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discoveries and design new materials. For any materials science researcher or stu-
dent, it may be daunting to figure out if ML techniques are useful for them or, if so,
which ones are applicable in their individual contexts, and how to study the effective-
ness of these methods systematically.
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e Offers introductory material in topics such as ML, data integration, and 2D
materials.

e Provides in-depth coverage of current ML methods for validating 2D
materials using both experimental and simulation data, researching and
discovering new 2D materials, and enhancing ML methods with physical
properties of materials.

e Discusses customized ML methods for 2D materials data and applications
and high-throughput data acquisition.

* Describes several case studies illustrating how ML approaches are currently
leading innovations in the discovery, development, manufacturing, and
deployment of 2D materials needed for strengthening industrial products.

* Gives future trends in ML for 2D materials, explainable Al, and dealing
with extremely large and small, diverse datasets.
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’I Introduction to
Machine Learning for
Analyzing Material—-
Microbe Interactions

Venkataramana Gadhamshetty,
Parvathi Chundi, and Bharat K. Jasthi

1.1  INTRODUCTION

Analogous to the silicon revolution in the 1970s where silicon-enabled miniaturized
computing has transformed the field of information technology, especially by replac-
ing the obsolete centralized mainframes, advanced materials are also expected to
revolutionize emerging industries. Such materials are expected to address health, eco-
nomic, and environmental challenges facing modern society. They are also expected
to transform the performance of construction, defense, energy, environment, mining,
healthcare, and manufacturing domains [1]. For instance, advanced materials that
feature sustainability benefits can potentially mitigate the negative environmental
impacts of current methods of material production. For instance, greenhouse gas
emissions from material production using current technologies have reached 11 bil-
lion tons of CO, equivalent, which represents a 120% increase compared with that in
1995 [2]. Given the predictions of an increase in material consumption (62 Gt/year,
current) to 100 Gt by 2030 [3], the financial and environmental burden can also be
expected to increase accordingly. Advanced materials are also expected to alleviate
recurring issues related to abiotic corrosion and microbiologically influenced corro-
sion (MIC) of materials. Assuming that advanced materials can significantly improve
health, environmental, economic, and performance improvement benefits, there is
a compelling need for embracing artificial intelligence (AI) and machine learning
(ML) methods for accelerating the discovery and implementation of advanced mate-
rial systems.

Unusual nanoscale phenomena and associated properties of two-dimensional (2D)
materials render them promising advanced materials in many technologically rele-
vant applications. Some of the desirable properties observed so far include low-profile
thickness, low permeability, mechanical flexibility, and higher values of carrier
mobilities, superconductivity, and optical absorption compared with their bulk coun-
terparts [4—6]. These properties render them candidates for serving high-performance
barrier coatings [7—-11], energy devices [12—-16], catalysts [17-22], biosensors [23-26],
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spintronics [16,27-29], and supercapacitors [30—33]. With the successful exfoliation
of graphene in 2010 and its implementation in diverse applications, there has been a
significant interest in discovering other promising 2D materials including hexagonal
boron nitride (hBN), metallic carbides, nitride, and carbonitrides (M Xenes) [34—36].
However, such a discovery and implementation process requires significant infra-
structure (human and hardware) and extensive efforts for extended periods of time
(~10-20years) [20], all with many odds of failure. ML methods, some of which are
discussed in this book, can accelerate the discovery of new 2D materials and our
ability to predict their properties without any apriori experiments.

Every material, equipment, and piece of infrastructure exposed to the natural and
built environments are subject to degradation by physical, chemical, and biological
processes, or their combinations. The prospects for degradation or corrosion are typi-
cally amplified in the presence of living microorganisms. Biofilms represent a robust,
self-excreted extracellular polymeric substance that is known to encapsulate living
microbial cells. Owing to the complex three-dimensional (3D) architecture, multi-
cellular community, and surface colonization lifestyle, biofilms are known to confer
protection to the encapsulated cells against any known environmental stressor (e.g.,
antibiotics, disinfectants, turbulence, nutrient limitations, and extreme physical and
geochemical conditions). Thus, biofilms are omnipresent, and they critically influ-
ence the performance of materials used in any agricultural, industrial, and human
systems. The design and development of advanced materials, especially protective
coatings for controlling biofilms and their MIC effects, should consider biological
mechanisms along with typical cost and performance metrics. Such noninvasive
coatings based on 2D materials can then be used to influence genotypical and sub-
sequently phenotypical responses (e.g., adherence state, quorum sensing, and MIC)
in each biological environment. Recent works by the authors and their coworkers
have demonstrated the use of graphene and 2D hBN materials for enabling benefi-
cial biofilms in environmental biotechnology applications (e.g., microbial fuel cells
[37—41] and bioenergy production [42]) and for controlling the detrimental effects of
harmful biofilms (e.g., MIC prevention [43—49]). Further efforts can enable the use
of these 2D coatings in a range of practical applications including corrosion preven-
tion in water pipes, oil wells, air conditioners, cooling towers, and other engineering
applications.

Considering the rush to accelerate the discovery and deployment of 2D mate-
rials, one can expect the use of computer science aspects (e.g., big data and ML)
for enabling 2D material innovation. Nearly, 1000 different promising 2D materials
have been reported. Considering the interest in functionalizing these materials, for
example, by doping with one of the 84 stable elements, one can expect 84 variations
of each 2D material when doped with a single element. The variety of these materials
will increase to 3486 with two dopants, 95,284 combinations with two dopants, and 2
million combinations with four dopants. One can thus expect 2 billion combinations
for 1000 different 2D materials. If one were to explore their performance in biologi-
cal environments, especially individually with thousands of technologically relevant
bacterial species, the estimated efforts and the amount of big data can be overwhelm-
ing. Typically, the “big data” at the microbe—material interfaces are characterized in
terms of three Vs (greater variety, increasing volumes, and higher velocity). To help
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readers visualize the gigantic amount of data, ~2314 exabytes of big data have been
reported to be generated by health care alone in 2020. Both environmental biotech-
nology and biomedical fields envision omics to be a cornerstone for big data, which
include different modalities at a level of individual gene, protein, and metabolite. It is
clear that the growth of biological data can be expected to grow at an unprecedented
rate.

Computer science tools will become necessary for handling the big data, when
one tries to fuse the materials and biofilm phenotype data when performance of
advanced materials is assessed in microbial environments. Many of the state-of-
the-art computational tools that predict biofilm phenotypes using gene and genome
sequencing data do not necessarily take material properties into account.

To address the above issues, the core contributors to this book, primarily editors
and authors, have formed an interjurisdictional consortium that was funded by the
National Science Foundation (OIA # 1920954 [50] and 1849206 [51]). This consor-
tium used convergence research with a focus on exploring the use of 2D materials
for addressing vexing research problems facing biological applications. In particular,
we focused on exploring the use of 2D materials for addressing the growth of bio-
films responsible for MIC. This research required a deep integration of knowledge,
theories, methods, and data from diverse disciplines (bioscience, computer science,
and material science). A goal for this project was Biofilms Data and Information
Discovery System (Biofilm-DIDs), which integrates metadata from accessible mate-
rials and biofilm data sources. Natural language processing (NLP) queries will allow
users to predict biofilm phenotype on a material. Other parallel goals were to develop
automated approaches to analyzing the properties of materials, as well as the proper-
ties of biofilms grown on these materials. Ultimately, the material-microbe fusion
analysis framework developed in this project is expected to assist in accelerating the
development of 2D protective coatings for bioengineering applications. This project
used copper (Cu) as a model for technologically relevant metals exposed to biologi-
cal environments. Thin films of graphene and hBN were used to obtain 2D pro-
tective coatings on these metal surfaces. Cu was selected for its catalytic effect in
synthesizing graphene and hBN using chemical vapor deposition (CVD) methods.
Oleidesulfovibrio alaskensis G20 (previously known as Desulfovibrio Alaskensis
G20) was used as a model organism.

Overview of this book: Chapter 2 provides readers with a comprehensive over-
view of 2D materials, including the classification of 2D materials and their synthe-
sis methods, principles of 2D material design, and examples of applications that
leverage the merits of these materials. Chapter 3 provides an overview of different
ML approaches (e.g., supervised, unsupervised, semi-supervised, self-supervised,
and reinforcement learning) that can be used in both 2D materials and biofilm
research. Chapter 4 introduces the ML approaches that can be used to accelerate
the discovery process of 2D materials. This chapter discusses supervised learning,
unsupervised learning, and reinforcement learning methods that can effectively
enable 2D material discovery. Chapter 5 transits into biology domains, where a
hybrid U-Net based on convolutional neural networks (CNN)—vision-transformer-
based contraction layers was used to analyze scanning electron microscopy (SEM)
images of Oleidesulfovibrio alaskensis (OA)- G20 biofilms. Chapter 6 uses deep
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CNNs (DCNNs) for enabling the automatic classification and segmentation of
biofilm entities, along with the corrosion products from the SEM images of met-
als exposed to biofilms. Chapter 7 gets into the depth of using ML methods for
analyzing underlying biological mechanisms in these cells (e.g., protein—protein
interactions). Chapter 8 provides an overview of the Biofilm-DIDs, with the goal
of highlighting their features for collecting and combining a large materials and
biological data sets and leveraging Al methods for analyzing and predicting gene
responses and biofilm characteristics influenced by material surface properties.

Chapter 9 discusses the use of ML approaches for addressing issues with the char-
acterization of 2D materials (e.g., defects) relevant to many biological applications.
Traditional methods of 2D material detection can involve hundreds of hours of man-
ual labor. Despite this assiduous investigation, the structure—property relationships
of 2D materials are perplexing and inconclusive. We discuss ML methods to analyze
the image and spectrum data sets as input features and streamline them to predict the
fingerprint features of 2D materials within seconds. Chapter 10 introduces atomistic-
level simulation techniques for analyzing microbe—2D material interactions, and the
use of bioinformatics and ML tools for this analysis. Chapter 11 discusses futuristic
technologies (e.g., alloy development, drug delivery, and quantum materials) that can
leverage ML approaches. Chapter 12 discusses needed Research and Development
(R&D) efforts to further enable the development of ML-driven frameworks for 2D
material discovery.
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2 Introduction to
2D Materials

Roberta Amendola and Amit Acharjee

Since the discovery of graphene and its unique properties, interest in materials that
are a few atomic layers thick has been quickly increasing. These “sheet-like” materi-
als are currently known as two-dimensional (2D) materials and consist of more than
150 categories beyond graphene.

This chapter provides a comprehensive overview of 2D material classification,
synthesis, functionality, and applications, which equips readers with the basic infor-
mation needed to understand the principles of 2D material design, while laying a
foundation for the topics, which are presented in the following chapters of this book.

2.1 CLASSIFICATION OF 2D MATERIALS

The size and dimensionality are fundamental parameters defining a material’s
properties.

Nanomaterials are currently classified based on the number of dimensions that are
outside the nanoscale range, defined as lower than 100 nm. Based on this definition,
materials are identified as zero-dimensional (OD) when no dimension is larger than
100nm such as quantum dots and nanoparticles; one-dimensional (1D) if one dimen-
sion is outside the nanoscale range, which includes nanotubes, nanorods, nanowires,
and nanoribbons; 2D characterized by sheet-like configurations where two dimen-
sions are outside the nanoscale and one dimension is a single or few atomic layers
thick material like graphene; and three-dimensional (3D) when all dimensions are
over the nanoscale range (Gupta et al., 2015). Examples of this last group include
nanolayered structures and bulk powders. Example configurations of 0D to 2D mate-
rials are illustrated in Figure 2.1.

The sheet-like configuration of 2D materials originates from the fact that the
in-plane interatomic interactions are stronger than the ones existing among the
stacked planes, which are typically found in the bulk material. Novoselov et al.
(2004) demonstrated that it is possible to prepare a few atomic layers thick graphitic
sheets, including single-layer graphene by mechanical exfoliation (repeated peeling)
of highly oriented pyrolytic graphite. Graphene refers to a single layer of carbon
atoms densely packed into a benzene ring structure and is widely used to describe
the properties of many carbon-based materials, including graphite, fullerenes, and
nanotubes (e.g., carbon nanotubes are thought of as graphene sheets rolled up into
cylinders) (Dresselhaus & Dresselhaus 2002; Peres et al., 2006; Shenderova et al.,
2002; Walker, 1981) as illustrated in Figure 2.2.
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oD 1D 2D
Diameter <10 nm Diameter 10-100 nm Thickness <100 nm
- e

Spheres, Cluster, Dots Wires, Rods, Tubes Sheets, Platelets, Films

FIGURE 2.1 Common structures for OD to 2D classification. (Adapted from Shaw, Z.L.
et al., Nat. Commun., 12, 1, 2021.)

carbon
graphene nanotubes
(CNTs)

fullerene

FIGURE 2.2 Schematic diagram of carbon nanostructures. (Adapted from Adorinni, S.
et al., Appl. Sci., 11, 2490, 2021.)

The discovery of graphene and its exceptional properties such as high specific
surface area, Young modulus, and carrier mobility (Giesbers et al., 2008; Lee et al.,
2008; Morozov et al., 2008) revolutionized the last decade leading to significant
progress in other 2D materials. In these materials, carbon atoms are bonded by
primary intralayer covalent bonds and by weak interlayer secondary van der Waals
(VdW) interactions. 2D materials are currently categorized based on their struc-
tures (Novoselov et al., 2016) as follows and are also illustrated in Figure 2.3. Such
materials can then be combined to form heterostructures known as VAW solids as
shown in Figure 2.4.

e Graphene, graphene oxide, and reduced graphene oxide (GO/rGO) (Dreyer
et al., 2009; Yan et al., 2010; Zhu et al., 2010)

e Hexagonal boron nitride (h2-BN) structured like graphene but having
boron and nitrogen atoms in place of carbon (Cartamil-Bueno et al., 2017;
Gorbacheyv et al., 2011; Liu et al., 2003)
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FIGURE 2.3 A schematic diagram of different 2D materials and their structures. (From
Dong, Z., Xu, H., Liang, F., Luo, C., Wang, C., Cao, Z. Y., Chen, X. J., Zhang, J., & Wu, X.,
Molecules, 24(1), 2019, https://doi.org/10.3390/MOLECULES24010088. This figure is repro-
duced under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).)

e Transition metal dichalcogenides (TMDCs) with the formula MX, (M is
a transition metal and X is a chalcogen, typically sulfur, selenium, or tel-
lurium) and hexagonal structure with a tri-layer covalent bonding in the
form of X-M-X (Chhowalla et al., 2015; Xiao Li & Zhu, 2015) and metal
oxides (e.g., Bi,Sr,CaCu,0,) (Novoselov et al., 2005)

e Black phosphorus (BP) or phosphorene (Jiang & Park, 2014; Tao etal., 2015;
Wei & Peng, 2014)

e Metal carbides and nitrides (MXenes) (Anasori et al., 2017)

e 2D metal-organic frameworks (2D MOFs) (Choi et al., 2009)

e 2D covalent-organic frameworks (2D COFs) (Kang et al., 2016)

e 2D perovskite (X. Cai et al., 2018; Lee et al., 2018; Tan et al., 2017,
Xu et al., 2013)
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FIGURE 2.4 Example of van der Waals heterostructure that can be made by stacking
multiple 2D materials in different ordering. (Adapted from Ramanathan, A. and Aqra, M.,
CSAC2021: Ist International Electronic Conference on Chemical Sensors and Analytical
Chemistry, MDPI, Basel, 2021.)

2.2 SYNTHESIS OF 2D MATERIALS

The synthesis methods of 2D materials can be classified into two groups: top-down
and bottom-up methods. In the top-down approach, a 2D material is fabricated by
exfoliating layers of larger or bulk solid material, while in the bottom-up approach,
the 2D material is produced from atomic or molecular precursors, which react and
then grow to create a 2D material. The top-down methods include mechanical, liquid-
phase, ultrasonic, electrochemical, ion-change, and lithium-intercalated exfoliations,
whereas the bottom-up method involves epitaxial growth, chemical vapor deposition
(CVD), physical vapor deposition (PVD), wet chemical methods, microwave-assisted
method, or topochemical transformation. Among these methods, mechanical exfo-
liation, liquid-phase exfoliation, CVD, and PVD are commonly used methods for the
development of 2D materials (Bian et al., 2022; Shanmugam et al., 2022). Bottom-up
and top-down 2D material fabrication methods are schematically summarized in
Figure 2.5.

Once the 2D material has been produced, it must be transferred from its growth
substrate onto a target substrate, which defines its ultimate application. The ability
to transfer large-area 2D materials while avoiding damage is therefore fundamental
for preserving their quality. 2D material fabrication and transferring methods are
discussed in the following sections.

2.2.1 Tor-DowN METHODS

To obtain monolayer 2D materials, VdW forces must be overcome in a process called
exfoliation. Single crystals, grown by chemical vapor transport (CVT) or flux meth-
ods, are widely used as bulk material because they provide high-quality mono- or
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>

2D material

FIGURE 2.5 Summary of top-down and bottom-up 2D material fabrication methods (a)
and schematic diagram of the methods using graphene as an example (b) (From Yang, H.,
Wang, Y., Tiu, Z. C., Tan, S. J., Yuan, L., & Zhang, H., Micromachines, 13(1), 2022, https://
doi org/10.3390/M113010092.)

few-layered 2D materials. Mechanical exfoliation, achieved using adhesive tape, was
first introduced to produce graphene and is still used to manufacture high-quality 2D
crystals up to hundreds of microns in size (Novoselov et al., 2004). This method is
mostly used in the laboratory setting as it has relatively low efficiency and yield. For
higher yield, various technologies to assist mechanical exfoliation have been inves-
tigated in recent years. Shear force-assisted exfoliation, sonication-assisted exfolia-
tion, and ball-milling exfoliation were all successfully used to produce graphene,
h-BN, and TMDCs (Bonaccorso et al., 2016; Lei et al., 2015; Nicolosi et al., 2013;
Niu et al., 2016; Yi Zhang et al., 2013). Synergistic exfoliation was recently used to
exfoliate #-BN powders to produce nanosheets. This method, which can also be used
with other 2D materials, coupled traditional ball milling with a supplemental vertical
load from a weight block and ultrasonication. The vertical load alters the milling ball
pattern of motion, which in turn increases the average tangential force and a number
of contacts, resulting in a higher exfoliation yield (Wu et al., 2019).

High-quality few-layered graphene flakes, several hundred microns in size,
were produced using oxygen plasma cleaning to facilitate the exfoliation process.
Compared with traditional mechanical exfoliation, the yield and the area of the trans-
ferred flakes were increased 50-fold (Huang et al., 2015). This method is promising
and can also be applied to other 2D materials; however, the process efficiency may be
radically reduced if the interaction between the selected material (such as TMDCs)
and SiO, substrate is limited (Bian et al., 2022).

A more efficient top-down method is liquid-phase exfoliation. This process yields
a large number of mono- or few-layered 2D flakes from bulk crystals dispersed in
a specific solvent. Depending on the nature of the force facilitating the exfoliation
process, two main approaches can be identified: direct exfoliation and intercalation-
assisted exfoliation.

In direct exfoliation, 2D materials are expanded between their bulk layers when
dispersed in the liquid phase with consequent reduction in VAW forces. An ultrasonic
wave is then used to disperse the layers (ultrasonic stripping). This methodology is
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relatively simple and can be used for the preparation of larger quantities of 2D mate-
rials. However, the thickness of the resulting flakes is often not even, and impurities
are difficult to remove (Hao et al., 2020).

In the intercalation-assisted exfoliation process, small molecules, non-covalently
bonded molecules, or polymers are inserted into the bulk material causing expansion
of the interlayer spacing, reduction in the VAW forces, and ultimately exfoliation
of the 2D layer. Compared to direct exfoliation, larger 2D flakes can be produced.
Common intercalation agents are alkali metal atoms or ions in liquid ammonia or
naphthalide, or n-butyllithium in hexane (Eda et al., 2011; Yin et al., 2016; Zheng
et al., 2014). The expansion during the exfoliation processes is achieved through
the accumulation of bubbles generated through the hydration of the agents in lig-
uid. Chemical weathering is based on a similar principle and was used for the effi-
cient exfoliation of TDMC nanosheets from bulk material in an alkaline solution.
Because of the high chemical potentials of Na* and OH-, interlayer infiltration leads
to the accumulation of sodium hydroxide (NaOH) in the bulk material. When its con-
centration exceeds the critical value of ~7.6% (one NaOH pair per four MX, units),
exfoliation into ultrathin 2D flakes occurs (Zhao et al., 2015). Due to the chemical
processing, both liquid-phase methodologies result in lower quality (i.e., high density
of structural defects and lacking in the regulation of sheet size and thickness) 2D
materials. Also, the disposal of the products used during processing might be a risk
to the environment.

To improve the efficiency of liquid-phase exfoliation, electrochemical intercala-
tion was proposed. In this process, the electric current acts as an attractive driving
force to bring foreign molecules or ions into the bulk material, which then causes the
exfoliation of mono- or few-layered flakes. This technique has great potential for pro-
ducing large-area, high-quality atomic thick flakes (He et al., 2019; Howard, 2021;
Lin et al., 2018; Wang et al., 2021; Yang et al., 2020; Yu et al., 2020).

2.2.2 Bortom-Up METHODS

CVD methods are being widely investigated as efficient bottom-up procedures for
producing high-quality large-area 2D materials. In 2009, uniform large-area gra-
phene film was produced for the first time on copper foils by the CVD method
(Xuesong Li, Cali, et al., 2009). After that, the process has been successfully applied
to produce TMDCs (Gao et al., 2015; Ji et al., 2013; Najmaei et al., 2013; Shi et al.,
2015; Zhang et al., 2013, 2019), h-BN (Chen et al., 2019; Sun et al., 2018; Sutter et al.,
2011), and BP (Smith et al., 2016). In general, the CVD process is a high-temperature
chemical synthesis of the 2D material by deposition on a high-purity catalytic sub-
strate such as copper, nickel, or sapphire, where the 2D material is formed. The
procedure involved in a CVD process consists of three stages, namely transportation,
nucleation, and growth. During transportation, a solid precursor is sublimated at high
temperature and delivered to the substrate by an inert carrier gas. Subsequently, the
precursor decomposes or diffuses at the hot surface of the substrate (catalytically or
non-catalytically), forming the nucleus (nucleation) necessary for the growth of the
2D material. The precursor then continues to react and accumulate in the vicinity
of the nucleus growing the 2D material. The produced layer must then be separated
from the substrate to obtain the freestanding 2D material.
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Graphene is grown on a copper foil substrate using a CH,:H,:Ar mixture as the
precursor gas. At the hot surface of the substrate up to 1,000°C, catalytic cracking
decomposes the mixture. Carbon atoms have low solubility in copper; therefore, atoms
assemble in graphene crystals as diffusion does not occur resulting in high-quality gra-
phene crystals and polycrystalline arrangement (Xuesong Li, Cai, et al., 2009).

h-BN was produced by CVD using a thermally active BN precursor (e.g., ammo-
nia borane) over copper, nickel, ruthenium, or rhodium substrate (Sun et al., 2018).
The generation of h-BN layers is reported to be obtained at atmospheric pressure
CVD (APCVD) and low-pressure CVD (LPCVD) conditions. It was found that,
while LPCVD is governed by mass transport control, APCVD relies on surface
reaction control (Sun et al., 2018). The pressure, the temperature, and the selected
substrate affected the growth of monolayer #-BN when borazine is used as a precur-
sor. When the process parameters are set at 10-3Torr of gas pressure, 780°C, and
ruthenium Ru(0001) single crystal is used as a substrate, the nucleation process leads
to sparse h-BN domains, which then grow to form a closed monolayer film (Sutter
et al., 2011). When the parameter is 10~ Torr of gas pressure, 796.8°C, and rhodium
Rh(111) single crystals are used as a substrate, the resulting #-BN has a highly regu-
lar mesh structure and is thermally stable, which makes it a good template to orga-
nize molecules (Corso et al., 2004).

As for fabricating 2D TMDCs with CVD methods, various approaches have been
implemented such as direct metal sulfurization (Zhan et al., 2012), thermolysis of
thiosalts (Sang et al., 2019), and sulfurization of metal oxide (Huang et al., 2014;
Shi et al., 2015). Molybdenum disulfide (MoS,) was produced by direct metal sul-
furization using pre-deposited molybdenum on silicon oxide (SiO, or silica) as the
substrate while sulfur acted as the S source. It was found that the size and thickness
of the MoS, layer were dependent on the size of the SiO, substrate and the thickness
of the pre-deposited molybdenum. For thermolysis-based CVD, Ammonium tetra-
thiomolybdate (NH,),MoS,) was used as the precursor and thermally decomposed
at temperatures in the range of 300°C-900°C. A direct proportionality between the
grain size, the number of deposited layers, and the temperature was identified. The
sulfurization of metal oxide-based CVD is the most challenging as often thermal
decomposition of the precursor is not sufficient because some metal oxides have very
high sublimation temperature (i.e., tungsten trioxide, WOs;). For this reason, salt-
assisted CVD growth was developed. In this process, alkali metal halides are added
to precursors for growing tungsten disulfide (WS,) or tungsten diselenide (WSe,)
monolayers at moderate temperatures (700°C-850°C) and atmospheric pressure (Li
et al., 2015). Until now, a total of 47 compounds and heterostructures were prepared
by halide salt-assisted CVD processes (Zhou et al., 2018). Compared to other 2D
materials prepared using CVD, TDMCs are more sensitive to the effect of the pro-
cess variables as the source-to-substrate distance, temperature, gas carrier, precur-
sors, and substrate can all influence the nucleation density and grain growth and
ultimately affect the structure of the final material.

In addition to CVD, PVD has also been used for producing graphene, #-BN,
and TMDCs (Ionescu et al., 2015; Sutter et al., 2011; Wu et al., 2013). This pro-
cess requires an ultrahigh vacuum and a heated high-purity atomic source to deposit
related 2D crystals on a substrate. Molecular beam epitaxy (MBE) and pulsed laser
deposition (PLD) are the two widely used PVD approaches. PLD provides fast layer
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deposition but with uncontrollable thickness, while MBE offers the advantage of
precise thickness control and stoichiometric growth (Liu & Hersam 2018).

CVD is regarded as the most utilized method for large-scale and highly efficient
production of 2D materials. However, uniform thickness, the ability to reach a wafer-
scale product, and the relatively high energy cost due to the elevated temperature pro-
cess requirement are the major challenges that should be addressed in the near future.

2.2.3 LAYER TRANSFER METHODS

The atomic thickness of the 2D layers causes the material to be sensitive to mechani-
cal damage and crumble during transfer, which inevitably compromises their superior
properties. Polymer-assisted and polymer-free methods are the main two approaches
used for transferring 2D layers.

In polymer-assisted transfer methods, the 2D layer growth on a substrate is coated
with a polymer film, usually polymethyl methacrylate (PMMA) due to its flexibil-
ity and mechanical strength (Xuesong Li, Zhu, et al., 2009; Ma et al., 2019; Reina
etal., 2009). The PMMA/2D layer stack is then delaminated from the substrate using
chemical etching, capillary forces, or bubble formation and retrieved using the final
application substrate. The PMMA is later removed with a solvent. A schematic dia-
gram of the PMM A-assisted transfer methods of 2D materials is shown in Figure 2.6.

The copper foil used for the growth of graphene is removed using hydrochloric
acid (HCI), nitric acid (HNO,), iron nitrate (Fe(NO,),), or copper chloride (CuCl,)
(Lee et al., 2017). Strong bases such as NaOH or potassium hydroxide (KOH) are
instead used to delaminate TMDCs from SiO, growth substrates (Lin et al., 2012;
Wang et al., 2014). PMMA is commonly removed in an acetone bath. This transfer
method is efficient and reliable. Yet, the chemicals used in the process can contami-
nate the 2D layer and cause undesired doping or can physically damage the structure
through corrosion; hence, alternative etchant-free methods were developed.

Water-based methods using capillary forces or bubble formation that drive the 2D
layer/polymer stack separation are gaining increased interest. The capillary force-driven
method employs water penetration between the hydrophobic 2D layer and the hydrophilic
growth substrates. Once detached, the 2D layer/polymer stack floats to the water sur-
face. The water is then pumped out, gradually lowering the stack onto the final substrate,
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FIGURE 2.6 Schematic diagram of the PMMA-assisted 2D layer transfer method. (From
Kim, C., Yoon, M.-A,, Jang, B., Kim, J.-H., & Kim, K.-S., Tribology and Lubricants, 36(1),
1-10, 2020, https://doi.org/10.9725/KTS.2020.36.1.1. This figure is reproduced under the
terms and conditions of the Creative Commons Attribution (CC BY) license (https://creative-
commons.org/licenses/by/4.0/).)
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FIGURE 2.7 Schematic diagram of the electrochemical bubbling 2D layer transfer
method using the development of H2 bubbles. (From Kim, C., Yoon, M.-A., Jang, B., Kim,
J-H., & Kim, K.-S., Tribology and Lubricants, 36(1), 1-10, 2020, https://doi.org/10.9725/
KTS.2020.36.1.1. This figure is reproduced under the terms and conditions of the Creative
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).)

and the polymer is removed using a solvent (Calado et al., 2012; Schneider et al., 2010).
This method eliminates the use of chemicals. However, crack/wrinkle formation was
observed due to water trapping and clusters of bubbles at the 2D layer/substrate interface
when the growth substrate is not strongly hydrophobic (Calado et al., 2012). The bub-
bling transfer method utilizes the development of hydrogen gas at the polymer/2D layer/
substrate interface as shown in Figure 2.7. This method is based on an electrochemical
reaction where the metallic growth substrate acts as a cathode; therefore, it cannot be
used with nonmetallic substrates (e.g., SiO, or sapphire) (Fan et al., 2020).

Recently, a similar approach was proposed based on ultrasonic bubbling transfer
where a large number of micro-sized bubbles are generated by ultrasonication in a
water bath. This method works well with insulating substrates commonly used for
TMDCs (Ma et al., 2015). Both etchant-free methods allow the growth substrate to
be reused for other deposition and transfer processes.

Polymer-free ultraclean transfer of 2D materials has gained attention in the 2D
material community. A water-based and support layer-free (polymer-free) transfer
method was recently developed. In this approach, a sacrificial water-soluble layer
is deposited on the growth substrate before the development of a 2D layer. Once the
process is complete, the 2D layer/soluble layer/growth substrate stack is washed with
deionized (DI) water (Cho et al., 2018). The floating layer is then transferred onto
the final substrate as already discussed. Perylene-3,4,9,10-tetracarboxylic acid tetra-
potassium salt (PTAS) was successfully used as the sacrificial layer for the growth
and transfer of MoS,. It was also noted that PTAS can serve as seed promoters and
support the nucleation of large-area, continuous, and uniform 2D planar films on a
variety of substrates (Lee et al., 2013; Singh et al., 2020).

For the implementation of 2D materials at a larger commercial scale, the fabrication
processes should be automated. Along with the ability to prepare large-area layers, this
remains the major challenge as all transfer methods are laborious and complex.
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2.3 FUNCTIONALITY OF 2D MATERIALS

2D materials are characterized by different, often improved, properties when com-
pared to their bulk counterparts. This property enhancement is, in most cases, due
to the discretization of electronic energy states by confining electrons in a material
to a very small space and an increase in the overall reactivity and surface area as all
constituting atoms are “exposed” to the surrounding environment.

Because of these unique properties, 2D materials are suited for a large variety
of applications. As functional electronics, optoelectronics including flexible systems
and battery electrode devices are expected to be the fastest-growing fields of applica-
tion in the next decade, and this section provides an overview of mechanical, electri-
cal, and optical properties of graphene, #2-BN, TMDCs, and BP, which are among the
most widely used 2D materials.

2.3.1 MEcCHANICAL PROPERTIES

2D materials, which are characterized by stronger in-plane covalent bonds with
unique properties and weaker out-of-plane VAW bonds, can be easily exfoliated.
Local strains can be generated by simply poking, bending, or folding the material
like a piece of paper (Dai et al., 2019), which is not typically observed in bulk materi-
als. To “scale” mechanical properties from 3D to 2D material systems and to reflect
the planar configuration, it is necessary to normalize 3D parameters by dividing
them by the thickness of the 2D material (Kim et al., 2019). Elastic (Young’s) modu-
lus and fracture strength will therefore have units of energy per area (J/m? or N/m)
instead of per volume (J/m3 or Pa).

Atomic force microscopy (AFM) nanoindentation has been well established in
assessing materials’ mechanical properties at the nanoscale. A novel setup was pro-
posed in 2008 (Lee et al., 2008): The 2D material was suspended over circular wells
and indented at constant speed by an AFM tip with nanoscale radius to record force—
displacement curves. Despite the setup successfully measuring mechanical proper-
ties, the collected data may not properly reflect the properties of the overall layer as
the load was focused only on a central point (Kim et al., 2019). To address the limita-
tion of AFM nanoindentation, chip-based microelectromechanical systems (MEMS)
tests have been developed. The MEMS are equipped with small actuators and detec-
tors that enable the stretching of a sample under varying loading conditions allowing
for uniform application of the force along the in-plane direction of a 2D membrane
(Arshad et al., 2011; Ozkan et al., 2010).

To follow is an overview of experimentally measured mechanical properties of
some common 2D materials. Lee et al. (2008) were the first to experimentally mea-
sure the elastic modulus (E~ 1 TPa) and fracture strength (c,,,, ~ 130 GPa) of mono-
layer graphene using AFM nanoindentation. Nonlinear elastic behavior and brittle
fracture were observed. It was later found that the elastic modulus and fracture
strength of graphene decrease with increasing numbers of layers (Wei et al., 2016;
Zhang & Pan, 2012). This characteristic was related to interlayer slippage and subse-
quent energy dissipation during the testing loading—unloading cycle. In thicker gra-
phene, nonuniform strain distribution is accelerated along the out-of-plane direction,
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FIGURE 2.8 Armchair and zigzag directions within a 2D material layer with graphene-like
hexagonal configuration.

resulting in decreased mechanical performance. It was reported that cracks tend to
propagate along a preferential orientation and to then create zigzag edges (Fujihara
et al., 2015). However, mechanically torn graphene progressed in a straight line with
occasional changes in a direction toward either armchair or zigzag shapes (Kim
et al., 2011). The armchair and zigzag directions within a 2D material layer with a
graphene-like hexagonal configuration are illustrated in Figure 2.8.

The mechanical properties of #-BN, also known as “white graphene,” were mea-
sured using the nanoindentation method and were found to be comparable to those of
graphene with an elastic modulus of 0.865 TPa (Kim et al., 2015; Song et al., 2010).
However, opposite to graphene, both the elastic modulus and fracture strength are not
dependent on thickness variation (Falin et al., 2017). This phenomenon was explained
by the fact that BN’s orbitals have higher polarity than those of graphene, which ulti-
mately causes the interlayer slipping energy to be increased (Kim et al., 2019).

Within the TMDC category, MoS, is the most popular 2D material. The mechani-
cal properties of MoS, were characterized by AFM nanoindentation; elastic modulus
and fracture strength were measured as ~270 and ~23 GPa, respectively, with a strain
at failure that ranges between 6% and 11% (Bertolazzi et al., 2011). MoS, failure was
identified as brittle in nature; however, it was found that with a 1% sulfur deficiency,
the nature of failure can be shifted from brittle to plastic deformation (Ly et al.,
2017). Enhanced mechanical properties were found for the tungsten-based TMDCs
(WX,) when compared to MoS,. Also, for the same transition metal M, sulfides
(MS,) are the strongest, while tellurides (MTe,) are the weakest due to the weakening
of M—X (X =S, Se, Te) hybridization while going down the list from S to Te (Kim
et al., 2019). In general, for TMDCs, the stress response was found to be stronger
along the armchair direction illustrated in Figure 2.8. This phenomenon was linked
to the strong hybridization occurring between the most external p orbitals of the chal-
cogens and the d orbitals of the transition metal, which causes a reallocation of the
electronic charge to the shared region between the involved atoms (Li et al., 2013).

The mechanical properties of BP were evaluated using AFM nanoindentation.
High anisotropy was observed along the crystalline directions under the applied stress
(Tao et al., 2015), which was related to the puckered (nonplanar) structure of the layer
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FIGURE 2.9 Nonplanar puckered structure of black phosphorous. (Adapted from Wang, D.
et al., Front. Chem. 7, 2019.)

illustrated in Figure 2.9. Also, both the elastic modulus and the fracture strength tend
to deteriorate when the layer thickness is decreased (Gallagher et al., 2016).

A degradation of the mechanical performance was observed in ambient air con-
ditions due to the self-passivation process (Kim et al., 2019); therefore, BP is better
suited for vacuum applications.

2.3.2 ELecTRICAL PROPERTIES

2D materials were found to show a wide range of electrical properties and transport
characteristics. Due to their intrinsic crystal structures and stacking orientations,
these sheets can behave as conductors (e.g., graphene), insulators (e.g., h-BN), semi-
conductors (e.g., MoS, and WS,), or superconductors (e.g., NbSe, and NbS,). Band
gap engineering of 2D materials is an emerging field that offers a wide range of
possibilities for tuning electronic properties. The structure of the energy band can
be engineered through thickness control (number of layers) (Novoselov et al., 2016),
elemental doping (Oliva-Leyva & Naumis, 2014; Tongay et al., 2011; Van Khai et al.,
2012), and development of stacked heterostructures (Cai et al., 2018; Chen et al.,
2018; Shi et al., 2018). In the last decade, research on the optimization of 2D mate-
rial electronic properties has grown enormously due to their enhanced performance
and lower energy requirement to power electronic systems such as solar cells, field
effect transistors (FETs), and light-emitting diodes (LEDs) when compared to 3D
counterparts.

Excellent electrical conductivity and adjustable work function make graphene rel-
evant for FET applications. Nitrogen doping was found to be effective in improving
the electrical conductivity of graphene (Deokar et al., 2022). The doped graphene
was prepared by thermal annealing of reduced GO in ammonia gas. Variations in the
carbon and oxygen content of the annealed product reduce the electrical resistance
in doped graphene compared with GO and rGO (Pang et al., 2011; Van Khai et al.,
2012).

The TMDCs based on periodic table groups VB and VIB metals (i.e., V, Nb, Ta,
Cr, W, and Mo) are the most investigated (Fiori et al., 2014; Jariwala et al., 2014;
Kappera et al., 2014; Wang et al., 2012; Wilson et al., 1975) because of the possi-
bility to tune their electronic structure allowing for a range of behaviors including
metallic, semimetallic, semiconducting, and superconducting. Properties tuned by
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doping were successfully achieved using nonmetal atoms such as H, B, C, N, O, and
F. As a result, MoS,, WS, and WSe, nanosheets developed total magnetic moment
(H. Gao et al., 2020; Ma et al., 2011). Exposure of TDMCs to plasma oxygen led to
the variation in the n-type and p-type conduction, allowing for the production of
high-mobility FETs and planar monolayer p-n junctions utilized in semiconductor
applications (Geim & Grigorieva, 2013; Hoffman et al., 2019). Nitrogen doping was
found to make WS, electrochemically active. This makes such 2D material a suitable
option for developing high-performance electro-catalysts (Sun et al., 2016).

The h-BN exhibits insulating properties and anisotropic resistivity (Pellegrino
et al., 2011). Like graphene and TMDCs, doping can be used to alter their electrical
characteristics. Semiconducting behavior was achieved through zinc doping in the
range of 0%—4%, while beryllium implantation was used to achieve p-type conduc-
tion (Nose et al., 2006). One of the most interesting traits of #-BN is its flat atomic
surface and graphene-like structure. These characteristics combined with a large
electrical band gap make the material an ideal substrate. The electronic mobility of
graphene on the #-BN substrate was found to be three times larger than that of the
graphene without it, which makes this approach a viable strategy for enhancing the
performance of large-area graphene electrical devices (Lee et al., 2012).

2.3.3 OpticAL PROPERTIES

Several researchers investigated the optical conductivity of graphene (Heersche
et al., 2007; Liu & Hersam, 2019; Peres et al., 2007; Simsek, 2013) from the visible
range to the near ultraviolet (UV) region. It was revealed that the optical conductivity
of graphene increases with the increasing energy of the incident light (Liu & Hersam,
2019) and with the number of stacked layers (Heersche et al., 2007).

TMDC:s are better suited for optical applications because of the large electronic
density of states (DOS), which guarantees large optical adsorption. As graphene, the
optical properties of the MoS, material are related to the number of layers but also to
the interlayer distance, which allows one to control the spectral response in optical
devices (Mak et al., 2010; Yu et al., 2017). The introduction of point defects in MoS,
and WS, triggered new transitions in the optical range in line with photoconductivity
measurements (Das et al., 2017). While in the visible range, disulfur vacancies acti-
vate the optical conductivity, molybdenum (Mo) and tungsten (W) vacancies activate
it at low energies (Ribeiro et al., 2018).

More opportunities for efficient optoelectronic materials become available when
VdW heterostructures are considered. The combination of materials with different
work functions can lead to photoexcited electrons and holes accumulated in different
layers. The intensity of this phenomenon can be controlled by tuning the distance
between semiconductor layers (Fang et al., 2014; Rivera et al., 2015; Roy et al., 2013).
Combinations of graphene, as a channel material, and TMDCs, as light-sensitive
material where trapped charges are controlled by illumination, allow the creation of
simple and efficient phototransistors (Roy et al., 2013). For multilayer BN/graphene/
BN structures, it was found that the optical properties do not relate to thickness
and/or stacking order; instead, they depend on light polarization. In particular, the
frequency-dependent optical conductivity was found to exist only for the light polar-
ized parallel to the plane (Farooq et al., 2015).
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2.4 APPLICATIONS OF 2D MATERIALS

2D material-based FET is being widely investigated, particularly for sensors and
nonvolatile memory (NVM) applications. rGO, BP, and TMDCs have successfully
performed as charge channels for FET-based gas sensors. Multiple layers (2 to 4)
of MoS, were deposited on a Si/SiO, wafer to manufacture a sensor for several gas
detections, such as oxides of nitrogen. The system resulted in a detection limit of
0.8 ppm at room temperature (H. Li et al., 2012). More recently, a 2D heterostructure
made of MoS, deposited on graphene by CVD was used for detecting low levels
(0.2-1 ppm) of nitrogen dioxide (NO,) gas at the temperature up to 200°C. The sen-
sor showed a fast response/recovery time of less than one second with high reproduc-
ibility. Such advantages were linked to the synergistic effects of MoS, and graphene
and the preferred exposure of active edge sites at the boundary of MoS, flakes (Hong
et al., 2019).

NVMs are gradually replacing hard disk drives because of the growing need to
access and transfer an ever-increasing amount of information in a short duration. As
conventional silicon-based devices are quickly approaching their limit, NVMs are
another promising application where 2D materials can serve as channel transistor.
TMDCs, BP, and graphene are mainly involved in the production of resistive, ferro-
electric, and flash memories (Bertolazzi et al., 2019; Kim et al., 2020; Ko et al., 2016;
Lee et al., 2012, 2015). Graphene was found to act as a protective interfacial layer for
decreasing power consumption in resistive NVMs (Ahn et al., 2018).

The large specific area, exceptional mechanical properties, tunable band gap, and
good thermal and electrical conductivities made graphene, GO/rGO, TMDCs, and
h-BN suitable for catalytic applications such as oxygen reduction or evolution reac-
tion, photoinduced water splitting, and hydrogen evolution reaction. The catalytic
performance of these 2D materials can be controlled through defect engineering and
doping; defects or edges can act as active sites for catalytic reaction while doping
changes the electronic states and the doped atoms can also serve as active sites (Chen
et al., 2014; Deng et al., 2014; Wang et al., 2009; Yang et al., 2011).

2D materials such as graphene, GO, rGO, and h-BN were found to be very effec-
tive as anticorrosion coatings for a wide variety of materials and conditions includ-
ing photocorrosion of semiconductors (Xi Chen et al., 2018; Khosravi et al., 2019;
Weng et al., 2019) and biocorrosion of medical implants (Al-Saadi et al., 2017; Cui
et al., 2017; Galbiati et al., 2017; Goncii et al., 2017; Mahvash et al., 2017; Parra et al.,
2015; Zhang et al., 2017). The excellent anticorrosion properties were linked to the
large surface area of graphene and graphene-like structure, which extend diffusion
path length for the corrosive compounds. The high production prices have, however,
limited this kind of application to specific fields in which corrosion results in great
losses, such as aerospace, biomaterials, and advanced electronics.

The extended path for diffusion-based processes, present in the graphene struc-
ture, was also found to be beneficial for reducing the flammability of gases by
delaying combustion (Chen et al., 2017; Shanmugam et al., 2020). It was shown
that the time needed to burn pure cotton fabric and functional graphene-coated
fabric was, respectively, 5 and 325 seconds (Chavali et al., 2020). This enables the
use of graphene as reinforcement or coating material for increasing flame retardant
properties.
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Recently, graphene-based devices were developed for electromagnetic invis-
ibility cloaking and adaptive thermal camouflage. Electromagnetic invisibility was
achieved by modifying the refractive index and optical absorption of monolayer
graphene through ion intercalation (Balci et al., 2015; Yang et al., 2013). Thermal
camouflage was realized with adaptive thermal surfaces produced by the reversible
intercalation of ionic liquid into multilayer graphene. This process resulted in the
ability to control the surface thermal emission and absorption over the infrared (IR)
spectrum. The fabricated device can disguise hot objects as cold and vice versa and
blend itself with a varying thermal background in a few seconds when combined
with a feedback mechanism (Phan et al., 2013; Salihoglu et al., 2018; Xiao et al.,
2015; Zhao et al., 2019).

Currently, the library of 2D materials consists of more than 150 categories (Khan
et al., 2020). Interest is quickly increasing, and several novel advanced 2D hetero-
structures, with selected compositions to target specific applications, are expected to
be developed and introduced in the next few years.
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3.1 INTRODUCTION

Though “Learning” is one of the basic tasks for humans and animals, defining its
exact meaning is harder because of its wide range. The question “what is learning?”
is philosophical; in this context, learning can be simply defined as, “modifications of
a behavioral tendency by experience.” [1]. There are several commonalities that can
be seen between animal and machine learning tasks. In fact, many of the machine
learning techniques are inspired by cognitive aspects of animals. ML has evolved
as a subfield of artificial intelligence (AI), learning from the data collected histori-
cally or from experiments, and using it for future actions. In general, ML models
consider the patterns of the input and adjusts internal structures to approximate the
relationship between input and output. ML is also used to identify hidden patterns
of data distributions to come up with meaningful relationships. The ability to learn
unforeseen relationships from data without depending on explicitly programmed
prior guidance is one of the main reasons why there are a plethora of ML-based
applications. The very early definition for ML, “Field of study that gives computers
the ability to learn without being explicitly programmed” [2] is still valid.

Here in this chapter, we provide an overview of multiple ML approaches includ-
ing supervised, unsupervised, semi-supervised, self-supervised, and reinforcement
learning. Though these learning categories use different learning techniques and
generate different outputs to achieve the ML task, we use common terminology
across all of them. We call the target to be learned as a “concept” and the output as
“concept description” [3]. To learn the concepts, ML uses data in the form of a col-
lection of “instances.” Each instance is an individual and independent example of the
concept, described by one or more attributes. Therefore, each instance is a collection
of values, one for each of the attributes that describe the example. For example, a
research publication dataset is a collection of research publication instances where
a research publication instance is described by the following attributes: title of the
publication, date of publication, name of the publication venue. Then, <Study of
ML, Mar 23, 2023, Journal of Machine Learning> is one instance in the research
publication dataset. Datasets are typically stored as tables where rows are instances
and columns are attributes.
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FIGURE 3.1 A typical ML pipeline.

