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Data science and machine learning (ML) methods are increasingly being used to 
transform the way research is being conducted in materials science to enable new 
discoveries and design new materials. For any materials science researcher or stu-
dent, it may be daunting to figure out if ML techniques are useful for them or, if so, 
which ones are applicable in their individual contexts, and how to study the effective-
ness of these methods systematically. 

KEY FEATURES

•	 Provides broad coverage of data science and ML fundamentals to materials 
science researchers so that they can confidently leverage these techniques 
in their research projects.

•	 Offers introductory material in topics such as ML, data integration, and 2D 
materials.

•	 Provides in-depth coverage of current ML methods for validating 2D 
materials using both experimental and simulation data, researching and 
discovering new 2D materials, and enhancing ML methods with physical 
properties of materials.

•	 Discusses customized ML methods for 2D materials data and applications 
and high-throughput data acquisition.

•	 Describes several case studies illustrating how ML approaches are currently 
leading innovations in the discovery, development, manufacturing, and 
deployment of 2D materials needed for strengthening industrial products.

•	 Gives future trends in ML for 2D materials, explainable AI, and dealing 
with extremely large and small, diverse datasets.

Aimed at materials science researchers, this book allows readers to quickly, yet thor-
oughly, learn the ML and AI concepts needed to ascertain the applicability of ML 
methods in their research.
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1 Introduction to 
Machine Learning for 
Analyzing Material–
Microbe Interactions

Venkataramana Gadhamshetty,  
Parvathi Chundi, and Bharat K. Jasthi

1.1 � INTRODUCTION

Analogous to the silicon revolution in the 1970s where silicon-enabled miniaturized 
computing has transformed the field of information technology, especially by replac-
ing the obsolete centralized mainframes, advanced materials are also expected to 
revolutionize emerging industries. Such materials are expected to address health, eco-
nomic, and environmental challenges facing modern society. They are also expected 
to transform the performance of construction, defense, energy, environment, mining, 
healthcare, and manufacturing domains [1]. For instance, advanced materials that 
feature sustainability benefits can potentially mitigate the negative environmental 
impacts of current methods of material production. For instance, greenhouse gas 
emissions from material production using current technologies have reached 11 bil-
lion tons of CO2 equivalent, which represents a 120% increase compared with that in 
1995 [2]. Given the predictions of an increase in material consumption (62 Gt/year, 
current) to 100 Gt by 2030 [3], the financial and environmental burden can also be 
expected to increase accordingly. Advanced materials are also expected to alleviate 
recurring issues related to abiotic corrosion and microbiologically influenced corro-
sion (MIC) of materials. Assuming that advanced materials can significantly improve 
health, environmental, economic, and performance improvement benefits, there is 
a compelling need for embracing artificial intelligence (AI) and machine learning 
(ML) methods for accelerating the discovery and implementation of advanced mate-
rial systems.

Unusual nanoscale phenomena and associated properties of two-dimensional (2D) 
materials render them promising advanced materials in many technologically rele-
vant applications. Some of the desirable properties observed so far include low-profile 
thickness, low permeability, mechanical flexibility, and higher values of carrier 
mobilities, superconductivity, and optical absorption compared with their bulk coun-
terparts [4–6]. These properties render them candidates for serving high-performance 
barrier coatings [7–11], energy devices [12–16], catalysts [17–22], biosensors [23–26], 

https://doi.org/10.1201/9781003132981-1
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spintronics [16,27–29], and supercapacitors [30–33]. With the successful exfoliation 
of graphene in 2010 and its implementation in diverse applications, there has been a 
significant interest in discovering other promising 2D materials including hexagonal 
boron nitride (hBN), metallic carbides, nitride, and carbonitrides (MXenes) [34–36]. 
However, such a discovery and implementation process requires significant infra-
structure (human and hardware) and extensive efforts for extended periods of time 
(~10–20 years) [20], all with many odds of failure. ML methods, some of which are 
discussed in this book, can accelerate the discovery of new 2D materials and our 
ability to predict their properties without any apriori experiments.

Every material, equipment, and piece of infrastructure exposed to the natural and 
built environments are subject to degradation by physical, chemical, and biological 
processes, or their combinations. The prospects for degradation or corrosion are typi-
cally amplified in the presence of living microorganisms. Biofilms represent a robust, 
self-excreted extracellular polymeric substance that is known to encapsulate living 
microbial cells. Owing to the complex three-dimensional (3D) architecture, multi-
cellular community, and surface colonization lifestyle, biofilms are known to confer 
protection to the encapsulated cells against any known environmental stressor (e.g., 
antibiotics, disinfectants, turbulence, nutrient limitations, and extreme physical and 
geochemical conditions). Thus, biofilms are omnipresent, and they critically influ-
ence the performance of materials used in any agricultural, industrial, and human 
systems. The design and development of advanced materials, especially protective 
coatings for controlling biofilms and their MIC effects, should consider biological 
mechanisms along with typical cost and performance metrics. Such noninvasive 
coatings based on 2D materials can then be used to influence genotypical and sub-
sequently phenotypical responses (e.g., adherence state, quorum sensing, and MIC) 
in each biological environment. Recent works by the authors and their coworkers 
have demonstrated the use of graphene and 2D hBN materials for enabling benefi-
cial biofilms in environmental biotechnology applications (e.g., microbial fuel cells 
[37–41] and bioenergy production [42]) and for controlling the detrimental effects of 
harmful biofilms (e.g., MIC prevention [43–49]). Further efforts can enable the use 
of these 2D coatings in a range of practical applications including corrosion preven-
tion in water pipes, oil wells, air conditioners, cooling towers, and other engineering 
applications.

Considering the rush to accelerate the discovery and deployment of 2D mate-
rials, one can expect the use of computer science aspects (e.g., big data and ML) 
for enabling 2D material innovation. Nearly, 1000 different promising 2D materials 
have been reported. Considering the interest in functionalizing these materials, for 
example, by doping with one of the 84 stable elements, one can expect 84 variations 
of each 2D material when doped with a single element. The variety of these materials 
will increase to 3486 with two dopants, 95,284 combinations with two dopants, and 2 
million combinations with four dopants. One can thus expect 2 billion combinations 
for 1000 different 2D materials. If one were to explore their performance in biologi-
cal environments, especially individually with thousands of technologically relevant 
bacterial species, the estimated efforts and the amount of big data can be overwhelm-
ing. Typically, the “big data” at the microbe–material interfaces are characterized in 
terms of three Vs (greater variety, increasing volumes, and higher velocity). To help 
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readers visualize the gigantic amount of data, ~2314 exabytes of big data have been 
reported to be generated by health care alone in 2020. Both environmental biotech-
nology and biomedical fields envision omics to be a cornerstone for big data, which 
include different modalities at a level of individual gene, protein, and metabolite. It is 
clear that the growth of biological data can be expected to grow at an unprecedented 
rate.

Computer science tools will become necessary for handling the big data, when 
one tries to fuse the materials and biofilm phenotype data when performance of 
advanced materials is assessed in microbial environments. Many of the state-of-
the-art computational tools that predict biofilm phenotypes using gene and genome 
sequencing data do not necessarily take material properties into account.

To address the above issues, the core contributors to this book, primarily editors 
and authors, have formed an interjurisdictional consortium that was funded by the 
National Science Foundation (OIA # 1920954 [50] and 1849206 [51]). This consor-
tium used convergence research with a focus on exploring the use of 2D materials 
for addressing vexing research problems facing biological applications. In particular, 
we focused on exploring the use of 2D materials for addressing the growth of bio-
films responsible for MIC. This research required a deep integration of knowledge, 
theories, methods, and data from diverse disciplines (bioscience, computer science, 
and material science). A goal for this project was Biofilms Data and Information 
Discovery System (Biofilm-DIDs), which integrates metadata from accessible mate-
rials and biofilm data sources. Natural language processing (NLP) queries will allow 
users to predict biofilm phenotype on a material. Other parallel goals were to develop 
automated approaches to analyzing the properties of materials, as well as the proper-
ties of biofilms grown on these materials. Ultimately, the material–microbe fusion 
analysis framework developed in this project is expected to assist in accelerating the 
development of 2D protective coatings for bioengineering applications. This project 
used copper (Cu) as a model for technologically relevant metals exposed to biologi-
cal environments. Thin films of graphene and hBN were used to obtain 2D pro-
tective coatings on these metal surfaces. Cu was selected for its catalytic effect in 
synthesizing graphene and hBN using chemical vapor deposition (CVD) methods. 
Oleidesulfovibrio alaskensis G20 (previously known as Desulfovibrio Alaskensis 
G20) was used as a model organism.

Overview of this book: Chapter 2 provides readers with a comprehensive over-
view of 2D materials, including the classification of 2D materials and their synthe-
sis methods, principles of 2D material design, and examples of applications that 
leverage the merits of these materials. Chapter 3 provides an overview of different 
ML approaches (e.g., supervised, unsupervised, semi-supervised, self-supervised, 
and reinforcement learning) that can be used in both 2D materials and biofilm 
research. Chapter 4 introduces the ML approaches that can be used to accelerate 
the discovery process of 2D materials. This chapter discusses supervised learning, 
unsupervised learning, and reinforcement learning methods that can effectively 
enable 2D material discovery. Chapter 5 transits into biology domains, where a 
hybrid U-Net based on convolutional neural networks (CNN)–vision-transformer-
based contraction layers was used to analyze scanning electron microscopy (SEM) 
images of Oleidesulfovibrio alaskensis (OA)- G20 biofilms. Chapter 6 uses deep 
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CNNs (DCNNs) for enabling the automatic classification and segmentation of 
biofilm entities, along with the corrosion products from the SEM images of met-
als exposed to biofilms. Chapter 7 gets into the depth of using ML methods for 
analyzing underlying biological mechanisms in these cells (e.g., protein–protein 
interactions). Chapter 8 provides an overview of the Biofilm-DIDs, with the goal 
of highlighting their features for collecting and combining a large materials and 
biological data sets and leveraging AI methods for analyzing and predicting gene 
responses and biofilm characteristics influenced by material surface properties.

Chapter 9 discusses the use of ML approaches for addressing issues with the char-
acterization of 2D materials (e.g., defects) relevant to many biological applications. 
Traditional methods of 2D material detection can involve hundreds of hours of man-
ual labor. Despite this assiduous investigation, the structure–property relationships 
of 2D materials are perplexing and inconclusive. We discuss ML methods to analyze 
the image and spectrum data sets as input features and streamline them to predict the 
fingerprint features of 2D materials within seconds. Chapter 10 introduces atomistic-
level simulation techniques for analyzing microbe–2D material interactions, and the 
use of bioinformatics and ML tools for this analysis. Chapter 11 discusses futuristic 
technologies (e.g., alloy development, drug delivery, and quantum materials) that can 
leverage ML approaches. Chapter 12 discusses needed Research and Development 
(R&D) efforts to further enable the development of ML-driven frameworks for 2D 
material discovery.
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2 Introduction to 
2D Materials

Roberta Amendola and Amit Acharjee

Since the discovery of graphene and its unique properties, interest in materials that 
are a few atomic layers thick has been quickly increasing. These “sheet-like” materi-
als are currently known as two-dimensional (2D) materials and consist of more than 
150 categories beyond graphene.

This chapter provides a comprehensive overview of 2D material classification, 
synthesis, functionality, and applications, which equips readers with the basic infor-
mation needed to understand the principles of 2D material design, while laying a 
foundation for the topics, which are presented in the following chapters of this book.

2.1 � CLASSIFICATION OF 2D MATERIALS

The size and dimensionality are fundamental parameters defining a material’s 
properties.

Nanomaterials are currently classified based on the number of dimensions that are 
outside the nanoscale range, defined as lower than 100 nm. Based on this definition, 
materials are identified as zero-dimensional (0D) when no dimension is larger than 
100 nm such as quantum dots and nanoparticles; one-dimensional (1D) if one dimen-
sion is outside the nanoscale range, which includes nanotubes, nanorods, nanowires, 
and nanoribbons; 2D characterized by sheet-like configurations where two dimen-
sions are outside the nanoscale and one dimension is a single or few atomic layers 
thick material like graphene; and three-dimensional (3D) when all dimensions are 
over the nanoscale range (Gupta et al., 2015). Examples of this last group include 
nanolayered structures and bulk powders. Example configurations of 0D to 2D mate-
rials are illustrated in Figure 2.1.

The sheet-like configuration of 2D materials originates from the fact that the 
in-plane interatomic interactions are stronger than the ones existing among the 
stacked planes, which are typically found in the bulk material. Novoselov et al. 
(2004) demonstrated that it is possible to prepare a few atomic layers thick graphitic 
sheets, including single-layer graphene by mechanical exfoliation (repeated peeling) 
of highly oriented pyrolytic graphite. Graphene refers to a single layer of carbon 
atoms densely packed into a benzene ring structure and is widely used to describe 
the properties of many carbon-based materials, including graphite, fullerenes, and 
nanotubes (e.g., carbon nanotubes are thought of as graphene sheets rolled up into 
cylinders) (Dresselhaus & Dresselhaus 2002; Peres et al., 2006; Shenderova et al., 
2002; Walker, 1981) as illustrated in Figure 2.2.

https://doi.org/10.1201/9781003132981-2
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The discovery of graphene and its exceptional properties such as high specific 
surface area, Young modulus, and carrier mobility (Giesbers et al., 2008; Lee et al., 
2008; Morozov et al., 2008) revolutionized the last decade leading to significant 
progress in other 2D materials. In these materials, carbon atoms are bonded by 
primary intralayer covalent bonds and by weak interlayer secondary van der Waals 
(VdW) interactions. 2D materials are currently categorized based on their struc-
tures (Novoselov et al., 2016) as follows and are also illustrated in Figure 2.3. Such 
materials can then be combined to form heterostructures known as VdW solids as 
shown in Figure 2.4.

•	 Graphene, graphene oxide, and reduced graphene oxide (GO/rGO) (Dreyer 
et al., 2009; Yan et al., 2010; Zhu et al., 2010)

•	 Hexagonal boron nitride (h-BN) structured like graphene but having 
boron and nitrogen atoms in place of carbon (Cartamil-Bueno et al., 2017; 
Gorbachev et al., 2011; Liu et al., 2003)

FIGURE 2.1  Common structures for 0D to 2D classification. (Adapted from Shaw, Z.L. 
et al., Nat. Commun., 12, 1, 2021.)

FIGURE 2.2  Schematic diagram of carbon nanostructures. (Adapted from Adorinni, S. 
et al., Appl. Sci., 11, 2490, 2021.)
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•	 Transition metal dichalcogenides (TMDCs) with the formula MX2 (M is 
a transition metal and X is a chalcogen, typically sulfur, selenium, or tel-
lurium) and hexagonal structure with a tri-layer covalent bonding in the 
form of X-M-X (Chhowalla et al., 2015; Xiao Li & Zhu, 2015) and metal 
oxides (e.g., Bi2Sr2CaCu2Ox) (Novoselov et al., 2005)

•	 Black phosphorus (BP) or phosphorene (Jiang & Park, 2014; Tao et al., 2015;  
Wei & Peng, 2014)

•	 Metal carbides and nitrides (MXenes) (Anasori et al., 2017)
•	 2D metal–organic frameworks (2D MOFs) (Choi et al., 2009)
•	 2D covalent–organic frameworks (2D COFs) (Kang et al., 2016)
•	 2D perovskite (X. Cai et al., 2018; Lee et al., 2018; Tan et al., 2017; 

Xu et al., 2013)

FIGURE 2.3  A schematic diagram of different 2D materials and their structures. (From 
Dong, Z., Xu, H., Liang, F., Luo, C., Wang, C., Cao, Z. Y., Chen, X. J., Zhang, J., & Wu, X., 
Molecules, 24(1), 2019, https://doi.org/10.3390/MOLECULES24010088. This figure is repro-
duced under the terms and conditions of the Creative Commons Attribution (CC BY) license 
(https://creativecommons.org/licenses/by/4.0/).)

https://doi.org/10.3390/MOLECULES24010088
https://creativecommons.org
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2.2 � SYNTHESIS OF 2D MATERIALS

The synthesis methods of 2D materials can be classified into two groups: top-down 
and bottom-up methods. In the top-down approach, a 2D material is fabricated by 
exfoliating layers of larger or bulk solid material, while in the bottom-up approach, 
the 2D material is produced from atomic or molecular precursors, which react and 
then grow to create a 2D material. The top-down methods include mechanical, liquid-
phase, ultrasonic, electrochemical, ion-change, and lithium-intercalated exfoliations, 
whereas the bottom-up method involves epitaxial growth, chemical vapor deposition 
(CVD), physical vapor deposition (PVD), wet chemical methods, microwave-assisted 
method, or topochemical transformation. Among these methods, mechanical exfo-
liation, liquid-phase exfoliation, CVD, and PVD are commonly used methods for the 
development of 2D materials (Bian et al., 2022; Shanmugam et al., 2022). Bottom-up 
and top-down 2D material fabrication methods are schematically summarized in 
Figure 2.5.

Once the 2D material has been produced, it must be transferred from its growth 
substrate onto a target substrate, which defines its ultimate application. The ability 
to transfer large-area 2D materials while avoiding damage is therefore fundamental 
for preserving their quality. 2D material fabrication and transferring methods are 
discussed in the following sections.

2.2.1 � Top-Down Methods

To obtain monolayer 2D materials, VdW forces must be overcome in a process called 
exfoliation. Single crystals, grown by chemical vapor transport (CVT) or flux meth-
ods, are widely used as bulk material because they provide high-quality mono- or 

FIGURE 2.4  Example of van der Waals heterostructure that can be made by stacking 
multiple 2D materials in different ordering. (Adapted from Ramanathan, A. and Aqra, M., 
CSAC2021: 1st International Electronic Conference on Chemical Sensors and Analytical 
Chemistry, MDPI, Basel, 2021.)
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few-layered 2D materials. Mechanical exfoliation, achieved using adhesive tape, was 
first introduced to produce graphene and is still used to manufacture high-quality 2D 
crystals up to hundreds of microns in size (Novoselov et al., 2004). This method is 
mostly used in the laboratory setting as it has relatively low efficiency and yield. For 
higher yield, various technologies to assist mechanical exfoliation have been inves-
tigated in recent years. Shear force-assisted exfoliation, sonication-assisted exfolia-
tion, and ball-milling exfoliation were all successfully used to produce graphene, 
h-BN, and TMDCs (Bonaccorso et al., 2016; Lei et al., 2015; Nicolosi et al., 2013; 
Niu et al., 2016; Yi Zhang et al., 2013). Synergistic exfoliation was recently used to 
exfoliate h-BN powders to produce nanosheets. This method, which can also be used 
with other 2D materials, coupled traditional ball milling with a supplemental vertical 
load from a weight block and ultrasonication. The vertical load alters the milling ball 
pattern of motion, which in turn increases the average tangential force and a number 
of contacts, resulting in a higher exfoliation yield (Wu et al., 2019).

High-quality few-layered graphene flakes, several hundred microns in size, 
were produced using oxygen plasma cleaning to facilitate the exfoliation process. 
Compared with traditional mechanical exfoliation, the yield and the area of the trans-
ferred flakes were increased 50-fold (Huang et al., 2015). This method is promising 
and can also be applied to other 2D materials; however, the process efficiency may be 
radically reduced if the interaction between the selected material (such as TMDCs) 
and SiO2 substrate is limited (Bian et al., 2022).

A more efficient top-down method is liquid-phase exfoliation. This process yields 
a large number of mono- or few-layered 2D flakes from bulk crystals dispersed in 
a specific solvent. Depending on the nature of the force facilitating the exfoliation 
process, two main approaches can be identified: direct exfoliation and intercalation-
assisted exfoliation.

In direct exfoliation, 2D materials are expanded between their bulk layers when 
dispersed in the liquid phase with consequent reduction in VdW forces. An ultrasonic 
wave is then used to disperse the layers (ultrasonic stripping). This methodology is 

FIGURE 2.5  Summary of top-down and bottom-up 2D material fabrication methods (a) 
and schematic diagram of the methods using graphene as an example (b) (From Yang, H., 
Wang, Y., Tiu, Z. C., Tan, S. J., Yuan, L., & Zhang, H., Micromachines, 13(1), 2022, https://
doi org/10.3390/MI13010092.)

https://doiorg/10.3390/MI13010092
https://doiorg/10.3390/MI13010092
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relatively simple and can be used for the preparation of larger quantities of 2D mate-
rials. However, the thickness of the resulting flakes is often not even, and impurities 
are difficult to remove (Hao et al., 2020).

In the intercalation-assisted exfoliation process, small molecules, non-covalently 
bonded molecules, or polymers are inserted into the bulk material causing expansion 
of the interlayer spacing, reduction in the VdW forces, and ultimately exfoliation 
of the 2D layer. Compared to direct exfoliation, larger 2D flakes can be produced. 
Common intercalation agents are alkali metal atoms or ions in liquid ammonia or 
naphthalide, or n-butyllithium in hexane (Eda et al., 2011; Yin et al., 2016; Zheng 
et al., 2014). The expansion during the exfoliation processes is achieved through 
the accumulation of bubbles generated through the hydration of the agents in liq-
uid. Chemical weathering is based on a similar principle and was used for the effi-
cient exfoliation of TDMC nanosheets from bulk material in an alkaline solution. 
Because of the high chemical potentials of Na+ and OH−, interlayer infiltration leads 
to the accumulation of sodium hydroxide (NaOH) in the bulk material. When its con-
centration exceeds the critical value of ~7.6% (one NaOH pair per four MX2 units), 
exfoliation into ultrathin 2D flakes occurs (Zhao et al., 2015). Due to the chemical 
processing, both liquid-phase methodologies result in lower quality (i.e., high density 
of structural defects and lacking in the regulation of sheet size and thickness) 2D 
materials. Also, the disposal of the products used during processing might be a risk 
to the environment.

To improve the efficiency of liquid-phase exfoliation, electrochemical intercala-
tion was proposed. In this process, the electric current acts as an attractive driving 
force to bring foreign molecules or ions into the bulk material, which then causes the 
exfoliation of mono- or few-layered flakes. This technique has great potential for pro-
ducing large-area, high-quality atomic thick flakes (He et al., 2019; Howard, 2021; 
Lin et al., 2018; Wang et al., 2021; Yang et al., 2020; Yu et al., 2020).

2.2.2 � Bottom-Up Methods

CVD methods are being widely investigated as efficient bottom-up procedures for 
producing high-quality large-area 2D materials. In 2009, uniform large-area gra-
phene film was produced for the first time on copper foils by the CVD method 
(Xuesong Li, Cai, et al., 2009). After that, the process has been successfully applied 
to produce TMDCs (Gao et al., 2015; Ji et al., 2013; Najmaei et al., 2013; Shi et al., 
2015; Zhang et al., 2013, 2019), h-BN (Chen et al., 2019; Sun et al., 2018; Sutter et al., 
2011), and BP (Smith et al., 2016). In general, the CVD process is a high-temperature 
chemical synthesis of the 2D material by deposition on a high-purity catalytic sub-
strate such as copper, nickel, or sapphire, where the 2D material is formed. The 
procedure involved in a CVD process consists of three stages, namely transportation, 
nucleation, and growth. During transportation, a solid precursor is sublimated at high 
temperature and delivered to the substrate by an inert carrier gas. Subsequently, the 
precursor decomposes or diffuses at the hot surface of the substrate (catalytically or 
non-catalytically), forming the nucleus (nucleation) necessary for the growth of the 
2D material. The precursor then continues to react and accumulate in the vicinity 
of the nucleus growing the 2D material. The produced layer must then be separated 
from the substrate to obtain the freestanding 2D material.
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Graphene is grown on a copper foil substrate using a CH4:H2:Ar mixture as the 
precursor gas. At the hot surface of the substrate up to 1,000°C, catalytic cracking 
decomposes the mixture. Carbon atoms have low solubility in copper; therefore, atoms 
assemble in graphene crystals as diffusion does not occur resulting in high-quality gra-
phene crystals and polycrystalline arrangement (Xuesong Li, Cai, et al., 2009).

h-BN was produced by CVD using a thermally active BN precursor (e.g., ammo-
nia borane) over copper, nickel, ruthenium, or rhodium substrate (Sun et al., 2018). 
The generation of h-BN layers is reported to be obtained at atmospheric pressure 
CVD (APCVD) and low-pressure CVD (LPCVD) conditions. It was found that, 
while LPCVD is governed by mass transport control, APCVD relies on surface 
reaction control (Sun et al., 2018). The pressure, the temperature, and the selected 
substrate affected the growth of monolayer h-BN when borazine is used as a precur-
sor. When the process parameters are set at 10−8 Torr of gas pressure, 780°C, and 
ruthenium Ru(000l) single crystal is used as a substrate, the nucleation process leads 
to sparse h-BN domains, which then grow to form a closed monolayer film (Sutter 
et al., 2011). When the parameter is 10−7 Torr of gas pressure, 796.8°C, and rhodium 
Rh(111) single crystals are used as a substrate, the resulting h-BN has a highly regu-
lar mesh structure and is thermally stable, which makes it a good template to orga-
nize molecules (Corso et al., 2004).

As for fabricating 2D TMDCs with CVD methods, various approaches have been 
implemented such as direct metal sulfurization (Zhan et al., 2012), thermolysis of 
thiosalts (Sang et al., 2019), and sulfurization of metal oxide (Huang et al., 2014; 
Shi et al., 2015). Molybdenum disulfide (MoS2) was produced by direct metal sul-
furization using pre-deposited molybdenum on silicon oxide (SiO2 or silica) as the 
substrate while sulfur acted as the S source. It was found that the size and thickness 
of the MoS2 layer were dependent on the size of the SiO2 substrate and the thickness 
of the pre-deposited molybdenum. For thermolysis-based CVD, Ammonium tetra-
thiomolybdate ((NH4)2MoS4) was used as the precursor and thermally decomposed 
at temperatures in the range of 300°C–900°C. A direct proportionality between the 
grain size, the number of deposited layers, and the temperature was identified. The 
sulfurization of metal oxide-based CVD is the most challenging as often thermal 
decomposition of the precursor is not sufficient because some metal oxides have very 
high sublimation temperature (i.e., tungsten trioxide, WO3). For this reason, salt-
assisted CVD growth was developed. In this process, alkali metal halides are added 
to precursors for growing tungsten disulfide (WS2) or tungsten diselenide (WSe2) 
monolayers at moderate temperatures (700°C–850°C) and atmospheric pressure (Li 
et al., 2015). Until now, a total of 47 compounds and heterostructures were prepared 
by halide salt-assisted CVD processes (Zhou et al., 2018). Compared to other 2D 
materials prepared using CVD, TDMCs are more sensitive to the effect of the pro-
cess variables as the source-to-substrate distance, temperature, gas carrier, precur-
sors, and substrate can all influence the nucleation density and grain growth and 
ultimately affect the structure of the final material.

In addition to CVD, PVD has also been used for producing graphene, h-BN, 
and TMDCs (Ionescu et al., 2015; Sutter et al., 2011; Wu et al., 2013). This pro-
cess requires an ultrahigh vacuum and a heated high-purity atomic source to deposit 
related 2D crystals on a substrate. Molecular beam epitaxy (MBE) and pulsed laser 
deposition (PLD) are the two widely used PVD approaches. PLD provides fast layer 
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FIGURE 2.6  Schematic diagram of the PMMA-assisted 2D layer transfer method. (From 
Kim, C., Yoon, M.-A., Jang, B., Kim, J.-H., & Kim, K.-S., Tribology and Lubricants, 36(1), 
1–10, 2020, https://doi.org/10.9725/KTS.2020.36.1.1. This figure is reproduced under the 
terms and conditions of the Creative Commons Attribution (CC BY) license (https://creative-
commons.org/licenses/by/4.0/).)

deposition but with uncontrollable thickness, while MBE offers the advantage of 
precise thickness control and stoichiometric growth (Liu & Hersam 2018).

CVD is regarded as the most utilized method for large-scale and highly efficient 
production of 2D materials. However, uniform thickness, the ability to reach a wafer-
scale product, and the relatively high energy cost due to the elevated temperature pro-
cess requirement are the major challenges that should be addressed in the near future.

2.2.3 � Layer Transfer Methods

The atomic thickness of the 2D layers causes the material to be sensitive to mechani-
cal damage and crumble during transfer, which inevitably compromises their superior 
properties. Polymer-assisted and polymer-free methods are the main two approaches 
used for transferring 2D layers.

In polymer-assisted transfer methods, the 2D layer growth on a substrate is coated 
with a polymer film, usually polymethyl methacrylate (PMMA) due to its flexibil-
ity and mechanical strength (Xuesong Li, Zhu, et al., 2009; Ma et al., 2019; Reina 
et al., 2009). The PMMA/2D layer stack is then delaminated from the substrate using 
chemical etching, capillary forces, or bubble formation and retrieved using the final 
application substrate. The PMMA is later removed with a solvent. A schematic dia-
gram of the PMMA-assisted transfer methods of 2D materials is shown in Figure 2.6.

The copper foil used for the growth of graphene is removed using hydrochloric 
acid (HCl), nitric acid (HNO3), iron nitrate (Fe(NO3)3), or copper chloride (CuCl2) 
(Lee et al., 2017). Strong bases such as NaOH or potassium hydroxide (KOH) are 
instead used to delaminate TMDCs from SiO2 growth substrates (Lin et al., 2012; 
Wang et al., 2014). PMMA is commonly removed in an acetone bath. This transfer 
method is efficient and reliable. Yet, the chemicals used in the process can contami-
nate the 2D layer and cause undesired doping or can physically damage the structure 
through corrosion; hence, alternative etchant-free methods were developed.

Water-based methods using capillary forces or bubble formation that drive the 2D 
layer/polymer stack separation are gaining increased interest. The capillary force-driven 
method employs water penetration between the hydrophobic 2D layer and the hydrophilic 
growth substrates. Once detached, the 2D layer/polymer stack floats to the water sur-
face. The water is then pumped out, gradually lowering the stack onto the final substrate, 

https://doi.org/10.9725/KTS.2020.36.1.1
https://creativecommons.org
https://creativecommons.org
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and the polymer is removed using a solvent (Calado et al., 2012; Schneider et al., 2010). 
This method eliminates the use of chemicals. However, crack/wrinkle formation was 
observed due to water trapping and clusters of bubbles at the 2D layer/substrate interface 
when the growth substrate is not strongly hydrophobic (Calado et al., 2012). The bub-
bling transfer method utilizes the development of hydrogen gas at the polymer/2D layer/
substrate interface as shown in Figure 2.7. This method is based on an electrochemical 
reaction where the metallic growth substrate acts as a cathode; therefore, it cannot be 
used with nonmetallic substrates (e.g., SiO2 or sapphire) (Fan et al., 2020).

Recently, a similar approach was proposed based on ultrasonic bubbling transfer 
where a large number of micro-sized bubbles are generated by ultrasonication in a 
water bath. This method works well with insulating substrates commonly used for 
TMDCs (Ma et al., 2015). Both etchant-free methods allow the growth substrate to 
be reused for other deposition and transfer processes.

Polymer-free ultraclean transfer of 2D materials has gained attention in the 2D 
material community. A water-based and support layer-free (polymer-free) transfer 
method was recently developed. In this approach, a sacrificial water-soluble layer 
is deposited on the growth substrate before the development of a 2D layer. Once the 
process is complete, the 2D layer/soluble layer/growth substrate stack is washed with 
deionized (DI) water (Cho et al., 2018). The floating layer is then transferred onto 
the final substrate as already discussed. Perylene-3,4,9,10-tetracarboxylic acid tetra-
potassium salt (PTAS) was successfully used as the sacrificial layer for the growth 
and transfer of MoS2. It was also noted that PTAS can serve as seed promoters and 
support the nucleation of large-area, continuous, and uniform 2D planar films on a 
variety of substrates (Lee et al., 2013; Singh et al., 2020).

For the implementation of 2D materials at a larger commercial scale, the fabrication 
processes should be automated. Along with the ability to prepare large-area layers, this 
remains the major challenge as all transfer methods are laborious and complex.

FIGURE 2.7  Schematic diagram of the electrochemical bubbling 2D layer transfer 
method using the development of H2 bubbles. (From Kim, C., Yoon, M.-A., Jang, B., Kim, 
J.-H., & Kim, K.-S., Tribology and Lubricants, 36(1), 1–10, 2020, https://doi.org/10.9725/
KTS.2020.36.1.1. This figure is reproduced under the terms and conditions of the Creative 
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).)

https://doi.org/10.9725/KTS.2020.36.1.1
https://doi.org/10.9725/KTS.2020.36.1.1
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2.3 � FUNCTIONALITY OF 2D MATERIALS

2D materials are characterized by different, often improved, properties when com-
pared to their bulk counterparts. This property enhancement is, in most cases, due 
to the discretization of electronic energy states by confining electrons in a material 
to a very small space and an increase in the overall reactivity and surface area as all 
constituting atoms are “exposed” to the surrounding environment.

Because of these unique properties, 2D materials are suited for a large variety 
of applications. As functional electronics, optoelectronics including flexible systems 
and battery electrode devices are expected to be the fastest-growing fields of applica-
tion in the next decade, and this section provides an overview of mechanical, electri-
cal, and optical properties of graphene, h-BN, TMDCs, and BP, which are among the 
most widely used 2D materials.

2.3.1 � Mechanical Properties

2D materials, which are characterized by stronger in-plane covalent bonds with 
unique properties and weaker out-of-plane VdW bonds, can be easily exfoliated. 
Local strains can be generated by simply poking, bending, or folding the material 
like a piece of paper (Dai et al., 2019), which is not typically observed in bulk materi-
als. To “scale” mechanical properties from 3D to 2D material systems and to reflect 
the planar configuration, it is necessary to normalize 3D parameters by dividing 
them by the thickness of the 2D material (Kim et al., 2019). Elastic (Young’s) modu-
lus and fracture strength will therefore have units of energy per area (J/m2 or N/m) 
instead of per volume (J/m3 or Pa).

Atomic force microscopy (AFM) nanoindentation has been well established in 
assessing materials’ mechanical properties at the nanoscale. A novel setup was pro-
posed in 2008 (Lee et al., 2008): The 2D material was suspended over circular wells 
and indented at constant speed by an AFM tip with nanoscale radius to record force–
displacement curves. Despite the setup successfully measuring mechanical proper-
ties, the collected data may not properly reflect the properties of the overall layer as 
the load was focused only on a central point (Kim et al., 2019). To address the limita-
tion of AFM nanoindentation, chip-based microelectromechanical systems (MEMS) 
tests have been developed. The MEMS are equipped with small actuators and detec-
tors that enable the stretching of a sample under varying loading conditions allowing 
for uniform application of the force along the in-plane direction of a 2D membrane 
(Arshad et al., 2011; Ozkan et al., 2010).

To follow is an overview of experimentally measured mechanical properties of 
some common 2D materials. Lee et al. (2008) were the first to experimentally mea-
sure the elastic modulus (E ~ 1 TPa) and fracture strength (σmax ~ 130 GPa) of mono-
layer graphene using AFM nanoindentation. Nonlinear elastic behavior and brittle 
fracture were observed. It was later found that the elastic modulus and fracture 
strength of graphene decrease with increasing numbers of layers (Wei et al., 2016; 
Zhang & Pan, 2012). This characteristic was related to interlayer slippage and subse-
quent energy dissipation during the testing loading–unloading cycle. In thicker gra-
phene, nonuniform strain distribution is accelerated along the out-of-plane direction, 
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resulting in decreased mechanical performance. It was reported that cracks tend to 
propagate along a preferential orientation and to then create zigzag edges (Fujihara 
et al., 2015). However, mechanically torn graphene progressed in a straight line with 
occasional changes in a direction toward either armchair or zigzag shapes (Kim 
et al., 2011). The armchair and zigzag directions within a 2D material layer with a 
graphene-like hexagonal configuration are illustrated in Figure 2.8.

The mechanical properties of h-BN, also known as “white graphene,” were mea-
sured using the nanoindentation method and were found to be comparable to those of 
graphene with an elastic modulus of 0.865 TPa (Kim et al., 2015; Song et al., 2010). 
However, opposite to graphene, both the elastic modulus and fracture strength are not 
dependent on thickness variation (Falin et al., 2017). This phenomenon was explained 
by the fact that BN’s orbitals have higher polarity than those of graphene, which ulti-
mately causes the interlayer slipping energy to be increased (Kim et al., 2019).

Within the TMDC category, MoS2 is the most popular 2D material. The mechani-
cal properties of MoS2 were characterized by AFM nanoindentation; elastic modulus 
and fracture strength were measured as ~270 and ~23 GPa, respectively, with a strain 
at failure that ranges between 6% and 11% (Bertolazzi et al., 2011). MoS2 failure was 
identified as brittle in nature; however, it was found that with a 1% sulfur deficiency, 
the nature of failure can be shifted from brittle to plastic deformation (Ly et al., 
2017). Enhanced mechanical properties were found for the tungsten-based TMDCs 
(WX2) when compared to MoS2. Also, for the same transition metal M, sulfides 
(MS2) are the strongest, while tellurides (MTe2) are the weakest due to the weakening 
of M−X (X = S, Se, Te) hybridization while going down the list from S to Te (Kim 
et al., 2019). In general, for TMDCs, the stress response was found to be stronger 
along the armchair direction illustrated in Figure 2.8. This phenomenon was linked 
to the strong hybridization occurring between the most external p orbitals of the chal-
cogens and the d orbitals of the transition metal, which causes a reallocation of the 
electronic charge to the shared region between the involved atoms (Li et al., 2013).

The mechanical properties of BP were evaluated using AFM nanoindentation. 
High anisotropy was observed along the crystalline directions under the applied stress 
(Tao et al., 2015), which was related to the puckered (nonplanar) structure of the layer 

FIGURE 2.8  Armchair and zigzag directions within a 2D material layer with graphene-like 
hexagonal configuration.
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FIGURE 2.9  Nonplanar puckered structure of black phosphorous. (Adapted from Wang, D. 
et al., Front. Chem. 7, 2019.)

illustrated in Figure 2.9. Also, both the elastic modulus and the fracture strength tend 
to deteriorate when the layer thickness is decreased (Gallagher et al., 2016).

A degradation of the mechanical performance was observed in ambient air con-
ditions due to the self-passivation process (Kim et al., 2019); therefore, BP is better 
suited for vacuum applications.

2.3.2 �E lectrical Properties

2D materials were found to show a wide range of electrical properties and transport 
characteristics. Due to their intrinsic crystal structures and stacking orientations, 
these sheets can behave as conductors (e.g., graphene), insulators (e.g., h-BN), semi-
conductors (e.g., MoS2 and WS2), or superconductors (e.g., NbSe2 and NbS2). Band 
gap engineering of 2D materials is an emerging field that offers a wide range of 
possibilities for tuning electronic properties. The structure of the energy band can 
be engineered through thickness control (number of layers) (Novoselov et al., 2016), 
elemental doping (Oliva-Leyva & Naumis, 2014; Tongay et al., 2011; Van Khai et al., 
2012), and development of stacked heterostructures (Cai et al., 2018; Chen et al., 
2018; Shi et al., 2018). In the last decade, research on the optimization of 2D mate-
rial electronic properties has grown enormously due to their enhanced performance 
and lower energy requirement to power electronic systems such as solar cells, field 
effect transistors (FETs), and light-emitting diodes (LEDs) when compared to 3D 
counterparts.

Excellent electrical conductivity and adjustable work function make graphene rel-
evant for FET applications. Nitrogen doping was found to be effective in improving 
the electrical conductivity of graphene (Deokar et al., 2022). The doped graphene 
was prepared by thermal annealing of reduced GO in ammonia gas. Variations in the 
carbon and oxygen content of the annealed product reduce the electrical resistance 
in doped graphene compared with GO and rGO (Pang et al., 2011; Van Khai et al., 
2012).

The TMDCs based on periodic table groups VB and VIB metals (i.e., V, Nb, Ta, 
Cr, W, and Mo) are the most investigated (Fiori et al., 2014; Jariwala et al., 2014; 
Kappera et al., 2014; Wang et al., 2012; Wilson et al., 1975) because of the possi-
bility to tune their electronic structure allowing for a range of behaviors including 
metallic, semimetallic, semiconducting, and superconducting. Properties tuned by 



Introduction to 2D Materials 19

doping were successfully achieved using nonmetal atoms such as H, B, C, N, O, and 
F. As a result, MoS2, WS2, and WSe2 nanosheets developed total magnetic moment 
(H. Gao et al., 2020; Ma et al., 2011). Exposure of TDMCs to plasma oxygen led to 
the variation in the n-type and p-type conduction, allowing for the production of 
high-mobility FETs and planar monolayer p-n junctions utilized in semiconductor 
applications (Geim & Grigorieva, 2013; Hoffman et al., 2019). Nitrogen doping was 
found to make WS2 electrochemically active. This makes such 2D material a suitable 
option for developing high-performance electro-catalysts (Sun et al., 2016).

The h-BN exhibits insulating properties and anisotropic resistivity (Pellegrino 
et al., 2011). Like graphene and TMDCs, doping can be used to alter their electrical 
characteristics. Semiconducting behavior was achieved through zinc doping in the 
range of 0%–4%, while beryllium implantation was used to achieve p-type conduc-
tion (Nose et al., 2006). One of the most interesting traits of h-BN is its flat atomic 
surface and graphene-like structure. These characteristics combined with a large 
electrical band gap make the material an ideal substrate. The electronic mobility of 
graphene on the h-BN substrate was found to be three times larger than that of the 
graphene without it, which makes this approach a viable strategy for enhancing the 
performance of large-area graphene electrical devices (Lee et al., 2012).

2.3.3 �O ptical Properties

Several researchers investigated the optical conductivity of graphene (Heersche 
et al., 2007; Liu & Hersam, 2019; Peres et al., 2007; Simsek, 2013) from the visible 
range to the near ultraviolet (UV) region. It was revealed that the optical conductivity 
of graphene increases with the increasing energy of the incident light (Liu & Hersam, 
2019) and with the number of stacked layers (Heersche et al., 2007).

TMDCs are better suited for optical applications because of the large electronic 
density of states (DOS), which guarantees large optical adsorption. As graphene, the 
optical properties of the MoS2 material are related to the number of layers but also to 
the interlayer distance, which allows one to control the spectral response in optical 
devices (Mak et al., 2010; Yu et al., 2017). The introduction of point defects in MoS2 
and WS2 triggered new transitions in the optical range in line with photoconductivity 
measurements (Das et al., 2017). While in the visible range, disulfur vacancies acti-
vate the optical conductivity, molybdenum (Mo) and tungsten (W) vacancies activate 
it at low energies (Ribeiro et al., 2018).

More opportunities for efficient optoelectronic materials become available when 
VdW heterostructures are considered. The combination of materials with different 
work functions can lead to photoexcited electrons and holes accumulated in different 
layers. The intensity of this phenomenon can be controlled by tuning the distance 
between semiconductor layers (Fang et al., 2014; Rivera et al., 2015; Roy et al., 2013). 
Combinations of graphene, as a channel material, and TMDCs, as light-sensitive 
material where trapped charges are controlled by illumination, allow the creation of 
simple and efficient phototransistors (Roy et al., 2013). For multilayer BN/graphene/
BN structures, it was found that the optical properties do not relate to thickness 
and/or stacking order; instead, they depend on light polarization. In particular, the 
frequency-dependent optical conductivity was found to exist only for the light polar-
ized parallel to the plane (Farooq et al., 2015).
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2.4 � APPLICATIONS OF 2D MATERIALS

2D material-based FET is being widely investigated, particularly for sensors and 
nonvolatile memory (NVM) applications. rGO, BP, and TMDCs have successfully 
performed as charge channels for FET-based gas sensors. Multiple layers (2 to 4) 
of MoS2 were deposited on a Si/SiO2 wafer to manufacture a sensor for several gas 
detections, such as oxides of nitrogen. The system resulted in a detection limit of 
0.8 ppm at room temperature (H. Li et al., 2012). More recently, a 2D heterostructure 
made of MoS2 deposited on graphene by CVD was used for detecting low levels 
(0.2–1 ppm) of nitrogen dioxide (NO2) gas at the temperature up to 200°C. The sen-
sor showed a fast response/recovery time of less than one second with high reproduc-
ibility. Such advantages were linked to the synergistic effects of MoS2 and graphene 
and the preferred exposure of active edge sites at the boundary of MoS2 flakes (Hong 
et al., 2019).

NVMs are gradually replacing hard disk drives because of the growing need to 
access and transfer an ever-increasing amount of information in a short duration. As 
conventional silicon-based devices are quickly approaching their limit, NVMs are 
another promising application where 2D materials can serve as channel transistor. 
TMDCs, BP, and graphene are mainly involved in the production of resistive, ferro-
electric, and flash memories (Bertolazzi et al., 2019; Kim et al., 2020; Ko et al., 2016;  
Lee et al., 2012, 2015). Graphene was found to act as a protective interfacial layer for 
decreasing power consumption in resistive NVMs (Ahn et al., 2018).

The large specific area, exceptional mechanical properties, tunable band gap, and 
good thermal and electrical conductivities made graphene, GO/rGO, TMDCs, and 
h-BN suitable for catalytic applications such as oxygen reduction or evolution reac-
tion, photoinduced water splitting, and hydrogen evolution reaction. The catalytic 
performance of these 2D materials can be controlled through defect engineering and 
doping; defects or edges can act as active sites for catalytic reaction while doping 
changes the electronic states and the doped atoms can also serve as active sites (Chen 
et al., 2014; Deng et al., 2014; Wang et al., 2009; Yang et al., 2011).

2D materials such as graphene, GO, rGO, and h-BN were found to be very effec-
tive as anticorrosion coatings for a wide variety of materials and conditions includ-
ing photocorrosion of semiconductors (Xi Chen et al., 2018; Khosravi  et al., 2019; 
Weng et al., 2019) and biocorrosion of medical implants (Al-Saadi et al., 2017; Cui 
et al., 2017; Galbiati et al., 2017; Göncü et al., 2017; Mahvash et al., 2017; Parra et al., 
2015; Zhang et al., 2017). The excellent anticorrosion properties were linked to the 
large surface area of graphene and graphene-like structure, which extend diffusion 
path length for the corrosive compounds. The high production prices have, however, 
limited this kind of application to specific fields in which corrosion results in great 
losses, such as aerospace, biomaterials, and advanced electronics.

The extended path for diffusion-based processes, present in the graphene struc-
ture, was also found to be beneficial for reducing the flammability of gases by 
delaying combustion (Chen et al., 2017; Shanmugam et al., 2020). It was shown 
that the time needed to burn pure cotton fabric and functional graphene-coated 
fabric was, respectively, 5 and 325 seconds (Chavali et al., 2020). This enables the 
use of graphene as reinforcement or coating material for increasing flame retardant 
properties.
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Recently, graphene-based devices were developed for electromagnetic invis-
ibility cloaking and adaptive thermal camouflage. Electromagnetic invisibility was 
achieved by modifying the refractive index and optical absorption of monolayer 
graphene through ion intercalation (Balci et al., 2015; Yang et al., 2013). Thermal 
camouflage was realized with adaptive thermal surfaces produced by the reversible 
intercalation of ionic liquid into multilayer graphene. This process resulted in the 
ability to control the surface thermal emission and absorption over the infrared (IR) 
spectrum. The fabricated device can disguise hot objects as cold and vice versa and 
blend itself with a varying thermal background in a few seconds when combined 
with a feedback mechanism (Phan et al., 2013; Salihoglu et al., 2018; Xiao et al., 
2015; Zhao et al., 2019).

Currently, the library of 2D materials consists of more than 150 categories (Khan 
et al., 2020). Interest is quickly increasing, and several novel advanced 2D hetero-
structures, with selected compositions to target specific applications, are expected to 
be developed and introduced in the next few years.
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3.1  �INTRODUCTION

Though “Learning” is one of the basic tasks for humans and animals, defining its 
exact meaning is harder because of its wide range. The question “what is learning?” 
is philosophical; in this context, learning can be simply defined as, “modifications of 
a behavioral tendency by experience.” [1]. There are several commonalities that can 
be seen between animal and machine learning tasks. In fact, many of the machine 
learning techniques are inspired by cognitive aspects of animals. ML has evolved 
as a subfield of artificial intelligence (AI), learning from the data collected histori-
cally or from experiments, and using it for future actions. In general, ML models 
consider the patterns of the input and adjusts internal structures to approximate the 
relationship between input and output. ML is also used to identify hidden patterns 
of data distributions to come up with meaningful relationships. The ability to learn 
unforeseen relationships from data without depending on explicitly programmed 
prior guidance is one of the main reasons why there are a plethora of ML-based 
applications. The very early definition for ML, “Field of study that gives computers 
the ability to learn without being explicitly programmed” [2] is still valid.

Here in this chapter, we provide an overview of multiple ML approaches includ-
ing supervised, unsupervised, semi-supervised, self-supervised, and reinforcement 
learning. Though these learning categories use different learning techniques and 
generate different outputs to achieve the ML task, we use common terminology 
across all of them. We call the target to be learned as a “concept” and the output as 
“concept description” [3]. To learn the concepts, ML uses data in the form of a col-
lection of “instances.” Each instance is an individual and independent example of the 
concept, described by one or more attributes. Therefore, each instance is a collection 
of values, one for each of the attributes that describe the example. For example, a 
research publication dataset is a collection of research publication instances where 
a research publication instance is described by the following attributes: title of the 
publication, date of publication, name of the publication venue. Then, <Study of 
ML, Mar 23, 2023, Journal of Machine Learning> is one instance in the research 
publication dataset. Datasets are typically stored as tables where rows are instances 
and columns are attributes.

https://doi.org/10.1201/9781003132981-3
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3.1.1 � The Processing Pipeline of an ML Task

The conventional machine learning pipeline comprises data integration, preprocess-
ing, model building, and model evaluation. Figure 3.1 shows the flow chart of tradi-
tional machine learning processes. In this section, we discuss each step of the ML 
pipeline.

3.1.2 � Data Integration

With the generation of large bulk of data each minute, in recent decades, the data 
needed for an ML task may be available across multiple sources in an organiza-
tion. For example, research publication data may need to be integrated with mate-
rial properties data to obtain an instance with all of attributes needed for learning 
a concept. Different data sources may store the data in different formats: structured 
storage such as tables or unstructured storage such as text files. Therefore, data from 
multiple data sources, which may be in multiple formats, should undergo a process, 
called data integration, to collect the data that can be analyzed by an ML task. Data 
integration is the process of integrating different sources of data into a single dataset 
to enable a unified view of the data. Data integration follows a set of standard steps 
as mentioned in Figure 3.2.

