.1  INTRODUCTION
Over the years, research and advancement in the field of the internet has now proven the 
success of it in every single field of science and the day-to-day life of every person. This has 
provided the advancement and betterment to the society. The Artificial Internet of Things 
(AIoT) is an emerging technology in the areas of the internet, networking, and commu-
nication. This new technology  is bringing to light the experience of the intelligent pres-
ence of internet-based physical devices which can not only communicate with humans but 
also with each other (machine-to-machine). The existence of such a developed and inter- 
networking environment has massive scope, and it will provide great opportunities in terms 
of growth in every business, market, and industry. All that advancement in technology will 
improve  quality of life. Since  it is an emerging area of research,  it is too early to define the 
impact of AIoT applications in different domains and fields. There are some formal archi-
tectures available for the AIoT environment; working on them and using their existing 
protocol suits could provide us with grounds for the development of AIoT and ensure the co- 
existence and cooperation of different technologies. With the great interest in AIoT and the 
large amount of research on it, there are many proposed architecture designs.

One of the main reasons for the growth toward 5G technology is the rapidly increased 
number of interconnected computing devices. These devices include  embedded devices 
which could be assigned and attached to other objects. Billions of devices are expected 
every year on cellular networks; about 28 billion devices were added just in 2017 (Liyanage, 
Braeken, et al. 2020). IoT is described as the worldwide network of billions of physical 
devices that are linked together.

In addition, with highly computational and resourceful devices like computers 
and smartphones, the IoT environment enables heterogeneous devices and objects to 
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communicate over the Internet. Through this networking model, IoT makes the entire 
internet a working area for the devices. This inter-communicative heterogeneous environ-
ment makes the devices smart, that is, able to access, gather, and process data, and then 
take action on that data accordingly. This interconnected and intercommunicating IoT 
environment is going to increase the data and computational resources all over the internet.  
To accommodate such technology, the internet demands an infrastructure and technolo-
gies which can co-exist with the existing infrastructure and computational technologies. 
One such alteration is Multi-Access Edge Computing (MEC) formerly known as Mobile 
Edge Computing (Liyanage, Ahmad, et al. 2018). Analogically, IoT devices are the nervous 
system of the new information area while the computational brain power of IoT devices 
resides in the decision-making technologies like Artificial Intelligence (AI), Machine 
Learning (ML), edge computing, cloud computing, etc.

At the start, computer networking aimed to access and share expensive resources effi-
ciently and economically. However, with the emergence of Transmission Control Protocol/
Internet Protocol (TCP/IP) protocol suites, it grew enormously, resulting in a huge worldwide 
network known as the Internet. All this time, the internet has been  evolving, and advance-
ments are occurring in it. These years of advancements and developments in the internet 
have paved the path for new technologies like IoT (Perera et al. 2013). IoT’s path is similar to 
that of the Internet; it is the result of a merger of several perspectives, including those that are 
Things-oriented, Internet-oriented, and Semantic-oriented (Atzori, Iera and Morabito. 2017).  
AIoT, as described, allows people, things, and AI methods to connect anytime, anywhere, 
with anything, and with anybody, potentially through any connection, network, or service.

3.2  ARTIFICIAL INTELLIGENCE
AI is the term used to describe a machine’s capacity to emulate or enhance human intel-
ligence, such as reasoning and learning through experience. Although AI has long been 
employed in computer programs, now it is applied and integrated into about every com-
puter-related service and product (Abhishek. 2022). AI is a subfield of computer science that 
studies how to utilize computers to replicate and enhance human brain function. Its defini-
tion is “A computer system and  human knowledge and behavior with capabilities such as 
learning, inference, judgment, resolving the issue, memory, knowledge and understanding 
of the human natural language” (Li. 2009). AI can be divided into two parts: theoretical 
research and engineering studies. Theoretical research deals with the understanding of the 
human brain and the development of these patterns and intelligent theories for machines. 
Engineering studies deal with the design and development of theoretical research.

The field of AI covers numerous fields of study and has recently gained popularity in 
the public, business, and academic sectors (Boyd and Wilson. 2017). In particular, the self- 
learning algorithm serves as the foundation of the present AI evolution and can have signif-
icant implications across many fields (Holdren and Smith. 2016). The importance of artifi-
cial intelligence is being highlighted by the rapid changes brought about by the digitization 
of information in the workplace, especially in the business sector (Castro and New. 2016). 
AI has the potential to increase  the economic growth of developed countries by 2 percent 
within 15 years (Purdy and Daugherty. 2016). AI can provide benefits and bring change in 
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both the public and private sectors. By maximizing  its support of  industry, AI could  pro-
vide the intelligent automation of systems and virtual workforces which could be a cost-
efficient approach for industries (Bataller and Harris. 2016). Another way to define AI is as  
a capital-labor hybrid to replicate labor activities at a much greater scale and speed, and 
even to perform some tasks beyond the capabilities of humans (GSS Asia, 2017). For these 
reasons, nearly every major IT firm is investing more in the research and development of 
AI and related technologies (Horvitz. 2016).

3.2.1  Applications of Artificial Intelligence

The rapid development of AI across all technological domains has opened up numerous 
avenues for boosting productivity across all sectors of the economy. Artificial intelligence 
provides highly advanced, self-aware computational programs that pretend to work like a 
human brain. Applications of AI are present in about every field of technology. Following 
are some applications in different fields.

There are several cases where understanding the connections between transportation sys-
tem characteristics is challenging, AI can solve those complex problems which existing tradi-
tional techniques cannot solve. Usage of AI techniques in the transportation sector provides 
many advantages. Research shows the benefit of AI in transportation by transforming the 
roadside traffic sensors into smart grid agents which can automatically detect any accident on 
the road and can also forecast future traffic conditions (Klügl, Bazzan and Ossowski. 2010). 
AI is also bringing rapid improvement in the field of Intelligent Transportation Systems (ITS). 
These systems use a wide range of technologies and forms of communication to accomplish 
their goals of easing traffic and enhancing drivers’ experiences on the road. They gather cru-
cial information that can be used by ML systems. (Liu et al. 2018) developed a system that 
uses reinforcement learning techniques to enhance traffic control policies in real-time.

To help traffic managers reduce congestion, numerous attempts have been under-
taken to pinpoint exactly when and where an incident occurred, as well as what caused 
it. These attempts could be manual (reported by humans) or could be automated by 
neural networks. Manual reports can have delays, but the automated reports gathered 
by  AI systems can be more rapidly responsive. Furthermore, the implanted sensors on 
the roads allow the AI system to measure the characteristic flow before and after the 
incident. A system was designed and tested which uses a classification neural network 
approach to detect any incident on the freeway (Dia and Rose. 1997). Through AI deep 
learning techniques, we can detect real-time incidents from social media (Gu, Qian and 
Chen. 2016). Twitter has proven to be an effective, low-cost approach for monitoring 
motorways and major routes for incidents.

The use of AI in airline operations has been acknowledged. ML, software/hardware, 
and applications (such as smart maintenance and flight route optimization) could all ben-
efit from the use of AI. Authors Oza, Castle, and Stutz. 2009 developed a system which is 
called Aviation Safety Reporting System (ASRS). The system was created to collect data from 
extremely dense aviation reports and adapt the Support Vector Machine (SVM) and  Mariana 
algorithms. The results show the effectiveness of the SVM) technique to perform the consis-
tent document  classifications. Authors, Budalakoti, Srivastava and Otey, demonstrated that 
the unsupervised ML approach is reliable for application in increasing landing safety.
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3.3  AI USAGE IN AIoT NETWORKS
AI is an extensive field that includes a variety of ideas. Most of the recent research 
focuses on AI technologies. Both the private and public sectors, including industries 
looking upon the use of AI technologies (Prediger. 2017) for healthcare, manufactur-
ing, business, and even the auto sector, have all benefited from the application of AI. 
With the benefits of AI there are also some issues involved such as cybersecurity and 
cyberattacks (Dilek, Çakır and Aydın. 2015). AI has also contributed new technolo-
gies and ideas to the field of computing and information technology. These approaches, 
techniques, and models use AI techniques which make them the sub-branches of AI. 
Some of these models are Natural Language Processing, Deep Learning, Robotics, and 
Computer Vision (Ashley; Jackson. 2017). The purpose of AI is to develop computer sys-
tems with human-like intelligence. AI has provided significant advancement in indus-
tries where robots are working in the fields of manufacturing and assembling. All these 
robots use AI techniques to do the given task like a human does.

ML is a form of AI that analyzes a system’s data and its patterns to draw conclusions  
(Alpaydin. 2020). Another branch of AI is robotics, which involves the engineering of 
autonomous machines to carry out formerly human-only jobs (Patil. 2016; Dirican. 2016). 
The advancement in robotics with the help of AI is leading engineers to create self-driven 
intelligent vehicles (Makridakis. 2017).

3.3.1  Machine and Deep Learning

An emerging field of AI is ML. The machine learning paradigm uses different AI models 
and approaches to allow system automation  (Marsland; Alpaydin. 2011). The techniques 
of ML focus on computer data programs that access and understand data. ML enables 
the system to learn new things on its own (Acemoglu and Restrepo. 2018). ML uses AI 
approaches to learn from experiences (Qureshi, Ahmad, et al. 2020). Deep Learning (DL) 
is an AI technique that mimics the working of the human brain, its pattern creation, and 
how it processes the data. DL techniques use this information to make strategic decisions 
like humans. Because DL can learn unsupervised data from unstructured data, it is also 
known as a Deep Neural Network. Deep knowledge facilitates the gathering of massive 
amounts of unstructured data, which is very hard for humans to understand and analyze 
(Mathew, Amudha and Sivakumari. 2021).

3.3.2  Biometrics

With the advancement of technology, the systems have become so much more complicated 
that the security of the data systems has become  a priority for many enterprises. The 
use of biometric identification has been a game changer in terms of data system security. 
Biometric technology makes use of several physical characteristics which are unique in 
every person and uses them  as security features for that specific person.. AI can use these 
unique human properties, such as fingerprints, iris, and facial structures, for the security 
recognition of that specific person (Akhtar et al. 2018; Rodgers. 2018). The data collected 
from these unique human properties are then sent to different specific nodes,  which the 
AI system can easily comprehend, to perform required actions on it.
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3.3.3  Artificial Intelligence in Vehicles

An important development of AI is in the field of transportation and making an Intelligent 
Transportation System (ITS) (Qureshi and Abdullah. 2013). The ITS makes a transporta-
tion system intelligent through the communication between  transportation units for further 
decision making. In Vehicular Ad Hoc Networks (VANETs), vehicles use wireless commu-
nication to get run time information of the environment to make transportation better and 
safer (Taherkhani and Pierre. 2015). Research aiming at network traffic prediction using the 
relationship between road and network traffic parameters shows that the machine learning 
technique random forest (RM) is the best option to solve the traffic flow prediction problems 
in VANETs (Sepasgozar and Pierre. 2022). (A new approach was developed to improve the 
network traffic prediction in Aldhyani et al. 2020) Using sequence mining, the proposed 
approach predicts the traffic of the network intelligently. Adaptive Neuro-Fuzzy Inference 
System (ANFIS) and Long Short-Term Memory (LSTM) were used as a time series model. A 
new technique for the prediction of network traffic in Long-Term Evolution (LTE) is proposed 
by Stepanov et al. 2020. To predict the traffic in a network the model uses three machine 
learning algorithms SVM, Bagging, and Radio Frequency (RF) on cellular traffic datasets.

IoT is a very vast and emerging field with the capability of interconnecting and process-
ing the data of billions of devices like sensors and actuators. Every IoT device can perform 
basic functions on data, such as  gathering, storing, transmitting, and processing, in order 
to take required actions. The processing capability of an IoT-enabled device decides the 
smartness of that device. A non-smart device has limited capabilities in processing  data in 
comparison with smart devices which have a much greater level of processing and can take 
actions accordingly. A better IoT system, on the other hand, will contain artificial intel-
ligence and may serve the true purpose of automation and adaptation.

3.3.4  AI-Enabled Voice Assistants

Voice Assistants are cloud-based services. Users can use them as personal assistants. They 
carry out a variety of functions by engaging with applications developed by third parties 
and other smart devices available in the surroundings. Using the user’s vocal instructions, 
they may do a variety of functions, including responding to questions, turning on/off light-
ing, contacting cabs, playing music, etc.

Some famous voice assistants are the following:

•	 Amazon created the famous voice assistant ALEXA, it can be utilized in products 
such as Amazon Echo, Amazon Tap, and others. Alexa has a kit called Alexa Skills 
Kit (ASK) that can be used to improve specific skills by personalizing it according to 
the user’s needs and requirements.

•	 Siri, which is the production of Apple Inc., also serves the same purpose and is used 
in the Apple Home pod.

•	 Google Assistant on Google Home has extra features that allow it to recognize six 
different people and obtain their information to speak with them.
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3.3.5  Robots

Recent developments in robotics have led to the creation of more human-like machines 
that can interact with people while understanding, recreating, and expressing human emo-
tions. Robots are a fine example of IoT as different sensors, actuators, and AI approaches 
help them to grow and evolve with time which means that they can  continuously learn 
new things.

•	 SoftBank Robotics developed a humanoid robot which is named Pepper. That robot 
can communicate with humans and act as a human companion. It can understand 
human emotions through facial expressions, bodily movements, tone of voice, 
and phrases, among other things. Furthermore, Pepper can detect four different 
emotions: happiness, sorrow, rage, and surprise. It also reacts according to the 
detected emotion with touch, and expressions. It also has the functions of IoT and 
can connect to other devices. It can also be used commercially as a customer care 
representative.

•	 Sophia from Hanson Robotics is a socially active robot. It can effectively communi-
cate with humans as it has a wide range of facial expressions, the ability to make con-
tact according to the situation, and can conduct  an interesting conversation. It’s the 
first robot that owns citizenship. It has given many interviews on different platforms 
and performed on stage  by singing songs.

•	 The robotic kitchen from Moley Robotics is a kitchen integrated with various robots. 
It has a wide range of recipe libraries. It has a touch screen to select your desired 
recipe to prepare. After selection, it can use its robotic arms, hob, and oven to prepare 
food like an expert cook.

3.3.6  Smart Devices

Other than robots and Voice Assistants, smart devices/objects are also being used to make 
human tasks simpler and easier. Such devices are AI-enabled and can perform voice recog-
nition, facial recognition, object identification, speech identification, and expression detec-
tion by using neural networks, Computer Vision, etc.

•	 Smart Oven by June acts as a perfect cook. According to the user requirements, it 
can cook food precisely by watching it in the oven  using an HD camera and built-in 
thermometer. The oven can be operated through Alexa too.

•	 Honeywell created a doorbell that is HD Wi-Fi enabled  named SkyBell. The doorbell 
can operate the door opening or closing function by using a smartphone or Voice 
Assistant. It can send a live transmission to the user’s phone by using its live camera.  
Users can even communicate with the person at the door from a remote location.

•	 Smart Lights by Deako can connect with Alexa and Google Assistant. Users can con-
trol the light’s colour and intensity with just a voice command.
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•	 Affective Created Automotive AI  uses AI to enable the use of taxis called robo-taxis. It is 
an in-cabin sensor AI model which is utilized in high-performance automobiles. This AI 
system can detect road signs and decrease or increase its speed accordingly which reduces 
the risk of accidents. It has built-in microphones and a camera that can detect the facial 
expressions and cognitive state of the occupants and can therefore react accordingly.

3.4  ARCHITECTURE OF AIoT
AIoT has provided an environment where billions and trillions of devices can interconnect  
through the internet. With the increase of AIoT, these numbers are expected to grow expo-
nentially. By the end of 2025, the number of devices is  expected to grow to 75.44 billion, 
with an anticipated  increase of 10 devices per person (Alavi et al. 2018). As these devices are 
exceptionally large in number and heterogeneous in nature, IoT requires a flexible layered 
architecture for seamless connectivity between them. AIoT functions at the Application layer, 
Network layer, and Perception layer (Atzori et al. 2017; Lin et al. 2017; Wu et al. 2010) Figure 3.1  
shows the flow of  information between these three layers in the architecture of the AIoT.

•	 Perception Layer: Since the Perception layer is concerned with smart devices, such 
as tags or sensors, whose purpose is to collect data about physical objects, it is also 
known as the Device layer. The main roles of this layer are to collect data, update the 
state of the smart device, and send that data to the next layer.

•	 Network Layer: The Network layer is the layer that uses different connecting devices 
(switches, routers, etc.) for data communication between different heterogeneous net-
works. It provides the best routing paths for seamless data transmission. Depending 
upon the environment, it uses different communication technologies which could be 
Wi-Fi, LTE, fibre optics, and Bluetooth.

•	 Application Layer: The Application layer processes and analyzes the gathered data 
from the Perception layer, and then by using that data, performs the required services 
and necessary actions. It provides services in different domains including intelligent 
transportation, smart homes, smart cities, and e-health systems.

FIGURE 3.1  Tri-Tier AIoT architecture.
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3.4.1  Cloud Computing

Cloud computing is a network access approach that allows for ubiquitous, on-demand, 
and affordable access to a shared pool of programmable computing resources like stor-
age, processing, services, and on-demand applications. These cloud resources can be eas-
ily deployed and monitored with minimal management (Mell and Grance. 2011). Cloud 
computing can be referred to as network-enabled services which offer adaptable Quality of 
Services (QoS) on demand via the Internet (Hu et al. 2011). Cloud computing services are  
on-demand resources for sharing on the internet. The entity or organization that shares 
these resources with the clients is called a Cloud Service Provider (CSP). The client access-
ing the cloud can use those shared resources on demand (Hu et al. 2011). Cloud computing 
focuses on the client-server model, and on that basis, it provides three main service mod-
els, namely Software-as-a-service, Platform-as-a-service, and Infrastructure-as-a-service. 
The client requests the service using software or hardware of the Abstraction layer from the 
CSP) which then provides the requested service from the above three models (Ali, Khan 
and Vasilakos. 2015). Figure 3.2 shows the cloud architecture for AIoT networks.

AIoT is the next booming technology of the internet which is going to  revolutionize 
the internet. AIoT allows the world’s billions of internet-connected devices to connect, 
exchange data, and ultimately enhance the quality of human lives. Cloud computing pro-
vides on-demand computational power and scalable network access. With the collabora-
tion of IoT and cloud computing, a new area of the internet is going to explode  all over the 
world. It is critical to investigate the common characteristics of computing technologies. 
The same is the case with AIoT and cloud computing, as both of these technologies have 
common features. Their integration can improve and enhance both technologies (Buyya 
et al. 2009). Cloud computing provides the platform to share computational resources all 

FIGURE 3.2  Cloud architecture for AIoT networks.
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over the internet. Through providing on-demand resources, cloud computing has solved 
many ongoing problems on the internet. But with the combination of both AIoT and cloud  
computing, the future environment of the internet is going to change (Babu, Lakshmi  
and Rao. 2015).

Application and data exchange are two key components of the cloud-based AIoT con-
cept. AIoT enables the transmission of worldwide applications, while automation facilitates 
the distribution and collection of data at minimal cost. The cloud is an efficient and inex-
pensive method of linking, administering, and monitoring the data through built-in apps 
and custom portals (Rao et al. 2012).

The cloud-based IoT platforms are available for different networks, like in the eHealth 
sector (Dang et al. 2019). The purpose of new research and the integration of cloud with 
smart networks is to explore the different internet technologies to enhance the eHealth 
sector and other services.

3.4.2  Edge Computing

Edge computing is a data networking paradigm that emphasizes processing data as close 
to the network as feasible. This helps to minimize latency and data transfer needs (Cao 
et al. 2020). According to Shi et al. 2016, “Edge computing is a distributed computing para-
digm that brings computation and data storage closer to the location where it is needed, 
to improve response times and save bandwidth.” Figure 3.3 shows the architecture of edge 
computing for AIoT networks.

Edge computing transmits the data that is processed and handled by millions of 
AIoT devices (Zhao et al. 2020). With time, as the internet evolves, emerging tech-
nologies require real-time computational power and resources. Cloud computing and 
real-time cloud services tend to provide promising solutions (Papcun et al. 2020). 
Edge computing provides an approach to evaluate the data of IoT devices on the edge 
before reaching to the main cloud or fog. That approach provides more rapid and 
scalable IoT processing.

FIGURE 3.3  Edge computing for AIoT networks.



Tri-Tier Architectures for AIoT Networks    ◾    43

3.5  AI BASED SOFTWARE DEFINE NETWORK
The Software Define Network (SDN) is a model where all the decision-making of the over-
all network behaviour is done by a central software program. SDN divides the network 
into two-parts: data planes and control planes. All network devices that become packet-
forwarding devices are included in the data plane. Decision-making control logic is carried 
out in the controller, which becomes the control plane. The SDN uses a software program 
to manage the network, hence it is very easy to introduce new technologies in the SDN 
network without disrupting existing programs. It is also easy to use a software program 
to manage the network rather than using a fixed set of commands in network devices 
(Qureshi, Alhudhaif, et al. 2020). Another advantage of the SDN is that it provides a central 
approach to control and configure the network rather than configuring it on every device 
of the network individually. The controller is used for that purpose  since it has global 
knowledge of the network and can make network-wide forwarding decisions for the net-
work traffic (Kim and Feamster. 2013; McKeown. 2013). Figure 3.4 shows the architecture 
of SDN for AIoT networks.

Open-Flow (OF) is a very suitable and effective approach for SDN-related networks (Lee 
et al. 2014; McKeown et al. 2009). In OF,  the provider can test the new protocols in the 
deployed network without disturbing and affecting the production application. There are 
three main parts of the OF which are as follows:

•	 Flow Tables: These are installed in the switches.

•	 OF Controller: The Controller is the remote host machine.

•	 OpenFlow Protocol: This allows the controller to securely communicate with 
switches.

As the interest in AIoT grows, the demand for wide-area deployments of subnet-
works also grows. These subnetworks can make it possible to have multiple hetero-
geneous wireless technologies coexist in the same place in a single environment.  

FIGURE 3.4  SDN architecture for AIoT networks.
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For seamless communication and management between such different technologies in 
IoT, SDN provides its layered architectural platform to manage such distributed het-
erogeneous networks easily. The authors developed an SDN-based approach to provide 
differentiated quality levels in heterogeneous IoT environments to complete differ-
ent tasks (Qin et al. 2014). To promote interoperability in heterogeneous smart home  
devices, an SDN-based intelligent support system for IoT was developed (Qureshi, 
Alhudhaif, et al. 2022)

To solve various problems, several ML and AI techniques have been used; these problems 
include routing (Nazar et al. 2022), traffic classification (Soysal and Schmidt. 2010), flow 
clustering (McGregor et al. 2004), intrusion detection (Xu and Wang. 2005), load balanc-
ing (Kim and Kim. 2013), fault detection (Moustapha and Selmic. 2008), QoS and Quality 
of Experience (QoE) optimization (Mushtaq, Augustin and Mellouk. 2012), and admission 
control and resource allocation (Testolin et al. 2014). Recent studies have revealed a signifi-
cant tendency in the scientific community to use AI methods in SDNs.

The supervised techniques mostly used for AI-based SDN networks are supervised 
DL, SVM, Neural Networks (NNs), ensemble methods, and Decision Tree (DTs). 
Authors, Chen and Yu, developed a Collaborative Intrusion Prevention Architecture 
(CIPA). CIPA architecture uses the NN technique and provides a distributed intrusion 
prevention system. The CIPA system has simple and parallel computational abilities  
whereby it has low computational overhead. Authors, Bendriss et al. 2017 Bendriss, 
Yahia. and Zeghlache. 2017, developed a novel method for implementing Service Level 
Agreement (SLA) in SDN and Virtualized Network Functions (NFV). Their research 
focused on predicting service level objective violations for streaming services via NFV 
and SDN. The findings demonstrated that Long Short-Term Memory (LSTM) is more 
reliable and effective than Feedforward Neural Networks (FFNNs). Authors, Phan, Bao 
and Park. 2016, by combining SOM with SVM developed a new method that gives 97.6% 
effectiveness of Distributed Denial of Service (DDoS) detection in SDN. Authors in 
Rego et al. produced a multimedia transmission system  which detects the problem 
and corrects the errors from the transmission in the SDN-based IoT environment. The 
system consists of two parts; the first one uses the SVM technique to detect the network 
traffic type. The second one tells the SDN controller which action is required to perform 
on the data to ensure the QoS.

3.6  CONCLUSION
Typical IoT architectures provide data communication and sensing services to the users. 
The integration of AI and their ML and DL methods have changed the traditional IoT net-
works into smarter, more cost-effective, and intelligent AIoT networks. There are some spe-
cial requirements of AIoT networks,  such as proper architectures based on SDN networks, 
cloud, edge-based networks, and mobility-based architectures. This chapter discussed  tra-
ditional IoT networks and the emergence of AI in IoT networks. This chapter also proposed 
a tri-tier architecture for AIoT networks for more scalable, flexible, energy-efficient, and 
interoperable-based architectures where the systems can serve better. AI-empowered IoT 
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architecture is based on emerged cloud, fog, and edge systems tailored with ML and DL 
methods and capabilities. The functions and technologies are discussed to understand the 
functionalities of the proposed architecture. The proposed architectures support and pro-
vide all the required services  of  AIoT networks.
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4.1  OVERVIEW
This chapter presents a comprehensive overview of the standards and protocols used 
in Artificial Internet of Things (AIoT) networks, focusing on the advantages they offer 
and the bodies responsible for standards  creation. International organizations develop-
ing standards and protocols for AIoT networks are explained briefly. The session layer, 
Datalink layer, and Network layer are discussed in detail in terms of routing protocols 
and standards. The ongoing attempts to establish management and security benchmarks 
for each of these layers  as well as the opportunities for future research and the difficulties 
faced by AIoT are also discussed in this chapter.

4.2  INTRODUCTION
The Internet of Things (IoT) has been the subject of extensive study in many different fields, 
such as transportation, urban planning, healthcare, residential automation, and industrial 
automation. Users, devices, and information resources all participate in an IoT ecosys-
tem by connecting with services. Therefore, interoperability is necessary to ensure smooth 
communication and compatibility among these components. Security must also be taken 
into account while discussing interoperability to safeguard information and maintain con-
fidentiality. U.S. industrial firms see interoperability as the primary barrier to implement-
ing IoT technologies (Hahn. 2017). The development of IoT architecture faces big problems 
with interoperability and security. To successfully integrate IoT in real-world applications, 
there is a need to address interoperability and security concerns. In addition, a partnership 
of European business and academic concerns has recently been formed to tackle interoper-
ability and security issues in developing IoT frameworks.
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Furthermore, it is anticipated that these partnerships will assume supplementary 
functions aimed at enhancing the overall quality of life, facilitating business operations, 
and optimizing the functionality of smart homes (ALiero et al. 2021). One instance of a 
presently accessible IoT ecosystem is represented by smart homes, which employ sensors 
designed to remotely regulate temperature, heating, and air conditioning within residen-
tial dwellings. Potential future expansions of this system encompass a range of functional-
ities, including the ability to brew coffee, regulate television usage, monitor health metrics, 
and operate motor vehicles. The utilization of these applications present additional com-
plexities and necessitate the establishment of standardized protocols to effectively address 
the wide range of application demands (Hassan. 2018).

AIoT is the idea of combining Artificial Intelligence (AI) technology with IoT communi-
cations to improve network processes, human-machine interactions, data organization, and 
analytics (Chang et al. 2021). IoT devices serve as the brain of the system, while AI controls 
its every digital action. When AI is combined with IoT, connected devices may perform 
complex analyses, reach independent conclusions, and conduct independent actions with 
little to no human intervention. Efficiency and effectiveness are mostly driven by “smart” 
gadgets. The optimization of systems, the generation of important insights into perfor-
mance, and the facilitation of informed decision-making are all made possible by the data 
analytics supplied by AIoT. In addition, AI improves IoT by employing Machine Learning 
(ML) methods and bolstering decision-making (Phan et al. 2023). Connectivity, commu-
nication, and data exchange are all areas in which IoT helps AI. AIoT, the combination of 
smart devices, has a transformational effect that helps both technologies. The proliferation 
of IoT technologies across multiple sectors has increased the amount of unstructured data 
produced by humans and machines alike. The abundance of data generated by the IoT can 
be put to good use with the help of data analytics solutions, which can be provided by AIoT.

A more intelligent IoT system would incorporate AI and may achieve the desired outcomes of 
automation and adaptability. Standards are viewed by many in the business community as the 
greatest obstacle to widespread adoption. This is a natural consequence of the introduction of any 
novel technical format or concept. The battle between Betamax and VHS and the one between 
HD DVD and Blu-ray are two examples of standards wars that  resulted in an undisputed mar-
ket leader. The growth of the Transmission Control Protocol/Internet Protocol (TCP/IP) model, 
which enabled the original internet, will serve as a template for discussions surrounding IoT 
standards. The format is less important than overall utility and functionality (Haqiq et al. 2022).

4.3  OVERVIEW OF STANDARDS AND ORGANIZATIONS
One definition of a standard is a document developed and adopted by consensus of appro-
priate organizations. Its goal is to standardize a process or create a set of principles for a 
particular field so that everyone can perform at their best. In the field of Information and 
Communication Technology (ICT), the term standard typically refers to a set of agreed-
upon protocols that facilitate the transmission of information and communication ser-
vices and their use by multiple, distributed computer systems over a shared network. 
Consequently, standards play a crucial role in facilitating the development and deployment 
of IT (Hasan and Qureshi. 2018). In essence, a standard can be defined as a predetermined 
specification, and the standardization process pertains to the methods or actions used to 
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establish and determine these standards. Furthermore, organizations responsible for set-
ting standards can classify them as either de jure or de facto.

ICT international standards include rules and guidelines that make it easier for information 
technologies to progress and be used. Thus, adhering to these standards can facilitate the suc-
cessful implementation of ICT systems. So, it’s important to think about the standards not only 
when doing the work, but also when doing the study. Several well-known standards, such as 
network protocols and data formats, have been used to build systems in the IoT area. A number 
of well-known international standardization bodies, such as the International Organization for 
Standardization (ISO), the International Electrotechnical Commission (IEC), the International 
Telecommunication Union (ITU), and the Internet Engineering Task Force (IETF), are also 
helping to make standards for the IoT networks. These standards, which have been extensively 
disseminated through a number of publications, cover a vast array of topics, including archi-
tecture, framework, network protocols, and definitions. In addition, adopting standardized 
protocols can effectively improve both interoperability and security. These protocols offer a 
dependable structure to guarantee compatibility and safeguarding measures (E. Lee et al. 2021).

4.3.1  Standards and Organizations

This section overviews the standards groups involved in developing IoT standards. 
Furthermore, it elucidates the characteristics of their endeavors towards standardization. 
Standards encompass diverse information, from granular details to abstract concepts, con-
tingent upon their intended objectives. Specific standards offer comprehensive specifications 
to ensure precise interoperability among various systems or representations without any loss 
of information. Example network protocol measures that provide thorough specifications for 
facilitating efficient communication between a sender and a receiver include IEEE 802.11, 
CoAP, and WebSocket. Similar to how documents within web pages can be described using 
structured formats like HTML, CSS, and XML, which are all part of Web standards, if net-
work  standards are applied correctly, interoperability and security can be ensured.

However, particular standards provide abstract information, such as a software’s frame-
work, reference model, and architectural design. The fundamental goal of these guidelines 
is to provide high-level ideas that may be applied across a wide range of software, system, 
and environment development projects. Additionally, the standards are created by experts 
in their respective disciplines. Therefore, conceptual norms offer practical constraints for 
developing software and infrastructure. As a result, abstract standards can improve pro-
ductivity, reduce development and management times, and reduce risks. Furthermore, 
applying contemporary technologies that adhere to these established standards is straight-
forward. The benefits of implementing standards are outlined as follows:

• Standards facilitate the seamless exchange of operations and information, ensuring
compatibility and preventing any loss of information through adherence to stan-
dardized formats.

• Standards can assure security.

• Providing reasonable criteria is essential for developing and managing systems,
frameworks, software, and environments.
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•	 Implementing standards can significantly enhance the efficiency of development pro-
cesses by reducing time and mitigating risks.

The application of contemporary technologies can be predicated upon adherence to 
these established standards.

4.3.1.1  International Organization for Standardization
In the realm of information technology, the ISO (International Organization for 
Standardization)/IEC (International Electro-Technical Commission) JTC (Joint Technical 
Committee ) is a joint body charged with developing global benchmarks. In 1987, the ISO 
and the IEC formed a JTC 1 to work out any discrepancies or overlaps  among  their respective 
standards. In 2016, during the first JTC meeting, Subcommittee 41 (SC 41) was established 
to deal solely with IoT-related issues. SC 41 is mostly interested in industrial IoT, real-time 
IoT, edge computing, sensor networks, reliability, requirements, and wearables. There are 
currently twenty-one written standards and nineteen work programs that are being used. 
Not only does SC 41 contribute to establishing standards for the IoT, but several other sub-
committees (SCs) and working groups (WGs) play a significant role in this regard as well. SC 
31 emphasizes the implementation of automatic identification and data capture techniques.

Additionally, SC 31 is involved in an IoT project that aims to establish a system for unique 
identification, as outlined in standard 29161:2016 (ISO/IEC). Information security, cyber-
protection, and personal data privacy standards are currently being developed by Standard 
Committee 27 (SC 27). One such standard is 27030 (ISO—ISO/IEC), which defines best 
practices for protecting users’ data and identities when using IoT. The ITU has released a 
standard known as SG6, which pertains to telecommunications and the exchange of infor-
mation  among systems. This standard, referred explicitly to as TR 29181-9:2017 (ISO), falls 
under the domain of IT and addresses the concept of the network of everything. Its goal 
is to define the networking of everything as a problem and to specify what must be done 
to solve it in the context of future networks. The IoT is just one part of a larger whole, and 
network standards define all of its characteristics. Standardized architecture evaluation 
frameworks have been built in the fields of software and systems engineering, specifically 
SC 7. This framework, known as ISO/IEC/IEEE 42030:2019 (ISO/IEC/IEEE), encompasses 
the evaluation of architectures, including those about the IoT.

4.3.1.2  Electrical and Electronics Engineers Standards Association
The Institute of Electrical and Electronics Engineers (IEEE) is dedicated to advancing elec-
tronic and electrical engineering. Within this institute, a Standards Association (SA) known as 
IEEE-SA has been established to focus specifically on developing and implementing standard-
ized practices, The IEEE-SA is an authoritative standardization organization that is responsible 
for the development of international standards in diverse domains of electronic and electrical 
engineering, encompassing areas such as ICT, including software and system engineering, wired 
and wireless communications, healthcare, smart grids, and computer technology, among others.

The IEEE-SA has formed IEEE P2413, a working group dedicated to creating IoT stan-
dards. Standards for an architectural framework that can be used for IoT systems are the 
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primary emphasis of IEEE P2413. The architectural framework separates out unique IoT 
abstractions and then finds commonalities among  them (Logvinov et al. 2016). In addition, 
the IEEE-SA has compiled 80 IoT guidelines (E. Lee et al. 2016). In addition to networks, 
data types, electric power management, interfaces, Wireless Access in Vehicle Settings 
(WAVE), terminology definition, and health informatics, these guidelines cover a vast array 
of topics. The IEEE-SA offers a variety of network-related standards designed for IoT and 
RFID (IEEE 21451-7), WiMAX (IEEE 802.16), and Wi-Fi (IEEE 802.11) technologies.  In 
addition, the IEEE P1901 committee is developing standards to improve the functionality 
and efficacy of broadband over power line networks in IoT applications. Also, IEEE-SA has 
compiled a comprehensive list of the 46 IoT standards currently in development (Kiyani 
et al. 2022). Emerging standards include interoperability, network infrastructure, interface 
protocols, security, WAVE, and smart grid systems.

4.3.1.3  International Telecommunication Union
Since its founding in 1865, the ITU has functioned as a United Nations (UN) special-
ized organization concerned with telecommunications and related technologies. There are 
three divisions within the ITU: research and development (ITU-D), radio communication 
(ITU-R), and standardization (ITU-T). The ITU-T brings together specialists to develop 
international standards. The standards that establish normative guidelines in this context 
are called ITU-T recommendations. It is important to note that these recommendations 
are not mandatory until they are officially incorporated into the legal frameworks of indi-
vidual nations. ITU-T publishes both normative standards and non-normative content in 
the form of technical papers and reports on a broad spectrum of topics. In addition, this 
division of the ITU is responsible for publishing the ITU-T Handbooks on a variety of top-
ics pertaining to information and communication technologies. The operation, network 
planning, quality of service, implementation guide, outside plant, electromagnetic effect 
protection, measurement methods, security, mobile systems, formal languages, and formal 
language usage could be among the topics covered.

The ITU-T consists of eleven study groups dedicated to standardizing various aspects of 
ICT. These study groups encompass a range of topics and areas of focus. For instance, SG2 
examines operational aspects, while SG3 is concerned with economic and policy matters.
SG5 is concerned with the environment and the circular economy, while SG9 is dedicated to 
high-speed Internet and television. While SG12 focuses on performance, service quality, and 
user experience, SG11 is in charge of establishing protocols and test requirements. Transport, 
access, and home networks are the focus of SG15, while the future of networking and cloud 
computing is investigated by SG13. The IoT, smart cities, and communities are the focus of 
SG20: multimedia is the primary concern of SG16 and SG17. The standardization of IoT tech-
nologies falls under the purview of SG20. This includes fostering machine-to-machine (M2M) 
communication and setting up pervasive sensor networks, as well as developing more exten-
sive frameworks for  IoT and techniques to ensure compatibility among IoT applications.

Additionally, it is noteworthy that the ITU-T encompasses a diverse range of study 
groups specifically focused on the standardization efforts pertaining to the IoT. The sig-
naling requirements, protocols, and test specifications fall under the purview of SG 11. 
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The primary objective of SG11 is to standardize the process of developing test specifica-
tions to address global interoperability testing challenges. This includes many things, such 
as technical means, services, Quality of Service (QoS), and testing factors. Moreover, the 
IoT ecosystem is emphasized in SG11. Standards for next-generation networks are being 
developed by SG  13 of the ITU, with a focus on meeting the connectivity needs of the IoT.

Moreover, SG11 standards  are primarily concerned with ensuring sufficient support for 
the IoT over future networks via cloud computing. Multiple ITU Study Groups, including 
those concerned with the IoT, collaborate under Study Group 16 to develop standards for 
multimedia coding, systems, and applications. Furthermore, Study Group 17 (SG17) per-
tains to the examination of security matters, with a particular emphasis on safeguarding 
applications and services within the realm of the IoT, from a security perspective.

4.3.1.4  Internet Engineering Task Force
There is a worldwide group called the Internet Engineering Task Force (IETF) whose mis-
sion is to improve the Internet. It actively promotes the adoption of voluntary standards for 
things like automated network management, the IoT, upcoming transport technologies, 
and privacy and security on the Internet. IETF encompasses more than 100  active work-
ing groups. Among these working groups, a subset is dedicated to developing protocols 
tailored to the IoT. In October 2014, the IETF formed an advisory group called the IoT 
Directorate (IOTDIR). This division is heavily involved in IoT standardization work. The 
IETF divides its standards into two distinct groups, proposed standards and Internet stan-
dards. These standards are seen as being well understood and described as having a stable 
specification because it addresses recognized design choices. As a result of widespread 
scrutiny and widespread attention, it has been declared valuable. However, it is essential to 
note that different experiences could potentially lead to a modification or even withdrawal 
of the specification, as mentioned earlier, before its progression.

The definition of the Internet standard refers to a specification or protocol that has been 
widely adopted and recognized as a standard for the Internet. It stands out because of its 
advanced technology and the widespread opinion that the protocol or service in question 
offers the Internet community many benefits. The IETF also provides research and stan-
dardization-relevant information in the form of nonstandard publications. Informational 
specifications, experimental specifications, and historical specifications are the three main 
categories of nonstandard specifications. An informational specification is defined as a 
document published for the benefit of the Internet community at large. It should be noted 
that this specification does not necessarily reflect a consensus or recommendation from 
the Internet community. The experimental specification is defined as a component of a 
research or development endeavor. The term historic specification refers to a specification 
rendered obsolete due to the introduction of a more recent specification or for other rea-
sons. A specification is given a number in the Internet Standard (STD) series by the IETF 
before it is officially recognized as an Internet standard. Meanwhile, RFC numbers are 
given to any and all additional specifications, whether they be proposed standards or not.

The IETF includes the Internet Research Task Force (IRTF), which, along with the 
Association for Computing Machinery (ACM), organizes yearly workshops on applied 
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networking research. There are now 14 active sub-study groups within the IRTF, each ded-
icated to investigating a certain aspect of the Internet. These communities discuss a wide 
range of issues, from protocols to applications, to architecture, to technology. Different 
groups are looking into different aspects of the Internet, such as the crypto forum, net-
work computing, decentralized Internet infrastructure, universal Internet access, human 
rights protocol considerations, Internet congestion control, information-centric network-
ing, measurement and analysis for protocols, network management, coding for efficient 
network communications, path-aware networking, privacy enhancements and assess-
ments, and quantum Inter, to name a few. The Thing-to-Thing Research Group’s (T2TRG) 
primary focus is on examining open questions in the field of IoT. The group is especially 
interested in architectures and Application Programming Interfaces (APIs) that improve 
IP-to-API communication.

4.3.1.5  One Machine-to-Machine
Since 2012, the multinational group known as oneM2M has been working toward a unified 
global standard for machine-to-machine (M2M) and IoT communications. Eight groups 
working on ICT standards have joined forces. The oneM2M program is distinguished by 
its extensive network, which includes roughly 200 partners and members. The Technical 
Plenary (TP) within the oneM2M framework assumes the responsibility of develop-
ing and overseeing the creation of technical specifications and reports that cater to the 
market requirements of oneM2M. This is achieved by establishing three distinct working 
groups, each focused on specific topics. The first WG is responsible for creating the RDM 
(Requirements and Domain Models), while the second WG is in charge of the SDS (System 
Design and Security). Working Group 3’s overarching mission is to investigate and assess 
the Testing and Developers Ecosystem (TDE).

oneM2M is responsible for the creation, endorsement, and maintenance of technical 
specifications, which are also known as standards and technical reports. The Machine-
to-Machine (M2M) and IoT industries have distinct requirements, so these standards and 
studies address interoperability and security to meet those requirements. There have been 
five separate occasions on which oneM2M has released technical papers and specifica-
tions. The initial and subsequent versions were amended in the succeeding iterations, with 
the subsequent iteration being officially authorized by the oneM2M Technical Plenary in 
December 2018. The current versions (drafts 4 and 5) are only useful for research because 
they need to be revised before they can be published.

4.3.1.6  Open Connectivity Foundation
The Open Connectivity Foundation (OCF) is a group of businesses working together to 
create universally acknowledged standards for IoT ecosystem interoperability. The OCF’s 
standardization initiatives have the support of a number of major players in the telecommu-
nications and device industries. The primary areas of focus for the organization are twofold. 
Firstly, it aims to assist manufacturers with materials such as specifications, codes, and certi-
fied programs that enable interoperability among  IoT devices and legacy systems. Secondly, 
it seeks to improve the user experience with machines that comply with the OCF standards.
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The OCF has formulated specifications, also known as standards, to facilitate the pro-
cess of certification and interoperability. There are five basic categories of specifications, 
including those for frameworks, security, bridges, resources, and onboarding. Several 
ISO/IEC JCT 1 standards, including the ISO/IEC 30118 family of papers, were developed 
using OCF requirements. With the support of the OCF, an open-source project known as 
IoTivity (Mandza and Raji. 2021) was developed. The initiative’s overarching objective is to 
hasten the adoption of interoperability standards and certification programs for the IoT.

4.4  IoT ECOSYSTEM
The structure of the IoT ecosystem, illustrated in Figure 4.1, consists of the Market, 
Acquisition, Interconnection, Integration, Analytics, Application, and Services layers. 
Smart grids, smart homes, and smart healthcare are just a few examples of the application 
domain’s Market layer. Applications rely heavily on the second layer, Acquisitions, which 
is made up of sensors and smart devices. The classification and spatial arrangement of sen-
sors exhibit variability contingent upon the particular applications. Temperature sensors, 
humidity sensors, electricity meters, and webcams are just a few examples of the many uses 
for sensors. The third layer, known as the Interconnection  layer, is responsible for relay-
ing sensor data to a central server or the cloud. In this context, the data is integrated with 
additional datasets, including geographical, population, and economic data.

Moreover, the aggregated data undergoes thorough examination using ML and data 
mining methodologies. There is a need for the development of sophisticated collaboration 
and communication software at the application level to facilitate the operation of exten-
sive distributed applications, such as Software Defined Networking (SDN) and Services 
Oriented Architecture (SOA). Ultimately, the upper layer consists of all the services of 

FIGURE 4.1  IoT ecosystem.
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ecosystems. Among these are energy management, health management, schooling, and 
transportation, among others. Security and management are important parts of all seven 
layers, which are stacked in a hierarchy, and are shown together.

4.5  LAYER WISE COMMUNICATION STANDARDS
Standards are proposed for all five layers by various prominent organizations such as 
the IEEE and IETF. IEEE is focused on data links; IETF on networks; and session, secu-
rity, and management are handled by other organizations. The Datalink layer establishes 
a connection between two IoT system elements: two sensors or one sensor and a gadget 
called a “gateway” that connects a group of sensors to the Internet. Before sending data to 
the Internet, multiple monitors need to talk to each other and put together a lot of data. 
Protocols have been made to help with sensor handling, and these protocols are important 
parts of the Network layer. The communication among different parts of the IoT commu-
nication subsystem is facilitated by Session layer protocols. Also, the network and session 
layers show various protocols for the security and management of IoT. The protocols and 
standards for IoT are illustrated in Figure 4.2.

4.5.1  Datalink Layer Standards

In this section, the Datalink layer protocol standards, including physical (PHY) and Media 
Access Control (MAC) layer protocols, are discussed.

4.5.1.1  IEEE 802.15.4e
The IEEE 802.15.4 standard is widely employed in the MAC layer for datalink 
communication. The standard specifies the framework’s configuration, encompassing the 
construction of headers, the assignment of destination address and source address, and  

FIGURE 4.2  IoT standards and protocols.
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the establishment of communication protocols  among nodes. The conventional frame 
formats employed in networking are ill-suited for IoT devices with limited power 
resources. The year 2008 witnessed the development of IEEE 802.15.4e, an extension of 
the existing IEEE 802.15.4 standard, with the primary objective of facilitating low-power 
communication. The utilization of time synchronization and channel hopping facili-
tates the establishment of reliable and cost-effective communication in IoT datalinks. 
The specific features of the MAC protocol include a Slot Frame Structure, Scheduling, 
Synchronization, Channel Hopping, and Network Formation (Mirzoev. 2014).