3.1.1 THE PROCESSING PIPELINE OF AN ML Task

The conventional machine learning pipeline comprises data integration, preprocess-
ing, model building, and model evaluation. Figure 3.1 shows the flow chart of tradi-
tional machine learning processes. In this section, we discuss each step of the ML
pipeline.

3.1.2 DATA INTEGRATION

With the generation of large bulk of data each minute, in recent decades, the data
needed for an ML task may be available across multiple sources in an organiza-
tion. For example, research publication data may need to be integrated with mate-
rial properties data to obtain an instance with all of attributes needed for learning
a concept. Different data sources may store the data in different formats: structured
storage such as tables or unstructured storage such as text files. Therefore, data from
multiple data sources, which may be in multiple formats, should undergo a process,
called data integration, to collect the data that can be analyzed by an ML task. Data
integration is the process of integrating different sources of data into a single dataset
to enable a unified view of the data. Data integration follows a set of standard steps
as mentioned in Figure 3.2.

Figure 3.2 shows the ETL pipeline used for extracting the data from a raw data
source. The Extract step uses the functions provided by the raw data sources to
extract the raw data. The Transform followed by Cleanse steps then converts into a
format needed by the application and cleans the raw data. The Load step stores the
data in a database or data warchouse that can be eventually accessed by the applica-
tion that executes the ML task. The ETL pipeline is applied to each data source to
collect and integrate the data from multiple sources.

Extract Transform Cleansing Load Applications
Raw Data

FIGURE 3.2 Data integration process.
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To build a unified view of the data collected from multiple sources, diverse data
from multiple sources must be integrated appropriately. For example, if one wants
to integrate the material properties data and research publication data, one way to
achieve this integration is to identify the names/symbols of the materials studied in
each research publication and use the name/symbol to extract the properties of that
material from the material properties database. The material name/symbol extracted
from the research publication serves as the glue for integration of these two disparate
data sources. Data integration is a nontrivial problem because the same data may
be stored in different formats in different data sources. Take the simple example of
“date” attribute. It can be recorded in DD/MM/YYYY format in one data source
and in MM/DD/YYYY format in another data source. Data integration steps need
to reconcile (using the Transform step) these formats so that a unified view can be
constructed over the two data sources.

Currently, there are data integrations tools (e.g., Meltano) available to users that
can automatically configure themselves so that they can process queries and extract
data efficiently from multiple sources. The goal of these tools is to reduce the man-
ual effort needed to integrate the data from these sources, and to obtain a unified
view of the underlying data sources that are of high quality. Despite the availability
of tools, data integration over multiple sources is a hard problem due to the disparate
data formats, the uncertainty about how to resolve the differences between formats
to build one standardized format, and therefore, it involves considerable manual
effort.

3.1.3 DATA PREPARATION

Real-world databases and data warehouses often contain inconsistent, incomplete,
and inaccurate information due to many reasons: The manual recording of data may
introduce these errors, the instruments that generated the data may be faulty, and
some data was not known at the time of data entry and was left blank, etc. Before an
ML task can be applied, the input dataset (i.e., the dataset to be analyzed by the ML
task) must be “cleaned” by filling in missing values, removing outliers and inconsis-
tencies, and smoothing noisy data. Otherwise, the “dirty” data can mislead the ML
algorithm and lead to misleading concept descriptions.

If an instance in the input dataset has missing values for some of the attributes,
the simplest action is to remove it from the input dataset. However, this may not work
for small-size datasets. So, missing values in an instance are usually filled using a
variety of ways: Substitute a missing value with the most commonly occurring value,
mean, or median for that attribute, or use regression or inference-based methods
to compute the missing values. It is important to make sure that the missing value
computation methods do not introduce bias into the dataset. For this reason, regres-
sion- or inference-based methods are typically employed to find the most appropriate
values to substitute for missing values in an instance.

The input dataset can contain noise such as inconsistent and/or outlier values that
can mislead an ML algorithm. For numeric attributes, data smoothing techniques
can be used to identify and remove noisy data from the input dataset. The numeric
values from a column in the input dataset are sorted and the sorted value list binned.
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Then, each value on a bin is replaced by the mean/median/maximum/minimum of
the values in the bin which will replace outliers and inconsistent values. Regression
analysis can also be used as a data smoothing technique where all values in the
column that do not follow the function fitted to column values are replaced. Data
smoothing techniques are also used for data discretizing (replace numeric values
with nominal values) which is used for reducing noise in a column. For example,
numeric values in a column that records salary can be replaced by levels of compen-
sation: high, medium, and low.

Data preparation is an important step before building a model that learns a con-
cept from the input dataset. Although much of it can be done using data smoothing
and cleaning tools, it needs considerable manual effort as well.

3.1.4 MobeL BuilbINng

Once the dataset is prepared for the model building, the next step is to choose a
machine learning algorithm which supports the best to solve the application. For
example, if the dataset contains both attributes (predictors) and outputs for each
instance, we can narrow the algorithm selection to supervised machine learning cat-
egory. When the output of the input dataset is categorical, that is a finite set of values,
the learning problem is called classification, whereas when the output is infinite, the
learning problem is called regression (see Section 9.4.1). For supervised machine
learning model building, the goal is to identify the relationship between predictors
(X) with the output (Y). Here, fis a fixed but unknown function and € is the error term
of the model.

Y=f(X)+e

3.1.5 MobEL EvALUATION

Model evaluation is another important step in the ML pipeline as it measures the
progress of a model and understands how it works.

3.1.5.1 Training and Testing

The most obvious model evaluation would be calculating the error rate, that is the
ratio between incorrect predictions to the total predictions. However, in practice the
training inputs do not estimate accurate performance of a model, as, the training
instances have been already seen by the model during the training process. The error
rate calculated for the training set is called “resubstituting error,” which is not a reli-
able measure of how model would perform on unseen data. Here, we consider parti-
tioning the input dataset to extract independent datasets called test dataset, with the
assumption that training, and test data follow similar distribution. The test set should
not be used in any stage of model training but model evaluation stage. However, it
is common to see a third partition called a validation set that is used to optimize the
training process. After conducting the proper model evaluation, these partitions can
be merged back to the training set to train the final model, in case of limited data
availability. The basic partitioning mechanism is called the holdout method, that is
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extracting fixed portions for training and testing (and validation) and making sure
not to use these for other purposes of model building.

In convention, 66% of the data is used as a training set, 20% of the remaining
data is used for tests, and the rest as validation sets. The random holdout partitioning
does not guarantee that the test set will be a representative set for the training set. For
instance, the random selection would miss out complete data instances in training set
that represent a class, so that model would not get a chance to train on those classes.
The procedure called stratification comes as a savior in this matter, which helps in
picking random samples from the input dataset to guarantee the class representation
for both training and test set. The randomness of the holdout partitioning can be fur-
ther mitigated using repeated holdout method, that is run multiple random partition-
ing to average overall error rate to achieve better model evaluation.

3.1.5.2 Cross-Validation

The repeated holdout method still does not guarantee the optimal representative par-
titioning experience. To make sure of the partitioning of the training testing datas-
ets, a statistical technique called cross-validation can be used. The first step of the
cross-validation is to determine a constant value (K) that represents the number of
folds (partitions). Then, the process iterates such that in every iteration (1:K), one
fold is considered as the test set and rest as training, until each fold gets a chance
to be a test set. This approach is also known as K-fold cross-validation. This can be
conducted both the variants random and stratified similar to the holdout method.
This method generates K? number of models to evaluate the error rate which leads to
obtain a better performance. However, the main downside of this method is computa-
tion intensiveness.

Leave-one-out cross-validation (LOOCYV) is another variation of K-fold cross-
validation where K=number of instances in the input dataset (n). Hence, each
instance is used to evaluate the model, while the rest of the instances are used for
model training. The main advantages of LOOCYV are, (1) cross-validation does not
depend on random selection (deterministic), (2) maximum number of instances
(n—1) can be used for training in each iteration and works well with smaller datas-
ets. However, the disadvantages attached to it are, (1) computationally costly and (2)
prone to outliers in the dataset and lose the advantage of stratification technique. The
bootstrap is another cross-validation-based estimator which utilizes the statistical
technique of sampling with replacement [4].

3.1.5.3 Confusion Matrix

Confusion matrix (aka, contingency table) is one of the common ways of describing
classification model performance and evaluation. As shown in Figure 3.3, confu-
sion matrix summarizes correct and incorrect predictions, (1) True Negatives (TN),
(2) False Positives (FP), (3) False Negatives (FN), and (4) True Positives (TP). A
TN prediction for a test data item denotes that the model predicts the absence of a
class value, and this coincides with the absence of the class value in the actual test
data item. A FP prediction for a test data item denotes that the model predicts the
presence of a class value, whereas the class value is absent in the actual data item.
A FN prediction for a test data item denotes that the model predicts the absence of
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FIGURE 3.3 Confusion matrix and associated metrics.

a class value, whereas the class value is present in the actual data item. A TP pre-
diction for a test data item denotes that the model predicts the presence of a class
value which coincides with the presence of the class value in the actual data item.
A FP prediction is called Type I error. A FN prediction is called Type II error. The
ultimate goal of learning a classification model is to achieve high TN and TP, miti-
gating Type I & Type II errors. The sum of the cells in the confusion table is equal
to the total number of instances in the test data. Several evaluation metrics such as
Recall, Precision, Specificity, Accuracy, and AUC-ROC curves can be used with
these values. Figure 3.3 shows some of the metric equations with TN, TP, FN, and
FP placeholders.

3.2 ML ALGORITHMS

Typically, machine learning approaches can be classified into two broad catego-
ries, Supervised and Unsupervised. Recently, several variations and combinations
of these approaches including semi-supervised and self-supervised algorithms have
been developed and applied successfully. In this section, we discuss some of the
popular algorithms that present these two learning approaches and their variations.
It is important to understand that selecting a proper algorithm that suits the data, and
the application is important. When data is not enough or the model is not capable
enough to detect the underlying patterns, it is identified as a model with underfitting.
Similarly, when the model learns exactly the data provided in the training dataset
yet performs poorly with unseen data, it creates a problem called overfitting. Using
unforeseen data for testing the model is important to evaluate these model train-
ing complications. Cross-validation methods explained above are recommended to
detect and mitigate these model training errors.

3.2.1 BiAS AND VARIANCE

In the process of building and training a machine learning model, it is important
to evaluate how well it generalizes on independent data (test data). In general, there
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is no single machine learning mode that can perform best on every task (No Free
Lunch Theorem [5]). The better model suited for a given task is chosen between dif-
ferent models based on the performance. A given machine learning algorithm has to
minimize the error of the test dataset. There are mainly two types of error categories
namely, irreducible error and reducible error. The reducible error has two compo-
nents, Bias and Variance.

In this context, the Bias factor refers to the model error introduced due to the
inability to comprehend the underlying patterns in the data. If the prediction values
and the actual values are positioned far from each other, it is an indication of high
bias. Variance, on the other hand, refers to the error due to the overfitting of the
training data. It provides an indication of how scattered the predicted values from
the actual values are.

In the process of model training, the reducible error can be formulated as
(bias?+ variance). It is important to balance out these two factors to minimize the
risk of a model prediction [6]. A model with high bias and low variance underfits the
data and has poor accuracy, while a model with low bias and high variance overfits
the data and has poor generalization performance. Hence the Bias—Variance Trade-
off is important to find the optimal model complexity (see Figure 3.4) to achieve the
sweet spot where a machine model performs with the minimum error introduced by
the bias and the variance.

3.3 UNSUPERVISED LEARNING

Unsupervised learning is a type of machine learning in which an algorithm is
trained on a dataset without any labels or predefined categories. The main task of
Unsupervised learning is to extract information and underlying patterns from the
data whose classes are not known. In this section, two main techniques used in
Unsupervised learning are discussed, specifically cluster analysis and principal com-
ponent analysis (PCA).
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3.3.1 CLUSTER ANALYSIS

One of the fundamental approaches in unsupervised learning is cluster analysis [7].
The main idea of clustering is to determine subgroups in a dataset using a simi-
larity measure so that the within-group data points are more similar to each other
than to those in other groups. These groups are called clusters. As clustering refers
to a vast variety of techniques focusing on partitioning coherent sets in a dataset,
there have been various categorizations. One of the broader categorizations is hard
clustering vs soft clustering. Hard clustering, also known as crisp clustering, is a
method that assigns each data point to a single cluster. Hence, a single data point can
only be designated to a single cluster. On the other hand, soft clustering, also known
as fuzzy clustering, permits a single data point to be allocated to multiple clusters.
Another broader categorization would be with respect to the clustering technique
used. Here, we mainly discuss three main categories, (1) Hierarchical, (2) Partition,
and (3) Density clustering.

3.3.1.1 Hierarchical Clustering

In Hierarchical clustering algorithms, the subgroups are created based on the
hierarchy of nested groups either merging (Agglomerative clustering) or splitting
(Divisive clustering) based on some similarity measure. Agglomerative cluster-
ing starts with each data point as a separate cluster and merges the clusters until
the stopping criteria trigger. Divisive clustering, on the other hand, starts with all
data points in one cluster and recursively splits them based on their dissimilarity.
Dendrograms are commonly used to visualize the hierarchical clustering results
(Figure 3.5).

Hierarchical clustering is often preferred over other clustering techniques as it does
not require specifying the number of clusters in advance, as the number of clusters
is determined by the hierarchy of the dendrogram. The ability to handle nonconvex
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FIGURE 3.5 Dendrogram of a hierarchical clustering.
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clusters is an important strength of this clustering technique. However, hierarchi-
cal clustering can be computationally expensive, especially for large datasets, and it
is sensitive to the choice of similarity measure and linkage method (Single, Complete,
and Average (Figure 3.6)).

3.3.1.2 Partition-Based Clustering

Partition-based clustering algorithms divide the data into a prespecified number of
clusters, and the algorithms belonging to this category are hard clustering methods.
The k-means clustering [8,9] approach is one of the most popular partition-based
clustering algorithms. K-means clustering algorithm iteratively partitions the data
into k, and predefines the number of clusters minimizing the sum of squared dis-
tances between the data points and their assigned cluster centers. Partition-based
methods are mostly simple, efficient, and scallions well to large datasets. The limita-
tions would be, determining the k (number of clusters) parameter in advance, when-
ever a point is close to the center of another cluster; it gives poor results due to the
overlapping of data points.

3.3.1.3 Density-Based Clustering

In density-based clustering [8,10], the subgroups are formed based on the density of
the data space. The most popular density-based clustering algorithm is DBSCAN
(Density-Based Spatial Clustering of Applications with Noise). DBSCAN algorithm
starts with an unvisited data point and finds the number of data points within a pre-
defined distance (g). If the points within the e-neighborhood are greater than or equal
to the redefined parameter (minPoints), the point becomes a core point and a clus-
ter is formed. This algorithm continues until all the data points have been visited.
The main advantage of these algorithms is the clusters are discovered based on the
density of the data points so that there is no requirement for a predefined value for
a number of clusters. Still, the parameters €, and minPoints have to be determined
in advance. Similarly, the inability to handle data with varying densities in the same
cluster is another downside of this clustering approach.
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3.3.1.4 Cluster Evaluation

Compared to the evaluation techniques used in supervised learning approaches, there
is no direct way of evaluating the quality of an unsupervised learning task due to the
absence of the ground truth. To estimate the quality of clustering, or to compare and
validate which clustering approach works well for a given dataset, several measure-
ments have been proposed in the literature [11]. The assessments can be performed
internally, aka “internal cluster evaluation”, where the clustering results are evalu-
ated based on the data used for the clustering process. Examples of such evaluations
are the Silhouette coefficient [12], Dunn index [13], and Davies—Bouldin index [11].
On the other hand, in “external evaluation” the quality of the clusters is evaluated
using external data. Some of the measures of the quality of processed clusters that
use external evaluation are the Jaccard index, F-measure, Mutual Information, and
Confusion matrix.

3.3.2 PrincipAL COMPONENT ANALYSIS (PCA)

Another approach in unsupervised learning is dimensionality reduction.
Dimensionality reduction is the process of reducing the number of features or vari-
ables in a dataset while preserving as much of the relevant information as possible.
When there are large sets of correlated variables in high dimensional space, the
usage of data efficiently could be degraded. For example, when the datasets are huge
due to multiple variables and/or multiple observations per variable. Some of the dis-
advantages related to high dimensional correlated data are,

* High requirements of storage and computational power,
e Multicollinearity issues,

e Inability to visualize the data, and

* High quantity of noise.

PCA [14] is a popular method for dimensionality reduction, which identifies the most
important directions of variation in the data and projects the data in these direc-
tions. In other words, PCA projects the data into a lower-dimensional subspace so
that the original highly correlated variables are transformed into a set of linearly
uncorrelated variables. These variables are identified as principal components. PCA
performs transformations on the vector space to extract the principal components.
Then these reduced dimension data be used to analyze data such as pattern recogni-
tion, outlier detection, and trends. Some of the main applications that utilize PCA
are image compression, blind source separation, visualizing multidimensional data,
reducing the number of dimensions in healthcare data, and finding patterns in high-
dimensional datasets [15,16].

3.3.2.1 Limitations of PCA

One of the main downsides of PCA is the assumption of linear relationships, such
that principal components are determined by using a linear combination of the origi-
nal features. This assumption may not be true for all datasets and that may lead to
suboptimal results. An example of a possible alternative are Autoencoders, which
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consider nonlinear feature relationships while reducing the feature dimensions. The
results of PCA depend on the scaling of the variables. If the scaling of the data
has not been carefully addressed, the resulting principal components may be biased
toward features with larger variance. However, some research studies introduced a
scale-invariant form of PCA to mitigate this limitation. Not only scale, but PCA is
also sensitive to outliers in the data. Other than that, lack of interpretability, limited
applicability with non-Gaussian data, information loss due to dimensional reduction,
and computational complexity can be mentioned as limitations of PCA [17].

3.4 SUPERVISED LEARNING

Supervised ML approaches are perhaps the most popular and very widely used in
automating applications across several domains including materials engineering,
microbiology and medicine. Some of the popular examples for supervised learning
would be recommendation systems, speech recognition, image recognition, weather
forecasting, and many more. The basic idea underlying this approach is to learn an
unknown function from a sample specifying the known mapping of that function.
Supervised learning approaches essentially attempt to fit an unknown function from
known input-to-output mapping data sample. The known input-to-output mapping
data sample is also commonly referred to as ground truth or labeled data with the
mapping inputs referred to as instances and their corresponding outputs referred to as
the labels. The unknown inputs are referred to as unlabeled data. Supervised learn-
ing algorithms involve building an ML model by training them on labeled, which
can then be used to infer the outputs on unseen, unlabeled data. The types of labels
used in supervised learning approaches depend on the ML task at hand. Categorical
values, including Boolean values, are commonly used as labels in many applications.
For instance, labels formed by categorical values, cells, microbial byproducts, and
nonoccluded surfaces could be used in an ML task that detects objects in biofilm
images. The images consisting these objects could be captioned with these values
to produce labelled data. On the other hand, labels could be more complex and may
consist of sub-images of these objects for an ML task that segments these objects in
biofilm images. Labels could also be text strings or numeric values drawn from an
infinite and continuous set of values such as real numbers. Supervised learning tasks
can be broadly categorized into classification and regression. When the label values
are finite, we call it a classification task, whereas when the label values are infinite,
we call it a regression task.

3.4.1 REGRESSION

Regression comprises a variety of approaches for studying correlations between
outputs (or labels in ML) and one or more inputs (features in ML). Regression
approaches are employed in ML primarily for predictive tasks. In ML, usually the
outputs involve variables taking values from continuous domains. Regression algo-
rithms may be categorized depending on the class function (also model) that is used
to fit the output variables to the inputs and the methods used to find this function.
Regression problem is usually formulated in terms of the following components—a
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set of weights/parameters (w,, w,, ,w,), input variables (xj,, xj,, ,Xj,), in the j* data
instance with the output variable, y,. along with the error term, e;. Usually, each
weight and the input variable instance are either scalar or vector (row of values),
whereas the output variable instances are scalars. The regression problem can be
formulated as discovering function f, relating the input and output variables based on
n observed data instances.

y; =f(w0, W X1 xjk)+ej j=1...,n.

3.4.1.1 Linear Regression

In linear regression, the function f is a linear combination of the weights and the
input variables. Simple linear regression relates one output and to n instances of
input variable as follows

Yy = W0+W1Xj] +€j, j=l,...,n

whereas multiple linear regression relates one output variable to n instances of k
input variables

yj=(W0+W1Xj1+...+kajk)+ejj=1,__',n.

The output variable y; is a scalar in univariate linear regression, where it is a vector
(multiple outputs) in multivariate linear regression. A regression is linear as long
as the weights are linear; that is, the following regression is still linear despite the
quadratic input variable term.

In a simple linear regression, the model is obtained from using the » instances of
input x;;,

~

Yi=wo + wixj,

where w, and w, are the estimated weights and )/); is the value of the output vari-
able predicted by the model. The difference between the value of the output variable
predicted by the model and its true value is called residual, ¢; = y; — ¥;. Several
methods are available for model estimation. The most common method, the least
squares, estimates the weights and predicts the output value by minimizing the sum

of squared residuals,
SR = z€j2
j=1

and obtains,

Y (w-x)

where x and y are the means of the input and output values, respectively.
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3.4.2 CLASSIFICATION

Classification predictive modeling is the task of mapping input x to discrete output vari-
able y. The output is often identified as categories, classes, or labels. There are many
classification techniques to conduct classification tasks is imperative. Each classifier
would have its own pros and cons; hence, identifying the better-performing or more
suitable classifier for a given classification task is important. Based on the number of
categories assigned to each instance, classification problems can be divided into three
categories—binary, multiclass, and multilabel classification. In a binary classification
problem, each instance is associated with a single label whose values are positive/
negative (or true/false) to denote class membership. In a multiclass classification prob-
lem, each instance is associated with a single label drawn from a finite set containing
more than two labels. Both classification tasks aim to predict a single class outcome
for a given data instance, hence also known as single label classification techniques.
Multilabel classification on the other hand is an extension of the traditional single label
classification problem where each example is associated with a set of categories.

3.4.2.1 Logistic Regression

Logistic regression is another variant of regression task that has been used widely
in the field of Al and ML. As mentioned above, linear regression models predict
continuous dependent variables given a set of independent variables, whereas logis-
tic regression is a classification algorithm that predicts categorical values. Logistic
regression models use logistic function (also known as the logit function), which
maps p(x) as a sigmoid function of x

wo +wix

e
P()=1

The plot of the logistic regression equation follows an S-curve, ranging the outcomes
from O to 1, regardless of the value range of x. Hence, the simple prediction can be
done by considering p(x) <0 for some values of x and p(x)>1 for the rest of the x
values. The equation then can be manipulated to obtain the odds.

1+ p(x)

p(x)/[1+ p(x)] takes any value ranging from O to infinity and determines the prob-
ability of a given condition. By taking the logarithm of the above equation, log odds

can be calculated.
p(x)
=log| ——— [=wo +wix
' g(1+p(X)) Y

The advantages of logistic regression models are mathematically less complex, less
processing time for large volumes of data, and flexibility to handle a large range of
values. Multiple Logistic Regression is another variant of Logistic regression that
predicts binary responses for multiple predictors.

ew0+w1x — p(x)

ewo FWIX] W2 X Wi Xk

p('x): 1+ew0+w1x1+w2x2+-~+wkxk
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3.4.2.2 Decision Trees

Decision tree learning represents one of the simplest models of machine learning.
Decision trees represent functions that take a vector of attributes as its input and
return a single output denoting a decision. The inputs and output can be continuous
or discrete valued variables. In case of Boolean valued decisions, the input assign-
ment that leads to false output is called a negative example and one that leads to true
output is called a positive example. A decision tree learning algorithm learns a deci-
sion tree from a given set of training examples. Decision trees can be exponentially
large for certain functions (e.g., majority). Further, the search space for decision trees
is also excessively big. For instance, there are 2% of Boolean decision trees for n
input variables. One of the limitations of decision trees is overfitting to their training
set; that is, the function that they learn is close to perfect on training examples but
does not generalize to newer examples.

3.4.2.3 Artificial Neural Networks (ANNs)

Another classification technique is ANNs inspired by the human brain’s structure
and function. These networks consist of many interconnected perceptrons which
mimic the functionality of human neurons. The information propagates front and/
or back in layer form. Each layer consists of a set of neurons performing a dedi-
cated functionality. These layers can mainly be categorized into three categories,
input layer, output layer, and hidden layers (see Figure 3.7). The input layer receives
the input data (usually in the form of a multidimensional vector), and the output
layer delivers the final output. All the layers in between the input and output layers
are identified as hidden layers. The input layer passes the input data to the hid-
den layers, and the hidden layers then make the decisions to maintain the weight-
ing scheme. These weights are updated on the go using optimization techniques
such as Stochastic Gradient Descent (SGD). Having deeper stacks of hidden layers
are identified as deep neural networks, which is discussed in the later part of this
chapter.

: Hidden layer

Input 1

Input 2
Output

Input 3

Input 4

Input layer Output layer

FIGURE 3.7 An example of ANN.
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3.4.3 SUPERVISED LEARNING VARIANTS: SELF-SUPERVISED LEARNING

Supervised learning methods provide powerful feature learning given better quality
and quantity of data. Larger models such as deep neural networks are extremely data
hungry. However, the success of such systems hinges on a large amount of labeled
data, which is not always available and often prohibitively expensive to acquire. The
annotation bottleneck has motivated a wave of research in self-supervised represen-
tation learning methods that have been widely studied and advanced rapidly in recent
years [18-20]. Self-supervised learning process transforms an unsupervised problem
into a supervised problem when a dataset contains a huge quantity of unlabeled data.
In conventional self-supervised model building, there are two main training stages,
(1) pretext task which determines the invariance of the representations, and (2) down-
stream task which consumes the learned representations effectively [21].

3.4.3.1 Pretext Task

During the pretext task stage, the model learns to extract intermediate representa-
tions of the input data. A large quantity of unlabeled data is used to extract the under-
lying patterns and structures within the data. A large number of the pretext tasks for
self-supervised learning have been studied in recent research studies.

3.4.3.2 Downstream Task

Downstream task can also be defined as the knowledge transfer process of the rep-
resentations learned during the pretext task. This defines the model’s purpose. These
downstream tasks can be of various types such as image classification, object detec-
tion, semantic segmentation, machine translation, sentiment analysis, and so on. The
goal of self-supervised representation learning is to learn the underlying structure
and features of the input data without any explicit supervision and then utilize these
learned representations in various downstream tasks to improve their performance.

3.4.3.3 Types of Self-Supervised Learning

According to the literature [22], self-supervised techniques can be categorized into
contrastive learning and noncontrastive learning. The main difference between them
lies in how they utilize unlabeled data to generate useful representations.

3.4.3.3.1 Contrastive Learning

The main idea of contrastive learning is to attract positive samples while
repelling negative samples. The positive sample could be semantically related
instances, whereas negative samples are semantically dissimilar. Here, one sample
from the input dataset is considered as an anchor, and its own augmented version is
treated as a positive sample, while the rest of the input data is treated as a negative
sample. For instance, transformation-based pretext tasks such as resizing, flipping,
and blurring can be used to generate a stochastically distorted perspective of the
anchor while keeping the semantics of positive samples the same. Even though con-
trastive algorithms prevent complete collapse through negative examples, they are
still prone to representation (dimensional) collapse [23]. Some of the popular vison-
based models are MoCo [24], and SimCLR [25].
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3.4.3.3.2 Non-Contrastive Learning

Compared to contrastive learning techniques, noncontrastive learning does not
involve creating positive and negative pairs of samples. Instead, it directly trains the
model to predict the properties of the input data that are relevant to the downstream
task. Some examples of noncontrastive learning models are Bootstrap Your Own
Latent (BYOL) [26] and SimSiam [27]. These noncontrastive learning techniques do
not suffer dimensional collapse [28].

3.4.3.4 Challenges in Self-Supervised Learning

Self-supervised learning is a promising approach that learns representations from
unlabeled data and then tunes these to the task at hand by using limited amounts of
labeled data. While it addresses the labeling bottleneck of machine learning, it comes
with a set of its own challenges as described below.

e Pretext Task: As the pretext task is one of the major steps in the self-
supervised learning process selection of a more suitable one is important.
However, there is no straightforward approach to determining the most suit-
able pretext task to extract better representations out of unlabeled data for a
given downstream task.

¢ Model Performance: Performance metrics such as accuracy show convinc-
ing results given a large amount of unlabeled data. Self-supervised tasks
with a moderate to a small amount of unlabeled data could generate inac-
curate pseudo-labels.

¢ Computational Complexity: Most of the proposed self-supervised
approaches in recent literature require a tremendous amount of computa-
tional power and time. Specifically, due to multistaged architectures, such
as generating pseudo-labels, learning representations, and downstream
tasks, the required computational power and time are considerably higher
compared to their supervised counterparts.

e Dataset Bias: Any learning task can be affected by dataset bias due to
reasons such as dataset imbalance and long tail distribution. Such situa-
tions can be mitigated if the dataset is preprocessed and annotated prop-
erly. However, in self-supervised learning applications, the representations
learned from a large portion of the biased unlabeled datasets could perform
poorly in the inference stage. Identifying these dataset bias factors from the
data is challenging and requires more attention to resolve such biases.

3.5 DEEP LEARNING

Deep learning is conventionally categorized as a subfield of machine learning.
Deep learning was introduced by Hinton et al. [29] in 2006 which was based on
the concept of Artificial Neural Networks (ANN). It is prevailing in a wide range
of domains including health care, visual recognition, text analytics, cybersecurity,
and many more [30]. Deep learning models typically follow the same processing
pipeline as conventional machine learning modeling. However, the major difference
of deep learning modeling is that the feature extraction is automated rather than the
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manual extraction used in conventional machine learning. Most of the conventional
machine learning models tend to show decreased performance increments given
more data. Deep learning models on the other hand perform better when data grows
exponentially [30].

3.5.1 ConvorutioNAL NEURAL NETWORKS (CNNYs)

CNNs have attracted enormous interest in Deep learning applications due to their
performance over a vast variety of domains. CNNs learn and extract features from
a given data input automatically [31]. The main idea behind CNN architectures is to
extract low-level features such as textures, edges, and corners, and combine them to
extract high-level features of parts of objects to identify the complete object as an
output. Figure 3.8 shows an example of CNN architecture taking an image input and
delivering an output classification prediction.

3.5.1.1 Basic Building Blocks of CNN Architecture
A typical CNN architecture is built using the following components.

e Convolutional Layers: The main building block of a CNN is convolution
layers which perform convolutional filtering of the input data and produces
a set of feature maps that represent different learned features. Each fil-
ter extracts a different type of feature from the input data, and the output
feature maps can be used as input to subsequent layers in the network. In
simpler words, the convolution operation in CNNs can be described as a
multiplication of an array of input data with an array of two-dimensional
weights, called a filter or a kernel. Here, the filter has to be smaller than the
input data to perform the dot product and sum up to a single value, referred
to as the scalar product. Figure 3.9 shows a convolutional operation with
33 input with a 2 x 2 filter, which results in 2 X2 output.

e Pooling Layers: The pooling layer is another important component of
CNN architectures. It is important to consider reducing the dimensionality
of the feature maps in order to reduce the computational complexity and
enhance generalizability. Pooling layers operate on each feature map inde-
pendently and perform a down-sampling operation by taking the maximum
(Max-Pooling) or average (Average-Pooling) value of each nonoverlapping
region of the feature map. The output of a pooling layer is a smaller feature
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FIGURE 3.8 An example of CNN architecture.
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map with reduced spatial dimensions. Max-Pooling is the most commonly
used type, which selects the maximum value within each pooling window.
Average pooling, on the other hand, calculates the average value within
each pooling window. An example Max-Pooling operation is shown in
Figure 3.10, 2 X 2 filter on a 4 X 4 input with stride 2. Besides these two most
common pooling techniques, Global Average Pooling [32], which takes the
average value of each feature map across all locations, is also widely used
in recent studies [33,34].

3.5.1.2 Activation Functions

When learning feature representations from a given input, extracting only linear rela-
tionships is not enough. Activation functions help to extract nonlinear relationships
and patterns through the output of a neuron or a group of neurons. Activation func-
tions determine enabling a neuron as well as controlling the output range of a neuron.
In CNNG, the activation functions are triggered after the convolutional and pooling
layers to introduce nonlinearity into the model. The following are some of the popu-
lar activation functions that are commonly used in CNNs.

e Sigmoid: This activation function maps input values to values between 0
and 1 to determine active and inactive states. The sigmoid function is mostly
used in binary classification problems. Even though this function is easy to
implement and compute, it mostly ends up with a vanishing gradients effect,
which slows down the training process and shows poor performance.

o(z)=
(2) 1+e*
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e Tanh (Hyperbolic Tangent): Tanh activation function outputs values range
from —1 to 1 for a given input value. This activation function is closely simi-
lar to the Sigmoid activation function, but the output range is wider. Tanh
activation functions are preferable when strong gradients and big learning
steps are required. However, similar to the Sigmoid activation functions,
Tanh too leads to the vanishing gradient problem.

_ef—e’

o(2)= e“+e”

¢ ReLU (Rectified Linear Unit): ReLu is one of the most used activation
functions which has a simple function to achieve nonlinearity. The function
returns the input if it is positive, and zero otherwise. The main advantage
of this activation function is that it is computationally efficient and easy to
implement. However, one major drawback of ReLu function is that some-
times some of the neurons constantly output zero (also known as dead neu-
rons). One of the ReLu variants called Leaky ReLU allows a small negative
slope for negative input values to avoid dead neurons.

relu (z) = max(0, z)

¢ Softmax: When it comes to multiclass classification tasks, the Softmax
activation function shows better performances compared to other activation
functions. In order to determine a final outcome from a set of values output
from neurons, determining the corresponding probabilities is important.
The softmax activation function converts the outcomes from each neuron
into a class-specific probability distribution. These probabilities then be
used to approximate the most likely class for a given input.

i

e
K
2.
j=1

Each activation function has its own strengths and weaknesses; hence, the choice
of activation function can have a significant impact on the performance of a CNN.
Figure 3.11 shows the Sigmoid and the Relu activation functions which gained larger
attention in CNN model building.

O-(Z)i =

3.5.1.3 Fully Connected Layers (FCLs)

FCLs typically follow a series of convolutional and pooling layers that extract fea-
tures from the input (image). FCLs are also referred to as dense layers at every node
in a layer connected to every node in the proceeding layer. The main task of an FCL
is to convert the last convolutional layer output into a single-dimensioned array (also
called flattening). The number of nodes in the FCL is determined by the number of
classes in the classification problem.
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FIGURE 3.11 Sigmoid activation function and ReLu activation function.

3.5.1.4 Advanced CNN Architectures for Classification

One of the main applications of using CNN is image classification. CNNs use a series
of feature extractions using different layers and perform classification tasks as an
output. Some of the commonly used CNN models are discussed below.

e LeNetS: LeNet CNN architecture can be identified as one of the earliest
compared to the other popular architectures. This was the starting point of
convolution and pooling layers to be used in CNN architectures. The archi-
tecture of LeNet consists of seven layers, including two convolutional layers,
two pooling layers, and three fully connected layers. The layers are arranged
in a sequential manner so that the output of each layer is an input to the next
layer. The first layer generates six feature maps with a size of 5x5, and the
second subsamples the features maps from the first layer into the factor of
2x2. Then, the third layer generates 16 feature maps of size X5 and per-
forms subsampling of the output by a factor of 2 X 2 using a pooling layer.

* VGGNet (Visual Geometry Group): VGG deep CNN architecture was
introduced in 2014 by the Visual Geometry Group at the University of
Oxford [35]. The main goal of this architecture is to show the deeper the
network the better the learned feature representation. The VGG architecture
consists of a series of convolutional layers with 3 X3 filters and a stride of
1, followed by a Max-Pooling layer with a 2 x 2 filter and a stride of 2. This
pattern is repeated several times, increasing the number of filters in each
layer as the spatial resolution decreases. Finally, the output of the convolu-
tional layers is flattened and fed into a series of fully connected layers for
classification. VGG also introduced the concept of transfer learning, where
the weights of a pretrained network can be used as a starting point for a new
network on a different task.

¢ ResNet (Residual Network): Resnet Deep Convolutional neural network
was introduced in 2015 by a Microsoft Research team [36]. One of the main
goals of developing such CNN was to address the problem of vanishing gra-
dients in deep neural networks. During the learning process, the gradients
tend to vanish when a CNN has a large number of layers. However, train-
ing a deep model to capture better feature representations requires deeper
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architectures. The key feature of ResNet architecture is residual connec-
tions. These connections support the network to learn residual functions
and skip layers to pass the current output to later layers. This creates a short-
cut for the gradient to propagate through the network and helps to avoid the
problem of vanishing gradients.

In summary, CNNs are able to perform hierarchical feature extraction and can be
used for a wide range of computer vision tasks, including image classification, object
detection, and semantic segmentation.

3.5.1.5 Advanced CNN Architectures for Object Detection

The image classification describes or annotates as a whole, while the object detec-
tion task aims to determine the exact location of an object in an image. Hence, the
object detection task has two aims, (1) classification of the objects and (2) localize
the object. The architectures built to address object detection can be mainly catego-
rized into two groups, namely single-staged and two-staged. In general, the two-
staged models first generate possible region proposals and then process them further
to construct the final bounding boxes to localize the objects. However, the single-
staged approaches attempt the object detection task directly from the input image.
Hence, single-staged models perform the detection tasks faster but less accurately,
whereas two-staged models perform the detection task slower than the single-staged
approaches yet with better accuracy.

* Region-based CNN (R-CNN): The family of R-CNN architectures is
highly popular in object detection applications which comes under two-
staged architectures. The initial R-CNN [37] used selective search tech-
niques to generate region proposals in the first stage. Then, these region
proposals were cropped out and then classified using a classification model.
However, the selective search approach tends to propose a large amount of
object region proposals which leads to higher computational cost. As an
extension to the R-CNN architecture, Fast R-CNN [38] was proposed with
Region of Interest (ROI)-based pooling to obtain fixed-size feature output.
Further, Faster R-CNN [39] architecture was proposed to overcome the
selective search bottleneck, by extracting the region proposals from internal
feature maps using the outcomes of intermediate activation functions. This
proposal bounding boxes represent the location of the object.

* You Only Look Once (YOLO): The family of YOLO [40] architectures
can be identified as commonly used single-staged object detection archi-
tectures. In YOLO architectures, the object detection task is converted to
a classification task to complete the task in a single pass. In the YOLO
network, the image is divided into grids, and for each grid, there is a set of
classifiers to determine the region of interests belonging to the grid. The
predefined anchor boxes are aligned in identified grids, and with the help
of a regression network, the final object can be localized. Currently, there
are many extended and advanced variations available with different object
detection capabilities [41-43].
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3.5.1.6 Advanced CNN Architectures for Segmentation

Similar to object detection applications, object segmentation techniques also have
gained drastic advancement with CNN architectures. Even though the detection
tasks with R-CNN and YOLO architectures show convincing improvements, the
localization is mostly bounded by a box. The localization precision is higher when
pixel-level classification is performed for objects. Here in this section, two CNN-
based segmentation architectures are discussed.

e Fully Convolutional Networks (FCN) [33]: As discussed in the CNN-
based classification architectures, the input-to-output process is carried out
by the feature extractors followed by a fully connected classifier. However,
these fully connected layers cannot preserve the spatial information of the
objects to identify the exact localization of an object [44]. Eliminating these
fully connected layers and introducing full-size average pooling layers can
be used to preserve the spatial information of a set of two-dimensional
activation maps. This process is also known as Global Average Pooling [32]
as all the weights corresponding to each class are summed from all the
layers.

e U-Net: The U-Net architecture [45] which was proposed in 2015 mainly tar-
gets biomedical image segmentation tasks. This architecture type belongs
to the encoder—decoder category, where the encoder is a convolutional
neural network, and the decoder is a deconvolutional neural network. The
decoder contains a mirror sequence of the encoder CNN. One of the reasons
for the better segmentation performance of this architecture is its capabil-
ity to achieve the level of abstraction through skip connections. These skip
connections are connected from the encoder blocks to their mirrored coun-
terparts in the decoder (Figure 3.12).

e Mask R-CNN: Mask R-CNN [46] is an extension of Faster R-CNN object
detection architecture. Other than the Region Proposal Network (RPN),
classification and bounding box regression network of Faster R-CNN net-
work, Mask R-CNN consists of an additional branch of mask predictions for
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FIGURE 3.12 U-Net encoder decoder structure with skip connections.
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each object proposal. The complete pipeline can be trained end-to-end, for
instance segmentation tasks.

3.6 RECURRENT NEURAL NETWORKS (RNN)

Similar to CNNs, RNNs too have become popular and commonly used in deep
learning applications. RNNs are mostly used with sequential data such as natural
language texts, Speech, Audio, Video, Physical processes, and real-time embedded
system outputs. Sequential processing demands two important qualities: the ability
to maintain the length variability of input/output and comprehending the order of a
sequence to learn and predict.

Figure 3.13 shows simple RNN architecture and its unfolded representation. RNN
models learn by looping the output of the previous state of it to itself as an input.
This looping structure supports RNNs to capture long-term dependencies in the data.
However, the vanilla RNN models suffer from the vanishing gradient problem. Long
Short-Term Memory (LSTM) networks [47], and Gated Recurrent Unit (GRU) net-
works are examples of extensions of RNN architectures to address vanishing gradi-
ent issues and other performance enhancements.

¢ Long Short-Term Memory (LSTM): LSTMs were introduced in 1997 by
Hochreiter and Schmidhuber [47], and it has been widely used in several
sequel data processing applications. LSTM uses gated units to address the
problem of vanishing gradient. A single memory cell in an LSTM unit con-
tains three gates namely, Forget Gate, Input Gate, and Output Gate. The
Forget Gate controls the information which should be memorized and for-
gotten based on its usefulness. The Input Gate is responsible for controlling
which information should be input to the cell state, whereas The Output
gate determines and controls the outputs.

¢ Gated Recurrent Unit (GRU): Gated Recurrent Unit (GRU) architecture
was introduced in 2014 by Cho et al. [48]. This architecture too employs
gates to control the flow of information and mitigate the vanishing gradient
problem. Specifically, GRU has two gates, namely the update gate and the
reset gate. GRU has similar characteristics as LSTM, yet processes data
faster due to the fact that it has less number of gates. The update gate GRU
captures the dependencies from large sequences of data adaptively without
discarding the information gathered from the previous states.

Output Output, Output, Output,,,
Weights

Weights

—

Weights
Unfald

Input Input, ; Input, Input,,

FIGURE 3.13 Typical RNN architecture.
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4.1 INTRODUCTION: HIGH-THROUGHPUT SCREENING

The outstanding properties of 2D materials from classes of semi-metal (graphene),
insulator (hexagonal boron nitride) and metallic carbides, nitride, and carbonitrides
(MXenes) have been utilized in different industries. Such properties include high
carrier mobilities, superconductivity, mechanical flexibility, as well as high opti-
cal absorption compared to their bulk counterparts. These properties collectively
render them as excellent candidates in application such as barrier coatings [1-4],
energy devices [5-7], catalyst [8—10], biosensors [11-13], spintronics [14-16], and
supercapacitors [17-19]. Following the 2010 Nobel Prize for isolating graphene and
demonstrating its remarkable properties, there has been a significant interest in dis-
covering other promising 2D materials. Such a discovery, especially for a specific
scientific or industrial application, entails significant financial resources, extensive
time (10—20years) [20], along with a failure risk (e.g., inability to exfoliate stable 2D
materials). The discovery process typically entails six different key steps including
discovery, development, optimization, system design, certification, and manufactur-
ing (Figure 4.1). It is unlikely that these different stages will be overseen by the same
scientific teams and same places. Even if this is the case, any communication lapse
among them can slow down the entire discovery process.

Computational modeling and experiments are the two key methodologies used
in 2D materials research. Both offer innate benefits and limitations. While experi-
ments are relatively general easy way of exploring new materials, they require exten-
sive infrastructure (human and hardware), time, and money. On the other hand,
modeling efforts solely rely upon the theories and computational power. Molecular
dynamic simulation [21], density functional theory (DFT) [22], Monte Carlo tech-
niques [23], and phase-field methods [24,25] can be used to run tests virtually and
in a shorter period of time [26]. Their major limitations arise from their overreli-
ance on: (1) intrinsic microstructural properties of the materials, (2) sophisticated
computing equipment, (3) and data from previous studies that many not be relevant
for new systems. Thus, computational efforts are often integrated with experimental
efforts to study 2D materials properties and correlate them with synthesis and pro-
cess functions. In certain cases, both experiments and computations fail to achieve
a desirable function. For example, it is difficult to examine transition temperature of
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FIGURE 4.1 The process of finding new 2D materials.

glass experimentally owing to their changes across a large temperature range [27].
The transition temperature also cannot be simulated accurately as it is influenced by
multiple variables (e.g., pressure, structure, and fundamental constitutive traits) [28]
that cannot be implemented easily using computer tools. Artificial intelligence (AI)
can overcome flaws of these two methods, where computational and experimental
approaches are combined to develop analytical tools for predicting functional prop-
erties of previously unexplored 2D materials. High-throughput first-principles calcu-
lations can be used to study the vast 2D materials space. The resulting databases can
be leveraged by Al methods to develop computational tools for predicting 2D mate-
rials that display the highest probability of existence and offer desired (predicted)
properties. The predicted results are then verified with experimental results.
Following the establishment of the Materials Genome Initiative (MGI) in 2011
[29], many other 2D materials property databases have been created that meet find-
ability, accessibility, interoperability, and reusability (FAIR) principles. Examples
include the inorganic crystal structure database (ICSD) [30], Computational 2D
Materials Database (C2DB) [31], 2D Materials Encyclopedia (2dmatpedia) [32],
Open Quantum Materials Database (OQMD) [33], Materials Project [34], Cambridge
Structural Databases [35], and Harvard Clean Energy Project (HCEP) [36]. Al-based
machine learning (ML) tools can be developed to leverage these data sets, generate
hypotheses about the optimum experimental circumstances and parameters, learn
and adapt without any explicit instructions, find, analyze and draw insights from pat-
terns observed from the data [37,38]. Such ML approaches have been used recently to
unearth new 2D materials and correlate their fundamental properties with desirable
functions. For example, such ML approaches have been used to develop new cata-
lysts [39], battery materials [40], and light-emitting diodes (LEDs) [41] based on the
2D materials. ML tools can be paired with computer modeling processes to develop
efficient and reliable solutions for 2D materials discovery. For instance, Sorkun
et al. [42] leveraged ab initio theoretical predictions and data-driven approaches for
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virtually screening 2D materials from a large compositional space for energy conver-
sion and storage applications. They downselected nearly 316,500 stable 2D materials
and identified promising candidates for energy conversion and storage applications.
Such data-driven approaches can also leverage data from even failed experiments
[43].

This chapter will introduce effective ML techniques for discovering new 2D
materials and predicting their properties. It will be organized under the following
key topics: (1) ML approaches for 2D materials research, (2) prediction of 2D mate-
rial properties, (3) application of ML approaches for discovering novel 2D materi-
als, (4) ML for other purposes, and (5) countermeasures for common problems, and
finally, (5) conclusions.

