O'REILLY"

Mastering Python
for Bioinformatics

How to Write Flexible, Documented,
Tested Python Code for Research Computing

Ken Youens-Clark

O'REILLY"

Mastering Python for Bioinformatics

Life scientists today urgently need training in bioinformatics
skills. Too many bioinformatics programs are poorly written and
barely maintained—usually by students and researchers who've
never learned basic programming skills. This practical guide
shows postdoc bioinformatics professionals and students how
to exploit the best parts of Python to solve problems in biology
while creating documented, tested, reproducible software.

Ken Youens-Clark, author of Tiny Python Projects (Manning),
demonstrates not only how to write effective Python code
but also how to use tests to write and refactor scientific
programs. You'll learn the latest Python features and tools—
including linters, formatters, type checkers, and tests—to
create documented and tested programs. You'll also tackle 14
challenges in Rosalind, a problem-solving platform for learning
bioinformatics and programming.

¢ Create command-line Python programs to document and
validate parameters

* Write tests to verify refactor programs and confirm they're
correct

¢ Address bioinformatics ideas using Python data structures
and modules such as Biopython

* Create reproducible shortcuts and workflows using
makefiles

¢ Parse essential bioinformatics file formats such as FASTA and
FASTQ

e Find patterns of text using regular expressions

¢ Use higher-order functions in Python like filter(), map(). and
reduce()

“Ken's extensive
teaching background
and proven expertise
in bioinformatics
and Python make
these complex topics
approachable and
fun. Whether you're
experienced or new
to Python, you'll learn
best practices to
solve bioinformatics
challenges. Highly
recommended.”

—AlScherer
Technology Director, Follett

Ken Youens-Clark is a data engineer
at Critical Path Institute, helping
partners in industry, academia, and
government find novel drug therapies
for diseases ranging from cancer and
tuberculosis to thousands of rare
diseases. While working as a senior
scientific programmer at the University
of Arizona, he completed an MSin
biosystems engineering. Ken's first
book, Tiny Python Projects, uses a
test-driven development approach for
teaching Python.

BIOINFORMATICS / PYTHON

US $8999 CAN $118.99
ISBN: 978-1-098-10088-9

JOCHERTANINY i

781098"100889

Twitter: @oreillymedia
facebook.com/oreilly

Mastering Python for

Bioinformatics
How to Write Flexible, Documented, Tested

Python Code for Research Computing

Ken Youens-Clark

Bejing - Boston « Farham - Sebastopol - Tokyo [@YRIIIMNY

Mastering Python for Bioinformatics
by Ken Youens-Clark

Copyright © 2021 Charles Kenneth Youens-Clark. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Michelle Smith Indexer: Sue Klefstad

Development Editor: Corbin Collins Interior Designer: David Futato
Production Editor: Caitlin Ghegan Cover Designer: Karen Montgomery
Copyeditor: Sonia Saruba lllustrator: Kate Dullea

Proofreader: Rachel Head
May 2021: First Edition

Revision History for the First Edition
2021-05-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098100889 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Mastering Python for Bioinformatics,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-098-10088-9
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098100889

Table of Contents

o] 1 [« Xi

Partl. The Rosalind.info Challenges

1. Tetranucleotide Frequency: Counting Things.cooiiiiiiiiiiiiiie 3
Getting Started 4
Creating the Program Using new.py 5
Using argparse 7
Tools for Finding Errors in the Code 10
Introducing Named Tuples 12
Adding Types to Named Tuples 15
Representing the Arguments with a NamedTuple 16
Reading Input from the Command Line or a File 18
Testing Your Program 20
Running the Program to Test the Output 23
Solution 1: Iterating and Counting the Characters in a String 25
Counting the Nucleotides 26
Writing and Verifying a Solution 28
Additional Solutions 30
Solution 2: Creating a count() Function and Adding a Unit Test 30
Solution 3: Using str.count() 34
Solution 4: Using a Dictionary to Count All the Characters 35
Solution 5: Counting Only the Desired Bases 38
Solution 6: Using collections.defaultdict() 39
Solution 7: Using collections.Counter() 41
Going Further 42

Review 42

2.

4,

Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files.
Getting Started
Defining the Program’s Parameters
Defining an Optional Parameter
Defining One or More Required Positional Parameters
Using nargs to Define the Number of Arguments
Using argparse.FileType() to Validate File Arguments
Defining the Args Class
Outlining the Program Using Pseudocode
Iterating the Input Files
Creating the Output Filenames
Opening the Output Files
Writing the Output Sequences
Printing the Status Report
Using the Test Suite
Solutions
Solution 1: Using str.replace()
Solution 2: Using re.sub()
Benchmarking
Going Further
Review

. Reverse Complement of DNA: String Manipulation.............................

Getting Started
Iterating Over a Reversed String
Creating a Decision Tree
Refactoring

Solutions
Solution 1: Using a for Loop and Decision Tree
Solution 2: Using a Dictionary Lookup
Solution 3: Using a List Comprehension
Solution 4: Using str.translate()
Solution 5: Using Bio.Seq

Review

Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms.
Getting Started

An Imperative Approach
Solutions

Solution 1: An Imperative Solution Using a List as a Stack

Solution 2: Creating a Generator Function

Solution 3: Using Recursion and Memoization

46
47
47
48
49
49
50
51
52
52
54
55
57
57
60
60
62
64
65
65

67
68
70
72
73
74
75
75
78
78
81
82

83
84
89
91
91
93
96

iv

Table of Contents

Benchmarking the Solutions

Testing the Good, the Bad, and the Ugly
Running the Test Suite on All the Solutions
Going Further

Review

5. Computing GC Content: Parsing FASTA and Analyzing Sequences.

Getting Started
Get Parsing FASTA Using Biopython
Iterating the Sequences Using a for Loop
Solutions
Solution 1: Using a List
Solution 2: Type Annotations and Unit Tests
Solution 3: Keeping a Running Max Variable
Solution 4: Using a List Comprehension with a Guard
Solution 5: Using the filter() Function

Solution 6: Using the map() Function and Summing Booleans

Solution 7: Using Regular Expressions to Find Patterns
Solution 8: A More Complex find_gc() Function
Benchmarking
Going Further
Review

6. Finding the Hamming Distance: Counting Point Mutations. . ..
Getting Started
Iterating the Characters of Two Strings
Solutions
Solution 1: Iterating and Counting
Solution 2: Creating a Unit Test
Solution 3: Using the zip() Function
Solution 4: Using the zip_longest() Function
Solution 5: Using a List Comprehension
Solution 6: Using the filter() Function
Solution 7: Using the map() Function with zip_longest()

Solution 8: Using the starmap() and operator.ne() Functions

Going Further
Review

7. Translating mRNA into Protein: More Functional Programming
Getting Started
K-mers and Codons
Translating Codons

100
102
103
109
109

m
112
115
118
120
120
123
127
129
130
130
131
132
134
134
135

137
138
141
142
142
143
145
147
148
149
150
151
153
153

155
155
157
160

Table of Contents

| v

Solutions 161

Solution 1: Using a for Loop 161
Solution 2: Adding Unit Tests 162
Solution 3: Another Function and a List Comprehension 165
Solution 4: Functional Programming with the map(), partial(), and
takewhile() Functions 167
Solution 5: Using Bio.Seq.translate() 169
Benchmarking 170
Going Further 170
Review 170
8. Find a Motif in DNA: Exploring Sequence Similarity..............c...ooevunnnt 17
Getting Started 171
Finding Subsequences 173
Solutions 175
Solution 1: Using the str.find() Method 176
Solution 2: Using the str.index() Method 177
Solution 3: A Purely Functional Approach 179
Solution 4: Using K-mers 181
Solution 5: Finding Overlapping Patterns Using Regular Expressions 183
Benchmarking 184
Going Further 185
Review 185
9. Overlap Graphs: Sequence Assembly Using Shared K-mers. 187
Getting Started 188
Managing Runtime Messages with STDOUT, STDERR, and Logging 192
Finding Overlaps 195
Grouping Sequences by the Overlap 196
Solutions 200
Solution 1: Using Set Intersections to Find Overlaps 200
Solution 2: Using a Graph to Find All Paths 203
Going Further 208
Review 208
10. Finding the Longest Shared Subsequence: Finding K-mers, Writing Functions, and

Using Binary Search.covuiiiiiiiiiiiiiiiiii it iiiiiieeannes 21
Getting Started 211
Finding the Shortest Sequence in a FASTA File 213
Extracting K-mers from a Sequence 215
Solutions 217
Solution 1: Counting Frequencies of K-mers 217

vi

Table of Contents

1.

12.

13.

14.

Solution 2: Speeding Things Up with a Binary Search
Going Further
Review

Finding a Protein Motif: Fetching Data and Using Regular Expressions.............

Getting Started
Downloading Sequences Files on the Command Line
Downloading Sequences Files with Python
Writing a Regular Expression to Find the Motif
Solutions
Solution 1: Using a Regular Expression
Solution 2: Writing a Manual Solution
Going Further
Review

Inferring mRNA from Protein: Products and Reductions of Lists. . .

Getting Started
Creating the Product of Lists
Avoiding Overflow with Modular Multiplication
Solutions
Solution 1: Using a Dictionary for the RNA Codon Table
Solution 2: Turn the Beat Around
Solution 3: Encoding the Minimal Information
Going Further
Review

Location Restriction Sites: Using, Testing, and Sharing Code.

Getting Started
Finding All Subsequences Using K-mers
Finding All Reverse Complements
Putting It All Together
Solutions
Solution 1: Using the zip() and enumerate() Functions
Solution 2: Using the operator.eq() Function
Solution 3: Writing a revp() Function
Testing the Program
Going Further
Review

Finding Open Reading Frames.ccovvviiiiinnnen

Getting Started
Translating Proteins Inside Each Frame

220
226
226

227
227
230
233
235
237
237
239
244
244

245
245
247
249
251
251
257
259
260
261

263
264
266
267
267
268
268
270
271
272
274
274

275
275
277

Table of Contents

vii

Finding the ORFs in a Protein Sequence 279

Solutions 280
Solution 1: Using the str.index() Function 280
Solution 2: Using the str.partition() Function 282
Solution 3: Using a Regular Expression 284

Going Further 286

Review 286

Partll. Other Programs

15. Seqmagique: Creating and Formatting Reports..............ccoovviiennnenn.. 289
Using Seqmagick to Analyze Sequence Files 290
Checking Files Using MD5 Hashes 291
Getting Started 293

Formatting Text Tables Using tabulate() 295
Solutions 296
Solution 1: Formatting with tabulate() 296
Solution 2: Formatting with rich 303
Going Further 305
Review 306

16. FASTX grep: Creating a Utility Program to Select Sequences.................... 307
Finding Lines in a File Using grep 308
The Structure of a FASTQ Record 308
Getting Started 311

Guessing the File Format 315
Solution 317
Going Further 327
Review 327

17. DNA Synthesizer: Creating Synthetic Data with Markov Chains. 329
Understanding Markov Chains 329
Getting Started 332

Understanding Random Seeds 335

Reading the Training Files 337

Generating the Sequences 340

Structuring the Program 343
Solution 343
Going Further 347
Review 347

vii | Table of Contents

18. FASTX Sampler: Randomly Subsampling SequenceFiles........................ 349

Getting Started 349
Reviewing the Program Parameters 350
Defining the Parameters 352
Nondeterministic Sampling 354
Structuring the Program 356

Solutions 356
Solution 1: Reading Regular Files 357
Solution 2: Reading a Large Number of Compressed Files 358

Going Further 360

Review 360

19. Blastomatic: Parsing Delimited TextFiles............ccovviiiiiiiiiiiiiin.n, 361

Introduction to BLAST 361

Using csvkit and csvchk 364

Getting Started 368
Defining the Arguments 371
Parsing Delimited Text Files Using the csv Module 373
Parsing Delimited Text Files Using the pandas Module 377

Solutions 383
Solution 1: Manually Joining the Tables Using Dictionaries 383
Solution 2: Writing the Output File with csv.DictWriter() 384
Solution 3: Reading and Writing Files Using pandas 385
Solution 4: Joining Files Using pandas 387

Going Further 390

Review 390

A. Documenting Commands and Creating Workflows with make.................... 391
B. Understanding $PATH and Installing Command-Line Programs. 405
EPIlOgUE. ..ot e e e ae 409
INAEX. m

Table of Contents | ix

Preface

Programming is a force multiplier. We can write computer programs to free ourselves
from tedious manual tasks and to accelerate research. Programming in any language
will likely improve your productivity, but each language has different learning curves
and tools that improve or impede the process of coding.

There is an adage in business that says you have three choices:

1. Fast
2. Good
3. Cheap

Pick any two.

When it comes to programming languages, Python hits a sweet spot in that it’s fast
because it’s fairly easy to learn and to write a working prototype of an idea—it’s pretty
much always the first language I'll use to write any program. I find Python to be
cheap because my programs will usually run well enough on commodity hardware
like my laptop or a tiny AWS instance. However, I would contend that it’s not neces-
sarily easy to make good programs using Python because the language itself is fairly
lax. For instance, it allows one to mix characters and numbers in operations that will
crash the program.

This book has been written for the aspiring bioinformatics programmer who wants to
learn about Python’s best practices and tools such as the following:

o Since Python 3.6, you can add type hints to indicate, for instance, that a variable
should be a type like a number or a list, and you can use the mypy tool to ensure
the types are used correctly.

o Testing frameworks like pytest can exercise your code with both good and bad
data to ensure that it reacts in some predictable way.

Xi

o Tools like pylint and flake8 can find potential errors and stylistic problems that
would make your programs more difficult to understand.

o The argparse module can document and validate the arguments to your
programs.

 The Python ecosystem allows you to leverage hundreds of existing modules like
Biopython to shorten programs and make them more reliable.

Using these tools practices individually will improve your programs, but combining
them all will improve your code in compounding ways. This book is not a textbook
on bioinformatics per se. The focus is on what Python offers that makes it suitable for
writing scientific programs that are reproducible. That is, I'll show you how to design
and test programs that will always produce the same outputs given the same inputs.
Bioinformatics is saturated with poorly written, undocumented programs, and my
goal is to reverse this trend, one program at a time.

The criteria for program reproducibility include:

Parameters
All program parameters can be set as runtime arguments. This means no hard-
coded values which would require changing the source code to change the pro-
gram’s behavior.

Documentation
A program should respond to a - -help argument by printing the parameters and
usage.

Testing
You should be able to run a test suite that proves the code meets some
specifications

You might expect that this would logically lead to programs that are perhaps correct,
but alas, as Edsger Dijkstra famously said, “Program testing can be used to show the
presence of bugs, but never to show their absence!”

Most bioinformaticians are either scientists who've learned programming or pro-
grammers who've learned biology (or people like me who had to learn both). No mat-
ter how you've come to the field of bioinformatics, I want to show you practical
programming techniques that will help you write correct programs quickly. I'll start
with how to write programs that document and validate their arguments. Then I'll
show how to write and run tests to ensure the programs do what they purport.

For instance, the first chapter shows you how to report the tetranucleotide frequency
from a string of DNA. Sounds pretty simple, right? It’s a trivial idea, but I'll take about
40 pages to show how to structure, document, and test this program. I'll spend a lot

xii | Preface

of time on how to write and test several different versions of the program so that I
can explore many aspects of Python data structures, syntax, modules, and tools.

Who Should Read This?

You should read this book if you care about the craft of programming, and if you
want to learn how to write programs that produce documentation, validate their
parameters, fail gracefully, and work reliably. Testing is a key skill both for under-
standing your code and for verifying its correctness. I'll show you how to use the tests
I've written as well as how to write tests for your programs.

To get the most out of this book, you should already have a solid understanding of
Python. I will build on the skills I taught in Tiny Python Projects (Manning, 2020),
where I show how to use Python data structures like strings, lists, tuples, dictionaries,
sets, and named tuples. You need not be an expert in Python, but I definitely will
push you to understand some advanced concepts I introduce in that book, such as
types, regular expressions, and ideas about higher-order functions, along with testing
and how to use tools like pylint, flake8, yapf, and pytest to check style, syntax,
and correctness. One notable difference is that I will consistently use type annotations
for all code in this book and will use the mypy tool to ensure the correct use of types.

Programming Style: Why | Avoid 00OP and Exceptions

I tend to avoid object-oriented programming (OOP). If you dont know what OOP
means, that's OK. Python itself is an OO language, and almost every element from a
string to a set is technically an object with internal state and methods. You will
encounter enough objects to get a feel for what OOP means, but the programs I
present will mostly avoid using objects to represent ideas.

That said, Chapter 1 shows how to use a class to represent a complex data structure.
The class allows me to define a data structure with type annotations so that I can
verify that I'm using the data types correctly. It does help to understand a bit about
OOP. For instance, classes define the attributes of an object, and classes can inherit
attributes from parent classes, but this essentially describes the limits of how and why
I use OOP in Python. If you don’t entirely follow that right now, don’t worry. You'll
understand it once you see it.

Instead of object-oriented code, I demonstrate programs composed almost entirely of
functions. These functions are also pure in that they will only act on the values given
to them. That is, pure functions never rely on some hidden, mutable state like global
variables, and they will always return the same values given the same arguments.
Additionally, every function will have an associated test that I can run to verify it
behaves predictably. It's my opinion that this leads to shorter programs that are more
transparent and easier to test than solutions written using OOP. You may disagree

Preface | xiii

and are of course welcome to write your solutions using whatever style of program-
ming you prefer, so long as they pass the tests. The Python Functional Programming
HOWTO documentation makes a good case for why Python is suited for functional
programming (FP).

Finally, the programs in this book also avoid the use of exceptions, which I think is
appropriate for short programs you write for personal use. Managing exceptions so
that they don’t interrupt the flow of a program adds another level of complexity that I
feel detracts from one’s ability to understand a program. I'm generally unhappy with
how to write functions in Python that return errors. Many people would raise an
exception and let a try/catch block handle the mistakes. If I feel an exception is war-
ranted, I will often choose to not catch it, instead letting the program crash. In this
respect, I'm following an idea from Joe Armstrong, the creator of the Erlang lan-
guage, who said, “The Erlang way is to write the happy path, and not write twisty lit-
tle passages full of error correcting code”

If you choose to write programs and modules for public release, you will need to
learn much more about exceptions and error handling, but that’s beyond the scope of
this book.

Structure

The book is divided into two main parts. The first part tackles 14 of the programming
challenges found at the Rosalind.info website.! The second part shows more compli-
cated programs that demonstrate other patterns or concepts I feel are important in
bioinformatics. Every chapter of the book describes a coding challenge for you to
write and provides a test suite for you to determine when you've written a working
program.

Although the “Zen of Python” says “There should be one—and preferably only one—
obvious way to do it,” I believe you can learn quite a bit by attempting many different
approaches to a problem. Perl was my gateway into bioinformatics, and the Perl com-
munity’s spirit of “There’s More Than One Way To Do It” (TMTOWTDI) still reso-
nates with me. I generally follow a theme-and-variations approach to each chapter,
showing many solutions to explore different aspects of Python syntax and data struc-
tures.

1 Named for Rosalind Franklin, who should have received a Nobel Prize for her contributions to discovering
the structure of DNA.

xiv | Preface

https://docs.python.org/3/howto/functional.html
https://docs.python.org/3/howto/functional.html
http://rosalind.info/about
https://oreil.ly/20PSy

Test-Driven Development

More than the act of testing, the act of designing tests is one of the best bug preventers
known. The thinking that must be done to create a useful test can discover and elimi-
nate bugs before they are coded—indeed, test-design thinking can discover and elimi-
nate bugs at every stage in the creation of software, from conception to specification, to
design, coding, and the rest.

—Boris Beizer, Software Testing Techniques (Thompson Computer Press)
Underlying all my experimentation will be test suites that I'll constantly run to ensure
the programs continue to work correctly. Whenever I have the opportunity, I try to
teach test-driven development (TDD), an idea explained in a book by that title written

by Kent Beck (Addison-Wesley, 2002). TDD advocates writing tests for code before
writing the code. The typical cycle involves the following:

Add a test.
Run all tests and see if the new test fails.
Write the code.

Run tests.

Refactor code.

A A o

Repeat.

In the book’s GitHub repository, you'll find the tests for each program you’ll write. I'll
explain how to run and write tests, and I hope by the end of the material you’ll believe
in the common sense and basic decency of using TDD. I hope that thinking about
tests first will start to change the way you understand and explore coding.

Using the Command Line and Installing Python

My experience in bioinformatics has always been centered around the Unix com-
mand line. Much of my day-to-day work has been on some flavor of Linux server,
stitching together existing command-line programs using shell scripts, Perl, and
Python. While I might write and debug a program or a pipeline on my laptop, I will
often deploy my tools to a high-performance compute (HPC) cluster where a schedu-
ler will run my programs asynchronously, often in the middle of the night or over a
weekend and without any supervision or intervention by me. Additionally, all my
work building databases and websites and administering servers is done entirely from
the command line, so I feel strongly that you need to master this environment to be
successful in bioinformatics.

I used a Macintosh to write and test all the material for this book, and macOS has the
Terminal app you can use for a command line. I have also tested all the programs

Preface | xv

https://oreil.ly/yrTZZ

using various Linux distributions, and the GitHub repository includes instructions
on how to use a Linux virtual machine with Docker. Additionally, I tested all the pro-
grams on Windows 10 using the Ubuntu distribution Windows Subsystem for Linux
(WSL) version 1. I highly recommend WSL for Windows users to have a true Unix
command line, but Windows shells like cmd . exe, PowerShell, and Git Bash can some-
times work sufficiently well for some programs.

I would encourage you to explore integrated development environments (IDEs) like
VS Code, PyCharm, or Spyder to help you write, run, and test your programs. These
tools integrate text editors, help documentation, and terminals. Although I wrote all
the programs, tests, and even this book using the vim editor in a terminal, most peo-
ple would probably prefer to use at least a more modern text editor like Sublime,
TextMate, or Notepad++.

I wrote and tested all the examples using Python versions 3.8.6 and 3.9.1. Some
examples use Python syntax that was not present in version 3.6, so I would recom-
mend you not use that version. Python version 2.x is no longer supported and should
not be used. I tend to get the latest version of Python 3 from the Python download
page, but I've also had success using the Anaconda Python distribution. You may
have a package manager like apt on Ubuntu or brew on Mac that can install a recent
version, or you may choose to build from source. Whatever your platform and instal-
lation method, I would recommend you try to use the most recent version as the lan-
guage continues to change, mostly for the better.

Note that I've chosen to present the programs as command-line programs and not as
Jupyter Notebooks for several reasons. I like Notebooks for data exploration, but the
source code for Notebooks is stored in JavaScript Object Notation (JSON) and not as
line-oriented text. This makes it very difficult to use tools like diff to find the differ-
ences between two Notebooks. Also, Notebooks cannot be parameterized, meaning I
cannot pass in arguments from outside the program to change the behavior but
instead have to change the source code itself. This makes the programs inflexible and
automated testing impossible. While I encourage you to explore Notebooks, espe-
cially as an interactive way to run Python, I will focus on how to write command-line
programs.

Getting the Code and Tests

All the code and tests are available from the book’s GitHub repository. You can use
the program Git (which you may need to install) to copy the code to your computer
with the following command. This will create a new directory called biofx_python on
your computer with the contents of the repository:

$ git clone https://github.com/kyclark/biofx_python

xvi | Preface

https://www.python.org/downloads
https://www.python.org/downloads
https://www.anaconda.com

If you enjoy using an IDE, it may be possible to clone the repository through that
interface, as shown in Figure P-1. Many IDEs can help you manage projects and write
code, but they all work differently. To keep things simple, I will show how to use the
command line to accomplish most tasks.

[JON) Get from Version Control
IJ Repository URL Version control: | Git v
O GitHub URL: https://github.com/kyclark/biofx_python v
kyclark

Directory: | /Users/kyclark/work/pycharm/biofx_python
O GitHub Enterprise
No accounts

Figure P-1. The PyCharm tool can directly clone the GitHub repository for you

Some tools, like PyCharm, may automatically try to create a virtual
environment inside the project directory. This is a way to insulate
the version of Python and modules from other projects on your
computer. Whether or not you use virtual environments is a per-
sonal preference. It is not a requirement to use them.

You may prefer to make a copy of the code in your own account so that you can track
your changes and share your solutions with others. This is called forking because
you’re breaking off from my code and adding your programs to the repository.

To fork my GitHub repository, do the following:

1. Create an account on GitHub.com.
2. Go to https://github.com/kyclark/biofx_python.

3. Click the Fork button in the upper-right corner (see Figure P-2) to make a copy
of the repository in your account.

Preface | xvii

https://github.com/kyclark/biofx_python

& kyclark / biofx_python ®uUnwatch v | 4 | | ¥ Star | 13

<> Code @© Issues 1 Pull requests ® Actions [Projects 00 wiki @ Security

main ~ Go to file Add file ~ About o3

Code for Mastering

@ kyclark Update README.md [17 days ago 133 Python for Bioinformatics
(O'Reilly, 2021, ISBN

B 0l_dna revisions 2 months ago 9781098100889)

| 02_rna 9gzip reader 2 months ago 0 Readme

B 03_reve updating READMEs 2 months ago &5 MIT License

Figure P-2. The Fork button on my GitHub repository will make a copy of the code in
your account

Now that you have a copy of all my code in your repository, you can use Git to copy
that code to your computer. Be sure to replace YOUR_GITHUB_ID with your actual Git-
Hub ID:

$ git clone https://github.com/YOUR_GITHUB_ID/biofx_python

I may update the repo after you make your copy. If you would like to be able to get
those updates, you will need to configure Git to set my repository as an upstream
source. To do so, after you have cloned your repository to your computer, go into
your biofx_python directory:

$ cd biofx_python
Then execute this command:
$ git remote add upstream https://github.com/kyclark/biofx_python.git

Whenever you would like to update your repository from mine, you can execute this
command:

$ git pull upstream main

Installing Modules

You will need to install several Python modules and tools. I've included a require-
ments.txt file in the top level of the repository. This file lists all the modules needed to
run the programs in the book. Some IDEs may detect this file and offer to install
these for you, or you can use the following command:

$ python3 -m pip install -r requirements.txt

xviii | Preface

Or use the pip3 tool:
$ pip3 install -r requirements.txt

Sometimes pylint may complain about some of the variable names in the programs,
and mypy will raise some issues when you import modules that do not have type
annotations. To silence these errors, you can create initialization files in your home
directory that these programs will use to customize their behavior. In the root of the
source repository, there are files called pylintrc and mypy.ini that you should copy to
your home directory like so:

$ cp pylintrc ~/.pylintrc
$ cp mypy.ini ~/.mypy.ini

Alternatively, you can generate a new pylintrc with the following command:

$cd ~
$ pylint --generate-rcfile > .pylintrc

Feel free to customize these files to suit your tastes.

Installing the new.py Program

I wrote a Python program called new.py that creates Python programs. So meta, I
know. I wrote this for myself and then gave it to my students because I think it's quite
difficult to start writing a program from an empty screen. The new.py program will
create a new, well-structured Python program that uses the argparse module to
interpret command-line arguments. It should have been installed in the preceding
section with the module dependencies. If not, you can use the pip module to install
it, like so:

$ python3 -m pip install new-py
You should now be able to execute new.py and see something like this:

$ new.py

usage: new.py [-h] [-n NAME] [-e EMAIL] [-p PURPOSE] [-t] [-f] [--version]
program

new.py: error: the following arguments are required: program

Each exercise will suggest that you use new.py to start writing your new programs.

For instance, in Chapter 1 you will create a program called dna.py in the 01_dna
directory, like so:

$ cd 01_dna/

$ new.py dna.py

Done, see new script "dna.py".
If you then execute ./dna.py --help, you will see that it generates help documenta-
tion on how to use the program. You should open the dna.py program in your editor,

Preface | xix

modify the arguments, and add your code to satisfy the requirements of the program
and the tests.

Note that it's never a requirement that you use new.py. I only offer this as an aid to
getting started. This is how I start every one of my own programs, but, while I find it
useful, you may prefer to go a different route. As long as your programs pass the test
suites, you are welcome to write them however you please.

Why Did | Write This Book?

Richard Hamming spent decades as a mathematician and researcher at Bell Labs. He
was known for seeking out people he didn't know and asking them about their
research. Then he would ask them what they thought were the biggest, most pressing
unanswered questions in their field. If their answers for both of these weren’t the
same, hed ask, “So why aren’t you working on that?”

I feel that one of the most pressing problems in bioinformatics is that much of the
software is poorly written and lacks proper documentation and testing, if it has any at
all. T want to show you that it’s less difficult to use types and tests and linters and for-
matters because it will prove easier over time to add new features and release more
and better software. You will have the confidence to know for certain when your pro-
gram is correct, for at least some measure of correctness.

To that end, I will demonstrate best practices in software development. Though I'm
using Python as the medium, the principles apply to any language from C to R to
JavaScript. The most important thing you can learn from this book is the craft of
developing, testing, documenting, releasing, and supporting software, so that
together we can all advance scientific research computing.

My career in bioinformatics was a product of wandering and happy accidents. I stud-
ied English literature and music in college, and then started playing with databases,
HTML, and eventually learned programming on the job in the mid-1990s. By 2001,
I'd become a decent Perl hacker, and I managed to get a job as a web developer for Dr.
Lincoln Stein, an author of several Perl modules and books, at Cold Spring Harbor
Laboratory (CSHL). He and my boss, Dr. Doreen Ware, patiently spoon-fed me
enough biology to understand the programs they wanted to be written. I spent 13
years working on a comparative plant genomics database called Gramene.org, learn-
ing a decent amount of science while continuing to explore programming languages
and computer science.

Lincoln was passionate about sharing everything from data and code to education.
He started the Programming for Biology course at CSHL, a two-week intensive crash
course to teach Unix command-line, Perl programming, and bioinformatics skills.
The course is still being taught, although using Python nowadays, and I've had several

xx | Preface

opportunities to act as a teaching assistant. I've always found it rewarding to help
someone learn a skill they will use to further their research.

It was during my tenure at CSHL that I met Bonnie Hurwitz, who eventually left to
pursue her PhD at the University of Arizona (UA). When she started her new lab at
UA, I was her first hire. Bonnie and I worked together for several years, and teaching
became one of my favorite parts of the job. As with Lincoln’s course, we introduced
basic programming skills to scientists who wanted to branch out into more computa-
tional approaches.

Some of the materials I wrote for these classes became the foundation for my first
book, Tiny Python Projects, where I try to teach the essential elements of Python lan-
guage syntax as well as how to use tests to ensure that programs are correct and
reproducible—elements crucial to scientific programming. This book picks up from
there and focuses on the elements of Python that will help you write programs for
biology.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions, as
well as codons and DNA bases.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

Preface | xxi

This element signifies a general note.

This element indicates a warning or caution.

N

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/kyclark/biofx_python.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O'Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per-
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Mastering Python for
Bioinformatics by Ken Youens-Clark (O’Reilly). Copyright 2021 Charles Kenneth
Youens-Clark, 978-1-098-10088-9

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

xxii | Preface

https://github.com/kyclark/biofx_python
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/mastering-bioinformatics-
python.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I want to thank the many people who have reviewed this book, including my editor,
Corbin Collins; the entire production team but especially my production editor,
Caitlin Ghegan; my technical reviewers, Al Scherer, Brad Fulton, Bill Lubanovic,
Rangarajan Janani, and Joshua Orvis; and the many other people who provided
much-appreciated feedback, including Mark Henderson, Marc Bafiuls Tornero, and
Dr. Scott Cain.

In my professional career, I've been extremely fortunate to have had many wonderful
bosses, supervisors, and colleagues who've helped me grow and pushed me to be bet-
ter. Eric Thorsen was the first person to see I had the potential to learn how to code,
and he helped me learn various languages and databases as well as important lessons
about sales and support. Steve Reppucci was my boss at boston.com, and he provided

Preface | xxiii

http://oreilly.com
https://oreil.ly/mastering-bioinformatics-python
https://oreil.ly/mastering-bioinformatics-python
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

a much deeper understanding of Perl and Unix and how to be an honest and thought-
ful team leader. Dr. Lincoln Stein at CSHL took a chance to hire someone who had no
knowledge of biology to work in his lab, and he pushed me to create programs I
didn’t imagine I could. Dr. Doreen Ware patiently taught me biology and pushed me
to assume leadership roles and publish. Dr. Bonnie Hurwitz supported me through
many years of learning about high-performance computing, more programming lan-
guages, mentoring, teaching, and writing. In every position, I also had many
colleagues who taught me as much about programming as about being human, and I
thank everyone who has helped me along the way.

In my personal life, I would be nowhere without my family, who have loved and sup-
ported me. My parents have shown great support throughout my life, and I surely
wouldn’t be the person I am without them. Lori Kindler and I have been married 25
years, and I can’t imagine a life without her. Together we generated three offspring
who have been an incredible source of delight and challenge.

xxiv | Preface

PART |
The Rosalind.info Challenges

The chapters in this part explore the elements of Python’s syntax and tooling that will
enable you to write well-structured, documented, tested, and reproducible programs.
I'll show you how to solve 14 challenges from Rosalind.info. These problems are
short and focused and allow for many different solutions that will help you explore
Python. I'll also teach you how to write a program, step-by-step, using tests to guide
you and to let you know when you're done. I encourage you to read the Rosalind page
for each problem, as I do not have space to recapitulate all the background and infor-
mation there.

http://rosalind.info

CHAPTER1

Tetranucleotide Frequency:
Counting Things

Counting the bases in DNA is perhaps the “Hello, World!” of bioinformatics. The
Rosalind DNA challenge describes a program that will take a sequence of DNA and
print a count of how many As, Cs, Gs, and Ts are found. There are surprisingly many
ways to count things in Python, and I'll explore what the language has to offer. I'll
also demonstrate how to write a well-structured, documented program that validates
its arguments as well as how to write and run tests to ensure the program works
correctly.

In this chapter, you'll learn:

» How to start a new program using new.py

« How to define and validate command-line arguments using argparse
o How to run a test suite using pytest

« How to iterate the characters of a string

« Ways to count elements in a collection

» How to create a decision tree using if/elif statements

« How to format strings

https://oreil.ly/maR31
https://oreil.ly/maR31

Getting Started

Before you start, be sure you have read “Getting the Code and Tests” on page xvi in
the Preface. Once you have a local copy of the code repository, change into the
01_dna directory:

$ cd 01_dna

Here you'll find several solution*.py programs along with tests and input data you
can use to see if the programs work correctly. To get an idea of how your program
should work, start by copying the first solution to a program called dna. py:

$ cp solutioni_iter.py dna.py

Now run the program with no arguments, or with the -h or - -help flags. It will print
usage documentation (note that usage is the first word of the output):

$./dna.py
usage: dna.py [-h] DNA
dna.py: error: the following arguments are required: DNA

If you get an error like “permission denied,” you may need to run
chmod +x dna.py to change the mode of the program by adding
the executable bit.

This is one of the first elements of reproducibility. Programs should provide documen-
tation on how they work. While it's common to have something like a README file or
even a paper to describe a program, the program itself must provide documentation
on its parameters and outputs. I'll show you how to use the argparse module to
define and validate the arguments as well as to generate the documentation, meaning
that there is no possibility that the usage statement generated by the program could
be incorrect. Contrast this with how README files and change logs and the like can
quickly fall out of sync with a program’s development, and I hope you’ll appreciate
that this sort of documentation is quite effective.

You can see from the usage line that the program expects something like DNA as an
argument, so let’s give it a sequence. As described on the Rosalind page, the program
prints the counts for each of the bases A, C, G, and T, in that order and separated by a
single space each:

$./dna.py ACCGGGTTTT
1234

When you go to solve a challenge on the Rosalind.info website, the input for your
program will be provided as a downloaded file; therefore, I'll write the program so

4 | Chapter 1: Tetranucleotide Frequency: Counting Things

that it will also read the contents of a file. I can use the command cat (for concate-
nate) to print the contents of one of the files in the tests/inputs directory:

$ cat tests/inputs/input2.txt

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC
This is the same sequence shown in the example on the website. Accordingly, I know
that the output of the program should be this:

$./dna.py tests/inputs/input2.txt

20 12 17 21
Throughout the book, I'll use the pytest tool to run the tests that ensure programs
work as expected. When I run the command pytest, it will recursively search the
current directory for tests and functions that look like tests. Note that you may need
to run python3 -m pytest or pytest.exe if you are on Windows. Run this now, and

you should see something like the following to indicate that the program passes all
four of the tests found in the tests/dna_test.py file:

$ pytest
test session starts

collected 4 items
tests/dna_test.py [100%]

4 passed in 0.41s

A key element to testing software is that you run your program with
known inputs and verify that it produces the correct output. While
that may seem like an obvious idea, I've had to object to “testing”
schemes that simply ran programs but never verified that they
behaved correctly.

Creating the Program Using new.py

If you copied one of the solutions, as shown in the preceding section, then delete that
program so you can start from scratch:

$ rm dna.py

Without looking at my solutions yet, I want you to try to solve this problem. If you
think you have all the information you need, feel free to jump ahead and write your
own version of dna.py, using pytest to run the provided tests. Keep reading if you
want to go step-by-step with me to learn how to write the program and run the tests.

Every program in this book will accept some command-line argument(s) and create
some output, like text on the command line or new files. I'll always use the new.py
program described in the Preface to start, but this is not a requirement. You can write

Getting Started | 5

your programs however you like, starting from whatever point you want, but your
programs are expected to have the same features, such as generating usage statements
and properly validating arguments.

Create your dna. py program in the 01_dna directory, as this contains the test files for
the program. Here is how I will start the dna.py program. The - -purpose argument
will be used in the program’s documentation:

$ new.py --purpose 'Tetranucleotide frequency' dna.py

Done, see new script "dna.py."
If you run the new dna.py program, you will see that it defines many different types
of arguments common to command-line programs:

$./dna.py --help
usage: dna.py [-h] [-a str] [-1 int] [-f FILE] [-o] str

Tetranucleotide frequency (1)

positional arguments:
str A positional argument (2]

optional arguments:
-h, --help show this help message and exit (3]
-a str, --arg str A named string argument (default:) (4)
-1 int, --int int A named integer argument (default: 0) (5]
-f FILE, --file FILE A readable file (default: None) (6]
-0, --on A boolean flag (default: False) Q

The - -purpose from new.py is used here to describe the program.
The program accepts a single positional string argument.

The -h and - -help flags are automatically added by argparse and will trigger the
usage.

This is a named option with short (-a) and long (- -arg) names for a string value.

This is a named option with short (-1) and long (--int) names for an integer
value.

O This is a named option with short (-f) and long (--file) names for a file
argument.

© This is a Boolean flag that will be True when either -0 or --on is present and
False when they are absent.

6 | Chapter1: Tetranucleotide Frequency: Counting Things

This program only needs the str positional argument, and you can use DNA for the
metavar value to give some indication to the user as to the meaning of the argument.
Delete all the other parameters. Note that you never define the -h and - -help flags, as
argparse uses those internally to respond to usage requests. See if you can modify
your program until it will produce the usage that follows (if you can’t produce the
usage just yet, don’t worry, I'll show this in the next section):

$./dna.py -h
usage: dna.py [-h] DNA

Tetranucleotide frequency

positional arguments:
DNA Input DNA sequence

optional arguments:
-h, --help show this help message and exit
If you can manage to get this working, I'd like to point out that this program will
accept exactly one positional argument. If you try running it with any other number
of arguments, the program will immediately halt and print an error message:

$./dna.py AACC GGTT

usage: dna.py [-h] DNA

dna.py: error: unrecognized arguments: GGTT
Likewise, the program will reject any unknown flags or options. With very few lines
of code, you have built a documented program that validates the arguments to the
program. That’s a very basic and important step toward reproducibility.

Using argparse

The program created by new.py uses the argparse module to define the program’s
parameters, validate that the arguments are correct, and create the usage documenta-
tion for the user. The argparse module is a standard Python module, which means
it’s always present. Other modules can also do these things, and you are free to use
any method you like to handle this aspect of your program. Just be sure your pro-
grams can pass the tests.

I wrote a version of new. py for Tiny Python Projects that you can find in the bin direc-
tory of that book’s GitHub repo. That version is somewhat simpler than the version I
want you to use. I'll start by showing you a version of dna. py created using this ear-
lier version of new. py:

#!/usr/bin/env python3 (1)
""" Tetranucleotide frequency """ (2]

import argparse (3]

Getting Started | 7

https://oreil.ly/7romb
https://oreil.ly/7romb

)

© © 6 6 o ©

def get_args(): (4]
""" Get command-line arguments """ ()

parser = argparse.ArgumentParser((6]
description='Tetranucleotide frequency',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('dna', metavar='DNA', help='Input DNA sequence') (7]

return parser.parse_args() (8]

def main(): ©
""" Make a jazz noise here

args = get_args() ®
print(args.dna)

if __name__ == '__main__': ®
main()

The colloquial shebang (#!) tells the operating system to use the env command
(environment) to find python3 to execute the rest of the program.

This is a docstring (documentation string) for the program or module as a whole.
I import the argparse module to handle command-line arguments.

I always define a get_args() function to handle the argparse code.

This is a docstring for a function.

The parser object is used to define the program’s parameters.

I define a dna argument, which will be positional because the name dna does not
start with a dash. The metavar is a short description of the argument that will
appear in the short usage. No other arguments are needed.

The function returns the results of parsing the arguments. The help flags or any
problems with the arguments will cause argparse to print a usage statement/
error messages and exit the program.

All programs in the book will always start in the main() function.

8

| Chapter 1: Tetranucleotide Frequency: Counting Things

® The first step in main() will always be to call get_args(). If this call succeeds,
then the arguments must have been valid.

® The DNA value is available in the args.dna attribute, as this is the name of the
argument.

@ This is a common idiom in Python programs to detect when the program is
being executed (as opposed to being imported) and to execute the main() func-
tion.

The shebang line is used by the Unix shell when the program is
invoked as a program, like ./dna.py. It does not work on Win-
dows, where you are required to run python.exe dna.py to exe-
cute the program.

While this code works completely adequately, the value returned from get_args() is
an argparse.Namespace object that is dynamically generated when the program runs.
That is, I am using code like parser.add_argument() to modify the structure of this
object at runtime, so Python is unable to know positively at compile time what
attributes will be available in the parsed arguments or what their types would be.
While it may be obvious to you that there can only be a single, required string argu-
ment, there is not enough information in the code for Python to discern this.

To compile a program is to turn it into the machine code that a
computer can execute. Some languages, like C, must be compiled
separately before they can be run. Python programs are often com-
piled and run in one step, but there is still a compilation phase.
Some errors can be caught at compilation, and others don’t turn up
until runtime. For instance, syntax errors will prevent compilation.
It is preferable to have compile-time errors over runtime errors.

To see why this could be a problem, I'll alter the main() function to introduce a type
error. That is, I'll intentionally misuse the type of the args.dna value. Unless other-
wise stated, all argument values returned from the command line by argparse are
strings. If I try to divide the string args.dna by the integer value 2, Python will raise
an exception and crash the program at runtime:

def main():

args = get_args()
print(args.dna / 2) (1]

© Dividing a string by an integer will produce an exception.

GettingStarted | 9

If I run the program, it crashes as expected:

$./dna.py ACGT
Traceback (most recent call last):
File "./dna.py", line 30, in <module>
main()
File "./dna.py", line 25, in main
print(args.dna / 2)
TypeError: unsupported operand type(s) for /:

' 1

str' and 'int'

Our big squishy brains know that this is an inevitable error waiting to happen, but
Python can't see the problem. What I need is a static definition of the arguments that
cannot be modified when the program is run. Read on to see how type annotations

and other tools can detect these sorts of bugs.

Tools for Finding Errors in the Code

The goal here is to write correct, reproducible programs in Python. Are there ways to
spot and avoid problems like misusing a string in a numeric operation? The python3
interpreter found no problems that prevented me from running the code. That is, the
program is syntactically correct, so the code in the preceding section produces a run-
time error because the error happens only when I execute the program. Years back I
worked in a group where we joked, “If it compiles, ship it!” This is clearly a myopic
approach when coding in Python.

I can use tools like linters and type checkers to find some kinds of problems in code.
Linters are tools that check for program style and many kinds of errors beyond bad
syntax. The pylint tool is a popular Python linter that I use almost every day. Can it
find this problem? Apparently not, as it gives the biggest of thumbs-ups:

$ pylint dna.py

Your code has been rated at 10.00/10 (previous run: 9.78/10, +0.22)

The flake8 tool is another linter that I often use in combination with pylint, as it
will report different kinds of errors. When I run flake8 dna.py, I get no output,
which means it found no errors to report.

The mypy tool is a static type checker for Python, meaning it is designed to find mis-
used types such as trying to divide a string by a number. Neither pylint nor flake8
is designed to catch type errors, so I cannot be legitimately surprised they missed the
bug. So what does mypy have to say?

$ mypy dna.py
Success: no issues found in 1 source file

10 | Chapter 1:Tetranudeotide Frequency: Counting Things

https://www.pylint.org
https://oreil.ly/b3Qtj
http://mypy-lang.org

Well, that’s just a little disappointing; however, you must understand that mypy is fail-
ing to report a problem because there is no type information. That is, mypy has no
information to say that dividing args.dna by 2 is wrong. I'll fix that shortly.

for more input.

like VS Code, as in Figure 1-1.

®0e
EXPLORER

> OPEN EDITORS

> OUTLINE
> TIMELINE
§* main* O Python 3.8564-bit ® 0 A 0

% dna.py

Using Python’s Interactive Interpreter

In the next section, I want to show you how to use Python’s interactive interpreter
python3 to run short pieces of code. This kind of interface is sometimes called a
REPL, which stands for Read-Evaluate-Print-Loop, and I pronounce this so that it sort
of rthymes with pebble. Each time you enter code in the REPL, Python will immedi-
ately read and evaluate the expressions, print the results, and then loop back to wait

dna.py — 01_dna

X

@ dna.py > ..