4.5.1.2  IEEE 802.11ah
IEEE 802.11ah is the version of the IEEE 802.11 standard with the lowest overhead 
and that  meets IoT requirements. The IEEE 802.11 standards, commonly called Wi-Fi, 
are widely utilized wireless standards within conventional networking. Digital devices, 
such as digital T.V.s, laptops  tablets, and mobiles, have experienced widespread adop-
tion. But the current Wi-Fi standards aren’t good enough for IoT apps because they 
have too much frame overhead and use a lot of power. So, the IEEE 802.11 working 
group created the 802.11ah task group with the goal of coming up with a standard 
that lets sensors and other small devices communicate in a way that is both effective 
and uses little energy (Park. 2015). IEEE 802.11ah’s MAC layer has a Synchronization 
Framework, an Efficient Bidirectional Packed Exchange Method, a Short MAC Frame 
Structure, and Null Data Packets.

4.5.1.3  Wireless HART
Wireless HART is a MAC layer standard that utilizes the IEEE 802.15.4 PHY as its 
underlying technology, with its MAC layer implementing Time Division Multiple Access 
(TDMA). It encrypts messages with sophisticated encryption techniques and verifies their 
integrity. This makes it safer and more trustworthy than alternatives. The system is made 
up of different parts, such as the network manager, the security manager, the gateway 
that connects the wired and wireless networks, and the wireless devices that serve as field 
devices, routers, adapters, and access points. This standard offers a wide range of security 
methods, such as end-to-end, peer-hop, and peer-to-peer. Peer-hop methods protect the 
connection until the next hop (Kim et al. 2012; Nobre. 2015, Silva and Guedes. 2020), while 
end-to-end mechanisms secure the connection.

4.5.1.4  Z-Wave
The Z-Wave protocol is a standard for low-power MAC that was originally developed for 
home automation. However, it has since acquired significant popularity and is now widely 
employed in numerous IoT applications, such as smart homes and small commercial set-
tings. It’s ideal for short communications and works up to 30 meters away in a point-to-point 
fashion. It employs Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)  
for media access and uses short acknowledgement (ACK) messages for dependable trans-
mission. It’s organized in a master/slave fashion, where one node issues commands to oth-
ers and coordinates the network’s schedule (Z-Wave).
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4.5.1.5  Bluetooth Low Energy
Bluetooth Low Energy, also known as Bluetooth Smart, is a popular short-range 
communication standard for the Datalink layer in IoT. Its primary application is in 
car networking. It has a very low latency, 15 times lower than the first generation of 
Bluetooth. Energy consumption is reduced by as much as ten times compared to stan-
dard Bluetooth. An access control mechanism that is contention-free, characterized by 
low latency and rapid transmission, is employed. The system employs a master/slave 
configuration and offers two distinct types of frames, namely advertising frames and 
data frames. The utilization of the advertising framework by slaves involves disseminat-
ing it through dedicated channels specifically designated for this objective. To locate 
and link slave nodes, master nodes use advertisement sensing channels. When the two 
devices are finally linked, the master will share his wake time and daily routine with the 
slave. To conserve energy, nodes typically only become active during communication 
(Gomez, Oller, and Paradells. 2012).

4.5.1.6  ZigBee Smart Energy
ZigBee is one of the IoT protocols that is used the most. It is made for things like smart 
homes, remotes, and health care systems that need to talk to each other from a middle dis-
tance. This network has a few different types of topologies, such as the Star, peer-to-peer, 
and cluster-tree topologies. In a star topology, the center node is the coordinator. In a tree 
or cluster topology, on the other hand, the coordinator is at the root. Conversely, in a peer-
to-peer topology, the coordinator has the flexibility to be positioned at any place within 
the network. The ZigBee standard defines two stack profiles: ZigBee and ZigBee Pro. These 
stack profiles are suitable for low-memory and low-processing-power implementations and 
offer full-mesh networking. Additional features offered by ZigBee Pro include symmetric-
key exchange for increased security, stochastic address assignment for greater scalability, 
and efficient many-to-one routing for better performance (Zigbee. 2016).

4.5.1.7  DASH7
The DASH7 wireless communication protocol is a new standard for active RFID devices 
that uses the internationally accessible Industrial Scientific Medical (ISM) band. DASH7 
is designed for high-speed, long-range outdoor service that can be expanded. It’s an 
inexpensive option that allows for both IPv6 addresses and encryption. It’s well-suited 
to the IoT since it has a master/slave architecture and can handle bursts of light, asyn-
chronous, transitory traffic. Filtering, Address, and Frame Format are all MAC layer 
features.

4.5.1.8  HomePlug
The HomePlug Green PHY (HomePlugGP) is a MAC protocol developed by the HomePlug 
Powerline Alliance, with a primary focus on its application in home automation systems. 
The HomePlug bundle, which encompasses both HomePlug-AV and HomePlug-AV2, is 
designed to cater to the PHY and MAC layers. HomePlug-AV serves as the fundamen-
tal framework for power line communication. It uses Orthogonal Frequency Division 
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Multiplexing or OFDM, and it can be modulated in four different ways. It also uses 
MAC layer techniques called Time-Division Multiple Access (TDMA) and CSMA/CA. 
Furthermore, HomePlug-AV possesses the capability to adapt its transmission rate in 
response to the prevailing ambient noise level. IoT applications, including smart homes 
and smart grids, are the focus of HomePlugGP’s development. Its primary goal is to make 
HomePlug-AV more affordable without sacrificing its interoperability, dependability, or 
coverage. Therefore, it employs OFDM, with a single modulation just like HomePlug, but 
it employs secure OFDM encoding to allow for low transmission rates and exceptional 
dependability. While CSMA is used exclusively by HomePlug-AV at the MAC layer, 
HomePlugGP makes use of both CSMA and TDMA. Furthermore, HomePlugGP provides 
a mode that saves energy by simultaneously employing sleeping nodes and awakening 
them as needed (H. Alliance. 2007).

4.5.1.9  G.9959
This ITU MAC layer standard is for trustworthy, low-bandwidth, half-duplex communi-
cation at minimal cost. Because of its great reliability and low power consumption, it is 
ideal for time-sensitive applications. To conserve power, nodes on the MAC layer can go 
to sleep when they are out of communication and wake up when they are back in range, 
and collision avoidance mechanisms, back-off time in the event of a collision, automatic 
retransmission to guarantee reliability, and a dedicated wakeup pattern are all part of the 
MAC layer. Unique channel access, frame validation, (ACK, and retransmission (RT) are 
all features of the G9959 MAC layer (Brandt and Buron. 2015).

4.5.1.10  LTE-A
LTE-A, or long-term evolution advanced, is a set of cellular networking standards created 
to accommodate IoT and M2M communications. It is the most economical and scalable 
protocol compared to other cellular protocols. Since its inception in 2009, LTE-A has had 
many versions that add support for new technologies. The frequency is typically divided 
into numerous subcarriers, and the medium access technology is Orthogonal Frequency 
Division Multiple Access (OFDMA). Mobile nodes, the Radio Access Network (RAN), and 
the Core Network (CN) make up  LTE-A’s architecture. The CN. monitors and manages 
mobile devices by recording their IP addresses. Management and data planes, as well as 
wireless connectivity and radio-access management, are all responsibilities of the RAN. 
The S1 connection is used for communication between the RAN and the CN Additionally, 
LTE Rel-13 and LTE Rel-14, the newest iterations of LTE-A, have been designed with special 
features to accommodate 5G (J. Lee et al. 2016). There are three major new additions in 
Rel-13: new machine-type communication services, enhanced frequency and carrier aggre-
gation, and enhanced Full-Dimensional Multiple Input Multiple Output (FD-MIMO). To 
maximize spectrum efficiency, FD-MIMO employs a large number of base station antenna 
ports. More frequency resources are being consumed by the use of unlicensed spectrum 
in addition to the licensed spectrum bands. This way, more rounds can be used, and old 
devices can still work with the new ones. In LTE-A, carrier aggregation was also improved 
by increasing the peak rate and using frequency resources best. Reduced prices, expanded 
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coverage support, indoor positioning, and the ability to broadcast and multicast in a single 
cell are just some of the benefits of LTE Rel-13’s new services for M2M  transmissions. 
More antenna ports, improved transmission reliability, and decreased feedback are just 
some of the ways in which LTE Rel-14 is expected to advance FD-MIMO. Reduced latency, 
vehicle-to-anything, and downlink multi-user transmission were all deemed feasibility 
studies in Rel-14 (Hoymann et al. 2016), but are now scheduled to be standardized in the 
upcoming version.

4.5.1.11  LoRaWAN
LoRaWAN is a novel wireless long-distance wide-area network technology that meets the 
needs of IoT apps by providing low cost, mobility, security, and two-way communication. 
It is an optimized system for wireless network devices that use little power. It supports 
technologies such as redundant operation, location-free operation, low cost, low power, 
and energy harvesting to satisfy the future needs of the IoT while allowing for mobility and 
user-friendliness (Vangelista and Centenaro. 2019).

4.5.1.12  Weightless
Weightless is a newly developed wireless technology for the IoT MAC layer. It is provided 
by the Special Interest Group (SIG), a global non-profit organization. Weightless-N was the 
initial standard to satisfy IoT requirements. To reduce interference, TDMA and frequency 
hopping are employed. It employs extremely narrow Industrial, Scientific and Medical 
(ISM) frequency channels below 1 GHz. Weightless-W, on the other hand, shares the same 
characteristics but employs television band frequencies (Poole. 2014).

4.5.1.13  DECT/ULE
Digital Enhanced Cordless Telecommunications (DECT) is a European cordless phone 
worldwide standard. DECT/ULE (Ultra-Low Energy), a form of extension, was recently 
added as a new feature. IoT applications can utilize the low-power, low-cost air interface 
technology described by LTE-A architecture. This standard has a specialized channel and 
can handle interference and congestion much better. The original DECT protocol did not 
allow FDMA, TDMA, or time division multiplexing, but DECT/ULE does (Bush. 2015).

4.5.1.14  EnOcean
EnOcean is a wireless energy-saving technology that is mostly used for automation, but it 
can also be utilized for other IoT applications. To put it simply, converters can be used to 
transform kinetic energy or energy from other natural sources into usable forms. This pro-
tocol is often deployed in HVAC IoT apps due to its compact packet size (E. Alliance. 2015). 
Instead of traditional data lines, standards such as Near Field Communication (NFC), and 
the International Society of Automation (ISA) 100.11a can be utilized. However, the declin-
ing usefulness of these standards in comparison to the developing ones outlined in this sec-
tion means that they are not widely used in the IoT. NFC is mostly used for short-range, ad 
hoc communication. It uses radio frequency identification to activate the receiver and kick 
off peer-to-peer connectivity at low frequencies (Kshetrimayum. 2009). In contrast, ANT  
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is a wireless multicast system that uses a master-slave architecture. It operates at 2.4 GHz 
and is functionally comparable to Bluetooth low energy (Evanczuk. 2013) which finds its 
primary application in wireless sensor networks. The ISA standard for wireless networking 
in industrial automation control is ISA100.11a (Serizawa et al. 2016).

This section briefly discussed the main differences between the different datalink proto-
cols and how they can be used in IoT medium access. In general, Bluetooth and ZigBee are 
the IoT technologies that are used the most. However, IEEE 802.11ah is the wireless stan-
dard that is most compatible with IEEE 802.11, the standard wireless network architecture. 
HomePlug is used to connect to the Local Area Network (LAN) by various service provid-
ers and IoT markets because it is a more secure and stable option. The new technology of 
LoRaWAN might prove useful in the great outdoors.

4.6  NETWORK LAYER STANDARDS
This section provides a quick overview of some IoT routing standards and protocols. The 
Network  layer of the networking hierarchy consists of two sublayers: the Routing layer, 
which transmits packets from source to destination, and the Encapsulation layer, which 
binds packets together.

4.6.1  RPL

The IETF created the Routing Protocol for Low-Power and Lossy Networks (RPL) expressly 
for use in IoT routing. It’s compatible with all the MAC layer protocols we’ve spoken about, 
plus a few extras that weren’t made with  IoT in mind. It is built on Destination-Oriented 
Directed Acyclic Graphs (DODAGs), which are directed acyclic graphs with just one path 
from each leaf node to the root and are used to direct traffic. At the outset, every node broad-
casts a DODAG Information Object (DIO), claiming to be the network’s starting point. Over 
time, the network will spread DIO, and the whole DODAG will be constructed. A node com-
municating with another node sends a Destination Advertisement Object (DAO) to parents, 
and then it is forwarded to the roots. Sending a DODAG Information Solicitation (DIS) is the 
first step for new nodes joining the network, and receiving a DAO Acknowledgement (DAO-
ACK) from the root is confirmation that they have been accepted. An RPL network node 
can be either stateless (the default) or stateful. A stateless node simply remembers its parent 
nodes. Only Root knows everything there is to know about the DODAG. Therefore, the Root 
is the hub of all communication. A stateful node remembers its parent and child relationships 
to bypass the root node in a Directed Acyclic Graph (DAG) (Winter et al. 2012).

4.6.2  CORPL

CORPL, or Cognitive RPL, is an extended RPL protocol that uses the same DODAG tech-
nology. First, it implements opportunistic forwarding, which allows a packet to specify 
several forwarders while still being sent only to the best next hop. Then, instead of just 
keeping track of its parent, each node also keeps track of any of its neighbors’ changes via 
DIO messages. Each node dynamically adjusts its neighbors to the collection of forwarders 
based on the most recent data (Aijaz and Aghvami. 2015).
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4.6.3  CARP and E-CARP

The Channel-Aware Routing Protocol (CARP) designed for underwater communication 
is a distributed network-based routing protocol. Because of its efficiency as a lightweight 
packet forwarding in IoT networks, when deciding which path to forward data along, it 
takes into account past measures of consideration protocols that should account for net-
work start-up and data transmission. When a network is set up, the sink sends a HELLO 
packet to every other node. The data travels from the sensor to sink via intermediate nodes 
in data forwarding. The subset of the data forwarding process, CARP, doesn’t support data 
recycling. For this reason, CARP data forwarding may not be helpful for applications that 
need sensor data only when substantial unhelpful changes. E-CARP is an improvement on 
CARP because it stores previously received sensory data at the sink node. E-CARP uses a 
ping packet to request updates from the sensor nodes, which are then sent back. Therefore, 
E-CARP significantly lessens the burden of communication (Basagni et al. 2015).

This section covered three routing protocols applicable to IoT routing sublayers. The 
most popular and standard distance vector protocol is called RPL. CORPL uses oppor-
tunistic forwarding to forward packets at each hop and is used for cognitive networks 
because it is a nonstandard RPL extension. However, E-CARP stands alone as the only 
distributed link quality assessment meant  specifically for Internet assessment-based net-
works. E-CARP is mainly employed for submerged communication. The lack of standards 
prevents its deployment in some IoT contexts.

4.7  NETWORK LAYER ENCAPSULATION PROTOCOLS
The need to adapt IPv6 long addresses for IoT devices within compact and lightweight IoT 
datalink frames is a matter of concern for standardization efforts. The IETF is working on 
a set of frame formatting standards at the moment. The goal of these norms is to package 
IPv6 datagrams into smaller data connection frames appropriate for use in IoT scenarios.

4.7.1  6LoWPAN

IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) is an early and 
widely adopted IETF specification in this field. IPv6 headers with large sizes are com-
pressed into a maximum size of 128-byte size of IEEE802.15.4 MAC packets (Culler and  
Chakrabarti. 2009). Specifications for 6LoWPAN enable a wide range of properties related 
to address length, networking topology, bandwidth, power consumption, cost-effectiveness, 
scalability, portability, dependability, and sleep duration. The standards use header com-
pression to decrease the transmission overhead, fragmentation to adhere to IEEE802.15.4’s 
limit frame length of 128 bytes, and multi-hop delivery to get the message to its destina-
tion as a quick multi-hop. There are four types of headers used in 6LoWPAN frames: No 
6LoWPAN Header (00), Dispatch Header (01), Mesh Header (10), and Fragmentation Header 
(11). In the No 6loWPAN header case, frames that don’t meet the standards of 6loWPAN 
are dropped. Multicasting and IPv6 header compression both make use of the dispatch 
header. The Fragmentation Header is used to split down the large IPv6 header into smaller  
128-byte chunks, while the Mesh Header is used for broadcasting.
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4.7.2  6TiSCH

A new IETF standard, IPv6 Time Slotted Channel Hopping (6TiSCH), was created by 
the 6TiSCH working group. It describes the TSCH mode for transmitting lengthy IPv6 
headers over IEEE 802.15.4e data lines. A channel distribution usage matrix stores 
the frequencies and time slots in this configuration. Each node in the network has 
access to a subset of this matrix that includes localized time and frequency informa-
tion. Nodes within the same interference area work together through coordination 
and negotiation of transmission times. When numerous surrounding nodes use the 
same application, scheduling becomes an optimization challenge in which time slots 
must be assigned. The standard does not specify how scheduling can be accomplished, 
allowing IoT applications to be as f lexible as possible. Instead, it considers schedul-
ing to be an issue unique to each application. Depending on the requirements of the 
application or the configuration of the MAC layer, scheduling can be centralized or 
distributed (Dujovne et al. 2014).

4.7.3  6Lo

IPv6 over networks of resource-constrained nodes (6Lo), a newly-assigned IETF group, 
is working to propose a set of standards for IPv6 frame transmission over various data 
connections. Even though encapsulation standards like 6LoWPAN and 6TiSCH were cre-
ated, it is now apparent that additional standards are required to accommodate all types 
of data communication. For this reason, IEFT established 6Lo. Most of the 6Lo specs are 
still being worked on and are not yet completed. IPv6 over DECT/ULE, IPv6 over NFC, 
IPv6 over IEEE 802.11ah, IPv6 over IEEE 485 Master-Slave/Token Passing (MS/TP) net-
works, and IPv6 over Wireless Networks for Iindustrial Automation Process Automation 
(WIA-PA) (Hong et al. 2017) are all examples of datalinks for which drafts are currently 
being developed for the purpose of IPv6 datagrams transmission.

4.7.4  IPv6 over G.9959

When using G.9959 data connections, IPv6 packets must adhere to the frame format estab-
lished in IETF RFC 7428. Each G.9959 node will be given a unique home network identi-
fier of 32-bit and a controller using a host identifier of 8-bit. So that it can fit in a G.9959 
frame, an IPv6 link-local address must be built from an 8-bit host identification from the 
link layer. In addition, IPv6 packets compress like the headers of 6LoWPAN to fit within 
frames of G.9959. Regarding security, it’s worth noting that RFC 7428 permits encryption 
purposes using a shared network key. However, end-to-end encryption and authentication 
are required for security-critical applications, often handled by higher-layer security meth-
ods and other protocols (Qureshi, Jeon and Piccialli. 2020).

4.7.5  IPv6 over Bluetooth Low Energy

RFC 7668 (Nieminen et al. 2015) defines the IPv6 over the Bluetooth low energy format. 
On  Bluetooth, fragmentation occurs at the L2CAP sublayer, which stands for Adaptation 
Protocol and Logical Link Control. Therefore, 6LoWPAN’s fragmentation function is 
being bypassed. Furthermore, multi-hop network generation currently not used effectively 
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by Bluetooth low energy. Instead, the weaker nodes on the edges are routed through a core 
node. As a result, 6LoWPAN’s multi-hop functionality is underutilized.

4.7.6  Summary

This section described the encapsulation of lengthy IPv6 datagrams into small MAC 
frames. It began with discussing IPv6 over 802.15.4 and 802.15.4e using 6LoWPAN and 
6TiSCH. Due to 802.15.4e’s prominence as the de facto standard encapsulation frame-
work for IoT; such protocols are crucial. Then, 6Lo specifications are quickly and gen-
erally reviewed to demonstrate their presence in IETF standards. These documents deal 
with 6LoWPAN specifications for transferring IPv6 datagrams through various channel 
access techniques. Two of the 6Lo specifications that eventually became IETF Requests for 
Comments are then examined further. The presentation of these standards is significant 
because it draws attention to the difficulty of achieving interoperability among the many 
layers of a networking stack, a problem made more complicated by the wide variety of 
datalink protocols.

4.8  SESSION LAYER PROTOCOLS
Various Session layer protocols for the IoT used for messaging are discussed, including 
some defined by multiple bodies. The IoT relies on TCP and User Datagram Protocol 
(UDP), two widely used protocols of the Transport  layer. However, different IoT applica-
tions call for different sets of message distribution options. Ideally, these features should  
be implemented via industry-accepted, consistent standards. In this section, we will go 
over what is commonly called “Session layer” protocols.

4.8.1  MQTT

The Message Transfer Protocol for Telemetry (MQTT) is a standard developed in 2013 by the 
Organization for the Advancement of Structured Information Standards (OASIS). IBM first 
debuted it in 1999 (Standard “Mqtt Version 3.1. 1”; Karagiannis et al. 2015). It links together 
the Application layer, the User layer, the Network layer, and the Communication layer. 
As can be seen in Figure 4.3, the architecture is a publish/subscribe one, with the three 
primary parts being Publisher, Subscriber, and Broker. A Publisher in the IoT is a light-
weight sensor that links up with the Broker, transmits data, and then falls back to sleep. 
The applications that are interested in a specific topic or sensory data collection can only 
subscribe for Broker updates. The Brokers organize sensory input into distinct subjects and 
distribute them to specific groups of subscribers.

4.8.2  SMQTT

Secure MQTT (SMQTT) is a new and secure version of MQTT (Singh et al. 2015), which  allows 
lightweight attribute-based encryption. This encryption method is widely deployed in IoT 
software. The encrypted message is broadcast to many additional nodes at once using the 
multicast feature. The technique can be divided into four phases: preparation, encryp-
tion, dissemination, and decryption. During the preparation step, the Broker signed up 
by the subscribers and publishers will receive a secret master key generated using the key 
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generation algorithm selected by the developer. Afterward, the Broker encrypts the data 
before sending the data  to subscribers.  Decryption is the final step in the process at the 
end users’ end, provided they share the same master secret key. There is no consensus on 
how to standardize key generation and encryption techniques.

4.8.3  AMQP

The Advanced Message Queuing Protocol (AMQP) is an OASIS standard developed for the 
banking sector. It employs a Publish/subscribe Architecture based on TCP. As shown in 
Figure 4.4, the primary distinction between these standards is the Broker’s separation into 
exchanges and queues. The Exchange Component receives the Publisher messages, which 
then routes them to appropriate queues based on the Publishers’ assigned roles. Sensory 
data is made available to subscribers anytime by connecting them to queues for various 
subjects (Standard “Oasis Advanced Message Queuing Protocol (Amqp) Version 1.0”).

4.8.4  CoAP

Constrained Application Protocol (CoAP) is another Session layer protocol developed in 
the IETF-constrained RESTful environment (CORE working group, and it aims to provide 

FIGURE 4.3  MQTT architecture.

FIGURE 4.4  AMQP architecture.
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a low overhead RESTful HTTP interface. The most popular interface for modern web appli-
cations is Representational State Transfer (REST). The high cost and power requirements 
of REST, however, make it inappropriate for IoT platforms. CoAP was created to address 
issues with REST and open the door for RESTful service usage in IoT applications. Instead 
of using TCP, it is based on UDP and employs a lightweight technique to ensure depend-
ability. CoAP’s structure consists of Message and Request/response layers. The Request/
response sublayer is in charge of the actual information exchange, while the Messaging 
sublayer is responsible for message redundancy and delivery. Confirmable messages, non-
confirmable messages, piggyback messages, and standalone messages are the four types of 
messages that CoAP can handle. Various confirmable and non-confirmable (representing 
dependable and unreliable transmissions, respectively) request/response communications 
make use of various modes. In piggyback, the server responds to a message from a client 
immediately after receiving it within the acknowledgment message. With CoAP messages, 
the server may take some time to send the acknowledgment. Thus, it is utilized in a sepa-
rate mode when the answer includes a message that is not part of the acknowledgment. 
CoAP, as are PUT, PUSH, GET and Delete requests, is used in HTTP to create, insert, 
retrieve, and delete, respectively (Karagiannis et al. 2015).

4.8.5  XMPP

The Extensible Messaging and Presence Protocol (XMPP) was initially developed to com-
municate among  various chat and message exchange programs. Standardized by IETF 
over a decade ago, it is based on the XML markup language. Its efficiency and widespread 
acceptance make it ideal for online deployment. Due to  the  standardization of XML, it 
has recently seen an increase in its use for IoT and SDN applications. The decision as to 
which architecture to adopt in an XMPP implementation  is made by the application’s 
developer. Its low-latency support for short messages is optimized for real-time use cases. 
It is impractical for M2M communications since it does not ensure a certain level of service 
quality. Additionally, the power consumption crucial for IoT applications is increased by 
the extra overhead created by XML messages’ many headers and tag types. While XMPP’s 
design currently doesn’t lend itself well to IoT uses, there is some interest in expanding its 
functionality to accommodate such uses (Saint-Andre. 2011).

4.8.6  DDS

A messaging standard Data Distribution Service (DDS) was developed by Object 
Management Group (OMG). It is mainly employed in M2M communications and has a 
publish/subscribe design (O. Group). This protocol’s greatest strengths are its suitability 
for Broker-less architectures like the IoT and M2M  communication and its excellent 
Quality of Service (QoS) levels. With its 23 QoS  tiers, it can meet many standards for 
quality, such as those related to safety, timeliness, priority, longevity, dependability, etc. It 
specifies a Publish-subscribe sublayer focused on the data and a Reconstruction sublayer 
local to the data. The first is required and is in charge of relaying messages to subscrib-
ers, while the second is discretionary and facilitates DDS’s easy incorporation into the 
Application layer. The sensory data distribution falls under the Publisher layer’s purview. 
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The Data Writer communicates with the Publishers to reach a consensus on what infor-
mation and updates should be given to subscribers. Sensory information generated by IoT 
devices is sent to subscribers. In this context, “topics” refer to the many categories of data 
that are being distributed to subscribers via “Data Readers,” while “data types” refer to 
the specific categories of data that are being distributed. In other words, in Broker-based 
architectures, the Broker’s role is assumed by the Data Writer and Data Reader.

This section briefly discussed many IoT Session layer standards and protocols. These 
standards are chosen depending on the applications being used. IoT uses MQTT the most 
because of the low overhead and power consumption; the choice to be made  among these 
standards is dependent on the organization and the application. XMPP may be the best 
Session layer protocol for an application designed using XML that can tolerate header over-
head. MQTT is suitable for overhead and power-sensitive applications that require Broker 
implementation. CoAP is the best, if not the only, solution for HTTP-based applications 
that need REST capability.

4.9  IoT MANAGEMENT STANDARDS
Several management protocols are utilized in the IoT to allow for the management and 
communication of fundamentally different devices. This section discusses two proto-
cols for dealing with heterogeneity in datalinks and some specific protocols for manag-
ing remote devices, emphasizing their applicability in M2M and IoT scenarios. Due to 
the variety of IoT devices and the requirements at various networking tiers, management 
protocols play a crucial role in the success of the IoT. IoT applications depend on quickly 
and efficiently exchanging data among  protocols operating at the same or different tiers. 
Communication among  protocols in different layers of the IoT remains difficult despite 
existing standards for doing so at the same layer.

4.9.1  IEEE 1905.1

Interoperability among the multiple MAC layer protocols used in IoT is essential because of 
the wide variety of these protocols. The IEEE standard would manage this type of interop-
erability by adding an abstraction layer on top of the many MAC protocols now in use (I. W. 
Group). By disguising their differences, the various protocols can communicate with one 
another without requiring any changes to their design thanks to this abstraction. Control 
Message Data Units (CMDUs) are communications that can be sent and received between 
any two devices that adhere to the same communication standards. All devices that con-
form to IEEE 1905.1 can communicate using a standard “Abstraction Layer Management 
Entity (ALME)” protocol, the features of which are the following: finding nearby neigh-
bors, exchanging topologies, notifying each other of topology changes, exchanging mea-
sured traffic data, exchanging flow forwarding rules, and associating security policies.

4.9.2  Smart Transducer Interface

MAC layer protocols in IoT are diverse and numerous; therefore, interoperability among 
these standards is essential. This IEEE standard (Malar and Kamaraj. 2014) is meant to 
manage such interoperability by providing an Abstraction layer on top of all these diverse 
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heterogeneous MAC protocols. Because of this abstraction, disparate protocols can talk to 
one another while preserving their original designs. CMDUs can be transmitted  among  
devices that adhere to the same protocol. All devices that meet the requirements of IEEE 
1905.1 have a common understanding of the ALME protocol. This protocol allows for a 
variety of services to be provided, such as the discovery of neighbors, sharing of topologies, 
notification of topology changes, sharing of measured traffic statistics, forwarding of flows, 
and protection against unauthorized access.

4.9.3  TR-069

Customer-Premises Equipment (CPE) WAN Management Protocol (CWMP), published 
by the Broadband Forum, is an industry-standard for HTTP-based remote management of 
M2M devices. The server communicates with the clients or target devices via HTTP mes-
sages in this specification. Despite its importance for M2M devices, the standard has had 
limited adoption in IoT thus far because it relied on HTTP messages (Stusek et al. 2016).

4.9.4  OMA-DM

The Open Mobile Alliance (OMA) created the OMA device management protocol. It 
is deployed remotely to M2M devices for provisioning, upgrading, and fault manage-
ment. It’s based on XML messages sent over HTTP and may be used with XMPP or any 
other XML-based transport protocol. Despite this, resource-constrained IoT devices still 
have difficulty deciphering the protocol’s messages (O. M. Alliance Device Management 
Architecture).

4.9.5  LWM2M

The OMA protocol Lightweight M2M (LWM2M) was developed with the management 
of IoT devices in mind. JASON (JavaScript Object Notation) messages are used for data 
exchange  among  clients and servers in certain protocols. It relies heavily on the CoAP 
session protocol but can also be used with others. The functionalities of devices can be 
managed across the network using this protocol, and data can be transferred from the 
server to the devices using this protocol (O. M. Alliance “Lightweight Machine to Machine 
Architecture”).

Several management protocols  allowing for the compatibility and diversity of IoT 
protocols have been highlighted. Transducer and sensor management  are  handled by 
IEEE-1451, whereas the variety of IoT MAC layer protocols are handled by IEEE-1905.1. 
Regarding remote management protocols, LWM2M is preferred and more extensively used 
for the IoT than TR-069 and OMA-DM. The coordination of IoT protocol stacks at various 
communication levels remains an open problem.

4.10  IoT PROTOCOLS SECURITY
Securing IoT systems presents a new set of difficulties at each of the networking layers 
we’ve discussed so far. Due to their complexity and resource needs, typical security mea-
sures like encryption and public critical infrastructure don’t seem  viable options  for IoT 
devices. This has prompted the development of streamlined security protocols.
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4.10.1  Security within IoT Protocol Layers

IoT security is threatened at all levels, including the Datalink, network, Session, and 
Application layers. This means that security has to be built into the standards we’ll talk 
about in this chapter. 802.15.4e, WirelessHART, 6LoWPAN, and RPL are just a few of the 
protocols whose Communication layers have built-in security features. Multiple options 
for security are available in MAC 802.15.4e, and they are activated by setting the “secu-
rity enabled bit” in the frame control field of the header. Privacy, authentication, integrity, 
access control, and precisely synchronized temporal communications are all essential for 
system security. In order to provide its users with the utmost security, the WirelessHART 
standard uses both established and state-of-the-art cryptographic methods. Indicators for 
unsuccessful data access, report production on message integrity and authentication, and 
AES-128 encryption are only a few examples. This means WirelessHART may give vary-
ing degrees of protection using the most up-to-date techniques, as needed by the many 
applications it serves.

Several IETF documents address the security concerns and needs of 6LoWPAN and offer 
recommendations for mitigating those concerns. EUI-64 interface addresses, for instance, are 
expected to be unique, although RFC 4944 mentions the potential of duplicates (Montenegro 
et al. 2007). Security concerns brought forth by RFC 4944 (Hui and Thubert. 2011) are 
addressed in RFC 6282. Security techniques for resource-limited wireless sensor systems are 
discussed in RFC 6568 (Kim, Kaspar and Vasseur. 2012). The “Security” header of RPL docu-
ments indicates the available security settings. This field specifies the encryption algorithm 
and strength  necessary  for the encryption of a message. RPL helps with legitimate data, safe-
guarding against replay attacks, semantic security, privacy, and managing keys. Unsecured, 
preloaded, and authenticated RPL security levels exist. Selective forwarding, sinkholes, Sybils, 
hello floods, wormholes, and DoS attacks are all potential dangers for RPLs. Confidentiality, 
availability, integrity attacks, and possible defenses against them, are all covered in RFC 7416 
(Tschofenig and Fossati. 2016).

4.10.2  TLS/DTLS

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are two 
common security protocols. Their primary usage is in Transport layer protocols like CoAP, 
where they guarantee security and privacy. Security services are provided through TLS 
over TCP transmission and DTLS over UDP/datagram transfer, respectively. The encap-
sulation and authentication in TLS and DTLS are handled by two separate protocol layers: 
Record and Handshaking. These standards’ privacy and security methods are discussed 
in depth in RFC 7925 (Tschofenig and Fossati. 2016). Traditional security techniques such 
as credentials, signatures, and error handling can be adapted to work with the limited 
resources of IoT devices utilizing these standards.

4.10.3  Ubiquitous Green Community Control Network Security

The Ubiquitous Green Community Control Network protocol is protected according 
to standards outlined by IEEE Standard 1888.3. The mechanisms provided by these 
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networks are high quality, energy-efficient, and secure, making them ideal for the IoT. 
The information must be protected, private, confidential, authenticated, and controlled 
for access. To ensure safety in such a system, the standard specifies the appropriate 
architectures and components that must be used. Handshaking, authentication, and 
access control techniques are only a few of the security mechanisms specifically out-
lined in the standard.

4.10.4  TCG

Using a variety of use cases and security approaches, the Trusted Computing Group (TCG) 
has developed guidelines for securing IoT-based heterogeneous applications. Among 
these measures are those that provide availability, confidentiality, and integrity, as well as 
those that prevent middleware infections by leveraging Transport Layer Security (TLS). 
TCGcompatible devices employ these methods, which include Root of Trust for Update 
(RTU) and Trusted Platform Module (TPM). It is up to the developer to find a happy medium 
between system security and the complexity and resource requirements of the system; how-
ever, standards can help steer developers of IoT applications toward more secure solutions.

4.10.5  OAuth 2.0

In IETF RFC 6749, an authorization system known as OAuth is outlined. It allows reliable 
third-party servers to manage who can access what. Thanks to this specification, clients 
can make access requests to owners via an authorization server. Such a server verifies the 
client’s identity and permission levels before granting access. This framework uses HTTP-
based messages, which are rarely used for the IoT due to their high overhead (Hardt. 2012). 
New security concepts and countermeasures are described in RFC 6819 (Lodderstedt, 
McGloin and Hunt. 2013), which expands OAuth. When OAuth 2.0 is released, there are 
still dangers and open security vulnerabilities in the protocol that need to be fixed in sub-
sequent iterations. Some instances of these threats include credential leakage, injections, 
and worries about authorization servers hosted by other parties.

4.10.6  SASL

The IETF has developed the Simple Authentication and Security Layer (SASL) security 
architecture to facilitate server-based authentication for IoT applications. It employs 
straightforward messages to authenticate clients using application-level security measures, 
thus decoupling the application from the authentication procedure. MQTT and AMQP 
(Melnikov and Zeilenga. 2006) are Session layer protocols that support TLS and SSL.

4.10.7  ACE

IoT platforms can use Authentication and authorization in constrained environments 
(ACE) security because it is tailored to low-resource devices. In terms of ideas, it’s similar 
to OAuth. However, it is more suited to the IoT because it is based on CoAP communica-
tions. The standards have been approved in IETF RFC 7744 (Ludwig et al. 2016), and a new 
draft is now being worked on (Gerdes et al. 2018). 
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4.10.8  Blockchain for IoT Security

The use of Blockchain in developing smart contracts and safeguarding IoT platforms is a 
freshly emerging field of study in IoT security. Distributed ledger technology, like Blockchain, 
offers built-in security without relying on a single central authority (Tasatanattakool and 
Techapanupreeda. 2018). It has been studied in various fields, including  IoT, but is most known 
for its application in Bitcoin and other virtual cryptocurrency platforms. IBM and other IoT 
companies are considering Blockchain solutions for IoT security. Privacy protection in IoT 
platforms is another area where Blockchain can be helpful (Kianmajd, Rowe and Levitt. 2016).

Due to the importance of addressing vulnerabilities in IoT systems, several proposals, 
standards, drafts, and studies have emerged to do so. While there are security features built 
into IoT protocols, these cannot guarantee the system’s integrity by themselves. Several 
protocols, such as ACE and TLS/DTLS, have been proposed by the IETF to increase secu-
rity and safety in IoT environments. There are other notable continuing drafts that deal 
with the difficulties and dangers of IoT security. It’s worth noting that the IETF has formed 
a specialized group called DTLS in Limited Contexts (DICE) to address security con-
cerns specific to the IoT. Recent research on improving IoT systems has also been widely 
discussed.

4.11  CHALLENGES TO ADOPT STANDARDS AND PROTOCOLS
A lot of research has been conducted and standards have been established for the IoT, 
but creating a useful IoT application is still tricky. Some challenges (Kumar, Vealey and 
Srivastava. 2016) include mobility, reliability, scalability, management, availability, interop-
erability, dependability, cost and complexity, and energy harvesting.

4.11.1  Mobility

IoT devices are expected to dynamically switch IP addresses and network affiliations to 
adapt to their surroundings. Therefore, routing protocols like RPL incur significant over-
head whenever a leaf joins the network since they must reconstruct the DODAG. Because 
of potential disruptions in service and gateway changes, switching service providers is yet 
another possible complication of mobility.

4.11.2  Reliability

Maintaining a fully functional system that delivers as promised in an emergency response 
setting is paramount. As a result, the system must be very dependable and quick to collect 
data, communicate it, and make decisions in IoT applications. The consequences of poor 
decision-making can be severe.

4.11.3  Scalability

The scalability of an IoT application becomes an issue if millions or even trillions of linked 
devices are added. Keeping track of where devices are placed and what they can do may be 
daunting. Also, IoT applications’ accommodation for adding new services and devices to 
the network without interruption is necessary.
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4.11.4  Management

The management of IoT devices remotely can be performed using various protocols, but 
it is still a significant difficulty to manage all IoT applications. A provider’s networked 
devices’ failures, configuration, accounting, performance, and security (FCAPS) must be 
handled.

4.11.5  Availability

IoT platforms must provide services to users and subscribers through software and hard-
ware availability all the time. When software is available, users continue to receive ser-
vices despite interruptions. The existing devices are readily accessible and support multiple 
protocols, which is what we mean by “hardware availability.” It is also essential that these 
protocols are small enough to be integrated into the limited IoT devices.

4.11.6  Interoperability

Heterogeneous devices and protocols must be able to communicate with one another to 
achieve interoperability. The wide variety of IoT platform types makes this a difficult task. 
Developers and manufacturers should work together to provide interoperability so that 
users may receive services regardless of the platform or hardware they’re using.

4.11.7  Cost and Complexity

Despite the low cost of sensors and smart transducers, it’s still  expensive to construct an 
IoT application. Due to the high complexity involved in integrating many protocols and 
standards, IoT applications are currently unavailable to the general public. One of the big-
gest obstacles is simplifying the process while cutting costs.

4.11.8  Power Harvesting

IoT devices are still facing power harvesting problems because for small devices with lim-
ited resources, there aren’t many harvesting solutions. Power management is a concern 
since IoT devices often need to operate for years without recharging and may be perma-
nently attached to a person’s body or environment. Therefore, it appears that a crucial 
answer for such devices is for energy gathering through motion or another source and 
transferring it into stored energy. However, the size and power requirements of such con-
verters and collection devices prevent their application to miniature devices.

This section addressed numerous current IoT challenges like reliability, scalability, 
availability, interoperability, dependability, etc., and mercy efforts that have been made to 
address businesses’ difficulties with mobility, scalability, and management. Furthermore, 
security remains an unanswered research question.

4.12  CONCLUSION
The Internet of Things (IoT) is being utilized for the development of cities, homes, and 
more. The combination of Artificial Intelligence (AI) and IoT is becoming very famous. 
The capability of the sensors of the IoT environment to make decisions is becoming greater.  
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The adoption of the technology by businesses or consumers is still a valid concern. More 
and more standards and protocols are being developed to ensure the security, availability, 
and interoperability of IoT networks. The standards and protocols are designed based on 
the IoT ecosystem involving  Network layer, Session layer, Datalink layer, Management, 
and Security integration. Many organizations are focusing on the standards and protocols 
designed for the wide adoption of AIoT. The standards and protocols are designed based on 
the requirements of the network to make it reliable, secure, and better for the consumers.
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5.1  INTRODUCTION
In 1956, John McCarthy coined the phrase Artificial Intelligence (AI) in a symposium 
at Dartmouth College. He is credited with starting current AI research and a new sci-
entific field. The advancement in the years that followed is surprising. The researchers 
concentrated on automated reasoning and utilized AI for algebraic problem-solving and 
mathematical theorems. The computer software Logic Theorist proved many sophisticated 
theorems in Principia Mathematica (McCorduck and Cfe. 2004). These achievements filled AI 
pioneers with unbridled hope and supported their conviction that AI was here to stay 
and flourish. They soon discovered, however, that much work remained to be done before 
machines could exhibit intellect comparable to that of humans. The logic-based programs 
were unable to solve many significant tasks. The lack of computational resources to solve 
ever-more complex issues was another difficulty. As a result, organizations and funding 
sources ceased sponsoring these underwhelming AI efforts.

In the 1980s, several research-focused organizations and colleges developed an AI 
systems those compiles significant basic principles from expert knowledge, which fur-
ther assisted non-experts in making predictions and extrapolations. The systems were 
widely known as expert systems: for example, Stanford University designed MYCIN and 
the Carnegie Mellon University designed XCON. Expert knowledge was used to develop 
logical rules which were then implemented in real-world  situations.  The information that 
made computers “smarter” lies at the heart of this era’s AI research. There were certain 
drawbacks, for example  adaptability, privacy, high maintenance costs, low versatility, etc. 
Meanwhile, the Fifth Generation Computer Project, supported and funded by the Japanese 
government, fell short of the majority of its initial objectives. This resulted in the refusal 
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and rejection of further aid for AI research once again, and the field was in its second-
lowest position ever. Figure 5.1 shows the general AI framework.

Authors LeCun, Bengio, and Hinton proposed a method for developing deeper neural net-
works and a strategy to prevent gradients from disappearing during training. As a result, Deep 
Learning (DL) algorithms have emerged as a significant field in AI research. Machine Learning 
(ML) enables an Information Security (IS) and applications to learn and develop intelligence 
and make predictions without human interaction. DL, a subset of ML, is based on many layers 
of neural networks with representation learning. Therefore, “learn” is the essential phrase for 
AI research currently. Big data technologies and the increase in processing power have further 
developed the effectiveness of information and feature extraction from large datasets.

To enhance the learning capability of DL and its applications, various advanced net-
work architectures and training techniques have been established. For a selected dataset 
related to a problem, Computer Vision (CV), Natural Language Processing (NLP) and DL 
techniques match and surpass human skills. In every sphere of life, AI technologies have 
had tremendous success. They have also demonstrated their worth as the foundation of sci-
entific inquiry, real-time processing, and applications. ML has a significant broad impact 
across various areas of the pure sciences, social science, technology, and science within AI. 
This is because ML methods perform data analysis and classification tasks, and their pre-
dictions and decisions are based on evidence. It is more convenient to train a classifier or a 
model by giving it examples of desirable input-output behavior than to manually program 
it by anticipating the intended response for every possible input.

The overwhelming majority of  IoT allows wider proliferation in healthcare, transpor-
tation, manufacturing, and other industries. With the explosion of the number of IoT 
devices and sensors connected over the internet, interconnected devices have restrained 

FIGURE 5.1  General framework of AI.
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the distributed sensor network infrastructure that has spread everywhere. Therefore, the 
prerequisite of intelligent techniques and emerging technologies is to ease the strain on 
the existing demands. AIoT emanated from the emergence of new demands and effec-
tive responses to IoT development and proliferation. It aims to ensure efficacious human-
machine interactions, IoT operations, quick response mechanisms from loads of data, and 
sophisticated data management (Phan et al. 2023). The impetus to adopt AIoT applica-
tions and widespread integration has attracted researchers and industry. In addition, AIoT 
applications require extensive computing resources for real-time processing using ML 
and DL algorithms. The design and implementation of AIoT devices and applications to 
accomplish Quality-of-Service (QoS) requirements for resource-constrained (communica-
tion, computation, and storage) IoT devices are challenging.

The AIoT paradigm avails itself of the ML approach and the edge computing paradigm 
for sensing and Device layer, such as Transfer Learning (TL) (Shao, Zhu and Li. 2014), 
Active Learning (AL) (Qian, Sengupta and Hansen. 2019), and Federated Learning (FL) 
(Hao et al. 2019). The pre-trained models are used to ensure high performance and pre-
dictions that are created at the edge servers by using TL. The random data across the IoT 
network are controlled by using AL techniques. Lastly, FL offers the required level of pri-
vacy for information processing. The AIoT paradigm can benefit from recently developed 
communication networks and technologies, such as 5G/6G cellular communications and 
Software-Defined Networking (SDN) at the communication and Network layer (Iqbal 
et al. 2021).

Due to the complexity of AIoT networks, security is one of the challenges. AIoT net-
works are extremely vulnerable to security attacks because of the diverse devices and 
heterogeneous nature of the network. To secure the data in these networks is also challeng-
ing due to devices’ mobility, networks topologies, and open systems. AIoT networks are 
based on 5G standards and offer high speed, low latency, and enormous bandwidth. These 
advantages also open many doors for attackers in the network. Therefore, they can easily 
access the Personal Identifiable Information (PII) of a customer during an attack (Khalid 
et al. 2023). Traditional security measures, particularly those that address rising security 
risks, are ineffective at resolving security challenges in these networks. The security solu-
tions are now more effective and efficient because of the integration of AI technologies 
with IoT (Kiyani et al. 2023). AIoT general layer architecture, shown in Figure 5.2, consists 
of three layers: a Sensor and Device layer, a Communication and Network layer, and an 
Application layer.