Figure 3.2 shows the ETL pipeline used for extracting the data from a raw data 
source. The Extract step uses the functions provided by the raw data sources to 
extract the raw data. The Transform followed by Cleanse steps then converts into a 
format needed by the application and cleans the raw data. The Load step stores the 
data in a database or data warehouse that can be eventually accessed by the applica-
tion that executes the ML task. The ETL pipeline is applied to each data source to 
collect and integrate the data from multiple sources.

FIGURE 3.1  A typical ML pipeline.

FIGURE 3.2  Data integration process.
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To build a unified view of the data collected from multiple sources, diverse data 
from multiple sources must be integrated appropriately. For example, if one wants 
to integrate the material properties data and research publication data, one way to 
achieve this integration is to identify the names/symbols of the materials studied in 
each research publication and use the name/symbol to extract the properties of that 
material from the material properties database. The material name/symbol extracted 
from the research publication serves as the glue for integration of these two disparate 
data sources. Data integration is a nontrivial problem because the same data may 
be stored in different formats in different data sources. Take the simple example of 
“date” attribute. It can be recorded in DD/MM/YYYY format in one data source 
and in MM/DD/YYYY format in another data source. Data integration steps need 
to reconcile (using the Transform step) these formats so that a unified view can be 
constructed over the two data sources.

Currently, there are data integrations tools (e.g., Meltano) available to users that 
can automatically configure themselves so that they can process queries and extract 
data efficiently from multiple sources. The goal of these tools is to reduce the man-
ual effort needed to integrate the data from these sources, and to obtain a unified 
view of the underlying data sources that are of high quality. Despite the availability 
of tools, data integration over multiple sources is a hard problem due to the disparate 
data formats, the uncertainty about how to resolve the differences between formats 
to  build one standardized format, and therefore, it involves considerable manual 
effort.

3.1.3 � Data Preparation

Real-world databases and data warehouses often contain inconsistent, incomplete, 
and inaccurate information due to many reasons: The manual recording of data may 
introduce these errors, the instruments that generated the data may be faulty, and 
some data was not known at the time of data entry and was left blank, etc. Before an 
ML task can be applied, the input dataset (i.e., the dataset to be analyzed by the ML 
task) must be “cleaned” by filling in missing values, removing outliers and inconsis-
tencies, and smoothing noisy data. Otherwise, the “dirty” data can mislead the ML 
algorithm and lead to misleading concept descriptions.

If an instance in the input dataset has missing values for some of the attributes, 
the simplest action is to remove it from the input dataset. However, this may not work 
for small-size datasets. So, missing values in an instance are usually filled using a 
variety of ways: Substitute a missing value with the most commonly occurring value, 
mean, or median for that attribute, or use regression or inference-based methods 
to compute the missing values. It is important to make sure that the missing value 
computation methods do not introduce bias into the dataset. For this reason, regres-
sion- or inference-based methods are typically employed to find the most appropriate 
values to substitute for missing values in an instance.

The input dataset can contain noise such as inconsistent and/or outlier values that 
can mislead an ML algorithm. For numeric attributes, data smoothing techniques 
can be used to identify and remove noisy data from the input dataset. The numeric 
values from a column in the input dataset are sorted and the sorted value list binned. 
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Then, each value on a bin is replaced by the mean/median/maximum/minimum of 
the values in the bin which will replace outliers and inconsistent values. Regression 
analysis can also be used as a data smoothing technique where all values in the 
column that do not follow the function fitted to column values are replaced. Data 
smoothing techniques are also used for data discretizing (replace numeric values 
with nominal values) which is used for reducing noise in a column. For example, 
numeric values in a column that records salary can be replaced by levels of compen-
sation: high, medium, and low.

Data preparation is an important step before building a model that learns a con-
cept from the input dataset. Although much of it can be done using data smoothing 
and cleaning tools, it needs considerable manual effort as well.

3.1.4 � Model Building

Once the dataset is prepared for the model building, the next step is to choose a 
machine learning algorithm which supports the best to solve the application. For 
example, if the dataset contains both attributes (predictors) and outputs for each 
instance, we can narrow the algorithm selection to supervised machine learning cat-
egory. When the output of the input dataset is categorical, that is a finite set of values, 
the learning problem is called classification, whereas when the output is infinite, the 
learning problem is called regression (see Section 9.4.1). For supervised machine 
learning model building, the goal is to identify the relationship between predictors 
(X) with the output (Y). Here, f is a fixed but unknown function and   is the error term 
of the model.

	 ( )= + Y f X  

3.1.5 � Model Evaluation

Model evaluation is another important step in the ML pipeline as it measures the 
progress of a model and understands how it works.

3.1.5.1 � Training and Testing
The most obvious model evaluation would be calculating the error rate, that is the 
ratio between incorrect predictions to the total predictions. However, in practice the 
training inputs do not estimate accurate performance of a model, as, the training 
instances have been already seen by the model during the training process. The error 
rate calculated for the training set is called “resubstituting error,” which is not a reli-
able measure of how model would perform on unseen data. Here, we consider parti-
tioning the input dataset to extract independent datasets called test dataset, with the 
assumption that training, and test data follow similar distribution. The test set should 
not be used in any stage of model training but model evaluation stage. However, it 
is common to see a third partition called a validation set that is used to optimize the 
training process. After conducting the proper model evaluation, these partitions can 
be merged back to the training set to train the final model, in case of limited data 
availability. The basic partitioning mechanism is called the holdout method, that is 
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extracting fixed portions for training and testing (and validation) and making sure 
not to use these for other purposes of model building.

In convention, 66% of the data is used as a training set, 20% of the remaining 
data is used for tests, and the rest as validation sets. The random holdout partitioning 
does not guarantee that the test set will be a representative set for the training set. For 
instance, the random selection would miss out complete data instances in training set 
that represent a class, so that model would not get a chance to train on those classes. 
The procedure called stratification comes as a savior in this matter, which helps in 
picking random samples from the input dataset to guarantee the class representation 
for both training and test set. The randomness of the holdout partitioning can be fur-
ther mitigated using repeated holdout method, that is run multiple random partition-
ing to average overall error rate to achieve better model evaluation.

3.1.5.2 � Cross-Validation
The repeated holdout method still does not guarantee the optimal representative par-
titioning experience. To make sure of the partitioning of the training testing datas-
ets, a statistical technique called cross-validation can be used. The first step of the 
cross-validation is to determine a constant value (K) that represents the number of 
folds (partitions). Then, the process iterates such that in every iteration (1:K), one 
fold is considered as the test set and rest as training, until each fold gets a chance 
to be a test set. This approach is also known as K-fold cross-validation. This can be 
conducted both the variants random and stratified similar to the holdout method. 
This method generates K2 number of models to evaluate the error rate which leads to 
obtain a better performance. However, the main downside of this method is computa-
tion intensiveness.

Leave-one-out cross-validation (LOOCV) is another variation of K-fold cross-
validation where K = number of instances in the input dataset (n). Hence, each 
instance is used to evaluate the model, while the rest of the instances are used for 
model training. The main advantages of LOOCV are, (1) cross-validation does not 
depend on random selection (deterministic), (2) maximum number of instances 
(n–1) can be used for training in each iteration and works well with smaller datas-
ets. However, the disadvantages attached to it are, (1) computationally costly and (2) 
prone to outliers in the dataset and lose the advantage of stratification technique. The 
bootstrap is another cross-validation-based estimator which utilizes the statistical 
technique of sampling with replacement [4].

3.1.5.3 � Confusion Matrix
Confusion matrix (aka, contingency table) is one of the common ways of describing 
classification model performance and evaluation. As shown in Figure 3.3, confu-
sion matrix summarizes correct and incorrect predictions, (1) True Negatives (TN), 
(2) False Positives (FP), (3) False Negatives (FN), and (4) True Positives (TP). A 
TN prediction for a test data item denotes that the model predicts the absence of a 
class value, and this coincides with the absence of the class value in the actual test 
data item. A FP prediction for a test data item denotes that the model predicts the 
presence of a class value, whereas the class value is absent in the actual data item. 
A FN prediction for a test data item denotes that the model predicts the absence of 
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a class value, whereas the class value is present in the actual data item. A TP pre-
diction for a test data item denotes that the model predicts the presence of a class 
value which coincides with the presence of the class value in the actual data item. 
A FP prediction is called Type I error. A FN prediction is called Type II error. The 
ultimate goal of learning a classification model is to achieve high TN and TP, miti-
gating Type I & Type II errors. The sum of the cells in the confusion table is equal 
to the total number of instances in the test data. Several evaluation metrics such as 
Recall, Precision, Specificity, Accuracy, and AUC-ROC curves can be used with 
these values. Figure 3.3 shows some of the metric equations with TN, TP, FN, and 
FP placeholders.

3.2 � ML ALGORITHMS

Typically, machine learning approaches can be classified into two broad catego-
ries, Supervised and Unsupervised. Recently, several variations and combinations 
of these approaches including semi-supervised and self-supervised algorithms have 
been developed and applied successfully. In this section, we discuss some of the 
popular algorithms that present these two learning approaches and their variations. 
It is important to understand that selecting a proper algorithm that suits the data, and 
the application is important. When data is not enough or the model is not capable 
enough to detect the underlying patterns, it is identified as a model with underfitting. 
Similarly, when the model learns exactly the data provided in the training dataset 
yet performs poorly with unseen data, it creates a problem called overfitting. Using 
unforeseen data for testing the model is important to evaluate these model train-
ing complications. Cross-validation methods explained above are recommended to 
detect and mitigate these model training errors.

3.2.1 � Bias and Variance

In the process of building and training a machine learning model, it is important 
to evaluate how well it generalizes on independent data (test data). In general, there 

FIGURE 3.3  Confusion matrix and associated metrics.
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is no single machine learning mode that can perform best on every task (No Free 
Lunch Theorem [5]). The better model suited for a given task is chosen between dif-
ferent models based on the performance. A given machine learning algorithm has to 
minimize the error of the test dataset. There are mainly two types of error categories 
namely, irreducible error and reducible error. The reducible error has two compo-
nents, Bias and Variance.

In this context, the Bias factor refers to the model error introduced due to the 
inability to comprehend the underlying patterns in the data. If the prediction values 
and the actual values are positioned far from each other, it is an indication of high 
bias. Variance, on the other hand, refers to the error due to the overfitting of the 
training data. It provides an indication of how scattered the predicted values from 
the actual values are.

In the process of model training, the reducible error can be formulated as 
(bias2 + variance). It is important to balance out these two factors to minimize the 
risk of a model prediction [6]. A model with high bias and low variance underfits the 
data and has poor accuracy, while a model with low bias and high variance overfits 
the data and has poor generalization performance. Hence the Bias–Variance Trade-
off is important to find the optimal model complexity (see Figure 3.4) to achieve the 
sweet spot where a machine model performs with the minimum error introduced by 
the bias and the variance.

3.3 � UNSUPERVISED LEARNING

Unsupervised learning is a type of machine learning in which an algorithm is 
trained on a dataset without any labels or predefined categories. The main task of 
Unsupervised learning is to extract information and underlying patterns from the 
data whose classes are not known. In this section, two main techniques used in 
Unsupervised learning are discussed, specifically cluster analysis and principal com-
ponent analysis (PCA).

FIGURE 3.4  Bias–variance trade-off and model complexity.
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3.3.1 � Cluster Analysis

One of the fundamental approaches in unsupervised learning is cluster analysis [7]. 
The main idea of clustering is to determine subgroups in a dataset using a simi-
larity measure so that the within-group data points are more similar to each other 
than to those in other groups. These groups are called clusters. As clustering refers 
to a vast variety of techniques focusing on partitioning coherent sets in a dataset, 
there have been various categorizations. One of the broader categorizations is hard 
clustering vs soft clustering. Hard clustering, also known as crisp clustering, is a 
method that assigns each data point to a single cluster. Hence, a single data point can 
only be designated to a single cluster. On the other hand, soft clustering, also known 
as fuzzy clustering, permits a single data point to be allocated to multiple clusters. 
Another broader categorization would be with respect to the clustering technique 
used. Here, we mainly discuss three main categories, (1) Hierarchical, (2) Partition, 
and (3) Density clustering.

3.3.1.1 � Hierarchical Clustering
In Hierarchical clustering algorithms, the subgroups are created based on the 
hierarchy of nested groups either merging (Agglomerative clustering) or splitting 
(Divisive clustering) based on some similarity measure. Agglomerative cluster-
ing starts with each data point as a separate cluster and merges the clusters until 
the stopping criteria trigger. Divisive clustering, on the other hand, starts with all 
data points in one cluster and recursively splits them based on their dissimilarity. 
Dendrograms are commonly used to visualize the hierarchical clustering results 
(Figure 3.5).

Hierarchical clustering is often preferred over other clustering techniques as it does 
not require specifying the number of clusters in advance, as the number of clusters 
is determined by the hierarchy of the dendrogram. The ability to handle nonconvex 

FIGURE 3.5  Dendrogram of a hierarchical clustering.
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clusters is an important strength of this clustering technique. However,  hierarchi-
cal clustering can be computationally expensive, especially for large datasets, and it 
is sensitive to the choice of similarity measure and linkage method (Single, Complete, 
and Average (Figure 3.6)).

3.3.1.2 � Partition-Based Clustering
Partition-based clustering algorithms divide the data into a prespecified number of 
clusters, and the algorithms belonging to this category are hard clustering methods. 
The k-means clustering [8,9] approach is one of the most popular partition-based 
clustering algorithms. K-means clustering algorithm iteratively partitions the data 
into k, and predefines the number of clusters minimizing the sum of squared dis-
tances between the data points and their assigned cluster centers. Partition-based 
methods are mostly simple, efficient, and scallions well to large datasets. The limita-
tions would be, determining the k (number of clusters) parameter in advance, when-
ever a point is close to the center of another cluster; it gives poor results due to the 
overlapping of data points.

3.3.1.3 � Density-Based Clustering
In density-based clustering [8,10], the subgroups are formed based on the density of 
the data space. The most popular density-based clustering algorithm is DBSCAN 
(Density-Based Spatial Clustering of Applications with Noise). DBSCAN algorithm 
starts with an unvisited data point and finds the number of data points within a pre-
defined distance (ε). If the points within the ε-neighborhood are greater than or equal 
to the redefined parameter (minPoints), the point becomes a core point and a clus-
ter is formed. This algorithm continues until all the data points have been visited. 
The main advantage of these algorithms is the clusters are discovered based on the 
density of the data points so that there is no requirement for a predefined value for 
a number of clusters. Still, the parameters ε, and minPoints have to be determined 
in advance. Similarly, the inability to handle data with varying densities in the same 
cluster is another downside of this clustering approach.

FIGURE 3.6  Hierarchical clustering linkage techniques.
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3.3.1.4 � Cluster Evaluation
Compared to the evaluation techniques used in supervised learning approaches, there 
is no direct way of evaluating the quality of an unsupervised learning task due to the 
absence of the ground truth. To estimate the quality of clustering, or to compare and 
validate which clustering approach works well for a given dataset, several measure-
ments have been proposed in the literature [11]. The assessments can be performed 
internally, aka “internal cluster evaluation”, where the clustering results are evalu-
ated based on the data used for the clustering process. Examples of such evaluations 
are the Silhouette coefficient [12], Dunn index [13], and Davies–Bouldin index [11]. 
On the other hand, in “external evaluation” the quality of the clusters is evaluated 
using external data. Some of the measures of the quality of processed clusters that 
use external evaluation are the Jaccard index, F-measure, Mutual Information, and 
Confusion matrix.

3.3.2 � Principal Component Analysis (PCA)

Another approach in unsupervised learning is dimensionality reduction. 
Dimensionality reduction is the process of reducing the number of features or vari-
ables in a dataset while preserving as much of the relevant information as possible. 
When there are large sets of correlated variables in high dimensional space, the 
usage of data efficiently could be degraded. For example, when the datasets are huge 
due to multiple variables and/or multiple observations per variable. Some of the dis-
advantages related to high dimensional correlated data are,

•	 High requirements of storage and computational power,
•	 Multicollinearity issues,
•	 Inability to visualize the data, and
•	 High quantity of noise.

PCA [14] is a popular method for dimensionality reduction, which identifies the most 
important directions of variation in the data and projects the data in these direc-
tions. In other words, PCA projects the data into a lower-dimensional subspace so 
that the original highly correlated variables are transformed into a set of linearly 
uncorrelated variables. These variables are identified as principal components. PCA 
performs transformations on the vector space to extract the principal components. 
Then these reduced dimension data be used to analyze data such as pattern recogni-
tion, outlier detection, and trends. Some of the main applications that utilize PCA 
are image compression, blind source separation, visualizing multidimensional data, 
reducing the number of dimensions in healthcare data, and finding patterns in high-
dimensional datasets [15,16].

3.3.2.1 � Limitations of PCA
One of the main downsides of PCA is the assumption of linear relationships, such 
that principal components are determined by using a linear combination of the origi-
nal features. This assumption may not be true for all datasets and that may lead to 
suboptimal results. An example of a possible alternative are Autoencoders, which 
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consider nonlinear feature relationships while reducing the feature dimensions. The 
results of PCA depend on the scaling of the variables. If the scaling of the data 
has not been carefully addressed, the resulting principal components may be biased 
toward features with larger variance. However, some research studies introduced a 
scale-invariant form of PCA to mitigate this limitation. Not only scale, but PCA is 
also sensitive to outliers in the data. Other than that, lack of interpretability, limited 
applicability with non-Gaussian data, information loss due to dimensional reduction, 
and computational complexity can be mentioned as limitations of PCA [17].

3.4 � SUPERVISED LEARNING

Supervised ML approaches are perhaps the most popular and very widely used in 
automating applications across several domains including materials engineering, 
microbiology and medicine. Some of the popular examples for supervised learning 
would be recommendation systems, speech recognition, image recognition, weather 
forecasting, and many more. The basic idea underlying this approach is to learn an 
unknown function from a sample specifying the known mapping of that function. 
Supervised learning approaches essentially attempt to fit an unknown function from 
known input-to-output mapping data sample. The known input-to-output mapping 
data sample is also commonly referred to as ground truth or labeled data with the 
mapping inputs referred to as instances and their corresponding outputs referred to as 
the labels. The unknown inputs are referred to as unlabeled data. Supervised learn-
ing algorithms involve building an ML model by training them on labeled, which 
can then be used to infer the outputs on unseen, unlabeled data. The types of labels 
used in supervised learning approaches depend on the ML task at hand. Categorical 
values, including Boolean values, are commonly used as labels in many applications. 
For instance, labels formed by categorical values, cells, microbial byproducts, and 
nonoccluded surfaces could be used in an ML task that detects objects in biofilm 
images. The images consisting these objects could be captioned with these values 
to produce labelled data. On the other hand, labels could be more complex and may 
consist of sub-images of these objects for an ML task that segments these objects in 
biofilm images. Labels could also be text strings or numeric values drawn from an 
infinite and continuous set of values such as real numbers. Supervised learning tasks 
can be broadly categorized into classification and regression. When the label values 
are finite, we call it a classification task, whereas when the label values are infinite, 
we call it a regression task.

3.4.1 � Regression

Regression comprises a variety of approaches for studying correlations between 
outputs (or labels in ML) and one or more inputs (features in ML). Regression 
approaches are employed in ML primarily for predictive tasks. In ML, usually the 
outputs involve variables taking values from continuous domains. Regression algo-
rithms may be categorized depending on the class function (also model) that is used 
to fit the output variables to the inputs and the methods used to find this function. 
Regression problem is usually formulated in terms of the following components—a 
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set of weights/parameters (w0, w2,… ,wk), input variables (xj1, xj2,…,xjk), in the jth data 
instance with the output variable, yj. along with the error term, ej. Usually, each 
weight and the input variable instance are either  scalar or vector (row of values), 
whereas the output variable instances are scalars. The regression problem can be 
formulated as discovering function f, relating the input and output variables based on 
n observed data instances.

	 ,  , , , ,    1,  , .0 1y f w w x x e j nj k j jk j( )= … … … + = …

3.4.1.1 � Linear Regression
In linear regression, the function f is a linear combination of the weights and the 
input variables. Simple linear regression relates one output and to n instances of 
input variable as follows

	 = + + = …y w w x e j nj j j  ,  1, ,  0 1 1

whereas multiple linear regression relates one output variable to n instances of k 
input variables

	 ( )= + +…+ + = …y w w x w x e j nj j k jk j 1, , .0 1 1

The output variable yj is a scalar in univariate linear regression, where it is a vector 
(multiple outputs) in multivariate linear regression. A regression is linear as long 
as the weights are linear; that is, the following regression is still linear despite the 
quadratic input variable term.

In a simple linear regression, the model is obtained from using the n instances of 
input x j1,

	 = +y w w xj j
���     ,0  1  1

where w0   and w1   are the estimated weights and yj
  is the value of the output vari-

able predicted by the model. The difference between the value of the output variable 
predicted by the model and its true value is called residual,  e y yj j j

= − . Several 
methods are available for model estimation. The most common method, the least 
squares, estimates the weights and predicts the output value by minimizing the sum 
of squared residuals,
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where x  and y  are the means of the input and output values, respectively.



45An Overview of Machine Learning

3.4.2 � Classification

Classification predictive modeling is the task of mapping input x to discrete output vari-
able y. The output is often identified as categories, classes, or labels. There are many 
classification techniques to conduct classification tasks is imperative. Each classifier 
would have its own pros and cons; hence, identifying the better-performing or more 
suitable classifier for a given classification task is important. Based on the number of 
categories assigned to each instance, classification problems can be divided into three 
categories—binary, multiclass, and multilabel classification. In a binary classification 
problem, each instance is associated with a single label whose values are positive/
negative (or true/false) to denote class membership. In a multiclass classification prob-
lem, each instance is associated with a single label drawn from a finite set containing 
more than two labels. Both classification tasks aim to predict a single class outcome 
for a given data instance, hence also known as single label classification techniques. 
Multilabel classification on the other hand is an extension of the traditional single label 
classification problem where each example is associated with a set of categories.

3.4.2.1 � Logistic Regression
Logistic regression is another variant of regression task that has been used widely 
in the field of AI and ML. As mentioned above, linear regression models predict 
continuous dependent variables given a set of independent variables, whereas logis-
tic regression is a classification algorithm that predicts categorical values. Logistic 
regression models use logistic function (also known as the logit function), which 
maps p(x) as a sigmoid function of  x
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The plot of the logistic regression equation follows an S-curve, ranging the outcomes 
from 0 to 1, regardless of the value range of x. Hence, the simple prediction can be 
done by considering ( ) <p x 0 for some values of x and ( ) >p x 1 for the rest of the x 
values. The equation then can be manipulated to obtain the odds.
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1p x p x[ ]( ) ( )+  takes any value ranging from 0 to infinity and determines the prob-
ability of a given condition. By taking the logarithm of the above equation, log odds 
can be calculated.
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The advantages of logistic regression models are mathematically less complex, less 
processing time for large volumes of data, and flexibility to handle a large range of 
values. Multiple Logistic Regression is another variant of Logistic regression that 
predicts binary responses for multiple predictors.
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3.4.2.2 � Decision Trees
Decision tree learning represents one of the simplest models of machine learning. 
Decision trees represent functions that take a vector of attributes as its input and 
return a single output denoting a decision. The inputs and output can be continuous 
or discrete valued variables. In case of Boolean valued decisions, the input assign-
ment that leads to false output is called a negative example and one that leads to true 
output is called a positive example. A decision tree learning algorithm learns a deci-
sion tree from a given set of training examples. Decision trees can be exponentially 
large for certain functions (e.g., majority). Further, the search space for decision trees 
is also excessively big. For instance, there are 

n

22  of Boolean decision trees for n 
input variables. One of the limitations of decision trees is overfitting to their training 
set; that is, the function that they learn is close to perfect on training examples but 
does not generalize to newer examples.

3.4.2.3 � Artificial Neural Networks (ANNs)
Another classification technique is ANNs inspired by the human brain’s structure 
and function. These networks consist of many interconnected perceptrons which 
mimic the functionality of human neurons. The information propagates front and/
or back in layer form. Each layer consists of a set of neurons performing a dedi-
cated functionality. These layers can mainly be categorized into three categories, 
input layer, output layer, and hidden layers (see Figure 3.7). The input layer receives 
the input data (usually in the form of a multidimensional vector), and the output 
layer delivers the final output. All the layers in between the input and output layers 
are identified as hidden layers. The input layer passes the input data to the hid-
den layers, and the hidden layers then make the decisions to maintain the weight-
ing scheme. These weights are updated on the go using optimization techniques 
such as Stochastic Gradient Descent (SGD). Having deeper stacks of hidden layers 
are identified as deep neural networks, which is discussed in the later part of this 
chapter.

FIGURE 3.7  An example of ANN.
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3.4.3 � Supervised Learning Variants: Self-Supervised Learning

Supervised learning methods provide powerful feature learning given better quality 
and quantity of data. Larger models such as deep neural networks are extremely data 
hungry. However, the success of such systems hinges on a large amount of labeled 
data, which is not always available and often prohibitively expensive to acquire. The 
annotation bottleneck has motivated a wave of research in self-supervised represen-
tation learning methods that have been widely studied and advanced rapidly in recent 
years [18–20]. Self-supervised learning process transforms an unsupervised problem 
into a supervised problem when a dataset contains a huge quantity of unlabeled data. 
In conventional self-supervised model building, there are two main training stages, 
(1) pretext task which determines the invariance of the representations, and (2) down-
stream task which consumes the learned representations effectively [21].

3.4.3.1 � Pretext Task
During the pretext task stage, the model learns to extract intermediate representa-
tions of the input data. A large quantity of unlabeled data is used to extract the under-
lying patterns and structures within the data. A large number of the pretext tasks for 
self-supervised learning have been studied in recent research studies.

3.4.3.2 � Downstream Task
Downstream task can also be defined as the knowledge transfer process of the rep-
resentations learned during the pretext task. This defines the model’s purpose. These 
downstream tasks can be of various types such as image classification, object detec-
tion, semantic segmentation, machine translation, sentiment analysis, and so on. The 
goal of self-supervised representation learning is to learn the underlying structure 
and features of the input data without any explicit supervision and then utilize these 
learned representations in various downstream tasks to improve their performance.

3.4.3.3 � Types of Self-Supervised Learning
According to the literature [22], self-supervised techniques can be categorized into 
contrastive learning and noncontrastive learning. The main difference between them 
lies in how they utilize unlabeled data to generate useful representations.

3.4.3.3.1 � Contrastive Learning
The main idea of contrastive learning is to attract positive samples while 
repelling negative samples. The positive sample could be semantically related 
instances, whereas negative samples are semantically dissimilar. Here, one sample 
from the input dataset is considered as an anchor, and its own augmented version is 
treated as a positive sample, while the rest of the input data is treated as a negative 
sample. For instance, transformation-based pretext tasks such as resizing, flipping, 
and blurring can be used to generate a stochastically distorted perspective of the 
anchor while keeping the semantics of positive samples the same. Even though con-
trastive algorithms prevent complete collapse through negative examples, they are 
still prone to representation (dimensional) collapse [23]. Some of the popular vison-
based models are MoCo [24], and SimCLR [25].
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3.4.3.3.2 � Non‑Contrastive Learning
Compared to contrastive learning techniques, noncontrastive learning does not 
involve creating positive and negative pairs of samples. Instead, it directly trains the 
model to predict the properties of the input data that are relevant to the downstream 
task. Some examples of noncontrastive learning models are Bootstrap Your Own 
Latent (BYOL) [26] and SimSiam [27]. These noncontrastive learning techniques do 
not suffer dimensional collapse [28].

3.4.3.4 � Challenges in Self-Supervised Learning
Self-supervised learning is a promising approach that learns representations from 
unlabeled data and then tunes these to the task at hand by using limited amounts of 
labeled data. While it addresses the labeling bottleneck of machine learning, it comes 
with a set of its own challenges as described below.

•	 Pretext Task: As the pretext task is one of the major steps in the self-
supervised learning process selection of a more suitable one is important. 
However, there is no straightforward approach to determining the most suit-
able pretext task to extract better representations out of unlabeled data for a 
given downstream task.

•	 Model Performance: Performance metrics such as accuracy show convinc-
ing results given a large amount of unlabeled data. Self-supervised tasks 
with a moderate to a small amount of unlabeled data could generate inac-
curate pseudo-labels.

•	 Computational Complexity: Most of the proposed self-supervised 
approaches in recent literature require a tremendous amount of computa-
tional power and time. Specifically, due to multistaged architectures, such 
as generating pseudo-labels, learning representations, and downstream 
tasks, the required computational power and time are considerably higher 
compared to their supervised counterparts.

•	 Dataset Bias: Any learning task can be affected by dataset bias due to 
reasons such as dataset imbalance and long tail distribution. Such situa-
tions can be mitigated if the dataset is preprocessed and annotated prop-
erly. However, in self-supervised learning applications, the representations 
learned from a large portion of the biased unlabeled datasets could perform 
poorly in the inference stage. Identifying these dataset bias factors from the 
data is challenging and requires more attention to resolve such biases.

3.5 � DEEP LEARNING

Deep learning is conventionally categorized as a subfield of machine learning. 
Deep learning was introduced by Hinton et al. [29] in 2006 which was based on 
the concept of Artificial Neural Networks (ANN). It is prevailing in a wide range 
of domains including health care, visual recognition, text analytics, cybersecurity, 
and many more [30]. Deep learning models typically follow the same processing 
pipeline as conventional machine learning modeling. However, the major difference 
of deep learning modeling is that the feature extraction is automated rather than the 
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manual extraction used in conventional machine learning. Most of the conventional 
machine learning models tend to show decreased performance increments given 
more data. Deep learning models on the other hand perform better when data grows 
exponentially [30].

3.5.1 � Convolutional Neural Networks (CNNs)

CNNs have attracted enormous interest in Deep learning applications due to their 
performance over a vast variety of domains. CNNs learn and extract features from 
a given data input automatically [31]. The main idea behind CNN architectures is to 
extract low-level features such as textures, edges, and corners, and combine them to 
extract high-level features of parts of objects to identify the complete object as an 
output. Figure 3.8 shows an example of CNN architecture taking an image input and 
delivering an output classification prediction.

3.5.1.1 � Basic Building Blocks of CNN Architecture
A typical CNN architecture is built using the following components.

•	 Convolutional Layers: The main building block of a CNN is convolution 
layers which perform convolutional filtering of the input data and produces 
a set of feature maps that represent different learned features. Each fil-
ter extracts a different type of feature from the input data, and the output 
feature maps can be used as input to subsequent layers in the network. In 
simpler words, the convolution operation in CNNs can be described as a 
multiplication of an array of input data with an array of two-dimensional 
weights, called a filter or a kernel. Here, the filter has to be smaller than the 
input data to perform the dot product and sum up to a single value, referred 
to as the scalar product. Figure 3.9 shows a convolutional operation with 
3 × 3 input with a 2 × 2 filter, which results in 2 × 2 output.

•	 Pooling Layers: The pooling layer is another important component of 
CNN architectures. It is important to consider reducing the dimensionality 
of the feature maps in order to reduce the computational complexity and 
enhance generalizability. Pooling layers operate on each feature map inde-
pendently and perform a down-sampling operation by taking the maximum 
(Max-Pooling) or average (Average-Pooling) value of each nonoverlapping 
region of the feature map. The output of a pooling layer is a smaller feature 

FIGURE 3.8  An example of CNN architecture.



50 Machine Learning in 2D Materials Science

map with reduced spatial dimensions. Max-Pooling is the most commonly 
used type, which selects the maximum value within each pooling window. 
Average pooling, on the other hand, calculates the average value within 
each pooling window. An example Max-Pooling operation is shown in 
Figure 3.10, 2 × 2 filter on a 4 × 4 input with stride 2. Besides these two most 
common pooling techniques, Global Average Pooling [32], which takes the 
average value of each feature map across all locations, is also widely used 
in recent studies [33,34].

3.5.1.2 � Activation Functions
When learning feature representations from a given input, extracting only linear rela-
tionships is not enough. Activation functions help to extract nonlinear relationships 
and patterns through the output of a neuron or a group of neurons. Activation func-
tions determine enabling a neuron as well as controlling the output range of a neuron. 
In CNNs, the activation functions are triggered after the convolutional and pooling 
layers to introduce nonlinearity into the model. The following are some of the popu-
lar activation functions that are commonly used in CNNs.

•	 Sigmoid: This activation function maps input values to values between 0 
and 1 to determine active and inactive states. The sigmoid function is mostly 
used in binary classification problems. Even though this function is easy to 
implement and compute, it mostly ends up with a vanishing gradients effect, 
which slows down the training process and shows poor performance.
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FIGURE 3.9  Convolution.

FIGURE 3.10  Max-Pooling.
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•	 Tanh (Hyperbolic Tangent): Tanh activation function outputs values range 
from −1 to 1 for a given input value. This activation function is closely simi-
lar to the Sigmoid activation function, but the output range is wider. Tanh 
activation functions are preferable when strong gradients and big learning 
steps are required. However, similar to the Sigmoid activation functions, 
Tanh too leads to the vanishing gradient problem.
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•	 ReLU (Rectified Linear Unit): ReLu is one of the most used activation 
functions which has a simple function to achieve nonlinearity. The function 
returns the input if it is positive, and zero otherwise. The main advantage 
of this activation function is that it is computationally efficient and easy to 
implement. However, one major drawback of ReLu function is that some-
times some of the neurons constantly output zero (also known as dead neu-
rons). One of the ReLu variants called Leaky ReLU allows a small negative 
slope for negative input values to avoid dead neurons.

	 ( )( ) =z zrelu  max 0, 

•	 Softmax: When it comes to multiclass classification tasks, the Softmax 
activation function shows better performances compared to other activation 
functions. In order to determine a final outcome from a set of values output 
from neurons, determining the corresponding probabilities is important. 
The softmax activation function converts the outcomes from each neuron 
into a class-specific probability distribution. These probabilities then be 
used to approximate the most likely class for a given input.
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Each activation function has its own strengths and weaknesses; hence, the choice 
of activation function can have a significant impact on the performance of a CNN. 
Figure 3.11 shows the Sigmoid and the Relu activation functions which gained larger 
attention in CNN model building.

3.5.1.3 � Fully Connected Layers (FCLs)
FCLs typically follow a series of convolutional and pooling layers that extract fea-
tures from the input (image). FCLs are also referred to as dense layers at every node 
in a layer connected to every node in the proceeding layer. The main task of an FCL 
is to convert the last convolutional layer output into a single-dimensioned array (also 
called flattening). The number of nodes in the FCL is determined by the number of 
classes in the classification problem.
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3.5.1.4 � Advanced CNN Architectures for Classification
One of the main applications of using CNN is image classification. CNNs use a series 
of feature extractions using different layers and perform classification tasks as an 
output. Some of the commonly used CNN models are discussed below.

•	 LeNet5: LeNet CNN architecture can be identified as one of the earliest 
compared to the other popular architectures. This was the starting point of 
convolution and pooling layers to be used in CNN architectures. The archi-
tecture of LeNet consists of seven layers, including two convolutional layers, 
two pooling layers, and three fully connected layers. The layers are arranged 
in a sequential manner so that the output of each layer is an input to the next 
layer. The first layer generates six feature maps with a size of 5 × 5, and the 
second subsamples the features maps from the first layer into the factor of 
2 × 2. Then, the third layer generates 16 feature maps of size ×5 and per-
forms subsampling of the output by a factor of 2 × 2 using a pooling layer.

•	 VGGNet (Visual Geometry Group): VGG deep CNN architecture was 
introduced in 2014 by the Visual Geometry Group at the University of 
Oxford [35]. The main goal of this architecture is to show the deeper the 
network the better the learned feature representation. The VGG architecture 
consists of a series of convolutional layers with 3 × 3 filters and a stride of 
1, followed by a Max-Pooling layer with a 2 × 2 filter and a stride of 2. This 
pattern is repeated several times, increasing the number of filters in each 
layer as the spatial resolution decreases. Finally, the output of the convolu-
tional layers is flattened and fed into a series of fully connected layers for 
classification. VGG also introduced the concept of transfer learning, where 
the weights of a pretrained network can be used as a starting point for a new 
network on a different task.

•	 ResNet (Residual Network): Resnet Deep Convolutional neural network 
was introduced in 2015 by a Microsoft Research team [36]. One of the main 
goals of developing such CNN was to address the problem of vanishing gra-
dients in deep neural networks. During the learning process, the gradients 
tend to vanish when a CNN has a large number of layers. However, train-
ing a deep model to capture better feature representations requires deeper 

FIGURE 3.11  Sigmoid activation function and ReLu activation function.
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architectures. The key feature of ResNet architecture is residual connec-
tions. These connections support the network to learn residual functions 
and skip layers to pass the current output to later layers. This creates a short-
cut for the gradient to propagate through the network and helps to avoid the 
problem of vanishing gradients.

In summary, CNNs are able to perform hierarchical feature extraction and can be 
used for a wide range of computer vision tasks, including image classification, object 
detection, and semantic segmentation.

3.5.1.5 � Advanced CNN Architectures for Object Detection
The image classification describes or annotates as a whole, while the object detec-
tion task aims to determine the exact location of an object in an image. Hence, the 
object detection task has two aims, (1) classification of the objects and (2) localize 
the object. The architectures built to address object detection can be mainly catego-
rized into two groups, namely single-staged and two-staged. In general, the two-
staged models first generate possible region proposals and then process them further 
to construct the final bounding boxes to localize the objects. However, the single-
staged approaches attempt the object detection task directly from the input image. 
Hence, single-staged models perform the detection tasks faster but less accurately, 
whereas two-staged models perform the detection task slower than the single-staged 
approaches yet with better accuracy.

•	 Region-based CNN (R-CNN): The family of R-CNN architectures is 
highly popular in object detection applications which comes under two-
staged architectures. The initial R-CNN [37] used selective search tech-
niques to generate region proposals in the first stage. Then, these region 
proposals were cropped out and then classified using a classification model. 
However, the selective search approach tends to propose a large amount of 
object region proposals which leads to higher computational cost. As an 
extension to the R-CNN architecture, Fast R-CNN [38] was proposed with 
Region of Interest (ROI)-based pooling to obtain fixed-size feature output. 
Further, Faster R-CNN [39] architecture was proposed to overcome the 
selective search bottleneck, by extracting the region proposals from internal 
feature maps using the outcomes of intermediate activation functions. This 
proposal bounding boxes represent the location of the object.

•	 You Only Look Once (YOLO): The family of YOLO [40] architectures 
can be identified as commonly used single-staged object detection archi-
tectures. In YOLO architectures, the object detection task is converted to 
a classification task to complete the task in a single pass. In the YOLO 
network, the image is divided into grids, and for each grid, there is a set of 
classifiers to determine the region of interests belonging to the grid. The 
predefined anchor boxes are aligned in identified grids, and with the help 
of a regression network, the final object can be localized. Currently, there 
are many extended and advanced variations available with different object 
detection capabilities [41–43].
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3.5.1.6 � Advanced CNN Architectures for Segmentation
Similar to object detection applications, object segmentation techniques also have 
gained drastic advancement with CNN architectures. Even though the detection 
tasks with R-CNN and YOLO architectures show convincing improvements, the 
localization is mostly bounded by a box. The localization precision is higher when 
pixel-level classification is performed for objects. Here in this section, two CNN-
based segmentation architectures are discussed.

•	 Fully Convolutional Networks (FCN) [33]: As discussed in the CNN-
based classification architectures, the input-to-output process is carried out 
by the feature extractors followed by a fully connected classifier. However, 
these fully connected layers cannot preserve the spatial information of the 
objects to identify the exact localization of an object [44]. Eliminating these 
fully connected layers and introducing full-size average pooling layers can 
be used to preserve the spatial information of a set of two-dimensional 
activation maps. This process is also known as Global Average Pooling [32] 
as all the weights corresponding to each class are summed from all the 
layers.

•	 U-Net: The U-Net architecture [45] which was proposed in 2015 mainly tar-
gets biomedical image segmentation tasks. This architecture type belongs 
to the encoder–decoder category, where the encoder is a convolutional 
neural network, and the decoder is a deconvolutional neural network. The 
decoder contains a mirror sequence of the encoder CNN. One of the reasons 
for the better segmentation performance of this architecture is its capabil-
ity to achieve the level of abstraction through skip connections. These skip 
connections are connected from the encoder blocks to their mirrored coun-
terparts in the decoder (Figure 3.12).

•	 Mask R-CNN: Mask R-CNN [46] is an extension of Faster R-CNN object 
detection architecture. Other than the Region Proposal Network (RPN), 
classification and bounding box regression network of Faster R-CNN net-
work, Mask R-CNN consists of an additional branch of mask predictions for 

FIGURE 3.12  U-Net encoder decoder structure with skip connections.
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each object proposal. The complete pipeline can be trained end-to-end, for 
instance segmentation tasks.

3.6 � RECURRENT NEURAL NETWORKS (RNN)

Similar to CNNs, RNNs too have become popular and commonly used in deep 
learning applications. RNNs are mostly used with sequential data such as natural 
language texts, Speech, Audio, Video, Physical processes, and real-time embedded 
system outputs. Sequential processing demands two important qualities: the ability 
to maintain the length variability of input/output and comprehending the order of a 
sequence to learn and predict.

Figure 3.13 shows simple RNN architecture and its unfolded representation. RNN 
models learn by looping the output of the previous state of it to itself as an input. 
This looping structure supports RNNs to capture long-term dependencies in the data. 
However, the vanilla RNN models suffer from the vanishing gradient problem. Long 
Short-Term Memory (LSTM) networks [47], and Gated Recurrent Unit (GRU) net-
works are examples of extensions of RNN architectures to address vanishing gradi-
ent issues and other performance enhancements.

•	 Long Short-Term Memory (LSTM): LSTMs were introduced in 1997 by 
Hochreiter and Schmidhuber [47], and it has been widely used in several 
sequel data processing applications. LSTM uses gated units to address the 
problem of vanishing gradient. A single memory cell in an LSTM unit con-
tains three gates namely, Forget Gate, Input Gate, and Output Gate. The 
Forget Gate controls the information which should be memorized and for-
gotten based on its usefulness. The Input Gate is responsible for controlling 
which information should be input to the cell state, whereas The Output 
gate determines and controls the outputs.

•	 Gated Recurrent Unit (GRU): Gated Recurrent Unit (GRU) architecture 
was introduced in 2014 by Cho et al. [48]. This architecture too employs 
gates to control the flow of information and mitigate the vanishing gradient 
problem. Specifically, GRU has two gates, namely the update gate and the 
reset gate. GRU has similar characteristics as LSTM, yet processes data 
faster due to the fact that it has less number of gates. The update gate GRU 
captures the dependencies from large sequences of data adaptively without 
discarding the information gathered from the previous states.

FIGURE 3.13  Typical RNN architecture.
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4.1 � INTRODUCTION: HIGH-THROUGHPUT SCREENING

The outstanding properties of 2D materials from classes of semi-metal (graphene), 
insulator (hexagonal boron nitride) and metallic carbides, nitride, and carbonitrides 
(MXenes) have been utilized in different industries. Such properties include high 
carrier mobilities, superconductivity, mechanical flexibility, as well as high opti-
cal absorption compared to their bulk counterparts. These properties collectively 
render them as excellent candidates in application such as barrier coatings [1–4], 
energy devices [5–7], catalyst [8–10], biosensors [11–13], spintronics [14–16], and 
supercapacitors [17–19]. Following the 2010 Nobel Prize for isolating graphene and 
demonstrating its remarkable properties, there has been a significant interest in dis-
covering other promising 2D materials. Such a discovery, especially for a specific 
scientific or industrial application, entails significant financial resources, extensive 
time (10–20 years) [20], along with a failure risk (e.g., inability to exfoliate stable 2D 
materials). The discovery process typically entails six different key steps including 
discovery, development, optimization, system design, certification, and manufactur-
ing (Figure 4.1). It is unlikely that these different stages will be overseen by the same 
scientific teams and same places. Even if this is the case, any communication lapse 
among them can slow down the entire discovery process.

Computational modeling and experiments are the two key methodologies used 
in 2D materials research. Both offer innate benefits and limitations. While experi-
ments are relatively general easy way of exploring new materials, they require exten-
sive infrastructure (human and hardware), time, and money. On the other hand, 
modeling efforts solely rely upon the theories and computational power. Molecular 
dynamic simulation [21], density functional theory (DFT) [22], Monte Carlo tech-
niques [23], and phase-field methods [24,25] can be used to run tests virtually and 
in a shorter period of time [26]. Their major limitations arise from their overreli-
ance on: (1)  intrinsic microstructural properties of the materials, (2) sophisticated 
computing equipment, (3) and data from previous studies that many not be relevant 
for new systems. Thus, computational efforts are often integrated with experimental 
efforts to study 2D materials properties and correlate them with synthesis and pro-
cess functions. In certain cases, both experiments and computations fail to achieve 
a desirable function. For example, it is difficult to examine transition temperature of 
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glass experimentally owing to their changes across a large temperature range [27]. 
The transition temperature also cannot be simulated accurately as it is influenced by 
multiple variables (e.g., pressure, structure, and fundamental constitutive traits) [28] 
that cannot be implemented easily using computer tools. Artificial intelligence (AI) 
can overcome flaws of these two methods, where computational and experimental 
approaches are combined to develop analytical tools for predicting functional prop-
erties of previously unexplored 2D materials. High-throughput first-principles calcu-
lations can be used to study the vast 2D materials space. The resulting databases can 
be leveraged by AI methods to develop computational tools for predicting 2D mate-
rials that display the highest probability of existence and offer desired (predicted) 
properties. The predicted results are then verified with experimental results.

Following the establishment of the Materials Genome Initiative (MGI) in 2011 
[29], many other 2D materials property databases have been created that meet find-
ability, accessibility, interoperability, and reusability (FAIR) principles. Examples 
include the inorganic crystal structure database (ICSD) [30], Computational 2D 
Materials Database (C2DB) [31], 2D Materials Encyclopedia (2dmatpedia) [32], 
Open Quantum Materials Database (OQMD) [33], Materials Project [34], Cambridge 
Structural Databases [35], and Harvard Clean Energy Project (HCEP) [36]. AI-based 
machine learning (ML) tools can be developed to leverage these data sets, generate 
hypotheses about the optimum experimental circumstances and parameters, learn 
and adapt without any explicit instructions, find, analyze and draw insights from pat-
terns observed from the data [37,38]. Such ML approaches have been used recently to 
unearth new 2D materials and correlate their fundamental properties with desirable 
functions. For example, such ML approaches have been used to develop new cata-
lysts [39], battery materials [40], and light-emitting diodes (LEDs) [41] based on the 
2D materials. ML tools can be paired with computer modeling processes to develop 
efficient and reliable solutions for 2D materials discovery. For instance, Sorkun 
et al. [42] leveraged ab initio theoretical predictions and data-driven approaches for 

FIGURE 4.1  The process of finding new 2D materials.
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virtually screening 2D materials from a large compositional space for energy conver-
sion and storage applications. They downselected nearly 316,500 stable 2D materials 
and identified promising candidates for energy conversion and storage applications. 
Such data-driven approaches can also leverage data from even failed experiments 
[43].

This chapter will introduce effective ML techniques for discovering new 2D 
materials and predicting their properties. It will be organized under the following 
key topics: (1) ML approaches for 2D materials research, (2) prediction of 2D mate-
rial properties, (3) application of ML approaches for discovering novel 2D materi-
als, (4) ML for other purposes, and (5) countermeasures for common problems, and 
finally, (5) conclusions.

4.2 � ML APPROACHES FOR 2D MATERIALS RESEARCH

ML tools can be used in different fields related to high-dimensional data, such as 
classification, regression. They can extract insight and knowledge from massive 
databases, learn from different computations from previous studies, and predict reli-
able decisions. Although ML techniques became common in diverse fields including 
image recognition [44], natural language processing [45], speech recognition [46], 
and banking [47], their application in the materials science research became promi-
nent only in the past decade. The ML techniques were first applied in materials sci-
ence in 1990s [48,49]. However, they were limited to studies focusing on identifying 
and projecting the physio-chemical behavior of fiber/matrix boundaries in composite 
materials [49]. This application allowed scientists to realize the utility of ML in other 
topics including materials discovery and properties prediction.

4.2.1 � Three ML Approaches for 2D Materials Research

Three major forms of ML approaches are supervised, unsupervised, and reinforce-
ment learning. While supervised ML requires defined or labelled forms of input 
and output training datasets [50], unsupervised ML use raw data or unclassified 
datasets [51]. As the name implies, reinforcement learning uses positive reinforce-
ment to encourage desirable actions. Negative reinforcement can also be used to 
discourage undesirable ones. This model observes the surroundings and plans and 
executes appropriate activities to improve its performance over time. The final choice 
of an ML approach depends upon the quality and quantity of 2D materials datasets 
and the research problem under consideration. Three key classes of ML algorithms 
[52] include (1) Regression (2) Classification and clustering (deep learning, DL), and 
(3) Probability estimation (see Figure 4.2 for subclasses under these key categories).

4.2.1.1 � Construction of an ML Model
An ML system is typically built after identifying a specific problem goal and empiri-
cal function that denotes it. The sample is the subcategory of the data [53] obtained 
after the raw data is processed using data cleaning and feature engineering steps. 
Cleaning step identifies incorrect, incomplete, and irrelevant data. Such incorrect 
data is then revised and cleaned [54]. Feature engineering uses the information to 
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generate features which in turn are used to operate the ML algorithms. Feature engi-
neering step encompasses tasks including selection of features, extraction of features, 
feature learning, and feature construction. This step critically influences the quality 
and accuracy of the model. In spite of the recent technological advances, feature 
engineering remains a tough and expensive job that requires trained experts, substan-
tial time, and resources. An ML model construction includes two fundamental parts: 
(1) ML algorithm and (2) model optimization algorithm [55]. The model represents a 
system based on complex statistical and mathematical ideas, as well as the algorithm 
that was learned from the sample. Eventually, the overall process can give refined 
optimized output.