Set as interpreter

v 01.DNA
> _pycache_ 1 #!/usr/bin/env p\,./thon3
2 " Tetranucleotide frequency """
> .mypy_cache 3
7 > .pytest_cache 4 import argparse

> orig 5 import os
> tests 6 from collections import defaultdict
B all_test.sh ; from typing import NamedTuple, Dict

DISCUSSION.adoc 9
- DISCUSSION.pdf 10 class Args(NamedTuple):

dna.py 11 " Command-line arguments """
M Makefile M 12 dnai str
@ solutionl_iter.py ﬁ
@ solution2_unit_test.py 15 #
@ solution3_str_count.py 16 def get_args() -> Args:
@ solution4_dict.py 17 """ Get command-line arguments """
Oy 19| porser = argparse.ArqunentParser(
gl 20 description='Tetranucleotide frequency',
@ solutionZ.py 21 formatter_class=argparse.ArgumentDefaultsHelpFormatter)

22
PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMINAL 2: Python

Ln1,Col1 Spaces: 4

Using a REPL may be new to you, so let’s take a moment to introduce the idea. While
I'll demonstrate using python3, you may prefer to use idle3, ipython, a Jupyter
Notebook, or a Python console inside an integrated development environment (IDE)

%> O

~

~ X

+ 0O @

[sonora@~/work/bio/code/01_dnal$ /Library/Frameworks/Python.framework/Versions/3.8/bin/python3
Python 3.8.5 (v3.8.5:580fbb018f, Jul 20 2020, 12:11:27)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", “credits" or "license" for more information.

UTF-8 LF Python &

Figure 1-1. You can run an interactive Python interpreter inside VS Code

Regardless of your choice, I highly encourage you to type all the examples yourself.
You will learn so much from interacting with the Python interpreter. To start the

Getting Started |

n

REPL, type python3, or possibly just python on your computer if that points to the
latest version. Here is what it looks like on my computer:

$ python3

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:10:52)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

The standard python3 REPL uses >>> as a prompt. Be sure you don’t type the >>>
prompt, only the text that it follows. For example, if I demonstrate adding two num-
bers like this:

>>> 3 + 5
8

You should only type 3 + 5<Enters. If you include the leading prompt, you will get
an error:

>>> >>> 3 + 5
File "<stdin>", line 1

>>> 3 + 5
A

SyntaxError: invalid syntax

I especially like to use the REPL to read documentation. For instance, type help(str)
to read about Python’s string class. Inside the help documentation, you can move for-
ward with the F key, Ctrl-E or the space bar, and you can move backward with the B
key or Ctrl-B. Search by pressing the / key followed by a string and then Enter. To
leave the help, press Q. To quit the REPL, type exit() or press Ctrl-D.

Introducing Named Tuples

To avoid the problems with dynamically generated objects, all of the programs in this
book will use a named tuple data structure to statically define the arguments from
get_args(). Tuples are essentially immutable lists, and they are often used to repre-
sent record-type data structures in Python. There’s quite a bit to unpack with all that,
so let’s step back to lists.

To start, lists are ordered sequences of items. The items can be heterogeneous; in
theory, this means all the items can be of different types, but in practice, mixing types

is

often a bad idea. I'll use the python3 REPL to demonstrate some aspects of lists. I

recommend you use help(list) to read the documentation.

Use empty square brackets ([]) to create an empty list that will hold some sequences:

>>> seqs = []

12

| Chapter 1: Tetranudleotide Frequency: Counting Things

The 1ist() function will also create a new, empty list:
>>> seqs = list()
Verify that this is a list by using the type() function to return the variable’s type:

>>> type(seqs)
<class 'list'>

Lists have methods that will add values to the end of the list, like 1ist.append() to
add one value:

>>> seqs.append('ACT")
>>> seqs
['ACT']

and list.extend() to add multiple values:

>>> seqgs.extend(['GCA', 'TTT'])

>>> seqs

['ACT', 'GCA', 'TTT']
If you type the variable by itself in the REPL, it will be evaluated and stringified into a
textual representation:

>>> seqs
['ACT', 'GCA', 'TTT']

This is basically the same thing that happens when you print() a variable:

>>> print(segs)
['ACT', 'GCA', 'TTT']

You can modify any of the values in-place using the index. Remember that all index-

ing in Python is 0-based, so 0 is the first element. Change the first sequence to be TCA:
>>> seqs[0] = 'TCA'

Verify that it was changed:

>>> seqs
['TCA', 'GCA', 'TTT']

Like lists, tuples are ordered sequences of possibly heterogeneous objects. Whenever

you put commas between items in a series, you are creating a tuple:

>>> seqs = 'TCA', 'GCA', 'TTT'
>>> type(seqs)
<class 'tuple's>

It’s typical to place parentheses around tuple values to make this more explicit:

>>> seqs = ('TCA', 'GCA', 'TTT')
>>> type(seqs)
<class 'tuple's

Getting Started | 13

Unlike lists, tuples cannot be changed once they are created. If you read help(tuple),
you will see that a tuple is a built-in immutable sequence, so I cannot add values:

>>> seqs.append('GGT")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'append'

or modify existing values:

>>> seqs[0] = 'TCA'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
It’s fairly common in Python to use tuples to represent records. For instance, I might
represent a Sequence having a unique ID and a string of bases:

>>> seq = ('CAM_0231669729', 'GTGTTTATTCAATGCTAG')

While it’s possible to use indexing to get the values from a tuple just as with lists,
that’s awkward and error-prone. Named tuples allow me to assign names to the fields,
which makes them more ergonomic to use. To use named tuples, I can import the
namedtuple() function from the collections module:

>>> from collections import namedtuple

As shown in Figure 1-2, I use the namedtuple() function to create the idea of a
Sequence that has fields for the id and the seq:

>>> Sequence = namedtuple('Sequence', ['id', 'seq'])

Class name for the objects created
namedtuple('Sequence',['1d', 'seq'])

Field names for the class

Figure 1-2. The namedtuple() function generates a way to make objects of the class
Sequence that have the fields 1d and seq

What exactly is Sequence here?

>>> type(Sequence)

<class 'type'>
I've just created a new type. You might call the Sequence() function a factory because
it’s a function used to generate new objects of the class Sequence. It's a common nam-
ing convention for these factory functions and class names to be TitleCased to set
them apart.

14 | Chapter 1: Tetranudeotide Frequency: Counting Things

Just as I can use the 1ist() function to create a new list, I can use the Sequence()
function to create a new Sequence object. I can pass the id and seq values positionally
to match the order they are defined in the class:

>>> seql = Sequence('CAM_0231669729', 'GTGTTTATTCAATGCTAG')

>>> type(seql)
<class '__main__.Sequence'>

Or I can use the field names and pass them as key/value pairs in any order I like:

>>> seq2 = Sequence(seq='GTGTTTATTCAATGCTAG', id='CAM_0231669729"')
>>> seq2
Sequence(id="'CAM_0231669729"', seq='GTGTTTATTCAATGCTAG')

While it’s possible to use indexes to access the ID and sequence:

>>> 'ID = ' + seq1[0]
'ID = CAM_0231669729'
>>> 'seq = ' + seqi[1]

'seq = GTGTTTATTCAATGCTAG'

...the whole point of named tuples is to use the field names:

>>> 'ID = ' + seql.id
'ID = CAM_0231669729'
>>> 'seq = ' + seql.seq

'seq = GTGTTTATTCAATGCTAG'
The record’s values remain immutable:

>>> seql.id = 'XXX'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

I often want a guarantee that a value cannot be accidentally changed in my code.
Python doesn’t have a way to declare that a variable is constant or immutable. Tuples
are by default immutable, and I think it makes sense to represent the arguments to a
program using a data structure that cannot be altered. The inputs are sacrosanct and
should (almost) never be modified.

Adding Types to Named Tuples

As nice as namedtuple() is, I can make it even better by importing the NamedTuple
class from the typing module to use as the base class for the Sequence. Additionally, I
can assign types to the fields using this syntax. Note the need to use an empty line in
the REPL to indicate that the block is complete:

>>> from typing import NamedTuple
>>> class Sequence(NamedTuple):
id: str
seq: str

Getting Started | 15

The ... you see are line continuations. The REPL is showing that
what’s been entered so far is not a complete expression. You need to
enter a blank line to let the REPL know that youre done with the
code block.

As with the namedtuple() method, Sequence is a new type:

>>> type(Sequence)
<class 'type'>

The code to instantiate a new Sequence object is the same:

>>> seq3 = Sequence('CAM_0231669729', 'GTGTTTATTCAATGCTAG')
>>> type(seq3)
<class '__main__.Sequence'>

I can still access the fields by names:

>>> seq3.1d, seg3.seq
('CAM_0231669729', 'GTGTTTATTCAATGCTAG')

Since I defined that both fields have str types, you might assume this would not
work:

>>> seq4 = Sequence(id='CAM_0231669729', seq=3.14)

I'm sorry to tell you that Python itself ignores the type information. You can see the
seq field that I hoped would be a str is actually a float:

>>> seq4d

Sequence(id='CAM_0231669729', seq=3.14)

>>> type(seqg4.seq)

<class 'float'>
So how does this help us? It doesn't help me in the REPL, but adding types to my
source code will allow type-checking tools like mypy to find such errors.

Representing the Arguments with a NamedTuple

I want the data structure that represents the program’s arguments to include type
information. As with the Sequence class, I can define a class that is derived from the
NamedTuple type where I can statically define the data structure with types. I like to call
this class Args, but you can call it whatever you like. I know this probably seems like
driving a finishing nail with a sledgehammer, but trust me, this kind of detail will pay
off in the future.

The latest new. py uses the NamedTuple class from the typing module. Here is how I
suggest you define and represent the arguments:

#!/usr/bin/env python3
"""Tetranucleotide frequency

16 | Chapter 1: Tetranudeotide Frequency: Counting Things

import argparse
from typing import NamedTuple (1)

class Args(NamedTuple): (2]
""" Command-line arguments
dna: str ©

def get_args() -> Args: (4]
""" Get command-line arguments

parser = argparse.ArgumentParser(
description='Tetranucleotide frequency',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('dna', metavar='DNA', help='Input DNA sequence')

args = parser.parse_args() (5]

return Args(args.dna) (6]

def main() -> None: (7]
""" Make a jazz noise here

args = get_args()
print(args.dna / 2) (8]

if __name__ ==
main()

Import the NamedTuple class from the typing module.

Define a class for the arguments which is based on the NamedTuple class. See the
following note.

The class has a single field called dna that has the type str.

The type annotation on the get_args() function shows that it returns an object
of the type Args.

Parse the arguments as before.

Getting Started | 17

Return a new Args object that contains the single value from args.dna.

The main() function has no return statement, so it returns the default None
value.

O This is the type error from the earlier program.

If you run pylint on this program, you may encounter the errors
“Inheriting NamedTuple, which is not a class. (inherit-non-class)”
and “Too few public methods (0/2) (too-few-public-methods).” You
can disable these warnings by adding “inherit-non-class” and “too-
few-public-methods” to the “disable” section of your pylintrc file, or
use the pylintrc file included in the root of the GitHub repository.

If you run this program, you'll see it still creates the same uncaught exception. Both
flake8 and pylint will continue to report that the program looks fine, but see what
mypy tells me now:

$ mypy dna.py

dna.py:32: error: Unsupported operand types for / ("str" and "int")

Found 1 error in 1 file (checked 1 source file)
The error message shows that there is a problem on line 32 with the operands, which
are the arguments to the division (/) operator. 'm mixing string and integer values.
Without the type annotations, mypy would be unable to find a bug. Without this
warning from mypy, I'd have to run my program to find it, being sure to exercise the
branch of code that contains the error. In this case, it’s all rather obvious and trivial,
but in a much larger program with hundreds or thousands of lines of code (LOC)
with many functions and logical branches (like i1f/else), I might not stumble upon
this error. I rely on types and programs like mypy (and pylint and flake8 and so on)
to correct these kinds of errors rather than relying solely on tests, or worse, waiting
for users to report bugs.

Reading Input from the Command Line or a File

When you attempt to prove that your program works on the Rosalind.info website,
you will download a data file containing the input to your program. Usually, this data
will be much larger than the sample data described in the problem. For instance, the
example DNA string for this problem is 70 bases long, but the one I downloaded for
one of my attempts was 910 bases.

Let’s make the program read input both from the command line and from a text file
so that you don’t have to copy and paste the contents from a downloaded file. This is

18 | Chapter 1: Tetranudeotide Frequency: Counting Things

a common pattern I use, and I prefer to handle this option inside the get_args()
function since this pertains to processing the command-line arguments.

First, correct the program so that it prints the args.dna value without the division:

def main() -> None:
args = get_args()
print(args.dna) (1]

© Remove the division type error.
Check that it works:

$./dna.py ACGT

ACGT
For this next part, you need to bring in the os module to interact with your operating
system. Add import os to the other import statements at the top, then add these two
lines to your get_args() function:

def get_args() -> Args:
""" Get command-line arguments

parser = argparse.ArgumentParser(
description='Tetranucleotide frequency',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('dna', metavar='DNA', help='Input DNA sequence')
args = parser.parse_args()

if os.path.isfile(args.dna): (1]
args.dna = open(args.dna).read().rstrip() (2]

return Args(args.dna)

Check if the dna value is a file.

Call open() to open a filehandle, then chain the fh.read() method to return a
string, then chain the str.rstrip() method to remove trailing whitespace.

The fh.read() function will read an entire file into a variable. In
this case, the input file is small and so this should be fine, but it
very common in bioinformatics to process files that are gigabytes

\ in size. Using read() on a large file could crash your program or
even your entire computer. Later I will show you how to read a file
line-by-line to avoid this.

Getting Started | 19

Now run your program with a string value to ensure it works:

$./dna.py ACGT
ACGT

and then use a text file as the argument:

$./dna.py tests/inputs/input2.txt
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC
Now you have a flexible program that reads input from two sources. Run mypy
dna.py to make sure there are no problems.

Testing Your Program

You know from the Rosalind description that given the input ACGT, the program
should print 1 1 1 1 since that is the number of As, Cs, Gs, and Ts, respectively. In
the 01_dna/tests directory, there is a file called dna_test.py that contains tests for the
dna.py program. I wrote these tests for you so you can see what it’s like to develop a
program using a method to tell you with some certainty when your program is cor-
rect. The tests are really basic—given an input string, the program should print the
correct counts for the four nucleotides. When the program reports the correct num-
bers, then it works.

Inside the 01_dna directory, Id like you to run pytest (or python3 -m pytest or
pytest.exe on Windows). The program will recursively search for all files with
names that start with test_ or end with _test.py. It will then run for any functions in
these files that have names starting with test_.

When you run pytest, you will see a lot of output, most of which is failing tests. To
understand why these tests are failing, let’s look at the tests/dna_test.py module:

""" Tests for dna.py """ (1)

import os (2]
import platform (3]
from subprocess import getstatusoutput 0

PRG = './dna.py' (5]
RUN = f'python {PRG}' if platform.system() == 'Windows' else PRG (6]
TEST1 = ('./tests/inputs/inputl.txt', '1 2 3 4') (7]

TEST2 = ('./tests/inputs/input2.txt', '20 12 17 21')
TEST3 = ('./tests/inputs/input3.txt', '196 231 237 246')

This is the docstring for the module.
The standard os module will interact with the operating system.

The platform module is used to determine if this is being run on Windows.

20 | Chapter 1: Tetranucleotide Frequency: Counting Things

O From the subprocess module I import a function to run the dna.py program
and capture the output and status.

© These following lines are global variables for the program. I tend to avoid globals
except in my tests. Here I want to define some values that I'll use in the functions.
I like to use UPPERCASE_NAMES to highlight the global visibility.

O The RUN variable determines how to run the dna.py program. On Windows, the
python command must be used to run a Python program, but on Unix platforms,
the dna. py program can be directly executed.

@ The TEST* variables are tuples that define a file containing a string of DNA and
the expected output from the program for that string.

The pytest module will run the test functions in the order in which they are defined
in the test file. I often structure my tests so that they progress from the simplest cases
to more complex, so there’s usually no point in continuing after a failure. For
instance, the first test is always that the program to test exists. If it doesn’t, then there’s
no point in running more tests. I recommend you run pytest with the -x flag to stop
on the first failing test along with the -v flag for verbose output.

Let’s look at the first test. The function is called test_exists() so that pytest will
find it. In the body of the function, I use one or more assert statements to check if
some condition is truthy.! Here I assert that the program dna.py exists. This is why
your program must exist in this directory—otherwise it wouldn’t be found by the test:

def test_exists(): (1)
""" Program exists

assert os.path.exists(PRG) (2]

© The function name must start with test_ to be found by pytest.

® The os.path.exists() function returns True if the given argument is a file. If it
returns False, then the assertion fails and this test will fail.

The next test I write is always to check that the program will produce a usage state-
ment for the -h and - -help flags. The subprocess.getstatusoutput() function will
run the dna. py program with the short and long help flags. In each case, I want to see
that the program prints text starting with the word usage:. It’s not a perfect test. It

1 Boolean types are True or False, but many other data types are truthy or conversely falsey. The empty str
("") is falsey, so any nonempty string is truthy. The number 0 is falsey, so any nonzero value is truthy. An
empty list, set, or dict is falsey, so any nonempty one of those is truthy.

Getting Started | 21

doesn’t check that the documentation is accurate, only that it appears to be something
that might be a usage statement. I don't feel that every test needs to be completely
exhaustive. Here’s the test:

def test_usage() -> None:
" prints usage """

for arg in ['-h', '--help']: (1)
rv, out = getstatusoutput(f'{RUN} {arg}') (2]
assert rv == 0

assert out.lower().startswith('usage:") (4]

Iterate over the short and long help flags.
Run the program with the argument and capture the return value and output.

Verify that the program reports a successful exit value of 0.

© o o ©

Assert that the lowercased output of the program starts with the text usage:.

Command-line programs usually indicate an error to the operating
system by returning a nonzero value. If the program runs success-
fully, it ought to return a @. Sometimes that nonzero value may cor-
relate to some internal error code, but often it just means that
something went wrong. The programs I write will, likewise, always
strive to report 0 for successful runs and some nonzero value when
there are errors.

Next, I want to ensure that the program will die when given no arguments:

def test_dies_no_args() -> None:
""" Dies with no arguments """

rv, out = getstatusoutput(RUN) (1)
assert rv != 0
assert out.lower().startswith('usage:") (3]

© Capture the return value and output from running the program with
no arguments.

© Verify that the return value is a nonzero failure code.

© Check that the output looks like a usage statement.

At this point in testing, I know that I have a program with the correct name that can
be run to produce documentation. This means that the program is at least

22 | Chapter 1: Tetranucleotide Frequency: Counting Things

syntactically correct, which is a decent place to start testing. If your program has
typographical errors, then you'll be forced to correct those to even get to this point.

Running the Program to Test the Output

Now I need to see if the program does what it’s supposed to do. There are many ways
to test programs, and I like to use two basic approaches I call inside-out and outside-
in. The inside-out approach starts at the level of testing individual functions inside a
program. This is often called unit testing, as functions might be considered a basic
unit of computing, and I'll get to this in the solutions section. I'll start with the
outside-in approach. This means that I will run the program from the command line
just as the user will run it. This is a holistic approach to check if the pieces of the code
can work together to create the correct output, and so it's sometimes called an inte-
gration test.

The first such test will pass the DNA string as a command-line argument and check if
the program produces the right counts formatted in the correct string:

def test_arg():
""" yses command-line arg

for file, expected in [TEST1, TEST2, TEST3]: (1)
dna = open(file).read() (2]
retval, out = getstatusoutput(f'{RUN} {dna}') (3]
assert retval == 0
assert out == expected (5]

© Unpack the tuples into the file containing a string of DNA and the expected
value from the program when run with this input.

Open the file and read the dna from the contents.

Run the program with the given DNA string using the function
subprocess.getstatusoutput(), which gives me both the return value from the
program and the text output (also called STDOUT, which is pronounced standard
out).

O Assert that the return value is 0, which indicates success (or 0 errors).

© Assert that the output from the program is the string of numbers expected.

The next test is almost identical, but this time I'll pass the filename as the argument to
the program to verify that it correctly reads the DNA from a file:

def test_file():
""" Uses file arg

Getting Started | 23

for file, expected in [TEST1, TEST2, TEST3]:
retval, out = getstatusoutput(f'{RUN} {file}') (1]
assert retval ==
assert out == expected

© The only difference from the first test is that I pass the filename instead of the

contents of the file.

Now that you've looked at the tests, go back and run the tests again. This time, use
pytest -xv, where the -v flag is for verbose output. Since both -x and -v are short
flags, you can combine them like -xv or -vx. Read the output closely and notice that
it’s trying to tell you that the program is printing the DNA sequence but that the test
is expecting a sequence of numbers:

$ pytest -xv
test session starts
tests/dna_test.py::test_exists PASSED [25%]
tests/dna_test.py::test_usage PASSED [50%]
tests/dna_test.py::test_arg FAILED [75%]
FAILURES
test_arg

def test_arg():
""" Uses command-line arg """
for file, expected in [TEST1, TEST2, TEST3]:
dna = open(file).read()
retval, out = getstatusoutput(f'{RUN} {dna}')
assert retval ==
assert out == expected (1)
AssertionError: assert 'ACCGGGTTTT' == '1234' O
-1234
+ ACCGGGTTTT

mmm V

tests/dna_test.py:36: AssertionError
short test summary info
FAILED tests/dna_test.py::test_arg - AssertionError: assert 'ACCGGGTTTT' == '...

1 failed, 2 passed in 0.35s

The > at the beginning of this line shows that this is the source of the error.

The output from the program was the string ACCGGGTTTT but the expected value
was 1 2 3 4. Since these are not equal, an AssertionError exception is raised.

U

Chapter 1: Tetranucleotide Frequency: Counting Things

Let’s fix that. If you think you know how to finish the program, please jump right into
your solution. First, perhaps try running your program to verify that it will report the
correct number of As:

$./dna.py A
1000

And then Cs:

$./dna.py C
0100

and so forth with Gs and Ts. Then run pytest to see if it passes all the tests.

After you have a working version, consider trying to find as many different ways as
you can to get the same answer. This is called refactoring a program. You need to start
with something that works correctly, and then you try to improve it. The improve-
ments can be measured in many ways. Perhaps you find a way to write the same idea
using less code, or maybe you find a solution that runs faster. No matter what metric
you’re using, keep running pytest to ensure the program is correct.

Solution 1: Iterating and Counting the Characters
in a String

If you don't know where to start, I'll work through the first solution with you. The
goal is to travel through all the bases in the DNA string. So, first I need to create a
variable called dna by assigning it some value in the REPL.:

>>> dna = 'ACGT'

Note that any value enclosed in quotes, whether single or double, is a string. Even a
single character in Python is considered a string. I will often use the type() function
to verify the type of a variable, and here I see that dna is of the class str (string):

>>> type(dna)
<class 'str's

Type help(str) in the REPL to see all the wonderful things you
can do with strings. This data type is especially important in
genomics, where strings comprise so much of the data.

In the parlance of Python, I want to iterate through the characters of a string, which
in this case are the nucleotides of DNA. A for loop will do that. Python sees a string
as an ordered sequence of characters, and a for loop will visit each character from
beginning to end:

Solution 1: Iterating and Counting the CharactersinaString | 25

>>> for base in dna: @
print(base) (2]

" o0onNn > -

© Each character in the dna string will be copied into the base variable. You could
call this char, or c for character, or whatever else you like.

® Each call to print() will end with a newline, so you'll see each base on a separate
line.

Later you will see that for loops can be used with lists and dictionaries and sets and
lines in a file—basically any iterable data structure.

Counting the Nucleotides

Now that I know how to visit each base in the sequence, I need to count each base
rather than printing it. That means I'll need some variables to keep track of the num-
bers for each of the four nucleotides. One way to do this is to create four variables
that hold integer counts, one for each base. I will initialize four variables for counting
by setting their initial values to 0:

>>> count_a
>>> count_c
>>> count_g
>>> count_t

mnm o nmnn
[clolN oo}

I could write this in one line by using the tuple unpacking syntax that I showed
earlier:

>>> count_a, count_c, count_g, count_t =0, 0, 0, 0

Variable Naming Conventions

I could have named my variables countA or CountA or COUNTA or count_A or any
number of ways, but I always stick to the suggested naming conventions in the “Style
Guide for Python Code”, also known as PEPS8, which says that function and variable
names “should be lowercase, with words separated by underscores as necessary to
improve readability”

I need to look at each base and determine which variable to increment, making its
value increase by 1. For instance, if the current base is a C, then I should increment
the count_c variable. I could write this:

26 | Chapter 1: Tetranucleotide Frequency: Counting Things

https://oreil.ly/UmUYt
https://oreil.ly/UmUYt

for base in dna:
if base == 'C':
count_c = count_c + 1 (2)

© The == operator is used to compare two values for equality. Here I want to know
if the current base is equal to the string C.

® Set count_c equal to 1 greater than the current value.

The == operator is used to compare two values for equality. It
works to compare two strings or two numbers. I showed earlier
that division with / will raise an exception if you mix strings and
numbers. What happens if you mix types with this operator, for
example '3' == 3?2 Is this a safe operator to use without first com-
paring the types?

As shown in Figure 1-3, a shorter way to increment a variable uses the += operator to
add whatever is on the righthand side (often noted as RHS) of the expression to what-
ever is on the lefthand side (or LHS):

Add this number

count_c += 1

V_/
To this variable

Figure 1-3. The += operator will add the value on the righthand side to the variable on
the lefthand side

Since I have four nucleotides to check, I need a way to combine three more if expres-
sions. The syntax in Python for this is to use elif for else if and else for any final or
default case. Here is a block of code I can enter in the program or the REPL that
implements a simple decision tree:

dna = 'ACCGGGTTTT'
count_a, count_c, count_g, count_t = 0, 0, 0, 0
for base in dna:
if base == 'A':
count_a +=1
elif base == 'C':
count_c +=1
elif base == 'G':
count_g += 1

Solution 1: Iterating and Counting the Charactersina String | 27

elif base == 'T':
count_t += 1

I should end up with counts of 1, 2, 3, and 4 for each of the sorted bases:

>>> count_a, count_c, count_g, count_t
(1, 2, 3, 4)

Now I need to report the outcome to the user:

>>> print(count_a, count_c, count_g, count_t)

1234
That is the exact output the program expects. Notice that print() will accept multi-
ple values to print, and it inserts a space between each value. If you read help(print)
in the REPL, you’ll find that you can change this with the sep argument:

>>> print(count_a, count_c, count_g, count_t, sep='::")

1::2::3::4
The print() function will also put a newline at the end of the output, and this can
likewise be changed using the end option:

>>> print(count_a, count_c, count_g, count_t, end='\n-30-\n')

1234
-30-

Writing and Verifying a Solution

Using the preceding code, you should be able to create a program that passes all the
tests. As you write, I would encourage you to regularly run pylint, flake8, and mypy
to check your source code for potential errors. I would even go further and suggest
you install the pytest extensions for these so that you can routinely incorporate such
tests:

$ python3 -m pip install pytest-pylint pytest-flake8 pytest-mypy

Alternatively, I've placed a requirements.txt file in the root directory of the GitHub
repo that lists various dependencies I'll use throughout the book. You can install all
these modules with the following command:

$ python3 -m pip install -r requirements.txt

With those extensions, you can run the following command to run not only the tests
defined in the tests/dna_test.py file but also tests for linting and type checking using
these tools:

$ pytest -xv --pylint --flake8 --mypy tests/dna_test.py
test session starts

collected 7 items

tests/dna_test.py::FLAKE8 SKIPPED [12%]

28 | Chapter 1: Tetranucleotide Frequency: Counting Things

tests/dna_test.py::mypy PASSED [25%]
tests/dna_test.py::test_exists PASSED [37%]
tests/dna_test.py::test_usage PASSED [50%]
tests/dna_test.py::test_dies_no_args PASSED [62%]
tests/dna_test.py::test_arg PASSED [75%]
tests/dna_test.py::test_file PASSED [87%]
::mypy PASSED [100%]

mypy

Success: no issues found in 1 source file
7 passed, 1 skipped in 0.58s

Some tests are skipped when a cached version indicates nothing
has changed since the last test. Run pytest with the ---cache-
clear option to force the tests to run. Also, you may find you fail
linting tests if your code is not properly formatted or indented. You
can automatically format your code using yapf or black. Most
IDEs and editors will provide an auto-format option.

That’s a lot to type, so I've created a shortcut for you in the form of a Makefile in the
directory:

$ cat Makefile
.PHONY: test

test:
python3 -m pytest -xv --flake8 --pylint --pylint-rcfile=../pylintrc \
--mypy dna.py tests/dna_test.py

all:
../bin/all_test.py dna.py
You can learn more about these files by reading Appendix A. For now, it’s enough to
understand that if you have make installed on your system, you can use the command
make test to run the command in the test target of the Makefile. If you don’t have
make installed or you don’t want to use it, that’s fine too, but I suggest you explore
how a Makefile can be used to document and automate processes.

There are many ways to write a passing version of dna.py, and Id like to encourage
you to keep exploring before you read the solutions. More than anything, I want to
get you used to the idea of changing your program and then running the tests to see if
it works. This is the cycle of test-driven development, where I first create some metric
to decide when the program works correctly. In this instance, that is the dna_test.py
program that is run by pytest.

The tests ensure I don't stray from the goal, and they also let me know when I've met
the requirements of the program. They are the specifications (also called specs) made
incarnate as a program that I can execute. How else would I ever know when a

Solution 1: Iterating and Counting the Charactersina String | 29

program worked or was finished? Or, as Louis Srygley puts it, “Without requirements
or design, programming is the art of adding bugs to an empty text file”

Testing is essential to creating reproducible programs. Unless you can absolutely and
automatically prove the correctness and predictability of your program when run
with both good and bad data, then you’re not writing good software.

Additional Solutions

The program I wrote earlier in this chapter is the solutionl_iter.py version in the Git-
Hub repo, so I won't bother reviewing that version. I would like to show you several
alternate solutions that progress from simpler to more complex ideas. Please do not
take this to mean they progress from worse to better. All versions pass the tests, so
they are all equally valid. The point is to explore what Python has to offer for solving
common problems. Note I will omit code they all have in common, such as the
get_args() function.

Solution 2: Creating a count() Function and Adding a Unit Test

The first variation Id like to show will move all the code in the main() function that
does the counting into a count() function. You can define this function anywhere in
your program, but I generally like get_args() first, main() second, and then other
functions after that but before the final couplet that calls main().

For the following function, you will also need to import the typing.Tuple value:

def count(dna: str) -> Tuple[int, int, int, int]: (1)
""" Count bases in DNA """

count_a, count_c, count_g, count_t = 0, 0, 0, O (2]
for base in dna:
if base == 'A":
count_a +=1
elif base == 'C':
count_c +=1
elif base == 'G':
count_g +=1
elif base == 'T':
count_t +=1

return (count_a, count_c, count_g, count_t) ©

© The types show that the function takes a string and returns a tuple containing
four integer values.

©® This is the code from main() that did the counting.

30 | Chapter 1: Tetranucleotide Frequency: Counting Things

© Return a tuple of the four counts.

There are many reasons to move this code into a function. To start, this is a unit of
computation—given a string of DNA, return the tetranucleotide frequency—so it
makes sense to encapsulate it. This will make main() shorter and more readable, and
it allows me to write a unit test for the function. Since the function is called count(),
I like to call the unit test test_count(). I have placed this function inside the dna.py
program just after the count() function rather than in the dna_test.py program just
as a matter of convenience. For short programs, I tend to put my functions and unit
tests together in the source code, but as projects grow larger, I will segregate unit tests
into a separate module. Here’s the test function:

def test_count() -> None: (1)
Wi Test count """

assert count('') == (0, 0, 0, 0) (2]

assert count('123XYz') == (0, 0, 0, 0)
assert count('A') == (1, 0, 0, 0) (3]
assert count('C') == (0, 1, 0, 0)

assert count('G') == (0, 0, 1, 0)

assert count('T') == (0, 0, 0, 1)

assert count('ACCGGGTTTT') == (1, 2, 3, 4)

© The function name must start with test_ to be found by pytest. The types here
show that the test accepts no arguments and, because it has no return statement,
returns the default None value.

© I like to test functions with both expected and unexpected values to ensure they
return something reasonable. The empty string should return all zeros.

© The rest of the tests ensure that each base is reported in the correct position.

To verify that my function works, I can use pytest on the dna.py program:

$ pytest -xv dna.py

test session starts

dna.py::test_count PASSED [100%]

1 passed in 0.01s

The first test passes the empty string and expects to get all zeros for the counts. This
is a judgment call, honestly. You might decide your program ought to complain to the
user that there’s no input. That is, it's possible to run the program using the empty
string as the input, and this version will report the following:

$./dna.py ""
0000

Additional Solutions | 31

Likewise, if I passed an empty file, I'd get the same answer. Use the touch command
to create an empty file:

$ touch empty
$./dna.py empty
0000

On Unix systems, /dev/nullis a special filehandle that returns nothing:

$./dna.py /dev/null

0000
You may feel that no input is an error and report it as such. The important thing
about the test is that it forces me to think about it. For instance, should the count()
function return zeros or raise an exception if it’s given an empty string? Should the
program crash on empty input and exit with a nonzero status? These are decisions
you will have to make for your programs.

Now that I have a unit test in the dna.py code, I can run pytest on that file to see if it
passes:

$ pytest -v dna.py

test session starts

collected 1 item

dna.py::test_count PASSED [100%]

1 passed in 0.01s

When I'm writing code, I like to write functions that do just one limited thing with as
few parameters as possible. Then I like to write a test with a name like test_ plus the
function name, usually right after the function in the source code. If I find I have
many of these kinds of unit tests, I might decide to move them to a separate file and
have pytest execute that file.

To use this new function, modify main() like so:

def main() -> None:
args = get_args()
count_a, count_c, count_g, count_t = count(args.dna) (1)
print('{} {3 {3 {}'.format(count_a, count_c, count_g, count_t)) (2]

© Unpack the four values returned from count() into separate variables.

® Usestr.format() to create the output string.

Lets focus for a moment on Python’s str.format(). As shown in Figure 1-4, the
string '{} {3} {3} {}' is a template for the output I want to generate, and I'm calling
the str.format() function directly on a string literal. This is a common idiom in

32 | Chapter 1: Tetranucleotide Frequency: Counting Things

Python that you’ll also see with the str.join() function. It's important to remember
that, in Python, even a literal string (one that literally exists inside your source code
in quotes) is an object upon which you can call methods.

"3 {3 {3 {}'.format(count_a, count_c, count_g, count_t)

Figure 1-4. The str. format() function uses a template containing curly brackets to
define placeholders that are filled in with the values of the arguments

Every {} in the string template is a placeholder for some value that is provided as an
argument to the function. When using this function, you need to ensure that you
have the same number of placeholders as arguments. The arguments are inserted in
the order in which they are provided. T'll have much more to say about the
str.format() function later.

I'm not required to unpack the tuple returned by the count() function. I can pass the
entire tuple as the argument to the str.format() function if I splat it by adding an
asterisk (*) to the front. This tells Python to expand the tuple into its values:
def main() -> None:
args = get_args()
counts = count(args.dna) (1)

print('{} {3 {3 {}'.format(*counts)) (2]

© The counts variable is a 4-tuple of the integer base counts.

® The *counts syntax will expand the tuple into the four values needed by the for-
mat string; otherwise, the tuple would be interpreted as a single value.

Since I use the counts variable only once, I could skip the assignment and shrink this
to one line:
def main() -> None:

args = get_args()
print('{} {} {3 {}'.format(*count(args.dna))) (1)

© Pass the return value from count() directly to the str.format() method.

The first solution is arguably easier to read and understand, and tools like flake8
would be able to spot when the number of {} placeholders does not match the num-
ber of variables. Simple, verbose, obvious code is often better than compact, clever

Additional Solutions | 33

code. Still, it’s good to know about tuple unpacking and splatting variables as I'll use
these in ideas in later programs.

Solution 3: Using str.count()

The previous count() function turns out to be quite verbose. I can write the function
using a single line of code using the str.count() method. This function will count
the number of times one string is found inside another string. Let me show you in the
REPL:

>>> seq = 'ACCGGGTTTT'
>>> seq.count('A")

1

>>> seq.count('C")

2

If the string is not found, it will report 8, making this safe to count all four nucleoti-
des even when the input sequence is missing one or more bases:

>>> 'AAA' .count('T')
0

Here is a new version of the count() function using this idea:

def count(dna: str) -> Tuple[int, int, int, int]: (1)
""" Count bases in DNA """

return (dna.count('A'), dna.count('C'), dna.count('G'), dna.count('T")) (2]

© The signature is the same as before.

® Call the dna.count() method for each of the four bases.

This code is much more succinct, and I can use the same unit test to verify that its
correct. This is a key point: functions should act like black boxes. That is, I do not
know or care what happens inside the box. Something goes in, an answer comes
out, and I only really care that the answer is correct. I am free to change what hap-
pens inside the box so long as the contract to the outside—the parameters and return
value—stays the same.

Here’s another way to create the output string in the main() function using Python’s
f-string syntax:

def main() -> None:
args = get_args()
count_a, count_c, count_g, count_t = count(args.dna) (1)
print(f'{count_a} {count_c} {count_g} {count_t}"') (2)

© Unpack the tuple into each of the four counts.

34 | Chapter 1: Tetranucleotide Frequency: Counting Things

@ Use an f-string to perform variable interpolation.

It's called an f-string because the f precedes the quotes. I use the
mnemonic format to remind me this is to format a string. Python
also has a raw string that is preceded with an r, which I'll discuss
later. All strings in Python—bare, f-, or r-strings—can be enclosed
in single or double quotes. It makes no difference.

With f-strings, the {} placeholders can perform variable interpolation, which is a 50-
cent word that means turning a variable into its contents. Those curlies can even exe-
cute code. For instance, the len() function will return the length of a string and can
be run inside the braces:

>>> seq = 'ACGT'
>>> f'The sequence "{seq}" has {len(seq)} bases.'
'The sequence "ACGT" has 4 bases.'

I usually find f-strings easier to read than the equivalent code using str.format().
Which you choose is mostly a stylistic decision. I would recommend whichever
makes your code more readable.

Solution 4: Using a Dictionary to Count All the Characters

So far I've discussed Python's strings, lists, and tuples. This next solution introduces
dictionaries, which are key/value stores. I'd like to show a version of the count() func-
tion that internally uses dictionaries so that I can hit on some important points to
understand:

def count(dna: str) -> Tuple[int, int, int, int]: (1)
""" Count bases in DNA """

counts = {} (2]
for base in dna: ©
if base not in counts: @
counts[base] = 0 ()
counts[base] += 1 (6]

return (counts.get('A', 0), (7]
counts.get('C', 0),
counts.get('G', 0),
counts.get('T', 0))
© Internally I'll use a dictionary, but nothing changes about the function signature.

© Initialize an empty dictionary to hold the counts.

© Usea for loop to iterate through the sequence.

Additional Solutions | 35

©

Check if the base does not yet exist in the dictionary.

(]

Initialize the value for this base to 0.

©

Increment the count for this base by 1.

Use the dict.get() method to get each base’s count or the default of 0.

Again, the contract for this function—the type signature—hasn't changed. It’s still a
string in and 4-tuple of integers out. Inside the function, I'm going to use a dictionary
that I'll initialize using the empty curly brackets:

>>> counts = {}
I could also use the dict() function. Neither is preferable:
>>> counts = dict()
I can use the type() function to check that this is a dictionary:

>>> type(counts)
<class 'dict'>

The isinstance() function is another way to check the type of a variable:

>>> {sinstance(counts, dict)
True

My goal is to create a dictionary that has each base as a key and the number of times it

occurs as a value. For example, given the sequence ACCGGGTTT, I want counts to look
like this:

>>> counts
{'A': 1, 'C': 2, 'G': 3, 'T': 4}

I can access any of the values using square brackets and a key name like so:

>>> counts['G']
3

Python will raise a KeyError exception if I attempt to access a dictionary key that
doesn’t exist:

>>> counts['N']

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'N'

I can use the in keyword to see if a key exists in a dictionary:

>>> 'N' in counts
False
>>> 'T' in counts
True

36 | Chapter 1: Tetranucleotide Frequency: Counting Things

As I am iterating through each of the bases in the sequence, I need to see if a base
exists in the counts dictionary. If it does not, I need to initialize it to ©. Then I can
safely use the += assignment to increment the count for a base by 1:

>>> seq = 'ACCGGGTTTT'
>>> counts = {}
>>> for base in seq:
if not base in counts:
counts[base] = 0
counts[base] += 1

>>> counts

{'A': 1, 'C': 2, 'G': 3, 'T': 4}
Finally, I want to return a 4-tuple of the counts for each of the bases. You might think
this would work:

>>> counts['A'], counts['C'], counts['G'], counts['T']

(1, 2, 3, 4)
But ask yourself what would happen if one of the bases was missing from the
sequence. Would this pass the unit test I wrote? Definitely not. It would fail on the
very first test using an empty string because it would generate a KeyError exception.
The safe way to ask a dictionary for a value is to use the dict.get() method. If the
key does not exist, then None will be returned:

>>> counts.get('T")

4
>>> counts.get('N")

Python’s None Value

That second call looks like it does nothing because the REPL doesn’t show None. T'll
use the type() function to check the return. NoneType is the type for the None value:

>>> type(counts.get('N"))
<class 'NoneType'>

I can use the == operator to see if the return value is None:

>>> counts.get('N') == None

True
but PEP8 recommends “Comparisons to singletons like None should always be done
with is or is not, never the equality operators” The following is the prescribed
method to check if a value is None:

>>> counts.get('N') is None
True

Additional Solutions | 37

The dict.get() method accepts an optional second argument that is the default
value to return when the key does not exist, so this is the safest way to return a 4-
tuple of the base counts:

>>> counts.get('A', 0), counts.get('C', 0), counts.get('G', 0),

counts.get('T', 0)
(1’ 2.' 3’ 4)

No matter what you write inside your count() function, ensure
that it will pass the test_count() unit test.

Solution 5: Counting Only the Desired Bases

The previous solution will count every character in the input sequence, but what if I
only want to count the four nucleotides? In this solution, I will initialize a dictionary
with values of 0 for the wanted bases. I'll need to also bring in typing.Dict to run
this code:

def count(dna: str) -> Dict[str, int]: (1]
""" Count bases in DNA """

counts = {'A': 0, 'C': 0, 'G': 0, 'T': 0} @
for base in dna: ©
if base in counts: @

counts[base] += 1 ()

return counts @

© The signature now indicates I'll be returning a dictionary that has strings for the
keys and integers for the values.

Initialize the counts dictionary with the four bases as keys and values of @.
Iterate through the bases.

(2]
(3]
O Check if the base is found as a key in the counts dictionary.
© If so, increment the counts for this base by 1.

(6]

Return the counts dictionary.

Since the count() function is now returning a dictionary rather than a tuple, the
test_count() function needs to change:

38 | Chapter 1: Tetranucleotide Frequency: Counting Things

def test_count() -> None:
Wi Test count """

assert count('') == {"A': 0, 'C': 0, 'G': 0, 'T': 0} (1)
assert count('123Xyz') == {'A': 0, 'C': 0, 'G': 0, 'T': 0} (2]
assert count('A') == {'A': 1, 'C': 0, 'G': 0, 'T': 0}

assert count('C') == {'A': 0, 'C': 1, 'G': 0, 'T': 0}

assert count('G') == {'A': 0, 'C': 0, 'G': 1, 'T': 0}

assert count('T') == {'A': 0, 'C': 0, 'G': 0, 'T': 1}

assert count('ACCGGGTTTT') == {'A': 1, 'C': 2, 'G': 3, 'T': 4}

© The returned dictionary will always have the keys A, C, G, and T. Even for the
empty string, these keys will be present and set to 0.

@ All the other tests have the same inputs, but now I check that the answer comes
back as a dictionary.

When writing these tests, note that the order of the keys in the dictionaries is not
important. The two dictionaries in the following code have the same content even
though they were defined differently:

>>> counts1 = {'A': 1, 'C': 2, 'G': 3, 'T': 4}
>>> counts2 = {'T': 4, 'G': 3, 'C': 2, 'A'": 1}
>>> countsl == counts2

True

I would point out that the test_count() function tests the func-
tion to ensure it’s correct and also serves as documentation. Read-
ing these tests helps me see the structure of the possible inputs and
expected outputs from the function.

Here’s how I need to change the main() function to use the returned dictionary:

def main() -> None:
args = get_args()
counts = count(args.dna) (1)
print('{} {3 {3 {}'.format(counts['A'], counts['C'], counts['G'], (2]
counts['T']))

@ counts is now a dictionary.

® Use the str.format() method to create the output using the values from the
dictionary.

Solution 6: Using collections.defaultdict()

I can rid my code of all the previous efforts to initialize dictionaries and check for
keys and such by using the defaultdict() function from the collections module:

Additional Solutions | 39

>>> from collections import defaultdict

When I use the defaultdict() function to create a new dictionary, I tell it the default
type for the values. I no longer have to check for a key before using it because the
defaultdict type will automatically create any key I reference using a representative
value of the default type. For the case of counting the nucleotides, I want to use the
int type:

>>> counts = defaultdict(int)

The default int value will be 0. Any reference to a nonexistent key will cause it to be
created with a value of 0:

>>> counts['A']
0

This means I can instantiate and increment any base in one step:

>>> counts['C'] += 1
>>> counts
defaultdict(<class 'int's, {'A': 0, 'C': 1})

Here is how I could rewrite the count() function using this idea:

def count(dna: str) -> Dict[str, int]:
""" Count bases in DNA """

counts: Dict[str, int] = defaultdict(int) (1)

for base in dna:
counts[base] += 1 (2]

return counts

© The counts will be a defaultdict with integer values. The type annotation here
is required by mypy so that it can be sure that the returned value is correct.

© [can safely increment the counts for this base.

The test_count() function looks quite different. I can see at a glance that the
answers are very different from the previous versions:

def test_count() -> None:
Wi Test count """

assert count('') == {} (1]

assert count('123XYz') == {'1': 1, '2': 1, '3': 1, 'X': 1, 'Y': 1, 'Z': 1} (2]
assert count('A') == {'A': 1} (3]

assert count('C') == {'C': 1}

assert count('G') == {'G': 1}

assert count('T') == {'T': 1}

assert count('ACCGGGTTTT') == {'A': 1, 'C': 2, 'G': 3, 'T': 4}

40 | Chapter 1: Tetranucleotide Frequency: Counting Things

© Given an empty string, an empty dictionary will be returned.
® Notice that every character in the string is a key in the dictionary.

©® Only A is present, with a count of 1.

Given the fact that the returned dictionary may not contain all the bases, the code in
main() needs to use the count.get() method to retrieve each base’s frequency:

def main() -> None:
args = get_args()
counts = count(args.dna) (1)
print(counts.get('A', 0), counts.get('C', @), counts.get('G', 0), (2]
counts.get('T', 0))

© The counts will be a dictionary that may not contain all of the nucleotides.

® It’s safest to use the dict.get() method with a default value of 6.