4.2 ML APPROACHES FOR 2D MATERIALS RESEARCH

ML tools can be used in different fields related to high-dimensional data, such as
classification, regression. They can extract insight and knowledge from massive
databases, learn from different computations from previous studies, and predict reli-
able decisions. Although ML techniques became common in diverse fields including
image recognition [44], natural language processing [45], speech recognition [46],
and banking [47], their application in the materials science research became promi-
nent only in the past decade. The ML techniques were first applied in materials sci-
ence in 1990s [48,49]. However, they were limited to studies focusing on identifying
and projecting the physio-chemical behavior of fiber/matrix boundaries in composite
materials [49]. This application allowed scientists to realize the utility of ML in other
topics including materials discovery and properties prediction.

4.2.1 THrRee ML APPROACHES FOR 2D MATERIALS RESEARCH

Three major forms of ML approaches are supervised, unsupervised, and reinforce-
ment learning. While supervised ML requires defined or labelled forms of input
and output training datasets [50], unsupervised ML use raw data or unclassified
datasets [51]. As the name implies, reinforcement learning uses positive reinforce-
ment to encourage desirable actions. Negative reinforcement can also be used to
discourage undesirable ones. This model observes the surroundings and plans and
executes appropriate activities to improve its performance over time. The final choice
of an ML approach depends upon the quality and quantity of 2D materials datasets
and the research problem under consideration. Three key classes of ML algorithms
[52] include (1) Regression (2) Classification and clustering (deep learning, DL), and
(3) Probability estimation (see Figure 4.2 for subclasses under these key categories).

4.2.1.1 Construction of an ML Model

An ML system is typically built after identifying a specific problem goal and empiri-
cal function that denotes it. The sample is the subcategory of the data [53] obtained
after the raw data is processed using data cleaning and feature engineering steps.
Cleaning step identifies incorrect, incomplete, and irrelevant data. Such incorrect
data is then revised and cleaned [54]. Feature engineering uses the information to
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FIGURE 4.2 Three classes of ML algorithms used in 2D materials research.

generate features which in turn are used to operate the ML algorithms. Feature engi-
neering step encompasses tasks including selection of features, extraction of features,
feature learning, and feature construction. This step critically influences the quality
and accuracy of the model. In spite of the recent technological advances, feature
engineering remains a tough and expensive job that requires trained experts, substan-
tial time, and resources. An ML model construction includes two fundamental parts:
(1) ML algorithm and (2) model optimization algorithm [55]. The model represents a
system based on complex statistical and mathematical ideas, as well as the algorithm
that was learned from the sample. Eventually, the overall process can give refined
optimized output.

4.2.1.1.1  Three Stages to Build an ML Model

The process of building an ML method can be broken down into three distinct
stages [55]: (1) generating the training data to create samples, (2) building the ML
model using those clean data (samples), and (3) model evaluation and optimization
(e.g., cross-validation, hyper-parameter optimization) [56]. The overall construction
process of an ML system is illustrated in Figure 4.3.

The first step, training data, is the process of collecting raw data from computa-
tional simulations and experimental data. These raw datasets are then cleaned into
usable form by data cleaning and feature engineering technique. The overall data-
sets are divided into three categories: (1) Training dataset (to train the ML model),
(2) Validation dataset (validate the model), and (3) Test dataset (actual testing of the
final model). For example, in case of developing protective coatings based on 2D
materials, the experimental and simulation data is based on the EIS, Tafel, LPR, and
corrosion data.

Data cleaning process is then used to tailor and modify the raw data into a more
suitable form. The next step involves feature engineering that refers to the process of
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FIGURE 4.3 Three stages to build an ML model.

identifying the consistent, nonredundant, and essential features to use in model con-
struction. Hence, it is important to identify only key conditional attributes that affect
the obtained datasets. For example, in Li-ion battery applications, although various
external and internal factors may influence the battery performance, only key factors
(e.g., cell potential, gravimetric capacity, volumetric expansion) are considered while
performing the experiment [57]. That is why it is critical to use feature selection
properly to find out the attributes that affect the most [58]. The second step, model
building, uses different linear or nonlinear functions to link input data to output data.
Model evaluation is the last step. This step aims to calculate the generalization accu-
racy of a model on the data that could come across in the future.

Methods used for evaluation are listed in Table 4.1. These methods need test data
to evaluate the model’s performance, and it is recommended not to use the data used
for building the model as test data. Because that might result in overfitting [59].

TABLE 4.1

Analogy of Different Assessment Techniques

Method Condition Advantages Limitations

Bootstrapping Small data volume Effective separation Original dataset is
of training and different from training
testing data data

Hold-out Enough data volume Less complex Training data volume is
computational data smaller than original

dataset
Cross-validation Enough data volume/ Change in volume High-level computational
or LOOCV Small data volume and of training data as complexity
training and testing no effect

data can be separated
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Overfitting is a phenomenon when a model remembers its training data set and always
predicts the accurate label for any point that’s in the training set [60]. Holdout is the
evaluation method where different data is used for evaluation and the whole dataset
is categorized randomly into three different sets, namely (1) training set, (2) valida-
tion set, and (3) test set. In fact, the training set is indeed a fraction of that same data
that was initially utilized to build the model. On the other hand, the validation set is
essentially the subcategory of the data utilized to assess the model’s efficiency. This
helps to test the model build and refine the parameters to finalize the best version of
the model in the end. Test set, also known as unseen data, is the subset of the data
used to evaluate how well the model would perform in the future. Holdout is a very
handy process for it is known for its speed, flexibility, and simplicity. However, dif-
ference in training and test data set might cause high variance [61]. Cross-validation
and bootstrapping are also used for model evaluation.

4.2.1.2 Data Collection and Representation

Although there are only 92 naturally occurring elements in the modern periodic
table, there can be unimaginable variations of materials with different combinations.
It is remarkable to see how ML and HTS (high-throughput screening) flourish by
offering somewhat an appropriate solution within a short amount of time and with
minimal means. For ML models to be successful, they must have extremely high-
quality and exact data [62]. Following list is the most significant and trustworthy
open-source research-related experimental, theoretical, and computer modeling
databases relevant to 2D materials development.

e Inorganic Crystal Structural Database (ICSD) (https://icsd.products.fiz-
karlsruhe.de/)

e Computational 2D Materials Database (C2DB) for structural, thermody-
namic, elastic, electronic, magnetic, and optical properties (https:/cmr.
fysik.dtu.dk/c2db/c2db.html)

* Joint Automated Repository for Various Integrated Simulations (JARVIS)
for Database of DFT-, MD-, and ML-based calculations (https://jarvis.nist.
gov/)

e Crystallographic open database (COD) for crystallographic data (http://
www.crystallography.net/cod/)

e Open Quantum Materials Database (OQMD) for thermodynamic and struc-
tural properties calculated from DFT (http://oqmd.org/)

e Materials Project (MP) for computational data under the Materials Genome
Initiative (MGI) (https://materialsproject.org/)

e 2D materials encyclopedia (http:/www.2dmatpedia.org/)

e PubChem (https://pubchem.ncbi.nlm.nih.gov/)

Feature engineering is a critical step within data representation process [63]. For
making the raw data more suitable for an algorithm, it needs to be converted and this
procedure is called feature engineering. In this process, data is represented in such
a way that has meaning for an ML algorithm. Any material’s data can be expressed
structurally or in elemental form. For elemental form, data such as charge number,
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atomization energy, etc., can be used and structural form data such as bond order
parameters, Fourier series, etc., are incorporated. Often, a combination of elemental
and structural data is required for better comprehension. That is why the selection of
molecular descriptors is critical to have an efficient HTS and ML model to solve any
problems. Some common descriptors are radial distribution functions (RDF), prin-
cipal component analysis (PCA), adjacency matrix, and coulombic matrix. The RDF
descriptor is a perfect example of a crystal structure descriptor [64]. While consider-
ing the Fourier series, the atomistic RDF (FR) is the descriptor for the space of chem-
ical component that is built on the distance among molecules. Moreover, it fulfills
major portion of the prerequisites of being a descriptor. This is also a reliable source
of projection when considering molecules’ energy surfaces. On the other hand, PCA
is used to reduce dimensionality [65]. The calculation of this tool is derived from the
eigenvalue of a matrix and its corresponding eigenvectors. The base of this approach
is linear algebra and so the mathematical foundation is very sound which eventually
results in the straightforward interpretation of results. However, the assumption of
linearity can be attributed to the shortcoming of this method. As most materials
science-related cases are nonlinear, this method is seldom used in advanced machine
learning methods. Additionally, adjacency matrix is very handy while considering
chargeless particles, whereas the combination of both charge and structural informa-
tion is incorporated [66] for coulombic matrix. In fact, if the chemistry of the atomic
species is included, an adaptation of adjacency matrix, Coulombic matrix representa-
tion can be obtained.

4.2.1.3 Selection and Evaluation Procedure of Model

There are different and effective machine learning algorithms ranging from as sim-
ple as linear regression curves to some intricate neural networks. Due to scarcity of
enough data, not all algorithms are employed to find and predict new materials. As
ML in materials science is a new direction and this area itself is still emerging and
a lot of new directions are being generated every day. From those, the most useful
ones are listed in Figure 4.2. Here, Naive Bayes can work as validating any theory
[67], decision tree can show the routes of materials synthesis [52], artificial neural
network can predict reaction product [68], and support vector machine can estab-
lish the structure—property relationship [69]. As stated earlier, for employing ML in
materials science, the setback is the scarcity of high-quality datasets [70]rather than
algorithms. However, thanks to DFT, in near future this scarcity of theoretical data
will no longer exist. But performing ML analysis using big set of data is still not a
cost-efficient technique due to the fundamental parts of ML such as feature engineer-
ing [71]. By substituting first-principles calculations with machine learning, it can
help save money and effort throughout this situation.

In DFT, the Kohn—Sham (KS) equation can be utilized to measure the entire energy
of any molecules. The KS equation exists in a KS system, a hypothetical system that is
made of particles which do not interact with each other still can produce same density
like any other system that as particles interacting with each other [72,73].

The KS equation can be written as:

E(n)=T,(n)+Uy(n)+ E\(n) “.1)
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here
T,=noninteracting electrons’ kinetic energy (K.E.)
U, =Hartree potential energy
V=external potential
n=electronic density
E . =exchange-correlation term showing owing to energy estimations in the
Kohn—Sham approach.

Calculating the value of overall energy through a computational approach is always
intensive. Through ML approaches, the outcome of DFT simulations can be pre-
dicted without even performing it. For example, Brockherde et al. [74] circumvented
the KS equation while doing DFT computation by studying the energy functional
applying the kernel ridge regression (KRR) program. Or each accessible experimen-
tal test result could be fed into machine learning programs and from there pattern
of structure—property can be comprehended. ML models were at first used in the
chemical and pharmaceutical industries.

One of the ML approaches used in pharmaceuticals [75] medicines is quantitative
structure—activity relationship (QSAR) modeling, which has aided to assess energy,
expense, and improved pharmacology and pharmacological activity. Artificial neu-
ral network (ANN), decision trees (DT), random forest (RF), and support vector
machines (SVM) are the examples of QSAR approach, which have been incorpo-
rated in finding new medicines [76]. The same mindsets can help in the revolution of
novel electrode and catalyst materials discovery and their property prediction. Some
of the commonly used ML models are as follows:

4.2.1.3.1 Regressors

Linear models such as linear regression and Bayesian ridge regression, neural net-
works, RF, and KRR are the regressors ML models.

4.2.1.3.1.1 Kernel Regression This is one of the common and popular models.
Similarities between two sets of data are measured as input in Kernel-based methods
[77]. Furthermore, its outcome could be understood mostly as a linear set of kernel
functions for the given data. Gaussian fit is a popular fitting method in which several
Gaussian curves are used to fit data in a model. It has been established that the linear
model outperforms the Kernel ridge regression in terms of efficiency. However, the
latter one is more flexible. These models have done their job by predicting formation
energies [78], potential energy surfaces [79], electronic density of states [80], etc.

4.2.1.3.2 Neural Networks

This is a modeling technique designed after the brain [81]. The input of this system is
called feature and the output is prediction. Between input and output, there might be a
single or several layers which consist of several functions which help to make the out-
put or prediction. Neural networks have been considered cutting-edge machine learn-
ing modeling systems that are regarded as one of the most common [82] algorithms.
However, ANN requires a cornucopia of quality data and turns out to be a very exor-
bitant technique in terms of computational expenses. Contrarily, it has demonstrated
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the ability to just be reliable and cost-effective when dealing with smaller datasets.
The model learns from different features of molecule, such as charge, the interatomic
distance, etc. It can compare data with the data that has been already learned and
can differentiate any irregularities. It can also capture underlying patterns among the
input data [83]. Although neural networks’ primary design constrained the model’s
ability only to deal with massive amounts of data, recent improvements have allowed
them to function effectively with modest amounts of data as well. As an example, after
almost 10,000 datasets of training, Grossman’s model of a generalized crystal graph
convolutional neural network (CGCNN) effectively projected several key features of
perovskite crystal structure. [84] Surprisingly, this prediction has very high accuracy
when compared to DFT prediction as compared to experimental results.

4.2.1.3.3 Transfer Learning

It is widely known that insufficient data is the major setback for applying ML mod-
els in materials research. Transfer learning is a new machine learning technique that
addresses this limitation by moving data between learning activities. Hutchinson et
al. [85] tested several architectures to forecast the bandgap of crystalline compounds.
By using this procedure, he became capable of predicting bandgaps. He basically took
the differences amongst the replies of the several systems and then used them to teach
other systems. By learning the difference between computational and experimental
data, this model predicted the bandgap only using a very small amount of data.

4.2.1.3.4 Natural Language Processing

This is the ML technique that is incorporated with human language. For example,
how data from keyboard input can return results such as Google, Bing, etc., google
translation, speech recognition, auto text correction, etc. So, NLP can process any
data in textual form even materials science-based text or literature. Kim et al. [86]
used the NLP technique to find out key parameters from more than 12,000 pieces of
literature for hydrothermal synthesis of titania nanotubes.

4.2.1.3.5 Machine Learning Toolkits

AMP (Atomistic Machine-Learning Package) is an open-source ML language frame-
work. It is compatible with many of these DFTs to constructing learning prospects,
as well as GPAW (projector-augmented wave), VASP (Vienna Ab initio Simulation
Package), and other atomistic simulation tools. The following is a list of some pack-
ages and libraries that can be used for modeling:

e Keras: Open-source neural network Python library (http:/keras.io/)

* Atomistic Machine-learning Package (AMP): ML for atomistic calcula-
tions (https://amp.readthedocs.io/en/latest/)

¢ C(lassification And REgression Training (CaReT): for classification and
regression models (https://github.com/topepo/caret)

e MAterials Simulation Toolkit for Machine Learning (MAST-ML):
Open-source Python package (https:/github.com/uw-cmg/MAST-ML)

e COMmon Bayesian Optimization Library (COMBO): Python library
for ML techniques (https:/github.com/tsudalab/combo)
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4.2.1.4 Model Optimization

Validation datasets are being employed to justify the performance of the ML model
built. Prediction mistakes occur when an outcome is predicted incorrectly based on
a set of inputs. This error can be classified into two categories:

1. Variance errors: if multiple teaching datasets are applied, different flaws are
caused by differences in algorithm outcomes [87]. In a flawless ideal case,
there would not be any variance even if varying datasets are used; however,
ML algorithms like KNN, RF are prone to high variance errors.

2. Bias errors: indicate the difference between the predicted output and actual
practical output of test data. An excessive bias error implies the mapping
function being too approximate which was created to function the overall
process in less time with a low computational cost, whereas a moderate or
low bias error suggests the mapping function of having fewer approxima-
tions which will lead to higher cost.

These errors can result in critical problems such as underfitting, overfitting, etc.
That is why these must be balanced. Typically, underfitting is there when the map-
ping function does not include any significant data. It represents low variance and
high bias. Then again, overfitting is indicative of high variance and low bias and
it has superfluous data [88]. So, to avoid under- and overfitting, an optimized bal-
ance between these two types of errors should be achieved in the model. Models are
assessed using a variety of measures such as:

1. Mean absolute relative error,
ii. Coefficient of determination, R2,
iii. Learning rate,

iv. Loss function,

v. Mean absolute error,
vi. ROC curve

—_-

4.2.2 A SUMMARY OF THE USE OF MACHINE LEARNING
IN 2D MATERIALS RESEARCH

Machine learning has been applied in materials research greatly in recent years
because of the efficiency of the process in time and money and accuracy in predic-
tion. Figure 4.4 exhibits the application of machine learning throughout the realm of
materials science, which can be divided into three groups, for instance, (1) predic-
tion of materials properties, (2) discovery of new materials, and (3) different other
purposes such as process optimization, battery monitoring, etc. Similar approaches
are applicable to 2D materials too. Using regression analysis methods, 2D materi-
als property prediction, both micro and macroscopic, can be obtained. On the other
hand, probabilistic model such as Markov chain [89] is used to screen combinations
of components and structures [90], and out of the few good options, candidate having
relatively superior performance is selected finally by using DFT-centered verification.
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FIGURE 4.4 A summary of the use of machine learning in materials research. (Reprinted
with the permission from Liu, Y., et al., Materials discovery and design using machine
learning. Journal of Materiomics, 2017. 3(3): pp. 159-177.)

4.3 PREDICTION OF 2D MATERIAL PROPERTIES
USING MACHINE LEARNING

2D material property can be predicted via machine learning models. The conven-
tional property of materials can be obtained either by experimental procedures or
by computational simulation. Both of these processes require complex operation and
experimental setup. So, it is difficult to obtain data on the property of the materials and
some may remain even unknown. Another point to consider is that these experiments
are carried out at the end of the selection process; therefore, if the conditions are unfa-
vorable, then all the investments made so far would be wasted. Moreover, sometimes
properties of materials cannot be studied even through a colossal amount of effort in
experimental or computational efforts. And so intelligent prediction systems must be
developed which can determine material characteristics efficiently and precisely at a
cheap expense and promptly. In this case, machine learning can be applied because it
examines the creation and analysis of computer programs that can extract insights and
patterns from data. By analyzing and figuring out existing relations amongst various
characteristics of materials as well as the other factors associated with those proper-
ties through the extraction of insights and information from existing practical data,
machine learning can help predict the property of materials. Figure 4.5 demonstrates
the basic framework of how these models can efficiently predict material property.
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FIGURE 4.5 Fundamental framework for the application of ML in 2D materials property
prediction.

Firstly, for the determination of the conditional attributes associated with property
prediction, feature engineering is conducted. After that, the system is trained to define
the association amongst these conditional factors and the decision parameters. In the
end, the model projects the properties of the materials as output.

The trained model can predict materials properties in two classes, such as macro-
scopic performance prediction and microscopic property prediction. While investigat-
ing the macroscopic functionalities of materials, researchers emphasize on physical
as well as mechanical properties. The structure—activity correlation of the material’s
characteristics and microstructure is such an example [90]. Neural networks, support
vector machine (SVM), and optimization techniques were employed to investigate the
macroscopic performance of materials. These machine learning algorithms have an
excellent track record for addressing regression and classification tasks.

Artificial neural networks are by far the most extensively employed algorithms for
evaluating parameters which are typically undefined as well as rely on even a huge
set of input data. ANNs are nonlinear statistical analysis techniques that are based on
biological neural networks with the capability to learn by themselves and adjust [91].
Backpropagation ANNs (BP-ANNs) and radial basis function ANNs (RBF-ANNs)
are also useful neural network techniques. BP-ANNs produce acceptable precise
estimation with a high degree of adaptability [92]. But the convergence rate of this
procedure is slow and at times faces local minima problems. On the other hand,
RBF-ANNSs can overcome the problem of local minima through integrating both the
ANN and the radial basis function (RBF) concept. RBF-ANNs have superiority in
the convergence rate also. The main convenience of ANNS is that they can learn from
observed data and little prior comprehension of the target material is required [20].
However, in order to predict the attributes, it is essential to have a large, diversified
dataset for training purposes [20].

Dunn et al. [93] developed machine learning tools, such as Automatminer and
Matbench. Automatminer develops a machine learning (ML) system that has the capa-
bility to generate projections of materials as output by taking materials’ structural and
compositional data as input. The Matbench has 13 supervised machine learning tasks
from 10 datasets. Samples in each task may vary from 312 to 132,752. Every single
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assignment has its datasets, also with input being compositional or structural compo-
nent and the return being the specimen’s targeted characteristic. Rajan et al. applied
kernel ridge regression (KRR), support vector regression (SVR), Gaussian process
regression (GPR), and decision tree (DT) boosting processes the prediction of the GOWO0
bandgaps of 2D material. LASSO159 was applied for producing as well as choosing
characteristics. Finally, the feature space was enhanced for every single approach.
Table 4.2 represents the use of ML in 2D materials properties prediction using
various conditional attributes. The ML models used are also represented in the same
table. As an example, Tawfik et al. [94] predicted the interlayer distance of 1431 bilay-
ers using four machine learning models, namely relevance vector machine (RVM),
feedforward neural network (FNN), and decision tree (DT). They used LASSO
algorithm to summarize the optimum number of descriptors which is 35. The BR1
descriptor was employed to teach the machine learning methods. The bandgap was
also predicted by the ML models except for this time the number of descriptors
was 11. Using density functional theory (DFT), the bandgap was also calculated
and compared to the results obtained by the ML models. In total, the bandgap was
predicted for 210 bilayers applying the models educated by the BR1 representation.

4.4 APPLICATION MACHINE LEARNING APPROACHES
TO DISCOVER NOVEL 2D MATERIALS

After discussing the application of ML in materials property prediction in the previ-
ous section, here we demonstrate the application of ML in 2D materials discovery.
Discovering material having good performance has always been a key topic in mate-
rials science. Screenings for new materials either computationally or experimentally
require structure transformation and element replacement. Nevertheless, structural,
and compositional search space is usually not flexible rather constrained [95]. These
screening methods require a huge amount of time in experimentation or computation
without the assurance of being successful and typically result in efforts being point-
less. Considering the fact of these conventional methods being imprudent in case of
money and time, machine learning model combined with computational simulation
is adapted for the discovery of novel 2D materials.

Figure 4.6 depicts a typical machine learning procedure for finding new 2D mate-
rials. This overall method is divided into two stages: The first is referred to as a
learning system, and the second is referred to as a predictive model. Data screening,
feature engineering, model selection, learning, as well as validation are all covered
by the learning stage. The model obtained from the learning system is used by the
prediction system to give output as the projection of components as well as structure.
The following method is then used to choose new materials: DFT computations are
utilized to examine the feasibility of the candidates, and the prediction system pro-
vides suggestions for candidate structure via structural and compositional approval.
For finding new materials, numerous machine learning techniques are currently
being used and the sole purpose of these attempts is to find materials with good
performance. These are classified into two types: forecasting of crystalline and com-
position structure. Table 4.3 demonstrates a list of different 2D materials, and their
properties predicted by different machine learning approaches.
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FIGURE 4.6 Typical machine learning procedure for finding new 2D materials.

TABLE 4.3

List of 2D Materials and Properties Predicted by Different ML Methods

Class of 2D 2D Material

Material Pedicted Atomic Structure ML Method

Metal CrCuTe, Gradient Boosting Classifier
CrCuSe, (GBC) [99]
CrCuS,

CrCuTe, [99]

Half-metal MnCl, MatGAN (Generative
MnBr; Adversarial Network) [100]
V,Co0q Gradient Boosting Classifier
V,Cjs (GBC) [99]
VSIS
CrO,

Insulator Bi2Se3 Gradient Boosting Classifier

(GBC) [102]

Bi,Se, [101]

(Continued)
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TABLE 4.3 (Continued)
List of 2D Materials and Properties Predicted by Different ML Methods

Class of 2D 2D Material
Material Pedicted Atomic Structure ML Method
Semiconductor CsSnCl1,Br Regression Model &
CsSnBr,I o\,q, Gradient Boosting
CsSnBr,Cl e p Classifier [103]
CrWBr, . ..: / Gradient Boosting Classifier
CrOF 0;_6; P (GBC) [99]
CrSiTe,

CrWBr, [99]

4.4.1 PrebicTioNs OF CRYSTAL STRUCTURE

Predictions of crystal structure remain one of the key factors in finding new materials
and development. However, it remains one of the crucial problems that form the base
for any materials design. By predicting the crystal structure, experiments related to
structure can be avoided and that can save time and resources. Prediction of crys-
tal structures based on both chemical reaction and first-principles crystal structure
prediction is difficult due to the inherent complex mechanism. Following a chemical
reaction, for example, it necessitates detailed and explicit knowledge regarding the
entire reaction’s potential energy surface (PES). Then again, prediction of crystal
structure using first principles requires the consideration of a colossal amount of
component arrangements by utilizing high-level computational quantum chemistry
techniques [104]. However, machine learning uses different algorithms to analyze an
enormous amount of experimental data and extract insights and empirical rules, and
this technique has been used widely at this time.

Cluster resolution was utilized to choose features [105], which were then used
for the inputs into partial least-squares discriminant analysis (PLS-DA) and SVMs
by Oliynyk et al. [106]. To keep the problem simple, just the seven most prevalent
samples were chosen. A total of 706 compounds were classified into three groups:
(1) 235 compounds for feature, (2) 235 compounds for optimization of SVMs and
PLS-DA, and (3) 236 for validation. Support vector machines’ performance was
comparatively superior compared to that of PLS-DA with an accuracy of 93.2% for
SVMs and 77.1% for PLS-DA. SVMs were applied on a dataset having around 1505
compounds adapted from Pearson’s crystal database. Then, it was tested to see what
would happen provided that the number of the feature was reduced from a high to a
low number. For example, the resulting sensitivity was 97.3%, accuracy 96.9%, and
specificity 93.9% after changing the features from 1000 to 110.

In the overall designing process, the prediction of crystal structure is just the first
step. The next step is to combine stability determination with property design. A set
of 60,000 potential perovskites were studies by Balachandran et al. [107] via several
machine learning techniques. First, the compounds were classified into perovskites
or nonperovskites by SVM machine learning method. Then, the curie temperature of
those perovskites was predicted. A candidate is added to the training set after it was
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synthesized experimentally, and the cycle continued. Six perovskites were discovered
out of the ten synthesized compounds, and 898 K was found to be the greatest Curie
temperature.

To investigate the relationship between electronegativity and particle measure-
ment with crystalline structure, Ceder et al. [108] used principal component regression
and Bayesian probability. This research shed light on the physical explanation which
then governs crystallographic estimation. Moreover, Fischer et al. [109] ventured into
the area of extracting knowledge from computational or experimental data and built
a model that can predict structure based on information gathered from experimental
data. This model is known as Data Mining Structure Predictor (DMSP). DMSP col-
lects as well as analyzes empirical information in order to guide quantum approaches
for the study of balanced crystalline formations. DBSCAN and OPTICS are programs
developed by Phillips and Voth [110] which can find novel kinds of structure from a
large number of datasets. Liu et al. [111] aimed to overcome issues regarding multi-
objective design requirements and suggested a standardized machine learning struc-
ture. This novel framework includes arbitrary data production, feature engineering, and
also several classification algorithms, and its overall function is projecting microstruc-
tures of Fe-Ga alloys. Obtained result of this method was promising as it outperformed
traditional computational techniques. The average time required for this process was
decreased by 80% and an efficiency that cannot be obtained by other methods.

Hautier et al. [112] built a probabilistic model by integrating theoretical and experi-
mental data to predict new compositions and their possible crystal structures. Ab initio
computations then validate these predictions. Based on the theory, machine learning
provided the probability density of distinct structures existing side by side in a sys-
tem. This approach was applied and Hautier et al. went through 2211 A-B-O system
compounds (where A and B were from 67 different elements) in the inorganic crystal
structure database (ICSD) [113] where no ternary oxide was found. There were a total
of 1261 compounds with 5546 crystalline structures as a result of this. DFT was used
to compute the energies of all these molecules. To assess the stability, energy of decom-
posing pathways was estimated, yielding 355 new compounds upon the convex hull.

Sendek and colleagues [114] applied logistic regression (LR) model and screened
Li-ion conductor materials. Materials project database was used for the screening,
and 317 candidates were finalized from a total of 12,831 candidates. Then LR was
applied to create a classification model for more refined selection which resulted in
21 truly suitable candidates in the end, having an overall reduction of 99.8%.

4.4.2 PrebicTioN oF COMPONENTS

Another method for discovering novel materials is component prediction. In a nut-
shell, it is required to figure out whether certain chemical entities are likely to result
in compounds or not. When compared to the projection of crystalline systems, com-
ponent prediction turns out to be a relatively common practice of machine learning.
The search space for components is quite narrow for empirical or semi-empirical
approaches which involve numerous authentication computations as well as experi-
mentations, which might stymie considerable growth of novel material discov-
ery. Currently, the overall prediction system of components utilizing the service of
machine learning can be distinguished as two categories: (1) element combination
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recommendations after a group of components intended for a specified system and
(2) demonstration of ionic substitutions designed for novel compound finding. While
regression models can be applied to predict crystalline structure with no prior knowl-
edge, component prediction is done using a Bayesian statistical model to solve for a
posteriori probability. The distinction between classical and Bayesian statistical mod-
els is whether or not previous information is incorporated [115]. The utilization of trial
data as well as the compilation, extracting, and handling of previous information are
all very important in a Bayesian statistical model. Because they perform well in poste-
rior probability estimates, these models are utilized to forecast material components.

Hautier et al. [112] used a Bayesian statistical analysis to obtain insights of 183
popular oxides compounds in the ICSD library to accurately forecast 209 novel ter-
nary oxides. When compared to the previous (exhaustive) method, the expense of
analysis was dropped about 30 times compared to that of before. KRR was used by
Faber et al. [116] to compute the formation energy of two million elpasolites (stoi-
chiometry ABC,Dy) crystals containing main group elements up to bismuth. For a
training set of 104 compositions, errors of roughly 0.1 eV/atom remained. 78 phase
diagrams were created through energies and data from the materials project, along
with 90 new-found stoichiometries that were projected on the convex hull.

Ward and colleagues [117] used typical RFs to estimate formation energies using
Voronoi tessellations and atomic characteristics as inputs. The descriptors outper-
formed Coulomb matrices [118] and partial RDFs [64] on a training set of about
30,000. Remarkably, information after the Voronoi tessellation had little effect on
the 30,000-material training set’s findings. This is because the dataset contains
extremely limited materials having same composition yet distinct formation. When
the number of training sets was boosted to 400,000 materials from the open quantum
materials database [33], overall inaccuracy of the composition-only system increased
by 37% compared to the model that included structure information.

Li et al. [119] analyzed a dataset of roughly 2150 A, A’ B, B’ O; perovskites,
which are employed as cathodes in elevated temperature fuel cells, using sev-
eral regression and classification approaches. All techniques employed elemental
characteristics as a feature. The top classifiers were highly randomized trees (having
the best regression performance) and KRR. The first one had an average error of 17
meV/atom. Because of typical elemental composition space being so constrained, it
is difficult to compare the faults in this work to others.

Instead of only ternary oxides, Meredig and colleagues [98] employed an exact
similar technique for the prediction of components of ternary compounds. When
compared to a normal first-principles analysis, they were capable of predicting 4500
potential ternary compounds exhibiting thermodynamic feasibility, and also the
execution time was cut approximately six times. Convolutional neural networks and
transfer learning were used by Zheng et al. [120] to predict stable full-Heusler com-
pounds AB,C. The idea behind a transfer learning [121] model is that at first a model
is trained for a certain type of topic and then employing elements, insights, and knowl-
edge learned during the initial phase for different training purposes, lowering quantity
of data needed. Convolutional neural networks for image identification were applied
by employing an image of the periodic table representation. The system was origi-
nally taught to forecast the formation energy of about 65,000 full-Heusler compounds
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from a certain database (OQMD) [33], with a mean absolute error of 7 meV/atom (for
60,000 data points) and 14 meV/atom (for a training set of 5000 compositions).

As previously said, strong machine learning algorithms can be constructed to find
novel materials by predicting crystal structure and component structure. However,
when using machine learning approaches for finding new materials and their prop-
erty prediction, there are still certain challenges in the data collection stage. Due to
the high expense of library synthesis, it is difficult to obtain large and high-quality
datasets, and hence, it is considered a major challenge.

4.5 MACHINE LEARNING FOR MISCELLANEOUS FUNCTIONS

In addition to the application of ML in predicting materials properties and developing
novel materials, it is widely used in various fields of materials science and engineer-
ing. ML has been used in research that requires mass simulations and experimental
studies which is challenging to solve via typical research methodology.

ML has been used to determine density function. Snyder et al. [122] recently used
a machine learning model for solving a newly designed density functional issue. The
precision attained while estimating the kinetic energy (KE) of the structure, having
mean absolute errors less than 1 kcal/mol is surprisingly amazing. This is by the far
contrastingly great result compared to other approximations as it took even less than
a hundred densities to train. ML has also been applied to fields like battery monitor-
ing [123-125], optimization of overall process [126—129], corrosion prediction [130—
132], etc. Although ML has been gradually applied in the field of corrosion, corrosion
prediction, and application of protective coatings to prevent corrosion, the corrosion
industry could have profited far more from the revolutionary progress in the field of
ML. Wen et al. [133] utilized SVM model and input variables such as temperature,
salinity, dissolved oxygen (DO), pH, and oxidation-reduction potential to predict
corrosion rate of 3C steel in marine sea water. Another study reports the applica-
tion of 29,100 electrochemical data (corrosion current (/.,), corrosion potential
(E...), Tafel, Bode, Nyquist) to train regression, DT, and gradient boosting ML mod-
els to predict corrosion behavior of high-strength nickel-based superalloy (Inconel
718). Application of ML as a datamining tool has predicted the corrosion behavior
of another nickel-based alloy (alloy-22) [134]. In this study, temperature, exposure
time, surface area, and weight loss were taken as input variables and then the neural
network-based ML model predicted the corrosion rate and weight loss of the nickel
alloy. Corrosion defect depth of oil and gas pipelines have been predicted in another
study which utilizes a collection of ML techniques (PCA, GBM, RF, NN), and sev-
eral input variables such as temperature, pressure, pH, ion concentration [135].

However, very few studies have been performed to predict the corrosion resis-
tance of 2D materials as protective coating. Allen et al. [136] utilized EIS data to
predict the corrosion resistance of 2D materials (graphene) in corrosive environ-
ment. They utilized deep learning-based model called variational autoencoder
(VAE) to generate 1000 synthetic datasets from the original 49 experimental datas-
ets. Input variables such as capacitance (double-layer (Cy), coating (C,)), resistance
(solution (R,,), charge-transfer (R,,), polarization (R,,)), and open circuit potential
(OCP) from these datasets were then used to train ML model (Deep Neural Network
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TABLE 4.4
ML for Miscellaneous Application
Input Variables ML Methods Model Solution Reference
Current, Resistance, NN, SVM State of charge (SoC) Meng et al. [138]
Voltage Estimation of Lithium Ion
Battery (LIB)
Degree of Deformation, Fuzzy Neural Mechanical property Han et al. [139]
Temperature Network (FNN) (strength, deformation)
Prediction of Titanium Alloy
Aging Temperature and SVM Prediction of Hardness, Fang et al. [140]
Aging Time Electrical Conductivity of
Aluminum Alloys
Amplitude of Wave, Naive-Bayes Damage Detection in Addin et al. [141]
Age Composite Materials

(DNN), Extreme Gradient Boosting (XGBoost)) to predict the corrosion resistance
of 2D materials coating against microbial induced corrosion (MIC). The structural
features of sulfate-reducing bacterial (SRB) biofilm, contributor to MIC to arbitrary
substrates, were analyzed using neural network based deep learning models [137].
Although this study does not directly contribute to the field of corrosion resistance
prediction of 2D materials protective coating, similar idea can help in that regard.

Application of ML in various field of science has been explored to solve relevant
problems. Table 4.4 demonstrates instances where ML techniques such as neural net-
work, SVM, Bayesian Network have been applied to tackle issues related to battery
monitoring, process optimization, etc. Application of ML model helps achieve the
ability to predict battery life (LIB) and mechanical properties (hardness, strength)
of alloys and detect damage in composite materials. These examples illustrate the
extensive reliance of science and engineering on machine learning.

Although the application of ML to predict new 2D materials with superior cor-
rosion resistance property has been hardly explored so far, application of ML in the
prediction of 2D material’s various properties (electronic, structural) [99,142,143] has
been explored successfully. With the availability of hundreds of thousands of struc-
tural, electronic, mechanical, and chemical data in several databases, Big Data tech-
nique can utilize these datasets to train and predict new 2D materials with superior
corrosion resistance applications against both abiotic and biotic corrosion.

4.6 ASSESSMENT OF COMMON CHALLENGES
AND THEIR PREVENTION METHODS

4.6.1 THe PrRoOBLEMS WITH MODEL BUILDING

Data is required in machine learning model building and for the overall evaluation
technique. That is why a large group of datasets are required for the whole process.
And from that source datasets, a subgroup of the source data is chosen for research
in a certain way. The expression sample denotes the fundamental dataset in machine
learning, which often includes both training and test data. The three types of sample
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creation challenges that exist currently are the origin of its sample data, issues regard-
ing creating feature vectors and assessing the size of the sample.

Computer modeling and experimental data are the source of sample data that are
accumulated by several institutions, laboratories, organizations, or schools. However,
these data collecting processes hardly have a centralized administrative structure.
Although the development in the field of materials data infrastructures has addressed
this difficulty, the applicability of machine learning is still limited because each
database is independent, and the data format is not uniform.

Feature vectors are crucial because they compare the validity of model prediction.
The feature vectors should, in theory, provide a basic physical foundation for extracting
fundamental chemical and structural patterns, allowing for quick forecasts of original
material chemistries. Electron density, Coulomb matrix, structure, and Composition
are some of the most often utilized feature vectors in material science. There is no
universal eigenvector that would be efficient for certain purposes in material science
because each eigenvector is designed for just a distinct purpose. It is evident that dif-
ferent representations of features may yield different forecasting results [144].

In machine learning, determining sample mass is considered an important com-
ponent throughout the sample construction process which remains associated with
dimension reduction. The size of the sample size has influences if the sample datasets
contain implicit knowledge about the sample’s intrinsic characteristics, which is highly
dependent on the particular topic and the machine learning technology used. Provided
that simple techniques with only a few attributes as well as easy implementation,
namely the SVM technique [145] may function well even if the size of the sample is
not that large, advanced algorithms, including neural networks [48], which may attain
highly accurate results on standard sample datasets irrespective of the size.

4.6.2 USsABILITY

The level of difficulty in employing different machine learning algorithms for tack-
ling pragmatic issues is denoted as usability. Machine learning’s intricacy in materi-
als research presents itself in two ways. (1) Machine learning is a difficult method
that demands expert knowledge and guidance to complete. When employing machine
learning for material property predictions, for instance, the analysis of correlation
must be used to improve the prediction model accuracy. In some studies, it is evident
that reducing the high dimensionality of a given problem having high dimensional-
ity helps in the accuracy prediction [146]. (2) Determining parameters is likewise a
challenging task. Since these parameters and kernel functions are all so important
to machine learning methods, determining these is a crucial step in that process. In
materials research, the parameters of machine learning systems are mostly defined
by manual modification or experience. Moreover, to optimize such parameters, sev-
eral optimization procedures are used. As a result, figuring out how to make machine
learning approaches more usable is an issue that needs to be tackled immediately.

4.6.3 LEARNING EFFICIENCY

Machine learning speed is proportional to its pragmatic use. While promptness
is constantly sought while training as well as testing machine learning models,
but in reality, achieving it all at the same time is difficult. The KNN approach,
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for example, has a fast-learning rate but very slow testing rate; contrarily, neural
networks models take little time to train yet very long time to test. Due to the tiny
nature of these samples, learning efficiency is not a big issue in materials science
machine learning applications right now. But this problem will remain in these
models in materials research when materials genome project spread and mate-
rials science will adopt the idea of big-data techniques having sample datasets
with massive volume. Thus, this learning efficiency issue regarding how machine
learning can be improved will also become a question which needs to be resolved
as a matter of urgency.

4.7 CONCLUSIONS

Machine learning exists as a sophisticated and important method through which
computer systems can gain insight. This is a part of artificial intelligence and is
the trendiest type of analytical method. It is used for a variety of objectives in
materials research, namely new material discovery, material property prediction,
and many other reasons on a macroscopic to microscopic level. This technique in
materials research has wide range of applications, covering electrolyte materials,
different types of oxides, functional and metallic materials. Machine learning can
be utilized to produce precise and effective methods for materials research, as
evidenced by a wide range of relevant works. These works related to discovering
new 2D materials with attractive functionalities, predicting 2D materials property
using ML are gaining more and more attention as the range of application of 2D
materials has widened significantly.

2D materials have captured traction in the field of electronics (sensors, spintron-
ics), photonics and optoelectronics, and power and energy (batteries, supercapaci-
tors) applications due to their attractive properties (bandgap, spin-orbit coupling,
magnetic properties, barrier properties). In this chapter, we have already discussed
that many studies have already predicted hypothetical 2D materials using various
ML techniques. These predictions would narrow down the options for potential
materials and help to reduce the cost of time and resource. Overall, the integration
of ML in 2D materials research will accelerate the overall discovery process and
change the field for the better. Moreover, varieties of topics are incorporated with
machine learning and they turn out to be great according to various studies done
on related topics. In the meantime, machine learning algorithms are deserving of
more exploration.

In materials design and discovery, machine learning is mostly used to tackle prob-
ability estimation, regression, clustering, and classification problems. Furthermore,
machine learning does well when addressing issues regarding sorting, correlation,
and other similar tasks. As a result, these approaches would be used for tackling
additional difficulties in materials research, which would probably lead to even more
advancements. Usually, only a single machine learning method, such as ANN, SVM,
DT, etc., is used for a certain problem. Sometimes, the results of these methods are
compared for a particular topic and the best option is selected. As a result, each
model’s application range is severely limited. And so, developing a unifying context
to apply this process to different strategies for resolving problems would consider-
ably increase applications of machine learning approaches. This would enhance the
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machine learning model’s efficacy as well as the generalization ability considerably.
Big data is a trendy issue right now, and it is gaining a lot of traction in a variety of
industries.

In materials scientific study, as well as many other disciplines, the subject of how
to reserve, organize, analyze an enormous volume of data is one of the difficult issues
to overcome. As a result, exploring machine learning model’s applications in differ-
ent scientific fields especially materials research alongside the big data technique is
expected to be a critical study course for days to come. Deep learning showed excel-
lence at processing massive amounts of data and has paved the way for significant
advances in image processing, speech recognition, and other domains. As a result, in
materials research, deep learning technologies involving sophisticated big data study
ought to be explored.
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Bacterial Image
Segmentation through
Deep Learning Approach

Ejan Shakya and Pei-Chi Huang

5.1 INTRODUCTION

For decades, advances in volume scanning electron microscopy (SEM) have con-
tributed to a significant increase in large three-dimensional (3D) images of bacterial
cells. Consequently, many deep learning (DL) techniques have been successfully
designed as feature extractors that transform the pixel values into a suitable internal
representation for learning, making automatic analysis of microscopic images for
cellular morphology feasible [1-3]. Observing cell size variability in microbes is an
initial step in microbiology research that can provide insights into cellular responses
to environmental stimuli through changes in physiology and gene expression [4,5].
Additionally, cell size variation is a fundamental physiological trait that plays a criti-
cal role in cellular housekeeping, nutrient transport, environmental adaptation, and
cell reproduction [6,7]. Maintaining proper cell size is essential for optimizing regu-
lar cell physiology in bacterial cells [8]. Automated cell segmentation techniques
in microscopic imaging play a crucial role in measuring cellular characteristics,
including changes in size, to assess the effects of environmental changes and growth
conditions [9-12]. Quantitative measures such as cell lengths, areas, and densities
can provide information about how biofilm growth and material surfaces are intri-
cately related. When analyzing a significant quantity of cells, techniques for auto-
mated cell recognition are necessary to differentiate the object of interest or specific
region and retrieve quantitative measures accurately. This is important for making
informed decisions regarding the accumulation of bacteria on biomaterial surfaces
and their resistance to microbial corrosion. Until an equilibrium is reached with the
available resources, either reversible or irreversible bacterial adhesion to a surface
(or to each other) persists, which in turn affects the growth behavior or survival of
material surfaces [13,14]. Also, the methods of biofilm image analysis also can help
discover new materials or analyze the biofouling performance of existing materials.
Any material—whether natural or engineered—is susceptible to biofilm formation
and cell adhesion when exposed to moist environments, such as the surfaces of mem-
branes, pipelines, and ship hulls. Such biofilms can lead to the fouling of material
surfaces or microbiologically influenced corrosion issues [15,16]. In some cases, they
can serve biotechnology applications. In both scenarios, biofilm image analysis can
assist in the assessment of the performance and fate of the materials [17]. To address
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these tasks in the biomedical domain, image segmentation of microbial bodies has
an important foundational role.

Image segmentation is an active and prolific research problem in the field of com-
puter vision [18]. Multiple scientific domains are utilizing diverse image segmen-
tation techniques, such as semantic segmentation and instance segmentation. For
example, in medical fields, automated robotic surgery and computer-assisted diagno-
sis use image segmentation as a fundamental method for detecting, tracking, and sur-
gical scene understanding [19,20]. Another such domain is biomedical images, where
microscopic images are taken into consideration to find the behaviors of the cells and
their constituents. Among biomedical images, bacterial cells and biofilms have been
a hot topic and a popular research area [21,22]. In general, collecting and organizing
enormous digital data remains a critical problem that is time-consuming, expensive,
and requires expert involvement. Various traditional image processing approaches
have been applied as supervised machine learning methods on visual object counting
tasks but require domain experts to provide pseudo-labeling rules from a variety of
spatial information [23,24]. To develop advanced, content-based image understand-
ing algorithms, an abundance of annotated examples like ImageNet [25] has been
created for training and benchmarking data. These datasets have been used exten-
sively for feature extraction and training contemporary machine learning models.

One of the most favored approaches to automated feature extraction from digital
images has been the use of autoencoders and their variants [26]. These methods
apply DL models to obtain a set of rich nonlinear representations directly from the
input image without assumptions or a priori knowledge. Also, convolutional neu-
ral networks (CNNs) are considered the most dominant and effective type of deep
neural networks when it comes to processing image data. At each layer, kernels and
pooling operations are used to extract more advanced features from the raw pixel
values of the input data. The CNNs methods have become the go-to machine learn-
ing approach for image-related downstream problems, such as image classification,
segmentation, and object detection. It is evident that CNN-based deep learning algo-
rithms require a huge amount of data to train and a greater training time. The data-
voracious nature of CNN-based deep learning models demands a high volume of
training examples. The reason for this is that the inherent locality of convolution
operations limits the ability to model long-range dependencies using low-level fea-
tures. Transformers, being a neural network architecture that exploits the concepts
of global self-attention mechanism in a stack of convolutional encoders and decod-
ers, address this limitation. Recent studies have shown that transformers, which rely
solely on attention mechanisms and eliminate the need for recurrence and convolu-
tions, require considerably less training time while producing superior results [27].
On the other hand, the deep CNN-based U-Net architecture [28] has been considered
the start-of-the-art implementation for medical image segmentation. Since trans-
formers have been a revelation in machine learning to solve downstream problems
in natural language processing, their relevance in image processing and computer
vision is novice. Here, we propose a hybrid type of U-Net, called ViTransUNet, that
uses CNN-vision-transformer-based contraction layers to merge the comprehensive
global context captured by transformers with the intricate spatial details provided
by CNNs, which requires the creation of layers capable of combining both types of
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information. The encoded feature representation is upsampled and concatenated with
the corresponding encoded layer to learn back image structure lost during pooling in
the contraction layer.