AIoT applications can be widely used in planning smart urban cities, smart home appli-
ances, and automobiles. Smart home appliances and medical devices with sensors and 
intelligence learn a user’s behaviors through smart TVs, lighting, thermostats, refrigerators, 
wearables, and connected spirometers. The intelligence is best utilized to automate house-
holds and organize assistance for routine tasks, such as reducing energy consumption, at 
home and in offices. The sensors for face recognition restrict access and are widely used 
for access control management (Sodhro et al. 2020). The innovative paradigm for resource 
allocation and task offloading has been established for intelligent driving using AIoT and 
edge computing. It highly increases sensors efficacy to perform offload jobs as instructed.
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5.2 � THE CONFLUENCE OF METHODS, PLATFORMS, 
AND ARCHITECTURES FOR AIOT

The confluence of platforms, methods, and architectures for AIoT can be viewed from two 
perspectives: AIoT architecture based on fog, edge, and Mobile-Edge Computing (MEC) 
architectures, and ML training methods. A method for resource-efficient edge computing, 
called ThriftyEdge, is proposed by X. Chen et al. 2018. An effective topology sorting-based 
task graph partition algorithm is provided as part of a device-centric approach to edge 
computing in order to reduce the consumption of cloud resources and meet QoS crite-
ria. To fulfil QoS requirements and reduce edge resource occupancy of AIoT devices, the 
Virtual Machine (VM) selection method is also determined. To use the graph partition 
algorithm, VM types are sorted, rated, and designated according to their ranking.

By using the computational power of a MEC server installed on an Unmanned Aerial 
Vehicle (UAV), for data communication as suggested in Gong et al. 2020, is an AI-MEC 
architecture for IoT applications. Based on a game-theoretic model, this study developed 
the best offloading tactics for the UAV MEC servers. The theory of submodular games 
is used to discover the Pure Nash Equilibrium (PNE) strategies. The performance and 
operational properties of the models were shown by their experimental findings. Another 
method, known as Intelligent Cooperative Edge (ICE) is presented by Gong et al. 2020. 
Their method involves redesigning AI computations from the cloud and running on 
edge devices. Lightweight pipelines for edge reconstruction and cloud compression are 
used as the distribution strategy. The study and prototype suggested that the method  

FIGURE 5.2  AIoT architecture and layers.
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could make it possible to combine AI with edge computing in beneficial ways as shown 
in Figure 5.3.

The efficient distribution of computing tasks remains the limitation of a DL system. 
The study by Zhou et al. 2019 introduced a technique known as accelerating AIoT and dis-
tributes inference computation. Using this method, data is gathered, processed at the first 
layer, and transmitted to the subsequent device. This method is revised for each device, and 
the outcome is transmitted back to the initial device. Each layer’s actions are based on the 
outcomes of the layer before it.

5.3  NEW ML AND TRAINING METHODS FOR AIoT
AIoT aims to escalate and accentuate the training method for devices by using  
ML and DL for an AIoT environment. A hierarchical training framework called 
HierTrain was presented by Liu et al. 2020 and has the potential to apply deep neural 
network training tasks on the Mobile-Edge-Cloud Computing architecture effectively. 

FIGURE 5.3  Task graph for topological sorting.
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The HierTrain framework is divided into three phases: profiling, optimization, and 
hierarchical training stages. The first stage profiles processing time for various lay-
ers on the cloud, edge, device, or relevant computing models. Secondly, the optimal 
partition model is selected that evaluates the training data for the devices and relevant 
servers. In the third stage, the samples are sent to the relevant servers, respectively.  
The implementation of the method on a hardware prototype collectively demonstrates 
that HierTrain could achieve a better performance speed, i.e., 6.9 times faster than the 
cloud-based approach.

For Industrial Internet of Things (IIoT) applications, the study of Liu et al. 2020 sug-
gested  a combined Federated Active Transfer Learning (FATL) model. The suggested FATL 
model aims to accelerate the learning process of the models by using ML approaches that 
limit the amount of labelled data used for training. TL is used for the pre-trained Artificial 
Neural Network (ANN), and FL is used for scheduling various devices over the edge IIoT 
architecture. Lastly, AL is used for end devices. The suggested FATL architecture provided 
high performance and simulation results.

The potential of AIoT for practical applications lies in additional research on the devel-
opment of MEC architectures, edge, and fog computing. Future research directions, in 
terms of AIoT architectures and methodologies, are as follows:

•	 The creation of architectures that will sustain the use of distributed ML algorithms and 
methods in AIoT would be a crucial prerequisite for the advancement of AIoT. The study 
by Savaglio et al. 2019 evaluated the implementation method of dispersed data mining 
on edge devices, whereas authors in Teerapittayanon, McDanel and Kung proposed the 
method for deploying distributed deep neural networks over cloud and edge devices.

•	 The development and growth of AIoT architecture, strategies, and platforms depend 
upon the security and robust response to an adversarial attack on AIoT (Guin, Cui 
and Skjellum. 2018). Utilizing Blockchain technology to safeguard against duplicate, 
counterfeit nodes or devices, and the need for confirmation of validity would be an 
intriguing research direction.

•	 The creation of methods and tools for data mining and data collection within the 
AIoT would be a third area of attention. This is crucial for the AIoT, which includes 
diverse nodes and devices.

•	 Creating methods and tools for data mining and data collection on heterogeneous 
nodes and devices of AIoT would be the fourth area of future research.

5.4 � THE CONFLUENCE OF DEVICES, ENERGY, 
AND SENSORS METHODS FOR AIoT

Various AI-based devices, sensors, sensing methods, and other methodologies are  
required to support AIoT which is the combination of IoT and AI. The study of Mukhopadhyay 
et al. 2021 provided an analysis of AI-based sensors and their implementation for future 
applications. The combination of sensors, devices, and sensing methods for AIoT is discussed  
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in this section with an emphasis on two key perspectives. Firstly, AIoT computing, scalable 
sensing, and management, and secondly, energy harvesting methods and Wireless Power 
Transfer (WPT) are contemplated.

With the rapid expansion and geographically widespread use of IoT devices, the flex-
ibility requirement for IoT sensing, computing, and administration is a crucial challenge. 
Quality of Experience (QoE) with the benefits of the AIoT paradigm is offered to consum-
ers. However, challenges remain in instability and sluggish convergence with the present 
computation offloading using ML and DL techniques. The study by Lu et al. 2020 deter-
mined a method for offloading computation by using DRL (Lu et al. 2020). To solve the 
mentioned problems for DRL while providing consumers with a higher degree of QoE, 
the authors suggested a method based on Double-Dueling Deterministic Policy Gradients 
(D3PG). Various proposed features, such as task success rate, efficient energy, and compu-
tation consumption, can be integrated into models to address the issues.

A prospective solution for energy-efficient AIoT sensors is provided by Compressive 
Sensing (CS) methods. There are certain limitations of this method, such as analysis in 
the remote server and the overhead of signal reconstruction constraints. For implantable 
neural decoding, the study of Xu et al. 2020 leverages a compressive sensing architecture 
through DL. The proposed approach aims to moderate overheads with enhanced wireless 
transmission efficiency. A two-stage classification process with a coarse-grained screening 
module and a fine-grained analysis module is also propounded. The front-end classifica-
tion task is carried out by the screening module for fine-grained analysis, which transfers 
compressed data to a remote server.

The study by Xu et al. 2020,  suggested a method for managing decentralized IoT appli-
cations that makes use of the Edgence platform, i.e., an edge computing platform with 
Blockchain support. In the Edgence platform, there are many master nodes, and each mas-
ter node is made up of a complete Blockchain node and a collateral. Edgence’s administra-
tion of decentralized AI training also updates AI models through feed-propagation and 
back-propagation. The first layers are trained by using a user dataset, and the later layers 
are trained at a remote cloud centre.

5.5  AUTOMOBILES, SMART TRANSPORT, AND AIoT
Vehicles and transportation have benefited greatly from the use of AI algorithms and 
methodologies incorporated into AIoT. Autonomous or self-driving cars are one example 
of this application. Future modern self-driving automobiles will be equipped with a vari-
ety of sensing devices (such as radar, LIDAR, and cameras) and produce enormous vol-
umes of data (up to 120 GB ps) (Zhang and Letaief. 2019). An important problem that needs 
to be overcome is the safe and timely dispensation of device data for an effective reply 
mechanism to multifaceted scenarios like avoiding obstructions and velocity adaptation. 
Potential solutions include federated ML, safe trust models, and  AIoT organized at the 
network edge. A method for leveraging Blockchain in intelligent driving edge systems has 
been proposed (Xiao et al. 2020). In order to maximize edge computing user and service 
provider satisfaction, a double auction method was used. The test results of Xiao et al. 2020 
demonstrated that the strategy might provide greater resource use.
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To assess the reliability of data produced by an intelligent transportation system based 
on IoT, there are sensor nodes involved. Authors in Dass, Misra and Roy presented the 
T-Safe trust evaluation scheme. Decision virtualization is a technique that is used by the 
safety-as-a-services architecture to offer end users safety-related information based on 
data produced by the sensing nodes. The authors assumed that the privacy of the iden-
tifying nodes, security, and reliability of data transmission determine the accuracy and 
effectiveness of such information. Figure 5.4 shows the Endogenous Trusted Network  
(ETN) for AIoT.

To solve this issue, the authors created a model for evaluating trust. To update trust 
measures on each node regularly, they made use of direct and indirect trust mechanisms. 
The trust of each data item created by the network is then assessed by using the trust 
measures. The authors developed an Integer Linear Programming (ILP) model to get the 
best information for making decisions while minimizing the impact of illegal nodes. The 
proposed system outperforms current techniques.

5.6  SMART HEALTHCARE AND AIoT
The data created by the Internet of Medical Things (IoMT) have been managed and pro-
cessed using AIoT (Sun et al. 2020). An intelligent architecture was presented by Yang, 
Liang and Ji to handle visual data obtained from health systems, assisted by IoT, for which a 
processing method is required. Three modules make up their architecture: a cloud admin-
istration module, an edge control module, and an end processing module. The study of the 
sensor, machine, and human attributes produced intelligence on the other side. An intel-
ligent measuring approach that the authors proposed is used to determine the intelligence 
on the edge and cloud sides. The proposed strategy could perform better than the current 
methods, as determined by their experimental findings. An IoT system based on AI is sug-
gested by Mustafa et al. 2020 for identifying and categorizing stress. Their method involved 

FIGURE 5.4  Endogenous Trusted Network (ETN) AIoT.
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measuring the physiological features by using a wearable device that is fitted with a variety 
of sensors. The user’s mobile device is used to send the physiological data collection to the 
cloud. The data is analyzed by using an AI technique to determine the stress level. A mobile 
phone notifies the user of the anticipated stress level. The user’s doctor would be notified in 
a circumstance with a high level of stress so the doctor may take the appropriate measures. 
Regarding real-time sensor data, their system achieved a binary classification performance 
accuracy of 97.6%.

5.7  ECOLOGICAL, SMART FARMING, AND AIoT
Smart agriculture, food processing, and environmental condition optimization have been 
the main areas of research using AIoT technology to boost food output. RiceTalk, an AIoT-
based method for detecting rice blast illness is proposed by W.L. Chen et al. 2019. The 
plan is built on an IoT platform for soil cultivation. IoT sensors for agriculture are uti-
lized to collect data, which the AI system automatically learns and analyzes in real time. 
Hyperspectral image or non-image data has been used in previous research to identify 
plant illnesses; however, these studies required human labor to take the photos and collect 
the data for analysis. The AI model is managed and treated as an IoT device by RiceTalk. 
This dramatically reduces the cost of running the platform to provide real-time training 
and prediction. The test results demonstrated that RiceTalk gives an accuracy of 89.4% for 
predicting rice blast.

5.8  AUTOMATION AND COMPUTER VISION IN AIoT
Robotics and computer vision applications have benefited greatly from AIoT. With the use 
of sensors and AI algorithms, robots can now collect and learn from data, becoming more 
intelligent. This has enabled robots to replace human expertise in healthcare, manufactur-
ing, and other industries to complete jobs at a faster pace and cheaper cost (Velasco-Montero 
et al. 2019). Drones with AIoT capabilities are employed in smart cities for a variety of  
surveillance tasks, including real-time traffic monitoring. The speed limits and timing of 
the traffic signals are automatically adjusted based on the transmission, analysis, and usage 
of traffic data to help make decisions about the best method to relieve congestion (Dilshad 
et al. 2020). In order to respond to crisis circumstances when it is impractical to send work-
ers, Lee and Chien 2020 built an AIoT architecture to manage surface, underwater, and 
aerial robots. The robots are used to gather information from a catastrophe scene and are 
connected to an IoT network. The data are sent from the field information systems to the 
cloud where a DL model is being trained over the IoT network. Once the model is trained 
and verified, the model is sent back to the robots via the field workstations so that item 
categorization may continue there. This will allow the robots to decide how to respond 
as they repeatedly validate their identification with the environment. For an AIoT set-
ting, Kim et al. 2020 suggested a technique called Continuous Virtual Emotion Detection 
System (CONTVERB). IoT devices have wireless signal capabilities that allow them to 
deliver a signal to a person within their range and to catch the signal’s reflection. There are 
at least four main types of human emotion, melancholy, joy, pleasure, and rage, that may 
be extracted from the reflected signal by the IoT devices through employing respiration 
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procedures and a series of heartbeat segmentations. The effectiveness of the suggested sys-
tem was demonstrated through simulations and implementations.

In a smart city, parking space occupancy can be detected using an intelligent edge com-
puting approach (Ke et al. 2020). To spread out the compute load, edge AI and IoT are 
used. The amount of data that would be broadcast is intended to be minimal in order to 
accommodate bandwidth issues brought about by the real-time processing of video data. 
A Single Shot Detector For Mobile Networks (SSD-MobileNet) detector is implemented on 
IoT devices by using Tensorflow Lite, which is trained using the MIO-TCD dataset. On the 
server end, a tracking system is implemented to track cars in parking garages. During its 
three-month test period in a real-world setting, the system had a 96% accuracy rate.

A method which can be used for flaw identification in massive solar plants was put forth 
by Li et al. 2020. The flaw identification process was carried out using edge computing and 
UAVs in their method. In this study, the authors created a method for deployment on edge 
devices with limited resources that combines DL and text mining with data augmentation. 
In the network, methods were also employed to condense the model’s parameters and size. 
The literature contains several other instances of AIoT for computer vision and robotics 
utilizing different methodologies. An approach to forecasting the performance of CNNs 
on vision-based AIoT devices was put forth by Li et al. 2020 Systems that offer AIoT video-
based services presented a distributed learning strategy.

5.9  CYBER-SECURITY IN AIoT
A crucial component of AIoT is security. The research demonstrates that AIoT enables 
IoT devices to learn and make prompt responses in the presence of an anomaly or 
abnormal activity patterns (Wu et al. 2020). The proposed architecture for the IoT-
enabled smart city that uses AI to prevent various current and imminent cyber-threats 
is proposed by Chakrabarty and Engels. A diverse, sizable, and complicated smart city 
system has a wide attack surface thanks to the widespread deployment of IoT in smart 
cities. Authors in Suresh and Madhavu suggested an Intrusion Detection System (IDS) 
with parallel processing and self-adaptation for an SDN network. The self-adaptive 
energy Bat Algorithm (BAT) is used for developing the AI-based IDS. The software 
layer analyzes incoming traffic packets in the early stages of their design process and 
selects features. Then the system categorizes the packets, and if an attack is proven, it 
controls and takes appropriate measures regarding network limits such as traffic man-
agement, routing, and resource allocation. The KDD CUP 99 dataset is used by the 
authors for training, while data from a real-time IoT platform are used for testing. In 
comparison to the swarm intelligence-based BAT algorithm, AI-based IDS performs 
better in the identification of significant features with minimum time requirement as 
a response mechanism along with a significant reduction in computational time and 
energy prerequisite.

Pass ban is the name of an intelligent anomaly-based IDS that is suggested by 
Eskandari et al. 2020. The system’s deployment on affordable IoT devices and capac-
ity for platform independence makes it unique. The authors wanted to make sure that 
data are harvested extremely close to data sources, protected, and could be evaluated 
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for anomaly detection. IDS training is conducted by using a typical network f low. 
The trained model is stored in the internal memory of the gateway after training and 
utilized to identify attacks in incoming network traffic. The efficiency of the system is 
tested against prevalent cyber threats such as brute force attacks, port scanning, and 
Synchronization (SYN) f lood assaults.

5.10  CONCLUSION
The convergence of AIoT, which is the incorporation of sophisticated machine-learning 
algorithms into resource-constrained IoT sensors and devices enabling broad and compli-
cated sensor deployments in IoT infrastructures,  is  discussed in this chapter. The subject 
includes sensors and devices, communication, networking, and AIoT applications, among 
other levels and features of AIoT. This chapter also looks at using cutting-edge technologies 
to speed up the adoption of AIoT, including edge, fog, MEC computing, SDN, and 5G and 
6G cellular networks. In order to enable the practical implementation of AIoT in increas-
ingly varied and complex situations, the obstacles and concerns that must be handled are 
highlighted in this chapter.
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6.1  A BLEND OF IoT AND ARTIFICIAL INTELLIGENCE
A network of interconnected physical devices having sensors and other embedded systems 
involving individuals and workflows is referred to as Internet of Things (IoT). These devices 
establish communication and exchange information with one another through the Internet, 
establishing a cohesive and interconnected system (Sung et al. 2021). The IoT has brought 
about a paradigm shift in engagement with the tangible realm and is capable of  reshaping 
sectors like healthcare, production, transportation, and farming. The IoT enables enhanced 
automation and efficacy, increased safety and security, and elevated customer experiences. 
However, there are certain challenges that also come into play such as considerations that 
surround data privacy and security, as well as interoperability across diverse and converged 
networks. With the increasing proliferation of such interconnected devices, it becomes 
imperative to tackle these obstacles and  necessary to establish standardized protocols to 
ensure the complete realization of IoT advantages while mitigating associated risks.

Artificial Intelligence (AI) grants machines the capability to execute tasks that con-
ventionally require human engagement, encompassing aspects like acquiring knowledge 
from the surroundings, rationalizing decision-making processes, resolving problems 
based on accumulated information, and perceiving and comprehending specific scenarios 
(Fanibhare and Sarkar. 2021). The design process incorporates AI and its input into the 
computer through programs capable of scrutinizing and deciphering intricate scenarios, 
recognizing patterns, and potentially rendering decisions based on the resulting analy-
sis (Nozari, Szmelter-jarosz and Ghahremani-nahr. 2022). AI finds utility in sectors like 
healthcare, finance, transportation, and manufacturing. A visual depiction of a standard 
IoT configuration is presented  in Figure 6.1
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AIoT represents the fusion of two compelling technologies, AI and IoT (Naseem et al. 2022). 
The making of AIoT includes diverse AI algorithms which are incorporated into embed-
ded devices in order to elevate their intelligence and effectiveness (Seng and Ang. 2022). 
AIoT holds vast potential for diverse sectors encompassing the following:

a.	Intelligent Residences: AIoT enables the development of smart homes capable of 
automatically adapting lighting, temperature, and other configurations in accor-
dance with user preferences and behavioural patterns (Nandyala and Kim. 2016).

b.	Healthcare: AIoT finds application in monitoring the real-time health of patients 
through wearable devices equipped with sensors, aiding in the early identification of 
health concerns, and delivering timely interventions. Additionally, it facilitates the 
automation of administrative responsibilities, such as fixing patients’ appointments 
and issuing them timely reminders (Anwar et al. 2017).

c.	Manufacturing: In this sector, AIoT presents opportunities for improving manu-
facturing processes by obtaining and analyzing data from sensors and machinery to 
forecast potential failures and proactively schedule maintenance. This aids in minimiz-
ing manufacturing plant downtime and enhancing overall system efficiency (Qureshi 
et al. 2020).

d.	Agriculture: Monitoring crop health conditions and soil quality, automating irriga-
tion systems, and forecasting weather patterns are some of the areas of the agricul-
ture sector in which AIoT can play its role. These applications empower producers to 
optimize their crop yields while conserving water and other resources.

e.	Energy Management: In most countries, especially underdeveloped and develop-
ing, energy management is one of the main challenges. The power of AIoT could be 
utilized for energy consumption monitoring within buildings or cities and could 
optimize its usage based on factors like occupancy or weather conditions. This 
supports the reduction of energy expenses and promotes sustainable practices.

f.	Transportation: A good transportation system in any country is considered the back-
bone that pushes the economy toward the fast track. The AIoT offers possibilities for 
optimizing traffic flow, enhancing safety, and mitigating congestion (M. Ali et al. 2023).

FIGURE 6.1  Elements composing the IoT.
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6.2  AIoT NETWORKING STACK
The structure of AIoT networking can be broadly classified into four tiers: the initial tier 
is the Device layer, connected with the Network layer, followed by the Cloud layer, and 
finally the Application layer. The layers are built upon the preceding ones to form a cohe-
sive framework as shown in Figure 6.2.

6.2.1  Device Layer

This layer is the base tier within AIoT, encompassing tangible devices, sensors, or actuators 
employed for collecting data from the physical environment (Lu et al. 2021). The sensors 
are capable of measuring various factors, including but not limited to temperature, pres-
sure, humidity, motion, and light.

•	 Sensing: Data acquisition in the Device layer of AIoT entails gathering informa-
tion from sensors integrated within IoT devices. These sensors have the capacity to 
perceive and quantify multiple physical aspects, including temperature, humidity, 
pressure, acceleration, and sound. Subsequently, AI algorithms analyze the collected 
data, discerning patterns, and deviations.

•	 Partial Processing: At the Device layer of AIoT, local processing involves conduct-
ing data processing and analysis directly within the networked devices, contrary 
to the usual practice of forwarding the data to the cloud for further processing.  

FIGURE 6.2  Networking stack architecture for IoT.
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This optimizes the AIoT-based systems by minimizing the latency involved in 
between the data collection and decision-making phases, facilitating instant actions, 
and also lowering the dependence on cloud-based resources.

•	 Transmission: For the exchange of data from AIoT devices to either the cloud or 
edge computing devices, a proper transmission mechanism is required. Transmitting 
data within the Device layer of AIoT can present difficulties given the constrained 
bandwidth and computational capabilities of IoT devices, alongside the imperative of 
low latency and unwavering reliability. To tackle these hurdles, a range of techniques 
can be employed, including data compression and edge caching mechanisms. The 
Device layer encompasses an extensive array of components, spanning from basic 
sensors and actuators to sophisticated entities such as machines, Unmanned Aerial 
Vehicle (UAVs), and self-directed vehicles. These entities utilize diverse wireless and 
wired communication protocols to establish connectivity within the network, includ-
ing but not limited to Wi-Fi, ZigBee, Bluetooth, Long Range Wide Area Network 
(LoRaWAN), and Narrowband IoT (NB-IoTs).

In the context of AIoT, the Device layer performs a core function in the acquisition of 
data and forwarding it to the Cloud layer for processing and deep analysis. The dependabil-
ity and precision of the data acquired from these devices are imperative for making valu-
able decisions and gaining practical information, which can subsequently be harnessed to 
optimize functional operations, heighten efficiency, and curtail expenses. Consequently, 
the Device layer acts as a fundamental building block of AIoT, and the selection of appro-
priate protocols for the devices becomes paramount in developing a successful AIoT-
enabled system.

6.2.2  Network Layer

The Connectivity (Network) layer in AIoT refers to the stratum facilitating the linkage 
among devices and enabling reliable communication among them. This layer incorpo-
rates various networking protocols and technologies, not only facilitating data transmis-
sion between devices but also transmitting data to the Cloud layer for further processing 
and analysis. There are different interacting technologies that find applicability within the 
Network layer of an AIoT system, including the following:

•	 Mesh Networks: Mesh networks are a famous networking technology that finds util-
ity within AIoT systems. In this network, several devices collaborate to establish a 
network infrastructure capable of relaying data between devices, thereby extending 
the network’s range. In a Mesh network (Hameed et al. 2022), each device enables data 
transmission and reception with other nodes. This attribute empowers Mesh net-
works to cover expansive areas and renders them valuable for diverse applications. 
Mesh networks have the capability to operate utilizing diverse wireless communica-
tion protocols, with ZigBee being a notable example as a protocol of choice for estab-
lishing Mesh networks within AIoT systems owing to its low-power consumption 
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and capacity to support a substantial number of nodes. Additionally, Mesh networks 
can be employed for device control purposes, such as managing smart home lighting 
or overseeing industrial machinery in factory settings.

The major benefit of these networks in AIoT environments lies in their inherent 
self-healing capability. Should a node within the network experience a failure, other 
nodes can reconfigure data routing paths through alternative paths and nodes in 
order to ensure successful data delivery to its intended destination. This characteris-
tic endows Mesh networks with enhanced resilience and reliability.

•	 Cellular Networks: The Cellular networks are considered best for ubiquitous 
coverage; these networks leverage mobile communication technologies like 4G 
or 5G to facilitate the transmission of data across extensive distances, rendering 
them well-suited for deployment in remote areas or for devices necessitating the 
requirement of high bandwidth. Additionally, Cellular networks are employed for 
device control purposes, enabling remote activation or deactivation of equipment 
and adjustment to device settings from a distant location. An inherent strength 
of Cellular networks within AIoT systems lies in their expansive coverage area. 
Cellular networks possess the capacity to span vast geographical regions, making 
them highly advantageous for applications involving precision agriculture, eco-
logical monitoring, and smart automation. Another key benefit offered by Cellular 
networks pertains to their robust security features. Advanced encryption technol-
ogies are employed to ensure the confidentiality and integrity of transmitted data 
within Cellular networks. This attribute assumes particular significance within 
AIoT systems, where data privacy and security hold the utmost importance. 
Employing Cellular networks in AIoT systems does present certain limitations. 
A primary constraint is the potential costliness associated with utilizing Cellular 
networks, especially in big industries.

•	 Wi-Fi Networks: Wireless networks, like Wi-Fi networks, are also considered a 
compelling technology that finds applicability within AIoT systems. These networks 
establish connections among devices as well as facilitate their connectivity to the 
Internet (Famitafreshi and Afaqui. 2022). By leveraging Wi-Fi networks, data collec-
tion from sensors and other devices becomes achievable, subsequently allowing for 
the transmission of such data to the Cloud layer for further processing. In the realm 
of AIoT systems, Wi-Fi networks find application in a diverse range of scenarios, 
encompassing smart homes, healthcare, and retail domains. Notably, Wi-Fi networks 
offer the advantage of high-speed data transmission capabilities. Furthermore, they 
present ease of setup and versatility, enabling deployment in various environments 
ranging from residential settings to commercial establishments to public spaces. A 
key benefit associated with the utilization of Wi-Fi networks within AIoT systems 
pertains to their extensive adoption and widespread availability. Wi-Fi networks have 
achieved ubiquitous status, being pervasive in most households and public areas. This 
ubiquity renders them a readily accessible and cost-effective option for device connec-
tivity. Moreover, Wi-Fi networks possess the capacity to accommodate a substantial 
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number of devices concurrently, thereby making them well-suited for applications 
necessitating multiple device connections.

However, there exist certain limitations when employing Wi-Fi networks in 
AIoT systems. One such constraint is their restricted coverage range, which may 
render them unsuitable for extensive deployments or deployment in remote areas. 
Additionally, Wi-Fi networks may be susceptible to interference and signal deteriora-
tion within specific settings, such as densely populated public spaces or structures 
featuring thick walls.

•	 Low-Power Wide-Area Networks: The Low-Power Wide-Area Networks (LPWA)  
refer to communication links planned to enable low power devices connectivity across 
extensive distances while conserving energy. These networks also lend themselves to 
device control, allowing remote operations such as activating or adjusting equipment 
settings from a distant location. A notable advantage of LPWA networks in AIoT 
schemes lies in their energy efficiency. Furthermore, LPWA networks offer impres-
sive long-range capabilities, enabling data transmission over substantial distances  
(Z. Ali et al. 2023). This characteristic renders them suitable for applications in remote or 
geographically dispersed locations. LPWA networks employ various wireless commu-
nication protocols, including LoRaWAN, Sigfox, and NB-IoT. However, it is impor-
tant to acknowledge certain limitations when employing LPWA networks in AIoT 
systems. For instance, these networks may exhibit limited bandwidth, which could 
render them unsuitable for applications requiring high-speed data transmission.

•	 Ethernet Networks: Within AIoT systems, they serve as a means to link physi-
cal devices, such as cameras. These networks facilitate high-speed data transmission, 
enabling real-time processing and analysis of applications. The key advantage of incor-
porating Ethernet networks into AIoT systems lies in their substantial bandwidth. By 
accommodating high-speed data transmission, Ethernet networks prove advantageous 
in domains like video surveillance. An additional notable benefit of these networks is 
their trustworthiness. In comparison to Wireless networks, Ethernet networks demon-
strate enhanced resilience against interference and signal degradation, rendering them a 
more dependable and stable choice for mission-critical applications.

However, there exist certain constraints associated with employing Ethernet networks 
in AIoT systems. One such limitation pertains to their physical restrictions whereby the 
installation of physical cables between devices becomes a necessity. Consequently, com-
pared to wireless networks, the implementation and maintenance of Ethernet networks 
are more challenging and costly. Furthermore, Ethernet networks exhibit limitations in 
the way of the reporting zone, as the cable size impacts the maximum distance achievable 
between devices.

6.2.3  Cloud Layer

In the territory of AIoT networking, this layer typically refers to the infrastructure of cloud 
computing, which supplies connected devices (specifically IoT devices) with computing 
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resources and services for the determination of fact execution and storage (Okafor et al. 2017). 
Additionally, this layer may encompass machine learning and AI algorithms capable of 
executing actions based on the amalgamated data from the source, extracting invaluable 
insights, and discerning patterns. Additionally, this layer possesses the capacity to facilitate 
instantaneous communication and harmonization among devices, thereby enabling them 
to collaborate seamlessly toward a shared objective. This layer undertakes the responsi-
bilities of managing and monitoring IoT devices, administering software and firmware 
updates, as well as ensuring the security and confidentiality of data transmission (Raj. 2020).  
Such functionalities hold significant relevance, particularly within AIoT applications such 
as smart homes, where multiple devices must work in concert to deliver a smooth and inte-
grated user experience. All in all, the Cloud layer within AIoT networking assumes a piv-
otal role by provisioning the requisite calculating assets, loading capabilities, and services 
essential for the computing of substantial data flows conveyed by network nodes.

6.2.4  Application Layer

The Application layer in AIoT systems serves as the repository of decision-making and 
intelligence capabilities (Upadhyaya et al. 2022). It undertakes the task of processing data 
acquired from lower layers, subjecting it to analysis through diverse algorithms and mod-
els, and subsequently furnishing meaningful insights and actionable outcomes based on 
the findings. Overall, the Application layer assumes a pivotal function within the AIoT 
network by supplying invaluable facilities and discernments to end users, capitalizing on 
the synergistic potential of AI and IoT technologies to amplify productivity, efficiency, and 
overall excellence of life span (Perwej et al. 2019). Networking represents an indispensable 
facet of AIoT, facilitating seamless data exchange and communication among AIoT devices 
and also with the back-haul infrastructure (typically in the cloud contemporary scenarios).

6.3  AIoT COMPUTING LAYERS
Edge computing pertains to the processing of data in close proximity to the network’s 
edge, specifically at the level of devices or sensors. Edge computing proves valuable in situ-
ations where the utmost importance is placed on minimal latency and immediate process-
ing. An illustrative example is the utilization of edge computing to handle data derived 
from sensors within autonomous vehicles, as any delays in processing could potentially 
result in hazardous incidents.

Fog computing pertains to the processing of data at the network’s periphery, in close 
proximity to the source of the data rather than the cloud. This approach proves especially 
beneficial when dealing with data generated by a multitude of devices, where the data vol-
ume exceeds the capacity for edge processing. Fog computing serves to minimize net-
work latency and enhance data privacy by locally processing the data. An instance where 
fog computing can be applied is in processing data from intelligent grids, where a vast 
array of sensors is employed to monitor energy usage. The concept of cloud computing 
revolves around handling data on remote servers located on the internet. Cloud computing 
proves notably advantageous in scenarios where substantial processing and storage capaci-
ties are indispensable. Its frequent application lies in analytics, deep learning, addressing 
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situations, and machine learning where considerable data capacities necessitate processing. 
This computing may be harnessed to analyze data from smart cities, wherein an extensive 
array of sensors is deployed for monitoring traffic, air quality, and various environmental 
parameters.

6.4  AIoT PROTOCOLS
In the domain of AIoT, a group of methodologies has been adopted to elevate decision-
making processes (Nozari, Szmelter-jarosz and Ghahremani-nahr. 2022). A few instances 
usually used are the following.

6.4.1  Machine Learning Algorithms

These algorithms play a pivotal role in scrutinizing data gleaned from AIoT devices and 
sensors, enabling the identification of patterns and making predictions. Additionally, 
Machine Learning (ML) aids in enhancing the precision of predictive maintenance and 
quality control efforts. In the realm of AIoT, one can find an array of ML algorithms in 
use (Dia, Ahvar and Lee. 2022), Here are a few examples of the commonly employed ones:

a.	Regression Analysis: Regression Analysis (RA) finds practical application in predic-
tive maintenance, anomaly detection, and trend analysis (Yuhao Wang et al. 2022). 
Below are a few instances showcasing how regression analysis serves AIoT:

•	 Predictive Maintenance: It enables foreseeing equipment failure through the 
examination of historical data. By scrutinizing device data (Zhang and Tao. 2020), 
encompassing pressure, temperature, and vibration, RA adeptly identifies 
arrangements indicative of a possible disaster.

•	 Anomaly Detection: Benefits from the implementation of regression analysis 
enables the identification of anomalies within sensor data. Through a comparison 
of present sensor data with historical records, RA proficiently detects unforeseen 
alterations in the data (Cook, Fan and Member. 2019).

•	 Trend Analysis: It  offers  a means to detect trends within sensor data as it evolves 
over time. Through the scrutiny of historical data, RA adeptly discerns patterns 
and trends that may elude a straightforward visual inspection. By analyzing his-
torical data, RA can identify patterns and trends that may not be visible with a 
simple visual inspection. Generally, regression analysis is a powerful tool in AIoT 
for identifying patterns and relationships in data, and for making predictions 
about future outcomes. However, it requires a good understanding of statistical 
concepts and data analysis techniques to use them effectively.

b.	Random Forest: It provides  an ML technique that can be deployed in the domain of 
AIoT to enhance decision-making based on data collected from IoT devices and sen-
sors (Thaseen, Priya and Xiaochun. 2022). The algorithm operates by utilizing diverse 
chunks of accessible data and structures. Every trained tree is on a distinct portion of 
data and features, with the outcomes amalgamated to form the ultimate prediction.  
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By employing different trees for different decisions, this algorithm yields more pre-
cise and resilient prognostications (Apat et al. 2022). Below are a few instances exem-
plifying how Random Forest finds application in AIoT:

•	 Energy Optimization: Benefits from the potential of Random Forest include 
offering an avenue to fine-tune energy consumption within intelligent build-
ings (Adli et al. 2023). Through the analysis of sensor data gathered from diverse 
rooms and appliances, Random Forest adeptly identifies the most effective con-
figurations and dynamically adjusts them as needed (Forest et al. 2018).

•	 Crop Yield Prediction: It finds effective implementation with the use of Random 
Forest, enabling accurate projection of crop yields by analyzing environmental 
data, including temperature, precipitation, and soil quality (Kumar et al. 2022). 
Random Forest proves to be a formidable resource in AIoT for making predic-
tions using intricate and erratic data. Its proficiency extends to managing sub-
stantial datasets and feature spaces of elevated dimensions, rendering it suitable 
for diverse applications. Nevertheless, achieving optimal performance necessi-
tates meticulous calibration of the hyper parameters, and its computational cost 
may escalate for extensive datasets.

c.	Support Vector Machines (SVM): SVM stands out as a well-liked ML algorithm 
deployed within AIoT for both classification and regression analysis. SVMs prove par-
ticularly beneficial in addressing intricate challenges within feature spaces of elevated 
dimensions (Padmaja et al. 2022). Their versatility extends to handling linear and non-
linear classification quandaries, and they find utility in both binary and multi-class cat-
egorization tasks. Below are a few instances illustrating the application of SVMs in AIoT:

•	 Quality Control: In the domain of quality control, SVMs serve to categorize 
products according to their attributes, encompassing size, weight, or colour.

•	 Predictive Maintenance: Benefits from the competency of SVMs include the fact 
that they can forecast equipment failure by analyzing sensor data. Through the 
examination of historical data, SVMs adeptly recognize patterns and correla-
tions indicative of an impending failure. SVMs emerge as a formidable asset in 
AIoT, adept at addressing intricate classification challenges within feature spaces 
of elevated dimensions. They excel in managing non-linear associations among 
variables and exhibit considerable resilience to outliers.

d.	Neural Networks: These are a form of ML algorithm integral to the realm of AIoT, 
encompassing forecasting and governance (Mania. 2012). Each neuron undertakes 
a basic calculation, akin to a subjective aggregation of ideas succeeded by a non-
linear activation mechanism. Below are a few instances showcasing the deployment 
of Neural Networks within AIoT:

•	 Predictive Maintenance: Neural Networks have the potential to anticipate 
equipment failure by leveraging sensor data analysis. Through the examination of 
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historical data, Neural Networks adeptly assimilate intricate associations between 
sensor readings and the probability of an impending malfunction.

•	 Energy Optimization: It finds a means of valuable implementation with Neural 
Networks, as they offer the means to fine-tune energy consumption in intelligent 
buildings (Himeur et al. 2020). Through the scrutiny of sensor data from diverse 
rooms and appliances, Neural Networks can acquire insights into energy usage 
patterns and make adaptive adjustments to the settings accordingly.

•	 Object Recognition: Object Recognition proves to be a domain where Neural 
Networks excel, as they can be harnessed to identify substances within videos or 
pictures acquired by IoT devices. Neural Networks stand as a formidable resource 
in AIoT, adept at resolving intricate and varied challenges (Liu et al. 2021).

6.4.2  Deep Learning Algorithms

Deep Learning (DL) algorithms make up a subset of ML algorithms that prove remark-
ably effective in addressing complex challenges within the domain of AIoT. DL algorithms 
are tailored to assimilate multiple layers of data representations, thus enabling them to 
encapsulate intricate connections and intricate patterns embedded within the data. Some 
examples are provided below of  DL algorithms frequently deployed in AIoT applications:

a.	Convolutional Neural Networks (CNNs): The layers that exhibit full connectivity 
are accountable for the ultimate classification or prognostication. Below are a few 
instances exemplifying the application of CNNs in the realm of AIOTs:

•	 Object Recognition: Object recognition finds practical application with CNNs 
(Yadava and Chouhan. 2022), enabling the identification of objects within videos 
or pictures acquired by IoT strategies like scrutiny cameras or UAVs.

•	 Medical Image Analysis: Medical image analysis benefits significantly from 
CNNs, as they offer the means to examine medical images like X-rays or MRI 
scans for the detection of irregularities or disease diagnosis. Through training the 
network on an extensive collection of labelled medical images, CNNs acquire the 
expertise to discern subtle patterns and attributes that may signal the presence of 
a disease or medical condition.

•	 Autonomous Vehicles: In self-driving vehicles, CNNs showcase their ability to 
identify and categorize substances in the surroundings of a self-directed vehicle, 
including other walkers, traffic signs, and automobiles. In scrutinizing pictures 
obtained from diverse devices, CNNs furnish the vital data essential for the vehi-
cle to execute judicious and precise actions.

CNNs serve as a potent asset in AIoTs for resolving intricate image and video rec-
ognition challenges. Their capacity to assimilate vast datasets and adapt to novel 
scenarios renders them well-suited for broad applications. Still, achieving optimal 
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performance may entail the availability of substantial training data and meticulous 
tuning of the hyper parameters.

b.	Recurrent Neural Networks (RNNs): By retaining an inner state that encodes the 
setting of prior inputs, RNNs excel in apprehending temporal relationships within 
the data Recognition. Their inherent ability to handle sequences of varying lengths 
renders them compatible with deployment in AIoTs. Below are a few instances exem-
plifying how RNNs can prove their benefits for AIoT networks:

•	 Speech Recognition: In the territory of speech recognition, this algorithm 
emerges as a formidable resource, enabling the identification of speech emanat-
ing from IoT devices like voice assistants or smart speakers.

•	 Natural Language Processing: In the domain of natural language processing, 
RNNs demonstrate their prowess by catering to an extensive array of tasks, 
encompassing emotion scrutiny (Sehovac, Member and Grolinger. 2020). By tak-
ing the text as input of an arrangement of characters or words, RNNs attain the 
ability to grasp intricate connections and arrangements inherent in the language.

•	 Anomaly Detection: RNNs are capable of detecting anomalies in time series 
data, including sensor data from IoT devices. RNNs can spot deviations from 
expected behaviour and trigger alerts or perform remedial steps by combining 
the data’s usual patterns and linkages.

RNNs serve as a potent asset in AIoTs, excelling in handling evolving data and cap-
turing temporal relationships within the data. Their capacity to undergo extensive 
training on substantial data volumes and adapt to novel scenarios renders them 
highly suitable for such applications.

c.	Generative Adversarial Networks (GANs): GANs are a type of DL with potential 
application in AIoT scenarios for synthesizing lifelike and assorted facts (Dutt. 2021). 
The Generator Network is instructed to fabricate authentic data samples, such as sen-
sor data, audio, or images from casual noise as input. Below are some instances show-
casing the application of GANs in AIoT:

•	 Data Augmentation: It gains from GANs as they serve to fabricate synthetic 
data samples, amplifying the training dataset for ML models (Wickramaratne 
and Mahmud. 2021). This augmentation aids in elevating the models’ precision 
and resilience, particularly in scenarios where the availability of training data is 
constrained.

•	 Image and Video Generation: The domain of image and video generation ben-
efits from GANs since they excel in producing lifelike images and videos, proving 
valuable in diverse applications like autonomous driving and video surveillance. 
Through training, GANs acquire the ability to create novel samples that visually 
resemble genuine data.
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•	 Anomaly Detection: The domain of GANs involves the creation of synthetic 
data samples that closely resemble normal data, facilitating the identification 
of real data anomalies that markedly differ from the synthetic counterparts. 
Such a method finds utility in detecting uncommon events or malfunctions in 
sensor data originating from IoT devices. On the other hand, training GANs 
can present challenges and necessitates meticulous calibration of the hyper 
parameters.

Within AIoT, DL algorithms prove to be formidable assets, capable of resolving intri-
cate challenges entailing the handling of vast and intricate datasets. Nevertheless, they 
entail significant computational demands and may necessitate substantial training data 
and meticulous fine-tuning of the hyper parameters.

6.4.3  Reinforcement Learning

Reinforcement Learning (RL) operates on feedback signals. AIoTs can effectively incorpo-
rate RL algorithms, allowing AIoT devices to acquire knowledge and dynamically adjust 
to their surroundings as time progresses (Moerland, Broekens and Jonker. 2018). Here are 
some examples of RL algorithms used in AIOTs:

•	 Q-learning: A widely utilized RL algorithm, Q-learning finds application in AIoT 
settings by empowering devices in learning ideal policies for jobs, resource dis-
tribution, power controlling, and path routing. In the context of Q-learning, the 
agent acquires decision-making capabilities by continuously keeping informed of a 
Q-table that holds probable prizes for various state-action pairs. The Bellman equa-
tion is employed to iteratively update the Q-table, thus recursively enhancing the 
Q-function’s value in light of the anticipated future rewards. These adjustments 
expand the horizons of Q-learning, enabling its application in diverse AIoT scenar-
ios, such as automated grid controlling and manufacturing devices.

•	 Deep Reinforcement Learning (DRL): Deep Reinforcement Learning merges 
as a conf luence of DL and RL strategies, proving valuable in AIoT applications 
to authorize IoT devices to acquire ideal policies amidst intricate and ever-
changing surroundings (Yichuan Wang et al. 2021). In DRL, the agent acquires 
decision-making capabilities by leveraging a Neural Network, as encountered in 
RL algorithms. Deep Reinforcement Learning’s set of rules demonstrates its ver-
satility in managing high-dimensional state and action spaces, rendering them 
well-suited for diverse presentations like industrial automation. These algo-
rithms are adept at decision-making even in environments with delayed rewards, 
showcasing adaptability to environmental changes over time. However, one of 
the challenges encountered with DRL is the computational expense involved in 
training deep Neural Networks on vast datasets. In AIoTs, RL algorithms serve 
as a potent asset, empowering devices to learn and evolve in sync with their sur-
roundings as time progresses.
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6.4.4  AIoT Communication Protocols

AIoT elevates Communication Protocols to a higher level by integrating AI and ML profi-
ciencies into devices and networks. Below are a few of the frequently employed protocols 
in AIoT frameworks:

•	 MQTT: It stands for Message Queuing Telemetry Transport, an agile messaging proto-
col meticulously crafted for IoT gadgets and other networks with restricted resources. 
AIoT applications frequently embrace MQTT due to its adeptness, expandability, and 
minimal encumbrance. It relies on Transmission Control Protocol/Internet Protocol 
(TCP/IP) as its foundation and incorporates attributes like Quality of Service (QoS) 
grades, message resiliency, and session administration. In the territory of AIoT sce-
narios, MQTT can serve as a facilitator for inter-device and inter-service communi-
cation within a network. To illustrate, consider a smart home setup wherein MQTT 
fosters seamless communication among diverse devices like lights, thermostats, and 
security cameras. This interaction extends to a central AI hub. On the whole, MQTT 
garners significant popularity in the domain of AIoT applications due to its adapt-
ability, efficiency, and adeptness in managing substantial data volumes in real time.

•	 CoAP (Constrained Application Protocol): It stands as a lightweight protocol crafted 
for IoT’s resource-constrained devices and networks. It operates at the Application 
layer, leveraging User Datagram Protocol (UDP) as the underlying transport pro-
tocol, boasting simplicity, efficiency, and ease of implementation (Karagiannis 
et al. 2015). Within the domain of AIoT, CoAP finds relevance in facilitating commu-
nication between resource-constrained devices and cloud-based or edge services. Its 
suitability in AIoT applications arises from its adeptness in handling low-power, low-
bandwidth networks, and devices, as well as its ability to offer secure communication 
via Datagram Transport Layer Security. CoAP serves as a pivotal protocol in AIoT, 
catering to diverse use cases like device control, fact gathering, and device-to-device 
messaging. For instance, CoAP finds application in controlling home automation 
smart devices, such as beams and sensors, while simultaneously gathering data from 
temperature and moisture sensors. Generally, CoAP’s significance in the context of 
AIoT lies in its ability to enable efficient and secure communication among resource-
constrained devices and other networked services.

•	 AMQP (Advanced Message Queuing Protocol): It stands as another frequently 
employed messaging protocol within AIoT applications. Similar to MQTT, it exhib-
its lightweight and efficient characteristics, yet it boasts advanced functionalities like 
message queuing, routing, and transactions. AMQP operates as a binary protocol with 
a client-server architecture, enabling seamless message exchange across devices and 
services within a network (Agyemang et al. 2022). It encompasses vital attributes such 
as message acknowledgments, directing, and filtering. Within the domain of AIoT, 
AMQP finds utility across diverse applications, including UDP streaming, result-
driven schemes, and intricate scattered architectures. For instance, an industrial 
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robotics setup with AMQP to govern the data stream among devices, controllers, 
and actuators, facilitating simultaneous switch and intensive care of industrial pro-
cesses. This protocol’s progressive capabilities render it well-suited for complex AIoT 
scenarios, where dependability, scalability, and security assume paramount impor-
tance. While it may entail more intricate implementation compared to MQTT, AMQP 
emerges as a potent resource for constructing refined scattered systems.