Solution 7: Using collections.Counter()

Perfection is achieved, not when there is nothing more to add, but when there is noth-
ing left to take away.

—Antoine de Saint-Exupéry

I don’t actually like the last three solutions all that much, but I needed to step through
how to use a dictionary both manually and with defaultdict() so that you can
appreciate the simplicity of using collections.Counter():

>>> from collections import Counter

>>> Counter('ACCGGGTTT'")

Counter({'G': 3, 'T': 3, 'C': 2, 'A': 1})
The best code is code you never write, and Counter() is a prepackaged function that
will return a dictionary with the frequency of the items contained in the iterable you
pass it. You might also hear this called a bag or a multiset. Here the iterable is a string
composed of characters, and so I get back the same dictionary as in the last two solu-
tions, but having written no code.

Its so simple that you could pretty much eschew the count() and test_count()
functions and integrate it directly into your main():

def main() -> None:
args = get_args()
counts = Counter(args.dna) (1]
print(counts.get('A', 0), counts.get('C', @), counts.get('G', 0), (2]
counts.get('T', 0))

Additional Solutions | 41

© The counts will be a dictionary containing the frequencies of the characters in
args.dna.

® It is still safest to use dict.get() as I cannot be certain that all the bases are
present.

I could argue that this code belongs in a count() function and keep the tests, but the
Counter() function is already tested and has a well-defined interface. I think it makes
more sense to use this function inline.

Going Further

The solutions here only handle DNA sequences provided as UPPERCASE TEXT. It’s
not unusual to see these sequences provided as lowercase letters. For instance, in
plant genomics, it's common to use lowercase bases to denote regions of repetitive
DNA. Modify your program to handle both uppercase and lowercase input by doing
the following:

1. Add a new input file that mixes case.

2. Add a test to tests/dna_test.py that uses this new file and specifies the expected
counts insensitive to case.

3. Run the new test and ensure your program fails.

4. Alter the program until it will pass the new test and all of the previous tests.

The solutions that used dictionaries to count all available characters would appear to
be more flexible. That is, some of the tests only account for the bases A, C, G, and T,
but if the input sequence were encoded using IUPAC codes to represent possible
ambiguity in sequencing, then the program would have to be entirely rewritten. A
program hard-coded to look only at the four nucleotides would also be useless for
protein sequences that use a different alphabet. Consider writing a version of the pro-
gram that will print two columns of output with each character that is found in the
first column and the character’s frequency in the second. Allow the user to sort
ascending or descending by either column.

Review

This was kind of a monster chapter. The following chapters will be a bit shorter, as I'll
build upon many of the foundational ideas I've covered here:

» You can use the new.py program to create the basic structure of a Python pro-
gram that accepts and validates command-line arguments using argparse.

42 | Chapter 1: Tetranucleotide Frequency: Counting Things

https://oreil.ly/qGfsO

o The pytest module will run all functions with names starting with test_ and
will report the results of how many tests pass.

o Unit tests are for functions, and integration tests check if a program works as a
whole.

o Programs like pylint, flake8, and mypy can find various kinds of errors in your
code. You can also have pytest automatically run tests to see if your code passes
these checks.

o Complicated commands can be stored as a target in a Makefile and executed
using the make command.

 You can create a decision tree using a series of 1f/else statements.

 There are many ways to count all the characters in a string. Using the collec
tions.Counter() function is perhaps the simplest method to create a dictionary
of letter frequencies.

 You can annotate variables and functions with types, and use mypy to ensure the
types are used correctly.

o The Python REPL is an interactive tool for executing code examples and reading
documentation.

o The Python community generally follows style guidelines such as PEP8. Tools
like yapf and black can automatically format code according to these sugges-
tions, and tools like pylint and flake8 will report deviations from the
guidelines.

« Python strings, lists, tuples, and dictionaries are very powerful data structures,
each with useful methods and copious documentation.

« You can create a custom, immutable, typed class derived from named tuples.

You may be wondering which is the best of the seven solutions. As with many things
in life, it depends. Some programs are shorter to write and easier to understand but
may fare poorly when confronting large datasets. In Chapter 2, I'll show you how to
benchmark programs, pitting them against each other in multiple runs using large
inputs to determine which performs the best.

Review | 43

CHAPTER 2

Transcribing DNA into mRNA: Mutating
Strings, Reading and Writing Files

To express the proteins necessary to sustain life, regions of DNA must be transcribed
into a form of RNA called messenger RNA (mRNA). While there are many fascinating
biochemical differences between DNA and RNA, for our purposes the only difference
is that all the characters T representing the base thymine in a sequence of DNA need
to be changed to the letter U, for uracil. As described on the Rosalind RNA page, the
program I'll show you how to write will accept a string of DNA like ACGT and print
the transcribed mRNA ACGU. I can use Python’s str.replace() function to accom-
plish this in one line:

>>> 'GATGGAACTTGACTACGTAAATT'.replace('T', 'U")

' GAUGGAACUUGACUACGUAAAUL'
You already saw in Chapter 1 how to write a program to accept a DNA sequence from
the command line or a file and print a result, so you won’t be learning much if you do
that again. I'll make this program more interesting by tackling a very common pat-
tern found in bioinformatics. Namely, I'll show how to process one or more input
files and place the results in an output directory. For instance, it’s pretty common to
get the results of a sequencing run back as a directory of files that need to be quality
checked and filtered, with the cleaned sequences going into some new directory for
your analysis. Here the input files contain DNA sequences, one per line, and I'll write
the mRNA sequences into like-named files in an output directory.

In this chapter, you will learn:

« How to write a program to require one or more file inputs

« How to create directories

45

https://oreil.ly/9Dddm

o How to read and write files

« How to modify strings

Getting Started

It might help to try running one of the solutions first to see how your program should
work. Start by changing into the 02_rna directory and copying the first solution to
the program rna.py:

$ cd 02_rna
$ cp solutionl_str_replace.py rna.py

Request the usage for the program using the -h flag:

$./rna.py -h
usage: rna.py [-h] [-o DIR] FILE [FILE ...] (1]

Transcribe DNA into RNA

positional arguments: (2]
FILE Input DNA file

optional arguments:
-h, --help show this help message and exit
-o DIR, --out_dir DIR
Output directory (default: out) (3)

© The arguments surrounded by square brackets ([]) are optional. The [FILE ...]
syntax means that this argument can be repeated.

©® The input FILE argument(s) will be positional.

© The optional output directory has the default value of out.

The goal of the program is to process one or more files, each containing sequences of
DNA. Here is the first test input file:

$ cat tests/inputs/inputl.txt
GATGGAACTTGACTACGTAAATT

Run the rna.py program with this input file, and note the output:

$./rna.py tests/inputs/inputl.txt
Done, wrote 1 sequence in 1 file to directory

out".
Now there should be an out directory containing a file called input1.txt:

$ s out/
inputl.txt

46 | Chapter 2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

The contents of that file should match the input DNA sequence but with all the Ts
changed to Us:

$ cat out/inputl.txt

GAUGGAACUUGACUACGUAAAUU
You should run the program with multiple inputs and verify that you get multiple
files in the output directory. Here I will use all the test input files with an output
directory called rna. Notice how the summary text uses the correct singular/plurals
for sequence(s) and file(s):

$./rna.py --out_dir rna tests/inputs/*
Done, wrote 5 sequences in 3 files to directory "rna".

I can use the wc (word count) program with the -1 option to count the lines in the
output file and verify that five sequences were written to three files in the rna
directory:
$ wc -1 rna/*
1 rna/inputl.txt
2 rna/input2.txt

2 rna/input3.txt
5 total

Defining the Program’s Parameters

As you can see from the preceding usage, your program should accept the following
parameters:

+ One or more positional arguments, which must be readable text files each con-
taining strings of DNA to transcribe.

o An optional -o or --out_dir argument that names an output directory to write
the sequences of RNA into. The default should be out.

You are free to write and structure your programs however you like (so long as they
pass the tests), but I will always start a program using new.py and the structure I
showed in the first chapter. The - - force flag indicates that the existing rna.py should
be overwritten:

$ new.py --force -p "Transcribe DNA to RNA" rna.py
Done, see new script "rna.py".

Defining an Optional Parameter

Modify the get_args() function to accept the parameters described in the previous
section. To start, define the out_dir parameter. I suggest you change the -a|--arg
option generated by new. py to this:

Getting Started | 47

(6]

parser.add_argument('-o', (1)
'--out_dir', (2]
help='0Output directory', (3]
metavar='DIR', (4)
type=str, (5]
default='out"') (6]

This is the short flag name. Short flags start with a single dash and are followed
by a single character.

This is the long flag name. Long flags start with two dashes and are followed by a
more memorable string than the short flag. This will also be the name argparse
will use to access the value.

This will be incorporated into the usage statement to describe the argument.
The metavar is a short description also shown in the usage.

The default type of all arguments is str (string), so this is technically superfluous
but still not a bad idea to document.

The default value will be the string out. If you do not specify a default attribute
when defining an option, the default value will be None.

Defining One or More Required Positional Parameters

For the FILE value(s), I can modify the default - f| - - file parameter to look like this:

parser.add_argument('file', (1)
help='Input DNA file(s)', (2]
metavar='FILE',
nargs='+"', (4]
type=argparse.FileType('rt')) (5)

@ Remove the -f short flag and the two dashes from - - file so that this becomes a
positional argument called file. Optional parameters start with dashes, and posi-
tional ones do not.

® The help string indicates the argument should be one or more files containing
DNA sequences.

This string is printed in the short usage to indicate the argument is a file.
This indicates the number of arguments. The + indicates that one or more values
are required.

48 | Chapter 2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

© This is the actual type that argparse will enforce. I am requiring any value to be a
readable text (rt) file.

Using nargs to Define the Number of Arguments

I use nargs to describe the number of arguments to the program. In addition to using
an integer value to describe exactly how many values are allowed, I can use the three
symbols shown in Table 2-1.

Table 2-1. Possible values for nargs

Symbol Meaning

? Zero or one
* Zero or more

+ One or more

When you use + with nargs, argparse will provide the arguments as a list. Even if
there is just one argument, you will get a list containing one element. You will never
have an empty list because at least one argument is required.

Using argparse.FileType() to Validate File Arguments

The argparse.FileType() function is incredibly powerful, and using it can save you
loads of time in validating file inputs. When you define a parameter with this type,
argparse will print an error message and halt the execution of the program if any of
the arguments is not a file. For instance, I would assume there is no file in your
02_dna directory called blargh. Notice the result when I pass that value:

$./rna.py blargh

usage: rna.py [-h] [-o DIR] FILE [FILE ...]

rna.py: error: argument FILE: can't open 'blargh': [Errno 2]
No such file or directory: 'blargh'

It’s not obvious here, but the program never made it out of the get_args() function
because argparse did the following:

1. Detected that blargh is not a valid file
2. Printed the short usage statement
3. Printed a useful error message
4. Exited the program with a nonzero value
This is how a well-written program ought to work, detecting and rejecting bad argu-

ments as soon as possible and notifying the user of the problems. All this happened
without my writing anything more than a good description of the kind of argument I

Getting Started | 49

wanted. Again, the best code is code you never write (or as Elon Musk puts it, “The
best part is no part, the best process is no process.”)

Because I am using the file type, the elements of the list will not be strings represent-
ing the filenames but will instead be open filehandles. A filehandle is a mechanism to
read and write the contents of a file. I used a filehandle in the last chapter when the
DNA argument was a filename.

The order in which you define these parameters in your source
code does not matter in this instance. You can define options
before or after positional parameters. The order only matters when
you have multiple positional arguments—the first parameter will
be for the first positional argument, the second parameter for the
second positional argument, and so forth.

Defining the Args Class

Finally, I need a way to define the Args class that will represent the arguments:

from typing import NamedTuple, List, TextIO (1]

class Args(NamedTuple):
""" Command-line arguments
files: List[TextIO] (2]
out_dir: str (3]

© I'll need two new imports from the typing module, List to describe a list, and
TextIO for an open filehandle.

® The files attribute will be a list of open filehandles.

© The out_dir attribute will be a string.

I can use this class to create the return value from get_args(). The following syntax
uses positional notation such that the file is the first field and the out_dir is the sec-
ond. When there are one or two fields, I will tend to use the positional notation:

return Args(args.file, args.out_dir)

Explicitly using the field names is safer and arguably easier to read, and it will become
vital when I have more fields:

return Args(files=args.file, out_dir=args.out_dir)

Now I have all the code to define, document, and validate the inputs. Next, I'll show
how the rest of the program should work.

50 | Chapter2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

Outlining the Program Using Pseudocode

I'll sketch out the basics of the program’s logic in the main() function using a mix of
code and pseudocode to generally describe how to handle the input and output files.
Whenever you get stuck writing a new program, this approach can help you see what
needs to be done. Then you can figure out how to do it:

def main() -> None:
args = get_args()

if not os.path.isdir(args.out_dir): (1)
os.makedirs(args.out_dir) (2]

num_files, num_seqs = 0, 0 (3]
for fh in args.files: (4]
open an output file in the output directory (5]
for each line/sequence from the input file:
write the transcribed sequence to the output file
update the number of sequences processed
update the number of files processed

print('Done.") (6]
The os.path.isdir() function will report if the output directory exists.
The os.makedirs() function will create a directory path.

Initialize variables for the number of files and sequences written to use in the
feedback you provide when the program exits.

O Use a for loop to iterate the list of filehandles in args.files. The iterator vari-
able fh helps remind me of the type.

This is pseudocode describing the steps you need to do with each filehandle.

Print a summary for the user to let them know what happened.

The os.makedirs() function will create a directory and all the par-
ent directories, while the os.mkdir() function will fail if the parent
directories do not exist. I only ever use the first function in my
code.

If you think you know how to finish the program, feel free to proceed. Be sure to run
pytest (or make test) to ensure your code is correct. Stick with me if you need a

Getting Started | 51

little more guidance on how to read and write files. I'll tackle the pseudocode in the
following sections.

Iterating the Input Files

Remember that args. files is a List[TextIO], meaning that it is a list of filehandles.
I can use a for loop to visit each element in any iterable in such a list:

for fh in args.files:

I'd like to stress here that I chose an iterator variable called fh because each value is a
filehandle. I sometimes see people who always use an iterator variable name like 1 or
x with a for loop, but those are not descriptive variable names.! I'll concede that it’s
very common to use variable names like n (for number) or i (for integer) when iterat-
ing numbers like so:

for 1 in range(10):

And I will sometimes use x and xs (pronounced exes) to stand for one and many of
some generic value:

for x in xs:

Otherwise, it’s very important to use variable names that accurately describe the thing
they represent.

Creating the Output Filenames

Per the pseudocode, the first goal is to open an output file. For that, I need a filename
that combines the name of the output directory with the basename of the input file.
That is, if the input file is dna/inputl.txt and the output directory is rna, then the out-
put file path should be rna/input1.txt.

The os module is used to interact with the operating system (like Windows, macOS,
or Linux), and the os.path module has many handy functions I can use, like the
os.path.dirname() function to get the name of the directory from a file path and
os.path.basename() to get the file’s name (see Figure 2-1):

>>> import os

>>> os.path.dirname('./tests/inputs/inputl.txt')

'./tests/inputs'

>>> o0s.path.basename('./tests/inputs/inputl.txt')
'inputl.txt'

1 As Phil Karlton says, “There are only two hard things in Computer Science: cache invalidation and naming
things”

52 | Chapter2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

os.path.dirname()

[|
./tests/inputs/inputl.txt

os.path.basename()

Figure 2-1. The os. path module contains useful functions like dirname() and
basename() to extract parts from a file’s path

The new sequences will be written to an output file in args.out_dir. I suggest you
use the os.path.join() function with the basename of the input file to create the
output filename, as shown in Figure 2-2. This will ensure that the output filename
works both on Unix and Windows, which use different path dividers—the slash (/)
and backslash (\), respectively. You may also want to investigate the pathlib module
for similar functionality.

os.path.basename("tests/input/inputl.txt")
os.path.join("rna", "inputl.txt")— "rna/inputl.txt"

args.out_dir

Figure 2-2. The os. path. join() will create the output path by combining the output
directory with the basename of the input file

You can get the file’s path from the fh.name attribute of the filehandle:

for fh in args.files:
out_file = os.path.join(args.out_dir, os.path.basename(fh.name))
print(fh.name, '->', out_file)

Run your program to verify that it looks like this:

$./rna.py tests/inputs/*

tests/inputs/inputl.txt -> out/inputl.txt

tests/inputs/input2.txt -> out/input2.txt

tests/inputs/input3.txt -> out/input3.txt
I’'m taking baby steps toward what the program is supposed to do. It’s very important
to write just one or two lines of code and then run your program to see if it’s correct. I
often see students try to write many lines of code—whole programs, even—before
they attempt to run them. That never works out well.

Getting Started | 53

Opening the OQutput Files

Using this output filename, you need to open() the filehandle. I used this function in
the first chapter to read DNA from an input file. By default, open() will only allow
me to read a file, but I need to write a file. I can indicate that I want to open the file
for writing by passing an optional second argument: the string w for write.

When you open an existing file with a mode of w, the file will be

overwritten, meaning its previous contents will be immediately and
| permanently lost. If needed, you can use the os.path.isfile()
‘ \ function to check if you're opening an existing file.

As shown in Table 2-2, you can also use the values r for read (the default) and a to
append, which allows you to open for writing more content at the end of an existing
file.

Table 2-2. File writing modes

Mode Meaning

w Write
r Read
a Append

Table 2-3 shows that you can also read and write either text or raw bytes using the
modes t and b, respectively.

Table 2-3. File content modes

Mode Meaning

t Text
b Bytes

You can combine these, for example using rb to read bytes and wt to write text, which
is what I want here:

for fh in args.files:
out_file = os.path.join(args.out_dir, os.path.basename(fh.name))
out_fh = open(out_file, 'wt') @

© Note that I named my variable out_fh to remind me this is the output filehandle.

54 | Chapter2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

Writing the Output Sequences

Looking at the pseudocode again, I have two levels of iterating—one for each filehan-
dle of input, and then one for each line of DNA in the filehandles. To read each line
from an open filehandle, I can use another for loop:

for fh in args.files:
for dna in fh:

The input2.txt file has two sequences, each ending with a newline:

$ cat tests/inputs/input2.txt

TTAGCCCAGACTAGGACTTT

AACTAGTCAAAGTACACC
To start, I'll show you how to print each sequence to the console, then I'll demon-
strate how to use print() to write content to a filehandle. Chapter 1 mentions that
the print() function will automatically append a newline (\n on Unix platforms and
\r\n on Windows) unless I tell it not to. To avoid having two newlines from the fol-
lowing code, one from the sequence and one from print(), I can either use the
str.rstrip() function to remove the newline from the sequence like this:

>>> fh = open('./tests/inputs/input2.txt')

>>> for dna in fh:
print(dna.rstrip()) (1)

TTAGCCCAGACTAGGACTTT
AACTAGTCAAAGTACACC

O Usedna.rstrip() to remove the trailing newline.
or use the end option to print():

>>> fh = open('./tests/inputs/input2.txt')
>>> for dna in fh:
print(dna, end="'") (1]

TTAGCCCAGACTAGGACTTT
AACTAGTCAAAGTACACC

© Use the empty string at the end instead of a newline.

The goal is to transcribe each DNA sequence to RNA and write the result to out_fh.
In the introduction to this chapter, I suggested you could use the str.replace()
function. If you read help(str.replace) in the REPL, you'll see that it will “Return a
copy with all occurrences of substring old replaced by new”:

>>> dna = 'ACTG'

>>> dna.replace('T', 'U")
'ACUG'

Getting Started | 55

There are other ways to change the Ts to Us that I will explore later. First, I'd like to
point out that strings in Python are immutable, meaning they cannot be changed in
place. That is, I could check to see if the letter T is in the DNA string and then use the
str.index() function to find the location and try to overwrite it with the letter U,
but this will raise an exception:

>>> dna = 'ACTG'
>>> {f 'T' in dna:
dna[dna.index('T')] = 'U'

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
TypeError: 'str' object does not support item assignment

Instead, I'll use str.replace() to create a new string:

>>> dna.replace('T', 'U'")
'ACUG'

>>> dna

'ACTG'

I need to write this new string into the out_fh output filehandle. I have two options.
First, I can use the print() function’s file option to describe where to print the
string. Consult the help(print) documentation in the REPL:

print(...)
print(value, ..., sep=' "', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.

Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.stdout. (1)
sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

flush: whether to forcibly flush the stream.

© This is the option I need to print the string to the open filehandle.

I need to use the out_fh filehandle as the file argument. I want to point out that the
default file value is sys.stdout. On the command line, STDOUT (pronounced stan-
dard out) is the standard place for program output to appear, which is usually the
console.

Another option is to use the out_fh.write() method of the filehandle itself, but note
that this function does not append a newline. It’s up to you to decide when to add
newlines. In the case of reading these sequences that are terminated with newlines,
they are not needed.

56 | Chapter2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

Printing the Status Report

I almost always like to print something when my programs have finished running so I
at least know they got to the end. It may be something as simple as “Done!” Here,
though, Id like to know how many sequences in how many files were processed. I
also want to know where I can find the output, something that’s especially helpful if I
forget the name of the default output directory.

The tests expect that you will use proper grammar® to describe the numbers—for
example, I sequence and 1 file:

$./rna.py tests/inputs/inputl.txt
Done, wrote 1 sequence in 1 file to directory

out".
or 3 sequences and 2 files:

$./rna.py --out_dir rna tests/inputs/input[12].txt @

Done, wrote 3 sequences in 2 files to directory "rna".

© The syntax input[12].txt is a way to say either 1 or 2 can occur, so inputl.txt
and input2.txt will both match.

Using the Test Suite

You can run pytest -xv to run tests/rna_test.py. A passing test suite looks like this:
$ pytest -xv

test session starts

tests/rna_test.py::test_exists PASSED [14%] (1]
tests/rna_test.py::test_usage PASSED [28%] (2]
tests/rna_test.py::test_no_args PASSED [42%] (3]
tests/rna_test.py::test_bad_file PASSED [57%] (4]
tests/rna_test.py::test_good_inputl PASSED [71%] (5]
tests/rna_test.py::test_good_input2 PASSED [85%]
tests/rna_test.py::test_good_multiple_inputs PASSED [100%]

7 passed in 0.37s
The rna.py program exists.
The program prints a usage statement when requested.

The program exits with an error when given no arguments.

2 Sorry, but I can’t stop being an English major.

Getting Started | 57

O The program prints an error message when given a bad file argument.

© The next tests all verify that the program works properly given good inputs.

Generally speaking, I first write tests that try to break a program before giving it good
input. For instance, I want the program to fail when given no files or when given
nonexistent files. Just as the best detectives can think like criminals, I try to imagine
all the ways to break my programs and test that they behave predictably under those
circumstances.

The first three tests are exactly as from Chapter 1. For the fourth test, I pass a non-
existent file and expect a nonzero exit value along with the usage and the error mes-
sage. Note that the error specifically mentions the offending value, here the bad
filename. You should strive to create feedback that lets the user know exactly what the
problem is and how to fix it:

def test_bad_file():
""" Die on missing input

bad = random_filename() (1)

retval, out = getstatusoutput(f'{RUN} {bad}') (2]

assert retval != 0

assert re.match('usage:', out, re.IGNORECASE) @

assert re.search(f"No such file or directory: '{bad}'", out) (5]

This is a function I wrote to generate a string of random characters.
Run the program with this nonexistent file.
Make sure the exit value is not 0.

Use a regular expression (regex) to look for the usage in the output.

® 6 o o0 ©

Use another regex to look for the error message describing the bad input
filename.

I haven'’t introduced regular expressions yet, but they will become central to solutions
I write later. To see why they are useful, look at the output from the program when
run with a bad file input:

$./rna.py dKej82

usage: rna.py [-h] [-o DIR] FILE [FILE ...]

rna.py: error: argument FILE: can't open 'dKej82':

[Errno 2] No such file or directory: 'dKej82'
Using the re.match() function, I am looking for a pattern of text starting at the
beginning of the out text. Using the re.search() function, I am looking for another

58 | Chapter2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

pattern that occurs somewhere inside the out text. I'll have much more to say about
regexes later. For now, it’s enough to point out that they are very useful.

I'll show one last test that verifies the program runs correctly when provided good
input. There are many ways to write such a test, so don’t get the impression this is
canon:

def test_good_1inputl():
""" Runs on good input

out_dir = 'out' (1]
try:
if os.path.isdir(out_dir): (3]
shutil.rmtree(out_dir) (4]
retval, out = getstatusoutput(f'{RUN} {INPUT1}') (5)
assert retval == 0
assert out == 'Done, wrote 1 sequence in 1 file to directory "out".'
assert os.path.isdir(out_dir) (6]
out_file = os.path.join(out_dir, 'inputl.txt')
assert os.path.isfile(out_file) (7]
assert open(out_file).read().rstrip() == 'GAUGGAACUUGACUACGUAAAUL' ©
finally: (9]
if os.path.isdir(out_dir): ®
shutil.rmtree(out_dir)

This is the default output directory name.

The try/finally blocks help to ensure cleanup when tests fail.

See if the output directory has been left over from a previous run.

Use the shutil.rmtree() function to remove the directory and its contents.
Run the program with a known good input file.

Make sure the expected output directory was created.

Make sure the expected output file was created.

Make sure the contents of the output file are correct.

Even if something fails in the try block, this finally block will be run.

& 6 06 ©¢ 6 6 6 o o0 o

Clean up the testing environment.

Getting Started | 59

I want to stress how important it is to check every aspect of what your program is
supposed to do. Here, the program should process some number of input files, create
an output directory, and then place the processed data into files in the output direc-
tory. 'm testing every one of those requirements using known input to verify that the
expected output is created.

There are a couple of other tests I won't cover here as they are similar to what I've
already shown, but I would encourage you to read the entire tests/rna_test.py pro-
gram. The first input file has one sequence. The second input file has two sequences,
and I use that to test that two sequences are written to the output file. The third input
file has two very long sequences. By using these inputs individually and together, I try
to test every aspect of my program that I can imagine.

Although you can run the tests in fests/rna_test.py using pytest, I also urge you to
use pylint, flake8, and mypy to check your program. The make test shortcut can do
this for you as it will execute pytest with the additional arguments to run those tools.
Your goal should be a completely clean test suite.

You may find that pylint will complain about variable names like
fh being too short or not being snake_case, where lowercase words
are joined with underscores. I have included a pylintrc configura-
tion file in the top level of the GitHub repository. Copy this to the
file .pylintrc in your home directory to silence these errors.

You should have enough information and tests now to help you finish this program.
You'll get the most benefit from this book if you try to write working programs on
your own before you look at my solutions. Once you have one working version, try to
find other ways to solve it. If you know about regular expressions, that’s a great solu-
tion. If you don’t, I will demonstrate a version that uses them.

Solutions

The following two solutions differ only in how I substitute the Ts for Us. The first
uses the str.replace() method, and the second introduces regular expressions and
uses the Python re.sub() function.

Solution 1: Using str.replace()

Here is the entirety of one solution that uses the str.replace() method I discussed
in the introduction to this chapter:

#!/usr/bin/env python3
""" Transcribe DNA into RNA """

import argparse

60 | Chapter2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

import os
from typing import NamedTuple, List, TextIO

class Args(NamedTuple):
""" Command-line arguments
files: List[TextIO]
out_dir: str

def get_args() -> Args:
""" Get command-line arguments """

parser = argparse.ArgumentParser(
description="'Transcribe DNA into RNA',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file',
help="Input DNA file',
metavar='FILE',
type=argparse.FileType('rt'),
nargs='+")

parser.add_argument('-o',
'--out_dir',
help='0Output directory',
metavar='DIR',
type=str,
default='out"')

args = parser.parse_args()

return Args(args.file, args.out_dir)

def main() -> None:
""" Make a jazz noise here

args = get_args()

if not os.path.isdir(args.out_dir):
os.makedirs(args.out_dir)

num_files, num_seqs = 0, 0 (1]

for fh in args.files:
num_files += 1 (3]
out_file = os.path.join(args.out_dir, os.path.basename(fh.name))
out_fh = open(out_file, 'wt')

for dna in fh: ©

Solutions

61

num_segs += 1 @
out_fh.write(dna.replace('T', 'U')) (7]

out_fh.close() (&)

wn 1

print(f'Done, wrote {num_seqs} sequence{"" if num_seqs == 1 else "s"}
f'in {num_files} file{"" if num_files == 1 else "s"} '
f'to directory "{args.out_dir}".") (o]

if __name__ == '__main__
main()

Initialize the counters for files and sequences.
Iterate the filehandles.

Increment the counter for files.

Open the output file for this input file.

Iterate the sequences in the input file.

Increment the counter for sequences.

Write the transcribed sequence to the output file.

Close the output filehandle.

® 6 ¢ ©6 6 6 ©6 o o

Print the status. Note that 'm relying on Python’s implicit concatenation of adja-
cent strings to create one output string.

Solution 2: Using re.sub()

I suggested earlier that you might explore how to use regular expressions to solve this.
Regexes are a language for describing patterns of text. They have been around for
decades, long before Python was even invented. Though they may seem somewhat
daunting at first, regexes are well worth the effort to learn.?

To use regular expressions in Python, I must import the re module:

>>> import re

3 Mastering Regular Expressions by Jeffrey Friedl (O’'Reilly, 2006) is one of the best books I've found.

62 | Chapter2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

https://oreil.ly/R7O1r

Previously, I used the re.search() function to look for a pattern of text inside
another string. For this program, the pattern I am looking for is the letter T, which I
can write as a literal string:

>>> re.search('T', 'ACGT') (1]
<re.Match object; span=(3, 4), match='T'> (2]

Search for the pattern T inside the string ACGT.

Because T was found, the return value is a Re.Match object showing the location
of the found pattern. A failed search would return None.

The span=(3, 4) reports the start and stop indexes where the pattern T is found. I
can use these positions to extract the substring using a slice:

>>> 'ACGT'[3:4]
o

But instead of just finding the T, I want to replace the string T with U. As shown in
Figure 2-3, the re.sub() (for substitute) function will do this.

Find this pattern In this text

! !

re.sub('T', 'U', 'ACGT'")

|

Replace with this pattern

Figure 2-3. The re. sub() function will return a new string where all instances of a pat-
tern have been replaced with a new string
The result is a new string where the T's have all been replaced with Us:

>>> re.sub('T', 'U', 'ACGT') (1)
'ACGU' O

© Replace every T with U in the string ACGT.

® The result is a new string with the substitutions.

To use this version, I can modify the inner for loop, as shown. Note that I have
chosen to use the str.strip() method to remove the newline terminating the input
DNA string because print() will add a newline:

Solutions | 63

for dna in fh:
num_seqs += 1
print(re.sub('T', 'U', dna.rstrip()), file=out_fh) (1]

@ Remove the newline from dna, substitute all the Ts with Us, and print the result-
ing string to the output filehandle.

Benchmarking

You might be curious to know which solution is faster. Comparing the relative run-
times of programs is called benchmarking, and I'll show you a simple way to compare
these two solutions using some basic bash commands. I'll use the ./tests/inputs/
input3.txt file, as it is the largest test file. I can write a for loop in bash with almost
the same syntax as Python. Note that I am using newlines in this command to make it
more readable, and bash notes the line continuation with >. You can substitute semi-
colons (;) to write this on one line:

$ for py in ./solution*

> do echo $py && time $py ./tests/inputs/input3.txt
> done

./solutionl_str_replace.py

Done, wrote 2 sequences in 1 file to directory "out".

real Om1.539s

user Om0.046s

sys OmO.036s

./solution2_re_sub.py

Done, wrote 2 sequences in 1 file to directory "out".

real 0m0.179s

user 0mO.035s

sys 0m0.013s
It would appear the second solution using regular expressions is faster, but I don’t
have enough data to be sure. I need a more substantial input file. In the 02_rna direc-
tory, you'll find a program called genseq.py I wrote that will generate 1,000 sequen-
ces of 1,000,000 bases in a file called seq.txt. You can, of course, modify the
parameters:

$./genseq.py --help
usage: genseq.py [-h] [-1 int] [-n int] [-o FILE]

Generate long sequence

optional arguments:

-h, --help show this help message and exit
-1 int, --len int Sequence length (default: 1000000)
-n int, --num int Number of sequences (default: 100)

64 | Chapter2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

-0 FILE, --outfile FILE
Output file (default: seq.txt)

The file seq.txt that is generated using the defaults is about 95 MB. Here’s how the
programs do with a more realistic input file:

$ for py in ./solution*; do echo $py && time S$Spy seq.txt; done
./solutionl_str_replace.py
Done, wrote 100 sequences in 1 file to directory "out".

real 0mO.456s

user 0m0.372s

sys Om0.064s

./solution2_re_sub.py

Done, wrote 100 sequences in 1 file to directory "out".

real 0m3.100s

user 0Om2.700s

sys Om0.385s
It now appears that the first solution is faster. For what it’s worth, I came up with sev-
eral other solutions, all of which fared much worse than these two. I thought I was
creating more and more clever solutions that would ultimately lead to the best perfor-
mance. My pride was sorely wounded when what I thought was my best program
turned out to be orders of magnitude slower than these two. When you have assump-
tions, you should, as the saying goes, “Trust, but verify”

Going Further

Modify your program to print the lengths of the sequences to the output file rather
than the transcribed RNA. Have the final status report the maximum, minimum, and
average sequence lengths.

Review

Key points from this chapter:

o The argparse.FileType option will validate file arguments.

o The nargs option to argparse allows you to define the number of valid argu-
ments for a parameter.

o The os.path.isdir() function can detect if a directory exists.
o The os.makedirs() function will create a directory structure.

 The open() function by default allows only reading files. The w option must be
used to write to the filehandle, and the a option is for appending values to an
existing file.

Going Further | 65

« File handles can be opened with the t option for text (the default) or b for bytes,
such as when reading image files.

o Strings are immutable, and there are many methods to alter strings into new
strings, including str.replace() and re.sub().

66 | Chapter2: Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files

CHAPTER 3

Reverse Complement of DNA:
String Manipulation

The Rosalind REVC challenge explains that the bases of DNA form pairs of A-T and
G-C. Additionally, DNA has directionality and is usually read from the 5'-end (five-
prime end) toward the 3'-end (three-prime end). As shown in Figure 3-1, the comple-
ment of the DNA string AAAACCCGGT is TTTTGGGCCA. I then reverse this string
(reading from the 3'-end) to get ACCGGGTTTT as the reverse complement.

DNA Complement

5 A T

A T

A T

A T

C G 4

C G

C G

G C

G C
3 T A

Reverse complement

Figure 3-1. The reverse complement of DNA is the complement read from the opposite
direction

67

https://oreil.ly/ot4z6

Although you can find many existing tools to generate the reverse complement of
DNA—and I'll drop a spoiler alert that the final solution will use a function from the
Biopython library—the point of writing our own algorithm is to explore Python. In
this chapter, you will learn:

« How to implement a decision tree using a dictionary as a lookup table

« How to dynamically generate a list or a string

o How to use the reversed() function, which is an example of an iterator

o How Python treats strings and lists similarly

» How to use a list comprehension to generate a list

o How to use str.maketrans() and str.translate() to transform a string

» How to use Biopython’s Bio.Seq module

o That the real treasure is the friends you make along the way

Getting Started

The code and tests for this program are in the 03_revc directory. To get a feel for how
the program will work, change into that directory and copy the first solution to a pro-
gram called revc.py:

$ cd 03_revc
$ cp solutioni_for_loop.py revc.py

Run the program with - -help to read the usage:

$./revc.py --help
usage: revc.py [-h] DNA

Print the reverse complement of DNA

positional arguments:
DNA Input sequence or file

optional arguments:
-h, --help show this help message and exit

The program wants DNA and will print the reverse complement, so I'll give it a string:

$./revc.py AAAACCCGGT
ACCGGGTTTT

As the help indicates, the program will also accept a file as input. The first test input
has the same string:

$ cat tests/inputs/inputl.txt
AAAACCCGGT

68 | Chapter3: Reverse Complement of DNA: String Manipulation

So the output should be the same:

$./revc.py tests/inputs/inputl.txt
ACCGGGTTTT

I want to make the specs for the program just a little harder, so the tests will pass both
a mix of uppercase and lowercase. The output should respect the case of the input:

$./revc.py aaaaCCCGGT
ACCGGGtttt

Run pytest (or make test) to see what kinds of tests the program should pass. When
you're satisfied you have a feel for what the program should do, start anew:

$ new.py -f -p 'Print the reverse complement of DNA' revc.py
Done, see new script "revc.py".

Edit the get_args() function until the program will print the preceding usage. Then
modify your program so that it will echo back input either from the command line or
from an input file:

$./revc.py AAAACCCGGT

AAAACCCGGT

$./revc.py tests/inputs/inputl.txt
AAAACCCGGT

If you run the test suite, you should find your program passes the first three tests:

$ pytest -xv

test session starts
tests/revc_test.py::test_exists PASSED [14%]
tests/revc_test.py::test_usage PASSED [28%]
tests/revc_test.py::test_no_args PASSED [42%]
tests/revc_test.py::test_uppercase FAILED [57%]

FAILURES

test_uppercase

mmm V

def test_uppercase():

""" Runs on uppercase input """

rv, out = getstatusoutput(f'{RUN} AAAACCCGGT')
assert rv ==
assert out == 'ACCGGGTTTT'
AssertionError: assert 'AAAACCCGGT' == 'ACCGGGTTTT'
- ACCGGGTTTT
+ AAAACCCGGT

tests/revc_test.py:47: AssertionError

short test summary info

FAILED tests/revc_test.py::test_uppercase - AssertionError: assert 'AAAACCCGG...

Getting Started |

69

1 failed, 3 passed in 0.33s

The program is being passed the input string AAAACCCGGT, and the test expects it to
print ACCGGGTTTT. Since the program is echoing the input, this test fails. If you think
you know how to write a program to satisfy these tests, have at it. If not, I'll show you
how to create the reverse complement of DNA, starting with a simple approach and
working up to more elegant solutions.

Iterating Over a Reversed String

When creating the reverse complement of DNA, it doesn’t matter if you first reverse
the sequence and then complement it or vice versa. You will get the same answer
either way, so I'll start with how you can reverse a string. In Chapter 2, I showed how
you can use a string slice to get a portion of a string. If you leave out the start posi-
tion, it will start from the beginning:

>>> dna = 'AAAACCCGGT'

>>> dnal:2]
|AA|

If you leave out the stop position, it will go to the end:

>>> dna[-2:]

l GT‘
If you leave out both start and stop, it will return a copy of the entire string:

>>> dnaf:]

"AAAACCCGGT'
It also takes an optional third argument to indicate the step size. I can use no argu-
ments for the start and stop, and a step of -1 to reverse the string:

>>> dnaf::-1]
'TGGCCCAAAA'

Python also has a built-in reversed() function, so I'll try that:

>>> reversed(dna)
<reversed object at 0x7ffc4c9013a0>

Surprise! You were probably expecting to see the string TGGCCCAAAA. If you read
help(reversed) in the REPL, however, you'll see that this function will “Return a
reverse iterator over the values of the given sequence.”

What is an iterator? Python’s Functional Programming HOWTO describes an iterator
as “an object representing a stream of data” I've mentioned that an iterable is some
collection of items that Python can visit individually; for example, the characters of a
string or the elements in a list. An iterator is something that will generate values until
it is exhausted. Just as I can start with the first character of a string (or the first

70 | Chapter3: Reverse Complement of DNA: String Manipulation

https://oreil.ly/dIzn3

element of a list or the first line of a file) and read until the end of the string (or list or
file), an iterator can be iterated from the first value it produces until it finishes.

In this case, the reversed() function is returning a promise to produce the reversed
values as soon as it appears that you need them. This is an example of a lazy function
because it waits until forced to do any work. One way to coerce the values from
reversed() is to use a function that will consume the values. For instance, if the only
goal is to reverse the string, then I could use the str.join() function. I always feel
the syntax is backward on this function, but you will often invoke the str.join()
method on a string literal that is the element used to join the sequence:

>>> ''_ join(reversed(dna)) (1]
'TGGCCCAAAA'

© Use the empty string to join the reversed characters of the DNA string.

Another method uses the 1ist() function to force reversed() to produce the values:

>>> list(reversed(dna))

[|T|, IGI’ |G|’ 'CI, |C|’ 'CI, |A|’ lAl, |A|’ lAl]
Wait, what happened? The dna variable is a string, but I got back a list—and not just
because I used the list() function. The documentation for reversed() shows that
the function takes a sequence, which means any data structure or function that
returns one thing followed by another. In a list or iterator context, Python treats
strings as lists of characters:

>>> list(dna)

[IA|’ 'AI’ IA" IAI’ ICI, lcl, ICI, 'Gl, |Gl, IT|]
A longer way to build up the reversed DNA sequence is to use a for loop to iterate
over the reversed bases and append them to a string. First I'll declare a rev variable,
and I'll append each base in reverse order using the += operator:

>>>rev=""0
>>> for base in reversed(dna): (2]
rev += base
>>> rev
'TGGCCCAAAA'
© Initialize the rev variable with the empty string.

©® Iterate through the reversed bases of DNA.

©® Append the current base to the rev variable.

But since I still need to complement the bases, I'm not quite done.

Getting Started | 71

Creating a Decision Tree

There are a total of eight complements: A to T and G to C, both upper- and lowercase,
and then vice versa. I also need to handle the case of a character not being A, C, G, or
T. 1 can use if/elif statements to create a decision tree. I'll change my variable to
revc since it’s now the reverse complement, and T’ll figure out the correct comple-
ment for each base:

revc ="' @
for base in reversed(dna): (2]
if base == 'A': ©
revc += 'T' O

elif base == 'T':
revc += 'A’
elif base == 'G':
revc += 'C'
elif base == 'C':
revc += 'G'
elif base == 'a':
revc += 't'
elif base == 't':
revc += 'a'
elif base == 'g':
revc += 'c'
elif base == 'c':
revc += 'g'
else: ©

revc += base

Initialize a variable to hold the reverse complement string.
Iterate through the reversed bases in the DNA string.

Test each uppercase and lowercase base.

© o © ©

Append the complementing base to the variable.

© If the base doesn’t match any of these tests, use the base as is.

If you inspect the revc variable, it appears to be correct:

>>> revc

'ACCGGGTTTT'
You should be able to incorporate these ideas into a program that will pass the test
suite. To understand what exactly is expected of your program, take a look at the tests/
revc_test.py file. After you pass the test_uppercase() function, see what is expected
by test_lowercase():

72 | Chapter3: Reverse Complement of DNA: String Manipulation

def test_lowercase():
""" Runs on lowercase input

rv, out = getstatusoutput(f'{RUN} aaaaCCCGGT') (1]
assert rv ==
assert out == 'ACCGGGtttt' ©

© Run the program using lowercase and uppercase DNA strings.
® The exit value should be 0.

© The output from the program should be the indicated string.
The next tests will pass filenames rather than strings as input:

def test_inputl():
""" Runs on file input

file, expected = TEST1 (1]

rv, out = getstatusoutput(f'{RUN} {file}') (2]
assert rv == 0

assert out == open(expected).read().rstrip() (4]

The TEST1 tuple is a file of input and a file of expected output.

Run the program with the filename.

® o0 ©

Make sure the exit value is 0.

O Open and read the expected file and compare that to the output.

It’s equally important to read and understand the testing code as it is to learn how to
write the solutions. When you write your programs, you may find you can copy many
of the ideas from these tests and save yourself time.

Refactoring

While the algorithm in the preceding section will produce the correct answer, it is not
an elegant solution. Still, it’s a place to start that passes the tests. Now that you per-
haps have a better idea of the challenge, it’s time to refactor the program. Some of the
solutions I present are as short as one or two lines of code. Here are some ideas you
might consider:

o Use a dictionary as a lookup table instead of the 1f/elif chain.

« Rewrite the for loop as a list comprehension.

Getting Started | 73

o Use the str.translate() method to complement the bases.

« Create a Blo.Seq object and find the method that will do this for you.

There’s no hurry to read ahead. Take your time to try other solutions. I haven’t intro-
duced all these ideas yet, so I encourage you to research any unknowns and see if you
can figure them out on your own.

I remember one of my teachers in music school sharing this quote with me:

Then said a teacher, Speak to us of Teaching.
And he said:

No man can reveal to you aught but that which already lies half asleep in the dawning
of your knowledge.

The teacher who walks in the shadow of the temple, among his followers, gives not of
his wisdom but rather of his faith and his lovingness.

If he is indeed wise he does not bid you enter the house of his wisdom, but rather leads
you to the threshold of your own mind.

—XKabhlil Gibran

Solutions

All of the solutions share the same get_args() function, as follows:

class Args(NamedTuple): (1]
""" Command-line arguments
dna: str

def get_args() -> Args:
""" Get command-line arguments

parser = argparse.ArgumentParser(
description='Print the reverse complement of DNA',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('dna', metavar='DNA', help='Input sequence or file')

args = parser.parse_args()

if os.path.isfile(args.dna): (2]
args.dna = open(args.dna).read().rstrip()

return Args(args.dna) (3]

© The only argument to the program is a string of DNA.

74 | Chapter3: Reverse Complement of DNA: String Manipulation

® Handle the case when reading a file input.

©® Return an Args object in compliance with the function signature.

Solution 1: Using a for Loop and Decision Tree

Here is my first solution using the i1f/else decision tree:

def main() -> None:
args = get_args()
revc = "'

for base in reversed(args.dna): (2]
if base == 'A': ©

revc += 'T'
elif base == 'T':
revc += 'A'
elif base == 'G':
revc += 'C'
elif base == 'C':
revc += 'G'
elif base == 'a':
revc += 't'
elif base == 't':

revc += 'a
elif base == 'g':
revc += 'c
elif base == 'c':
revc += 'g

else:
revc += base

print(revc) (4]

© Initialize a variable to hold the reverse complement.
@ Iterate through the reversed bases of the DNA argument.
© Create an if/elif decision tree to determine each base’s complement.

Print the result.