4.2.1.1.1 � Three Stages to Build an ML Model
The process of building an ML method can be broken down into three distinct 
stages [55]: (1) generating the training data to create samples, (2) building the ML 
model using those clean data (samples), and (3) model evaluation and optimization 
(e.g., cross-validation, hyper-parameter optimization) [56]. The overall construction 
process of an ML system is illustrated in Figure 4.3.

The first step, training data, is the process of collecting raw data from computa-
tional simulations and experimental data. These raw datasets are then cleaned into 
usable form by data cleaning and feature engineering technique. The overall data-
sets are divided into three categories: (1) Training dataset (to train the ML model), 
(2) Validation dataset (validate the model), and (3) Test dataset (actual testing of the 
final model). For example, in case of developing protective coatings based on 2D 
materials, the experimental and simulation data is based on the EIS, Tafel, LPR, and 
corrosion data.

Data cleaning process is then used to tailor and modify the raw data into a more 
suitable form. The next step involves feature engineering that refers to the process of 

FIGURE 4.2  Three classes of ML algorithms used in 2D materials research.
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identifying the consistent, nonredundant, and essential features to use in model con-
struction. Hence, it is important to identify only key conditional attributes that affect 
the obtained datasets. For example, in Li-ion battery applications, although various 
external and internal factors may influence the battery performance, only key factors 
(e.g., cell potential, gravimetric capacity, volumetric expansion) are considered while 
performing the experiment [57]. That is why it is critical to use feature selection 
properly to find out the attributes that affect the most [58]. The second step, model 
building, uses different linear or nonlinear functions to link input data to output data. 
Model evaluation is the last step. This step aims to calculate the generalization accu-
racy of a model on the data that could come across in the future.

Methods used for evaluation are listed in Table 4.1. These methods need test data 
to evaluate the model’s performance, and it is recommended not to use the data used 
for building the model as test data. Because that might result in overfitting [59]. 

FIGURE 4.3  Three stages to build an ML model.

TABLE 4.1
Analogy of Different Assessment Techniques

Method Condition Advantages Limitations

Bootstrapping Small data volume Effective separation 
of training and 
testing data

Original dataset is 
different from training 
data

Hold-out Enough data volume Less complex 
computational data

Training data volume is 
smaller than original 
dataset

Cross-validation 
or LOOCV

Enough data volume/ 
Small data volume and 
training and testing 
data can be separated

Change in volume 
of training data as 
no effect

High-level computational 
complexity
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Overfitting is a phenomenon when a model remembers its training data set and always 
predicts the accurate label for any point that’s in the training set [60]. Holdout is the 
evaluation method where different data is used for evaluation and the whole dataset 
is categorized randomly into three different sets, namely (1) training set, (2) valida-
tion set, and (3) test set. In fact, the training set is indeed a fraction of that same data 
that was initially utilized to build the model. On the other hand, the validation set is 
essentially the subcategory of the data utilized to assess the model’s efficiency. This 
helps to test the model build and refine the parameters to finalize the best version of 
the model in the end. Test set, also known as unseen data, is the subset of the data 
used to evaluate how well the model would perform in the future. Holdout is a very 
handy process for it is known for its speed, flexibility, and simplicity. However, dif-
ference in training and test data set might cause high variance [61]. Cross-validation 
and bootstrapping are also used for model evaluation.

4.2.1.2 � Data Collection and Representation
Although there are only 92 naturally occurring elements in the modern periodic 
table, there can be unimaginable variations of materials with different combinations. 
It is remarkable to see how ML and HTS (high-throughput screening) flourish by 
offering somewhat an appropriate solution within a short amount of time and with 
minimal means. For ML models to be successful, they must have extremely high-
quality and exact data [62]. Following list is the most significant and trustworthy 
open-source research-related experimental, theoretical, and computer modeling 
databases relevant to 2D materials development.

•	 Inorganic Crystal Structural Database (ICSD) (https://icsd.products.fiz-
karlsruhe.de/)

•	 Computational 2D Materials Database (C2DB) for structural, thermody-
namic, elastic, electronic, magnetic, and optical properties (https://cmr.
fysik.dtu.dk/c2db/c2db.html)

•	 Joint Automated Repository for Various Integrated Simulations (JARVIS) 
for Database of DFT-, MD-, and ML-based calculations (https://jarvis.nist.
gov/)

•	 Crystallographic open database (COD) for crystallographic data (http://
www.crystallography.net/cod/)

•	 Open Quantum Materials Database (OQMD) for thermodynamic and struc-
tural properties calculated from DFT (http://oqmd.org/)

•	 Materials Project (MP) for computational data under the Materials Genome 
Initiative (MGI) (https://materialsproject.org/)

•	 2D materials encyclopedia (http://www.2dmatpedia.org/)
•	 PubChem (https://pubchem.ncbi.nlm.nih.gov/)

Feature engineering is a critical step within data representation process [63]. For 
making the raw data more suitable for an algorithm, it needs to be converted and this 
procedure is called feature engineering. In this process, data is represented in such 
a way that has meaning for an ML algorithm. Any material’s data can be expressed 
structurally or in elemental form. For elemental form, data such as charge number, 

https://icsd.products.fiz-karlsruhe.de
https://icsd.products.fiz-karlsruhe.de
https://cmr.fysik.dtu.dk
https://cmr.fysik.dtu.dk
https://jarvis.nist.gov
https://jarvis.nist.gov
http://www.crystallography.net
http://www.crystallography.net
http://oqmd.org
https://materialsproject.org
http://www.2dmatpedia.org
https://pubchem.ncbi.nlm.nih.gov
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atomization energy, etc., can be used and structural form data such as bond order 
parameters, Fourier series, etc., are incorporated. Often, a combination of elemental 
and structural data is required for better comprehension. That is why the selection of 
molecular descriptors is critical to have an efficient HTS and ML model to solve any 
problems. Some common descriptors are radial distribution functions (RDF), prin-
cipal component analysis (PCA), adjacency matrix, and coulombic matrix. The RDF 
descriptor is a perfect example of a crystal structure descriptor [64]. While consider-
ing the Fourier series, the atomistic RDF (FR) is the descriptor for the space of chem-
ical component that is built on the distance among molecules. Moreover, it fulfills 
major portion of the prerequisites of being a descriptor. This is also a reliable source 
of projection when considering molecules’ energy surfaces. On the other hand, PCA 
is used to reduce dimensionality [65]. The calculation of this tool is derived from the 
eigenvalue of a matrix and its corresponding eigenvectors. The base of this approach 
is linear algebra and so the mathematical foundation is very sound which eventually 
results in the straightforward interpretation of results. However, the assumption of 
linearity can be attributed to the shortcoming of this method. As most materials 
science-related cases are nonlinear, this method is seldom used in advanced machine 
learning methods. Additionally, adjacency matrix is very handy while considering 
chargeless particles, whereas the combination of both charge and structural informa-
tion is incorporated [66] for coulombic matrix. In fact, if the chemistry of the atomic 
species is included, an adaptation of adjacency matrix, Coulombic matrix representa-
tion can be obtained.

4.2.1.3 � Selection and Evaluation Procedure of Model
There are different and effective machine learning algorithms ranging from as sim-
ple as linear regression curves to some intricate neural networks. Due to scarcity of 
enough data, not all algorithms are employed to find and predict new materials. As 
ML in materials science is a new direction and this area itself is still emerging and 
a lot of new directions are being generated every day. From those, the most useful 
ones are listed in Figure 4.2. Here, Naïve Bayes can work as validating any theory 
[67], decision tree can show the routes of materials synthesis [52], artificial neural 
network can predict reaction product [68], and support vector machine can estab-
lish the structure–property relationship [69]. As stated earlier, for employing ML in 
materials science, the setback is the scarcity of high-quality datasets [70]rather than 
algorithms. However, thanks to DFT, in near future this scarcity of theoretical data 
will no longer exist. But performing ML analysis using big set of data is still not a 
cost-efficient technique due to the fundamental parts of ML such as feature engineer-
ing [71]. By substituting first-principles calculations with machine learning, it can 
help save money and effort throughout this situation.

In DFT, the Kohn–Sham (KS) equation can be utilized to measure the entire energy 
of any molecules. The KS equation exists in a KS system, a hypothetical system that is 
made of particles which do not interact with each other still can produce same density 
like any other system that as particles interacting with each other [72,73]. 

The KS equation can be written as:

	 ( ) ( ) ( ) ( )= + + xcE n T n U n E ns H 	 (4.1)
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here 
Ts = noninteracting electrons’ kinetic energy (K.E.)
UH = Hartree potential energy
V = external potential
n = electronic density
Exc = exchange-correlation term showing owing to energy estimations in the 

Kohn–Sham approach.

Calculating the value of overall energy through a computational approach is always 
intensive. Through ML approaches, the outcome of DFT simulations can be pre-
dicted without even performing it. For example, Brockherde et al. [74] circumvented 
the KS equation while doing DFT computation by studying the energy functional 
applying the kernel ridge regression (KRR) program. Or each accessible experimen-
tal test result could be fed into machine learning programs and from there pattern 
of structure–property can be comprehended. ML models were at first used in the 
chemical and pharmaceutical industries.

One of the ML approaches used in pharmaceuticals [75] medicines is quantitative 
structure–activity relationship (QSAR) modeling, which has aided to assess energy, 
expense, and improved pharmacology and pharmacological activity. Artificial neu-
ral network (ANN), decision trees (DT), random forest (RF), and support vector 
machines (SVM) are the examples of QSAR approach, which have been incorpo-
rated in finding new medicines [76]. The same mindsets can help in the revolution of 
novel electrode and catalyst materials discovery and their property prediction. Some 
of the commonly used ML models are as follows:

4.2.1.3.1 � Regressors
Linear models such as linear regression and Bayesian ridge regression, neural net-
works, RF, and KRR are the regressors ML models.

4.2.1.3.1.1    Kernel Regression  This is one of the common and popular models. 
Similarities between two sets of data are measured as input in Kernel-based methods 
[77]. Furthermore, its outcome could be understood mostly as a linear set of kernel 
functions for the given data. Gaussian fit is a popular fitting method in which several 
Gaussian curves are used to fit data in a model. It has been established that the linear 
model outperforms the Kernel ridge regression in terms of efficiency. However, the 
latter one is more flexible. These models have done their job by predicting formation 
energies [78], potential energy surfaces [79], electronic density of states [80], etc.

4.2.1.3.2    Neural Networks
This is a modeling technique designed after the brain [81]. The input of this system is 
called feature and the output is prediction. Between input and output, there might be a 
single or several layers which consist of several functions which help to make the out-
put or prediction. Neural networks have been considered cutting-edge machine learn-
ing modeling systems that are regarded as one of the most common [82] algorithms. 
However, ANN requires a cornucopia of quality data and turns out to be a very exor-
bitant technique in terms of computational expenses. Contrarily, it has demonstrated 
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the ability to just be reliable and cost-effective when dealing with smaller datasets. 
The model learns from different features of molecule, such as charge, the interatomic 
distance, etc. It can compare data with the data that has been already learned and 
can differentiate any irregularities. It can also capture underlying patterns among the 
input data [83]. Although neural networks’ primary design constrained the model’s 
ability only to deal with massive amounts of data, recent improvements have allowed 
them to function effectively with modest amounts of data as well. As an example, after 
almost 10,000 datasets of training, Grossman’s model of a generalized crystal graph 
convolutional neural network (CGCNN) effectively projected several key features of 
perovskite crystal structure. [84] Surprisingly, this prediction has very high accuracy 
when compared to DFT prediction as compared to experimental results.

4.2.1.3.3  Transfer Learning
It is widely known that insufficient data is the major setback for applying ML mod-
els in materials research. Transfer learning is a new machine learning technique that 
addresses this limitation by moving data between learning activities. Hutchinson et 
al. [85] tested several architectures to forecast the bandgap of crystalline compounds. 
By using this procedure, he became capable of predicting bandgaps. He basically took 
the differences amongst the replies of the several systems and then used them to teach 
other systems. By learning the difference between computational and experimental 
data, this model predicted the bandgap only using a very small amount of data.

4.2.1.3.4    Natural Language Processing
This is the ML technique that is incorporated with human language. For example, 
how data from keyboard input can return results such as Google, Bing, etc., google 
translation, speech recognition, auto text correction, etc. So, NLP can process any 
data in textual form even materials science-based text or literature. Kim et al. [86] 
used the NLP technique to find out key parameters from more than 12,000 pieces of 
literature for hydrothermal synthesis of titania nanotubes.

4.2.1.3.5  Machine Learning Toolkits
AMP (Atomistic Machine-Learning Package) is an open-source ML language frame-
work. It is compatible with many of these DFTs to constructing learning prospects, 
as well as GPAW (projector-augmented wave), VASP (Vienna Ab initio Simulation 
Package), and other atomistic simulation tools. The following is a list of some pack-
ages and libraries that can be used for modeling:

•	 Keras: Open-source neural network Python library (http://keras.io/)
•	 Atomistic Machine-learning Package (AMP): ML for atomistic calcula-

tions (https://amp.readthedocs.io/en/latest/)
•	 Classification And REgression Training (CaReT): for classification and 

regression models (https://github.com/topepo/caret)
•	 MAterials Simulation Toolkit for Machine Learning (MAST-ML): 

Open-source Python package (https://github.com/uw-cmg/MAST-ML)
•	 COMmon Bayesian Optimization Library (COMBO): Python library 

for ML techniques (https://github.com/tsudalab/combo)

http://keras.io
https://amp.readthedocs.io
https://github.com
https://github.com
https://github.com
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4.2.1.4 � Model Optimization
Validation datasets are being employed to justify the performance of the ML model 
built. Prediction mistakes occur when an outcome is predicted incorrectly based on 
a set of inputs. This error can be classified into two categories:

	 1.	Variance errors: if multiple teaching datasets are applied, different flaws are 
caused by differences in algorithm outcomes [87]. In a flawless ideal case, 
there would not be any variance even if varying datasets are used; however, 
ML algorithms like KNN, RF are prone to high variance errors.

	 2.	Bias errors: indicate the difference between the predicted output and actual 
practical output of test data. An excessive bias error implies the mapping 
function being too approximate which was created to function the overall 
process in less time with a low computational cost, whereas a moderate or 
low bias error suggests the mapping function of having fewer approxima-
tions which will lead to higher cost.

These errors can result in critical problems such as underfitting, overfitting, etc. 
That is why these must be balanced. Typically, underfitting is there when the map-
ping function does not include any significant data. It represents low variance and 
high bias. Then again, overfitting is indicative of high variance and low bias and 
it has superfluous data [88]. So, to avoid under- and overfitting, an optimized bal-
ance between these two types of errors should be achieved in the model. Models are 
assessed using a variety of measures such as:

	 i.	Mean absolute relative error,
	 ii.	Coefficient of determination, R2,
	 iii.	Learning rate,
	 iv.	Loss function,
	 v.	Mean absolute error,
	 vi.	ROC curve

4.2.2 �A  Summary of the Use of Machine Learning 
in 2D Materials Research

Machine learning has been applied in materials research greatly in recent years 
because of the efficiency of the process in time and money and accuracy in predic-
tion. Figure 4.4 exhibits the application of machine learning throughout the realm of 
materials science, which can be divided into three groups, for instance, (1) predic-
tion of materials properties, (2) discovery of new materials, and (3) different other 
purposes such as process optimization, battery monitoring, etc. Similar approaches 
are applicable to 2D materials too. Using regression analysis methods, 2D materi-
als property prediction, both micro and macroscopic, can be obtained. On the other 
hand, probabilistic model such as Markov chain [89] is used to screen combinations 
of components and structures [90], and out of the few good options, candidate having 
relatively superior performance is selected finally by using DFT-centered verification.
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4.3 � PREDICTION OF 2D MATERIAL PROPERTIES 
USING MACHINE LEARNING

2D material property can be predicted via machine learning models. The conven-
tional property of materials can be obtained either by experimental procedures or 
by computational simulation. Both of these processes require complex operation and 
experimental setup. So, it is difficult to obtain data on the property of the materials and 
some may remain even unknown. Another point to consider is that these experiments 
are carried out at the end of the selection process; therefore, if the conditions are unfa-
vorable, then all the investments made so far would be wasted. Moreover, sometimes 
properties of materials cannot be studied even through a colossal amount of effort in 
experimental or computational efforts. And so intelligent prediction systems must be 
developed which can determine material characteristics efficiently and precisely at a 
cheap expense and promptly. In this case, machine learning can be applied because it 
examines the creation and analysis of computer programs that can extract insights and 
patterns from data. By analyzing and figuring out existing relations amongst various 
characteristics of materials as well as the other factors associated with those proper-
ties through the extraction of insights and information from existing practical data, 
machine learning can help predict the property of materials. Figure 4.5 demonstrates 
the basic framework of how these models can efficiently predict material property. 

FIGURE 4.4  A summary of the use of machine learning in materials research. (Reprinted 
with the permission from Liu, Y., et al., Materials discovery and design using machine 
learning. Journal of Materiomics, 2017. 3(3): pp. 159–177.)



70 Machine Learning in 2D Materials Science

Firstly, for the determination of the conditional attributes associated with property 
prediction, feature engineering is conducted. After that, the system is trained to define 
the association amongst these conditional factors and the decision parameters. In the 
end, the model projects the properties of the materials as output.

The trained model can predict materials properties in two classes, such as macro-
scopic performance prediction and microscopic property prediction. While investigat-
ing the macroscopic functionalities of materials, researchers emphasize on physical 
as well as mechanical properties. The structure–activity correlation of the material’s 
characteristics and microstructure is such an example [90]. Neural networks, support 
vector machine (SVM), and optimization techniques were employed to investigate the 
macroscopic performance of materials. These machine learning algorithms have an 
excellent track record for addressing regression and classification tasks. 

Artificial neural networks are by far the most extensively employed algorithms for 
evaluating parameters which are typically undefined as well as rely on even a huge 
set of input data. ANNs are nonlinear statistical analysis techniques that are based on 
biological neural networks with the capability to learn by themselves and adjust [91]. 
Backpropagation ANNs (BP-ANNs) and radial basis function ANNs (RBF-ANNs) 
are also useful neural network techniques. BP-ANNs produce acceptable precise 
estimation with a high degree of adaptability [92]. But the convergence rate of this 
procedure is slow and at times faces local minima problems. On the other hand, 
RBF-ANNs can overcome the problem of local minima through integrating both the 
ANN and the radial basis function (RBF) concept. RBF-ANNs have superiority in 
the convergence rate also. The main convenience of ANNs is that they can learn from 
observed data and little prior comprehension of the target material is required [20]. 
However, in order to predict the attributes, it is essential to have a large, diversified 
dataset for training purposes [20]. 

Dunn et al. [93] developed machine learning tools, such as Automatminer and 
Matbench. Automatminer develops a machine learning (ML) system that has the capa-
bility to generate projections of materials as output by taking materials’ structural and 
compositional data as input. The Matbench has 13 supervised machine learning tasks 
from 10 datasets. Samples in each task may vary from 312 to 132,752. Every single 

FIGURE 4.5  Fundamental framework for the application of ML in 2D materials property 
prediction.
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assignment has its datasets, also with input being compositional or structural compo-
nent and the return being the specimen’s targeted characteristic. Rajan et al. applied 
kernel ridge regression (KRR), support vector regression (SVR), Gaussian process 
regression (GPR), and decision tree (DT) boosting processes the prediction of the G0W0 
bandgaps of 2D material. LASSO159 was applied for producing as well as choosing 
characteristics. Finally, the feature space was enhanced for every single approach. 

Table 4.2 represents the use of ML in 2D materials properties prediction using 
various conditional attributes. The ML models used are also represented in the same 
table. As an example, Tawfik et al. [94] predicted the interlayer distance of 1431 bilay-
ers using four machine learning models, namely relevance vector machine (RVM), 
feedforward neural network (FNN), and decision tree (DT). They used LASSO 
algorithm to summarize the optimum number of descriptors which is 35. The BR1 
descriptor was employed to teach the machine learning methods. The bandgap was 
also predicted by the ML models except for this time the number of descriptors 
was  11. Using density functional theory (DFT), the bandgap was also calculated 
and compared to the results obtained by the ML models. In total, the bandgap was 
predicted for 210 bilayers applying the models educated by the BR1 representation. 

4.4 � APPLICATION MACHINE LEARNING APPROACHES 
TO DISCOVER NOVEL 2D MATERIALS

After discussing the application of ML in materials property prediction in the previ-
ous section, here we demonstrate the application of ML in 2D materials discovery. 
Discovering material having good performance has always been a key topic in mate-
rials science. Screenings for new materials either computationally or experimentally 
require structure transformation and element replacement. Nevertheless, structural, 
and compositional search space is usually not flexible rather constrained [95]. These 
screening methods require a huge amount of time in experimentation or computation 
without the assurance of being successful and typically result in efforts being point-
less. Considering the fact of these conventional methods being imprudent in case of 
money and time, machine learning model combined with computational simulation 
is adapted for the discovery of novel 2D materials.

Figure 4.6 depicts a typical machine learning procedure for finding new 2D mate-
rials. This overall method is divided into two stages: The first is referred to as a 
learning system, and the second is referred to as a predictive model. Data screening, 
feature engineering, model selection, learning, as well as validation are all covered 
by the learning stage. The model obtained from the learning system is used by the 
prediction system to give output as the projection of components as well as structure. 
The following method is then used to choose new materials: DFT computations are 
utilized to examine the feasibility of the candidates, and the prediction system pro-
vides suggestions for candidate structure via structural and compositional approval. 
For finding new materials, numerous machine learning techniques are currently 
being used and the sole purpose of these attempts is to find materials with good 
performance. These are classified into two types: forecasting of crystalline and com-
position structure. Table 4.3 demonstrates a list of different 2D materials, and their 
properties predicted by different machine learning approaches.
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FIGURE 4.6  Typical machine learning procedure for finding new 2D materials.

TABLE 4.3
List of 2D Materials and Properties Predicted by Different ML Methods

Class of 2D 
Material

2D Material 
Pedicted Atomic Structure ML Method

Metal CrCuTe2

CrCuTe2 [99]

Gradient Boosting Classifier 
(GBC) [99]CrCuSe2

CrCuS2

Half-metal MnCl3

CrO2 [99]

MatGAN (Generative 
Adversarial Network) [100]MnBr3

V2CoO6 Gradient Boosting Classifier 
(GBC) [99]V2Cl5

V3I8

CrO2

Insulator Bi2Se3

Bi2Se3 [101]

Gradient Boosting Classifier 
(GBC) [102]

(Continued)
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4.4.1 �P redictions of Crystal Structure

Predictions of crystal structure remain one of the key factors in finding new materials 
and development. However, it remains one of the crucial problems that form the base 
for any materials design. By predicting the crystal structure, experiments related to 
structure can be avoided and that can save time and resources. Prediction of crys-
tal structures based on both chemical reaction and first-principles crystal structure 
prediction is difficult due to the inherent complex mechanism. Following a chemical 
reaction, for example, it necessitates detailed and explicit knowledge regarding the 
entire reaction’s potential energy surface (PES). Then again, prediction of crystal 
structure using first principles requires the consideration of a colossal amount of 
component arrangements by utilizing high-level computational quantum chemistry 
techniques [104]. However, machine learning uses different algorithms to analyze an 
enormous amount of experimental data and extract insights and empirical rules, and 
this technique has been used widely at this time.

Cluster resolution was utilized to choose features [105], which were then used 
for the inputs into partial least-squares discriminant analysis (PLS-DA) and SVMs 
by Oliynyk et al. [106]. To keep the problem simple, just the seven most prevalent 
samples were chosen. A total of 706 compounds were classified into three groups: 
(1) 235 compounds for feature, (2) 235 compounds for optimization of SVMs and 
PLS-DA, and (3) 236 for validation. Support vector machines’ performance was 
comparatively superior compared to that of PLS-DA with an accuracy of 93.2% for 
SVMs and 77.1% for PLS-DA. SVMs were applied on a dataset having around 1505 
compounds adapted from Pearson’s crystal database. Then, it was tested to see what 
would happen provided that the number of the feature was reduced from a high to a 
low number. For example, the resulting sensitivity was 97.3%, accuracy 96.9%, and 
specificity 93.9% after changing the features from 1000 to 110.

In the overall designing process, the prediction of crystal structure is just the first 
step. The next step is to combine stability determination with property design. A set 
of 60,000 potential perovskites were studies by Balachandran et al. [107] via several 
machine learning techniques. First, the compounds were classified into perovskites 
or nonperovskites by SVM machine learning method. Then, the curie temperature of 
those perovskites was predicted. A candidate is added to the training set after it was 

TABLE 4.3 (Continued)
List of 2D Materials and Properties Predicted by Different ML Methods

Class of 2D 
Material

2D Material 
Pedicted Atomic Structure ML Method

Semiconductor CsSnCl2Br

CrWBr6 [99]

Regression Model & 
Gradient Boosting 
Classifier [103]

CsSnBr2I

CsSnBr2Cl

CrWBr6 Gradient Boosting Classifier 
(GBC) [99]CrOF

CrSiTe3
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synthesized experimentally, and the cycle continued. Six perovskites were discovered 
out of the ten synthesized compounds, and 898 K was found to be the greatest Curie 
temperature.

To investigate the relationship between electronegativity and particle measure-
ment with crystalline structure, Ceder et al. [108] used principal component regression 
and Bayesian probability. This research shed light on the physical explanation which 
then governs crystallographic estimation. Moreover, Fischer et al. [109] ventured into 
the area of extracting knowledge from computational or experimental data and built 
a model that can predict structure based on information gathered from experimental 
data. This model is known as Data Mining Structure Predictor (DMSP). DMSP col-
lects as well as analyzes empirical information in order to guide quantum approaches 
for the study of balanced crystalline formations. DBSCAN and OPTICS are programs 
developed by Phillips and Voth [110] which can find novel kinds of structure from a 
large number of datasets. Liu et al. [111] aimed to overcome issues regarding multi-
objective design requirements and suggested a standardized machine learning struc-
ture. This novel framework includes arbitrary data production, feature engineering, and 
also several classification algorithms, and its overall function is projecting microstruc-
tures of Fe-Ga alloys. Obtained result of this method was promising as it outperformed 
traditional computational techniques. The average time required for this process was 
decreased by 80% and an efficiency that cannot be obtained by other methods.

Hautier et al. [112] built a probabilistic model by integrating theoretical and experi-
mental data to predict new compositions and their possible crystal structures. Ab initio 
computations then validate these predictions. Based on the theory, machine learning 
provided the probability density of distinct structures existing side by side in a sys-
tem. This approach was applied and Hautier et al. went through 2211 A-B-O system 
compounds (where A and B were from 67 different elements) in the inorganic crystal 
structure database (ICSD) [113] where no ternary oxide was found. There were a total 
of 1261 compounds with 5546 crystalline structures as a result of this. DFT was used 
to compute the energies of all these molecules. To assess the stability, energy of decom-
posing pathways was estimated, yielding 355 new compounds upon the convex hull.

Sendek and colleagues [114] applied logistic regression (LR) model and screened 
Li-ion conductor materials. Materials project database was used for the screening, 
and 317 candidates were finalized from a total of 12,831 candidates. Then LR was 
applied to create a classification model for more refined selection which resulted in 
21 truly suitable candidates in the end, having an overall reduction of 99.8%.

4.4.2 �P rediction of Components

Another method for discovering novel materials is component prediction. In a nut-
shell, it is required to figure out whether certain chemical entities are likely to result 
in compounds or not. When compared to the projection of crystalline systems, com-
ponent prediction turns out to be a relatively common practice of machine learning. 
The search space for components is quite narrow for empirical or semi-empirical 
approaches which involve numerous authentication computations as well as experi-
mentations, which might stymie considerable growth of novel material discov-
ery. Currently, the overall prediction system of components utilizing the service of 
machine learning can be distinguished as two categories: (1) element combination 
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recommendations after a group of components intended for a specified system and 
(2) demonstration of ionic substitutions designed for novel compound finding. While 
regression models can be applied to predict crystalline structure with no prior knowl-
edge, component prediction is done using a Bayesian statistical model to solve for a 
posteriori probability. The distinction between classical and Bayesian statistical mod-
els is whether or not previous information is incorporated [115]. The utilization of trial 
data as well as the compilation, extracting, and handling of previous information are 
all very important in a Bayesian statistical model. Because they perform well in poste-
rior probability estimates, these models are utilized to forecast material components.

Hautier et al. [112] used a Bayesian statistical analysis to obtain insights of 183 
popular oxides compounds in the ICSD library to accurately forecast 209 novel ter-
nary oxides. When compared to the previous (exhaustive) method, the expense of 
analysis was dropped about 30 times compared to that of before. KRR was used by 
Faber et al. [116] to compute the formation energy of two million elpasolites (stoi-
chiometry ABC2D6) crystals containing main group elements up to bismuth. For a 
training set of 104 compositions, errors of roughly 0.1 eV/atom remained. 78 phase 
diagrams were created through energies and data from the materials project, along 
with 90 new-found stoichiometries that were projected on the convex hull.

Ward and colleagues [117] used typical RFs to estimate formation energies using 
Voronoi tessellations and atomic characteristics as inputs. The descriptors outper-
formed Coulomb matrices [118] and partial RDFs [64] on a training set of about 
30,000. Remarkably, information after the Voronoi tessellation had little effect on 
the 30,000-material training set’s findings. This is because the dataset contains 
extremely limited materials having same composition yet distinct formation. When 
the number of training sets was boosted to 400,000 materials from the open quantum 
materials database [33], overall inaccuracy of the composition-only system increased 
by 37% compared to the model that included structure information.

Li et al. [119] analyzed a dataset of roughly 2150 A1−xA′
xB1−yB′

yO3 perovskites, 
which are employed as cathodes in elevated temperature fuel cells, using sev-
eral regression and classification approaches. All techniques employed elemental 
characteristics as a feature. The top classifiers were highly randomized trees (having 
the best regression performance) and KRR. The first one had an average error of 17 
meV/atom. Because of typical elemental composition space being so constrained, it 
is difficult to compare the faults in this work to others.

Instead of only ternary oxides, Meredig and colleagues [98] employed an exact 
similar technique for the prediction of components of ternary compounds. When 
compared to a normal first-principles analysis, they were capable of predicting 4500 
potential ternary compounds exhibiting thermodynamic feasibility, and also the 
execution time was cut approximately six times. Convolutional neural networks and 
transfer learning were used by Zheng et al. [120] to predict stable full-Heusler com-
pounds AB2C. The idea behind a transfer learning [121] model is that at first a model 
is trained for a certain type of topic and then employing elements, insights, and knowl-
edge learned during the initial phase for different training purposes, lowering quantity 
of data needed. Convolutional neural networks for image identification were applied 
by employing an image of the periodic table representation. The system was origi-
nally taught to forecast the formation energy of about 65,000 full-Heusler compounds 
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from a certain database (OQMD) [33], with a mean absolute error of 7 meV/atom (for 
60,000 data points) and 14 meV/atom (for a training set of 5000 compositions).

As previously said, strong machine learning algorithms can be constructed to find 
novel materials by predicting crystal structure and component structure. However, 
when using machine learning approaches for finding new materials and their prop-
erty prediction, there are still certain challenges in the data collection stage. Due to 
the high expense of library synthesis, it is difficult to obtain large and high-quality 
datasets, and hence, it is considered a major challenge.

4.5 � MACHINE LEARNING FOR MISCELLANEOUS FUNCTIONS

In addition to the application of ML in predicting materials properties and developing 
novel materials, it is widely used in various fields of materials science and engineer-
ing. ML has been used in research that requires mass simulations and experimental 
studies which is challenging to solve via typical research methodology.

ML has been used to determine density function. Snyder et al. [122] recently used 
a machine learning model for solving a newly designed density functional issue. The 
precision attained while estimating the kinetic energy (KE) of the structure, having 
mean absolute errors less than 1 kcal/mol is surprisingly amazing. This is by the far 
contrastingly great result compared to other approximations as it took even less than 
a hundred densities to train. ML has also been applied to fields like battery monitor-
ing [123–125], optimization of overall process [126–129], corrosion prediction [130–
132], etc. Although ML has been gradually applied in the field of corrosion, corrosion 
prediction, and application of protective coatings to prevent corrosion, the corrosion 
industry could have profited far more from the revolutionary progress in the field of 
ML. Wen et al. [133] utilized SVM model and input variables such as temperature, 
salinity, dissolved oxygen (DO), pH, and oxidation–reduction potential to predict 
corrosion rate of 3C steel in marine sea water. Another study reports the applica-
tion of 29,100 electrochemical data (corrosion current (Icorr), corrosion potential 
(Ecorr), Tafel, Bode, Nyquist) to train regression, DT, and gradient boosting ML mod-
els to predict corrosion behavior of high-strength nickel-based superalloy (Inconel 
718). Application of ML as a datamining tool has predicted the corrosion behavior 
of another nickel-based alloy (alloy-22) [134]. In this study, temperature, exposure 
time, surface area, and weight loss were taken as input variables and then the neural 
network-based ML model predicted the corrosion rate and weight loss of the nickel 
alloy. Corrosion defect depth of oil and gas pipelines have been predicted in another 
study which utilizes a collection of ML techniques (PCA, GBM, RF, NN), and sev-
eral input variables such as temperature, pressure, pH, ion concentration [135].

However, very few studies have been performed to predict the corrosion resis-
tance of 2D materials as protective coating. Allen et al. [136] utilized EIS data to 
predict the corrosion resistance of 2D materials (graphene) in corrosive environ-
ment. They utilized deep learning-based model called variational autoencoder 
(VAE) to generate 1000 synthetic datasets from the original 49 experimental datas-
ets. Input variables such as capacitance (double-layer (Cdl), coating (Cc)), resistance 
(solution (Rsoln), charge-transfer (Rct), polarization (Rpo)), and open circuit potential 
(OCP) from these datasets were then used to train ML model (Deep Neural Network 
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(DNN), Extreme Gradient Boosting (XGBoost)) to predict the corrosion resistance 
of 2D materials coating against microbial induced corrosion (MIC). The structural 
features of sulfate-reducing bacterial (SRB) biofilm, contributor to MIC to arbitrary 
substrates, were analyzed using neural network based deep learning models [137]. 
Although this study does not directly contribute to the field of corrosion resistance 
prediction of 2D materials protective coating, similar idea can help in that regard.

Application of ML in various field of science has been explored to solve relevant 
problems. Table 4.4 demonstrates instances where ML techniques such as neural net-
work, SVM, Bayesian Network have been applied to tackle issues related to battery 
monitoring, process optimization, etc. Application of ML model helps achieve the 
ability to predict battery life (LIB) and mechanical properties (hardness, strength) 
of alloys and detect damage in composite materials. These examples illustrate the 
extensive reliance of science and engineering on machine learning.

Although the application of ML to predict new 2D materials with superior cor-
rosion resistance property has been hardly explored so far, application of ML in the 
prediction of 2D material’s various properties (electronic, structural) [99,142,143] has 
been explored successfully. With the availability of hundreds of thousands of struc-
tural, electronic, mechanical, and chemical data in several databases, Big Data tech-
nique can utilize these datasets to train and predict new 2D materials with superior 
corrosion resistance applications against both abiotic and biotic corrosion.

4.6 � ASSESSMENT OF COMMON CHALLENGES 
AND THEIR PREVENTION METHODS

4.6.1 � The Problems with Model Building

Data is required in machine learning model building and for the overall evaluation 
technique. That is why a large group of datasets are required for the whole process. 
And from that source datasets, a subgroup of the source data is chosen for research 
in a certain way. The expression sample denotes the fundamental dataset in machine 
learning, which often includes both training and test data. The three types of sample 

TABLE 4.4
ML for Miscellaneous Application 

Input Variables ML Methods Model Solution Reference

Current, Resistance, 
Voltage

NN, SVM State of charge (SoC) 
Estimation of Lithium Ion 
Battery (LIB)

Meng et al. [138]

Degree of Deformation, 
Temperature

Fuzzy Neural 
Network (FNN)

Mechanical property 
(strength, deformation) 
Prediction of Titanium Alloy

Han et al. [139]

Aging Temperature and 
Aging Time

SVM Prediction of Hardness, 
Electrical Conductivity of 
Aluminum Alloys

Fang et al. [140]

Amplitude of Wave, 
Age

Naive-Bayes Damage Detection in 
Composite Materials

Addin et al. [141]
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creation challenges that exist currently are the origin of its sample data, issues regard-
ing creating feature vectors and assessing the size of the sample.

Computer modeling and experimental data are the source of sample data that are 
accumulated by several institutions, laboratories, organizations, or schools. However, 
these data collecting processes hardly have a centralized administrative structure. 
Although the development in the field of materials data infrastructures has addressed 
this difficulty, the applicability of machine learning is still limited because each 
database is independent, and the data format is not uniform.

Feature vectors are crucial because they compare the validity of model prediction. 
The feature vectors should, in theory, provide a basic physical foundation for extracting 
fundamental chemical and structural patterns, allowing for quick forecasts of original 
material chemistries. Electron density, Coulomb matrix, structure, and Composition 
are some of the most often utilized feature vectors in material science. There is no 
universal eigenvector that would be efficient for certain purposes in material science 
because each eigenvector is designed for just a distinct purpose. It is evident that dif-
ferent representations of features may yield different forecasting results [144].

In machine learning, determining sample mass is considered an important com-
ponent throughout the sample construction process which remains associated with 
dimension reduction. The size of the sample size has influences if the sample datasets 
contain implicit knowledge about the sample’s intrinsic characteristics, which is highly 
dependent on the particular topic and the machine learning technology used. Provided 
that simple techniques with only a few attributes as well as easy implementation, 
namely the SVM technique [145] may function well even if the size of the sample is 
not that large, advanced algorithms, including neural networks [48], which may attain 
highly accurate results on standard sample datasets irrespective of the size.

4.6.2 � Usability

The level of difficulty in employing different machine learning algorithms for tack-
ling pragmatic issues is denoted as usability. Machine learning’s intricacy in materi-
als research presents itself in two ways. (1) Machine learning is a difficult method 
that demands expert knowledge and guidance to complete. When employing machine 
learning for material property predictions, for instance, the analysis of correlation 
must be used to improve the prediction model accuracy. In some studies, it is evident 
that reducing the high dimensionality of a given problem having high dimensional-
ity helps in the accuracy prediction [146]. (2) Determining parameters is likewise a 
challenging task. Since these parameters and kernel functions are all so important 
to machine learning methods, determining these is a crucial step in that process. In 
materials research, the parameters of machine learning systems are mostly defined 
by manual modification or experience. Moreover, to optimize such parameters, sev-
eral optimization procedures are used. As a result, figuring out how to make machine 
learning approaches more usable is an issue that needs to be tackled immediately.

4.6.3 � Learning Efficiency

Machine learning speed is proportional to its pragmatic use. While promptness 
is constantly sought while training as well as testing machine learning models, 
but in reality, achieving it all at the same time is difficult. The KNN approach, 
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for example, has a fast-learning rate but very slow testing rate; contrarily, neural 
networks models take little time to train yet very long time to test. Due to the tiny 
nature of these samples, learning efficiency is not a big issue in materials science 
machine learning applications right now. But this problem will remain in these 
models in materials research when materials genome project spread and mate-
rials science will adopt the idea of big-data techniques having sample datasets 
with massive volume. Thus, this learning efficiency issue regarding how machine 
learning can be improved will also become a question which needs to be resolved 
as a matter of urgency.

4.7 � CONCLUSIONS

Machine learning exists as a sophisticated and important method through which 
computer systems can gain insight. This is a part of artificial intelligence and is 
the trendiest type of analytical method. It is used for a variety of objectives in 
materials research, namely new material discovery, material property prediction, 
and many other reasons on a macroscopic to microscopic level. This technique in 
materials research has wide range of applications, covering electrolyte materials, 
different types of oxides, functional and metallic materials. Machine learning can 
be utilized to produce precise and effective methods for materials research, as 
evidenced by a wide range of relevant works. These works related to discovering 
new 2D materials with attractive functionalities, predicting 2D materials property 
using ML are gaining more and more attention as the range of application of 2D 
materials has widened significantly.

2D materials have captured traction in the field of electronics (sensors, spintron-
ics), photonics and optoelectronics, and power and energy (batteries, supercapaci-
tors) applications due to their attractive properties (bandgap, spin-orbit coupling, 
magnetic properties, barrier properties). In this chapter, we have already discussed 
that many studies have already predicted hypothetical 2D materials using various 
ML techniques. These predictions would narrow down the options for potential 
materials and help to reduce the cost of time and resource. Overall, the integration 
of ML in 2D materials research will accelerate the overall discovery process and 
change the field for the better. Moreover, varieties of topics are incorporated with 
machine learning and they turn out to be great according to various studies done 
on related topics. In the meantime, machine learning algorithms are deserving of 
more exploration.

In materials design and discovery, machine learning is mostly used to tackle prob-
ability estimation, regression, clustering, and classification problems. Furthermore, 
machine learning does well when addressing issues regarding sorting, correlation, 
and other similar tasks. As a result, these approaches would be used for tackling 
additional difficulties in materials research, which would probably lead to even more 
advancements. Usually, only a single machine learning method, such as ANN, SVM, 
DT, etc., is used for a certain problem. Sometimes, the results of these methods are 
compared for a particular topic and the best option is selected. As a result, each 
model’s application range is severely limited. And so, developing a unifying context 
to apply this process to different strategies for resolving problems would consider-
ably increase applications of machine learning approaches. This would enhance the 
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machine learning model’s efficacy as well as the generalization ability considerably. 
Big data is a trendy issue right now, and it is gaining a lot of traction in a variety of 
industries.

In materials scientific study, as well as many other disciplines, the subject of how 
to reserve, organize, analyze an enormous volume of data is one of the difficult issues 
to overcome. As a result, exploring machine learning model’s applications in differ-
ent scientific fields especially materials research alongside the big data technique is 
expected to be a critical study course for days to come. Deep learning showed excel-
lence at processing massive amounts of data and has paved the way for significant 
advances in image processing, speech recognition, and other domains. As a result, in 
materials research, deep learning technologies involving sophisticated big data study 
ought to be explored.
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Segmentation through 
Deep Learning Approach

Ejan Shakya and Pei-Chi Huang

5.1 � INTRODUCTION

For decades, advances in volume scanning electron microscopy (SEM) have con-
tributed to a significant increase in large three-dimensional (3D) images of bacterial 
cells. Consequently, many deep learning (DL) techniques have been successfully 
designed as feature extractors that transform the pixel values into a suitable internal 
representation for learning, making automatic analysis of microscopic images for 
cellular morphology feasible [1–3]. Observing cell size variability in microbes is an 
initial step in microbiology research that can provide insights into cellular responses 
to environmental stimuli through changes in physiology and gene expression [4,5]. 
Additionally, cell size variation is a fundamental physiological trait that plays a criti-
cal role in cellular housekeeping, nutrient transport, environmental adaptation, and 
cell reproduction [6,7]. Maintaining proper cell size is essential for optimizing regu-
lar cell physiology in bacterial cells [8]. Automated cell segmentation techniques 
in microscopic imaging play a crucial role in measuring cellular characteristics, 
including changes in size, to assess the effects of environmental changes and growth 
conditions [9–12]. Quantitative measures such as cell lengths, areas, and densities 
can provide information about how biofilm growth and material surfaces are intri-
cately related. When analyzing a significant quantity of cells, techniques for auto-
mated cell recognition are necessary to differentiate the object of interest or specific 
region and retrieve quantitative measures accurately. This is important for making 
informed decisions regarding the accumulation of bacteria on biomaterial surfaces 
and their resistance to microbial corrosion. Until an equilibrium is reached with the 
available resources, either reversible or irreversible bacterial adhesion to a surface 
(or to each other) persists, which in turn affects the growth behavior or survival of 
material surfaces [13,14]. Also, the methods of biofilm image analysis also can help 
discover new materials or analyze the biofouling performance of existing materials. 
Any material—whether natural or engineered—is susceptible to biofilm formation 
and cell adhesion when exposed to moist environments, such as the surfaces of mem-
branes, pipelines, and ship hulls. Such biofilms can lead to the fouling of material 
surfaces or microbiologically influenced corrosion issues [15,16]. In some cases, they 
can serve biotechnology applications. In both scenarios, biofilm image analysis can 
assist in the assessment of the performance and fate of the materials [17]. To address 
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these tasks in the biomedical domain, image segmentation of microbial bodies has 
an important foundational role.

Image segmentation is an active and prolific research problem in the field of com-
puter vision [18]. Multiple scientific domains are utilizing diverse image segmen-
tation techniques, such as semantic segmentation and instance segmentation. For 
example, in medical fields, automated robotic surgery and computer-assisted diagno-
sis use image segmentation as a fundamental method for detecting, tracking, and sur-
gical scene understanding [19,20]. Another such domain is biomedical images, where 
microscopic images are taken into consideration to find the behaviors of the cells and 
their constituents. Among biomedical images, bacterial cells and biofilms have been 
a hot topic and a popular research area [21,22]. In general, collecting and organizing 
enormous digital data remains a critical problem that is time-consuming, expensive, 
and requires expert involvement. Various traditional image processing approaches 
have been applied as supervised machine learning methods on visual object counting 
tasks but require domain experts to provide pseudo-labeling rules from a variety of 
spatial information [23,24]. To develop advanced, content-based image understand-
ing algorithms, an abundance of annotated examples like ImageNet [25] has been 
created for training and benchmarking data. These datasets have been used exten-
sively for feature extraction and training contemporary machine learning models.

One of the most favored approaches to automated feature extraction from digital 
images has been the use of autoencoders and their variants [26]. These methods 
apply DL models to obtain a set of rich nonlinear representations directly from the 
input image without assumptions or a priori knowledge. Also, convolutional neu-
ral networks (CNNs) are considered the most dominant and effective type of deep 
neural networks when it comes to processing image data. At each layer, kernels and 
pooling operations are used to extract more advanced features from the raw pixel 
values of the input data. The CNNs methods have become the go-to machine learn-
ing approach for image-related downstream problems, such as image classification, 
segmentation, and object detection. It is evident that CNN-based deep learning algo-
rithms require a huge amount of data to train and a greater training time. The data-
voracious nature of CNN-based deep learning models demands a high volume of 
training examples. The reason for this is that the inherent locality of convolution 
operations limits the ability to model long-range dependencies using low-level fea-
tures. Transformers, being a neural network architecture that exploits the concepts 
of global self-attention mechanism in a stack of convolutional encoders and decod-
ers, address this limitation. Recent studies have shown that transformers, which rely 
solely on attention mechanisms and eliminate the need for recurrence and convolu-
tions, require considerably less training time while producing superior results [27]. 
On the other hand, the deep CNN-based U-Net architecture [28] has been considered 
the start-of-the-art implementation for medical image segmentation. Since trans-
formers have been a revelation in machine learning to solve downstream problems 
in natural language processing, their relevance in image processing and computer 
vision is novice. Here, we propose a hybrid type of U-Net, called ViTransUNet, that 
uses CNN-vision-transformer-based contraction layers to merge the comprehensive 
global context captured by transformers with the intricate spatial details provided 
by CNNs, which requires the creation of layers capable of combining both types of 



91Bacterial Image Segmentation through Deep Learning

information. The encoded feature representation is upsampled and concatenated with 
the corresponding encoded layer to learn back image structure lost during pooling in 
the contraction layer.

The subsequent sections of this chapter are structured as follows. Related work on 
diverse cell segmentation techniques is presented in Section 5.2. An overview of our 
approach is provided in Section 5.3, while Section 5.3.3 offers a detailed examina-
tion of the ViTransUNet network. Section 5.4 elaborates on the experimental setup 
utilized for the SEM image dataset, and the conclusions of our proposed approach, 
along with potential avenues for future research, are presented in Section 5.5.

5.2 � LITERATURE REVIEW AND RELATED WORK

Bacterial cell segmentation has been addressed by manual and interactive segmenta-
tion techniques [29,30]. However, the manual techniques are tedious, labor-intensive, 
and time-consuming, e.g., overlapping and complex cells in one image. Significant 
progress has been made in automating the segmentation and quantification of over-
lapping/touching cells in images through various methodological investigations. 
This section will cover the following topics: Section 5.2.1 will provide a detailed 
review of conventional techniques for segmenting overlapping objects; Section 5.2.2 
will focus on contour-based methods for detecting corner points; Section 5.2.3 will 
explore the use of ellipse fitting approaches for object segmentation; finally, Section 
5.2.4 will analyze existing methods that use convolutional neural networks (CNNs).

5.2.1 �C onventional Approaches for Semantic Segmentation

Traditionally, for image segmentation tasks, histogram-based thresholding tech-
niques [31,32] were employed, wherein clusters were formed to represent homoge-
neous objects in the image. A set of thresholds were selected so that objects and 
background pixels can be discriminated against. The selected threshold value was 
chosen to differentiate each pixel as either a constituent of the background or an 
object. This conversion of color or grayscale image into a binary image made the 
image segmentation task easier. With time, many other approaches have come into 
existence; morphological operations [33,34], watershed segmentation [35], level-set 
methods [36,37], graph-based approaches [38,39], and their variations [40,41], each 
of which had their own applicability and limitations in terms of low-level spatial 
feature extraction. These limitations were addressed and resolved with the break-
through of CNN and its exceptional representational power.

5.2.2 �C ontour-Based Methods

The contour-based approach involves the utilization of curvature, skeleton, and poly-
gon approximation to perform curve evolution on segmented regions of the image. 
This method involves reducing a contour to a collection of discrete vertex coordi-
nates and is regarded as a regression task. This method has primarily been employed 
in segmenting images with overlapping or touching objects [42–45]. The nature of 
overlapping objects has been introduced in multiple literatures depending upon the 
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nature and relevancy of overlapping objects. Sliding window-based techniques were 
utilized by Fernandez et al. and He et al. [46,47] to extract the foreground object 
and contour from the background. Likewise, Wang et al. [48] suggested a bottleneck 
detector that identifies a set of splitting points on contours as a means of detect-
ing concave regions. This approach maximizes their distance and minimizes the 
Euclidean distance transform (EDT). Due to its predisposition to noise [49] and erro-
neous corner point detection, extensive preprocessing of input images is needed.