The subsequent sections of this chapter are structured as follows. Related work on
diverse cell segmentation techniques is presented in Section 5.2. An overview of our
approach is provided in Section 5.3, while Section 5.3.3 offers a detailed examina-
tion of the ViTransUNet network. Section 5.4 elaborates on the experimental setup
utilized for the SEM image dataset, and the conclusions of our proposed approach,
along with potential avenues for future research, are presented in Section 5.5.

5.2 LITERATURE REVIEW AND RELATED WORK

Bacterial cell segmentation has been addressed by manual and interactive segmenta-
tion techniques [29,30]. However, the manual techniques are tedious, labor-intensive,
and time-consuming, e.g., overlapping and complex cells in one image. Significant
progress has been made in automating the segmentation and quantification of over-
lapping/touching cells in images through various methodological investigations.
This section will cover the following topics: Section 5.2.1 will provide a detailed
review of conventional techniques for segmenting overlapping objects; Section 5.2.2
will focus on contour-based methods for detecting corner points; Section 5.2.3 will
explore the use of ellipse fitting approaches for object segmentation; finally, Section
5.2.4 will analyze existing methods that use convolutional neural networks (CNNs).

5.2.1 CONVENTIONAL APPROACHES FOR SEMANTIC SEGMENTATION

Traditionally, for image segmentation tasks, histogram-based thresholding tech-
niques [31,32] were employed, wherein clusters were formed to represent homoge-
neous objects in the image. A set of thresholds were selected so that objects and
background pixels can be discriminated against. The selected threshold value was
chosen to differentiate each pixel as either a constituent of the background or an
object. This conversion of color or grayscale image into a binary image made the
image segmentation task easier. With time, many other approaches have come into
existence; morphological operations [33,34], watershed segmentation [35], level-set
methods [36,37], graph-based approaches [38,39], and their variations [40,41], each
of which had their own applicability and limitations in terms of low-level spatial
feature extraction. These limitations were addressed and resolved with the break-
through of CNN and its exceptional representational power.

5.2.2 CoNTOUR-BASED METHODS

The contour-based approach involves the utilization of curvature, skeleton, and poly-
gon approximation to perform curve evolution on segmented regions of the image.
This method involves reducing a contour to a collection of discrete vertex coordi-
nates and is regarded as a regression task. This method has primarily been employed
in segmenting images with overlapping or touching objects [42—45]. The nature of
overlapping objects has been introduced in multiple literatures depending upon the
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nature and relevancy of overlapping objects. Sliding window-based techniques were
utilized by Fernandez et al. and He et al. [46,47] to extract the foreground object
and contour from the background. Likewise, Wang et al. [48] suggested a bottleneck
detector that identifies a set of splitting points on contours as a means of detect-
ing concave regions. This approach maximizes their distance and minimizes the
Euclidean distance transform (EDT). Due to its predisposition to noise [49] and erro-
neous corner point detection, extensive preprocessing of input images is needed.

5.2.3 Erupse-FITTING METHODS

Ellipses are generally used to address the overlapping or touching regions of mul-
tiple cells in a cell cluster. This is a foundational task that profits instance segmenta-
tion in cells. There are several related research areas on ellipse-detection algorithms
using traditional computer vision methods, e.g., Hough transform with parameter
space decomposition and randomized Hough transform (RHT) approach [50,51] to
minimize the computation complexity [52,53]. However, these solutions depend on
different scenarios and cannot perform well for partially obscured ellipses. Ellipse-
fitting methods have garnered significant interest because of their efficacy in dealing
with the challenge of segmentation tasks involving elliptical-shaped objects that are
in contact with each other [54,55]. An example of utilizing the multiellipse fitting
solution can be seen in the segmentation of overlapping elliptical grains [56] and cell
nuclei [57]. A minimum threshold for the expected area of each cell is established
with this approach, enabling the automatic detection and separation of touching cells.
Although this method holds immense potential, its limited ability to generalize for
objects with diverse shapes has hindered its widespread adoption in various applica-
tions, primarily because it necessitates rules and parameters tailored to the specific
task at hand.

Several recent studies have expanded upon the use of ellipse-fitting techniques
to enhance the accuracy of segmentation outcomes. One such example is the modi-
fied ellipse-fitting approach proposed by Zou et al. [55], which generates candidate
ellipses and identifies the most suitable one from the pool of candidates. The par-
ticularly useful technique for identifying overlapping elliptical objects in a binary
image entails the extraction of concave points through a polygon approximation
algorithm. In the research paper, Panagiotaki and Argyros [58] presented an ellipse-
fitting algorithm (called DEFA) that eliminates the need for manually set parameters
and, instead, utilizes the skeleton of a shape to automatically estimate the parameters
and number of ellipse objects. It should be emphasized that this particular method
is solely applicable to images featuring elliptical-shaped objects that have under-
gone binarization and exhibit a significant contrast between their foreground and
background. Panagiotaki and Argyros [59] introduced a solution to this limitation
with an enhanced version of DEFA, referred to as RFOVE, which utilizes unsuper-
vised learning to optimize the area of shape coverage, and is capable of automati-
cally determining the number of potentially overlapping ellipses even when dealing
with previously unknown shapes. Furthermore, Abeyrathna et al. and Panagiotaki
et al. [57,60] have been able to effectively utilize these techniques for handling tasks
involving the segmentation of overlapping cells and obtaining precise quantitative
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measures in SEM images. The use of SEM techniques has been demonstrated to be
an efficient means of producing high-resolution images of bacterial cells.

5.2.4 CNN-BASED APPROACHES

Because of the remarkable triumph of convolutional neural networks (CNN), they
have become the default option for sophisticated segmentation tasks. In recent years,
numerous cell segmentation applications and approaches that employ deep learning
techniques have gained significant popularity in the field, thanks to their superior
feature extraction capabilities and precise segmentation quality [61-63]. Several cat-
egories can broadly classify CNN-based methods for object segmentation:

1. Mask R-CNN [64] is an extensively employed neural network architecture
designed for detecting multiple objects. It builds upon faster R-CNN [65]
by incorporating an additional branch for predicting segmentation masks in
addition to the existing branch that locates the bounding box. The method
utilizes object detection based on region proposals and generates precise
segmentation masks in order to attain instance segmentation results of supe-
rior quality. Nonetheless, this approach might not yield optimal results in
situations where there is a high overlap among object instances or when
objects are located in close proximity. This is primarily due to the utiliza-
tion of greedy nonmaximum suppression during postprocessing.

2. U-Net [66] has emerged as a popular deep learning architecture for semantic
segmentation, which eliminates the need for region proposals or the reuse
of pooling indices. Rather than relying on region proposals or the reuse
of pooling indices, the U-Net employs an encoder-decoder neural network
architecture to generate object segmentation output based on class labels. In
the task of the segmentation of overlapping cells, particularly in the medical
domain, the U-Net architecture has demonstrated remarkable effectiveness
[63,67], largely owing to its innate capability of performing downsampling
and upsampling. For instance, research has been conducted to showcase the
accurate segmentation of overlapping cervical cells using the U-Net archi-
tecture [68,69].

3. UNet3+ [70] is an updated variant of U-Net that leverages full-scale skip
connections and deep supervision to enhance its performance. By integrat-
ing low-level details with high-level semantics from feature maps of varying
scales, the full-scale skip connections enable the model to acquire pixel-
level features of the images. Deep supervision, as introduced in UNet3+
[70], facilitates the acquisition of hierarchical representations from fully
aggregated feature maps. This approach enhances the efficiency of U-Net
models by reducing the network parameters and computational complexity.

4. Vision Transformers (ViT) [71] were proposed to apply transformers, which
are generally used in natural language processing, in downstream computer
vision tasks. To apply the transformer to an image, the image is initially par-
titioned into a grid of n patches, and the transformer is subsequently applied
to the resulting sequence of patches. Each patch is an individual image that
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is linearly transformed into a projected vector of configurable dimensions.
To incorporate positional information of the patch, a positional embed-
ding is added to each projected vector, just like sequential information for
tokens in text corpora for natural language processing. ViT has emerged as
a promising alternative to convolutional neural networks for image recogni-
tion tasks, particularly when pretrained on large datasets and fine-tuned to
achieve benchmarks such as ImageNet [72] and CIFAR-100 [73].

5. TransUNet [74] is a hybrid implementation of Transformers and CNN, which
takes into account the limitations of modeling long-range dependency in
CNN models. Since transformers provide a global self-attention mechanism
that compliments the drawbacks of a CNN model, TransUnet offers a robust
option for medical image segmentation by effectively merging the advan-
tages of two different approaches. The encoding path of TransUnet utilizes
a hybrid framework that combines both CNN and transformer techniques.
After encoding, the feature representations are upsampled and combined
with various high-resolution CNN features that were skipped during the
encoding process, allowing for accurate localization. Chen et al. [74] has
presented that transformer-based architecture has a better self-attentive fea-
ture than the conventional CNN-based self-attention methods.

5.3 METHODOLOGY

This section outlines the key stages of the proposed solution for solving an over-
lapped cell segmentation challenge in bacterial images, which combines conven-
tional reconstruction techniques with a patch approach. Section 5.3.1 provides an
overview of the dataset acquisition process, while Section 5.3.2 explains the image
preprocessing methods employed. In Section 5.3.3, we introduce ViTransUNet, the
neural network that we propose to use, which is based on the transformer model.

5.3.1 Data COLLECTION

Our dataset consists of training and testing samples of curated scanning electronic
microscopic images (SEM) of Geobacillus genus from the family of Bacilliceae. To
simulate the microgravity conditions, the bacterial cells were cultivated in a rotat-
ing cell culture system at a temperature of 60°C. After 24 hours of growth, the cells
were treated with glutaraldehyde to stop their growth and washed three times using
alcohol solutions of varying strengths (50%, 70%, and 100%). The resulting diluted
cell suspensions were fixed onto a SEM sample mount and left to air dry before being
imaged. For the acquisition of SEM images, a Zeiss Supra 40 VP/Gemini Column
SEM was utilized [21]. The following microscopy parameters were set: the elec-
tron high tension (EHT) voltage was adjusted to 1kV (also known as accelerating
voltage), the SEM type was field emission, and the detector used was SE2 (second-
ary electron). The comprehensive experimental details can be found in the works of
Carlson et al. [75].

The dataset includes 77 grayscale SEM images in terms of their respective masked
annotations [21], which are used to validate our proposed bacterial cells segmentation
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approach. Our dataset includes several types of information for each image, such as
magnitude, objective lens focal length (WD), EHT, noise reduction method, chamber
status, data, and time. Using the VGG Image annotation software VIA, the surface
areas of the bacterial cells were annotated manually to achieve semantic segmenta-
tion ground truth masks [21]. To evaluate the cell-detection accuracy, we divided the
dataset into 57 training samples and 20 testing samples, using a 3:1 ratio for each.

5.3.2 IMAGE PREPROCESSING

To improve the accuracy of bacterial image predictions, we perform several prepro-
cessing steps that involve resizing, adjusting contrast, and eliminating unnecessary
features, all of which serve to enhance the quality of each individual image. Our
objective is to generate a pixelwise label map of size HX Wx 1 that corresponds to an
input image x € R#*WxC¢_ which has a spatial resolution of HXx W and consists of C
channels. Our following solutions are particularly efficient for the successful quality
improvement of bacterial images. Every image is resized into 256 X 256 pixels. Then,
the contrast-limited adaptive histogram equalization (CLAHE) algorithm [76] was
utilized to enhance the contrast of foreground and background features during image
processing. Furthermore, meta-information (such as methods for reducing noise,
scale, magnification, and timestamp of capture including date and time) was removed
from the image to ensure that the learning process is optimized for higher accuracy
feature detection. Section 5.3.3 provides detailed knowledge about the model and
its constituents, and how information is passed through various layers of the model.

5.3.3  VITRANSUNET

Although transformers powerfully models global contexts at all stages and achieves
superior transferability performance which means the pretrained models are applied
using one task for all downstream tasks. However, transformers produce low-resolu-
tion features that cannot give sufficient localization information, causing inaccurate
segmentation results when using upsampling to recover the full resolution. On the
other hand, CNN architecture can learn certain fine spatial details to remedy this
shortcoming of transformers effectively by providing complementary information.
To make up for the information loss resulting from the low-resolution features
generated by transformers, the proposed neural network—ViTransUNet—as shown
in Figure 5.1—establishes a hybrid form of CNN-Transformer Encoder where CNN
layers are used to not only encode the feature extraction representations but lever-
age high-resolution spatial information from CNN features. Our approach takes
inspiration from Schlemper et al. [77] and Chen et al. [74] who proposed that the
u-shaped architectural design can combine the self-attentive features with different
high-resolution features brought by CNN, enabling capability of precise localization.
ViTransUNet extends the architecture of TransUNet in the sense that it includes a
vision transformer (ViT) instead of the standard transformer-based encoder. While
both are transformer-based models, ViT encoders operate primarily on the 2D grid
of image patches generated by the patch encoder, which are processed to generate
fixed-length vector representations of the input image. ViT encoders also employ
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self-attention mechanism that allows the model to learn contextual relationships
between different image patches, which in this case encompasses the foreground and
background features.

5.3.3.1 CNN-Transformer Encoder

Our encoder is built upon the design as the “left-contracting-part” of the model
shown in Figure 5.1 and comprises a series of filtered convolutions and pooling lay-
ers, called the “down-block” or the “contraction” block. The downsampling part of
the model is the hybrid CNN-Transformer-based encoder which preserves the advan-
tages of transformers and CNN. The downsampler performs multiple feature extrac-
tion on the input image in the form of a multichannel feature map.

To extract spatial features or bottom-up features, our feature map is subdivided
into patches as mentioned in Section 5.3.1.1 and encoded using a vision transformer
as mentioned in Section 5.3.1.2. This step first flattens the patch sequence to latent
space and then takes the sequenced raw image as input to the vision transformer and
treats the image as a pixel-by-pixel prediction task.

5.3.3.1.1 Patch Encoder

Our solution followed by Dosovitskiy et al. [71] technique, the tokenization is
performed by reshaping the input feature maps into flat 2D patches, namely,

P2 ) is a number of

generated image patches. For example, if the original input image is of dimension
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FIGURE 5.2 A sample of patch encoding. A 256 X 256 image is tokenized into 16 X 16 patch.

256 %256, and P is 16, then 256 patched images of size 256 X 256 are generated, as
shown in Figure 5.2.

Each vectorized patch is denoted as x, and a dense layer is used to project x, into
a latent D-dimensional space. To encode the patch spatial information, the positional
information is added to each patch in the following form of positional embeddings:

0
20 =X pE+ Epos

1
21 =X pE + Epoq2

n-1= -anE + Epos[n]s

where E is the linear projection of patch embedding, and E,, is the positional embed-
ding, and 7 is the number of the vectorized patches.

5.3.3.1.2 Vision Transformer

In addition, the transformer incorporates a sequence of multihead self-attention
(MSA) [27] and multilayer perceptron (MLP) blocks, as shown in Figure 5.3. All
transformer models are built upon the self-attention mechanism, which serves as
their fundamental building block. In transformers, MSA with multiple attention
blocks (called heads) applies a linear transformation to the input matrices and then
jointly performs attention multiple times for the learned parameters from different
representation subspaces at different positions. On the other hand, MLP with mul-
tiple blocks is more than one perception in a deep neural network. Such a network
is capable of approximating any continuous function which shows that an unlimited
number of neurons in a hidden layer are allowed as the solution for nonlinearly sepa-
rable functions. Figure 5.3 illustrates only one transformer encoder block, and the
total number of transformer encoders includes L layers of MSA and MLP. Therefore,
the output of the encoded image representation z, is generated.

5.3.3.2 Decoder

The “right-expansive-part” of Figure 5.1 denotes the decoder. The resulting fea-
tures obtained from the CNN-transformer encoder are fed into our decoder block
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as inputs. The specific positional embeddings are added to the patch internally to encode the
spatial information. Every transformer encoder block includes a single layer of multihead
self-attention (MSA) and multilayer perceptron (MLP) blocks that are normalized using two-
layer normalization operators. For each vectorized patch, an encoded image representation
z, 1s generated.

to reconstruct the original image. To generate the hidden features as an input for the
ultimate segmentation mask, the decoder block utilizes a cascaded upsampler (CUP)
that incorporates several upsampling steps [74]. The primary role of the encoder is
to complete the U-shaped-like architecture of the model by restoring the compressed
feature map to the original size of the input image. This necessitates an expansion
of the feature dimensions, which is achieved through upsampling, also known as
transposed convolution or deconvolution. As the upsampling process is performed,
the higher resolution feature maps of the encoder are joined with the upsampled
features, enhancing the ability of the model to learn representations through convolu-
tions. This sparsely applied operation promotes improved localization. The series of
upsampling layers will be concatenated with the corresponding contraction layers in
the encoder through the number of skip connections which means some of the layers
are skipped in the neural networks and feed one output of these layers into the next
input layer. This block is also known as the “expansion” block as the encoded feature
representations are expanded to masked spatial representation.
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5.4 EXPERIMENTAL DESIGN AND RESULTS

This section presents the design of training and testing experiments for the proposed
solution, as applied to the downstream task of image segmentation. Section 5.4.1 first
describes the experimental setup, and Section 5.4.2 presents the evaluation metrics
for image analysis. The experimental results for training the ViTransUNet model and
the comparison with the model architectures of conventional U-Net framework are
presented in Section 5.4.3.

5.4.1 EXPERIMENTAL SETUP

The experimentation, encompassing both training and testing tasks, has been thor-
oughly examined in this study, used the premium service from Google Colaboratory
to run on a GPU-enabled notebook whose components were an Intel Xeon CPU
(2.20GHz), and a GPU of Tesla T4 GPU with 13GB RAM was assigned. The experi-
ments and comparisons were conducted on the SEM dataset for image segmentation
in Section 5.3.1.

5.4.2 EVALUATION METRICS

Three distinct metrics were employed to assess the instance segmentation task: the
pixels accuracy in Section 5.4.2.1; intersection over union in Section 5.4.2.2; and dice
coefficient in Section 5.4.2.3.

5.4.2.1 Pixel Accuracy

The accuracy metric is determined by calculating the percentage of pixels in the
image that have been correctly classified. It provides a basic measure of the model’s
performance. However, it does not take into account the spatial relationships between
different classes, and so, it may not be sensitive to errors that affect only a small num-
ber of pixels. This is computed by dividing the number of accurately classified pixels
by the total number of pixels in the image, as represented by the following formula:

Pixel Accuracy(PA)= G.D

Zk |
t:
S

where the variable n; represents the total number of pixels that are both classified
and labeled as belonging to class j. To put it another way, n;; denotes the total count of
accurate positive predictions made by the classification model for the specific class j.
The variable 7; represents the total number of pixels that are labeled as belonging to
class j. Given that semantic segmentation involves multiple classes, the mean pixel
accuracy (mPA) reflects the average accuracy across all classes, as demonstrated by
the following equation:

_1 nji
mPA = ;Z* (5.2)
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5.4.2.2 Intersection over Union

Intersection over Union (IoU) is a metric that measures the extent of overlap between
the predicted masks and the ground truth segmentation mask. This pivot enables us
to assign a score to each image, which can be used to predict the accuracy of the
predicted segmentation. Along with the overlap between the predicted segmentation
and ground truth segmentation, it also penalizes the model for missed detections. It
provides more detailed measures of the quality of the segmentation for each class,
thus making it more sensitive to errors. In the case of image segmentation, predic-
tions are segmentation masks, and pixel-by-pixel analysis is required, denoted as

TP

U=————, (5.3
TP + FP + FN

where the true positive (TP) region corresponds to the intersection area between
the ground truth and segmentation mask, while the false positive (FP) region cor-
responds to the predicted area outside of the ground truth. The false negative (FN)
region, on the other hand, represents the count of pixels located in the actual target
region which the model could not foresee or anticipate.

5.4.2.3 Dice Coefficient

The dice coefficient [78] is an important metric for image segmentation images to
evaluate pixel-wise segmentation performance. Simply put, the dice coefficient is
calculated by dividing twice the overlap between the two images by the total number
of pixels in both images. In other words, the score represents twice the interaction
area of overlap between the ground truth label and the predicted segment divided
by the total number of pixels that are covered by both the ground truth label and
predicted segment. The dice coefficient provides an overall measure of the model’s
performance, as it considers both true positives and false positives.
Mathematically, it is expressed as

Dice Score = 2T—P, 5.4
2TP + FP + FN

where true positive is denoted as TP, false positive as FP, and false negative as FN.

5.4.3 EvaruatioN REesults

To evaluate the effectiveness of the proposed ViTransUNet method, we compared its
performance with two established instance segmentation methods: the U-Net method
[55], which utilizes a U-Net model for region-based fitting of overlapping ellipses,
and UNet3+ [60], which based on encoder-decoder structure combines feature maps
with different scales through dense skipped connections and deep supervisions. The
comparison of the segmentation results for the metrics of dice score, pixel accuracy,
and mean IoU is presented in Table 5.1. The samples of the predictions of the three
methods based on the trained models are visualized in Figure 5.4. Figure 5.4a is the
raw image; (b), (c), and (d) are the output images after using U-Net, UNet3+, and
ViTransUNet, respectively.



Bacterial Image Segmentation through Deep Learning 101

TABLE 5.1
An Evaluation of How Well the Proposed Approach Exhibits in Segmenting
Overlapping Objects, in Contrast to Three Alternative Methods

Method Dice Score (%) Pixel Accuracy (%) Mean loU (%)
U-Net [49] 66.79 91.54 48.76
U-Net 3+ [54] 71.8 90.60 32.6
ViTransUNet 84.62 98.72 48.76

Note: The best results of microaveraged PixelScore, loU, and Dicescore (mean + std) are highlighted.

The experiments show convincing results in favor of the proposed ViTransUNet
model with a dice score of 84.62% and pixel accuracy of over 98%. However, the
mean IoU, being more sensitive to errors and more detailed in measurements, dis-
played a decent performance as compared to the other two model architectures and
relatively low accuracy as compared to the other two metrics.

5.5 CONCLUSION AND FUTURE WORK

In summary, our study presents a semantic image segmentation method for bacterial
cells in SEM images; the SEM image dataset presents various challenging features,
including bacterial cells that intersect or superimpose each other, objects with dis-
similar shapes and sizes, and a minimal difference in color between the background
and foreground. The method employed in the analysis of biofilm images can aid in
the identification of novel materials or the evaluation of the biofouling efficacy of
existing materials. Consequently, due to these characteristics, conventional segmen-
tation techniques, e.g., color thresholds, ellipse fitting, or direct instance segmenta-
tion methods, exhibit inadequate performance.

This paper suggested a deep semantic segmentation architecture that overcomes
these limitations by combining detailed high-resolution spatial information from
convolutional neural networks with global context positional information from
transformers. The hybrid ViTransUNet model achieved similar results if not better
than its counterpart U-Net architectures in SEM images. Our approach consists of
preprocessing of images, patch encoding and positional embedding of pixels, and
transformer-based U-Net semantic segmentation. Based on the experimental results,
the hybridization of the transformer-based encoder and deeply convoluted upsam-
pling decoder has been shown to be significant and effective. The training perfor-
mance of the ViTransUNet model as opposed to U-Net architecture is also depicted
in Figures 5.5 and 5.6. When compared to other cell overlapping object segmentation
methods, such as U-Net and its variants, the proposed approach achieved a dice simi-
larity score of 84.62% for bacterial cell segmentation which demonstrates better than
U-Net and UNet3+ architectures with promising performance improvement, given
the limited dataset available for the experiment.

In the future, the applicability of this method can be spread out to diverse research
in overlapping cell segmentation and quantification. Further, the application of
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FIGURE 5.4 Qualitative comparisons for U-Net, UNet3+, and ViTransUNet predictions on
test data: a) The grayscale image used as input for image segmentation. (b) Image segmenta-
tion masks obtained from U-Net model prediction. (c) Image segmentation masks obtained
from UNet34+ model predictions. (d) Image segmentation masks obtained from trained
ViTransUNet model predictions.
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object segmentation in various fields, such as medicine, engineering, and biology,
is expected to yield significant benefits for downstream tasks. Furthermore, we are
contemplating the expansion of this approach to meet the increasing demand for
three-dimensional cell segmentation tasks in various applications in the fields of
medicine and engineering. Accurate segmentation and tracking of cells can enhance
our understanding of cell viability, cell signaling, adhesion, and other related factors
[79]. The approach of generating patches can provide benefits in identifying distinct
types of isolated cell clusters, thereby enhancing the efficiency, accuracy, and overall
performance of the proposed method.
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6 Self-Supervised Learning-
Based Classification
of Scanning Electron
Microscope Images
of Biofilms

Md Ashaduzzaman and Mahadevan Subramaniam

6.1 INTRODUCTION

Machine learning (ML) approaches have made impressive strides in automated
analyses of various modalities of information including numeric data, images, text,
and audio. More recently, new multi-modal models that can analyze the combina-
tions of these various modalities have begun to emerge and are beginning to exhibit
performances comparable to multi-modal information processing by humans. ML
models have been developed using a wide variety of approaches including unsu-
pervised, semi-supervised, and supervised learning methods and their variations
(see Chapter 1 for an overview). Among these supervised ML approaches, vari-
ants have been highly effective in performing image analysis tasks. The success of
these approaches typically relies on building ML models by training them on large
volumes of labelled data. These models are then used to analyze new test images.
However, manually annotating microscopy images is usually very time-consuming
and severely limits the amount of available labelled image data. It is a challeng-
ing task to develop machine learning models, particularly deep convolutional neural
networks (DCNNGs), with a limited amount of labelled image data. This can lead to
sub-optimal performance of the model on new, unseen images. In this chapter, we
describe a case study based on both contrastive and non-contrastive (more details in
Section 6.2.1.1) self-supervised learning paradigms for classifying SEM images of
biofilms using low volumes of labelled data. A key component of our classification
pipeline involves the use of DCNNs to address the heterogeneity and quality of SEM
images by using super-resolution. We describe different models that can be used for
super-resolution tasks. The best-performing super-resolution model is used to build
self-supervised models that can identify cells/cell clusters, byproducts (potentially
involving corrosion), and exposed surfaces in small SEM images of biofilms.
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6.2 SELF-SUPERVISED LEARNING FOR IMAGE ANALYSES

Self-supervised learning (SSL) involves using unlabelled medical data to pre-train a
model and then fine-tuning the pre-trained model for a specific image analysis task
using a limited amount of labelled data. This can be an alternative to transfer learn-
ing from natural images, as the knowledge learned from the unlabelled medical data
is more relevant to the target task. During self-supervised pre-training, surrogate
labels are assigned to the unlabelled data and used to train a randomly initialized
network.
The main steps in the SSL are as follows.

1. Prepare Training Set: Prepare a training set from the unlabelled dataset.

2. Pretext Task: Pretext tasks are unsupervised learning tasks that are used to
learn the representations. We need to formulate a problem from the training
data.

3. Learned Representation: Learn the representation of the domain by solv-
ing the pretext task. The representations extract the patterns and features
from the unlabelled images.

4. Fine-Tuning: Using the learned representation, we can fine-tune the model
with a small number of labelled images.

5. Downstream Tasks: Perform the desired image analysis tasks (classifica-
tion, detection, or segmentation) using the fine-tuned model.

Preparing the training set usually involves pre-processing the images and is highly
dependent on the application. Similarly, fine-tuning is also application specific. We
discuss these two steps along with the case study in the next section. Commonly
employed pretext tasks are described next.

6.2.1 PreTEXT TASKS

In this section, we will discuss the several types of pretext tasks that are commonly
used in building self-supervised models for image analyses.

6.2.1.1 Contrastive and Non-Contrastive Learning

The idea of contrastive learning is to learn the similarities from the positive pair of
images and dissimilarities from the negative pair of images. Each image along with
additional images generated from that image using data augmentation operations
is applied to each image to create positive pair of images. On the other hand, other
images and their augmented versions are the negative pair of images. The contras-
tive predictive coding (CPC) proposed the contrastive loss function infoNCE to learn
from negative and positive patches (Oord, Li, and Vinyals 2018). SimCLR (Simple
Contrastive Learning of Representations) requires a large number of negative sam-
ples in a batch to perform well (T. Chen et al. 2020). MoCo (Momentum Contrast)
keeps a queue of negative samples and utilizes momentum encoder methodology to
learn from the small batch size of negative samples (He et al. 2020). Moreover, non-
contrastive methods only learn from positive samples. BYOL (Bootstrap Your Own
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Latent) shows that better representation can be learned from only positive samples
(Grill et al. 2020). Finally, the SimSiam and Barlow Twins architectures achieve
comparative results without using negative samples, large batches, and a momentum
encoder (Chen and He 2021).

6.2.1.2 Generative Modelling

SSL can learn useful inherent representations by a powerful pretext task: generative
modelling, which can generate plausible samples from a given distribution and recon-
struct the original input. One common approach is to use autoencoders or variational
autoencoders (VAEs) (Kingma and Welling 2019), which acquire a condensed repre-
sentation of input data by encoding it into a latent space with fewer dimensions, and
subsequently decoding it to recreate the original data. The denoising autoencoder
(Vincent et al. 2008) can remove random noise in an image and reconstruct the origi-
nal image. Generative Adversarial Networks (GANs) (Goodfellow et al. 2020) can be
used as a pretext task in SSL by training the discriminator of a GAN to distinguish
between real and generated images, while simultaneously training the generator to
create images that can fool the discriminator into thinking they are real. The genera-
tor in this case can be seen as a self-supervised learner, as it is learning to generate
images that match the statistical properties of the real images.

6.2.1.3 Colorization

In this pretext task, we can formulate the problem in such a way that grayscale ver-
sions of images are given as inputs, and the model tries to predict the colour of the
images (R. Zhang, Isola, and Efros 2016). The loss function tries to minimize the
difference between the original colour and the predicted colour. More weight is given
to the rare colour bucket in the loss function to prioritize the infrequent colour (object
colour) from the frequent colour (background colour). The model learns how to dif-
ferentiate various objects in an image and predicts the various colours for different
parts by solving the pretext task.

6.2.1.4 Jigsaw

Another pretext task can be formulated by creating a puzzle game from an image and
learning the representation by solving the puzzle. The jigsaw puzzle paper (Noroozi
and Favaro 2016) proposed an SSL technique by creating a puzzle game from the
patches of an image. If we take 9 patches from an image, there are 9! possible shuf-
fles available from the patches. To reduce the complexity, the authors choose only 64
possible shuffles with the highest hamming distance for the training dataset. Then
they pass each patch to different siamese convolutional layers having shared weights
with each other. Finally, all the results from each layer are combined to solve the
puzzle. By solving the jigsaw puzzle, the model learns the relative positions of the
objects in an image and the contextual information of the objects. We can fine-tune
the model to do different downstream tasks.

6.2.1.5 Relative Patch Location

This pretext task is similar to the previous jigsaw puzzle problem. The relative path
location paper (Doersch, Gupta, and Efros 2015) formulated the training pairs by
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randomly taking two neighbouring image patches and predicting relative positions
between them. The second patch in a 3 X 3 image grid can be obtained from 8 neigh-
bouring locations if we start with the first patch from the central location. The authors
proposed two siamese ConvNets models for feature extraction from each patch and
combine the results to solve 8 classes of classification problems.

6.2.1.6 Inpainting

Image inpainting pretext task is formulated by predicting random missing areas
based on the rest of the image (Pathak et al. 2016). The GAN-based architecture
can be utilized to reconstruct the missing part from an image. The generator model
generates plausible examples for the reconstruction of the missing part, and the dis-
criminator model distinguishes the generated and real images. The networks learn
the colour and the structural information of the domain by doing this pretext task.

6.2.1.7 Super-Resolution

SRGAN proposes a pretext task of enhancing the resolution of a low-resolution
image (Ledig et al. 2017). The generative network of an SRGAN predicts the high-
resolution version of a given down-sample image. The loss function of the generator
tries to increase the similarity of the predicted high-resolution image and the original
high-resolution image. The discriminator tries to distinguish between the original
and fake images. The pretext task learns the semantic features of the images by doing
the image super-resolution.

6.2.1.8 Rotation

Rotation (Gidaris, Singh, and Komodakis 2018) is another simple but effective pre-
text task for self-supervised learning. Training images were created by rotating the
images from any dataset to four user-defined degrees (0, 90, 270, and 360). The
authors proposed a ConvNet architecture where rotated images are passed to classify
the images into 4 classes. The model had to learn semantic information such as the
relative positions of the body parts.

6.2.2 DOWNSTREAM TAskS ON MEDICAL IMAGING

In this section, we discuss different types of applications done on medical imaging
using SSL.

6.2.2.1 Classification

The authors (Jamaludin, Kadir, and Zisserman 2017) proposed a pretext task for the
disc generation grading system of four-class from spinal MRI images. They pre-
pared self-supervising training set from the vertebral MRI images of the same patient
scanned at different points of time (positive pairs), and images from different patients
(negative pairs). A siamese CNN was trained to learn the representation by distinguish-
ing whether the images are from the same patients or different patients. This learning
was then transferred to predict a four-class disc generation grading system. The paper
(Tajbakhsh et al. 2019) investigated whether the domain-specific pretext task was more
effective for weight initialization or weights transferred from unrelated domains. The
authors found that pretext tasks like rotation, colorization, and reconstruction were
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more effective for classification tasks such as nodule detection in chest CT scan images,
and diabetic retinopathy classification in fundus images. The paper (Azizi et al. 2021)
experimented on dermatology condition classification from digital camera images and
multi-label chest X-ray classification using self-supervised learning. They proposed
three steps of training to get better classification accuracy: firstly, self-supervised learn-
ing on unlabelled ImageNet, then further self-supervised learning domain-specific
images, and finally, supervised fine-tuning on labelled medical images. They proposed
a novel MICLe method that uses two distinct images directly as positive pair of exam-
ples. Self-Path (Koohbanani et al. 2021) proposed a framework for the classification of
tissues from pathological images where they utilized a variety of self-supervised pre-
text tasks. Furthermore, they introduced three novel pathology-specific pretext tasks:
magnification prediction, jigmag prediction, and haematoxylin channel prediction.

6.2.2.2 Segmentation

In the paper (Bai et al. 2019), the authors utilized self-supervised learning techniques
by defining nine anatomic positions in cardiac images and learning the representa-
tion from predicting these anatomical positions. Then transfer learning was used for
cardiac MR image segmentation. In the paper (Ouyang et al. 2020), self-supervised
learning using the super-pixel method was used for generating pseudo-labels to seg-
ment abdominal organs in CT and MRI images. A novel local contrastive learning
approach was proposed in the paper (Chaitanya et al. 2020) which is useful for dense
predicting tasks such as medical image segmentation.

6.2.2.3 Image Retrieval

In this paper (Gildenblat and Klaiman 2019), the authors proposed a novel self-super-
vised learning approach by learning the similarity from close patches and dissimilar-
ity from far patches in a whole slide image. This method performed well for retrieval
tasks in digital pathology. The authors of the paper (L. Chen et al. 2019) proposed
novel context restoration techniques to learn useful semantic features in medical
images to improve retrieval. The authors of SMORE (Zhao et al. 2020) proposed
a self-supervised, anti-aliasing, and super-resolution technique that doesn’t require
any external training data. They utilized convolutional neural networks (CNNs) to
enhance the resolution and reduce aliasing artefacts in magnetic resonance (MR)
images, thereby improving the overall image quality to improve image retrieval.

6.3 USE OF SUPER-RESOLUTION TO ADDRESS THE
HETEROGENEITY AND QUALITY OF SEM BIOFILM IMAGES

Image super-resolution (SR) is the process that generates better quality or resolu-
tion images from low-resolution images by reconstructing missing details, removing
blur and noises, and up-sampling pixels. SR models are trained using a degradation
mapping function that down-samples, adds blur and noise, and applies transforma-
tions to produce low-resolution input images. The model can estimate the original
high-resolution image without prior knowledge of the degradation mapping function
by minimizing the dissimilarity between the generated and ground truth high-reso-
lution images using loss functions. The goal is to generate an image that seems more
detailed and visually pleasing to the human eye.
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In this section, we investigate the use of SR techniques to enhance the per-
formance of semantic segmentation on a biofilm dataset of SEM images. Three
distinct generative adversarial learning methods were utilized on the dataset, and
their capacity to retain the structural characteristics of the biofilm images was
compared. Lastly, the performance of the supervised image segmentation task
was evaluated. The results demonstrate that while the degree of preservation of
structural features differs across the various SR techniques, their combination in
a deep learning pipeline leads to an overall improvement in image segmentation
performance. This improvement enables a more precise and quantifiable analysis
of SEM images of biofilms.

ESRGAN (Wang et al. 2018) stands for Enhanced Super-Resolution Generative
Adversarial Networks which is an improvement over the traditional super-resolu-
tion technique SRGAN (Ledig et al. 2017). ESRGAN has shown impressive results
in producing more realistic and natural textured super-resolution images by intro-
ducing a relativistic discriminator. Modifications were made to the architecture of
ESRGAN, including the removal of the batch normalization layer, utilization of a
deeper model, and enhancement of the perceptual loss function. See figure 6.1 for
the architecture of ESRGAN.

The BSRGAN (Zhang et al. 2021) paper formulated a realistic degradation model
for synthesized training data, which is essential for the SR model to perform well
in real-world scenarios. The degradation model includes blur, down-sampling, and
noise, and to incorporate a broader range of real-world scenarios, random mixture
schemes are employed among these factors. This expands the scope of the approach.
The paper described how they performed various degradation operations, includ-
ing Gaussian blur, isotropic and anisotropic blur, down-sampling using one of four
interpolation methods, and introducing JPEG compression and camera sensor noise.
They emphasized the importance of accurately modelling these degradation opera-
tions in order to improve the real-world applications of SR methods. BSRGAN was
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FIGURE 6.1 ESRGAN architecture. (Used with permission from the paper Ashaduzzman,
Mdetal., 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
3587-93, 2022.)
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trained on synthetic and real-world datasets to improve its general-purpose blind
image SR capabilities.

SwinIR (Liang et al. 2021), Shifted Window-based Transformers for Image
Restoration, is a deep learning model designed for single image super-resolution,
which utilized the idea of Swin Transformer (Liu et al. 2021). The SwinIR architec-
ture consists of two main components: a feature extraction network and a reconstruc-
tion network. The feature extraction network is responsible for extracting features
from the input image, while the reconstruction network generates the high-resolu-
tion output image. The feature extraction network utilized a hierarchical structure
of shifted windows to capture information from different parts of the input image.
These windows were shifted across the image to ensure full coverage. The high-res-
olution output image was generated by the reconstruction network using the features
extracted from the feature extraction network. The reconstruction network employed
aresidual block-based architecture, which preserves crucial features and details from
the low-resolution input image.

6.3.1 METHODOLOGY

This section outlines the process of generating SR images and achieving cell seg-
mentation in biofilm images.

6.3.1.1 Contrast Enhancement

CLAHE (Reza 2004) contrast enhancement process was applied on biofilm SEM
images as a pre-processing step to improve object boundary visibility. CLAHE
performs histogram equalization locally, enhancing contrast while limiting noise
intensification.

6.3.1.2 Applying SR

After applying CLAHE to biofilm SEM images, SR techniques were applied to
reconstruct missing details, remove noise and blur, and increase resolution by a scal-
ing factor of x=4. The ESGAN, BSRGAN, and SwinIR SR-trained models were
employed in the images, and all generated high-resolution images with less blurri-
ness and noise. The original images were processed using the three SR methods, and
the resulting outputs are shown in Figure 6.2. However, SwinIR-generated images
were not used for segmentation experiments due to alterations in cell morphology
and the appearance of random spikes. ESRGAN and BSRGAN results were com-
pared, and BSRGAN was deemed superior in terms of resolution improvement, noise
reduction, and blurriness removal.

6.3.1.3 Patch Generation

This section describes the process of applying SR techniques to biofilm SEM images
taken at different magnification levels. The images ranged from 435x to 2300x and
have different contextual information depending on the level of magnification.
Diverse scaling aspects of SR-based models were used for diverse stages of magni-
fication. 2x SR models were used for images magnified at 400x—600x, while 8x SR
models were used for images magnified at 2000x—2200x. There were only 6 biofilm
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FIGURE 6.2 The illustration depicts the output patches resulting from the utilization of
various SR methods on the original images. The first row showcases the patches extracted
from the original images, while the second, third, fourth, and final rows exhibit the patches
generated after the implementation of CLAHE, BSRGAN, ESRGAN, and SwinIR, respec-
tively. (Image used with permission from Ashaduzzman, Md et al., 2022 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), 3587-93, 2022.)

images available in the dataset of size 1024 X768, and SR techniques were applied
to generate images of 4x resolution, 4096 x 3072. To address the low volume of input
images, patches of 128 x 128 were created from these images to obtain a higher
(4224) number of input images. The chosen patch size was selected as it captures the
desired morphological features of the cells, also indicated in Bommanapally et al.
(2021).
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FIGURE 6.3 The procedure used for segmenting cells in biofilm images. (Image used
with permission from Ashaduzzman, Md et al., 2022 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), 3587-93, 2022.)

6.3.1.4 Segmentation Downstream Task

The semantic segmentation of cells was done using the popular FCN ResNet50
architecture (Long, Shelhamer, and Darrell 2015), which is pre-trained on ImageNet.
During the training stage, the model was trained using the generated patches and
their corresponding annotated images, where each pixel in the image was labelled
with the corresponding class label. The model learned to recognize patterns and fea-
tures of the cells in the images and used this information to make predictions about
the class of each pixel. The workflow used for segmenting cells in biofilm images is
depicted in Figure 6.3.

6.3.2 EXPERIMENTAL SETUP AND RESULTS

Semantic segmentation results were compared from three types of biofilm input
images: (1) original images, (2) SR images by BSRGAN, and (3) SR images by
ESRGAN. We discarded the SR images generated by SwinIR as they produced some
noises and distortions in the biofilm images. PSNR, commonly used metric to mea-
sure the quality of a reconstructed or compressed image or video, was utilized to
measure the quality of the generated images. BSRGAN had the highest PSNR value
(average of 29), indicating better image quality compared to ESRGAN and SwinlR,
which had an average of 25.

We modified the FCN ResNet50 architecture for single-class segmentation. To
output a single-channel segmentation mask for the given class, we changed the num-
ber of output channels of the last convolutional layer to one, replaced the last pooling
layer with a convolutional layer with stride one, removed the fully connected layers
at the end of the network, replaced the softmax activation function at the end of the
network with a sigmoid activation function, and loaded the pre-trained weights from
ImageNet. The backbone pre-trained layers were frozen for fine-tuning purposes. We
utilized binary cross-entropy loss as the loss function, stochastic gradient descent for
optimization, and a 0.01 learning rate. The model underwent 100 epochs of training.
The study utilized cross-validation with 5 folds to improve generalization on the
dataset and evaluated the predicted segmentation masks using mIoU scores.
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The mlIoU score for BSRGAN images had an average value of 0.81+0.01,
while ESRGAN and original images had analogous mloU values of 0.75+0.01
and 0.76 +£0.02, respectively. Figure 6.4 presents segmentation yields from these
experiments.

S Patches

Predicted Masks

Patches

Predicted Masks

Patches

Predicted Masks
L |
&

Ground Truth BSRGAN ESRGAN Original

FIGURE 6.4 The outputresults of the FCN ResNet50 model for different SR techniques were
compared to those of the original image. (Image used with permission from Ashaduzzman,
Md et al., 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
3587-93, 2022.)
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6.3.3 SUMMARY

The study demonstrates the effectiveness of the SR approaches in enhancing the
capabilities of deep-learning models for the quantifiable analysis of SEM biofilm
images. Among BSRGAN, ESRGAN, and SwinIR, the BSRGAN approach conserved
relevant structures and achieved over 6% improvement in IOU scores compared to
those trained on original SEM images. The findings validate that incorporating SR
techniques into the workflow of deep learning methods for quantifying SEM biofilm
images yields advantageous outcomes.

6.4 CLASSIFICATION OF SEM BIOFILMS USING SSL

Our case study involves the classification of SEM images of biofilms based on the
detection of certain objects in these images. This task implements building a self-
supervised ML model that solves a multi-label classification problem where the
labels—Byproduct, Cell, and Surface (see Figure 6.8)—are detected in a given SEM
image and included in a set of labels assigned to that image. Given the low volume
of images, we divide the images into patches and perform the classification on these
patches, which can then be combined to assign labels to the original image.

The following Al-based flowchart aims to classify biofilm images using self-
supervised approaches. The flowchart comprises gathering SEM biofilm images, pre-
processing the images, and manually annotating them by experts. In the image patch
generation stage, overlapping miniature image patches are generated. Non-annotated
patches are used for representation learning with self-supervised approaches, while
annotated patches are used to fine-tune the model for downstream classification.
Figure 6.5 illustrates the flowchart with its components.

Dataset

Image Pre-processing

Pixel-level Annotation

Image patch generation

Annotated Non-Annotated

Object masking Self-Supervised training

Downstream classification

FIGURE 6.5 The flowchart of the approaches to classify biofilm images. (Image used with
permission from Abeyrathna, D. et al., Front. Microbiol. 13, 2022.)
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FIGURE 6.6 The fop row shows two raw images from the biofilm dataset, and the bottom
row displays the corresponding images after cropping meta information and contrast enhance-
ment. (Image used with permission from Abeyrathna, D. et al., Front. Microbiol. 13, 2022.)

6.4.1 DATASET

For the project, seven SEM images were utilized as biofilm datasets with a reso-
lution of 1024 X758 and magnifications ranging from 436X to 2.30KX, covering
scale ranges from 2 to 10 micrometres (see two of the raw images in the first row of
Figure 6.6).

6.4.2 IMAGE PRE-PROCESSING

The first image pre-processing step was to delete meta-information in a black band
by manually clipping it out. Then contrast improvement was pertained to improve
image clearness (see the images in the bottom row of Figure 6.6). Some SEM images
were captured at different magnification scales, which can cause problems when
dividing the images into patches of a similar size to augment data. To address this
issue, SR techniques were applied to SEM images that improved details and nor-
malized object sizes. Images with lower scales and higher magnification were not
subjected to this process.

We applied three SR approaches, BSRGAN (Zhang et al. 2021), Real-ESRGAN
(Wang et al. 2021), and SwinlIR (Liang et al. 2021), on the biofilm pre-processed
images to get high-quality images. We found out that BSRGAN produced bet-
ter-quality images at a 4X magnification level (see Section 6.3 for more details).
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FIGURE 6.7 The fop row illustrates the output patches before applying the super-resolution

method, while the bottom row shows that the patches after the super-resolution have been
applied. (Image used with permission from Abeyrathna, D. et al., Front. Microbiol. 13, 2022.)

Figure 6.7 shows four random image patches cropped from original images and their
high-quality equivalents generated from BSRGAN.

6.4.3 ANNOTATION, PATCH GENERATION, AND OBJECT MASKING

In this study, experts annotated images in the dataset by assigning class labels
(byproduct, cell, and surface) to the images and their components. The image labeller
app from MATLAB was used to annotate cells, byproducts, and surfaces using
light grey, mid-grey, and dark grey colours, respectively. Figure 6.8 illustrates three
random image patches cropped from the original images and their corresponding
ground truth annotations.