Solution 2: Using a Dictionary Lookup

I mentioned that the if/else chain is something you should try to replace. That is 18
lines of code (LOC) that could be represented more easily using a dictionary lookup:

>>> trans = {
IAI: ‘T" Icl: IGI’ IGl: ICI’ IT': 'AI,

Solutions | 75

If T use a for loop to iterate through a string of DNA, I can use the dict.get()
method to safely request each base in a string of DNA to create the complement (see
Figure 3-1). Note that I will use the base as the optional second argument to
dict.get(). If the base doesn’t exist in the lookup table, then I'll default to using the
base as is, just like the else case from the first solution:

>>> for base in 'AAAACCCGGT':
print(base, trans.get(base, base))

—— oo nNnN>»r>x>>> -
>N nNnDooo - —-H—--H

I can create a complement variable to hold the new string I generate:

>>> complement =
>>> for base in 'AAAACCCGGT':
complement += trans.get(base, base)

>>> complement
'"TTTTGGGCCA'

You saw before that using the reversed() function on a string will return a list of the
characters of the string in reverse order:

>>> list(reversed(complement))
[IA‘, ICI’ IC‘, IGI’ IG', 'GI, IT', 'Tl, ‘T', ITI]

I can use the str. join() function to create a new string from a list:

>>> '' join(reversed(complement))
'ACCGGGTTTT'

When I put all these ideas together, the main() function becomes significantly
shorter. It also becomes easier to expand because adding a new branch to the decision
tree only requires adding a new key/value pair to the dictionary:

def main() -> None:
args = get_args()
trans = {
IAI: |Tl’ Icl: IGI’ IGl: lcl’ ITl: IAI,
'a': 't', 'c¢': 'g', 'g': 'c', "t': 'a

76 | Chapter3: Reverse Complement of DNA: String Manipulation

complement = "' (2]
for base in args.dna: (3]
complement += trans.get(base, base) (4]
print(''.join(reversed(complement))) (5]
This is a dictionary showing how to translate one base to its complement.

Initialize a variable to hold the DNA complement.

Iterate through each base in the DNA string.

© o o ©

Append the translation of the base or the base itself to the complement.

Reverse the complement and join the results on an empty string.

Python strings and lists are somewhat interchangeable. I can change the complement
variable to a list, and nothing else in the program changes:

def main() -> None:
args = get_args()
trans = {
IA|: |Tl’ IC|: IGI’ IGI: ICI’ ITI: IAI,
'a's 't', 'c¢': 'g', 'g': 'c', "t': '3

}

complement = [] (1]
for base in args.dna:
complement += trans.get(base, base)

print(''.join(reversed(complement)))

O [Initialize the complement to an empty list instead of a string.

I am highlighting here that the += operator works with both strings and lists to
append a new value at the end. There is also a list.append() method which does the
same:

for base in args.dna:
complement.append(trans.get(base, base))
The reversed() function works just as well on a list as it does a string. It's somewhat

remarkable to me that using two different types for the complement results in so few
changes to the code.

Solutions | 77

Solution 3: Using a List Comprehension

I suggested that you use a list comprehension without telling you what that is. If
you've never used one before, it’s essentially a way to write a for loop inside the
square brackets ([]) used to create a new list (see Figure 3-2). When the goal of a for
loop is to build up a new string or list, it makes much more sense to use a list
comprehension.

[1
for base in args.dna:

trans.get(base, base)
| |
¥
[11]
[trans.get(base, base) for base in args.dna]
| |

Make a new list with the results

Figure 3-2. A list comprehension uses a for loop to generate a new list

This shortens the three lines to initialize a complement and loop through the string of
DNA down to one line:
def main() -> None:
args = get_args()
trans = {
IAl: lTI’ |cl: IGI’ |G|: lcl’ IT': lAl,
|a|: |t|’ |c|: Ygl’ |g|: 'CI, |t|: lal

}

complement = [trans.get(base, base) for base in args.dna] (1]
print(''.join(reversed(complement)))

© Replace the for loop with a list comprehension.
Since the complement variable is only used once, I might even shorten this further by
using the list comprehension directly:

print(''.join(reversed([trans.get(base, base) for base in args.dna]l)))

This is acceptable because the line is shorter than the maximum of 79 characters rec-
ommended by PEPS, but its not as readable as the longer version. You should use
whatever version you feel is most immediately understandable.

Solution 4: Using str.translate()

In Chapter 2, I used the str.replace() method to substitute all the Ts with Us when
transcribing DNA to RNA. Could I use that here? Let’s try. I'll start by initializing the
DNA string and replacing the As with Ts. Remember that strings are immutable,

78 | Chapter3: Reverse Complement of DNA: String Manipulation

meaning I can’t change a string in place, but rather must overwrite the string with a
new value:

' AAAACCCGGT'
dna.replace('A', 'T'")

>>> dna
>>> dna

Now let’s look at the DNA string:

>>> dna

'"TTTTCCCGGT
Can you see where this has started to go wrong? I'll complement the Ts to As now,
and see if you can spot the problem:

>>> dna = dna.replace('T', 'A")

>>> dna

"AAAACCCGGA'
As shown in Figure 3-3, all the As that turned into Ts in the first move were just
changed back to As. Oh, that way madness lies.

AAAACCCGGT
replace('A', 'T")
TTTTCCCGGT

I_l_l lreplace('T', 'A")

AAAACCCGGA

Figure 3-3. Iteratively using str.replace() leads to double replacements of values and
the wrong answer

Fortunately, Python has the str.translate() function for exactly this purpose. If
you read help(str.translate), you will find the function requires a table “which
must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None” The
trans dictionary table will serve, but first, it must be passed to the str.maketrans()
function to transform the complement table into a form that uses the ordinal values
of the keys:
>>> trans = {
AT Y, TChr GY, 'Gh: C, T AT,

e la|: |tl’ |C|: lgl’ |g|: 'CI, |t|: lal
)
>>> str.maketrans(trans)

{65: 'T', 67: 'G', 71: 'C', 84: 'A', 97: 't', 99: 'g', 103: 'c', 116: 'a'}

You can see that the string key A was turned into the integer value 65, which is the

same value returned by the ord() function:

>>> ord('A')
65

Solutions | 79

This value represents the ordinal position of the character A in the ASCII (American
Standard Code for Information Interchange, pronounced as-key) table. That is, A is
the 65™ character in the table. The chr() function will reverse this process, providing
the character represented by an ordinal value:

>>> chr(65)

N
The str.translate() function requires the complement table to have ordinal values
for the keys, which is what I get from str.maketrans():

>>> 'AAAACCCGGT'.translate(str.maketrans(trans))

'"TTTTGGGCCA'

Finally, I need to reverse the complement. Here is a solution that incorporates all
these ideas:

def main() -> None:
args = get_args()

trans = str.maketrans({ (1)
IA|: |Tl’ IC|: YGI’ IG|: ICI, ITI: IAI,
lal: ltl’ ICI: lgl’ Ig|: 'CI’ Itl: lal

b

print(''.join(reversed(args.dna.translate(trans)))) (2]

@ Create the translation table needed for the str.translate() function.

® Complement the DNA using the trans table. Reverse, and join for a new string.

But, wait—there’s more! There’s another even shorter way to write this. According to
the help(str.translate) documentation:

If there is only one argument, it must be a dictionary mapping Unicode ordinals (inte-
gers) or characters to Unicode ordinals, strings or None. Character keys will be then
converted to ordinals. If there are two arguments, they must be strings of equal length,
and in the resulting dictionary, each character in x will be mapped to the character at the
same position in y.

So I can remove the trans dictionary and write the entire solution like this:

def main() -> None:
args = get_args()
trans = str.maketrans('ACGTacgt', 'TGCAtgca') (1)
print(''.join(reversed(args.seq.translate(trans)))) (2]

© Make the translation table using two strings of equal lengths.

© Create the reverse complement.

80 | Chapter3:Reverse Complement of DNA: String Manipulation

If you wanted to ruin someone’s day—and in all likelihood, that person will be future
you—you could even condense this into a single line of code.

Solution 5: Using Bio.Seq

I told you at the beginning of this chapter that the final solution would involve an
existing function." Many Python programmers working in bioinformatics have con-
tributed to a set of modules under the name of Biopython. They have written and tes-
ted many incredibly useful algorithms, and it rarely makes sense to write your own
code when you can use someone else’s.

Be sure that you have first installed biopython by running the following:
$ python3 -m pip install biopython

I could import the entire module using import Bio, but it makes much more sense to
only import the code I need. Here I only need the Seq class:

>>> from Bio import Seq
Now I can use the Seq.reverse_complement() function:

>>> Seq.reverse_complement('AAAACCCGGT")

'ACCGGGTTTT'
This final solution is the version I would recommend, as it is the shortest and also
uses existing, well-tested, documented modules that are almost ubiquitous in
bioinformatics with Python:

def main() -> None:

args = get_args()
print(Seq.reverse_complement(args.dna)) (1]

@ Use the Bio.Seq.reverse_complement() function.

When you run mypy on this solution (you are running mypy on every one of your pro-
grams, right?), you may get the following error:

FAILURES
revc.py
6: error: Skipping analyzing 'Bio': found module but no type hints or library
stubs
6: note: See https://mypy.readthedocs.io/en/latest/running_mypy.html#missing
-imports
mypy

Found 1 error in 1 file (checked 2 source files)

1 This is kind of like how my high school calculus teacher spent a week teaching us how to perform manual
derivatives, then showed us how it could be done in 20 seconds by pulling down the exponent and yada yada
yada.

Solutions | 81

https://biopython.org

mypy.ini: No [mypy] section in config file

short test summary info

FAILED revc.py::mypy

1 failed, 1 skipped in 0.20s

To silence this error, you can tell mypy to ignore imported files that are missing type
annotations. In the root directory of the GitHub repository for this book, you will
find a file called mypy.ini with the following contents:

$ cat mypy.ini
[mypy]

ignore_missing_imports = True
Adding a mypy.ini file to any working directory allows you to make changes to the
defaults that mypy uses when you run it in the same directory. If you would like to
make this a global change so that mypy will use this no matter what directory you are
in, then put this same content into $HOME/.mypy.ini.

Review

Manually creating the reverse complement of DNA is something of a rite of passage.
Here’s what I showed:

 You can write a decision tree using a series of if/else statements or by using a
dictionary as a lookup table.

o Strings and lists are very similar. Both can be iterated using a for loop, and the +=
operator can be used to append to both.

A list comprehension uses a for loop to iterate a sequence and generate a new
list.

o The reversed() function is a lazy function that will return an iterator of the ele-
ments of a sequence in reverse order.

» You can use the l1ist() function in the REPL to coerce lazy functions, iterators,
and generators to generate their values.

o The str.maketrans() and str.translate() functions can perform string sub-
stitution and generate a new string.

o The ord() function returns the ordinal value of a character, and conversely, the
chr() function returns the character for a given ordinal value.

« Biopython is a collection of modules and functions specific to bioinformatics.
The preferred way to create the reverse complement of DNA is to use the
Bio.Seq.reverse_complement() function.

82 | Chapter3:Reverse Complement of DNA: String Manipulation

https://oreil.ly/RpMgV

CHAPTER 4

Creating the Fibonacci Sequence: Writing,
Testing, and Benchmarking Algorithms

Writing an implementation of the Fibonacci sequence is another step in the heros
journey to becoming a coder. The Rosalind Fibonacci description notes that the gene-
sis for the sequence was a mathematical simulation of breeding rabbits that relies on
some important (and unrealistic) assumptions:

o The first month starts with a pair of newborn rabbits.
« Rabbits can reproduce after one month.

o Every month, every rabbit of reproductive age mates with another rabbit of
reproductive age.

« Exactly one month after two rabbits mate, they produce a litter of the same size.
« Rabbits are immortal and never stop mating.
The sequence always begins with the numbers 0 and 1. The subsequent numbers can

be generated ad infinitum by adding the two immediately previous values in the list,
as shown in Figure 4-1.

Figure 4-1. The first eight numbers of the Fibonacci sequence—after the initial 0 and 1,
subsequent numbers are created by adding the two previous numbers

83

https://oreil.ly/7vkRw

If you search the internet for solutions, you’ll find dozens of different ways to gener-
ate the sequence. I want to focus on three fairly different approaches. The first solu-
tion uses an imperative approach where the algorithm strictly defines every step. The
next solution uses a generator function, and the last will focus on a recursive solution.
Recursion, while interesting, slows drastically as I try to generate more of the
sequence, but it turns out the performance problems can be solved using caching.

You will learn:

« How to manually validate arguments and throw errors

« How to use a list as a stack

« How to write a generator function

« How to write a recursive function

o Why recursive functions can be slow and how to fix this with memoization

« How to use function decorators

Getting Started

The code and tests for this chapter are found in the 04_fib directory. Start by copying
the first solution to fib.py:

$ cd 04_fib/
$ cp solutioni_list.py fib.py

Ask for the usage to see how the parameters are defined. You can use n and k, but I
chose to use the names generations and litter:

$./fib.py -h
usage: fib.py [-h] generations litter

Calculate Fibonacci

positional arguments:
generations Number of generations
litter Size of litter per generation

optional arguments:
-h, --help show this help message and exit

This will be the first program to accept arguments that are not strings. The Rosalind
challenge indicates that the program should accept two positive integer values:
« n <40 representing the number of generations

o k <5 representing the litter size produced by mate pairs

84 | Chapter4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

Try to pass noninteger values and notice how the program fails:

$./fib.py foo
usage: fib.py [-h] generations litter
fib.py: error: argument generations: invalid int value: 'foo'

You can't tell, but in addition to printing the brief usage and a helpful error message,
the program also generated a nonzero exit value. On the Unix command line, an exit
value of 0 indicates success. I think of this as “zero errors” In the bash shell, I can
inspect the $? variable to look at the exit status of the most recent process. For
instance, the command echo Hello should exit with a value of 0, and indeed it does:

$ echo Hello
Hello

$ echo $?

0

Try the previously failing command again, and then inspect $2:

$./fib.py foo

usage: fib.py [-h] generations litter

fib.py: error: argument generations: invalid int value: 'foo'
$ echo $?

2

That the exit status is 2 is not as important as the fact that the value is not zero. This is
a well-behaved program because it rejects an invalid argument, prints a useful error
message, and exits with a nonzero status. If this program were part of a pipeline of
data processing steps (such as a Makefile, discussed in Appendix A), a nonzero exit
value would cause the entire process to stop, which is a good thing. Programs that
silently accept invalid values and fail quietly or not at all can lead to unreproducible
results. It’s vitally important that programs properly validate arguments and fail very
convincingly when they cannot proceed.

The program is very strict even about the type of number it accepts. The values must
be integers. It will also repel any floating-point values:

$./fib.py 5 3.2
usage: fib.py [-h] generations litter
fib.py: error: argument litter: invalid int value: '3.2'

All command-line arguments to the program are technically
received as strings. Even though 5 on the command line looks like
the number 5, it’s the character “5”. I am relying on argparse in this
situation to attempt to convert the value from a string to an integer.
When that fails, argparse generates these useful error messages.

Additionally, the program rejects values for the generations and litter parameters
that are not in the allowed ranges. Notice that the error message includes the name of

Getting Started | 85

the argument and the offending value to provide sufficient feedback to the user so
you can fix it:

$./fib.py -3 2

usage: fib.py [-h] generations litter

fib.py: error: generations "-3" must be between 1 and 40 (1)
$./fib.py 5 10

usage: fib.py [-h] generations litter

fib.py: error: litter "10" must be between 1 and 5 (2]

© The generations argument of -3 is not in the stated range of values.

©® The litter argument of 10 is too high.
Look at the first part of the solution to see how to make this work:

import argparse
from typing import NamedTuple

class Args(NamedTuple):
""" Command-line arguments
generations: int (1)
litter: int O

def get_args() -> Args:
""" Get command-line arguments """

parser = argparse.ArgumentParser(
description='Calculate Fibonacci',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('gen', (3]
metavar='generations',
type=int, (4]
help="Number of generations')

parser.add_argument('litter', (5]
metavar='litter',
type=int,
help='Size of litter per generation')

args = parser.parse_args() (6]

if not 1 <= args.gen <= 40: (7]
parser.error(f'generations "{args.gen}" must be between 1 and 40') (8]

if not 1 <= args.litter <= 5: (o]
parser.error(f'litter "{args.litter}" must be between 1 and 5') ®

return Args(generations=args.gen, litter=args.litter) ®

86 | Chapter4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

()

® 6 0 ©o

The generations field must be an int.
The litter field must also be an int.

The gen positional parameter is defined first, so it will receive the first positional
value.

The type=int indicates the required class of the value. Notice that int indicates
the class itself, not the name of the class.

The litter positional parameter is defined second, so it will receive the second
positional value.

Attempt to parse the arguments. Any failure will result in error messages and the
program exiting with a nonzero value.

The args.gen value is now an actual int value, so it's possible to perform
numeric comparisons on it. Check if it is in the acceptable range.

Use the parser.error() function to generate an error and exit the program.
Likewise check the value of the args.litter argument.
Generate an error that includes information the user needs to fix the problem.

If the program makes it to this point, then the arguments are valid integer values
in the accepted range, so return the Args.

I could check that the generations and litter values are in the correct ranges in the
main() function, but I prefer to do as much argument validation as possible inside
the get_args() function so that I can use the parser.error() function to generate
useful messages and exit the program with a nonzero value.

Remove the fib.py program and start anew with new.py or your preferred method
for creating a program:

$ new.py -fp 'Calculate Fibonacci' fib.py
Done, see new script "fib.py".

You can replace the get_args() definition with the preceding code, then modify your
main() function like so:

def main() -> None:
args = get_args()
print(f'generations = {args.generations}')
print(f'litter = {args.litter}')

Getting Started | 87

Run your program with invalid inputs and verify that you see the kinds of error mes-
sages shown earlier. Try your program with acceptable values and verify that you see
this kind of output:

$./fib.py 1 2
generations = 1
litter = 2

Run pytest to see what your program passes and fails. You should pass the first four
tests and fail the fifth:

$ pytest -xv
test session starts

tests/fib_test.py::test_exists PASSED [14%]
tests/fib_test.py::test_usage PASSED [28%]
tests/fib_test.py::test_bad_generations PASSED [42%]
tests/fib_test.py::test_bad_litter PASSED [57%]
tests/fib_test.py::test_1 FAILED [71%] (1)

FAILURES

test_1

def test_1():
"""runs on good input

rv, out = getstatusoutput(f'{RUN} 5 3') (2]

assert rv == 0
> assert out == '19' ©
E AssertionError: assert 'generations = 5\nlitter = 3' == '19' (4]
E - 19
E + generations = 5 (6]
E + litter = 3

tests/fib_test.py:60: AssertionError
short test summary info
FAILED tests/fib_test.py::test_1 - AssertionError: assert 'generations...

1 failed, 4 passed in 0.38s

The first failing test. Testing halts here because of the -x flag.
The program is run with 5 for the number of generations and 3 for the litter size.
The output should be 19.

This shows the two strings being compared are not equal.

® 06 o o ©

The expected value was 19.

88 | Chapter 4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

O This is the output that was received.

The output from pytest is trying very hard to point out exactly what went wrong. It
shows how the program was run and what was expected versus what was produced.
The program is supposed to print 19, which is the fifth number of the Fibonacci
sequence when using a litter size of 3. If you want to finish the program on your own,
please jump right in. You should use pytest to verify that you are passing all the tests.
Also, run make test to check your program using pylint, flake8, and mypy. If you
want some guidance, I'll cover the first approach I described.

An Imperative Approach

Figure 4-2 depicts the growth of the Fibonacci sequence. The smaller rabbits indicate
nonbreeding pairs that must mature into larger, breeding pairs.

Months 1 2 3 4 5 6

Pair 1 1 2 3 5 8

Figure 4-2. A visualization of the growth of the Fibonacci sequence as mating pairs of
rabbits using a litter size of 1

You can see that to generate any number after the first two, I need to know the two
previous numbers. I can use this formula to describe the value of any position # of the
Fibonacci sequence (F):

F =F

n n-1

+Fn_2

Getting Started | 89

What kind of a data structure in Python would allow me to keep a sequence of num-
bers in order and refer to them by their position? A list. I'll start off with F, = 0 and
F,=1:

>>> fib = [0, 1]

The F; value is F, + F; = 1 + 0 = 1. When generating the next number, I'll always be
referencing the last two elements of the sequence. It will be easiest to use negative
indexing to indicate a position from the end of the list. The last value in a list is
always at position -1:

>>> fib[-1]
1

The penultimate value is at -2:

>>> fib[-2]

0
I need to multiply this value by the litter size to calculate the number of offspring that
generation created. To start, I'll consider a litter size of I:

>>> litter = 1

>>> fib[-2] * litter
0

I want to add these two numbers together and append the result to the list:

>>> fib.append((fib[-2] * litter) + fib[-1])
>>> fib
[o, 1, 1]

If I do this again, I can see that the correct sequence is emerging:

>>> fib.append((fib[-2] * litter) + fib[-1])

>>> fib

[0, 1, 1, 2]
I need to repeat this action generations times. (Technically it will be generations-1
times because Python uses 0-based indexing.) I can use Python’s range() function to
generate a list of numbers from 0 up to but not including the end value. I'm calling
this function solely for the side effect of iterating a particular number of times and so
don’t need the values produced by the range() function. It's common to use the
underscore (_) variable to indicate one’s intent to ignore a value:

>>> fib = [0, 1]

>>> litter = 1

>>> generations = 5

>>> for _ in range(generations - 1):
fib.append((fib[-2] * litter) + fib[-1])

>>> fib
[0’ 1-‘ 1-‘ 2’ 3’ 5]

90 | Chapter4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

This should be enough for you to create a solution that passes the tests. In the next
section, I'll cover two other solutions that highlight some very interesting parts of
Python.

Solutions

All the following solutions share the same get_args() shown previously.

Solution 1: An Imperative Solution Using a List as a Stack

Here is how I wrote my imperative solution. I'm using a list as a kind of stack to keep
track of past values. I don't need all the values, just the last two, but it’s pretty easy to
keep growing the list and referring to the last two values:

def main() -> None:
args = get_args()

fib=1[0, 11 @
for _ in range(args.generations - 1): (2]
fib.append((fib[-2] * args.litter) + fib[-1]) (3]
print(fib[-1]) @
Start with 0 and 1.

Use the range() function to create the right number of loops.

Append the next value to the sequence.

© o o0 ©

Print the last number of the sequence.

I used the _ variable name in the for loop to indicate that I don’t
intend to use the variable. The underscore is a valid Python identi-
fier, and it’s also a convention to use this to indicate a throwaway
value. Linting tools, for instance, might see that I've assigned a vari-
able some value but never used it, which would normally indicate a
possible error. The underscore variable shows that I do not intend
to use the value. In this case, I'm using the range() function purely
for the side effect of creating the number of loops needed.

This is considered an imperative solution because the code directly encodes every
instruction of the algorithm. When you read the recursive solution, you will see that
the algorithm can be written in a more declarative manner, which also has uninten-
ded consequences that I must handle.

Solutions | 91

A slight variation on this would be to place this code inside a function I'll call fib().
Note that it’s possible in Python to declare a function inside another function, as here
I'll create fib() inside main(). I do this so I can reference the args.litter parame-
ter, creating a closure because the function is capturing the runtime value of the litter
size:

def main() -> None:
args = get_args()

def fib(n: int) -> int: (1)
nums = [0, 1] (2]
for _ in range(n - 1): (3]
nums.append((nums[-2] * args.litter) + nums[-1]) (4]
return nums[-1]

print(fib(args.generations)) (6]

© Create a function called fib() that accepts an integer parameter n and returns an
integer.

()

This is the same code as before. Note this list is called nums so it doesn’t clash
with the function name.

©

Use the range() function to iterate the generations. Use _ to ignore the values.

©

The function references the args.litter parameter and so creates a closure.

()

Use return to send the final value back to the caller.

Call the fib() function with the args.generations parameter.

The scope of the fib() function in the preceding example is limited to the main()
function. Scope refers to the part of the program where a particular function name or
variable is visible or legal.

I don’t have to use a closure. Here is how I can express the same idea with a standard
function:

def main() -> None:
args = get_args()

print(fib(args.generations, args.litter)) (1)
def fib(n: int, litter: int) -> int: (2]

nums = [0, 1]

for _ in range(n - 1):

nums.append((nums[-2] * litter) + nums[-1])

return nums[-1]

92 | Chapter 4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

© The fib() function must be called with two arguments.

® The function requires both the number of generations and the litter size. The
function body is essentially the same.

In the preceding code, you see that I must pass two arguments to fib(), whereas the
closure required only one argument because the litter was captured. Binding values
and reducing the number of parameters is a valid reason for creating a closure.
Another reason to write a closure is to limit the scope of a function. The closure defi-
nition of fib() is valid only inside the main() function, but the preceding version is
visible throughout the program. Hiding a function inside another function makes it
harder to test. In this case, the fib() function is almost the entire program, so the
tests have already been written in tests/fib_test.py.

Solution 2: Creating a Generator Function

In the previous solution, I generated the Fibonacci sequence up to the value reques-
ted and then stopped; however, the sequence is infinite. Could I create a function that
could generate all the numbers of the sequence? Technically, yes, but it would never
finish, what with being infinite and all.

Python has a way to suspend a function that generates a possibly infinite sequence. I
can use yield to return a value from a function, temporarily leaving the function
later to resume at the same state when the next value is requested. This kind of func-
tion is called a generator, and here is how I can use it to generate the sequence:

def fib(k: int) -> Generator[int, None, None]: (1]

X, y=0,1
yieldxe

while True: @
yield y (5)
x,y=y*k,x+y0

O The type signature indicates the function takes the parameter k (litter size),
which must be an int. It returns a special function of the type Generator which
yields int values and has no send or return types.

I only ever need to track the last two generations, which I initialize to 0 and 1.
Yield the 0.

Create an infinite loop.

® 06 o ©

Yield the last generation.

Solutions | 93

O Set x (two generations back) to the current generation times the litter size. Set y

(one generation back) to the sum of the two current generations.

A generator acts like an iterator, producing values as requested by the code until it is
exhausted. Since this generator will only generate yield values, the send and return
types are None. Otherwise, this code does exactly what the first version of the pro-
gram did, only inside a fancy-pants generator function. See Figure 4-3 to consider
how the function works for two different litter sizes.

)

x=0
y=0
yield x

———
S

x=0
y=1
yieldy
x=y*k=1
y=x+y=1
x=1
y=1
yieldy
x=y*k=1
y=x+y=2
————

x=1
y=2
yieldy
x=y*k=2
y:x+y=3
—

X=2
y=3
yieldy
x=y*k=3
y:x+y=5
—
 S—
X=3
y=5
yieldy
x=y*k=5

—0

— 1

— 1

— 2

— 3

—>»5

y:x+y=8

——————

x=0
y=1
yield x

N————
-)

x=0
y=1
yield y
x=y*k=3
y:x+y=]
X=3
y=1
yield y
x=y*k=3
y:x+y=4

X=3
y=4
yield y
x=y*k=12

y:x+y=7

X=12
y=7
yield y
x=y*k=21

y=x+y=19

x=21
y=19
yield y
x=y*k=57

—>0

— 1

— 1

—>4

— 7

—19

y:x+y=40

Figure 4-3. A depiction of how the fib() generator’ state changes over time (n=5) for
two litter sizes (k=1 and k=3)

94

Chapter 4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

The type signature for Generator looks a little complicated since it defines types for
yield, send, and return. I don't need to dive into it further here, but I recommend you
read the docs on the typing module.

Here’s how to use this:

def main() -> None:
args = get_args()
gen = fib(args.litter) (1]
seq = [next(gen) for _ in range(args.generations + 1)] (2]
print(seq[-1]) ©

The fib() function takes the litter size as an argument and returns a generator.

Use the next() function to retrieve the next value from a generator. Use a list
comprehension to do this the correct number of times to generate the sequence
up to the requested value.

© Print the last number in the sequence.

The range() is function different because the first version already
had the 0 and 1 in place. Here I have to call the generator two extra
times to produce those values.

Although I prefer the list comprehension, I don’t need the entire list. I only care about
the final value, so I could have written it like so:

def main() -> None:
args = get_args()
gen = fib(args.litter)
answer = 0
for _ in range(args.generations + 1): (2]
answer = next(gen) (3]
print(answer) (4)

)

Initialize the answer to 0.

(~)

Create the correct number of loops.

]

Get the value for the current generation.

Print the answer.

As it happens, it’s quite common to call a function repeatedly to generate a list, so
there is a function to do this for us. The itertools.islice() function will “Make an
iterator that returns selected elements from the iterable” Here is how I can use it:

Solutions | 95

https://oreil.ly/Oir3d

def main() -> None:
args = get_args()
seq = list(islice(fib(args.litter), args.generations + 1)) (1)
print(seq[-1]) (2]

© The first argument to islice() is the function that will be called, and the second
argument is the number of times to call it. The function is lazy, so I use 1ist() to
coerce the values.

® Print the last value.

Since I only use the seq variable one time, I could eschew that assignment. If bench-
marking proved the following to be the best-performing version, I might be willing to
write a one-liner:

def main() -> None:
args = get_args()
print(list(islice(fib(args.litter), args.generations + 1))[-1])

Clever code is fun but can become unreadable.! You have been warned.

Generators are cool but more complex than generating a list. They are the appropri-
ate way to generate a very large or potentially infinite sequence of values because they
are lazy, only computing the next value when your code requires it.

Solution 3: Using Recursion and Memoization

While there are many more fun ways to write an algorithm to produce an infinite ser-
ies of numbers, I'll show just one more using recursion, which is when a function calls
itself:

def main() -> None:
args = get_args()

def fib(n: int) -> int: (1)
return 1 if n in (1, 2) \ (2]
else fib(n - 2) * args.litter + fib(n - 1) (3]
print(fib(args.generations)) (4]

@ Define a function called fib() that takes the number of the generation wanted as
an int and returns an int.

1 As the legendary David St. Hubbins and Nigel Tufnel observed, “It’s such a fine line between stupid and
clever”

96 | Chapter 4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

O If the generation is 1 or 2, return 1. This is the all-important base case that does
not make a recursive call.

© For all other cases, call the fib() function twice, once for two generations back
and another for the previous generation. Factor in the litter size as before.

O Print the results of the fib() function for the given generations.

Here’s another instance where I define a fib() function as a closure
inside the main() function so as to use the args.litter value
inside the fib() function. This is to close around args.litter,
effectively binding that value to the function. If I had defined the
function outside the main() function, I would have had to pass the
args.litter argument on the recursive calls.

This is a really elegant solution that gets taught in pretty much every introductory
computer science class. It’s fun to study, but it turns out to be wicked slow because I
end up calling the function so many times. That is, fib(5) needs to call fib(4) and
fib(3) to add those values. In turn, fib(4) needs to call fib(3) and fib(2), and so
on. Figure 4-4 shows that fib(5) results in 14 function calls to produce 5 distinct val-
ues. For instance, fib(2) is calculated three times, but we only need to calculate it
once.

fib(5)
/
ﬁb(4)+f>(3)
AN
fib(3)+fib(2) fib(2)+fib(1)
AN N
ﬁb(2)+ﬁb({ fib(1)+fib(0) f!b(1)+ﬁb(0)
AN

ﬁ|b(1)+ﬁb(0)

Figure 4-4. The call stack for fib(5) results in many recursive calls to the function, with
their number increasing approximately exponentially as the input value increases

Solutions | 97

To illustrate the problem, I'll take a sampling of how long this program takes to finish
up to the maximum n of 40. Again, I'll use a for loop in bash to show you how I
would commonly benchmark such a program on the command line:

$ for n in 10 20 30 40;

> do echo "==> $n <==" && time ./solution3_recursion.py $n 1
> done

==> 10 <==

55

real 0Om0.045s
user 0m0.032s
sys 0m0.011s
==> 20 <==

6765

real 0m0.041s
user 0m0.031s
sys Om0.009s
==> 30 <==

832040

real 0m0.292s
user Om0.281s
sys Om0.009s
==> 40 <==

102334155

real 0m31.629s
user Om31.505s
sys 0m0.043s

The jump from 0.29s for n=30 to 31s for n=40 is huge. Imagine going to 50 and
beyond. I need to either find a way to speed this up or abandon all hope for recursion.
The solution is to cache previously calculated results. This is called memoization, and
there are many ways to implement this. The following is one method. Note you will
need to import typing.Callable:

def memoize(f: Callable) -> Callable: (1]
""" Memoize a function """

cache = {} (2]
def memo(x): (3]
if x not in cache: @
cache[x] = f(x) (5)

return cache[x] (6]

return memo 0

98 | Chapter4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

© Define a function that takes a function (something that is callable) and returns a
function.

Use a dictionary to store cached values.

Define memo() as a closure around the cache. The function will take some param-
eter x when called.

See if the argument value is in the cache.

If not, call the function with the argument and set the cache for that argument
value to the result.

O Return the cached value for the argument.

©@ Return the new function.

Note that the memoize() function returns a new function. In Python, functions are
considered first-class objects, meaning they can be used like other kinds of variables—
you can pass them as arguments and overwrite their definitions. The memoize()
function is an example of a higher-order function (HOF) because it takes other func-
tions as arguments. I'll be using other HOFs, like filter() and map(), throughout
the book.

To use the memoize() function, I will define fib() and then redefine it with the
memoized version. If you run this, you will see an almost instantaneous result no
matter how high n goes:

def main() -> None:
args = get_args()

def fib(n: int) -> int:
return 1 if n in (1, 2) else fib(n - 2) * args.litter + fib(n - 1)

fib = memoize(fib) (1)
print(fib(args.generations))

@ Opverwrite the existing fib() definition with the memoized function.

A preferred method to accomplish this uses a decorator, which is a function that
modifies another function:

def main() -> None:
args = get_args()

@memoize (1)
def fib(n: int) -> int:

Solutions | 99

return 1 if n in (1, 2) else fib(n - 2) * args.litter + fib(n - 1)

print(fib(args.generations))

©® Decorate the fib() function with the memoize() function.

As fun as writing memoization functions is, it again turns out that this is such a com-
mon need that others have already solved it for us. I can remove the memoize() func-
tion and instead import the functools.lru_cache (least-recently-used cache)
function:

from functools import lru_cache

Decorate the fib() function with the lru_cache() function to get memoization with
minimal distraction:

def main() -> None:
args = get_args()

@lru_cache() (1]
def fib(n: int) -> int:
return 1 if n in (1, 2) else fib(n - 2) * args.litter + fib(n - 1)

print(fib(args.generations))

@ Memoize the fib() function via decoration with the lru_cache() function. Note
that Python 3.6 requires the parentheses, but 3.8 and later versions do not.

Benchmarking the Solutions

Which is the fastest solution? I've shown you how to use a for loop in bash with the
time command to compare the runtimes of commands:

$ for py in ./solutioni_list.py ./solution2_generator_islice.py \
./solution3_recursion_lru_cache.py; do echo $py && time S$py 40 5; done
./solutionl_list.py

148277527396903091

real Om0.070s

user 0m0.043s

sys 0m0.016s
./solution2_generator_1islice.py
148277527396903091

real Om0.049s

user 0m0.033s

sys 0m0.013s
./solution3_recursion_lru_cache.py
148277527396903091

real 0m0.041s

100 | Chapter 4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

user Om0.030s
sys 0m0.010s

It would appear that the recursive solution using LRU caching is the fastest, but again
I have very little data—just one run per program. Also, I have to eyeball this data and
figure out which is the fastest.

There’s a better way. I have installed a tool called hyperfine to run each command
many times and compare the results:

$ hyperfine -L prg ./solutioni_list.py,./solution2_generator_islice.py,\

./solution3_recursion_lru_cache.py '{prg} 40 5' --prepare 'rm -rf __pycache__'
Benchmark #1: ./solutioni_list.py 40 5
Time (mean t o): 38.1ms + 1.1 ms [User: 28.3 ms, System: 8.2 ms]
Range (min .. max): 36.6 ms .. 42.8 ms 60 runs

Benchmark #2: ./solution2_generator_islice.py 40 5
Time (mean % o): 38.0 ms £+ 0.6 ms [User: 28.2 ms, System: 8.1 ms]
Range (min .. max): 36.7 ms .. 39.2 ms 66 runs

Benchmark #3: ./solution3_recursion_lru_cache.py 40 5

Time (mean t o): 37.9ms £ 0.6 ms [User: 28.1 ms, System: 8.1 ms]
Range (min .. max): 36.6 ms .. 39.4 ms 65 runs
Summary

'./solution3_recursion_lru_cache.py 40 5' ran
1.00 £ 0.02 times faster than './solution2_generator_1islice.py 40 5'
1.01 £ 0.03 times faster than './solutionl_list.py 40 5'

It appears that hyperfine ran each command 60-66 times, averaged the results, and
found that the solution3_recursion_lru_cache.py program is perhaps slightly
faster. Another benchmarking tool you might find useful is bench, but you can search
for other benchmarking tools on the internet that might suit your tastes more. What-
ever tool you use, benchmarking along with testing is vital to challenging assump-
tions about your code.

I used the --prepare option to tell hyperfine to remove the
pycache directory before running the commands. This is a direc-
tory created by Python to cache bytecode of the program. If a pro-
gram’s source code hasn’t changed since the last time it was run,
then Python can skip compilation and use the bytecode version
that exists in the pycache directory. I needed to remove this as
hyperfine detected statistical outliers when running the com-
mands, probably due to caching effects.

Benchmarking the Solutions | 101

https://oreil.ly/shqOS
https://oreil.ly/FKnmd

Testing the Good, the Bad, and the Ugly

For every challenge, I hope you spend part of your time reading through the tests.
Learning how to design and write tests is as important as anything else I'm showing
you. As I mentioned before, my first tests check that the expected program exists and
will produce usage statements on request. After that, I usually give invalid inputs to
ensure the program fails. I would like to highlight the tests for bad n and k parame-
ters. They are essentially the same, so I'll just show the first one as it demonstrates

how to randomly select an invalid integer value—one that is possibly negative or too
high:

def test_bad_n():
""" Dies when n is bad """

n = random.choice(list(range(-10, 0)) + list(range(41, 50))) (1]
k = random.randint(1, 5)

rv, out = getstatusoutput(f'{RUN} {n} {k}') ©

assert rv != 0

assert out.lower().startswith('usage:"') (5]

assert re.search(f'n "{n}" must be between 1 and 40', out) (6)

Join the two lists of invalid number ranges and randomly select one value.
Select a random integer in the range from 1 to 5 (both bounds inclusive).
Run the program with the arguments and capture the output.

Make sure the program reported a failure (nonzero exit value).

® 06 o6 o ©

Check the output begins with a usage statement.

O Look for an error message describing the problem with the n argument.

I often like to use randomly selected invalid values when testing. This partially comes
from writing tests for students so that they won’t write programs that fail on a single
bad input, but I also find it helps me to not accidentally code for a specific input
value. I haven't yet covered the random module, but it gives you a way to make
pseudorandom choices. First, you need to import the module:

>>> import random

For instance, you can use random.randint() to select a single integer from a given
range:

>>> random.randint(1, 5)
2
>>> random.randint(1, 5)
5

102 | Chapter 4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

Or use the random.choice() function to randomly select a single value from some
sequence. Here I wanted to construct a discontiguous range of negative numbers sep-
arated from a range of positive numbers:

>>> random.choice(list(range(-10, 0)) + list(range(41, 50)))
46
>>> random.choice(list(range(-10, 0)) + list(range(41, 50)))
-1

The tests that follow all provide good inputs to the program. For example:

def test_2():
""" Runs on good input """

rv, out = getstatusoutput(f'{RUN} 30 4') (1)
assert rv == 0
assert out == '436390025825' ©

© These are values I was given while attempting to solve the Rosalind challenge.
® The program should not fail on this input.

© This is the correct answer per Rosalind.

Testing, like documentation, is a love letter to your future self. As tedious as testing
may seem, you'll appreciate failing tests when you try to add a feature and end up
accidentally breaking something that previously worked. Assiduously writing and
running tests can prevent you from deploying broken programs.

Running the Test Suite on All the Solutions

You've seen that in each chapter I write multiple solutions to explore various ways to
solve the problems. I completely rely on my tests to ensure my programs are correct.
You might be curious to see how I've automated the process of testing every single
solution. Look at the Makefile and find the all target:

$ cat Makefile
.PHONY: test

test:
python3 -m pytest -xv --flake8 --pylint --mypy fib.py tests/fib_test.py

all:
../bin/all_test.py fib.py

Running the Test Suite on All the Solutions | 103

The all_test.py program will overwrite the fib.py program with
each of the solutions before running the test suite. This could over-
write your solution. Be sure you commit your version to Git or at
least make a copy before you run make all or you could lose your
work.

The following is the all_test.py program that is run by the all target. I'll break it
into two parts, starting with the first part up to get_args(). Most of this should be
familiar by now:

#!/usr/bin/env python3

""" Run the test suite on all solution*.py """
import argparse

import os

import re

import shutil

import sys

from subprocess import getstatusoutput

from functools import partial

from typing import NamedTuple

class Args(NamedTuple):
""" Command-line arguments
program: str (1]
quiet: bool (2]

def get_args() -> Args:
""" Get command-line arguments

parser = argparse.ArgumentParser(
description='Run the test suite on all solution*.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('program', metavar='prg', help='Program to test') (3]
parser.add_argument('-q', '--quiet', action='store_true', help='Be quiet') (4]
args = parser.parse_args()
return Args(args.program, args.quiet)

The name of the program to test, which in this case is fib.py.

A Boolean value of True or False to create more or less output.

104 | Chapter4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

(3]

o

The default type is str.

The action="store_true' makes this a Boolean flag. If the flag is present the
value will be True, and it will be False otherwise.

The main() function is where the testing happens:

® 6 ¢ 6 6 6 o o o

(2]

def main() -> None:
args = get_args()
cwd = os.getcwd() (1)
solutions = list(
filter(partial(re.match, r'solution.*\.py'), os.listdir(cwd))) (3]
for solution in sorted(solutions): (4]
print(f'==> {solution} <==")
shutil.copyfile(solution, os.path.join(cwd, args.program)) (5]
subprocess.run(['chmod', '+x', args.program], check=True) (6]
rv, out = getstatusoutput('make test') (7]
if rv 1= 0:
sys.exit(out) (o]

if not args.quiet: ®
print(out)

print('Done.") (1)

Get the current working directory, which will be the 04_fib directory if you are in
that directory when running the command.

Find all the solution*.py files in the current directory.

Both filter() and partial() are HOFs; I'll explain them next.

The filenames will be in random order, so iterate through the sorted files.
Copy the solution*.py file to the testing filename.

Make the program executable.

Run the make test command, and capture the return value and output.
See if the return value is not 0.

Exit this program while printing the output from the testing and returning a
nonzero value.

Unless the program is supposed to be quiet, print the testing output.

Running the Test Suite on All the Solutions | 105

@ Let the user know the program finishes normally.

In the preceding code, I'm using sys.exit() to immediately halt the program, print
an error message, and return a nonzero exit value. If you consult the documentation,
you'll find you can invoke sys.exit() with no arguments, an integer value, or a
object like a string, which is what I'm using:

exit(status=None, /)
Exit the interpreter by raising SystemExit(status).

If the status is omitted or None, it defaults to zero (i.e., success).
If the status is an integer, it will be used as the system exit status.
If it is another kind of object, it will be printed and the system
exit status will be one (i.e., failure).

The preceding program also uses the functions filter() or partial(), which I
haven’t covered yet. Both of these are HOFs. I'll explain how and why I'm using them.
To start, the os.listdir() function will return the entire contents of a directory,
including files and directories:

>>> import os
>>> files = os.listdir()

There’s a lot there, so T'll import the pprint() function from the pprint module to
pretty-print this:

>>> from pprint import pprint

>>> pprint(files)

['solution3_recursion_memoize_decorator.py',
'solution2_generator_for_loop.py',
'.pytest_cache',
'Makefile',
'solution2_generator_1islice.py',
'tests’',
'__pycache__',
'fib.py',
'README.md",
'solution3_recursion_memoize.py',
'bench.html’,
'solution2_generator.py',
'.mypy_cache',
'.gitignore’,
'solutioni_list.py',
'solution3_recursion_lru_cache.py',
'solution3_recursion.py']

I want to filter those to names that start with solution and end with .py. On the com-
mand line, I would match this pattern using a file glob like solution*.py, where the *
means zero or more of any character and the . is a literal dot. A regular expression
version of this pattern is the slightly more complicated solution.*\.py,
where . (dot) is a regex metacharacter representing any character, and * (star or

106 | Chapter4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

asterisk) means zero or more (see Figure 4-5). To indicate a literal dot, I need to
escape it with a backslash (\.). Note that it's prudent to use the r-string (raw string) to
enclose this pattern.

Literal string
solution .* \. py
Zero or more Aliteral dot
of any character

Figure 4-5. A regular expression to find files matching the file glob solution*.py

When the match is successful, a re.Match object is returned:

>>> import re
>>> re.match(r'solution.*\.py', 'solutionl.py')
<re.Match object; span=(0, 12), match='solutionl.py'>

When a match fails, the None value is returned. I have to use type() here because the
None value is not displayed in the REPL:

>>> type(re.match(r'solution.*\.py', 'fib.py'))
<class 'NoneType's>

I want to apply this match to all the files returned by os.listdir(). I can use
filter() and the lambda keyword to create an anonymous function. Each filename in
files is passed as the name argument used in the match. The filter() function will
only return elements that return a truthy value from the given function, so those file-
names that return None when they fail to match are excluded:

>>> pprint(list(filter(lambda name: re.match(r'solution.*\.py', name), files)))
['solution3_recursion_memoize_decorator.py',

'solution2_generator_for_loop.py',

'solution2_generator_1islice.py',

'solution3_recursion_memoize.py',

'solution2_generator.py',

'solutioni_list.py',

'solution3_recursion_lru_cache.py',

'solution3_recursion.py']

You see that the re.match() function takes two arguments—a pattern and a string to
match. The partial() function allows me to partially apply the function, and the

result is a new function. For example, the operator.add() function expects two val-
ues and returns their sum:

Running the Test Suite on All the Solutions | 107

>>> import operator
>>> operator.add(1l, 2)
3

I can create a function that adds 1 to any value, like so:

>>> from functools import partial
>>> succ = partial(op.add, 1)

The succ() function requires one argument, and will return the successor:

>>> succ(3)

4

>>> succ(succ(3))
5

Likewise, I can create a function f() that partially applies the re.match() function
with its first argument, a regular expression pattern:

>>> f = partial(re.match, r'solution.*\.py')
The f() function is waiting for a string to apply the match:

>>> type(f('solutionl.py'))
<class 're.Match's>

>>> type(f('fib.py'))
<class 'NoneType'>

If you call it without an argument, you will get an exception:

>>> ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: match() missing 1 required positional argument: 'string'

I can replace the lambda with the partially applied function as the first argument to
filter():

>>> pprint(list(filter(f, files)))

['solution3_recursion_memoize_decorator.py',
'solution2_generator_for_loop.py',
'solution2_generator_1islice.py',
'solution3_recursion_memoize.py',
'solution2_generator.py',
'solutionl_list.py',
'solution3_recursion_lru_cache.py',
'solution3_recursion.py']

My programming style leans heavily on purely functional programming ideas. I find
this style to be like playing with LEGO bricks—small, well-defined, and tested func-
tions can be composed into larger programs that work well.