5.2.3 �E llipse-Fitting Methods

Ellipses are generally used to address the overlapping or touching regions of mul-
tiple cells in a cell cluster. This is a foundational task that profits instance segmenta-
tion in cells. There are several related research areas on ellipse-detection algorithms 
using traditional computer vision methods, e.g., Hough transform with parameter 
space decomposition and randomized Hough transform (RHT) approach [50,51] to 
minimize the computation complexity [52,53]. However, these solutions depend on 
different scenarios and cannot perform well for partially obscured ellipses. Ellipse-
fitting methods have garnered significant interest because of their efficacy in dealing 
with the challenge of segmentation tasks involving elliptical-shaped objects that are 
in contact with each other [54,55]. An example of utilizing the multiellipse fitting 
solution can be seen in the segmentation of overlapping elliptical grains [56] and cell 
nuclei [57]. A minimum threshold for the expected area of each cell is established 
with this approach, enabling the automatic detection and separation of touching cells. 
Although this method holds immense potential, its limited ability to generalize for 
objects with diverse shapes has hindered its widespread adoption in various applica-
tions, primarily because it necessitates rules and parameters tailored to the specific 
task at hand.

Several recent studies have expanded upon the use of ellipse-fitting techniques 
to enhance the accuracy of segmentation outcomes. One such example is the modi-
fied ellipse-fitting approach proposed by Zou et al. [55], which generates candidate 
ellipses and identifies the most suitable one from the pool of candidates. The par-
ticularly useful technique for identifying overlapping elliptical objects in a binary 
image entails the extraction of concave points through a polygon approximation 
algorithm. In the research paper, Panagiotaki and Argyros [58] presented an ellipse-
fitting algorithm (called DEFA) that eliminates the need for manually set parameters 
and, instead, utilizes the skeleton of a shape to automatically estimate the parameters 
and number of ellipse objects. It should be emphasized that this particular method 
is solely applicable to images featuring elliptical-shaped objects that have under-
gone binarization and exhibit a significant contrast between their foreground and 
background. Panagiotaki and Argyros [59] introduced a solution to this limitation 
with an enhanced version of DEFA, referred to as RFOVE, which utilizes unsuper-
vised learning to optimize the area of shape coverage, and is capable of automati-
cally determining the number of potentially overlapping ellipses even when dealing 
with previously unknown shapes. Furthermore, Abeyrathna et al. and Panagiotaki 
et al. [57,60] have been able to effectively utilize these techniques for handling tasks 
involving the segmentation of overlapping cells and obtaining precise quantitative 
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measures in SEM images. The use of SEM techniques has been demonstrated to be 
an efficient means of producing high-resolution images of bacterial cells.

5.2.4 �CNN -Based Approaches

Because of the remarkable triumph of convolutional neural networks (CNN), they 
have become the default option for sophisticated segmentation tasks. In recent years, 
numerous cell segmentation applications and approaches that employ deep learning 
techniques have gained significant popularity in the field, thanks to their superior 
feature extraction capabilities and precise segmentation quality [61–63]. Several cat-
egories can broadly classify CNN-based methods for object segmentation:

	 1.	Mask R-CNN [64] is an extensively employed neural network architecture 
designed for detecting multiple objects. It builds upon faster R-CNN [65] 
by incorporating an additional branch for predicting segmentation masks in 
addition to the existing branch that locates the bounding box. The method 
utilizes object detection based on region proposals and generates precise 
segmentation masks in order to attain instance segmentation results of supe-
rior quality. Nonetheless, this approach might not yield optimal results in 
situations where there is a high overlap among object instances or when 
objects are located in close proximity. This is primarily due to the utiliza-
tion of greedy nonmaximum suppression during postprocessing.

	 2.	U-Net [66] has emerged as a popular deep learning architecture for semantic 
segmentation, which eliminates the need for region proposals or the reuse 
of pooling indices. Rather than relying on region proposals or the reuse 
of pooling indices, the U-Net employs an encoder-decoder neural network 
architecture to generate object segmentation output based on class labels. In 
the task of the segmentation of overlapping cells, particularly in the medical 
domain, the U-Net architecture has demonstrated remarkable effectiveness 
[63,67], largely owing to its innate capability of performing downsampling 
and upsampling. For instance, research has been conducted to showcase the 
accurate segmentation of overlapping cervical cells using the U-Net archi-
tecture [68,69].

	 3.	UNet3+ [70] is an updated variant of U-Net that leverages full-scale skip 
connections and deep supervision to enhance its performance. By integrat-
ing low-level details with high-level semantics from feature maps of varying 
scales, the full-scale skip connections enable the model to acquire pixel-
level features of the images. Deep supervision, as introduced in UNet3+ 
[70], facilitates the acquisition of hierarchical representations from fully 
aggregated feature maps. This approach enhances the efficiency of U-Net 
models by reducing the network parameters and computational complexity.

	 4.	Vision Transformers (ViT) [71] were proposed to apply transformers, which 
are generally used in natural language processing, in downstream computer 
vision tasks. To apply the transformer to an image, the image is initially par-
titioned into a grid of n patches, and the transformer is subsequently applied 
to the resulting sequence of patches. Each patch is an individual image that 
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is linearly transformed into a projected vector of configurable dimensions. 
To incorporate positional information of the patch, a positional embed-
ding is added to each projected vector, just like sequential information for 
tokens in text corpora for natural language processing. ViT has emerged as 
a promising alternative to convolutional neural networks for image recogni-
tion tasks, particularly when pretrained on large datasets and fine-tuned to 
achieve benchmarks such as ImageNet [72] and CIFAR-100 [73].

	 5.	TransUNet [74] is a hybrid implementation of Transformers and CNN, which 
takes into account the limitations of modeling long-range dependency in 
CNN models. Since transformers provide a global self-attention mechanism 
that compliments the drawbacks of a CNN model, TransUnet offers a robust 
option for medical image segmentation by effectively merging the advan-
tages of two different approaches. The encoding path of TransUnet utilizes 
a hybrid framework that combines both CNN and transformer techniques. 
After encoding, the feature representations are upsampled and combined 
with various high-resolution CNN features that were skipped during the 
encoding process, allowing for accurate localization. Chen et al. [74] has 
presented that transformer-based architecture has a better self-attentive fea-
ture than the conventional CNN-based self-attention methods.

5.3 � METHODOLOGY

This section outlines the key stages of the proposed solution for solving an over-
lapped cell segmentation challenge in bacterial images, which combines conven-
tional reconstruction techniques with a patch approach. Section 5.3.1 provides an 
overview of the dataset acquisition process, while Section 5.3.2 explains the image 
preprocessing methods employed. In Section 5.3.3, we introduce ViTransUNet, the 
neural network that we propose to use, which is based on the transformer model.

5.3.1 � Data Collection

Our dataset consists of training and testing samples of curated scanning electronic 
microscopic images (SEM) of Geobacillus genus from the family of Bacilliceae. To 
simulate the microgravity conditions, the bacterial cells were cultivated in a rotat-
ing cell culture system at a temperature of 60°C. After 24 hours of growth, the cells 
were treated with glutaraldehyde to stop their growth and washed three times using 
alcohol solutions of varying strengths (50%, 70%, and 100%). The resulting diluted 
cell suspensions were fixed onto a SEM sample mount and left to air dry before being 
imaged. For the acquisition of SEM images, a Zeiss Supra 40 VP/Gemini Column 
SEM was utilized [21]. The following microscopy parameters were set: the elec-
tron high tension (EHT) voltage was adjusted to 1 kV (also known as accelerating 
voltage), the SEM type was field emission, and the detector used was SE2 (second-
ary electron). The comprehensive experimental details can be found in the works of 
Carlson et al. [75].

The dataset includes 77 grayscale SEM images in terms of their respective masked 
annotations [21], which are used to validate our proposed bacterial cells segmentation 
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approach. Our dataset includes several types of information for each image, such as 
magnitude, objective lens focal length (WD), EHT, noise reduction method, chamber 
status, data, and time. Using the VGG Image annotation software VIA, the surface 
areas of the bacterial cells were annotated manually to achieve semantic segmenta-
tion ground truth masks [21]. To evaluate the cell-detection accuracy, we divided the 
dataset into 57 training samples and 20 testing samples, using a 3:1 ratio for each.

5.3.2 �I mage Preprocessing

To improve the accuracy of bacterial image predictions, we perform several prepro-
cessing steps that involve resizing, adjusting contrast, and eliminating unnecessary 
features, all of which serve to enhance the quality of each individual image. Our 
objective is to generate a pixelwise label map of size H × W × 1 that corresponds to an 
input image x ∈ RH × W × C, which has a spatial resolution of H × W and consists of C 
channels. Our following solutions are particularly efficient for the successful quality 
improvement of bacterial images. Every image is resized into 256 × 256 pixels. Then, 
the contrast-limited adaptive histogram equalization (CLAHE) algorithm [76] was 
utilized to enhance the contrast of foreground and background features during image 
processing. Furthermore, meta-information (such as methods for reducing noise, 
scale, magnification, and timestamp of capture including date and time) was removed 
from the image to ensure that the learning process is optimized for higher accuracy 
feature detection. Section 5.3.3 provides detailed knowledge about the model and 
its constituents, and how information is passed through various layers of the model.

5.3.3 �V iTransUNet

Although transformers powerfully models global contexts at all stages and achieves 
superior transferability performance which means the pretrained models are applied 
using one task for all downstream tasks. However, transformers produce low-resolu-
tion features that cannot give sufficient localization information, causing inaccurate 
segmentation results when using upsampling to recover the full resolution. On the 
other hand, CNN architecture can learn certain fine spatial details to remedy this 
shortcoming of transformers effectively by providing complementary information.

To make up for the information loss resulting from the low-resolution features 
generated by transformers, the proposed neural network—ViTransUNet—as shown 
in Figure 5.1—establishes a hybrid form of CNN-Transformer Encoder where CNN 
layers are used to not only encode the feature extraction representations but lever-
age high-resolution spatial information from CNN features. Our approach takes 
inspiration from Schlemper et al. [77] and Chen et al. [74] who proposed that the 
u-shaped architectural design can combine the self-attentive features with different 
high-resolution features brought by CNN, enabling capability of precise localization. 
ViTransUNet extends the architecture of TransUNet in the sense that it includes a 
vision transformer (ViT) instead of the standard transformer-based encoder. While 
both are transformer-based models, ViT encoders operate primarily on the 2D grid 
of image patches generated by the patch encoder, which are processed to generate 
fixed-length vector representations of the input image. ViT encoders also employ 



96 Machine Learning in 2D Materials Science

self-attention mechanism that allows the model to learn contextual relationships 
between different image patches, which in this case encompasses the foreground and 
background features.

5.3.3.1 � CNN-Transformer Encoder
Our encoder is built upon the design as the “left-contracting-part” of the model 
shown in Figure 5.1 and comprises a series of filtered convolutions and pooling lay-
ers, called the “down-block” or the “contraction” block. The downsampling part of 
the model is the hybrid CNN-Transformer-based encoder which preserves the advan-
tages of transformers and CNN. The downsampler performs multiple feature extrac-
tion on the input image in the form of a multichannel feature map.

To extract spatial features or bottom-up features, our feature map is subdivided 
into patches as mentioned in Section 5.3.1.1 and encoded using a vision transformer 
as mentioned in Section 5.3.1.2. This step first flattens the patch sequence to latent 
space and then takes the sequenced raw image as input to the vision transformer and 
treats the image as a pixel-by-pixel prediction task.

5.3.3.1.1 � Patch Encoder
Our solution followed by Dosovitskiy et al. [71] technique, the tokenization is 
performed by reshaping the input feature maps into flat 2D patches, namely, 

∈, ,.....1 2 2

x x xp p p
n p

 , where each patch size is P × P and = ×



2n

H W

P
 is a number of 

generated image patches. For example, if the original input image is of dimension 

FIGURE 5.1  An example of the ViTransUNet architecture. Given an image of 256 × 256 
pixels and its annotated mask as an input, each grey box is denoted as H × W × C, correspond-
ing to a multichannel feature map, where H × W is the size of the feature map and C is the 
number of channels. The arrows denote the different operations. The left contracting path of 
U-net resizes the map to 16 × 16 feature map which is fed to the patch encoder to generate 
n vectorized patches. The encoded image representation output by the transformer is then 
resized to the initial 16 × 16 feature map to extract appropriate features and then fed to the 
right expansive path of the U-Net which supports the prediction of the synthesis.
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256 × 256, and P is 16, then 256 patched images of size 256 × 256 are generated, as 
shown in Figure 5.2.

Each vectorized patch is denoted as xp and a dense layer is used to project xp into 
a latent D-dimensional space. To encode the patch spatial information, the positional 
information is added to each patch in the following form of positional embeddings:
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where E is the linear projection of patch embedding, and Epos is the positional embed-
ding, and n is the number of the vectorized patches.

5.3.3.1.2 � Vision Transformer
In addition, the transformer incorporates a sequence of multihead self-attention 
(MSA) [27] and multilayer perceptron (MLP) blocks, as shown in Figure 5.3. All 
transformer models are built upon the self-attention mechanism, which serves as 
their fundamental building block. In transformers, MSA with multiple attention 
blocks (called heads) applies a linear transformation to the input matrices and then 
jointly performs attention multiple times for the learned parameters from different 
representation subspaces at different positions. On the other hand, MLP with mul-
tiple blocks is more than one perception in a deep neural network. Such a network 
is capable of approximating any continuous function which shows that an unlimited 
number of neurons in a hidden layer are allowed as the solution for nonlinearly sepa-
rable functions. Figure 5.3 illustrates only one transformer encoder block, and the 
total number of transformer encoders includes L layers of MSA and MLP. Therefore, 
the output of the encoded image representation zl is generated.

5.3.3.2 � Decoder
The “right-expansive-part” of Figure 5.1 denotes the decoder. The resulting fea-
tures obtained from the CNN-transformer encoder are fed into our decoder block 

FIGURE 5.2  A sample of patch encoding. A 256 × 256 image is tokenized into 16 × 16 patch.
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to reconstruct the original image. To generate the hidden features as an input for the 
ultimate segmentation mask, the decoder block utilizes a cascaded upsampler (CUP) 
that incorporates several upsampling steps [74]. The primary role of the encoder is 
to complete the U-shaped-like architecture of the model by restoring the compressed 
feature map to the original size of the input image. This necessitates an expansion 
of the feature dimensions, which is achieved through upsampling, also known as 
transposed convolution or deconvolution. As the upsampling process is performed, 
the higher resolution feature maps of the encoder are joined with the upsampled 
features, enhancing the ability of the model to learn representations through convolu-
tions. This sparsely applied operation promotes improved localization. The series of 
upsampling layers will be concatenated with the corresponding contraction layers in 
the encoder through the number of skip connections which means some of the layers 
are skipped in the neural networks and feed one output of these layers into the next 
input layer. This block is also known as the “expansion” block as the encoded feature 
representations are expanded to masked spatial representation.

FIGURE 5.3  One transformer layer. The schema of a single transformer layer uses an 
embedded sequence of vectorized patches, where 1 ≤ i ≤ n, obtained from the patch encoder 
as inputs. The specific positional embeddings are added to the patch internally to encode the 
spatial information. Every transformer encoder block includes a single layer of multihead 
self-attention (MSA) and multilayer perceptron (MLP) blocks that are normalized using two-
layer normalization operators. For each vectorized patch, an encoded image representation 
z1 is generated.
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5.4 � EXPERIMENTAL DESIGN AND RESULTS

This section presents the design of training and testing experiments for the proposed 
solution, as applied to the downstream task of image segmentation. Section 5.4.1 first 
describes the experimental setup, and Section 5.4.2 presents the evaluation metrics 
for image analysis. The experimental results for training the ViTransUNet model and 
the comparison with the model architectures of conventional U-Net framework are 
presented in Section 5.4.3.

5.4.1 �E xperimental Setup

The experimentation, encompassing both training and testing tasks, has been thor-
oughly examined in this study, used the premium service from Google Colaboratory 
to run on a GPU-enabled notebook whose components were an Intel Xeon CPU 
(2.20 GHz), and a GPU of Tesla T4 GPU with 13GB RAM was assigned. The experi-
ments and comparisons were conducted on the SEM dataset for image segmentation 
in Section 5.3.1.

5.4.2 �E valuation Metrics

Three distinct metrics were employed to assess the instance segmentation task: the 
pixels accuracy in Section 5.4.2.1; intersection over union in Section 5.4.2.2; and dice 
coefficient in Section 5.4.2.3.

5.4.2.1 � Pixel Accuracy
The accuracy metric is determined by calculating the percentage of pixels in the 
image that have been correctly classified. It provides a basic measure of the model’s 
performance. However, it does not take into account the spatial relationships between 
different classes, and so, it may not be sensitive to errors that affect only a small num-
ber of pixels. This is computed by dividing the number of accurately classified pixels 
by the total number of pixels in the image, as represented by the following formula:
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where the variable njj represents the total number of pixels that are both classified 
and labeled as belonging to class j. To put it another way, njj denotes the total count of 
accurate positive predictions made by the classification model for the specific class j. 
The variable tj represents the total number of pixels that are labeled as belonging to 
class j. Given that semantic segmentation involves multiple classes, the mean pixel 
accuracy (mPA) reflects the average accuracy across all classes, as demonstrated by 
the following equation:
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5.4.2.2 � Intersection over Union
Intersection over Union (IoU) is a metric that measures the extent of overlap between 
the predicted masks and the ground truth segmentation mask. This pivot enables us 
to assign a score to each image, which can be used to predict the accuracy of the 
predicted segmentation. Along with the overlap between the predicted segmentation 
and ground truth segmentation, it also penalizes the model for missed detections. It 
provides more detailed measures of the quality of the segmentation for each class, 
thus making it more sensitive to errors. In the case of image segmentation, predic-
tions are segmentation masks, and pixel-by-pixel analysis is required, denoted as

	 =
+ +

IoU
TP

TP FP FN
,	 (5.3)

where the true positive (TP) region corresponds to the intersection area between 
the ground truth and segmentation mask, while the false positive (FP) region cor-
responds to the predicted area outside of the ground truth. The false negative (FN) 
region, on the other hand, represents the count of pixels located in the actual target 
region which the model could not foresee or anticipate.

5.4.2.3 � Dice Coefficient
The dice coefficient [78] is an important metric for image segmentation images to 
evaluate pixel-wise segmentation performance. Simply put, the dice coefficient is 
calculated by dividing twice the overlap between the two images by the total number 
of pixels in both images. In other words, the score represents twice the interaction 
area of overlap between the ground truth label and the predicted segment divided 
by the total number of pixels that are covered by both the ground truth label and 
predicted segment. The dice coefficient provides an overall measure of the model’s 
performance, as it considers both true positives and false positives.

Mathematically, it is expressed as

	 =
+ +

Dice Score
2TP

2TP FP FN
,	 (5.4)

where true positive is denoted as TP, false positive as FP, and false negative as FN.

5.4.3 �E valuation Results

To evaluate the effectiveness of the proposed ViTransUNet method, we compared its 
performance with two established instance segmentation methods: the U-Net method 
[55], which utilizes a U-Net model for region-based fitting of overlapping ellipses, 
and UNet3+ [60], which based on encoder-decoder structure combines feature maps 
with different scales through dense skipped connections and deep supervisions. The 
comparison of the segmentation results for the metrics of dice score, pixel accuracy, 
and mean IoU is presented in Table 5.1. The samples of the predictions of the three 
methods based on the trained models are visualized in Figure 5.4. Figure 5.4a is the 
raw image; (b), (c), and (d) are the output images after using U-Net, UNet3+, and 
ViTransUNet, respectively.
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The experiments show convincing results in favor of the proposed ViTransUNet 
model with a dice score of 84.62% and pixel accuracy of over 98%. However, the 
mean IoU, being more sensitive to errors and more detailed in measurements, dis-
played a decent performance as compared to the other two model architectures and 
relatively low accuracy as compared to the other two metrics.

5.5 � CONCLUSION AND FUTURE WORK

In summary, our study presents a semantic image segmentation method for bacterial 
cells in SEM images; the SEM image dataset presents various challenging features, 
including bacterial cells that intersect or superimpose each other, objects with dis-
similar shapes and sizes, and a minimal difference in color between the background 
and foreground. The method employed in the analysis of biofilm images can aid in 
the identification of novel materials or the evaluation of the biofouling efficacy of 
existing materials. Consequently, due to these characteristics, conventional segmen-
tation techniques, e.g., color thresholds, ellipse fitting, or direct instance segmenta-
tion methods, exhibit inadequate performance.

This paper suggested a deep semantic segmentation architecture that overcomes 
these limitations by combining detailed high-resolution spatial information from 
convolutional neural networks with global context positional information from 
transformers. The hybrid ViTransUNet model achieved similar results if not better 
than its counterpart U-Net architectures in SEM images. Our approach consists of 
preprocessing of images, patch encoding and positional embedding of pixels, and 
transformer-based U-Net semantic segmentation. Based on the experimental results, 
the hybridization of the transformer-based encoder and deeply convoluted upsam-
pling decoder has been shown to be significant and effective. The training perfor-
mance of the ViTransUNet model as opposed to U-Net architecture is also depicted 
in Figures 5.5 and 5.6. When compared to other cell overlapping object segmentation 
methods, such as U-Net and its variants, the proposed approach achieved a dice simi-
larity score of 84.62% for bacterial cell segmentation which demonstrates better than 
U-Net and UNet3+ architectures with promising performance improvement, given 
the limited dataset available for the experiment.

In the future, the applicability of this method can be spread out to diverse research 
in overlapping cell segmentation and quantification. Further, the application of 

TABLE 5.1
An Evaluation of How Well the Proposed Approach Exhibits in Segmenting 
Overlapping Objects, in Contrast to Three Alternative Methods 

Method Dice Score (%) Pixel Accuracy (%) Mean IoU (%)

U-Net [49] 66.79 91.54 48.76

U-Net 3+ [54] 71.8 90.60 32.6

ViTransUNet 84.62 98.72 48.76

Note:	 The best results of microaveraged PixelScore, IoU, and Dicescore (mean ± std) are highlighted.
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FIGURE 5.4  Qualitative comparisons for U-Net, UNet3+, and ViTransUNet predictions on 
test data: a) The grayscale image used as input for image segmentation. (b) Image segmenta-
tion masks obtained from U-Net model prediction. (c) Image segmentation masks obtained 
from UNet3+ model predictions. (d) Image segmentation masks obtained from trained 
ViTransUNet model predictions.
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FIGURE 5.5  Training performance. How loss values decrease over epochs is shown for 
each experiment of the ViTransUNet model on our training dataset; calculating loss over 100 
epochs.

FIGURE 5.6  Training performance. How loss values decrease over epochs is shown for 
each experiment of U-Net model on our training dataset; calculating loss over 100 epochs.
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object segmentation in various fields, such as medicine, engineering, and biology, 
is expected to yield significant benefits for downstream tasks. Furthermore, we are 
contemplating the expansion of this approach to meet the increasing demand for 
three-dimensional cell segmentation tasks in various applications in the fields of 
medicine and engineering. Accurate segmentation and tracking of cells can enhance 
our understanding of cell viability, cell signaling, adhesion, and other related factors 
[79]. The approach of generating patches can provide benefits in identifying distinct 
types of isolated cell clusters, thereby enhancing the efficiency, accuracy, and overall 
performance of the proposed method.

REFERENCES

	 1.	 M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W. Denk, 
“Connectomic reconstruction of the inner plexiform layer in the mouse retina,” Nature, 
vol. 500, no. 7461, pp. 168–174, 2013.

	 2.	 M. H. Rahman, M. A. Azam, M. A. Hossen, S. Ragi, and V. Gadhamshetty, 
“BiofilmScanner: A computational intelligence approach to obtain bacterial cell mor-
phological attributes from biofilm image,” arXiv preprint arXiv:2302.09629, 2023.

	 3.	  S. Ragi, M. H. Rahman, J. Duckworth, J. Kalimuthu, P. Chundi, and V. Gadhamshetty 
(2021). “Artificial intelligence-driven image analysis of bacterial cells and biofilms,” 
In IEEE/ACM Transactions on Computational Biology and Bioinformatics, arXiv pre-
print arXiv: 2112.01577, pp. 174–184, 2021.

	 4.	 J. M. Keegstra, K. Kamino, F. Anquez, M. D. Lazova, T. Emonet, and T. S. Shimizu, 
“Phenotypic diversity and temporal variability in a bacterial signaling network revealed 
by single-cell fret,” Elife, vol. 6, p. e27455, 2017.

	 5.	 N. M. V. Sampaio and M. J. Dunlop, “Functional roles of microbial cell-to-cell het-
erogeneity and emerging technologies for analysis and control,” Current Opinion in 
Microbiology, vol. 57, pp. 87–94, 2020.

	 6.	 S. Westfall, N. Lomis, I. Kahouli, S. Y. Dia, S. P. Singh, and S. Prakash, “Microbiome, 
probiotics and neurodegenerative diseases: deciphering the gut brain axis,” Cellular 
and Molecular Life Sciences, vol. 74, no. 20, pp. 3769–3787, 2017.

	 7.	 D. Serbanescu, N. Ojkic, and S. Banerjee, “Cellular resource allocation strategies for 
cell size and shape control in bacteria,” The FEBS Journal, vol. 289, no. 24, pp. 7891–
7906, 2022.

	 8.	 K. D. Young, “The selective value of bacterial shape,” Microbiology and Molecular 
Biology Reviews, vol. 70, no. 3, pp. 660–703, 2006.

	 9.	 C. G. Golding, L. L. Lamboo, D. R. Beniac, and T. F. Booth, “The scanning electron 
microscope in microbiology and diagnosis of infectious disease,” Scientific Reports, 
vol. 6, no. 1, pp. 1–8, 2016.

	 10.	 A. Paintdakhi, B. Parry, M. Campos, I. Irnov, J. Elf, I. Surovtsev, and C. Jacobs-Wagner, 
“Oufti: an integrated software package for high-accuracy, highthroughput quantitative 
microscopy analysis,” Molecular Microbiology, vol. 99, no. 4, pp. 767–777, 2016.

	 11.	 L. K. Harris and J. A. Theriot, “Relative rates of surface and volume synthesis set bacte-
rial cell size,” Cell, vol. 165, no. 6, pp. 1479–1492, 2016.

	 12.	 D. Brahim Belhaouari, A. Fontanini, J.-P. Baudoin, G. Haddad, M. Le Bideau, J. Y. Bou 
Khalil, D. Raoult, and B. La Scola, “The strengths of scanning electron microscopy in 
deciphering sars-cov-2 infectious cycle,” Frontiers in Microbiology, vol. 11, p. 2014, 
2020.

	 13.	 C. Carrascosa, D. Raheem, F. Ramos, A. Saraiva, and A. Raposo, “Microbial biofilms 
in the food industry: a comprehensive review,” International Journal of Environmental 
Research and Public Health, vol. 18, no. 4, p. 2014, 2021.



105Bacterial Image Segmentation through Deep Learning

	 14.	 Z. Li, X. Wang, J. Wang, X. Yuan, X. Jiang, Y. Wang, C. Zhong, D. Xu, T. Gu, and 
F. Wang, “Bacterial biofilms as platforms engineered for diverse applications,” 
Biotechnology Advances, p. 107932, 2022.

	 15.	  G. Chilkoor, N. Shrestha, A. Kutana, M. Tripathi, F.C. Robles Hernández, B.I. Yakobson, 
M. Meyyappan, A.B. Dalton, P.M. Ajayan, M.M. Rahman, and V. Gadhamshetty, 
“Atomic layers of graphene for microbial corrosion prevention,” ACS Nano, vol. 15, 
no. 1, pp. 447–454, 2020.

	 16.	 N. Shrestha, A. K. Tripathi, T. Govil, R. K. Sani, M. Urgun-Demirtas, V. Kasthuri, 
and V. Gadhamshetty, “Electricity from lignocellulosic substrates by thermophilic 
Geobacillus species,” Scientific Reports, vol. 10, no. 1, pp. 1–9, 2020.

	 17.	 V.K. Upadhyayula and V. Gadhamshetty. “Appreciating the role of carbon nanotube 
composites in preventing biofouling and promoting biofilms on material surfaces 
in environmental engineering: a review,”. Biotechnology Advances, vol. 28, no. 6, 
pp. 802–816, 2010.

	 18.	 H.-D. Cheng, X. H. Jiang, Y. Sun, and J. Wang, “Color image segmentation: advances 
and prospects,” Pattern Recognition, vol. 34, no. 12, pp. 2259–2281, 2001.

	 19.	 E. Colleoni, P. Edwards, and D. Stoyanov, “Synthetic and real inputs for tool seg-
mentation in robotic surgery,” In Medical Image Computing and Computer Assisted 
Intervention - MICCAI 2020, A. L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, 
M. A. Zuluaga, S. K. Zhou, D. Racoceanu, and L. Joskowicz, Eds.  Cham: Springer 
International Publishing, 2020, pp. 700–710.

	 20.	 D. Pakhomov, V. Premachandran, M. Allan, M. Azizian, and N. Navab, “Deep residual 
learning for instrument segmentation in robotic surgery,” In International Workshop on 
Machine Learning in Medical Imaging. Cham: Springer, 2019, pp. 566–573.

	 21.	 D. Abeyrathna, S. Rauniyar, R. K. Sani, and P.-C. Huang, “A morphological post-
processing approach for overlapped segmentation of bacterial cell images,” Machine 
Learning and Knowledge Extraction, vol. 4, no. 4, pp. 1024–1041, 2022.

	 22.	 P.-C. Huang, E. Shakya, M. Song, and M. Subramaniam, “Biomdse: A multimodal 
deep learning-based search engine framework for biofilm documents classifications,” 
In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 
Las Vegas, NV, 2022, pp. 3608–3612.

	 23.	 V. Lempitsky and A. Zisserman, “Learning to count objects in images,” In Advances 
in Neural Information Processing Systems, vol. 23, 2010. Red Hook, NY: Curran 
Associates Inc., 2010, pp. 1324–1332.

	 24.	 Y. Nakano, T. Takeshita, N. Kamio, S. Shiota, Y. Shibata, N. Suzuki, M. Yoneda, 
Hirofuji, and Y. Yamashita, “Supervised machine learning-based classificationof oral 
malodor based on the microbiota in saliva samples,” Artificial Intelligence in Medicine, 
vol. 60, no. 2, pp. 97–101, 2014.

	 25.	 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A largescale 
hierarchical image database,” In 2009 IEEE Conference on Computer Vision and 
Pattern Recognition. Miami, FL: IEEE, 2009, pp. 248–255.

	 26.	 P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing 
robust features with denoising autoencoders,” In Proceedings of the 25th International 
Conference on Machine Learning (ICML). New York, NY: Association for Computing 
Machinery, 2008, pp. 1096–1103.

	 27.	 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and 
I. Polosukhin, “Attention is all you need,” 2017. https://arxiv.org/abs/1706.03762

	 28.	 B. D. S. Gurung, R. Devadig, T. Do, V. Gadhamshetty, and E. Z. Gnimpieba, 
“U-net  based image segmentation techniques for development of non-biocidal foul-
ing-resistant ultra-thin two-dimensional (2D) coatings. In 2022 IEEE International 
Conference on Bioinformatics and Biomedicine (BIBM). Las Vegas, NV: IEEE, 2022, 
pp. 3602–3604. 

https://arxiv.org


106 Machine Learning in 2D Materials Science

	 29.	 G. Lin, U. Adiga, K. Olson, J. F. Guzowski, C. A. Barnes, and B. Roysam, “A hybrid 
3d watershed algorithm incorporating gradient cues and object models for automatic 
segmentation of nuclei in confocal image stacks,” Cytometry Part A: the Journal of the 
International Society for Analytical Cytology, vol. 56, no. 1, pp. 23–36, 2003.

	 30.	 J. Cheng, J. C. Rajapakse et al., “Segmentation of clustered nuclei with shape markers 
and marking function,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 3, 
pp. 741–748, 2008.

	 31.	 Z. Al Aghbari and R. Al-Haj, “Hill-manipulation: an effective algorithm for color 
image segmentation,” Image and Vision Computing, vol. 24, no. 8, pp. 894–903, 2006.

	 32.	 J.-C. Yen, F.-J. Chang, and S. Chang, “A new criterion for automatic multilevel 
thresholding,” IEEE Transactions on Image Processing, vol. 4, no. 3, pp. 370–378, 
1995.

	 33.	 L. Vincent, “Morphological grayscale reconstruction in image analysis: applications 
and efficient algorithms,” IEEE Transactions on Image Processing, vol. 2, no. 2, 
pp. 176–201, 1993.

	 34.	 L. A. Cooper, J. Kong, D. A. Gutman, F. Wang, J. Gao, C. Appin, S. Cholleti, Pan, A. 
Sharma, L. Scarpace et al., “Integrated morphologic analysis for the identification and 
characterization of disease subtypes,” Journal of the American Medical Informatics 
Association, vol. 19, no. 2, pp. 317–323, 2012.

	 35.	 L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based 
on immersion simulations,” IEEE Computer Architecture Letters, vol. 13, no. 06, 
pp. 583–598, 1991.

	 36.	 S. K. Nath, K. Palaniappan, and F. Bunyak, “Cell segmentation using coupled level 
sets and graph-vertex coloring,” In Medical Image Computing and Computer-Assisted 
Intervention - MICCAI 2006, R. Larsen, M. Nielsen, and J. Sporring, Eds.  Berlin, 
Heidelberg: Springer, 2006, pp. 101–108.

	 37.	 O. Dzyubachyk, W. Niessen, and E. Meijering, “Advanced level-set based multiple-cell 
segmentation and tracking in time-lapse fluorescence microscopy images,” In 2008 5th 
IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Paris: 
IEEE, 2008, pp. 185–188.

	 38.	 H. Chang, J. Han, A. Borowsky, L. Loss, J. W. Gray, P. T. Spellman, and B. Parvin, 
“Invariant delineation of nuclear architecture in glioblastoma multiforme for clinical 
and molecular association,” IEEE Transactions on Medical Imaging, vol. 32, no. 4, 
pp. 670–682, 2012.

	 39.	 Y. Al-Kofahi, W. Lassoued, W. Lee, and B. Roysam, “Improved automatic detection 
and segmentation of cell nuclei in histopathology images,” IEEE Transactions on 
Biomedical Engineering, vol. 57, no. 4, pp. 841–852, 2009.

	 40.	 N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi, “A dataset 
and a technique for generalized nuclear segmentation for computational pathology,” 
IEEE Transactions on Medical Imaging, vol. 36, no. 7, pp. 1550–1560, 2017.

	 41.	 D. Jeulin, Morphological Models of Random Structures. Cham: Springer,  2021.
	 42.	 C. Li, C. Xu, C. Gui, and M. D. Fox, “Distance regularized level set evolution and its 

application to image segmentation,” IEEE Transactions on Image Processing, vol. 19, 
no. 12, pp. 3243–3254, 2010.

	 43.	 K. Zhang, H. Song, and L. Zhang, “Active contours driven by local image fitting 
energy,” Pattern Recognition, vol. 43, no. 4, pp. 1199–1206, 2010.

	 44.	 S. Niu, Q. Chen, L. De Sisternes, Z. Ji, Z. Zhou, and D. L. Rubin, “Robust noise region-
based active contour model via local similarity factor for image segmentation,” Pattern 
Recognition, vol. 61, pp. 104–119, 2017.

	 45.	 J. Zhang, Z. Lu, and M. Li, “Active contour-based method for finger-vein image seg-
mentation,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 11, 
pp. 8656–8665, 2020.



107Bacterial Image Segmentation through Deep Learning

	 46.	 G. Fernandez, M. Kunt, and J.-P. Zryd, “A new plant cell image segmentation algo-
rithm,” In International Conference on Image Analysis and Processing. Berlin, 
Heidelberg: Springer, 1995, pp. 229–234.

	 47.	 Y. He, Y. Meng, H. Gong, S. Chen, B. Zhang, W. Ding, Q. Luo, and A. Li, “An auto-
mated three-dimensional detection and segmentation method for touching cells by inte-
grating concave points clustering and random walker algorithm,” PLoS One, vol. 9, 
no. 8, p. e104437, 2014.

	 48.	 H. Wang, H. Zhang, and N. Ray, “Clump splitting via bottleneck detection and shape 
classification,” Pattern Recognition, vol. 45, no. 7, pp. 2780–2787, 2012.

	 49.	 F. Xing and L. Yang, “Chapter 4: machine learning and its application in microscopic 
image analysis,” In Machine Learning and Medical Imaging, series. The Elsevier and 
MICCAI Society Book Series, G. Wu, D. Shen, and M. R. Sabuncu, Eds. Gainesville, 
FL: Academic Press, University of Florida, 2016, pp. 97–127.

	 50.	 J. K. Lee, B. A. Wood, and T. S. Newman, “Very fast ellipse detection using gpu-based 
rht,” In 2008 19th International Conference on Pattern Recognition. Tampa, FL: IEEE, 
2008, pp. 1–4.

	 51.	 C. A. Basca, M. Talos, and R. Brad, “Randomized hough transform for ellipse detec-
tion with result clustering,” In EUROCON 2005-The International Conference on 
Computer as a Tool, vol. 2. Belgrade: IEEE, 2005, pp. 1397–1400.

	 52.	 P. Nair and A. Saunders Jr., “Hough transform based ellipse detection algorithm,” 
Pattern Recognition Letters, vol. 17, no. 7, pp. 777–784, 1996.

	 53.	 I. Abu-Qasmieh, “Novel and efficient approach for automated separation, segmentation, 
and detection of overlapped elliptical red blood cells,” Pattern Recognition and Image 
Analysis, vol. 28, pp. 792–804, 2018.

	 54.	 S. Zafari, T. Eerola, J. Sampo, H. Kälviäinen, and H. Haario, “Segmentation of overlap-
ping elliptical objects in silhouette images,” IEEE Transactions on Image Processing, 
vol. 24, no. 12, pp. 5942–5952, 2015.

	 55.	 T. Zou, T. Pan, M. Taylor, and H. Stern, “Recognition of overlapping elliptical objects in 
a binary image,” Pattern Analysis and Applications, vol. 24, no. 3, pp. 1193–1206, 2021.

	 56.	 G. Zhang, D. S. Jayas, and N. D. White, “Separation of touching grain kernels in an 
image by ellipse fitting algorithm,” Biosystems Engineering, vol. 92, no. 2, pp. 135–142, 
2005. https://www.sciencedirect.com/science/article/pii/S1537511005001285

	 57.	 C. Panagiotakis and A. A. Argyros, “Cell segmentation via region-based ellipse fitting,” 
In 2018 25th IEEE International Conference on Image Processing (ICIP). Athens: 
IEEE, 2018, pp. 2426–2430.

	 58.	 C. Panagiotakis and A. Argyros, “Parameter-free modelling of 2d shapes with ellipses,” 
Pattern Recognition, vol. 53, pp. 259–275, 2016.

	 59.	 C. Panagiotakis and A. Argyros, “Region-based fitting of overlapping ellipses and its 
application to cells segmentation,” Image and Vision Computing, vol. 93, p. 103810, 
2020.

	 60.	 D. Abeyrathna, T. Life, S. Rauniyar, S. Ragi, R. Sani, and P. Chundi, “Segmentation of 
bacterial cells in biofilms using an overlapped ellipse fitting technique,” In 2021 IEEE 
International Conference on Bioinformatics and Biomedicine (BIBM). Las Vegas, NV: 
IEEE, 2021, pp. 3548–3554.

	 61.	 G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van 
der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical 
image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017. https://www.scien-
cedirect.com/science/article/pii/S1361841517301135

	 62.	 L. Yang, Y. Zhang, I. H. Guldner, S. Zhang, and D. Z. Chen, “3d segmentation of 
glial cells using fully convolutional networks and k-terminal cut,” In International 
Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: 
Springer, 2016, pp. 658–666.

https://www.sciencedirect.com
https://www.sciencedirect.com
https://www.sciencedirect.com


108 Machine Learning in 2D Materials Science

	 63.	 H. M. Saleh, N. H. Saad, and N. A. M. Isa, “Overlapping chromosome segmentation 
using u-net: convolutional networks with test time augmentation,” Procedia Computer 
Science, vol. 159, pp. 524–533, 2019.
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6.1 � INTRODUCTION

Machine learning (ML) approaches have made impressive strides in automated 
analyses of various modalities of information including numeric data, images, text, 
and audio. More recently, new multi-modal models that can analyze the combina-
tions of these various modalities have begun to emerge and are beginning to exhibit 
performances comparable to multi-modal information processing by humans. ML 
models have been developed using a wide variety of approaches including unsu-
pervised, semi-supervised, and supervised learning methods and their variations 
(see Chapter 1 for an overview). Among these supervised ML approaches, vari-
ants have been highly effective in performing image analysis tasks. The success of 
these approaches typically relies on building ML models by training them on large 
volumes of labelled data. These models are then used to analyze new test images. 
However, manually annotating microscopy images is usually very time-consuming 
and severely limits the amount of available labelled image data. It is a challeng-
ing task to develop machine learning models, particularly deep convolutional neural 
networks (DCNNs), with a limited amount of labelled image data. This can lead to 
sub-optimal performance of the model on new, unseen images. In this chapter, we 
describe a case study based on both contrastive and non-contrastive (more details in 
Section 6.2.1.1) self-supervised learning paradigms for classifying SEM images of 
biofilms using low volumes of labelled data. A key component of our classification 
pipeline involves the use of DCNNs to address the heterogeneity and quality of SEM 
images by using super-resolution. We describe different models that can be used for 
super-resolution tasks. The best-performing super-resolution model is used to build 
self-supervised models that can identify cells/cell clusters, byproducts (potentially 
involving corrosion), and exposed surfaces in small SEM images of biofilms.
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6.2 � SELF-SUPERVISED LEARNING FOR IMAGE ANALYSES

Self-supervised learning (SSL) involves using unlabelled medical data to pre-train a 
model and then fine-tuning the pre-trained model for a specific image analysis task 
using a limited amount of labelled data. This can be an alternative to transfer learn-
ing from natural images, as the knowledge learned from the unlabelled medical data 
is more relevant to the target task. During self-supervised pre-training, surrogate 
labels are assigned to the unlabelled data and used to train a randomly initialized 
network.

The main steps in the SSL are as follows.

	 1.	Prepare Training Set: Prepare a training set from the unlabelled dataset.
	 2.	Pretext Task: Pretext tasks are unsupervised learning tasks that are used to 

learn the representations. We need to formulate a problem from the training 
data.

	 3.	Learned Representation: Learn the representation of the domain by solv-
ing the pretext task. The representations extract the patterns and features 
from the unlabelled images.

	 4.	Fine-Tuning: Using the learned representation, we can fine-tune the model 
with a small number of labelled images.

	 5.	Downstream Tasks: Perform the desired image analysis tasks (classifica-
tion, detection, or segmentation) using the fine-tuned model.

Preparing the training set usually involves pre-processing the images and is highly 
dependent on the application. Similarly, fine-tuning is also application specific. We 
discuss these two steps along with the case study in the next section. Commonly 
employed pretext tasks are described next.

6.2.1 �P retext Tasks

In this section, we will discuss the several types of pretext tasks that are commonly 
used in building self-supervised models for image analyses.

6.2.1.1 � Contrastive and Non-Contrastive Learning
The idea of contrastive learning is to learn the similarities from the positive pair of 
images and dissimilarities from the negative pair of images. Each image along with 
additional images generated from that image using data augmentation operations 
is applied to each image to create positive pair of images. On the other hand, other 
images and their augmented versions are the negative pair of images. The contras-
tive predictive coding (CPC) proposed the contrastive loss function infoNCE to learn 
from negative and positive patches (Oord, Li, and Vinyals 2018). SimCLR (Simple 
Contrastive Learning of Representations) requires a large number of negative sam-
ples in a batch to perform well (T. Chen et al. 2020). MoCo (Momentum Contrast) 
keeps a queue of negative samples and utilizes momentum encoder methodology to 
learn from the small batch size of negative samples (He et al. 2020). Moreover, non-
contrastive methods only learn from positive samples. BYOL (Bootstrap Your Own 
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Latent) shows that better representation can be learned from only positive samples 
(Grill et al. 2020). Finally, the SimSiam and Barlow Twins architectures achieve 
comparative results without using negative samples, large batches, and a momentum 
encoder (Chen and He 2021).

6.2.1.2 � Generative Modelling
SSL can learn useful inherent representations by a powerful pretext task: generative 
modelling, which can generate plausible samples from a given distribution and recon-
struct the original input. One common approach is to use autoencoders or variational 
autoencoders (VAEs) (Kingma and Welling 2019), which acquire a condensed repre-
sentation of input data by encoding it into a latent space with fewer dimensions, and 
subsequently decoding it to recreate the original data. The denoising autoencoder 
(Vincent et al. 2008) can remove random noise in an image and reconstruct the origi-
nal image. Generative Adversarial Networks (GANs) (Goodfellow et al. 2020) can be 
used as a pretext task in SSL by training the discriminator of a GAN to distinguish 
between real and generated images, while simultaneously training the generator to 
create images that can fool the discriminator into thinking they are real. The genera-
tor in this case can be seen as a self-supervised learner, as it is learning to generate 
images that match the statistical properties of the real images.

6.2.1.3 � Colorization
In this pretext task, we can formulate the problem in such a way that grayscale ver-
sions of images are given as inputs, and the model tries to predict the colour of the 
images (R. Zhang, Isola, and Efros 2016). The loss function tries to minimize the 
difference between the original colour and the predicted colour. More weight is given 
to the rare colour bucket in the loss function to prioritize the infrequent colour (object 
colour) from the frequent colour (background colour). The model learns how to dif-
ferentiate various objects in an image and predicts the various colours for different 
parts by solving the pretext task.

6.2.1.4 � Jigsaw
Another pretext task can be formulated by creating a puzzle game from an image and 
learning the representation by solving the puzzle. The jigsaw puzzle paper (Noroozi 
and Favaro 2016) proposed an SSL technique by creating a puzzle game from the 
patches of an image. If we take 9 patches from an image, there are 9! possible shuf-
fles available from the patches. To reduce the complexity, the authors choose only 64 
possible shuffles with the highest hamming distance for the training dataset. Then 
they pass each patch to different siamese convolutional layers having shared weights 
with each other. Finally, all the results from each layer are combined to solve the 
puzzle. By solving the jigsaw puzzle, the model learns the relative positions of the 
objects in an image and the contextual information of the objects. We can fine-tune 
the model to do different downstream tasks.

6.2.1.5 � Relative Patch Location
This pretext task is similar to the previous jigsaw puzzle problem. The relative path 
location paper (Doersch, Gupta, and Efros 2015) formulated the training pairs by 
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randomly taking two neighbouring image patches and predicting relative positions 
between them. The second patch in a 3 × 3 image grid can be obtained from 8 neigh-
bouring locations if we start with the first patch from the central location. The authors 
proposed two siamese ConvNets models for feature extraction from each patch and 
combine the results to solve 8 classes of classification problems.

6.2.1.6 � Inpainting
Image inpainting pretext task is formulated by predicting random missing areas 
based on the rest of the image (Pathak et al. 2016). The GAN-based architecture 
can be utilized to reconstruct the missing part from an image. The generator model 
generates plausible examples for the reconstruction of the missing part, and the dis-
criminator model distinguishes the generated and real images. The networks learn 
the colour and the structural information of the domain by doing this pretext task.

6.2.1.7 � Super-Resolution
SRGAN proposes a pretext task of enhancing the resolution of a low-resolution 
image (Ledig et al. 2017). The generative network of an SRGAN predicts the high-
resolution version of a given down-sample image. The loss function of the generator 
tries to increase the similarity of the predicted high-resolution image and the original 
high-resolution image. The discriminator tries to distinguish between the original 
and fake images. The pretext task learns the semantic features of the images by doing 
the image super-resolution.

6.2.1.8 � Rotation
Rotation (Gidaris, Singh, and Komodakis 2018) is another simple but effective pre-
text task for self-supervised learning. Training images were created by rotating the 
images from any dataset to four user-defined degrees (0, 90, 270, and 360). The 
authors proposed a ConvNet architecture where rotated images are passed to classify 
the images into 4 classes. The model had to learn semantic information such as the 
relative positions of the body parts.

6.2.2 � Downstream Tasks on Medical Imaging

In this section, we discuss different types of applications done on medical imaging 
using SSL.

6.2.2.1 � Classification
The authors (Jamaludin, Kadir, and Zisserman 2017) proposed a pretext task for the 
disc generation grading system of four-class from spinal MRI images. They pre-
pared self-supervising training set from the vertebral MRI images of the same patient 
scanned at different points of time (positive pairs), and images from different patients 
(negative pairs). A siamese CNN was trained to learn the representation by distinguish-
ing whether the images are from the same patients or different patients. This learning 
was then transferred to predict a four-class disc generation grading system. The paper 
(Tajbakhsh et al. 2019) investigated whether the domain-specific pretext task was more 
effective for weight initialization or weights transferred from unrelated domains. The 
authors found that pretext tasks like rotation, colorization, and reconstruction were 
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more effective for classification tasks such as nodule detection in chest CT scan images, 
and diabetic retinopathy classification in fundus images. The paper (Azizi et al. 2021) 
experimented on dermatology condition classification from digital camera images and 
multi-label chest X-ray classification using self-supervised learning. They proposed 
three steps of training to get better classification accuracy: firstly, self-supervised learn-
ing on unlabelled ImageNet, then further self-supervised learning domain-specific 
images, and finally, supervised fine-tuning on labelled medical images. They proposed 
a novel MICLe method that uses two distinct images directly as positive pair of exam-
ples. Self-Path (Koohbanani et al. 2021) proposed a framework for the classification of 
tissues from pathological images where they utilized a variety of self-supervised pre-
text tasks. Furthermore, they introduced three novel pathology-specific pretext tasks: 
magnification prediction, jigmag prediction, and haematoxylin channel prediction.

6.2.2.2 � Segmentation
In the paper (Bai et al. 2019), the authors utilized self-supervised learning techniques 
by defining nine anatomic positions in cardiac images and learning the representa-
tion from predicting these anatomical positions. Then transfer learning was used for 
cardiac MR image segmentation. In the paper (Ouyang et al. 2020), self-supervised 
learning using the super-pixel method was used for generating pseudo-labels to seg-
ment abdominal organs in CT and MRI images. A novel local contrastive learning 
approach was proposed in the paper (Chaitanya et al. 2020) which is useful for dense 
predicting tasks such as medical image segmentation.