•	 DDS (Data Distribution Service): It stands as a widely employed communication 
protocol within AIoT presentations, mainly in organizations that necessitate more 
dependability and less delay. It is purposefully intended to facilitate real-time facts 
integration and distribution among devices and systems, employing a Distribute-
Subscribe Model. DDS protocol that adopts a facts-centric methodology for messag-
ing, prioritizing seamless data exchange among various modules of a scheme. This 
protocol also boasts progressive functionalities like data straining, caching, and QoS 
strategies. DDS emerges as a potent and powerful procedure for AIoT deployments, 
contributing progressive functionalities and extraordinary consistency that render 
it well-suited for critical real-time organizations. Whereas its implementation may 
require increased complexity compared to other protocols like CoAP, this protocol 
offers a level of accuracy and control that proves indispensable in certain requests.

6.5  CONCLUSION
AIoT has changed the traditional IoT network process by using advanced AI methods to 
manage the interactive devices and sensor nodes for data communication. Routing is one 
of the main requirements for data communication in these networks and provides the 
interconnection facilities among edge, cloud-based and AIoT networks to enhance user 
experiences through both wired and wireless mediums. This chapter discussed the existing 
communication standards, protocols and existing challenges posed by complex AI-enabled 
services and massive data processing in such types of networks. This chapter also discussed 
the prerequisites for AIoT networks, revealing data center networks, specialized mining 
networks, and protocols and communication standards for edge-based analytics networks. 
The findings of this chapter suggested the potential usage and improvements needed in 
existing protocols and standards for better services for AIoT networks.
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7.1  INTRODUCTION
Today, several research fields have combined the advantage of advanced Artificial Internet of 
Things (AIoT) techniques and Machine Learning (ML) to provide efficient and cost-effective 
functionalities. The evaluation and actuation functions aid in the creation of diverse practical 
solutions. Smart building is one of the AIoT network sectors that has gained a lot of interest, 
primarily for energy saving and individual comfort. In addition, smart buildings can help 
prevent and mitigate major and minor disasters within the building. Despite the fact that 
the majority of governments have special organization units that manage disasters such as 
earthquakes and fires, these disasters take an enormous toll on the scale of both resources and 
life (Muhammad S. Aliero et al. 2022). When this occurs, there are significant expenditures 
associated with building, equipment, recruiting, preservation, and learning. In the last few 
decades, many approaches for occupancy prediction have been presented. The majority of the 
research relies on past time series occupancy data to build prediction models. In general, the 
proposed approaches for occupancy prediction are divided into two types: statistical meth-
ods and ML methods. The statistical approaches use historical data to generate probabilistic 
models that estimate and assess the occupancy status of the number of people in the building.
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The AI methods have adopted techniques, such as data mining approaches, that use occu-
pancy prediction-related time series to determine the comparable nature of trend sequences 
for occupancy  in the building. A decision tree is used to understand occupancy behavior 
trends and anticipate room occupancy levels (Zhou et al. 2020). Furthermore, a Random 
Forest (RF) is used to assist facility managers in improving building occupancy prediction  
(J. Zhang et al. 2021). Support Vector Machine (SVM) is used with an appropriate data extrac-
tion strategy to forecast the occupancy prediction in buildings (Tsai, Leu and You. 2016). 
Artificial Neural Networks (ANNs) are created for a variety of applications, including predict-
ing building occupancy. The underlying properties of data retrieved from the Deep Learning 
(DL) algorithm’s weakest to most advanced levels are far more accurate than those of the typi-
cal deep neural network. As a result, advanced architectures have significantly increased effi-
ciency for modeling, classification, and visualization issues, and they have several implications.

7.2  CLASSIFICATION BASED ON SMART HOME TECHNOLOGIES
The smart home is one of the areas of AIoT networks where the smart system is used to 
manage the energy and usage of appliances and improve energy efficiency (Muhammad 
Saidu Aliero et al. 2021). Advanced AI methods are used to convert traditional homes into 
energy-aware systems, allowing programmed home management and processes that offer 
high energy savings potential and improve indoor occupants’ comfort level. The AI smart 
home and building systems are classified into different technologies as follows:

•	 Smart Heating, Ventilation, and Air Conditioning (HVAC) Systems: These systems 
use a variety of sensors to track and control interior airflow. This technology’s main objec-
tive is to analyze data from multiple sensors to improve the functioning of the HVAC 
system to increase occupant comfort and reduce wasteful energy use. Optimal energy 
usage and satisfactory interior comfort are the main aims of smart HVAC systems. On 
the basis of the data utilized as input to manage HVAC energy use, this technology is 
categorized into three groups including temperature and humidity, infrared camera, and 
carbon dioxide sensors (Muhammad Saidu Aliero et al. 2022; Qureshi et al. 2021). Smart 
HVAC systems perform better thanks to sophisticated ML and DL control algorithms 
that take into account both ambient temperatures and individual energy patterns (Iqbal 
et al. 2022; Naseem et al. 2022). However, the majority of the first category’s solutions can’t 
accurately capture the experience of thermal comfort, which leads to increased discom-
fort and energy use. In order to support the first category, the second and third categories 
were created. These categories estimate the total number of indoor occupants and then 
modify the airflow level in line with the number of people present, with the goal of keep-
ing conditions at a comfortable level and preventing ventilation of empty space.

•	 Smart Lighting: Through the use of demand-response programs, wireless controls, and 
schedule control systems, smart lighting uses complex controls that combine occupancy 
with lighting and sophisticated dimming features to decrease overlighting and prevent 
unnecessary lighting of spaces. Every day, there is a growing need for smart lighting, par-
ticularly for impending rapid Light Emitting Diode (LED) projects for smart buildings and 
cities. Several smart lighting solutions (Qurat ul et al. 2018; Lin et al. 2021; Sambandam 
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Raju, Mahalingam, and Arumugam Rajendran. 2019) are available right now to dem-
onstrate various fascinating gestures and emotions while emitting relevant colours. For 
instance, Philips Hue-Hue Go and the Logitech POP smart button offer ambiance and ele-
gant colours to the home while also lighting it up, calming the atmosphere, and conserv-
ing energy. The attributes of the device type affect how smart lighting works. To prevent  
lighting up empty space, all devices still have infrared capabilities and brightness features. 
The sophistication of modern smart lighting technology is now at an all-time high.

•	 Smart Plug: It includes a wide variety of auxiliary and transportable home and office 
furnishings in building projects utilizing smart plug loading. In commercial build-
ings, almost all of the smart plug loads are managed via non-predictive control that 
relies on precise control. Contrarily, the predictive appliance control for residential 
buildings makes use of load detection or motion detection technologies to temporar-
ily interrupt the energy supply to equipment that is not in use. By turning off tiny 
appliances when they are no longer needed, smart plugs significantly increase energy 
usage performance without requiring the user to be nearby or even at home. A por-
tion of the current methods employ user behavior to determine how much energy is 
used. Smart plugs also utilized  external information, such as energy prices, to deter-
mine how much energy is used by appliances.

•	 Smart Window: It uses intelligent window systems to regulate the amount of sun-
shine and solar heat that penetrates the building. Control mechanisms, such as active 
and passive window glazing that responds to changes in temperature or sunlight, 
as well as automated shade management that controls brightness throughout the 
day, are all examples of smart windows. Smart window solutions like those found in 
Zakirullin. 2020; Y. Wang et al. 2019; Dai, Liu and Zhang. 2020 can track a build-
ing’s status and make decisions based on these updates to preserve suitable indoor 
comfort and save energy. However, only a small number of researchers consider how 
occupants’ window opening habits affect interior ventilation and energy efficiency. 
The results show that smart windows employ ML to create occupant profiles in order 
to have a greater impact on energy savings.

•	 Smart Energy Efficiency Application: Smart energy efficiency application utilizes 
real-time data feedback in its intelligent energy efficiency technology. Studies in  
(D. Yang et al. 2018, Wang et al. 2019) used data that may be examined to estimate 
building energy performance and make proactive changes to minimize energy use, 
including occupancy behavior patterns, appliance energy profiles, weather forecasts, 
and various utility prices.

•	 Human Operation: Users may communicate with today’s smart buildings using 
software displays that show building activity and energy utilization. On displays, 
the operator may monitor and assess all building data and receive warnings for any 
errors that the energy savings system detects (Zou et al. 2019; Vanus et al. 2017).

•	 Distributed Energy Resources: The technologies proposed in Barata and Silva use 
devices that supply power decentralized from the grid and autonomously create and 
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store energy at the point of consumption. Examples include battery waste, rooftop 
solar photovoltaic systems, different grid technologies, integrated power and heat 
systems, and thermal storage.

7.3  CLASSIFICATION BASED ON AIoT DEVICE CONTROL APPROACHES
This section classifies the existing literature based on AIoT device control approaches.

•	 Predictive Control: This sort of control automates the handling of HVAC performance 
based on interior weather information gathered from sensors and occupant data to 
determine the likelihood that a room is occupied. Such occupancy information may 
be static or dynamic in real-time. In order to create an explicit controller for a group 
predictive control system, a model of the system is required (F. Wang et al. 2017).  
Typically, we would find such control by directly modeling the dynamics of the sys-
tem or by using one of the parameter estimation techniques in system identifica-
tion, and then construct a controller to meet the required design criteria. Using a 
smart grid or a timetable, predictive control relies on external warning signals that 
are supplied in advance. The current prediction algorithm in Muhammad S. Aliero  
et al. 2022; An et al. 2020 needs a scheduling system and predictive control values like 
cost, heat demand, or power generation to fulfill demand as cheaply as possible. This 
suggests that controllers must be aware of the proper input and analyze it in an effort to 
determine the ideal moment to use energy. Thus the control system must use the input 
data to get the best output possible from the process. A typical example that uses a more 
advanced controller which frequently uses inference rules is proposed by Aftab et al. 
2017. The scheduling strategy often relies on precedents and practical resource restric-
tions to estimate job start and finish times, whereas rule-based strategies have specified 
membership functions and inference rules for control decision-making.

•	 Non-Predictive Control: This control uses research that heavily relies on occupancy- 
fixed timetables to create a model that predicts the likelihood that a building will 
be filled, and then uses that information to regulate HVAC operation. In a setting 
where occupation activities are carefully adhered to on a daily basis by a predeter-
mined scheduling policy, this sort of control strategy may be useful. Commercial 
structures like offices, labs, and corporate environments are a fantastic illustration 
that fully utilized the control systems (Steyerberg and Harrell. 2016; Serra et al. 2014; 
Khalid et al. 2019; Lim, Song and Lee. 2016). This strategy, meanwhile, would not 
work well at a place where occupancy can skip or does not adhere to a set timetable. 
Most of the non-predictive control, such as that discussed in Brundu et al. 2017 and 
Cao et al. 2018, employed a binary algorithm that demonstrated that frequent OFF 
and ON tends to shorten the lifespan of electrical appliances. Because of this,  more 
advanced (L. Yang et al. 2020) decision-control algorithms, such as fuzzy logic, were 
designed as improvements to binary algorithms with sets of values other than zeros 
and ones, giving context enabling additional choices for control to select.
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These more advanced decision-control algorithms allow better control of vague and 
confusing information so that decisions may be made naturally. Many of the techniques 
are based on fuzzy logic-based intelligence computing in the smart building sector that 
uses thermal sensors to regulate the room temperature. The thermal patterns of the occu-
pants were established based on guidelines suggested by the occupants to autonomously 
optimize energy use. Similarly, the principles of cost prediction and occupant satisfaction 
employ fuzzy logic to decide how to plan the usage of appliances based on several factors, 
including occupancy, external temperature, price of any sort, thermal comfort, modified 
schedules, and preferences.

•	 Shiftable Appliances: Are those appliances whose energy consumption demand 
may be postponed or stopped whenever the electricity price is at its highest. It is 
rarely possible that the expense of a shiftable strategy will be greater than the ben-
efit of enhanced controls. To determine the control signal, traditional control meth-
ods, established programs and schedules, and rule-based approaches are employed. 
Having quick access to power grid voltage or rate stabilization is an excellent example 
of shiftable control employing model-based control. To secure the reliability of the 
power flow, internal forecasting command employs rules and processes that users 
install in a manner comparable to model-based control (Muhammad Saidu Aliero 
et al. 2021) Some non-predictive controls utilize data that travels over the barrier 
from the outside to the inside; however, this data mostly comes from cloud AIoT solu-
tions, like IoTfy solutions applications to control information for prediction. Demand 
response is one example of such control (Aswani et al. 2012).

•	 Non-shiftable Appliances: These are appliances whose energy consumption demand 
cannot be planned or interrupted. Televisions, computers, and lighting systems are 
examples of non-shiftable equipment. One strategy used in the residential sector 
to prevent high electricity costs while demand is at its highest is the use of energy 
scheduling. With this system, occupants may postpone or delay power usage to cer-
tain times when the anticipated power demand is less. The schedule-based technique 
developed by Z. Zhang et al. 2019, Zhai et al. 2019, D. Yang et al. 2018, and Shakeri 
et al. 2017 is used to reduce energy costs and prevent the usage of appliances dur-
ing times of high demand. For instance, it is possible to schedule accessible standby 
equipment to utilize energy when energy costs are lower so that other appliances in 
the house may use the energy that is kept within this appliance. Both runtime and a 
static technique may be used to provide this control.

In a static method, the rules for an occupant thermal comfort profile would be modeled 
using the weather and the user inside’s activities. When the threshold of energy can be 
sold at a cheaper price, these methods enable smart energy regulation, which subsequently 
lowers the cost of energy use. By taking into account the demand for family economic 
satisfaction, these systems also have a tendency to minimize the local level of electric-
ity output. For this purpose, a static timetable is an ideal choice for residents in a single 
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building. The runtime technique creates occupant profiles for energy use based on weather 
forecasts and previous days’ usage patterns. Conversely, a non-shiftable algorithm focuses 
on how control behavior is generated from the existing system state. Predictive algorithms, 
on the other hand, may be categorized according to the values that are projected and how 
a job schedule is managed. Since no forecast is ever accurate, handling assumptions might 
be crucial. Presently non-shiftable control is used for the majority of household appliance 
energy optimization. Real-time sensor data, such as that from PV power generation, tem-
perature sensors, grid voltage, and cost data, can be utilized in estimating control decisions 
for energy-efficient controls. When projections are either insufficient or unable to provide 
more helpful information, this strategy is typically adopted.

7.4  METHODOLOGY
To train and test the proposed model in this chapter, datasets acquired in residential building 
settings are required. However, the recommended technique may also be used in commercial 
buildings, with the exception of chemical-based labs, where the quality of the indoor envi-
ronment measurements and analytical settings are completely different from the scope of the 
research. The dataset utilized in this study was collected in a living room with year-round 
average temperatures of 25°C to 30°C. The data collection does not reveal any identifying 
or obvious behavior of the inhabitants and is largely anonymous to them. Numerous sensor 
modules have been installed in the living room to monitor interior parameters including 
temperature, light intensity, relative humidity, and CO2 concentration (see Table 7.1).

7.5  EXPERIMENT
When ML algorithms are used to generate forecasts on data to quantify their forecasting 
accuracy, datasets are often split into the training and test ratios throughout the model 
training process. It is a simple and efficient strategy that aids in evaluating the output of 
ML algorithms and selecting the method that best fits the model prediction challenge. 
The process involves dividing the initial dataset into training and test ratios, such as 70:30 
(Figure 7.1). The model is matched using the first part, sometimes referred to as the train-
ing dataset. The second part, known as the test dataset, is fed into the model as input along 
with the variables dataset to test the prediction and assess the outcome of the prediction.

7.5.1  Candidate Model

To further explore the parameters in ML architecture for an estimate, five candidate mod-
els have been chosen. These models are well recognized and frequently used as indicators 
of performance despite being less intricate and exciting than a lot of recent breakthroughs 

TABLE 7.1  The Various Sensor Data Sources

Sensor Detail Measurement Duration

Humidity compute indoor relative humidity Percentage 60 seconds interval
CO2 compute indoor CO2 level Parts Per Million (ppm) 60 seconds interval
Temperature compute indoor temperature Degree Celsius 60 seconds interval
Light compute Luminance Indoor Light Levels Lux 60 seconds interval
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in this field. These models also have the benefit of serving as the fundamental building 
blocks for many other applications than occupancy estimation, and as such, are currently 
extensively supported by machine learning libraries. The library documentation for the 
scikit-learn Python library, which is used in the configurations, contains information on 
the standard algorithm settings. This section’s remaining paragraphs provide a high-level 
summary of the ML models that have been selected and their results for issues predicting 
occupancy in both binary and multi-class categories.

7.5.2  Random Forest

In order to forecast the behavior defined by training data, Random Forests (RF), the  col-
lection of different decision trees that are followed progressively from a root (parent) node 
to a terminal (or child) node, is used. This method offers a number of conditional rules that 
may be used simply as matching data samples based on shared characteristics by compar-
ing sensor readings to a threshold. Bootstrap sampling, also known as bagging, is employed 
for each decision tree, using around two-thirds of the training samples for prediction and 
the remaining third to assess the accuracy of predictions for both deep and extremely deep 
trees. This suggests that while each RF tree is learning from different subsets of the training 
data, they are all working toward the same aim. The result of RF is presented in Table 7.2.

Table 7.2 shows how the RF classifier is assessed to confirm its efficiency forecast on 
fresh data. This is due to the fact that ML classifiers frequently perform well when evalu-
ated against the original training dataset but strangely when assessed against a new data-
set. As a result, the dataset record, divided into training and testing datasets, is stored 
in the scoring bin for accuracy. The binary prediction performance varies from 58.3% to 
99.6%; for the F1 score, it ranges from 73.6% to 99.7%;  for precision, it ranges from 58.3% 
to 99.9%; and for recall, it ranges from 97.8% to 100%.

7.5.3  Naïve Bayes Classification

Naive Bayesian (NB) is one of the most potent and successful classification methods. The 
Bayesian Theorem of Probability, which was initially put out by Reverend Thomas Bayesian 

FIGURE 7.1  The ratio of training and test dataset.
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as foundation of the algorithm. According to the theorem, the probability of a hypothesis 
depends on current knowledge and previous information. It is a technique for assessing 
the impact of fresh evidence on the chance that a theory is correct. It has been applied to a 
variety of situations. The majority of machine learning algorithms focus on learning in an 
ongoing feature set in a real-world application. However, a number of classification tasks 
include continuous characteristics that must first be discretized in order to be addressed. 
The result of NB is presented in Table 7.3.

Table 7.3 shows that the RF classifier marginally outperformed the NB classifier in terms 
of accuracy, F1 score, precision, and recall, with performance values ranging from 58.3% to 
99.1% for accuracy, 73.6% to 99.2% for precision, and 58.3% to 99.9% for recall.

7.5.4  Support Vector Machine

Unlike the Linear Discriminant Analysis (LDA) model, the Support Vector Machine 
(SVM) algorithm does not make the same assumptions while making predictions. Finding 
the border that maximizes the difference between the groups to be separated is how this 
method works, and it is always possible to do so in a high-dimensional space. By analyz-
ing the connection between surrounding data samples and a selected kernel function, the 

TABLE 7.2  RF Binary Occupancy Prediction Results Using CO2 Data

Score Bin
Positive 

Rate
Negative 

Rate

Fraction 
Above 

Threshold Accuracy
F1 

Score Precision Recall
Negative 
Precision

Negative 
Recall

Cumulative 
AUC

(0.900,1.000) 1064 1 0.570 0.987 0.988 0.999 0.978 0.970 0.999 0.000
(0.800,0.900) 9 1 0.576 0.991 0.992 0.998 0.986 0.981 0.997 0.001
(0.700,0.800) 0 0 0.576 0.991 0.992 0.998 0.986 0.981 0.997 0.001
(0.600,0.700) 4 1 0.578 0.993 0.994 0.997 0.990 0.986 0.996 0.003
(0.500,0.600) 6 2 0.583 0.995 0.995 0.995 0.995 0.994 0.994 0.005
(0.400,0.500) 0 0 0.583 0.995 0.995 0.995 0.995 0.994 0.994 0.005
(0.300,0.400) 4 1 0.585 0.996 0.997 0.995 0.999 0.999 0.992 0.006
(0.200,0.300) 1 5 0.589 0.994 0.995 0.990 1.000 1.000 0.986 0.013
(0.100,0.200) 0 13 0.596 0.987 0.989 0.978 1.000 1.000 0.969 0.029
(0.000,0.100) 0 755 1.000 0.583 0.736 0.583 1.000 1.000 0.000 0.999

TABLE 7.3  NB Binary Occupancy Prediction Results Using CO2 Data

Score Bin
Positive 

Rate
Negative 

Rate

Fraction 
Above 

Threshold Accuracy
F1 

Score Precision Recall
Negative 
Precision

Negative 
Recall

Cumulative 
AUC

(0.900,1.000) 950 1 0.510 0.926 0.932 0.999 0.874 0.850 0.999 0.000
(0.800,0.900) 44 0 0.533 0.950 0.955 0.999 0.914 0.893 0.999 0.000
(0.700,0.800) 30 0 0.549 0.966 0.970 0.999 0.942 0.925 0.999 0.000
(0.600,0.700) 28 0 0.564 0.981 0.983 0.999 0.968 0.957 0.999 0.000
(0.500,0.600) 16 0 0.573 0.989 0.991 0.999 0.983 0.976 0.999 0.000
(0.400,0.500) 18 15 0.591 0.991 0.992 0.985 0.999 0.999 0.979 0.019
(0.300,0.400) 1 20 0.602 0.981 0.984 0.968 1.000 1.000 0.954 0.045
(0.200,0.300) 0 45 0.626 0.957 0.964 0.931 1.000 1.000 0.896 0.103
(0.100,0.200) 0 42 0.648 0.934 0.946 0.898 1.000 1.000 0.842 0.156
(0.000,0.100) 0 656 1.000 0.583 0.736 0.583 1.000 1.000 0.000 0.999
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border is found. Examples of kernels include sigmoid, radial, linear, and polynomial basis 
functions. The radial basis function will serve as the kernel in this method. The advantage 
of this strategy is that judgments may be made without having to cover the complete data-
set since SVM just uses the data samples that are closest to the edge. The result of SVM is 
presented in Table 7.4.

Data from Table 7.4 show that the SVM classifier suffered when compared to RF and 
NB classifiers, with accuracy outcomes ranging from 58.3% to 86.7%, F1 score efficiency 
results from 73.6% to 87.7%, precision efficiency results from 58.3% to 99.9%, and recall 
efficiency results from 72% to 100%.

7.5.5  Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically inspired structures created for model-
ing estimates of modeling problems. During training, a variety of variables are predicted 
using sample data. The model in charge of the data in the neural net scheme is learned via 
the use of a number of dependent and independent variables. Each neuron makes up one 
of these networks. Typically, precise learning algorithms are used to determine the weights 
of connections between neurons. A neural network with two hidden layers and an identical 
combination of neuron numbers in each layer was tested using the dataset. The network 
mistake is carried backward from the output layer to the input layer using the backpropa-
gation technique. The result of ANN is presented in Table 7.5.

The efficiency results for ANN vary from 58.3% to 99.5% for accuracy, 73.6% to 99.6% 
for F1 score, 58.3% to 99.9% for precision, and 95.3% to 100% recall (see Table 7.5). ANN 
classifier also outperformed NV.

7.5.6  Logistic Regression

With a variable that is dependent that has two possible values results and one or many 
independent variables, Logistic Regression (LR) estimates a dependent variable in logistic 
settings. In order to determine which independent variable is acceptable for forecasting 
based on the variable, the independent variables are assessed using the dataset and often 

TABLE 7.4  SVM Binary Occupancy Prediction Results Using CO2 Data

Score Bin
Positive 

Rate
Negative 

Rate

Fraction 
Above 

Threshold Accuracy
F1 

Score Precision Recall
Negative 
Precision

Negative 
Recall

Cumulative 
AUC

(0.900,1.000) 4 1 0.578 0.993 0.994 0.997 0.990 0.986 0.996 0.003
(0.800,0.900) 6 2 0.583 0.995 0.995 0.995 0.995 0.994 0.994 0.005
(0.700,0.800) 0 0 0.583 0.995 0.995 0.995 0.995 0.994 0.994 0.005
(0.600,0.700) 4 1 0.578 0.993 0.994 0.997 0.990 0.986 0.996 0.003
(0.500,0.600) 6 2 0.583 0.995 0.995 0.995 0.995 0.994 0.994 0.005
(0.400,0.500) 12 0 0.583 0.995 0.995 0.995 0.995 0.994 0.994 0.005
(0.300,0.400) 18 15 0.591 0.991 0.992 0.985 0.999 0.999 0.979 0.019
(0.200,0.300) 1 20 0.602 0.981 0.984 0.968 1.000 1.000 0.954 0.045
(0.100,0.200) 0 45 0.626 0.957 0.964 0.931 1.000 1.000 0.896 0.103
(0.000,0.100) 0 42 0.648 0.934 0.946 0.898 1.000 1.000 0.842 0.156
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using a maximum-likelihood computation. When there are no or few interaction factors 
and variable transformations are used, there is a limited potential for model complex-
ity in logistic regression. Overfitting is less of an issue in this case. Variable selection is a 
technique for decreasing the variability of a model and, hence, the risk of overfitting, but 
it may also reduce the model’s adaptability. Table 7.6 displays the results analysis of the LR 
for binary occupancy prediction.

Finally, the results in Table 7.6 for the LR classifier show that while it performed better 
than the SVM classifier prediction, it performed poorly when compared to RF, NB, and 
ANN classifiers. The results for performance ranged from 58.3% to 96.6% for accuracy, 
73.6% to 97.1% for F1 score, 58.3% to 99.9% for precision, and 67% to 100% recall.

7.6  MODEL VALIDATION
In contrast to binary occupancy prediction, which employs a single variable parameter 
(CO2) to determine whether the room is filled or not, this section deals with the multi-class 
occupancy estimate problem utilizing five distinct ML techniques. Table 7.7 presents their 
performance analysis findings.

TABLE 7.5  ANN Binary Occupancy Prediction Results Using CO2 Data

Score Bin
Positive 

Rate
Negative 

Rate

Fraction 
Above 

Threshold Accuracy
F1 

Score Precision Recall
Negative 
Precision

Negative 
Recall

Cumulative 
AUC

(0.900,1.000) 1036 1 0.556 0.972 0.976 0.999 0.953 0.938 0.999 0.000
(0.800,0.900) 8 0 0.560 0.976 0.979 0.999 0.960 0.948 0.999 0.000
(0.700,0.800) 12 0 0.566 0.983 0.985 0.999 0.971 0.962 0.999 0.000
(0.600,0.700) 5 0 0.569 0.986 0.987 0.999 0.976 0.968 0.999 0.000
(0.500,0.600) 4 0 0.571 0.988 0.989 0.999 0.980 0.973 0.999 0.000
(0.400,0.500) 9 3 0.578 0.991 0.992 0.996 0.988 0.984 0.995 0.004
(0.300,0.400) 9 1 0.583 0.995 0.996 0.995 0.996 0.995 0.994 0.005
(0.200,0.300) 1 5 0.586 0.993 0.994 0.991 0.997 0.996 0.987 0.011
(0.100,0.200) 1 17 0.596 0.984 0.987 0.976 0.998 0.997 0.965 0.033
(0.000,0.100) 2 752 1.000 0.583 0.736 0.583 1.000 1.000 0.000 0.999

TABLE 7.6  LR Binary Occupancy Prediction Using CO2 Data

Score Bin
Positive 

Rate
Negative 

Rate

Fraction 
Above 

Threshold Accuracy
F1  

Score Precision Recall
Negative 
Precision

Negative 
Recall

Cumulative 
AUC

(0.900,1.000) 9 3 0.578 0.991 0.992 0.996 0.988 0.984 0.995 0.004
(0.800,0.900) 9 1 0.583 0.995 0.996 0.995 0.996 0.995 0.994 0.005
(0.700,0.800) 1 5 0.586 0.993 0.994 0.991 0.997 0.996 0.987 0.011
(0.600,0.700) 1 17 0.596 0.984 0.987 0.976 0.998 0.997 0.965 0.033
(0.500,0.600) 9 3 0.578 0.991 0.992 0.996 0.988 0.984 0.995 0.004
(0.400,0.500) 9 1 0.583 0.995 0.996 0.995 0.996 0.995 0.994 0.005
(0.300,0.400) 1 5 0.586 0.993 0.994 0.991 0.997 0.996 0.987 0.011
(0.200,0.300) 0 139 0.727 0.855 0.890 0.801 1.000 1.000 0.653 0.344
(0.100,0.200) 0 105 0.783 0.799 0.853 0.744 1.000 1.000 0.519 0.479
(0.000,0.100) 0 404 1.000 0.583 0.736 0.583 1.000 1.000 0.000 0.998
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The accuracy of the model decreases as the number of occupants in the room grows since 
the multi-class occupancy estimation classifier employs five variable parameters to predict 
the number of people present in the space. It is crucial to verify the model and compare the 
assessment findings to determine whether the approach is suitable for solving the multi-class 
occupancy estimation issue in order to make sure the model generates trustworthy results 
on fresh datasets. Since the accuracy metric frequently falls short of meeting this decision-
making need, other metrics are taken into account as explained in this section.

7.7  CONCLUSION
The development of AIoT technical ideas intended to lower excessive energy usage in 
buildings is the smart home energy management system. Researchers have put forth a 
variety of methodologies and tactics to forecast whether building occupants will be able 
to prevent needless HVAC in unoccupied spaces. This chapter reviewed articles on smart 
buildings. Current research emphasis is focused on employing algorithms that work best 
in commercial buildings with a fixed schedule for the occupants but perform poorly in 
residential structures. This research also demonstrates that the most effective methods for 
bridging the gap between HVAC energy-saving and acceptable interior thermal comfort 
levels are camera-based imaging and video processing methodologies. Additionally, this 
chapter also used interactive learning approaches and a rule-based classifier to merge the 
data from the camera and environmental sensing with other sensors, actuators, and ana-
lytical data methods. With over 40,000 records and the most realistic and difficult setting 
available for building occupancy prediction right now, this research created a brand-new, 
complete public collection of training datasets. To the best of our knowledge, this work is 
also the first to consider a multimodal input to a single output regression model through 
the mining and mapping of feature significance, which has advantages over statistical 
techniques, and to achieve a robust occupancy count in AIoT smart home systems. The 
suggested approach is examined using a prototype system in a living room.
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8.1  INTRODUCTION
Artificial Intelligence of Things (AIoT) is an emerging field that has evolved in recent years 
as a result of the convergence of Artificial Intelligence (AI) with the Internet of Things (IoT) 
(Mohamed. 2020). This emerging paradigm blends the capabilities of AI with IoT technolo-
gies to create a dynamic ecosystem where intelligent devices, data-driven insights, and autono-
mous decision-making converge. As a result, industry and daily life have been transformed. 
AIoT systems create large volumes of data that  devices can process and analyze to produce 
in-the-moment insights and proactive decision-making (Hansen and Bøgh. 2021). AIoT may 
anticipate user requirements, system faults, and trends using predictive analytics, resulting in 
smooth and customized experiences. Additionally, AIoT devices have cognitive capacities that 
allow them to learn from previous mistakes and modify their behavior in response to a variety 
of dynamic settings. AIoT systems encounter several significant issues that impede their effi-
cient and secure functioning. To begin, building trust and guaranteeing security among AIoT 
devices are top priorities (Yang et al. 2021). First, traditional centralized systems may be vulner-
able to cyber-attacks and data breaches, putting data integrity and user privacy at risk. Second, 
it is vital to ensure the accuracy and provenance of the massive volumes of data created by AIoT 
devices (Naseem et al. 2022). Without a visible and permanent record, tracking the origin and 
history of data becomes difficult, which can impede decision-making and impair the credibil-
ity of insights obtained from AIoT systems (Zhang and Tao. 2020). Additionally, obstacles to 
ensuring smooth data interchange and communication across AIoT components are presented 
by the compatibility of various devices, protocols, and data formats. Inefficiencies and poor 
teamwork may result from a lack of established communication channels. Last but not least, 
protecting user privacy in the face of huge data collection and processing by AIoT devices is a 
continuing worry that calls for strict adherence to data protection laws and privacy protection 
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mechanisms (Xiong et al. 2021). To fully utilize AIoT and ensure the reliable, secure, and effec-
tive operation of AIoT communication systems, these issues must be resolved.

Blockchain technology seems a possible remedy to these issues, providing special capabili-
ties that help strengthen AIoT networks. Blockchain is a ledger technology distributed across 
multiple nodes to maintain immutable transactions to ensure high transparency and security 
(Guo and Yu. 2022). Since every node on the Blockchain network maintains a duplicate copy of 
the database, it is regarded as a decentralized database. Before storing a new transaction in the 
database, each node on the network verifies it. Transactions are grouped into a block that can-
not be altered or deleted once added to the Blockchain (Rajasekaran, Azees and Al-Turjman. 
2022). Therefore, all transactions remain visible to the network nodes, making it transparent 
and difficult to hide malicious activities. This makes Blockchain suitable technology to store 
and maintain data in various areas such as banking, healthcare, and supply chain management 
(Krichen et al. 2020). In addition, Blockchain technology has improved data security, trans-
parency, accountability, and reliability in multiple applications. Stakeholders may improve the 
reliability of data transfers, encourage secure cooperation, and provide the groundwork for 
a more effective and decentralized AIoT ecosystem by incorporating Blockchain into AIoT 
communication platforms (Wang et al. 2019; Qureshi, Jeon and Piccialli. 2020). Blockchain 
technology is set to alter the way linked devices interact and communicate as it continues to 
develop, spurring innovation and defining the future of interconnected systems.

Blockchain technology is well-suited for usage in AI applications. It provides many 
advantages when utilized in combination with AI systems. Its primary use is to provide 
data accuracy to train AI models (Ekramifard et al. 2020). AI models are often only as 
good as the data on which they are trained. The final AI model will be flawed if the data 
is correct, biased, or complete (Whang et al. 2023). By using Blockchain to validate the 
legitimacy and integrity of the data needed to train AI algorithms, we can ensure that 
the resulting models are more accurate and reliable. Blockchain can enable AI models 
to be trained on decentralized trusted data sources to solve complex problems. Another 
advantage Blockchain can provide is a marketplace for AI services where developers can 
securely share their AI models. Finally, Blockchain might be used to incentivize data shar-
ing in AI systems. By employing Blockchain to create a decentralized marketplace for data 
exchange, we can incentivize individuals and organizations to share their data with others. 
Consequently, the dataset will be more robust and diverse for training AI models.

In AIoT, Blockchain can provide significant benefits, including improved data integrity, 
decentralized systems, privacy, and incentivized data sharing (Mohanta et al. 2020). As these 
technologies evolve, we expect to see more innovative uses of Blockchain in AIoT applica-
tions. In this chapter, we look at the inherent characteristics of Blockchain technology that 
make it particularly well-suited for AIoT applications. Furthermore, we investigate how 
Blockchain contributes considerably to the growth of AIoT by concentrating on important 
topics such as Device Identity and Authentication, Data Exchange and Monetization, Smart 
Contracts and Automation, and Federated Learning. This chapter goes on to discuss the 
creation and deployment of numerous Blockchain initiatives targeted at aiding AI applica-
tions. The first project, called Ocean Protocol (McConaghy. 2022), is a platform for exchang-
ing data on a Blockchain that is intended for AI applications. It encourages a cooperative  
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environment for AI innovation by empowering data owners to safely and openly commer-
cialize and share their data. SingularityNET (Liu et al. 2020), the second Blockchain technol-
ogy, functions as a decentralized marketplace for AI models and services. It guarantees data 
protection and ownership while facilitating easy access to a range of AI capabilities. Fetch.
ai (Simpson. 2023) is another project that aims to build a decentralized network that allows 
autonomous agent interactions to take place without human involvement. With the help of this 
collaborative and autonomous agent architecture, intelligent agents may carry out challenging 
tasks in a variety of IoT applications. The Oasis Protocol (Yu et al. 2018), a Layer 1 Blockchain 
protocol, emphasizes the development of privacy-focused apps. As a basic Blockchain layer, 
it contains cutting-edge privacy features and technologies to provide secure and private data 
management. Because it provides a context that safeguards privacy, the Oasis Protocol is a 
viable platform for privacy-sensitive AIoT use cases. It is especially well suited for AI appli-
cations where data privacy is critical. ORAIchain (Pasdar, Dong and Lee. 2021), the first AI 
oracle, seamlessly integrates Blockchain with AI services. It ensures that data are  safely and 
reliably sent between the decentralized network and external sources, hence increasing the 
trustworthiness of AI-powered smart contracts. This cutting-edge technology opens up new 
avenues for monetizing AI services and fosters innovation across several industries.

8.2  BLOCKCHAIN’s IMPACT ON AI: KEY FEATURES AND ADVANTAGES
Blockchain is a replicated database that utilizes a consensus mechanism and runs over a 
decentralized network of untrustworthy members. Blockchain can simply be described as a 
chronological succession of data stored in blocks that are managed by a cluster of intercon-
nected nodes. Each block contains a collection of confirmed transactions. The immutability 
of the data is guaranteed by the fact that once a block is published to the Blockchain, it is 
almost impossible to modify. Each block is linked to the previous block by carrying a cryp-
tographic hash of the preceding block’s header. Because of this connection, it is computa-
tionally difficult to change the Blockchain’s history, which creates an ordered chain in which 
every change to a prior block causes changes in subsequent blocks. Blockchain enables an 
open, decentralized, and secure framework for the management of data and transactions. 
To guarantee data integrity and immutability, it makes use of distributed consensus, cryp-
tographic hashing, and an auditable chain of blocks (Rehman et al. 2022). For each node 
to agree upon the authenticity of the data record, a consensus protocol is used. Consensus 
protocols are essential to the functioning of Blockchain technology as they offer agreement 
and trust in distributed nodes. As the basis of Blockchain technology, two primary consen-
sus mechanisms have emerged. The first is  Proof of Work, which provides the authority to 
add new blocks depending on computing power given by miners. This competitive mining 
process protects the Blockchain’s security and immutability, as changing previous transac-
tions would take massive processing power. Proof of Stake (PoS), which was implemented 
to alleviate energy consumption concerns, eliminates the need for energy-intensive mining 
and decides the right to verify and add new blocks based on the stake held. A chain of blocks 
forms the foundation of the Blockchain data structure as shown in Figure 8.1.

Numerous Blockchain implementations, especially those employed in AI applications 
that need reliability, openness, and data integrity, have been shown to benefit greatly from 
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this design. Blockchain technology offers several features that can be beneficial for AI appli-
cations. Decentralization is the core feature of Blockchain technology that AI applications 
can benefit from (Qureshi et al. 2022). By decentralizing, single points of failures are coun-
tered by dispersing data among several nodes, providing continuous access to data and ser-
vices. This high availability is critical for applications that require real-time or continuous 
processing. Decentralization improves AI system security by reducing the attack surface for 
potential security breaches. Because Blockchain-based AI systems are distributed, they offer 
more resistance to unwanted access and data manipulation. Decentralization also allows for 
collaborative decision-making by allowing various nodes to participate in AI model train-
ing and validation, fostering strong and varied models while respecting privacy and data 
ownership. Overall, Blockchain decentralization improves the dependability, security, resil-
ience, and collaboration capacities of AI systems, limiting the risks associated with central-
ization and encouraging a more transparent, trustworthy, and efficient environment.

Blockchain data’s integrity and dependability in AI applications are facilitated by its 
immutability and tamper-proof characteristics. Data is validated and verified by the con-
sensus system, making it very difficult to change or modify it (Sunny, Undralla and Pillai. 
2020). Because of this immutability, data provenance is guaranteed, which is essential for 
trustworthy machine-learning models. Blockchain data is crucial in delicate industries 
like healthcare, banking, and supply chain management because it offers transparency and 
traceability throughout the data lifecycle. The very difficult and immediately observable 
character of tamper-proof Blockchain data reduces hazards of data tampering and illegal 
adjustments. The immutability and tamper-proof nature of Blockchain data builds stake-
holder trust, allowing for informed decisions and transparency in AI systems. Overall, 
these qualities can improve the accuracy of AI models, reduce the risks of data manipula-
tion, and enable transparent, responsible decision-making.

Blockchain technology’s transparency and auditability are essential features for the 
accountability and reliability of AI systems. By logging transactions and operations on a 
public, distributed ledger, Blockchain provides stakeholders with visibility into the activities 
and processes occurring within the system (Zarrin et al. 2021). The fairness and account-
ability of algorithms and decision-making processes are supported by transparency in AI 
systems, which makes it possible to audit and confirm the data sources used to train models. 

FIGURE 8.1  Blockchain architecture.
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This openness lowers the likelihood of discriminatory or biased outcomes by enabling 
stakeholders to assess the sufficiency and representativeness of the data. Blockchain data 
auditability ensures the immutability and time stamping of all transactions and updates, 
allowing stakeholders to trace and authenticate the history of data changes. It also makes 
it easy to detect any unauthorized or suspicious systemic activity. Because of openness and 
auditability, stakeholders in AI systems may have trust in the methods, data sources, and 
algorithms used. This transparency promotes accountability by encouraging meaningful 
debates, evaluations, and modifications to address any biases, mistakes, or ethical issues. 
Overall, the usage of Blockchain in AI applications establishes a strong basis for trust, 
accountability, and fairness, allowing stakeholders to validate decisions and processes, fos-
tering responsibility and ethics in AI, and promoting transparency and bias reduction.

Smart contracts are a critical component of Blockchain technology that improves the 
functionality and efficiency of AI applications. These self-executing contracts, which are 
maintained on the Blockchain, enable transparency and immutability, allowing trust to 
be established and removing the need for middlemen or central authority. They reduce 
expenses and eliminate the danger of human error or manipulation by enabling the exe-
cution of transactions and agreements without the need for manual intervention (Hewa, 
Ylianttila and Liyanage. 2021). Additionally, smart contracts make it possible for AI sys-
tems to conduct automated business, such as trading AI models or services in a decentral-
ized marketplace. They establish transaction terms, such as pricing, licensing, and usage 
rights, and automatically carry them out when specific conditions are met. They also have 
control over the sharing and use of data and AI models, such as in federated learning, 
ensuring an equitable and transparent allocation of contributions and benefits. Smart 
contracts used in AI applications may boost transparency, efficiency, and security while 
reducing the need for trust between parties and promoting dependable and seamless inter-
actions. Smart contracts must be properly designed and audited to preserve their security 
and validity. Thorough testing and auditing techniques are required to ensure the validity 
of the contract’s code. Overall, smart contracts in AI applications enable the automated, 
dependable, and effective implementation of agreements, transactions, and procedures, 
which increases the functionality and efficiency of AI systems as a whole.

Blockchain technology is an appealing approach for assuring data security in AI appli-
cations. It secures data and transactions using cryptographic algorithms, assuring secrecy 
and integrity (Deepa et al. 2022). Encryption is used to make stored data unreadable to 
unauthorized parties. Access control is made possible through private and public key cryp-
tography, with each participant holding a unique pair of key. Decrypting encrypted data 
necessitates the use of the associated private key, which ensures that only authorized per-
sons may access and decode it. Because Blockchain is decentralized, it is more resistant to 
assaults because data is distributed across several nodes. The immutability of data on the 
Blockchain makes it difficult to modify or tamper with, making the discovery of manipu-
lation more likely. Blockchain technology provides a secure and transparent framework 
for storing and accessing data, building trust, and preserving sensitive information in AI 
systems by using cryptographic techniques, access control mechanisms, decentralized 
architecture, and data immutability.
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By solving important challenges like data security, privacy, cooperation, and respon-
sibility, Blockchain technology has the potential to transform the area of AI. Its capac-
ity to improve data security and privacy through encryption and decentralization, 
assuring transparency and preventing unwanted access or manipulation, is one of its 
primary advantages. Smart contracts, which specify the terms and circumstances of 
data exchange, are another feature of Blockchain that makes it possible for numerous 
parties participating in AI projects to collaborate and share data securely and effec-
tively. Additionally, Blockchain can provide an accurate history of data provenance 
and traceability, guaranteeing the reliability of data sources, which is especially use-
ful in industries like supply chain management and medical research. Additionally, 
the technology can offer a decentralized framework for federated learning, enabling 
equitable participation and safe coordination among dispersed servers or devices. 
Additionally, markets for AI models and algorithms built on Blockchain technology 
can provide safe trading and exchange while defending intellectual property rights 
and allowing developer reputation systems. Blockchain technology promotes trans-
parency and accountability in algorithmic decision-making, which helps with AI gov-
ernance and accountability. It is now feasible to examine and evaluate the fairness, 
bias, and accountability of AI systems by documenting AI operations on Blockchain. 
While Blockchain has the potential to improve several AI-related features, its usage 
should be carefully assessed depending on the unique requirements and difficulties of 
each use case.

8.3  ROLE OF BLOCKCHAIN IN AI IoT APPLICATIONS
Despite the convergence of the IoT with AI, there are still difficulties to be handled in terms 
of trust, security, and effective data exchange. This is where Blockchain technology can 
be utilized. By combining Blockchain with AIoT applications, a new paradigm is formed 
that provides increased data integrity, safe device interactions, transparent data exchange, 
and improved automation. IoT devices may come to autonomous agreements thanks to 
Blockchain’s decentralized and immutable ledger design, which also guarantees trust and 
data integrity. By empowering industries, reimagining supply chain management, enhanc-
ing privacy, and supporting innovative business models, the AIoT ecosystem may over-
come barriers and fulfill the revolutionary promise of Blockchain. Blockchain technology 
will usher in a new era of efficiency, security, and trust when combined with AIoT appli-
cations. Blockchain technology can be integrated into AIoT applications to address spe-
cific challenges and enhance various aspects of the ecosystem. Here are some areas where 
Blockchain can be utilized.

•	 Device Identity and Authentication: IoT applications require safe and trustworthy 
device identity and authentication to enable dependable and secure interactions. 
Blockchain technology provides a secure identity management solution for IoT 
devices by assigning each IoT device a unique digital identity in the form of crypto-
graphic keys. These keys are stored on the Blockchain for access control and authen-
tication. Devices verify their identity by signing requests with their private key.  
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The Blockchain network gives access based on predefined access control settings 
after confirming the signature with the corresponding public key. Blockchain-based 
device identity and authentication solutions effectively stop spoofing and unauthor-
ized access attempts. It is more difficult for criminals to invent or alter identity infor-
mation because of the secure storage of digital identities, which also makes tampering 
and illicit modifications visible. Authenticated and granted access devices can safely 
connect to other authorized devices on the network. Data encryption and decryption 
are made possible by cryptographic keys, guaranteeing the secrecy and integrity of 
data while it is being transmitted. In general, Blockchain-based identity management 
systems reduce the risks of unauthorized access, data breaches, and device spoofing 
by offering a very secure and reliable environment for IoT applications.