108 | Chapter 4: Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms

Going Further

There are many different styles of programming, such as procedural, functional,
object-oriented, and so forth. Even within an object-oriented language like Python, I
can use very different approaches to writing code. The first solution could be consid-
ered a dynamic programming approach because you try to solve the larger problem by
first solving smaller problems. If you find recursive functions interesting, the Tower
of Hanoi problem is another classic exercise. Purely functional languages like Haskell
mostly avoid constructs like for loops and rely heavily on recursion and higher-order
functions. Both spoken and programming languages shape the way we think, and I
encourage you to try solving this problem using other languages you know to see
how you might write different solutions.

Review

Key points from this chapter:

o Inside the get_args() function, you can perform manual validation of argu-
ments and use the parser.error() function to manually generate argparse
errors.

» You can use a list as a stack by pushing and popping elements.

« Using yield in a function turns it into a generator. When the function yields a
value, the value is returned and the state of the function is preserved until the
next value is requested. Generators can be used to create a potentially infinite
stream of values.

o A recursive function calls itself, and the recursion can cause serious performance
issues. One solution is to use memoization to cache values and avoid recomputa-
tion.

« Higher-order functions are functions that take other functions as arguments.
« Python’s function decorators apply HOFs to other functions.

o Benchmarking is an important technique for determining the best-performing
algorithm. The hyperfine and bench tools allow you to compare runtimes of
commands over many iterations.

o The random module offers many functions for the pseudorandom selection of
values.

Going Further | 109

CHAPTER 5

Computing GC Content: Parsing FASTA
and Analyzing Sequences

In Chapter 1, you counted all the bases in a string of DNA. In this exercise, you need
to count the Gs and Cs in a sequence and divide by the length of the sequence to
determine the GC content as described on the Rosalind GC page. GC content is
informative in several ways. A higher GC content level indicates a relatively higher
melting temperature in molecular biology, and DNA sequences that encode proteins
tend to be found in GC-rich regions. There are many ways to solve this problem, and
they all start with using Biopython to parse a FASTA file, a key file format in bioinfor-
matics. I'll show you how to use the Bio.SeqI0 module to iterate over the sequences
in the file to identify the sequence with the highest GC content.

You will learn:

« How to parse FASTA format using Bio.SeqI0
o How to read STDIN (pronounced standard in)

o Several ways to express the notion of a for loop using list comprehensions,
filter(), and map()

o How to address runtime challenges such as memory allocation when parsing
large files

o More about the sorted() function
« How to include formatting instructions in format strings
o How to use the sum() function to add a list of numbers

« How to use regular expressions to count the occurrences of a pattern in a string

m

https://oreil.ly/gv8V7

Getting Started

All the code and tests for this program are in the 05_gc directory. While Id like to
name this program gc.py, it turns out that this conflicts with a very important
Python module called gc.py which is used for garbage collection, such as freeing
memory. Instead, I'll use cgc. py for calculate GC.

If I called my program gc.py, my code would shadow the built-in
gc module, making it unavailable. Likewise, I can create variables
and functions with names like len or dict which would shadow

\ those built-in functions. This will cause many bad things to hap-
pen, so its best to avoid these names. Programs like pylint and
flake8 can find problems like this.

Start by copying the first solution and asking for the usage:

$ cp solutioni_list.py cgc.py
$./cgc.py -h
usage: cgc.py [-h] [FILE] (1)

Compute GC content

positional arguments:
FILE Input sequence file (default: <_io.TextIOWrapper (2]
name='<stdin>' mode='r' encoding='utf-8'>)

optional arguments:
-h, --help show this help message and exit

© Note that the positional [FILE] is in square brackets to indicate that it is
optional.

® This is a rather ugly message that is trying to explain that the default input is
STDIN.

As in Chapter 2, this program expects a file as input and will reject invalid or unread-
able files. To illustrate this second point, create an empty file using touch and then

use chmod (change mode) to set the permissions to 000 (all read/write/execute bits
off):

$ touch cant-touch-this
$ chmod 000 cant-touch-this

Notice that the error message specifically tells me that I lack permission to read the
file:

$./cgc.py cant-touch-this
usage: cgc.py [-h] [FILE]

12 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

https://oreil.ly/7eNBw

cgc.py: error: argument FILE: can't open 'cant-touch-this': [Errno 13]
Permission denied: 'cant-touch-this'

Now run the program with valid input and observe that the program prints the ID of
the record having the highest percentage of GC:

$./cgc.py tests/inputs/1.fa
Rosalind_0808 60.919540

This program can also read from STDIN. Simply because I think it’s fun, I'll show you
how, in the bash shell, I can use the pipe operator (|) to route the STDOUT from one
program to the STDIN of another program. For instance, the cat program will print
the contents of a file to STDOUT:

$ cat tests/inputs/1.fa

>Rosalind_6404
CCTGCGGAAGATCGGCACTAGAATAGCCAGAACCGTTTCTCTGAGGCTTCCGGCCTTCCC
TCCCACTAATAATTCTGAGG

>Rosalind_5959
CCATCGGTAGCGCATCCTTAGTCCAATTAAGTCCCTATCCAGGCGCTCCGCCGAAGGTCT
ATATCCATTTGTCAGCAGACACGC

>Rosalind_0808
CCACCCTCGTGGTATGGCTAGGCATTCAGGAACCGGAGAACGCTTCAGACCAGCCCGGAC
TGGGAACCTGCGGGCAGTAGGTGGAAT

Using the pipe, I can feed this to my program:

$ cat tests/inputs/i1.fa | ./cgc.py
Rosalind_0808 60.919540

I can also use the < operator to redirect input from a file:

$./cgc.py < tests/inputs/1.fa
Rosalind_0808 60.919540

To get started, remove this program and start over:

$ new.py -fp 'Compute GC content' cgc.py
Done, see new script "cgc.py".

The following shows how to modify the first part of the program to accept a single
positional argument that is a valid, readable file:

import argparse

import sys

from typing import NamedTuple, TextIO, List, Tuple
from Bio import SeqIO

class Args(NamedTuple):
""" Command-line arguments
file: Textl0o @

Getting Started | 113

def get_args() -> Args:
""" Get command-line arguments

parser = argparse.ArgumentParser(
description="'Compute GC content',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file',
metavar='FILE',
type=argparse.FileType('rt'), (2]
nargs='?",
default=sys.stdin,
help='Input sequence file')

args = parser.parse_args()

return Args(args.file)
© The only attribute of the Args class is a filehandle.

© Create a positional file argument that, if provided, must be a readable text file.

It’s rare to make a positional argument optional, but in this case, I want to either han-
dle a single file input or read from STDIN. To do this, I use nargs="?" to indicate that
the parameter should accept zero or one argument (see Table 2-2 in “Opening the
Output Files” on page 54) and set default=sys.stdin. In Chapter 2, I mentioned
that sys.stdout is a filehandle that is always open for writing. Similarly, sys.stdin is
an open filehandle from which you can always read STDIN. This is all the code that is
required to make your program read either from a file or from STDIN, and I think
that’s rather neat and tidy.

Modify your main() to print the name of the file:

def main() -> None:
args = get_args()
print(args.file.name)

Verify that it works:

$./cgc.py tests/inputs/1.fa
tests/inputs/1.fa

Run pytest to see how you're faring. You should pass the first three tests and fail on
the fourth:

$ pytest -xv

test session starts
tests/cgc_test.py::test_exists PASSED [20%]
tests/cgc_test.py::test_usage PASSED [40%]

114 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

© o © ©

tests/cgc_test.py::test_bad_input PASSED [60%]
tests/cgc_test.py::test_good_inputl FAILED [80%]

FAILURES
test_good_1inputl

def test_good_inputl():
""" Works on good input

rv, out = getstatusoutput(f'{RUN} {SAMPLE1}') (1]

assert rv ==
assert out == 'Rosalind_0808 60.919540' (2]
AssertionError: assert './tests/inputs/1.fa' == 'Rosalind_0808 60.919540'

- Rosalind_0808 60.919540 ©
+ ./tests/inputs/1.fa (4]

mmm Vv

tests/cgc_test.py:48: AssertionError
short test summary info
FAILED tests/cgc_test.py::test_good_inputl - AssertionError: assert './tes...

1 failed, 3 passed in 0.34s

The test is running the program using the first input file.
The output is expected to be the given string.
This is the expected string.

This is the string that was printed.

So far you have created a syntactically correct, well-structured, and documented pro-
gram that validates a file input, all by doing relatively little work. Next, you need to
figure out how to find the sequence with the highest GC content.

Get Parsing FASTA Using Biopython

The data from the incoming file or STDIN should be sequence data in FASTA format,
which is a common way to represent biological sequences. Let’s look at the first file to
understand the format:

$ cat tests/inputs/1.fa

>Rosalind_6404 (1)
CCTGCGGAAGATCGGCACTAGAATAGCCAGAACCGTTTCTCTGAGGCTTCCGGCCTTCCC @
TCCCACTAATAATTCTGAGG

>Rosalind_5959
CCATCGGTAGCGCATCCTTAGTCCAATTAAGTCCCTATCCAGGCGCTCCGCCGAAGGTCT
ATATCCATTTGTCAGCAGACACGC

>Rosalind_0808
CCACCCTCGTGGTATGGCTAGGCATTCAGGAACCGGAGAACGCTTCAGACCAGCCCGGAC
TGGGAACCTGCGGGCAGTAGGTGGAAT

Getting Started | 115

© A FASTA record starts with a > at the beginning of a line. The sequence ID is any
following text up to the first space.

® A sequence can be any length and can span multiple lines or be placed on a single
line.

The header of a FASTA file can get very ugly, very quickly. I would
encourage you to download real sequences from the National Cen-
ter for Biotechnology Information (NCBI) or look at the files in the
17_synth/tests/inputs directory for more examples.

While it would be fun (for certain values of fun) to teach you how to manually parse
this file, I'll go straight to using Biopython’s Bio.SeqI0 module:

>>> from Bio import SeqIO
>>> recs = SeqIO.parse('tests/inputs/1.fa', 'fasta') (1)

© The first argument is the name of the input file. As this function can parse many
different record formats, the second argument is the format of the data.

I can check the type of recs using type(), as usual:

>>> type(recs)
<class 'Bilo.SeqlO.FastalO.Fastalterator's>

I've shown iterators a couple of times now, even creating one in Chapter 4. In that
exercise, I used the next() function to retrieve the next value from the Fibonacci
sequence generator. I'll do the same here to retrieve the first record and inspect its

type:

>>> rec = next(recs)
>>> type(rec)
<class 'Bio.SeqRecord.SeqRecord'>

To learn more about a sequence record, I highly recommend you read the SeqRecord
documentation in addition to the documentation in the REPL, which you can view
using help(rec). The data from the FASTA record must be parsed, which means dis-
cerning the meaning of the data from its syntax and structure. If you look at rec in
the REPL, you'll see something that looks like a dictionary. This output is the same as
that from repr(seq), which is used to “return the canonical string representation of
the object™

SeqRecord(
seq=Seq(' CCTGCGGAAGATCGGCACTAGAATAGCCAGAACCGTTTCTCTGAGGCTTCCGGC. . .AGG'), (1]
id="'Rosalind_6404", (2]
name='Rosalind_6404', (3]
description='Rosalind_6404",
dbxrefs=[1])

116 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

https://biopython.org/wiki/SeqRecord
https://biopython.org/wiki/SeqRecord

© The multiple lines of the sequence are concatenated into a single sequence repre-
sented by a Seq object.

® The ID of a FASTA record is all the characters in the header starting after the >
and continuing up to the first space.

©® The Seqrecord object is meant to also handle data with more fields, such as name,
description, and database cross-references (dbxrefs). Since those fields are not
present in FASTA records, the ID is duplicated for name and description, and
the dbxrefs value is the empty list.

If you print the sequence, this information will be stringified so it’s a little easier to
read. This output is the same as that for str(rec), which is meant to provide a useful
string representation of an object:

>>> print(rec)

ID: Rosalind_6404

Name: Rosalind_6404

Description: Rosalind_6404

Number of features: 0

Seq(' CCTGCGGAAGATCGGCACTAGAATAGCCAGAACCGTTTCTCTGAGGCTTCCGGC. . .AGG')
The most salient feature for this program is the record’s sequence. You might expect
this would be a str, but it’s actually another object:

>>> type(rec.seq)
<class 'Bio.Seq.Seq'>

Use help(rec.seq) to see what attributes and methods the Seq object offers. I only
want the DNA sequence itself, which I can get by coercing the sequence to a string
using the str() function:

>>> str(rec.seq)
' CCTGCGGAAGATCGGCACTAGAATAGCCAGAACCGTTTCTCTGAGGCTTCCGGCCTT. . . AGG'

Note this is the same class I used in the last solution of Chapter 3 to create a reverse
complement. I can use it here like so:

>>> rec.seq.reverse_complement()
Seq('CCTCAGAATTATTAGTGGGAGGGAAGGCCGGAAGCCTCAGAGAAACGGTTCTGG. . .AGG")

The Seq object has many other useful methods, and I encourage you to explore the
documentation as these can save you a lot of time.! At this point, you may feel you
have enough information to finish the challenge. You need to iterate through all the
sequences, determine what percentage of the bases are G or C, and return the ID and
GC content of the record with the maximum value. I would challenge you to write a

1 As the saying goes, “Weeks of coding can save you hours of planning”

Getting Started | 117

solution on your own. If you need more help, I'll show you one approach, and then
I'll cover several variations in the solutions.

Iterating the Sequences Using a for Loop

So far I've shown that SeqIO.parse() accepts a filename as the first argument, but
the args.file argument will be an open filehandle. Luckily, the function will also
accept this:

>>> from Bio import SeqIO
>>> recs = SeqlO.parse(open('./tests/inputs/1.fa'), 'fasta')

I can use a for loop to iterate through each record to print the ID and the first 10
bases of each sequence:

>>> for rec in recs:
print(rec.id, rec.seq[:10])

Rosalind_6404 CCTGCGGAAG
Rosalind_5959 CCATCGGTAG
Rosalind_0808 CCACCCTCGT

Take a moment to run those lines again and notice that nothing will be printed:

>>> for rec in recs:
print(rec.id, rec.seq[:10])

Earlier I showed that recs is a Bio.SeqIO.Fastal0.Fastalterator, and, like all iter-
ators, it will produce values until exhausted. If you want to loop through the records
again, you will need to recreate the recs object using the SeqI0. parse() function.

For the moment, assume the sequence is this:
>>> seq = 'CCACCCTCGTGGTATGGCT'

I need to find how many Cs and Gs occur in that string. I can use another for loop to
iterate each base of the sequence and increment a counter whenever the base is a G or
aC

gc =0 (1]
for base 1in seq: (2]
if base in ('G', 'C'): ©
gc +=1
Initialize a variable for the counts of the G/C bases.

Iterate each base (character) in the sequence.

See if the base is in the tuple containing G or C.

118 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

O Increment the GC counter.

To find the percentage of GC content, divide the GC count by the length of the
sequence:

>>> gcC

12

>>> len(seq)

19

>>> gc / len(seq)

0.631578947368421
The output from the program should be the ID of the sequence with the highest GC
count, a single space, and the GC content truncated to six significant digits. The easi-
est way to format the number is to learn more about str.format(). The help doesn’t
have much in the way of documentation, so I recommend you read PEP 3101 on
advanced string formatting.

In Chapter 1, I showed how I can use {} as placeholders for interpolating variables
either using str.format() or f-strings. I can add formatting instructions after a colon
(:) in the curly brackets. The syntax looks like that used with the printf() function
in C-like languages, so {:0.6f} is a floating-point number to six places:

>>> '{:0.6f}'.format(gc * 100 / len(seq))
'63.157895"'

Or, to execute the code directly inside an f-string:

>>> f'{gc * 100 / len(seq):0.06f}"'
'63.157895"

To figure out the sequence with the maximum GC count, you have a couple of options,
both of which I'll demonstrate in the solutions:

o Make a list of all the IDs and their GC content (a list of tuples would serve well).
Sort the list by GC content and take the maximum value.

 Keep track of the ID and GC content of the maximum value. Overwrite this
when a new maximum is found.

I think that should be enough for you to finish a solution. You can do this. Fear is the
mind killer. Keep going until you pass all the tests, including those for linting and
type checking. Your test output should look something like this:

$ make test
python3 -m pytest -xv --disable-pytest-warnings --flake8 --pylint
--pylint-rcfile=../pylintrc --mypy cgc.py tests/cgc_test.py

test session starts

collected 10 items

Getting Started | 119

https://oreil.ly/OIpEq

cgc.py: :FLAKES SKIPPED [9%]
cgc.py: :mypy PASSED [18%]
tests/cgc_test.py::FLAKE8 SKIPPED [27%]
tests/cgc_test.py::mypy PASSED [36%]
tests/cgc_test.py::test_exists PASSED [45%]
tests/cgc_test.py::test_usage PASSED [54%]
tests/cgc_test.py::test_bad_input PASSED [63%]
tests/cgc_test.py::test_good_inputl PASSED [72%]
tests/cgc_test.py::test_good_input2 PASSED [81%]
tests/cgc_test.py::test_stdin PASSED [90%]
::mypy PASSED [100%]

mypy

Success: no issues found in 2 source files
9 passed, 2 skipped in 1.67s

Solutions

As before, all the solutions share the same get_args(), so only the differences will be
shown.

Solution 1: Using a List

Lets look at my first solution. I always try to start with the most obvious and simple
way, and you’ll find this is often the most verbose. Once you understand the logic, I
hope you’ll be able to follow more powerful and terse ways to express the same ideas.
For this first solution, be sure to also import List and Tuple from the typing
module:

def main() -> None:
args = get_args()
segs: List[Tuple[float, str]] = [] (1)

for rec in SeqIO.parse(args.file, 'fasta'): (2]
gc =0
for base in rec.seq.upper(): (4]
if base in ('C', 'G'): (5)
gc += 1 (6]
pct = (gc * 100) / len(rec.seq) (7]
seqs.append((pct, rec.id))

high = max(seqgs) (o]
print(f'{high[1]} {high[0]:0.6f}') ®

© [Initialize an empty list to hold the GC content and sequence IDs as tuples.
@ Iterate through each record in the input file.

©® Initialize a GC counter.

120 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

©

Iterate through each sequence, uppercased to guard against possible mixed-case
input.

Check if the base isa C or G.

Increment the GC counter.

Calculate the GC content.

Append a new tuple of the GC content and the sequence ID.

Take the maximum value.

& 06 0 ©¢ 6 o

Print the sequence ID and GC content of the highest value.

The type annotation List[Tuple[float, str]] on the segs vari-
able provides not only a way to programmatically check the code
using tools like mypy but also an added layer of documentation. The
reader of this code doesn’t have to jump ahead to see what kind of
data will be added to the list because it has been explicitly described
using types.

In this solution, I decided to make a list of all the IDs and GC percentages mostly so
that I could show you how to create a list of tuples. Then I wanted to point out a few
magical properties of Python’s sorting. Let’s start with the sorted() function, which
works on strings as you might imagine:

>>> sorted(['McClintock', 'Curie', 'Doudna', 'Charpentier'])
['Charpentier', 'Curie', 'Doudna', 'McClintock']

When all the values are numbers, they will be sorted numerically, so I've got that
going for me, which is nice:

>>> sorted([2, 10, 1])
[1, 2, 10]

Note that those same values as strings will sort in lexicographic order:

>>> sorted(['2', '10', '1'])
[I1|’ '10', lzl]

Solutions | 121

Python Lists Should Be Homogeneous
Comparing different types, such as strings and integers, will cause an exception:

>>> sorted([2, '10', 1])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: '<' not supported between instances of

str' and 'int'

While it's an acceptable practice in Python to mix types in a list, it’s likely to end in
tears. This reminds me of a joke by Henny Youngman: A man goes to see his doctor.
He says, “Doc, it hurts when I do this” The doctor says, “Then don’t do that”

Essentially my advice is a bit like the doctor’s: yeah, you can mix types in lists in
Python, but doing so will lead to runtime exceptions if you try to sort them, so just
don’t do that. To avoid this, always use a type declaration to describe your data:

seqs: List[Tuple[float, str]] = []
Try adding this line:
segs.append('foo')

Then check the program using mypy to see how clearly the error message shows how
this violates the description of the data:

$ mypy solutionl_list.py

solutionl_list.py:38: error: Argument 1 to "append" of "list" has
incompatible type "str"; expected "Tuple[float, str]"

Found 1 error in 1 file (checked 1 source file)

Another option is to use the numpy module to create an array, which is like a Python
list but where all the values are required (and coerced) to be of a common type.
Arrays in numpy are both faster (due to memory management) and safer than Python
lists. Note that mixing strings and numbers will result in a list of strings:

>>> import numpy as np

>>> nums = np.array([2, '10', 1])

>>> nums

array(['2', '10', '1'], dtype='<U21')
Although this is not correct—I want them to be integers—it is at least safe. I can use
the int() function in a list comprehension to coerce all the values to integers:

>>> [int(n) for n in [2, '10', 1]]

[2, 10, 1]
Or the same thing expressed using the higher-order function map(), which takes a
function like int() as the first argument and applies it to all the elements in the
sequence to return a new list of elements transformed by that function:

>>> list(map(int, [2, '10', 1]))
[2, 10, 1]

122 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

Which makes for good sorting:

>>> sorted(map(int, [2, '10', 1]))
[1, 2, 10]

Now consider a list of tuples where the first element is a float and the second ele-
ment is a str. How will sorted() handle this? By first sorting all the data by the first
elements numerically and then the second elements lexicographically:

>>> sorted([(0.2, 'foo'), (.01, 'baz'), (.01, 'bar')])
[(0.01, 'bar'), (0.01, 'baz'), (0.2, 'foo')]

Structuring seqs as List[Tuple[float, str]] takes advantage of this built-in
behavior of sorted(), allowing me to quickly sort the sequences by GC content and
select the highest value:

>>> high = sorted(seqs)[-1]

This is the same as finding the highest value, which the max() function can do more
easily:

>>> high = max(seqs)

high is a tuple where the first position is the sequence ID and the zeroth position is
the GC content that needs to be formatted:

print(f'{high[1]} {high[0]:0.6f}")

Solution 2: Type Annotations and Unit Tests

Hidden inside the for loop is a kernel of code to compute GC content that needs to
be extracted into a function with a test. Following the ideas of test-driven develop-
ment (TDD), I will first define a find_gc() function:

def find_gc(seq: str) -> float: (1)
""" Calculate GC content """

return 0. ©

© The function accepts a str and returns a float.

©® Tor now, I return 0. Note the trailing . tells Python this is a float. This is short-
hand for 6.0.

Next, I'll define a function that will serve as a unit test. Since I'm using pytest, this
function’s name must start with test_. Because I'm testing the find_gc() function,
I'll name the function test_find_gc. I will use a series of assert statements to test if
the function returns the expected result for a given input. Note how this test function

Solutions | 123

serves both as a formal test and as an additional piece of documentation, as the reader
can see the inputs and outputs:

def test_find_gc():
" Test find gc """

assert find_gc('') == 0. (1)
assert find_gc('C') == 100. (2]
assert find_gc('G') == 100. (3]
assert find_gc('CGCCG') == 100. (4]
assert find_gc('ATTAA') == 0.
assert find_gc('ACGT') == 50.

© Ifafunction accepts a str, I always start by testing with the empty string to make
sure it returns something useful.

® A single C should be 100% GC.
© Same for a single G.

O Various other tests mixing bases at various percentages.

It’s rarely possible to exhaustively check every possible input to a function, so I often
rely on spot-checking. Note that the hypothesis module can generate random values
for testing. Presumably, the find_gc() function is simple enough that these tests are
sufficient. My goal in writing functions is to make them as simple as possible, but no
simpler. As Tony Hoare says, “There are two ways to write code: write code so simple
there are obviously no bugs in it, or write code so complex that there are no obvious
bugs in it”

The find_gc() and test_find_gc() functions are inside the cgc.py program, not in
the tests/cgc_test.py module. To execute the unit test, I run pytest on the source code
expecting the test to fail:

$ pytest -v cgc.py
test session starts

cgc.py::test_find_gc FAILED [100%] (1)

FAILURES
test_gc

def test_find_gc():
m Test find_gc "'
assert find_gc('') == 0. (2]
> assert find_gc('C') == 100. (3]
E assert 0 == 100.0

124 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

https://hypothesis.readthedocs.io/en/latest

E +0
E -100.0

cgc.py:74: AssertionError

short test summary info
FAILED cgc.py::test_gc - assert 0 == 100.0
1 failed in 0.32s

© The unit test fails as expected.
© The first test passes because it was expecting 0.

© This test fails because it should have returned 100.

Now I have established a baseline from which I can proceed. I know that my code
fails to meet some expectation as formally defined using a test. To fix this, I move all
the relevant code from main() into the function:

def find_gc(seq: str) -> float:
""" Calculate GC content """

if not seq: (1)
return 0 @

gc =0 (3]
for base in seq.upper():
if base in ('C', 'G'):
gc += 1
return (gc * 100) / len(seq)
© This guards against trying to divide by 0 when the sequence is the empty string.

® If there is no sequence, the GC content is 0.

©® This is the same code as before.
Then I run pytest again to check that the function works:

$ pytest -v cgc.py
test session starts

cgc.py::test_gc PASSED [100%]

1 passed in 0.30s

Solutions | 125

This is TDD:

« Define a function to test.

o Write the test.

 Ensure the function fails the test.
« Make the function work.

o Ensure the function passes the test (and all your previous tests still pass).

If I later encounter sequences that trigger bugs in my code, I'll fix the code and add
those as more tests. I shouldn’t have to worry about weird cases like the find_gc()
function receiving a None or a list of integers because I used type annotations. Testing
is useful. Type annotations are useful. Combining tests and types leads to code that is
easier to verify and comprehend.

I want to make one other addition to this solution: a custom type to document the
tuple holding the GC content and sequence ID. I'll call it MySeq just to avoid any con-
fusion with the Bio.Seq class. I add this below the Args definition:
class MySeq(NamedTuple):
" Sequence "

gc: float (1]
name: str @

© The GC content is a percentage.
® [would prefer to use the field name id, but that conflicts with the id() identity
function which is built into Python.
Here is how it can be incorporated into the code:
def main() -> None:
args = get_args()
seqs: List[MySeq] = [] (1]

for rec in SeqIO.parse(args.file, 'fasta'):
segs.append(MySeq(find_gc(rec.seq), rec.id)) (2]

high = sorted(seqs)[-1] (3]
print(f'{high.name} {high.gc:0.6f}') @

@ Use MySeq as a type annotation.

© Create MySeq using the return value from the find_gc() function and the record
ID.

126 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

© This still works because MySeq is a tuple.

O Use the field access rather than the index position of the tuple.

This version of the program is arguably easier to read. You can and should create as
many custom types as you want to better document and test your code.

Solution 3: Keeping a Running Max Variable

The previous solution works well, but it’s a bit verbose and needlessly keeps track of
all the sequences when I only care about the maximum value. Given how small the
test inputs are, this will never be a problem, but bioinformatics is always about scaling
up. A solution that tries to store all the sequences will eventually choke. Consider
processing 1 million sequences, or 1 billion, or 100 billion. Eventually, I'd run out of
memory.

Here’s a solution that would scale to any number of sequences, as it only ever allocates
a single tuple to remember the highest value:

def main():
args = get_args()
high = MySeq(d., '') @

for rec in SeqIO.parse(args.file, 'fasta'):
pct = find_gc(rec.seq)
if pct > high.gc: (3]
high = MySeq(pct, rec.id) (4]
print(f'{high.name} {high.gc:0.6f}") (5]

© Initialize a variable to remember the highest value. Type annotation is superflu-
ous as mypy will expect this variable to remain this type forever.

Calculate the GC content.

2]

© Seeif the percent GC is greater than the highest value.

O If so, overwrite the highest value using this percent GC and sequence ID.
(5]

Print the highest value.

For this solution, I also took a slightly different approach to compute the GC content:

def find_gc(seq: str) -> float:
""" Calculate GC content """

return (seq.upper().count('C') + (1)
seq.upper().count('G')) * 100 / len(seq) if seq else 0 (2]

Solutions | 127

© Use the str.count() method to find the Cs and Gs in the sequence.
® Since there are two conditions for the state of the sequence—the empty string or
not—I prefer to write a single return using an if expression.

I'll benchmark the last solution against this one. First I need to generate an input file
with a significant number of sequences, say 10K. In the 05_gc directory, you'll find a
genseq. py file similar to the one I used in the 02_rna directory. This one generates a
FASTA file:

$./genseq.py -h
usage: genseq.py [-h] [-1 int] [-n int] [-s sigma] [-o FILE]

Generate long sequence

optional arguments:

-h, --help show this help message and exit
-1 int, --len int Average sequence length (default: 500)
-n int, --num int Number of sequences (default: 1000)

-s sigma, --sigma sigma
Sigma/STD (default: 0.1)
-0 FILE, --outfile FILE
Output file (default: segs.fa)

Here’s how I'll generate an input file:

$./genseq.py -n 10000 -o 10K.fa
Wrote 10,000 sequences of avg length 500 to "10K.fa".

I can use that with hyperfine to compare these two implementations:

$ hyperfine -L prg ./solution2_unit_test.py,./solution3_max_var.py '{prg} 10K.fa'
Benchmark #1: ./solution2_unit_test.py 10K.fa
Time (mean t o0): 1.546 s £+ 0.035 s [User: 2.117 s, System: 0.147 s]
Range (min .. max): 1.511 s .. 1.625 s 10 runs

Benchmark #2: ./solution3_max_var.py 10K.fa
Time (mean * o0): 368.7 ms £+ 3.0 ms [User: 957.7 ms, System: 137.1 ms]
Range (min .. max): 364.9 ms .. 374.7 ms 10 runs

Summary
'./solution3_max_var.py 10K.fa' ran
4.19 = 0.10 times faster than './solution2_unit_test.py 10K.fa'

It would appear that the third solution is about four times faster than the second run-
ning on 10K sequences. You can try generating more and longer sequences for your
own benchmarking. I would recommend you create a file with at least one million
sequences and compare your first solution with this version.

128 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

Solution 4: Using a List Comprehension with a Guard

Figure 5-1 shows that another way to find all the Cs and Gs in the sequence is to use a
list comprehension and the i1f comparison from the first solution, which is called a
guard.

for base in rec.seq.upper():

[_/ if basein\'iq

Create anew list «—[base for base in rec.seq.upper() if base in 'CG']

} |

Return this Do this (for loop) If this is True (guard)

Figure 5-1. A list comprehension with a guard will select only those elements returning a
truthy value for the 1f expression

The list comprehension only yields those elements passing the guard which checks
that the base is in the string 'CG':

>>> gc = [base for base in 'CCACCCTCGTGGTATGGCT' if base in 'CG']
>>> gC

['C" YCI’ |C|’ 'CI, |C|’ 'CI, |G|’ lGl, |G|’ lGl, |G|’ lC‘]
Since the result is a new list, I can use the len() function to find how many Cs and Gs
are present:

>>> len(gc)
12

I can incorporate this idea into the find_gc() function:

def find_gc(seq: str) -> float:
""" Calculate GC content """

if not seq:
return 0

gc = len([base for base in seq.upper() if base in 'CG']) (1]
return (gc * 100) / len(seq)

© Another way to count the Cs and Gs is to select them using a list comprehension
with a guard.

Solutions | 129

Solution 5: Using the filter() Function

The idea of a list comprehension with a guard can be expressed with the higher-order
function filter(). Earlier in the chapter I used the map() function to apply the
int() function to all the elements of a list to produce a new list of integers. The
filter() function works similarly, accepting a function as the first argument and an
iterable as the second. It’s different, though, as only those elements returning a truthy
value when the function is applied will be returned. As this is a lazy function, I will
need to coerce with 1ist() in the REPL:

>>> list(filter(lambda base: base in 'CG', 'CCACCCTCGTGGTATGGCT'))

[c, 'c, 'c, 'c, 'c, 'c, ‘¢, 'c¢', 'c¢", 'G¢', 'G", 'C']
So here’s another way to express the same idea from the last solution:

def find_gc(seq: str) -> float:
""" Calculate GC content """

if not seq:
return 0

gc = len(list(filter(lambda base: base in 'CG', seq.upper()))) (1)
return (gc * 100) / len(seq)

@ Use filter() to select only those bases matching C or G.

Solution 6: Using the map() Function and Summing Booleans

The map() function is a favorite of mine, so I want to show another way to use it. I
could use map() to turn each base into a 1 ifit’s a C or G, and a 0 otherwise:

>>> seq = 'CCACCCTCGTGGTATGGCT'

>>> list(map(lambda base: 1 if base in 'CG' else 0, seq))

[1’ 1.‘ OJ 1) 1) 1) 0) 1’ 1’ OJ 1J 1) 0) 0) 0) 1’ 1’ 1.‘ O]
Counting the Cs and Gs would then be a matter of summing this list, which I can do
using the sum() function:

>>> sum(map(lambda base: 1 if base in 'CG' else 0, seq))
12

Booleans Are Integers
Python can use Boolean algebra to combine values like True/False using and/or:

>>> True and False
False
>>> True or False
True

130 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

What do you think happens if you use + instead of and?

>>> True + True
2
>>> True + False
1

It turns out that Python’s Boolean values lead a secret double life as integers, where
Trueis 1 and Falseis 0.

I can shorten my map() to return the result of the comparison (which is a bool but
also an int) and sum that instead:

>>> sum(map(lambda base: base in 'CG', seq))
12

Here is how I could incorporate this idea:

def find_gc(seq: str) -> float:
""" Calculate GC content """

if not seq:
return 0

gc = sum(map(lambda base: base in 'CG', seq.upper())) (1]
return (gc * 100) / len(seq)

© Transform the sequence into Boolean values based on their comparison to the
bases C or G, then sum the True values to get a count.

Solution 7: Using Regular Expressions to Find Patterns

So far I've been showing you multiple ways to manually iterate a sequence of charac-
ters in a string to pick out those matching C or G. This is pattern matching, and its
precisely what regular expressions do. The cost to you is learning another domain-
specific language (DSL), but this is well worth the effort as regexes are widely used
outside of Python. Begin by importing the re module:

>>> import re

You should read help(re), as this is a fantastically useful module. I want to use the
re.findall() function to find all occurrences of a pattern in a string. I can create a
character class pattern for the regex engine by using square brackets to enclose any
characters I want to include. The class [GC] means match either G or C:

>>> re.findall('[GC]"', 'CCACCCTCGTGGTATGGCT')

[IC'J |Cl’ Icl’ lcl’ Icl’ 'CI, IGl’ 'GI, lGl’ 'Gl, lGl’ lcl]
As before, I can use the len() function to find how many Cs and Gs there are. The
following code shows how I would incorporate this into my function. Note that I use

Solutions | 131

the if expression to return 0 if the sequence is the empty string so I can avoid divi-
sion when len(seq) is 0:

def find_gc(seq: str) -> float:
""" Calculate GC content """

return len(re.findall('[GC]', seq.upper()) * 100) / len(seq) if seq else 0

Note that it’s important to change how this function is called from main() to explic-
itly coerce the rec.seq value (which is a Seq object) to a string by using str():

def main() -> None:
args = get_args()
high = MySeq(0., '")

for rec in SeqlO.parse(args.file, 'fasta'):
pct = find_gc(str(rec.seq)) (1]
if pct > high.gc:
high = MySeq(pct, rec.id)

print(f'{high.name} {high.gc:0.6f}")

@ Coerce the sequence to a string value or the Seq object will be passed.

Solution 8: A More Complex find_gc() Function

In this final solution, I'll move almost all of the code from main() into the find_gc()
function. I want the function to accept a SeqRecord object rather than a string of the
sequence, and I want it to return the MySeq tuple.

First I'll change the tests:

def test_find_gc() -> None:
" Test find gc """

assert find_gc(SeqRecord(Seq(''), id='123")) == (0.0, '123"')
assert find_gc(SeqRecord(Seq('C'), 1d='ABC')) == (100.0, 'ABC')
assert find_gc(SeqRecord(Seq('G'), 1d='XYZ')) == (100.0, 'XYZ'")
assert find_gc(SeqRecord(Seq('ACTG'), 1d='ABC')) == (50.0, 'ABC')
assert find_gc(SeqRecord(Seq('GGCC'), 1d='XYZ')) == (100.0, 'XYZ')

These are essentially the same tests as before, but I'm now passing SeqRecord objects.

To make this work in the REPL, you will need to import a couple of classes:

>>> from Bio.Seq import Seq

>>> from Bio.SegRecord import SeqRecord

>>> seq = SeqRecord(Seq('ACTG'), id='ABC')
If you look at the object, it looks similar enough to the data I've been reading from
input files because I only care about the seq field:

132 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

SeqRecord(seq=Seq('ACTG'),
id="ABC',
name='<unknown name>',
description='<unknown description>',
dbxrefs=[])

If you run pytest, your test_find_gc() function should fail because you haven't yet
changed your find_gc() function. Here’s how I wrote it:

def find_gc(rec: SeqRecord) -> MySeq: @
""" Return the GC content, record ID for a sequence

pct = 0. (2]

if seq := str(rec.seq): (3]
gc = len(re.findall('[GC]', seq.upper())) (4]
pct = (gc * 100) / len(seq)

return MySeq(pct, rec.id) ()

The function accepts a SeqRecord and returns a MySegq.
Initialize this to a floating-point 0..

This syntax is new as of Python 3.8 and allows variable assignment (first) and
testing (second) in one line using the walrus operator (:=).

This is the same code as before.

Return a MySeq object.

The walrus operator := was proposed in PEP 572, which notes that
the = operator allows you to name the result of an expression only
in a statement form, “making it unavailable in list comprehensions
and other expression contexts” This new operator combines two
actions, that of assigning the value of an expression to a variable
and then evaluating that variable. In the preceding code, seq is
assigned the value of the stringified sequence. If that evaluates to
something truthy, such as a nonempty string, then the following
block of code will be executed.

This radically changes the main() function. The for loop can incorporate a map()
function to turn each SeqRecord into a MySeq:

def main() -> None:
args = get_args()
high = MySeq(0., '") (1)
for seq in map(find_gc, SeqIO.parse(args.file, 'fasta')): (2]
if seq.gc > high.gc:

Solutions | 133

https://www.python.org/dev/peps/pep-0572

high = seq @
print(f'{high.name} {high.gc:0.6f}") (5]
Initialize the high variable.
Use map() to turn each SeqRecord into a MySeq.

Compare the current sequence’s GC content against the running high.

© o © ©

Overwrite the value.

Print the results.

The point of the expanded find_gc() function was to hide more of the guts of the
program so I can write a more expressive program. You may disagree, but I think this
is the most readable version of the program.

Benchmarking

So which one is the winner? There is a bench. sh program that will run hyperfine on
all the solution*.py with the segs.fa file. Here is the result:

Summary
'./solution3_max_var.py seqs.fa' ran

2.15 + 0.03 times faster than './solution8_list_comp_map.py segs.fa'
3.88 + 0.05 times faster than './solution7_re.py seqs.fa'

5.38 + 0.11 times faster than './solution2_unit_test.py seqgs.fa'
5.45 + 0.18 times faster than './solution4_list_comp.py seqs.fa'
5.46 + 0.14 times faster than './solutionl_list.py segs.fa'

6.22 + 0.08 times faster than './solution6_map.py segs.fa'

6.29 + 0.14 times faster than './solution5_filter.py segs.fa'

Going Further

Try writing a FASTA parser. Create a new directory called faparser:
$ mkdir faparser
Change into that directory, and run new.py with the -t| - -write_test option:

$ cd faparser/
$ new.py -t faparser.py
Done, see new script "faparser.py".

You should now have a structure that includes a tests directory along with a starting
test file:

$ tree

134 | Chapter5: Computing GC Content: Parsing FASTA and Analyzing Sequences

}— Makefile

}— faparser.py
L— tests

L— faparser_test.py

1 directory, 3 files

You can run make test or pytest to verify that everything at least runs. Copy the
tests/inputs directory from 05_gc to the new tests directory so you have some test
input files. Now consider how you want your new program to work. I would imagine
it would take one (or more) readable text files as inputs, so you could define your
arguments accordingly. Then what will your program do with the data? Do you want
it to print, for instance, the IDs and the length of each sequence? Now write the tests
and code to manually parse the input FASTA files and print the output. Challenge
yourself.

Review

Key points from this chapter:

 You can read STDIN from the open filehandle sys.stdin.

o The Bilo.SeqI0.parse() function will parse FASTA-formatted sequence files into
records, which provides access to the record’s ID and sequence.

 You can use several constructs to visit all the elements of iterables, including for
loops, list comprehensions, and the functions filter() and map().

o A list comprehension with a guard will only produce elements that return a tru-
thy value for the guard. This can also be expressed using the filter() function.

« Avoid writing algorithms that attempt to store all the data from an input file, as
you could exceed the available memory on your machine.

o The sorted() function will sort homogeneous lists of strings and numbers lexi-
cographically and numerically, respectively. It can also sort homogeneous lists of
tuples using each position of the tuples in order.

 Formatting templates for strings can include printf()-like instructions to con-
trol how output values are presented.

o The sum() function will add a list of numbers.
« Booleans in Python are actually integers.

« Regular expressions can find patterns of text.

Review | 135

CHAPTER 6

Finding the Hamming Distance:
Counting Point Mutations

The Hamming distance, named after the same Richard Hamming mentioned in the
Preface, is the number of edits required to change one string into another. It’s one
metric for gauging sequence similarity. I have written a couple of other metrics for
this, starting in Chapter 1 with tetranucleotide frequency and continuing in Chapter 5
with GC content. While the latter can be practically informative as coding regions
tend to be GC-rich, tetranucleotide frequency falls pretty short of being useful. For
example, the sequences AAACCCGGGTTT and CGACGATATGTC are wildly differ-
ent yet produce the same base frequencies:

$./dna.py AAACCCGGGTTT
3333
$./dna.py CGACGATATGTC
3333

Taken alone, tetranucleotide frequency makes these sequences seem identical, but it’s
quite obvious that they would produce entirely different protein sequences and so

would be functionally unlike. Figure 6-1 depicts an alignment of the 2 sequences
indicating that only 3 of the 12 bases are shared, meaning they are only 25% similar.

AAACCCGGGTTT

CGACGATATGTC

Figure 6-1. An alignment of two sequences with vertical bars showing matching bases

137

Another way to express this is to say that 9 of the 12 bases need to be changed to turn
one of the sequences into the other. This is the Hamming distance, and it's somewhat
equivalent in bioinformatics to single-nucleotide polymorphisms (SNPs, pronounced
snips) or single-nucleotide variations (SNVs, pronounced snivs). This algorithm only
accounts for the change of one base to another value and falls far short of something
like sequence alignment that can identify insertions and deletions. For instance,
Figure 6-2 shows that the sequences AAACCCGGGTTT and AACCCGGGTTTA are
92% similar when aligned (on the left), as they differ by a single base. The Hamming
distance (on the right), though, shows only 8 bases are in common, which means they
are only 66% similar.

AAACCCGGGTTT AAACCCGGGTTT

AACCCGGGTTTA AACCCGGGTTTA

Figure 6-2. The alignment of these sequences shows them to be nearly identical, while the
Hamming distance finds they’re only 66% similar

This program will always compare strings strictly from their beginnings, which limits
the practical application to real-world bioinformatics. Still, it turns out that this naive
algorithm is a useful metric for sequence similarity, and writing the implementation
presents many interesting solutions in Python.

In this chapter, you will learn:

o How to use the abs() and min() functions

« How to combine the elements from two lists of possibly unequal lengths
« How to write map() using lambda or existing functions

« How to use functions from the operator module

o How to use the itertools.starmap() function

Getting Started

You should work in the 06_hamm directory of the repository. I suggest you start by
getting a feel for how the solutions work, so copy one of them to the hamm.py pro-
gram and request the help:

$ cp solutionl_abs_iterate.py hamm.py

$./hamm.py -h
usage: hamm.py [-h] str str

Hamming distance

138 | Chapter 6: Finding the Hamming Distance: Counting Point Mutations

positional arguments:
str Sequence 1
str Sequence 2

optional arguments:
-h, --help show this help message and exit

The program requires two positional arguments, which are the two sequences to

compare, and the program should print the Hamming distance. For example, I would
need to make seven edits to change one of these sequences to the other:

$./hamm.py GAGCCTACTAACGGGAT CATCGTAATGACGGCCT
7

Run the tests (either with pytest or make test) to see a passing suite. Once you feel
you understand what’s expected, remove this file and start from scratch:

$ new.py -fp 'Hamming distance' hamm.py
Done, see new script "hamm.py".

Define the parameters so that the program requires two positional arguments which
are the two sequences:

import argparse
from typing import NamedTuple

class Args(NamedTuple): (1]
""" Command-line arguments
seql: str
seq2: str

def get_args():
""" Get command-line arguments

parser = argparse.ArgumentParser(
description='Hamming distance',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('seql', metavar='str', help='Sequence 1') (2]
parser.add_argument('seq2', metavar='str', help='Sequence 2')
args = parser.parse_args()

return Args(args.seql, args.seq2) (3]

© The program arguments will have two string values for the two sequences.

Getting Started | 139

@ The two sequences are required positional string values.

© Instantiate the Args object using the two sequences.

The order in which you define positional parameters must match
the order in which the arguments are provided on the command
line. That is, the first positional parameter will hold the first posi-
tional argument, the second positional parameter will match the
second positional argument, etc. The order in which you define
optional parameters does not matter, and optional parameters may
be defined before or after positional parameters.

Change the main() function to print the two sequence:

def main():
args = get_args()
print(args.seql, args.seq2)
By this point, you should have a program that prints the usage, validates that the user
supplies two sequences, and prints the sequences:

$./hamm.py GAGCCTACTAACGGGAT CATCGTAATGACGGCCT

GAGCCTACTAACGGGAT CATCGTAATGACGGCCT
If you run pytest -xvv (the two vs increase the verbosity of the output), you should
find that the program passes the first three tests. It should fail test_inputl with a
message like the following:

FAILURES
test_inputl

def test_inputl() -> None:
Test with input1 """

> run(INPUT1)

tests/hamm_test.py:47:

def run(file: str) -> None:
" Run with input """

assert os.path.isfile(file)
seql, seq2, expected = open(file).read().splitlines() (2]

rv, out = getstatusoutput(f'{RUN} {seql} {seq2}') ©
assert rv == 0
> assert out.rstrip() == expected (4]

140 | Chapter 6: Finding the Hamming Distance: Counting Point Mutations

E AssertionError: assert 'GAGCCTACTAACGGGAT CATCGTAATGACGGCCT' == '7' ©
E -7
E + GAGCCTACTAACGGGAT CATCGTAATGACGGCCT

tests/hamm_test.py:40: AssertionError
short test summary info
FAILED tests/hamm_test.py::test_inputl - AssertionError: assert 'GAGCCTACTAAC...