It required a high volume of data to train any deep neural networks, but biofilm
images are difficult to produce in large volumes. To solve the issue, we utilized a
method that involves decomposing each image into multiple patches using sliding
window mechanism. Then object masking (Li et al. 2004) was applied to generate
a better quality set of image patches. Object masking is the process of identifying
and isolating specific objects in an image by creating a binary mask that separates
the object from its background. This enables machines to recognize and locate indi-
vidual objects, even when they have similar appearances or are partially hidden by
other objects. In Figure 6.9, generated object masks of cells, byproducts, and surfaces
are depicted for the corresponding original image patch.

6.4.4  SELF-SUPERVISED TRAINING

In this section, we describe an approach to learning the representation of the
unlabelled biofilm SEM images using self-supervised training. We selected one
contrastive approach and one non-contrastive approach, specifically MoCoV2
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FIGURE 6.8 The first row shows sample SEM images, and the second row displays the
corresponding annotations, where light grey represents byproduct, mid-grey represents
cells, and dark grey represents surface. (Image used with permission from Abeyrathna, D.

et al., Front. Microbiol. 13, 2022.)
(a) (b) (d)

FIGURE 6.9 Generated object mask of byproducts (b), cells (c), and surfaces (d) for a
random original biofilm image patch (a). (Image used with permission from Abeyrathna,
D. et al., Front. Microbiol. 13, 2022.)

(c)

(He et al. 2020) and Barlow Twins (Zbontar et al. 2021) for the self-supervised train-
ing. We chose these two approaches as they have several advantages: they can work
using mini-batch training samples and have comparable state-of-the-art results.
MoCoV2 stands for “Momentum Contrast V2” and builds on the original
Momentum Contrast (MoCo) framework proposed by Facebook AI. MOCOV2 first
applies various data augmentation techniques, such as random cropping, colour jit-
tering, or Gaussian blur, to the input image to create two different “views” of each
image. MOCOV?2 then uses two different encoder networks, a query “g” encoder and
a key “k” encoder, to encode each view of the input data into a feature representation

(see Figure 6.10a). MoCoV2 then calculates contrastive loss between the positive
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FIGURE 6.10 (a) Self-supervised framework of MoCoV2. (b) Self-supervised frame-
work of Barlow Twins. (Image used with permission from Abeyrathna, D. et al., Front.
Microbiol. 13, 2022.)

keys that match with ‘¢’ and negative keys that do not match with ‘g’. It uses a queue
of keys (k, ; ,) for this purpose. A temperature parameter 7 is used to scale the simi-
larity scores. MoCoV?2 is designed to work with small mini-batch sizes, and it stores
the results in high memory size.

The Barlow Twins self-supervised non-contrastive learning method works
by training a neural network to predict the association between two augmented
views of the same image data. This method was motivated by the Barlow Twins
illusion, as it pursues to learn representations that are invariant to small shifts in
input images. It consists of two identical neural networks that share the same set of
weights and are trained to encode two slightly different views of the same input data
(see Figure 6.10b). The yield of each network is then utilized to calculate a cross-
covariance matrix, which is used to measure the similarity between the two views of
the data. The aim is then to lessen the distance between the cross-covariance matrix
and a target matrix. The framework consists of two components: the invariance term,
which guarantees the representation is robust to noise, and the redundancy reduction
term, which supports the components of the representation to be independent.

6.4.5 DOWNSTREAM TASK

We propose a method of training a machine learning model for classifying images
into “K” classes by converting the problem into “K” binary sub-problems. In this
case, K is 3 (byproduct, cell, and surface). We use image patches that are labelled and
object-masked to fine-tune separate binary models, one for each class, to predict if
the object is present in the image patch or not. The outputs from these binary models
are then combined to produce the final classification of an image patch. This method
allows for a single patch to be assigned to multiple or even all of the classes.

6.4.6 EXPERIMENTS

We presented a method for automatically classifying objects in SEM biofilm
images using contemporary self-supervised learning approaches. The key focus of
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the experiments was to examine the feasibility and effectiveness of the method, as
well as to differentiate the performance of two different self-supervised learning
approaches, MoCoV2 and Barlow Twins. Moreover, the experiments had the objec-
tive of assessing the advantages of utilizing self-supervised models regarding expert-
annotation workload. Additionally, we aimed to conduct a qualitative assessment of
the classification accuracy based on expert input.

We described a pre-processing pipeline in that we used 7 SEM biofilm images for
training a machine learning model. We used MATLAB to clip the meta-information
from the images. We then applied BSRGAN on images that had a magnification of
less than 1KX and processed the images with 4X magnification to normalize the
size of objects across the images. We generated image patches of size 64X 64 and
128 x 128 from both annotated and non-annotated images using the sliding windows
technique. We used a stride rate of 2 for the sliding window. This process resulted
in 24,021 image patches of size 128 X 128 from all 7 images. They then applied the
object-masking process to generate the mask for each object.

We implemented a machine learning model for classifying image patches into
3 classes using two self-supervised learning methods, with ResNet-50 as the base
architecture (He et al. 2016), following the recommended configurations (Zbontar
et al. 2021; X. Chen et al. 2020) for optimal performance. To obtain a multi-label
classification outcome for each patch, we generated three binary classifiers, each for
a specific class, and employed the predictions from all three networks. The goal was
that an effective classifier should be able to ascribe all 3 classes to a single patch.
To ensure the reliability of the outcomes, we carried out the experiments using five
cross-validations chosen randomly.

We obtained qualitative feedback from experts by giving them a selection of 10
patches from each image, which varies in terms of difficulty levels for manual clas-
sification into the three classes. A user interface had been developed to allow experts
to provide their qualitative responses and observations. The experts were shown the
original image patch and Class Activation Maps (CAM) (Zhou et al. 2016) generated by
the model for three objects. These maps highlight the regions in the image that are most
relevant to the predicted class. In addition, the ground truth annotation of the patch, as
well as the patch’s location in the original image and the model’s prediction (True/False),
was also given to the experts to indicate the model’s certainty in the object’s presence.

6.4.7 EVALUATION

We conducted evaluations on the self-supervised learning models based on the
attribute of the learned representations and the capabilities when fine-tuned for
downstream tasks. We first conducted empirical experiments to determine the best
configuration for learning representations using different patch sizes, batch sizes,
and the number of training epochs on unlabelled data. The learned representations
were then used in further experiments.

6.4.7.1 Linear Evaluation for Learned Representation Quality

To evaluate the quality of the learned representations, we performed a linear
classification experiment wherein we applied a linear head to the representations.
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FIGURE 6.11 The comparison of linear evaluation accuracy for the two models is presented,
depicting variations in batch sizes and patch sizes. On the y-axis, the first row indicates patch
sizes, the second row indicates batch sizes, and the third row indicates the corresponding
self-supervised framework. (Image used with permission from Abeyrathna, D. et al., Front.
Microbiol. 13, 2022.)

Using standard settings, we trained the linear head with 10% of annotated data while
keeping the encoder models fixed. Figure 6.11 illustrates the classification accuracy
with various settings, where the x-axis denotes the classification accuracy and the
y-axis denotes the different settings. The results showed that both models had the
maximum accuracy with a patch size of 128 X 28, batch size of 128, and 200 train-
ing epochs. Random crop and horizontal flip were used as data augmentation during
training, and the centre crop was used during testing. The best results were achieved
with a patch size of 128 X 128, batch size of 128, and 200 training epochs. For com-
parison, we also trained a supervised ResNet-50 model using all the labelled data.

6.4.7.2  Fine-Tuning Evaluation

We evaluated the data efficacy of self-supervised models (MoCoV2 and Barlow
Twins) by fine-tuning them on labelled data for classification tasks. We found that
using only 10% of labelled data led to significantly better results. We reported accu-
racy for each binary classification model and overall average. The optimal config-
uration settings, comprising patch sizes, batch sizes, and data augmentation, were
employed to generate all the results.

6.4.8 ResuLts

The dataset underwent a thorough examination to gauge the performance of the two
self-supervised learning methods. The robustness of the model’s parameters was
examined, the models’ effectiveness on the dataset was determined, and a qualitative
examination of the results was conducted.
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6.4.8.1 Robustness of the Model’s Parameters

The results indicate that the models utilizing a patch size of 128 x 28 outperformed
those using a patch size of 64x64, regardless of batch size and the number of train-
ing epochs. The performance difference was substantial, around 4.5%. The lower
information content within a 64 X 64 patch may be a contributing factor to this dif-
ference. As a result, we consistently used a 128 X 128 patch size in all our subsequent
experiments. Additionally, the models exhibited similar performance across varying
training epochs of 200, 300, and 400. Therefore, in order to save computational time,
we opted for a training epoch of 200 during the representation learning stage.

6.4.8.2 Linear and Fine-Tuning Assessments

Self-supervised models were assessed for the quality of their learned representations
using a linear classification head. While the results of Barlow Twins were more con-
sistent, the MoCoV2 model beat it by 2%. Despite not performing as well as a super-
vised approach, both self-supervised models had accuracy close to the supervised
model and required only 10% of the labelled data. In binary classification tasks,
the fine-tuned Barlow Twins model acted better (83.18%) than both the supervised
baseline (75.01%) and the fine-tuned MoCoV2 model (80.73%), using the same test
set as in linear assessment trials. These results suggest that the Barlow Twins model
has a superior capability to adapt to downstream tasks after being fine-tuned with
inadequate labelled data.

6.4.8.3 Qualitative Results

In the qualitative assessment, experts had highly positive feedback on the classifiers
and its potential applicability to various tasks, such as identifying regions in images
with specific objects, estimating the correlation and distribution of these objects
across patches, etc. They also noted a significant efficiency improvement, estimated
to be several orders of magnitude faster, compared to semi-automated approaches
using tools like ImageJ. As the number of images grows, relying on manual and semi-
automated approaches becomes unfeasible, making scalability crucial. Additionally,
the experts were able to identify objects determined by the proposed approach in raw
images and agreed with the model’s forecasts.

The novel image patch, annotations, and three-class CAM were evaluated by
experts. They examined whether the forecasted class existed in the original image
patch and was located at the highlighted spot in the CAM (refer to Figure 6.12).
Experts identified three reasons for disagreement with machine learning predictions:
inappropriate annotations, appropriate annotations with wrong forecasted class, and
unclear annotations, which made experts uncertain, particularly in cases of overlap-
ping cells and byproducts.

There was a significant disparity between the evaluations of domain experts and
the predictions generated by models. One of the primary reasons for this divergence
was attributed to the incapability of the existing class activation map scheme in iden-
tifying the presence of a specific class in image patches where entities of the alike
class are detached and existed in multiple regions. Additionally, the assessment met-
ric for CAMs is subjective and can lead to discrepancies, especially in image patches
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|  Original | Byproduct | Cell |  Surface |

FIGURE 6.12 The comparison of CAM visualization results was obtained from differ-
ent binary classification models. The visualizations were obtained for the last convolution
output of each model. (Image used with permission from Abeyrathna, D. et al., Front.
Microbiol. 13, 2022.)

that contain overlying objects from multiple classes. Overall, domain experts agreed
with the model predictions of 98% of the time.

6.4.9 DiscussioN

With only around 10% of annotated data, the suggested workflow based on self-
supervised learning attained markedly improved classification accuracy results.
The linear assessment experiments showed that both models can retrieve analogous
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quality representations using the unlabelled dataset, but the Barlow Twins model
performed significantly better with fine-tuning and limited labelled data. The per-
formance of both self-supervised models exceeded that of the supervised model.
Furthermore, the Barlow Twins model is a preferable choice because it offers higher
classification accuracy and requires less computational cost than MoCoV2.

Although multi-label classification is proper for forecasting multiple objects in
an image patch, binary classifiers were employed in this case to provide multiple
labels to an image patch. This choice was made because of certain characteristics of
the dataset, including imbalanced class instance proportions, especially between the
Surface class and byproduct class, as well as the low variance between the cell class
and the byproduct class, which had comparable visual features. The use of binary
classification was deemed more feasible than multi-label approaches like algorithm
adaptation. While binary relevance approaches may overlook label correlations, it
was believed that this limitation was addressed by the representation learning stage
of self-supervised learning models, which could have captured such correlations.

MIC (microbiologically induced corrosion) caused by sulphate-reducing bacteria
(SRB) results in billions of dollars in annual costs. MIC is a crucial interfacial process
that is dependent on various factors, including microbes, redox potential, dissolved
oxygen, salt concentrations, pH, and conductivity. Protective coatings above the met-
als act as a barrier against corrosive metabolites of both biotic and abiotic forms
mainly by passivating the MIC impacts. Two-dimensional (2D) materials including
hexagonal-boron nitride (h-BN) and graphene are well-renowned protective coatings
due to their excellent barrier property, chemical resistance, and impermeability with
thermal stability. Our previous studies showed that both graphene and h-BN coatings
regulate SRB biofilms, their attachments, and their electrochemical oxidation when
exposed to copper and low-carbon steel. We observed these biofilms on pristine and
2D material-coated copper and low carbon steel, with structural features measured
and extracted manually, which is a labour-intensive and expensive task.

Recent advancements in artificial intelligence (AI) and cellular microscopy have
created opportunities to collect large amounts of data and analyze/predict cellular
structures from biological data. A range of tools had been utilized for extracting
and assessing the morphological characteristics of biofilm microstructures, includ-
ing deep neural networks, BioFilm Analyzer, BiofilmQ, and ImagelJ. However, these
tools are not suitable for characterizing congested biofilm microstructures and micro-
bial products as they can only handle smooth, homogeneous, and non-overlaying
geometric structures.

An investigation was conducted to evaluate the effect of diverse colour spaces,
sliding window sizes, and CNN architectures for corrosion detection. They used
different colour spaces such as RGB, YCbCr, CbCr, and grayscale to identify the
best colour space for corrosion detection. Various architectures were evaluated with
the optimal colour space using a sliding window to detect stained areas within an
image, and multiple sliding window sizes (128 X 28, 64 x 64, and 32 % 32) were used
to classify the areas of an image. Smaller sliding window sizes resulted in more
accurate localization of corroded regions but a decrease in the number of attributes a
CNN can learn, leading to a decline in the signal-to-noise ratio. Images of 128 X 128,
64 x 64, and 32 x 32 pixels were used to assess the influence of sliding window sizes.
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Two distinct sets of microscopy images were utilized to train a CNN in order to cre-
ate a three-class classification system that can differentiate between the standard,
unprotected, and protected states of a surface with copper. Due to the limited size of
the dataset, the network’s architecture was constrained to only include two convo-
lutional layers, and data augmentation was employed by altering the rotation, shear
intensity, and zoom range of the dataset. The approach being proposed tackles a low-
volume dataset as well, but it utilizes self-supervised techniques to classify the data
while reducing the amount of expert annotation required.

6.4.10 SUMMARY

This study proposes a self-supervised learning-based workflow to classify constitu-
ents in biofilm SEM images with limited annotated data. Annotated data are costly
and challenging to generate, so the study experimented with image pre-processing and
SSL to improve classification accuracy. Super-resolution of SEM images improved
the performance of multiple SSL models, and the Barlow Twins SSL model achieved
83.18% classification accuracy with a 90% reduction in required labelled data. This
study demonstrates the potential of self-supervised learning to reduce manual anno-
tation requirements and suggests further exploration of self-supervised methods for
object segmentation and other tasks.

6.5 CONCLUSION

This chapter is divided into four main sections. The first section provides a detailed
overview of modern solutions that address the problem of scarce annotation in medi-
cal image segmentation. The second section delves into the practical application
of self-supervised learning in medical imaging. The third section delves into the
implementation of deep learning-based super-resolution techniques to enhance the
effectiveness of diverse downstream tasks on a dataset of biofilm images obtained
from a scanning electron microscope (SEM). In the final section, we explore one case
study: a method for performing classification tasks on biofilm images that have a low
volume of images using SSL.
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DEFINITIONS

DOI:

Autoinduction: Cell-to-cell communication that enables population den-
sity-based control of gene transcription. This is done via the production,
release, and sensing of low-molecular-weight compounds.

Biofilm: Surface-attached microbial communities that are embedded
within a self-produced extracellular matrix consisting of polysaccharides
and DNA.

Quorum sensing: A mechanism where bacteria use signaling molecules for
regulating gene expression, typically based on population density.

Sessile cells: Cells that are encapsulated within the extracellular polymeric
substance component of biofilms.

Signaling: The ability to detect and respond to cell population density by
gene regulation.

SRB: Sulfate-reducing bacteria.

Stress: Adverse and fluctuating conditions in the immediate surroundings
of bacteria.

Stress response: Mechanisms used by bacteria to survive stressful environ-
mental conditions.

Virulence: Ability to invade and multiply within the host; it is defined in
terms of the degree of pathogenicity.
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ACRONYMS

AI-2  Autoinducer-2

DSF  Diffusible signal factor
GCL  Gamma-caprolactone
HTH  Helix-turn-helix

Mpy  Mils per year

MBR Membrane bioreactor
QQ Quorum quenchers
XAC  Citrus canker

7.1 INTRODUCTION

Quorum sensing (QS) is a fascinating mechanism used by bacterial cells to commu-
nicate with each other and jointly regulate their activities in sociality. Bacterial cells
synthesize diffusible molecules—known as autoinducers (Als)—for creating inter-
cellular signaling mechanisms and controlling their social network. Such QS-related
Als are implicated in cross talk among diverse bacterial cells and hosts (e.g., plants
and human intestines). QS mechanisms can regulate diverse stages of biofilm forma-
tion. They can modify the surface topography of exposed substrates, binding of cells
with the substrates, surface-induced responses of the adhering cells, and secretion of
extracellular polymeric substance (EPS). Examples of impacted substrates include
metals, polymers, soil particles, medical implants, and biological tissues. Thus, QS
mechanisms can influence biofilm growth in diverse domains including agricultural,
industrial, and commercial.

7.2 QUORUM SENSING

QS is a cell-to-cell communication process that involves the secretion and sensing of
extracellular signaling molecules called autoinducers (Als). These communications
can occur via Al in both inter- and intra-bacterial species [1,2,3]. They are more
dominant in populations based on identical organisms, especially when the popula-
tion density exceeds a threshold level [1,4—6]. QS controls diverse bacterial functions
including antibiotic production, biofilm formation, bioluminescence, competence,
sporulation, swarming motility, and virulence factor secretion. It can even alter the
behavior of the entire bacterial population [7,8].

Bacterial cells can sense levels of the signaling molecules to determine the number
of other cells present within the same environment [1,4,5]. When a threshold level of
cells is reached, the population density is said to achieve a quorum [2,3,6]. Quorum-
dependent genes are expressed by autoinduction. Bacterial species produce a range of
Al molecules that regulate genes and control characteristics that are exhibited above
the critical population or threshold population density [2,3,5,6,9,10]. Detection of a
minimum threshold stimulatory concentration of Al leads to an alteration in gene
expression. Both gram-positive and gram-negative bacteria use QS communications
to regulate their physiological activities [11-14]. However, gram-negative bacteria
use acyl homoserine lactones (AHL) as an Al while gram-positive bacteria use pep-
tides for communication [13].
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7.3 KEY QUORUM SENSING MOLECULES AND
THEIR SIGNALING MECHANISMS

Examples of signaling molecules in QS systems include homoserine lactone (HSL),
AHL, and autoinducing peptides. Different molecules have been observed in dif-
ferent species, and they all display different genotypical and phenotypical effects
(Table 7.1). The chemical structures of these molecules listed in Table 7.1 are shown

in Figure 7.1.
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TABLE 7.1

Quorum Sensing Molecules and Their Classes of Action

Name
LuxS

LuxR

LuxO

LuxQ

Diffusible
Signal Factor
(DSF)

Chemical
Structure

Figure 7.1a [15]

Figure 7.1b [17]

Figure 7.1c [19]

Figure 7.1d [16]

Figure 7.1e [20]

Class of Action

Transportation of the QS signal
Al-2 by enhancing its secretion.
Consequently, it represses biofilm
formation and motility [16]

LuxR-type is a DNA-binding
helix-turn-helix (HTH) domain
consisting of about 65 amino
acids. It participates in the
transcriptional regulators in the
LuxR family of response
regulators [18]

LuxO acts indirectly on virulence
gene expression by repressing
hapR gene. This leads to the
expression of virulence factors. In
strain El Tor N16961, the hapR
gene is inactive due to a natural
frameshift mutation [17]

In SRB, the binding of AI-2 to the
periplasmic receptor LuxP
modulates the activity of the inner
membrane sensor kinase LuxQ,
transducing the AI-2 information
into the cytoplasm [15]

DSF-mediated QS regulation of X.
citri subsp. citri (Xac), the causal
agent of citrus canker. DSF-
mediated QS specifically
modulates bacterial adaptation,
nutrition uptake and metabolism,
stress tolerance, virulence, and
signal transduction to favor host
infection [21]

Name of Receptor
Histidine protein
kinase

N-terminal receptor
site of the proteins

LuxR-type
DNA-binding
HTH domain

apoLuxP

RpfC receptor of
histidine Kinase
[21]

Ref
[15]

[17]

[19]

[16]

[22]

(Continued)
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TABLE 7.1 (Continued)
Quorum Sensing Molecules and Their Classes of Action

Chemical
Name Structure Class of Action Name of Receptor  Ref

Furanone C-30  Figure 7.1f [23]  Diminished swarming motility was  pqsR receptor [24]  [24]
observed in the presence of
furanone C-30. The wild-type
strain exhibited swarming across
the soft agar, but its motility was
markedly inhibited in the presence
of furanone C-30. These results
suggest that P. aeruginosa surface
colonization is controlled by
furanone C-30 which effectively
inhibits the C4-HSL-mediated QS
system (QS system in the
bacteria) reducing the virulence
property of the bacteria [24]

0 AHL AHL
L )
[ ] L]
[ ] L]
il

L]
? a
s 1
s .
Lo W i-u,.u.uu
fay iy Ll -m=p
gt e Ly s
Tramscriplion is sl ativalnd Transmplon is atnaked
oo ol demsity at bigh cull density

ef’\/\/\/\/"\m - H}_%/”' o £

1 it 2 choetromace: scxd. (55F

P L H"\N/”
!
i3 cimcarcic ikt NP o
i Furinone 56 CHHSI
AN o o [T
P — \\,«/\\/ﬂ\)\/’l\\
ce @ "
s OO

FIGURE 7.1 Chemical structures of quorum sensing molecules. (a) LuxS; (b) LuxR;
(c) LuxO; (d) LuxQ; (e) Diffusible Signal Factor; (f) Furanone C-30.

74 QUORUM SENSING IN RELATION TO STRESS RESPONSE

Stress response mechanisms allow microbial species to survive adverse and fluc-
tuating conditions in their immediate surroundings. Bacterial cells respond to
stressors by leveraging multiple stress response systems that interact via complex
global regulatory networks [7,8,10,25-28]. The significance of QS in regulating
the stress response with respect to stressors [e.g., heat, heavy metals in the case of
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microbiologically influenced corrosion (MIC)] has been well reported in the litera-
ture [26-30]. For example, QS mechanisms improve the viability of Vibrio cholerae
under stressful conditions by regulating the expression of the RNA polymerase sigma
S gene. Such regulation takes place via the HapR gene, highlighting the roles of
QS-enhanced stress responses in V. cholerae when exposed to oxidative and nutri-
tional stresses [27]. Given the wide range of environmental stressors in nature, it is
likely that QS-enhanced stress tolerance allows the microbial cells to counteract QS
inhibition [31] and invasion by other virulent species having a broader impact on
bacterial ecology.

7.5 BACKGROUND ON BIOFILMS WITH FOCUS ON
ITS ECOLOGY IN NATURAL ECOSYSTEMS

Here, we provide a generic overview of biofilms using their microbial life in stream
ecosystems as a practical example. Biofilms exist as matrix-enclosed and surface-
attached microbial communities that are highly active at streambed interfaces. Such
biofilm modes allow bacterial populations to sustain challenges posed by a fast flow
of water and the need for continuous export of nutrients and organic matter. Biofilms
in streams are considered a ‘microbial skin’ that allows the sessile cells to process
and export nutrients along with the organic matter from the structure. Fluid dynam-
ics influence the dispersal of microbes and their biodiversity dynamics at the scale of
stream networks [30, 32]. Interactions among parameters related to biofilm growth,
stream water flow, and substrate chemistry are responsible for environmental com-
plexity in the streambed. Species like Proteobacteria and Bacteroidetes dominate the
communities of stream biofilms [15-19, 33], including those based on Flavobacteria
and Sphingobacteriia. The biodiversity present in stream biofilms is supported by the
continuous input of microbes [34].

Biofilms exert both negative and positive roles. For example, beneficial biofilms
that live inside the gut ensure the normal functioning of human beings as well as
animals. Beneficial biofilms have been implicated in their roles in mitigating the
negative effects of obesity, autism or cancer, and infectious diseases. Biofilms are
not only essential for the normal functioning of ecosystems (e.g., providing oxygen
and food for many organisms using solar energy as plants do) but also for protecting
health by degrading pollutants in water and soil, limiting erosion, and ensuring soil
fertility, among other things [35-39]. Negative biofilms are implicated in terms of
their roles in improving the resiliency of microorganisms involved in the pathogen-
esis and MIC.

7.6 QUORUM SENSING, BIOFILM GROWTH, AND
MICROBIOLOGICALLY INFLUENCED CORROSION
QS mechanisms can influence different stages of biofilm formation (Figure 7.1).

Given that sessile cells within biofilms are known to aggravate MIC, we considered
MIC in this study (Figure 7.2) [10,14,25,31].
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FIGURE 7.2 Top panel: Different stages of biofilm growth that may influence microbial cor-
rosion. Bottom panel: Three major types of microbial corrosion to attack metals and plastics.

7.6.1  QS, Bioritm GrROwTH, AND MIC

We explain the role of QS on biofilm formation by sulfate-reducing bacteria (SRB)
that are widely implicated in MIC, a problem that contributes to $5 billion in corro-
sion costs. The MIC costs include resources for addressing corrosion issues that call
for maintenance, repairs, and lost time for delays, failures, outages, litigation, and
taxes. MIC can occur during any of the five stages of biofilm growth (Figure 7.1).
These stages include (1a) the conditioning phase where self-secreted molecules (e.g.,
proteins and carbohydrates) are adsorbed by the underlying surfaces; (1b) the attach-
ment phase where planktonic cells are immobilized on the polymer matrix; (I1c) the
consolidation of sessile cells within the EPS; (2) formation of microcolonies within
the EPS of biofilms; (3) growth of early biofilm; (4) growth of matured biofilm; and (5)
dispersal [18,39—-42]. SRB biofilms can influence MIC in all five stages (Figure 7.1).
SRB biofilms use three different types of mechanisms to influence MIC. In the Type
I mechanism, they use metal as an electron donor under nutrient-limiting condi-
tions. In the Type II mechanism, biofilms secrete metabolites that generate terminal
electron acceptors (e.g., protons) that support cathodic reduction reactions involved
in corrosion [7,8,10,26,27]. Type III mechanisms are used to degrade nonmetals by
using them as carbon sources. Readers are encouraged to review [18,37,42—47] to get
an in-depth understanding of these mechanisms.

Desulfovibrio (D) vulgaris and Desulfobacterium (Db) corrodens spp. are com-
monly studied model organisms in MIC studies. D. vulgaris is a thoroughly studied
SRB with its entire genome sequenced. Db. corrodens is an SRB whose genome has
been well annotated but with zero evidence in the presence of QS-based gene homo-
logs [47]. In a recent study [45], both these species were grown in either saline or
freshwater media. Here, saline conditions represent an example of stressful environ-
ments discussed earlier. They used lactate and sodium sulfate (Na,SO,) as sources of
electron donors and acceptors, respectively. Increased potentials of sulfate reduction,
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TABLE 7.2

Quorum Quenchers and Its Effect on Biofilm Formation

Quorum Quencher Dosage (pM) Observed effect on biofilm formation References
Bromo furanone 80 Decreases specific sulfate reduction rate [35,45,49]

of D. vulgaris and subsequently its
biofilm formation

Butanamide, 40 Decreases specific growth rates of D. [21]
3-0x0-N-phenyl vulgaris and Db. corrodens,
discouraging biofilm formation
GABA (Gamma- 40 Compromises the specific growth rate [9, 50]
aminobutyric acid) of Db. corrodens and biofilm formation

by D. vulgaris and Db. corrodens

AHL production, and biofilm formation by D. vulgaris and Db. corrodens were
observed under saline conditions [45]. As mentioned earlier, AHL is a typical sig-
naling molecule encountered in many QS systems. To analyze the effects of salinity
at the genetic expression level, quantification of transcript levels of genes respon-
sible for sulfate reduction, carbon utilization, biofilm formation-based hydrogenases,
as well as histidine kinases involved in cell-cell communication was analyzed.
Transcript levels of all relevant genes were found to be upregulated under saline
conditions. Hence, saline conditions have a pronounced effect on sulfate reduction,
biofilm formation, and AHL production at the genetic level by both planktonic cells
and biofilms of SRB [7]. As shown in Table 7.3, QS mechanisms can be involved in
different stages of biofilm growth. Thus, QS mechanisms can be expected to influ-
ence the growth of biofilms that are involved in metallic corrosion. Such mecha-
nisms can be considered for developing effective MIC prevention mechanisms, for
example by developing protective coatings that release QS-inhibiting molecules. We
can also incorporate quorum quenching supplements for inhibiting QS communica-
tions (Table 7.2).

7.6.2 BIOINFORMATICS ANALYSIS

We selected several QS-associated proteins to check for any discernible consensus
sequences, analyze phylogenetically, and determine which biosynthetic pathways
these proteins belong to. Using a MAFFTT workflow [49], the proteins were aligned
and a maximum likelihood of a phylogenetic tree was also created using the out-
put of the previous workflow with the addition of RAXML ver. 8 [35] with default
parameters, LG+G4 [36] model and 100 bootstrap iterations. The multiple sequence
alignment (MSA) (Figure 7.3) for the selected QS proteins did not yield a discernible
consensus sequence. The phylogenetic tree showed that the LuxO and LasR proteins
from Vibrio harveyi and Pseudomonas aeruginosa [44, 51], respectively, have a com-
mon ancestor. Likewise, the protein AHL synthesis from both P. aeruginosa and
Aeromonas hydrophila, also shares a common ancestor, with different gene origins
[43]. AHL synthesis from Burkholderia vietnamiensis shares a common ancestor
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TABLE 7.3
Role of Quorum Sensing (QS) Molecules at Different Stages of Biofilm
Formation

# Biofilm growth stage Role of QS Examples of QS Ref
1  Attachment Initial attachment of the mutant bacteria seems  cepIR and ccilR [40]
to be affected due to the presence of the QS QS systems

system, rendering them more adherent to the
underlying surfaces

2 Microcolony The interaction of the ahyI protein and C4 AhyI protein and [41]
HSL with the ahyrI locus receptor improved C4 HSL QS
the development of microcolonies systems

3 Early biofilm growth ~ The ratio of LasI and Rhil is critical while Lasl quorum [42]
governing biofilm formation. The production sensing genes

of Rhil is seen to be less during the log phase
of biofilm formation, increasing the
production of Lasl, and further contributing
to the initial stages of biofilm formation
4 Mature biofilm LuxO is involved in the downstream LuxO protein [18]
phosphorylation cascade reactions,
upregulation, or repression of QS-associated
genes. Involved in many phenotypic traits,
including mature biofilm formation
5 Dispersion Bacterial species use QS to coordinate the Lasl/LasR quorum  [43]
disassembly of the biofilm community. sensing system
Biofilm dispersion allows cells to escape the
current environment where nutrients are
depleted and waste products are accumulated.
This allows the cells to colonize new niches
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FIGURE. 7.3 MSA of selected quorum sensing proteins from different bacterial taxa.

with all group nodes (Figure 7.4). Proteins were determined to belong to the QS
pathway. These results tell us that even though these proteins are all associated with
QS, there is no grouping of apparent similar proteins throughout. Our analysis also
showed that there were no sequence motifs that would help differentiate a protein
from a QS protein. In the future, a larger set of QS proteins could be used to find a
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FIGURE 7.4 Maximum likelihood of phylogenetic tree produced from MSA of selected
quorum sensing proteins.

consensus sequence as well as any sequence or structural motifs that could be used
to determine new QS proteins not found before.

7.7  ADHESION-INDUCED EMERGENT PROPERTIES IN BIOFILM

The properties of EPS depend on microbial origin and growth conditions, for exam-
ple, the availability of nutrients and hydrodynamics. In addition, the release of EPS
has been reported to be controlled by QS mechanisms. Several fractions of EPS can
be distinguished such as capsular EPS wrapping the single cell and EPS of the bio-
film. It is also important to discuss the differences between EPS properties of plank-
tonic and sessile cells. Due to the complexity of EPS, its analysis depends on the
methods used to extract EPS. For instance, certain harsh methods destroy cell walls
and introduce cell material into the medium. Some bacterial EPSs exhibit a higher
ability to bind metal ions and thus are known to promote corrosion as in the case
of EPS extracted from SRB [37]. An important feature of biofilms is the extracel-
lular matrix—a complex mixture of biomolecules termed EPS—which contributes to
reduced antimicrobial properties. Nanoparticles (NPs) play a very important role in
the form of ‘carriers’ of EPS matrix disruptors leading to several approaches that have
recently been proposed. Little relevance is also given to the application of NPs as an
antibiofilm technology with more emphasis on the function of the EPS matrix in the
physicochemical regulation of the nanoparticle—biofilm interaction. We highlight the
use of NPs as a platform for the new generation of antibiofilm approaches [38—40].

7.8 METHODS TO INHIBIT QUORUM SENSING

As discussed earlier, quorum quenchers can inhibit the QS mechanisms, shunt cell-
to-cell communications, and discourage bacterial cells from sharing information
about cell density and associated gene expression [15,17]. Below, we present an over-
view of other known methods for inhibiting QS mechanisms (Table 7.4).
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TABLE 7.4

Methods for Inhibiting Quorum Sensing

# Method
1 QS inhibition

2 Chemical
inhibition

3 Sequestration
by antibodies

4 Quorum
quenching
enzymes

Effect

Cut off the QS communication
and inhibit biofilm formation
[38]

Disrupt the cellular
communication and inhibit
biofilm formation [37]

Specific antibodies target
quorum sensing pathway
within the bacteria and
terminate the effect of
cellular communication
within the bacteria, e.g.,
RS2-1G9 generated against a
3-oxo-dodecanoyl
homoserine lactone analog to
hapten was able to protect
murine bone marrow—
derived macrophages from
the cytotoxic effect [36]

Quorum quenchers (QQ) are
often used in the form of
enzymes which nullify the
effect of quorum sensing
molecules within the
bacteria. Some enzymes are
involved in reduction while
others terminate the effect
completely. Lactonases and
acylases hydrolyze N-acyl
homoserine lactone
(AHL)-signaling molecules
have been investigated most
intensively and nullify the
effect of quorum sensing
molecules [35]

Comments

Strategies that include the
discovery of QS-inhibiting
agents and the current
applications of QS-inhibiting
agents in several fields to
provide insight into the
development of effective
drugs to control pathogenic
bacteria [52]

Development of certain
quorum quenching inhibitors
chemically that would inhibit
or control the pathogenic
activity of bacteria [24]

Development of certain
antibiotics would inhibit the
effect of certain quorum
sensing agents which would
generate certain cytotoxic
effects in bacteria [23]

These approaches have been
assessed which aim at
alleviating virulence, or
biofilm formation, by
reducing the signal
concentration in the bacterial
environment [21]

Examples

Levamisole
[38]

Savarin

[37]

RS2-1G9
[36]

Lactonases and
acylases [35]

(Continued)
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TABLE 7.4 (Continued)
Methods for Inhibiting Quorum Sensing

# Method Effect Comments Examples
5. Biostimulation Biostimulation is a Gamma-caprolactone (GCL), AHL-lactonase
phenomenon in which which is structurally like [53]
rate-limiting nutrients or AHL, was used to specifically
electron acceptors are added stimulate QQ (AHL-
to the environment to degrading) bacteria. When
stimulate indigenous bacteria ~ the GCL consortia were
capable of bioremediation. injected into MBR and GCL
Instead of immobilizing QQ was continuously dosed, the
bacteria in any kind of secretion of EPS decreased,
media, biostimulation was and biofouling was
used to augment the effectively controlled [53]

population of QQ bacteria in
the MBR (membrane
bioreactor) [53]

7.9 CONCLUSION

Quorum sensing (QS) allows bacterial cells to communicate with each other, allowing
them to jointly alter phenotypical changes, including biofilm growth, virulence, and
MIC. This chapter highlighted the roles of QS at different stages of biofilm growth,
including effects on adhesion-induced properties, formation of exopolysaccharides
(EPS), and maturation and formation of biofilm. Although we primarily focused on
QS effects on SRB, these mechanisms are equally important in other gram-negative
bacteria that are implicated in biotechnology applications. Furthermore, we dis-
cussed different types of QS inhibition methods that can be used to control biofilm
growth in engineering applications. However, such methods may not be viable for
field- scale environmental biotechnology applications, especially those that entail
the presence of mixed microbial populations and complex environmental conditions.
From the microbial corrosion prevention standpoint, it is important to develop pro-
tective coatings that can intercept the QS signaling mechanisms in bacterial cells that
adhere to the corroding metal surfaces. Moreover, this classification will constitute
a baseline dataset to develop a machine learning model for biofilm developmental-
stage gene marker prediction.
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8.1 INTRODUCTION

The study of microbe—material systems (biointerfaces) is of great interest for vari-
ous applications such as infrastructure (e.g., corrosion study), biomedical science
(cell implant study), and environmental health.!l The complex biointerface system
involves both the material system (non-living) and biosystem (systems biology).”

8.1.1 MicrosiaL COMMUNITY, BIOFILM, AND MATERIAL—BIOFILM INTERACTION

Biofilms grow on practically every surface exposed to aqueous environments includ-
ing but not limited to metals, polymers, living tissues, and medical implants.* They
are widely researched in agricultural, industrial, and life science domains. Biofilms
can be incredibly beneficial or exceedingly harmful. For example, detached cells
from pathogenic biofilms are known to transmit pathogens in food production facili-
ties, water pipelines, and medical devices.*-¢ The United States alone spends about
$90 billion/year to deal with the associated infection challenges.!*73!
Sulfate-reducing bacteria (SRB), a special class of microorganisms, are adept in
colonizing and growing on metal surfaces. Furthermore, they play a pivotal role in
accelerating the corrosion of these surfaces and use the oxidizing power to meet
their metabolic needs. This special class of corrosion, known as microbiologically
influenced corrosion, is responsible for the expenditure of about $4 billion/year in
the United States. Many other biofilms have been reported to thrive in the most well-
known harsh conditions including hot environments in deep biospheres (e.g., aban-
doned gold mines) as well as the hot springs of Yellowstone National Park. For these
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vexing problems to be solved, there is a need to develop focused transdisciplinary
collaborations that cross typical disciplinary and organizational boundaries.

8.1.2 ComprLex SysTEM DEsIGN: SDLC AND AGILE
MEeTHODOLOGY MEETS BiG DATA

Complex system design requires rigorous methodology and assessment tools to guide
engineers and scientists toward a viable solution. The complexity of microbe—material
systems cannot be handled with one domain’s methodology. The integration of labs’
experimental design roadmaps, data science, knowledge discovery processes, and
system design methodologies will allow for the development of a transdisciplinary
convergence solution. In that context, the Agile methodology offers an incremental
approach based on use cases and user stories to connect a scientific hypothesis to a
computing solution using the system design life cycle.”-'!l By achieving this integra-
tion and adding the data mining process to the loop, we will provide the scientist with
a roadmap based on previous knowledge to inform new knowledge discovery.['>-14

8.1.3 BiG DAtA MINING AND KNOWLEDGE DISCOVERY

Current advancements in data acquisition technologies both in material and biologi-
cal science have led to the accumulation of a large number of dataset scatters across
various sources.'>!3! This big data accumulation is facing diverse issues before it can
be leveraged by researchers. Among these issues is a lack of standard and proper
annotation. Big data mining is the process of identifying and facilitating the retrieval
of data that is so large that traditional methods of analysis are unable to handle
it.1316171 In contrast, knowledge discovery is a process of gaining new information
from analyzing this extensive data. One of the most relevant methods in data mining
that can bring the dataset closer to the scientific problem is text mining (TM) and nat-
ural language processing (NLP). And recently, generalization of these large language
models (LLM) is leading a new generation of data modeling as revealed by OpenAl
in early 2023. The NLP method tries to learn from human language to bridge the gap
between the user question and the dataset entry in data sources. However, most mate-
rial and biological databases do not have that technology implemented at the time of
this study. Here, we present how to use the Biofilm Data and Information Discovery
System (Biofilm-DIDS) to answer biointerface questions using NLP and the first
generation of LLMs such as BioBERT (Abstract Figure 8.1).'8-21 This chapter pres-
ents the biointerface system design (Section 8.2), the data mining and knowledge
discovery of biointerface (Section 8.3), an overview of Biofilm-DIDS (Section 8.4),
and the uses of Biofilm-DIDS for biointerface question resolution.

8.2 INTERFACE BETWEEN THE LIVING AND
THE NON-LIVING: A SYSTEM THINKING APPROACH

8.2.1 SysTEM UNDERSTANDING OF BIOINTERFACE

A biointerface could be defined in different contexts based on which system is being
studied."! However, the end goal of a system-level study is to understand the target
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biointerface as a whole. In this context, we define a biointerface as actions within a
community of microbes making contact and interacting on a molecular level with a
material such as biological tissue, cell membrane, living organism, or other materi-
als.”? Instead of looking at the individual effects of the microbe on the material and
vice versa, we look at the complex contribution of all interactions between microbial
communities and the materials at-large to understand their effects and gain a holistic
picture of the system including subsystem interactions within the main system.!>!

8.2.2 BiG DATA IN BIOINTERFACES

Materials in their natural forms show fascinating properties as they are either formed
by or interact with living cells, which sense and process environmental cues and con-
ditions through signaling and genetic programs to control the biosynthesis, remodel-
ing, functionalization, or degradation of the natural material.>® In an era of big data,
material production could benefit from modeling material properties from system-
level data. Big data can be obtained from the biointerface by mining existing big
data and leveraging knowledge discovery to engineer a living system that mimics
the natural process explained above.?*?" In Figure 8.2, data mining methodolo-
gies and techniques of knowledge discovery are described as well as machine learn-
ing processes in which biointerface data—both at material and biological system
levels—are retrieved from a variety of databases in different modalities and many
omics layers (genomics, transcriptomics, etc.). This is then integrated and selected
for preprocessing and is subject to feature engineering. Next, machine learning tasks
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FIGURE 8.2 System biointerface overview.
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are performed on the features by training models to be used in the subsequential pre-
diction of new materials and properties for the production of biosensors, biocompat-
ible devices, drug delivery systems, building materials, corrosion-resistant surfaces,
and bioremediation.”® The data mining and knowledge discovery process depicted
in Figure 8.2 to model material properties could be categorized into three major cat-
egories depending on the tasks:

1. Supervised learning, which is further divided into tasks of classification or
regression, both of these labeled examples are used to train the models or
algorithms. Examples include K-nearest neighbor, multiple linear regres-
sion, logistic regression, support vector machine, random forest, artificial
neural network, decision tree, and Bayesian network.

2. Unsupervised learning, in which the algorithm learns directly from data by
discovering the patterns from datasets and grouping them based on specific
rules or associations. The example of unsupervised learning includes tasks
such as clustering to which principal component analysis, independent com-
ponent analysis, and K-means algorithms are applied to build models.

3. Reinforcement learning, in which the agents learn from their environment
through rewards.?°-33

8.3 BIOFILM-DIDS OVERVIEW

The Biofilm-DIDS (https:/biofilmdids.bicbioeng.org/) architecture is comprised of
modules that mine, map, annotate, and index biofilm and material metadata to enable
data discovery through a free text searcher. These modules and submodules include:

1. REX, a resource extraction module that gathers and mines data with meta-
data for request data sources,
2. REMAP, a resource mapper module that connects data-mined publication
data and other metadata definitions,
. RONER, a resource annotation module that leverages domain ontologies,
4. BioBERT, a pre-trained biomedical language representation model for bio-
medical text mining,
. Generative pre-trained transformer models by OpenAl,
. REIS, a resource-indexed system, and
7. RAPI, a resource application program interface (API) providing program-
matic access to the Biofilm-DIDS database (Figure. 8.3).

[98]

AN W

The biofilm-data fusion module retrieves, curates, annotates, and indexes metadata
from public data sources. The indexes integrate with the experimental datasets.
Working with biointerface scientists, we identified numerous data sources (Table 8.2)
to develop the datasets of 2D materials, transcriptomics, proteomics, metabolomics,
methylomes, and phenotypic information for our use case collection. Table 8.1 pres-
ents a snapshot of our reference use cases on sulfate-reducing DA-G20 biofilm. The
fusion module locally stores metadata describing the requisite datasets and uses them
to build searchable indices that can be accessed by the other three modules via the
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FIGURE 8.3 Core modules of Biofilm-DIDS.

application program interface resource interfaces (Figure 8.3). NLP allows users to
enter their queries using free text. For example, they could enter their query in the
form of “As a...I would like to...so that...” query structure. For example, [as a] bio-
film researcher developing a new class of 2D materials, [I would like to] identify
known genes and predict unknown gene sets in DA-G20 that represent copper stress
resistance induced by the defective 2D coatings on Gr/Cu-aggravating biocorrosion,
[so that] I can design an experiment to evaluate material properties that trigger genes
responsible for stress response and biocorrosion, all with an accurate and reliable
gene list (reproducible research). The queries are parsed using the NLP module and
annotated using the integrated ontologies in order to provide the most relevant results.
The modeling and data-driven approach module use information extracted from the
biofilm—data fusion module to retrieve the requisite datasets it will use as input into
its processes. The query itself, the query result, and the predictive models are stored
in a system log. The performance (query throughout and accuracy/relevance of query
results) of Biofilm-DIDS is assessed using user curation and system logs.