6.2.2.3 � Image Retrieval
In this paper (Gildenblat and Klaiman 2019), the authors proposed a novel self-super-
vised learning approach by learning the similarity from close patches and dissimilar-
ity from far patches in a whole slide image. This method performed well for retrieval 
tasks in digital pathology. The authors of the paper (L. Chen et al. 2019) proposed 
novel context restoration techniques to learn useful semantic features in medical 
images to improve retrieval. The authors of SMORE (Zhao et al. 2020) proposed 
a self-supervised, anti-aliasing, and super-resolution technique that doesn’t require 
any external training data. They utilized convolutional neural networks (CNNs) to 
enhance the resolution and reduce aliasing artefacts in magnetic resonance (MR) 
images, thereby improving the overall image quality to improve image retrieval.

6.3 � USE OF SUPER-RESOLUTION TO ADDRESS THE 
HETEROGENEITY AND QUALITY OF SEM BIOFILM IMAGES

Image super-resolution (SR) is the process that generates better quality or resolu-
tion images from low-resolution images by reconstructing missing details, removing 
blur and noises, and up-sampling pixels. SR models are trained using a degradation 
mapping function that down-samples, adds blur and noise, and applies transforma-
tions to produce low-resolution input images. The model can estimate the original 
high-resolution image without prior knowledge of the degradation mapping function 
by minimizing the dissimilarity between the generated and ground truth high-reso-
lution images using loss functions. The goal is to generate an image that seems more 
detailed and visually pleasing to the human eye.
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In this section, we investigate the use of SR techniques to enhance the per-
formance of semantic segmentation on a biofilm dataset of SEM images. Three 
distinct generative adversarial learning methods were utilized on the dataset, and 
their capacity to retain the structural characteristics of the biofilm images was 
compared. Lastly, the performance of the supervised image segmentation task 
was evaluated. The results demonstrate that while the degree of preservation of 
structural features differs across the various SR techniques, their combination in 
a deep learning pipeline leads to an overall improvement in image segmentation 
performance. This improvement enables a more precise and quantifiable analysis 
of SEM images of biofilms.

ESRGAN (Wang et al. 2018) stands for Enhanced Super-Resolution Generative 
Adversarial Networks which is an improvement over the traditional super-resolu-
tion technique SRGAN (Ledig et al. 2017). ESRGAN has shown impressive results 
in producing more realistic and natural textured super-resolution images by intro-
ducing a relativistic discriminator. Modifications were made to the architecture of 
ESRGAN, including the removal of the batch normalization layer, utilization of a 
deeper model, and enhancement of the perceptual loss function. See figure 6.1 for 
the architecture of ESRGAN.

The BSRGAN (Zhang et al. 2021) paper formulated a realistic degradation model 
for synthesized training data, which is essential for the SR model to perform well 
in real-world scenarios. The degradation model includes blur, down-sampling, and 
noise, and to incorporate a broader range of real-world scenarios, random mixture 
schemes are employed among these factors. This expands the scope of the approach. 
The paper described how they performed various degradation operations, includ-
ing Gaussian blur, isotropic and anisotropic blur, down-sampling using one of four 
interpolation methods, and introducing JPEG compression and camera sensor noise. 
They emphasized the importance of accurately modelling these degradation opera-
tions in order to improve the real-world applications of SR methods. BSRGAN was 

FIGURE 6.1  ESRGAN architecture. (Used with permission from the paper Ashaduzzman, 
Md et al., 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 
3587–93, 2022.)
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trained on synthetic and real-world datasets to improve its general-purpose blind 
image SR capabilities.

SwinIR (Liang et al. 2021), Shifted Window-based Transformers for Image 
Restoration, is a deep learning model designed for single image super-resolution, 
which utilized the idea of Swin Transformer (Liu et al. 2021). The SwinIR architec-
ture consists of two main components: a feature extraction network and a reconstruc-
tion network. The feature extraction network is responsible for extracting features 
from the input image, while the reconstruction network generates the high-resolu-
tion output image. The feature extraction network utilized a hierarchical structure 
of shifted windows to capture information from different parts of the input image. 
These windows were shifted across the image to ensure full coverage. The high-res-
olution output image was generated by the reconstruction network using the features 
extracted from the feature extraction network. The reconstruction network employed 
a residual block-based architecture, which preserves crucial features and details from 
the low-resolution input image.

6.3.1 � Methodology

This section outlines the process of generating SR images and achieving cell seg-
mentation in biofilm images.

6.3.1.1 � Contrast Enhancement
CLAHE (Reza 2004) contrast enhancement process was applied on biofilm SEM 
images as a pre-processing step to improve object boundary visibility. CLAHE 
performs histogram equalization locally, enhancing contrast while limiting noise 
intensification.

6.3.1.2 � Applying SR
After applying CLAHE to biofilm SEM images, SR techniques were applied to 
reconstruct missing details, remove noise and blur, and increase resolution by a scal-
ing factor of x = 4. The ESGAN, BSRGAN, and SwinIR SR-trained models were 
employed in the images, and all generated high-resolution images with less blurri-
ness and noise. The original images were processed using the three SR methods, and 
the resulting outputs are shown in Figure 6.2. However, SwinIR-generated images 
were not used for segmentation experiments due to alterations in cell morphology 
and the appearance of random spikes. ESRGAN and BSRGAN results were com-
pared, and BSRGAN was deemed superior in terms of resolution improvement, noise 
reduction, and blurriness removal.

6.3.1.3 � Patch Generation
This section describes the process of applying SR techniques to biofilm SEM images 
taken at different magnification levels. The images ranged from 435x to 2300x and 
have different contextual information depending on the level of magnification. 
Diverse scaling aspects of SR-based models were used for diverse stages of magni-
fication. 2x SR models were used for images magnified at 400x–600x, while 8x SR 
models were used for images magnified at 2000x–2200x. There were only 6 biofilm 
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images available in the dataset of size 1024 × 768, and SR techniques were applied 
to generate images of 4x resolution, 4096 × 3072. To address the low volume of input 
images, patches of 128 × 128 were created from these images to obtain a higher 
(4224) number of input images. The chosen patch size was selected as it captures the 
desired morphological features of the cells, also indicated in Bommanapally et al. 
(2021).

FIGURE 6.2  The illustration depicts the output patches resulting from the utilization of 
various SR methods on the original images. The first row showcases the patches extracted 
from the original images, while the second, third, fourth, and final rows exhibit the patches 
generated after the implementation of CLAHE, BSRGAN, ESRGAN, and SwinIR, respec-
tively. (Image used with permission from Ashaduzzman, Md et al., 2022 IEEE International 
Conference on Bioinformatics and Biomedicine (BIBM), 3587–93, 2022.)
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6.3.1.4 � Segmentation Downstream Task
The semantic segmentation of cells was done using the popular FCN ResNet50 
architecture (Long, Shelhamer, and Darrell 2015), which is pre-trained on ImageNet. 
During the training stage, the model was trained using the generated patches and 
their corresponding annotated images, where each pixel in the image was labelled 
with the corresponding class label. The model learned to recognize patterns and fea-
tures of the cells in the images and used this information to make predictions about 
the class of each pixel. The workflow used for segmenting cells in biofilm images is 
depicted in Figure 6.3.

6.3.2 �E xperimental Setup and Results

Semantic segmentation results were compared from three types of biofilm input 
images: (1) original images, (2) SR images by BSRGAN, and (3) SR images by 
ESRGAN. We discarded the SR images generated by SwinIR as they produced some 
noises and distortions in the biofilm images. PSNR, commonly used metric to mea-
sure the quality of a reconstructed or compressed image or video, was utilized to 
measure the quality of the generated images. BSRGAN had the highest PSNR value 
(average of 29), indicating better image quality compared to ESRGAN and SwinIR, 
which had an average of 25.

We modified the FCN ResNet50 architecture for single-class segmentation. To 
output a single-channel segmentation mask for the given class, we changed the num-
ber of output channels of the last convolutional layer to one, replaced the last pooling 
layer with a convolutional layer with stride one, removed the fully connected layers 
at the end of the network, replaced the softmax activation function at the end of the 
network with a sigmoid activation function, and loaded the pre-trained weights from 
ImageNet. The backbone pre-trained layers were frozen for fine-tuning purposes. We 
utilized binary cross-entropy loss as the loss function, stochastic gradient descent for 
optimization, and a 0.01 learning rate. The model underwent 100 epochs of training. 
The study utilized cross-validation with 5 folds to improve generalization on the 
dataset and evaluated the predicted segmentation masks using mIoU scores.

FIGURE 6.3  The procedure used for segmenting cells in biofilm images. (Image used 
with permission from Ashaduzzman, Md et al., 2022 IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM), 3587–93, 2022.)
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The mIoU score for BSRGAN images had an average value of 0.81 ± 0.01, 
while ESRGAN and original images had analogous mIoU values of 0.75 ± 0.01 
and 0.76 ± 0.02, respectively. Figure 6.4 presents segmentation yields from these 
experiments.

FIGURE 6.4  The output results of the FCN ResNet50 model for different SR techniques were 
compared to those of the original image. (Image used with permission from Ashaduzzman, 
Md et al., 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 
3587–93, 2022.)
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6.3.3 �S ummary

The study demonstrates the effectiveness of the SR approaches in enhancing the 
capabilities of deep-learning models for the quantifiable analysis of SEM biofilm 
images. Among BSRGAN, ESRGAN, and SwinIR, the BSRGAN approach conserved 
relevant structures and achieved over 6% improvement in IOU scores compared to 
those trained on original SEM images. The findings validate that incorporating SR 
techniques into the workflow of deep learning methods for quantifying SEM biofilm 
images yields advantageous outcomes.

6.4 � CLASSIFICATION OF SEM BIOFILMS USING SSL

Our case study involves the classification of SEM images of biofilms based on the 
detection of certain objects in these images. This task implements building a self-
supervised ML model that solves a multi-label classification problem where the 
labels—Byproduct, Cell, and Surface (see Figure 6.8)—are detected in a given SEM 
image and included in a set of labels assigned to that image. Given the low volume 
of images, we divide the images into patches and perform the classification on these 
patches, which can then be combined to assign labels to the original image.

The following AI-based flowchart aims to classify biofilm images using self-
supervised approaches. The flowchart comprises gathering SEM biofilm images, pre-
processing the images, and manually annotating them by experts. In the image patch 
generation stage, overlapping miniature image patches are generated. Non-annotated 
patches are used for representation learning with self-supervised approaches, while 
annotated patches are used to fine-tune the model for downstream classification. 
Figure 6.5 illustrates the flowchart with its components.

FIGURE 6.5  The flowchart of the approaches to classify biofilm images. (Image used with 
permission from Abeyrathna, D. et al., Front. Microbiol. 13, 2022.)
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6.4.1 � Dataset

For the project, seven SEM images were utilized as biofilm datasets with a reso-
lution of 1024 × 758 and magnifications ranging from 436X to 2.30KX, covering 
scale ranges from 2 to 10 micrometres (see two of the raw images in the first row of 
Figure 6.6).

6.4.2 �I mage Pre-Processing

The first image pre-processing step was to delete meta-information in a black band 
by manually clipping it out. Then contrast improvement was pertained to improve 
image clearness (see the images in the bottom row of Figure 6.6). Some SEM images 
were captured at different magnification scales, which can cause problems when 
dividing the images into patches of a similar size to augment data. To address this 
issue, SR techniques were applied to SEM images that improved details and nor-
malized object sizes. Images with lower scales and higher magnification were not 
subjected to this process.

We applied three SR approaches, BSRGAN (Zhang et al. 2021), Real-ESRGAN 
(Wang et al. 2021), and SwinIR (Liang et al. 2021), on the biofilm pre-processed 
images to get high-quality images. We found out that BSRGAN produced bet-
ter-quality images at a 4× magnification level (see Section 6.3 for more details). 

FIGURE 6.6  The top row shows two raw images from the biofilm dataset, and the bottom 
row displays the corresponding images after cropping meta information and contrast enhance-
ment. (Image used with permission from Abeyrathna, D. et al., Front. Microbiol. 13, 2022.)
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Figure 6.7 shows four random image patches cropped from original images and their 
high-quality equivalents generated from BSRGAN.

6.4.3 �A nnotation, Patch Generation, and Object Masking

In this study, experts annotated images in the dataset by assigning class labels 
(byproduct, cell, and surface) to the images and their components. The image labeller 
app from MATLAB was used to annotate cells, byproducts, and surfaces using 
light grey, mid-grey, and dark grey colours, respectively. Figure 6.8 illustrates three 
random image patches cropped from the original images and their corresponding 
ground truth annotations.

It required a high volume of data to train any deep neural networks, but biofilm 
images are difficult to produce in large volumes. To solve the issue, we utilized a 
method that involves decomposing each image into multiple patches using sliding 
window mechanism. Then object masking (Li et al. 2004) was applied to generate 
a better quality set of image patches. Object masking is the process of identifying 
and isolating specific objects in an image by creating a binary mask that separates 
the object from its background. This enables machines to recognize and locate indi-
vidual objects, even when they have similar appearances or are partially hidden by 
other objects. In Figure 6.9, generated object masks of cells, byproducts, and surfaces 
are depicted for the corresponding original image patch.

6.4.4 �S elf-Supervised Training

In this section, we describe an approach to learning the representation of the 
unlabelled biofilm SEM images using self-supervised training. We selected one 
contrastive approach and one non-contrastive approach, specifically MoCoV2 

FIGURE 6.7  The top row illustrates the output patches before applying the super-resolution 
method, while the bottom row shows that the patches after the super-resolution have been 
applied. (Image used with permission from Abeyrathna, D. et al., Front. Microbiol. 13, 2022.)
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(He et al. 2020) and Barlow Twins (Zbontar et al. 2021) for the self-supervised train-
ing. We chose these two approaches as they have several advantages: they can work 
using mini-batch training samples and have comparable state-of-the-art results.

MoCoV2 stands for “Momentum Contrast V2” and builds on the original 
Momentum Contrast (MoCo) framework proposed by Facebook AI. MOCOv2 first 
applies various data augmentation techniques, such as random cropping, colour jit-
tering, or Gaussian blur, to the input image to create two different “views” of each 
image. MOCOv2 then uses two different encoder networks, a query “q” encoder and 
a key “k” encoder, to encode each view of the input data into a feature representation 
(see Figure 6.10a). MoCoV2 then calculates contrastive loss between the positive 

FIGURE 6.9  Generated object mask of byproducts (b), cells (c), and surfaces (d) for a 
random original biofilm image patch (a). (Image used with permission from Abeyrathna, 
D. et al., Front. Microbiol. 13, 2022.)

FIGURE 6.8  The first row shows sample SEM images, and the second row displays the 
corresponding annotations, where light grey represents byproduct, mid-grey represents 
cells, and dark grey represents surface. (Image used with permission from Abeyrathna, D. 
et al., Front. Microbiol. 13, 2022.)
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keys that match with ‘q’ and negative keys that do not match with ‘q’. It uses a queue 
of keys (k0,1,2,..) for this purpose. A temperature parameter T is used to scale the simi-
larity scores. MoCoV2 is designed to work with small mini-batch sizes, and it stores 
the results in high memory size.

The Barlow Twins self-supervised non-contrastive learning method works 
by training a neural network to predict the association between two augmented 
views of the same image data. This method was motivated by the Barlow Twins 
illusion, as it pursues to learn representations that are invariant to small shifts in 
input images. It consists of two identical neural networks that share the same set of 
weights and are trained to encode two slightly different views of the same input data 
(see Figure 6.10b). The yield of each network is then utilized to calculate a cross-
covariance matrix, which is used to measure the similarity between the two views of 
the data. The aim is then to lessen the distance between the cross-covariance matrix 
and a target matrix. The framework consists of two components: the invariance term, 
which guarantees the representation is robust to noise, and the redundancy reduction 
term, which supports the components of the representation to be independent.

6.4.5 � Downstream Task

We propose a method of training a machine learning model for classifying images 
into “K” classes by converting the problem into “K” binary sub-problems. In this 
case, K is 3 (byproduct, cell, and surface). We use image patches that are labelled and 
object-masked to fine-tune separate binary models, one for each class, to predict if 
the object is present in the image patch or not. The outputs from these binary models 
are then combined to produce the final classification of an image patch. This method 
allows for a single patch to be assigned to multiple or even all of the classes.

6.4.6 �E xperiments

We presented a method for automatically classifying objects in SEM biofilm 
images using contemporary self-supervised learning approaches. The key focus of 

FIGURE 6.10  (a) Self-supervised framework of MoCoV2. (b) Self-supervised frame-
work of Barlow Twins. (Image used with permission from Abeyrathna, D. et al., Front. 
Microbiol. 13, 2022.)
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the experiments was to examine the feasibility and effectiveness of the method, as 
well as to differentiate the performance of two different self-supervised learning 
approaches, MoCoV2 and Barlow Twins. Moreover, the experiments had the objec-
tive of assessing the advantages of utilizing self-supervised models regarding expert-
annotation workload. Additionally, we aimed to conduct a qualitative assessment of 
the classification accuracy based on expert input.

We described a pre-processing pipeline in that we used 7 SEM biofilm images for 
training a machine learning model. We used MATLAB to clip the meta-information 
from the images. We then applied BSRGAN on images that had a magnification of 
less than 1KX and processed the images with 4X magnification to normalize the 
size of objects across the images. We generated image patches of size 64 × 64 and 
128 × 128 from both annotated and non-annotated images using the sliding windows 
technique. We used a stride rate of 2 for the sliding window. This process resulted 
in 24,021 image patches of size 128 × 128 from all 7 images. They then applied the 
object-masking process to generate the mask for each object.

We implemented a machine learning model for classifying image patches into 
3 classes using two self-supervised learning methods, with ResNet-50 as the base 
architecture (He et al. 2016), following the recommended configurations (Zbontar 
et al. 2021; X. Chen et al. 2020) for optimal performance. To obtain a multi-label 
classification outcome for each patch, we generated three binary classifiers, each for 
a specific class, and employed the predictions from all three networks. The goal was 
that an effective classifier should be able to ascribe all 3 classes to a single patch. 
To ensure the reliability of the outcomes, we carried out the experiments using five 
cross-validations chosen randomly.

We obtained qualitative feedback from experts by giving them a selection of 10 
patches from each image, which varies in terms of difficulty levels for manual clas-
sification into the three classes. A user interface had been developed to allow experts 
to provide their qualitative responses and observations. The experts were shown the 
original image patch and Class Activation Maps (CAM) (Zhou et al. 2016) generated by 
the model for three objects. These maps highlight the regions in the image that are most 
relevant to the predicted class. In addition, the ground truth annotation of the patch, as 
well as the patch’s location in the original image and the model’s prediction (True/False), 
was also given to the experts to indicate the model’s certainty in the object’s presence.

6.4.7 �E valuation

We conducted evaluations on the self-supervised learning models based on the 
attribute of the learned representations and the capabilities when fine-tuned for 
downstream tasks. We first conducted empirical experiments to determine the best 
configuration for learning representations using different patch sizes, batch sizes, 
and the number of training epochs on unlabelled data. The learned representations 
were then used in further experiments.

6.4.7.1 � Linear Evaluation for Learned Representation Quality
To evaluate the quality of the learned representations, we performed a linear 
classification experiment wherein we applied a linear head to the representations. 
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Using standard settings, we trained the linear head with 10% of annotated data while 
keeping the encoder models fixed. Figure 6.11 illustrates the classification accuracy 
with various settings, where the x-axis denotes the classification accuracy and the 
y-axis denotes the different settings. The results showed that both models had the 
maximum accuracy with a patch size of 128 × 28, batch size of 128, and 200 train-
ing epochs. Random crop and horizontal flip were used as data augmentation during 
training, and the centre crop was used during testing. The best results were achieved 
with a patch size of 128 × 128, batch size of 128, and 200 training epochs. For com-
parison, we also trained a supervised ResNet-50 model using all the labelled data.

6.4.7.2 � Fine-Tuning Evaluation
We evaluated the data efficacy of self-supervised models (MoCoV2 and Barlow 
Twins) by fine-tuning them on labelled data for classification tasks. We found that 
using only 10% of labelled data led to significantly better results. We reported accu-
racy for each binary classification model and overall average. The optimal config-
uration settings, comprising patch sizes, batch sizes, and data augmentation, were 
employed to generate all the results.

6.4.8 �R esults

The dataset underwent a thorough examination to gauge the performance of the two 
self-supervised learning methods. The robustness of the model’s parameters was 
examined, the models’ effectiveness on the dataset was determined, and a qualitative 
examination of the results was conducted.

FIGURE 6.11  The comparison of linear evaluation accuracy for the two models is presented, 
depicting variations in batch sizes and patch sizes. On the y-axis, the first row indicates patch 
sizes, the second row indicates batch sizes, and the third row indicates the corresponding 
self-supervised framework. (Image used with permission from Abeyrathna, D. et al., Front. 
Microbiol. 13, 2022.)
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6.4.8.1 � Robustness of the Model’s Parameters
The results indicate that the models utilizing a patch size of 128 × 28 outperformed 
those using a patch size of 64x64, regardless of batch size and the number of train-
ing epochs. The performance difference was substantial, around 4.5%. The lower 
information content within a 64 × 64 patch may be a contributing factor to this dif-
ference. As a result, we consistently used a 128 × 128 patch size in all our subsequent 
experiments. Additionally, the models exhibited similar performance across varying 
training epochs of 200, 300, and 400. Therefore, in order to save computational time, 
we opted for a training epoch of 200 during the representation learning stage.

6.4.8.2 � Linear and Fine-Tuning Assessments
Self-supervised models were assessed for the quality of their learned representations 
using a linear classification head. While the results of Barlow Twins were more con-
sistent, the MoCoV2 model beat it by 2%. Despite not performing as well as a super-
vised approach, both self-supervised models had accuracy close to the supervised 
model and required only 10% of the labelled data. In binary classification tasks, 
the fine-tuned Barlow Twins model acted better (83.18%) than both the supervised 
baseline (75.01%) and the fine-tuned MoCoV2 model (80.73%), using the same test 
set as in linear assessment trials. These results suggest that the Barlow Twins model 
has a superior capability to adapt to downstream tasks after being fine-tuned with 
inadequate labelled data.

6.4.8.3 � Qualitative Results
In the qualitative assessment, experts had highly positive feedback on the classifiers 
and its potential applicability to various tasks, such as identifying regions in images 
with specific objects, estimating the correlation and distribution of these objects 
across patches, etc. They also noted a significant efficiency improvement, estimated 
to be several orders of magnitude faster, compared to semi-automated approaches 
using tools like ImageJ. As the number of images grows, relying on manual and semi-
automated approaches becomes unfeasible, making scalability crucial. Additionally, 
the experts were able to identify objects determined by the proposed approach in raw 
images and agreed with the model’s forecasts.

The novel image patch, annotations, and three-class CAM were evaluated by 
experts. They examined whether the forecasted class existed in the original image 
patch and was located at the highlighted spot in the CAM (refer to Figure 6.12). 
Experts identified three reasons for disagreement with machine learning predictions: 
inappropriate annotations, appropriate annotations with wrong forecasted class, and 
unclear annotations, which made experts uncertain, particularly in cases of overlap-
ping cells and byproducts.

There was a significant disparity between the evaluations of domain experts and 
the predictions generated by models. One of the primary reasons for this divergence 
was attributed to the incapability of the existing class activation map scheme in iden-
tifying the presence of a specific class in image patches where entities of the alike 
class are detached and existed in multiple regions. Additionally, the assessment met-
ric for CAMs is subjective and can lead to discrepancies, especially in image patches 
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that contain overlying objects from multiple classes. Overall, domain experts agreed 
with the model predictions of 98% of the time.

6.4.9 � Discussion

With only around 10% of annotated data, the suggested workflow based on self-
supervised learning attained markedly improved classification accuracy results. 
The linear assessment experiments showed that both models can retrieve analogous 

FIGURE 6.12  The comparison of CAM visualization results was obtained from differ-
ent binary classification models. The visualizations were obtained for the last convolution 
output of each model. (Image used with permission from Abeyrathna, D. et al., Front. 
Microbiol. 13, 2022.)
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quality representations using the unlabelled dataset, but the Barlow Twins model 
performed significantly better with fine-tuning and limited labelled data. The per-
formance of both self-supervised models exceeded that of the supervised model. 
Furthermore, the Barlow Twins model is a preferable choice because it offers higher 
classification accuracy and requires less computational cost than MoCoV2.

Although multi-label classification is proper for forecasting multiple objects in 
an image patch, binary classifiers were employed in this case to provide multiple 
labels to an image patch. This choice was made because of certain characteristics of 
the dataset, including imbalanced class instance proportions, especially between the 
Surface class and byproduct class, as well as the low variance between the cell class 
and the byproduct class, which had comparable visual features. The use of binary 
classification was deemed more feasible than multi-label approaches like algorithm 
adaptation. While binary relevance approaches may overlook label correlations, it 
was believed that this limitation was addressed by the representation learning stage 
of self-supervised learning models, which could have captured such correlations.

MIC (microbiologically induced corrosion) caused by sulphate-reducing bacteria 
(SRB) results in billions of dollars in annual costs. MIC is a crucial interfacial process 
that is dependent on various factors, including microbes, redox potential, dissolved 
oxygen, salt concentrations, pH, and conductivity. Protective coatings above the met-
als act as a barrier against corrosive metabolites of both biotic and abiotic forms 
mainly by passivating the MIC impacts. Two-dimensional (2D) materials including 
hexagonal-boron nitride (h-BN) and graphene are well-renowned protective coatings 
due to their excellent barrier property, chemical resistance, and impermeability with 
thermal stability. Our previous studies showed that both graphene and h-BN coatings 
regulate SRB biofilms, their attachments, and their electrochemical oxidation when 
exposed to copper and low-carbon steel. We observed these biofilms on pristine and 
2D material-coated copper and low carbon steel, with structural features measured 
and extracted manually, which is a labour-intensive and expensive task.

Recent advancements in artificial intelligence (AI) and cellular microscopy have 
created opportunities to collect large amounts of data and analyze/predict cellular 
structures from biological data. A range of tools had been utilized for extracting 
and assessing the morphological characteristics of biofilm microstructures, includ-
ing deep neural networks, BioFilm Analyzer, BiofilmQ, and ImageJ. However, these 
tools are not suitable for characterizing congested biofilm microstructures and micro-
bial products as they can only handle smooth, homogeneous, and non-overlaying 
geometric structures.

An investigation was conducted to evaluate the effect of diverse colour spaces, 
sliding window sizes, and CNN architectures for corrosion detection. They used 
different colour spaces such as RGB, YCbCr, CbCr, and grayscale to identify the 
best colour space for corrosion detection. Various architectures were evaluated with 
the optimal colour space using a sliding window to detect stained areas within an 
image, and multiple sliding window sizes (128 × 28, 64 × 64, and 32 × 32) were used 
to classify the areas of an image. Smaller sliding window sizes resulted in more 
accurate localization of corroded regions but a decrease in the number of attributes a 
CNN can learn, leading to a decline in the signal-to-noise ratio. Images of 128 × 128, 
64 × 64, and 32 × 32 pixels were used to assess the influence of sliding window sizes. 
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Two distinct sets of microscopy images were utilized to train a CNN in order to cre-
ate a three-class classification system that can differentiate between the standard, 
unprotected, and protected states of a surface with copper. Due to the limited size of 
the dataset, the network’s architecture was constrained to only include two convo-
lutional layers, and data augmentation was employed by altering the rotation, shear 
intensity, and zoom range of the dataset. The approach being proposed tackles a low-
volume dataset as well, but it utilizes self-supervised techniques to classify the data 
while reducing the amount of expert annotation required.

6.4.10 �S ummary

This study proposes a self-supervised learning-based workflow to classify constitu-
ents in biofilm SEM images with limited annotated data. Annotated data are costly 
and challenging to generate, so the study experimented with image pre-processing and 
SSL to improve classification accuracy. Super-resolution of SEM images improved 
the performance of multiple SSL models, and the Barlow Twins SSL model achieved 
83.18% classification accuracy with a 90% reduction in required labelled data. This 
study demonstrates the potential of self-supervised learning to reduce manual anno-
tation requirements and suggests further exploration of self-supervised methods for 
object segmentation and other tasks.

6.5 � CONCLUSION

This chapter is divided into four main sections. The first section provides a detailed 
overview of modern solutions that address the problem of scarce annotation in medi-
cal image segmentation. The second section delves into the practical application 
of self-supervised learning in medical imaging. The third section delves into the 
implementation of deep learning-based super-resolution techniques to enhance the 
effectiveness of diverse downstream tasks on a dataset of biofilm images obtained 
from a scanning electron microscope (SEM). In the final section, we explore one case 
study: a method for performing classification tasks on biofilm images that have a low 
volume of images using SSL.
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DEFINITIONS

•	 Autoinduction: Cell-to-cell communication that enables population den-
sity-based control of gene transcription. This is done via the production, 
release, and sensing of low-molecular-weight compounds.

•	 Biofilm: Surface-attached microbial communities that are embedded 
within a self-produced extracellular matrix consisting of polysaccharides 
and DNA.

•	 Quorum sensing: A mechanism where bacteria use signaling molecules for 
regulating gene expression, typically based on population density.

•	 Sessile cells: Cells that are encapsulated within the extracellular polymeric 
substance component of biofilms.

•	 Signaling: The ability to detect and respond to cell population density by 
gene regulation.

•	 SRB: Sulfate-reducing bacteria.
•	 Stress: Adverse and fluctuating conditions in the immediate surroundings 

of bacteria.
•	 Stress response: Mechanisms used by bacteria to survive stressful environ-

mental conditions.
•	 Virulence: Ability to invade and multiply within the host; it is defined in 

terms of the degree of pathogenicity.
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ACRONYMS

AI-2	 Autoinducer-2
DSF	 Diffusible signal factor
GCL	 Gamma-caprolactone
HTH	 Helix-turn-helix
Mpy	 Mils per year
MBR	 Membrane bioreactor
QQ	 Quorum quenchers
XAC	 Citrus canker

7.1 � INTRODUCTION

Quorum sensing (QS) is a fascinating mechanism used by bacterial cells to commu-
nicate with each other and jointly regulate their activities in sociality. Bacterial cells 
synthesize diffusible molecules—known as autoinducers (AIs)—for creating inter-
cellular signaling mechanisms and controlling their social network. Such QS-related 
AIs are implicated in cross talk among diverse bacterial cells and hosts (e.g., plants 
and human intestines). QS mechanisms can regulate diverse stages of biofilm forma-
tion. They can modify the surface topography of exposed substrates, binding of cells 
with the substrates, surface-induced responses of the adhering cells, and secretion of 
extracellular polymeric substance (EPS). Examples of impacted substrates include 
metals, polymers, soil particles, medical implants, and biological tissues. Thus, QS 
mechanisms can influence biofilm growth in diverse domains including agricultural, 
industrial, and commercial.

7.2 � QUORUM SENSING

QS is a cell-to-cell communication process that involves the secretion and sensing of 
extracellular signaling molecules called autoinducers (AIs). These communications 
can occur via AI in both inter- and intra-bacterial species [1,2,3]. They are more 
dominant in populations based on identical organisms, especially when the popula-
tion density exceeds a threshold level [1,4–6]. QS controls diverse bacterial functions 
including antibiotic production, biofilm formation, bioluminescence, competence, 
sporulation, swarming motility, and virulence factor secretion. It can even alter the 
behavior of the entire bacterial population [7,8].

Bacterial cells can sense levels of the signaling molecules to determine the number 
of other cells present within the same environment [1,4,5]. When a threshold level of 
cells is reached, the population density is said to achieve a quorum [2,3,6]. Quorum-
dependent genes are expressed by autoinduction. Bacterial species produce a range of 
AI molecules that regulate genes and control characteristics that are exhibited above 
the critical population or threshold population density [2,3,5,6,9,10]. Detection of a 
minimum threshold stimulatory concentration of AI leads to an alteration in gene 
expression. Both gram-positive and gram-negative bacteria use QS communications 
to regulate their physiological activities [11–14]. However, gram-negative bacteria 
use acyl homoserine lactones (AHL) as an AI while gram-positive bacteria use pep-
tides for communication [13].



135Quorum Sensing Mechanisms

7.3 � KEY QUORUM SENSING MOLECULES AND 
THEIR SIGNALING MECHANISMS

Examples of signaling molecules in QS systems include homoserine lactone (HSL), 
AHL, and autoinducing peptides. Different molecules have been observed in dif-
ferent species, and they all display different genotypical and phenotypical effects 
(Table 7.1). The chemical structures of these molecules listed in Table 7.1 are shown 
in Figure 7.1.

TABLE 7.1
Quorum Sensing Molecules and Their Classes of Action

Name 
Chemical 
Structure Class of Action Name of Receptor Ref 

LuxS Figure 7.1a [15] Transportation of the QS signal 
AI-2 by enhancing its secretion. 
Consequently, it represses biofilm 
formation and motility [16]

Histidine protein 
kinase

[15]

LuxR Figure 7.1b [17] LuxR-type is a DNA-binding 
helix-turn-helix (HTH) domain 
consisting of about 65 amino 
acids. It participates in the 
transcriptional regulators in the 
LuxR family of response 
regulators [18]

N-terminal receptor 
site of the proteins

[17]

LuxO Figure 7.1c [19] LuxO acts indirectly on virulence 
gene expression by repressing 
hapR gene. This leads to the 
expression of virulence factors. In 
strain El Tor N16961, the hapR 
gene is inactive due to a natural 
frameshift mutation [17]

LuxR-type 
DNA-binding 
HTH domain

[19]

LuxQ Figure 7.1d [16] In SRB, the binding of AI-2 to the 
periplasmic receptor LuxP 
modulates the activity of the inner 
membrane sensor kinase LuxQ, 
transducing the AI-2 information 
into the cytoplasm [15]

apoLuxP [16]

Diffusible 
Signal Factor 
(DSF)

Figure 7.1e [20] DSF-mediated QS regulation of X. 
citri subsp. citri (Xac), the causal 
agent of citrus canker. DSF-
mediated QS specifically 
modulates bacterial adaptation, 
nutrition uptake and metabolism, 
stress tolerance, virulence, and 
signal transduction to favor host 
infection [21]

RpfC receptor of 
histidine Kinase 
[21]

[22]

(Continued)
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7.4 � QUORUM SENSING IN RELATION TO STRESS RESPONSE

Stress response mechanisms allow microbial species to survive adverse and fluc-
tuating conditions in their immediate surroundings. Bacterial cells respond to 
stressors by leveraging multiple stress response systems that interact via complex 
global regulatory networks [7,8,10,25–28]. The significance of QS in regulating 
the stress response with respect to stressors [e.g., heat, heavy metals in the case of 

FIGURE 7.1  Chemical structures of quorum sensing molecules. (a) LuxS; (b) LuxR; 
(c) LuxO; (d) LuxQ; (e) Diffusible Signal Factor; (f) Furanone C-30.

TABLE 7.1 (Continued)
Quorum Sensing Molecules and Their Classes of Action

Name 
Chemical 
Structure Class of Action Name of Receptor Ref 

Furanone C-30 Figure 7.1f [23] Diminished swarming motility was 
observed in the presence of 
furanone C-30. The wild-type 
strain exhibited swarming across 
the soft agar, but its motility was 
markedly inhibited in the presence 
of furanone C-30. These results 
suggest that P. aeruginosa surface 
colonization is controlled by 
furanone C-30 which effectively 
inhibits the C4-HSL-mediated QS 
system (QS system in the 
bacteria) reducing the virulence 
property of the bacteria [24]

pqsR receptor [24] [24]
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microbiologically influenced corrosion (MIC)] has been well reported in the litera-
ture [26–30]. For example, QS mechanisms improve the viability of Vibrio cholerae 
under stressful conditions by regulating the expression of the RNA polymerase sigma 
S gene. Such regulation takes place via the HapR gene, highlighting the roles of 
QS-enhanced stress responses in V. cholerae when exposed to oxidative and nutri-
tional stresses [27]. Given the wide range of environmental stressors in nature, it is 
likely that QS-enhanced stress tolerance allows the microbial cells to counteract QS 
inhibition [31] and invasion by other virulent species having a broader impact on 
bacterial ecology.

7.5 � BACKGROUND ON BIOFILMS WITH FOCUS ON 
ITS ECOLOGY IN NATURAL ECOSYSTEMS

Here, we provide a generic overview of biofilms using their microbial life in stream 
ecosystems as a practical example. Biofilms exist as matrix-enclosed and surface-
attached microbial communities that are highly active at streambed interfaces. Such 
biofilm modes allow bacterial populations to sustain challenges posed by a fast flow 
of water and the need for continuous export of nutrients and organic matter. Biofilms 
in streams are considered a ‘microbial skin’ that allows the sessile cells to process 
and export nutrients along with the organic matter from the structure. Fluid dynam-
ics influence the dispersal of microbes and their biodiversity dynamics at the scale of 
stream networks [30, 32]. Interactions among parameters related to biofilm growth, 
stream water flow, and substrate chemistry are responsible for environmental com-
plexity in the streambed. Species like Proteobacteria and Bacteroidetes dominate the 
communities of stream biofilms [15–19, 33], including those based on Flavobacteria 
and Sphingobacteriia. The biodiversity present in stream biofilms is supported by the 
continuous input of microbes [34].

Biofilms exert both negative and positive roles. For example, beneficial biofilms 
that live inside the gut ensure the normal functioning of human beings as well as 
animals. Beneficial biofilms have been implicated in their roles in mitigating the 
negative effects of obesity, autism or cancer, and infectious diseases. Biofilms are 
not only essential for the normal functioning of ecosystems (e.g., providing oxygen 
and food for many organisms using solar energy as plants do) but also for protecting 
health by degrading pollutants in water and soil, limiting erosion, and ensuring soil 
fertility, among other things [35–39]. Negative biofilms are implicated in terms of 
their roles in improving the resiliency of microorganisms involved in the pathogen-
esis and MIC.

7.6 � QUORUM SENSING, BIOFILM GROWTH, AND 
MICROBIOLOGICALLY INFLUENCED CORROSION

QS mechanisms can influence different stages of biofilm formation (Figure 7.1). 
Given that sessile cells within biofilms are known to aggravate MIC, we considered 
MIC in this study (Figure 7.2) [10,14,25,31].
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7.6.1 � QS, Biofilm Growth, and MIC

We explain the role of QS on biofilm formation by sulfate-reducing bacteria (SRB) 
that are widely implicated in MIC, a problem that contributes to $5 billion in corro-
sion costs. The MIC costs include resources for addressing corrosion issues that call 
for maintenance, repairs, and lost time for delays, failures, outages, litigation, and 
taxes. MIC can occur during any of the five stages of biofilm growth (Figure 7.1). 
These stages include (1a) the conditioning phase where self-secreted molecules (e.g., 
proteins and carbohydrates) are adsorbed by the underlying surfaces; (1b) the attach-
ment phase where planktonic cells are immobilized on the polymer matrix; (1c) the 
consolidation of sessile cells within the EPS; (2) formation of microcolonies within 
the EPS of biofilms; (3) growth of early biofilm; (4) growth of matured biofilm; and (5) 
dispersal [18,39–42]. SRB biofilms can influence MIC in all five stages (Figure 7.1).  
SRB biofilms use three different types of mechanisms to influence MIC. In the Type 
I mechanism, they use metal as an electron donor under nutrient-limiting condi-
tions. In the Type II mechanism, biofilms secrete metabolites that generate terminal 
electron acceptors (e.g., protons) that support cathodic reduction reactions involved 
in corrosion [7,8,10,26,27]. Type III mechanisms are used to degrade nonmetals by 
using them as carbon sources. Readers are encouraged to review [18,37,42–47] to get 
an in-depth understanding of these mechanisms.

Desulfovibrio (D) vulgaris and Desulfobacterium (Db) corrodens spp. are com-
monly studied model organisms in MIC studies. D. vulgaris is a thoroughly studied 
SRB with its entire genome sequenced. Db. corrodens is an SRB whose genome has 
been well annotated but with zero evidence in the presence of QS-based gene homo-
logs [47]. In a recent study [45], both these species were grown in either saline or 
freshwater media. Here, saline conditions represent an example of stressful environ-
ments discussed earlier. They used lactate and sodium sulfate (Na2SO4) as sources of 
electron donors and acceptors, respectively. Increased potentials of sulfate reduction, 

FIGURE 7.2  Top panel: Different stages of biofilm growth that may influence microbial cor-
rosion. Bottom panel: Three major types of microbial corrosion to attack metals and plastics.
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AHL production, and biofilm formation by D. vulgaris and Db. corrodens were 
observed under saline conditions [45]. As mentioned earlier, AHL is a typical sig-
naling molecule encountered in many QS systems. To analyze the effects of salinity 
at the genetic expression level, quantification of transcript levels of genes respon-
sible for sulfate reduction, carbon utilization, biofilm formation-based hydrogenases, 
as well as histidine kinases involved in cell–cell communication was analyzed. 
Transcript levels of all relevant genes were found to be upregulated under saline 
conditions. Hence, saline conditions have a pronounced effect on sulfate reduction, 
biofilm formation, and AHL production at the genetic level by both planktonic cells 
and biofilms of SRB [7]. As shown in Table 7.3, QS mechanisms can be involved in 
different stages of biofilm growth. Thus, QS mechanisms can be expected to influ-
ence the growth of biofilms that are involved in metallic corrosion. Such mecha-
nisms can be considered for developing effective MIC prevention mechanisms, for 
example by developing protective coatings that release QS-inhibiting molecules. We 
can also incorporate quorum quenching supplements for inhibiting QS communica-
tions (Table 7.2).

7.6.2 � Bioinformatics Analysis

We selected several QS-associated proteins to check for any discernible consensus 
sequences, analyze phylogenetically, and determine which biosynthetic pathways 
these proteins belong to. Using a MAFFTT workflow [49], the proteins were aligned 
and a maximum likelihood of a phylogenetic tree was also created using the out-
put of the previous workflow with the addition of RAxML ver. 8 [35] with default 
parameters, LG+G4 [36] model and 100 bootstrap iterations. The multiple sequence 
alignment (MSA) (Figure 7.3) for the selected QS proteins did not yield a discernible 
consensus sequence. The phylogenetic tree showed that the LuxO and LasR proteins 
from Vibrio harveyi and Pseudomonas aeruginosa [44, 51], respectively, have a com-
mon ancestor. Likewise, the protein AHL synthesis from both P. aeruginosa and 
Aeromonas hydrophila, also shares a common ancestor, with different gene origins 
[43]. AHL synthesis from Burkholderia vietnamiensis shares a common ancestor 

TABLE 7.2
Quorum Quenchers and Its Effect on Biofilm Formation

Quorum Quencher Dosage (μM) Observed effect on biofilm formation References 

Bromo furanone 80 Decreases specific sulfate reduction rate 
of D. vulgaris and subsequently its 
biofilm formation  

[35,45,49]

Butanamide, 
3-oxo-N-phenyl

40 Decreases specific growth rates of D. 
vulgaris and Db. corrodens, 
discouraging biofilm formation  

[21]

GABA (Gamma-
aminobutyric acid)

40  Compromises the specific growth rate 
of Db. corrodens and biofilm formation 
by D. vulgaris and Db. corrodens 

[9, 50]
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with all group nodes (Figure 7.4). Proteins were determined to belong to the QS 
pathway. These results tell us that even though these proteins are all associated with 
QS, there is no grouping of apparent similar proteins throughout. Our analysis also 
showed that there were no sequence motifs that would help differentiate a protein 
from a QS protein. In the future, a larger set of QS proteins could be used to find a 

FIGURE. 7.3  MSA of selected quorum sensing proteins from different bacterial taxa.

TABLE 7.3
Role of Quorum Sensing (QS) Molecules at Different Stages of Biofilm 
Formation

# Biofilm growth stage Role of QS Examples of QS Ref 

1 Attachment Initial attachment of the mutant bacteria seems 
to be affected due to the presence of the QS 
system, rendering them more adherent to the 
underlying surfaces  

cepIR and cciIR 
QS systems

[40]

2 Microcolony The interaction of the ahyI protein and C4 
HSL with the ahyrI locus receptor improved 
the development of microcolonies

AhyI protein and 
C4 HSL QS 
systems  

[41]

3 Early biofilm growth The ratio of LasI and RhiI is critical while 
governing biofilm formation. The production 
of RhiI is seen to be less during the log phase 
of biofilm formation, increasing the 
production of LasI, and further contributing 
to the initial stages of biofilm formation

LasI quorum 
sensing genes

[42]

4 Mature biofilm LuxO is involved in the downstream 
phosphorylation cascade reactions, 
upregulation, or repression of QS-associated 
genes. Involved in many phenotypic traits, 
including mature biofilm formation

LuxO protein [18]

5 Dispersion Bacterial species use QS to coordinate the 
disassembly of the biofilm community. 
Biofilm dispersion allows cells to escape the 
current environment where nutrients are 
depleted and waste products are accumulated. 
This allows the cells to colonize new niches

LasI/LasR quorum 
sensing system 

[43]
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consensus sequence as well as any sequence or structural motifs that could be used 
to determine new QS proteins not found before.

7.7 � ADHESION-INDUCED EMERGENT PROPERTIES IN BIOFILM

The properties of EPS depend on microbial origin and growth conditions, for exam-
ple, the availability of nutrients and hydrodynamics. In addition, the release of EPS 
has been reported to be controlled by QS mechanisms. Several fractions of EPS can 
be distinguished such as capsular EPS wrapping the single cell and EPS of the bio-
film. It is also important to discuss the differences between EPS properties of plank-
tonic and sessile cells. Due to the complexity of EPS, its analysis depends on the 
methods used to extract EPS. For instance, certain harsh methods destroy cell walls 
and introduce cell material into the medium. Some bacterial EPSs exhibit a higher 
ability to bind metal ions and thus are known to promote corrosion as in the case 
of EPS extracted from SRB [37]. An important feature of biofilms is the extracel-
lular matrix—a complex mixture of biomolecules termed EPS—which contributes to 
reduced antimicrobial properties. Nanoparticles (NPs) play a very important role in 
the form of ‘carriers’ of EPS matrix disruptors leading to several approaches that have 
recently been proposed. Little relevance is also given to the application of NPs as an 
antibiofilm technology with more emphasis on the function of the EPS matrix in the 
physicochemical regulation of the nanoparticle–biofilm interaction. We highlight the 
use of NPs as a platform for the new generation of antibiofilm approaches [38–40].

7.8 � METHODS TO INHIBIT QUORUM SENSING

As discussed earlier, quorum quenchers can inhibit the QS mechanisms, shunt cell-
to-cell communications, and discourage bacterial cells from sharing information 
about cell density and associated gene expression [15,17]. Below, we present an over-
view of other known methods for inhibiting QS mechanisms (Table 7.4).

 

FIGURE 7.4  Maximum likelihood of phylogenetic tree produced from MSA of selected 
quorum sensing proteins.



142 Machine Learning in 2D Materials Science

TABLE 7.4
Methods for Inhibiting Quorum Sensing

# Method Effect Comments Examples 

1 QS inhibition Cut off the QS communication 
and inhibit biofilm formation 
[38]

Strategies that include the 
discovery of QS-inhibiting 
agents and the current 
applications of QS-inhibiting 
agents in several fields to 
provide insight into the 
development of effective 
drugs to control pathogenic 
bacteria [52]

Levamisole 
[38]

2 Chemical 
inhibition 

Disrupt the cellular 
communication and inhibit 
biofilm formation [37]

Development of certain 
quorum quenching inhibitors 
chemically that would inhibit 
or control the pathogenic 
activity of bacteria [24]

Savarin 
[37]

3 Sequestration 
by antibodies 

Specific antibodies target 
quorum sensing pathway 
within the bacteria and 
terminate the effect of 
cellular communication 
within the bacteria, e.g., 
RS2-1G9 generated against a 
3-oxo-dodecanoyl 
homoserine lactone analog to 
hapten was able to protect 
murine bone marrow–
derived macrophages from 
the cytotoxic effect [36]

Development of certain 
antibiotics would inhibit the 
effect of certain quorum 
sensing agents which would 
generate certain cytotoxic 
effects in bacteria [23]

RS2-1G9
[36]

4 Quorum 
quenching 
enzymes

Quorum quenchers (QQ) are 
often used in the form of 
enzymes which nullify the 
effect of quorum sensing 
molecules within the 
bacteria. Some enzymes are 
involved in reduction while 
others terminate the effect 
completely. Lactonases and 
acylases hydrolyze N-acyl 
homoserine lactone 
(AHL)-signaling molecules 
have been investigated most 
intensively and nullify the 
effect of quorum sensing 
molecules [35]

These approaches have been 
assessed which aim at 
alleviating virulence, or 
biofilm formation, by 
reducing the signal 
concentration in the bacterial 
environment [21]

Lactonases and 
acylases [35]

(Continued)
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7.9 � CONCLUSION

Quorum sensing (QS) allows bacterial cells to communicate with each other, allowing 
them to jointly alter phenotypical changes, including biofilm growth, virulence, and 
MIC. This chapter highlighted the roles of QS at different stages of biofilm growth, 
including effects on adhesion-induced properties, formation of exopolysaccharides 
(EPS), and maturation and formation of biofilm. Although we primarily focused on 
QS effects on SRB, these mechanisms are equally important in other gram-negative 
bacteria that are implicated in biotechnology applications. Furthermore, we dis-
cussed different types of QS inhibition methods that can be used to control biofilm 
growth in engineering applications. However, such methods may not be viable for 
field- scale environmental biotechnology applications, especially those that entail 
the presence of mixed microbial populations and complex environmental conditions. 
From the microbial corrosion prevention standpoint, it is important to develop pro-
tective coatings that can intercept the QS signaling mechanisms in bacterial cells that 
adhere to the corroding metal surfaces. Moreover, this classification will constitute 
a baseline dataset to develop a machine learning model for biofilm developmental-
stage gene marker prediction.
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TABLE 7.4 (Continued)
Methods for Inhibiting Quorum Sensing

# Method Effect Comments Examples 

5. Biostimulation Biostimulation is a 
phenomenon in which 
rate-limiting nutrients or 
electron acceptors are added 
to the environment to 
stimulate indigenous bacteria 
capable of bioremediation. 
Instead of immobilizing QQ 
bacteria in any kind of 
media, biostimulation was 
used to augment the 
population of QQ bacteria in 
the MBR (membrane 
bioreactor) [53]

Gamma-caprolactone (GCL), 
which is structurally like 
AHL, was used to specifically 
stimulate QQ (AHL-
degrading) bacteria. When 
the GCL consortia were 
injected into MBR and GCL 
was continuously dosed, the 
secretion of EPS decreased, 
and biofouling was 
effectively controlled [53]

AHL-lactonase 
[53]
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8.1 � INTRODUCTION

The study of microbe–material systems (biointerfaces) is of great interest for vari-
ous applications such as infrastructure (e.g., corrosion study), biomedical science 
(cell implant study), and environmental health.[1] The complex biointerface system 
involves both the material system (non-living) and biosystem (systems biology).[2]

8.1.1 � Microbial Community, Biofilm, and Material–Biofilm Interaction

Biofilms grow on practically every surface exposed to aqueous environments includ-
ing but not limited to metals, polymers, living tissues, and medical implants.[3] They 
are widely researched in agricultural, industrial, and life science domains. Biofilms 
can be incredibly beneficial or exceedingly harmful. For example, detached cells 
from pathogenic biofilms are known to transmit pathogens in food production facili-
ties, water pipelines, and medical devices.[4–6] The United States alone spends about 
$90 billion/year to deal with the associated infection challenges.[4,7,8]

Sulfate-reducing bacteria (SRB), a special class of microorganisms, are adept in 
colonizing and growing on metal surfaces. Furthermore, they play a pivotal role in 
accelerating the corrosion of these surfaces and use the oxidizing power to meet 
their metabolic needs. This special class of corrosion, known as microbiologically 
influenced corrosion, is responsible for the expenditure of about $4 billion/year in 
the United States. Many other biofilms have been reported to thrive in the most well-
known harsh conditions including hot environments in deep biospheres (e.g., aban-
doned gold mines) as well as the hot springs of Yellowstone National Park. For these 
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vexing problems to be solved, there is a need to develop focused transdisciplinary 
collaborations that cross typical disciplinary and organizational boundaries.