1 failed, 3 passed in 0.27s

The inputs for the test come from the file ./tests/inputs/1.txt.
The file is opened and read for the two sequences and the expected result.

The program is run with the two sequences.

© o o ©

The assert fails when it finds the output from the program does not match the
expected answer.

(]

Specifically, the program printed the two sequences when it should have printed
7.

Iterating the Characters of Two Strings

Now to find the Hamming distance between the two sequences. To start, consider
these two sequences:

>>> seql, seq2 = 'AC', 'ACGT'

The distance is 2 because you would either need to add GT to the first sequence or
remove GT from the second sequence to make them the same. I would suggest that
the baseline distance is the difference in their lengths. Note that the Rosalind chal-
lenge assumes two strings of equal lengths, but I want to use this exercise to consider
strings of different lengths.

Depending on the order in which you do the subtraction, you might end up with a
negative number:

>>> len(seql) - len(seq2)
-2

Use the abs() function to get the absolute value:
>>> distance = abs(len(seql) - len(seq2))

>>> distance
2

Getting Started | 141

Now I will consider how to iterate the characters they have in common. I can use the
min() function to find the length of the shorter sequence:

>>> min(len(seql), len(seq2))

2
And I can use this with the range() function to get the indexes of the common
characters:

>>> for 1 in range(min(len(seql), len(seqg2))):
print(seqi[i], seq2[i])

A A

cc
When these two characters are not equal, the distance variable should be incremen-
ted because I would have to change one of the values to match the other. Remember
that the Rosalind challenge always compares the two sequences from their begin-
nings. For instance, the sequences ATTG and TTG differ by one base, as I can either

remove A from the first or add it to the second to make them match, but the rules of
this particular challenge would say that the correct answer is 3:

$./hamm.py ATTG TTG

3
I believe this should be enough information for you to craft a solution that passes the
test suite. Once you have a working solution, explore some other ways you might
write your algorithm, and keep checking your work using the test suite. In addition to
running the tests via pytest, be sure to use the make test option to verify that your
code also passes the various linting and type-checking tests.

Solutions

This section works through eight variations on how to find the Hamming distance,
starting with an entirely manual calculation that takes several lines of code and end-
ing with a solution that combines several functions in a single line.

Solution 1: Iterating and Counting

The first solution follows from the suggestions in the previous section:

def main():
args = get_args()
seql, seq2 = args.seql, args.seq2 (1]

11, 12 = len(seql), len(seq2) (2]
distance = abs(11 - 12) (3]

for 1 in range(min(l1, 12)): (4]
if seq1[i] != seq2[1i]: (5]

142 | Chapter 6: Finding the Hamming Distance: Counting Point Mutations

distance += 1 @
print(distance) (7]
Copy the two sequences into variables.

Since I'll use the lengths more than once, I store them in variables.

The base distance is the difference between the two lengths.

Check the letters at each position.

1]
2]
(3]
O Use the shorter length to find the indexes in common.
(5]
O Increment the distance by 1.

(7]

Print the distance.

This solution is very explicit, laying out every individual step needed to compare all
the characters of two strings. The following solutions will start to shorten many of the
steps, so be sure you are comfortable with exactly what I've shown here.

Solution 2: Creating a Unit Test

The first solution leaves me feeling vaguely uncomfortable because the code to calcu-
late the Hamming distance should be in a function with tests. I'll start by creating a
function called hamming() after the main() function. As a matter of style, I like to put
get_args() first so I can read it immediately when I open the program. My main()
function always comes second, and all other functions and tests after that.

I'll start by imagining the inputs and output of my function:

def hamming(seql: str, seq2: str) -> int: (1)
""" Calculate Hamming distance """

return 0 @

© The function will accept two strings as positional arguments and will return an
integer.

® To start, the function will always return 0.

Solutions | 143

I want to stress the fact that the function does not print the answer
but rather returns it as a result. If you wrote this function to
print() the distance, you would not be able to write a unit test.
You would have to rely entirely on the integration test that looks to
see if the program prints the correct answer. As much as possible, I
would encourage you to write pure functions that act only on the
arguments and have no side effects. Printing is a side effect, and,
while the program does need to print the answer eventually, this
function’s job is solely to return an integer when given two strings.

I've already shown a few test cases I can encode. Feel free to add other tests of your
own devising:

def test_hamming() -> None:
" Test hamming """

assert hamming('', '') == 0 @
assert hamming('AC', 'ACGT') == 2 @
assert hamming('GAGCCTACTAACGGGAT', 'CATCGTAATGACGGCCT') == 7 (3]

© Ialways think it’s good practice to send empty strings for string inputs.
© The difference is due only to length.

© This is the example from the documentation.

I'm aware that this may seem a bit extreme, because this function is essentially the
entire program. I'm almost duplicating the integration test, I know, but I'm using this
to point out best practices for writing programs. The hamming() function is a good
unit of code, and it belongs in a function with a test. In a much larger program, this
would be one of perhaps dozens to hundreds of other functions, and each should be
encapsulated, documented, and tested.

Following test-driven principles, run pytest on the program to ensure that the test
fails:

$ pytest -v hamm.py
test session starts

hamm.py::test_hamming FAILED [100%]

FAILURES
test_hamming

def test_hamming() -> None:
nnn TeSt hamming nnn

assert hamming('', '') == 0

144 | Chapter 6: Finding the Hamming Distance: Counting Point Mutations

assert hamming('AC', 'ACGT') == 2
assert 0 ==

+0

-2

mmm V

hamm.py:69: AssertionError
short test summary info
FAILED hamm.py::test_hamming - assert 0 ==

1 failed in 0.13s

Now copy the code from main() to fix the function:

def hamming(seql: str, seq2: str) -> int:
""" Calculate Hamming distance """

11, 12 = len(seql), len(seq2)
distance = abs(l1 - 12)

for 1 in range(min(l1, 12)):
if seql[i] != seq2[1i]:
distance += 1

return distance
Verify that your function is correct:

$ pytest -v hamm.py

test session starts

hamm.py::test_hamming PASSED [100%]

1 passed in 0.02s

You can incorporate it into your main() function like so:

def main():
args = get_args()
print(hamming(args.seql, args.seq2)) (1)

© Print the return value from the function for the two given sequences.

This hides the complexity of the program inside a named, documented, tested unit,
shortening the main body of the program and improving the readability.

Solution 3: Using the zip() Function

The following solution uses the zip() function to combine the elements from two
sequences. The result is a list of tuples containing the characters from each position

(see Figure 6-3). Note that zip() is another lazy function, so I'll use 1ist() to coerce
the values in the REPL:

Solutions | 145

>>> list(zip('ABC', '123'))
[(IAI, Ill), (IBI, IZI)’ (lcl, I3l)]

ABC 123

[C'A*, 1Y), ('B','2"), ('C','3")]

Figure 6-3. The tuples are composed of characters in common positions

If T use the AC and ACGT sequences, you'll notice that zip() stops with the shorter
sequence, as shown in Figure 6-4:

>>> list(zip('AC', 'ACGT'))
[C'A", A", ('Ct, 'Ch)]

>e—>r
Ne—N

[CAY, AT, (1,)]

Figure 6-4. The zip() function will stop at the shortest sequence

I can use a for loop to iterate over each pair. So far in my for loops, I've used a single
variable to represent each element in a list like this:

>>> for tup in zip('AC', 'ACGT'):
print(tup)

& :A| , lAl)
(e, e
In Chapter 1, I showed how to unpack the values from a tuple into separate variables.

The Python for loop allows me to unpack each tuple into the two characters, like so:

>>> for charl, char2 in zip('AC', 'ACGT'):
print(char1, char2)

AA
cc

The zip() function obviates a couple of lines from the first implementation:

146 | Chapter 6: Finding the Hamming Distance: Counting Point Mutations

def hamming(seql: str, seqg2: str) -> int:
""" Calculate Hamming distance """

distance = abs(len(seql) - len(seq2)) (1)
for charl, char2 in zip(seql, seq2): (2]
if charl != char2:

distance += 1 @

return distance

© Start with the absolute difference of the lengths.
® Use zip() to pair up the characters of the two strings.
© Check if the two characters are not equal.

Increment the distance.

Solution 4: Using the zip_longest() Function

The next solution imports the zip_longest() function from the itertools module.
As the name implies, it will zip the lists to the length of the longest list. Figure 6-5
shows that the function will insert None values when a shorter sequence has been
exhausted:

>>> from itertools import zip_longest
>>> list(zip_longest('AC', 'ACGT'))
[C'A", 'A"), ('C', 'C"), (None, 'G"), (None, 'T')]

C None None

|

P

[('A",'A"), ('C','C"), (None,'G"), (None,'T")]

4//,* D> e—>

Figure 6-5. The zip_longest() function will stop at the longest sequence

I no longer need to start by subtracting the lengths of the sequences. Instead, I'll initi-
alize a distance variable to @ and then use zip_longest() to create tuples of bases to
compare:

def hamming(seql: str, seqg2: str) -> int:
""" Calculate Hamming distance """

distance = 0 @
for char1l, char2 in zip_longest(seql, seq2): (2]

Solutions | 147

if charl != char2: ©
distance += 1 @

return distance

O Initialize the distance to 0.
© Zip to the longest sequence.
© Compare the characters.

Increment the counter.

Solution 5: Using a List Comprehension

All the solutions up to this point have used a for loop. I hope you're starting to antici-
pate that 'm going to show you how to convert this into a list comprehension next.
When the goal is to create a new list or reduce a list of values to some answer, its
often shorter and preferable to use a list comprehension.

The first version is going to use an if expression to return a 1 if the two characters
are the same or a 0 if they are not:

>>> seql, seq2, = 'GAGCCTACTAACGGGAT', 'CATCGTAATGACGGCCT'
>>> [1 if c1 != c2 else 0 for c1, c2 in zip_longest(seql, seq2)]
[1’ OJ 1J 0) 1’ 0’ 01 1! 0’ 1J OJ 0) 0’ 0’ 11 1! 0]

The Hamming distance, then, is the sum of these:

>>> sum([1 if c1 != c2 else 0 for c1, c2 in zip_longest(seql, seq2)])
7

Another way to express this idea is to only produce the 1s by using a guard clause,
which is a conditional statement at the end of the list comprehension that decides
whether or not a particular element is allowed:

>>> ones = [1 for c1, c2 in zip_longest(seql, seq2) if c1 != c2] (1]

>>> ones

[1, 1,1, 1, 1, 1, 1]

>>> sum(ones)

7

© The if statement is the guard that will produce the value 1 if the two characters
are not equal.

You could also use the Boolean/integer coercion I showed in Chapter 5, where each
True value will be treated as 1 and False is 0:

>>> bools = [cl1 != c2 for c1, c2 in zip_longest(seql, seq2)]
>>> bools

148 | Chapter 6: Finding the Hamming Distance: Counting Point Mutations

[True, False, True, False, True, False, False, True, False, True, False,

False, False, False, True, True, False]

>>> sum(bools)

7
Any of these ideas will reduce the function to a single line of code that passes the
tests:

def hamming(seql: str, seqg2: str) -> int:
""" Calculate Hamming distance """

return sum([cl != c2 for c1, c2 in zip_longest(seql, seq2)])

Solution 6: Using the filter() Function

Chapters 4 and 5 show that a list comprehension with a guard can also be expressed
using the filter() function. The syntax is a little ugly because Python doesn’t allow
the unpacking of the tuples from zip_longest() into separate variables. That is, I
want to write a lambda that unpacks char1 and char2 into separate variables, but this
is not possible:

>>> list(filter(lambda charl, char2: charl != char2, zip_longest(seql, seq2)))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: <lambda>() missing 1 required positional argument: 'char2'
Instead, I will usually call the lambda variable tup or t to remind me this is a tuple. I
will use the positional tuple notation to compare the element in the zeroth position to
the element in the first position. filter() will only produce those tuples where the
elements are different:

>>> seql, seq2 = 'AC', 'ACGT'

>>> list(filter(lambda t: t[0] != t[1], zip_longest(seql, seqg2)))

[(None, 'G"), (None, 'T')]
The Hamming distance then is the length of this list. Note that the len() function
will not prompt filter() to produce values:

>>> len(filter(lambda t: t[0] !'= t[1], zip_longest(seql, seq2)))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: object of type 'filter' has no len()
This is one of those instances where the code must use list() to force the lazy
filter() function to generate the results. Here is how I can incorporate these ideas:

def hamming(seql: str, seqg2: str) -> int:
""" Calculate Hamming distance """

distance = filter(lambda t: t[0] != t[1], zip_longest(seql, seq2)) @
return len(list((distance))) (2]

Solutions | 149

© Use filter() to find tuple pairs of different characters.

© Return the length of the resulting list.

Solution 7: Using the map() Function with zip_longest()

This solution uses map() instead of filter() only to show you that the same inability
to unpack the tuples also applies. I'd like to use map() to produce a list of Boolean
values indicating whether the character pairs match or not:

>>> seql, seq2 = 'AC', 'ACGT'

>>> list(map(lambda t: t[0] !'= t[1], zip_longest(seql, seq2)))

[False, False, True, True]
The lambda is identical to the one to filter() that was used as the predicate to deter-
mine which elements are allowed to pass. Here the code transforms the elements into
the result of applying the lambda function to the arguments, as shown in Figure 6-6.
Remember that map() will always return the same number of elements it consumes,
but filter() may return fewer or none at all.

map(lambda t: t[0] != t[1], zip_longest('AC', 'ACGT'))
map(lambda t: t[0] !'= t[1], [('A', 'A'), ('C', 'C"), (None, 'G'), (None, 'T')])

lambda ('A', 'A'): 'A' != 'A'—>False
lambda ('C', 'C'): 'c' 1= 'c' —PFalse
lambda ('None', 'G'): 'None' != '¢'—>True

lambda ('None', 'T'): 'None' != 'T'—>True

Figure 6-6. The map() function transforms each tuple into a Boolean value representing
the inequality of the two elements

I can sum these Booleans to get the number of mismatched pairs:
>>> seql, seq2, = 'GAGCCTACTAACGGGAT', 'CATCGTAATGACGGCCT'
>>> sum(map(lambda t: t[0] != t[1], zip_longest(seql, seq2)))
7

Here is the function with this idea:

def hamming(seql: str, seq2: str) -> int:
""" Calculate Hamming distance """

return sum(map(lambda t: t[0] != t[1], zip_longest(seql, seq2)))

150 | Chapter 6: Finding the Hamming Distance: Counting Point Mutations

Even though these functions have gone from 10 or more lines of code to a single line,
it still makes sense for this to be a function with a descriptive name and tests. Eventu-
ally, you'll start creating modules of reusable code to share across your projects.

Solution 8: Using the starmap() and operator.ne() Functions

I confess that I showed the last few solutions solely to build up to this last solution.
Let me start by showing how I can assign a lambda to a variable:

>>> not_same = lambda t: t[0] != t[1]

This is not recommended syntax, and pylint will definitely fail your code on this and
recommend a def instead:

def not_same(t):
return t[0] !'= t[1]

Both will create a function called not_same() that will accept a tuple and return
whether the two elements are the same:

>>> not_same(('A', 'A'))
False
>>> not_same(('A', 'T'))
True

If, however, I wrote the function to accept two positional arguments, the same error I
saw before would crop up:

>>> not_same = lambda a, b: a != b
>>> list(map(not_same, zip_longest(seql, seq2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: <lambda>() missing 1 required positional argument: 'b'

What I need is a version of map() that can splat the incoming tuple (as I first showed
in Chapter 1) by adding * (star, asterisk, or splat) to the tuple to expand it into its
elements, which is exactly what the function itertools.starmap() does (see
Figure 6-7):

>>> from itertools import zip_longest, starmap

>>> seql, seq2 = 'AC', 'ACGT'

>>> list(starmap(not_same, zip_longest(seql, seq2)))
[False, False, True, True]

Solutions | 151

starmap(not_same, zip_longest('AC','ACGT'))

starmap(lambda a, b: a != b, [('A','A"), ('C','C"), (None,'G'), (None,'T')])

*(IAI,IAI)
lambda 'A', 'A': 'A' I= ‘A> —>False

Figure 6-7. The starmap() function applies a splat to the incoming tuple to turn it into
the two values that the lambda expects

But wait, there’s more! I don’t even need to write my own not_same() function
because I already have operator.ne() (not equal), which I usually write using the !=
operator:

>>> import operator

>>> operator.ne('A', 'A'")
False

>>> operator.ne('A', 'T")
True

An operator is a special binary function (accepting two arguments) where the func-
tion name is usually some symbol like + that sits between the arguments. In the case
of +, Python has to decide if this means operator.add():

>>> 1 + 2

3

>>> operator.add(1, 2)
3

or operator.concat():

>>> 'AC' + 'GT'

'ACGT'

>>> operator.concat('AC', 'GT')
'ACGT'

The point is that I already have an existing function that expects two arguments and
returns whether they are equal, and I can use starmap() to properly expand the
tuples into the needed arguments:

>>> seql, seq2 = 'AC', 'ACGT'

>>> list(starmap(operator.ne, zip_longest(seql, seq2)))
[False, False, True, True]

As before, the Hamming distance is the sum of the unmatched pairs:

152 | Chapter 6: Finding the Hamming Distance: Counting Point Mutations

>>> seql, seq2, = 'GAGCCTACTAACGGGAT', 'CATCGTAATGACGGCCT'
>>> sum(starmap(operator.ne, zip_longest(seql, seq2)))
7

To see it in action:

def hamming(seql: str, seq2: str) -> int:
""" Calculate Hamming distance """

return sum(starmap(operator.ne, zip_longest(seql, seq2))) (1]

© Zip the sequences, transform the tuples to Boolean comparisons, and sum.

This final solution relies entirely on fitting four functions that I didn’t write. I believe
the best code is code you don’t write (or test or document). While I prefer this purely
functional solution, you may feel this code is overly clever. You should use whatever
version you'll be able to understand a year later.

Going Further

« Without looking at the source code, write a version of zip_longest(). Be sure to
start with a test, then write the function that satisfies the test.

+ Expand your program to handle more than two input sequences. Have your pro-
gram print the Hamming distance between every pair of sequences. That means
the program will print n choose k numbers which will be n! / k!(n - k)!. For three
sequences, your program will print 3! / (2!(3 - 2)!) =6 / 2 = 3 distance pairs.

o Try writing a sequence alignment algorithm that will show there is, for instance,
just one difference between the sequences AAACCCGGGTTT and
AACCCGGGTTTA.

Review

This was a rather deep rabbit hole to go down just to find the Hamming distance, but
it highlights lots of interesting bits about Python functions:

o The built-in zip() function will combine two or more lists into a list of tuples,
grouping elements at common positions. It stops at the shortest sequence, so use
the itertools.zip_longest() function if you want to go to the longest
sequence.

o Both map() and filter() apply a function to some iterable of values. The map()
function will return a new sequence transformed by the function, while filter()
will only return those elements that return a truthy value when the function is
applied.

Going Further | 153

« The function passed to map() and filter() can be an anonymous function cre-
ated by lambda or an existing function.

o The operator module contains many functions like ne() (not equal) that can be
used with map() and filter().

o The functools.starmap() function works just like map() but will splat the func-
tion’s incoming values to expand them into a list of values.

154 | Chapter 6: Finding the Hamming Distance: Counting Point Mutations

CHAPTER 7

Translating mRNA into Protein:
More Functional Programming

According to the Central Dogma of molecular biology, DNA makes mRNA, and
mRNA makes protein. In Chapter 2, I showed how to transcribe DNA to mRNA, so
now it’s time to translate mRNA into protein sequences. As described on the Rosalind
PROT page, I now need to write a program that accepts a string of mRNA and pro-
duces an amino acid sequence. I will show several solutions using lists, for loops, list
comprehensions, dictionaries, and higher-order functions, but I confess I'll end with
a Biopython function. Still, it will be tons of fun.

Mostly I'm going to focus on how to write, test, and compose small functions to cre-
ate solutions. You'll learn:

« How to extract codons/k-mers from a sequence using string slices

« How to use a dictionary as a lookup table

» How to translate a for loop into a list comprehension and a map() expression

« How to use the takewhile() and partial() functions

« How to use the Bio.Seq module to translate mRNA into proteins

Getting Started

You will need to work in the 07_prot directory for this exercise. I recommend you
begin by copying the first solution to prot.py and asking for the usage:
$ cp solutioni_for.py prot.py

$./prot.py -h
usage: prot.py [-h] RNA

155

https://oreil.ly/OgBcW
https://oreil.ly/OgBcW

Translate RNA to proteins

positional arguments:
RNA RNA sequence

optional arguments:
-h, --help show this help message and exit

The program requires an RNA sequence as a single positional argument. From here
on, I'll use the term RNA, but know that I mean mRNA. Here’s the result using the
example string from the Rosalind page:

$./prot.py AUGGCCAUGGCGCCCAGAACUGAGAUCAAUAGUACCCGUAUUAACGGGUGA
MAMAPRTEINSTRING

Run make test to ensure the program works properly. When you feel you have a
decent idea of how the program works, start from scratch:

$ new.py -fp 'Translate RNA to proteins' prot.py
Done, see new script "prot.py".

Here is how I define the parameters:

class Args(NamedTuple):
""" Command-line arguments
rna: str @

def get_args() -> Args:
"""Get command-line arguments

parser = argparse.ArgumentParser(
description='Translate RNA to proteins',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('rna', type=str, metavar='RNA', help='RNA sequence') (2]
args = parser.parse_args()
return Args(args.rna)

© The only parameter is a string of mRNA.

® Define rna as a positional string.

Modify your arguments until the program will produce the correct usage, then mod-
ify your main() to print the incoming RNA string:
def main() -> None:

args = get_args()
print(args.rna)

156 | Chapter7: Translating mRNA into Protein: More Functional Programming

Verify that it works:

$./prot.py AUGGCCAUGGCGCCCAGAACUGAGAUCAAUAGUACCCGUAUUAACGGGUGA

AUGGCCAUGGCGCCCAGAACUGAGAUCAAUAGUACCCGUAUUAACGGGUGA
Run pytest or make test to see how you fare. Your program should pass the first
two tests and fail the third, where the output should be the protein translation. If you
think you can figure this out, go ahead with your solution. It’s perfectly fine to strug-
gle. There’s no hurry, so take a few days if you need to. Be sure to incorporate naps
and walks (diffuse thinking time) in addition to your focused coding time. If you
need some help, read on.

K-mers and Codons

So far you've seen many examples of how to iterate over the characters of a string,
such as the bases of DNA. Here I need to group the bases of RNA into threes to read
each codon, a sequence of three nucleotides that corresponds to an amino acid. There
are 64 codons, as shown in Table 7-1.

Table 7-1. The RNA codon table describes how 3-mers/codons of RNA encode the 22 amino

acids
AAAK AACN AAGK AAUN ACAT
ACCT ACGT ACUT AGAR AGCS
AGGR AGUS AUAI AucCl AuG M
AUl CAAQ CACH (AGQ CAUH
(CAP Cccp eGP cuep (GAR
(GCR (GGR (GUR CUAL cL
el cuL GAAE GACD GAGE
GAUD GCAA GCCA G(GA GCUA
GGAG GGCG GGG G GGU G GUAV
GUCV GuGVv GUUV UACY UAUY
UCAS UCcs uces ucus uacc
UGGW UaU C UUAL UUCF uualL
UUUF UAAStop UAGStop UGA Stop

Given some string of RNA:
>>> rna = 'AUGGCCAUGGCGCCCAGAACUGAGAUCAAUAGUACCCGUAUUAACGGGUGA'

I want to read the first three bases, AUG. As shown in Figure 7-1, I can use a string
slice to manually grab the characters from indexes 0 to 3 (remembering that the
upper bound is not inclusive):

>>> rnal0:3]
'AUG'

Getting Started | 157

| | |
AUGGCCAUG
0123456 7 8

Figure 7-1. Extracting codons from RNA using string slices

The next codon can be found by adding 3 to the start and stop positions:

>>> rnal[3:6]
'Gee!

Can you see a pattern emerging? For the first number, I need to start at 0 and add 3.
For the second number, I need to add 3 to the first number (see Figure 7-2).

3:3+43
AUGGCCAUG
0O 1 2 3 45 6 7 8
0:0+3 6:6+3

Figure 7-2. Each slice is a function of the start positions of the codons, which can be
found using the range() function

I can handle the first part using the range() function, which can take one, two, or
three arguments. Given just one argument, it will produce all the numbers from 0 up
to but not including the given value. Note this is a lazy function which I'll coerce with

list():

>>> list(range(10))

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Given two arguments, range() will assume the first is the start and the second is the
stop:

>>> list(range(5, 10))

[5’ 6.‘ 7J 8’ 9]
A third argument will be interpreted as the step size. In Chapter 3, I used range()
with no start or stop positions and a step size of -1 to reverse a string. In this case, I
want to count from 0 up to the length of the RNA, stepping by 3. These are the start-
ing positions for the codons:

>>> list(range(0, len(rna), 3))
[e, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48]

158 | Chapter7: Translating mRNA into Protein: More Functional Programming

I can use a list comprehension to generate the start and stop values as tuples. The stop
positions are 3 more than the start positions. I'll show just the first five:

>>> [(n, n + 3) for n in range(0, len(rna), 3)][:5]
[(o, 3), (3, 6), (6, 9), (9, 12), (12, 15)]

I can use those values to take slices of the RNA:

>>> [rna[n:n + 3] for n in range(®, len(rna), 3)][:5]

['AUG', 'GCC', 'AUG', 'GCG', 'cCC']
The codons are subsequences of the RNA, and they are similar to k-mers. The k is the
size, here 3, and mer is a share as in the word polymer. Its common to refer to k-mers
by their size, so here I might call these 3-mers. The k-mers overlap by one character,

so the window shifts right by one base. Figure 7-3 shows the first seven 3-mers found
in the first nine bases of the input RNA.

AUGGCCAUG

cC>»>OhCNONhoOoOC
[aNah-NoNaNalNa)

Figure 7-3. All the 3-mers in the first nine bases of the RNA sequence

The number # of k-mers in any sequence s is:
n=len(s)—k+1

The length of this RNA sequence is 51, so it contains 49 3-mers:

>>> len(rna) - k + 1
49

Except when considering multiframe translation, which I'll show in Chapter 14,
codons do not overlap and so shift 3 positions (see Figure 7-4), leaving 17 codons:

>>> len([rna[n:n + 3] for n in range(0, len(rna), 3)1)
17

Getting Started | 159

AUGGCCAUG

—_—

1
!
bl

Figure 7-4. Codons are nonoverlapping 3-mers

Translating Codons

Now that you know how to extract the codons from the RNA, let’s consider how to
translate a codon into a protein. The Rosalind page provides the following translation
table:

Uuu F CuU L AUU I GUU Vv
uuc F cuc L AUC I GuC v
UUA L CUA L AUA I GUA Vv
UuG L CUG L AUG M GUG V
ucu s ccu p ACU T GCU A
ucc s ccc e ACC T GCC A
UCA S CCA P ACA T GCA A
UcG s cce P ACG T GCG A
UAU Y CAU H AAU N GAU D
UAC Y CAC H AAC N GAC D
UAA Stop CAAQ AAA K GAA E
UAG Stop CAG Q AAG K GAG E
uGu C CGU R AGU S GGU G
uGC C CGC R AGC S GGC G
UGA Stop CGA R AGA R GGA G
UGG W CGG R AGG R GGG G

A dictionary would be a natural data structure to look up a string like AUG to find that
it translates to the protein M, which happens to be the codon that indicates the begin-
ning of a protein sequence. I will leave it to you to incorporate this data into your
program. For what it's worth, I changed Stop to * in my dictionary for the stop
codon, which indicates the end of the protein sequence. I called my dictionary
codon_to_aa, and I can use it like so:

>>> rna = 'AUGGCCAUGGCGCCCAGAACUGAGAUCAAUAGUACCCGUAUUAACGGGUGA'

>>> a3a = []

>>> for codon in [rna[n:n + 3] for n in range(@, len(rna), 3)]:
aa.append(codon_to_aa[codon])

>>> aa
['M', 'A", 'M', 'A', 'P', 'R', 'T', 'E', 'I', 'N', 'S', 'T', 'R', 'I',
', NG,]
The * codon indicates where the translation ends and is often shown so you know
that a stop was found and the protein is complete. For the purposes of passing the
Rosalind tests, the stop should not be included in the output. Note that the stop

160 | Chapter7: Translating mRNA into Protein: More Functional Programming

codon may occur before the end of the RNA string. This should be enough hints for
you to create a solution that passes the tests. Be sure to run pytest and make test to
ensure your program is logically and stylistically correct.

Solutions

In this section, I will show five variations on how to translate RNA into protein, mov-
ing from wholly manual solutions where I encode the RNA codon table with a dictio-
nary to a single line of code that uses a function from Biopython. All solutions use the
same get_args() as shown previously.

Solution 1: Using a for Loop

Here is the whole of my first solution, which uses a for loop to iterate the codons to
translate them via a dictionary:

def main() -> None:

args = get_args()

rna = args.rna.upper() (1]

codon_to_aa = {
'"AAA': 'K', '"AAC': 'N', 'AAG': 'K', '"AAU': 'N', 'ACA': 'T',
'ACC': 'T', 'ACG': 'T', 'ACU': 'T', 'AGA': 'R', 'AGC': 'S',
'AGG': 'R', 'AGU': 'S', "AUA': 'I', 'AUC': 'I', 'AUG': 'M',
'AUU': 'I', 'CAA': 'Q', 'CAC': 'H', 'CAG': 'Q', 'CAU': 'H',
'CCA': 'P', 'cCcC': 'P', 'CCG': 'P', 'CCU': 'P", 'CGA': 'R',
'cGC': 'R', 'CGG': 'R', 'CGU': 'R', 'CUA': 'L', 'CuC': 'L',
'CuG': 'L', 'Ccuu': 'L', 'GAA': 'E', 'GAC': 'D', 'GAG': 'E',
'GAU': 'D', 'GCA': 'A', 'GCC': 'A', 'GCG': 'A', 'GCU': 'A'",
'GGA': 'G', 'GGC': 'G', 'GGG': 'G', 'GGU': 'G', 'GUA': 'V',
'GUC': 'V', 'GUG': 'V', 'GUU': 'V', 'UAC': 'Y', 'UAU': 'Y',
'UCA': 'S', 'ucc': 'S', 'ucg': 's', 'ucu': 's', 'uGC': 'Cc',
'UGG': 'W', 'UGU': 'C', 'UUA': 'L', 'UuC': 'F', 'UUG': 'L',
'WUU': 'F', 'UAA': '*', 'UAG': '*', 'UGA': '*',

}
k=30
protein = "' (4]
for codon in [rna[i:1 + k] for 1 in range(®, len(rna), k)]: (5)
aa = codon_to_aa.get(codon, '-')
if aa == '*':
break ©

protein += aa (o]
print(protein) (10]
©® Copy the incoming RNA, forcing to uppercase.

@ Create a codon/AA lookup table using a dictionary.

Solutions | 161

Establish the size of k for finding k-mers.
Initialize the protein sequence to the empty string.

Iterate through the codons of the RNA.

© 06 6 o

Use dict.get() to look up the amino acid for this codon, and return a dash if it
is not found.

@ Check if this is the stop codon.
O Break out of the for loop.
© Append the amino acid to the protein sequence.

Print the protein sequence.

Solution 2: Adding Unit Tests

The first solution works adequately well and, for such a short program, has a decent
organization. The problem is that short programs usually become long programs. It’s
common to make functions longer and longer, so I'd like to show how I can break up
the code in main() into a couple of smaller functions with tests. Generally speaking, I
like to see a function fit into 50 lines or fewer on the high end. As for how short a
function can be, I'm not opposed to a single line of code.

My first intuition is to extract the code that finds the codons and make that into a
function with a unit test. I can start by defining a placeholder for the function with a
type signature that helps me think about what the function accepts as arguments and
will return as a result:

def codons(seq: str) -> List[str]: (1]
""" Extract codons from a sequence

return [] (2]

© The function will accept a string and will return a list of strings.

® For now, just return an empty list.

Next, I define a test_codons() function to imagine how it might work. Whenever I
have a string as a function parameter, I try passing the empty string. (Whenever I
have an integer as a function parameter, I try passing 0.) Then I try other possible
values and imagine what the function ought to do. As you can see, I'm making some
judgment calls here by returning strings shorter than three bases. I only expect the

162 | Chapter7: Translating mRNA into Protein: More Functional Programming

function to break a string into substrings of at least three bases. There’s no reason to
let perfect be the enemy of good enough here:

def test_codons() -> None:

""" Test codons

assert codons('') == []

assert codons('A') == ['A']
assert codons('ABC') == ['ABC']
assert codons('ABCDE') == ['ABC', 'DE']
'DEF']

assert codons('ABCDEF') == ['ABC',

Now to write the function that will satisfy these tests. If I move the relevant code from
main() into the codons() function, I get this:

def codons(seq: str) -> List[str]:

""" Extract codons from a sequence

k=3
ret =

(]

for codon in [seq[i:1 + k] for i1 in range(0, len(seq), k)]:
ret.append(codon)

return ret

If I try running pytest on this program, I see it passes. Huzzah! Since the for loop
is being used to build up a return list, it would be stylistically better to use a list

comprehension:

def codons(seq: str) -> List[str]:

""" Extract codons from a sequence

k=3

return [seq[i:1 + k] for i1 in range(0, len(seq), k)]

This is a nice little function that is documented and tested and which will make the

rest of the code more readable:

def main() -> None:
args = get_args()

rna = args.rna.upper()

codon_to_aa
"AAA':
"ACC':
"AGG':
'"AUU" :
"CCA':
'CGC':
"CUG':
"GAU':
"GGA':
'GUC':
'"UCA':

={
'Kl,
IT‘,
'Rl,
II‘,
'Pl,
IR‘,
'Ll,
ID‘,
|Gl,
IV‘,
|Sl,

'"AAC':
'ACG':
'AGU":
'"CAA':
'ccc':
'CGG':
'Cul':
'GCA':
'GGC':
'GUG':
'ucc':

‘N',
‘T',
‘S',
‘Q',
‘P',
‘R',
‘L',
‘A',
‘G',
‘V',
‘S',

"AAG':
'"ACU':
"AUA':
"CAC':
'CCG':
'CGU":
"GAA':
'GCC':
'GGG':
'GUU':
'UcG':

'Kl,
IT‘,
'Il,
IH‘,
'Pl,
IR‘,
'El,
IA‘,
|Gl,
IV‘,
|Sl,

'AAU" :
'"AGA':
'AUC' :
'CAG':
'CcU':
"CUA':
'GAC':
'GCG':
'GGU':
'"UAC':
'ucu':

‘N',
‘R',
‘I',
‘Q',
‘P',
‘L',
‘D',
‘A',
‘G',
‘Y',
‘S',

"ACA':
'"AGC':
"AUG' :
'"CAU':
"CGA':
'CUC':
"GAG':
'GCU':
"GUA':
'"UAU' :
'Ucc':

'Tl,
IS‘,
'Ml,
IH‘,
'Rl,
IL‘,
'El,
IA‘,
'Vl,
IY‘,
|c|,

Solutions

163

'UGG': 'W', 'uGU': 'C', 'UUA': 'L', 'UuC': 'F', 'UUG': 'L',
'UuU': 'F', 'UAA': '*', 'UAG': '*', 'UGA': '*',
}

protein =
for codon in codons(rna): (1]
aa = codon_to_aa.get(codon, '-')
if aa == '*':
break
protein += aa

print(protein)

© The complexity of finding the codons is hidden in a function.

Further, this function (and its test) will now be easier to incorporate into another pro-
gram. The simplest case would be to copy and paste these lines, but a better solution
would be to share the function. Let me demonstrate using the REPL. If you have the
codons() function in your prot.py program, then import the function:

>>> from prot import codons
Now you can execute the codons() function:

>>> codons('AAACCCGGGTTT")
['AAA', 'CCC', 'GGG', 'TTT']

Or you can import the entire prot module and call the function like so:

>>> import prot

>>> prot.codons('AAACCCGGGTTT")

['AAA', 'CCC', 'GGG', 'TTT']
Python programs are also modules of reusable code. Sometimes you execute a source
code file and it becomes a program, but there’s not a big distinction in Python
between a program and a module. This is the meaning of the couplet at the end of all
the programs:

if __name__ == '__main__"': (1]

main() (2]

© When a Python program is being executed as a program, the value of __name__ is
__main__.

® Call the main() function to start the program.

164 | Chapter7: Translating mRNA into Protein: More Functional Programming

When a Python module is being imported by another piece of code,
then the __name__ is the name of the module; for example, prot in
the case of prot.py. If you simply called main() at the end of the
program without checking the __name__, then it would be executed
whenever your module is imported, which is not good.

As you write more and more Python, you'll likely find youre solving some of the
same problems repeatedly. It would be far better to share common solutions by writ-
ing functions that you share across projects rather than copy-pasting bits of code.
Python makes it pretty easy to put reusable functions into modules and import them
into other programs.

Solution 3: Another Function and a List Comprehension

The codons() function is tidy and useful and makes the main() function easier to
understand; however, all the code that’s left in main() is concerned with translating
the protein. I'd like to hide this away in a translate() function, and here is the test
I'd like to use:

def test_translate() -> None:
""" Test translate """

assert translate('') == "' (1]
assert translate('AUG') == 'M' (2]
assert translate('AUGCCGUAAUCU') == 'MP' (3]
assert translate('AUGGCCAUGGCGCCCAGAACUGAGAU' (4)
' CAAUAGUACCCGUAUUAACGGGUGA') == 'MAMAPRTEINSTRING' (5]

I usually test string parameters with the empty string.
Test for a single amino acid.

Test using a stop codon before the end of the sequence.

© o © ©

Notice that adjacent string literals are joined into a single string. This is a useful
way to break long lines in source code.

© Test using the example from Rosalind.

I move all the code from main() into this, changing the for loop to a list comprehen-
sion and using a list slice to truncate the protein at the stop codon:

def translate(rna: str) -> str:
""" Translate codon sequence """

codon_to_aa = {
'"AAA': 'K', '"AAC': 'N', 'AAG': 'K', 'AAU': 'N', 'ACA': 'T',

Solutions | 165

'ACC': 'T', 'ACG': 'T', 'ACU': 'T', 'AGA': 'R', 'AGC': 'S"',
'AGG': 'R', 'AGU': 'S', 'AUA': 'I', 'AUC': 'I', 'AUG': 'M',
'AUU': 'I', 'CAA': 'Q', 'CAC': 'H', 'CAG': 'Q', 'CAU': 'H',
'"CCA': 'P', 'CcCC': 'P', 'CCG': 'P', 'CCU': 'P', 'CGA': 'R',
'cGC': 'R', 'CGG': 'R', 'CGU': 'R', 'CUA': 'L', 'CUC': L',
'CUG': 'L', 'Cuu': 'L', 'GAA': 'E', 'GAC': 'D', 'GAG': 'E',
'GAU': 'D', 'GCA': 'A', 'GCC': 'A', 'GCG': 'A', 'GCU': 'A',
'GGA': 'G', 'GGC': 'G', 'GGG': 'G', 'GGU': 'G', 'GUA': 'V',
'GUC': 'V', 'GUG': 'V', 'GUU': 'V', 'UAC': 'Y', 'UAU': 'Y',
'UCA': 'S', 'ucc': 's', 'ucGg': 's', 'ucu': 's', 'uGC': 'C',
'UGG': 'W', 'UGU': 'C', 'UUA': 'L', 'UUC': 'F', 'UUG': 'L',
'Uuu': 'F', 'UAA': '*', 'UAG': '*', 'UGA': '*',

}

aa = [codon_to_aa.get(codon, '-') for codon in codons(rna)] (1)

if '*' in aa:

aa = aa[:aa.index('*')] (3]

return ''.join(aa) (4)

)

Use a list comprehension to translate the list of codons to a list of amino acids.

(~)

See if the stop (*) codon is present in the list of amino acids.

(]

Overwrite the amino acids using a list slice up to the index of the stop codon.

Join the amino acids on the empty string and return the new protein sequence.
To understand this, consider the following RNA sequence:

>>> rna = 'AUGCCGUAAUCU'
I can use the codons() function to get the codons:

>>> from solution3_list_comp_slice import codons, translate
>>> codons(rna)
['AUG', 'CCG', '"UAA', 'UCU']

And use a list comprehension to turn those into amino acids:

>>> codon_to_aa = {
'"MAAA': "K', '"AAC': 'N', '"AAG': 'K', '"AAU': 'N', 'ACA': 'T',
'ACC': 'T', 'ACG': 'T', 'ACU': 'T', 'AGA': 'R', 'AGC': 'S',
'AGG': 'R', 'AGU': 'S', 'AUA': 'I', 'AUC': 'I', 'AUG': 'M',
'AUU': 'I', 'CAA': 'Q', 'CAC': 'H', 'CAG': 'Q', 'CAU': 'H',
'"CCA': 'P', 'CCC': 'P', 'CCG': 'P', 'CCU': 'P', 'CGA': 'R',
'cGC': 'R', 'CGG': 'R', 'CGU': 'R', 'CUA': 'L', 'CUC': 'L',
'CUG': 'L', 'CuU': 'L', 'GAA': 'E', 'GAC': 'D', 'GAG': 'E',
'GAU': 'D', 'GCA': 'A', 'GCC': 'A', 'GCG': 'A', 'GCU': 'A",
'GGA': 'G', 'GGC': 'G', 'GGG': 'G', 'GGU': 'G', 'GUA': 'V',
'GuC': 'V', 'GUG': 'V', 'GUU': 'V', 'UAC': 'Y', 'UAU': 'Y',
'UCA': 'S', 'ucc': 's', 'ucGg': 's', 'ucu': 's', 'uGC': 'C',
'UGG': 'W', 'UGU': 'C', 'UUA': 'L', 'UuC': 'F', 'UUG': 'L',

166 | Chapter7: Translating mRNA into Protein: More Functional Programming

- 'Uuu': 'F', 'UAA': '*', 'UAG': '*', 'UGA': '*',
oo
>>> aa = [codon_to_aa.get(c, '-') for c in codons(rna)]
>>> aa

[IM‘, 'PI, |*|’ ISI]
I can see the stop codon is present:

>>> '*' {n aa
True

and so the sequence needs to be truncated at index 2:

>>> aa.index('*")

2
I can use a list slice to select up to the position of the stop codon. If no start position
is supplied, then Python assumes the index 0:

>>> aa = aa[:aa.index('*')]

>>> aa
[|M| , 1 P 1]
Finally, this list needs to be joined on the empty string:
>>> '' join(aa)
up
The main() function incorporates the new function and makes for a very readable
program:
def main() -> None:
args = get_args()
print(translate(args.rna.upper()))
This is another instance where the unit test almost duplicates the integration test that
verifies the program translates RNA into protein. The latter is still important as it
ensures that the program works, produces documentation, handles the arguments,
and so forth. As overengineered as this solution may seem, I want you to focus on
how to break programs into smaller functions that you can understand, test, compose,
and share.

Solution 4: Functional Programming with the map(), partial(), and
takewhile() Functions
For this next solution, I want to show how to rewrite some of the logic using three

HOFs, map(), partial(), and takewhile(). Figure 7-5 shows how the list compre-
hension can be rewritten as a map().

Solutions | 167

[codon_to_aa.get(codon,'-"') for codon in codons(rna)]
| |

map(lamba codon: codon_to_aa.get(codon,'-'), codons(rna))

Figure 7-5. A list comprehension can be rewritten as a map()

I can use map() to get the amino acid sequence. You may or may not feel this is easier
to read than a list comprehension; the point is to understand that they are function-
ally equivalent, both transforming one list into a new list:

>>> aa = list(map(lambda codon: codon_to_aa.get(codon, '-'), codons(rna)))

>>> aa

[|M| s p! s gt s ISI]
The code to find the stop codon and slice the list can be rewritten using the
itertools. takewhile() function:

>>> from itertools import takewhile

As the name implies, this function will take elements from a sequence while the pred-
icate is met. Once the predicate fails, the function stops producing values. Here the
condition is that the residue is not * (stop):

>>> list(takewhile(lambda residue: residue != '*', aa))

[IM| , il P 1]
If you like using these kinds of HOFs, you can take this even further by using the
functools.partial() function I showed in Chapter 4. Here I want to partially apply
the operator.ne() (not equal) function:

>>> from functools import partial

>>> import operator
>>> not_stop = partial(operator.ne, '*')

The not_stop() function needs one more string value before it can return a value:

>>> not_stop('F')
True
>>> not_stop('*')
False

When I compose these functions, they almost read like an English sentence:

>>> list(takewhile(not_stop, aa))
[IM|’ YPI]

Here is how I would write the translate() function with purely functional ideas:

168 | Chapter7: Translating mRNA into Protein: More Functional Programming

def translate(rna: str) -> str:

""" Translate codon sequence

codon_to_aa = {

"AAA': 'K,
'"ACC': 'T',
'"AGG': 'R',
'"AUU': 'T',
'CCA': 'P',
'CGC': 'R',
'CuG': 'L,
'"GAU': 'D',
'GGA': 'G',
'Guc': 'v',
'UCA': 'S',
'UGG': 'W',
'uwu': 'FY,

'AAC':
'"ACG':
'AGU" :
"CAA':
'CCC':
'CGG':
'CUU':
'"GCA':
'GGC':
'GUG':
'ucc':
'ucu':
'"UAA' :

‘N',
‘T',
‘S',
Q'
‘P',
‘R',
‘L',
‘A',
‘G',
‘V',
‘S',
‘C',

gt

"AAG':
"ACU":
"AUA" :
"CAC':
'"CCG':
"CGU':
"GAA':
'GCC':
"GGG':
"GUU':
'UCG':
"UUA':
'"UAG':

IK‘,
|Tl,
II‘,
'Hl,
IP‘,
'Rl,
IE‘,
'Al,
IG‘,
'Vl,
IS‘,
'Ll,

gt

'AAU" :
"AGA':
'AUC" :
'CAG':
'CCU':
"CUA':
'"GAC':
'GCG':
'GGU" :
'"UAC':
'ucu':
'uuc':
'"UGA':

aa = map(lambda codon: codon_to_aa.get(codon,

return

Solution 5: Using Bio.Seq.translate()

As promised, the last solution uses Biopython. In Chapter 3, I used the
Bio.Seq.reverse_complement() function, and here I can use Bio.Seq.translate().