•	 Data Exchange and Monetization: Blockchain-based systems improve data sharing 
and income creation in IoT applications by providing secure and transparent meth-
ods. Smart contracts, which automate and enforce data-sharing agreements, enable 
IoT devices to participate in direct peer-to-peer data exchanges while maintaining 
ownership and control over their data. The recording of all data transactions in this 
decentralized data market ensures the integrity and traceability of shared data. When 
two devices agree to send data, a smart contract is created that specifies the kind, 
quantity, pricing, and usage limits. Blockchain promotes data safety and privacy in 
the IoT ecosystem by allowing IoT device owners to retain ownership and control 
over their data. With reward systems in place where devices that give meaningful 
data receive tokens or digital assets, incentives are essential for increasing data shar-
ing. By combining Blockchain technology and IoT data sharing, new business models 
are made possible, expenses are reduced, and effective income sharing between data 
sources and consumers is encouraged. Furthermore, by eliminating the chance of a 
single point of failure and unauthorized access, Blockchain enhances data privacy 
and security. Immutability and cryptographic techniques, which forbid tampering 
and unlawful alterations, safeguard data integrity. The IoT data economy may now 
reach its full potential thanks to the transformation of data sharing and monetization 
brought about by Blockchain technology in AI IoT applications.

•	 Smart Contracts and Automation: The primary innovation of Blockchain technol-
ogy, smart contracts, enables the automation and self-execution of contracts in IoT 
applications. The programmable logic that specifies words, conditions, and actions 
allows for direct device-to-device interactions, which speeds up operations. Smart 
contracts function independently after they are set up on the Blockchain, continually 
monitoring the network and performing specified actions when specific conditions 
are met. This self-execution eliminates the need for manual intervention and allows 
IoT operations to be smoothly automated. Since the contract code and execution are 
available to all parties thanks to the Blockchain’s decentralized nature, smart con-
tracts also promote trust and transparency. This transparency removes the require-
ment for trust in a centralized authority by ensuring that agreed-upon operations are 
carried out precisely as indicated. By self-executing, delays, dependencies, and costs 
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associated with third-party services are avoided. By automating interactions between 
IoT devices, smart contracts increase productivity and save expenses. They accom-
plish this by eliminating human procedures and allowing activities to be carried out 
quickly and practically instantaneously, hence boosting the responsiveness, accuracy, 
and dependability of IoT systems. Furthermore, smart contracts benefit from the 
consensus mechanisms built into Blockchain technology, which rely on the consent 
and validation of network participants. When smart contracts are implemented on 
the Blockchain, they safeguard the transparency and immutability of agreed-upon 
operations.

•	 Federated Learning: A unique approach to training AI models that emphasizes data 
security and privacy is federated learning. It enables distributed collaborative model 
training while protecting sensitive data and utilizing the combined knowledge of 
many individuals. With the potential to enhance privacy and guarantee participant 
fairness, Blockchain technology can handle the coordination, verification, and incen-
tive components of federated learning. With smart contracts establishing the rules 
and protocols, Blockchain technology offers a decentralized and transparent plat-
form for process coordination. Model updates and data contributions may be easily 
validated because of Blockchain’s immutability and transparency, while incentives 
and rewards encourage participation and contribution. Private key management 
solutions, which ensure data confidentiality and integrity, boost privacy and secu-
rity even further. Transparency and consensus-building procedures promote fairness 
and trust, removing the need for trust between unknown partners. The combination 
of privacy-preserving federated learning and the openness, security, and automation 
of Blockchain provides a powerful solution for collaborative AI model training while 
safeguarding data privacy and ensuring the quality of the learning process.

8.4  BLOCKCHAIN INTEGRATION WITH AI
The recent fusion of two ground-breaking technologies, Blockchain, and AI, has had a 
significant influence on several different businesses. Blockchain and AI together have cre-
ated a fresh ecosystem that is defined by decentralization, transparency, and increased 
security, radically altering paradigms for data administration and consumption. This sec-
tion explores cutting-edge Blockchain projects, such as Ocean Protocol, SingularityNET,  
Fetch.ai, Oasis Protocol, and ORAIchain.

8.4.1  Ocean Protocol

Ocean Protocol (McConaghy. 2022), is a Blockchain-based project that provides a decen-
tralized marketplace for data that can be used for AI applications. It is built on the Ethereum 
blockchain allowing data providers, consumers, and AI service providers to exchange and 
use data securely. One of the major concerns the AI industry faces is the availability of 
high-quality data. Constructing accurate and dependable AI models without access to 
massive amounts of diverse and high-quality data can be difficult. Ocean Protocol seeks 
to address this issue by establishing a marketplace for data trading, analysis, and profit. 
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Ocean Protocol’s major goal is to enable data sharing and monetization in a decentralized, 
safe, and private manner. It offers a framework for purchasing, selling, and transferring 
data assets while maintaining data privacy and access control. Ocean Protocol aims to 
establish new data-driven business models and inspire innovation across several industries 
by simplifying data sharing in a transparent and trusting way.

The Ocean Protocol is divided into many tiers, each with its own set of characteristics. 
The application layer is the top layer of the Ocean Protocol architecture, and it allows users 
to interact with the protocol. This layer includes applications like marketplaces, market 
integrators, and data service providers. Its primary goal is to simplify the sharing, pur-
chasing, and selling of data assets. The Ocean Protocol architecture’s intermediate layer 
is made up of middleware and software libraries, which programmers may use to con-
struct applications that interface with the protocol. This layer has a variety of tools for 
dealing with concerns such as metadata, access control, data provenance, and data discov-
ery. For example, the Ocean.js library, which offers a JavaScript Application Programming 
Interface (API) for interacting with the protocol, is one of these tools. The Ocean Protocol 
architecture is built on the smart contract layer, which outlines and upholds the protocol’s 
governance and rules. The token contract, market contract, and staking contract are just 
a few examples of the Ethereum smart contracts that make up this layer and control how 
the protocol operates. The Ocean Protocol’s native coin, Ocean Tokens, which are utilized 
for protocol transactions, is managed by the token contract. By staking their tokens to cast 
votes on proposals, token holders may take part in protocol governance thanks to the stak-
ing contract. A framework for purchasing and selling data assets on the system is provided 
by the market contract. The protocol’s transactions must be secure, transparent, and audit-
able to function. The use of smart contracts, which ensure that protocol transactions are 
carried out automatically without the need for intermediaries or centralized control, also 
ensures high security and reliability.

Ocean Protocol makes it simpler to transfer data assets in a secure, decentralized, and 
advantageous way, which may considerably aid in the creation of AIoT applications. Data  
are  an essential resource in AI that powers the creation of machine learning models. The 
design of Ocean Protocol ensures privacy and security while granting access to numerous 
high-quality data assets. Additionally, the Ocean Protocol’s decentralized structure makes 
it easier to create cooperative and interoperable ecosystems, which boosts the efficiency 
and cost-effectiveness of AI research. The democratization of data and AI brought about by 
the Ocean Protocol can also encourage innovation and raise the level of competition in the 
AI market. Many Ocean Protocol characteristics might be highly useful for IoT applica-
tions. One of its primary characteristics is its decentralized data marketplace, which pro-
vides access to a diverse variety of data assets. This comprises information obtained from 
a variety of sources, such as government organizations, commercial enterprises, academic 
institutions, and people. This access to a diverse variety of data assets has the potential 
to improve the quality and accuracy of machine-learning models. Furthermore, Ocean 
Protocol provides safe and privacy-preserving data asset exchange, reducing the danger 
of data breaches and privacy violations. This allows for larger datasets and improves the 
accuracy and durability of machine-learning models.
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Ocean Protocol’s Blockchain provides a transparent and auditable framework for deter-
mining who owns and has access to which data assets. This ensures that data for AIoT appli-
cations is accurate and trustworthy. The formation of a decentralized marketplace for AI 
models is another major function given by Ocean Protocol. By making high-quality mod-
els accessible for purchase and use in AI applications, it encourages AI developers to create 
them. This promotes AI research and economic development while also offering a venue for 
AI developers to be recognized for their accomplishments. The interoperable infrastructure 
of Ocean Protocol enables the simple integration of data assets with diverse AI tools and 
platforms, enabling collaboration and innovation among AI developers. Ocean Protocol’s 
decentralized data-sharing features can considerably improve the efficacy of AI development 
while lowering data-collecting costs. By removing the need for middlemen, decentralized 
data exchange reduces transaction costs for both consumers and data producers. Finally, the 
decentralized data exchange of the Ocean Protocol democratizes access to data assets and AI 
solutions, allowing individuals and smaller enterprises to engage in the AI sector. This fosters 
creativity and competition, which boosts the AI industry’s economic growth.

By establishing a decentralized ecosystem for data and AI services, Ocean Protocol has 
the potential to be an essential part of AIoT applications. The platform enables data owners 
to monetize their data while simultaneously giving AI developers access to high-quality 
data and AI services. This creates a new, decentralized, transparent, and inclusive environ-
ment for AI creation. As the AI industry develops, the Ocean Protocol’s role in democra-
tizing access to data and services will become ever more important.

8.4.2  SingularityNET

SingularityNET (Liu, Yiming, et al. 2020), a decentralized, open-source network, seeks 
to facilitate the creation and deployment of AI applications using AI agents. These auton-
omous systems may learn from their interactions with the environment and are adap-
tive since they are built to execute certain tasks. SingularityNET’s goal is to establish a 
marketplace where AI agents can be purchased and sold, allowing developers and enter-
prises to acquire the AI tools they want without having to build them from the ground 
up. SingularityNET also has a reputation system to maintain quality, a marketplace for 
AI agents, and a federated learning approach to allow AI agents to collaborate. The plat-
form also gives developers a variety of tools and services to build and use AI applications. 
The decentralized approach of SingularityNET intends to democratize AI and make it 
available to everyone. SingularityNET’s emphasis on building a decentralized AI network 
where many AI agents may connect and work together decentralized is another crucial 
aspect of the project. SingularityNET seeks to democratize AI development and deploy-
ment to increase accessibility. Figure 8.2 shows the singularityNET high-level architecture.

SingularityNET’s architecture comprises four essential components: transactions, 
settlements, incentives, and governance. These components aid in the platform’s decen-
tralized operation. The platform users exchange value through transactions, which may 
include the exchange of data  among  AI agents or tokens for AI services. Smart con-
tracts ensure that transactions are transparent, secure, and irreversible by eliminating the 
need for intermediaries and minimizing transaction costs. The use of escrow accounts 
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makes it simpler to ensure that everyone involved in a settlement receives the value to 
which they are entitled. This arrangement encourages all parties to keep their agreements 
and protects them from risk. Incentives are used to promote network-beneficial behaviors 
by rewarding high-quality AI services and penalizing low-quality services. A reputation 
system handles these incentives and penalties by allowing people to rate the efficacy of 
various AI bots. Last, governance refers to rules and laws regulating platform decision-
making, such as incentive management and dispute resolution. The platform changes are 
proposed and decided by the community as part of SingularityNET’s decentralized and  
community-driven governance structure. Parties come to decisions by working out an 
agreement. These tactics enable the interchange of AI services safely and efficiently while 
promoting cooperation and creativity in the creation of AI applications.

SingularityNET may be applied to AI applications in several different ways. With the 
help of the decentralized AI network created by SingularityNET, AI agents may interact 
with one another and work together to solve complex problems. This is especially useful 
in the context of the IoT, where several devices and sensors may work together to col-
lect data and execute a task. For instance, a network of smart home devices may work 
together to optimize energy consumption using information from sensors placed around 
the house. Additionally, SingularityNET’s AI agent marketplace may help companies and 
developers get the AI tools they need without having to build them from the ground up. 
This is crucial in the context of the IoT, where specialized AI agents could be required to 
carry out operations like image recognition, natural language processing, or data analy-
sis. Businesses and developers may save time and money while focusing on developing 
apps that use AI to improve the performance of their IoT devices by acquiring AI agents 
through the SingularityNET marketplace.

Furthermore, AI bots may learn from one another in a decentralized way thanks to 
SingularityNET’s federated learning strategy. When AI agents may need to learn from data 

FIGURE 8.2  SingularityNET high-level architecture.
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gathered by numerous devices and sensors, this is especially helpful. Businesses and devel-
opers may design AI agents that can learn from several datasets, enhancing their accuracy 
and performance, using SingularityNET’s federated learning technique. SingularityNET 
is a useful resource for developing and deploying AI applications for the IoT. Its federated 
learning approach, a marketplace for AI agents, and decentralized AI network may help 
companies and developers build and deploy IoT devices and apps that are more accurate, 
effective, and profitable thanks to AI.

8.4.3  Fetch.ai

Fetch.ai (Simpson et al. 2023) is a decentralized network that leverages Blockchain and 
AI to connect digital and real goods. The project aims to create an open-source ecosystem 
in which autonomous economic agents may interact with one another and the outside 
world safely and successfully. The platform is built on a revolutionary consensus approach 
known as “proof of useful work,” which rewards nodes for doing beneficial computations 
that improve network functionality. Numerous use cases are supported by Fetch.ai such as 
supply chains, smart cities, etc. Advanced machine learning and AI technologies are used 
by Fetch.ai, to streamline user transactions and data sharing. The network is built to sup-
port a wide range of applications, including autonomous economic agents and distributed 
autonomous groups. The ultimate goal of the project is to use Blockchain and AI together 
to allow a more connected and intelligent future.

The Fetch.ai platform is divided into three layers: The Autonomous Economic Agent 
(AEA layer), the Open Economic Framework (OEF layer), and the Open Economic Ledger 
(OEL). The autonomous economic agents are found in the AEA layer. AEAs are computer 
programs that can represent people or organizations and communicate with other AEAs 
and digital and physical things in the real world. They can decentral negotiate contracts, 
make judgments, and carry out activities. The AEA layer is created to be flexible and mod-
ular, enabling customization and specialization to satisfy the requirements of particular 
use cases. The OEF layer provides the platform’s architecture for coordination and com-
munication. AEAs may find and connect with other agents and services on the network 
thanks to this decentralized search engine. Additionally, the OEF offers AEAs a messag-
ing system for inter-AEA communication and a reputation system that helps ensure the 
dependability and quality of services offered by agents. The OEL layer is the foundation of 
Fetch.ai’s technical stack. This decentralized ledger maintains track of all AEA transac-
tions. The OEL ensures that the system is secure and impermeable and that all transactions 
are transparent and irreversible. Furthermore, it enables the creation of a decentralized 
marketplace where AEAs can trade value directly without intermediaries. Useful Proof 
of Work (PoW), a novel consensus technique, combines conventional proof of work with 
a framework of financial incentives to assure efficiency and security. Together, these three 
layers form the architecture of Fetch.ai, enabling the creation of decentralized and autono-
mous systems that can coordinate and collaborate securely and efficiently.

By offering a decentralized and intelligent architecture that can facilitate autonomous 
decision-making and effective resource allocation in IoT networks, Fetch.ai can play a vital 
role in AIoT applications. Managing, processing, and analyzing data effectively are some 
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of the biggest issues facing IoT networks. By developing intelligent agents that can process 
and analyze data from IoT devices and make autonomous decisions based on the informa-
tion they receive, Fetch.ai’s AEAs can assist in solving this challenge. These agents can 
cooperate to enhance system performance and resource allocation. The lack of compatibil-
ity across various platforms and devices presents another difficulty for IoT networks. In the 
technological stack of Fetch.ai, the OEF layer offers a platform for data sharing and con-
nectivity across various IoT systems and devices. This makes interoperability possible and 
makes it possible to build a decentralized IoT ecosystem where devices may communicate 
and work together to accomplish shared objectives. Another crucial component that might 
be very helpful to AIoT applications is Fetch.ai Smart Ledger. The integrity and transpar-
ency of AI applications are ensured by this high-performance Blockchain, which enables 
the secure and effective exchange of money and data  among  AI agents. Furthermore, with 
machine learning capabilities included in AI, AEAs may learn from their interactions and 
experiences to enhance their performance over time. The agents’ ability to enhance their 
performance and adjust to changing circumstances continually can result in a rise in the 
accuracy and efficacy of AI applications.

8.4.4  Oasis Protocol

The Oasis Protocol (Yu, Shitang, et al. 2018) is a Layer 1 Blockchain platform for develop-
ing privacy-focused apps. It seeks to combine the benefits of Blockchain technology with 
secure, private data processing and scalability. Oasis aims to provide a robust and user-
centric environment for conducting transactions, executing smart contracts, and utilizing 
the potential of decentralization. It maintains control over sensitive data by combining 
the benefits of Blockchain technology with privacy-preserving techniques such as secure 
enclaves. The Oasis Protocol stands apart from other layer 1 Blockchains by combining pri-
vacy, scalability, and developer-friendly features singularly. By including secure enclaves, 
it makes it possible to execute private smart contracts that safeguard sensitive data while 
still allowing for verification. ParaTime, a hybrid consensus system, enables parallel run-
times with programmable rules, enhancing developer freedom. The protocol stands out in 
part because it emphasizes privacy, offering a safe and secure environment. Oasis Protocol 
is an appealing option for creating privacy-focused apps on the Blockchain because of 
its emphasis on data protection, scalable speed, and extensive developer tools. Figure 8.3 
shows the Oasis architecture with secure enclave.

One of the essential components of the Oasis Protocol’s architecture is the Trusted 
Execution Environment (TEE) or the secure enclave. Secure enclaves offer a reliable execu-
tion environment for delicate data and calculations. These enclaves establish segregated 
areas inside a processor, ensuring that private information stays encrypted and off-limits 
to the public. One of the main advantages of secure enclaves is that they safeguard sensi-
tive data from unwanted access, ensuring data privacy. Additionally, safe enclaves provide 
secure computing, enabling activities like data manipulation or cryptographic calculations 
that protect user privacy. Verifiability is another feature of the Oasis Protocol that enables 
third parties to check the precision of enclave operation without jeopardizing data privacy. 
Smart contracts can use secure enclaves to offer privacy-preserving features, ensuring that 
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inputs, outputs, and interim outcomes are shielded from the network. While preserving 
general privacy and security in the Oasis network, this privacy-focused method enables 
delicate financial transactions, secure calculations, and other private processes.

A key component of the Oasis Protocol is secret smart contracts, which allow for privacy 
and secrecy in Blockchain-based applications. These smart contracts in the Oasis Protocol 
run in trusted execution environments for sensitive calculations, such as Intel SGX secure 
enclaves. By hiding the contract’s inputs and outputs from the network, confidential smart 
contracts offer privacy. To do this, cryptographic techniques are used to encrypt and secure 
the data while allowing for the validity of the contract to be checked without revealing sen-
sitive information. The Oasis Protocol facilitates the secure processing of sensitive data and 
private computations while upholding the network’s overall privacy and secrecy by execut-
ing smart contracts in secure enclaves. The Oasis Protocol is ideally suited for applications 
that need secrecy, such as private lending, decentralized finance (DeFi) transactions, and 
other use cases where data privacy is crucial.

For AI and IoT applications, the Oasis Protocol has certain clear advantages. Its confi-
dentiality-preserving features, such as the usage of secure enclaves, guarantee the secure 
processing of sensitive data. The Oasis Protocol allows privacy by keeping inputs and 
outputs concealed from the network by executing private smart contracts within these 
enclaves. This guarantees that AIoT  stakeholders may safely access data markets and 
maintain control over their data. A distributed network can efficiently compute AI algo-
rithms because of the protocol’s scalability and modular architecture, which can handle 
the massive amounts of data produced by IoT devices. The Oasis Protocol also encourages 
transparency and trust through cryptographic verifiability, enabling participants to con-
firm the precision of private smart contract execution. As a result, trust is built up inside 
the AI-IoT ecosystems, encouraging cooperation and accelerating the creation of safe mar-
ketplaces and rewards for data sharing and AI contributions. Overall, the Oasis Protocol 
offers a solid framework for AI-IoT applications by integrating privacy, scalability, and 
trust to support creative and safe deployments in this field.

FIGURE 8.3  Oasis architecture with secure enclave.
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8.4.5  ORAIchain

ORAIchain (Pasdar et al. 2021), a Blockchain-based oracle network that serves as a criti-
cal connection between smart contracts and real-world data, enables decentralized apps 
(dApps) to securely and reliably communicate with external data. Its primary job is to 
provide exact and validated data inputs to smart contracts, allowing them to be executed 
with trust. ORAIchain incorporates cutting-edge AI-based data validation algorithms to 
verify the validity and accuracy of external data sources, ensuring data dependability and 
tamper-resistant performance. The design of ORAIchain is committed to data privacy 
and encryption, using strong privacy-preserving measures to protect sensitive data and 
enabling authorized parties, such as smart contracts, to safely access specified informa-
tion. It is a flexible and useful addition to the Blockchain ecosystem that facilitates cross-
chain communication and data exchange thanks to its interoperability and scalability. 
The expanding demands of decentralized applications across many industries may be 
met thanks to ORAIchain’s capacity to handle large  numbers  of data requests effectively. 
Overall, ORAIchain provides developers and companies looking for a trustworthy con-
nection between their smart contracts and real-world data with a verified and trusted data 
source. Figure 8.4 shows the ORAIchain system architecture.

Users or smart contracts can submit requests by calling an Oracle script that is 
accessible through the ORAI gateway or marketplace. The Oracle script includes test 
cases, transaction costs, and data sources for AI for each request. A random validator 
is selected to acquire data from AI providers and run test scenarios when a request is 
made. To ensure the integrity of the data, requests are terminated if an AI provider 
fails to test. The ORAIchain Blockchain records the outcomes of successful queries, 
proving their execution and avoiding data manipulation. The API testing functional-
ity of ORAIchain is special since it is built on test cases. Testing is essential to regulate 
the caliber of AI providers since ORAIchain focuses on AI APIs. To encourage AI 
providers to increase the accuracy of their AI models, test providers might suggest 

FIGURE 8.4  ORAIchain system architecture.
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appropriate test cases. The ORAIchain community has the authority to rank vali-
dators’ performances in raising the caliber of AI APIs. Tokens will be reduced as a 
punishment for improper behavior by validators, such as neglecting to run test cases 
or validate AI providers. However, a large number of validators must be recruited, 
and they must be encouraged to join and uphold the standard of their work in the 
ORAIchain network through block rewards and transaction fees to ensure scalability 
and high availability.

8.5  DISCUSSION
Blockchain technology, a distributed ledger, enables safe, open, and immutable record-
keeping. AIoT has the potential to create vast amounts of data that may be exploited by 
AI applications to give services to users. Blockchain technology can play an essential 
role in AIoT applications by enabling decentralized AI models and ensuring secure data 
exchange. Blockchain’s safe and transparent way of tracking data ensures that data are 
not exploited or altered. Blockchain can also help with monetization, allowing owners to 
sell their data directly to interested parties. This chapter examines the characteristics of 
Blockchain technology that make it especially applicable for applications related to the IoT, 
emphasizing its function in maintaining data security and transparency. Furthermore, this 
chapter explores the significant contribution that Blockchain technology makes to AIoT, 
highlighting crucial aspects such as Device Identity and Authentication, Data Exchange 
and Monetization, Smart Contracts and Automation, and Federated Learning. To facili-
tate AI applications, several Blockchain projects are being developed and implemented. 
The potential benefits of these Blockchain initiatives, namely Ocean Protocol, Fetch.ai, 
SingularityNET, Oasis Protocol, and ORAIchain, for advancing the creation and use of 
AIoT applications are also discussed in this chapter. Ocean Protocol aims to create a data 
economy where data can be shared and monetized in a privacy-preserving manner using 
Blockchain technology. Fetch.ai, on the other hand, allows intelligent agents to perform 
complex tasks by creating a decentralized AI network, whereas, SigularityNET allows the 
sharing of AI models while maintaining data privacy and ownership. The Oasis Protocol 
is a Layer 1 Blockchain platform for developing privacy-focused apps particularly suit-
able for AI applications. ORAIchain is the first layer 1 AI Oracle, facilitating connectivity 
between Blockchains and real-world applications with AI and data-driven smart contracts. 
The revolutionary effect of Blockchain on AIoT applications is highlighted in this chapter 
by looking at these aspects, with a focus on the development of a decentralized, secure, and 
trusted AIoT ecosystem.

8.6  CONCLUSION
The fusion of AI and the IoT into the domain of AIoT has provided a potential frontier for 
disruptive innovation across several sectors. Nonetheless, this rapid convergence of tech-
nologies faces several serious issues in terms of data security, openness, interoperability, 
and privacy. In response to these challenges, Blockchain technology appears as a compel-
ling and practical alternative for fortifying the foundations and enhancing the capabilities 
of AIoT applications. The key features of Blockchain technology that make it particularly 
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well-suited for integration inside AIoT applications have been carefully examined through-
out this chapter. This chapter emphasizes the critical function of Blockchain technology in 
AIoT applications, presenting a variety of use cases that maximize its potential and capa-
bilities in this area. We have also looked at several real-world Blockchain projects in this 
chapter that demonstrate how AIoT and Blockchain may work together to provide innova-
tive new solutions. These efforts show the real-world impacts of Blockchain on the devel-
opment of AIoT. They range from empowering data owners to safely share and monetize 
their data, to creating decentralized markets for AI services and models, to implementing 
cutting-edge privacy measures for data. These projects also fill the gap between Blockchain 
networks and real-world applications powered by smart contracts and AI.
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9.1  INTRODUCTION
The pace at which data is being created in the digital world is amazing, and it’s just becom-
ing faster. Even though these “Big Data” have opened up innovative options to get a better 
understanding of public health, they still contain far more promise for study and clinical use. 
The increased number of Internet users producing an enormous volume of data is a direct 
consequence of the technological revolution that has recently taken place as a result of the 
growing usage of such gadgets. Specifically, distant sensors consistently create a large amount 
of heterogeneous data that might be organized or unstructured. Big Data is distinguished by 
three characteristics (a) the quantity and variety of the data; (b) the inability of the data to 
be organized inside conventional relational databases; and (c) the speed with which the data 
are created, recorded, and analyzed. Big Data has a lot of potential for commercial applica-
tions and is a fast-growing sector of the information technology industry. It has sparked a 
substantial amount of interest in a variety of industries, including the production of medical 
equipment, financial transactions, social networking, and satellite imagery (Ballin. 2016).

Researchers in the fields of decision-making, data sciences, commercial applications, and 
government are paying a significant amount of attention to technological breakthroughs 
and the availability of large volumes of data on the Internet. Researchers may make use of 
a wide variety of opportunities afforded by the vast amounts of data collectively referred 
to as “Big Data.” However, using Big Data requires a significant investment of time and 
introduces great computing complexity (Che, Safran, and Peng. 2013).

AIoT edge computing satisfies the essential requirements in terms of application intel-
ligence, real-time operations, and data and energy optimization. This is because of the 
demand for IoT devices, which is expected to last for an estimated 10 years, between 2018 
and 2027. The Internet of Things (IoT) is a network of physical devices, cars, buildings, and 
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other items that are integrated with sensors, software, and connectivity, which enables them 
to gather and share data. These objects may also communicate with one another across the 
network (Silverio-Fernández, Renukappa, and Suresh. 2018). Edge computing is a model 
of distributed computing that moves processing and data storage closer to the devices and 
sensors that create and utilize data in IoT systems. Edge computing is also known as “edge 
analytics.” Fog computing is a computer paradigm that extends the advantages of edge com-
puting by adding a layer of intermediary nodes between the edge devices and the cloud, 
allowing efficient data processing and administration (Iorga et al. 2018). Blockchain is a 
distributed ledger technology that enables new business models and value propositions by 
providing a safe and transparent method for storing and exchanging data in IoT devices. 
Cybersecurity is the activity of securing IoT devices, networks, and data against unau-
thorized access, use, disclosure, interruption, modification, or destruction. Related terms 
include information assurance, network security, and data protection (Di Pierro. 2017).

With the advent of new networking technologies such as Bluetooth, Wi-Fi, and Long-
Term Evolution (LTE), the IoT has expanded rapidly over the past twenty years. A wide 
variety of products, from smart cameras, lights, bicycles and electricity meters, to wearables, 
healthcare, smart grids, intelligent transportation (Qureshi and Abdullah. 2014), and smart 
homes (Qureshi, Alhudhaif, et al. 2021), are just a few examples of IoT networks. There are 
three levels of IoT networks including the “perception” layer, the “network” layer, and the 
“application” layer (Chiang and Zhang. 2016). The sensors, actuators, and other devices that 
make up the perception layer  provide the foundation of the (IoT) architecture. Network 
layers are the backbone of the IoT’s architecture, consisting of Local Area Networks (LANs) 
cellular networks, the Internet, and devices like hubs, routers, and gateways enabled by vari-
ous communication technologies like Bluetooth, Wi-Fi, LTE, and fifth-generation mobile 
networks (5G). The top IoT layer is the application layer, which relies on cloud computing 
platforms as a means of individualized services to its end customers. In typical IoT imple-
mentations, sensors gather data, which is then sent to a network-based processing and anal-
ysis step in the cloud. The findings or instructions are sent to the end devices or actuators.

However, given the vast quantities of sensors deployed in different contexts, this central-
ized design presents substantial challenges. By 2025, there will be 50 billion IoT-connected 
devices, creating 79.4 ZB of data (Abiodun et al. 2021). High latency is the consequence of the  
transmission of this large volume of data, processing it in the cloud, and then delivering the 
findings back to end devices. To remedy the situation, Cisco introduced the concept of “fog 
computing,” which involves moving data storage, processing power, and networking resources 
to the network’s periphery (e.g., to scattered routers and other fog nodes). For IoT applications, 
fog computing provides low latency and high processing capability (Tordera et al. 2016). Edge 
computing entails increasing computing capability deployment on control devices near actua-
tors and sensors (Zhang et al. 2019; Wang et al. 2019). It is worth noting that fog computing is 
often seen as a subset of edge computing or that the terms are used interchangeably.

Recent years have seen a revival in deep learning-enhanced AI. In recent years, Deep 
Neural Networks (DNNs) have seen widespread use, including retrained models that 
degenerate when examples are encountered in neither the label set nor the training set. 
In the manufacturing sector, for instance, equipment might lose its initial settings or  
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alter its operation mode over time. Because of this inability to adjust to variation, models 
trained for the first mode suffer drops. There are many different types of Machine Learning 
(ML); few-shot-learning, zero-shot-learning, metal learning, unattended, semi-supervised, 
transfer, and domain adaptation are all related research topics in ML that address these 
same kinds of problems. Progress in these areas has been facilitated by Deep Learning 
(DL). This indicates that DL may be equally exploited to increase IoT system learning. 
Reasoning and behavior are also critical for an IoT system to interact with its surround-
ings and people. A smart parking system can infer about the available places in the area.  
The AI Chabot may then expose him to parking deals, auto maintenance services, and 
local eateries. Recent developments in causal inference and discovery, graph-based reason-
ing, Reinforcement Learning (RL), and voice recognition and synthesis techniques (Yang 
et al. 2020) may be useful in certain application situations. 5G networks and AI will pave 
the way for ubiquitous connectivity (Khan et al. 2022). This will usher in the AIoT age or 
the age when AI meets IoT. Numerous AIoT applications, which provide services and gen-
erate value, have been created thanks to substantial investment from both the academic 
community and the business sector. Therefore, we conducted a literature review of this 
developing field to show how AI technologies provide intelligence to inanimate objects and 
improve software (Ashfaq et al. 2022).

9.2  EXISTING RESEARCH ON AIoT NETWORKS
Research has often focused on a few aspects of the IoT networks, including but not lim-
ited to, computer systems, networks, programs, safety, security, and privacy (Un Nisa 
et al. 2022). These authors provided a useful overview of the IoT paradigm by describ-
ing it from three perspectives: the “things” perspective, the “Internet” perspective, and 
the “semantic” perspective, which correlate to devices networks, and data handling and 
analysis, respectively. The authors examined security and privacy issues that still need to 
be resolved. In addition, they examined the enabling technologies and IoT applications 
in several fields. Authors Contreras-Castillo, Zeadally, and Guerrero Ibáñez. 2017 pro-
vided an overview of IoT and highlighted current developments and obstacles. Authors 
summarized the various common IoT architectures, such as Software Defined Networks 
(SDN), Mobile First Design, and the IoT. They said that future IoT architecture will need 
to scale well, be adaptive, and properly integrate and manage large numbers of connected 
devices, both the traditional three-layer design (consisting of a “perception,” “network,” 
and “application” layers) and the more recent service-oriented design as discussed in 
Aslam, Michaelides, and Herodotou.

In Guan et al. 2017, various common IoT frameworks are discussed, such as the 
Mobile First Design, the Cloud Things framework, and other frameworks based on SDN 
networks. The authors argue that in the future, IoT designs need to be scalable, adap-
tive, interoperable, energy efficient, and secure to integrate and manage vast numbers 
of linked devices. The three-tier design consists of a service-oriented architecture: a 
perception layer, a network layer, and an application layer. Integration of cloud and  
fog/edge computing (Chiang and Zhang. 2016) is gaining attention as a key component 
of the IoT’s computing architecture. We are interested in cloud, fog, and AI-enhanced 
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IoT, including edge computing designs for systems that can benefit from DL in the IoT. 
Multiple networking methods are required to carry data at scale and connect many 
devices to data centers. Edge analytics systems, cloud computing systems, and hyper-
converged systems, for massively parallel mining, enable real-time analyses of enormous 
IoT data (Catarinucci et al. 2015). IoT also uses Wireless Sensor Networks (WSN) for 
monitoring external or physical influences. 5G mobile networks, which are now under 
development, may provide much more base station capacity and ultra-low latency. It is 
expected that 5G will accelerate the development of IoT software in addition to boost-
ing the number of connected devices (Lamarre and May. 2019). Resource management 
has become a hot topic as the amount of traffic and the number of connected devices in 
IoT networks has exploded, with promising results from state-of-the-art deep learning 
algorithms.) IoT networks enable the transmission and storage of massive amounts of 
user data generated by pervasively connected devices. Faces, voices, and fingerprints are 
all examples of biometric data included in these records. Because of the potential for 
data leakage in the event of a cyberattack on an IoT system, data security, and privacy 
have emerged as pressing issues in IoT deployments. To ensure the safety and privacy of 
the IoT, researchers have recently analyzed the effectiveness of access control and trust 
management (Qureshi, Iftikhar, et al. 2020).

9.3  AIoT ARCHITECTURE
Computing-centric approaches like those discussed in Palomares et al. 2021, use a three-
tiered architecture. The approaches are simplified by referring to the three tiers of com-
puting as the cloud, the fog, and the edge. As discussed in Palomares et al. 2021, the edge 
computing layer may serve similar duties like cloud computing.  In addition, the edge layer 
allows the management and operation of sensors and actuators. This layer’s ultimate goal 
is to provide AIoT devices with enhanced perceptual and behavioral capabilities. Network 
elements like hubs, routers, and gateways are all examples of fog nodes, which embody the 
computational layer of fog networks. Similar to the application layer and the intelligent 
integration block, the cloud computing layer supports several application services. Due to 
their access to enormous amounts of information and extensive processing capabilities, 
AIoT systems greatly benefit from computers in the cloud and fog. Keep in mind that the 
cloud plays a major role in an AIoT network. In addition, edge devices and fog nodes move 
throughout the network.

1.	Stack in the Cloud: Instead of investing in costly on-premises hardware for AIoT 
operations, businesses may leverage cloud computing to access computing resources 
digitally via the Internet. This access may enable a wide variety of AIoT applications 
by providing dependable, scalable, and adaptable computing, storage, and network-
ing resources. Massive amounts of data from widely dispersed sensors and equip-
ment are often sent via the Internet to a distant cloud center. This is where they are 
integrated, processed, and stored.

Figure 9.1 shows the three-tier computing architecture of AIoT networks.
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The cloud makes it simple to set up a production environment for training and 
deploying DNNs for processing enormous volumes of data. This is thanks to ML tools 
and scalable computing capacity. Cloud computing’s elastic computing resources on 
a pay-as-you-go basis are particularly well-suited to AIoT services, which see wildly 
varying volumes of user traffic. An additional benefit is that it is possible to utilize 
information gathered from all devices in a network in IoT applications. This helps 
to refine the representation and generalization skills of the deep models used in the 
application’s training process.

1.1	Fog Computing Layer: Using fog computing, data may be stored, processed, and 
sent at the network’s edge, right where the devices are. Fog nodes consist of a variety 
of devices, Wi-Fi access points, routers, switches, and gateways that contribute to 
a fog network. While comparable to cloud computing, fog computing’s proximity 
to endpoints allows lower latency. Additionally, fog computing may provide service 
continuity independent of the Internet. This is particularly useful for some internet-
dependent AIoT applications, such as those used in the agricultural, mining, and 
shipping industries. Since data may be stored locally on the LAN, fog computing also 
protects user information confidentiality and security. Due to their limited storage 
capacity and reliance on data from nearby devices, fog nodes are better suited to 
DNN deployment than training.

1.2	Edge Computing Layer: While edge computing and fog computing are synonymous 
in certain contexts (Zhang and Lu. 2021), alternatively, edge computing is used to 
refer to a more general idea that includes fog (Shi et al. 2020). However, for clarity, 
we will regard these two ideas as entirely separate throughout this chapter. We dif-
ferentiate between cloud computing at the network’s periphery (fog) and at device-
level (edge) processing. Edge computing refers to the technique of putting sensors 

FIGURE 9.1  Diagram of three-tier computing architecture of AIoT.
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and actuators physically near computation nodes. The capacity of edge computing to 
turn data into compact, organized information locally, before transmission, is a sig-
nificant advantage over fog and cloud computing, particularly for AIoT applications 
that make use of multimedia sensors. However, only lightweight DNNs can operate 
on edge devices because of their low processing power. This has led to a rise in inter-
est in such areas of study as the creation of neural network architectures, the search 
for optimal network configurations in a mobile environment, and network pruning, 
compression, and quantification. To create an intelligent hybrid computing architec-
ture, it is usual practice to deploy several models onto cloud platforms, fog nodes, and 
edge devices in an IoT system. It is anticipated that minimal latency may be achieved 
while exploiting deep learning capacities for processing vast volumes of data by intel-
ligently offloading some of the computing effort from edge devices to the fog nodes 
and cloud. To identify vehicles in a live video feed, for instance, a lightweight model 
may be used on edge devices. It may be used as a switch to send keyframes to the 
cloud or fog nodes for processing.

9.3.1  Components and Programs

1.	Hardware: The general-purpose Graphics Processing Unit (GPU) is a driving force in 
the deep learning revolution, alongside DNNs and large data, because of the tremen-
dous computational power it transferred from its shading pipeline (e.g., for massive 
vector operations). Using GPUs to execute parallelly several of the network’s opera-
tions, such as convolution, may significantly reduce the training and inference periods 
of neural networks. Google has unveiled a neural network ML application-specific 
integrated circuit. As a result of their efficiency and speed, Field-Programmable Gate 
Arrays (FPGAs) have also found widespread use to accelerate DNNs.

2.	Software: Researchers and developers need streamlined processes for creating, 
deploying, training, and using DNNs. For this reason, several open-source deep 
learning frameworks have been created since its inception, ranging from those aimed 
at novices like Caffe1 and MatConvNet2 to the more advanced and widely used 
TensorFlow3 and PyTorch. Four convolutional neural networks may be implemented 
with MatConvNet, a MATLAB toolkit. Caffe is fast, written in C++, and accessible 
through Python and MATLAB, but it lacks distributed computing and mobile deploy-
ment. Caffe2 makes the necessary enhancements, which were ultimately included in 
PyTorch. TensorFlow and PyTorch’s accessibility and popularity may be attributed 
to their user-friendly features, such as dynamic computation graphs and automated 
gradient calculation. By allowing hardware acceleration, quantization, and com-
pressed models they also help when installing models on mobile devices. Moving 
models across frameworks is an important and helpful process. This is made possible 
by the open standard for expressing ML models such as ONNX5; TensorFlow and 
PyTorch both support this format. NCNN9 is a mobile device framework for infer-
ring using neural networks; competing deep learning frameworks include MXNet, 
Theano, Paddle, and others.
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9.4  EVALUATION OF BIG DATA IN AIoT
AI technology paves the way for IoT applications, with a specific emphasis on Deep 
Learning (DL). This section explores the DL perception, and AIoT systems’ capabilities for 
cognition, reasoning, and behavior.

9.4.1  Observing

Understanding the environment via different devices is essential for AIoT systems. This 
understanding is only possible if objects are given the capacity to perceive their environ-
ments. Several interconnected themes emerge. This section focuses on image classification, 
object identification and tracking, semantic segmentation, and text spotting. Image clas-
sification is the act of assigning a broad category to an image. DNNs have been shown to 
outperform standard ML algorithms based on hand-crafted features on large-scale bench-
mark data sets like ImageNet, prompting a flurry of studies on DNN design including 
more recent models, such as Alex Net (Rehman et al. 2019) and ResNet. Figure 9.2 shows a 
conceptual map of AIoT perception-related issues.

To decrease network parameters and expand network depth, a stacked 33 convolutional 
layer has been developed; an 11 convolutional layer has been implemented to decrease fea-
ture dimension; residual connections have been implemented to prevent thick connections; 
and features have been created to recycle features from preceding layers and achieve gradi-
ent vanishing to increase network capacity. As the network depth and parameters increase, 
the top 1 ImageNet dataset misclassification error decreases. The network structure is also 
crucial. When compared to older networks like VGGNet, newer networks like ResNet and 
DenseNet perform better. They require fewer model parameters and less computing com-
plexity. Artificial Neural Networks (ANNs) are preferred by AI applications that deploy 
them to edge devices. Networks like Mobile Net have been developed recently that make 
effective use of computing by using depth-wise convolutions, pointwise convolutions  

FIGURE 9.2  A conceptual map of AIoT perception-related issues.
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(Jin et al. 2020), or binary operations (Rehman et al. 2019). Many AIoT applications may 
take advantage of image recognition. These include smart education tools and toys that 
employ cameras to aid and educate youngsters in exploring the world. Additionally, cer-
tain well-known smartphone apps that identify things like flowers, birds, foods, and calo-
ries benefit from these developments as well.

•	 Object Detection: Recognizing an item’s category and position, also known as 
generic object detection, is a necessary crucial first step in the direction of many later 
household tasks, including expression recognition, person identification, posture 
estimation, and behavior analysis. DNNs have revolutionized photo-identification 
techniques. There are two types of cutting-edge techniques: those with two stages, 
and those with just one. While the former follows the standard “proposal detec-
tion” paradigm, indirectly evaluating all potential item candidates before deliver-
ing detection results, the latter does so directly. In other words, the former assesses 
detection through an intermediary evaluation of all potential candidates, while the 
latter directly provides detection results (Riaz, Shah, Rehman, and Gilani. 2019). An 
improved speed-accuracy trade-off has recently been suggested for onboard detection 
in AIoT applications via one-stage anchor-free detectors (Riaz, Gilani, et al. 2020) 
which describes item position substituting points or areas for anchors. Onboard 
detection in AIoT applications refers to the capability of performing detection and 
inference tasks directly on the edge devices or sensors without the need for external 
processing or cloud-based services. An extensive study into the identification of par-
ticular types of objects, like people, cars, road traffic signs, and certificate plates, is 
helpful for AIoT road traffic and public security monitoring, and self-directed driv-
ing. Many AIoT systems with optical sensors depend on object detection for video 
data structure. To achieve retrieval, verification, statistics, and analysis with minimal 
expenses related to transmission, storage, and computing.

•	 Object-Tracking: Traditional approaches to object-tracking fall into two categories: 
very original and selective. The former looks for a place most like the target, whereas 
the latter uses both the target and its surroundings to train a discriminative classifier 
online (Floridi et al. 2019). Among the DL techniques introduced later to enhance 
traditional techniques are end-to-end representation learning, multiresolution deep 
features, and Siamese networks. For AIoT applications, object trackers, which gen-
erally function substantially quicker than object detectors, might be used on edge 
devices like video surveillance and autonomous driving, where creating trajectories 
and predicting motion is necessary.

•	 Semantic Segmentation: Predicting an image’s category label at the pixel level is 
known as “semantic segmentation” due to its ability to cascade convolution blocks 
while keeping spatial correlation. The encoder-decoder architecture of Convolutional 
Neural Network (CNN) has emerged as the standard method for semantic segmenta-
tion. To boost representational capacity and prediction accuracy, several deep models 
have been suggested: first, embedded in context, then increased resolution, and lastly, 
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refined boundaries. Modules like the global context pooling component of Parse Net 
and the arousal-based spatial pyramid pooling are methods that successfully use 
context information to create more accurate feature representations are provided, 
such as the Deep Lab models and the pyramid pooling section of PSPNet. Increasing 
feature map resolution may improve prediction accuracy, especially for small things.

•	 Text Spotting: Text detection and identification are both components of the larger 
problem of text spotting. Although similar to generic object detection, text detection 
has its unique challenges. Text, unlike generic objects, may vary in length and form 
depending on the length and placement of the characters. Identical text can seem 
quite different depending on the font, style, and context in which it is shown.

•	 Biometric Identifiers: The study of biometric identifiers such as the human face, 
fingerprint, and iris has been ongoing for quite some time. We begin with a brief 
history of facial recognition technology. The four main phases of detection using a 
facial recognition system are alignment, representation, classification and verifica-
tion. There is hope for the subfield of object detection known as face detection thanks 
to DL’s recent triumph in general object recognition. The enormous gap between 
positive and negative recommendations, the incongruity between profile and front 
view, occlusion, and motion blur all call for more research. The Viola-Jones method 
is a well-known example of a classical algorithm; it forms the basis for modern facial 
recognition technology. Numerous DL methods model themselves after cascade clas-
sifiers (Jin et al. 2020).

•	 Person Re-Identification: Recognizing an individual from many disparate cam-
era perspectives is called “person reidentification,” a subfield of “image retrieval.” 
Person reidentification is more difficult than face recognition in a controlled situa-
tion because of factors such as perspective, resolution, clothes, and background con-
text which are out of one’s control. Methods proposed to get around these problems 
include employing human posture and a parsing mask as guidance, deep metric 
learning with varying losses, integrating local features and context, and multitask 
learning with additional attribute annotations (Li et al. 2011). Generative Adversarial 
Networks (GANs) help bridge data that have recently been employed to produce 
style-transferred pictures. When existing biometric recognition methods cannot be 
used, such as in an uncontrolled and noncontact setting, there is a lot of potential for 
human reidentification to be used in IoT applications like smart security. Although 
more work is required to develop usable person reidentification systems with a human 
overseer, AI may accomplish remarkable feats with little human input. Initial pro-
posal rating and filtering may be performed using the person reidentification model, 
for instance, before being passed on to human experts for ultimate determination.