Biofilm-DIDS stores reference collections and other data needed to validate the
biofilm hypotheses generated as a query result and returns the biofilm phenotypes as
a function of 2D material properties. Biofilm-DIDS will use partially available data-
sets (e.g., defect density of Gr coating), biofilm genomics (GSE83516), and images
(DA-G20 filaments on Cu/Gr) from literature to guide experimental design aspects
of the 2D material synthesis (Area 2) and phenotype tests (Area 3). Table 8.1 out-
lines an overview of Biofilm-DIDS subtasks (materials, biofilm, and material biofilm
interaction categories) to investigate genome and gene regulatory networks that trig-
ger copper stress resistance and biocorrosion in DA-G20 biofilms, in response to the
surface properties of Cu/Gr and Cu/hBN.
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TABLE 8.1
Sub-Goal/Task (Repositories) for DA-G20 Biofilm Reference Case

Identify Materials and the Surface Properties that Impact DA-G20 Biofilm

Materials Phenotypes

UMI1 Develop a list of materials (Cu, Cu/Gr, and Cu/h-BN) and relevant surface properties

UM2 Narrow down surface properties: crystallographic orientation, defect concentration,
hydrophilicity, charge, accessible area, barrier properties, electrical conductivity

UM3 Develop a complete set of preexisting datasets of material properties for simulations

UM4 Synthesize new 2D material properties with well-characterized nanostructure and predict

biofilm phenotypes (biocorrosion). This step fills knowledge gaps in the literature

UMS Create a test dataset to model and predict the biological mechanism (e.g., peptide
interaction) in response to a given material property

UM6 Create a dataset to assess other biofilm phenotypes (biocompatibility and bacteria
attachment) in response to crystallographic orientation, defect density, hydrophilicity,
and charge of 2D material on a copper surface

UM7 Generate a new dataset to fill knowledge gaps (e.g., nanostructure characterization with
and without biofilms)

Collect Biofilm Properties/Configuration Based on Existing Knowledge for

Biofilms Prediction
UBI Estimate each collection for coverage and completeness
UB2 Create a test dataset to build the machine learning model for material property prediction

from copper toxicity

UB3 Create a gene collection involved in the biofilm stress response and enrich it with
OMICS data to create a protein collection involved in the biofilm stress response and
then enrich it with OMICS data

UB4 Create a test dataset to build a model for the gene of interest and phenotype of interest
prediction from the dataset of known genes

UB5 Extend the gene list using gene regulatory network analysis and protein network analysis

UB6 Unknown genes and proteins

UB7 Create the dataset to identify conserved patterns regulating the stress response using

pattern detection

Create Biofilm Phenotype Response Dataset on a Given Material (Graphene,

Biofilm- hBN). Correlate Material Properties with the Biological Information (e.g., Gene,

Material Protein, Metabolite, Compound)

UBMI1 Create dataset collection to profile material data for a given biofilm’s genomic landscape

UBM2 Create an integrated dataset to predict biofilm genomics profile based on the material
properties

An effective approach is required to collect datasets and meta-datasets for
materials of interest (e.g., Gr and hBN) and their surface properties from dispa-
rate sources. We identified about 50 repositories of interest including six literature
repositories for TM, 12 material property databases, 15 biofilm databases, and 14
related repositories. Some of these sources include NCBI, Pubmed, PMC, IHS
Markit materials database, Materials Project for computed information on known
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TABLE 8.2
Sub-Goal/Task (Repositories) for DA-G20 Biofilm Reference Case

£ ]

(51 5 fE 13
S/ §/5/8 Qf S/
o 2 JoF S5 G

Materials X X X X

Umi X | X | X X | X X X

umz2 X | X | %X XX XX

um3 X X' X X | X X X

unig X X X X X X

Ums X | X)X X X X X

UmMe X | XX X X | X X

umz X X X

Biofilm X | XX | X X X | X | X | X

uUB1 X X X X X X X X X

UB2 X | XX X X X | X | X X

UB3 X X X X X X X | X

uB4 X X X X X X X X

UBS XIX|1'X | X X X X X X

uB6 X | X | X X X X

UB?7 X | X | %X 4

Biofilm-Material X X X X X X

and predicted materials, Polymerizer, DANA information, Bionumbers, aBiofilm,
and BaAmps (Table 8.2).

Table 8.2 maps each of the sub-questions (shown in Table 8.1) to the relevant data
sources that are used to achieve it. For example, consider the sub-question UM6:
“Create dataset to assess other biofilm phenotypes in response to crystallographic
orientation, defect density, hydrophilicity, and charge of 2D material on a copper sur-
face.” Biofilm-DIDS yields a matrix that correlates 2D material property publication
and dataset with the biocompatibility of DA-G20. We identified seven repositories
that provide chemical, structural, and biological information of 2D materials, quo-
rum quenchers, anti-biofilm agents, and the link to PubChem or Chemspider (e.g.,
C143H230N42037S7). They also provided the organism involved (e.g., Pseudomonas
aeruginosa, strain ATCC 9027) with the link to NCBI taxonomy, the biofilm devel-
opment stage (e.g., biofilm formation), the biological event, and reference linked to
a PubMed paper. Currently, the data collected from these repositories only provides
partial information to complete sub-question UM4, but it contains relevant informa-
tion on materials of interest. This information is fused with the text dataset obtained
from the PubMed literature to complete the matrix. A simple search on PubMed
with “Pseudomonas aeruginosa biofilm nanotube” returns 14 results. Pantenale et al.
provide a relevant dataset to update our test set matrix with multimodal imaging and
adhesion datasets.
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8.4 USING BIOFILM-DIDS TO EXTRACT BIOCORROSION
GENE OF INTEREST FROM THE LITERATURE
AND MATERIAL DIMENSION PREDICTION

Biofilm-DIDS has been used to solve over 20 biointerface problems in collabora-
tion with lab scientists, with five publications on diverse use cases including TM for
biocorrosion gene marker identification, biofilm formation studies, gene name entity
resolution for SRB organism collection, essential gene prediction, and deep learn-
ing strategies for addressing issues with small datasets in 2D material research in
microbial corrosion.?4-38 Here, we present how one can use Biofilm-DIDS to extract
biocorrosion datasets for downstream knowledge discovery more accurately than
current repositories. Working with expert scientists, we resolved as follows the use
case “Develop the list of materials (Cu, Cu/GR, and Cu/h-BN) and relevant surface
properties.”

8.4.1 EXPERT INFORMED RELEVANT DATASET EXTRACTION
FROM USER FRee TEXT QUESTION

The development of Biofilm-DIDS started with six research problems and expanded
to over 50 sub-problems relevant to hypothesis-driven experimental validation. These
problems include one problem in biofilm engineering (Dr. Sani’s Lab), in material
engineering (Dr. Jasthi’s Lab), and in biointerface engineering (Dr. Gadhamshetty’s
Lab), all experts from the South Dakota School of Mines and Technology. The imple-
mentation of these use cases helped us test and use toolkits such as TM modules. At
this stage, Biofilm-DIDS used over 15 data extraction modules or packages to retrieve
datasets from published data sources and five annotation tools to allow expert user
curation of our dataset. These datasets integrated into our repository are currently
undergoing the continuous curation process for quality improvement. We also inte-
grated custom datasets from our collaborator’s lab projects (e.g., SEM SRB biofilm
dataset analyzer with our tools). We are using different architectures to make these
tools discoverable including an API that will make our tool Software as a Service
(SaaS) accessible at the HTTP level for any secured application.

To demonstrate some of the functionality of Biofilm-DIDS, consider the simple
query: “Develop the list of material (Cu, Cu/G.R. and Cu/h-BN and relevant surface
properties.” If this search is executed directly in PubMed, no results are returned as
of today (Figure 8.4).

A successful search in Biofilm-DIDS returns a results page (Figure 8.5) contain-
ing a summary of resources that meet the query requirements. Resources include
datasets, tools, and analysis. The “View Details/Download Document” functional-
ity is offered so that the user can obtain additional information regarding a specific
item in the result set (Figure 8.6). The downloaded document lists PubMed IDs that
are associated with the query, for example, the ID 33784559 entered in the PubMed
search returns the article (Figure 8.7).



Data-Driven 2D Material Discovery 155

BE 2 official website af the Weiked States gowerniment Here's liow vou kise ~

m National Library of Medicine

B Develop the list of materials (Cu, CufGR, and Cufh-BN) and relevant surface <
PublQed P s o

Advanced  Croate alert  Crooste RSS Lkar Gulde

Serted by: Best match | Display options OF

5 s
Your seorch wos processed without owtomabic term mapping becouse it retrieved rero resulls.
[ Abstract
[ Free full text
[ Full text
|| Associated data

[ RAske and Naciimanke

FIGURE 8.4 Test free text query use case on PubMed.

Datasets Tocls Exampie Queries Pubkcatiors.

“develop the list of material (e, cufgr and cufh-BM and relevant surlace properties” has 6280 results:

|| Develop the list of material {cu, culgr and cufh-BN) and relevant surface properties

1684

Dol g this 1188 of material i, calgr and sul-BH) and relant surfacs prapeaias

AAccess Source

=Wl Dutully W Sl

|Z] S0D1-GE3A transgenic madel of armyotrophic lateral sclenosis: spinal cord

Analyes of spinal cord fram SO0 -CRIA e 15enk: Medal of yatiophic latersl selerssi (ALS] & 75 o 170 dxps
of aga. CufZn susorodda dismutase matations are a cause of ALS, Gona axoression resull...

S Details (B Simb

FIGURE 8.5 Biofilm-DIDS search results based on query: list of material (cu, cu/gr, and
cu/h-BN and relevant surface properties.



156 Machine Learning in 2D Materials Science

Dowwiap e ey o rraenal | v, Fasgr v £ -G a0 relsuom suniace properes

T e

Drwsew  Acsink  Temi  Dnasn
T e e L0 1 W) 0 3 ST M v st paperT e
. a3
s D 1 o el 1 3 T e et e s

FIGURE 8.6 Biofilm-DIDS details for item: Develop the list of material (cu, cu/gr, and
cu/h-BN) and relevant surface properties.

of Medicine

“bulk"; {
"bio_tools": [1,
"pmids": [

*33784558", m @ 33784559

'33581911°, PUb ed Advanced Creste gert Creats RSS
"32149164",

31906498,
"31616821",
"31440844",
"31171366",
"31167393",
"30754698",
30441832, Structuring efficient photocatalysts into bespoke

Fourd 1 result for 33784559 Sana Email £

¥ Chemosphere. 2021 Aug; 277130263, dol; 10.0018/L.chemosphene. 2021130263,
Epub 2021 Mar 18,

Wil fiber shaped systems for applied water treatment
"27934986",

"275066342", George 'V Theodorakopoulos 7, George Em Romanos ¥, Fotios K Katsaros 2,
"25940945", Sergios K Papagesrgicu 3 Athanassios G Kontos @, Konstantinos Spyrou 5,

%24922088", Margarita Beazi-Katsioti , Polycarpos Fataras 1

"24565929“' Affiliations 4 expand

“23793350", PMID: 33784650 DOK: 10,1016/, chemosphere. 2021130253

"23588233",

22133395", Abstract

"19765981", In this study, structured photocatalytic systams wera successfully daveloped by a facile mathod
"19576608", based on Alginate molds and a wet-spinninglerass-linking technigque, yielding commercial
"17723581", photocatalyst (Degussa P25) in the form of all-ceramic hollow fibers (HFs). Taking advantage of
“16846638" alginate's ional tion p ies, copper sugmented HFs were also developed, The
“13875393" ! structured photocatalysts were thorowghly characterised by a variety of technigues, including

nitrogen adsorption, SEM{EDS, XRD, XP5 and Raman. Synthesis and heat treatment parameters
1, were found to atfect the fibers' properties, allowing thesr aptimization, Treatment at 600 “C under

FIGURE 8.7 The list of PubMed IDs. (a) Retrieved from Biofilm-DIDS query allows users
to obtain details information. (b) Related to a list of materials and relevant surface properties.



Data-Driven 2D Material Discovery 157

8.4.2 DOWNSTREAM ANALYSIS FOR MATERIAL DIMENSION PREDICTION

Instead of retrieving the publication relevant to their query, the researcher may want
to find datasets or tools to predict material dimensions from our tool collections.”!
This question is built on the ability of Biofilm-DIDS to extract knowledge from over
eight repositories of materials. With this dataset, a user can discover a new compu-
tational material and predict its dimension, and if this is a 2D dimension, they can
validate it in the lab and publish it as a new 2D material discovered from computa-
tional methods. Using the previous query, if you select the publication tab, you have
relevant papers as described in the previous section. If you select the dataset tab
with a query involving “material dimension,” you will have the dataset on material
dimension and a tool for the prediction of the material dimension (Figures 8.8—8.11).

“Dawwigs om it rastarisd o, a4 and curh-GN sed ekt et Sropaitia he 10980 e

*| Syt of rarclega: hexsgenal boron ritride anCu (ol ming szt wper depesiian

.
i =

|| trsesttig s el by s o an e basven b st ctating by brring il mepges s ion

4 e i e R g . 5 Pt sl P L, b - o A Ié’
*%

FIGURE 8.8 Publication result using free text query.

(gl ‘I
Bady Enmroi Gueries Pt uey
“materst chswnsion” hes 8 st
iaterial Dimension Predieton toy dataset [450 manerial enirs ,E
st [y
Wt | Deveraion Presionian 15y AuSAR [130 mysels enrassed 163 faats T

Wankerial GAmanslen Presisiion oy oaisset 120
il eriries end 168 lestures]

AL | R, M T

"] Duwssiap the et of maserial jou, Sulgr and cul- TR e reless

ey P bt ol riaerial i, Cuige e b B] md rnimess | o ace props

o drwpw oon  Dwmmis
T RS Do AR5 1y BB (118 PRSI ST 0 TR Bidea]
ik PR R

Bnerien \bwtaria| Dorveraian Pachcine iy duimnni [128 rasiwisl arerin w131 bosirws]

Unk P Saren L L e i |

FIGURE 8.9 Dataset results (a) and detail of the first result (b) from material dimension
free text query.



158 Machine Learning in 2D Materials Science

a en
Datseas Tacks ok Cuenm Puticasons.
Srunecisl dimansion® bes 37 resuits:
| e cher
Chasaity 21 resdens irory raerw deaaa Acpicatian cr oebech 7 remion relers e veees dremen
T .
T T el %}r
3 e b (- |

VrPTA 5 8 Bt ol v b by 2T e
ngarvaris hnitsa S sak editis g | mmmen |
DMtk SR
[ -
AR | R
e S
L Hbasracon
arskony 20RO IR
Conemty 500 oetach Farensen
Durener &
aw
e oo bt
ekt tcemazy

FIGURE 8.10 Analytic tool results (a) and detail of the first result (b) relevant to the dataset
retrieved for material dimension analysis.

' ; ‘,.Tr,,rm 2DMatChecker vi.1
. s Properties of Materials

Uplzad 5 Flle

e
Uplead the Strueters

Froparties of Matarials

Upload 3V Filk

Uptasd it Sirscturs
O-RETAYY  AgEPRILCLEON L i " 1 2 e n L
FIGURE 8.11 Downstream analysis to predict the material dimension from single (c) or

multiple (b) material ID using 2DMatChecker (a) predictor (https://2dmatchecker.bicbioeng.
org/). Used with permission from BicBioEng Lab.


https://2dmatchecker.bicbioeng.org
https://2dmatchecker.bicbioeng.org

Data-Driven 2D Material Discovery 159

8.5 CONCLUSIONS

Discovering new material in the age of big data science is a big challenge added
to an already complex system such as a biointerface. Biointerface science aims to
connect the non-living (material) and the living things (microbe here or biofilm).
We proposed in this chapter how we can use Biofilm-DIDS as a one-stop shop data
integrator to increase access to relevant multimodal datasets. Following the dataset
discovery, Biofilm-DIDS allows the scientist to perform a downstream analysis when
applicable using relevant analytic tools such as material dimension prediction using
2DMatChecker. The current version of Biofilm-DIDS contains datasets of around 50
expert informed use cases from over 40 data sources and their metadata. The future
development of Biofilm-DIDS will rely on the current advances in Al power query
analysis and community engagement to enrich the knowledge base with more use
cases.
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9 Machine Learning-
Guided Optical and
Raman Spectroscopy
Characterization
of 2D Materials

Md Hasan-Ur Rahman, Manoj Tripathi,
Alan Dalton, Mahadevan Subramaniam,
Suvarna N.L. Talluri, Bharat K. Jasthi,
and Venkataramana Gadhamshetty

9.1 INTRODUCTION

Machine learning (ML) enables exciting tools to extract novel information from vast
datasets and organize the data efficiently. It is considered a sub-field of artificial intel-
ligence where statistical algorithms are performed in a systematic manner to improve
data interpretation. It is much more likely digitally standardizing the protocols with
continuous improvements and learnings. In the modern world, the accumulation of
big data and its processing have a direct impact; thus, ML-based techniques are
referred to as the “fourth industrial revolution” [1]. ML tools can assist researchers
in redefining scientific models and designs and optimizing the process parameters,
which could not be tackled with a conventional approach from the discovery of new
materials to their final deployment (Figure 9.1a). In several disciplines of science and
technology, engineers and researchers use ML to address complex research questions
and to predict the design, synthesis, and characterization of molecules and materi-
als [2-5]. Figure 9.1b presents the generic ML framework for predicting material
property from the feature engineering of the material to the final trained model for
structural prediction. Along this route, the chosen material has to go through several
stages of model training (i.e., mapping relationships with conditional factors and
decisional attributes), and model evaluation (such as property-labeled materials frag-
ments) [6].

In the last decade, ML has been broadening its applicability in quantum dots,
nanoscopic materials (ranging from 1 to 100 nm in thickness), thin films, and a broad
family of two-dimensional (2D) materials to characterize structure-property relation-
ship. Peculiar to thin films and 2D materials, surface characterization techniques,
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FIGURE 9.1 A general comparison between (a) traditional approach and (b) machine learn-
ing approach in materials science for crystals, thin films, and 2D material characterization.
(Reproduced from Liu, Y. et al., J. Mater., 3, 159, 2017. With permission from Elsevier.)

including high-resolution scanning probe microscopy and optical and electron spec-
troscopy, are commonly used for surface evaluation and assessment. Nevertheless,
these methods generate myriad datasets, non-linear relationships between variables
and parameters, which are extraordinarily complex for high-throughput screen-
ing and interpretation. Researchers spend significant time analyzing the data and
need domain expertise to create a meaningful relationship between all the different
variables.

In the present section, we will focus on a few common practices in 2D mate-
rial characterizations using ML tools: machine-learning optical identification (MOI)
using examples of graphene and MoS,, random forest regression (RFR), kernel ridge
regression (KRR), and Gaussian mixture model (GMM) utilized in Raman spectros-
copy to extract invaluable insights of graphene and molybdenum disulfide (MoS,).
We will briefly discuss the challenges and opportunities of ML algorithms for 2D
material characterization to enable wide-ranging impact.

9.2 ESTABLISHED SURFACE CHARACTERIZATION TECHNIQUES

The elementary surface characterization of 2D materials entails optical microscopy
for the initial assessment of 2D materials, followed by other spectroscopic and probe
techniques for quantitative outcomes, such as thickness, uniformity, and defects.
One of the typical examples is visualizing the optical contrast of transferred gra-
phene layer/s over Si/SiO, substrate (usually 300 nm thick oxide) fabricated through
mechanical exfoliation (ME) and chemical vapor deposition (CVD), respectively
(Figure 9.2a—c) [8—10]. The thicker graphene (i.e., bulk) over the oxide layer of silica
substrate absorbs more visible light than an atomically thin layer (IL). A similar
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FIGURE 9.2 Optical images of graphene fabricated by (a) mechanical exfoliation.
(Reprinted from Tripathi, M. et al., ACS Omega, 3, 17000, 2018. Copyright 2018, American
Chemical Society); (b) CVD fabricated and transferred on Si/SiO,. (Reproduced from
Chilkoor, G. et al., Encycl Water, 1, 2019. With permission from John Wiley and Sons);
(¢c) CVD fabricated and transferred over Si/SiO,. (Reproduced from Chilkoor, G. et al.,
Encycl. Water, 1, 2019. With permission from John Wiley and Sons); (d) Raman spectra of
single-layer to few-layer graphene showing D, G, and 2D peak positions. (Reprinted from
Yavari, F. et al., Sci. Rep., 1, 1, 2011. Copyright 2011); (¢) Raman spectra of graphene 2D
peak shift with varying layers. (Reproduced from Hwangbo, Y. et al., Carbon N Y, 77, 454,
2014. With permission from Elsevier); (f) Raman map showing the distribution of graphene
wrinkles through Raman active D peak intensity. (Reproduced from Tripathi, M. et al.,
ACS Nano, 15, 2520, 2021. Copyright 2021, American Chemical Society); (g) The correla-
tion plot for graphene over Cu and Ni sensing corrosion from H,SO,. (Reprinted with the
permission from Chilkoor, G. et al., ACS Nano, 15, 447, 2021. Copyright 2021, American
Chemical Society); (h) SEM images of CVD graphene on silica substrate. (Reprinted with
the permission from Tripathi, M. et al., ACS Appl. Mater. Interfaces, 10, 51, 44614, 2018.
Copyright 2018, American Chemical Society); (i) Typical TEM images of single-layer gra-
phene on lacey carbon. (Reproduced from Chilkoor, G. et al., Encycl Water, 1, 2019. With
permission from John Wiley and Sons); (j) High-resolution TEM image of single-layer
graphene sheet. (Reprinted with the permission from Reina, A. et al., Nano Lett., 9, 30,
2009, Copyright 2009, American Chemical Society); (k) False-color DF-TEM image of
graphene. (Reproduced from Lee, G.H. et al., Science, 340, 1074, 2013. With permission
from The American Association for the Advancement of Science); (1) AFM topography of
CVD graphene. (Reprinted with the permission from Tripathi, M. et al., ACS Appl. Mater.
Interfaces, 10, 51, 44614, 2018, Copyright 2018, American Chemical Society); and (m) STM
image of Gr/SiC at —1.5V. (Reproduced from Premlal, B. et al., Appl. Phys. Lett., 94,
263115, 2009. With permission from AIP Publishing.)
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optical contrast has been observed in polycrystalline graphene layers that indicate
the wide-scale thickness distribution. Nevertheless, under laser excitation with con-
trolled energy, one can quantify the thickness distribution by following the atomic
vibrational modes related to Raman peaks. It is based on the fact that light can be
scattered inelastically, leading to the difference in the frequency of incident and scat-
tered photons, which strongly relates to the properties of solid materials. The phe-
nomenon of inelastic light scattering is called the Raman effect, which is used to
study fundamental excitations of solid-state matter and molecules [11]. Thus, Raman
spectroscopy is another crucial non-destructive tool based on optical characteriza-
tion to get the signature of graphene, and it also deploys extensively to other 2D
material characterization. The fingerprint Raman features of graphene are D peak
(~1355cm™), G peak (~1580cm™), and 2D peak (~ 2700cm™) (shown in Figure
9.2d) [12]. The salient attributes of G and 2D Raman modes are their capabilities
to change the position, shape, and intensity based on the number of layers and their
interaction with local surroundings. Raman signals of graphene from monolayer to
a few layers stacked in the Bernal (AB) configuration will vary depending on the
number of layers [13,14]. Figure 9.2e portrays the 2D peak shift to a higher frequency
region along with specific peak width (full-width half maximum, FWHM) with
the increased number of graphene layers (utilizing A=514nm wavelength excita-
tion energy). The Raman active disordered peak “D” is useful to monitor structural
defects through absolute intensity (/) or relative to ratio (I/I) to reveal wrinkles
(see, e.g., Figure 9.2f), edges (zigzag), and bubbles [15]. Additionally, the frequency
shift (cm™') of Raman modes and their correlation, such as 2D vs G peak positions,
can reveal underlying strain and doping effects in graphene [16]. It is carried out
using a reference coordinate from a suspended specimen (O, intersect of strain and
doping axis in Figure 9.2g), which is assumed to be the minimum influence from
strain and doping. The distribution of Raman modes (G, 2D) deviated from the ref-
erence coordinate through external stimulation (e.g., temperature, impurities, see
Figure 9.2g) indicates the extent of carrier concentration and extension/compression
of carbon lattice. Thus, Raman spectroscopy can detect subtle changes in the gra-
phene host materials to monitor the corrosion dynamics of underlying metals such as
copper (Cu) and nickel (Ni).

The results of Raman spectra can be complemented with other surface charac-
terization techniques, such as scanning electron microscopy (SEM) and transmis-
sion electron microscopy (TEM), for an in-depth investigation of real space images
and crystallographic information. For the opaque substrate, the localized electron
beam interacts with the substrate to generate secondary electrons to develop the
image as an impression of topography. This technique based on probing electrons
is known as SEM. SEM is useful for scanning large regions to evaluate graphene
grain size, growth rates, nucleation density, structural defects, and coating unifor-
mity. Furthermore, the SEM is integrated with additional detectors like energy-dis-
persive spectroscopy (EDS) and electron backscatter diffraction (EBSD) to obtain
insights into the elemental chemical composition and crystallographic orientation
of graphene and other 2D materials. Figure 9.2h illustrates a typical SEM image of
single-layered graphene (bright area), bilayered graphene (dark patches) and distribu-
tion of wrinkles (dark lines). The contrast in SEM micrograph is due to the relation-
ship of accelerating voltage with the number of layers and substrate [17]. It relates to
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the availability of secondary electrons generated at the topmost layer of the graphene
surface. Also, the metallic subsurface (e.g., Cu, Ni) yields higher secondary electrons
than the lighter carbon atoms revealing a brighter region.

For the transparent samples, TEM enables atomic-scale characterization to inves-
tigate the layers number, in situ growth, and transformation of graphene. Figure 9.2i
and j illustrates a typical single-layer graphene micrograph and its high-resolution
around the edge region. The number of layers is delved by counting the contrast line
along the backfolded edge of a graphene sheet [18].

Dark-field TEM (DF-TEM) is a handy tool that rapidly detects local structures (such
as grain sizes) over a large area. Figure 9.2k demonstrates the mapping of the grain
structure of graphene where the individual false-color area represents distinct crystal
orientation. The probing of the graphene surface with a sharp physical object (usually
doped Si) illustrates three-dimensional topography generated due to physical interac-
tion through the technique atomic force microscopy (AFM) [19]. AFM is employed to
realize the graphene layer thickness and surface roughness, which is difficult to detect
through optical contrast and electron imaging. The topological facets of graphene are
sensitive to the underlying substrate. Consequently, it can provide the atomic structure
and nanoscale morphology [20]. Figure 9.21 depicts the AFM image of polycrystalline
graphene over Si/SiO, wafer showing single-layer (1L), bilayer (2L), and wrinkled (Wr)
regions. The probing of the conducting graphene through the metallic tip apex (Au,
tungsten, pt-Ir etc.) is useful for providing atomic-scale resolution through scanning
tunneling microscopy (STM). It is carried out by applying a potential bias across the
tip and the substrate and monitoring the tunneling current between them, separated
by a few nanometers (1-10nm). The atomic resolution of graphene single and bilayers
results in triangular patterns with hexagonal symmetry, as shown in Figure 9.2m.

Among all the above characterization methods, optical imaging and Raman spec-
troscopy remain the quick and most viable methods of capturing signatures of 2D
materials. Hence, the ML methods discussed in this chapter will focus primarily on
these methods.

9.3 ML-GUIDED OPTICAL DETECTION OF 2D MATERIALS

One of the initial requirements of 2D materials and thin films is their optical detec-
tion, which involves a great deal of human effort and domain expertise to pinpoint
the fingerprint features accurately. The optical detection of 2D materials relies on the
experience of the researchers and even seasoned professionals struggle to deal with
sophisticated 2D heterostructures. The integration of ML with an optical microscope
surpasses some of the crucial factors of detection, especially in fundamental research
of 2D following a classical strategy:

Goal (given problem) + Sample(raw data )+ Algorithm (data processing) = Model [7].

ML algorithms can work with thousands of optical images simultaneously and reduce
the excessive time required for the detection of 2D material aspects. For instance,
graphene exfoliation via the scotch tape method onto Si/SiO, substrate will generate
different thicknesses and shapes of graphene flakes, which are stochastically distrib-
uted on the substrate [29]. All these variations in thicknesses of graphene layers will
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FIGURE 9.3 Stages of data-driven analysis system from a collection of optical microscope
photographs to ML model features extraction. (Reprinted from Masubuchi, S. and Machida,
T. npj 2D Mater. Appl., 3, 1, 2019. Copyright 2019.)

lead to collection of many datasets that will require relevant graphene characteriza-
tion. One can input the parameters of graphene in data-driven analysis algorithms
and extract the fingerprint features. This procedure integrates the optical microscopy
with a ML unsupervised algorithm based on the Bayesian Gaussian mixture model
(Figure 9.3). The automatic identification of graphene entails the following steps:
(1) First, graphene was exfoliated in Si/SiO, substrate using scotch tape method (2)
Then, several optical images (70000) were taken by automatic microscope (3) The
images were loaded in algorithm and decomposed to HSV (Hue Saturation Value)
images and clustered (4) From HSV color images, a scatter plot was established, and
the feature values were represented in three-dimensional format to extract the key
features (4) Finally, the feature values were analyzed by open-source data platforms
(e.g., Python, Jupyter and notebook).

The MOI method is further expanded for the identification of other class of 2D
materials such as MoS,, tungsten disulfide (WS,) and other transition metal dichalco-
genides (TMDs). Unlike graphene, TMD layers comprise a tri-layered configuration
with metal at the center. MOI method utilizes a supervised ML model, a support
vector machine (SVM) algorithm (Figure 9.4). The SVM analyzes the red, green,
and blue (RGB) color insights from the optical images of 2D nanostructures and
extracts pivotal aspects based on the number of layers, defects, impurities, and stack-
ing faults. The MOI work in two steps: the training process and the testing process.
Initially, the microscope will collect 2D materials (for example graphene or MoS,)
images at different magnifications, and the software will sort them according to
pre-established datasets. Then, the images are inserted into the training process to
establish a dataset of fingerprint features based on the SVM analysis of RGB chan-
nel intensity. The RGB model is linked with the 2D materials’ pre-existing datasets
based on AFM and Raman spectroscopy. During the testing step, the optical infor-
mation of the 2D materials is sorted by algorithm in distinct categories. Finally, the
RGB information is translated into false-color images distinguishing the substrate,
2D material, and impurities.

MOI optical detection can also be integrated with scanning probe techniques, like
AFM. The combined characterization techniques lead to the intelligent identifica-
tion of MoS, as shown in Figure 9.4. The MOI system utilized the optical images of
MoS, in the training process as input variables (Figure 9.4a and c). Furthermore, the
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FIGURE 9.4 MOI of MoS, (a) and (c) Optical images of MoS, for training purposes; (b) and
(d) Corresponding AFM images; (e) Training result of different layers over a fixed substrate;
(f) Optical images of mixed layer MoS, for testing purpose; (g) Corresponding AFM datasets;
(h) Testing result showing colored map based on thickness distribution. (Reprinted from Lin,
X. etal., Nano Res., 11, 6316, 2018. Copyright 2018, Springer Nature.)

SVM algorithm processed AFM images (Figure 9.4b and d) and established a data-
base of RGB channel intensity versus thickness (i.e., number of layers). The resulting
SVM model (Figure 9.4e) represents the MoS, RGB features corresponding to the
substrate. Subsequently, in the testing step (Figure 9.4f and g), the MOI analyzes the
RGB information of optical images along with AFM thickness to link them with
SVM model. Finally, the model creates a false-color image of MoS, sample based on
the number of layers with distinct color for different regions (Figure 9.4h), which will
allow the quantification of number of MoS, layers present in large areas in consider-
ably less time. One of the additional advantages of MOI-based detection is its ability
to identify the contaminated regions in MoS, and transfer process residues, as shown
in Figure 9.4h (black regions).

Thus, MOI can work on a large family of 2D materials where the model can
extract RGB features from optical images and provide useful information about
the number of layers present in large number of optical image datasets collected.
This procedure minimizes the utilization of multiple sophisticated instruments and
ML-guided optical detection method will reduce the cost of 2D material character-
ization. Additionally, the MOI tools can be deployed to realize the elusive aspects of



170 Machine Learning in 2D Materials Science

2D materials based heterostructure and accelerate the commercial applications of
2D materials.

ML-guided optical detection technique is helpful for the initial screening of 2D
materials for thickness distribution. Nevertheless, it limits accuracy, composition,
structure, and precision for determining the number of layers and impurities, which
is crucial for the electronic and optoelectronic industry.

9.4 ML-GUIDED RAMAN SPECTROSCOPY
DETECTION OF 2D MATERIALS

Raman spectroscopy is a viable tool to analyze the molecular structure, layer num-
ber, functionalization [32], strain, and structural defects/disorders of 2D materials
[15]. Nevertheless, the Raman spectra contain innumerable datasets to examine and
establish a meaningful correlation which is complex to decipher. ML-guided Raman
detection can improve the efficacy of 2D material characterization and reduce the
significant burden in fundamental and applied science. The integration of Raman
spectroscopy with scalable production techniques such as CVD [25] will be useful to
monitor the uniformity, cracks, adlayers, and applicable for quality control.

One of the ML algorithms deployed for Raman spectral analysis is the random
forest regressor, which does not require extensive statistics for processing and inter-
pretation [33]. In RFR, the raw data from Raman spectra are used for training and
generating new datasets. Sequentially, a decision tree is generated, and the unused
data are implemented to test the model’s efficacy. In the later stages, RFR will search
for fingerprint features from Raman spectral datasets and the model will take a deci-
sion based on majority voting. In the broader perspective, RFR is a learning algo-
rithm consisting of multiple tree structures with several branches. Each tree is set-up
based on training sample sets and a random variable, and every tree can cast a single
vote for decision-making [34]. Figure 9.5 represents the RFR learning flowchart
for extracting Raman fingerprint features of TMD (MoS,) onto Si/SiO, substrate.
Generally, MoS, has two major active Raman modes, including E',, at 388cm™" and
A, at 407 cm™, that are associated with first-order in-plane and out-of-plane Raman
bands, respectively [35]. The Raman frequency exhibits significant differences
depending on the number of layers. As the number of MoS, layers increased, the fre-
quency of the E',, peak decreases and the A', peak increases. For the crack regions,
the model is taking silicon Raman mode at ~520cm™! since the film is assumed to
be continuous and the unexposed regions will be a substrate (Si/SiO,) only. Hence,
the RFR model input these active Raman modes and extracts the number of layers as
output parameters. There are five input variables: (1) intensity and (2) frequency of
the E',, peak; (3) intensity and (4) frequency of the A', peak; (5) Raman frequency
difference between these two peaks, which are designated as a, f3, y, 8, and &, respec-
tively, in the RFR training sample sets. The algorithm will extract features of mono-
layer, bilayer, and crack regions of MoS, as output variables.

Another potential ML algorithm employed in Raman spectroscopy interpretation
is kernel ridge regression to solve an inverse problem (a large set of observations
that is responsible for its generation) of 2D materials. The KRR-based ML-guided
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FIGURE 9.5 Process flowchart of RFR learning mechanism for MoS, features extraction.
(Reprinted from Mao, Y. et al., Nanomaterials, 10, 1-13, 2020. Copyright 2020.)

algorithm is helpful in addressing sophistication in the important fingerprint features
from vast datasets. A Gaussian kernel (radial basis function - rbf) is executed to estab-
lish a non-linear fitting for addressing the complexity of Raman spectra. Gaussian
kernel efficiently extracts meaningful interpretation from non-linear datasets [37].
The analysis consists of the following steps: (1) visual inspection of spectral datasets
to establish a general trend, (2) principal component analysis (PCA) for extracting
small input variables from the spectral data, (3) model performance evaluation by
cross-validation and overfitting test, and (4) features significance.

When graphene layers are stacked on top of each other, with or without twisted
angles between interlayers, defects and structural disorders produce intriguing prop-
erties, such as superconductivity and magnetism [38,39]. The relationship between
Raman spectroscopic details and the twisted angle of bilayer graphene (tBLG) has
been investigated using graphene stacked layers as an example. It is carried out by
monitoring the key attributes of graphene Raman modes of D, G and 2D peaks, and
their intensity, Raman shifts and FWHM as a standard to realize the quality and
number of layers [40]. From visual inspection and PCA analysis of tBLG, the most
significant parameter was found G band at 1672 cm™'. Hence, the KRR-rbf will take
the Raman shift of G band (cm™') as an input variable and extract the meaningful
relationship between the twist angle (6°) and G band (cm™). At the initial stage, the
KRR go through training, and the unseen data will be utilized for testing purposes.
Then, the algorithm will process the cross-validation test to avoid overfitting. Finally,
the model will plot the features as a function of twisted angle to extract the interest-
ing patterns (Figure 9.6).

ML-based KRR prediction is limited to generating training models focused
on particular Raman mode (G band) only; nevertheless, it lacks the capability for
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FIGURE 9.6 KRR prediction of Raman spectrum at different twist angles (©°) between
interlayer graphene. (Reproduced from Sheremetyeva, N. et al., Carbon N Y, 169, 455, 2020.
With permission from Elsevier.)

complex spectral analysis such as spectral broadening (FWHM), 2D peaks inter-
pretation and resonant Raman processes pertinent to twist angles of tBLG [42].
Therefore, an improved ML algorithm is proposed as a Gaussian mixture model
combined with Raman spectroscopy to overcome such intricacies. GMM is a data
clustering technique, which assumes the datasets are generated from a finite number
of Gaussian distributions with unknown parameters. The model utilizes the expecta-
tion-maximization algorithm, covariance matrices and weightings of the N-Gaussian
probability distributions to find the relationship of the datasets [42]. There is a pleth-
ora of information in Raman spectra, mapping and manual peak fitting will reduce
the dimensionality of the parameters to train the model. At the initial stage, the
model utilizes the significant attributes (G and 2D) extracted from Raman peak fit-
ting as an input variable. The algorithm compares the distance between the points in
a finite-dimensional space in a selected area input features (G and 2D peaks) to create
a scatterplot (Figure 9.7a). Figure 9.7b and c represent the Raman map of G and 2D
peaks positions (i.e., frequency) respectively, for the same region. Then, the GMM
labeled the clusters based on the similarities and created eight distinguished regions.
The clusters were assigned numbers relating to the population density from the most
(cluster 1) to the least (cluster 8) population. The shape of the cluster is drawn from 2¢
away from the mean values, where “c” is the direction-dependent standard deviation.
The output of the clusters result is shown in the inset of Figure 9.7a. Clusters (2, 3,
and 6) represent the distinct types of tBLG, clusters (I and 5) represent the single
layer of graphene, cluster (4) accounts for adlayer regions, and clusters (7 and 8) are
not fitting with any particular trends due to the low weighing of the population den-
sity to the background. This pre-trained data clustering model can be applied to any
other regions of tBLG to extract fundamental aspects.

9.5 COMMON CHALLENGES TO ML IN RAMAN SPECTROSCOPY

Like other emerging techniques, the ML approach in material science, especially
in 2D material detection, is rapidly gaining ground. Nevertheless, there is a long
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shows the output in color configuration. (b and ¢) Raman mapping of G and 2D peak positions
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permission from Elsevier.)

way ahead before it accepts as an impeccable technique. In a few instances, sev-
eral analytical models for ML-guided algorithms such as RFR, KRR, and GMM in
Raman spectroscopy are in practice to extract the fingerprint features of 2D materi-
als. Although the validation of scientific theories is one of the common challenges
of ML-based algorithms, these ML models performed well in synthetic data mostly
captured in ideal conditions but are incapable of capturing the experimental con-
ditions which are influenced from sample preparation, local surroundings, defects,
impurities and other factors. Hence, these models cannot be readily deployed to
characterize the experimental Raman spectra. For instance, KRR predicts the rela-
tionship between the Raman spectra and the twist angles of tBLG by overestimating
the G bands. Furthermore, additional sidebands are occurring near the G band [43],
which the ML is not considering for prediction. The experimental resonance that
changes due to laser excitation energy is also neglected in establishing the model
database, along with other crucial factors such as 2D band position, intensity, and
width. In experimental conditions, these features of 2D peaks significantly varied
with twist angles. Most scientific theories for Raman interpretation of graphene/
graphite come in conjunction with D, G, and 2D bands, similar to the other family of
2D materials (e.g., TMDs, E',,, and A,,). Hence, the KRR model cannot be readily
deployed to realize the properties of tBLG. Further refinement of the computational
Raman spectral dataset is required to correlate with the experimental observations.
As the computational complexity increases, the time and cost associated with the
ML significantly increase and nullify ML sole benefit. Although the GMM-guided
Raman spectra study included the additional band (2D peak) properties, the model
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can handle a low amount of input variables and the dimensionality reduction requires
peak fitting by manual human intervention to realize the significant input param-
eters. The GMM can integrate with unsupervised ML model like PCA to reduce the
dimensionality, which allows the entire Raman spectra as input variables without
expert intervention and automatically identifies the features within short span of time
(in seconds). However, the resulting clusters are harder to interpret. Moreover, the
ML algorithms efficacy depends on the training datasets and the appropriate label-
ing of the data by professionals. The ML-based algorithm needs to be mature for
interpretation in experimental conditions; in the present scenario, the 2D material
dataset is insufficient to provide conclusive decisions on the relationship between
multiple properties.

9.6 FUTURE PROSPECTS

The ML is the fastest growing field because of the emergence of new learning algo-
rithms and theories, the continuous refinement and availability of online datas-
ets, and the computational cost reduction [44]. As the Raman spectral database is
enriched over time, the ML learns efficiently and predicts the designed outcomes.
Furthermore, the integration of hybrid database: computational + experimental in
the Raman equipment will lead to the translation of the model in real-life applica-
tions. This in-built database will be beneficial for more sophisticated 2D heterostruc-
ture characterization and applications. The above-mentioned algorithm can easily
be applied to other classes of 2D material characterization of complex structure-
property relationship like doping, mechanical, and oxidation straining effects and
enhance to unleashing new properties. Moreover, the ML-guided Raman model and
the database can easily be transferred to other surface characterization techniques
like AFM, SEM, TEM for fundamental research in the exploration of novel 2D
materials. The high-throughput screening of ML integrated with Raman spectros-
copy will accelerate the fabrication of 2D material devices in various industries.
Supervised regression-based ML algorithms and unsupervised algorithms are effec-
tive in exploring 2D materials based on multiple imaging modalities. A multi-modal
ML approach using an ensemble of ML models could provide a comprehensive view
of 2D materials and provide new insights about their properties.

9.7 SUMMARY

The presented chapter provides an overview of ML algorithms application and
advancement in the detection of 2D materials. A classical comparison between the
traditional technique and ML approach is demonstrated for the interpretation of a
wide variety of materials. Several ML approaches are discussed in detail, and their
interpretation from optical characterization and Raman spectroscopy is associated
to 2D materials using the example of graphene and TMDs. Several advantages and
limitations have been highlighted of ML tools for interpreting 2D materials. Despite
the shortcomings of ML algorithms in Raman characterization, the ML can perform
efficiently and better than humans in terms of time and cost. Nevertheless, the ML
tools are lacking to emulate the experimental conditions to unleash comprehensive
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information. The Raman spectra contain a vast set of information, and the experts
spend several hours extracting the meaningful relationship. In modern research, ML
algorithms are continuously improving through automation, screening of quality
data, implementation, and interpretation. The ML-guided Raman analysis integra-
tion with other surface characterization techniques will continue to improve the con-
ventional characterization of 2D materials.
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10.1 INTRODUCTION

Two dimensional (2D) materials such as graphene and its derivatives, termed gra-
phene-family nanomaterials (GFNs), have gained considerable traction in research
as novel materials due to their unique physical and chemical properties. Some poten-
tial applications include biomedical device sensors and coatings to inhibit biofilm
production on metal surfaces.> Computational modeling and simulation methods,
more specifically, classical mechanics approaches such as molecular dynamics (MD)
simulations can be used to predict interactions between biomolecules and 2D mate-
rials at atomic levels to study their interfacial chemistry and physics. Over the last
few decades, the development of MD techniques has rendered itself as a power-
ful biophysics tool and has led to significant advancements in the field of 2D mate-
rial discovery and studying their intrinsic properties as well as understanding their
interaction with biomolecules, allowing us to investigate intriguing questions on the
nature of biomolecule-2D system mechanisms.? Furthermore, the results generated
from such studies and these interactions can be fed into machine learning algorithms
as training data sets to predict and extrapolate biomolecular behavior near various
functionalized and defective 2D surfaces. Machine learning has also been adopted
by the computational research community for forcefield parameterization and devel-
opment for use in modeling these unique and complex 2D-biomolecule interfacial
systems.*> This chapter aims to provide an overview of the emerging area of com-
putational interfacial biology, chemistry, and physics: atomistic and coarse-grained
molecular dynamics simulations of chemically complex models of biomolecule-2D
interface by focusing on key methodology present in current literatures; as well as
introduce bioinformatics and machine learning tools used to handle and process the
data generated. More specifically, recent advances in the field of computational tech-
niques, bioinformatics, and machine learning for tasks such as force field develop-
ment and free energy methodologies to study the free energy profiles; highlighting
key challenges and prospects will be discussed.

While various levels of theories are used to study 2D materials and their interac-
tions with biomolecules in the computational space, the choice of approach usually
depends on the time and length scale of the system and problem in focus (Figure 10.1).
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FIGURE 10.1 Time vs length scale representation of various simulation models.

MD is the most prominently used approach to capture 2D-biomolecue interfacial
phenomena and study it’s dynamics.

10.2 MOLECULAR DYNAMICS (ALGORITHMS AND METHODS)

Molecular dynamics (MD) is used to calculate a system’s select properties through
time propagation (evolution of system). In MD, all particles in a given system obey
Newton’s equation of motion, i.e., the classical second order differential equation of
motion; that is given by:
d2.x,' .
F=m; e -VV(x;), i=12,...,N (10.1)

Here, V(x,»j) w.r.t position of each particle in the system is a time independent inter-
atomic potential energy function. The Eq. 10.1 is solved for all atoms in a system
with 3N position and velocity coordinates to study its dynamics. This fundamental
equation for MD gives out the position and velocity of particles in a system and its
evolution with time.

Simulation of any given system in MD requires us to solve this second-order dif-
ferential equation of motion by implementing some numerical integration technique
since an analytical solution for the same is impossible to achieve. The Verlet algo-
rithm® is one of the most widely used integration scheme in MD. In a given system,
the updated position and velocity of the particle following a time evolution according
to the Verlet algorithm is given by Eqs 10.2 and 10.3.
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x(t+0t)=2x(t)— x(t—0t)+a(t)or (10.2)

Here, the position of any given particle in the system at time 7 is given by x(¢); at a
later time (t + at) where ¢ is the time step, a particle’s updated position can be writ-
ten as x(7 +d¢). Similarly, v(¢) and a(r) are velocity and acceleration of the particle
at time 7. Equations 10.2 and 10.3 are derived by neglecting the higher order terms of
Taylor series expansion of the Verlet algorithm.

_ x(t+0t)—x(r—or)
- 20t

v(t) (10.3)
These equations can be used iteratively to solve the equations of motion and obtain
the next set of updated positions and velocities for every particle in a system it pro-
gresses toward equilibrium in a simulation.

Modeled empirical forcefields are used to describe the interactions in a system
and the nature of the force acting on each particle in that given system. There are
various forcefields developed and derived in the research community that can be
found in literature. Depending on the uniqueness of the system, specific interactions
can be modeled.

10.2.1 EmpiricAL FORCEFIELDS

Empirical forcefields are broadly categorized into two forms: reactive and non-reac-
tive (polynomial) forcefields. The key difference between these two subcategories is
that in the case of a polynomial forcefield, the standard equation (Eq. 10.4) usually
consists of terms to capture long-range, angle-bend, torsion energetics of a system
but does not consist of a many-body term in the equation that may account for bond
formation or breakage, i.e., no chemistry is captured in the system throughout the
simulation. While a reactive forcefield (Eqs 10.5 and 10.7) consists of a bond order
term which makes it possible for the system to undergo reaction (bond breaking/for-
mation), these models are widely used to study reaction kinetics of a system. Some
of the widely used reactive forcefield developed in the community include ReaxFF’
and AIREBO8. ReaxFF is a state of the art ‘reactive’ forcefield developed by the van
Duin group, capable of capturing chemical reactions in MD simulations. ReaxFF has
been widely adapted and parameterized for complex 2D materials as well as biologi-
cal systems in recent years’ including but not limited to studying growth mechanisms
of 2D transition metal carbides'® and development of ReaxFF protein reactive force-
field (protein-2013)" used to simulate biomolecules and membrane fuel cells. Some
of the developed forcefields used in literature to study biomolecule-2D interactions
have been discussed in this section.