First, import the Blo.Seq class:

>>> from Bio import Seq

Then call the translate() function. Note that the stop codon is represented by *:

>>> rna = 'AUGGCCAUGGCGCCCAGAACUGAGAUCAAUAGUACCCGUAUUAACGGGUGA'

>>> Seq.translate(rna)

'MAMAPRTEINSTRING*'

By default, this function does not stop translation at the stop codon:

>>> Seq.translate('AUGCCGUAAUCU")

'MP*S'

.join(takewhile(partial(operator.ne,

'N', 'ACA': 'T',
'R', 'AGC': 'S',
'T', 'AUG': 'M',
'Q', 'CAU': 'H',
'P', 'CGA': 'R',
L', 'cuc': 'L',
'D', 'GAG': 'E',
'A', 'GCU': 'A',
'G', 'GUA': 'V',
'Y', 'UAU': 'Y',
'S, 'uGc': 'c',
'"F', 'UUG': 'L',
e

'-'), codons(rna))
'*'), aa))

If you read help(Seq.translate) in the REPL, you'll find the to_stop option to
change this to the version expected by the Rosalind challenge:

>>> Seq.translate('AUGCCGUAAUCU', to_stop=True)

"MP'

Here is how I put it all together:

def main() -> None:

args = get_args()
print(Seq.translate(args.rna, to_stop=True))

Solutions

169

This is the solution I would recommend because it relies on the widely used
Biopython module. While it was fun and enlightening to explore how to manually
code a solution, it’s far better practice to use code that’s already been written and tes-
ted by a dedicated team of developers.

Benchmarking

Which is the fastest solution? I can use the hyperfine benchmarking program I
introduced in Chapter 4 to compare the runtimes of the programs. Because this is
such a short program, I decided to run each program at least 1,000 times, as docu-
mented in the bench. sh program in the repository.

Although the second solution runs the fastest, perhaps as much at 1.5 times faster
than the Biopython version, Id still recommend using the latter because this is a thor-
oughly documented and tested module that is widely used in the community.

Going Further

Add a --frame-shift argument that defaults to @ and allows values 0-2 (inclusive).
Use the frameshift to start reading the RNA from an alternate position.

Review

The focus of this chapter was really on how to write, test, and compose functions to
solve the problem at hand. I wrote functions to find codons in a sequence and trans-
late RNA. Then I showed how to use higher-order functions to compose other func-
tions, and finally, I used an off-the-shelf function from Biopython.

o K-mers are all the k-length subsequences of a sequence.
+ Codons are 3-mers that do not overlap in a particular frame.

« Dictionaries are useful as lookup tables, such as for translating a codon to an
amino acid.

o A for loop, a list comprehension, and map() are all methods for transforming
one sequence into another.

o The takewhile() function is similar to the filter() function in accepting values
from a sequence based on a predicate or test of the values.

o The partial() function allows one to partially apply the arguments to a
function.

o The Bio.Seq.translate() function will translate an RNA sequence into a pro-
tein sequence.

170 | Chapter7: Translating mRNA into Protein: More Functional Programming

CHAPTER 8

Find a Motif in DNA:
Exploring Sequence Similarity

In the Rosalind SUBS challenge, I'll be searching for any occurrences of one sequence
inside another. A shared subsequence might represent a conserved element such as a
marker, gene, or regulatory sequence. Conserved sequences between two organisms
might suggest some inherited or convergent trait. I'll explore how to write a solution
using the str (string) class in Python and will compare strings to lists. Then T’ll
explore how to express these ideas using higher-order functions and will continue the
discussion of k-mers I started in Chapter 7. Finally, I'll show how regular expressions
can find patterns and will point out problems with overlapping matches.

In this chapter, I'll demonstrate:

o How to use str.find(), str.index(), and string slices
« How to use sets to create unique collections of elements
» How to combine higher-order functions
« How to find subsequences using k-mers

« How to find possibly overlapping sequences using regular expressions

Getting Started

The code and tests for this chapter are in 08_subs. I suggest you start by copying the
first solution to the program subs. py and requesting help:
$ cd 08_subs/

$ cp solutioni_str_find.py subs.py
$./subs.py -h

m

https://oreil.ly/hoUhB

usage: subs.py [-h] seq subseq
Find subsequences

positional arguments:
seq Sequence
subseq subsequence

optional arguments:
-h, --help show this help message and exit

The program should report the starting locations where the subsequence can be
found in the sequence. As shown in Figure 8-1, the subsequence ATAT can be found
at positions 2, 4, and 10 in the sequence GATATATGCATATACTT:

$./subs.py GATATATGCATATACTT ATAT

2410
1 1
GATATATGCATATACTT
L 1

12 3 4 5 6 7 8 9 10 1M 12 13 14 15 16 17

Figure 8-1. The subsequence ATAT can be found at positions 2, 4, and 10

Run the tests to see if you understand what will be expected, then start your program
from scratch:

$ new.py -fp 'Find subsequences' subs.py
Done, see new script "subs.py".

Here is how I define the program’s parameters:

class Args(NamedTuple): (1]
""" Command-line arguments
seq: str
subseq: str

def get_args() -> Args: @
""" Get command-line arguments

parser = argparse.ArgumentParser(
description='Find subsequences',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('seq', metavar='seq', help='Sequence')

parser.add_argument('subseq', metavar='subseq', help='subsequence')

args = parser.parse_args()

172 | Chapter 8: Find a Motif in DNA: Exploring Sequence Similarity

return Args(args.seq, args.subseq) (3]
©® The Args class will have two string fields, seq and subseq.
©® The function returns an Args object.

© Package and return the arguments using Args.

Have your main() print the sequence and subsequence:

def main() -> None:
args = get_args()
print(f'sequence = {args.seq}')
print(f'subsequence = {args.subseq}')
Run the program with the expected inputs and verify that it prints the arguments
correctly:
$./subs.py GATATATGCATATACTT ATAT
sequence = GATATATGCATATACTT
subsequence = ATAT
Now you have a program that should pass the first two tests. If you think you can

finish this on your own, please proceed; otherwise, I'll show you one way to find the
location of one string inside another.

Finding Subsequences

To demonstrate how to find the subsequence, T'll start by defining the following
sequence and subsequence in the REPL:

>>> seq = 'GATATATGCATATACTT'

>>> subseq = 'ATAT'
I can use in to determine if one sequence is a subset of another. This also works for
membership in lists, sets, or keys of a dictionary:

>>> subseq in seq

True
That’s good information, but it doesn’t tell me where the string can be found. Luckily
there’s the str.find() function, which says subseq can be found starting at index 1
(which is the second character):

>>> seq.find(subseq)

1

I know from the Rosalind description that the answer should be 2, 4, and 10. I just
found 2, so how can I find the next? I can’t just call the same function again because

Getting Started | 173

Ill get the same answer. I need to look further into the sequence. Maybe
help(str.find) could be of some use?
>>> help(str.find)

find(...)
S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

It appears I can specify a start position. I'll use 1 greater than the position where the
first subsequence was found, which was 1, so starting at 2:

>>> seq.find(subseq, 2)

3
Great. That’s the next answer—well, 4 is the next answer, but you know what I mean.
I'll try that again, this time starting at 4:

>>> seq.find(subseq, 4)

9
That was the last value I expected. What happens if I try using a start of 10? As the
documentation shows, this will return -1 to indicate the subsequence cannot be
found:

>>> seq.find(subseq, 10)

-1
Can you think of a way to iterate through the sequence, remembering the last posi-
tion where the subsequence was found until it cannot be found?

Another option would be to use str.index(), but only if the subsequence is present:

>>> {f subseq in seq:
seq.index(subseq)

1

To find the next occurrence, you could slice the sequence using the last known posi-
tion. You'll have to add this position to the starting position, but youre essentially
doing the same operation of moving further into the sequence to find if the subse-
quence is present and where:

>>> {f subseq in seq[2:]:
seq.index(subseq[2:])

174 | Chapter 8:Find a Motif in DNA: Exploring Sequence Similarity

If you read help(str.index), you'll see that, like str.find(), the function takes a
second optional start position of the index at which to start looking:

>>> 1f subseq in seq[2:]:
seq.index(subseq, 2)

3

A third approach would be to use k-mers. If the subsequence is present, then it is by
definition a k-mer, where k is the length of the subsequence. Use your code from
Chapter 7 to extract all the k-mers and their positions from the sequence, and note
the positions of the k-mers that match the subsequence.

Finally, since 'm looking for a pattern of text, I could use a regular expression. In
Chapter 5, I used the re.findall() function to find all the Gs and Cs in DNA. I can
similarly use this method to find all the subsequences in the sequence:

>>> import re

>>> re.findall(subseq, seq)

['ATAT', 'ATAT']
That seems to have a couple of problems. One is that it only returned two of the sub-
sequences when I know there are three. The other problem is that this provides no
information about where the matches are found. Fear not, the re.finditer() func-
tion solves this second problem:

>>> list(re.finditer(subseq, seq))

[<re.Match object; span=(1, 5), match='ATAT'>,

<re.Match object; span=(9, 13), match='ATAT'>]
Now it’s apparent that it finds the first and last subsequences. Why doesn’t it find the
second instance? It turns out regular expressions don't handle overlapping patterns
very well, but some additions to the search pattern can fix this. I'll leave it to you and
some internet searching to see if you can figure out a solution.

I've presented four different options for how to solve this problem. See if you can
write solutions using each approach. The point is to explore the corners of Python,
storing away tasty bits and tricks that might prove decisive in some future program
you write. It's OK to spend hours or days working this out. Keep at it until you have
solutions that pass both pytest and make test.

Solutions

All of the solutions share the same get_args() shown previously.

Solutions | 175

Solution 1: Using the str.find() Method

Here is my first solution using the str.find() method:
def main() -> None:
args = get_args()
last =0 @
found = [] (2]
while True: ©
pos = args.seq.find(args.subseq, last) (4]
if pos == -1:
break
found.append(pos + 1) (6]
last = pos + 1

print(*found) (&)
Initialize the last position to 0, the start of the sequence.
Initialize a list to hold all the positions where the subsequence is found.
Create an infinite loop using while.
Use str.find() to look for the subsequence using the last known position.
If the return is -1, the subsequence is not found, so exit the loop.
Append one greater than the index to the list of found positions.

Update the last known position with one greater than the found index.

© ¢ © 6 6 o o o

Print the found positions using * to expand the list into the elements. The func-
tion will use a space to separate multiple values.

This solution turns on keeping track of the last place the subsequence was found. I
initialize this to 0:

>>> last = 0

I use this with str.find() to look for the subsequence starting at the last known
position:

>>> seq = 'GATATATGCATATACTT'
>>> subseq = 'ATAT'

>>> pos = seq.find(subseq, last)
>>> pos

1

176 | Chapter 8:Find a Motif in DNA: Exploring Sequence Similarity

Aslong as seq. find() returns a value other than -1, I update the last position to one
greater to search starting at the next character:

>>> last = pos + 1

>>> pos = seq.find(subseq, last)
>>> pos

3

Another call to the function finds the last instance:

>>> last = pos + 1

>>> pos = seq.find(subseq, last)
>>> pos

9

Finally, seq. find() returns -1 to indicate that the pattern can no longer be found:

>>> last = pos + 1

>>> pos = seq.find(subseq, last)

>>> pos

-1
This solution would be immediately understandable to someone with a background
in the C programming language. It’s a very imperative approach with lots of detailed
logic for updating the state of the algorithm. State is how data in a program changes
over time. For instance, properly updating and using the last known position is key to
making this approach work. Later approaches use far less explicit coding.

Solution 2: Using the str.index() Method

This next solution is a variation that slices the sequence using the last known
position:

def main() -> None:

args = get_args()

seq, subseq = args.seq, args.subseq (1)

found = []

last = 0

while subseq in seq[last:]: (2]
last = seq.index(subseq, last) + 1 (3]
found.append(last) (4]

print(' '.join(map(str, found))) (5]

© Unpack the sequence and subsequence.

@ Ask if the subsequence appears in a slice of the sequence starting at the last found
position. The while loop will execute as long as this condition is true.

Solutions | 177

© Use str.index() to get the starting position of the subsequence. The last vari-
able gets updated by adding 1 to the subsequence index to create the next starting
position.

Append this position to the list of found positions.

Use map() to coerce all the found integer positions to strings, then join them on
spaces to print.

Here again, I rely on tracking the last place a subsequence was found. I start at posi-
tion 0, or the beginning of the string:

>>> last = 0
>>> {f subseq in seq[last:]:
last = seq.index(subseq, last) + 1

>>> last

2
The while True loop in the first solution is a common way to start an infinite loop.
Here, the while loop will only execute as long as the subsequence is found in the slice
of the sequence, meaning I don't have to manually decide when to break out of the
loop:

>>> last = 0

>>> found = []

>>> while subseq in seq[last:]:

last = seq.index(subseq, last) + 1
found.append(last)

>>> found

[2, 4, 10]
The found positions, in this case, are a list of integer values. In the first solution, I
used *found to splat the list and relied on print() to coerce the values to strings and
join them on spaces. If instead I were to try to create a new string from found using

str.join(), I would run into problems. The str.join() function joins many strings
into a single string and so raises an exception when you give it nonstring values:

>>> '.join(found)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: sequence item 0: expected str instance, int found

I could use a list comprehension to turn each number n into a string using the str()
function:

>>> ' ' join([str(n) for n in found])
'2 4 10'

178 | Chapter 8: Find a Motif in DNA: Exploring Sequence Similarity

This can also be written using a map():

>>> ' ' join(map(lambda n: str(n), found))

'2 4 10
I can leave out the lambda entirely because the str() function expects a single argu-
ment, and map() will naturally supply each value from found as the argument to
str(). This is my preferred way to turn a list of integers into a list of strings:

>>> ' ' join(map(str, found))
'2 4 10'

Solution 3: A Purely Functional Approach

This next solution combines many of the preceding ideas using a purely functional
approach. To start, consider the while loops in the first two solutions used to append
nonnegative values to the found list. Does that sound like something a list compre-
hension could do? The range of values to iterate includes all the positions n from 0 to
the end of the sequence minus the length of the subsequence:

>>> r = range(len(seq) - len(subseq))

>>> [n for n in r]

[6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
A list comprehension can use these values with str.find() to search for the subse-
quence in the sequence starting at each position n. Starting at positions 0 and 1, the
subsequence can be found at index 1. Starting at positions 2 and 3, the subsequence
can be found at index 3. This continues until -1 indicates the subsequence is not
present for those positions n:

>>> [seq.find(subseq, n) for n in r]
[1’ 1: 3: 3; 9) 9: 9: 9’ 9’ 9: '1’ '1: '1]

I only want the nonnegative values, so I use filter() to remove them:

>>> list(filter(lambda n: n >= 0, [seq.find(subseq, n) for n in r]))
[1’ 1J 3J 3) 9) 9) 91 9’ 9’ 9]

Which could also be written by reversing the comparison in the lambda:

>>> list(filter(lambda n: 0 <= n, [seq.find(subseq, n) for n in r]))
[1’ 1J 3J 3) 9) 9) 9) 9’ 9’ 9]

I show you this because Id like to use partial() with the operator.le() (less than
or equal) function because I don’t like lambda expressions:

>>> from functools import partial

>>> import operator

>>> ok = partial(operator.le, 0)

>>> list(filter(ok, [seq.find(subseq, n) for n in r]))
[1, 1, 3, 3, 9, 9, 9, 9, 9, 9]

Solutions | 179

I'd like to change the list comprehension to a map():

>>> list(filter(ok, map(lambda n: seq.find(subseq, n), r)))
[1, 1, 3, 3,9,9,9, 9,9, 9]

but again I want to get rid of the lambda by using partial():

>>> find = partial(seq.find, subseq)
>>> list(filter(ok, map(find, r)))
[1’ 1.' 3J 3’ 9) 91 91 9’ 9’ 9]

I can use set() to get a distinct list:

>>> set(filter(ok, map(find, r)))

{1, 3, 9}
These are almost the correct values, but they are the index positions, which are zero-
based. I need the values one greater, so I can make a function to add 1 and apply this
using a map():

>>> addl = partial(operator.add, 1)

>>> list(map(addl, set(filter(ok, map(find, r)))))

[2, 4, 10]
In these limited examples, the results are properly sorted; however, one can never rely
on the order of values from a set. I must use the sorted() function to ensure they are
properly sorted numerically:

>>> sorted(map(addi, set(filter(ok, map(find, r)))))
[2, 4, 10]

Finally, I need to print these values, which still exist as a list of integers:

>>> print(sorted(map(addl, set(filter(ok, map(find, r))))))
[2, 4, 10]

That’s almost right. As in the first solution, I need to splat the results to get print()
to see the individual elements:

>>> print(*sorted(map(addl, set(filter(ok, map(find, r))))))
2 410

That’s a lot of closing parentheses. This code is starting to look a little like Lisp. If you
combine all these ideas, you wind up with the same answer as the imperative solution
but now by combining only functions:

def main() -> None:
args = get_args()
seq, subseq = args.seq, args.subseq (1)
r = list(range(len(seq) - len(subseq))) (2]
ok = partial(operator.le, 0)
find = partial(seq.find, subseq) (4]
add1l = partial(operator.add, 1) ()
print(*sorted(map(addl, set(filter(ok, map(find, r)))))) (6]

180 | Chapter 8:Find a Motif in DNA: Exploring Sequence Similarity

© Unpack the sequence and subsequence.

® Generate a range of numbers up to the length of the sequence less the length of
the subsequence.

© Create a partial ok() function that will return True if a given number is greater
than or equal to 0.

O Create a partial find() function that will look for the subsequence in the
sequence when provided with a start parameter.

Create a partial add1() function that will return one greater than the argument.

Apply all the numbers from the range to the find() function, filter out negative
values, make the result unique by using the set() function, add one to the values,
and sort the numbers before printing.

This solution uses only pure functions and would be fairly easy to understand for a
person with a background in the Haskell programming language. If it seems like a
jumble of confusion to you, I'd encourage you to spend some time working in the
REPL with each piece until you understand how all these functions fit together
perfectly.

Solution 4: Using K-mers

I mentioned that you might try finding the answer using k-mers, which I showed in
Chapter 7. If the subsequence exists in the sequence, then it must be a k-mer, where k
equals the length of the subsequence:

>>> seq = 'GATATATGCATATACTT'
>>> subseq = 'ATAT'

>>> k = len(subseq)

>>> k

4
Here are all the 4-mers in the sequence:

>>> kmers = [seq[i:1 + k] for 1 in range(len(seq) - k + 1)]

>>> kmers

['GATA', 'ATAT', 'TATA', 'ATAT', 'TATG', 'ATGC', 'TGCA', 'GCAT', 'CATA',
'"ATAT', 'TATA', 'ATAC', 'TACT', 'ACTT']

Here are the 4-mers that are the same as the subsequence I'm looking for:

>>> list(filter(lambda s: s == subseq, kmers))
['ATAT', 'ATAT', 'ATAT']

Solutions | 181

I need to know the positions as well as the k-mers. The enumerate() function will
return both the index and value of all the elements in a sequence. Here are the first
four:

>>> kmers = list(enumerate([seq[i:1 + k] for i in range(len(seq) - k + 1)]))

>>> kmers[:4]

[(®, 'GATA'), (1, 'ATAT'), (2, 'TATA'), (3, 'ATAT')]
I can use this with filter(), but now the lambda is receiving a tuple of the index and
value so I will need to look at the second field (which is at index 1):

>>> list(filter(lambda t: t[1] == subseq, kmers))

[(1, 'ATAT'), (3, 'ATAT'), (9, 'ATAT')]
I really only care about getting the index for the matching k-mers. I could rewrite this
using a map() with an if expression to return the index position when it’s a match,
and None otherwise:

>>> list(map(lambda t: t[0] if t[1] == subseq else None, kmers))

[None, 1, None, 3, None, None, None, None, None, 9, None, None, None, None]
I'm frustrated that the standard map() function can only pass a single value to the
lambda. What I need is some way to splat the tuple, like *t, to turn it into two values.
Luckily, I've studied the itertools module documentation and found the starmap()
function, so named because it will add a star to the lambda argument to splat it. This
allows me to unpack a tuple value like (0, 'GATA') into the variables i with the
index value of @ and kmer with the value 'GATA'. With these, I can compare the kmer
to the subsequence and also add 1 to the index (1):

>>> from itertools import starmap

>>> list(starmap(lambda i, kmer: i + 1 i1f kmer == subseq else None, kmers))

[None, 2, None, 4, None, None, None, None, None, 10, None, None, None, None]
This probably seems like an odd choice until I show you that filter(), if passed None
for the lambda, will use the truthiness of each value, so that None values will be exclu-
ded. Because this line of code is getting rather long, I'll write the function f() for
map() on a separate line:

>>> f = lambda 1, kmer: 1 + 1 if kmer == subseq else None
>>> list(filter(None, starmap(f, kmers)))
[2’ 4) 10]

I can express a k-mer solution using imperative techniques:

def main() -> None:
args = get_args()
seq, subseq = args.seq, args.subseq
k = len(subseq) (1]
kmers = [seq[i:1 + k] for 1 in range(len(seq) - k + 1)] (2]
found = [1 + 1 for 1, kmer in enumerate(kmers) if kmer == subseq] (3]
print(*found) (4)

182 | Chapter 8:Find a Motif in DNA: Exploring Sequence Similarity

When looking for k-mers, k is the length of the subsequence.
Use a list comprehension to generate all the k-mers from the sequence.

Iterate through the index and value of all the k-mers, where the k-mer is equal to
the subsequence. Return one greater than the index position.

O Print the found positions.

I can also express these ideas using purely functional techniques. Note that mypy
insists on a type annotation for the found variable:

def main() -> None:
args = get_args()
seq, subseq = args.seq, args.subseq
k = len(subseq)
kmers = enumerate(seq[i:1 + k] for i in range(len(seq) - k + 1)) (1)
found: Iterator[int] = filter((2]
None, starmap(lambda i, kmer: i1 + 1 if kmer == subseq else None, kmers))
print(*found) (3]

© Generate an enumerated list of the k-mers.
© Select the positions of those k-mers equal to the subsequence.

©® Print the results.

I find the imperative version easier to read, but would recommend you use whichever
you find most intuitive. Whichever solution you prefer, the interesting point is that k-
mers can prove extremely useful in many situations, such as for partial sequence
comparison.

Solution 5: Finding Overlapping Patterns Using Regular Expressions

To this point, I've been writing fairly complex solutions to find a pattern of characters
inside a string. This is precisely the domain of regular expressions, and so it’s a bit
silly to write manual solutions. I showed earlier in this chapter that the
re.finditer() function does not find overlapping matches and so returns just two
hits when I know there are three:

>>> import re

>>> list(re.finditer(subseq, seq))

[<re.Match object; span=(1, 5), match='ATAT'>,
<re.Match object; span=(9, 13), match='ATAT'>]

Solutions | 183

I'm going to show you that the solution is quite simple, but I want
to stress that I did not know the solution until I searched the inter-
net. The key to finding the answer was knowing what search terms
to use—something like regex overlapping patterns turns up several
useful results. The point of this aside is that no one knows all the
answers, and you will constantly be searching for solutions to
problems you never knew even existed. It's not what you know
that’s important, but what you can learn.

The problem turns out to be that the regex engine consumes strings as they match.
That is, once the engine matches the first ATAT, it starts searching again at the end of
the match. The solution is to wrap the search pattern in a look-ahead assertion using
the syntax ?=(<pattern>) so that the engine won’t consume the matched string. Note
that this is a positive look-ahead; there are also negative look-ahead assertions as well
as both positive and negative look-behind assertions.

So if the subsequence is ATAT, then I want the pattern to be ?=(ATAT). The problem
now is that the regex engine won’t save the match—I've just told it to look for this
pattern but haven’t told it to do anything with the text that is found. I need to further
wrap the assertion in parentheses to create a capture group:

>>> list(re.finditer('(?=(ATAT))', 'GATATATGCATATACTT'))
[<re.Match object; span=(1, 1), match="'>,
<re.Match object; span=(3, 3), match='"'>,
<re.Match object; span=(9, 9), match=''>]

I can use a list comprehension over this iterator to call the match.start() function
on each of the re.Match objects, adding 1 to correct the position:

>>> [match.start() + 1 for match in re.finditer(f'(?=({subseq}))', seq)]
[2, 4, 10]

Here is the final solution that I would suggest as the best way to solve this problem:

def main() -> None:
args = get_args()
seq, subseq = args.seq, args.subseq
print(*[m.start() + 1 for m in re.finditer(f'(?=({subseq}))', seq)])

Benchmarking

It’s always interesting for me to see which solution runs the fastest. I'll use hyperfine
again to run each version 1,000 times:

$ hyperfine -m 1000 -L prg ./solutionl_str_find.py,./solution2_str_index.py,\
./solution3_functional.py,./solutiond_kmers_functional.py,\
./solution4_kmers_imperative.py,./solution5_re.py \

'{prg} GATATATGCATATACTT ATAT' --prepare 'rm -rf __pycache__'

184 | Chapter 8:Find a Motif in DNA: Exploring Sequence Similarity

Summary
'./solution2_str_index.py GATATATGCATATACTT ATAT' ran

1.01 + 0.11 times faster than
'./solution4_kmers_1imperative.py GATATATGCATATACTT ATAT'

1.02 + 0.14 times faster than
'./solution5_re.py GATATATGCATATACTT ATAT'

1.02 + 0.14 times faster than
'./solution3_functional.py GATATATGCATATACTT ATAT'

1.03 + 0.13 times faster than
'./solution4_kmers_functional.py GATATATGCATATACTT ATAT'

1.09 + 0.18 times faster than
'./solutioni_str_find.py GATATATGCATATACTT ATAT'

The differences aren’t significant enough, in my opinion, to sway me to choose based
solely on performance. My preference would be to use regular expressions given that
they are specifically designed to find patterns of text.

Going Further

Expand the program to look for a subsequence pattern. For example, you might
search for simple sequence repeats (also known as SSRs or microsatellites) such as
GA(26), which would mean “GA repeated 26 times” Or a repeat such as
(GA)15GT(GA)2, which means “GA repeated 15 times, followed by GT, followed by
GA, repeated 2 times.” Also, consider how you might find subsequences expressed
using the IUPAC codes mentioned in Chapter 1. For instance, R represents either A
or G, so ARC can match the sequences AAC and AGC.

Review

Key points from this chapter:

o The str.find() and str.index() methods can determine if a subsequence is
present in a given string.

o Sets can be used to create unique collections of elements.

« By definition, k-mers are subsequences and are relatively quick to extract and
compare.

 Regular expressions can find overlapping sequences by using a look-ahead asser-
tion combined with a capture group.

Going Further | 185

CHAPTER 9

Overlap Graphs: Sequence Assembly
Using Shared K-mers

A graph is a structure used to represent pairwise relationships between objects. As
described in the Rosalind GRPH challenge, the goal of this exercise is to find pairs of
sequences that can be joined using an overlap from the end of one sequence to the
beginning of another. The practical application of this would be to join short DNA
reads into longer contiguous sequences (contigs) or even whole genomes. To begin,
I’ll only be concerned about joining two sequences, but a second version of the pro-
gram will use a graph structure that can join any number of sequences to approxi-
mate a complete assembly. In this implementation, the overlapping regions used to
join sequences are required to be exact matches. Real-world assemblers must allow
for variation in the size and composition of the overlapping sequences.

You will learn:

« How to use k-mers to create overlap graphs

« How to log runtime messages to a file

o« How to use collections.defaultdict()

« How to use set intersection to find common elements between collections
» How to use itertools.product() to create Cartesian products of lists

« How to use the iteration_utilities.starfilter() function

« How to use Graphviz to model and visualize graph structures

187

https://oreil.ly/kDu52

Getting Started

The code and tests for this exercise are in the 09_grph directory. Start by copying one
of the solutions to the program grph.py and requesting the usage:

$ cd 09_grph/

$ cp solutionl.py grph.py

$./grph.py -h

usage: grph.py [-h] [-k size] [-d] FILE

Overlap Graphs

positional arguments:
FILE FASTA file @

optional arguments:
-h, --help show this help message and exit
-k size, --overlap size
Size of overlap (default: 3) (2]
-d, --debug Debug (default: False) (3]

The positional parameter is a required FASTA-formatted file of sequences.
The -k option controls the length of the overlapping strings and defaults to 3.

This is a flag or Boolean parameter. Its value will be True when the argument is
present, and False otherwise.

The sample input shown on the Rosalind page is also the content of the first sample
input file:

$ cat tests/inputs/1.fa
>Rosalind_0498
AAATAAA
>Rosalind_2391
AAATTTT
>Rosalind_2323
TTTTCCC
>Rosalind_0442
AAATCCC
>Rosalind_5013
GGGTGGG

The Rosalind problem always assumes an overlapping window of three bases. I see no
reason for this parameter to be hardcoded, so my version includes a k parameter to
indicate the size of the overlap window. When k is the default value of 3, for instance,
three pairs of the sequences can be joined:

$./grph.py tests/inputs/1.fa
Rosalind_2391 Rosalind_2323

188 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

Rosalind_0498 Rosalind_2391
Rosalind_0498 Rosalind_0442

Figure 9-1 shows how these sequences overlap by three common bases.

Rosalind_0498 Rosalind_2391 Rosalind_0498

AAATIAAA AAATITTT AAATIAAA
AAATTTT TTTITCCC AAAITCCC
Rosalind_2391 Rosalind_2323 Rosalind_0442

Figure 9-1. Three pairs of sequences form overlap graphs when joining on 3-mers
As shown in Figure 9-2, only one of these pairs can be joined when the overlap win-
dow increases to four bases:

$./grph.py -k 4 tests/inputs/1.fa
Rosalind_2391 Rosalind_2323

Rosalind_2391

AAATTTT
TTTT|ICCC

Rosalind_2323

Figure 9-2. Only one pair of sequences forms an overlap graph when joining on 4-mers

Finally, the --debug option is a flag, which is a Boolean parameter that has a True
value when the argument is present and False otherwise. When present, this option
instructs the program to print runtime logging messages to a file called .log in the
current working directory. This is not a requirement of the Rosalind challenge, but I
think it’s important for you to know how to log messages. To see it in action, run the
program with the option:

$./grph.py tests/inputs/1.fa --debug
Rosalind_2391 Rosalind_2323
Rosalind_0498 Rosalind_2391
Rosalind_0498 Rosalind_0442

The --debug flag can be placed before or after the positional argu-
ment, and argparse will correctly interpret its meaning. Other
argument parsers require that all options and flags come before
positional arguments. Vive la différence.

Getting Started | 189

There should now be a .log file with the following contents, the meaning of which will
become more apparent later:

$ cat .log
DEBUG:root:STARTS
defaultdict(<class 'list's,
{'AAA': ['Rosalind_0498', 'Rosalind_2391', 'Rosalind_0442'],
'GGG': ['Rosalind_5013'],
'TTT': ['Rosalind_2323']})
DEBUG: root:ENDS
defaultdict(<class 'list's,
{'AAA': ['Rosalind_0498'],
'CCC': ['Rosalind_2323', 'Rosalind_0442'],
'GGG': ['Rosalind_5013'],
'"TTT': ['Rosalind_2391']})

Once you understand how your program should work, start over with a new grph.py
program:

$ new.py -fp 'Overlap Graphs' grph.py
Done, see new script "grph.py".

Here is how I define and validate the arguments:

from typing import List, NamedTuple, TextIO

class Args(NamedTuple): (1]
""" Command-line arguments
file: TextIO
k: int
debug: bool

def get_args() -> Args:
""" Get command-line arguments """

parser = argparse.ArgumentParser(
description="'0verlap Graphs',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file', (2]
metavar='FILE',
type=argparse.FileType('rt'),
help='FASTA file')

parser.add_argument('-k', (3]
'--overlap',
help='Size of overlap',
metavar='size',
type=int,
default=3)

190 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

parser.add_argument('-d', '--debug', help='Debug', action='store_true') (4]
args = parser.parse_args()

if args.overlap < 1: (5]
parser.error(f'-k "{args.overlap}" must be > 0') (6]

return Args(args.file, args.overlap, args.debug) (7]

)

The Args class contains three fields: a file which is a filehandle; a k which
should be a positive integer; and debug, which is a Boolean value.

Use the argparse.FileType to ensure this is a readable text file.
Define an integer argument that defaults to 3.
Define a Boolean flag that will store a True value when present.

Check if the k (overlap) value is negative.

© 6 6 o ©

Use parser.error() to kill the program and generate a useful error message.

@ Return the validated arguments.

I would like to stress how much is happening in these lines to ensure that the argu-
ments to the program are correct. Argument values should be validated as soon as
possible after the program starts. I've encountered too many programs that, for
instance, never validate a file argument and then, deep in the bowels of the program,
attempt to open a nonexistent file and wind up throwing a cryptic exception that no
mere mortal could debug. If you want reproducible programs, the first order of busi-
ness is documenting and validating all the arguments.

Modify your main() to the following:

def main() -> None:
args = get_args()
print(args.file.name)

Run your program with the first test input file and verify that you see this:

$./grph.py tests/inputs/1.fa

tests/inputs/1.fa
Try running your program with invalid values for k and the file input, then run
pytest to verify that your program passes the first four tests. The failing test expects
three pairs of sequence IDs that can be joined, but the program printed the name of

Getting Started | 191

the input file. Before I talk about how to create overlap graphs, I want to introduce
logging as this can prove useful for debugging a program.

Managing Runtime Messages with STDOUT, STDERR, and Logging

I've shown how to print strings and data structures to the console. You just did it by
printing the input filename to verify that the program is working. Printing such mes-
sages while writing and debugging a program might be facetiously called log-driven
development. This is a simple and effective way to debug a program going back
decades.’

By default, print() will emit messages to STDOUT (standard out), which Python repre-
sents using sys.stdout. I can use the print() function’s file option to change this
to STDERR (standard error) by indicating sys.stderr. Consider the following Python
program:

$ cat log.py
#!/usr/bin/env python3

import sys

print('This is STDOUT.') @
print('This is also STDOUT.', file=sys.stdout) (2]
print('This is STDERR.', file=sys.stderr) (3]

© The default file value is STDOUT.
© [can specify standard out using the file option.

© This will print messages to standard error.
When I run this, it would appear that all output is printed to standard out:

$./log.py

This is STDOUT.
This is also STDOUT.
This is STDERR.

In the bash shell, I can separate and capture the two streams, however, using file redi-
rection with >. Standard out can be captured using the filehandle 1 and standard

error using 2. If you run the following command, you should see no output on the
console:

—

Imagine debugging a program without even a console. In the 1950s, Claude Shannon was visiting Alan
Turing’s lab in England. During their conversation, a horn began sounding at regular intervals. Turing said
this indicated his code was stuck in a loop. Without a console, this was how he monitored the progress of his
programs.

192 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

$./log.py 1>out 2>err

There should now be two new files, one called out with the two lines that were
printed to standard out:

$ cat out

This is STDOUT.
This is also STDOUT.

and another called err with the one line printed to standard error:

$ cat err

This is STDERR.
Just knowing how to print to and capture these two filehandles may prove sufficient
for your debugging efforts. However, there may be times when you want more levels
of printing than two, and you may want to control where these messages are written
from your code rather than by using shell redirection. Enter logging, a way to control
whether, when, how, and where runtime messages are printed. The Python logging
module handles all of this, so start by importing this module:

import logging
For this program, I'll print debugging messages to a file called .log (in the current
working directory) if the - -debug flag is present. Modify your main() to this:

def main() -> None:
args = get_args()

logging.basicConfig((1)
filename='.log',
filemode="'w", (3]
level=1logging.DEBUG if args.debug else logging.CRITICAL) (4]

logging.debug('input file = "%s"', args.file.name) (5]
This will globally affect all subsequent calls to the logging module’s functions.

All output will be written to the file .Jog in the current working directory. I chose
a filename starting with a dot so that it will normally be hidden from view.

©® The output file will be opened with the w (write) option, meaning it will be over-
written on each run. Use the a mode to append, but be warned that the file will
grow for every run and will never be truncated or removed except by you.

O This sets the minimum logging level (see Table 9-1). Messages at any level below
the set level will be ignored.

© Use the logging.debug() function to print a message to the log file when the
logging level is set to DEBUG or higher.

Getting Started | 193

In the previous example, I used the older printf() style of format-
ting for the call to logging.debug(). The placeholders are noted
with symbols like %s for a string, and the values to substitute are
passed as arguments. You can also use str.format() and f-strings
for the log message, but pylint may suggest you use the printf()
style.

Dotfiles

Files and directories with names starting with a dot are normally hidden when you
use s. You must use the -a option to s to see all files. I'm naming the log file .log so
I won’t normally see it. You may also notice a .gitignore file in this directory. This file
contains filenames and patterns of files and directories I do not want Git to add to my
repo. Included is the .log file. Whenever you want to be sure data like configuration
files, passwords, large sequence files, etc. will not be included by git add, put their
names (or file globs that would match them) in this file.

A key concept to logging is the notion of logging levels. As shown in Table 9-1, the
critical level is the highest, and the debug level is the lowest (the notset level has cer-
tain particularities). To learn more, I recommend you read help(logging) in the
REPL or the module’s online documentation. For this program, I'll only use the low-
est (debug) setting. When the - -debug flag is present, the logging level is set to log
ging.DEBUG and all messages to logging.debug() are printed in the log file. When
the flag is absent, the logging level is set to logging.CRITICAL and only messages log-
ged with logging.critical() will pass through. You might think I should use the
logging.NOTSET value, but note that this is lower than logging.DEBUG and so all
debug messages would pass through.

Table 9-1. The logging levels available in Python’s logging module

Level Numeric value

CRITICAL 50
ERROR 40
WARNING 30
INFO 20
DEBUG 10
NOTSET 0

To see this in action, run your program as follows:

$./grph.py --debug tests/inputs/1.fa

194 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

https://oreil.ly/bWgOp

It would appear the program did nothing, but there should now be a .log file with the
following contents:

$ cat .log
DEBUG:root:input file = "tests/inputs/1.fa"

Run the program again without the --debug flag, and note that the .log file is empty
as it was overwritten when opened but no content was ever logged. If you were to use
the typical print-based debugging technique, then youd have to find and remove (or
comment out) all the print() statements in your program to turn off your debug-
ging. If, instead, you use logging.debug(), then you can debug your program while
logging at the debug level and then deploy your program to only log critical mes-
sages. Further, you can write the log messages to various locations depending on the
environment, and all of this happens programmatically inside your code rather than
relying on shell redirection to put log messages into the right place.

There are no tests to ensure your program creates log files. This is only to show you
how to use logging. Note that calls to functions like logging.critical() and
logging.debug() are controlled by the global scope of the logging module. I don’t
generally like programs to be controlled by global settings, but this is one exception
I'll make, mostly because I don't have a choice. I encourage you to liberally sprinkle
logging.debug() calls throughout your code to see the kinds of output you can gen-
erate. Consider how you could use logging while writing a program on your laptop
versus deploying it to a remote computing cluster to run unattended.

Finding Overlaps

The next order of business is to read the input FASTA file. I first showed how to do
this in Chapter 5. Again I'll use the Bio.SeqI0 module for this by adding the follow-
ing import:

from Bio import SeqIO
I can modify main() to the following (omitting any logging calls):

def main() -> None:
args = get_args()

for rec in SeqIO.parse(args.file, 'fasta'):
print(rec.id, rec.seq)

And then run this on the first input file to ensure the program works properly:

$./grph.py tests/inputs/1.fa
Rosalind_0498 AAATAAA
Rosalind_2391 AAATTTT
Rosalind_2323 TTTTCCC
Rosalind_0442 AAATCCC
Rosalind_5013 GGGTGGG

Getting Started | 195

In each exercise, I try to show how to write a program logically,
step-by-step. I want you to learn to make very small changes to
your program with some end goal in mind, then run your program
to see the output. You should run the tests often to see what needs
to be fixed, adding your own tests as you see fit. Also, consider
making frequent commits of the program when it’s working well so
you can revert if you end up breaking it. Taking small steps and
running your program often are key elements to learning to code.

Now think about how you might get the first and last k bases from each sequence.
Could you use the code for extracting k-mers that I first showed in Chapter 7? For
instance, try to get your program to print this:

$./grph.py tests/inputs/1.fa

Rosalind_0498 AAATAAA first AAA last AAA

Rosalind_2391 AAATTTT first AAA last TTT

Rosalind_2323 TTTTCCC first TTT last CCC

Rosalind_0442 AAATCCC first AAA last CCC
Rosalind_5013 GGGTGGG first GGG last GGG

Think about which first strings match which end strings. For instance, sequence 0498
ends with AAA, and sequence 0442 starts with AAA. These are sequences that can be
joined into an overlap graph.

Change the value of k to 4:

$./grph.py tests/inputs/1.fa -k 4

Rosalind_0498 AAATAAA first AAAT last TAAA
Rosalind_2391 AAATTTT first AAAT last TTTT
Rosalind_2323 TTTTCCC first TTTT last TCCC
Rosalind_0442 AAATCCC first AAAT last TCCC
Rosalind_5013 GGGTGGG first GGGT last TGGG

Now you can see that only two sequences, 2391 and 2323, can be joined by their over-
lapping sequence TTTT. Vary k from 1 to 10 and examine the first and last regions.
Do you have enough information to write a solution? If not, let’s keep thinking about
this.

Grouping Sequences by the Overlap

The for loop reads the sequences individually. While reading any one sequence to
find the starting and ending overlap regions, I necessarily do not have enough infor-
mation to say which other sequences can be joined. I'm going to have to create some
data structure to hold the overlapping regions for all the sequences. Only then can I
go back and figure out which ones can be joined. This gets at a key element of
sequence assemblers—most need prodigious amounts of memory to gather all the
information needed from all the input sequences, of which there may be millions to
billions.

196 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

I chose to use two dictionaries, one for the start and one for the end regions. I decided
the keys would be the k-length sequences, like AAA when k is 3, and the values would
be a list of the sequence IDs sharing this region. I can use string slices with the value k
to extract these leading and trailing sequences:

>>> k = 3

>>> seq = 'AAATTTT'
>>> seq[:k] @
IAAAI

>>> seq[-k:] (2]
'TTT!

A slice of the first k bases.

A slice of the last k bases, using negative indexing to start from the end of the
sequence.

These are k-mers, which I used in the last chapter. They keep showing up, so it makes
sense to write a find_kmers() function to extract k-mers from a sequence. I'll start
by defining the function’s signature:

def find_kmers(seq: str, k: int) -> List[str]: (1]
""" Find k-mers in string """

return [] (2]

O The function will accept a string (the sequence) and an integer value k and will
return a list of strings.

® For now, return the empty list.

Now I write a test to imagine how I'd use this function:

def test_find_kmers() -> None:
"""Test find_kmers"""

assert find_kmers('', 1) == [] (1)

assert find_kmers('ACTG', 1) == ['A', 'C', 'T', 'G'] (2]
assert find_kmers('ACTG', 2) == ['AC', 'CT', 'TG']
assert find_kmers('ACTG', 3) == ['ACT', 'CTG']

assert find_kmers('ACTG', 4) == ['ACTG']

assert find_kmers('ACTG', 5) == [] (3

© Pass the empty string as the sequence to ensure the function returns the empty
list.

Check all the values for k using a short sequence.

There are no 5-mers for a string of length 4.

Getting Started | 197

Try writing your version before you read ahead. Here is the function I wrote:

def find_kmers(seq: str, k: int) -> List[str]:
"""Find k-mers in string"""

n = len(seq) - k + 1 @
return [] if n < 1 else [seq[i:1 + k] for 1 in range(n)] (2]

© Find the number n of k-length substrings in a string seq.

® If n is a negative number, return the empty list; otherwise, return the k-mers
using a list comprehension.

Now I have a handy way to get the leading and trailing k-mers from a sequence:

>>> from grph import find_kmers

>>> kmers = find_kmers('AAATTTT', 3)
>>> kmers

['AAA', 'AAT', 'ATT', 'TTT', 'TTT']
>>> kmers[0] (1]

"AAA

>>> kmers[-1] (2]

'TTT!

© The first element is the leading k-mer.

© The last element is the trailing k-mer.

The first and last k-mers give me the overlap sequences I need for the keys of my dic-
tionary. I want the values of the dictionaries to be a list of the sequence IDs that share
these k-mers. The collections.defaultdict() function I introduced in Chapter 1 is
a good one to use for this because it allows me to easily instantiate each dictionary
entry with an empty list. I need to import it and the pprint.pformat() function for
logging purposes, so I add the following:

from collections import defaultdict
from pprint import pformat

Here is how I can use these ideas:

def main() -> None:
args = get_args()

logging.basicConfig(
filename='.log',
filemode="w',
level=1logging.DEBUG if args.debug else logging.CRITICAL)

start, end = defaultdict(list), defaultdict(list) (1)
for rec in SeqIO.parse(args.file, 'fasta'): (2]
if kmers := find_kmers(str(rec.seq), args.k): (3]

198 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

start[kmers[0]].append(rec.id) (4]
end[kmers[-1]].append(rec.id) (5]

logging.debug(f'STARTS\n{pformat(start)}"') (6]
logging.debug(f'ENDS\n{pformat(end)}")

© Create dictionaries for the start and end regions that will have lists as the default
values.

Iterate the FASTA records.

Coerce the Seq object to a string and find the k-mers. The := syntax assigns the
return value to kmers, then the if evaluates if kmers is truthy. If the function
returns no kmers, then the following block will not execute.

O Use the first k-mer as a key into the start dictionary and append this sequence
ID to the list.

© Do likewise for the end dictionary using the last k-mer.

O Use the pprint.pformat() function to format the dictionaries for logging.

I've used the pprint.pprint() function in earlier chapters to print complex data
structures in a prettier format than the default print() function. I can’t use pprint()
here because it would print to STDOUT (or STDERR). Instead, I need to format the data
structure for the logging.debug() function to log.