•	 Recognizing Human Gestures and Actions from Estimated Pose: Estimating a 
person’s posture from a single photograph is known as human key-point detection or 
pose estimate. Top-down and bottom-up approaches estimate human posture tech-
niques. Although the latter immediately recognizes all key points from the picture 



Big Data Analytics for AIoT Network    ◾    149

and connects them with matching person instances, the former comprises two steps: 
person finding and key point finding. Top-down approaches are often slower than 
bottom-up approaches (Bonomi. 2011), even though they continue to top the score-
board example, MS COCO10. The following points sum up the state of the art in this 
field today.

•	 Crowd Counting: Indoor and outdoor population counts are essential for avoid-
ing congestion and accidents in video surveillance scenarios. WI-FI, Bluetooth, and 
camera-based solutions have been presented for real-world AIoT applications with 
crowd-counting capability (Riaz, Shah, Rehman. 2020, Gilani, et al. 2019). These 
techniques may roughly gauge how linked a mobile device is to a Wi-Fi hotspot or 
Bluetooth beacon. Although it is possible to estimate the size of a crowd by count-
ing the number of visible faces or heads, this approach is limited by poor resolu-
tion and blurred individual instances in crowd images. Moreover, identifying a large 
number of individuals simultaneously is computationally inefficient. Since Gaussian 
density maps are used to construct the truth nodes, most CNN-based algorithms do 
a straight regression on the population density map.

•	 Probable Depth/Location/SLAM: Camera-based distance estimation has been studied 
for a long time (Macaulay, Buckalew, and Chung. 2015; Bonomi. 2015). Monocular cam-
eras, stereo cameras, and Multiview camera systems are only some of the possible AIoT 
setups in the real world. In recent times, there has been a lot of focus on camera location 
estimation and depth estimation from monocular video when compared to methods 
that rely on manual matching and optimization. Unsupervised or self-supervised DL 
has several advantages in this field’s current research. The standard optimization target 
includes matching error and photometric error. They build the self-supervisory sig-
nals using the re-projection Multiview’s well-defined geometry which allows for precise 
measurements of light loss as a function of distance and camera orientation. Despite 
CNN’s impressive representational prowess, it still faces obstacles including occlusions, 
moving objects, and the scale problem (per-frame ambiguity and temporal inconsis-
tency). Both Visual Odometer (VO) and Visual-Inertial Odometer (VIO) (Chiang and 
Zhang. 2016) seek to estimate consecutive camera postures of a person or thing utilizing 
information from a camera and IMU sensor for camera posture estimation. Back-end 
Simultaneous Localization and Mapping (SLAM) systems use nonlinear optimization 
to estimate posture globally and drift-free. Of the pose graph, Front-end SLAM systems 
always use VO and VIO. In old-style methods like Oriented FAST and Rotated BRIEF 
Simultaneous Localization and Mapping (ORB-SLAM) (Lamarre and May. 2019), the 
front and back ends are treated as separate entities. A novel, adaptable design, a neural 
network optimizer, has just been developed for worldwide pose graph optimization. It 
provides a complete neural network implementation of SLAM by combining it with a 
local posture estimation model.

•	 Image Enhancement: To improve a single attribute of a picture, whether its bright-
ness, contrast, or sharpness, is a job known as image enhancement. Images were taken 
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with poor vision in dim light and blurred features because of inadequate incident 
light or underexposure. Based on the Retinex hypothesis a picture may be broken 
down into a reflectance map and an illumination map. After that, the illumination 
map may be improved to restore proper lighting to the initial dark picture. However, 
extracting the reflectance and illumination from a single picture is a classic exam-
ple of an ill-posed task. Various low-light enhancement strategies based on either 
previous knowledge or learning have been suggested to solve this problem in recent 
research. To refine the initial estimate, LIME utilizes a structural prior for the illumi-
nation map, while (another method) employs a piecewise smoothness constraint. To 
estimate reflectance, light, and noise simultaneously, several strong Retinex models 
have been constructed (Tordera et al. 2016). This is necessary since low-light pictures 
often include noises that would be enhanced after using AI methods.  The attenua-
tion and scattering effects of the haze result in dimly lit images. It is also a difficult 
problem to recover a clear picture from a single foggy input, although this issue may 
be tackled using either prior-based or learning-based approaches. Authors (Bonomi. 
2011) introduced the first deep CNN model for photo defogging, which uses the supe-
rior representation capacity of CNNs to beat conventional prior-based approaches to  
assess the transparency and realism techniques. Some methods, statistical priors, and 
DL have been used to offer options with comparable functionality, including Optimal 
Reflectance Prediction, Glow Separation, and Network Delay (ND-Net).

•	 Correction and Stitching of Images: Able to capture a wider area of the scene than 
narrow field-of-view cameras, wide-angle cameras like fisheye cameras have found 
widespread usage in a variety of AIoT applications, including surveillance cameras 
and self-driving cars. The acquired pictures are flawed, however, since they fail to 
conform to the expected perspective transformation. Correcting the problem upfront 
will make subsequent processes easier. Camera calibration and distortion model 
techniques are used in rectifying the problem. The former adjusts for perspective 
distortion through camera calibration for both internal and external factors. The 
formulation optimization constraints and loss functions in learning-based systems 
leverage geometric signals like lines and vanishing spots. If conditions are right, fish-
eye pictures may form panoramas.

•	 Speech Recognition: Automatic Speech Recognition (ASR), or voice recognition, a 
part of computational linguistics, attempts to automatically understand and translate 
spoken language into text. DNNs have transformed complete ASR analysis outside of 
a specialist’s area. Conventional ASR models use the process of feature engineering, 
Hidden Markov Model (HMM) design, or an explicit reliance hypothesis based on 
the cepstral value and the Hidden Markov System (HMS). To represent long-range 
voice sequence relationships and decode text (Yang et al. 2020), Recurrent Neural 
Networks (RNNs) are often utilized. However, RNN analyzes data sequentially, 
rendering it inappropriate for parallel processing; additional work is required with 
preferment training sequences so that the classification loss may be assessed inde-
pendently at each point in the sequence. The Connectionist Temporal Classification 
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(CTC) is proposed as a solution for the first issue since it can optimize the likelihood 
of the correct label sequence in an adaptable fashion. The other issue is solved by 
the transformer architecture’s usage of scaled dot-product attention and multicolored 
attention.

•	 Speaker Recognition: In the same way that facial recognition attempts to identify 
a person based on his or her appearance, speaker recognition does the same thing 
by analyzing vocal characteristics. There are four main parts to a speech recogni-
tion system: voice input and output, the matching and classifying of patterns, the 
representation of features, and the selection of features. Previously, a framework for 
probabilistic linear discriminant analysis was based on an I-vector representation. 
Ani-vector is a technique for extracting low-dimensional speaker embeddings from 
adequate data. To outperform I-vector baselines, numerous comprehensive deep 
speaker identification models have been developed. Advances in deep metric learn-
ing, such as using both face recognition and voice identification, benefit from the 
use of large-scale data sets and the use of the loss functions of contrastive loss and 
triplet loss to train discriminative speaker embeddings. Speaker recognition has sev-
eral potential applications within the realm of AI and the IoT, including automatic 
transcription systems for big meetings, customized recommendation systems driven 
by the use of audio forensics, and advanced speech recognition software. The devel-
opment of voice recognition and facial recognition may be combined for use in door 
locks.

•	 Machine Translation: Automatic text translation from one language to another is 
another branch of computational linguistics called Machine Translation (MT). In 
recent years, deep learning-based neural MT (NMT) has made significant strides, 
outperforming more conventional statistical MT techniques and example-based 
MT approaches by using the former’s potent representation capability and mas-
sive amounts of training data. The encoder-decoder architecture (Bonomi. 2011) 
is widely used in NMT. Later, at each stage of RNN decoding, an attention mech-
anism is employed to focus on either every single word in the source (known as 
the world is paying attention (or “global attention”)), or on a small group of words 
(known as “local attention”). When it comes to joint alignment and translation, 
attention may be a useful tool for learning target-relevant context components, 
particularly for longer sentences. Unsupervised representation learning, using 
methods like BERT to train embeddings that are both context-aware and infor-
mative, has shown encouraging performance on several downstream language 
tasks. Unsupervised NMT, which can be trained with just monolingual corpora, 
has also been the subject of a recent study. NMT has demonstrated success uti-
lizing BERT as contextual embedding by borrowing informative context from 
the retrained model. Many AIoT applications, including language instruction, 
autonomous integration of MT with voice recognition, and speech synthesis have 
the potential to revolutionize translation, transcription, and multilingual cus-
tomer assistance.
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•	 Multimedia and Multimodal Analysis: Multimedia content (containing text, 
audio, image, and video) is increasingly being created on a broad range of internet 
platforms, and keeping up with it is an expanding field of study. New studies on the 
topic of cross-media retrieval and matching use DL, particularly adversarial learn-
ing, to semantically align the two domains. However, learning representations are 
hampered by data that is unique to a certain modality. To solve this problem, 
researchers have suggested disentangled representation learning, which attempts 
to extract modality-independent features from shared feature embeddings across 
modalities. Cross-modal matching includes the generative tasks of both image/
video captioning and text-to-image generation seeking to automate the process 
of creating a textual description of an image or video based on a supplied tex-
tual description. Additional data modalities, such as depth pictures, LiDAR point 
clouds, and thermal infrared images, may further help in scene interpretation 
by providing supplementary information to the components already mentioned. 
This diversified set of modalities enhances the richness of the data representa-
tion, enabling a more comprehensive and accurate understanding of the scene 
through the incorporation of depth, spatial details from LiDAR, and thermal 
information, thereby contributing to a more robust and context-aware interpre-
tation. Using RGB pictures, several practical applications have begun to include 
cross-modal perception, such as scene parsing for autonomous driving object 
identification, tracking in low-light circumstances, and action recognition. There 
are three approaches to combining multimodal data: input-level fusion, feature-
level synthesis, and output-level synthesis. The most typical approach is to com-
bine information from several sources at the feature level, which may be further 
subdivided into early fusion, late fusion, and multi-layer fusion. This approach 
offers a multi-branch group fusion module to fuse features from RGB and thermal 
infrared images, taking into account the fact that semantic information and visual 
details vary at different levels. This ensures a comprehensive integration of both 
modalities, allowing for a more nuanced representation that captures the diverse 
characteristics present in RGB and thermal infrared data. Multimedia production 
and cross-modal analysis are useful in certain AIoT applications, such as speech-
described TV show retrieval and recommendation, a teaching helper in the class-
room, a Chabot’s insight into the world of e-commerce via automated (custom) 
item description production, response to multimedia content, night-time object 
detection and tracking for smart security, and action recognition for rehabilita-
tion monitoring and assessment. Multimedia coding is another area of study that 
is related to AIoT and has benefited from DL.

•	 Network Compression and Neural Architecture Search (NAS): To make DNNs 
more successful for AIoT applications where computing resources are limited, 
network compression is a practical option. Four main methods are used includ-
ing pruning and quantizing networks, low-rank factorization, and distilling 
information. To prune a network, one must first train a big network, apply a 
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pruning criterion, and then retrain the network in terms of pruning criterion 
Depending on the size of weights or responses shown, weight pruning, neuron 
pruning, and filter pruning are all examples of finer-grained forms of network 
pruning that adhere to the L1/L2 norm and channel pruning. Network quantiza-
tion may drastically decrease memory utilization and f loat point operations while 
sacrificing just a small amount of accuracy by lowering the number of bits needed 
for each weight in the original network’s representation. The network as a whole 
will typically follow a uniform precision quantization scheme, where each layer 
uses the same bit width. To make use of NAS’s capabilities, a mixed-precision  
model quantization approach was recently presented (Macaulay, Buckalew, and 
Chung. 2015) in which each layer/channel uses a unique bit width. The goal of 
NAS is to eliminate the need for human network design by doing an automated 
search of the architecture within a finite area (Bonomi. 2011). There are three 
main types of NAS approaches: evolutionary, Reinforcement Learning (RL), and 
gradient-based. A population of neural network designs must be trained before 
evolutionary approaches may begin to develop them via recombination and muta-
tion. In RL-based techniques, the architecture generation model (for instance, 
the RNN controller) is updated using RL algorithms, and the reward is the vali-
dation accuracy of the sampled network design. Both strategies are motivated by 
the brain architecture’s reward or fitness system. When it comes to representing 
architecture, gradient-based approaches instead use continuous relaxation. Since 
gradient descent can be performed in a continuous space, this allows for much 
quicker optimization of neural architecture.

9.4.2  Learning

Since the actual world is always changing, AIoT systems that rely on a static model are 
likely to underperform. Therefore, giving objects the capacity to learn is crucial for AIoT 
so that it can adapt to new circumstances. Deep Unsupervised and Semi-Supervised 
Learning (USL) uses DNNs, such as deep autoencoders, deep belief networks, and GAN, 
to model probability distributions. Different GAN models have been presented recently, 
each capable of producing high-resolution, photorealistic pictures from a vector distribu-
tion. To represent the probability distribution of data, DNNs, like deep autoencoders, deep 
belief networks, and GAN, are used in deep USL. Different GAN models have been pre-
sented recently, each capable of producing high-resolution, photorealistic pictures from a 
vector distribution. As a result, the models should have picked up an abstract comprehen-
sion of the training data’s semantics. Figure 9.3 shows an outline of AIoT learning-related 
concepts.

An encoder is used to train an input-to-latent space inverse mapping (Floridi et al. 2019); 
the most recent Big Bidirectional Generative Adversarial Network (BigBiGAN) model may 
acquire a discriminative visual representation with excellent performance transfer to down-
stream tasks. Completing predetermined pretext activities as a means of learning discrimi-
native visual representation is another area of ongoing research (Chiang and Zhang. 2016).  
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To fix target Task Learning (TL) with insufficient training data, TL applies what has 
been learned in the context of a similar source task. Importantly, unlike SSL, which 
requires that the source data distributions and the destination domains be similar, 
TL does not impose this constraint. For quicker convergence and greater generaliza-
tion, it is common practice to fine-tune models that are retrained using ImageNet and 
then applied to new problems. This is particularly true for semantic segmentation and 
object recognition.

Significant empirical findings, such as which visual activities generalize easily to 
various goals, and reusing monitoring, are straightforward across comparable activi-
ties to minimize labeled data while maintaining performance. Study of Data Analysis 
(DA), which aims to transfer training of a model from one or more source domains 
to a target domain where it excels at the same task, is ongoing and closely connected 
to TL. Learning with Few or No Attempts is a kind of meta-learning (or “learning 
how to learn”). Few or No Attempts Learning (FSL) seeks to train itself using mini-
mal annotated examples. Due to the limited size of the training set used for FSL, it 
is possible to make use of previously acquired information to handle the problematic 
empirical risk minimizer problem. Training data may be improved with the use of pre-
vious information in several ways. For instance, samples from the training set can be 
transformed using prior knowledge, or an additional weakly labeled/unlabeled data set 
can be employed. In addition, FSL is used to modify the search method in hypothesis 

FIGURE 9.3  An outline of AIoT’s learning-related concepts.



Big Data Analytics for AIoT Network    ◾    155

space by imposing constraints on the range of possible hypotheses. Rare occurrences, 
such as a vehicle accident, cyber-attack, or machine malfunction, must be detected by 
AI models in practical AIoT applications. However, it is often challenging to gather and 
annotate such extensive case data. So, in these cases, FSL may be used to train appropri-
ate models.

•	 Major Learning Paradigms: RL (Reinforcement Learning) uses an agent to interact 
with its environment to maximize cumulative reward. Deep Reinforcement Learning 
(DRL) has led to rapid advances. DNNs can acquire compressed and discriminative 
feature representations from high-dimensional image and video data, improving 
RL. A vast variety of AIoT applications employ DRL’s capacity to offer inanimate 
things the ability to interact with and adapt to their surroundings Such applica-
tions include autonomous driving in smart transportation (Tordera et al. 2016),  
3-D landmark identification of CT scans, robot control in smart healthcare, course 
recommendation in smart education, Real-Time Scheduling (RTS) for smart facto-
ries, load scheduling in smart grids, and plant monitoring. It has been shown that 
Federated Learning’s (FL) privacy-friendly architecture can support DRL-based 
learning (Tordera et al. 2016).

•	 Federated Learning: The original motivation for FL was to solve the learning chal-
lenge of confidentially brought about with sharing data across numerous devices. 
When many data owners work together to train a model, that model should be as 
effective as one trained with all of the data at once. In most implementations of FL, a 
server (or collaborator) acts as the hub for a network of dispersed client devices. Each 
client generates its gradients from its data, which are then transmitted to the server 
to be aggregated (or concatenated) before being delivered back to clients to be used in 
updating their models.

9.4.3  Reasoning

Internet data, medical records, financial activities, etc., all include a wealth of information 
that may be utilized to infer patient cohorts or reason the answer to a query. As a species, 
we have the capacity for causal thinking, which includes processes like causal inference and 
discovery. For AIoT to make informed, auditable judgment calls, it must be endowed with 
this level of reasoning capability. We provide a comprehensive discussion of Knowledge 
Graph (KG) reasoning and causal reasoning here.

•	 Knowledge Graph and Reasoning: KGs are a structured method of representing 
knowledge in which nodes represent things and edges reflect relations (also known as 
triples) as a representation of information (Entity, Relationship, and Ending Entity). 
Knowledge reasoning has been employed in the development and implementation of 
several prominent KGs, including Word Net, Freebase, YAGO, and NELL. Deducing 
new information from old is called “knowledge reasoning,” and it includes tasks like 
fixing errors, filling in blanks, finding answers to questions, and drawing conclusions. 
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Ontology languages, first-order predicate logic, and probability and route reason-
ing are some of the rule-based systems traditionally used in knowledge reasoning. 
KG embedding-based techniques have gained popularity in recent years (Palomares 
et al. 2021). These methods attempt to map a KG onto a continuous vector space, 
allowing for reasoning to be performed utilizing translational distance models and 
semantic matching models.

•	 Causal Reasoning: Causality is the relationship between an effect and its underly-
ing cause, in which the cause partially accounts for the effect and the effect par-
tially relies on the cause. To arrive at an estimate of causal impact, causal inference 
is a part of causal reasoning. In contrast, causal discovery is a part of causal reason-
ing that focuses on identifying causal relationships. Although expensive and time- 
consuming, randomized controlled trials are a standard means of arguing causality 
by comparing the results of a treatment group with those of a control group. There 
has been a lot of interest as of late (Riaz, Gilani, et al. 2019) in the concept of learning 
causality from observational data. Both the structural causal model and the prospec-
tive outcome framework are well-known causal models that may be used to learn 
about causality (a.k.a. Rubin Causal Model). Several strategies for causal inference 
using the POKER framework have been presented. These strategies include represen-
tation learning, multi-task learning, and mental earning.

9.4.4  Behaving

Whether an AIoT system is passively monitoring and reacting to changes in its surround-
ings, actively searching for relevant information, or somewhere in between, the ability to 
behave well is crucial. So, here we provide a quick overview of two areas associated with 
behavior in AIoT: control and interaction. Whether an AIoT system is passively monitoring 
and reacting to changes in its surroundings, actively searching for relevant information, or 
somewhere in between, the ability to behave well is crucial. Therefore, in this overview, we 
delve into two key areas associated with behavior in AIoT: control and interaction. 

9.5  BIG DATA ANALYTICS FOR AIoT APPLICATIONS
There is significant promise in the development of AI to provide perceptual, learning, 
reasoning, and behavioral capabilities to the linked devices in AIoT networks. The ensu-
ing AIoT systems have far-reaching effects on many facets of the economy and the places 
where we live, including transportation, healthcare, education, industry, energy, agricul-
ture, and public safety. The Big Data sources encompass various networks that span dif-
ferent facets of the economy and the places we live.  The purpose of intelligent safety is to 
safeguard offline and online environments via the use of different forms of AI/OT technol-
ogy. Human-centric perception is one of the examples to identify people and evaluate their 
actions to deter criminal behavior. Cloud/fog computing and edge computing have made 
possible the deployment of facial recognition systems in public spaces like airports, train 
stations, and building entrances. Data security and privacy preservation are key concerns 
of these networks despite their usefulness. Person reidentification seeks to identify people 
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and follow their trajectories in various cameras by using spatial and temporal human body 
traits (such as form and gait), in addition to biometric data identification based on facial 
features, fingerprints, and eyes.

AIoT-enabled smart transportation encompasses traffic components (such as smart 
Internet of Vehicle (IoV), transportation networks, and business uses. (e.g., smart, con-
nected logistics). Self-driving cars are one common use of AI’s ability to combine per-
ception, learning, reasoning, and behavior. An autonomous vehicle’s perception of its 
surroundings includes things like road and traffic sign detection, pedestrian and vehicle 
trajectory prediction, and traffic sign interpretation. In addition, SLAM should quantify 
the stance and placement of landmarks (such as traffic signs). This data informs the auton-
omous vehicle’s driving policy and interactions with other vehicles on the road. Recently, 
deep RL has been utilized to directly take in visual information (such as front-facing pic-
tures) to inform a driver’s strategy. However, it is too expensive to put the training into 
practice in actual conditions. Monitoring, examination, surgery, and rehabilitation are just 
a few of the many areas that may benefit from AIoT systems in smart healthcare. Human 
activity recognition may be monitored using either cameras or wearable devices equipped 
with motion sensors. Semantic segmentation and 3-D landmark recognition in CT scans 
are only two examples of the medical image processing challenges to which deep learning 
has been applied to avoid the high computational cost and privacy concerns of utilizing 
public clouds. Hospitals generally deploy these models on their private cloud. Recent work 
on 2D orthotropic gauze has employed deep RL to control multilateral cutting. It has also 
been suggested that AIoT systems may be used to monitor and evaluate various forms of 
rehabilitation including, for example, stroke therapy and ankle rehabilitation. Patients in 
remote places may benefit from therapists’ ability to evaluate the progress of their reha-
bilitation using the linked 3-dimensional augmented reality/virtual reality (3-D AR/VR) 
equipment. These days, it’s possible to get quick answers to health questions and even get a 
second opinion from a robot doctor who works from home.

Children and students may benefit from AI technologies enabled by AIoT items by 
identifying new species, learning local or foreign languages, choosing customized learn-
ing materials, and learning through interactions with visually impaired individuals. 
This AIoT system allows instructors to command a Raspberry Pi to take pictures of the 
blackboard/whiteboard with a single, static hand gesture, then convert those pictures 
into an editable format that can be stored in a student’s desktop. Applications are backed 
up to a private cloud where they may be accessed for additional modification or group 
work. Using voice speech-to-text production, recognition of languages, and translations, 
presents a solution for portable devices to do multilingual translation from written text 
to spoken word. This also has offline functionality and provides helpful grammatical 
information for other language students. Thanks to developments in AI technology like 
deep learning, numerous new mobile translation solutions that can translate dozens of 
languages have been introduced in time for the 2020 Consumer Electronics Show. Open 
online courses for many people at once, like Coursera, have emerged as a popular alter-
native to traditional classroom instruction. Students access the content via the cloud 
using their own devices.
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Industry 4.0’s smart factories may greatly benefit from digital twins, which are digital 
copies of physical systems that can be used for monitoring the production process, iden-
tifying problems, and avoiding downtime. Connected sensors and actuators may gather 
real-time data from production lines and communicate it to the digital twin running in 
the cloud, making AIoT a crucial component in implementing digital twins. In addition, 
AI technologies allow for sophisticated data analysis and aid in making sound judgments. 
Smart grid AIoT applications include cyber-threat detection, controlling and distribut-
ing workloads, and fault diagnostics. To classify and estimate the damage to electricity 
distribution poles, UAVs (unmanned aerial vehicles) are deployed and connected to the 
command center through the cellular network. Using images captured by UAVs and stored 
in the cloud, a CNN model can estimate the extent of collapse, damage, and burns. On 
top of that, certain so-called “industrial stethoscopes” are made to locate the origin of 
abnormal noises in visual environments using a combination of cameras and other sen-
sors. Microphones, with the algorithm able to perform near-real-time monitoring on edge 
devices, enable efficient data processing and analysis directly at the source. Recently, an 
attention mechanism-equipped two-stream network for direct image-based sound source 
localization was suggested. Fault diagnosis has also been aided by AI technologies. For 
power transmission line fault detection using power and current information, for instance, 
a convolutional sparse auto encoder-based USL technique has been presented. Its low 
latency of 7 MS makes it suitable for use in practical settings. In addition, techniques for 
defect detection and effect causal analysis in the power grid are investigated, including 
knowledge representation and causal relationship identification. TL and deep RL algo-
rithms are presented for load monitoring and charging scheduling of electric vehicles

Precision agriculture, which uses sensors, autonomous agricultural tools, and geo-
graphic information systems to monitor, measure, and react to crop variability, has gained 
traction in recent years as an example of the kind of “smart agriculture” made possible by 
the AIoT. Precision agriculture places a premium on issues like crop counting and pro-
duction estimates. Images of crops and fruits taken with UVAs are sent to the cloud for 
tally purposes (Shi et al. 2020). Because fruits are tallied twice in neighboring frames, the 
entire yield cannot be calculated by adding together the counting results over many picture 
sequences. A detection tracking counting based approach is presented as a solution since 
it can filter out anomalies and avoid counting the same fruit again. By taking pictures of 
agricultural fields at regular intervals and aligning them in time, UAVs may likewise be 
utilized for continuous crop monitoring. The above-mentioned activities, which have been 
explored in the agricultural setting, rely heavily on UAVs’ capabilities for self-localization 
and navigation.

“Smart” towns, houses, structures, and the smart industries just stated are connected to 
AIoT and may be fueled by the same kinds of AI technology. Here are a few instances that 
illustrate the point. One example of smart security is continuously identifying the speaker 
by programming smart home voice assistants to combine vibration cues from the speaker’s 
body with the speech signals. Similar to this is how hand gesture recognition is utilized 
in smart home HMI systems (e.g., control television) and how circulation sign language 
recognition is used in smart transportation and in education.
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9.6  OPPORTUNITIES AND CHALLENGES
Problems arise in AIoT systems while processing, sending, and storing multimodal 
heterogeneous data because the large numbers of sensors of varying types and char-
acteristics provide a flood of data with unpredictable structure, volume, and timing. 
A more efficient encoding approach may reduce network congestion and increase data 
transmission rates. The video coding technique for machines is one such example of a 
technique for video encoding with the potential to streamline future computer vision 
projects. If compact and ordered representations of the data could be recovered, the 
transmission and storage requirements of the AI perception technologies would be sig-
nificantly optimized.  AIoT systems need deep CNN models placed on edge devices 
to manage data streams in real-time with low latency. However, edge devices can’t do 
much due to their limited resources. Thus, developing or autonomously searching for 
lightweight, computationally efficient, and hardware-friendly DNN architectures is 
useful yet challenging. Quantization, compression, and pruning in networks are also 
crucial concepts to master.

AIoT architecture often makes use of cloud servers, fog nodes, and edge devices. 
Computational scheduling is a problem in real-world AIoT systems since certain intensive 
computing may need to be offloaded from edge devices to the fog node or cloud center. 
Data type and volume, network bandwidth, processing latency, performance accuracy, 
energy consumption, and data security and privacy are all important considerations when 
scheduling computation among multiple resources. Uneven data flow and fluctuating user 
needs might be accommodated by a flexible scheduling approach. There is a tremendous 
opportunity for DL to be applied to the large amounts of sensor data that permeate AIoT 
systems. Thanks to massive amounts of labeled data, deep-supervised learning algorithms 
have seen great success in several fields of perception. However, the vast majority of AIoT 
data is unlabeled, and it would be prohibitively costly and time-consuming to name them 
all. Future initiatives are likely to significantly use AIoT data, particularly multimodal 
data, even though self-supervised learning in particular has shown rapid advancement in 
USL (Palomares et al. 2021). Because there isn’t a ton of labeled data to work with, TL, SSL, 
and FSL may also help address issues brought on by the emergence of novel classes, the dis-
covery of unusual edge cases, and the gradual change in a device’s state that characterizes 
AIoT. Some other challenges are as follows:

•	 Data Monopoly: In the age of AI, data are a precious commodity for developing 
innovative goods and enhancing existing ones. Companies acquire and use a lot of 
data, which opens up new avenues for data mining. This virtuous cycle has the poten-
tial to create a data monopoly. This is when large amounts of confidential information 
are held inaccessible by a few powerful organizations. As a result, there is a hurdle for 
new entrants to get the  piece of information.

•	 Privacy and Data Protection: As devices become more commonplace in places like 
smart homes, hospitals, and cities, massive amounts of biometric data (such as a per-
son’s facial image, voice, activity, pulse, imaging data, etc.) may be captured from 
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both educated and ignorant individuals via AIoT. This brings up serious issues with 
the confidentiality and integrity of personal information.

•	 Growing Energy Consumption in Data Centers: It is estimated that data centers 
use more than a third of communication technologies’ power worldwide. Therefore, 
for future sustainability, it is essential to improve data center energy efficiency. Some 
data centers, for instance, set up shops in chilly regions to use the weather as air 
conditioning. Servers may also be submerged in a bath of non-conductive oil or min-
erals, or cooled with water. Analysis of workload, planning of tasks, and consolida-
tion of virtual machines are three further areas of research into making data centers 
more power efficient. Like the proliferation of AIoT use cases, cloud data centers are 
expanding quickly. As a result, we need to keep up our efforts to reduce data center 
energy use.

•	 Capability for Neural Processing at the Edge: In many edge devices, the calculation 
of neural networks is boosted by specialized processors (such as the graphics process-
ing units in smartphones and intelligent cameras). Therefore, it is very beneficial for 
AIoT applications to include neural processing capabilities in edge devices. For one, 
it lessens wait times and saves bandwidth on the back end. With on-site processing of 
sensing data, just a minimal quantity of managed data has to be transferred. Second, 
it can keep your information safe and private. The danger of data leakage may be 
reduced, for instance, if the biometric data of registered users is encrypted and kept 
on local hardware, with just the built-in verification capability on the edge devices 
accessible to the apps. Third, it allows for asymmetric and dispersed model train-
ing. Models may be trained across edge devices using their local sensor data and an 
FL framework. Furthermore, distinct groups of strategies may choose various model 
update procedures based on their respective use conditions.

•	 Neuromorphic Computing with Event-based Sensors: Once activated, deep CNNs 
receive a constant stream of data from traditional camera sensors, which is then pro-
cessed by GPUs. Since every one of those pixels goes towards the final tally, costs are 
usually high. The use of neuromorphic computers and event-based sensors has been 
proposed in recent suggestions. For instance, event-based cameras only save images 
with a pixel-level brightness change, reducing the amount of data that is sent and 
created. Event-based neuromorphic computers, unlike GPUs, can avoid perform-
ing dense and redundant computations on traditional sensory input by functioning 
directly on sparse and asynchronous event streams. These may be used in many dif-
ferent areas of AIoT because of their low latency and low power consumption.

•	 Taking Deep Learning into the Real World: Embodied AI is useful in contexts 
where regular AI would be impractical. Voyage Deepdrive13, Open-air gym14, and 
Habitat15 are only a few examples of 3D virtual platforms made specifically for deep 
RL model training. Before using the trained model, the domain shift between digital 
and physical domains must be resolved. There is a lot of interest in utilizing TL and 
Data Analytics (DA) to solve this problem in USL and RL.
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•	 Data and Knowledge Integration for Perceiving: DL models’ ability to learn, 
reason, and behave depends heavily on the quantity and quality of their training 
data. However, people acquire new ideas by combining facts and their own stored 
information. In a similar vein, past knowledge may be quite helpful when training 
deep learning models with less data. For instance, Zero-Shot Learning (ZSL) for 
novel ideas is made possible via attribute transfer thanks to the attribute-based class 
description. Knowledge Graphs (KGs) are another example since they depict the 
structural connections between things. KGs, knowledge-embedding representation 
learning, and reasoning all benefit from knowledge extraction from unstructured 
data. When combined, this is a possible method for achieving human-level cognitive 
ability using question-and-answer DL (such as graph neural networks) which has a 
wide variety of applications, including but not limited to system and fault/disease 
diagnostics.

9.7  CONCLUSION
In this chapter, we examined the history of Big Data analytics for AIoT, the computational 
architectures that power it, the AI technologies that give the capability to observe, learn, 
reason, and behave, the most promising applications of Big Data analytics in AIoT, and the 
difficulties and possibilities that lie ahead for this field of study. While the AIoT’s three-tier 
computing architecture offers a variety of computational resources for DL, it also intro-
duces additional issues, related to the creation and exploration of lightweight models, as 
well as computation scheduling within the three-tier architecture. Various types of per-
ception have shown tremendous advancements because of DL, and it allows various AIoT 
applications. However, more work has to be done to enhance intelligence at the edge. DL 
has gained popularity in unverified learning, helping A-IoT systems deal with complicated 
and changing circumstances using predictive techniques like RL settings. Research on for 
KG-based reasoning and causal analysis to attain human levels of cognitive ability is chal-
lenging. AIoT acts in response to the ever-changing environment via control and interac-
tion; DL has proven useful for increasing control precision and allowing new kinds of 
multimodal interactions. Many quick, smart, environmentally friendly, and secure AIoT 
applications are anticipated to profoundly transform our society in the future, enabled by 
rapidly developing AI technologies.
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10.1  OVERVIEW
The Internet of Things (IoT) technology is based on different network technologies and a 
variety of electronic devices to perform signal sensing, signal processing, and data trans-
mission over the network. Artificial Intelligence (AI) based communication systems are 
utilized to meet the different requirements of the communication systems as well as to 
assist in resource management and high efficiency in performance. The AI methods are 
used in IoT networks to minimize environmental impact and provide green communica-
tion methods. This chapter examines green communication systems designed for AIoT 
networks to address energy effectiveness and environmental compatibility.

10.2  ARTIFICIAL INTERNET OF THINGS
The Internet of Things (IoT) plays a significant part in connecting cyber and physical space, 
for creating new services. IoT development has led to the digitization of the real world, 
resulting in a high demand for the creation of novel applications and services. These new 
inventions include Radio Frequency Identification (RFID) tags, ZigBee, and Wi-Fi stan-
dards for data communication. There is a wide variety of applications, including businesses, 
homes, logistics, energy systems, cities, healthcare, and agriculture. The IoT can enable 
physical objects to interact with one another and carry out tasks without human interven-
tion. It is predicted that in 2024 around 45% of internet traffic will be Machine-to-Machine 
(M2M) traffic (Al-Fuqaha et al. 2015). Figure 10.1 shows the advantages of IoT devices.

The goal of Artificial Intelligence (AI) is to create computers that are intelligent as peo-
ple. AI has long been used to optimize communication networks in a variety of configura-
tions. Machines can offer multiple, pre-defined choices and react to the environment in a 
variety of different, yet deterministic ways, which is the first and most fundamental level 
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of AI. One machine has the entire capability to interact with the environment, which is 
the second complete level of AI (Li et al. 2017). AI usually has two places to fit into an IoT 
system: the center and the edge. Implementing AI in IoT networks’ core components, such 
as the cloud, may use the vast volumes of data from the entire network to produce more 
precise predictive analytics or models. AI can be implemented locally or on edge servers in 
IoT networks to improve security and privacy while reducing bandwidth and latency. The 
edge intelligence framework is created by combining local and global intelligence by using 
AI techniques to coordinate heterogeneous resources across different domains for network 
energy savings, but it can also add a variety of new functions to IoT devices with minimal 
energy consumption (W. Mao et al. 2021). Big data, deep learning, and Machine Learning 
(ML) are adopted for modern networks. Many famous leading corporations, including 
Microsoft, IBM, Google, and Amazon, are concentrating on AI to create their remarkable 
products such as ChatGPT, Bing, and Dall-E, and give their customers a better overall 
experience. Many research projects have used AI algorithms, particularly ML algorithms, 
to determine the precise location of AIoT devices, to allocate resources quickly, to optimize 
reliable resources, and to transmit data securely.

Huge quantities of data traffic are expected to be generated by new applications like high-
resolution video streaming, tactile Internet, remote monitoring, and real-time control sys-
tems. Due to the large size of the technological environment, the number of users, and the 
number of devices, energy consumption levels have been alarming. Scientists predict extraor-
dinarily high data rates and enormous content sizes, 10,000 times greater than in 2010, at the 
cost of extremely high environmental carbon emissions (Mahmoud AM Albreem et al. 2017). 
The number of power transmitters grows as the number of connected electronic devices rises. 
As a result of the impact, a large amount of energy will be consumed. Approximately 75.44 
billion connected gadgets will be present worldwide by 2025 (Alam and Tanweer. 2018).

Rapid increases in battery consumption on AIoT applications have a significant impact 
on security performance. Secure transmission in AIoT networks requires energy efficiency. 
Security, data storage from devices, energy consumption, data integration, and privacy 

FIGURE 10.1  Advantages of IoT devices.
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are some of the existing issues with IoT network deployment. The battery of sensor nodes 
runs out faster if there are no energy control systems in place. Therefore, the objective of 
energy supply and management is to increase the network’s lifespan. The full adoption and 
rising demand for smart services need power and bandwidth management rather than 
more resources. Energy efficiency plays an important role because IoT devices constantly 
gather and share data while operating on batteries or other limited power sources. IoT 
devices’ energy consumption needs to be reduced because their batteries deplete quickly 
(Maddikunta et al. 2020). By utilizing on-demand protocols, specialized optimization 
algorithms, and AI techniques, the green AIoT paradigm has emerged as an energy-sav-
ing and environmentally friendly way to cut down on power usage and carbon emissions. 
The green planning, manufacturing, use, and disposal phases AIoT lifecycle are included 
(Halabi, Bellaiche, and Fung. 2022).

An intelligent transmission process that improves energy efficiency and extends the life 
of smart gadgets is required. IoT resource management and energy efficiency have drawn 
a lot of research attention. To prevent resource waste or lessen the impact of the green pro-
cedure itself, new energy-efficient procedures (whether involving hardware or software) 
should be implemented during the design of AIoT services.

10.3  APPLICATION AND TECHNOLOGIES
AI is being used in many ways, from data collection to output optimization. The goal of 
applying AI to the mobile sector is to provide seamless network operation and increase the 
wireless network’s energy efficiency using real-time data from many modes of transporta-
tion, such as trains, buses, and vehicles, AI is utilized in road traffic management to assist 
in data analysis.  AI examines this data for trends that might point to security vulnerabili-
ties. This knowledge is then applied to identify solutions to lessen risks and the likelihood 
of accidents. Long-term and short-term traffic trends are the two types of tendencies used 
in AI-driven traffic prediction.

The most challenging procedure in networks is maintenance and monitoring. Maintaining 
the network to keep up with consumer demand is a challenging operation since it is highly 
challenging to analyze client requirements because they change dynamically. AI has a lot to 
offer in network monitoring. The most typical application of AI in networks is anomaly detec-
tion. The practice of analyzing network behavior and separating genuine activities from cyber-
attacks is known as anomaly detection. Troubleshooting is enhanced with AI/ML, which also 
accelerates problem resolution and offers remediation advice. It provides important insights to 
enhance the user and application experience. AI technology is used to accurately analyze and 
forecast the network behavior of 5G/6G to prevent energy waste. These analyses and forecasts 
include network overhead and collision predictions (Anwar et al. 2018).

The use of AI in service monitoring can quickly analyze massive amounts of real-time 
data to find anomalies and patterns that could affect service quality or user experience. 
AI can anticipate potential problems before they become more serious by utilizing ML 
algorithms, enabling proactive efforts to maintain the highest possible service levels. 
This cutting-edge method improves monitoring accuracy while simultaneously lowering 
downtime and minimizing service interruptions. There are many uses for green AI-based 
communication in 5G/6G wireless communication. These involve massive antenna arrays 
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and coordinating the transmission and receiving of signals from various sites (Qureshi, 
Abdullah, et al. 2016).

Green AIoT enables remote control of household appliances, including lighting, elec-
tronic devices, and heating, from a computer, smartphone, or laptop. A smart home gadget 
may include a phone, television, computer, or other smart devices. There are a few new 
factors for green AIoT to consider, such as green operation, green design, green reuse, and 
green manufacturing, which will lessen environmental harm.

10.3.1  Mobile Edge Computing in M2M Communications

Mobile Edge Computing (MEC) is a developing technology which is essential for current 
systems and servers running cloud computing and Information Technology (IT). It is very 
important for new network technology of the next generation. MEC is capable of handling 
critical computations in large networks, including content caching, scheduling, collabora-
tive processing, and several other activities. MEC relies heavily on Network Functions 
Virtualization (NFV), Software Defined Networks (SDN), and cloud computing (Iqbal 
et al. 2020). Using MEC increases the responsiveness of the edge and the speed of services, 
applications, and contents. This technology is more user-friendly than previous technolo-
gies and can analyze data from multiple IoT devices at once for the creation of new enter-
prises. The capabilities of MEC technology are very successful at advancing the idea of 
smart cities and making it easier to analyze massive data, which helps cities become more 
intelligent entities (Lv et al. 2021).

•	 On-grounds: MEC technology can operate only local sources and can be used inde-
pendently of other system components. It may be necessary for some allocations, 
such as security and flexibility.

•	 Closeness: MEC has the potential to do computer tasks directly, which may be 
appealing to some specialized applications. This occurs as a result of proximity to 
data sources.

•	 Lesser Computing: MEC servers are located close to constrained clients, which 
might aid in reducing computation time and provide other benefits including quick 
processing, a positive customer experience, and less congestion.

•	 Network Framework Information: Network framework information is information 
from the network that is used by many services and applications. Utilizing MEC 
mobile service.

•	 Locality Understanding: MEC servers assist in supplying local information that 
influences low-level signaling data to determine the positions of each linked device.

10.3.2  Wireless Network Virtualization and e-SIM in M2M Communications

For IoT services, scalability and flexibility features are primarily provided by virtualiza-
tion. Network virtualization is taking place at the same time as SDN and NFV. Cloud com-
puting, SND, and NFV are expected to operate together as a crucial enabling technology to 
fundamentally alter how network operators design and benefit from their infrastructure. 
The procedure comprises combining physical network hardware resources with embedded 
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software’s operational capabilities and merging them into a single logical structure known 
as a virtual network. Wireless Network Virtualization (WNV) is regarded as an effective 
and dependable technique for managing network infrastructure and making use of net-
work resources. The hypervisor is a crucial part of WNV, which is maintained by the pri-
mary operating method, which analyses the network and links sources in terms of Quality 
of Services (QoS) and applications or network requirements (Qureshi and Abdullah. 2013). 
MNV may aid in the improvement of new technologies and demonstrates greater flexibility 
in the design of communication technologies like M2M technology. M2M communica-
tions technology is now employed in a variety of ways. The IoT’s virtualization mechanisms 
enhance the system’s performance. This can also ensure the network’s adaptability, scalabil-
ity, dependability, and data throughput. Additionally, these methods are also helpful for low 
energy consumption, great throughput, and minimal overhead (Ramakrishnan et al. 2020).

The Embedded Subscriber Identity Module (eSIM) has several notable benefits for M2M 
communications in two areas. The first area is disconnecting the SIM module from a 
Machine-Type Communication Device (MTCD). This process is difficult because the SIM 
module is typically placed in remote areas. As a result, it is impossible to make the MTCD 
move to a different virtual network using a SIM. The second area is the difficulty in ensur-
ing service continuity between networks due to an increase in MTCDs; conventional SIMs 
may need to be changed in each separate location.

10.3.3  AI-Based Wireless Communication

As the demands for user data and data traffic rates increase, AI-based wireless commu-
nication systems have become a novel option. The addition of AI-driven technologies is 
necessary for the traditional wireless communication techniques which are proving insuf-
ficient to handle this sudden increase in traffic. It’s important to recognize that wireless 
communication systems currently make a major contribution to the overall energy con-
sumption of the information and communication technology industry, notwithstand-
ing any potential benefits they may have in the future. Numerous access technologies, 
including Narrow-Band IoT (NB-IoT), IEEE 802.15.4, Wi-Fi, cellular communications, 
backscatter communications, and others, have been developed for various Machine Type 
Communication (MTC) scenarios. Unmanned Aerial Vehicles (UAVs) and satellites are 
new platforms for connecting things to the Internet (Qureshi, Alhudhaif, et al. 2022; B. 
Mao et al. 2021).

A significant portion of the total energy used in the field of information and commu-
nication technology is consumed by wireless communication systems. This shows how 
urgent it is to create systems for communication that utilize green AI rules, ensuring the 
best possible use of energy resources. The development of green AI-based communication 
systems is urgently needed given the requirement for environmentally responsible behav-
iour. These cutting-edge systems not only use AI to improve performance but also place 
a strong emphasis on energy saving. Green AI-based communication systems reduce the 
demand for energy resources by intelligently optimizing network operations and signal 
transmission and maintaining a sustainable balance between advancements in technology.
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10.4  CHALLENGES
The everyday lives of consumers have benefited from the IoT, and manufacturers have 
been motivated to release new devices with more features and better designs due to con-
sumers’ excitement and accessibility. The green AIoT is still in its infancy. The theory 
behind green communication is that it uses very little energy and gives high performance. 
Numerous issues need to be resolved as well as hurdles. Spectral efficiency, cost, energy 
consumption, environment friendly hardware and battery, and bandwidth are just some 
of the challenges. Heterogeneous Networks (HetNets) integration can be expensive, and 
upgrading the infrastructure to handle this technology would be very expensive. Similar 
to this, expenses may increase with the use of large-scale Multiple-Input Multiple-Output 
(MIMO) systems. For some businesses, these costs can be an obstacle to implementation. 
For others, the expenditure may be justified by the prospective advantages of these tech-
nologies, such as increased network capacity and coverage. Energy-efficient technology is 
also expensive to produce. Cost is also a major obstacle to green communication (Jamil 
et al. 2020). Figure 10.2 shows the challenges in AIoT networks.

In green communication networks, attaining high data throughput while preserving 
energy efficiency is one of the problems. When developing and accessing communica-
tion systems, it is essential to take into account data throughput, commonly referred to as 
Spectral Efficiency (SE). According to Shannon’s equation, the speed and amount of trans-
ferred power have a direct impact on the transmission rate. However, increasing speed and 
strength might also result in higher energy usage. A major difficulty in developing green 
communication networks is balancing these variables to maximize throughput while min-
imizing energy use (Jamil et al. 2020).

Utilizing the millimeter wave (mmWave) band for 5G/6G communication poses a 
problem for green communication networks. While this band offers high data rates and 
capacity, current antennas are inefficient at these frequencies. Phased-array antennas are 
necessary for communication on the mm-wave frequency. However, designing and deploy-
ing phased-array antennas is a challenging task that needs a lot of resources and knowl-
edge. A significant difficulty for green communication networks is ensuring that these 
antennas are energy-efficient while still offering good performance (Jamil et al. 2020).

Large volumes of data that are sensitive to privacy and security are generated, processed, 
and exchanged by these systems, making them appealing targets for attacks. AIoT devices 
are frequently poorly secured and vulnerable to cyberattacks such as distributed denial 

FIGURE 10.2  Challenges in AIoT networks.
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of service or sabotage attempts. The overhead associated with cryptography techniques 
is frequently too high. AIoT system overhead is further increased by the heterogeneity of 
networks. Therefore, it is crucial to develop simple algorithms that ensure the security and 
privacy of devices while using less energy (W. Mao et al. 2021).