8.1.2 �C omplex System Design: SDLC and Agile 
Methodology Meets Big Data

Complex system design requires rigorous methodology and assessment tools to guide 
engineers and scientists toward a viable solution. The complexity of microbe–material 
systems cannot be handled with one domain’s methodology. The integration of labs’ 
experimental design roadmaps, data science, knowledge discovery processes, and 
system design methodologies will allow for the development of a transdisciplinary 
convergence solution. In that context, the Agile methodology offers an incremental 
approach based on use cases and user stories to connect a scientific hypothesis to a 
computing solution using the system design life cycle.[9–11] By achieving this integra-
tion and adding the data mining process to the loop, we will provide the scientist with 
a roadmap based on previous knowledge to inform new knowledge discovery.[12–14]

8.1.3 � Big Data Mining and Knowledge Discovery

Current advancements in data acquisition technologies both in material and biologi-
cal science have led to the accumulation of a large number of dataset scatters across 
various sources.[12,15] This big data accumulation is facing diverse issues before it can 
be leveraged by researchers. Among these issues is a lack of standard and proper 
annotation. Big data mining is the process of identifying and facilitating the retrieval 
of data that is so large that traditional methods of analysis are unable to handle 
it.[13,16,17] In contrast, knowledge discovery is a process of gaining new information 
from analyzing this extensive data. One of the most relevant methods in data mining 
that can bring the dataset closer to the scientific problem is text mining (TM) and nat-
ural language processing (NLP). And recently, generalization of these large language 
models (LLM) is leading a new generation of data modeling as revealed by OpenAI 
in early 2023. The NLP method tries to learn from human language to bridge the gap 
between the user question and the dataset entry in data sources. However, most mate-
rial and biological databases do not have that technology implemented at the time of 
this study. Here, we present how to use the Biofilm Data and Information Discovery 
System (Biofilm-DIDS) to answer biointerface questions using NLP and the first 
generation of LLMs such as BioBERT (Abstract Figure 8.1).[18–21] This chapter pres-
ents the biointerface system design (Section 8.2), the data mining and knowledge 
discovery of biointerface (Section 8.3), an overview of Biofilm-DIDS (Section 8.4), 
and the uses of Biofilm-DIDS for biointerface question resolution.

8.2 � INTERFACE BETWEEN THE LIVING AND  
THE NON-LIVING: A SYSTEM THINKING APPROACH

8.2.1 �S ystem Understanding of Biointerface

A biointerface could be defined in different contexts based on which system is being 
studied.[1] However, the end goal of a system-level study is to understand the target 
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biointerface as a whole. In this context, we define a biointerface as actions within a 
community of microbes making contact and interacting on a molecular level with a 
material such as biological tissue, cell membrane, living organism, or other materi-
als.[22] Instead of looking at the individual effects of the microbe on the material and 
vice versa, we look at the complex contribution of all interactions between microbial 
communities and the materials at-large to understand their effects and gain a holistic 
picture of the system including subsystem interactions within the main system.[2,9]

8.2.2 � Big Data in Biointerfaces

Materials in their natural forms show fascinating properties as they are either formed 
by or interact with living cells, which sense and process environmental cues and con-
ditions through signaling and genetic programs to control the biosynthesis, remodel-
ing, functionalization, or degradation of the natural material.[23] In an era of big data, 
material production could benefit from modeling material properties from system-
level data. Big data can be obtained from the biointerface by mining existing big 
data and leveraging knowledge discovery to engineer a living system that mimics 
the natural process explained above.[24–27] In Figure 8.2, data mining methodolo-
gies and techniques of knowledge discovery are described as well as machine learn-
ing processes in which biointerface data—both at material and biological system 
levels—are retrieved from a variety of databases in different modalities and many 
omics layers (genomics, transcriptomics, etc.). This is then integrated and selected 
for preprocessing and is subject to feature engineering. Next, machine learning tasks 

FIGURE 8.2  System biointerface overview.

FIGURE 8.1  Leveraging Agile, SDLC, big data mining, and knowledge discovery to assist 
scientists in addressing complex biointerface lab questions.
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are performed on the features by training models to be used in the subsequential pre-
diction of new materials and properties for the production of biosensors, biocompat-
ible devices, drug delivery systems, building materials, corrosion-resistant surfaces, 
and bioremediation.[28] The data mining and knowledge discovery process depicted 
in Figure 8.2 to model material properties could be categorized into three major cat-
egories depending on the tasks:

	 1.	Supervised learning, which is further divided into tasks of classification or 
regression, both of these labeled examples are used to train the models or 
algorithms. Examples include K-nearest neighbor, multiple linear regres-
sion, logistic regression, support vector machine, random forest, artificial 
neural network, decision tree, and Bayesian network.

	 2.	Unsupervised learning, in which the algorithm learns directly from data by 
discovering the patterns from datasets and grouping them based on specific 
rules or associations. The example of unsupervised learning includes tasks 
such as clustering to which principal component analysis, independent com-
ponent analysis, and K-means algorithms are applied to build models.

	 3.	Reinforcement learning, in which the agents learn from their environment 
through rewards.[29–33]

8.3 � BIOFILM-DIDS OVERVIEW

The Biofilm-DIDS (https://biofilmdids.bicbioeng.org/) architecture is comprised of 
modules that mine, map, annotate, and index biofilm and material metadata to enable 
data discovery through a free text searcher. These modules and submodules include:

	 1.	REX, a resource extraction module that gathers and mines data with meta-
data for request data sources,

	 2.	REMAP, a resource mapper module that connects data-mined publication 
data and other metadata definitions,

	 3.	RONER, a resource annotation module that leverages domain ontologies,
	 4.	BioBERT, a pre-trained biomedical language representation model for bio-

medical text mining,
	 5.	Generative pre-trained transformer models by OpenAI,
	 6.	REIS, a resource-indexed system, and
	 7.	RAPI, a resource application program interface (API) providing program-

matic access to the Biofilm-DIDS database (Figure. 8.3).

The biofilm-data fusion module retrieves, curates, annotates, and indexes metadata 
from public data sources. The indexes integrate with the experimental datasets. 
Working with biointerface scientists, we identified numerous data sources (Table 8.2) 
to develop the datasets of 2D materials, transcriptomics, proteomics, metabolomics, 
methylomes, and phenotypic information for our use case collection. Table 8.1 pres-
ents a snapshot of our reference use cases on sulfate-reducing DA-G20 biofilm. The 
fusion module locally stores metadata describing the requisite datasets and uses them 
to build searchable indices that can be accessed by the other three modules via the 

https://biofilmdids.bicbioeng.org
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application program interface resource interfaces (Figure 8.3). NLP allows users to 
enter their queries using free text. For example, they could enter their query in the 
form of “As a…I would like to…so that…” query structure. For example, [as a] bio-
film researcher developing a new class of 2D materials, [I would like to] identify 
known genes and predict unknown gene sets in DA-G20 that represent copper stress 
resistance induced by the defective 2D coatings on Gr/Cu-aggravating biocorrosion, 
[so that] I can design an experiment to evaluate material properties that trigger genes 
responsible for stress response and biocorrosion, all with an accurate and reliable 
gene list (reproducible research). The queries are parsed using the NLP module and 
annotated using the integrated ontologies in order to provide the most relevant results. 
The modeling and data-driven approach module use information extracted from the 
biofilm–data fusion module to retrieve the requisite datasets it will use as input into 
its processes. The query itself, the query result, and the predictive models are stored 
in a system log. The performance (query throughout and accuracy/relevance of query 
results) of Biofilm-DIDS is assessed using user curation and system logs.

Biofilm-DIDS stores reference collections and other data needed to validate the 
biofilm hypotheses generated as a query result and returns the biofilm phenotypes as 
a function of 2D material properties. Biofilm-DIDS will use partially available data-
sets (e.g., defect density of Gr coating), biofilm genomics (GSE83516), and images 
(DA-G20 filaments on Cu/Gr) from literature to guide experimental design aspects 
of the 2D material synthesis (Area 2) and phenotype tests (Area 3). Table 8.1 out-
lines an overview of Biofilm-DIDS subtasks (materials, biofilm, and material biofilm 
interaction categories) to investigate genome and gene regulatory networks that trig-
ger copper stress resistance and biocorrosion in DA-G20 biofilms, in response to the 
surface properties of Cu/Gr and Cu/hBN.

FIGURE 8.3  Core modules of Biofilm-DIDS.
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An effective approach is required to collect datasets and meta-datasets for 
materials of interest (e.g., Gr and hBN) and their surface properties from dispa-
rate sources. We identified about 50 repositories of interest including six literature 
repositories for TM, 12 material property databases, 15 biofilm databases, and 14 
related repositories. Some of these sources include NCBI, Pubmed, PMC, IHS 
Markit materials database, Materials Project for computed information on known 

TABLE 8.1
Sub-Goal/Task (Repositories) for DA-G20 Biofilm Reference Case

Materials
Identify Materials and the Surface Properties that Impact DA-G20 Biofilm 

Phenotypes

UM1 Develop a list of materials (Cu, Cu/Gr, and Cu/h-BN) and relevant surface properties

UM2 Narrow down surface properties: crystallographic orientation, defect concentration, 
hydrophilicity, charge, accessible area, barrier properties, electrical conductivity

UM3 Develop a complete set of preexisting datasets of material properties for simulations

UM4 Synthesize new 2D material properties with well-characterized nanostructure and predict 
biofilm phenotypes (biocorrosion). This step fills knowledge gaps in the literature

UM5 Create a test dataset to model and predict the biological mechanism (e.g., peptide 
interaction) in response to a given material property

UM6 Create a dataset to assess other biofilm phenotypes (biocompatibility and bacteria 
attachment) in response to crystallographic orientation, defect density, hydrophilicity, 
and charge of 2D material on a copper surface

UM7 Generate a new dataset to fill knowledge gaps (e.g., nanostructure characterization with 
and without biofilms)

Biofilms
Collect Biofilm Properties/Configuration Based on Existing Knowledge for 

Prediction

UB1 Estimate each collection for coverage and completeness

UB2 Create a test dataset to build the machine learning model for material property prediction 
from copper toxicity

UB3 Create a gene collection involved in the biofilm stress response and enrich it with 
OMICS data to create a protein collection involved in the biofilm stress response and 
then enrich it with OMICS data

UB4 Create a test dataset to build a model for the gene of interest and phenotype of interest 
prediction from the dataset of known genes

UB5 Extend the gene list using gene regulatory network analysis and protein network analysis

UB6 Unknown genes and proteins

UB7 Create the dataset to identify conserved patterns regulating the stress response using 
pattern detection

Biofilm- 
Material

Create Biofilm Phenotype Response Dataset on a Given Material (Graphene, 
hBN). Correlate Material Properties with the Biological Information (e.g., Gene, 

Protein, Metabolite, Compound)

UBM1 Create dataset collection to profile material data for a given biofilm’s genomic landscape

UBM2 Create an integrated dataset to predict biofilm genomics profile based on the material 
properties
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and predicted  materials, Polymerizer, DANA information, Bionumbers, aBiofilm, 
and BaAmps (Table 8.2). 

Table 8.2 maps each of the sub-questions (shown in Table 8.1) to the relevant data 
sources that are used to achieve it. For example, consider the sub-question UM6: 
“Create dataset to assess other biofilm phenotypes in response to crystallographic 
orientation, defect density, hydrophilicity, and charge of 2D material on a copper sur-
face.” Biofilm-DIDS yields a matrix that correlates 2D material property publication 
and dataset with the biocompatibility of DA-G20. We identified seven repositories 
that provide chemical, structural, and biological information of 2D materials, quo-
rum quenchers, anti-biofilm agents, and the link to PubChem or Chemspider (e.g., 
C143H230N42O37S7). They also provided the organism involved (e.g., Pseudomonas 
aeruginosa, strain ATCC 9027) with the link to NCBI taxonomy, the biofilm devel-
opment stage (e.g., biofilm formation), the biological event, and reference linked to 
a PubMed paper. Currently, the data collected from these repositories only provides 
partial information to complete sub-question UM4, but it contains relevant informa-
tion on materials of interest. This information is fused with the text dataset obtained 
from the PubMed literature to complete the matrix. A simple search on PubMed 
with “Pseudomonas aeruginosa biofilm nanotube” returns 14 results. Pantenale et al. 
provide a relevant dataset to update our test set matrix with multimodal imaging and 
adhesion datasets. 

TABLE 8.2
Sub-Goal/Task (Repositories) for DA-G20 Biofilm Reference Case
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8.4 � USING BIOFILM-DIDS TO EXTRACT BIOCORROSION 
GENE OF INTEREST FROM THE LITERATURE 
AND MATERIAL DIMENSION PREDICTION

Biofilm-DIDS has been used to solve over 20 biointerface problems in collabora-
tion with lab scientists, with five publications on diverse use cases including TM for 
biocorrosion gene marker identification, biofilm formation studies, gene name entity 
resolution for SRB organism collection, essential gene prediction, and deep learn-
ing strategies for addressing issues with small datasets in 2D material research in 
microbial corrosion.[34–38] Here, we present how one can use Biofilm-DIDS to extract 
biocorrosion datasets for downstream knowledge discovery more accurately than 
current repositories. Working with expert scientists, we resolved as follows the use 
case “Develop the list of materials (Cu, Cu/GR, and Cu/h-BN) and relevant surface 
properties.”

8.4.1 �E xpert Informed Relevant Dataset Extraction 
from User Free Text Question

The development of Biofilm-DIDS started with six research problems and expanded 
to over 50 sub-problems relevant to hypothesis-driven experimental validation. These 
problems include one problem in biofilm engineering (Dr. Sani’s Lab), in material 
engineering (Dr. Jasthi’s Lab), and in biointerface engineering (Dr. Gadhamshetty’s 
Lab), all experts from the South Dakota School of Mines and Technology. The imple-
mentation of these use cases helped us test and use toolkits such as TM modules. At 
this stage, Biofilm-DIDS used over 15 data extraction modules or packages to retrieve 
datasets from published data sources and five annotation tools to allow expert user 
curation of our dataset. These datasets integrated into our repository are currently 
undergoing the continuous curation process for quality improvement. We also inte-
grated custom datasets from our collaborator’s lab projects (e.g., SEM SRB biofilm 
dataset analyzer with our tools). We are using different architectures to make these 
tools discoverable including an API that will make our tool Software as a Service 
(SaaS) accessible at the HTTP level for any secured application.

To demonstrate some of the functionality of Biofilm-DIDS, consider the simple 
query: “Develop the list of material (Cu, Cu/G.R. and Cu/h-BN and relevant surface 
properties.” If this search is executed directly in PubMed, no results are returned as 
of today (Figure 8.4).

A successful search in Biofilm-DIDS returns a results page (Figure 8.5) contain-
ing a summary of resources that meet the query requirements. Resources include 
datasets, tools, and analysis. The “View Details/Download Document” functional-
ity is offered so that the user can obtain additional information regarding a specific 
item in the result set (Figure 8.6). The downloaded document lists PubMed IDs that 
are associated with the query, for example, the ID 33784559 entered in the PubMed 
search returns the article (Figure 8.7).
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FIGURE 8.4  Test free text query use case on PubMed.

FIGURE 8.5  Biofilm-DIDS search results based on query: list of material (cu, cu/gr, and 
cu/h-BN and relevant surface properties.
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FIGURE 8.6  Biofilm-DIDS details for item: Develop the list of material (cu, cu/gr, and 
cu/h-BN) and relevant surface properties.

FIGURE 8.7  The list of PubMed IDs. (a) Retrieved from Biofilm-DIDS query allows users 
to obtain details information. (b) Related to a list of materials and relevant surface properties.
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8.4.2 � Downstream Analysis for Material Dimension Prediction

Instead of retrieving the publication relevant to their query, the researcher may want 
to find datasets or tools to predict material dimensions from our tool collections.[39]  
This question is built on the ability of Biofilm-DIDS to extract knowledge from over 
eight repositories of materials. With this dataset, a user can discover a new compu-
tational material and predict its dimension, and if this is a 2D dimension, they can 
validate it in the lab and publish it as a new 2D material discovered from computa-
tional methods. Using the previous query, if you select the publication tab, you have 
relevant papers as described in the previous section. If you select the dataset tab 
with a query involving “material dimension,” you will have the dataset on material 
dimension and a tool for the prediction of the material dimension (Figures 8.8–8.11).

FIGURE 8.9  Dataset results (a) and detail of the first result (b) from material dimension 
free text query.

FIGURE 8.8  Publication result using free text query.



158 Machine Learning in 2D Materials Science

FIGURE 8.11  Downstream analysis to predict the material dimension from single (c) or 
multiple (b) material ID using 2DMatChecker (a) predictor (https://2dmatchecker.bicbioeng.
org/). Used with permission from BicBioEng Lab.

FIGURE 8.10  Analytic tool results (a) and detail of the first result (b) relevant to the dataset 
retrieved for material dimension analysis.

https://2dmatchecker.bicbioeng.org
https://2dmatchecker.bicbioeng.org
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8.5 � CONCLUSIONS

Discovering new material in the age of big data science is a big challenge added 
to an already complex system such as a biointerface. Biointerface science aims to 
connect the non-living (material) and the living things (microbe here or biofilm). 
We proposed in this chapter how we can use Biofilm-DIDS as a one-stop shop data 
integrator to increase access to relevant multimodal datasets. Following the dataset 
discovery, Biofilm-DIDS allows the scientist to perform a downstream analysis when 
applicable using relevant analytic tools such as material dimension prediction using 
2DMatChecker. The current version of Biofilm-DIDS contains datasets of around 50 
expert informed use cases from over 40 data sources and their metadata. The future 
development of Biofilm-DIDS will rely on the current advances in AI power query 
analysis and community engagement to enrich the knowledge base with more use 
cases.
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9.1 � INTRODUCTION

Machine learning (ML) enables exciting tools to extract novel information from vast 
datasets and organize the data efficiently. It is considered a sub-field of artificial intel-
ligence where statistical algorithms are performed in a systematic manner to improve 
data interpretation. It is much more likely digitally standardizing the protocols with 
continuous improvements and learnings. In the modern world, the accumulation of 
big data and its processing have a direct impact; thus, ML-based techniques are 
referred to as the “fourth industrial revolution” [1]. ML tools can assist researchers 
in redefining scientific models and designs and optimizing the process parameters, 
which could not be tackled with a conventional approach from the discovery of new 
materials to their final deployment (Figure 9.1a). In several disciplines of science and 
technology, engineers and researchers use ML to address complex research questions 
and to predict the design, synthesis, and characterization of molecules and materi-
als [2–5]. Figure 9.1b presents the generic ML framework for predicting material 
property from the feature engineering of the material to the final trained model for 
structural prediction. Along this route, the chosen material has to go through several 
stages of model training (i.e., mapping relationships with conditional factors and 
decisional attributes), and model evaluation (such as property-labeled materials frag-
ments) [6].

In the last decade, ML has been broadening its applicability in quantum dots, 
nanoscopic materials (ranging from 1 to 100 nm in thickness), thin films, and a broad 
family of two-dimensional (2D) materials to characterize structure-property relation-
ship. Peculiar to thin films and 2D materials, surface characterization techniques, 
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including high-resolution scanning probe microscopy and optical and electron spec-
troscopy, are commonly used for surface evaluation and assessment. Nevertheless, 
these methods generate myriad datasets, non-linear relationships between variables 
and parameters, which are extraordinarily complex for high-throughput screen-
ing and interpretation. Researchers spend significant time analyzing the data and 
need domain expertise to create a meaningful relationship between all the different 
variables.

In the present section, we will focus on a few common practices in 2D mate-
rial characterizations using ML tools: machine-learning optical identification (MOI) 
using examples of graphene and MoS2, random forest regression (RFR), kernel ridge 
regression (KRR), and Gaussian mixture model (GMM) utilized in Raman spectros-
copy to extract invaluable insights of graphene and molybdenum disulfide (MoS2). 
We will briefly discuss the challenges and opportunities of ML algorithms for 2D 
material characterization to enable wide-ranging impact.

9.2 � ESTABLISHED SURFACE CHARACTERIZATION TECHNIQUES

The elementary surface characterization of 2D materials entails optical microscopy 
for the initial assessment of 2D materials, followed by other spectroscopic and probe 
techniques for quantitative outcomes, such as thickness, uniformity, and defects. 
One of the typical examples is visualizing the optical contrast of transferred gra-
phene layer/s over Si/SiO2 substrate (usually 300 nm thick oxide) fabricated through 
mechanical exfoliation (ME) and chemical vapor deposition (CVD), respectively 
(Figure 9.2a–c) [8–10]. The thicker graphene (i.e., bulk) over the oxide layer of silica 
substrate absorbs more visible light than an atomically thin layer (1L). A similar 

FIGURE 9.1  A general comparison between (a) traditional approach and (b) machine learn-
ing approach in materials science for crystals, thin films, and 2D material characterization. 
(Reproduced from Liu, Y. et al., J. Mater., 3, 159, 2017. With permission from Elsevier.)
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FIGURE 9.2  Optical images of graphene fabricated by (a) mechanical exfoliation. 
(Reprinted from Tripathi, M. et al., ACS Omega, 3, 17000, 2018. Copyright 2018, American 
Chemical Society); (b) CVD fabricated and transferred on Si/SiO2. (Reproduced from 
Chilkoor, G. et  al., Encycl Water, 1, 2019. With permission from John Wiley and Sons); 
(c) CVD fabricated and transferred over Si/SiO2. (Reproduced from Chilkoor, G. et al., 
Encycl. Water, 1, 2019. With permission from John Wiley and Sons); (d) Raman spectra of 
single-layer to few-layer graphene showing D, G, and 2D peak positions. (Reprinted from 
Yavari, F. et al., Sci. Rep., 1, 1, 2011. Copyright 2011); (e) Raman spectra of graphene 2D 
peak shift with varying layers. (Reproduced from Hwangbo, Y. et al., Carbon N Y, 77, 454, 
2014. With permission from Elsevier); (f) Raman map showing the distribution of graphene 
wrinkles through Raman active D peak intensity. (Reproduced from Tripathi, M. et al., 
ACS Nano, 15, 2520, 2021. Copyright 2021, American Chemical Society); (g) The correla-
tion plot for graphene over Cu and Ni sensing corrosion from H2SO4. (Reprinted with the 
permission from Chilkoor, G. et al., ACS Nano, 15, 447, 2021. Copyright 2021, American 
Chemical Society); (h) SEM images of CVD graphene on silica substrate. (Reprinted with 
the permission from Tripathi, M. et al., ACS Appl. Mater. Interfaces, 10, 51, 44614, 2018. 
Copyright 2018, American Chemical Society); (i) Typical TEM images of single-layer gra-
phene on lacey carbon. (Reproduced from Chilkoor, G. et al., Encycl Water, 1, 2019. With 
permission from John Wiley and Sons); (j)  High-resolution TEM image of single-layer 
graphene sheet. (Reprinted with the permission from Reina, A. et al., Nano Lett., 9, 30, 
2009, Copyright 2009, American Chemical Society); (k) False-color DF-TEM image of 
graphene. (Reproduced from Lee, G.H. et al., Science, 340, 1074, 2013. With permission 
from The American Association for the Advancement of Science); (l) AFM topography of 
CVD graphene. (Reprinted with the permission from Tripathi, M. et al., ACS Appl. Mater. 
Interfaces, 10, 51, 44614, 2018, Copyright 2018, American Chemical Society); and (m) STM 
image of Gr/SiC at −1.5 V. (Reproduced from Premlal, B. et al., Appl. Phys. Lett., 94, 
263115, 2009. With permission from AIP Publishing.)
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optical contrast has been observed in polycrystalline graphene layers that indicate 
the wide-scale thickness distribution. Nevertheless, under laser excitation with con-
trolled energy, one can quantify the thickness distribution by following the atomic 
vibrational modes related to Raman peaks. It is based on the fact that light can be 
scattered inelastically, leading to the difference in the frequency of incident and scat-
tered photons, which strongly relates to the properties of solid materials. The phe-
nomenon of inelastic light scattering is called the Raman effect, which is used to 
study fundamental excitations of solid-state matter and molecules [11]. Thus, Raman 
spectroscopy is another crucial non-destructive tool based on optical characteriza-
tion to get the signature of graphene, and it also deploys extensively to other 2D 
material characterization. The fingerprint Raman features of graphene are D peak 
(∼1355 cm−1), G peak (∼1580cm−1), and 2D peak (∼ 2700 cm−1) (shown in Figure 
9.2d) [12]. The salient attributes of G and 2D Raman modes are their capabilities 
to change the position, shape, and intensity based on the number of layers and their 
interaction with local surroundings. Raman signals of graphene from monolayer to 
a few layers stacked in the Bernal (AB) configuration will vary depending on the 
number of layers [13,14]. Figure 9.2e portrays the 2D peak shift to a higher frequency 
region along with specific peak width (full-width half maximum, FWHM) with 
the increased number of graphene layers (utilizing λ = 514 nm wavelength excita-
tion energy). The Raman active disordered peak “D” is useful to monitor structural 
defects through absolute intensity (ID) or relative to ratio (ID/IG) to reveal wrinkles 
(see, e.g., Figure 9.2f), edges (zigzag), and bubbles [15]. Additionally, the frequency 
shift (cm−1) of Raman modes and their correlation, such as 2D vs G peak positions, 
can reveal underlying strain and doping effects in graphene [16]. It is carried out 
using a reference coordinate from a suspended specimen (O, intersect of strain and 
doping axis in Figure 9.2g), which is assumed to be the minimum influence from 
strain and doping. The distribution of Raman modes (G, 2D) deviated from the ref-
erence coordinate through external stimulation (e.g., temperature, impurities, see 
Figure 9.2g) indicates the extent of carrier concentration and extension/compression 
of carbon lattice. Thus, Raman spectroscopy can detect subtle changes in the gra-
phene host materials to monitor the corrosion dynamics of underlying metals such as 
copper (Cu) and nickel (Ni).

The results of Raman spectra can be complemented with other surface charac-
terization techniques, such as scanning electron microscopy (SEM) and transmis-
sion electron microscopy (TEM), for an in-depth investigation of real space images 
and crystallographic information. For the opaque substrate, the localized electron 
beam interacts with the substrate to generate secondary electrons to develop the 
image as an impression of topography. This technique based on probing electrons 
is known as SEM. SEM is useful for scanning large regions to evaluate graphene 
grain size, growth rates, nucleation density, structural defects, and coating unifor-
mity. Furthermore, the SEM is integrated with additional detectors like energy-dis-
persive spectroscopy (EDS) and electron backscatter diffraction (EBSD) to obtain 
insights into the elemental chemical composition and crystallographic orientation 
of graphene and other 2D materials. Figure 9.2h illustrates a typical SEM image of 
single-layered graphene (bright area), bilayered graphene (dark patches) and distribu-
tion of wrinkles (dark lines). The contrast in SEM micrograph is due to the relation-
ship of accelerating voltage with the number of layers and substrate [17]. It relates to 
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the availability of secondary electrons generated at the topmost layer of the graphene 
surface. Also, the metallic subsurface (e.g., Cu, Ni) yields higher secondary electrons 
than the lighter carbon atoms revealing a brighter region.

For the transparent samples, TEM enables atomic-scale characterization to inves-
tigate the layers number, in situ growth, and transformation of graphene. Figure 9.2i 
and j illustrates a typical single-layer graphene micrograph and its high-resolution 
around the edge region. The number of layers is delved by counting the contrast line 
along the backfolded edge of a graphene sheet [18].

Dark-field TEM (DF-TEM) is a handy tool that rapidly detects local structures (such 
as grain sizes) over a large area. Figure 9.2k demonstrates the mapping of the grain 
structure of graphene where the individual false-color area represents distinct crystal 
orientation. The probing of the graphene surface with a sharp physical object (usually 
doped Si) illustrates three-dimensional topography generated due to physical interac-
tion through the technique atomic force microscopy (AFM) [19]. AFM is employed to 
realize the graphene layer thickness and surface roughness, which is difficult to detect 
through optical contrast and electron imaging. The topological facets of graphene are 
sensitive to the underlying substrate. Consequently, it can provide the atomic structure 
and nanoscale morphology [20]. Figure 9.2l depicts the AFM image of polycrystalline 
graphene over Si/SiO2 wafer showing single-layer (1L), bilayer (2L), and wrinkled (Wr) 
regions. The probing of the conducting graphene through the metallic tip apex (Au, 
tungsten, pt-Ir etc.) is useful for providing atomic-scale resolution through scanning 
tunneling microscopy (STM). It is carried out by applying a potential bias across the 
tip and the substrate and monitoring the tunneling current between them, separated 
by a few nanometers (1–10 nm). The atomic resolution of graphene single and bilayers 
results in triangular patterns with hexagonal symmetry, as shown in Figure 9.2m.

Among all the above characterization methods, optical imaging and Raman spec-
troscopy remain the quick and most viable methods of capturing signatures of 2D 
materials. Hence, the ML methods discussed in this chapter will focus primarily on 
these methods.

9.3 � ML-GUIDED OPTICAL DETECTION OF 2D MATERIALS

One of the initial requirements of 2D materials and thin films is their optical detec-
tion, which involves a great deal of human effort and domain expertise to pinpoint 
the fingerprint features accurately. The optical detection of 2D materials relies on the 
experience of the researchers and even seasoned professionals struggle to deal with 
sophisticated 2D heterostructures. The integration of ML with an optical microscope 
surpasses some of the crucial factors of detection, especially in fundamental research 
of 2D following a classical strategy:

( ) ( ) [ ]( )+ + =Goal given problem Sample raw data Algorithm data processing Model 7 .

ML algorithms can work with thousands of optical images simultaneously and reduce 
the excessive time required for the detection of 2D material aspects. For instance, 
graphene exfoliation via the scotch tape method onto Si/SiO2 substrate will generate 
different thicknesses and shapes of graphene flakes, which are stochastically distrib-
uted on the substrate [29]. All these variations in thicknesses of graphene layers will 
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lead to collection of many datasets that will require relevant graphene characteriza-
tion. One can input the parameters of graphene in data-driven analysis algorithms 
and extract the fingerprint features. This procedure integrates the optical microscopy 
with a ML unsupervised algorithm based on the Bayesian Gaussian mixture model 
(Figure 9.3). The automatic identification of graphene entails the following steps: 
(1) First, graphene was exfoliated in Si/SiO2 substrate using scotch tape method (2) 
Then, several optical images (70000) were taken by automatic microscope (3) The 
images were loaded in algorithm and decomposed to HSV (Hue Saturation Value) 
images and clustered (4) From HSV color images, a scatter plot was established, and 
the feature values were represented in three-dimensional format to extract the key 
features (4) Finally, the feature values were analyzed by open-source data platforms 
(e.g., Python, Jupyter and notebook).

The MOI method is further expanded for the identification of other class of 2D 
materials such as MoS2, tungsten disulfide (WS2) and other transition metal dichalco-
genides (TMDs). Unlike graphene, TMD layers comprise a tri-layered configuration 
with metal at the center. MOI method utilizes a supervised ML model, a support 
vector machine (SVM) algorithm (Figure 9.4). The SVM analyzes the red, green, 
and blue (RGB) color insights from the optical images of 2D nanostructures and 
extracts pivotal aspects based on the number of layers, defects, impurities, and stack-
ing faults. The MOI work in two steps: the training process and the testing process. 
Initially, the microscope will collect 2D materials (for example graphene or MoS2) 
images at different magnifications, and the software will sort them according to 
pre-established datasets. Then, the images are inserted into the training process to 
establish a dataset of fingerprint features based on the SVM analysis of RGB chan-
nel intensity. The RGB model is linked with the 2D materials’ pre-existing datasets 
based on AFM and Raman spectroscopy. During the testing step, the optical infor-
mation of the 2D materials is sorted by algorithm in distinct categories. Finally, the 
RGB information is translated into false-color images distinguishing the substrate, 
2D material, and impurities.

MOI optical detection can also be integrated with scanning probe techniques, like 
AFM. The combined characterization techniques lead to the intelligent identifica-
tion of MoS2, as shown in Figure 9.4. The MOI system utilized the optical images of 
MoS2 in the training process as input variables (Figure 9.4a and c). Furthermore, the 

FIGURE 9.3  Stages of data-driven analysis system from a collection of optical microscope 
photographs to ML model features extraction. (Reprinted from Masubuchi, S. and Machida, 
T. npj 2D Mater. Appl., 3, 1, 2019. Copyright 2019.)
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SVM algorithm processed AFM images (Figure 9.4b and d) and established a data-
base of RGB channel intensity versus thickness (i.e., number of layers). The resulting 
SVM model (Figure 9.4e) represents the MoS2 RGB features corresponding to the 
substrate. Subsequently, in the testing step (Figure 9.4f and g), the MOI analyzes the 
RGB information of optical images along with AFM thickness to link them with 
SVM model. Finally, the model creates a false-color image of MoS2 sample based on 
the number of layers with distinct color for different regions (Figure 9.4h), which will 
allow the quantification of number of MoS2 layers present in large areas in consider-
ably less time. One of the additional advantages of MOI-based detection is its ability 
to identify the contaminated regions in MoS2 and transfer process residues, as shown 
in Figure 9.4h (black regions).

Thus, MOI can work on a large family of 2D materials where the model can 
extract RGB features from optical images and provide useful information about 
the number of layers present in large number of optical image datasets collected. 
This procedure minimizes the utilization of multiple sophisticated instruments and 
ML-guided optical detection method will reduce the cost of 2D material character-
ization. Additionally, the MOI tools can be deployed to realize the elusive aspects of 

FIGURE 9.4  MOI of MoS2 (a) and (c) Optical images of MoS2 for training purposes; (b) and 
(d) Corresponding AFM images; (e) Training result of different layers over a fixed substrate; 
(f) Optical images of mixed layer MoS2 for testing purpose; (g) Corresponding AFM datasets; 
(h) Testing result showing colored map based on thickness distribution. (Reprinted from Lin, 
X. et al., Nano Res., 11, 6316, 2018. Copyright 2018, Springer Nature.)
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2D materials based heterostructure and accelerate the commercial applications of 
2D materials.

ML-guided optical detection technique is helpful for the initial screening of 2D 
materials for thickness distribution. Nevertheless, it limits accuracy, composition, 
structure, and precision for determining the number of layers and impurities, which 
is crucial for the electronic and optoelectronic industry.

9.4 � ML-GUIDED RAMAN SPECTROSCOPY 
DETECTION OF 2D MATERIALS

Raman spectroscopy is a viable tool to analyze the molecular structure, layer num-
ber, functionalization [32], strain, and structural defects/disorders of 2D materials 
[15]. Nevertheless, the Raman spectra contain innumerable datasets to examine and 
establish a meaningful correlation which is complex to decipher. ML-guided Raman 
detection can improve the efficacy of 2D material characterization and reduce the 
significant burden in fundamental and applied science. The integration of Raman 
spectroscopy with scalable production techniques such as CVD [25] will be useful to 
monitor the uniformity, cracks, adlayers, and applicable for quality control.

One of the ML algorithms deployed for Raman spectral analysis is the random 
forest regressor, which does not require extensive statistics for processing and inter-
pretation [33]. In RFR, the raw data from Raman spectra are used for training and 
generating new datasets. Sequentially, a decision tree is generated, and the unused 
data are implemented to test the model’s efficacy. In the later stages, RFR will search 
for fingerprint features from Raman spectral datasets and the model will take a deci-
sion based on majority voting. In the broader perspective, RFR is a learning algo-
rithm consisting of multiple tree structures with several branches. Each tree is set-up 
based on training sample sets and a random variable, and every tree can cast a single 
vote for decision-making [34]. Figure 9.5 represents the RFR learning flowchart 
for extracting Raman fingerprint features of TMD (MoS2) onto Si/SiO2 substrate. 
Generally, MoS2 has two major active Raman modes, including E1

2g at 388cm−1 and 
A1

g at 407 cm−1, that are associated with first-order in-plane and out-of-plane Raman 
bands, respectively [35]. The Raman frequency exhibits significant differences 
depending on the number of layers. As the number of MoS2 layers increased, the fre-
quency of the E1

2g peak decreases and the A1
g peak increases. For the crack regions, 

the model is taking silicon Raman mode at ∼520 cm−1 since the film is assumed to 
be continuous and the unexposed regions will be a substrate (Si/SiO2) only. Hence, 
the RFR model input these active Raman modes and extracts the number of layers as 
output parameters. There are five input variables: (1) intensity and (2) frequency of 
the E1

2g peak; (3) intensity and (4) frequency of the A1
g peak; (5) Raman frequency 

difference between these two peaks, which are designated as α, β, γ, δ, and ℇ, respec-
tively, in the RFR training sample sets. The algorithm will extract features of mono-
layer, bilayer, and crack regions of MoS2 as output variables.

Another potential ML algorithm employed in Raman spectroscopy interpretation 
is kernel ridge regression to solve an inverse problem (a large set of observations 
that is responsible for its generation) of 2D materials. The KRR-based ML-guided 
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algorithm is helpful in addressing sophistication in the important fingerprint features 
from vast datasets. A Gaussian kernel (radial basis function - rbf) is executed to estab-
lish a non-linear fitting for addressing the complexity of Raman spectra. Gaussian 
kernel efficiently extracts meaningful interpretation from non-linear datasets [37]. 
The analysis consists of the following steps: (1) visual inspection of spectral datasets 
to establish a general trend, (2) principal component analysis (PCA) for extracting 
small input variables from the spectral data, (3) model performance evaluation by 
cross-validation and overfitting test, and (4) features significance.

When graphene layers are stacked on top of each other, with or without twisted 
angles between interlayers, defects and structural disorders produce intriguing prop-
erties, such as superconductivity and magnetism [38,39]. The relationship between 
Raman spectroscopic details and the twisted angle of bilayer graphene (tBLG) has 
been investigated using graphene stacked layers as an example. It is carried out by 
monitoring the key attributes of graphene Raman modes of D, G and 2D peaks, and 
their intensity, Raman shifts and FWHM as a standard to realize the quality and 
number of layers [40]. From visual inspection and PCA analysis of tBLG, the most 
significant parameter was found G band at 1672 cm−1. Hence, the KRR-rbf will take 
the Raman shift of G band (cm−1) as an input variable and extract the meaningful 
relationship between the twist angle (ϴo) and G band (cm−1). At the initial stage, the 
KRR go through training, and the unseen data will be utilized for testing purposes. 
Then, the algorithm will process the cross-validation test to avoid overfitting. Finally, 
the model will plot the features as a function of twisted angle to extract the interest-
ing patterns (Figure 9.6).

ML-based KRR prediction is limited to generating training models focused 
on particular Raman mode (G band) only; nevertheless, it lacks the capability for 

FIGURE 9.5  Process flowchart of RFR learning mechanism for MoS2 features extraction. 
(Reprinted from Mao, Y. et al., Nanomaterials, 10, 1–13, 2020. Copyright 2020.)
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complex spectral analysis such as spectral broadening (FWHM), 2D peaks inter-
pretation and resonant Raman processes pertinent to twist angles of tBLG [42]. 
Therefore, an improved ML algorithm is proposed as a Gaussian mixture model 
combined with Raman spectroscopy to overcome such intricacies. GMM is a data 
clustering technique, which assumes the datasets are generated from a finite number 
of Gaussian distributions with unknown parameters. The model utilizes the expecta-
tion-maximization algorithm, covariance matrices and weightings of the N-Gaussian 
probability distributions to find the relationship of the datasets [42]. There is a pleth-
ora of information in Raman spectra, mapping and manual peak fitting will reduce 
the dimensionality of the parameters to train the model. At the initial stage, the 
model utilizes the significant attributes (G and 2D) extracted from Raman peak fit-
ting as an input variable. The algorithm compares the distance between the points in 
a finite-dimensional space in a selected area input features (G and 2D peaks) to create 
a scatterplot (Figure 9.7a). Figure 9.7b and c represent the Raman map of G and 2D 
peaks positions (i.e., frequency) respectively, for the same region. Then, the GMM 
labeled the clusters based on the similarities and created eight distinguished regions. 
The clusters were assigned numbers relating to the population density from the most 
(cluster 1) to the least (cluster 8) population. The shape of the cluster is drawn from 2σ 
away from the mean values, where “σ” is the direction-dependent standard deviation. 
The output of the clusters result is shown in the inset of Figure 9.7a. Clusters (2, 3, 
and 6) represent the distinct types of tBLG, clusters (1 and 5) represent the single 
layer of graphene, cluster (4) accounts for adlayer regions, and clusters (7 and 8) are 
not fitting with any particular trends due to the low weighing of the population den-
sity to the background. This pre-trained data clustering model can be applied to any 
other regions of tBLG to extract fundamental aspects.

9.5 � COMMON CHALLENGES TO ML IN RAMAN SPECTROSCOPY

Like other emerging techniques, the ML approach in material science, especially 
in 2D material detection, is rapidly gaining ground. Nevertheless, there is a long 

FIGURE 9.6  KRR prediction of Raman spectrum at different twist angles (ϴ°) between 
interlayer graphene. (Reproduced from Sheremetyeva, N. et al., Carbon N Y, 169, 455, 2020. 
With permission from Elsevier.)
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way ahead before it accepts as an impeccable technique. In a few instances, sev-
eral analytical models for ML-guided algorithms such as RFR, KRR, and GMM in 
Raman spectroscopy are in practice to extract the fingerprint features of 2D materi-
als. Although the validation of scientific theories is one of the common challenges 
of ML-based algorithms, these ML models performed well in synthetic data mostly 
captured in ideal conditions but are incapable of capturing the experimental con-
ditions which are influenced from sample preparation, local surroundings, defects, 
impurities and other factors. Hence, these models cannot be readily deployed to 
characterize the experimental Raman spectra. For instance, KRR predicts the rela-
tionship between the Raman spectra and the twist angles of tBLG by overestimating 
the G bands. Furthermore, additional sidebands are occurring near the G band [43], 
which the ML is not considering for prediction. The experimental resonance that 
changes due to laser excitation energy is also neglected in establishing the model 
database, along with other crucial factors such as 2D band position, intensity, and 
width. In experimental conditions, these features of 2D peaks significantly varied 
with twist angles. Most scientific theories for Raman interpretation of graphene/
graphite come in conjunction with D, G, and 2D bands, similar to the other family of 
2D materials (e.g., TMDs, E1

2g, and A1g). Hence, the KRR model cannot be readily 
deployed to realize the properties of tBLG. Further refinement of the computational 
Raman spectral dataset is required to correlate with the experimental observations. 
As the computational complexity increases, the time and cost associated with the 
ML significantly increase and nullify ML sole benefit. Although the GMM-guided 
Raman spectra study included the additional band (2D peak) properties, the model 

FIGURE 9.7  (a) GMM learning mechanism for tBLG features extraction from 1 to 8, inset 
shows the output in color configuration. (b and c) Raman mapping of G and 2D peak positions 
(frequency, cm−1). (Reproduced from Vincent, T. et al., Carbon N Y, 201, 141, 2021. With 
permission from Elsevier.)
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can handle a low amount of input variables and the dimensionality reduction requires 
peak fitting by manual human intervention to realize the significant input param-
eters. The GMM can integrate with unsupervised ML model like PCA to reduce the 
dimensionality, which allows the entire Raman spectra as input variables without 
expert intervention and automatically identifies the features within short span of time 
(in seconds). However, the resulting clusters are harder to interpret. Moreover, the 
ML algorithms efficacy depends on the training datasets and the appropriate label-
ing of the data by professionals. The ML-based algorithm needs to be mature for 
interpretation in experimental conditions; in the present scenario, the 2D material 
dataset is insufficient to provide conclusive decisions on the relationship between 
multiple properties.

9.6 � FUTURE PROSPECTS

The ML is the fastest growing field because of the emergence of new learning algo-
rithms and theories, the continuous refinement and availability of online datas-
ets, and the computational cost reduction [44]. As the Raman spectral database is 
enriched over time, the ML learns efficiently and predicts the designed outcomes. 
Furthermore, the integration of hybrid database: computational + experimental in 
the Raman equipment will lead to the translation of the model in real-life applica-
tions. This in-built database will be beneficial for more sophisticated 2D heterostruc-
ture characterization and applications. The above-mentioned algorithm can easily 
be applied to other classes of 2D material characterization of complex structure-
property relationship like doping, mechanical, and oxidation straining effects  and 
enhance to unleashing new properties. Moreover, the ML-guided Raman model and 
the database can easily be transferred to other surface characterization techniques 
like AFM, SEM, TEM for fundamental research in the exploration of novel 2D 
materials. The high-throughput screening of ML integrated with Raman spectros-
copy will accelerate the fabrication of 2D material devices in various industries. 
Supervised regression-based ML algorithms and unsupervised algorithms are effec-
tive in exploring 2D materials based on multiple imaging modalities. A multi-modal 
ML approach using an ensemble of ML models could provide a comprehensive view 
of 2D materials and provide new insights about their properties.

9.7 � SUMMARY

The presented chapter provides an overview of ML algorithms application and 
advancement in the detection of 2D materials. A classical comparison between the 
traditional technique and ML approach is demonstrated for the interpretation of a 
wide variety of materials. Several ML approaches are discussed in detail, and their 
interpretation from optical characterization and Raman spectroscopy is associated 
to 2D materials using the example of graphene and TMDs. Several advantages and 
limitations have been highlighted of ML tools for interpreting 2D materials. Despite 
the shortcomings of ML algorithms in Raman characterization, the ML can perform 
efficiently and better than humans in terms of time and cost. Nevertheless, the ML 
tools are lacking to emulate the experimental conditions to unleash comprehensive 
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information. The Raman spectra contain a vast set of information, and the experts 
spend several hours extracting the meaningful relationship. In modern research, ML 
algorithms are continuously improving through automation, screening of quality 
data, implementation, and interpretation. The ML-guided Raman analysis integra-
tion with other surface characterization techniques will continue to improve the con-
ventional characterization of 2D materials.
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10.1 � INTRODUCTION

Two dimensional (2D) materials such as graphene and its derivatives, termed gra-
phene-family nanomaterials (GFNs), have gained considerable traction in research 
as novel materials due to their unique physical and chemical properties. Some poten-
tial applications include biomedical device sensors and coatings to inhibit biofilm 
production on metal surfaces.1,2 Computational modeling and simulation methods, 
more specifically, classical mechanics approaches such as molecular dynamics (MD) 
simulations can be used to predict interactions between biomolecules and 2D mate-
rials at atomic levels to study their interfacial chemistry and physics. Over the last 
few decades, the development of MD techniques has rendered itself as a power-
ful biophysics tool and has led to significant advancements in the field of 2D mate-
rial discovery and studying their intrinsic properties as well as understanding their 
interaction with biomolecules, allowing us to investigate intriguing questions on the 
nature of biomolecule-2D system mechanisms.3 Furthermore, the results generated 
from such studies and these interactions can be fed into machine learning algorithms 
as training data sets to predict and extrapolate biomolecular behavior near various 
functionalized and defective 2D surfaces. Machine learning has also been adopted 
by the computational research community for forcefield parameterization and devel-
opment for use in modeling these unique and complex 2D-biomolecule interfacial 
systems.4,5 This chapter aims to provide an overview of the emerging area of com-
putational interfacial biology, chemistry, and physics: atomistic and coarse-grained 
molecular dynamics simulations of chemically complex models of biomolecule-2D 
interface by focusing on key methodology present in current literatures; as well as 
introduce bioinformatics and machine learning tools used to handle and process the 
data generated. More specifically, recent advances in the field of computational tech-
niques, bioinformatics, and machine learning for tasks such as force field develop-
ment and free energy methodologies to study the free energy profiles; highlighting 
key challenges and prospects will be discussed.

While various levels of theories are used to study 2D materials and their interac-
tions with biomolecules in the computational space, the choice of approach usually 
depends on the time and length scale of the system and problem in focus (Figure 10.1). 

https://doi.org/10.1201/9781003132981-10
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MD is the most prominently used approach to capture 2D-biomolecue interfacial 
phenomena and study it’s dynamics.

10.2 � MOLECULAR DYNAMICS (ALGORITHMS AND METHODS)

Molecular dynamics (MD) is used to calculate a system’s select properties through 
time propagation (evolution of system). In MD, all particles in a given system obey 
Newton’s equation of motion, i.e., the classical second order differential equation of 
motion; that is given by:

	 ( )= = −∇ = …  ,  1,2, ,
2

2F m
d x

dt
V x i Ni i

i
ij 	 (10.1)

Here, ( )V xij  w.r.t position of each particle in the system is a time independent inter-
atomic potential energy function. The Eq. 10.1 is solved for all atoms in a system 
with 3N position and velocity coordinates to study its dynamics. This fundamental 
equation for MD gives out the position and velocity of particles in a system and its 
evolution with time.