A number of empirical force fields have been developed to accurately model
conformational energies and intermolecular interactions involving proteins, nucleic
acids, and other molecules with related functional groups which are of interest in
organic and biological chemistry. Currently, the most widely used all-atom polyno-
mial force fields for proteins are OPLS/A A2, CHARMM?22"3 and AMBER."* For the
scope of this chapter, AMBER forcefield is briefly discussed as a prime example of
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all-atom polynomial model implemented to study biomolecules computationally. The
energy terms for Assisted Model Building with Energy Refinement (AMBER) force
field are as follows:

Eysen = ZK, (r—r,) + ZKg (6-6,,) + z %[1 +cos(np-7)]

bonds angles dihedrals

A. B q;:
sla-5]
i j el

i<j

The last term for Eq. 10.4 consists of non-bonded van der Waals interaction given
by 12-6 Lennard-Jones (LJ) potential and the electrostatic interaction given by
Coulomb’s law. The rest of the terms in Eq. 10.4 define the bonded or intramolecular
interactions which deal with forces present within a given molecule, i.e., energetics
due to bond stretching, angle bending and torsional forces.

The Adaptive Intermolecular Reactive Empirical Bond Order potential (AIREBO)
developed for hydrocarbons has been widely used in literature to study graphene
based 2D materials and has proven to accurately capture their structural and ther-
modynamic properties.”> The AIREBO potential consists of three terms, covalent
bonding interactions, LJ term and torsion interaction; given by:

1
Eqystem = EZZ E[;_lEBO + Elf.l i z Z E]’{l;ﬁ)RSION (10.5)

i g ki, jl#i,j.k

The ES™° term describes short-ranged C—C, C-H and H-H interactions and this
reactive term is described as:

E;™° =V () + byVif (1) (10.6)

The E,;{EBOterm is similar in its functional form to the REBO potential. For atoms i
and j, V,-JR and V,-jA are pairwise repulsive and attractive potential for atom types C and
H, which are function of distance r; between the two atoms and the many-body bond
order terms b;. A distance-dependent switching function that switches off the E,«?EBO
interactions when the atom pairs exceed the bonding distances.

For ReaxFF, the current model form of the potential consists of both reactive and
non-reactive interactions between atoms, which allows the potential to accurately
model both covalent and electrostatic interactions for a vast range of systems.

Esyslem = Ebond + Eover + Eangle + Elor + EvdWaals + ECoulomb + ESpeciﬁc (107)
The total energy of the system, Eyq.m is divided into bond order dependent and inde-

pendent contributions. Ey,,g is a function of interatomic distance and described the
energy due to bond formation between atoms, this is calculated as:
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BO, = BO,” + BO," + BO,;™ (10.8)

r Pbo2 r Pbo4 r Pbo6
= €XP| Prol (Z) +CXP| Poo3 (Z) + €XP| Poos (,ITJ,,)
T I,

o o o

where, BO; is the bond order term between atoms i and j which is a function of
interatomic distance 7; and the equilibrium bond length 7,; py, terms are empiri-
cal parameters; o, & and 77w are the bond characteristics. Equation 10.8 takes into
consideration covalent interactions in transition state structures which allows Reaxff
to accurately predict reaction barriers for specific systems.

Understanding and studying the solvation effect is essential for exploring the
structural dynamics of biomolecules in aqueous solution near 2D surfaces. Many
implicit (continuum) and explicit (all atom) models are proposed and used to model
solvents in a system. TIP3P and SPC/E are some of the widely used water models
to simulate aqueous solutions in both the computational biomolecular and interface
communities.!5-!8

The full functional form of the potential functions discussed in this section and
their description can be found in their respective original literature. Due to the com-
plexity of these models, specifically for biomolecule-2D systems, it is advisable to
select the correct forcefield to model the interactions in your system and validate the
forcefield and its implementations against the data present in the literature.

10.2.2 Preriopic BOUNDARY CONDITIONS

Simulating a large number of particles in a given system and observing its evolution
via MD is restricted by the computational power at hand. Often researchers focus
on simulating a box with reduced volume and number of particles compared to the
actual system’s size, this in turn reduces the computational cost on both time and
length scale, while still mimicking and capturing the key chemistry and physics of
the system without comprising the accuracy. This is achieved by implementing peri-
odic boundary conditions (PBC).

For PBC, the boundaries of the simulation box are considered to be continuous
along all axes and periodic in nature, i.e., The simulation consists of an infinitely
large system with the ‘original’ box repeating in each direction. Implementing PBC
itself can be computational expensive and infeasible, as solving the long-range inter-
actions term in various forcefields such as the one mentioned in Eqgs. 10.4 and 10.5 in
Section 10.2.1, for an infinite periodic system is impossible to compute. The concept
of cutoff is introduced, for a single particle in PBC, instead of interacting with all
the (N —1) particles in the system, a sphere with radius 7, around the particle is
defined and the particle is allowed to interact with other particles within this defined
sphere only (see Figure 10.2).

While using a cutoff with PBC significantly reduces the computational cost, sudden
truncation of potentials introduces discontinuities in a system, which violates energy
conservation along with producing incorrect thermodynamic properties of systems.
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FIGURE 10.2 Periodic boundary conditions representation in 2D. The simulation box in
the center is replicated in every direction to produce an infinite system. The light-grey colored
particle interacts with every particle within a defined sphere of radius 7.,

To tackle this challenge, long-range corrections and soft ‘fading’ of potentials are
applied at the cutoffs.!”

When implementing PBC within a MD simulation, one should take care that the
size of the box has an appropriate length scale for the given system and the property
being computed. This will help to avoid finite-size effects and related errors in com-
putational results.

10.2.3 BINDING ENERGY

While adsorption of biomolecules, which are complex and large in nature, are dif-
ficult to study due to computational limitations, literature studies have probed the
interaction between the interaction sites and functional groups of amino acid side
chain at the outermost surface of proteins on adsorption surfaces, giving an insight
into protein adsorption mechanism on the surface. As such, small molecule amino
acids serve as suitable model compounds to mimic protein-surface adsorption.?0-22
Dragneva et al.?? studied and presented the adsorption of 20 proteogenic amino acids
on a graphene surface. Furthermore, the effect of solvation on adsorption behavior
of amino acids in presence of water was investigated. The binding energy Ejpning 15
defined as:

Ebinding = Esystem - (Eslab + Eadsorbate) (109)
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where Egen is the total energy for the adsorbate-slab system; Ey,, is the total energy
of the pristine or defective 2D slab without any adsorbate in the system; and E,gomae
is the total energy of the adsorbate in the bulk phase.

10.2.4 Free ENERGY

For a biomolecule-2D system, binding free energy can be used to determine the
affinity of the biomolecule near the 2D surface, thus generating a free energy land-
scape is an essential step in understanding the interfacial phenomena. Various tech-
niques and methodologies employed in MD to generate the free energy profiles are
discussed below.

In MD simulations, ‘collective variables’ (CV) or ‘reaction coordinates’ or ‘vari-
able sets’ are used to reduce the degrees of freedom of a system into few parameters,
which can be analyzed individually via ensemble averaging. Here, collective vari-
ables are any set of differentiable function of atomic cartesian coordinates, x;, with
between 1 and N, the total number of atoms:

E(t)=E(X (1)=& (xin(r), x;(2), x¢(£)...), 1<, j k.. <N (10.10)

The restraints or biasing potentials can be applied to multiple variables or set &(X)
to calculate the potential mean force (PMF) on the system using different enhanced
sampling methods, such as metadynamics, adaptive biasing force (ABF) and umbrella
sampling.?3-23

10.2.5 UMBRELLA SAMPLING

Umbrella sampling method is utilized to probe and generate the free energy land-
scape of a given system, as a function of a single reaction coordinate. Specifically, a
biased harmonic potential is induced in the system to overcome the energy barrier
separating any two regions of configuration space. The biased harmonic potential
added to the system is simply defined as:

V(&)= 11{@} (10.11)

2 Wg

Here, £ is centered at &, and is scaled by its characteristic length scale we - k is chosen
equal to k3T (thermal energy), the resulting probability distribution of z = & — &, /w;
(dimensionless) is approximately a Gaussian with mean of 0 and standard deviation
of 1.

Implementing the umbrella sampling methodology to obtain the free energy land-
scape of a system in a stepwise manner can be shown using Figure 10.3. The biasing
potential is added to the natural unbiased system followed by division of the land-
scape into bins according to the reaction coordinate(s) (1D in the case of umbrella
sampling), and the biased potential is allowed to act on the system distributed in bins
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FIGURE 10.3 Schematic illustration of the umbrella sampling method. The small U-curves
represent the harmonic bias potentials that are added to the unbiased system at different CV
points (windows) along the CV space to generate the probability distribution.

to obtain the probability distribution. The free energy of the natural unbiased system
is a function of the biased probability distribution.?¢

The concept of umbrella sampling and evaluating the free energy landscape of
a system using MD can be better understood with an example. Here we study the
interaction of a small biomolecule (phenylalanine) and its interaction with pristine
graphene (2D surface). To calculate the free energy of adsorption of the capped
AC-Amino acid-NHMe to the graphene surface, we defined X (the reaction coordi-
nate) as the distance along the z-axis from the center of mass (COM) of AC-Amino
acid-NHMe to the center of mass of an atom from the atomic layer of graphene (illus-
trated in Figure 10.4a) and calculated the potential mean force as a function of this
distance, PMF(X). The z-axis is orthogonal to the plane of the graphene. Umbrella
sampling combined with the weighted histogram analysis method, WHAM?’(post
processing software/method to generate PMF curves from probability distributions),
was used to calculate the PMF using a single window on the domain X € [3, 10] A,
with a bin width of AX=0.5 A. The resulting histogram for the free energies study is
shown in Figure 10.4b. The PMF curves are generated for the amino acid-graphene
system is presented in Figure 10.4c.

Dasetty et al.?® employed similar methodology to study the free energy of all 20
proteinogenic amino acids onto pristine graphene surface as a function of Z direction
using umbrella sampling. The amino acid-graphene system was modeled using the
force fields—Amberff99SB-ILDN/TIP3P, CHARMM36/modified-TIP3P, OPLS-
AA/M/TIP3P, and Amber03w/TIP4P/2005, providing a comparative assessment
on these forcefield and their ability to correctly capture the adsorbed state and free
energy landscape of amino acids on graphene. Here, the systems were equilibrated at
300 K for 1 ns using NVT ensemble and steepest descent energy minimization algo-
rithm. A time step of 2 fs was used for all MD simulations. Final production simula-
tions were performed at 300 K for 10 ns. A spring constant (k) of 8000 kJ/mol/nm? for
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FIGURE 10.4 (a) Illustration of the harmonic spring on the center of mass of the biomol-
ecule through reaction co-ordinate Z. (b) The histograms of the configurations within the
umbrella sampling windows and the harmonic spring against the distance of graphene and
phenylalanine. (c) PMF of phenylalanine on graphene generated, similar to PMF generated
for various forcefields by Dasetty et al.?®

0.4 nm<E<0.8nm and k=4000 kJ/mol/nm? for 0.9 nm <& <2.0nm was employed
with a spacing of 0.05nm for 0.4 nm <& <0.8 and 0.1 nm for 0.9 nm <& <2.0nm for
good overlap between the distribution of neighboring windows. The PMF curves are
then generated for amino acid-graphene system using various forcefield.

Similarly, Zheng et al.?® studied the conformation change and aggregation of
HIV-1 Vprl3-33 on graphene oxide (GO) by employing the umbrella sampling
method. Water was represented by the TIP3P model. The system was energy mini-
mized followed by equilibration for 500ps, 1 bar constant pressure and 298K tem-
perature, followed by NVT simulation at 298K for 500ns for umbrella sampling.
Thirty (30) configurations were generated along the z-axis. Here, z coordinates of
COM distance between Vprl3-33 and GO in each configuration differed by 0.1nm.
Each window was equilibrated for 5 ns and a production run of 5 ns was continued
for sampling. The PMF curve was obtained using WHAM. Both single peptide on
GO and double peptide aggregation in water PMFs were generated. Unfolding of
peptide and loss of secondary structure near GO surface was observed with highly
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stable 7 — 7 interactions; electrostatic interactions prevent the peptide from folding
further. Interactions between single peptide and GO are much stronger than the inter-
peptide interactions.

While not in the scope of this chapter, other thermodynamic integration meth-
ods such as Metadynamics, ABF and well-tempered Metadynamics, etc. have been
implemented to study conformational free energies of various systems in MD.
Metadynamics in particular uses gaussian hills and history dependent CV to explore
phase space. Metadynamics simulations can be used to reveal the binding affinities
and transition pathways of biomolecules near 2D and metal surfaces.3%3!

10.2.6 CoARse-GRAINED MODELING

For studying binding energies and/or exploring conformational changes (protein
folding near 2D surface) in a 2D-biomolecule system, computational length and time
scale challenges are a major blockade to be faced. While trying to simulate and study
interfacial science in a given system, coarse-grained modeling techniques employed
tackle these challenges in a system by reducing the overall complexity of the system.
Coarse-grained biomolecular systems are less computationally expensive than their
all-atomistic system counterparts because coarse-grained models reduce the number
of interaction sites and heavy atoms in a system (see Figure 10.5). Coarse-grained
models are developed to contain fewer degrees of freedom (e.g., removal of the car-
bon—hydrogen bond vibrational modes), and are parameterized with smoother poten-
tial energy surfaces. This in turn leads to a smoother potential energy surface which
reduces the challenges associated with overcoming energy barriers while exploring
free energy landscapes, thereby leading to more efficient sampling. The MARTINI
coarse-grained forcefield, which employs a four-to-one mapping (a single interaction
site/bead is used to represent four heavy atoms), has been successfully implemented
for simulating wide range of biomolecular systems such as DNA fragments, CG ver-
sion of standard and polarizable water molecules, lipids and polysaccharide frag-
ments, etc.32-3

In conclusion, coarse-grained simulations can access and evolve systems to
length and time scales far beyond those that are practically achievable by all atom-
istic molecular dynamics simulations. Due to complexity and large number of heavy
atoms in biological systems, coarse-grained modeling methods are the subject of
considerable current interest in this community. However, since they do not represent
molecules as all atomistic models, coarse-grained models lose out on finer details
and inaccurately depict some important chemical features within a system.

10.3 EMPLOYMENT OF MD ON FUNCTIONAL 2D MATERIALS

2D materials are structures with a thickness on the order of 1-2 atomic layers. Many
2D materials of research interest are categorized in classes or treated as a special
material like graphene, with the most relevant being transition metal dichalcogen-
ides (TMDCs; WTe,, MoS,, etc.), atom thin layers of elements like tin and bismuth
(stanene and bismuthene), and hexagonal boron nitride (h-BN), which is somewhat
graphene-like in geometry and electron configuration but composed of covalently
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FIGURE 10.5 Mapping between the all-atom and the coarse-grained MARTINI models for
water, benzene and DPPC membrane lipid molecules. Eg: one P4 bead/interaction site with
specific LJ parameters is used to define four all-atom water molecules. Here the CG beads
are shown as transparent vdW spheres and the hydrogens are only shown for atomistic water
molecules.

bonded boron and nitrogen. Grown from single layer, heterostructures or multilayer
2D materials (e.g., multi-layer graphene) has been of utmost importance recently in
a wide range of application. Multi-layer 2D materials or hetero 2D structures are
vertically-stacked mechanically-assembled monolayer flakes and are held together
with long range forces such as van der Waals forces.? There are several wide range
applications of 2D materials in fields of (1) electrical and electronic (e.g., battery stor-
age system and semi-conductors), (2) biomedical (e.g., drug carriers), and (3) micro-
biology (e.g., prevention of corrosion in steel pipes).’’** Computational techniques
have been widely used for 2D materials modeling and studying their properties such
as electronic structure and mechanical properties, from ab initio level of theory to
classical and semiclassical approaches.*°

10.3.1 GRAPHENE AND ITs STRUCTURAL DEFECTS

Of all materials known, graphene has the highest tensile strength, the highest electron
mobility, and the highest thermal conductivity. The term graphene-family nanomate-
rials (GFNs) refer to many different graphene-like materials which can be classified
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by their number of layers (few-layer graphene (FLG) to graphene nanosheets (GNSs))
and/or their degree of oxidation, with graphene oxide (GO) being oxidized and
reduced GO (rGO) being oxidized and then reduced. Carbon nanotubes could be
considered a member of GFNs as they are essentially a rolled layer of graphene with
universal sp? bonding in a cylindrical geometry and are the subject of their own
intensive research.#-43

All carbon-carbon bond lengths in graphene are 0.142nm, and graphene’s unit
cell is a rhombus with edge lengths (lattice constant) of 0.246nm and two central
basis carbon atoms.*® This means that the shortest linear distance between two
non-adjacent carbon atoms within the same hexagon is 0.246nm, and the distance
between any hexagonal center to an adjacent one is also 0.246 nm.

Defects in graphene sheets can alter its mechanical, chemical, and electronic
properties. These defects are either undesired and generated during the manufactur-
ing stage or can be engineered for use in important applications.*’ Point defects such
as single-vacancy (SV) and Stone-Wales(SW) defects are widely studied in litera-
ture*; here the SV defect refers to a missing lattice atom, while the SW defect means
one of the C-C bonds is rotated by 90 degrees resulting in four hexagons in a pristine
graphene sheet transforming into two pentagons and two heptagons (see Figure 10.6).

Yoon et al.® studied the generation of defects in graphene using irradiation sim-
ulations in MD. Carbon atoms in graphene were modeled using ReaxFF and the
interaction parameters between graphene and ions were optimized using density
functional theory (DFT) calculations and universal repulsive potential. The sys-
tem was equilibrated at 300K, ions with impact energy of 25keV were irradiated on
the center area of graphene. Extremely small-time steps or 0.005-0.02fs were used
during irradiation. He*-irradiated graphene exhibited SW defects most frequently
(~65%) while Ne*-, Art-, and Kr*- irradiated graphene exhibited SV defects most
frequently (~73%)

Generating these point defects can also affect the binding and absorption of key
biomolecules onto graphene surface. The surface defects lead to enhanced charge
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FIGURE 10.6 Pristine graphene and two most common point defects of graphene.
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transfer and exposed active sites and has attained great attention toward development
of non-enzymatic electrochemical biosensors.’® The defects in 2D materials results
in unexpected changes in protein behavior due to denaturation and unfolding. Gu
et al., investigated the impact of defective graphene and ideal graphene on a model
protein (chicken villin headpiece subdomain, HP35) using molecular dynamics stud-
ies. The report suggested that the protein has undergone severe denaturation, while
the protein was observed to be undamaged on ideal graphene.’' The contacted amino
acid residues was observed to be tightly anchored near the defects owing to favorable
electrostatic interactions, however, at the interface, the residues are highly restrained.
Therefore, the thermal movements of the remaining residues led the protein to dena-
ture or unfolding.>3> A biofilm associated study showed that graphene monolayer
on copper surface enhanced the biogenic sulfide attack by 5-folds as compared to
the bare copper, but multilayered graphene, when used, inhibited the biofilm forma-
tion.> Dong et al., showed that the effectiveness of graphene coated copper surface
toward microbial corrosion is time-dependent and the prolonged exposure to ionic
environments results in defective graphene coatings.>* Furthermore, Chilkoor ef al.,
demonstrated that anaerobic microbial corrosion due to Oleidesulfovirbio alaskensis
G20 can be inhibited with a monolayer of h-BN. The impermeable nature of the
monolayer prevents the diffusion of corrosive metabolites toward the metallic sub-
strate. Therefore, h-BN coatings are promisingly effective at minimizing galvanic
effects as the local defects act as a cathodic site for anchoring and reducing terminal
electron acceptors, which resulted in inhibition of microbial corrosion.>

10.3.2 THE EMERGENCE OF BIOINFORMATICS:
APPLICATIONS AND METHODOLOGIES

Open-source MD codes such as LAMMPS® are widely used to model and simulate
complex 2D-biomolecule systems by employing the various algorithms and tech-
niques discussed in previous sections. Bioinformatics online and offline software are
powerful tools that can aid in performing this thorough investigation of the interac-
tion between the 2D materials and biomolecules, more specifically bioinformatics can
aid in predicting protein structures of interest and propose optimized conformation
of the said protein that can be used in the 2D-biomolecule system.>®> Bioinformatics
is a multidisciplinary field which can be defined as an amalgamation between bio-
logical science and information technology to retrieve and solve “big data” prob-
lems using biological databases and programming algorithms.®® Bioinformatics has
broad range applications in all three genomics- structural, functional, and compara-
tive genomics.%%? The prediction of protein structures at the secondary and tertiary
level is the structural genomics, whereas assigning the functionality to an unknown
protein using already available data is defined as functional genomics.®> Comparative
genomics, however, tells the evolutionary nature of a species and its environmental
origin.6463

The offline python-based command line interface, Modeler v10.3 can be employed
to predict the structure of unknown protein with amino acid sequence as an input
and template protein structure.®®%’ The template protein structure is an experimen-
tal (X-ray or nuclear magnetic resonance) protein structure and can be retrieved
from Protein DataBank.%® The interface generates the desired number of poses or
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FIGURE 10.7 Computational tools and strategy to discover novel 2D coatings and their
application as MIC inhibitors.

conformers; the most stable being the least discrete optimized potential energy score.
The validation of the modeled protein structure can be performed using MolProbity
(online server) and PyMOL (offline software) for stereochemical correctness, and
superimposed root mean square deviation (RMSD), respectively.®-"! The less the
RMSD, the more correct are the coordinates and torsions of the a- and p-carbons.”
Molecular docking is one of the most powerful strategies to calculate binding energy
between the surfaces and visualize the most crucial amino acids that participates
during the course of interaction.”? There are several tools available as online server
or offline installation packages that can be used directly for rigid or flexible dock-
ing, most popularly, AutoDock (The Scripps Research Institute) and PyRX (incor-
porates vina, genetic and Lamarckian genetic algorithm).”*7 The platform returns a
number of interaction-poses with different ligand RMSDs (represents various con-
formers of the same ligand at all possible hydrophobic pocket sites in a protein).
The most negative binding energy is the most favorable interaction and provides the
most stable complex. As an example, Figure 10.7 denotes the overall workflow and
application of protein modeling and molecular interaction to study microbial induced
corrosion (MIC).

10.3.3 CURRENT TRENDS IN BIOMOLECULAR SIMULATION AND MODELING

Several studies had been performed using inhibitory material and the computational
simulation helped to understand the inhibition and interaction mechanism at the sur-
face atomistic level. Khadom et al., theoretically simulated the Citrus Aurantium leaf
extract as a bio-inhibitor for biochemical corrosion of mild steel in acidic solution
using homology modeling and molecular docking.”® Hussein et al., studied the inhibi-
tion of Acidithiobacillus Ferrooxidans bacteria, which is responsible for the corro-
sion using the compound 1-Isoquinolinyl phenyl ketone by employing AutoDock vina
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algorithm and density functional theory (DFT).”” Ahmed et al., studied the interac-
tions between dietary fibers and meat proteins to understand the textural changes
within the protein with estimation of parameters, such as the formation of hydro-
gen bonds, the free energy of binding, and Van der Waals and desolvation energy.”
These provides an understanding about evaluations of an extent of parameters from
interaction studies. Furthermore, Kinghorn et al., provided insights on the progress
of aptamer (a small stretch of nucleic sequences that are known for its specificity
and high-binding affinity) bioinformatics, and how the computational simulations
with regard to fragment-based aptamer design, and identification of lead aptamers
from high-throughput sequencing data have progressed over years.”” These proce-
dural aptamer studies may be crucial for the identification of protein domains that
are promising to have higher affinity toward 2D surfaces. Zhao et al., used graphitic
carbon nitride as an analog of graphene, and performed interaction studies with 20
amino acids using DFT, and reported that graphitic carbon nitride attaches to amino
acids using the amino group (-NH2).3° Unal ez al., reported promising antimicrobial
effect of graphene oxide nanosheets on the SARS-CoV-2 Surface Proteins and Cell
Receptors using interaction study as a basis.®! Therefore, bioinformatics provides
a broader opportunity to elucidate 2D materials and determine their antimicrobial
effect with consideration of unknown target proteins and chemically modified sur-
faces as inhibitors.

10.4 MACHINE LEARNING

Since the development of Machine Learning (ML), it has been used in many fields
including bioinformatics, materials science, data mining, and computer vision.>? ML
models can be applied to predict the fundamental properties (e.g., mechanical, and
elastic properties), and thermal stability of 2D materials, which have the potential to
advance the process of designing new 2D materials.®3-% Moreover, ML optimization
algorithms (for example, Bayesian optimization) can be used to design and predict
new 2D materials with desired properties.?®¥” ML methods and optimization tech-
niques can also be applied to develop forcefields for molecular simulation. Since the
early 2010s, ML has also been used extensively to predict protein structural informa-
tion such as secondary structures, accessible surface areas, and torsional angles.®®

10.4.1 ML MEeTHODS FOR 2D MATERIALS

Kastuar et al. developed ML-based predictive models using temperature-depen-
dent elastic and mechanical properties of 2D crystals.®® The worked implemented
XGBoost and LightGBM to predict the lattice constant using temperature, space
group, vacuum size, C,;, and C,, as input features. XGBoost is a scalable machine
learning algorithm that creates a weak learner at each step and improves prediction
accuracy by building a set of decision trees. After summing all models, it creates the
final tree model defined as,

» = zf (x;) (10.12)
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Where, )7,«(') is the final model, f,,(x,-) are the generated tree models. The optimum
algorithm is obtained by minimizing the following loss function:

t

Objective function = Z[g,,f, (x.)+ %hnf,2 (x, )] +o(f) (10.13)

n=1

where g; and A; are the first and second order gradient statistics on the loss function,
(p( f,) is the regularization term. By using regularized objective model, XGBoost
is able to prevent the overfitting problem. All decision tree-based ML models
include model-based feature importance analysis techniques that provide a rank of
feature importance. The XGBoost model outperformed the LightGBM in terms of
the following two loss functions: R? (R-squared) and MSE (mean squared error).®
Finally, the most influential parameters for the lattice constant were determined
using model-based feature importance analysis. Tawfik et al. employed four ML
models including random forest, support vector machine, relevance vector machine,
and neural network with a combination of DFT to predict the interlayer distance
and the band gap of hybrid 2D materials.®**° For the models input 1529 descriptors
were calculated using the property-labeled materials fragments, which has excellent
performance for ML application of crystals.’!

To create new 2D materials, a variety of techniques, including defect engineer-
ing and atom or molecule adsorption, can be used.®” Among these methods, defect
engineering is an appealing option for identifying new 2D materials and application
of ML methods can speed up the process of predicting defect properties in 2D mate-
rials. Frey er al. employed ML methods in designing ideal defect structures.®? First,
deep neural networks (DNNs) were used to predict material properties in order to
find optimal host 2D materials. Since the DNNs need large number of training data,
this work implemented ‘transfer learning’®* for the prediction of formation energy,
band gap, and Fermi energy. After removing 8 compounds containing heavy ele-
ments, the process yielded the identification of 150 wide band gap 2D materials.
More than 10,000 defect structures were produced by combining 150 wide band
gaps and 70 defect structures containing all possible vacancies, divacancies, anti-
sites, and common dopants. To identify potential defects, one classification model
capable of identifying the deep center defect and one regressor mode capable of pre-
dicting defect formation energy were developed. For ML model input, the structural
and chemical properties of the host materials and defects were used. For both the
classification and regressor problems, a random forest algorithm was used. To find
the best defect candidate, a defect score function was defined that expresses fitness as
a possible deep center for quantum emission. The goal is to maximize the function
value, which indicates the best defect candidates.

10.4.2 ML ror Force FiELb DEVELOPMENT AND PARAMETERIZATION

As discussed earlier in this chapter, forcefields in MD expresses atomic interactions
via parametrized analytical functional forms. A forcefield is heavily reliant on exper-
imental data for calibration, raising the question of whether ML approaches can be
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used to evaluate the nonlinear associations between atomic configurations and forces
using benchmark data (e.g., quantum mechanics based materials simulations).”*

Li et al. applied the genetic algorithm to optimize force fields parameters.”
Genetic algorithm is based on biological evolution and mimics the process of natural
selection and greatly use for optimization purposes.’® The study focused on the
nonbonded electrostatic and van der Waals (vdW) parameters because other param-
eters (e.g., bond, dihedral, and torsional parameters) have trivial effect on condensed
liquid phase systems modeled using the Atomic Multipole Optimized Energetics
for Biomolecular Applications (AMOEBA) forcefield.”” The work considered the
AMOEBA functional form due to its relative simplicity. The AMOEBA force field
includes 44 independent parameters for computing electrostatic energy and 10
parameters for computing vdW energy. For optimizing electrostatic parameters, at
the first step, atomic multipoles were obtained from quantum mechanics electrostatic
potential on the Connolly surface of a single isolated methanol molecule. The second
step involved the use of a large dataset containing 4943 methanol dimers to opti-
mize 44 electrostatic parameters that minimize a predefined optimization function.
Following electrostatic parameters optimization, vdW interactions parameters were
optimized to find the best match the interaction between a central methanol molecule
and its closet super-molecule. The optimized electrostatic parameters were remained
unchanged during vdW optimization. An objective function was defined that looks
for vdW parameters which will minimize the objective function.

Moreover, ML can be utilized to develop forcefields from atomic configurations
and forces, which has the potential to greatly speed up atomistic materials modeling
processes. However, atomic configurations need be converted to numeric represen-
tation, which is commonly referred to as fingerprints. The next step is to select the
appropriate set of fingerprint features for a training model. The generation of finger-
prints frequently produced high-dimensional data. High-dimensional data is defined
as the number of features close to or higher than the sample size®® and can degrade
the accuracy and computational speed of ML models.” Principal component analysis
(PCA) can be employed to reduce the dimensionality of large datasets. PCA gener-
ates a linear combination of variables from a large number of variables to reduce the
dimension of data while retaining most of the variation in the dataset.'’° Finally, ML
models such as DNNs and nonlinear regression can be implemented for developing
forcefields.

10.4.3 ML ror PROTEIN STRUCTURE PREDICTION

Protein structure prediction (PSP) is a central problem in structural bioinformat-
ics. The goal of protein bioinformatics is to reveal the relationships between amino
acids and its function. These insights can be used to identify and design proteins
that can bind specific targets, act as catalysts in reactions, or guide biotechnology
advances. In recent years, ML, particularly deep neural networks, has been exten-
sively used for PSP. PSP models can take input of protein sequence in variety of
formats, including multiple sequence alignment (MSA) and position-specific scoring
matrices (PSSMs) and can return the results in a variety of formats (e.g., 1-D, 2-D,
and 3-D prediction).!0!-104
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PSP systems using ML consist of three components: (1) the inputs which contain
protein sequences in different forms, (2) a ‘ML algorithm’ typically deep neural net-
works are widely used for PSP, (3) the outputs that can be represented by 1-D predic-
tion (e.g., solvent accessibility prediction), 2-D prediction (e.g., contact maps), and
3-D prediction (e.g., tertiary structure of a protein).

10.5 SUMMARY

Over the years, with an emerging appeal to solve complex interactions, compu-
tational and/or bioinformatic techniques that involve molecular dynamics and
atomistic simulation are of utmost importance among today’s researchers. Within
this chapter we have presented the fundamental concept of molecular simulations
focusing particularly on the molecular dynamics technique and its algorithms.
Here, molecular dynamics approach can be employed to study interactions at
2D-biomolecule interfaces. We have highlighted the use of system energy to calcu-
late the binding energies of biomolecule to 2D surface as well as addition of biasing
potential to the system to implement umbrella sampling method, to map out free
energies for the system.

While defect-free graphene growth is still under investigation and these defects
remain largely undesired, studies have shown defective graphene surfaces have prop-
erties distinct from the pristine layers. What remains to be known is what effect
these surface defects have on biomolecule adhesion, since very little foundational
atomistic-level information is available on whether these defects produce positive or
negative surface adsorption characteristics relevant to biomolecule adhesion. Recent
advances and findings on defect engineering and adhesion of biomolecules on defec-
tive graphene using MD has been discussed.

A brief introduction to bioinformatics has been presented, as a promising field
to deal with proteins; thereafter to determine the role of unknown proteins and
evaluate the chemical bonding nature of interactions using molecular modeling
and molecular docking, respectively. To interpret and process the data available
and generated while studying biomolecule-2D interface, some key concepts related
to use of machine learning (ML) to aid computational methods have also been
discussed. The emerging algorithms of machine learning such as XGBoost and
LightGBM are in extensive use to determine properties of 2D materials and to
develop decision tress for discovery of potential new 2D materials. ML can also be
incorporated for forcefield parameterization and development along with aiding in
protein structure prediction.

The amalgamation of computational and bioinformatics strategies with machine
learning is a thought-provoking approach to put a deep insight into the atomistic
interactions of biomolecules at 2D surfaces.
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11.1  INTRODUCTION

Traditional approach for the development of new materials in materials science
involves trial-and-error experiments which are often expensive, time-consuming,
and are less efficient. Machine learning (ML) approaches can accelerate the discov-
ery of new materials by utilizing the experimental data from various databases to
identify the correlations between various experimental variables. ML approaches
can develop the models based on the correlations which can be used to predict the
properties and accelerate the materials discovery. A detailed information on the ML
approaches and methods has been provided in Chapter 3. This chapter provides a
summary of research and development efforts in the key areas of metallurgical engi-
neering and materials science where ML approaches have been used. Applying ML
approaches to materials science is an interdisciplinary effort where experts from
materials science, data science, computer science, and other domain experts related
to informatics, biology, and chemistry must work together to address the challenges
and remove the barriers to implementation. Working together with experts from vari-
ous disciplines has a great potential to make accelerated progress in materials dis-
covery and enable new innovations in materials science.

11.2  APPLICATIONS OF ML IN MATERIALS SCIENCE

11.2.1 ADDITIVE MANUFACTURING

Additive manufacturing (AM) is the fabrication of three-dimensional (3D) objects
using a computer-aided-design (CAD) model in a layer-by-layer approach to get pre-
cise shapes. AM technologies have attracted great interest in recent years because
of its ability of make complex-shaped components and also because of its ability to
produce personalized and customized components (e.g., prosthetics and biomedi-
cal implants). A wide range of materials such as polymers, metals, and composite
materials can be additively manufactured and can be used in a wide range of indus-
tries and applications (e.g., aerospace, automotive, biomedical, defense, transporta-
tion, medical, sensors, and several other applications). Few examples of 3D-printed
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(b)

FIGURE 11.1  Examples of laser-additive manufactured components for rocket engine appli-
cations showing (a) Axially coupled chamber and nozzle, (b) Jacket deposited on chamber with
internal channels, (c) Rotating assembly for fuel pump, and (d) Combustion chamber liner with
jacket. (Courtesy: NASA [1-3].)

rocket engine components using laser-based additive manufacturing technologies are
shown in Figure 11.1.

AM technologies have emerged as a disruptive technology and have several poten-
tial applications in a wide range of industries. However, there are still some barriers
to overcome such that these technologies can be adopted quickly in the industries.
Currently, there are limited available AM materials databases, and there are also
inconsistencies in the material properties reported in the literature. The inconsisten-
cies are mainly caused by the defects present in the components and can be correlated
to the heat inputs, cooling rates, and the process parameters employed. Recently, ML
approaches have gained some traction in the additive manufacturing industry, and
the applications of ML are primarily used in five research domains: (1) materials
design, (2) materials analytics, (3) in-situ monitoring and defect detection, (4) process
modeling and process control, and (5) sustainability of AM process [4,5]. Figure 11.2
shows the ML research domains that are primarily used in AM.

The design and development of materials to achieve desired properties is very
important to understand the microstructure of AM products and correlate that with
mechanical properties. Several possibilities can exist to achieve the desired proper-
ties, and developing these combinations manually by trial-and-error approach is very
time-consuming and can be very expensive. The ML approaches can accelerate the
discovery and design of new materials and help with the prediction of material prop-
erties. A wide range of ML techniques such as support vector machine algorithms,
deep learning, decision tree, neural network, linear regression, Bayesian, Gaussian
process, and clustering algorithms are commonly used for AM research and applica-
tions [5]. These ML techniques have been used for identification of defects [6—10],
detection of porosity [11-15], density prediction [16,17], manufacturability [18],
stress distribution [19], geometric deviation [20-22], fatigue life [23,24], and other
mechanical properties prediction [25-29].

Although ML technologies for AM have been promising, there are still some chal-
lenges to be addressed. One of the biggest challenges related to the application of ML
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FIGURE 11.2 Machine learning research domains for additive manufacturing. (Adapted
from Qin, J. et al., Addit. Manuf., 52, 102691, 2022.)

technologies for AM is the integration and analysis of data from multiple sources.
The data from various sources can be challenging to fuse as each of these data may
produce conflicting results when ML models are applied [5]. Another biggest chal-
lenge is the limited amount data to train, which can influence the performance of ML
algorithms. The limited data can lead to inefficient training and may result in failure
of models. The interpretation of the ML models for decision-making is another chal-
lenge. The ML techniques are typically developed by data scientists and computer
science experts, but the AM engineers need interpretable models so that they can
understand the significance of the models to optimize the process. Even with sev-
eral challenges, the ML for AM still provides good opportunities for researchers to
design, optimize, and predict properties for various applications.

11.2.2 COMBINATORIAL SYNTHESIS AND MACHINE LEARNING-ASSISTED
Discovery oF THIN FiLms

Thin films are the atomic layers of materials deposited on a substrate to improve the
surface properties of the substrate material. The thickness of thin films can be few
atomic layers to few hundreds of nanometers thick. These thin films are deposited
onto the substrates to improve surface properties such as the tribological, optical,
electrical, chemical, and corrosion properties of the substrate materials. There are a
wide range of thin film deposition techniques, but most of the techniques are broadly
categorized to either a physical or chemical vapor depositions technique. The discov-
ery of new thin films is often limited by how fast various combinations of materi-
als are created and characterized. Combinatorial synthesis of thin films has been
explored to improve the rate at which new thin films and materials are discovered
[30-32]. One of the main advantages of combinatorial synthesis is the ability to pro-
duce a larger number of samples quickly and at a lower cost. Combinatorial synthesis
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provides increased flexibility in the discovery of novel materials and surfaces by cre-
ating libraries with different compositions, thickness, microstructures, and mechani-
cal properties, which will be useful in screening the materials with desired functional
properties. Another benefit in combinatorial synthesis is that all the specimens will
be deposited under the same conditions while only changing any one variable (e.g.,
composition, thickness, and temperature) providing a unique capability to generate
a wide range of specimens in a controlled manner. The use of ML approaches along
with the combinatorial synthesis has been shown to accelerate the rate of materials
discovery compared to traditional serial experimentation techniques.

Physical vapor deposition (PVD) process is the most commonly used technique
for the synthesis of combinatorial thin films. There are several approaches on how
combinatorial deposition can be performed. One of the simplest approaches is the
deposition of the gradient deposition of thin films, where two or more magnetrons
are focused onto a stationary substrate. Since the deposition rates of materials change
with distance, thin films with multiple combinations of compositions can be depos-
ited on the substrate. Figure 11.3 shows the schematic illustration and an example
of gradient composition deposition using the pulsed laser deposition (PLD) process.

The gradient layer deposition is a simple approach and provides an ability to
adjust the deposition rates and other variables to produce a wide range of combina-
tions. However, large variations in thickness and stoichiometry can be present in the
films, which could be difficult to produce reliable and high-precision materials.

Confocal array deposition is another approach that has been developed to improve
the coating uniformity where a metal mask is placed in between the substrate and
the magnetrons. The substrate is rotated under the stationary mask which creates dis-
crete test pads at a fixed radial position from the center of the substrate as shown in
Figure 11.4a. Compared to gradient deposition, this technique offers some improve-
ment but still has some limitations. One limitation with this approach is that only
one radial position of the substrate can be used for the combinatorial experiments
and much of the substrate area is left unused. Moreover, the mask can also create
asymmetrical exposure and shadowing effects on the test pads which could lead to

Substrate
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FIGURE 11.3  (a) Schematic illustration of combinatorial synthesis using PLD process [33].
(b) Example gradient thin film of BaTiOs, StTiO;, and Nb using PLD process. (Courtesy:
PVD Products.)
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FIGURE 11.4 Combinatorial deposition of test pads deposited using PVD processes show-
ing (a) confocal array deposition and (b) coincidental confocal deposition. (Courtesy: PVD
Products.)

variability in coating thickness and composition of test pads. Since a mask will be
used for the confocal array deposition, the use of radial frequency (RF) bias would
be difficult, and therefore, the confocal array deposition approach may not be able to
be used for reactive deposition or in-situ substrate cleaning.

Coincident confocal deposition is an alternate approach where a confocal point
of the magnetrons is focused on a stationary mask, and the substrate position will
be changed using a X-Y stage to produce combinatorial test pads in a gridded pat-
tern as shown in Figure 11.4b. This approach addresses some of the issues asso-
ciated with gradient layer and confocal array deposition approaches and produces
films with maximum substrate coverage, uniform thickness, and greater control of
composition of the test pads. The combinatorial deposition samples can be used to
optimize or identify a composition that can provide a specific functional property
(e.g., conductivity, dielectric properties, hardness, modulus, and corrosion proper-
ties). Figure 11.5 shows hardness modulus and resistivity maps of a ternary Cu-Ni-Ag
alloy thin film deposited using gradient combinatorial deposition approach using
PLD process.

Figure 11.5 shows the maps of hardness, modulus, and resistivity as a function
of chemical composition. These maps can be very helpful in identifying the com-
position that can provide a higher hardness or electrical conductivity for specific
applications. Such information can be very helpful for designing coatings for a wide
range of applications. A wide range of other functional properties (e.g., optical, tri-
bological, and electronic properties) can be optimized or tuned for specific appli-
cations. The combinatorial thin films can be used in combination with automated
high-throughput characterization tools (e.g., X-ray diffraction, scanning electron
microscopy, and confocal Raman spectroscopy) to screen and generate a large num-
ber of datasets. These datasets help identify the correlations between the structure,
properties, and composition of the thin films, which can be used to discover new
functional materials.
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FIGURE 11.5 Gradient combinatorial deposition of Cu-Ni-Ag thin film deposited using
PLD process showing (a) hardness, (b) modulus, and (c) resistivity. (Courtesy of Kandadai,
V., Combinatorial Synthesis of Cu-Ni-Ti Thin films using Pulsed Laser Deposition Process,
South Dakota School of Mines and Technology, 2022.)

11.2.3 MACHINE LEARNING-ASSISTED PROPERTIES PREDICTION OF BuULk ALLOYS

Metals and their alloys are used for a wide range of applications from automobiles
to rocket engines and for a range of several other applications (e.g., construction,
biomaterials, and electronic materials). The design of alloys for specific applications
with optimized properties such as the hardness, tensile strength, ductility, toughness,
corrosion properties, and fatigue properties are only limited by how many combina-
tions of materials can be made at a given time. The combination of various metals
gives unique combination of properties which can be used for specific applications.
Depending on the application, a specific alloying element can be added to achieve a
specific functional property. For example, addition of Cr and Mo to steel will improve
the corrosion resistance. Similarly, addition of Ti, Ta can form carbides (TiC and TaC)
in steels which can improve the strength of materials. Likewise, addition of Ni will
stabilize the austenite phase and can help with high-temperature stability of the alloys.
So, a wide range of elements can be added to design new alloys to achieve specific
properties. However, it will be difficult to identify the suitable composition by trial-
and-error approach as this can be expensive and will take a significant time to develop.
Thermodynamic modeling, molecular dynamics, and density functional theory simu-
lations have been used to understand the stability of phases, solidification behavior,
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FIGURE 11.6 (a) Vacuum arc melter setup and (b) schematic of button mould.

and precipitation kinetics for various alloys [35-37]. While these techniques are help-
ful for simple alloys systems, these would be challenging to predict the compositions
for multicomponent or compositionally complex alloys. The use of machine learning
can enable the prediction of the properties for complex and multialloy systems.

While there are several fabrication techniques available for melting and alloying,
arc melting and induction melting are commonly used for fabrication in an indus-
trial setting. Both arc and induction melting techniques are typically used as batch
processes for producing metal alloys. However, there are an infinite number of com-
binations that can be used to create new alloy systems. Combinatory approach melt-
ing using arc melting can enable the synthesis of multiple combinations of alloys in
significantly less time. Figure 11.6 shows the vacuum arc melter and the schematic of
a button mould that can be used for generating multiple melts.

The schematic of mould in Figure 11.6b only shows a few buttons that can be
melted to make new alloys. However, moulds up to 32 buttons have been used to
produce unique compositionally complex alloys [38]. To train the ML models, sev-
eral parameters such as lattice constant, configurational enthalpy, atomic radii, melt-
ing temperatures, and electronegativity are considered. A wide range of ML models
(as described in Chapter 4) were used to optimize the composition of the alloys to
achieve a desired property.

11.2.4 DEsIGN oF DRUG-RELEASING MATERIALS WITH MACHINE LEARNING

One of the most prominent features of a living organism is a fine-tuned system of
regulated biochemical pathways that result in a pattern of concentrations of chemi-
cals released and consumed in the right place and at the right time. An externally
administered drug tends to exhibit an unnatural time concentration profile that inevi-
tably limits its therapeutical effectiveness and results in side effects, which is espe-
cially critical for cytotoxic anticancer and antimicrobial drugs. The drug-releasing
materials help to alleviate this problem by mimicking a natural concentration pat-
tern by releasing a drug in a time-controlled fashion or when triggered by external
stimuli. One of the latest examples is a “smart” nanoassembly carrying an anticancer
veratridine [39] or eugenol [40] into colon cancer cells and releasing the drug on-tar-
get when an MMP-7 enzyme overproduced by cancer cells digests the “gatekeeping”
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element and unseals the nanoparticle’s drug load. However, the bottleneck of the
development of drug-releasing materials and especially their clinical translation is
a large number of variables to be taken into account, such as type of drug, type of
material, type of cancer and its heterogenic environment, genetic heterogeneity of
the patient, shape and surface characteristics of the material, drug loading efficiency,
penetration through cellular barriers, selectivity, toxicity, drug-release efficiency,
nature of the “gatekeeping element,” to name a few. This makes the traditional trial-
and-error approach prohibitively expensive and technically unrealistic without pow-
erful and iterative data processing methods, which Artificial Intelligence (Al) is.

While Al is now commonly used for drug discovery, its application to drug release
is relatively new due to a greater complexity of the underlying mechanisms and is
aimed at achieving the efficient trade-off between therapeutic and side effects. The
Probabilistic Suffix Annotation (PSA) model making sequential predictions of the
drug-cell dynamics was applied to the analysis of the concentration of a drug met-
ronidazole and population of its target bacteria Giardia Lamblia [41]. This model
adjusts its sensitivity and selectivity based on the threshold level determined by the
operator. The future drug-cell dynamics are predicted from current observations of
the drug dose and the pathogen population by the Variable Length Markov Model
(VLMM) used for increased flexibility, and the Fuzzy C-Mean clustering tech-
niques involving online learning [41]. An Artificial Neural Network (ANN) model
is employed in the design of 3D-printed oral devices to achieve the desired dose and
drug-release profile based on the surface-to-volume ratio and the combination of fun-
damental shapes (cylinder, hollow cylinder, and pyramid) [42]. While thousands of
oral drug formulations are currently approved, only about 30 long-acting injectables
(LAI) have established their safety profiles despite a wide variety of discovered bio-
compatible polymers [43]. Each drug has unique physicochemical properties, which
makes unlikely for one LAI formulation to be ideally suited for all drugs.