For green communication networks, IoT and AI integration opens new challenges 
for researchers. The complexity of this integration is boosting the existing issues such as 
processing power, memory, and delay in real-time applications. Additionally, ensuring 
compatibility and standardization may be challenging due to the heterogeneity of AIoT 
devices and networks (Mahmoud A Albreem et al. 2021). In a wireless setting, security 
and privacy problems must also be addressed. It is crucial for the merging of IoT and AI 
in green communication networks to successfully handle these issues. The difficulty with 
huge data accumulation is predicting and estimating the amount of energy needed for 
data analysis. Big data analysis performed quickly might be considered, but the cost and 
resources needed for the analysis will increase exponentially as the volume of big data 
rises. Consequently, big data analytics could be viewed as enhancing the prediction of 
energy efficiency as opposed to the enhancement of the quality of life from the integration 
of IoT devices with AI technology.

Hardware-related issues are raised by the integration of AI and IoT in green com-
munication networks. The processing and memory capabilities of IoT devices are fre-
quently constrained, which can make it challenging to deploy advanced AI algorithms 
on the devices. Furthermore, for these devices to function well, their energy consump-
tion needs to be properly controlled. It might be difficult to guarantee the depend-
ability and endurance of IoT devices in challenging conditions. The system’s overall 
sustainability may be compromised by the need for periodic hardware maintenance 
and replacement. The successful integration of AIoT in green communication networks 
depends on the development of hardware solutions that are dependable, long-lasting, 
and energy efficient.

10.5  GREEN COMMUNICATION SMART GRID SYSTEMS
Information and Communication Technologies (ICTs) are playing a crucial role in the 
modernization of the electrical grid as a result of rising electricity prices, the depletion 
of fossil fuels, and growing worries about Greenhouse Gas (GHG) emissions. Traditional 
power management services have been altered by smart grids, which also provided  
cutting-edge solutions. By regulating utility costs, these innovative integrated systems 
make it more convenient to meet energy demand. By employing cellular and other data 
communication networks, users of smart systems can share data about their energy use, 
energy supply, and utility use. Energy distribution is always given top attention in smart 
cities, and more advanced metering infrastructure is required for power generation to cus-
tomers. The smart grid is built on decentralized generation methods, as opposed to the 
conventional grid’s centralized generation techniques. Additionally, human monitoring is 
used in typical grids, and only limited, passive control is used.

Smart grids, on the other hand, use active control techniques and a self-monitoring 
system. One aspect of manual and locally-based traditional grids and restoration systems 
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is the power flow. They differ from the smart grid which manages electricity flow in two 
directions and features a self-restoration mechanism (Qureshi and Jeon. 2021). Real-time 
monitoring of energy consumption can be made possible via smart meters and commu-
nication networks, enabling consumers to make educated choices about their energy use. 
Programs called “demand response” can be used to encourage energy efficiency by allow-
ing consumers to alter their energy usage during periods of high demand. Based on several 
operations like electric generation, transmission, and distribution, the smart grid is an 
important field. All of these processes use wireless technologies and more modern, inte-
grated communication standards.

To make the grid more flexible, strong, and decentralized, AI is a major contributor to 
this revolution. The development of smart grids that can control far more complex power 
generation and distribution is being fuelled by the application of AI technologies like IoT, 
machine learning, and data analytics. These technologies are assisting in the resolution of 
serious issues such as power outages and financial setbacks brought on by extreme weather 
events. At the same time, they are offering crucial support to make it possible for renewable 
energy sources to be seamlessly integrated into the grid infrastructure.

10.5.1  Smart Grid Architecture

The smart grid infrastructure is designed to offer a data communication medium for the 
transmission of various signals for monitoring, measurement, control, and management. 
The utility grid is integrated with the smart grid interface at any point, including microgrid 
installations, transmission, distribution, consumption, and bulk generating. The commu-
nication medium and interface must offer transmission that is secure, effective, and reliable. 
The smart grid is divided into three main categories: management systems, information, 
and communication technologies, and commercial and residential modules. Within the 
management systems category, there are three subcategories: monitoring management, 
transmission and generation, and consumer-side management. Figure 10.3 shows the 
smart energy management system’s architecture.

Monitoring and management of a smart grid refers to the procedures and tools used 
to keep an eye on and regulate the many functions and elements of a smart grid system. 
This is essential to guarantee the grid’s effective, dependable, and secure operation. Smart 
grid monitoring delivers in-the-moment insights into equipment health, voltage levels, 
and energy consumption patterns by continually collecting and analyzing data from vari-
ous grid elements. These data enable grid operators to make well-informed judgments, 
act quickly in response to demand changes, and avert any disruptions. A key component 
of a smart grid system that focuses on streamlining the transfer of electricity from power 
production sources to consumers is transmission and generation management. The use of 
smart grid technology includes several methods and tools designed to increase the effec-
tiveness, dependability, and environmentally friendly nature of energy generation and 
transmission. Consumer-side management refers to a variety of tactics, tools, and pro-
grams created to empower and include customers in managing their electricity usage. 
Consumers are given priority in this aspect of smart grid technology, giving them more 
control, awareness, and engagement in the energy ecosystem.
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The ICT sublayer connects the management systems to the electricity network. It is 
divided into three categories: Local Area Network (LAN), Field Area Network (FAN), 
and Wide Area Network (WAN). In addition to metering, field-based equipment requires 
monitoring and management from the utility’s point of view. The construction of a spe-
cialized network becomes necessary when the grid infrastructure deepens its coverage by 
including a variety of important parts, from transformers and sensors to distribution auto-
mation systems. The critical task of effectively controlling and integrating these complex 
components within the larger operational framework is taken on by this specialized net-
work. Therefore, a separate network known as the FAN is used to handle the equipment 
in the field. The majority of the data transfer can be done using wireless communication 

FIGURE 10.3  Smart grid architecture.
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techniques such as Wi-Fi, Global System for Mobile Communications (GSM), IEEE 
802.15.4-based technologies, or 5G/6G communication technologies.

Electricity generation, transmission, and distribution are the three phases that make up 
a smart grid, which is a system for distributing electricity. During the generation phase, 
energy is produced utilizing massive, centralized power plants that are powered by a vari-
ety of natural resources, including coal, gas, or nuclear or hydroelectric systems (Qureshi 
and Jeon. 2021). Modern hydrogenated generation systems combine heat and power sys-
tems. Electricity transmission, which occurs after electricity generation, involves moving 
the energy from power plants to substations and end customers. The electricity is divided 
between residential and industrial zones during the distribution phase. Smart meters play 
an important part in the advancement of the smart grid. Smart meters are made to measure 
power flowing in both directions, including into and out of the meter. In a process known 
as net metering, users can import electricity from the grid as needed and also export any 
excess renewable energy production to the main grid. One of the main goals of utilizing 
smart meters is to give clients a real-time monitoring system, dynamic pricing, and the 
ability to monitor energy consumption more effectively (Qureshi and Jeon. 2022).

Home Management Systems (HMSs), which are supported by service providers, can 
be used to control residential loads in the context of smart grid applications. Many typi-
cal sensors, including, anemometers, current transducers, phase and flux sensors, volt-
age transducers, frequency sensors, pressure transducers, and power quality transducers, 
are dispersed across the power network’s generation and transmission systems, and smart 
meters are also used in systems for managing smart homes, which aims to give custom-
ers more secure and comfortable living conditions. The Commercial Management System 
refers to a broad range of tactics, procedures, and tools used to streamline and improve 
financial and commercial activities within the context of the energy distribution ecosys-
tem. The smart grid architecture includes a variety of elements such as digital systems to 
increase real-time communication, supply management, distribution automation, renew-
able resources, demand-side resources, dynamic optimization, grid security, and smart 
metering,

10.6  RELATED WORKS
Industrial AIoT places a high value on reliable, green communication. Unfortunately, it 
is difficult to provide reliable transmission due to complex industrial environment. The 
authors (Liu et al. 2017), proposed the Hybrid Transmission Protocol (HTP) to increase 
longevity while preserving reliability. To reduce energy usage, the protocol uses the 
Network-Coding-based Redundant Transmission (NCRT) technique with an adaptive 
redundancy level in non-hotspot areas and the Send-Wait Automated Repeat-Request 
protocol (SW-ARQ) in hotspot areas. They used the Omnet++ network simulator for 
modeling and theoretical research to evaluate the effectiveness of the suggested approach. 
The results of their algorithm showed that the SW-ARQ protocol can increase longevity 
by 15% to 30% and dependability by 12% to 45% while maintaining the same reliability.

When it comes to Smart Sustainable Agriculture (SSA), there is a lack of progress 
along with complicated challenges brought on by the division of agricultural techniques, 
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including the management and control of data, interoperability, data storage, and large 
data analysis. To overcome this issue, the author Alreshidi discussed analyses of current 
IoT/AI technologies used for SSA in the first place and then establishes an IoT/AI techno-
logical architecture to support SSA platforms. The framework for AI and IoT includes the 
following levels: SSA domain, IoT sensing, network, application, security, governance, AI 
and data Management, physical hardware, and storage. Future studies will look into how 
AI and IoT technologies are implemented for SSA by developing a prototype for the pro-
posed AI and IoT technological architecture to use in actual test cases.

By maximizing intra-cluster distance, methodically utilizing node energy, and lowering 
hop count, a Genetic Algorithm (GA) based sustainable and safe green data collecting and 
transmission technique for IoT-enabled Wireless Sensor Network (WSN) in healthcare has 
been proposed by the authors Singh et al. 2021 Data communication is encrypted utilizing 
a pseudo-randomly generated security key and stream ciphers for secure data transmis-
sion. Additionally, the hotspot issue is lessened by the suggested moveable sink and data 
collection and transmission procedures since they reduce the communication distance 
between the sink and Cluster Head (CH). When the sink nodes are physically closer to 
the sensor nodes than they are to the CH, the direct data collection method facilitates 
the direct transfer of data to the sink. Additionally, the integrated dynamic sensing range 
reduces the sensing range’s overlap while significantly reducing transmission energy.

The majority of AI-driven applications require powerful servers to do difficult AI tasks, 
which increases energy usage in Industrial Internet of Things (IIoT) systems. To develop 
energy-efficient AI computing for IIoT applications, the authors Zhu, Ota, and Dong 
2021 proposed intelligent edge computing as a cutting-edge technology. First, they pro-
posed that AI computing for IIoT applications should perform better overall and use less 
energy as compared to traditional applications. The intelligent edge computing framework 
decreases the load on servers and speeds up reaction times by shifting AI workloads from 
servers to the network’s edge. By maximizing the utilization of computational resources, 
the suggested method for scheduling AI activities improves energy efficiency even more. 
As a result, the system used for AI computing in IIoT applications becomes more effective 
and sustainable.

The security of mobile IoT networks has numerous difficulties due to the complex-
ity of the wireless channels. In mobile IoT networks, energy efficiency is essential for 
secure connectivity. The authors Xu et al. 2022 proposed a transmit antenna selection-
based secrecy scheme employing amplify and forward relaying. They begin by obtain-
ing exact expressions and evaluating the effectiveness of the physical layer of security. 
After that, they then formulate the power allocation issue, which is a non-convex, chal-
lenging problem, to further increase energy efficiency. They provide a novel intelligent 
power allocation optimization technique. The allocation parameter is calculated using 
an Improved Grey Wolf Optimization (IGWO) algorithm based on the defined power 
allocation function. The proposed IGWO algorithm outperforms conventional swarm 
intelligence algorithms in terms of convergence precision and convergence speed. When 
compared to other algorithms, IGWO reduces running time by 24% while keeping the 
same optimization accuracy.
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The authors Chavhan et al. 2022 discussed the use of AI and IoT in the transportation sector  
which has been made on a large scale to lower GHG emissions, enhance energy efficiency, and 
improve service quality. They proposed a unique, energy-efficient, intelligent transport system 
for smart cities based on a distributed multi-agent system and edge-based AI-IoT integration. 
This has been accomplished by combining the DSRC-IEEE 802.11p communication stan-
dard protocol for Vehicle-to-Everything (V2X) with Radial Basis Function Neural Network 
(RBF-NN), IoT, and Multi-Agent System (MAS) based real-time data collecting, analysis, pre-
diction, and sharing. Along with the edge computing units, an ideal number of Roadside Units 
(RSUs) are installed at each zone. MAS installed at each  RSU gathers a considerable amount 
of data from numerous infrastructures, devices, and sensors. The edge computing device pro-
cesses, analyses, and predicts using the raw data from the MAS that has been acquired.

The environment in which green IoT devices operate is resource constrained. It is chal-
lenging to monitor, identify, and react to events in a partially or fully distributed ecosystem 
that requires constant access to timely information. To overcome this issue, the authors 
Chithaluru et al. 2023 proposed a neuro-fuzzy method used in an energy-efficient Dynamic 
Clustering Routing (DCR) protocol to limit the resources of IoT devices. It builds dynamic 
clusters in a network using a dynamically self-organizing neural network. One method for 
extending network lifetime in a sustainable IoT is clustering. In terms of clustering tech-
niques, IoT is also employed for green applications to demonstrate a huge improvement 
in each QoS. In each cluster, there will be a CH, which will receive data from the group 
nodes and transmit it to a distant sink using high-energy transmission while also captur-
ing important data packets and sending them to the sink. By preventing all nodes from 
processing, it lowers energy consumption and increases the network’s longevity.

Cloud-based IoT technologies enable remote patient monitoring and support. Making 
healthcare systems environmentally friendly hasn’t gotten much attention in the current 
environment. The authors Islam and Bhuiyan discussed cutting-edge technology to build 
an interactive user experience while providing an integrated framework for green health-
care. A three-layered architecture for a healthcare system is proposed. The first layer is a 
data-collecting layer based on IoT that collects data from patients and hospitals. The sec-
ond layer is an advanced cloud system that allows for enormous data analysis from indi-
vidual patients and facilities. This technique can be used to forecast potential diseases and 
uncover patterns. Mobile application technology, the third and final layer, will boost real-
time data interchange and treatment efficiency. This is accomplished by analyzing data 
collected through interactive patient monitoring systems. Overall, the suggested design 
intends to improve healthcare by combining technology and data analysis.

The authors, Riskiawan et al. 2023, discussed a contemporary strategy for effectively 
enhancing greenhouse control technology through automated environmental control. The 
IoT and AI can be combined to create IoT devices that can forecast and be controlled on 
their own. The system, which acts as the central processing hub for sensors and actuators, 
is managed by a microcontroller. The microcontroller interprets the sensor data using a 
Long Short-Term Memory (LSTM) technique to predict the output parameters for regulat-
ing actuators, such as misting, fan exhaust, and motor control. The outcomes of knowledge 
acquired through the LSTM method are used to place intelligent control on a framework 
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called Laravel rather than the embedded system directly. Table 10.1 shows the protocols 
designed for different domains to manage energy issues.

10.7  CONCLUSION
An essential step toward developing sustainable IoT systems is the use of green communi-
cation technologies in AIoT networks. The development of conventional industries includ-
ing transportation, electricity, education, agriculture, and healthcare has benefited from 
IoT devices. Energy-efficient data acquisition and communication are the goals of green 
communication techniques. The design of reliable communication systems and centralized 
as well as decentralized deployment of IoT systems have all attracted substantial research 
interest. Scalability and latency problems are addressed via cloud computing, fog comput-
ing, and edge computing. Due to its capacity to increase response time and lower energy 
consumption, methods like MEC have become more well-liked. There is great potential to 
increase the energy efficiency of IoT systems by developing green communication meth-
ods for AIoT networks, which is an active field of research. Some research areas include 
green network management, green network monitoring, green intelligent transportation 
systems, green optical communications, switching, and networking, green software, hard-
ware, devices, and equipment, green scheduling for communications and computing, and 
green storage, as well as fog and cloud computing.

TABLE 10.1  Existing Protocols for Energy Efficiency 

S.No Protocols IoT Domains Objectives/Achievements

1 SW-ARQ & NCRT (Liu et al. 2017) WSNs Ensuring reliability, extending the 
lifetime, and decreasing the delay.

2 Optimized GA (Singh et al. 2021) Health Care To optimize intra-cluster distance, 
efficiency in nodes’ energy, and reduce 
the hop count

3 AI-driven IIoT framework (Zhu, 
Ota and Dong. 2021)

Industrial IoT to improve various computing 
resources’ energy efficiency and 
offload the majority of AI activities 
from servers.

4 IGWO (Xu et al. 2022) Mobile IoT Increasing the energy efficiency
5 RBF-NN, IoT, and MAS (Chavhan 

et al. 2022)
Transport System 
for Smart Cities

Increase energy efficiency in the 
transport system and reduce 
greenhouse gas emissions

6 Neuro-fuzzy logic (Chithaluru 
et al. 2023)

Clustering 
Selection for 
IoT-based Smart 
Cities

During the network planning stage, 
reduce consumption of energy and 
increase network lifetime.

7 Hierarchical Clustering
Algorithms, Bluetooth Low Energy 
(BLE) & cutting-edge technology 
(Islam and Bhuiyan. 2023)

IoT health Care 
system

surpass current systems regarding, 
energy efficiency treatment planning, 
data accessibility, and system 
architecture

8 modified LSTM (Riskiawan 
et al. 2023)

AI base IoT-Green 
House

Manage an existing agricultural system 
in a smart greenhouse using AI and 
IoT technologies while also creating a 
unique IoT sensor.
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11.1  OVERVIEW
This chapter provides an overview of Artificial Intelligence of Things (AIoT) networks and 
their associated security challenges. It emphasizes the importance of implementing cyber-
security standards to safeguard these networks from cyberattacks. This chapter covers var-
ious topics such as the introduction of AIoT, identification and authentication protocols, 
data encryption, and integrity protection. It also discusses the challenges faced in imple-
menting cybersecurity standards for AIoT networks, including the complexities introduced 
by interconnected devices and emerging technologies. By addressing these challenges and 
staying informed about emerging technologies, organizations can enhance the security of 
AIoT networks and protect sensitive data from unauthorized access or manipulation.

11.2  AIoT
AIoT is a paradigm that combines the power of Artificial Intelligence (AI) with the vast 
connectivity and data-sharing capabilities of the Internet of Things (IoT). In AIoT systems, 
AI algorithms and machine learning techniques are integrated into IoT devices and net-
works, enabling them to collect, analyze, and interpret data in real-time. This integration 
empowers AIoT systems to make intelligent decisions, adapt to changing environments, 
and automate processes, leading to improved efficiency, accuracy, and responsiveness 
(Hasan and Qureshi. 2018). AIoT finds applications across various industries and sectors. 
In manufacturing, AIoT enables smart factories where IoT devices equipped with AI algo-
rithms can monitor and optimize production lines, detect faults, and predict maintenance 
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needs (Iqbal et al. 2021). In healthcare, AIoT systems can enhance patient monitoring, 
assist in remote diagnostics, and enable personalized treatment plans. Smart cities lever-
age AIoT to optimize traffic management, enhance energy efficiency, and improve public 
safety through intelligent surveillance and monitoring systems. Additionally, AIoT has 
applications in agriculture, retail, transportation, and many other domains, revolution-
izing processes and creating new opportunities for innovation.

Several technologies enable the realization of AIoT systems. IoT devices, such as sen-
sors, actuators, and wearables, serve as the foundational components that collect and trans-
mit data. Cloud computing infrastructure provides the storage, processing, and scalability 
required to handle the massive amount of data generated by IoT devices. Edge computing 
complements cloud computing by bringing AI capabilities closer to the data source, reducing 
latency, and enabling real-time decision-making. Machine learning algorithms, including 
deep learning and reinforcement learning, are employed to extract insights, detect patterns, 
and make predictions based on the collected data. These technologies work together to create 
a powerful AIoT ecosystem that drives intelligent automation and decision-making.

In conclusion, AIoT combines AI and IoT technologies to create intelligent systems 
that leverage data analysis and machine learning to make informed decisions and auto-
mate processes. With its diverse applications across industries, AIoT has the potential to 
transform various sectors and drive innovation. The integration of IoT devices, cloud com-
puting, edge computing, and machine learning algorithms form the foundation of AIoT 
systems, enabling them to collect, process, and interpret data in real-time. As the capabili-
ties of AI and IoT continue to advance, the AIoT paradigm holds great promise for enhanc-
ing efficiency, accuracy, and responsiveness in a wide range of domains.

11.3  SECURITY CHALLENGES IN AIOT
AIoT networks face numerous security challenges that need to be addressed to ensure the 
integrity, confidentiality, and availability of the network and its data. These challenges include 
vulnerability to cyberattacks, such as data breaches and unauthorized access due to the inter-
connected nature of devices and the large volume of data they generate. Privacy concerns 
arise from the collection and analysis of sensitive data, requiring robust security measures and 
compliance with data protection regulations. The complexity and scalability of AIoT networks 
pose difficulties in managing and securing numerous devices and data sources effectively. 
The lack of standardization hinders the implementation of consistent security measures, while 
resource constraints in IoT devices make it challenging to implement robust security without 
compromising performance. Zero-day attacks and emerging threats add to the risks, neces-
sitating adaptive and proactive security measures (Kiyani et al. 2023). Addressing these chal-
lenges is crucial to ensure the trust, reliability, and resilience of AIoT networks.

11.3.1  Vulnerability to Cyberattacks

AIoT networks are highly susceptible to various cyberattacks due to their interconnected nature 
and the vast amount of data they generate and transmit. They face risks such as data breaches, 
unauthorized access, and malicious manipulation. The distributed and diverse nature of AIoT 
devices makes it challenging to ensure the security of each device and the overall network.
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11.3.2  Privacy Concerns

AIoT networks involve the collection, analysis, and storage of large amounts of personal 
and sensitive data. This raises significant privacy concerns as the potential misuse or unau-
thorized access to this data can lead to severe consequences for individuals. Safeguarding 
privacy in AIoT networks requires robust security measures, encryption techniques, and 
compliance with data protection regulations.

11.3.3  Complexity and Scalability

AIoT networks are complex systems that consist of a multitude of devices, sensors, and 
data sources. Managing and securing these networks at scale can be challenging. Each 
device must be individually secured, and data transmission and storage points need to 
be protected. The dynamic nature of AIoT networks, with devices joining and leaving 
the network frequently, further adds to the complexity of security management.

11.3.4  Lack of Standardization

The lack of standardized security protocols and frameworks for AIoT networks poses chal-
lenges in implementing consistent and comprehensive security measures. Different devices 
and platforms may have varying security capabilities and vulnerabilities, making it diffi-
cult to ensure a uniform security posture across the network. The absence of standards also 
hinders interoperability and collaboration between different AIoT systems.

11.3.5  Resource Constraints

Many IoT devices in AIoT networks have limited computational power, memory, and 
energy resources. Implementing robust security measures while considering these con-
straints can be challenging. Resource-efficient security solutions that provide adequate 
protection without significantly impacting device performance are required. This neces-
sitates the development of lightweight cryptographic algorithms, optimized protocols, and 
efficient authentication mechanisms.

11.3.6  Zero-day Attacks and Emerging Threats

AIoT networks face the risk of zero-day attacks, where new vulnerabilities are exploited 
before security measures can be put in place. The rapid evolution of threats and emerg-
ing attack techniques make it crucial to have adaptive and proactive security measures. 
Constant monitoring, threat intelligence, and timely updates to security systems are 
necessary to detect and mitigate emerging risks effectively. Addressing these challenges 
requires a comprehensive approach to security in AIoT networks. The following mea-
sures should be considered.

11.3.7  Strong Authentication and Access Control

Implementing robust authentication mechanisms, including two-factor authentication 
and secure access control, ensures that only authorized devices and users can access the 
network and its resources.
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11.3.8  Data Encryption and Integrity Protection

Employing encryption techniques, both for data transmission and storage, safeguards sen-
sitive information from unauthorized access. Additionally, integrity checks and measures 
to detect and prevent data tampering are essential to maintain data integrity.

11.3.9  Intrusion Detection and Prevention Systems

Deploying intrusion detection and prevention systems helps identify and respond to 
potential threats in real-time. These systems can monitor network traffic, identify anoma-
lies, and take proactive measures to mitigate risks (Hussain et al. 2023).

11.3.10  Security Audits and Penetration Testing

Regular security audits and penetration testing help identify vulnerabilities and weak-
nesses in AIoT networks. Conducting these assessments allows organizations to take 
remedial actions and strengthen security measures accordingly.

11.3.11  Collaboration and Standardization

Collaboration among industry stakeholders, regulators, and security experts is crucial 
to develop standardized security frameworks, protocols, and best practices for AIoT net-
works. This collaboration ensures consistent security implementation across different sys-
tems and promotes interoperability.

11.3.12  Security Awareness and Education

Promoting security awareness and education among users, employees, and stakeholders is 
vital. Regular training programs and guidelines on cybersecurity practices help mitigate 
human errors and improve overall security posture.

11.4  CYBERSECURITY STANDARDS FOR AIoT NETWORKS
The capabilities of AI and the IoT are combined in AIoT networks to produce intel-
ligent systems that can learn and adapt to their environments. The protection of these 
networks is of the utmost importance because they are susceptible to a wide vari-
ety of cyberattacks. Cybersecurity has gained a lot of popularity over the past decade 
because the complexity introduced by the proliferation of networked devices makes 
it exceedingly difficult to monitor a big volume of data and maintain diversity. The 
term “cybersecurity” refers to the overall framework of measures put in place to safe-
guard information systems, networks, applications, and data from malicious intrusion 
(Rehman et al. 2022). At the application, network, host, and data levels, one can find 
cyber-defensive techniques. Developing barriers to prevent unauthorized access, alter-
ation, or destruction of computing infrastructures, networks, applications, and data 
is a primary focus of cybersecurity. The tremendous rise of data using interconnected 
networks and technologies like big data, IoT, cloud computing, and fog/edge comput-
ing has led to the rapid development of cyberspace, which in return had impacted 
changes in cyber-infrastructure.
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In recent years, layered security architecture has acquired global popularity, with intru-
sion detection systems playing a crucial part in network state monitoring. The architecture 
of layered security demonstrates that there is no single active/passive security solution that 
can defend against a wide variety of threats. Active security solutions, such as firewalls, 
intrusion prevention systems, antivirus software, and access control lists, are commonly 
deployed to address vulnerabilities and attacks at various Open Systems Interconnection 
(OSI) model layers. Their ability to defend against innovative and zero-day threats is, how-
ever, severely constrained. Thus, passive monitoring plays a crucial role, and intrusion 
detection systems at both the network and host level offer security professionals consid-
erable insight. Passive monitoring gives the Cyber Incident Response Team (CIRT) net-
work insight and directs them to upgrade their active security solutions by writing new 
Intrusion Prevention System (IPS) rules, installing updated software patches, and adopting 
new active solutions.

Today’s ever-evolving technological landscape presents an ever-present risk of 
security being breached in service of malicious ends. People have experienced both 
the benefits and drawbacks of technology over the years. Negative measures include 
data theft, data manipulation, and making breaches in security that could in return 
harm possible aspects in the concerned domain, while positive measures include 
setting trends and bringing huge changes to fields like Machine Learning (Angelov 
et al. 2019), the IoT (Gubbi et al. 2013), cybersecurity, and wireless sensor networks 
(Wang and Balasingham. 2010).

Digital technologies demand new frameworks. All economically advanced nations view 
AI development as essential to worldwide competitiveness and national security. AI is used 
in education, personalized treatment, environmental preservation, and more. AI is now 
crucial to any nation’s digital economy. Yet, the risks of AI technologies require legislative 
safeguards for AI system security (Kseniia and Minbaleev. 2020). Table 11.1 illustrates the 
existing standards and their description.

11.5  IMPORTANCE OF SECURITY FOR AIoT
Integrating AI into IoT devices can bring many benefits, such as improved efficiency, 
enhanced decision-making capabilities, and increased automation. However, it also 
introduces new security concerns that must be addressed. Incorporating AI into IoT 
devices enhances the attack surface, as more devices and data kinds are communi-
cated when AI is incorporated. This can make it easier for attackers to identify system 
weaknesses.

1.	Complex Algorithms: It can be hard to protect AI’s complex algorithms from attacks 
like adversarial attacks, in which an attacker changes the input data to trick the sys-
tem into making bad decisions.

2.	Increased Attack Surface: Integrating AI in IoT devices increases the attack surface, 
as there are more devices and more types of data being transmitted. This can make it 
easier for attackers to find vulnerabilities in the system.



184    ◾    Artificial Intelligence of Things (AIoT)

3.	Data Privacy: To learn and make choices, AI relies on vast volumes of data, which 
may include sensitive information. This raises issues regarding the privacy of the data 
as well as the possibility of data breaches.

4.	System Failure: Failure of a system can have severe repercussions, particularly when 
it occurs in systems that are employed in essential infrastructure, such as those used 
in the healthcare industry, the transportation industry, or the energy industry. It is 
therefore of the utmost importance to make certain that AI systems are built to be 
resilient and can continue to function if they are targeted by an attack.

5.	Human Error: Incorporating AI into IoT devices can also raise the danger of error 
caused by humans, particularly if users are not adequately taught or do not compre-
hend how the system operates. This can result in the accidental disclosure of sensitive 
information as well as various types of security flaws.

It is crucial to make certain that security is incorporated into the AIoT system from 
the very beginning to help alleviate these security problems. This includes putting into 
practice the concepts of security by design, carrying out regular security assessments, and 
making certain that all devices are kept up to date with the latest security patches. In addi-
tion, it is essential to give users with the appropriate training and knowledge, as well as to 
have response strategies in place, so that any security incidents may be rapidly contained 
and mitigated.

TABLE 11.1  Existing Standards and Description

Standard/Regulation Description Focus Areas

ISO/IEC 27001 Information Security Management System 
(ISMS)

General cybersecurity management

ISO/IEC 27019 Information security for energy/utility sectors Critical infrastructure protection
NIST SP 800-183 Network of Things (NoT) – Cybersecurity 

Framework
IoT device lifecycle

NIST SP 800-183A Security Capabilities of IoT Devices Device security features
NIST SP 800-183B IoT Non-Technical Supporting Capability 

Baseline
Non-technical considerations

IEC 62443 Industrial Communication Networks Industrial IoT cybersecurity
EN 303 645 Cybersecurity for Consumer IoT Consumer IoT device security
EN 303 645-1 Requirements for Consumer IoT Baseline security requirements
EN 303 645-2 Guidelines for implementation Implementation guidelines
UL 2900 Software Cybersecurity for Network-

Connectable Products
Software security for connected 
devices

CIS Controls Center for Internet Security (CIS) Controls General cybersecurity best practices
CSA IoT Controls 
Framework

Cloud Security Alliance (CSA) IoT 
Controls Framework

IoT security controls and guidelines

HIPAA Health Insurance Portability and 
Accountability Act

Healthcare IoT data security

GDPR General Data Protection Regulation Data protection and privacy
CCPA California Consumer Privacy Act Consumer data privacy (California)



Cybersecurity Standards for AIoT Networks    ◾    185

There are not enough precise standards for the security of AIoT yet. Although numer-
ous broad cybersecurity standards can be applied to AIoT systems, there is a need for more 
specific standards that meet the unique security issues that are presented by AIoT. The 
necessity for decisions to be made in real-time is one of these problems, along with the 
utilization of machine learning algorithms and the integration of AI with legacy systems. 
Existing cybersecurity guidelines for AIoT tend to place more emphasis on security and 
preliminary risk evaluations than they do on privacy issues and do not offer any recom-
mendations regarding continuous monitoring and enhancement. There is a need for stan-
dards that address privacy problems such as the reduction of data, user consent, and the 
retention of data, because of the vast amounts of personal and sensitive data that can be 
acquired by AIoT devices.

Moreover, cybersecurity requirements and laws for AIoT vary greatly among nations 
and regions, causing confusion and compliance issues for firms that operate in several 
jurisdictions. Further international collaboration and harmonization are required to pro-
duce consistent and interoperable AIoT security standards.

11.6  CYBERSECURITY STANDARDS FOR AIoT NETWORKS
AIoT networks combine the power of AI with the devices connected to the IoT, result-
ing in a complex system with its own set of unique security concerns. Several different 
cybersecurity standards have been developed to guarantee the safety of IoT networks. As is 
common knowledge, several Standard Development Organizations (SDOs) including the 
International Organization for Standardization (ISO), the International Electrotechnical 
Commission (IEC), the European Committee for Standardization (CEN), the European 
Committee for Electrotechnical Standardization (CENELEC), and the European 
Telecommunications Standards Institute (ETSI) are developing AI-related manuals and 
standardization deliverables. Such investigations may aid in appreciating the nature of the 
new and assessing if it is sufficiently distinct from what has come before to warrant or 
necessitate the development and implementation of new methods. In addition, they could 
guide the application of existing methods to new ones or describe new procedures to fill 
in the gaps.

The following is a list of some of the most essential standards for the cybersecurity of 
IoT networks:

11.6.1  NISTIR 8259A IoT Device Cybersecurity Capability Core Baseline

The National Institute of Standards and Technology (NIST) report NISTIR 8259A provides 
advice for controlling cybersecurity and privacy concerns in IoT devices. The research 
addresses critical design and development considerations for IoT devices, including secu-
rity capabilities, data protection, and interoperability. In addition, it defines a risk man-
agement methodology for IoT devices, including methods for identifying, assessing, and 
mitigating cybersecurity and privacy threats throughout the device lifecycle. The purpose 
of this paper is to assist enterprises in formulating and implementing appropriate security 
and privacy strategies for IoT devices (Michael Fagan (NIST). 2020).
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11.6.2  ESTI EN 303 645 Cybersecurity Standard for IoT

The ETSI EN 303 645 standard specifies the minimum requirements for information secu-
rity in IoT devices. It outlines thirteen requirements that makers of IoT devices need to 
follow to make their products resistant to hacking attempts. These rules include require-
ments for unique default passwords, protection against known vulnerabilities, secure soft-
ware, firmware updates, and transparency in reporting security concerns to end users. The 
purpose of the standard is to address concerns about the potential for cybercriminals to 
exploit IoT devices and to improve the privacy and security of IoT devices. The standard 
will also increase the privacy of IoT devices. It is relevant to all varieties of IoT devices, 
including those for the smart home, those that may be worn, and those used in industry 
(ETSI).

11.6.3  ISO 30141 IoT Reference Architecture

ISO/IEC 30141:2018 is an international standard that defines an IoT reference architecture 
(IoT). It lays out the fundamental components of an IoT system and offers recommen-
dations for implementing established standards and cutting-edge technologies. Concerns 
for privacy and security have been incorporated into the standard, making it useful for 
ensuring the interoperability, stability, and security of IoT devices. Stakeholders includ-
ing designers, implementers, and regulators can use it to guarantee the interoperability, 
dependability, and security of IoT systems as it provides a standard language and structure 
for understanding and developing such systems. Privacy and security in IoT systems are 
also addressed, as well as the utilization of existing IoT standards and future technologies 
(ISO “Iso/Iec 30141:2018 Internet of Things (Iot)—Reference Architecture”).

11.6.4  ISO 27400 IoT Security and Privacy

The international standard ISO/IEC 27400 is a comprehensive document that offers rec-
ommendations for the management of cybersecurity risks in the context of the IoT. It 
contains guidelines, protocols, and procedures for detecting, evaluating, treating, and 
monitoring cybersecurity threats that are unique to IoT devices and systems. The objec-
tive of the standard is to provide businesses with guidance that will assist them in estab-
lishing and maintaining efficient cybersecurity risk management frameworks for their 
respective IoT environments. Additionally, it offers direction on how to address the privacy 
threats that are linked with the devices and systems of the IoT (ISO “Iso/Iec 27400:2022 
Cybersecurity—Iot Security and Privacy—Guidelines”).

11.6.5  ISO 27000 Information Security Management Systems

ISO/IEC 27000 for Information Security Management provides an overview and frame-
work for enterprises implementing the ISO/IEC 27000 set of standards. The standards 
include different elements of information security, such as risk management, security con-
trols, and legal and regulatory compliance. These standards outline the requirements for 
an ISMS and provide a framework for managing and protecting sensitive data through 
risk management processes. This framework comprises requirements for building and 
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maintaining an information security management system, assessing and treating infor-
mation security risks, and applying security controls. This set of standards is widely rec-
ognized and accepted as a recommended practice for managing information security 
by enterprises worldwide (ISO “Iso/Iec 27000:2018 Information Technology—Security 
Techniques—Information Security Management Systems—Overview and Vocabulary”).

11.6.6  ISO 27001 & 27002

ISO/IEC 27701 standard is an extension of the ISO/IEC 27001 information security 
management standard. ISO/IEC 27701 provides a framework for implementing a pri-
vacy information management system (PIMS) in organizations, with a focus on protect-
ing personal data. It specifies requirements and guidelines for managing privacy risks, 
ensuring regulatory compliance, and demonstrating accountability to stakeholders. The 
standard is designed to be integrated with the ISO/IEC 27001 management system and can 
help organizations achieve compliance with privacy regulations such as the EU’s General 
Data Protection Regulation (GDPR) (ISO “Iso/Iec 27001:2022 Information Security, 
Cybersecurity and Privacy Protection—Information Security Management Systems—
Requirements”). The standards cover aspects such as risk management, security controls, 
and legal compliance. ISO/IEC 27001 specifies requirements for an information security 
management system, while ISO/IEC 27002 provides a code of practice for information 
security management. These standards are widely adopted as best practices for managing 
information security (Disterer. 2013).

11.6.7  ISO 27032 Guidelines for Cybersecurity

The ISO/IEC 27001 standard stipulates the standards for establishing, implement-
ing, maintaining, and continuously improving an organization’s ISMS. The standard is 
intended to assist organizations in managing and protecting their information assets, 
including customer data, financial data, and intellectual property, by recognizing risks 
and adopting controls to mitigate them. The standard is widely recognized and accepted 
as a best practice for managing information security by enterprises around the world 
(ISO “Iso/Iec 27032:2012 Information Technology—Security Techniques—Guidelines for 
Cybersecurity”).

11.6.8  ISO 27033 Network Security

ISO 27033 is a series of network security standards from ISO. It guides network infrastruc-
ture security and data confidentiality, integrity, and availability. The three-part series ISO 
27033-1 gives an introduction to network security and defines important ideas, models, 
and architectures; ISO 27033-2 provides guidelines for the design, implementation, and 
management of network security measures; and ISO 27033-3 addresses cloud computing 
network security.

The ISO 27033 series can be used with ISO 27001 for information security manage-
ment and ISO 27002 for information security controls in enterprises of all sizes. The series 
helps organizations build a comprehensive network security strategy that protects impor-
tant assets and information from internal and external threats (ISO “Iso/Iec 27033-1:2015 
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Information Technology—Security Techniques—Network Security—Part 1: Overview 
and Concepts”).

11.6.9  ISO 27034 Application Security

ISO 27034 sets application security requirements. It helps enterprises manage and 
improve application security from design to testing and maintenance. ISO 27034-1 
gives an overview of application security and describes the ideas, principles, and pro-
cesses essential to protecting applications; ISO 27034-2 provides guidelines for imple-
menting application security controls; and ISO 27034-3 guides managing application 
security risks.

The ISO 27034 series can be used with ISO 27001 for information security manage-
ment and ISO 27002 for information security controls in enterprises of all sizes. The series 
helps organizations develop a comprehensive application security strategy that protects 
vital assets and information by addressing technical and non-technical elements (ISO “Iso/
Iec 27034-1:2011/Cor 1:2014 Information Technology—Security Techniques—Application 
Security—Part 1: Overview and Concepts—Technical Corrigendum 1”).

11.6.10  CEN CENELEC Joint Technical Committee JTC’s

JTC 13 and JTC 21 are the names of the two Joint Technical Committees (JTCs) that 
are primarily responsible for AI and cybersecurity work at European Committee for 
Standardization-European Committee for Electrotechnical Standardization (CEN-
CENELEC) (P. Bezombes. 2023). The topic of discussion in JTC 13 is something that 
has been called the “limited scope” of cybersecurity. A list of standards from ISO-IEC 
that are of interest for AI cybersecurity are selected and then CEN-CENELEC may 
adopt or adapt these standards based on their agreement to technically cooperate. The 
most prominent standards that have been identified are those that are part of the ISO 
27000 series, which focuses on information security management systems. These stan-
dards may be supplemented by the ISO 15408 series, which focuses on the development, 
evaluation, and/or procurement of information technology products that have security 
functionality. Additionally, sector-specific guidance may be utilized. ISO 27001–27008, 
ISO 27010–11, ISO 27013–14, ISO 27016–17, ISO 27021–23, ISO 27031–32, and ISO 27035 
are some of the standards that are covered. These standards were identified by CEN–
CENELEC followed by ISO/IEC AWI 27090 Cybersecurity-Artificial Intelligence, which 
addresses the loop holes and criteria in AI and ISO/IEC CD TR 27563. Cybersecurity-
Artificial Intelligence addresses the partial impact of AI in security at initial stages to 
test systems impacts.

Trustworthiness features, data quality, artificial intelligence governance, artificial intel-
ligence management systems, etc. are all part of the broader cybersecurity topic that JTC 
21 is tackling. Considering this: ISO/IEC 22989, ISO/IEC 23053, ISO/IEC TS 4213, ISO/
IEC DIS 42001 for AI management system, the ISO/IEC 23894 is for Guidance on AI risk 
management, the ISO/IEC FDIS 24029-2 is for  methodology for the use of formal meth-
ods, and ISO/IEC CD 5259 series are for  data quality and for data analytics in Machine 
Learning (ML) should be consider.
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11.7  IDENTIFICATION AND AUTHENTICATION PROTOCOLS
Due to the increase in the number of IoT devices, the security of these devices is very 
important. IoT technology is a network of small, lightweight devices that is growing at a 
very fast speed. Security concerns must be addressed for IoT deployment so that it is effec-
tive for daily life. Security concerns related to commercial and personal purposes must be 
kept in mind while deploying these devices (Eijndhoven. 2020). To address these security 
problems, authorization and identification protocols are applied. Ensuring the integrity of 
the IoT network’s authorization control is an effective method as it prevents unauthorized 
people from accessing these devices. To enhance the quality and to add automation in this 
process, AIoT networks are gaining popularity. Due to the increased number of devices 
and complex networks, it is crucial to take help from the latest technologies of Artificial 
Intelligence.

For this purpose, multiple protocols can be employed to enhance the security of AIoT 
networks. Some of these protocols are traditional like passwords and digital certificates. 
Modern methods like biometric authentication and OAuth2 can add additional layers to 
the security of the networks. Let’s examine each protocol more deeply.

11.7.1  Passwords

Passwords are one of the traditional methods of authentication to prevent unauthorized 
activity in IoT networks. To gain access to the network, the user must put in a valid pass-
word. Although this prevalent method is effective to some extent, due to the presence of 
brute-force attacks, this technique is susceptible. Once the user finds the right combination 
of the characters as a valid password, the network will be compromised, and it can lead to 
data and security breaches. Now this encourages us to find alternatives and more secure 
authentication protocols.

11.7.2  Digital Certificates

Digital certificates are also used to detect the validity of the users. These certificates are 
issued by a well-known third-party certification authority, and the certificates  have criti-
cal information related to devices like devices name, public key, and expiry date. The cer-
tificates are widely used in web applications and IoT devices such as Secure Sockets Layer, 
and Transport Layer Security (SSL/TLS) to enhance security. Digital certificates are also 
vulnerable to cyber-attacks as intruders may hack third-party systems and tamper with 
the information on the certificate (Lal, Prasad and Farik. 2016). Figure 11.1 shows the iden-
tification and authentication protocols.

11.7.3  Biometric Authentication

Biometric authentication involves the physical verification of the user. The user must pro-
vide fingerprints, facial recognition, or voice recognition to log into IoT networks. This 
seems a more secure method as it involves the physical characteristics of the users, and it is 
very difficult to change these features (Lal, Prasad and Farik. 2016). Although biometrics is 
considered one of the safest methods to enhance the security of IoT devices, there are some 
limitations to the effectiveness of this methodology.
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11.7.4  Kerberos Authentication

Kerberos Authentication is a third-party authentication system developed by MIT and is 
considered very safe due to its complexity. It is mostly used in distributed networks where 
users need access to different stations. Kerberos uses symmetric key encryption techniques 
and a key distribution center (Baliello, Basso and Giusto. 2002).

11.7.5  OAuth2

OAuth2 is an authentication protocol that is widely used due to its easiness. It enables users 
to log into different online applications and networks using third-party software that has 
the information of the user. This protocol is a kind of permission for the application to use 
the data of the user on his behalf to log in to a new system (Richer and Sanso. 2017). This 
methodology is frequently used in social media and cloud-based applications. In addi-
tion to these protocols for authentication, AIoT networks may use some other methods 
like encryption, firewall, and intrusion detection systems. The range of these protocols 
indicates that organizations should use different combinations for the authentication and 
identification of the users. Figure 11.2 shows the general digital signature system.

11.8  DATA ENCRYPTION AND INTEGRITY PROTECTION

11.8.1  Data Encryption

IoT devices are producing large amounts of data in real-time. With the implementation 
of cloud computing devices, this data is stored in cloud servers. Cloud computing is an 

FIGURE 11.1  Identification and authentication protocols.
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emerging field that involves the storage and processing of the data produced by IoT devices 
in complex networks. However, the data on the internet is at risk as intruders may attack 
and steal the data. The resources needed for IoT devices are less compared to normal com-
puters as IoT devices consume less power and network bandwidth. To secure the data of 
these devices, traditional encryption algorithms can be used like Advanced Encryption 
Standard (AES), Data Encryption Standard (DES), and Triple Advanced Encryption 
Standard (3AES). But, because these particular algorithms are very complex and need high 
computation resources, these methods are not suitable especially for limited resources 
enabled IoT devices  (Mehmood et al. 2019).

Encryption is the process of converting normal text into encrypted text. This is help-
ful to prevent unauthorized access to the data being transformed. For each data transfer, 
an encryption key is generated to protect the data. Mathematical functions are used to 
transform the normal data into an unrecognizable form so it will not be understandable to 
intruders. Once the data are reached, the destination decryption key is used to convert the 
encrypted data back into its original form. In IoT devices, large amounts of data are being 
transferred, so encryption methodologies are applied to protect the data. The unauthor-
ized persons will not be able to understand or decode the data being transferred. Different 
combinations of symmetric and asymmetric algorithms are used to further protect the 
systems. The following are some of the algorithms used for the data encryption of AIoT 
devices.

FIGURE 11.2  General digital signature system.
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11.8.2  Cryptography

Cryptography is considered one of the most powerful techniques to secure the data 
transmitted over a network. The integrity of data can be protected with the help of 
cryptography as no one can access and modify the data. Encryption and decryption are 
the processes applied in cryptography. The data is transformed into an unrecognizable 
form so the third party will not be able to understand the data even if they get access. 
The data is then converted back to its original form with a decryption key. Symmetric 
cryptography uses the same keys for encryption and decryption. On the other hand, 
asymmetric cryptography uses different keys for the encryption and decryption  
of the data.