Simulation of any given system in MD requires us to solve this second-order dif-
ferential equation of motion by implementing some numerical integration technique 
since an analytical solution for the same is impossible to achieve. The Verlet algo-
rithm6 is one of the most widely used integration scheme in MD. In a given system, 
the updated position and velocity of the particle following a time evolution according 
to the Verlet algorithm is given by Eqs 10.2 and 10.3.

FIGURE 10.1  Time vs length scale representation of various simulation models.
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	 ( ) ( )( ) ( )+ ∂ = − − ∂ + ∂2 2x t t x t x t t a t t 	 (10.2)

Here, the position of any given particle in the system at time t is given by ( )x t ; at a 
later time ( )+ ∂t t  where ∂t is the time step, a particle’s updated position can be writ-
ten as ( )+ ∂x t t . Similarly, ( )v t  and ( )a t  are velocity and acceleration of the particle 
at time t. Equations 10.2 and 10.3 are derived by neglecting the higher order terms of 
Taylor series expansion of the Verlet algorithm.

	
( ) ( )( ) =

+ ∂ − − ∂
∂2

v t
x t t x t t

t
	 (10.3)

These equations can be used iteratively to solve the equations of motion and obtain 
the next set of updated positions and velocities for every particle in a system it pro-
gresses toward equilibrium in a simulation.

Modeled empirical forcefields are used to describe the interactions in a system 
and the nature of the force acting on each particle in that given system. There are 
various forcefields developed and derived in the research community that can be 
found in literature. Depending on the uniqueness of the system, specific interactions 
can be modeled.

10.2.1 �E mpirical Forcefields

Empirical forcefields are broadly categorized into two forms: reactive and non-reac-
tive (polynomial) forcefields. The key difference between these two subcategories is 
that in the case of a polynomial forcefield, the standard equation (Eq. 10.4) usually 
consists of terms to capture long-range, angle-bend, torsion energetics of a system 
but does not consist of a many-body term in the equation that may account for bond 
formation or breakage, i.e., no chemistry is captured in the system throughout the 
simulation. While a reactive forcefield (Eqs 10.5 and 10.7) consists of a bond order 
term which makes it possible for the system to undergo reaction (bond breaking/for-
mation), these models are widely used to study reaction kinetics of a system. Some 
of the widely used reactive forcefield developed in the community include ReaxFF7 
and AIREBO8. ReaxFF is a state of the art ‘reactive’ forcefield developed by the van 
Duin group, capable of capturing chemical reactions in MD simulations. ReaxFF has 
been widely adapted and parameterized for complex 2D materials as well as biologi-
cal systems in recent years9 including but not limited to studying growth mechanisms 
of 2D transition metal carbides10 and development of ReaxFF protein reactive force-
field (protein-2013)11 used to simulate biomolecules and membrane fuel cells. Some 
of the developed forcefields used in literature to study biomolecule-2D interactions 
have been discussed in this section.

A number of empirical force fields have been developed to accurately model 
conformational energies and intermolecular interactions involving proteins, nucleic 
acids, and other molecules with related functional groups which are of interest in 
organic and biological chemistry. Currently, the most widely used all-atom polyno-
mial force fields for proteins are OPLS/AA12, CHARMM2213 and AMBER.14 For the 
scope of this chapter, AMBER forcefield is briefly discussed as a prime example of 
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all-atom polynomial model implemented to study biomolecules computationally. The 
energy terms for Assisted Model Building with Energy Refinement (AMBER) force 
field are as follows:
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The last term for Eq. 10.4 consists of non-bonded van der Waals interaction given 
by 12–6 Lennard-Jones (LJ) potential and the electrostatic interaction given by 
Coulomb’s law. The rest of the terms in Eq. 10.4 define the bonded or intramolecular 
interactions which deal with forces present within a given molecule, i.e., energetics 
due to bond stretching, angle bending and torsional forces.

The Adaptive Intermolecular Reactive Empirical Bond Order potential (AIREBO) 
developed for hydrocarbons has been widely used in literature to study graphene 
based 2D materials and has proven to accurately capture their structural and ther-
modynamic properties.15 The AIREBO potential consists of three terms, covalent 
bonding interactions, LJ term and torsion interaction; given by:

	 ∑∑ ∑ ∑= + +

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2
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The REBOEij  term describes short-ranged C–C, C–H and H–H interactions and this 
reactive term is described as:

	 ( ) ( )= +REBOE V r b V rij ij
R

ij ij ij
A

ij 	 (10.6)

The REBOEij term is similar in its functional form to the REBO potential. For atoms i 
and j, Vij

R, and Vij
A are pairwise repulsive and attractive potential for atom types C and 

H, which are function of distance rij between the two atoms and the many-body bond 
order terms bij. A distance-dependent switching function that switches off the REBOEij  
interactions when the atom pairs exceed the bonding distances.

For ReaxFF, the current model form of the potential consists of both reactive and 
non-reactive interactions between atoms, which allows the potential to accurately 
model both covalent and electrostatic interactions for a vast range of systems.

	 = + + + + + +system bond over angle tor vdWaals Coulomb SpecificE E E E E E E E 	 (10.7)

The total energy of the system, systemE  is divided into bond order dependent and inde-
pendent contributions. bondE  is a function of interatomic distance and described the 
energy due to bond formation between atoms, this is calculated as:
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where, BOij is the bond order term between atoms i and j which is a function of 
interatomic distance rij and the equilibrium bond length or ; bop  terms are empiri-
cal parameters; σ π ππ,   and   are the bond characteristics. Equation 10.8 takes into 
consideration covalent interactions in transition state structures which allows Reaxff 
to accurately predict reaction barriers for specific systems.

Understanding and studying the solvation effect is essential for exploring the 
structural dynamics of biomolecules in aqueous solution near 2D surfaces. Many 
implicit (continuum) and explicit (all atom) models are proposed and used to model 
solvents in a system. TIP3P and SPC/E are some of the widely used water models 
to simulate aqueous solutions in both the computational biomolecular and interface 
communities.16–18

The full functional form of the potential functions discussed in this section and 
their description can be found in their respective original literature. Due to the com-
plexity of these models, specifically for biomolecule-2D systems, it is advisable to 
select the correct forcefield to model the interactions in your system and validate the 
forcefield and its implementations against the data present in the literature.

10.2.2 �P eriodic Boundary Conditions

Simulating a large number of particles in a given system and observing its evolution 
via MD is restricted by the computational power at hand. Often researchers focus 
on simulating a box with reduced volume and number of particles compared to the 
actual system’s size, this in turn reduces the computational cost on both time and 
length scale, while still mimicking and capturing the key chemistry and physics of 
the system without comprising the accuracy. This is achieved by implementing peri-
odic boundary conditions (PBC).

For PBC, the boundaries of the simulation box are considered to be continuous 
along all axes and periodic in nature, i.e., The simulation consists of an infinitely 
large system with the ‘original’ box repeating in each direction. Implementing PBC 
itself can be computational expensive and infeasible, as solving the long-range inter-
actions term in various forcefields such as the one mentioned in Eqs. 10.4 and 10.5 in 
Section 10.2.1, for an infinite periodic system is impossible to compute. The concept 
of cutoff is introduced, for a single particle in PBC, instead of interacting with all 
the ( )− 1N  particles in the system, a sphere with radius cutoffr  around the particle is 
defined and the particle is allowed to interact with other particles within this defined 
sphere only (see Figure 10.2).

While using a cutoff with PBC significantly reduces the computational cost, sudden 
truncation of potentials introduces discontinuities in a system, which violates energy 
conservation along with producing incorrect thermodynamic properties of systems. 
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To tackle this challenge, long-range corrections and soft ‘fading’ of potentials are 
applied at the cutoffs.19

When implementing PBC within a MD simulation, one should take care that the 
size of the box has an appropriate length scale for the given system and the property 
being computed. This will help to avoid finite-size effects and related errors in com-
putational results.

10.2.3 � Binding Energy

While adsorption of biomolecules, which are complex and large in nature, are dif-
ficult to study due to computational limitations, literature studies have probed the 
interaction between the interaction sites and functional groups of amino acid side 
chain at the outermost surface of proteins on adsorption surfaces, giving an insight 
into protein adsorption mechanism on the surface. As such, small molecule amino 
acids serve as suitable model compounds to mimic protein-surface adsorption.20–22 
Dragneva et al.22 studied and presented the adsorption of 20 proteogenic amino acids 
on a graphene surface. Furthermore, the effect of solvation on adsorption behavior 
of amino acids in presence of water was investigated. The binding energy bindingE  is 
defined as:

	 ( )= +–binding system slab adsorbateE E E E 	 (10.9)

FIGURE 10.2  Periodic boundary conditions representation in 2D. The simulation box in 
the center is replicated in every direction to produce an infinite system. The light-grey colored 
particle interacts with every particle within a defined sphere of radius rcutoff .
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where systemE  is the total energy for the adsorbate-slab system; slabE  is the total energy 
of the pristine or defective 2D slab without any adsorbate in the system; and adsorbateE  
is the total energy of the adsorbate in the bulk phase.

10.2.4 �F ree Energy

For a biomolecule-2D system, binding free energy can be used to determine the 
affinity of the biomolecule near the 2D surface, thus generating a free energy land-
scape is an essential step in understanding the interfacial phenomena. Various tech-
niques and methodologies employed in MD to generate the free energy profiles are 
discussed below.

In MD simulations, ‘collective variables’ (CV) or ‘reaction coordinates’ or ‘vari-
able sets’ are used to reduce the degrees of freedom of a system into few parameters, 
which can be analyzed individually via ensemble averaging. Here, collective vari-
ables are any set of differentiable function of atomic cartesian coordinates, xi, with i 
between 1 and N, the total number of atoms:

	 ξ ξ ξ ( )( )( ) ( ) ( ) ( ) ( )= = … ≤ … ≤  , ,  ,  , 1 ,  ,     t X t x t x t x t i j k Ni j k 	 (10.10)

The restraints or biasing potentials can be applied to multiple variables or set ξ ( )X
to calculate the potential mean force (PMF) on the system using different enhanced 
sampling methods, such as metadynamics, adaptive biasing force (ABF) and umbrella 
sampling.23–25

10.2.5 � Umbrella Sampling

Umbrella sampling method is utilized to probe and generate the free energy land-
scape of a given system, as a function of a single reaction coordinate. Specifically, a 
biased harmonic potential is induced in the system to overcome the energy barrier 
separating any two regions of configuration space. The biased harmonic potential 
added to the system is simply defined as:

	 ξ ξ ξ( ) = −




ξ

1
2

   0

 

V k
w

	 (10.11)

Here, ξ is centered at ξ0 and is scaled by its characteristic length scale w k⋅ξ  is chosen 
equal to κ TB  (thermal energy), the resulting probability distribution of ξ ξ= − ξ/0z wi  
(dimensionless) is approximately a Gaussian with mean of 0 and standard deviation 
of 1.

Implementing the umbrella sampling methodology to obtain the free energy land-
scape of a system in a stepwise manner can be shown using Figure 10.3. The biasing 
potential is added to the natural unbiased system followed by division of the land-
scape into bins according to the reaction coordinate(s) (1D in the case of umbrella 
sampling), and the biased potential is allowed to act on the system distributed in bins 
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to obtain the probability distribution. The free energy of the natural unbiased system 
is a function of the biased probability distribution.26

The concept of umbrella sampling and evaluating the free energy landscape of 
a system using MD can be better understood with an example. Here we study the 
interaction of a small biomolecule (phenylalanine) and its interaction with pristine 
graphene (2D surface). To calculate the free energy of adsorption of the capped 
AC-Amino acid-NHMe to the graphene surface, we defined X (the reaction coordi-
nate) as the distance along the z-axis from the center of mass (COM) of AC-Amino 
acid-NHMe to the center of mass of an atom from the atomic layer of graphene (illus-
trated in Figure 10.4a) and calculated the potential mean force as a function of this 
distance, PMF(X). The z-axis is orthogonal to the plane of the graphene. Umbrella 
sampling combined with the weighted histogram analysis method, WHAM27(post 
processing software/method to generate PMF curves from probability distributions), 
was used to calculate the PMF using a single window on the domain X ∈ [3, 10] Å, 
with a bin width of ΔX = 0.5 Å. The resulting histogram for the free energies study is 
shown in Figure 10.4b. The PMF curves are generated for the amino acid-graphene 
system is presented in Figure 10.4c.

Dasetty et al.28 employed similar methodology to study the free energy of all 20 
proteinogenic amino acids onto pristine graphene surface as a function of Z direction 
using umbrella sampling. The amino acid-graphene system was modeled using the 
force fields—Amberff99SB-ILDN/TIP3P, CHARMM36/modified-TIP3P, OPLS-
AA/M/TIP3P, and Amber03w/TIP4P/2005, providing a comparative assessment 
on these forcefield and their ability to correctly capture the adsorbed state and free 
energy landscape of amino acids on graphene. Here, the systems were equilibrated at 
300 K for 1 ns using NVT ensemble and steepest descent energy minimization algo-
rithm. A time step of 2 fs was used for all MD simulations. Final production simula-
tions were performed at 300 K for 10 ns. A spring constant (k) of 8000 kJ/mol/nm2 for 

FIGURE 10.3  Schematic illustration of the umbrella sampling method. The small U-curves 
represent the harmonic bias potentials that are added to the unbiased system at different CV 
points (windows) along the CV space to generate the probability distribution.
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0.4 nm ≤ ξ ≤ 0.8 nm and k = 4000 kJ/mol/nm2 for 0.9 nm ≤ ξ ≤ 2.0 nm was employed 
with a spacing of 0.05 nm for 0.4 nm < ξ < 0.8 and 0.1 nm for 0.9 nm < ξ < 2.0 nm for 
good overlap between the distribution of neighboring windows. The PMF curves are 
then generated for amino acid-graphene system using various forcefield.

Similarly, Zheng et al.29 studied the conformation change and aggregation of 
HIV-1 Vpr13–33 on graphene oxide (GO) by employing the umbrella sampling 
method. Water was represented by the TIP3P model. The system was energy mini-
mized followed by equilibration for 500ps, 1 bar constant pressure and 298K tem-
perature, followed by NVT simulation at 298K for 500ns for umbrella sampling. 
Thirty (30) configurations were generated along the z-axis. Here, z coordinates of 
COM distance between Vpr13–33 and GO in each configuration differed by 0.1nm. 
Each window was equilibrated for 5 ns and a production run of 5 ns was continued 
for sampling. The PMF curve was obtained using WHAM. Both single peptide on 
GO and double peptide aggregation in water PMFs were generated. Unfolding of 
peptide and loss of secondary structure near GO surface was observed with highly 

FIGURE 10.4  (a) Illustration of the harmonic spring on the center of mass of the biomol-
ecule through reaction co-ordinate Z. (b) The histograms of the configurations within the 
umbrella sampling windows and the harmonic spring against the distance of graphene and 
phenylalanine. (c) PMF of phenylalanine on graphene generated, similar to PMF generated 
for various forcefields by Dasetty et al.28
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stable π π−  interactions; electrostatic interactions prevent the peptide from folding 
further. Interactions between single peptide and GO are much stronger than the inter-
peptide interactions.

While not in the scope of this chapter, other thermodynamic integration meth-
ods such as Metadynamics, ABF and well-tempered Metadynamics, etc. have been 
implemented to study conformational free energies of various systems in MD. 
Metadynamics in particular uses gaussian hills and history dependent CV to explore 
phase space. Metadynamics simulations can be used to reveal the binding affinities 
and transition pathways of biomolecules near 2D and metal surfaces.30,31

10.2.6 �C oarse-Grained Modeling

For studying binding energies and/or exploring conformational changes (protein 
folding near 2D surface) in a 2D-biomolecule system, computational length and time 
scale challenges are a major blockade to be faced. While trying to simulate and study 
interfacial science in a given system, coarse-grained modeling techniques employed 
tackle these challenges in a system by reducing the overall complexity of the system. 
Coarse-grained biomolecular systems are less computationally expensive than their 
all-atomistic system counterparts because coarse-grained models reduce the number 
of interaction sites and heavy atoms in a system (see Figure 10.5). Coarse-grained 
models are developed to contain fewer degrees of freedom (e.g., removal of the car-
bon–hydrogen bond vibrational modes), and are parameterized with smoother poten-
tial energy surfaces. This in turn leads to a smoother potential energy surface which 
reduces the challenges associated with overcoming energy barriers while exploring 
free energy landscapes, thereby leading to more efficient sampling. The MARTINI 
coarse-grained forcefield, which employs a four-to-one mapping (a single interaction 
site/bead is used to represent four heavy atoms), has been successfully implemented 
for simulating wide range of biomolecular systems such as DNA fragments, CG ver-
sion of standard and polarizable water molecules, lipids and polysaccharide frag-
ments, etc.32–35

In conclusion, coarse-grained simulations can access and evolve systems to 
length and time scales far beyond those that are practically achievable by all atom-
istic molecular dynamics simulations. Due to complexity and large number of heavy 
atoms in biological systems, coarse-grained modeling methods are the subject of 
considerable current interest in this community. However, since they do not represent 
molecules as all atomistic models, coarse-grained models lose out on finer details 
and inaccurately depict some important chemical features within a system.

10.3 � EMPLOYMENT OF MD ON FUNCTIONAL 2D MATERIALS

2D materials are structures with a thickness on the order of 1–2 atomic layers. Many 
2D materials of research interest are categorized in classes or treated as a special 
material like graphene, with the most relevant being transition metal dichalcogen-
ides (TMDCs; WTe2, MoS2, etc.), atom thin layers of elements like tin and bismuth 
(stanene and bismuthene), and hexagonal boron nitride (h-BN), which is somewhat 
graphene-like in geometry and electron configuration but composed of covalently 
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bonded boron and nitrogen. Grown from single layer, heterostructures or multilayer 
2D materials (e.g., multi-layer graphene) has been of utmost importance recently in 
a wide range of application. Multi-layer 2D materials or hetero 2D structures are 
vertically-stacked mechanically-assembled monolayer flakes and are held together 
with long range forces such as van der Waals forces.36 There are several wide range 
applications of 2D materials in fields of (1) electrical and electronic (e.g., battery stor-
age system and semi-conductors), (2) biomedical (e.g., drug carriers), and (3) micro-
biology (e.g., prevention of corrosion in steel pipes).37–39 Computational techniques 
have been widely used for 2D materials modeling and studying their properties such 
as electronic structure and mechanical properties, from ab initio level of theory to 
classical and semiclassical approaches.40

10.3.1 �G raphene and Its Structural Defects

Of all materials known, graphene has the highest tensile strength, the highest electron 
mobility, and the highest thermal conductivity. The term graphene-family nanomate-
rials (GFNs) refer to many different graphene-like materials which can be classified 

FIGURE 10.5  Mapping between the all-atom and the coarse-grained MARTINI models for 
water, benzene and DPPC membrane lipid molecules. Eg: one P4 bead/interaction site with 
specific LJ parameters is used to define four all-atom water molecules. Here the CG beads 
are shown as transparent vdW spheres and the hydrogens are only shown for atomistic water 
molecules.
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by their number of layers (few-layer graphene (FLG) to graphene nanosheets (GNSs)) 
and/or their degree of oxidation, with graphene oxide (GO) being oxidized and 
reduced GO (rGO) being oxidized and then reduced. Carbon nanotubes could be 
considered a member of GFNs as they are essentially a rolled layer of graphene with 
universal sp2 bonding in a cylindrical geometry and are the subject of their own 
intensive research.41–45

All carbon-carbon bond lengths in graphene are 0.142 nm, and graphene’s unit 
cell is a rhombus with edge lengths (lattice constant) of 0.246 nm and two central 
basis carbon atoms.46 This means that the shortest linear distance between two 
non-adjacent carbon atoms within the same hexagon is 0.246 nm, and the distance 
between any hexagonal center to an adjacent one is also 0.246 nm.

Defects in graphene sheets can alter its mechanical, chemical, and electronic 
properties. These defects are either undesired and generated during the manufactur-
ing stage or can be engineered for use in important applications.47 Point defects such 
as single-vacancy (SV) and Stone-Wales(SW) defects are widely studied in litera-
ture48; here the SV defect refers to a missing lattice atom, while the SW defect means 
one of the C-C bonds is rotated by 90 degrees resulting in four hexagons in a pristine 
graphene sheet transforming into two pentagons and two heptagons (see Figure 10.6).

Yoon et al.49 studied the generation of defects in graphene using irradiation sim-
ulations in MD. Carbon atoms in graphene were modeled using ReaxFF and the 
interaction parameters between graphene and ions were optimized using density 
functional theory (DFT) calculations and universal repulsive potential. The sys-
tem was equilibrated at 300K, ions with impact energy of 25keV were irradiated on 
the center area of graphene. Extremely small-time steps or 0.005-0.02 fs were used 
during irradiation. He+-irradiated graphene exhibited SW defects most frequently 
(∼65%) while Ne+-, Ar+-, and Kr+- irradiated graphene exhibited SV defects most 
frequently (∼73%)

Generating these point defects can also affect the binding and absorption of key 
biomolecules onto graphene surface. The surface defects lead to enhanced charge 

FIGURE 10.6  Pristine graphene and two most common point defects of graphene.
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transfer and exposed active sites and has attained great attention toward development 
of non-enzymatic electrochemical biosensors.50 The defects in 2D materials results 
in unexpected changes in protein behavior due to denaturation and unfolding. Gu 
et al., investigated the impact of defective graphene and ideal graphene on a model 
protein (chicken villin headpiece subdomain, HP35) using molecular dynamics stud-
ies. The report suggested that the protein has undergone severe denaturation, while 
the protein was observed to be undamaged on ideal graphene.51 The contacted amino 
acid residues was observed to be tightly anchored near the defects owing to favorable 
electrostatic interactions, however, at the interface, the residues are highly restrained. 
Therefore, the thermal movements of the remaining residues led the protein to dena-
ture or unfolding.51,52 A biofilm associated study showed that graphene monolayer 
on copper surface enhanced the biogenic sulfide attack by 5-folds as compared to 
the bare copper, but multilayered graphene, when used, inhibited the biofilm forma-
tion.53 Dong et al., showed that the effectiveness of graphene coated copper surface 
toward microbial corrosion is time-dependent and the prolonged exposure to ionic 
environments results in defective graphene coatings.54 Furthermore, Chilkoor et al., 
demonstrated that anaerobic microbial corrosion due to Oleidesulfovirbio alaskensis 
G20 can be inhibited with a monolayer of h-BN. The impermeable nature of the 
monolayer prevents the diffusion of corrosive metabolites toward the metallic sub-
strate.55 Therefore, h-BN coatings are promisingly effective at minimizing galvanic 
effects as the local defects act as a cathodic site for anchoring and reducing terminal 
electron acceptors, which resulted in inhibition of microbial corrosion.55,56

10.3.2 � The Emergence of Bioinformatics: 
Applications and Methodologies

Open-source MD codes such as LAMMPS57 are widely used to model and simulate 
complex 2D-biomolecule systems by employing the various algorithms and tech-
niques discussed in previous sections. Bioinformatics online and offline software are 
powerful tools that can aid in performing this thorough investigation of the interac-
tion between the 2D materials and biomolecules, more specifically bioinformatics can 
aid in predicting protein structures of interest and propose optimized conformation 
of the said protein that can be used in the 2D-biomolecule system.58,59 Bioinformatics 
is a multidisciplinary field which can be defined as an amalgamation between bio-
logical science and information technology to retrieve and solve “big data” prob-
lems using biological databases and programming algorithms.60 Bioinformatics has 
broad range applications in all three genomics- structural, functional, and compara-
tive genomics.61,62 The prediction of protein structures at the secondary and tertiary 
level is the structural genomics, whereas assigning the functionality to an unknown 
protein using already available data is defined as functional genomics.63 Comparative 
genomics, however, tells the evolutionary nature of a species and its environmental 
origin.64,65

The offline python-based command line interface, Modeler v10.3 can be employed 
to predict the structure of unknown protein with amino acid sequence as an input 
and template protein structure.66,67 The template protein structure is an experimen-
tal (X-ray or nuclear magnetic resonance) protein structure and can be retrieved 
from Protein DataBank.68 The interface generates the desired number of poses or 
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conformers; the most stable being the least discrete optimized potential energy score. 
The validation of the modeled protein structure can be performed using MolProbity 
(online server) and PyMOL (offline software) for stereochemical correctness, and 
superimposed root mean square deviation (RMSD), respectively.69–71 The less the 
RMSD, the more correct are the coordinates and torsions of the α- and β-carbons.72 
Molecular docking is one of the most powerful strategies to calculate binding energy 
between the surfaces and visualize the most crucial amino acids that participates 
during the course of interaction.73 There are several tools available as online server 
or offline installation packages that can be used directly for rigid or flexible dock-
ing, most popularly, AutoDock (The Scripps Research Institute) and PyRX (incor-
porates vina, genetic and Lamarckian genetic algorithm).74,75 The platform returns a 
number of interaction-poses with different ligand RMSDs (represents various con-
formers of the same ligand at all possible hydrophobic pocket sites in a protein). 
The most negative binding energy is the most favorable interaction and provides the 
most stable complex. As an example, Figure 10.7 denotes the overall workflow and 
application of protein modeling and molecular interaction to study microbial induced 
corrosion (MIC).

10.3.3 �C urrent Trends in Biomolecular Simulation and Modeling

Several studies had been performed using inhibitory material and the computational 
simulation helped to understand the inhibition and interaction mechanism at the sur-
face atomistic level. Khadom et al., theoretically simulated the Citrus Aurantium leaf 
extract as a bio-inhibitor for biochemical corrosion of mild steel in acidic solution 
using homology modeling and molecular docking.76 Hussein et al., studied the inhibi-
tion of Acidithiobacillus Ferrooxidans bacteria, which is responsible for the corro-
sion using the compound 1-Isoquinolinyl phenyl ketone by employing AutoDock vina 

FIGURE 10.7  Computational tools and strategy to discover novel 2D coatings and their 
application as MIC inhibitors.
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algorithm and density functional theory (DFT).77 Ahmed et al., studied the interac-
tions between dietary fibers and meat proteins to understand the textural changes 
within the protein with estimation of parameters, such as the formation of hydro-
gen bonds, the free energy of binding, and Van der Waals and desolvation energy.78 
These provides an understanding about evaluations of an extent of parameters from 
interaction studies. Furthermore, Kinghorn et al., provided insights on the progress 
of aptamer (a small stretch of nucleic sequences that are known for its specificity 
and high-binding affinity) bioinformatics, and how the computational simulations 
with regard to fragment-based aptamer design, and identification of lead aptamers 
from high-throughput sequencing data have progressed over years.79 These proce-
dural aptamer studies may be crucial for the identification of protein domains that 
are promising to have higher affinity toward 2D surfaces. Zhao et al., used graphitic 
carbon nitride as an analog of graphene, and performed interaction studies with 20 
amino acids using DFT, and reported that graphitic carbon nitride attaches to amino 
acids using the amino group (-NH2).80 Unal et al., reported promising antimicrobial 
effect of graphene oxide nanosheets on the SARS-CoV-2 Surface Proteins and Cell 
Receptors using interaction study as a basis.81 Therefore, bioinformatics provides 
a broader opportunity to elucidate 2D materials and determine their antimicrobial 
effect with consideration of unknown target proteins and chemically modified sur-
faces as inhibitors.

10.4 � MACHINE LEARNING

Since the development of Machine Learning (ML), it has been used in many fields 
including bioinformatics, materials science, data mining, and computer vision.82 ML 
models can be applied to predict the fundamental properties (e.g., mechanical, and 
elastic properties), and thermal stability of 2D materials, which have the potential to 
advance the process of designing new 2D materials.83–85 Moreover, ML optimization 
algorithms (for example, Bayesian optimization) can be used to design and predict 
new 2D materials with desired properties.86,87 ML methods and optimization tech-
niques can also be applied to develop forcefields for molecular simulation. Since the 
early 2010s, ML has also been used extensively to predict protein structural informa-
tion such as secondary structures, accessible surface areas, and torsional angles.88

10.4.1 � ML Methods for 2D Materials

Kastuar et al. developed ML-based predictive models using temperature-depen-
dent elastic and mechanical properties of 2D crystals.83 The worked implemented 
XGBoost and LightGBM to predict the lattice constant using temperature, space 
group, vacuum size, C11, and C12 as input features. XGBoost is a scalable machine 
learning algorithm that creates a weak learner at each step and improves prediction 
accuracy by building a set of decision trees. After summing all models, it creates the 
final tree model defined as,
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Where, 
( )

yi
t

  is the final model, ( )f xn i  are the generated tree models. The optimum 
algorithm is obtained by minimizing the following loss function:

	 ∑ ϕ ( )( ) ( )= +





+
=

Objective function
1
2

1

2g f x h f x f
n

t

n t n n t n t 	 (10.13)

where gi and hi  are the first and second order gradient statistics on the loss function, 
ϕ ( )ft  is the regularization term. By using regularized objective model, XGBoost 
is able to prevent the overfitting problem. All decision tree-based ML models 
include model-based feature importance analysis techniques that provide a rank of 
feature importance. The XGBoost model outperformed the LightGBM in terms of 
the following two loss functions: R2 (R-squared) and MSE (mean squared error).89 
Finally, the most influential parameters for the lattice constant were determined 
using model-based feature importance analysis. Tawfik et al. employed four ML 
models including random forest, support vector machine, relevance vector machine, 
and neural network with a combination of DFT to predict the interlayer distance 
and the band gap of hybrid 2D materials.84,90 For the models input 1529 descriptors 
were calculated using the property-labeled materials fragments, which has excellent 
performance for ML application of crystals.91

To create new 2D materials, a variety of techniques, including defect engineer-
ing and atom or molecule adsorption, can be used.87 Among these methods, defect 
engineering is an appealing option for identifying new 2D materials and application 
of ML methods can speed up the process of predicting defect properties in 2D mate-
rials. Frey et al. employed ML methods in designing ideal defect structures.92 First, 
deep neural networks (DNNs) were used to predict material properties in order to 
find optimal host 2D materials. Since the DNNs need large number of training data, 
this work implemented ‘transfer learning’93 for the prediction of formation energy, 
band gap, and Fermi energy. After removing 8 compounds containing heavy ele-
ments, the process yielded the identification of 150 wide band gap 2D materials. 
More than 10,000 defect structures were produced by combining 150 wide band 
gaps and 70 defect structures containing all possible vacancies, divacancies, anti-
sites, and common dopants. To identify potential defects, one classification model 
capable of identifying the deep center defect and one regressor mode capable of pre-
dicting defect formation energy were developed. For ML model input, the structural 
and chemical properties of the host materials and defects were used. For both the 
classification and regressor problems, a random forest algorithm was used. To find 
the best defect candidate, a defect score function was defined that expresses fitness as 
a possible deep center for quantum emission. The goal is to maximize the function 
value, which indicates the best defect candidates.

10.4.2 � ML for Force Field Development and Parameterization 

As discussed earlier in this chapter, forcefields in MD expresses atomic interactions 
via parametrized analytical functional forms. A forcefield is heavily reliant on exper-
imental data for calibration, raising the question of whether ML approaches can be 
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used to evaluate the nonlinear associations between atomic configurations and forces 
using benchmark data (e.g., quantum mechanics based materials simulations).94

Li et al. applied the genetic algorithm to optimize force fields parameters.95 
Genetic algorithm is based on biological evolution and mimics the process of natural 
selection and greatly use for optimization purposes.96 The study focused on the 
nonbonded electrostatic and van der Waals (vdW) parameters because other param-
eters (e.g., bond, dihedral, and torsional parameters) have trivial effect on condensed 
liquid phase systems modeled using the Atomic Multipole Optimized Energetics 
for Biomolecular Applications (AMOEBA) forcefield.97 The work considered the 
AMOEBA functional form due to its relative simplicity. The AMOEBA force field 
includes 44 independent parameters for computing electrostatic energy and 10 
parameters for computing vdW energy. For optimizing electrostatic parameters, at 
the first step, atomic multipoles were obtained from quantum mechanics electrostatic 
potential on the Connolly surface of a single isolated methanol molecule. The second 
step involved the use of a large dataset containing 4943 methanol dimers to opti-
mize 44 electrostatic parameters that minimize a predefined optimization function. 
Following electrostatic parameters optimization, vdW interactions parameters were 
optimized to find the best match the interaction between a central methanol molecule 
and its closet super-molecule. The optimized electrostatic parameters were remained 
unchanged during vdW optimization. An objective function was defined that looks 
for vdW parameters which will minimize the objective function.

Moreover, ML can be utilized to develop forcefields from atomic configurations 
and forces, which has the potential to greatly speed up atomistic materials modeling 
processes. However, atomic configurations need be converted to numeric represen-
tation, which is commonly referred to as fingerprints. The next step is to select the 
appropriate set of fingerprint features for a training model. The generation of finger-
prints frequently produced high-dimensional data. High-dimensional data is defined 
as the number of features close to or higher than the sample size98 and can degrade 
the accuracy and computational speed of ML models.99 Principal component analysis 
(PCA) can be employed to reduce the dimensionality of large datasets. PCA gener-
ates a linear combination of variables from a large number of variables to reduce the 
dimension of data while retaining most of the variation in the dataset.100 Finally, ML 
models such as DNNs and nonlinear regression can be implemented for developing 
forcefields.

10.4.3  ML for Protein Structure Prediction

Protein structure prediction (PSP) is a central problem in structural bioinformat-
ics. The goal of protein bioinformatics is to reveal the relationships between amino 
acids and its function. These insights can be used to identify and design proteins 
that can bind specific targets, act as catalysts in reactions, or guide biotechnology 
advances. In recent years, ML, particularly deep neural networks, has been exten-
sively used for PSP. PSP models can take input of protein sequence in variety of 
formats, including multiple sequence alignment (MSA) and position-specific scoring 
matrices (PSSMs) and can return the results in a variety of formats (e.g., 1-D, 2-D, 
and 3-D prediction).101–104
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PSP systems using ML consist of three components: (1) the inputs which contain 
protein sequences in different forms, (2) a ‘ML algorithm’ typically deep neural net-
works are widely used for PSP, (3) the outputs that can be represented by 1-D predic-
tion (e.g., solvent accessibility prediction), 2-D prediction (e.g., contact maps), and 
3-D prediction (e.g., tertiary structure of a protein).

10.5 � SUMMARY

Over the years, with an emerging appeal to solve complex interactions, compu-
tational and/or bioinformatic techniques that involve molecular dynamics and 
atomistic simulation are of utmost importance among today’s researchers. Within 
this chapter we have presented the fundamental concept of molecular simulations 
focusing particularly on the molecular dynamics technique and its algorithms. 
Here, molecular dynamics approach can be employed to study interactions at 
2D-biomolecule interfaces. We have highlighted the use of system energy to calcu-
late the binding energies of biomolecule to 2D surface as well as addition of biasing 
potential to the system to implement umbrella sampling method, to map out free 
energies for the system.

While defect-free graphene growth is still under investigation and these defects 
remain largely undesired, studies have shown defective graphene surfaces have prop-
erties distinct from the pristine layers. What remains to be known is what effect 
these surface defects have on biomolecule adhesion, since very little foundational 
atomistic-level information is available on whether these defects produce positive or 
negative surface adsorption characteristics relevant to biomolecule adhesion. Recent 
advances and findings on defect engineering and adhesion of biomolecules on defec-
tive graphene using MD has been discussed.

A brief introduction to bioinformatics has been presented, as a promising field 
to deal with proteins; thereafter to determine the role of unknown proteins and 
evaluate the chemical bonding nature of interactions using molecular modeling 
and molecular docking, respectively. To interpret and process the data available 
and generated while studying biomolecule-2D interface, some key concepts related 
to use of machine learning (ML) to aid computational methods have also been 
discussed. The emerging algorithms of machine learning such as XGBoost and 
LightGBM are in extensive use to determine properties of 2D materials and to 
develop decision tress for discovery of potential new 2D materials. ML can also be 
incorporated for forcefield parameterization and development along with aiding in 
protein structure prediction.

The amalgamation of computational and bioinformatics strategies with machine 
learning is a thought-provoking approach to put a deep insight into the atomistic 
interactions of biomolecules at 2D surfaces.
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11.1 � INTRODUCTION

Traditional approach for the development of new materials in materials science 
involves trial-and-error experiments which are often expensive, time-consuming, 
and are less efficient. Machine learning (ML) approaches can accelerate the discov-
ery of new materials by utilizing the experimental data from various databases to 
identify the correlations between various experimental variables. ML approaches 
can develop the models based on the correlations which can be used to predict the 
properties and accelerate the materials discovery. A detailed information on the ML 
approaches and methods has been provided in Chapter 3. This chapter provides a 
summary of research and development efforts in the key areas of metallurgical engi-
neering and materials science where ML approaches have been used. Applying ML 
approaches to materials science is an interdisciplinary effort where experts from 
materials science, data science, computer science, and other domain experts related 
to informatics, biology, and chemistry must work together to address the challenges 
and remove the barriers to implementation. Working together with experts from vari-
ous disciplines has a great potential to make accelerated progress in materials dis-
covery and enable new innovations in materials science.

11.2 � APPLICATIONS OF ML IN MATERIALS SCIENCE

11.2.1 �A dditive Manufacturing

Additive manufacturing (AM) is the fabrication of three-dimensional (3D) objects 
using a computer-aided-design (CAD) model in a layer-by-layer approach to get pre-
cise shapes. AM technologies have attracted great interest in recent years because 
of its ability of make complex-shaped components and also because of its ability to 
produce personalized and customized components (e.g., prosthetics and biomedi-
cal implants). A wide range of materials such as polymers, metals, and composite 
materials can be additively manufactured and can be used in a wide range of indus-
tries and applications (e.g., aerospace, automotive, biomedical, defense, transporta-
tion, medical, sensors, and several other applications). Few examples of 3D-printed 
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rocket engine components using laser-based additive manufacturing technologies are 
shown in Figure 11.1.

AM technologies have emerged as a disruptive technology and have several poten-
tial applications in a wide range of industries. However, there are still some barriers 
to overcome such that these technologies can be adopted quickly in the industries. 
Currently, there are limited available AM materials databases, and there are also 
inconsistencies in the material properties reported in the literature. The inconsisten-
cies are mainly caused by the defects present in the components and can be correlated 
to the heat inputs, cooling rates, and the process parameters employed. Recently, ML 
approaches have gained some traction in the additive manufacturing industry, and 
the applications of ML are primarily used in five research domains: (1) materials 
design, (2) materials analytics, (3) in-situ monitoring and defect detection, (4) process 
modeling and process control, and (5) sustainability of AM process [4,5]. Figure 11.2 
shows the ML research domains that are primarily used in AM.

The design and development of materials to achieve desired properties is very 
important to understand the microstructure of AM products and correlate that with 
mechanical properties. Several possibilities can exist to achieve the desired proper-
ties, and developing these combinations manually by trial-and-error approach is very 
time-consuming and can be very expensive. The ML approaches can accelerate the 
discovery and design of new materials and help with the prediction of material prop-
erties. A wide range of ML techniques such as support vector machine algorithms, 
deep learning, decision tree, neural network, linear regression, Bayesian, Gaussian 
process, and clustering algorithms are commonly used for AM research and applica-
tions [5]. These ML techniques have been used for identification of defects [6–10], 
detection of porosity [11–15], density prediction [16,17], manufacturability [18], 
stress distribution [19], geometric deviation [20–22], fatigue life [23,24], and other 
mechanical properties prediction [25–29].

Although ML technologies for AM have been promising, there are still some chal-
lenges to be addressed. One of the biggest challenges related to the application of ML 

FIGURE 11.1  Examples of laser-additive manufactured components for rocket engine appli-
cations showing (a) Axially coupled chamber and nozzle, (b) Jacket deposited on chamber with 
internal channels, (c) Rotating assembly for fuel pump, and (d) Combustion chamber liner with 
jacket. (Courtesy: NASA [1–3].)
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technologies for AM is the integration and analysis of data from multiple sources. 
The data from various sources can be challenging to fuse as each of these data may 
produce conflicting results when ML models are applied [5]. Another biggest chal-
lenge is the limited amount data to train, which can influence the performance of ML 
algorithms. The limited data can lead to inefficient training and may result in failure 
of models. The interpretation of the ML models for decision-making is another chal-
lenge. The ML techniques are typically developed by data scientists and computer 
science experts, but the AM engineers need interpretable models so that they can 
understand the significance of the models to optimize the process. Even with sev-
eral challenges, the ML for AM still provides good opportunities for researchers to 
design, optimize, and predict properties for various applications.

11.2.2 �C ombinatorial Synthesis and Machine Learning-Assisted  
Discovery of Thin Films

Thin films are the atomic layers of materials deposited on a substrate to improve the 
surface properties of the substrate material. The thickness of thin films can be few 
atomic layers to few hundreds of nanometers thick. These thin films are deposited 
onto the substrates to improve surface properties such as the tribological, optical, 
electrical, chemical, and corrosion properties of the substrate materials. There are a 
wide range of thin film deposition techniques, but most of the techniques are broadly 
categorized to either a physical or chemical vapor depositions technique. The discov-
ery of new thin films is often limited by how fast various combinations of materi-
als are created and characterized. Combinatorial synthesis of thin films has been 
explored to improve the rate at which new thin films and materials are discovered 
[30–32]. One of the main advantages of combinatorial synthesis is the ability to pro-
duce a larger number of samples quickly and at a lower cost. Combinatorial synthesis 

FIGURE 11.2  Machine learning research domains for additive manufacturing. (Adapted 
from Qin, J. et al., Addit. Manuf., 52, 102691, 2022.)
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provides increased flexibility in the discovery of novel materials and surfaces by cre-
ating libraries with different compositions, thickness, microstructures, and mechani-
cal properties, which will be useful in screening the materials with desired functional 
properties. Another benefit in combinatorial synthesis is that all the specimens will 
be deposited under the same conditions while only changing any one variable (e.g., 
composition, thickness, and temperature) providing a unique capability to generate 
a wide range of specimens in a controlled manner. The use of ML approaches along 
with the combinatorial synthesis has been shown to accelerate the rate of materials 
discovery compared to traditional serial experimentation techniques.

Physical vapor deposition (PVD) process is the most commonly used technique 
for the synthesis of combinatorial thin films. There are several approaches on how 
combinatorial deposition can be performed. One of the simplest approaches is the 
deposition of the gradient deposition of thin films, where two or more magnetrons 
are focused onto a stationary substrate. Since the deposition rates of materials change 
with distance, thin films with multiple combinations of compositions can be depos-
ited on the substrate. Figure 11.3 shows the schematic illustration and an example 
of gradient composition deposition using the pulsed laser deposition (PLD) process.

The gradient layer deposition is a simple approach and provides an ability to 
adjust the deposition rates and other variables to produce a wide range of combina-
tions. However, large variations in thickness and stoichiometry can be present in the 
films, which could be difficult to produce reliable and high-precision materials.

Confocal array deposition is another approach that has been developed to improve 
the coating uniformity where a metal mask is placed in between the substrate and 
the magnetrons. The substrate is rotated under the stationary mask which creates dis-
crete test pads at a fixed radial position from the center of the substrate as shown in 
Figure 11.4a. Compared to gradient deposition, this technique offers some improve-
ment but still has some limitations. One limitation with this approach is that only 
one radial position of the substrate can be used for the combinatorial experiments 
and much of the substrate area is left unused. Moreover, the mask can also create 
asymmetrical exposure and shadowing effects on the test pads which could lead to 

FIGURE 11.3  (a) Schematic illustration of combinatorial synthesis using PLD process [33]. 
(b) Example gradient thin film of BaTiO3, SrTiO3, and Nb using PLD process. (Courtesy: 
PVD Products.)
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variability in coating thickness and composition of test pads. Since a mask will be 
used for the confocal array deposition, the use of radial frequency (RF) bias would 
be difficult, and therefore, the confocal array deposition approach may not be able to 
be used for reactive deposition or in-situ substrate cleaning.

Coincident confocal deposition is an alternate approach where a confocal point 
of the magnetrons is focused on a stationary mask, and the substrate position will 
be changed using a X-Y stage to produce combinatorial test pads in a gridded pat-
tern as shown in Figure 11.4b. This approach addresses some of the issues asso-
ciated with gradient layer and confocal array deposition approaches and produces 
films with maximum substrate coverage, uniform thickness, and greater control of 
composition of the test pads. The combinatorial deposition samples can be used to 
optimize or identify a composition that can provide a specific functional property 
(e.g., conductivity, dielectric properties, hardness, modulus, and corrosion proper-
ties). Figure 11.5 shows hardness modulus and resistivity maps of a ternary Cu-Ni-Ag 
alloy thin film deposited using gradient combinatorial deposition approach using 
PLD process.

Figure 11.5 shows the maps of hardness, modulus, and resistivity as a function 
of chemical composition. These maps can be very helpful in identifying the com-
position that can provide a higher hardness or electrical conductivity for specific 
applications. Such information can be very helpful for designing coatings for a wide 
range of applications. A wide range of other functional properties (e.g., optical, tri-
bological, and electronic properties) can be optimized or tuned for specific appli-
cations. The combinatorial thin films can be used in combination with automated 
high-throughput characterization tools (e.g., X-ray diffraction, scanning electron 
microscopy, and confocal Raman spectroscopy) to screen and generate a large num-
ber of datasets. These datasets help identify the correlations between the structure, 
properties, and composition of the thin films, which can be used to discover new 
functional materials. 

FIGURE 11.4  Combinatorial deposition of test pads deposited using PVD processes show-
ing (a) confocal array deposition and (b) coincidental confocal deposition. (Courtesy: PVD 
Products.)
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11.2.3 � Machine Learning-Assisted Properties Prediction of Bulk Alloys

Metals and their alloys are used for a wide range of applications from automobiles 
to rocket engines and for a range of several other applications (e.g., construction, 
biomaterials, and electronic materials). The design of alloys for specific applications 
with optimized properties such as the hardness, tensile strength, ductility, toughness, 
corrosion properties, and fatigue properties are only limited by how many combina-
tions of materials can be made at a given time. The combination of various metals 
gives unique combination of properties which can be used for specific applications. 
Depending on the application, a specific alloying element can be added to achieve a 
specific functional property. For example, addition of Cr and Mo to steel will improve 
the corrosion resistance. Similarly, addition of Ti, Ta can form carbides (TiC and TaC) 
in steels which can improve the strength of materials. Likewise, addition of Ni will 
stabilize the austenite phase and can help with high-temperature stability of the alloys. 
So, a wide range of elements can be added to design new alloys to achieve specific 
properties. However, it will be difficult to identify the suitable composition by trial-
and-error approach as this can be expensive and will take a significant time to develop. 
Thermodynamic modeling, molecular dynamics, and density functional theory simu-
lations have been used to understand the stability of phases, solidification behavior, 

FIGURE 11.5  Gradient combinatorial deposition of Cu-Ni-Ag thin film deposited using 
PLD process showing (a) hardness, (b) modulus, and (c) resistivity. (Courtesy of Kandadai, 
V., Combinatorial Synthesis of Cu-Ni-Ti Thin films using Pulsed Laser Deposition Process, 
South Dakota School of Mines and Technology, 2022.)
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and precipitation kinetics for various alloys [35–37]. While these techniques are help-
ful for simple alloys systems, these would be challenging to predict the compositions 
for multicomponent or compositionally complex alloys. The use of machine learning 
can enable the prediction of the properties for complex and multialloy systems.

While there are several fabrication techniques available for melting and alloying, 
arc melting and induction melting are commonly used for fabrication in an indus-
trial setting. Both arc and induction melting techniques are typically used as batch 
processes for producing metal alloys. However, there are an infinite number of com-
binations that can be used to create new alloy systems. Combinatory approach melt-
ing using arc melting can enable the synthesis of multiple combinations of alloys in 
significantly less time. Figure 11.6 shows the vacuum arc melter and the schematic of 
a button mould that can be used for generating multiple melts.

The schematic of mould in Figure 11.6b only shows a few buttons that can be 
melted to make new alloys. However, moulds up to 32 buttons have been used to 
produce unique compositionally complex alloys [38]. To train the ML models, sev-
eral parameters such as lattice constant, configurational enthalpy, atomic radii, melt-
ing temperatures, and electronegativity are considered. A wide range of ML models 
(as described in Chapter 4) were used to optimize the composition of the alloys to 
achieve a desired property.

11.2.4 � Design of Drug-Releasing Materials with Machine Learning

One of the most prominent features of a living organism is a fine-tuned system of 
regulated biochemical pathways that result in a pattern of concentrations of chemi-
cals released and consumed in the right place and at the right time. An externally 
administered drug tends to exhibit an unnatural time concentration profile that inevi-
tably limits its therapeutical effectiveness and results in side effects, which is espe-
cially critical for cytotoxic anticancer and antimicrobial drugs. The drug-releasing 
materials help to alleviate this problem by mimicking a natural concentration pat-
tern by releasing a drug in a time-controlled fashion or when triggered by external 
stimuli. One of the latest examples is a “smart” nanoassembly carrying an anticancer 
veratridine [39] or eugenol [40] into colon cancer cells and releasing the drug on-tar-
get when an MMP-7 enzyme overproduced by cancer cells digests the “gatekeeping” 

FIGURE 11.6  (a) Vacuum arc melter setup and (b) schematic of button mould.
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element and unseals the nanoparticle’s drug load. However, the bottleneck of the 
development of drug-releasing materials and especially their clinical translation is 
a large number of variables to be taken into account, such as type of drug, type of 
material, type of cancer and its heterogenic environment, genetic heterogeneity of 
the patient, shape and surface characteristics of the material, drug loading efficiency, 
penetration through cellular barriers, selectivity, toxicity, drug-release efficiency, 
nature of the “gatekeeping element,” to name a few. This makes the traditional trial-
and-error approach prohibitively expensive and technically unrealistic without pow-
erful and iterative data processing methods, which Artificial Intelligence (AI) is.