The main hurdle in the application of ML to pharmaceutical science is lack of
available databases needed to train the models [43]. Of several tested approaches,
the random forest (RF) model was the best predictor of drug-release build from the
available online Tensor flow [44] and Scikit [45] learn libraries available in Python.
As opposed to the bulk drug-releasing materials, drug-delivering nanoparticles need
to travel through biological barriers bringing another dimension to the realm of ML.
The multiple particle-tracking (MPT) analysis considering different modes of dif-
fusion of PEGylated particles through the heterogeneous airway mucus was used to
predict the passage times of nanoparticles and the influenza A virus, boosting the
development of inhalable drug formulations [46]. The model input included fluores-
cent video microscopy and modeling the interactions with the negatively charged and
hydrophobic domain of mucus [46].

After the success of COVID-19 vaccines based on the delivery of mRNA by lipid
nanoparticles, this type of materials became the focus of many Al applications. Thus,
deep learning models based on the Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) were applied to predict the efficiency of the Green
Fluorescent Protein (GFP) mRNA transfer to living cells by lipid nanoparticles based
on the time-lapse microscopy data before the GFP expression [47]. Data mining and
ML were used to predict drug loading of solid lipid nanoparticles with curcumin
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[48]. The authors applied the ANN method as an example of the supervised type of
ML, which outperforms its unsupervised counterparts due to its ability to relate the
input variables to responses. The input of experimental drug-loading data and results
of the molecular dynamics docking simulations help predict the drug-loading of
nanoparticles [48]. The key ingredient in the design of drug-delivering nanoparticles
is engineering their surface by coating and modification. Application of both linear
and nonlinear perturbation theory machine learning (PTNL) algorithms allowed for
the prediction of drug-releasing properties of coated metal oxide nanoparticles [49].
The model learned from publicly available datasets generated by preclinical assays
and processes the information on the parameters of biological activity, types of pro-
teins, types of coating agents, and the nanoparticle’s composition and shape [49].

The physiologically based pharmacokinetic model (PBPK) with the input from the
nanotumor database (376 datasets) adequately predicted the drug-delivery efficiency
of different nanoparticles to different tumors and outperformed all other ML methods
including random forest, support vector machine, linear regression, and bagged model
methods [50]. In that work, the cancer type was an important determinant for the deep
neural network (DNN), which performed better than linear regression because of bet-
ter handling of large incomplete datasets and identified new relationships not identi-
fied by the user. This model predicted absorption, distribution, metabolism, excretion,
and toxicity of nanoparticles based on the input of the type of nanoparticle, its core
material, shape, z-potential, hydrodynamic diameter, targeting strategy, tumor model,
cancer type, and time profile of the drug-delivery efficiency [50].

A recent 2023 review underscores cancer heterogeneity, patient heterogeneity,
interaction with the immune system, and the differences between animal and human
physiology and pathology as the major challenges for the targeted drug-delivery
systems, which should be capable of sensing biomarkers [51]. The AI methods that
are able to analyses large amounts of patient data should be able to help generate
personalized treatment plans based on diagnostic. All components of Al (Machine
Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), and
Computer Vision (CV)) must be deployed in the feed-forward multilayer percep-
tion, deep synergy, and other methods to address these challenges and take advan-
tage of the enhanced permeability and retention effect (EPR) to process the data
on molecular imaging and drug delivery, to analyze holographic images from the
nanoparticle-tracking experiments, and the data of Computed Tomography (CT)
and Positron Emission Tomography (PET) scans. For example, variant of the KRAS
gene produces unique biomarkers in cancer patients, which can be detected by sulfur
fluorescent quantum dots, processed by Al and results in the specific receptors that
should be targeted by therapeutics [51].

Finally, AI plays a critical role in devising better nanorobots for drug delivery
with effective nanocommunication [52]. The drug-delivering nanorobots can be pro-
pelled by the enzymatic decomposition of urea to tiny bubbles of carbon dioxide in
the nanomotors made of silica-supported urease and gold nanoparticles [53]. The
radiolabelled nanorobots can be tracked in vivo by PET scans [54]. Al is critical for
integrating “smart” sensors and power supply in the nanorobots [55]. Figure 11.7
summarizes the aspects of the design of drug-delivery materials, which generate the
streams of experimental information (characteristics of the material and their drug
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FIGURE 11.7 Input and output streams for the ML—assisted design of drug-delivering
materials.

delivery performance) to teach a ML model to predict the best matches between the
drug, its delivery system, and their specific biological application.

11.2.5 Al AND ML TooLS FOR SEARCH AND
Discovery oF QUANTUM MATERIALS

In the last decade, quantum materials have become a major topic of condensed mat-
ter physics. These include two-dimensional materials [39], topological insulators and
superconductors [40], Weyl semimetals [41], and quantum spin liquids [42]. The prop-
erties of these materials are determined by the collective behavior of a large number
of interacting particles, which cannot be described using single-particle approxima-
tion typically used to describe more common characteristics like melting point, band
gap, and heat capacity. Quantum materials host various exotic excitations, such as
relativistic fermions in Dirac materials [39], Majorana-bound states in topological
superconductors [40], and skyrmions in chiral magnets [43]. They hold the prom-
ise of transforming high-speed electronics and communication devices, as well as
providing a platform for quantum computing [44]. Al-enabled methods are becom-
ing increasingly important for studying quantum materials, due to the complexities
and rich physics present in these materials. Al tools have the potential to drastically
improve the efficiency of experimental and computational studies and can be used to
create, analyze, and visualize high-dimensional heterogeneous data collections [45].
Below we discuss several venues where Al tools can provide a significant boost in the
research of new and existing quantum materials.

11.2.5.1 Search and Analysis of Computational Materials Databases

Density functional theory (DFT) remains the workhorse of computational mate-
rials science and has been combined with ML algorithms to predict conventional



Machine Learning for Materials Science 211

materials properties such as melting temperature, band gap, shear modulus, and heat
capacity [46]. Similar approaches have been utilized to search for quantum states in
various materials. ML methods provide a systematic way to extract important pre-
dictors of materials properties from complex high-dimensional data of DFT calcula-
tions, creating ML models that can be used to filter through existing crystal structure
databases in search of potential candidates. For example, structural, electronic, and
band structure properties data from a materials database were used to create a set of
“fingerprints,” which were then utilized to create ML models for the critical tempera-
ture of hundreds of superconductors [47]. Such models can be used to fast screening
of hundreds of thousands of existing and potential materials stored in computational
databases created by high-throughput DFT methods.

11.2.5.2 Improve the Accuracy and Throughput of Ab Initio Methods

DFT is the most widely used computational method for simulating materials’ proper-
ties, but it has several approximations that limit its accuracy for properties relevant
to quantum materials. DFT is also resource hungry, and a blanket calculation of
all properties of all compounds is not currently feasible. Integrating Al methods
improves the approximations in the ab initio calculations and helps produce more
accurate results [48,49]. Alternatively, ML can reduce the computational cost of
ab initio methods, thus significantly enhancing the throughput of computational
materials screening. For example, Al has been used to improve the accuracy of the
Allen-Dynes approximation [50], a commonly used formula for predicting the criti-
cal temperature of electron-phonon paired superconductors, reducing the number of
required DFT calculations and speeding up the discovery of novel superconductors.

11.2.5.3 Search for Stable Phases with Properties
Relevant for Quantum Materials

Some types of strongly correlated materials, like superconductors and heavy fermion
metal oxides, have been extensively studied for decades and amassed a significant
number of systems and experimental data to work with. Other types of quantum
materials, like multiferroics and materials with intrinsic topologically nontrivial
states, while known for about the same period of time, only recently gained attention
from the scientific community thanks to the development of advanced characteriza-
tion techniques [40]. As such, only a handful of such materials are available for
researchers. To facilitate the discovery of new materials, Al tools were developed
to search for various indicators, like symmetry and materials chemistry in crystal-
lographic data information, to automatically screen for new topological insulators
and semimetals [51,52]. Another fertile ground for finding new quantum material
systems is recently discovered 2D materials like graphene, which offer a wealth of
potential for technologies such as electronics, sensing, and energy storage. High-
throughput DFT has been used to compile publicly available databases of potential
2D materials, while ML models have been used to predict properties important for
the synthesis of such materials, i.e., exfoliation energies, formation energies, and to
classify them as having low, medium, or high stability [53]. These models have been
used to discover materials with specific properties, such as those suitable for photo-
electrocatalytic water splitting [53].
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11.2.5.4 Making Predictions from Known Materials

Large databases of experimental materials data, such as the phase equilibria diagram
and the inorganic crystal structure database (ICSD), are becoming more accessible
to researchers. Al approaches are being increasingly applied to such experimen-
tal materials data to build models for making predictions. The pioneering work by
Villars and Phillips in the 1980s used only three stoichiometric descriptors to clus-
ter the 60 superconductors with 7,> 10 K known by then in three distinct groups
and made predictions for potential high-temperature superconductors [54]. In more
recent work, a neural network was trained using the ICSD database to predict crystal
structure information [55] and then group materials according to their similarities
in structure and composition, providing a list of potential materials sharing these
similarities with known superconductors and topological insulators [55]. Creating an
experimental database of structures and properties of quantum materials, however,
is a significant challenge due to the manual effort required to extract data points
from published articles and the lack of uniformity in experimental characterizations
across different groups of researchers. Emerging Al-driven automatic generation
of databases can provide an alternative. An example of this is the recently created
database of almost 40,000 Curie and Néel phase-transition temperatures of mag-
netic materials produced from text data in articles using natural language processing
(NLP) and related ML methods [56].

11.2.5.5 Extracting “Hidden” Knowledge from
Materials Characterization Data

Modern materials characterization instrumentation and computing technology
advances have enabled data collection on a much larger scale and with higher preci-
sion than ever before, and even a single measurement of one material can generate
large volumes of high-dimensional data. This has created the challenge of navigating
the vast amounts of data generated in real time while also opening new possibili-
ties for research. ML has been used to augment traditional characterization methods
helping to analyze noisy and complex data. For instance, by applying ML methods
to the angle-resolved photoemission spectroscopy (ARPES) data of optimally doped
cuprates [57], researchers discovered a hidden feature in the spectra, clarifying the
role of energy dissipation and quantum entanglement in the superconducting phase.
Another work reported the development of a neural network-based classifier trained
on X-ray absorption spectroscopy (XAS) data, which was designed to distinguish
topological materials from trivial ones [58]. Given that XAS is a widely used charac-
terization technique, such a tool would greatly expedite the experimental identifica-
tion of topologically nontrivial materials.

11.3 GAPS AND BARRIERS TO IMPLEMENTATION

ML has the great potential, and this chapter only provided a few examples where
ML was used to accelerate and enable materials discovery. There are several more
applications in the field of materials science where ML’s modeling and prediction
capabilities can be beneficial. However, there are several gaps and barriers for ML
to be implemented in the areas of materials science. Applying ML approaches to
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materials science is an interdisciplinary effort, but some training is needed to mate-
rial science engineers and scientists to acquire some ML knowledge and skills. In
order to achieve this, some textbooks and other technical resources should be devel-
oped at an appropriate level where the material science community can understand
and use them for their research. Developing curricula and integrating ML approaches
to course modules can help train the students to get basic understanding of ML
approaches in materials science. One of the biggest challenges related to the applica-
tion of ML technologies for materials science is the lack of extensive databases to
train, which can influence the performance of ML models. Also, the limited data
from multiple sources can also be challenging to integrate as each of these data
may produce conflicting results when ML models are applied. The interpretation of
the ML models for decision-making is another challenge. The ML techniques are
typically developed by data scientists and computer science experts, but the materi-
als scientists need interpretable models so that they can understand the significance
of the models to optimize the process. Even with several challenges, the ML for
materials science still provides good opportunities for researchers to design, opti-
mize, and predict properties for various applications. While using Al in drug design
has become a common approach, its application to the drug-delivering materials is
still in its nascent state. The AI/ML methods address the major challenges of drug
delivery such as huge diversity of particles, heterogeneity of biological targets and
environment, large and incomplete datasets, and integration of “‘smart” components
into nanorobots. The major gap in the practical application of AI models is the lack
of user-friendly software for their implementation and the lack of availability of the
already trained models ready for further training and making practical predictions.
Further, the wide variety of the developed Al models constitute its own parameter of
optimization that may be handled by a meta-AI method to help researchers to choose
the best Al model for their specific material and target.
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12.1  INTRODUCTION

Machine leaning (ML) methods have made great contributions to 2D materials sci-
ence and engineering as evidenced by the collection of works presented in earlier
chapters. ML technologies are transforming the way scientists design materials by
managing the complexity of vast space of options that need to explored. Yet there are
several challenges that must be addressed while working with ML methods. Most ML
methods such as neural networks need large quantities of training data that is of high
quality so that millions of parameters can be tuned to obtain an accurate model. With
small size datasets, these techniques may result in overfitting. For example, building
a semantic segmentation model requires thousands of images in the training data-
set. Such large datasets may not be easy to obtain from the 2D materials domain,
where large training datasets may need expensive manual processes and specialized
equipment to collect the data. Even in cases where large training datasets are avail-
able, the dataset needs to be properly labeled and should be largely free of noise. For
ML tasks such as semantic segmentation and object recognition, labeling a dataset to
obtain training and testing datasets can be tedious. For an image semantic segmenta-
tion task, each pixel in an image in the dataset must be assigned a class. The most
popular dataset for the semantic segmentation task, the CoCo dataset (https://opencv.
org/introduction-to-the-coco-dataset/), contains 1.5M labeled images with 80 catego-
ries including ‘car’, ‘motorcycle’, ‘stop sign’, etc., and the images in this dataset do
not need special expertise to label the dataset. However, labeling datasets in the 2D
Materials domain needs domain expertise (e.g., distinguishing oxidized 2D material
surface from its pristine counterpart in an image, and labeling the pixels accordingly)
and may not be readily available. Moreover, multiple experts may need to label an
image to account for human biases, and these multiple labels for each pixel need to be
reconciled to decide which label is the correct one for each pixel in an image. Finally,
once an ML model is obtained, the modeled results must be carefully analyzed by the
domain experts to plan next steps, such as learn the model for a different task (image
classification may be changed to object detection), prepare the training data again for
obtaining a better model (this is in case if the model accuracy is unacceptable to the
domain scientists), or make a plan to validate the model observations in the laboratory.
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For ML methods to be effective for designing materials and discovering their
properties, scientists must embrace two central notions—data management and
validation of ML results in the lab and ultimately in a real-world setting. In this
chapter, we present some research directions that will enhance the effectiveness of
ML-driven materials discovery. Machine learning, as a subfield of computer science,
is growing leaps and bounds, and many of these advances will not be covered in this
chapter. Instead, we select a few relevant directions that are based on the relevant
case studies conducted by the authors in their recent research projects (e.g., National
Science Foundation OIA # 1920954, 1849206).

12.2 LEARNING WITH SMALL TRAINING DATASETS

For ML-assisted materials design to be successful, we need to contend with the issue
of small training datasets. In this section, we describe some of the popular ways in
which this issue can be dealt with.

12.2.1 DATA AUGMENTATION

When we have a small dataset, we may be able to augment it with artificially generated
data with similar properties as the original dataset. This process is called data aug-
mentation [I]. As an example, for image-based ML tasks, standard data augmentation
methods include augmenting the dataset with random crops, zooms, and mirror-image
flips of the images from the original dataset. For text datasets, augmented data can
be generated by inserting random characters at random locations in the documents in
the original dataset. The training samples obtained from augmentation will carry the
labels over from the original sample they were generated from. Data augmentation
has been shown to significantly improve the performance of ML models [2,3]. This is
because the data augmentation methods generate a new training instance with proper-
ties similar to an instance from the original dataset. Data augmentation is a popular
technique that is commonly employed in ML pipelines currently.

For engineering and health domains, there is a tremendous amount of domain
knowledge in terms of physical and chemical laws which can be useful to gener-
ate data for augmentation purposes. Domain scientists have traditionally relied on
domain-knowledge-driven simulation models for gaining a better understanding of
the physical and chemical phenomena and for discovering new hypotheses. Even
though simulation models make simplifying assumptions of the physical phenomena,
they have been shown to capture the laws of a domain well enough to simulate dif-
ferent types of scenarios satisfactorily. In engineering domains, simulation models
can be used to generate synthetic data wherever possible, combine it with data col-
lected from the laboratory experiments, and use the data as training data for model
building. The predictions from an ML model can be used to enhance the simulation
model as well.

As discussed in the earlier chapters, recent works have demonstrated the seamless
use of ML algorithms for accelerating the discovery of 2D materials. Such algo-
rithms have already been implemented as online web tools for use by broader com-
munities [4]. As readers may have recognized, these tools have been primarily built
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using theoretical data sets (e.g., geometrical structures) that can be obtained from the
existing databases (e.g., Inorganic Crystal Structure Database and Crystallography
Open Database). The screening criteria in these tools are also often based on the-
oretical values (e.g., binding energies <130 meV A2, which can be derived using
Einstein’s Theory of Relativity calculations). However, generating experimental data-
sets that describe performances of 2D materials can be cumbersome. For instance,
2D materials are being explored as next-generation protective coatings for control-
ling microbiologically influenced corrosion (MIC) [5]. Considering the extensive
effort for designing, developing, synthesizing, and characterizing the performance
of a brand new 2D material, the overall process can take several years of time. If
one were to test 1000 promising 2D materials with 1000 different microbial species
(each representing one biotechnological application), the time required to complete
the performance assessment is significant. Generating experimental datasets on MIC
prevention performance of the 2D coatings is a complex, expensive, and laborious
process. These constraints also restrict the duration of these MIC tests to few weeks,
which cannot adequately help determine their performances (i.e., service lives) that
are expected to last for several years. This situation also has forced many life cycle
assessment (LCA) modeling to rely upon the assumed service lives of these coatings
while quantifying their potential sustainability benefits [6,7]. Some of these issues
can be alleviated using data augmentation methods. For instance, a recent study by
authors’ group leveraged deep learning methods (e.g., variation autoencoder, genera-
tive adversarial network (GAN) models) for addressing issues with lack of adequate
experimental datasets required to predict the electrochemical performances of MIC-
resistant graphene coatings [8].

12.2.2  SEMISUPERVISED LEARNING

Semisupervised learning approaches have been shown to be effective in alleviating
the need for large, labeled training datasets. These approaches learn a high-level
structure from the unlabeled data and combine the learned structure with a small
amount of data for a given ML task to learn a model for that task. Note that semisu-
pervised approaches need a large amount of high-quality data for building a model.
However, only a small portion of it needs to be labeled.

An obvious semisupervised learning approach is self-training where the small,
labeled dataset is used to train a model M and use that model to infer labels for
the unlabeled samples in the larger dataset. The labels inferred from M are typi-
cally referred to as pseudo-labels to differentiate them from the ground-truth labels
obtained from domain experts. Then a new model is obtained using some combina-
tion of the small, labeled dataset and the data with pseudo-labels. This process is
repeated some number of times depending on the user or some convergence metric.
Another variation of self-training is to generate pseudo-labels for random training
samples and include them in the training set for next model. Although self-training
can build models using small-size training datasets, it suffers from what is known
as confirmation-bias [9] where incorrect predictions in pseudo-labels inferred for the
unlabeled samples can make the accuracy of models built using the repeated model
training worse over time.
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There are many ways of making the unlabeled data useful when a model with
small amount of labeled data. These include semisupervised learning approaches that
include entropy minimization, consistency regularization, etc. Please see [1] for a
detailed description of these techniques. Active learning is a form of semisupervised
learning where the goal is to use as few training samples as possible for learning a
model with reasonable accuracy. Informally, an active learning-based learning algo-
rithm queries an authoritative source—an human expert or a function over the labeled
dataset—to learn the correct prediction for a given sample. See [10] for more details.

12.2.3 TRANSFER LEARNING

Transfer learning is employed when an existing deep neural network model can be
used for a new yet a similar problem. As an example, in a recent study, transfer learn-
ing was used to learn representations of microstructures and then used the resulting
model to discover the underlying annealing conditions [11]. Learning microstructures
is typically referred to as the source task, and the task of identifying the annealing
conditions is referred to as the rarget task. Transfer learning transfers information
from the source dataset to the target dataset via a shared set of parameters [1].

In transfer learning, a large source dataset is used to learn a model for the source
task. This model is then fine-tuned on a small dataset belonging to the target task.
Transfer learning assumes that the training instances for the source and target task
are the same (e.g., both are RGB images or numeric vectors, etc.) or that the train-
ing instances of the source task can be easily converted to the target data format.
However, the instance labels for the source task and target task can be different. In
order to use the model for the source task for the target task, weights between the
output layer and the last hidden layer of the model for the source task are fine-tuned
using the training instances of the target task (for details, see Decost). Therefore,
transfer learning leverages the large source training dataset for building a deep neu-
ral network and uses this model for a target task by modifying only a part of is using
the small target dataset.

12.2.4 Few-SHOT LEARNING

Few-shot learning [12] refers to ML algorithms that can learn to predict from very
few labeled training samples, much like humans do. If a model can learn from a sin-
gle labeled sample, then it is called one-shot learning, and if no labeled samples are
needed, then it is called zero-shot learning. Here, we illustrate how the few-shot clas-
sification method works. Few-shot classification method is given an abundant train-
ing sample for base classes and is asked to learn predict previously unseen classes
using a limited amount of labeled samples. Few-shot classification approaches are
usually evaluated using C-Way N-shot classification in which a model is expected to
classify C classes using N training samples for each class where N and C are small.

Few-shot classification can employ transfer learning to build a model from the
abundantly available base class data and then fine-tune the model using the labeled
data available for the C (previously unseen, unique) classes. Few-shot classification
can also use meta-learning which means learning to learn. For more details on this,
please see [1]
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12.3 PHYSICS-INSPIRED NEURAL NETWORKS

Physics-inspired neural networks (PiNNs) were inspired by the challenges of collect-
ing large amounts of data needed for employing deep neural networks in complex
biological and engineering domains. Typical deep neural networks use the training
data to identify a nonlinear function that maps a training instance, which is usually a
high-dimensional vector, to a label accurately. There is an abundance of prior domain
knowledge in biological and engineering fields that is not considered by a typical
neural network while learning the nonlinear map. Not incorporating the domain
knowledge has been shown to lead to predictions that are inconsistent with the exist-
ing domain knowledge [13]. Having large amounts of training data that reflects the
domain completely can mitigate these inconsistent predictions which is expensive or
even impossible in biological/engineering domains.

Originally, automatic differentiation was incorporated into a deep neural network
to obtain a PiNN. The process of learning the nonlinear map between input vec-
tors and the set of labels in a PiNN is constrained to obey any symmetry, invari-
ance, or conversation principles that underlie the training data, where the principles
are captured as nonlinear partial differential equations. We can characterize the
incorporation of prior domain knowledge into a deep neural network in three ways
[14]: (1) Physics-guided neural networks (PgNNs) use off-the-shelf deep learning
networks to construct an appropriate mapping from input vectors and labels which
are collected from computations and experiments and curated to ensure compliance
with the domain’s rules and knowledge. (2) PiNNs use loss functions consisting of
residuals of physics equations and boundary constraints to build a model that satisfies
the domain constraints. PgNNs suffer from lack of robustness and generalizability
whereas PiNNs are not suitable for emerging domains where the differential equa-
tions that govern the complex dynamics underlying the domain are not fully under-
stood. (3) So, physics-encoded neural networks have been proposed where the prior
knowledge is encoded into the core architecture of a deep neural network.

Please see [14] for a great comparison of the capabilities of PgNNs, PiNNs, and
PeNNs. PgNNs can be used to learn mappings from sparse data to discover latent
dependencies among the input data points and for interpolation and still need large
datasets as their learning really does not incorporate any rules of the domain. PiNNs
can be used to discover latent dependencies, potential boundary conditions, etc.,
from a training dataset; however, the loss functions in these networks can destabilize
the learning process. PeNNs can make complex extrapolations based on the input
data, how they suffer from low convergence rates. Nonetheless, PgNNs, PiNNs, and
PeNNs have expanded the deep learning network applications to complex scientific
and engineering applications greatly.

12.4 DIGITAL TWINS

The concept of a digital twin is not new and has been around at least since 2003
[15] and formalized in a paper by the National Aeronautical Space Administration
(NASA) in 2012 [16]. For our purposes, the following definition would serve well—
‘A Digital Twin is a virtual instance of a physical system (twin) that is continually
updated with the latter’s performance, maintenance, and health status data throughout
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the physical system’s life cycle’ [17]. With recent advances in Al, simulation, and
data management, building a digital twin of a physical process/asset is becoming a
reality. Because of tight coupling, a digital twin of a physical asset/process can be
used to make predictions about how the physical process will evolve under different
conditions.

12.5 DATA-CENTRIC ARTIFICIAL INTELLIGENCE

Traditionally, for an ML task (such as regression, segmentation, etc.), it starts with
a dataset containing labeled, training instances, and produces the best model for
the given dataset, i.e., the one that generalizes best on the test dataset. For learning
the best model for the given dataset, one may try different ML algorithms, different
deep learning architectures, and tune the hyperparameters (parameters of the ML
algorithms) to obtain the best model. This approach is said to be model-centric
artificial intelligence as improving performance on Al task focuses on improvement
of the model. In contrast, the data-centric artificial intelligence (DCAI) is about
AT algorithms that understand and, if needed, modify the data, so that Al models
can be improved. DCAI focuses on systematically changing the dataset so that the
model performance on an Al task can be improved [18,19]. The difference between
model-centric and data-centric Al approaches as explained is visually shown in
Figure 12.1.

As ML tasks are essential for any organization, production machine learning plat-
forms have become necessary for supporting ML tasks [20]. Production machine
learning platforms support continuous data collection and model building. As new
data and observations become available in emerging domains such as 2D materials
engineering, these need to be incorporated into ML models to enhance their predic-
tive power. Although ML models perform well on the training and testing data used
for building the model, they tend to perform poorly on new data. Therefore, it is
important to build new models continuously.
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Building an ML model once requires several tasks to prepare the data: explore the
dataset to understand what it contains, fix fundamental errors such as missing val-
ues, and transform the data into a format needed for the ML technique. As new data
become available or generated by experiments, the model must be updated to reflect
the new data. For some ML tasks, the training data needed for an ML task may be
available in different data sources and in different formats and will need additional
data operations to collect the data. The quality of a training dataset also plays a major
role in the quality of the ML model learned from that training dataset. The quality
of training data must be sufficient to ensure that the ML model learned from that
training dataset is robust (i.e., will not produce erroneous results) and unbiased (i.e.,
will not always produce the same outcome). Therefore, DCAI provides a fuller view
of all technologies needed to build a production machine learning platform to build
accurate and effective ML models with low cost and high efficiency.

The following issues are central to DCAI and are explained more in the following
sections.

1. Data collection and cleaning
2. Robust and fair model training
3. Continuous learning

12.5.1 DATA COLLECTION

Data collection issues for building an ML model include finding the right type of data
that is suitable for the task at hand. If one wants to build a model for identifying stop
signs in an image, the training set must consist of an image with and without stop
signs as well images with stop signs of different sizes and seen from different angles.
This kind of data may not be readily available in large quantities. The relevant data
may need to be discovered and labeled properly, and perhaps added to some existing
data. Data discovery is the process of searching for data relevant to the ML task at
hand. Data discovery methods search for data in data storages of an organization or
over the web. For a 2D materials expert, data may be available in experimental and
observational data storages, publicly available data banks, and research publications.
All these data storages may have diverse data which must be processed to discover
the attributes and values that are relevant to the ML task. Data discovery tools such
as the Google Data Search can be used to search for datasets that are relevant to
the ML task. For tabular datasets (such as CSV files containing experimental mea-
surements/settings, descriptions of material attributes, etc.), the data discovery tools
work especially well because these tools can suggest other features and records that
can enhance the original dataset. Most public data sources such as PubMed offer
functionality (APIs) to download relevant datasets whereas data repositories offer
downloadable datasets.

Once the data are collected, it must be cleaned to make sure that each instance in
the dataset is complete (no missing values) and contains only valid values. Depending
on the type of data in the training dataset, the operations to clean the data collected
and make sure it is valid will be different. For example, for research publication data-
set where each training instance is one paper abstract, data cleaning operations make
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sure that all instances have titles, publication dates, etc. Data validation operations
make sure that the values in the publication date for all instances in the dataset are of
valid format, and the number of pages is a positive integer, etc.

The data collection and validation tasks are more complex for supervised learn-
ing tasks. In this case, it is important that the training dataset does not have selection
bias, i.e., the dataset used for training is drawn from the distribution of the domain
where the model will be used for prediction. Training datasets suffer from selection
bias if the dataset does not reflect instances as the domain evolves or if it does not
reflect all classes/categories present in the domain. This may happen if the data are
collected in a biased manner, for example, sales revenue data collected only during
the holidays, or images of a brain from brain cancer patients, etc., and these situa-
tions must be avoided so that the training dataset is free of selection bias. In terms
of how much training data is to be collected for a supervised learning task, one can
use statistical methods.

For supervised learning tasks, each item in the dataset needs to be labeled as
well. If there are existing labels, semisupervised learning methods can be used to
predict labels as explained in Section 12.2.2. Otherwise, each training instance must
be assigned a label by a human annotator. The goal of the data labeling process is to
assign a label to each data instance with high confidence. Since human annotators
may not always agree on a label (whether an X-ray image shows disease) for a given
data instance, each instance in the dataset may be assigned a label by multiple anno-
tators and then is assigned one of those labels as the final label after curation. One
simple method to assign a label for an instance is to simply choose the label assigned
by most human annotators (if it exists) or choose a label computed as a function
of the individual annotations (such as average or maximum value of the individual
annotations). We can also define functions to assign a confidence score for each label
assigned to a data instance or a confidence score for each annotator as well.

12.5.2 RoBuUST AND FAIR MODEL TRAINING

Machine learning tasks build models from training data that describe the behavior
of some domain phenomenon. Once the data are collected, cleaned, and labeled, the
next step is to build an ML model that learns a function from the training data to
predict some value or property about the phenomenon. Even after careful cleaning
and preparing the data to train an ML model, there are no guarantees that the cleaned
data are, in fact, free from noisy and missing instances and features. Often times,
some behaviors of the phenomenon (e.g., properties of a metal at an extremely low
temperature) are missing entirely from the training data or some features that are a
part of capturing the phenomenon are missing (e.g., the following feature—number
of days an item was on sale is important to predict the revenue for that item). For
these reasons, an important question that arises is ‘can we build a robust model from
the training data, one that can learn to predict from the training data despite the noisy
and/or missing records or features in the training data?’.

Noisy training data (data containing noisy instances where an instance contains
wrong values for its features) are typically thought to be a data poisoning attack on
the training dataset by an adversary. Adversarial training can be used to improve
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the robustness of a model by using modified objective functions to learn a model that
predicts different classes for clean data and poisoned data. Other method to learn a
robust model in the presence of noisy features is to learn an additional model with
reduced set of features. A poisoned instance may be assigned a different label by the
original model and the reduced model resulting in robust training.

Adversarial machine learning [21] is a popular area of research that devel-
ops methods for robust model learning in the presence of the attack paradigms as
described below:

1. Training-Time Adversarial Attach (Backdoor Attack): It aims to gener-
ate a model, an adversarial model, such that it performs well on data that is
not poisonous (i.e., clean) while predicting an adversarial sample as belong-
ing to an adversarial class.

2. Deployment-Time Adversarial Attack (Weight Attack): Given a benign
model deployed in a hardware device, the attacker aims at slightly modify-
ing the model parameters in memory so that obtain an adversarial model so
that adversarial inputs or some benign samples are labeled as adversarial
sample, whereas other benign samples are labeled as ground truth labels.

3. Inference Time Adversarial Attack: Given a benign model, the attacker
aims at modifying a benign sample to obtain a corresponding adversarial
sample such that the prediction is different with a ground-truth label or the
same with an adversarial label.

Now, let us talk about noisy labels which are very common because typically manual
methods are used to label datasets, and therefore, it is common to have missing and/
or incorrect labels. Here, we assume that the training instance contains correct fea-
ture values but a wrong label. Sometimes, the human annotators simply disagree on
which label to assign for a training instance. Robust training in the presence of noisy
labels received a lot of attention because it is a commonly occurring problem in sev-
eral domains. There are techniques for robust training for every step of the training
procedure. Various sample-selection techniques are proposed for choosing a subset
of the training dataset that will lead to robust training. Different neural architectures,
and loss computing and loss adjustment functions, as well as robust regularization
functions have been proposed for robust model building [see references for more
information].

Semisupervised and unsupervised approaches are typically used to deal with
missing labels. Semisupervised approaches assume that the dataset contains clean
labeled data together with unlabeled (or incorrectly labeled) data. Methods such as
Mean-Teacher [9] and MixMatch [22] are used to build models in these cases. For
unlabeled data, techniques such as self-supervised learning and generative models
are used [9,22].

We now focus on model fairness where biased data may cause a model to be
discriminating. Here, the goal is to address bias in training data. Data bias can be
addressed by preprocessing the training data. Here, data can be repaired to reduce
bias or use the available data to generate more unbiased data using generative models
such as generative adversarial networks or GANs. Model fairness can be added as
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a constraint to the model’s learning function, which may not always be feasible. In
cases where data or model cannot be repaired to ensure fairness, the model predic-
tions may be postprocessed to mitigate biased predictions which is not generally
advisable.

The training methods for robust and fair model training address different data
flaws. There are recent efforts to combine the two training methodologies to build
models that are both robust and fair. Fair training can be made more robust by
addressing the scenarios where the attributes that contribute to unfairness are noisy
or missing. Similarly, robust model training can improve fairness by using adversar-
ial training, removing anomalies, and spurious features. Emerging techniques such
as FR-Train provides a framework that combines a classifier, a discriminator for fair-
ness, and a discriminator for robustness to build a model that is both fair and robust.

12.5.3 CoONTINUOUS LEARNING

Given a data collection, one can learn to build many models from it to predict the
phenomena in several different scenarios. However, as new data become available
from experiments and other data sources, it is important to monitor the data con-
tinuously to check if the old training datasets and models can be improved and/or
new models are needed for predicting new phenomena. Lifelong learning (LL) has
been proposed to build models that learn as humans do [23] which retain learned
knowledge from previous tasks and use it to help future learning. A simple method
for life-long learning is the leader clustering algorithm which works as follows.
Suppose we have clusters over all previous instances. When a new instance arrives,
we add it to one of the previously computed clusters that the new instance is most
similar to. If no such previous cluster exists, we create a new cluster with the new
instance. Note that in this case, there is no constraint on the number of clusters.
Semisupervised learning method is the most appropriate method for continuous
supervised learning. We use the model and the already available labeled data to
label the newly generated instances.

It is important to identify, as the new data become available, if it is significantly
different from the old data, i.e., the statistical distribution of the new data is different
than the old data. If that is the case, it is important to rebuild the models from scratch
instead of tweaking them to include the new data. Based on the knowledge shared by
the tasks, the LL approaches’ knowledge can be of two types [23]. Global knowledge
is where the tasks share a global latent structure and the same is used for the new
task. Local knowledge is where each task has a specific local knowledge and that
required for the new task can be chosen from them. The categorization tasks can also
be done from the type used in the LL approaches. Independent tasks are those where
the tasks are learned independent of each other yet can share some latent informa-
tion. Dependent tasks usually add a new class each time with a new task in continu-
ous supervised learning and hence depend on previous tasks. The architecture hence
has to accommodate the previous knowledge of the tasks rather than a simple data,
task, learner, and output model of isolated (regular) machine learning paradigms.

The main components of a generic LL approach consist of a knowledge store,
knowledge learner, or the new task model learner [23,24]. The components and flow
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of the process are shown in the architecture in Figure 12.2. The knowledge learnt
from the past tasks is stored into the knowledge store, and the knowledge required
for the new tasks is acquired from the same. The new knowledge learnt for the new
task from the current data is then stored in the knowledge base for future tasks.
User output is the required task output like a model or results of the current task.
The architectures may vary with additional components as the setting demands in
different learning scenarios. The knowledge base holds the past knowledge such as
models, any relevant meta knowledge from the data, output of the tasks such as new
classes generated and learnt from the previous tasks.

Life-long learning research can be grouped into four main areas—supervised,
unsupervised, semisupervised, and reinforcement learning [23,25,26]. LL super-
vised learning has been designed for classification, object detection, sentiment clas-
sification NLP problems, and cumulative learning, where old classifiers are updated
with new classes using neural networks. The LL unsupervised learning research has
mostly focused on topic modeling and information extraction problems. The top-
ics extracted in previous tasks from multiple domains can be used for future tasks
and stored into the knowledge base. Semisupervised learning setting for LL has
been studied as a never-ending language learner and has been used for information
extraction tasks actively performing the extraction by crawling the web to build large
knowledge bases from various domains. LL reinforcement learning has enabled
learning from multiple and dynamic environments incorporating previous tasks and
cross-domain experience into agents improving their decision-making.

With increased progress in LL, to achieve human-like learning capabilities by
learning from continuous data shifts and previous knowledge, there are challenges
LL entails that need to be addressed [23,27]. LL requires to store large amounts of
knowledge from previous tasks continually to assist future tasks and is one of the main
challenges in LL approaches. It would be infeasible to save such huge knowledge and
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hence might require further processing to determine what kind of knowledge should
be stored. Part of such processing might be to decide if the learned knowledge is
important that might be useful for future tasks and discard unimportant information.
Also minimizing any errors in the knowledge is another challenge in LL approach.
New tasks may create errors in the knowledge and would propagate to all the future
tasks corrupting the knowledge and require techniques to mitigate such errors. Apart
from storing the knowledge, representing such huge data is also inevitable and hence
requires knowledge representation techniques to address the challenge.

12.6 GPT MODELS

With the introduction of transformer models, natural language-processing models
have seen astonishing improvement, revolutionizing the AI community by alter-
ing the dynamics of NLP models usage on the internet. Open AI's GPT (generative
pretrained transformers) models belong under such a category. BERT (bidirec-
tional encoder representations from transformers)-pretrained foundation models are
trained on large datasets and applied to various downstream tasks, often trained for
a specific kind of downstream task separately [28]. GPT models have approached
this task in two stages: (1) unsupervised pretraining, leveraging large unlabeled text
corpus for training the models rather than using fully labeled datasets for discrimina-
tive training of specific tasks. (2) Supervised fine-tuning, GPT models learned from
stage 1 are further fine-tuned requiring only minimal labeled data for specific down-
stream tasks. This architecture has not only observed a boost in performance traits
but also leveraged large unlabeled data resources from various domains available in
abundance, making it a semisupervised learning paradigm. This has improved the
generalization capabilities of GPT models for a wide range of tasks such as sum-
marization, classification, translation, sentiment analysis, question answering, and
more. In order for the model to adapt to these varieties of tasks, task-specific input
transformations are performed by converting input data into token sequences. GPT
models have also shown improved performance in modeling long-range structures
in the data. They have also demonstrated zero-shot performance on various tasks.

The first GPT models were pretrained on BooksCorpus containing 7000 unpub-
lished books [29], on a 12-layer transformer architecture as shown in Figure 12.3,
comprising decoder-only transformer and masked self-attention heads, 768 encoded
tokens dimension for word embedding, trained with 117M parameters. Inspired by
the performance of the model trained on large dataset and the architecture, GPT-2
was modeled to be trained on larger dataset with even more parameters attributing to
a larger model. With its high-capacity language model, GPT-2 achieved significant
improvement in zero-shot task transfer performance setting a baseline. GPT-2 was
constructed with 48 layers model [30], with a word embedding vector dimension of
1600, trained with 1.5B parameters on WebText dataset of 40GB with over 8 million
documents. Unlike GPT, GPT-2 is not fine-tuned for any specific task rather used in
zero-shot manner.

These language models provided a foundation inspiring to build models with
larger capacity, trained on larger datasets from different domains to generalize
on multiple tasks in a zero-shot setting, scaling the language models toward large
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FIGURE 12.3  Architecture of GPT model with 12-layer decoder only transformer.

language models like GPT-3. This scaling has been observed to achieve state-of-the-
art performances in NLP tasks including question-answering, translation, on-the-fly
reasoning in a few-shot, and zero-shot setting. GPT-3 is an autoregressive model
built with 96 layers [31], increased embedding vector dimension of 12888, trained
with 175B parameters on five datasets including Common crawl, WebText2, Booksl,
Books2, and Wikipedia. Though GPT-3 has achieved impressive performance on
different language model datasets and tasks in quality text generation for news arti-
cles, closed-book question answering, LAMBDA dataset testing long-range depen-
dencies, translation tasks, reading comprehension, common sense reasoning tasks,
still comes with weaknesses [31,32]. GPT-3 faces limitations in text synthesis while
synthesizing long sentences by generating repeated sequences. Also, the algorithmic
limitation where all the tokens are weighed equally leading to inability in differenti-
ating important from unimportant is some of its challenges.

While the first two GPT models have seen their applications in text completion,
classification, and text-generation tasks, GPT-3 model also found its application in
conversational Al achieving human-like responses in generating social media con-
tent and chatbots. GPT models have also been used in material science for material
composition generation [33]. GPT-3 models have also been applied in biomedical and
healthcare domain as an automatic agent providing instant customer service through
conversational Al answering trivial questions [32]. GPT-3 and its later version GPT-
3.5 have also been effectively used in extracting and comprehending research papers
from material science and engineering related databases, and also in interpretative
and predictive material science applications including protein folding, molecular
property prediction, and material discovery [34,35].

ChatGPT is one of the large language models that have attracted enormous
attention of the world for its reasoning, text-generation capabilities in generating



230 Machine Learning in 2D Materials Science

human-like text [36]. ChatGPT is built on GPT-3.5 version and is a sibling model of
InstructGPT. InstructGPT [37] is a language model trained to follow instructions and
provide response with a reinforcement learning human feedback. The input prompts
used for the supervised fine-tuning of the GPT-3 model are those previously submit-
ted to OpenAI API. A reward model is used to incorporate the reinforcement element
where the responses generated by the fine-tuned model to these user prompts are
rated by humans and are used to train the reward model. A proximity policy optimi-
zation (PPO) is used as the reinforcement learning model policy of maximizing the
reward. ChatGPT differs from InstructGPT in terms of data collection setup. Within
a short span of introduction of ChatGPT, it has found enormous applications in the
field of education, healthcare, literature, and many more [38]. ChatGPT has been
used for summarizing research papers, in providing experiential learning for students
[38], common sense reasoning, software development, and translation being some of
many applications observed. GPT-4 [39] model has found to exceed ChatGPT in its
reasoning capabilities providing better responses with increased accuracy.

12.7 FUTURE DIRECTIONS IN USING ML FOR 2D MATERIALS

Here, we focus on digital twin technology (DTT) as an example for discussing rec-
ommended future directions to enable the use of ML for 2D materials research. DDTs
have been effectively used for capturing geometrical features and component-level
performances of many engineered systems [40]. Despite these successes, there exist
knowledge gaps regarding whether DTTs can be utilized for accelerating 2D materi-
als discovery. Like any other advanced materials, 2D materials and their composites
also represent complex a physical system, which requires analysis at multiple length
(e.g., nano- and microscale) and timescales (e.g., service life, seconds to years).
Considering that the 2D materials are characterized by nanoscale dimensions, the
analysis become even more complicated because the nanoscale physics for several
2D materials is yet unknown. For biological applications, unveiling the phenotypical
and genotypical responses as a function of such nanoscale phenomena is often dif-
ficult. To develop digital twins of 2D materials, especially for biotechnology applica-
tions, it is important to capture, model, and predict their performances (i.e., changes
in structure, process, and performance) under different processing histories (e.g.,
degradation over time in marine environments). Simultaneously, adequate infra-
structure will be required to integrate the 2D materials’ processing—structure—prop-
erty relationships with the biological response at a genetic level (i.e., omics response).

Focused research efforts will be required to capture such integrative responses at
different spatial and temporal resolution scales. At a temporal scales, the 2D mate-
rials performances will be needed to capture at a shorter timescales (e.g., seconds
to minutes, interactions with proteins involved in conditioning phase), relative lon-
ger timescales (e.g., days to weeks, biofilm maturation), and longer timescales (e.g.,
years, macrofouling). It should be noted that the properties of 2D materials would
change over time, and hence, the 2D-material-microbe interactions at different tim-
escales may not be necessarily related to each another. At a spatial scale, heteroge-
neities across the length scale of 2D materials (e.g., defects, dopants, strain, edges,
and layer stackings) may result in unpredictable variations. Thus, any DTT of 2D
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materials, particularly in biological applications, will require a systemic approach
that has clear vision for the possible trade-offs in terms of multifunctional require-
ments at different length and timescales, which will further vary as a function of
environmental parameters.

To develop unifying and representative data sets for creating and training DTTs at
a systemic level, it is beneficial to have a single expert or group of diverse profession-
als guided by a single expert. Such a concerted effort should have clear understanding
on different 2D materials data modalities, which include physical and morphologi-
cal (based on microscopy and spectroscopy), mechanical (nanoindentation, micro-/
nanomechanical devices, pressurized bulge tests), electrical (current—voltage, Hall
effect, and 4-point probe tests), electrochemical properties (cyclic voltammetry,
electrochemical impedance spectroscopy), and biological responses (e.g., omics
interactions).

Complementary modeling efforts (e.g., DFT and MD simulations) should align
faithfully with these experimental measurements at selected time and length scales.
Comprehensive mathematical frameworks will also be needed to fuse the disparate
materials and biological datasets for assisting development of DTTs. The authors
firmly believe that such systemic approaches are possible by embracing convergence
research approaches, similar to the one adopted by the authors’ group in ongoing
research projects (e.g., data-driven materials discovery for bioengineering innova-
tions, NSF OIA # 1920954). This project intentionally blended diverse disciplinary
expertise (e.g., biologists, bioinformaticians, computer scientists, corrosion scien-
tists, environmental engineers, and materials scientists) in a concerted and recipro-
cal manner, where the overall efforts were focused on a single inquiry regarding a
grand challenge of exploring infinitesimally thin 2D coatings for addressing vex-
ing challenges caused by sulfate reducing bacterial biofilms. Readers are suggested
to review literature to gain a broader understanding on such convergence research
approaches [41].

To extend the digital twins to include 2D materials data over a hierarchy of length
scales, novel frameworks that tightly integrate the conceptual chassis with the cyber-
infrastructure are needed. Readers are encouraged to review such framework sug-
gested by Dingreville and his coworkers. This framework consists of the following
key elements: (1) principal component analysis and N-point correlation functions
(NPCFs), defined as generating statistical averages over N copies of the phenomena,
(2) a two-step Bayesian framework for performance prediction, and (3) a cyberin-
frastructure that leverages new material ontologies for managing multimodal mate-
rials data [42]. Such foundational elements have been reported to show a promise
for extending existing digital twins to incorporate key details of the material over
different length scales (i.e., atomistic to macroscale) [42]. In conclusion, although
the idea of implementing DTT for materials is at an infancy stage, their potential
promises can motivate the readers to explore them through a rigorous R&D effort.
Practicing professionals have also started exploring DTTs of materials in realistic
applications (e.g., monitoring marine fouling performance of protective coatings in
shipping industries). Such DTTs can provide stakeholders with indefinite access to
a real time and virtual monitoring of evolution of biofouling, including the early
warning monitoring system for onset of biofouling. This will allow the stakeholders
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to facilitate early interventions and well-informed decisions. To turn the DTTs into
a reality, it is also important to embrace advanced data collection technologies (e.g.,
internet of things and embedded sensors), data security guidelines, and finally, the
effective communication strategies (e.g., dashboard) to inform the promising ben-
efits and potential risks. Finally, advanced microscopy and spectroscopy methods
are needed to enable remote and viable monitoring of 2D materials properties at a
nanoscale.
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