11.8.3  Blockchain Based Encryption

In blockchain-based encryption, a Third-Party Authenticator (TPA) is involved to protect 
the security of the data. It uses multiple blockchain groupings of information and signa-
ture keys of IoT networks. The data is protected with hash keys that are assigned randomly 
in constant-size blocks. This methodology is cost-effective as it calculates the cost of the 
IoT integrity from the central server to the device. Cross distribution and blockchain link-
age are applied to manage multiple devices at a time at a low cost (Sim and Jeong. 2021).

11.8.4  Public Key Infrastructure (PKI)

Public Key Infrastructure is a complex system to manage the AIoT network’s credentials. 
Due to millions of IoT devices, it is very difficult to manage a centralized system to allocate 
security certificates to these devices. AIoT devices have constraints like low power and 
computation resources. PKI is a lightweight mechanism that provides the certificate for 
AIoT devices. This enrolment process is very useful for devices with low battery and low 
Random Access Memory (RAM) (Höglund et al. 2020).

11.8.5  Message Authentication Code (MAC)

Generally, single cryptographic techniques lack security and integrity. With the growing 
demand for IoT devices, the mechanism of encryption should be developed with the com-
bination of different methodologies to enhance security. Implicit message authentication 
code (iMAC) is an encryption technique that is based on a combination of polygraphic 
substitution, Exclusive OR (XoR), and simple columnar transportation to calculate MAC. 
It also uses real-time environmental parameters like temperature, pressure, and Received 
Signal Strength Indicator (RSSI) to create secret keys for data transportation (Ullah, 
Meratnia and Havinga. 2020).

11.8.6  Secure Boot

Secure boot technology makes the device boot-up process protective which enables 
security while the device is in boot state. It prevents intruders from making any 
changes in the firmware or hardware settings of the devices. Secure boot is essential 
in AIoT networks as it provides security to devices in the booting process. Once the 
device is booted successfully, the next process is trusted boot. It works on a digital 
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signature that is used to verify the authenticity of the firmware and system settings. 
The digital signature also confirms that the system is not infected with any malware 
(Wang and Yan. 2022).

11.9  NETWORK SEGMENTATION AND ACCESS CONTROLS
Network segmentation and access controls are a very important part of the security of AIoT. 
Segmentation of the network is done by dividing the complex network into smaller net-
works or subnetworks. This is helpful in order to manage the network easily and improve 
its performance. In the context of AIoT devices, the segmentation is slightly different, as 
it involves the separation of different components of the devices. AIoT devices are a com-
bination of different sensors, controllers, and actuators. By separating each component, 
the security and integrity of these devices can be improved. Access controls are deployed 
to permit access to the network settings to only authorized persons. In the AIoT network 
context, access control is specifically applied to limit the access of the users to the network 
settings of the devices.

Network segmentation is a very effective mechanism for dividing the network into sub-
networks and creating different layers. Most enterprises develop their network like a for-
tress. Different network security techniques are deployed to secure this fortress. Network 
segmentation expands the idea of the fortress and creates multiple layers for the defence of 
this fortress. The intruders and attackers will need more time to break these layers to get 
into the settings of the network (Simpson and Foltz. 2021).

11.10 � CHALLENGES TO IMPLEMENT CYBERSECURITY 
STANDARDS FOR AIoT NETWORKS

As most of the AIoT devices are built on the latest technologies, it is a challenge to connect 
new devices to old networks. The newly built devices connected to traditional networks are 
working on legacy protocols. Most of the old networks are working on protocols that were 
specifically designed for computers and devices that have good computation resources. In 
the case of AIoT devices, the computation resources are limited, which causes the devices 
to have some vulnerabilities (Payne and Abegaz. 2018). Some of the reasons the attackers 
prefer to attack IoT devices are the usage of default passwords, lack of encryption, non-
segmented networks, and lack of security updates. Most manufacturers use very weak 
default passwords for the devices, and then these passwords are provided in user manuals, 
so chances of intrusion into these devices are high. Very few users bother to change the 
default passwords because of the complex user interfaces provided by the manufacturers 
(Payne and Abegaz. 2018).

The lack of encryption of IoT networks encourages hackers to intrude on the devices and 
steal commands to get into the data of the devices. In one DEF CON presentation in 2016, 
testing revealed that almost 75% of the devices in the test were easily hackable with hardware 
costing only $200 (Coldewey. 2016). As most users are not aware of the network segmenta-
tion techniques, it is difficult to segment the network, and this leads to security threats. 
Internet Service Providers (ISPs) can provide this feature in the routers and networking 
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devices to apply segmentation easily without any technical knowledge (Payne and Abegaz. 
2018). Virtual Local Area Networks (VLANs) are mostly used in organizations and offices 
that employ technical people to separate different devices and networks. But it is a challenge 
for a non-technical user to do network segmentation to protect it (Payne and Abegaz. 2018).

11.11 � EMERGING TECHNOLOGIES AND THEIR 
IMPACT ON CYBERSECURITY

Cybersecurity concerns are increasing day by day due to the increase in the number of net-
work devices. IoT is being used in everyday life to automate different tasks. Protecting these 
devices and networks from intruders is very important. With new technologies emerg-
ing, there should be a check on the impact of these technologies on cybersecurity. While 
some of these technologies have the potential to improve cybersecurity, others may create 
new challenges and threats. Following are some of the emerging technologies impacting 
cybersecurity.

11.11.1  Artificial Intelligence (AI)

Artificial intelligence is being used in (IoT) devices to detect cyber threats and mitigate 
cyber attacks automatically. With deep learning and unsupervised learning algorithms, 
IoT devices can analyze big volumes of potential threats and problems. However, these AI 
algorithms are available to hackers as well, and  they can use them for harmful purposes. 
Due to AI, the number of cyberattacks is growing at a very high speed, and the nature of 
the attacks is also very complex as hackers are using automated tools to create large vol-
umes of malicious traffic (Patel. 2023).

The purpose of emerging technologies is to develop intelligent systems with high 
capabilities, like humans, to identify potential threats in IoT devices. In this digital 
era, AI methodologies can help organizations and individuals to be safe from cyber 
threats. The massive use of social media applications creates huge volumes of data. To 
protect and analyze this data, the traditional methods will not be effective anymore. 
AI rescues us in textual and graphical data analysis to extract meaningful data and 
then protect it (Li. 2018).

A typical Machine Learning (ML) process consists of the following steps (Xin et al. 2018).

•	 Extraction of the features

•	 Selection of the ML algorithm

•	 Training of the model

•	 Classification or prediction of the unknown using the trained model

Different ML algorithms are deployed for different situations and datasets. Common ML 
algorithms for classification and prediction are Support Vector Machine (SVM), k-nearest 
neighbour (k-NN), decision tree, and neural networks. It is important to select the right 
algorithm for specific industrial problems (Li. 2018).
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11.11.2  Blockchain

The lack of security protocols for IoT devices brings many challenges and risks. Blockchain 
is distributed technology that can be deployed to secure IoT devices. A blockchain is a 
combination of linked blocks that are cryptographically protected, and their data is saved 
in a distributed and decentralized ledger. With many advantages over traditional meth-
ods, blockchain technology is considered one of the most secure to protect IoT devices 
(Saxena, Bhushan and Ahad. 2021). First, blockchain technology solves the problem of 
a single point of failure, provides fault tolerance abilities, and incorporates communica-
tion at both ends in devices. Second, the users of blockchain technology can verify the 
other users for communication which protects the devices and data from unauthorized 
access. Third, the storage capacity of blockchain servers is enough to handle and save 
huge amounts of data with all the security updates for IoT devices (Saxena, Bhushan 
and Ahad. 2021). Furthermore, blockchain technology enables the devices to secure the 
data in immutable ledgers which cannot be changed by any unauthorized user (Saxena, 
Bhushan and Ahad. 2021) (Wu et al. 2019).

Network security can be improved with access control using blockchain technology. 
Multiple layers are applied to handle the data and protect it from intruders. These layers are 
connected with a decentralized blockchain network. The data is protected in the multilayer 
blockchain model and the records of the blockchain links are saved in a ledger (Axon and 
Goldsmith. 2002).

11.12  CONCLUSION
To summarize, there are a lot of security-based standards available concerning IoT secu-
rity, although ISO 27000-based information security management systems have a complete 
set of instructions for effective security measurement. Change in the trends for effective 
security solutions using AI methods creates a gap to fill due to AI applications in a cyberse-
curity context. AI-based cybersecurity procedures are being developed to safeguard CPSs 
from zero-day attacks. In cybersecurity, machine learning algorithms are used to manage 
large amounts of heterogeneous data from many sources to generate attack patents and 
accurately forecast future attacker behaviour. But this has brought to cyber experts’ atten-
tion the need to analyze cybersecurity standards after the integration of AI. It is becoming 
increasingly critical to ensure the safety of these connected devices as the number of linked 
devices and reliance on IoT continues to rise. The difficulty of ensuring data privacy and 
integrity in the IoT is further complicated by the integration of AI.
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12.1  INTERNET OF THINGS
The development of the Internet of Things (IoT) has been a gradual process starting with 
individual machines and evolving into networking and the emergence of the Internet. The 
Internet encompasses a variety of personal and organizational computing devices, intranets, 
and other related technologies. The emergence of wireless communication and the develop-
ment of compact computing devices have facilitated the realization of mobile computing. 
The proliferation of diverse electronic devices, including sensors and actuators, has led to the 
assumption that each device is equipped with intelligent sensing and computing capabilities, 
thus heralding the advent of the IoT era. The IoT comprises three primary constituents: the 
“things” themselves, encompassing a wide range of technologies, devices, items, animals, 
and humans; the communication networks interconnecting these devices; and the computer 
networks responsible for transmitting data from the Internet to the respective devices.

The IoT is a network of physical objects equipped with electronics, sensors, software, 
and network connections, allowing them to collect and modify data. Its main benefit is its 
significant impact on daily life and user behavior, such as home security systems enabling 
remote temperature and lock status monitoring. The primary goal of the IoT is to gain 
better insight into nearby or distant environments, allowing users to understand, manage, 
and respond to the data collected to enhance human existence. The integration of objects 
into the IoT has led to numerous business opportunities. However, addressing security 
and privacy concerns, particularly about telecommunications and information technology 
complexities, is necessary for technology advancement and success. Despite its momen-
tum as an evolving paradigm, IoT technology still faces security and privacy challenges 
that must be resolved, as these are closely linked to IoT-connected devices.
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The impact of IoT is significant as it affects various aspects of life, such as people, processes, 
data, and things. People are affected as IoT allows for more control, monitoring, and enhanc-
ing of their capabilities by connecting machines to humans. Processes are also impacted 
as real-time communication between users and machines allows for quicker completion 
of complex tasks. The enhanced capacity to gather data at increased frequencies and with 
heightened dependability significantly influences the process of rational decision-making, 
so illustrating an essential aspect of data’s impact. Furthermore,  IoT significantly impacts 
many entities, such as devices, sensors, processors, and actuators, enabling them to establish 
communication channels and fulfill more substantial objectives. This adds value to objects 
like mobile devices. The IoT market offers numerous opportunities for businesses in various 
industries, and even minor variations can result in significant changes worth billions of dol-
lars in multiple areas within a few years.

The IoT can be seen as a significant data source affecting IT infrastructure. To take 
advantage of this, improved data analysis techniques present unique and critical opportu-
nities for generating data (Ahlgren, Hidell, and Ngai. 2016). However, collecting, prepar-
ing, and analyzing massive amounts of data are challenging. First, the volume of data can 
increase exponentially in just a few months. Second, this type of data is complex and has 
unique characteristics. It has a vast range of variability and is often pseudo-structured or 
unstructured. Evaluating and managing both structured and unstructured data are cru-
cial to obtaining a complete view of the data produced by sensors. Depending entirely on 
a particular data template can substantially constrain the possibility of generating innova-
tive ideas. By conducting comprehensive data analysis, managers can acquire a strategic 
perspective for making decisions about their business.

IoT devices, encompassing a range of technologies such as sensor data, smartphones, 
intelligent software, and social media platforms, have the potential to offer significant 
insights that can inform decision-making processes. In addition, consumer-oriented 
products such as smart speakers, smart TVs, toys, smart appliances, and wearable 
devices have the potential to provide relevant data for the examination of user behav-
ior and the identification of fraudulent actions. Big data derived from IoT devices can 
create value for organizations, providing insights that help improve performance and 
understanding of customer needs (Qureshi, Alhudhaif, et al. 2021). By using analyti-
cal tools such as predictive modeling, clustering, and classification, organizations can 
unlock the full potential of generated data. The advent of IoT and its associated tech-
nologies, such as cloud computing, has facilitated the integration of data sources from 
various fields, resulting in the development of diverse methods. Decision-makers have 
the potential to enhance the performance of IoT and big data applications through the 
integration of AI technology, such as machine learning or deep learning algorithms 
(Alansari et al. 2018). The integration of AI in IoT has created a new area known as the 
Artificial Internet of Things (AIoT).

In the past, using intelligent computational systems was unfeasible due to the enor-
mous amount of data and computational power required. However, the emergence of 
cloud computing and AIoT have enabled organizations to transform their processes and 
enhance productivity by identifying faults through emerging platforms like business 
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intelligence and data analysis platforms. With the speed of technological advancement 
expected to accelerate even further, it is crucial to update AIoT technology, particularly 
regarding software, hardware, and security. One promising security technology cur-
rently being used is Physically Unclonable Functions (PUFs), which use unique keys 
and timestamps to authenticate AIoT objects. However, this approach has limitations, 
including the need for significant computing power to authenticate all objects and mes-
sages in the AIoT network and the potential for a bottleneck when using an authen-
tication server (Alhalafi and Veeraraghavan. 2019). The AIoT field has experienced 
substantial growth due to data sensors, processing and connectivity, software informa-
tion, and various intelligent services that collect and share data through the internet. 
However, this expansion has led to numerous challenges for AIoT, such as connectivity, 
scalability, big data, heterogeneity, security, and privacy, as indicated by various AIoT 
security assessments from different sources.

12.2  AIoT SECURITY CHALLENGES
The field of AIoT security encompasses the various protective measures employed to 
ensure the uninterrupted operation of devices, mitigate the risk of operational or han-
dling harm, and minimize vulnerability to distant cyber intrusions. In the context of 
the increasing prevalence of ubiquitous computing, security and privacy issues have 
emerged as significant areas of concern. The proliferation of AIoT devices and the wide-
spread adoption of cloud platforms have brought about a heightened concern regard-
ing data security. Furthermore, the proliferation of internet-connected devices has 
led to a notable escalation in concerns around privacy. The escalating threat to AIoT 
devices emphasizes the need to identify viable solutions. There is a pressing need for 
a pragmatic resolution to effectively tackle the growing problem of vulnerability and 
significantly reduce the frequency at which cyber criminals operate. The occurrence of 
Distributed Denial of Service (DDoS) attacks in 2016, which targeted AIoT services and 
devices worldwide, functioned as a significant event that alerted the IT community to 
and confirmed the existence of security risks associated with the IoT rather than their 
being merely hypothetical. However, the implementation of personal security measures 
aimed at protecting equipment from both identified and unidentified cyber adversaries 
can offer a potential resolution.

The IoT network has experienced substantial growth due to the emergence of intelli-
gent transportation, smart cities, smart homes, smart grids, smart healthcare, and various 
other applications. The system in question is not just classified as a sensor network, but 
rather a comprehensive framework that encompasses Wireless Sensor Networks (WSNs) 
as a constituent component within its broader ecosystem (Qureshi and Abdullah. 2013). 
The proliferation of Internet-connected devices gives rise to a multitude of worries about 
AIoT, particularly about its susceptibility to vulnerabilities. Concerns encompass a wide 
range of difficulties, including the expansion of botnets, inadequate encryption measures, 
the prevalence of weak passwords, connectivity challenges, financial breaches, inaccurate 
detection techniques, scalability limitations, the management of massive datasets, hetero-
geneity, as well as security and privacy concerns.
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12.2.1  New Security Vulnerabilities

As businesses increasingly adopt AIoT devices, new security vulnerabilities will continue 
to emerge. These vulnerabilities are attributed to limitations in device/object capabilities 
and include the following:

1.	Rise of Botnets: Recently, there has been a surge in the use of botnets for attacks. Botnets 
are groups of infected computers that malicious individuals control without the com-
puter owners’ knowledge. These internet-connected devices are remotely manipulated 
by hackers who exploit the acquired information for illicit purposes. Organizations 
such as hospitals can fall victim to botnets without the management’s awareness, as 
their computer network devices can be hijacked and incorporated into the botnet.

2.	Large Volume of IoT Devices: Cybersecurity professionals have mainly concentrated 
on safeguarding computers and mobile devices. Nonetheless, public and private enti-
ties’ adoption of AIoT devices has gained significant momentum. Presently, there are 
approximately 7 billion gadgets; the figure could climb to 20 billion. The widespread 
use of AIoT devices has led to a surge in security vulnerabilities, which has compli-
cated the work of security specialists.

3.	Lack of Encryption: While encryption is a potent measure against unauthorized 
access to data by hackers, it poses a significant security challenge for AIoT devices. 
Unlike conventional computers, these devices may have limited processing and stor-
age capabilities. Therefore, hackers can easily manipulate the security algorithms 
intended to safeguard AIoT devices more frequently.

4.	Outdated Legacy Security: Connected legacy systems pose an extra worry as they 
seem outdated in an organization increasingly employing many AIoT devices. Such 
legacy systems, lacking updated security standards, could be vulnerable to a breach 
due to a compromise in a single AIoT device on the network.

5.	Weak Default Passwords: Most AIoT devices come with easily guessable default pass-
words, and despite the customary practice of updating passwords, some IT managers 
need to pay more attention to this simple directive. As a result, an AIoT device with a 
weak or predictable password could be vulnerable to a brute-force attack. This grave 
issue is prevalent globally and requires urgent attention. For instance, California offi-
cials in the United States banned default passwords in 2018 as a proactive measure to 
tackle this problem.

6.	Unreliable Threat Detection Models: Numerous companies adopt diverse tech-
niques, such as monitoring user activity, scrutinizing indicators, and adhering to 
security standards, to detect data breaches. However, the proliferation of AIoT devices 
and their intricate nature challenge conventional threat control methods, rendering 
them less effective.

7.	Small-Scale Attacks: While cybersecurity professionals focus primarily on avert-
ing large-scale cyberattacks, the security issue of AIoT lies in small-scale attacks, 
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which are relatively harder to detect and may take place without the organization’s 
awareness. Hackers can potentially compromise various essential technologies, such 
as cameras, scanners, and printers.

8.	Phishing Attacks: Phishing is a pervasive cybersecurity threat that targets all enter-
prise systems, and IoT devices could be the latest attack vector. Hackers may signal a 
particular AIoT device, leading to numerous problems. Even though it is one of the 
most common cyberattacks, it is preventable. However, most organizations need to 
educate their employees adequately about the current phishing risks and how to avoid 
or handle such incidents in a worst-case scenario.

9.	Inability to Predict Threats: Some organizations need a versatile management system 
to monitor activities and offer insights into potential hazards. Security experts must 
adopt a more proactive approach to preempt AIoT security vulnerabilities before they 
arise. Without such a proactive strategy, an organization may fail to detect potential 
breaches promptly.

10.	Lack of Frequent Software Updates: Workers use frequent software updates to man-
age security on mobile devices and laptops. But some AIoT devices get different soft-
ware updates than other technologies, and certain companies need to give their AIoT 
devices essential security updates.

11.	IoT Financial Breaches: When an institution, such as a bank, employs AIoT devices 
to facilitate electronic or e-payments, there is typically an inherent vulnerability that 
exposes them to the potential threat of unauthorized access by hackers. This unau-
thorized access poses a significant danger of compromising sensitive information 
and illicitly misappropriating funds. Numerous firms are taking proactive measures 
to include machine learning or blockchain technology to mitigate financial fraud. 
Nevertheless, there are still some businesses that have not embraced this method.

It vividly portrays the various hazards present in both hardware and software domains. 
The dangers encompass a range of attack vectors: physical, software, network, and encryp-
tion. To effectively tackle these difficulties, the solution must provide a communication 
method that is both adaptable and interoperable with the many devices involved.

12.	User Privacy: Internal and external user data security is a top priority for organiza-
tions, especially given that many employees use IoT devices supplied by their employ-
ers. The enterprise’s reputation may be significantly impacted if a breach leads to data 
compromise. Therefore, preserving privacy is a primary concern within the realm of 
IoT security, necessitating prompt attention and resolution.

13.	Heterogeneity of Connected Devices and Environment: The administration of 
AIoT poses significant challenges, especially in terms of security management and 
service functions, due to the heterogeneous environment of the connected system. 
The heterogeneity of AIoT devices and their surroundings makes effective and effi-
cient management challenging. Although AIoT has numerous uses and has the 
potential to enhance people’s quality of life, it also presents various obstacles that 
must be addressed immediately for it to be widely adopted.



Future Privacy and Trust Challenges for AIoT Networks    ◾    203

Figure 12.1 provides a comprehensive depiction of the classification of security attacks 
in the context of the AIoT.

A flexible and interoperable communication system for AIoT devices must be developed 
to address these challenges. AIoT system holds promise in enhancing individuals’ quality of 
life; nonetheless, it is imperative to confront these obstacles to facilitate widespread accep-
tance and implementation promptly. AIoT is often regarded as the most influential techno-
logical advancement of this era after the establishment of the Internet. The quantity of linked 
physical devices has risen considerably and exceeded the global human population in 2010. 
Recently, there has been substantial progress in creating AIoT-enabled devices. Technological 
developments, particularly in terms of energy-efficient and resource-constrained devices, 
have expanded internet access even for remote locations (Musaddiq et al. 2018; Kraijak and 
Tuwanut. 2015). Table 12.1 shows the AIoT attacks and countermeasures.

12.3  SECURITY REQUIREMENTS FOR AIoT
Establishing security, privacy, and authentication measures is important for standard-
izing any mobile communication system. The security recommendations provided by 
International Telecommunication Union – Telecommunication (ITU-T) encompass a 
range of security aspects that serve to safeguard against significant security risks. The 
security dimensions have several aspects, including user information, network infrastruc-
ture, and applications. Within the context of AIoT, the following dimensions are defined:

•	 Access Control: It is a fundamental and critical measure for AIoT security that 
ensures network resources can be accessed only by authorized devices while prohib-
iting unauthorized devices from accessing network elements, services, stored infor-
mation, and information flows.

FIGURE 12.1  Classification of AIoT attacks.
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•	 Authentication: It verifies the identity of AIoT devices, validates their claimed iden-
tities, and prevents masquerade or replay attacks.

•	 Nonrepudiation: It guarantees that neither the transmitter nor the receiver can deny 
transmitted information.

•	 Data Confidentiality: This safeguards data from unauthorized disclosure by AIoT 
devices and ensures that unauthorized devices cannot understand the content of  
the data.

•	 Data Integrity: It guarantees the accuracy and protection of data from unauthorized 
creation, modification, deletion, and replication, providing indications of any unau-
thorized device activities related to data.

•	 Communication Security: It ensures that only authorized AIoT devices exchange 
information and prevents unauthorized interception or diversion of information 
during transit.

•	 Availability: It ensures authorized AIoT devices’ access to network resources, stored 
information, or its flow, services, and applications.

•	 Privacy: It safeguards the information of AIoT devices that may be inferred from 
their activities.

TABLE 12.1  Overview of AIoT Attacks and Countermeasures

Category Attacks Countermeasures

Network Attacks Traffic Analysis Secure DNP3, PKI, SSL, encryption, authentication
RFID Spoofing IPsec will significantly cut down on the risk of spoofing.
RFID Cloning Encryption, authentication, unique identifiers, jamming
RFID unauthorized access Device Authentication
Man in the Middle Secure DNP3, PKI, TLS, SSL, encryption, authentication

Software Attacks Phishing Attacks Antivirus, schedule signature updates
Worm, Spyware, and 
Virus Attacks

MAPE, Linear SVM, Hybrid Spyware Detection

Malicious Script Runtime Type, Checking, Firewall Checks
DoS Attack SIEM, IDS, flow entropy, signal strength, sensing time 

measurement, transmission failure count, pushback, 
reconfiguration methods

Physical Attacks Node Tempering Physically secure design
RF Interference Device Authentication
Node Jamming JADE, anti-jamming, IPsec Security channel
Malicious Node Injection DLP, IDS, SIEM, Anti-virus, Diversity technique
Social Engineering Secure DNP3, PKI, SSL, encryption, authentication
Malicious Code Use FileZilla as the FTP client.

Encryption Attacks Side Channel Attacks Masking, EMI filtering, Noise addition
Cryptanalysis Attack Blowfish, RSA, ECC, DSA, AES
Man in the Middle Secure DNP3, PKI, TLS, SSL, encryption, authentication
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Despite significant advancements in computing power, energy capacity, and storage 
capabilities, potential attacks on AIoT can lead to severe negative consequences due to 
inadequate enforcement of security requirements. In contrast to wired communications, 
wireless networks possess susceptibility to external intrusions and lack the necessity of 
physical connections. Consequently, wireless-enabled AIoT devices are rendered more sus-
ceptible to attacks owing to the broadcast nature of wireless broadcasts. For instance, a 
breach of confidentiality in an intelligent factory could reveal the manufacturing process. 
At the same time, a lack of data integrity could result in false data injection, modifying 
the manufacturing process and potentially causing safety issues. If availability cannot be 
guaranteed, the plant could cease operating all its machinery, thereby establishing a state 
of safety. Furthermore, the diverse nature of AIoT systems renders conventional trust and 
authentication procedures potentially unsuitable. The security, privacy, and authentica-
tion of IoT devices pose essential issues in the realm of AIoT. Hence, it is imperative to 
understand alternative resolutions that offer a secure, privacy-conforming, and reliable 
authentication mechanism for AIoT to streamline the establishment of safe AIoT systems. 
Figure 12.2 shows the ITU-T security dimensions.

12.4  TRUSTWORTHINESS
Trustworthiness encompasses a wide range of meanings and subtleties that vary depend-
ing on the stakeholders, applications, and use cases involved. At its core, trustworthiness 
refers to the level of confidence a user or stakeholder has in a product or system to perform 
as intended. This definition applies to various technologies, systems, and domains. The 
attributes of trustworthiness consist of dependability, accessibility, durability, security, 
confidentiality, safety, answerability, clarity, soundness, genuineness, quality, ease of use, 
and precision. In the AI domain, trustworthiness is a fundamental concern.

FIGURE 12.2  ITU-T security dimensions.
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The topic of digital trust, or trust in digital solutions, is a complex one. It’s not always 
clear when users consider a digital product to be truly trustworthy. Additionally, with the 
addition of physical product components, such as in the case of smart, connected prod-
ucts, the concept of trust becomes even more complicated. Although security is essential 
for establishing digital trust, other factors, such as ethical considerations, data privacy, 
quality, and robustness (such as dependability and resiliency), also play important roles. 
Considering the potential direct physical influence that AIoT-enabled items can have on 
individuals’ well-being, ensuring safety becomes an additional crucial factor to be consid-
ered. Historically, the concept of safety has been closely linked to the practices of verifica-
tion and validation, as well as the notion of robustness. Hence, it is important to initially 
comprehend the security-related obstacles associated with AIoT requirements to effectively 
tackle the concerns about digital trust.

12.4.1  Security Concerns

The intentional targeting of AI-based systems can occur in various ways. The Belfer Center 
recently released a report that identified two main categories of AI attacks: input attacks 
and poisoning attacks.

1.	Input Attack: It takes advantage of the fact that an AI model is unable to cover every 
possible input, relying on statistical assumptions and mathematical functions derived 
from training data to create a model of the real world. Adversarial attacks manipulate 
input data to mislead the AI model, for instance, confusing a stop sign with a small 
sticker to look like a green light, fooling an autonomous vehicle.

2.	Poisoning Attack: It aims to corrupt the model during the training process. This can 
be accomplished by malicious training data that inserts a backdoor into the model. 
For example, it can be exploited to bypass a building security system or disrupt the 
operation of a military drone.

In the case of AIoT, security is a crucial requirement to uphold consumer trust. However, 
security management is often neglected due to factors such as cost, size, and power limita-
tions. This leaves AIoT systems vulnerable to security attacks, which can result in signifi-
cant financial losses and reputational damage. Investors in AIoT technology will only invest 
in state-of-the-art security measures as security is crucial for maintaining trust among 
consumers. Cybersecurity typically follows the CIA model of confidentiality, integrity, 
and availability. Attackers exploit vulnerabilities in communication protocols to launch 
attacks, which jeopardize service providers’ reputations. Attacks affect all three aspects of 
the CIA, leading to significant concerns for service providers (Un Nisa et al. 2022). AIoT 
devices generate data ranging from small to large scale depending on the application, and 
this data can be critical, such as medical or military data. DDoS attacks pose a significant 
threat to the cyber world as they can bring down victims, and AIoT devices are well suited 
for launching these attacks. Users may not realize their devices, such as baby monitors 
and smart toys, are compromised because they may continue to work even when part of a 
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botnet army. As the number of AIoT devices increases, it becomes crucial to detect botnet 
attacks promptly and remove compromised devices.

12.4.2  Challenges in Technology Adoption

The combination of AI and IoT shows great promise in bringing about positive transforma-
tions in society and business.  However, a significant challenge that many industries cur-
rently face is using cutting-edge technology without the necessary experience and digital 
skills as more and more companies are connecting things. The rapid growth in the num-
ber of internet-connected “things” could result in several challenges related to technology 
adoption. From a cyber-physical system viewpoint, the complexity of the interconnec-
tion of IoT devices with other systems presents a significant challenge to many compa-
nies (Nozari, Szmelter-Jarosz, and Ghahremani-Nahr. 2022). When it comes to technology 
adoption, users have a range of problems, including limitations in budgetary resources, in 
acquiring the essential tools and providing comprehensive training for the total system. 
Insufficient knowledge and awareness present notable obstacles in the process of technol-
ogy adoption.

One of the challenges that may hinder the adoption of AIoT technology is the need 
for increased trust in its reliability. Without confidence in AIoT, adopting the technology 
may lead to delays. Effective data handling relies heavily on accurate knowledge, which 
may be challenging for farmers who need to become tech-savvy and may need experts 
to understand and analyze the AIoT system. However, hiring experts and professionals 
with digital skills to implement and operate new systems and maintain new technology 
operations can be difficult for the industry. Also, privacy and security concerns can delay 
technology adoption (Qureshi, Sikandar and Dhawankar. 2022). The convergence of AI 
and IoT can generate novel security vulnerabilities, such as data breaches and cyberattacks. 
The increasing collection and transmission of substantial volumes of data by IoT devices 
have raised considerable privacy concerns, necessitating enterprises adhering to pertinent 
rules and regulations about data retention. The technology infrastructure holds significant 
importance across various industries as it is a critical factor in facilitating the effective 
integration of novel technological advancements (Ayaz et al. 2019). A company may be 
perceived as using outdated AIoT technology without proper infrastructure.

12.5  FUTURE TRENDS OF AIoT
The proliferation of AIoT devices has led to increased security challenges and threats. 
While AI has immense transformative potential in various sectors, it is currently being 
predominantly utilized for security purposes. Although AIoT is expected to be a signifi-
cant area, the risks involved cannot be overlooked. In complex scenarios involving mul-
tiple variables, AIoT is still far from replacing human labor. However, it can save time 
and cost, optimize resource utilization, and provide intelligent solutions for traffic, homes, 
cities, stores, etc. By leveraging its capability to analyze and comprehend a given context, 
AI can facilitate the identification of anomalies, unusual activities, and early detection of 
attacks, thereby enhancing security measures.
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Statista’s (2016) research predicts that the global number of connected IoT devices will 
surpass 75 billion by 2025. The growing market is leading to an increase in the diversity 
and complexity of IoT networks. This heterogeneity challenges security professionals and 
researchers, as each manufacturer has their hardware and software, and numerous pro-
tocols are available for interconnecting objects. Consequently, AIoT networks are vulner-
able to cyberattacks, and implementing a security solution requires considering various 
factors. However, no single security solution can safeguard all IoT devices from present 
and future threats (Javaid et al. 2022). Due to their limited resources, traditional secu-
rity mechanisms and techniques like firewalls, intrusion detection systems, and anti-virus 
software are unsuitable for AIoT devices. As a result, wireless devices are more vulnerable 
to cyberattacks mainly because of their connection to computer networks and the Internet. 
The limited resources of AIoT systems have a direct impact on their IT security.

Although the security industry has started exploring the potential of AIoT, much 
remains to be done before it can reach its full potential. AI has progressed in advanced  
theory,  but developing it into a complex decision-making system that can handle complex 
situations is still in its infancy. Despite this, many industry leaders believe that AI could 
revolutionize the industry. One of the key security concerns for connected devices is the 
lack of attention given to security during manufacturing. This has made it easier for hack-
ers to exploit weaknesses in the design and configuration of these devices. Moreover, the 
complexity of AIoT data communication makes it difficult for humans to understand and 
predetermine normal data flow. Traditional security technologies can only protect against 
known attacks and vulnerabilities, leaving the system vulnerable to resourceful and inno-
vative cyberattackers (Chen et al. 2021). To prevent exploiting AIoT devices, companies 
should adopt a zero-trust policy and respond promptly to any signs of compromise. AI 
technology plays a crucial role in identifying novel attacks and detecting blind spots by 
recognizing typical behavior in a digital environment. While hardware-related AIoT vul-
nerabilities are debated, local attacks can expose other vulnerabilities, creating a chain of 
compromises that can be exploited remotely.

It is important to note, however, that AI alone is not a complete security solution, espe-
cially if it is not well-designed. The effectiveness of an AI algorithm is highly dependent on 
its training, available datasets, and the quality of the algorithm itself. Poor data quality can 
result in weak AI, low detection rates, and poor security outcomes. To detect previously 
unknown cybersecurity threats, machine learning is utilized with both supervised and 
unsupervised algorithms. Supervised learning involves the analyst training the algorithm 
on the conclusions it should draw, while unsupervised learning is more efficient, with the 
algorithm generating information and making independent decisions about cyber threats 
without human guidance.

Using AI technology can help address the issue of limited security resources, freeing up 
security teams to focus on more critical tasks. This can also help mitigate the shortage of 
skilled workers in the security industry. Additionally, the use of blockchain technology is 
becoming more important in securing IoT devices, as it offers enhanced data storage secu-
rity and guarantees data accessibility, allowing users to store their data on different devices 
and retrieve it as needed.
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12.5.1  AIoT Implementation Advantage

The adoption of AI has the potential to provide numerous advantages. For instance, when 
combined with network and monitoring systems, AI can function as an extra surveillance 
mechanism. In the coming years, AI is expected to become a crucial necessity for busi-
nesses, promoting the creation of novel innovations and enhancing the performance of 
current products (Husin et al. 2021; Massaoudi et al. 2021). There are several advantages to 
using AI technology, including the following:

1.	Cost-effectiveness: While AI technology may have high initial costs in some situa-
tions, it provides substantial cost benefits in the long run by avoiding expenses that 
would arise without it.

2.	Accuracy: AI machines are generally more accurate than humans, regardless of the 
length of time they are utilized or the nature of the work.

3.	Predictive capability: By continuously analyzing and immediately assessing diverse 
data sets, AI can independently generate predictions, which can be used to proac-
tively service machines to prevent unnecessary downtime.

4.	Reliability: AI offers reliable performance by eliminating the possibility of human 
errors once programmed correctly, leading to a consistent quality of outcome.

5.	Speed: AI technology’s ability to quickly identify patterns in repetitive processes 
allows it to diagnose problems or identify fraudulent activities much faster than 
human cognitive abilities, which are limited.

6.	Autonomy: Once machines are programmed, they require minimal supervision for 
repetitive tasks. Moreover, AI technology can continuously learn and perform algo-
rithms with high reliability and take corrective action when errors occur (Javaid, 
Mohd, et al. 2022).

12.6  CURRENT OPEN CHALLENGES AND FUTURE DIRECTIONS
The integration of AI and IoT into AIoT holds promise in delivering substantial conve-
nience to individuals through its diverse range of applications in everyday activities. While 
the AIoT is currently in its nascent phase of evolution, it exhibits considerable potential 
for forthcoming progressions. Nevertheless, implementing AIoT in practical scenarios 
encounters various obstacles, including establishing a collaborative framework among 
end devices, edge servers, and the cloud. This section analyzes the current challenges and 
potential future directions for advancing AIoT.

12.6.1  Heterogeneity and Interoperability

The perception layer of the AIoT employs various devices, including Raspberry Pi and 
Field-Programmable Gate Array (FPGA) based products, along with smartphones, to effec-
tively capture the intricacies of the physical environment (Qureshi, Qayyum, et al. 2021). 
The AIoT architecture’s heterogeneity is evident in deploying various sensors and devices 
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on separate servers to cater to the diverse requirements of different applications or services. 
This approach ensures a comprehensive perception of the environment, as each device is 
specifically chosen to meet the specific needs of its corresponding application or service. 
For instance, sensors designed for Advanced Driver (AD|) assistance systems  are typically 
deployed on Roadside Units (RSUs), whereas sensors intended for smart homes are typi-
cally positioned on intelligent gateways.

To facilitate intelligent decision-making, networked devices within the architecture of 
the AIoT must engage in the interchange and consolidation of data across diverse net-
works such as Bluetooth, NB-IoT, ZigBee, Wi-Fi, HTTP/TCP, or UDP. Consequently, it is 
anticipated that AIoT systems would exhibit a significant level of heterogeneity about the 
diversity of devices, platforms, and frameworks. This emphasizes the criticality of ensur-
ing interoperability and coordination among different devices and platforms. Exploring 
network software paradigms like Software Defined Network (SDN) (C. Wang et al. 2019; 
Huang et al. 2019) and utilizing SDN and Network Function Virtualization (NFV) can 
substantially improve efficiency and flexibility in managing systems. SDN solutions can 
streamline management processes by providing a cohesive framework for administer-
ing diverse devices and sensors. Moreover, SDN can virtualize physical devices and offer 
tailored services to tackle the issue of device heterogeneity. NFV employs virtualization 
technologies to transform network node functions into software modules. In recent times, 
there has been a notable endeavor to amalgamate SDN with NFV inside the realm of edge-
cloud computing. The primary objective of this integration is to augment the Quality of 
Service (QoS) for applications driven by AIoT (Lv and Xiu. 2019; M. Wang et al. 2019).

In addition, for effective communication in the network layer, a uniform communication 
protocol is necessary for the diverse sensors and devices in the edge-cloud environment. 
The Open Flow protocol is a prevalent means of communication between an SDN control-
ler and a switch, garnering significant interest from the academic community (Mondal,  
Misra and Maity. 2019). Implementing Deep Learning (DL) models on a Graphics 
Processing Unit (GPU) edge server can enhance their performance, but incorporating 
NFV into a GPU is still challenging. To effectively implement these paradigms, further 
research and development are required in domains like security, allocation of resources, 
deployment of runtime services, and computational offloading.

12.6.2  Resource Management

The progress of AIoT has led to the development of various applications, such as smart 
homes and Internet of Vehicles (IoV). These systems use multiple sensors and devices that 
are distributed across different locations to gather data. However, these sensors and devices 
have limited computational and storage capabilities, and are often battery-powered, mak-
ing it difficult to perform low-latency computation tasks on them. To optimize the utiliza-
tion of distributed resources across edge nodes and devices, it is recommended to break 
large AI models into smaller subtasks and assign them to various edge nodes and devices 
for collaborative training. The service environments of numerous intricate and heteroge-
neous AIoT applications, such as IoV, exhibit a significant degree of volatility, hence posing 
challenges in accurately forecasting results. Although AIoT has numerous applications in 
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our daily lives and offers significant convenience to people, it is still a nascent technology 
with vast potential. To fully utilize the advantages of AIoT, numerous sensors, and devices 
are distributed throughout the network to gather data. Due to their typical reliance on bat-
tery power and limited processing and storage capacities, the execution of latency-sensitive 
tasks on the computing resources of these devices can present significant challenges. As 
a result, intricate AI models are frequently partitioned into smaller subtasks and distrib-
uted to diverse edge nodes and devices to facilitate collaborative training. The ability to 
orchestrate online edge resources and provision is essential to support substantial tasks 
in the continuously changing service environments of sophisticated AIoT applications. 
Comprehensive attention should be given to solutions that target the real-time optimi-
zation of coordination among heterogeneous end devices’ computation, networking, and 
caching resources during the runtime (Sun et al. 2007). Two approaches are being taken 
by researchers to optimize the performance of AIoT systems. The initial approach focuses 
on reducing bandwidth costs in a wireless multicast channel by implementing integrated 
caching and computing strategies. The second methodology uses AI techniques, including 
deep reinforcement learning (DRL), to effectively handle resource allocation and schedul-
ing (Tang, Zhou and Kato. 2020; Cheng et al. 2019).

12.6.3  Model Inference and Training

The process of optimizing various hyperparameters to enhance the compression and acceler-
ation of AI inference methods typically necessitates the utilization of empirical experiments 
and expert knowledge. Consequently, it becomes crucial to fine-tune networks based on the 
insights gained from these trials. Hence, developing adaptive or automatic compression and 
acceleration techniques holds significant value, as seen by ongoing research endeavors in 
this domain. However, acceleration technologies, like pruning and quantization, may reduce 
performance, making it crucial to implement hardware acceleration to support the execution 
of AI models. The challenge of training AI models in parallel arises from constraints on pro-
cessing, storage, and network resources. Federated Learning (FL) addresses the data-driven 
prerequisites and privacy protection obstacles encountered by AI models within a distrib-
uted computing framework, offering advantages such as minimal data transmission traffic, 
preservation of model quality, and data isolation. Nevertheless, it is essential to note that the 
bandwidth of edge nodes is constrained and exhibits heterogeneity, characterized by vary-
ing computational capabilities and unevenly distributed data. Consequently, these factors 
contribute to communication delays encountered during the distributed Stochastic Gradient 
Descent (SGD) process. Therefore, exploring diverse parallel communication mechanisms 
can improve efficiency further (Rothchild et al. 2020). Although existing quantization meth-
ods primarily apply to AI inference, fine-grained quantization-aware training can be utilized 
for AIoT applications (Chung, Chen and Chang. 2020).

12.6.4  Security and Privacy

AIoT also faces security and privacy concerns, such as privacy breaches and malicious 
attacks. Typically, AI models are deployed at the network’s edge or on end devices to offer 
quick services. Unfortunately, edge servers and end devices frequently possess constrained 
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computing and storage capabilities, rendering them susceptible to malevolent assaults, 
including DDoS operations, such as the infamous Mirai attack. The flooding-based DDoS 
attack continues to pose a significant concern within edge computing systems. Current 
security methods require significant computation and communication loads, which are 
impractical for resource-constrained end devices. Physical Unclonable Functions (PUFs) 
have emerged as an up-and-coming field of study in the realm of security authentication 
within edge computing environments. This is primarily due to their ability to provide 
robust protection against physical intrusion while exhibiting advantages such as low com-
putational overhead, minimal resource utilization, straightforward implementation, and 
distinctive physical characteristics. Furthermore, it is imperative to investigate hardware-
assisted protection techniques that are founded on the Reduced Instruction Set Computing 
(RISC-V) architecture. Preliminary efforts have already commenced in this particular tra-
jectory (Long et al. 2019; De et al. 2020).

AIoT systems are highly susceptible to privacy concerns, with data and firmware attacks 
posing a severe threat to sensitive information, including user location and health records. 
End users and devices frequently generate this data and store it locally, making its protec-
tion critical. In addition, data transmission between edge infrastructures can lead to pri-
vacy breaches, and sufficient and diverse data are required for designing and training AI 
algorithms. One promising solution to address these issues is to use the FL method, which 
performs distributed data training while preserving privacy.

Various technologies can be employed in the edge computing environment to ensure 
privacy while creating AI models that share parameters. These technologies include 
differential privacy, homomorphic encryption, and secure multiparty computation. 
Blockchain technology is also significant in securing the AIoT and can be combined 
with FL and other methods to enhance privacy preservation further. However, block-
chain technology developed for IoT networks may consume many network resources, 
such as communication bandwidth and computational resources, leading to perfor-
mance issues. Researchers have proposed integrating blockchain with the AIoT in the 
upcoming 6G communication network, which can potentially improve AI, data storage, 
and analytics (Sekaran et al. 2020). Therefore, more exploration is needed to develop 
blockchain-based solutions that safeguard users and devices from malicious attacks in 
the AIoT.

12.6.5  Artificial Intelligence Ethics in AIoT

AI algorithms in the AIoT environment can make decisions rapidly without human 
supervision. Therefore, it is essential to develop algorithms that can autonomously 
learn without causing harm or violating human rights. To effectively navigate the ethi-
cal implications associated with AI technology, it is imperative to consider a range of 
design principles, including but not limited to justice, honesty, responsibility, safety, 
and sustainability. Justice is widely regarded as the foremost value within this con-
text, encompassing the imperative to uphold fairness, prevent prejudice, and promote 
diversity across several facets, including data, algorithms, implementation strategies, 
and resultant consequences. Achieving AI justice involves avoiding prejudice and 



Future Privacy and Trust Challenges for AIoT Networks    ◾    213

favoritism toward individuals. Honesty is an essential value that necessitates the pres-
ence of transparency, openness, and interpretability of data and technology to tackle 
ethical concerns related to AI effectively.

Accountability must be established throughout the entire design and implementation 
process, and AI developers, designers, and institutions must assume responsibility for the 
actions and consequences of AI. The paramount objective of AI ethics is to ensure safety, 
which encompasses the prioritization of accuracy, reliability, security, and robustness in 
AI systems. To enhance security, it is imperative for AI designers to explicitly state their 
commitment to preventing foreseen or inadvertent harm, including potential military 
confrontations and malevolent cyberattacks.

Sustainability is another important part of AI ethics, which stresses the need to pro-
tect the environment and improve the ecosystem while building and using AI systems. It 
is imperative to ensure that AI applications are meticulously created, implemented, and 
managed to achieve these objectives, focusing on optimizing energy efficiency and mitigat-
ing their ecological footprint.

12.7  CONCLUSION
AIoT is a new trend integrated with edge and cloud computing services. The rapid adop-
tion of these network applications leads to new security, privacy, and trust challenges. 
These networks have suffered from new security and protection threats aimed at main-
taining end nodes’ or users’ privacy and trust against disruptive attacks designed to incur 
financial losses. The existing services and security systems still suffer from many flaws and 
need to design more efficient and lightweight trust and privacy solutions. In this chapter, 
we discussed the privacy, trust, and security challenges and their possible solution. This 
chapter also discusses the new trend and usage of blockchain and AI in AIoT networks. For 
future AIoT networks, there is a need to design more smart systems by using cost-effective, 
lightweight, and energy-efficient solutions.
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