While AI is now commonly used for drug discovery, its application to drug release 
is relatively new due to a greater complexity of the underlying mechanisms and is 
aimed at achieving the efficient trade-off between therapeutic and side effects. The 
Probabilistic Suffix Annotation (PSA) model making sequential predictions of the 
drug-cell dynamics was applied to the analysis of the concentration of a drug met-
ronidazole and population of its target bacteria Giardia Lamblia [41]. This model 
adjusts its sensitivity and selectivity based on the threshold level determined by the 
operator. The future drug-cell dynamics are predicted from current observations of 
the drug dose and the pathogen population by the Variable Length Markov Model 
(VLMM) used for increased flexibility, and the Fuzzy C-Mean clustering tech-
niques involving online learning [41]. An Artificial Neural Network (ANN) model 
is employed in the design of 3D-printed oral devices to achieve the desired dose and 
drug-release profile based on the surface-to-volume ratio and the combination of fun-
damental shapes (cylinder, hollow cylinder, and pyramid) [42]. While thousands of 
oral drug formulations are currently approved, only about 30 long-acting injectables 
(LAI) have established their safety profiles despite a wide variety of discovered bio-
compatible polymers [43]. Each drug has unique physicochemical properties, which 
makes unlikely for one LAI formulation to be ideally suited for all drugs.

The main hurdle in the application of ML to pharmaceutical science is lack of 
available databases needed to train the models [43]. Of several tested approaches, 
the random forest (RF) model was the best predictor of drug-release build from the 
available online Tensor flow [44] and Scikit [45] learn libraries available in Python. 
As opposed to the bulk drug-releasing materials, drug-delivering nanoparticles need 
to travel through biological barriers bringing another dimension to the realm of ML. 
The multiple particle-tracking (MPT) analysis considering different modes of dif-
fusion of PEGylated particles through the heterogeneous airway mucus was used to 
predict the passage times of nanoparticles and the influenza A virus, boosting the 
development of inhalable drug formulations [46]. The model input included fluores-
cent video microscopy and modeling the interactions with the negatively charged and 
hydrophobic domain of mucus [46].

After the success of COVID-19 vaccines based on the delivery of mRNA by lipid 
nanoparticles, this type of materials became the focus of many AI applications. Thus, 
deep learning models based on the Convolutional Neural Networks (CNN) and Long 
Short-Term Memory (LSTM) were applied to predict the efficiency of the Green 
Fluorescent Protein (GFP) mRNA transfer to living cells by lipid nanoparticles based 
on the time-lapse microscopy data before the GFP expression [47]. Data mining and 
ML were used to predict drug loading of solid lipid nanoparticles with curcumin 
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[48]. The authors applied the ANN method as an example of the supervised type of 
ML, which outperforms its unsupervised counterparts due to its ability to relate the 
input variables to responses. The input of experimental drug-loading data and results 
of the molecular dynamics docking simulations help predict the drug-loading of 
nanoparticles [48]. The key ingredient in the design of drug-delivering nanoparticles 
is engineering their surface by coating and modification. Application of both linear 
and nonlinear perturbation theory machine learning (PTNL) algorithms allowed for 
the prediction of drug-releasing properties of coated metal oxide nanoparticles [49]. 
The model learned from publicly available datasets generated by preclinical assays 
and processes the information on the parameters of biological activity, types of pro-
teins, types of coating agents, and the nanoparticle’s composition and shape [49].

The physiologically based pharmacokinetic model (PBPK) with the input from the 
nanotumor database (376 datasets) adequately predicted the drug-delivery efficiency 
of different nanoparticles to different tumors and outperformed all other ML methods 
including random forest, support vector machine, linear regression, and bagged model 
methods [50]. In that work, the cancer type was an important determinant for the deep 
neural network (DNN), which performed better than linear regression because of bet-
ter handling of large incomplete datasets and identified new relationships not identi-
fied by the user. This model predicted absorption, distribution, metabolism, excretion, 
and toxicity of nanoparticles based on the input of the type of nanoparticle, its core 
material, shape, z-potential, hydrodynamic diameter, targeting strategy, tumor model, 
cancer type, and time profile of the drug-delivery efficiency [50].

A recent 2023 review underscores cancer heterogeneity, patient heterogeneity, 
interaction with the immune system, and the differences between animal and human 
physiology and pathology as the major challenges for the targeted drug-delivery 
systems, which should be capable of sensing biomarkers [51]. The AI methods that 
are able to analyses large amounts of patient data should be able to help generate 
personalized treatment plans based on diagnostic. All components of AI (Machine 
Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), and 
Computer Vision (CV)) must be deployed in the feed-forward multilayer percep-
tion, deep synergy, and other methods to address these challenges and take advan-
tage of the enhanced permeability and retention effect (EPR) to process the data 
on molecular imaging and drug delivery, to analyze holographic images from the 
nanoparticle-tracking experiments, and the data of Computed Tomography (CT) 
and Positron Emission Tomography (PET) scans. For example, variant of the KRAS 
gene produces unique biomarkers in cancer patients, which can be detected by sulfur 
fluorescent quantum dots, processed by AI and results in the specific receptors that 
should be targeted by therapeutics [51].

Finally, AI plays a critical role in devising better nanorobots for drug delivery 
with effective nanocommunication [52]. The drug-delivering nanorobots can be pro-
pelled by the enzymatic decomposition of urea to tiny bubbles of carbon dioxide in 
the nanomotors made of silica-supported urease and gold nanoparticles [53]. The 
radiolabelled nanorobots can be tracked in vivo by PET scans [54]. AI is critical for 
integrating “smart” sensors and power supply in the nanorobots [55]. Figure 11.7 
summarizes the aspects of the design of drug-delivery materials, which generate the 
streams of experimental information (characteristics of the material and their drug 
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delivery performance) to teach a ML model to predict the best matches between the 
drug, its delivery system, and their specific biological application.

11.2.5 �AI  and ML Tools for Search and 
Discovery of Quantum Materials

In the last decade, quantum materials have become a major topic of condensed mat-
ter physics. These include two-dimensional materials [39], topological insulators and 
superconductors [40], Weyl semimetals [41], and quantum spin liquids [42]. The prop-
erties of these materials are determined by the collective behavior of a large number 
of interacting particles, which cannot be described using single-particle approxima-
tion typically used to describe more common characteristics like melting point, band 
gap, and heat capacity. Quantum materials host various exotic excitations, such as 
relativistic fermions in Dirac materials [39], Majorana-bound states in topological 
superconductors [40], and skyrmions in chiral magnets [43]. They hold the prom-
ise of transforming high-speed electronics and communication devices, as well as 
providing a platform for quantum computing [44]. AI-enabled methods are becom-
ing increasingly important for studying quantum materials, due to the complexities 
and rich physics present in these materials. AI tools have the potential to drastically 
improve the efficiency of experimental and computational studies and can be used to 
create, analyze, and visualize high-dimensional heterogeneous data collections [45]. 
Below we discuss several venues where AI tools can provide a significant boost in the 
research of new and existing quantum materials.

11.2.5.1 � Search and Analysis of Computational Materials Databases
Density functional theory (DFT) remains the workhorse of computational mate-
rials science and has been combined with ML algorithms to predict conventional 

FIGURE 11.7  Input and output streams for the ML—assisted design of drug-delivering 
materials.
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materials properties such as melting temperature, band gap, shear modulus, and heat 
capacity [46]. Similar approaches have been utilized to search for quantum states in 
various materials. ML methods provide a systematic way to extract important pre-
dictors of materials properties from complex high-dimensional data of DFT calcula-
tions, creating ML models that can be used to filter through existing crystal structure 
databases in search of potential candidates. For example, structural, electronic, and 
band structure properties data from a materials database were used to create a set of 
“fingerprints,” which were then utilized to create ML models for the critical tempera-
ture of hundreds of superconductors [47]. Such models can be used to fast screening 
of hundreds of thousands of existing and potential materials stored in computational 
databases created by high-throughput DFT methods.

11.2.5.2 � Improve the Accuracy and Throughput of Ab Initio Methods
DFT is the most widely used computational method for simulating materials’ proper-
ties, but it has several approximations that limit its accuracy for properties relevant 
to quantum materials. DFT is also resource hungry, and a blanket calculation of 
all properties of all compounds is not currently feasible. Integrating AI methods 
improves the approximations in the ab initio calculations and helps produce more 
accurate results [48,49]. Alternatively, ML can reduce the computational cost of 
ab initio methods, thus significantly enhancing the throughput of computational 
materials screening. For example, AI has been used to improve the accuracy of the 
Allen-Dynes approximation [50], a commonly used formula for predicting the criti-
cal temperature of electron-phonon paired superconductors, reducing the number of 
required DFT calculations and speeding up the discovery of novel superconductors.

11.2.5.3 � Search for Stable Phases with Properties 
Relevant for Quantum Materials

Some types of strongly correlated materials, like superconductors and heavy fermion 
metal oxides, have been extensively studied for decades and amassed a significant 
number of systems and experimental data to work with. Other types of quantum 
materials, like multiferroics and materials with intrinsic topologically nontrivial 
states, while known for about the same period of time, only recently gained attention 
from the scientific community thanks to the development of advanced characteriza-
tion techniques [40]. As such, only a handful of such materials are available for 
researchers. To facilitate the discovery of new materials, AI tools were developed 
to search for various indicators, like symmetry and materials chemistry in crystal-
lographic data information, to automatically screen for new topological insulators 
and semimetals [51,52]. Another fertile ground for finding new quantum material 
systems is recently discovered 2D materials like graphene, which offer a wealth of 
potential for technologies such as electronics, sensing, and energy storage. High-
throughput DFT has been used to compile publicly available databases of potential 
2D materials, while ML models have been used to predict properties important for 
the synthesis of such materials, i.e., exfoliation energies, formation energies, and to 
classify them as having low, medium, or high stability [53]. These models have been 
used to discover materials with specific properties, such as those suitable for photo-
electrocatalytic water splitting [53].
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11.2.5.4 � Making Predictions from Known Materials
Large databases of experimental materials data, such as the phase equilibria diagram 
and the inorganic crystal structure database (ICSD), are becoming more accessible 
to researchers. AI approaches are being increasingly applied to such experimen-
tal materials data to build models for making predictions. The pioneering work by 
Villars and Phillips in the 1980s used only three stoichiometric descriptors to clus-
ter the 60 superconductors with Tc > 10 K known by then in three distinct groups 
and made predictions for potential high-temperature superconductors [54]. In more 
recent work, a neural network was trained using the ICSD database to predict crystal 
structure information [55] and then group materials according to their similarities 
in structure and composition, providing a list of potential materials sharing these 
similarities with known superconductors and topological insulators [55]. Creating an 
experimental database of structures and properties of quantum materials, however, 
is a significant challenge due to the manual effort required to extract data points 
from published articles and the lack of uniformity in experimental characterizations 
across different groups of researchers. Emerging AI-driven automatic generation 
of databases can provide an alternative. An example of this is the recently created 
database of almost 40,000 Curie and Néel phase-transition temperatures of mag-
netic materials produced from text data in articles using natural language processing 
(NLP) and related ML methods [56].

11.2.5.5 � Extracting “Hidden” Knowledge from 
Materials Characterization Data

Modern materials characterization instrumentation and computing technology 
advances have enabled data collection on a much larger scale and with higher preci-
sion than ever before, and even a single measurement of one material can generate 
large volumes of high-dimensional data. This has created the challenge of navigating 
the vast amounts of data generated in real time while also opening new possibili-
ties for research. ML has been used to augment traditional characterization methods 
helping to analyze noisy and complex data. For instance, by applying ML methods 
to the angle-resolved photoemission spectroscopy (ARPES) data of optimally doped 
cuprates [57], researchers discovered a hidden feature in the spectra, clarifying the 
role of energy dissipation and quantum entanglement in the superconducting phase. 
Another work reported the development of a neural network-based classifier trained 
on X-ray absorption spectroscopy (XAS) data, which was designed to distinguish 
topological materials from trivial ones [58]. Given that XAS is a widely used charac-
terization technique, such a tool would greatly expedite the experimental identifica-
tion of topologically nontrivial materials.

11.3 � GAPS AND BARRIERS TO IMPLEMENTATION

ML has the great potential, and this chapter only provided a few examples where 
ML was used to accelerate and enable materials discovery. There are several more 
applications in the field of materials science where ML’s modeling and prediction 
capabilities can be beneficial. However, there are several gaps and barriers for ML 
to be implemented in the areas of materials science. Applying ML approaches to 
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materials science is an interdisciplinary effort, but some training is needed to mate-
rial science engineers and scientists to acquire some ML knowledge and skills. In 
order to achieve this, some textbooks and other technical resources should be devel-
oped at an appropriate level where the material science community can understand 
and use them for their research. Developing curricula and integrating ML approaches 
to course modules can help train the students to get basic understanding of ML 
approaches in materials science. One of the biggest challenges related to the applica-
tion of ML technologies for materials science is the lack of extensive databases to 
train, which can influence the performance of ML models. Also, the limited data 
from multiple sources can also be challenging to integrate as each of these data 
may produce conflicting results when ML models are applied. The interpretation of 
the ML models for decision-making is another challenge. The ML techniques are 
typically developed by data scientists and computer science experts, but the materi-
als scientists need interpretable models so that they can understand the significance 
of the models to optimize the process. Even with several challenges, the ML for 
materials science still provides good opportunities for researchers to design, opti-
mize, and predict properties for various applications. While using AI in drug design 
has become a common approach, its application to the drug-delivering materials is 
still in its nascent state. The AI/ML methods address the major challenges of drug 
delivery such as huge diversity of particles, heterogeneity of biological targets and 
environment, large and incomplete datasets, and integration of “smart” components 
into nanorobots. The major gap in the practical application of AI models is the lack 
of user-friendly software for their implementation and the lack of availability of the 
already trained models ready for further training and making practical predictions. 
Further, the wide variety of the developed AI models constitute its own parameter of 
optimization that may be handled by a meta-AI method to help researchers to choose 
the best AI model for their specific material and target.
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12.1 � INTRODUCTION

Machine leaning (ML) methods have made great contributions to 2D materials sci-
ence and engineering as evidenced by the collection of works presented in earlier 
chapters. ML technologies are transforming the way scientists design materials by 
managing the complexity of vast space of options that need to explored. Yet there are 
several challenges that must be addressed while working with ML methods. Most ML 
methods such as neural networks need large quantities of training data that is of high 
quality so that millions of parameters can be tuned to obtain an accurate model. With 
small size datasets, these techniques may result in overfitting. For example, building 
a semantic segmentation model requires thousands of images in the training data-
set. Such large datasets may not be easy to obtain from the 2D materials domain, 
where large training datasets may need expensive manual processes and specialized 
equipment to collect the data. Even in cases where large training datasets are avail-
able, the dataset needs to be properly labeled and should be largely free of noise. For 
ML tasks such as semantic segmentation and object recognition, labeling a dataset to 
obtain training and testing datasets can be tedious. For an image semantic segmenta-
tion task, each pixel in an image in the dataset must be assigned a class. The most 
popular dataset for the semantic segmentation task, the CoCo dataset (https://opencv.
org/introduction-to-the-coco-dataset/), contains 1.5M labeled images with 80 catego-
ries including ‘car’, ‘motorcycle’, ‘stop sign’, etc., and the images in this dataset do 
not need special expertise to label the dataset. However, labeling datasets in the 2D 
Materials domain needs domain expertise (e.g., distinguishing oxidized 2D material 
surface from its pristine counterpart in an image, and labeling the pixels accordingly) 
and may not be readily available. Moreover, multiple experts may need to label an 
image to account for human biases, and these multiple labels for each pixel need to be 
reconciled to decide which label is the correct one for each pixel in an image. Finally, 
once an ML model is obtained, the modeled results must be carefully analyzed by the 
domain experts to plan next steps, such as learn the model for a different task (image 
classification may be changed to object detection), prepare the training data again for 
obtaining a better model (this is in case if the model accuracy is unacceptable to the 
domain scientists), or make a plan to validate the model observations in the laboratory.

https://opencv.org/introduction-to-the-coco-dataset/
https://opencv.org/introduction-to-the-coco-dataset/
https://doi.org/10.1201/9781003132981-12
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For ML methods to be effective for designing materials and discovering their 
properties, scientists must embrace two central notions—data management and 
validation of ML results in the lab and ultimately in a real-world setting. In this 
chapter, we present some research directions that will enhance the effectiveness of 
ML-driven materials discovery. Machine learning, as a subfield of computer science, 
is growing leaps and bounds, and many of these advances will not be covered in this 
chapter. Instead, we select a few relevant directions that are based on the relevant 
case studies conducted by the authors in their recent research projects (e.g., National 
Science Foundation OIA # 1920954, 1849206).

12.2 � LEARNING WITH SMALL TRAINING DATASETS

For ML-assisted materials design to be successful, we need to contend with the issue 
of small training datasets. In this section, we describe some of the popular ways in 
which this issue can be dealt with.

12.2.1 � Data Augmentation

When we have a small dataset, we may be able to augment it with artificially generated 
data with similar properties as the original dataset. This process is called data aug-
mentation [1]. As an example, for image-based ML tasks, standard data augmentation 
methods include augmenting the dataset with random crops, zooms, and mirror-image 
flips of the images from the original dataset. For text datasets, augmented data can 
be generated by inserting random characters at random locations in the documents in 
the original dataset. The training samples obtained from augmentation will carry the 
labels over from the original sample they were generated from. Data augmentation 
has been shown to significantly improve the performance of ML models [2,3]. This is 
because the data augmentation methods generate a new training instance with proper-
ties similar to an instance from the original dataset. Data augmentation is a popular 
technique that is commonly employed in ML pipelines currently.

For engineering and health domains, there is a tremendous amount of domain 
knowledge in terms of physical and chemical laws which can be useful to gener-
ate data for augmentation purposes. Domain scientists have traditionally relied on 
domain-knowledge-driven simulation models for gaining a better understanding of 
the physical and chemical phenomena and for discovering new hypotheses. Even 
though simulation models make simplifying assumptions of the physical phenomena, 
they have been shown to capture the laws of a domain well enough to simulate dif-
ferent types of scenarios satisfactorily. In engineering domains, simulation models 
can be used to generate synthetic data wherever possible, combine it with data col-
lected from the laboratory experiments, and use the data as training data for model 
building. The predictions from an ML model can be used to enhance the simulation 
model as well.

As discussed in the earlier chapters, recent works have demonstrated the seamless 
use of ML algorithms for accelerating the discovery of 2D materials. Such algo-
rithms have already been implemented as online web tools for use by broader com-
munities [4]. As readers may have recognized, these tools have been primarily built 
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using theoretical data sets (e.g., geometrical structures) that can be obtained from the 
existing databases (e.g., Inorganic Crystal Structure Database and Crystallography 
Open Database). The screening criteria in these tools are also often based on the-
oretical values (e.g., binding energies <130 meV Å−2, which can be derived using 
Einstein’s Theory of Relativity calculations). However, generating experimental data-
sets that describe performances of 2D materials can be cumbersome. For instance, 
2D materials are being explored as next-generation protective coatings for control-
ling microbiologically influenced corrosion (MIC) [5]. Considering the extensive 
effort for designing, developing, synthesizing, and characterizing the performance 
of a brand new 2D material, the overall process can take several years of time. If 
one were to test 1000 promising 2D materials with 1000 different microbial species 
(each representing one biotechnological application), the time required to complete 
the performance assessment is significant. Generating experimental datasets on MIC 
prevention performance of the 2D coatings is a complex, expensive, and laborious 
process. These constraints also restrict the duration of these MIC tests to few weeks, 
which cannot adequately help determine their performances (i.e., service lives) that 
are expected to last for several years. This situation also has forced many life cycle 
assessment (LCA) modeling to rely upon the assumed service lives of these coatings 
while quantifying their potential sustainability benefits [6,7]. Some of these issues 
can be alleviated using data augmentation methods. For instance, a recent study by 
authors’ group leveraged deep learning methods (e.g., variation autoencoder, genera-
tive adversarial network (GAN) models) for addressing issues with lack of adequate 
experimental datasets required to predict the electrochemical performances of MIC-
resistant graphene coatings [8].

12.2.2 �S emisupervised Learning

Semisupervised learning approaches have been shown to be effective in alleviating 
the need for large, labeled training datasets. These approaches learn a high-level 
structure from the unlabeled data and combine the learned structure with a small 
amount of data for a given ML task to learn a model for that task. Note that semisu-
pervised approaches need a large amount of high-quality data for building a model. 
However, only a small portion of it needs to be labeled.

An obvious semisupervised learning approach is self-training where the small, 
labeled dataset is used to train a model M and use that model to infer labels for 
the unlabeled samples in the larger dataset. The labels inferred from M are typi-
cally referred to as pseudo-labels to differentiate them from the ground-truth labels 
obtained from domain experts. Then a new model is obtained using some combina-
tion of the small, labeled dataset and the data with pseudo-labels. This process is 
repeated some number of times depending on the user or some convergence metric. 
Another variation of self-training is to generate pseudo-labels for random training 
samples and include them in the training set for next model. Although self-training 
can build models using small-size training datasets, it suffers from what is known 
as confirmation-bias [9] where incorrect predictions in pseudo-labels inferred for the 
unlabeled samples can make the accuracy of models built using the repeated model 
training worse over time.
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There are many ways of making the unlabeled data useful when a model with 
small amount of labeled data. These include semisupervised learning approaches that 
include entropy minimization, consistency regularization, etc. Please see [1] for a 
detailed description of these techniques. Active learning is a form of semisupervised 
learning where the goal is to use as few training samples as possible for learning a 
model with reasonable accuracy. Informally, an active learning-based learning algo-
rithm queries an authoritative source—an human expert or a function over the labeled 
dataset—to learn the correct prediction for a given sample. See [10] for more details.

12.2.3 � Transfer Learning

Transfer learning is employed when an existing deep neural network model can be 
used for a new yet a similar problem. As an example, in a recent study, transfer learn-
ing was used to learn representations of microstructures and then used the resulting 
model to discover the underlying annealing conditions [11]. Learning microstructures 
is typically referred to as the source task, and the task of identifying the annealing 
conditions is referred to as the target task. Transfer learning transfers information 
from the source dataset to the target dataset via a shared set of parameters [1].

In transfer learning, a large source dataset is used to learn a model for the source 
task. This model is then fine-tuned on a small dataset belonging to the target task. 
Transfer learning assumes that the training instances for the source and target task 
are the same (e.g., both are RGB images or numeric vectors, etc.) or that the train-
ing instances of the source task can be easily converted to the target data format. 
However, the instance labels for the source task and target task can be different. In 
order to use the model for the source task for the target task, weights between the 
output layer and the last hidden layer of the model for the source task are fine-tuned 
using the training instances of the target task (for details, see Decost). Therefore, 
transfer learning leverages the large source training dataset for building a deep neu-
ral network and uses this model for a target task by modifying only a part of is using 
the small target dataset.

12.2.4 �F ew-Shot Learning

Few-shot learning [12] refers to ML algorithms that can learn to predict from very 
few labeled training samples, much like humans do. If a model can learn from a sin-
gle labeled sample, then it is called one-shot learning, and if no labeled samples are 
needed, then it is called zero-shot learning. Here, we illustrate how the few-shot clas-
sification method works. Few-shot classification method is given an abundant train-
ing sample for base classes and is asked to learn predict previously unseen classes 
using a limited amount of labeled samples. Few-shot classification approaches are 
usually evaluated using C-Way N-shot classification in which a model is expected to 
classify C classes using N training samples for each class where N and C are small.

Few-shot classification can employ transfer learning to build a model from the 
abundantly available base class data and then fine-tune the model using the labeled 
data available for the C (previously unseen, unique) classes. Few-shot classification 
can also use meta-learning which means learning to learn. For more details on this, 
please see [1]
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12.3 � PHYSICS-INSPIRED NEURAL NETWORKS

Physics-inspired neural networks (PiNNs) were inspired by the challenges of collect-
ing large amounts of data needed for employing deep neural networks in complex 
biological and engineering domains. Typical deep neural networks use the training 
data to identify a nonlinear function that maps a training instance, which is usually a 
high-dimensional vector, to a label accurately. There is an abundance of prior domain 
knowledge in biological and engineering fields that is not considered by a typical 
neural network while learning the nonlinear map. Not incorporating the domain 
knowledge has been shown to lead to predictions that are inconsistent with the exist-
ing domain knowledge [13]. Having large amounts of training data that reflects the 
domain completely can mitigate these inconsistent predictions which is expensive or 
even impossible in biological/engineering domains.

Originally, automatic differentiation was incorporated into a deep neural network 
to obtain a PiNN. The process of learning the nonlinear map between input vec-
tors and the set of labels in a PiNN is constrained to obey any symmetry, invari-
ance, or conversation principles that underlie the training data, where the principles 
are captured as nonlinear partial differential equations. We can characterize the 
incorporation of prior domain knowledge into a deep neural network in three ways 
[14]: (1) Physics-guided neural networks (PgNNs) use off-the-shelf deep learning 
networks to construct an appropriate mapping from input vectors and labels which 
are collected from computations and experiments and curated to ensure compliance 
with the domain’s rules and knowledge. (2) PiNNs use loss functions consisting of 
residuals of physics equations and boundary constraints to build a model that satisfies 
the domain constraints. PgNNs suffer from lack of robustness and generalizability 
whereas PiNNs are not suitable for emerging domains where the differential equa-
tions that govern the complex dynamics underlying the domain are not fully under-
stood. (3) So, physics-encoded neural networks have been proposed where the prior 
knowledge is encoded into the core architecture of a deep neural network.

Please see [14] for a great comparison of the capabilities of PgNNs, PiNNs, and 
PeNNs. PgNNs can be used to learn mappings from sparse data to discover latent 
dependencies among the input data points and for interpolation and still need large 
datasets as their learning really does not incorporate any rules of the domain. PiNNs 
can be used to discover latent dependencies, potential boundary conditions, etc., 
from a training dataset; however, the loss functions in these networks can destabilize 
the learning process. PeNNs can make complex extrapolations based on the input 
data, how they suffer from low convergence rates. Nonetheless, PgNNs, PiNNs, and 
PeNNs have expanded the deep learning network applications to complex scientific 
and engineering applications greatly.

12.4 � DIGITAL TWINS

The concept of a digital twin is not new and has been around at least since 2003 
[15] and formalized in a paper by the National Aeronautical Space Administration 
(NASA) in 2012 [16]. For our purposes, the following definition would serve well—
‘A Digital Twin is a virtual instance of a physical system (twin) that is continually 
updated with the latter’s performance, maintenance, and health status data throughout 
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the physical system’s life cycle’ [17]. With recent advances in AI, simulation, and 
data management, building a digital twin of a physical process/asset is becoming a 
reality. Because of tight coupling, a digital twin of a physical asset/process can be 
used to make predictions about how the physical process will evolve under different 
conditions.

12.5 � DATA-CENTRIC ARTIFICIAL INTELLIGENCE

Traditionally, for an ML task (such as regression, segmentation, etc.), it starts with 
a dataset containing labeled, training instances, and produces the best model for 
the given dataset, i.e., the one that generalizes best on the test dataset. For learning 
the best model for the given dataset, one may try different ML algorithms, different 
deep learning architectures, and tune the hyperparameters (parameters of the ML 
algorithms) to obtain the best model. This approach is said to be model-centric 
artificial intelligence as improving performance on AI task focuses on improvement 
of the model. In contrast, the data-centric artificial intelligence (DCAI) is about 
AI algorithms that understand and, if needed, modify the data, so that AI models 
can be improved. DCAI focuses on systematically changing the dataset so that the 
model performance on an AI task can be improved [18,19]. The difference between 
model-centric and data-centric AI approaches as explained is visually shown in 
Figure 12.1.

As ML tasks are essential for any organization, production machine learning plat-
forms have become necessary for supporting ML tasks [20]. Production machine 
learning platforms support continuous data collection and model building. As new 
data and observations become available in emerging domains such as 2D materials 
engineering, these need to be incorporated into ML models to enhance their predic-
tive power. Although ML models perform well on the training and testing data used 
for building the model, they tend to perform poorly on new data. Therefore, it is 
important to build new models continuously.

FIGURE 12.1  Data Centric AI vs Model centric AI.
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Building an ML model once requires several tasks to prepare the data: explore the 
dataset to understand what it contains, fix fundamental errors such as missing val-
ues, and transform the data into a format needed for the ML technique. As new data 
become available or generated by experiments, the model must be updated to reflect 
the new data. For some ML tasks, the training data needed for an ML task may be 
available in different data sources and in different formats and will need additional 
data operations to collect the data. The quality of a training dataset also plays a major 
role in the quality of the ML model learned from that training dataset. The quality 
of training data must be sufficient to ensure that the ML model learned from that 
training dataset is robust (i.e., will not produce erroneous results) and unbiased (i.e., 
will not always produce the same outcome). Therefore, DCAI provides a fuller view 
of all technologies needed to build a production machine learning platform to build 
accurate and effective ML models with low cost and high efficiency.

The following issues are central to DCAI and are explained more in the following 
sections.

	 1.	Data collection and cleaning
	 2.	Robust and fair model training
	 3.	Continuous learning

12.5.1 � Data Collection

Data collection issues for building an ML model include finding the right type of data 
that is suitable for the task at hand. If one wants to build a model for identifying stop 
signs in an image, the training set must consist of an image with and without stop 
signs as well images with stop signs of different sizes and seen from different angles. 
This kind of data may not be readily available in large quantities. The relevant data 
may need to be discovered and labeled properly, and perhaps added to some existing 
data. Data discovery is the process of searching for data relevant to the ML task at 
hand. Data discovery methods search for data in data storages of an organization or 
over the web. For a 2D materials expert, data may be available in experimental and 
observational data storages, publicly available data banks, and research publications. 
All these data storages may have diverse data which must be processed to discover 
the attributes and values that are relevant to the ML task. Data discovery tools such 
as the Google Data Search can be used to search for datasets that are relevant to 
the ML task. For tabular datasets (such as CSV files containing experimental mea-
surements/settings, descriptions of material attributes, etc.), the data discovery tools 
work especially well because these tools can suggest other features and records that 
can enhance the original dataset. Most public data sources such as PubMed offer 
functionality (APIs) to download relevant datasets whereas data repositories offer 
downloadable datasets.

Once the data are collected, it must be cleaned to make sure that each instance in 
the dataset is complete (no missing values) and contains only valid values. Depending 
on the type of data in the training dataset, the operations to clean the data collected 
and make sure it is valid will be different. For example, for research publication data-
set where each training instance is one paper abstract, data cleaning operations make 
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sure that all instances have titles, publication dates, etc. Data validation operations 
make sure that the values in the publication date for all instances in the dataset are of 
valid format, and the number of pages is a positive integer, etc.

The data collection and validation tasks are more complex for supervised learn-
ing tasks. In this case, it is important that the training dataset does not have selection 
bias, i.e., the dataset used for training is drawn from the distribution of the domain 
where the model will be used for prediction. Training datasets suffer from selection 
bias if the dataset does not reflect instances as the domain evolves or if it does not 
reflect all classes/categories present in the domain. This may happen if the data are 
collected in a biased manner, for example, sales revenue data collected only during 
the holidays, or images of a brain from brain cancer patients, etc., and these situa-
tions must be avoided so that the training dataset is free of selection bias. In terms 
of how much training data is to be collected for a supervised learning task, one can 
use statistical methods.

For supervised learning tasks, each item in the dataset needs to be labeled as 
well. If there are existing labels, semisupervised learning methods can be used to 
predict labels as explained in Section 12.2.2. Otherwise, each training instance must 
be assigned a label by a human annotator. The goal of the data labeling process is to 
assign a label to each data instance with high confidence. Since human annotators 
may not always agree on a label (whether an X-ray image shows disease) for a given 
data instance, each instance in the dataset may be assigned a label by multiple anno-
tators and then is assigned one of those labels as the final label after curation. One 
simple method to assign a label for an instance is to simply choose the label assigned 
by most human annotators (if it exists) or choose a label computed as a function 
of the individual annotations (such as average or maximum value of the individual 
annotations). We can also define functions to assign a confidence score for each label 
assigned to a data instance or a confidence score for each annotator as well.

12.5.2 �R obust and Fair Model Training

Machine learning tasks build models from training data that describe the behavior 
of some domain phenomenon. Once the data are collected, cleaned, and labeled, the 
next step is to build an ML model that learns a function from the training data to 
predict some value or property about the phenomenon. Even after careful cleaning 
and preparing the data to train an ML model, there are no guarantees that the cleaned 
data are, in fact, free from noisy and missing instances and features. Often times, 
some behaviors of the phenomenon (e.g., properties of a metal at an extremely low 
temperature) are missing entirely from the training data or some features that are a 
part of capturing the phenomenon are missing (e.g., the following feature—number 
of days an item was on sale is important to predict the revenue for that item). For 
these reasons, an important question that arises is ‘can we build a robust model from 
the training data, one that can learn to predict from the training data despite the noisy 
and/or missing records or features in the training data?’.

Noisy training data (data containing noisy instances where an instance contains 
wrong values for its features) are typically thought to be a data poisoning attack on 
the training dataset by an adversary. Adversarial training can be used to improve 
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the robustness of a model by using modified objective functions to learn a model that 
predicts different classes for clean data and poisoned data. Other method to learn a 
robust model in the presence of noisy features is to learn an additional model with 
reduced set of features. A poisoned instance may be assigned a different label by the 
original model and the reduced model resulting in robust training.

Adversarial machine learning [21] is a popular area of research that devel-
ops methods for robust model learning in the presence of the attack paradigms as 
described below:

	 1.	Training-Time Adversarial Attach (Backdoor Attack): It aims to gener-
ate a model, an adversarial model, such that it performs well on data that is 
not poisonous (i.e., clean) while predicting an adversarial sample as belong-
ing to an adversarial class.

	 2.	Deployment-Time Adversarial Attack (Weight Attack): Given a benign 
model deployed in a hardware device, the attacker aims at slightly modify-
ing the model parameters in memory so that obtain an adversarial model so 
that adversarial inputs or some benign samples are labeled as adversarial 
sample, whereas other benign samples are labeled as ground truth labels.

	 3.	Inference Time Adversarial Attack: Given a benign model, the attacker 
aims at modifying a benign sample to obtain a corresponding adversarial 
sample such that the prediction is different with a ground-truth label or the 
same with an adversarial label.

Now, let us talk about noisy labels which are very common because typically manual 
methods are used to label datasets, and therefore, it is common to have missing and/
or incorrect labels. Here, we assume that the training instance contains correct fea-
ture values but a wrong label. Sometimes, the human annotators simply disagree on 
which label to assign for a training instance. Robust training in the presence of noisy 
labels received a lot of attention because it is a commonly occurring problem in sev-
eral domains. There are techniques for robust training for every step of the training 
procedure. Various sample-selection techniques are proposed for choosing a subset 
of the training dataset that will lead to robust training. Different neural architectures, 
and loss computing and loss adjustment functions, as well as robust regularization 
functions have been proposed for robust model building [see references for more 
information].

Semisupervised and unsupervised approaches are typically used to deal with 
missing labels. Semisupervised approaches assume that the dataset contains clean 
labeled data together with unlabeled (or incorrectly labeled) data. Methods such as 
Mean-Teacher [9] and MixMatch [22] are used to build models in these cases. For 
unlabeled data, techniques such as self-supervised learning and generative models 
are used [9,22].

We now focus on model fairness where biased data may cause a model to be 
discriminating. Here, the goal is to address bias in training data. Data bias can be 
addressed by preprocessing the training data. Here, data can be repaired to reduce 
bias or use the available data to generate more unbiased data using generative models 
such as generative adversarial networks or GANs. Model fairness can be added as 
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a constraint to the model’s learning function, which may not always be feasible. In 
cases where data or model cannot be repaired to ensure fairness, the model predic-
tions may be postprocessed to mitigate biased predictions which is not generally 
advisable.

The training methods for robust and fair model training address different data 
flaws. There are recent efforts to combine the two training methodologies to build 
models that are both robust and fair. Fair training can be made more robust by 
addressing the scenarios where the attributes that contribute to unfairness are noisy 
or missing. Similarly, robust model training can improve fairness by using adversar-
ial training, removing anomalies, and spurious features. Emerging techniques such 
as FR-Train provides a framework that combines a classifier, a discriminator for fair-
ness, and a discriminator for robustness to build a model that is both fair and robust.

12.5.3 �C ontinuous Learning

Given a data collection, one can learn to build many models from it to predict the 
phenomena in several different scenarios. However, as new data become available 
from experiments and other data sources, it is important to monitor the data con-
tinuously to check if the old training datasets and models can be improved and/or 
new models are needed for predicting new phenomena. Lifelong learning (LL) has 
been proposed to build models that learn as humans do [23] which retain learned 
knowledge from previous tasks and use it to help future learning. A simple method 
for life-long learning is the leader clustering algorithm which works as follows. 
Suppose we have clusters over all previous instances. When a new instance arrives, 
we add it to one of the previously computed clusters that the new instance is most 
similar to. If no such previous cluster exists, we create a new cluster with the new 
instance. Note that in this case, there is no constraint on the number of clusters. 
Semisupervised learning method is the most appropriate method for continuous 
supervised learning. We use the model and the already available labeled data to 
label the newly generated instances.

It is important to identify, as the new data become available, if it is significantly 
different from the old data, i.e., the statistical distribution of the new data is different 
than the old data. If that is the case, it is important to rebuild the models from scratch 
instead of tweaking them to include the new data. Based on the knowledge shared by 
the tasks, the LL approaches’ knowledge can be of two types [23]. Global knowledge 
is where the tasks share a global latent structure and the same is used for the new 
task. Local knowledge is where each task has a specific local knowledge and that 
required for the new task can be chosen from them. The categorization tasks can also 
be done from the type used in the LL approaches. Independent tasks are those where 
the tasks are learned independent of each other yet can share some latent informa-
tion. Dependent tasks usually add a new class each time with a new task in continu-
ous supervised learning and hence depend on previous tasks. The architecture hence 
has to accommodate the previous knowledge of the tasks rather than a simple data, 
task, learner, and output model of isolated (regular) machine learning paradigms.

The main components of a generic LL approach consist of a knowledge store, 
knowledge learner, or the new task model learner [23,24]. The components and flow 
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of the process are shown in the architecture in Figure 12.2. The knowledge learnt 
from the past tasks is stored into the knowledge store, and the knowledge required 
for the new tasks is acquired from the same. The new knowledge learnt for the new 
task from the current data is then stored in the knowledge base for future tasks. 
User output is the required task output like a model or results of the current task. 
The architectures may vary with additional components as the setting demands in 
different learning scenarios. The knowledge base holds the past knowledge such as 
models, any relevant meta knowledge from the data, output of the tasks such as new 
classes generated and learnt from the previous tasks.

Life-long learning research can be grouped into four main areas—supervised, 
unsupervised, semisupervised, and reinforcement learning [23,25,26]. LL super-
vised learning has been designed for classification, object detection, sentiment clas-
sification NLP problems, and cumulative learning, where old classifiers are updated 
with new classes using neural networks. The LL unsupervised learning research has 
mostly focused on topic modeling and information extraction problems. The top-
ics extracted in previous tasks from multiple domains can be used for future tasks 
and stored into the knowledge base. Semisupervised learning setting for LL has 
been studied as a never-ending language learner and has been used for information 
extraction tasks actively performing the extraction by crawling the web to build large 
knowledge bases from various domains. LL reinforcement learning has enabled 
learning from multiple and dynamic environments incorporating previous tasks and 
cross-domain experience into agents improving their decision-making.

With increased progress in LL, to achieve human-like learning capabilities by 
learning from continuous data shifts and previous knowledge, there are challenges 
LL entails that need to be addressed [23,27]. LL requires to store large amounts of 
knowledge from previous tasks continually to assist future tasks and is one of the main 
challenges in LL approaches. It would be infeasible to save such huge knowledge and 

FIGURE 12.2  Architecture of Lifelong machine learning system.
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hence might require further processing to determine what kind of knowledge should 
be stored. Part of such processing might be to decide if the learned knowledge is 
important that might be useful for future tasks and discard unimportant information. 
Also minimizing any errors in the knowledge is another challenge in LL approach. 
New tasks may create errors in the knowledge and would propagate to all the future 
tasks corrupting the knowledge and require techniques to mitigate such errors. Apart 
from storing the knowledge, representing such huge data is also inevitable and hence 
requires knowledge representation techniques to address the challenge.

12.6 � GPT MODELS

With the introduction of transformer models, natural language-processing models 
have seen astonishing improvement, revolutionizing the AI community by alter-
ing the dynamics of NLP models usage on the internet. Open AI’s GPT (generative 
pretrained transformers) models belong under such a category. BERT (bidirec-
tional encoder representations from transformers)-pretrained foundation models are 
trained on large datasets and applied to various downstream tasks, often trained for 
a specific kind of downstream task separately [28]. GPT models have approached 
this task in two stages: (1) unsupervised pretraining, leveraging large unlabeled text 
corpus for training the models rather than using fully labeled datasets for discrimina-
tive training of specific tasks. (2) Supervised fine-tuning, GPT models learned from 
stage 1 are further fine-tuned requiring only minimal labeled data for specific down-
stream tasks. This architecture has not only observed a boost in performance traits 
but also leveraged large unlabeled data resources from various domains available in 
abundance, making it a semisupervised learning paradigm. This has improved the 
generalization capabilities of GPT models for a wide range of tasks such as sum-
marization, classification, translation, sentiment analysis, question answering, and 
more. In order for the model to adapt to these varieties of tasks, task-specific input 
transformations are performed by converting input data into token sequences. GPT 
models have also shown improved performance in modeling long-range structures 
in the data. They have also demonstrated zero-shot performance on various tasks.

The first GPT models were pretrained on BooksCorpus containing 7000 unpub-
lished books [29], on a 12-layer transformer architecture as shown in Figure 12.3, 
comprising decoder-only transformer and masked self-attention heads, 768 encoded 
tokens dimension for word embedding, trained with 117M parameters. Inspired by 
the performance of the model trained on large dataset and the architecture, GPT-2 
was modeled to be trained on larger dataset with even more parameters attributing to 
a larger model. With its high-capacity language model, GPT-2 achieved significant 
improvement in zero-shot task transfer performance setting a baseline. GPT-2 was 
constructed with 48 layers model [30], with a word embedding vector dimension of 
1600, trained with 1.5B parameters on WebText dataset of 40GB with over 8 million 
documents. Unlike GPT, GPT-2 is not fine-tuned for any specific task rather used in 
zero-shot manner.

These language models provided a foundation inspiring to build models with 
larger capacity, trained on larger datasets from different domains to generalize 
on multiple tasks in a zero-shot setting, scaling the language models toward large 
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language models like GPT-3. This scaling has been observed to achieve state-of-the-
art performances in NLP tasks including question-answering, translation, on-the-fly 
reasoning in a few-shot, and zero-shot setting. GPT-3 is an autoregressive model 
built with 96 layers [31], increased embedding vector dimension of 12888, trained 
with 175B parameters on five datasets including Common crawl, WebText2, Books1, 
Books2, and Wikipedia. Though GPT-3 has achieved impressive performance on 
different language model datasets and tasks in quality text generation for news arti-
cles, closed-book question answering, LAMBDA dataset testing long-range depen-
dencies, translation tasks, reading comprehension, common sense reasoning tasks, 
still comes with weaknesses [31,32]. GPT-3 faces limitations in text synthesis while 
synthesizing long sentences by generating repeated sequences. Also, the algorithmic 
limitation where all the tokens are weighed equally leading to inability in differenti-
ating important from unimportant is some of its challenges.

While the first two GPT models have seen their applications in text completion, 
classification, and text-generation tasks, GPT-3 model also found its application in 
conversational AI achieving human-like responses in generating social media con-
tent and chatbots. GPT models have also been used in material science for material 
composition generation [33]. GPT-3 models have also been applied in biomedical and 
healthcare domain as an automatic agent providing instant customer service through 
conversational AI answering trivial questions [32]. GPT-3 and its later version GPT-
3.5 have also been effectively used in extracting and comprehending research papers 
from material science and engineering related databases, and also in interpretative 
and predictive material science applications including protein folding, molecular 
property prediction, and material discovery [34,35].

ChatGPT is one of the large language models that have attracted enormous 
attention of the world for its reasoning, text-generation capabilities in generating 

FIGURE 12.3  Architecture of GPT model with 12-layer decoder only transformer.
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human-like text [36]. ChatGPT is built on GPT-3.5 version and is a sibling model of 
InstructGPT. InstructGPT [37] is a language model trained to follow instructions and 
provide response with a reinforcement learning human feedback. The input prompts 
used for the supervised fine-tuning of the GPT-3 model are those previously submit-
ted to OpenAI API. A reward model is used to incorporate the reinforcement element 
where the responses generated by the fine-tuned model to these user prompts are 
rated by humans and are used to train the reward model. A proximity policy optimi-
zation (PPO) is used as the reinforcement learning model policy of maximizing the 
reward. ChatGPT differs from InstructGPT in terms of data collection setup. Within 
a short span of introduction of ChatGPT, it has found enormous applications in the 
field of education, healthcare, literature, and many more [38]. ChatGPT has been 
used for summarizing research papers, in providing experiential learning for students 
[38], common sense reasoning, software development, and translation being some of 
many applications observed. GPT-4 [39] model has found to exceed ChatGPT in its 
reasoning capabilities providing better responses with increased accuracy.

12.7 � FUTURE DIRECTIONS IN USING ML FOR 2D MATERIALS

Here, we focus on digital twin technology (DTT) as an example for discussing rec-
ommended future directions to enable the use of ML for 2D materials research. DDTs 
have been effectively used for capturing geometrical features and component-level 
performances of many engineered systems [40]. Despite these successes, there exist 
knowledge gaps regarding whether DTTs can be utilized for accelerating 2D materi-
als discovery. Like any other advanced materials, 2D materials and their composites 
also represent complex a physical system, which requires analysis at multiple length 
(e.g., nano- and microscale) and timescales (e.g., service life, seconds to years). 
Considering that the 2D materials are characterized by nanoscale dimensions, the 
analysis become even more complicated because the nanoscale physics for several 
2D materials is yet unknown. For biological applications, unveiling the phenotypical 
and genotypical responses as a function of such nanoscale phenomena is often dif-
ficult. To develop digital twins of 2D materials, especially for biotechnology applica-
tions, it is important to capture, model, and predict their performances (i.e., changes 
in structure, process, and performance) under different processing histories (e.g., 
degradation over time in marine environments). Simultaneously, adequate infra-
structure will be required to integrate the 2D materials’ processing–structure–prop-
erty relationships with the biological response at a genetic level (i.e., omics response).

Focused research efforts will be required to capture such integrative responses at 
different spatial and temporal resolution scales. At a temporal scales, the 2D mate-
rials performances will be needed to capture at a shorter timescales (e.g., seconds 
to minutes, interactions with proteins involved in conditioning phase), relative lon-
ger timescales (e.g., days to weeks, biofilm maturation), and longer timescales (e.g., 
years, macrofouling). It should be noted that the properties of 2D materials would 
change over time, and hence, the 2D-material–microbe interactions at different tim-
escales may not be necessarily related to each another. At a spatial scale, heteroge-
neities across the length scale of 2D materials (e.g., defects, dopants, strain, edges, 
and layer stackings) may result in unpredictable variations. Thus, any DTT of 2D 
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materials, particularly in biological applications, will require a systemic approach 
that has clear vision for the possible trade-offs in terms of multifunctional require-
ments at different length and timescales, which will further vary as a function of 
environmental parameters.

To develop unifying and representative data sets for creating and training DTTs at 
a systemic level, it is beneficial to have a single expert or group of diverse profession-
als guided by a single expert. Such a concerted effort should have clear understanding 
on different 2D materials data modalities, which include physical and morphologi-
cal (based on microscopy and spectroscopy), mechanical (nanoindentation, micro-/
nanomechanical devices, pressurized bulge tests), electrical (current–voltage, Hall 
effect, and 4-point probe tests), electrochemical properties (cyclic voltammetry, 
electrochemical impedance spectroscopy), and biological responses (e.g., omics 
interactions).

Complementary modeling efforts (e.g., DFT and MD simulations) should align 
faithfully with these experimental measurements at selected time and length scales. 
Comprehensive mathematical frameworks will also be needed to fuse the disparate 
materials and biological datasets for assisting development of DTTs. The authors 
firmly believe that such systemic approaches are possible by embracing convergence 
research approaches, similar to the one adopted by the authors’ group in ongoing 
research projects (e.g., data-driven materials discovery for bioengineering innova-
tions, NSF OIA # 1920954). This project intentionally blended diverse disciplinary 
expertise (e.g., biologists, bioinformaticians, computer scientists, corrosion scien-
tists, environmental engineers, and materials scientists) in a concerted and recipro-
cal manner, where the overall efforts were focused on a single inquiry regarding a 
grand challenge of exploring infinitesimally thin 2D coatings for addressing vex-
ing challenges caused by sulfate reducing bacterial biofilms. Readers are suggested 
to review literature to gain a broader understanding on such convergence research 
approaches [41].

To extend the digital twins to include 2D materials data over a hierarchy of length 
scales, novel frameworks that tightly integrate the conceptual chassis with the cyber-
infrastructure are needed. Readers are encouraged to review such framework sug-
gested by Dingreville and his coworkers. This framework consists of the following 
key elements: (1) principal component analysis and N-point correlation functions 
(NPCFs), defined as generating statistical averages over N copies of the phenomena, 
(2) a two-step Bayesian framework for performance prediction, and (3) a cyberin-
frastructure that leverages new material ontologies for managing multimodal mate-
rials data [42]. Such foundational elements have been reported to show a promise 
for extending existing digital twins to incorporate key details of the material over 
different length scales (i.e., atomistic to macroscale) [42]. In conclusion, although 
the idea of implementing DTT for materials is at an infancy stage, their potential 
promises can motivate the readers to explore them through a rigorous R&D effort. 
Practicing professionals have also started exploring DTTs of materials in realistic 
applications (e.g., monitoring marine fouling performance of protective coatings in 
shipping industries). Such DTTs can provide stakeholders with indefinite access to 
a real time and virtual monitoring of evolution of biofouling, including the early 
warning monitoring system for onset of biofouling. This will allow the stakeholders 
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to facilitate early interventions and well-informed decisions. To turn the DTTs into 
a reality, it is also important to embrace advanced data collection technologies (e.g., 
internet of things and embedded sensors), data security guidelines, and finally, the 
effective communication strategies (e.g., dashboard) to inform the promising ben-
efits and potential risks. Finally, advanced microscopy and spectroscopy methods 
are needed to enable remote and viable monitoring of 2D materials properties at a 
nanoscale.
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