Now run the program again with the first input and the - -debug flag, then inspect the
log file:

$./grph.py tests/inputs/1.fa -d
$ cat .log
DEBUG: root: STARTS @
defaultdict(<class 'list's,
{'AAA': ['Rosalind_0498', 'Rosalind_2391', 'Rosalind_0442'], (2]
'GGG': ['Rosalind_5013'],
'TTT': ['Rosalind_2323'1})
DEBUG: root: ENDS ©
defaultdict(<class 'list's,
{'AAA': ['Rosalind_0498'], (4]
'CCC': ['Rosalind_2323', 'Rosalind_0442'],
'GGG': ['Rosalind_5013'],
'"TTT': ['Rosalind_2391']})

© A dictionary of the various starting sequences and the IDs.

© Three sequences start with AAA: 0498, 2391, and 0442.

Getting Started | 199

© A dictionary of the various ending sequences and the IDs.

O There is just one sequence ending with AAA, which is 0498.

The correct pairs for this input file and the overlapping 3-mers are as follows:

o Rosalind_0498, Rosalind_2391: AAA
o Rosalind_0498, Rosalind_0442: AAA
o Rosalind_2391, Rosalind_2323: TTT

When you combine, for instance, the sequence ending with AAA (0498) with those
starting with this sequence (0498, 2391, 0442), you wind up with the following pairs:

o Rosalind_0498, Rosalind_0498
o Rosalind_0498, Rosalind_2391
o Rosalind_0498, Rosalind_0442

Since I can’t join a sequence to itself, the first pair is disqualified. Find the next end
and start sequence in common, then iterate all the sequence pairs. I'll leave you to
finish this exercise by finding all the start and end keys that are in common and then
combining all the sequence IDs to print the pairs that can be joined. The pairs can be
in any order and still pass the tests. I just want to wish you good luck. We're all count-
ing on you.

Solutions

I have two variations to share with you. The first solves the Rosalind problem to show
how to combine any two sequences. The second extends the graphs to create a full
assembly of all the sequences.

Solution 1: Using Set Intersections to Find Overlaps

In the following solution, I introduce how to use set intersections to find the k-mers
shared between the start and end dictionaries:

def main() -> None:
args = get_args()

logging.basicConfig(
filename='.log',
filemode="'w',
level=1logging.DEBUG if args.debug else logging.CRITICAL)

start, end = defaultdict(list), defaultdict(list)
for rec in SeqlO.parse(args.file, 'fasta'):

200 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

if kmers := find_kmers(str(rec.seq), args.k):
start[kmers[0]].append(rec.id)
end[kmers[-1]].append(rec.id)

logging.debug('STARTS\n{}'.format(pformat(start)))
logging.debug('ENDS\n{}"'.format(pformat(end)))

for kmer in set(start).intersection(set(end)): (1]
for pair in starfilter(op.ne, product(end[kmer], start[kmer])): (2]
print(*pair) (3]

Find the keys in common between the start and end dictionaries.

Iterate through the pairs of the ending and starting sequences that are not equal
to each other.

© Print the pair of sequences.

The last three lines took me a few attempts to write, so let me explain how I got there.
Given these dictionaries:

>>> from pprint import pprint

>>> from Bio import SeqIO

>>> from collections import defaultdict

>>> from grph import find_kmers

>>> k = 3

>>> start, end = defaultdict(list), defaultdict(list)

>>> for rec in SeqIO.parse('tests/inputs/1.fa', 'fasta'):

if kmers := find_kmers(str(rec.seq), k):

start[kmers[0]].append(rec.id)
end[kmers[-1]].append(rec.id)

>>> pprint(start)
{'AAA': ['Rosalind_0498', 'Rosalind_2391', 'Rosalind_0442'],
'GGG': ['Rosalind_5013'],
'"TTT': ['Rosalind_2323']}
>>> pprint(end)
{'AAA': ['Rosalind_0498'],
'CCC': ['Rosalind_2323', 'Rosalind_0442'],
'"GGG': ['Rosalind_5013'],

I started with this idea:

>>> for kmer in end: @
if kmer in start: @
for seq_id in end[kmer]: (3]
for other in start[kmer]: (4]
if seq_id != other: (5)
print(seq_id, other) (6]

Rosalind_0498 Rosalind_2391

Solutions | 201

Rosalind_0498 Rosalind_0442
Rosalind_2391 Rosalind_2323

Iterate over the k-mers (which are the keys) of the end dictionary.
See if this k-mer is in the start dictionary.
Iterate through each ending sequence ID for this k-mer.

Iterate through each starting sequence ID for this k-mer.

® 06 06 o o

Make sure the sequences are not the same.

Print the sequence IDs.

While that works just fine, I let this sit for a while and came back to it, asking myself
exactly what I was trying to do. The first two lines are trying to find the keys that are
in common between the two dictionaries. Set intersection is an easier way to achieve
this. If I use the set() function on a dictionary, it creates a set using the keys of the
dictionary:

>>> set(start)

{'TTT', 'GGG', 'AAA'}

>>> set(end)

{'Trr', 'ccc', 'AAA', 'GGG'}
I can then call the set.intersection() function to find the keys in common:

>>> set(start).intersection(set(end))

{'TTT', 'GGG', 'AMA'}
In the preceding code, the next lines find all the combinations of the ending and
starting sequence IDs. This is more easily done using the itertools.product() func-

tion, which will create the Cartesian product of any number of lists. For example,
consider the sequences that overlap on the k-mer AAA:

>>> from itertools import product

>>> kmer = 'AAA'

>>> pairs = list(product(end[kmer], start[kmer]))

>>> pprint(pairs)

[('Rosalind_0498', 'Rosalind_0498'),
('Rosalind_0498', 'Rosalind_2391'),
('Rosalind_0498', 'Rosalind_0442')]

202 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

I want to exclude any pairs where the two values are the same. I could write a
filter() for this:

>>> list(filter(lambda p: p[0@] != p[1], pairs)) (1]
[('Rosalind_0498', 'Rosalind_2391'), ('Rosalind_0498', 'Rosalind_0442')]

© The lambda receives the pair p and checks that the zeroth and first elements are
not equal.

This works adequately, but I'm not satisfied with the code. I really hate that I can't
unpack the tuple values in the lambda to filter(). Immediately I started thinking
about how the itertools.starmap() function I used in Chapters 6 and 8 can do this,
so I searched the internet for Python starfilter and found the function itera
tion_utilities.starfilter(). I installed this module and imported the function:

>>> from iteration_utilities import starfilter
>>> list(starfilter(lambda a, b: a != b, pairs))
[('Rosalind_0498', 'Rosalind_2391'), ('Rosalind_0498', 'Rosalind_0442')]

This is an improvement, but I can make it cleaner by using the operator.ne() (not
equal) function, which will obviate the lambda:

>>> import operator as op

>>> list(starfilter(op.ne, pairs))

[('Rosalind_0498', 'Rosalind_2391'), ('Rosalind_0498', 'Rosalind_0442')]
Finally, I splat each of the pairs to make print() see the individual strings rather than
the list container:

>>> for pailr in starfilter(op.ne, pairs):
print(*pair)

Rosalind_0498 Rosalind_2391
Rosalind_0498 Rosalind_0442

I could have shortened this even more, but I fear this gets a little too dense:

>>> print('\n'.join(map("' '.join, starfilter(op.ne, pairs))))
Rosalind_0498 Rosalind_2391
Rosalind_0498 Rosalind_0442

In the end, there’s a fair amount of code in the main() function that, in a larger pro-
gram, I would probably move to a function with a unit test. In this case, the integra-
tion tests cover all the functionality, so it would be overkill.

Solution 2: Using a Graph to Find All Paths

This next solution approximates a full assembly of the sequences using a graph to link
all the overlapping sequences. While not part of the original challenge, it is, nonethe-
less, interesting to contemplate while also proving surprisingly simple to implement

Solutions | 203

https://oreil.ly/c6KKV
https://oreil.ly/c6KKV

and even visualize. Since GRPH is the challenge name, it makes sense to investigate
how to represent a graph in Python code.

I can manually align all the sequences as shown in Figure 9-3. This reveals a graph
structure where sequence Rosalind_0498 can join to either Rosalind_2391 or
Rosalind_0442, and there follows a chain from Rosalind_0498 to Rosalind_2391 to
Rosalind_2323.

TCCC Rosalind 0442

AAAT m Rosalind_0498

TITTT Rosalind_2391
TTT|ITCCC Rosalind 2323

Figure 9-3. All the sequences in the first input file can be joined using 3-mers

To encode this, I use the Graphviz tool both to represent and to visualize a graph
structure. Note that you will need to install Graphviz on your machine for this to
work. For instance, on macOS you can use the Homebrew package manager (brew
install graphviz), while on Ubuntu Linux you can use apt install graphviz.

The output from Graphviz will be a text file in the Dot language format, which can be
turned into a pictorial graph by the Graphviz dot tool. The second solution in the
repository has options to control the output filename and whether the image should
be opened:

$./solution2_graph.py -h
usage: solution2_graph.py [-h] [-k size] [-o FILE] [-v] [-d] FILE

Overlap Graphs

positional arguments:
FILE FASTA file

optional arguments:
-h, --help show this help message and exit
-k size, --overlap size
Size of overlap (default: 3)
-0 FILE, --outfile FILE
Output filename (default: graph.txt) (1]
-v, --view View outfile (default: False) @
-d, --debug Debug (default: False)

204 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

https://graphviz.org
https://graphviz.org/doc/info/lang.html

© The default output filename is graph.txt. A .pdf file will also be generated auto-
matically, which is the visual rendition of the graph.

® This option controls whether the PDF should be opened automatically when the
program finishes.

If you run this program on the first test input, you will see the same output as before
so that it will pass the test suite:

$./solution2_graph.py tests/inputs/1.fa -o 1.txt
Rosalind_2391 Rosalind_2323
Rosalind_0498 Rosalind_2391
Rosalind_0498 Rosalind_0442

There should now also be a new output file called I.txt containing a graph structure
encoded in the Dot language:

$ cat 1.txt
digraph {
Rosalind_0498
Rosalind_2391
Rosalind_0498 -> Rosalind_2391
Rosalind_0498
Rosalind_0442
Rosalind_0498 -> Rosalind_0442
Rosalind_2391
Rosalind_2323
Rosalind_2391 -> Rosalind_2323
}

You can use the dot program to turn this into a visualization. Here is a command to
save the graph to a PNG file:

$ dot -0 -Tpng 1.txt

Figure 9-4 shows the resulting visualization of the graph joining all the sequences in
the first FASTA file, recapitulating the manual alignment from Figure 9-3.

Solutions | 205

Rosalind_0498

Rosalind_2391 Rosalind_0442

Rosalind_2323

Figure 9-4. The output from the dot program showing an assembly of the sequences in
the first input file when joined on 3-mers

If you run the program with the -v|--view flag, this image should be shown auto-
matically. In graph terminology, each sequence is a node, and the relationship
between two sequences is an edge.

Graphs may or may not have directionality. Figure 9-4 includes arrows implying that
there is a relationship that flows from one node to another; therefore, this is a directed
graph. The following code shows how I create and visualize this graph. Note that I
import graphiz.Digraph to create the directed graph and that this code omits the
logging code that is part of the actual solution:

def main() -> None:
args = get_args()
start, end = defaultdict(list), defaultdict(list)
for rec in SeqlO.parse(args.file, 'fasta'):
if kmers := find_kmers(str(rec.seq), args.k):
start[kmers[0]].append(rec.id)
end[kmers[-1]].append(rec.id)

dot = Digraph() (1]
for kmer in set(start).intersection(set(end)): (2]
for s1, s2 in starfilter(op.ne, product(end[kmer], start[kmer])): (3]
print(si, s2) (4)
dot.node(s1) (5)
dot.node(s2)
dot.edge(sl, s2) (6]

args.outfile.close() (7]
dot.render(args.outfile.name, view=args.view) (&)

206 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

© Create a directed graph.

()

Iterate through the shared k-mers.

(]

Find sequence pairs sharing a k-mer, and unpack the two sequence IDs into s1
and s2.

Print the output for the test.
Add nodes for each sequence.
Add an edge connecting the nodes.

Close the output filehandle so that the graph can write to the filename.

© ©¢ © 0 ©

Write the graph structure to the output filename. Use the view option to open the
image, depending on the args.view option.

These few lines of code have an outsized effect on the output of the program. For
instance, Figure 9-5 shows that this program can essentially create a full assembly of
the 100 sequences in the second input file.

Figure 9-5. The graph of the second test input file

This image (though downsized to fit on the page) speaks volumes about the complex-
ity and completeness of the data; for instance, the sequence pair in the upper-right

Solutions | 207

corner—Rosalind_1144 and Rosalind_2208—cannot be joined to any other sequen-
ces. I would encourage you to try increasing k to 4 and inspecting the resulting graph
to see a profoundly different result.

Graphs are truly powerful data structures. As noted in the introduction to this chap-
ter, graphs encode pairwise relationships. It's amazing to see the assembly of the 100
sequences in Figure 9-5 emerge with so few lines of code. While it’s possible to abuse
Python lists and dictionaries to represent graphs, the Graphviz tool makes this much
simpler.

I used a directed graph for this exercise, but that wasn’t necessarily required. This
could have been an undirected graph, too, but I like the arrows. I would note that you
might encounter the term directed acyclic graph (DAG) to indicate a directed graph
that has no cycles, which is when a node joins back to itself. Cycles might point to an
incorrect assembly in the case of a linear genome but might be required for a circular
genome, as in bacteria. If you find these ideas interesting, you should investigate De
Bruijn graphs, which are often built from overlapping k-mers.

Going Further

Add a Hamming distance option that will allow the overlapping sequence to have the
indicated edit distance. That is, a distance of 1 will allow for the overlap of sequences
with a single base difference.

Review

Key points from this chapter:

« To find overlapping regions, I used k-mers to find the first and last k bases of
each sequence.

o The logging module makes it easy to turn on and off the logging of runtime
messages to a file.

o I used defaultdict(list) to create a dictionary that would auto-vivify any key
not present with a default value of the empty list.

o Set intersection can find common elements between collections, such as the keys
shared between two dictionaries.

o The itertools.product() function found all the possible pairs of sequences.

o The iteration_utilities.starfilter() function will splat the argument to
the lambda for filter(), just as the itertools.starmap() function does for
map().

208 | Chapter9: Overlap Graphs: Sequence Assembly Using Shared K-mers

o The Graphviz tool can efficiently represent and visualize complex graph
structures.

« Graphs can be textually represented using the Dot language, and the dot pro-
gram can generate visualizations of graphs in various formats.

o Overlap graphs can be used to create a complete assembly of two or more
sequences.

Review | 209

CHAPTER 10

Finding the Longest Shared Subsequence:
Finding K-mers, Writing Functions, and
Using Binary Search

As described in the Rosalind LCSM challenge, the goal of this exercise is to find the
longest substring that is shared by all sequences in a given FASTA file. In Chapter 8,
I was searching for a given motif in some sequences. In this challenge, I don’t know a
priori that any shared motif is present—much less the size or composition of it—so
I'll just look for any length of sequence that is present in every sequence. This is a
challenging exercise that brings together many ideas I've shown in earlier chapters.
I'll use the solutions to explore algorithm design, functions, tests, and code organiza-
tion.

You will learn:

« How to use k-mers to find shared subsequences

« How to use itertools.chain() to concatenate lists of lists
« How and why to use a binary search

« One way to maximize a function

» How to use the key option with min() and max()

Getting Started

All the code and tests for this challenge are in the 10_Icsm directory. Start by copying
the first solution to the lcsm. py program and asking for help:

m

https://oreil.ly/SONgC

$ cp solutionl_kmers_imperative.py lcsm.py
$./lcsm.py -h
usage: lcsm.py [-h] FILE

Longest Common Substring

positional arguments:
FILE Input FASTA

optional arguments:
-h, --help show this help message and exit

The only required argument is a single positional file of FASTA-formatted DNA
sequences. As with other programs that accept files, the program will reject invalid or
unreadable input. The following is the first input I'll use. The longest common subse-
quences in these sequences are CA, TA, and AC, with the last shown in bold in the
output:

$ cat tests/inputs/1.fa
>Rosalind_1

GATTACA

>Rosalind_2

TAGACCA

>Rosalind_3

ATACA

Any of these answers are acceptable. Run the program with the first test input and see
that it randomly selects one of the acceptable 2-mers:

$./lcsm.py tests/inputs/1.fa

CA
The second test input is much larger, and you’ll notice that the program takes signifi-

cantly longer to find the answer. On my laptop, it takes almost 40 seconds. In the sol-
utions, I'll show you a way to significantly decrease the runtime using a binary search:

$ time ./lcsm.py tests/inputs/2.fa
GCCTTTTGATTTTAACGTTTATCGGGTGTAGTAAGATTGCGCGCTAATTCCAATAAACGTATGGAGGACATTCCCCGT

real 0m39.244s

user 0Om33.708s

sys 0m6.202s
Although not a requirement of the challenge, I've included one input file that con-
tains no shared subsequences for which the program should create a suitable
response:

$./lcsm.py tests/inputs/none.fa
No common subsequence.

Start the lcsm. py program from scratch:

212 | Chapter 10: Finding the Longest Shared Subsequence: Finding K-mers, Writing Functions, and Using Binary Search

$ new.py -fp 'Longest Common Substring' lcsm.py
Done, see new script "lcsm.py".

Define the arguments like so:

class Args(NamedTuple): (1]
""" Command-line arguments
file: TextIO

def get_args() -> Args:
""" Get command-line arguments

parser = argparse.ArgumentParser(
description="'Longest Common Substring',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file', (2]
help="Input FASTA',
metavar='FILE',
type=argparse.FileType('rt'))

args = parser.parse_args()
return Args(args.file) (3]

© The only input to this program is a FASTA-formatted file.
® Define a single file argument.

©® Return the Args object containing the open filehandle.
Then update the main() function to print the incoming filename:

def main() -> None:
args = get_args()
print(args.file.name)
Verify that you see the correct usage and that the program correctly prints the
filename:

$./lcsm.py tests/inputs/1.fa
tests/inputs/1.fa

At this point, your program should pass the first three tests. If you think you know
how to complete the program, have at it. If you want a prod in the right direction,
read on.

Finding the Shortest Sequence in a FASTA File

Reading a FASTA file should be familiar by now. I'll use Bio.SeqIO.parse() as
before. My first idea on this problem was to find shared k-mers while maximizing for

Getting Started | 213

k. The longest subsequence can be no longer than the shortest sequence in the file, so
I decided to start with k equal to that. Finding the shortest sequence requires that I
first scan through all the records. To review how to do this, the Bio.SeqI0.parse()
function returns an iterator that gives me access to each FASTA record:

>>> from Bio import SeqIO

>>> fh = open('./tests/inputs/1.fa')

>>> recs = SeqlO.parse(fh, 'fasta')

>>> type(recs)

<class 'Bilo.SeqlO.Fastal0O.Fastalterator's>

I can use the next() function I first showed in Chapter 4 to force the iterator to pro-
duce the next value, the type of which is SeqRecord:

>>> rec = next(recs)

>>> type(rec)

<class 'Bio.SeqRecord.SegRecord's>
In addition to the sequence itself, the FASTA record contains metadata such as the
sequence ID, name, and such:

>>> rec

SeqRecord(seq=Seq('GATTACA'),
id='Rosalind_1',
name='Rosalind_1',
description='Rosalind_1',
dbxrefs=[])

The read information is wrapped in a Seq object, which has many interesting and
useful methods you can explore in the REPL using help(rec.seq). I'm only interes-
ted in the raw sequence, so I can use the str() function to coerce it to a string:

>>> str(rec.seq)

'GATTACA'
I need all the sequences in a list so that I can find the length of the shortest one. I can
use a list comprehension to read the entire file into a list since I'll be using these many
times:

>>> fh = open('./tests/inputs/1.fa") (1]

>>> seqs = [str(rec.seq) for rec in SeqlO.parse(fh, 'fasta')] (2]

>>> seqs
['GATTACA', 'TAGACCA', 'ATACA']

© Reopen the filehandle or the existing filehandle will continue from the second
read.

@ Create a list, coercing each record’s sequence to a string.

214 | Chapter 10: Finding the Longest Shared Subsequence: Finding K-mers, Writing Functions, and Using Binary Search

Sequence files may hold millions of reads, and storing them in a list
could easily exceed the available memory and crash your machine.
(Ask me how I know.) The problem is that I need all the sequences
in the next step to find the subsequence that is common to all of
them. I have several Makefile targets that will use the genseq.py
program in the 10_Icsm directory to generate large FASTA inputs
with a common motif for you to test. This program works ade-
quately for the datasets provided by Rosalind.

The same idea can be expressed using the map() function:

>>> fh = open('./tests/inputs/1.fa')

>>> seqs = list(map(lambda rec: str(rec.seq), SeqlO.parse(fh, 'fasta')))

>>> seqs

['GATTACA', 'TAGACCA', 'ATACA']
To find the length of the shortest sequence, I need to find the lengths of all the
sequences, which I can do using a list comprehension:

>>> [len(seq) for seq in seqs]
[7, 7, 5]

I prefer the shorter way to write this using a map():

>>> list(map(len, segs))

[7, 7, 5]
Python has built-in min() and max() functions that will return the minimum or max-
imum value from a list:

>>> min(map(len, segs))

5

>>> max(map(len, segs))
7

So the shortest sequence is equal to the minimum of the lengths:

>>> shortest = min(map(len, segs))
>>> shortest
5

Extracting K-mers from a Sequence

The longest shared subsequence can be no longer than the shortest sequence and
must be shared by all the reads. Therefore, my next step is to find all the k-mers in all
the sequences, starting with k equal to the length of the shortest sequence (5). In
Chapter 9 I wrote a find_kmers() function and test, so I'll copy that code into this
program. Remember to import typing.List for this:

def find_kmers(seq: str, k: int) -> List[str]:
""" Find k-mers in string """

Getting Started | 215

n = len(seq) - k + 1
return [] if n < 1 else [seq[i:1 + k] for 1 in range(n)]

def test_find_kmers() -> None:
""" Test find_kmers """

assert find_kmers('', 1) == []

assert find_kmers('ACTG', 1) == ['A', 'C', 'T', 'G']

assert find_kmers('ACTG', 2) == ['AC', 'CT', 'TG']

assert find_kmers('ACTG', 3) == ['ACT', 'CTG']

assert find_kmers('ACTG', 4) == ['ACTG']

assert find_kmers('ACTG', 5) == []
One logical approach is to start with the maximum possible value of k and count
down, stopping when I find a k-mer shared by all the sequences. So far I've only used
the range() function to count up. Can I reverse the start and stop values to count
down? Apparently not. If the start value is greater than the stop value, then range()
will produce an empty list:

>>> list(range(shortest, 0))
[]

When reading codons in Chapter 7, I mentioned that the range() function accepts
up to three arguments, the last of which is the step, which I used there to jump three
bases at a time. Here I need to use a step of -1 to count down. Remember that the
stop value is not included:

>>> list(range(shortest, 0, -1))
[5, 4, 3, 2, 1]

Another way to count backward is to count up and reverse the results:

>>> list(reversed(range(1, shortest + 1)))
[5’ 4J 3J 2) 1]

Either way, I want to iterate over decreasing values of k until I find a k-mer that is
shared by all the sequences. A sequence might contain multiple copies of the same k-
mer, so it’s important to make the result unique by using the set() function:

>>> from lcsm import find_kmers

>>> from pprint import pprint

>>> for k in range(shortest, 0, -1):
print(f'==> {k} <==')
pprint([set(find_kmers(s, k)) for s in seqs])

==> 5 <==
[{'TTACA', 'GATTA', 'ATTAC'}, {'TAGAC', 'AGACC', 'GACCA'}, {'ATACA'}]
==> 4 <==
[{'ATTA', 'TTAC', 'TACA', 'GATT'},
{'GACC', 'AGAC', 'TAGA', 'ACCA'},

216 | Chapter 10: Finding the Longest Shared Subsequence: Finding K-mers, Writing Functions, and Using Binary Search

{'TACA', 'ATAC'}]

==> 3 <==

[{'ACA', 'TAC', 'GAT', 'ATT', 'TTA'},

{'AGA', 'TAG', 'CCA', 'ACC', 'GAC'},

{'ACA', 'ATA", 'TAC'}]

==> 2 <==

[{'AC', 'AT', 'CA', 'TA', 'TT', 'GA'},

{'AC', 'CA', 'CC', 'TA', 'AG', 'GA'},

{'aC', 'AT', 'CA', 'TA'}]

==> 1 <==

[{'G', 'C', 'T', 'A'}, {'G', 'C', T, 'A'Y, {'C, T, 'A'Y]
Can you see a way to use this idea to count all the k-mers for each value of k? Look
for k-mers that have a frequency matching the number of sequences. If you find more

than one, print any one of them.

Solutions

The two variations for this program use the same basic logic to find the longest
shared subsequence. The first version proves to scale poorly as the input size increa-
ses because it uses a stepwise, linear approach to iterating over every possible k-length
of sequence. The second version introduces a binary search to find a good starting
value for k and then initiates a hill-climbing search to discover a maximum value
for k.

Solution 1: Counting Frequencies of K-mers

In the previous section, I got as far as finding all the k-mers in the sequences for val-
ues of k, starting with the shortest sequence and moving down to 1. Here I'll start
with k equal to 5, which was the length of the shortest sequence in the first FASTA
file:

>>> fh = open('./tests/inputs/1.fa')

>>> seqs = [str(rec.seq) for rec in SeqIO.parse(fh, 'fasta')]

>>> shortest = min(map(len, segs))

>>> kmers = [set(find_kmers(seq, shortest)) for seq in segs]

>>> kmers

[{'TTACA', 'GATTA', 'ATTAC'}, {'TAGAC', 'AGACC', 'GACCA'}, {'ATACA'}]

I need a way to count how many times each k-mer appears across all the sequences.
One approach is to use collections.Counter(), which I first showed in Chapter 1:

>>> from collections import Counter
>>> counts = Counter()

I can iterate over each set of k-mers from the sequences and use the
Counter.update() method to add them:

Solutions | 217

>>> for group in kmers:
counts.update(group)

>>> pprint(counts)
Counter({'TTACA': 1
'GATTA': 1
'ATTAC': 1,
'TAGAC': 1,
1
1

B

B

"AGACC' :
"GACCA':
'ATACA': 1})

B

B

Or I could concatenate the many lists of k-mers together into a single list using
itertools.chain():

>>> from itertools import chain
>>> list(chain.from_iterable(kmers))
['TTACA', 'GATTA', 'ATTAC', 'TAGAC', 'AGACC', 'GACCA', 'ATACA']

Using this as the input for the Counter() produces the same collection, showing that
each 5-mer is unique, occurring once each:

>>> counts = Counter(chain.from_iterable(kmers))
>>> pprint(counts)
Counter({'TTACA': 1
'GATTA': 1
'ATTAC': 1,
1
1
1

B

-

"TAGAC' :
"AGACC':
"GACCA': 1,

'ATACA': 1})

B

B

The Counter() is a regular dictionary underneath, which means I have access to all
the dictionary methods. I want to iterate through the keys and values as pairs using
the dict.items() method to find where the count of the k-mers is equal to the num-
ber of sequences:

>>> n = len(seqs)
>>> candidates = []
>>> for kmer, count in counts.items():
if count == n:
candidates.append(kmer)

>>> candidates

[]
When k is 5, there are no candidate sequences, so I need to try with a smaller value.
Since I know the right answer is 2, I'll rerun this code with k=2 to produce this
dictionary:

>>> k = 2

>>> kmers = [set(find_kmers(seq, k)) for seq in segs]
>>> counts = Counter(chain.from_iterable(kmers))

218 | Chapter 10: Finding the Longest Shared Subsequence: Finding K-mers, Writing Functions, and Using Binary Search

>>> pprint(counts)

Counter({'CA': 3,
'AC': 3,
'TA':
'GA':
'AT':
'TT':
'AG': 1,
'CC': 1})

B

B

B

B

P R NN W

From this, I find three candidate 2-mers have a frequency of 3, which equals the
number of sequences:

>>> candidates = []
>>> for kmer, count in counts.items():
if count == n:
candidates.append(kmer)

>>> candidates
['CA', 'AC', 'TA']
It doesn’t matter which of the candidates I choose, so I'll use the random.choice()

function which returns one value from a list of choices:

>>> import random
>>> random.choice(candidates)
lAc|

I like where this is going, so I'd like to put it into a function so I can test it:

def common_kmers(segs: List[str], k: int) -> List[str]:
""" Find k-mers common to all sequences """

kmers = [set(find_kmers(seq, k)) for seq in segs]

counts = Counter(chain.from_iterable(kmers))

n = len(seqs) (1)

return [kmer for kmer, freq in counts.items() if freq == n] (2]

© Find the number of sequences.

® Return the k-mers having a frequency equal to the number of sequences.

This makes for a pretty readable main():

import random
import sys

def main() -> None:
args = get_args()
seqs = [str(rec.seq) for rec in SeqlO.parse(args.file, 'fasta')] (1)
shortest = min(map(len, segs)) (2]

Solutions | 219

for k in range(shortest, 0, -1): (3]
if kmers := common_kmers(seqs, k): (4]
print(random.choice(kmers))
sys.exit(0) (6]
print('No common subsequence.') (7]
Read all the sequences into a list.
Find the length of the shortest sequence.
Count down from the shortest sequence.

Find all the common k-mers using this value of k.

If any k-mers are found, print a random selection.

© 06 6 o o ©

Exit the program using an exit value of @ (no errors).

@ IfI make it to this point, inform the user there is no shared sequence.

In the preceding code, I'm again using the walrus operator (:=) I introduced in Chap-
ter 5 to first assign the result of calling common_kmers() to the variable kmers and
then evaluate kmers for truthiness. Python will only enter the next block if kmers is
truthy, meaning there were common k-mers found for this value of k. Before the
addition of this language feature, I would have had to write the assignment and evalu-
ation on two lines, like so:

kmers = common_kmers(segs, k)
if kmers:
print(random.choice(kmers))

Solution 2: Speeding Things Up with a Binary Search

As noted in the opening section of this chapter, this solution grows much slower as
the size of the inputs increases. One way to track the progress of the program is to put
a print(k) statement at the beginning of the for loop. Run this with the second input
file, and you’ll see that it starts counting down from 1,000 and doesn’t reach the cor-
rect value for k until it hits 78.

Counting backward by 1 is taking too long. If your friend asked you to guess a num-
ber between 1 and 1,000, you wouldn't start at 1,000 and keep guessing 1 less each
time your friend said, “Too high” It's much faster (and better for your friendship) to
guess 500. If your friend chose 453, theyd say “Too high,” so youd be wise to choose
250. Theyd reply, “Too low;” and youd keep splitting the differences between your last

220 | Chapter 10: Finding the Longest Shared Subsequence: Finding K-mers, Writing Functions, and Using Binary Search

high and low guesses until you found the right answer. This is a binary search, and it’s
a great way to quickly find the location of a wanted value from a sorted list of values.

To understand this better, I've included a program in the 10_Ilcsm directory called
binsearch.py:

$./binsearch.py -h
usage: binsearch.py [-h] -n int -m int

Binary Search

optional arguments:
-h, --help show this help message and exit
-n int, --num int The number to guess (default: None)
-m int, --max int The maximum range (default: None)
The following is the relevant portion of the program. You can read the source code
for the argument definitions if you like. The binary_search() function is recursive,
like one solution to the Fibonacci sequence problem from Chapter 4. Note that the
search values must be sorted for binary searches to work, which the range() function
provides:
def main() -> None:
args = get_args()
nums = list(range(args.maximum + 1))

pos = binary_search(args.num, nums, 0, args.maximum)
print(f'Found {args.num}!' if pos > 0 else f'{args.num} not present.')

def binary_search(x: int, xs: List[int], low: int, high: int) -> int:
print(f'{low:4} {high:4}', file=sys.stderr)

if high >= low: (1]
mid = (high + low) // 2 ©®

if xs[mid] == x: (3]
return mid

if xs[mid] > x: @
return binary_search(x, xs, low, mid - 1) (5)

return binary_search(x, xs, mid + 1, high) (6]

return -1 0
@ The base case to exit the recursion is when this is false.
® The midpoint is halfway between high and low, using floor division.

© Return the midpoint if the element is in the middle.

Solutions | 221

See if the value at the midpoint is greater than the desired value.
Search the lower values.

Search the higher values.

®© ©6 6 ©

The value was not found.

The names x and xs in the binary_search() function are meant to
be singular and plural. In my head, I pronounce them ex and exes.
This kind of notation is common in purely functional program-
ming because I'm not trying to describe what kind of value x is. It
could be a string or a number or anything. The important point is

that xs is some collection of comparable values all of the same type.

I included some print() statements so that, running with the previous numbers, you
can see how low and high finally converge on the target number in 10 steps:

$./binsearch.py -n 453 -m 1000
0 1000
0 499
250 499
375 499
438 499
438 467
453 467
453 459
453 455
453 453
Found 453!

It takes just eight iterations to determine the number is not present:

$./binsearch.py -n 453 -m 100
0 100
51 100
76 100
89 100
95 100
98 100
100 100
101 100
453 not present.

The binary search can tell me if a value occurs in a list of values, but this is not quite
my problem. While I'm reasonably sure there will be at least a 2- or 1-mer in com-
mon in most datasets, I have included one file that has none:

222 | Chapter 10: Finding the Longest Shared Subsequence: Finding K-mers, Writing Functions, and Using Binary Search

$ cat tests/inputs/none.fa
>Rosalind_1

GGGGGGG

>Rosalind_2

AAAAAAAA

>Rosalind_3

CCccC

>Rosalind_4

TTTTTTTT

If there is an acceptable value for k, then I need to find the maximum value. I decided
to use the binary search to find a starting point for a hill-climbing search to find the
maximum value. First I'll show main(), and then I’ll break down the other functions:

def main() -> None:
args = get_args()
seqs = [str(rec.seq) for rec in SeqlO.parse(args.file, 'fasta')] (1)
shortest = min(map(len, segs))
common = partial(common_kmers, segs) (3]
start = binary_search(common, 1, shortest) (4)

if start >= 0: ©
candidates = [] (6]
for k in range(start, shortest + 1): (7]
if kmers := common(k): (8]
candidates.append(random.choice(kmers)) (o]
else:
break @

print(max(candidates, key=len)) (11)
else:
print('No common subsequence.') ®

Get a list of the sequences as strings.
Find the length of the shortest sequence.

Partially apply the common_kmers() function with the seqgs input.

© © o0 o

Use the binary search to find a starting point for the given function, using 1 for
the lowest value of k and the shortest sequence length for the maximum.

Check that the binary search found something useful.
Initialize a list of the candidate values.

Start the hill climbing with the binary search result.

© © © ©o

Check if there are common k-mers.

Solutions | 223

If so, randomly add one to the list of candidates.
If there are no common k-mers, break out of the loop.

Choose the candidate sequence having the longest length.

® 6 e ©o

Let the user know that there is no answer.

While there are many things to explain in the preceding code, I want to highlight the
call to max(). I showed earlier that this function will return the maximum value from
a list. Normally you might think to use this on a list of numbers:

>>> max([4, 2, 8, 1])

8
In the preceding code, I want to find the longest string in a list. I can map() the len()
function to find their lengths:

>>> seqs = ['A', 'CC', 'GGGG', 'TTT']

>>> list(map(len, seqs))

[1 E 2 E 4 E 3]
This shows that the third sequence, GGGG, is the longest. The max() function accepts
an optional key argument, which is a function to apply to each element before com-
paring. If T use the len() function, then max() correctly identifies the longest
sequence:

>>> max(seqs, key=len)
'GGGG'

Let’s take a look at how I modified the binary_search() function to suit my needs:

def binary_search(f: Callable, low: int, high: int) -> int: (1)
" Binary search """

hi, lo = f(high), f(low) @
mid = (high + low) // 2 ©

if hi and lo: @
return high

if lo and not hi: ©
return binary_search(f, low, mid)

if hi and not lo: @
return binary_search(f, mid, high)

return -1 @

224 | Chapter 10: Finding the Longest Shared Subsequence: Finding K-mers, Writing Functions, and Using Binary Search

(7]

The function takes another function f() along with low and high values as argu-
ments. In this instance, the function () will return the common k-mers, but the
function can perform any calculation you like.

Call the function f() with the highest and lowest values for k.
Find the midpoint value of k.

If the function f() found common k-mers for both the high and low k values,
return the highest k.

If the high k found no k-mers but the low value did, recursively call the function
searching in the lower values of k.

If the low k found no k-mers but the high value did, recursively call the function
searching in the higher values of k.

Return -1 to indicate no k-mers were found using the high and low arguments to

().

Here is the test I wrote for this:

© 6 o o

def test_binary_search() -> None:
""" Test binary_search """

seqsl = ['GATTACA', 'TAGACCA', 'ATACA'] @
f1 = partial(common_kmers, seqsl) (2]

assert binary_search(f1, 1, 5) == 2 (3]

seqs2 = ['GATTACTA', 'TAGACTCA', 'ATACTA'] @
f2 = partial(common_kmers, seqs2)

assert binary_search(f2, 1, 6) == 3 @

These are the sequences I've been using that have three shared 2-mers.
Define a function to find the k-mers in the first set of sequences.

The search finds a k of 2 which is the right answer.

The same sequences as before but now with a shared 3-mer.

The search finds a k of 3.

Unlike the previous binary search, my version won’t (necessarily) return the exact
answer, just a decent starting point. If there are no shared sequences for any size k,
then I let the user know:

Solutions | 225

$./solution2_binary_search.py tests/inputs/none.fa
No common subsequence.

If there is a shared subsequence, this version runs significantly faster—perhaps as
much as 28 times faster:

$ hyperfine -L prg ./solutioni_kmers_functional.py,./solution2_binary_search.py\
'{prg} tests/inputs/2.fa'

Benchmark #1: ./solutioni_kmers_functional.py tests/inputs/2.fa
Time (mean t o): 40.686 s + 0.443 s [User: 35.208 s, System: 6.042 s]
Range (min .. max): 40.165 s .. 41.349 s 10 runs

Benchmark #2: ./solution2_binary_search.py tests/inputs/2.fa

Time (mean t o): 1.441 s + 0.037 s [User: 1.903 s, System: 0.255 s]
Range (min .. max): 1.378 s .. 1.492 s 10 runs
Summary

'./solution2_binary_search.py tests/inputs/2.fa' ran
28.24 + 0.79 times faster than './solutionl_kmers_functional.py
tests/inputs/2.fa'

When I was searching from the maximum k value and iterating down, I was perform-
ing a linear search through all the possible values. This means the time to search
grows in proportion (linearly) to the number # of values. A binary search, by con-
trast, grows at a rate of log n. It's common to talk about the runtime growth of algo-
rithms using Big O notation, so you might see binary search described as O(log n),
whereas linear searching is O(n)—which is much worse.

Going Further

As with the suggestion in Chapter 9, add a Hamming distance option that will allow
for the indicated number of differences when deciding on a shared k-mer.

Review

Key points from this chapter:

+ K-mers can be used to find conserved regions of sequences.
o Lists of lists can be combined into a single list using itertools.chain().

« A binary search can be used on sorted values to find a value more quickly than
searching through the list linearly.

« Hill climbing is one way to maximize the input to a function.

 The key option for min() and max() is a function that is applied to the values
before comparing them.

226 | Chapter 10: Finding the Longest Shared Subsequence: Finding K-mers, Writing Functions, and Using Binary Search

CHAPTER 11

Finding a Protein Motif: Fetching Data and
Using Reqular Expressions

We've spent quite a bit of time now looking for sequence motifs. As described in the
Rosalind MPRT challenge, shared or conserved sequences in proteins imply shared
functions. In this exercise, I need to identify protein sequences that contain the N-
glycosylation motif. The input to the program is a list of protein IDs that will be used
to download the sequences from the UniProt website. After demonstrating how to
manually and programmatically download the data, I'll show how to find the motif
using a regular expression and by writing a manual solution.

You will learn:

« How to programmatically fetch data from the internet
« How to write a regular expression to find the N-glycosylation motif

o How to manually find the N-glycosylation motif

Getting Started

All the code and tests for this program are located in the 11_mprt directory. To begin,
copy the first solution to the program mprt. py:

$ cd 11_mprt
$ cp solutionl_regex.py mprt.py

Inspect the usage:

$./mprt.py -h
usage: mprt.py [-h] [-d DIR] FILE

227

https://oreil.ly/EAp3i
https://oreil.ly/EAp3i
https://www.uniprot.org

Find locations of N-glycosylation motif

positional arguments:
FILE Input text file of UniProt IDs (1]

optional arguments:
-h, --help show this help message and exit
-d DIR, --download_dir DIR (2]
Directory for downloads (default: fasta)

© The required positional argument is a file of protein IDs.

® The optional download directory name defaults to fasta.

The input file will list protein IDs, one per line. The protein IDs provided in the
Rosalind example comprise the first test input file:

$ cat tests/inputs/1.txt
A2Z669

B52C00

PO7204_TRBM_HUMAN
P20840_SAG1_YEAST

Run the program using this as the argument. The output of the program lists each
protein ID containing the N-glycosylation motif and the locations where it can be
found:

$./mprt.py tests/inputs/1.txt

B5ZC00

85 118 142 306 395

PO7204_TRBM_HUMAN

47 115 116 382 409

P20840_SAG1_YEAST

79 109 135 248 306 348 364 402 485 501 614

After running the preceding command, you should see that the default fasta directory
has been created. Inside you should find four FASTA files. All subsequent runs using
these protein IDs will be faster as the cached data will be used unless you remove the
download directory, for instance by running make clean.

Take a look at the first two lines of each file using the command head -2. The head-
ers for some of the FASTA records are quite long so I've broken them here so they
won't wrap, but the actual headers must be on a single line:

$ head -2 fasta/*

==> fasta/A2Z669.fasta <==

>sp|A2Z669 | CSPLT_ORYSI CASP-like protein 5A2 0S=Oryza sativa subsp.
indica 0X=39946 GN=0sI_33147 PE=3 SV=1
MRASRPVVHPVEAPPPAALAVAAAAVAVEAGVGAGGGAAAHGGENAQPRGVRMKDPPGAP

==> fasta/B5ZC00.fasta <==
>sp|B5ZC0O0|SYG_UREU1 Glycine--tRNA ligase 0S=Ureaplasma urealyticum

228 | Chapter 11:Finding a Protein Motif: Fetching Data and Using Regular Expressions

serovar 10 (strain ATCC 33699 / Western) 0X=565575 GN=glyQS PE=3 SV=1
MKNKFKTQEELVNHLKTVGFVFANSEIYNGLANAWDYGPLGVLLKNNLKNLWWKEFVTKQ

==> fasta/PO7204_TRBM_HUMAN.fasta <==
>sp|PO7204 | TRBM_HUMAN Thrombomodulin 0S=Homo sapiens 0X=9606 GN=THBD PE=1 SV=2
MLGVLVLGALALAGLGFPAPAEPQPGGSQCVEHDCFALYPGPATFLNASQICDGLRGHLM

==> fasta/P20840_SAG1_YEAST.fasta <==

>sp|P20840 | SAG1_YEAST Alpha-agglutinin 0S=Saccharomyces cerevisiae
(strain ATCC 204508 / S288c) 0X=559292 GN=SAG1 PE=1 SV=2

MFTFLKIILWLFSLALASAININDITFSNLEITPLTANKQPDQGWTATFDFSIADASSIR

Run make test to see the kinds of tests your program should pass. When you’re
ready, start the program from scratch:

$ new.py -fp 'Find locations of N-glycosylation motif' mprt.py
Done, see new script "mprt.py".

You should define a positional file argument and an optional download directory as
the arguments to the program:

class Args(NamedTuple):
""" Command-line arguments
file: Textlo @
download_dir: str (2]

def get_args() -> Args:
"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description='Find location of N-glycosylation motif',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file',
help="Input text file of UniProt IDs',
metavar='FILE',
type=argparse.FileType('rt')) (3]

parser.add_argument('-d',
'--download_dir',
help='Directory for downloads',
metavar='DIR',
type=str,
default="'fasta') @

args = parser.parse_args()
return Args(args.file, args.download_dir)

@ The file will be a filehandle.

Getting Started | 229

©® The download_dir will be a string.
© Ensure the file argument is a readable text file.

O The download_dir is an optional string with a reasonable default value.

Ensure your program can create the usage, then start by printing the protein IDs
from the file. Each ID is terminated by a newline, so I'll use the str.rstrip() (right
strip) method to remove any whitespace from the right side:

def main() -> None:
args = get_args()
for prot_id in map(str.rstrip, args.file):
print(prot_id)
Run the program and make sure you see the protein IDs:

$./mprt.py tests/inputs/1.txt
A27Z669

B5ZC00

PO7204_TRBM_HUMAN
P20840_SAG1_YEAST

If you run pytest, you should pass the first three tests and fail the fourth.

Downloading Sequences Files on the Command Line

The next order of business is fetching the protein sequences. The UniProt informa-
tion for each protein is found by substituting the protein ID into the URL http://
www.uniprot.org/uniprot/{uniprot_id}. T'll change the program to print this string
instead:

def main() -> None:
args = get_args()
for prot_id in map(str.rstrip, args.file):
print(f'http://www.uniprot.org/uniprot/{prot_1id}"')

You should now see this output:

$./mprt.py tests/inputs/1.txt
http://www.uniprot.org/uniprot/A2Z669
http://www.uniprot.org/uniprot/B5ZC00
http://www.uniprot.org/uniprot/P07204_TRBM_HUMAN
http://www.uniprot.org/uniprot/P20840_SAG1_YEAST

Paste the first URL into your web browser and inspect the page. There is a wealth of
data, all in a human-readable format. Scroll down to the sequence, and you should
see 203 amino acids. It would be awful to have to parse this page to extract the
sequence. Luckily, I can append .fasta to the URL and get a FASTA file of the
sequence.

230 | Chapter 11:Finding a Protein Motif: Fetching Data and Using Regular Expressions

Before I show you how to download the sequences using Python, I think you should
know how to do this using command-line tools. From the command line, you can
use curl (which you may need to install) to download the sequence. By default, this
will print the contents of the file to STDOUT:

$ curl https://www.uniprot.org/uniprot/A2z669.fasta
>sp|A2Z669|CSPLT_ORYSI CASP-like protein 5A2 0S=Oryza sativa subsp.
indica 0X=39946 GN=0sI_33147 PE=3 SV=1
MRASRPVVHPVEAPPPAALAVAAAAVAVEAGVGAGGGAAAHGGENAQPRGVRMKDPPGAP
GTPGGLGLRLVQAFFAAAALAVMASTDDFPSVSAFCYLVAAAILQCLWSLSLAVVDIYAL
LVKRSLRNPQAVCIFTIGDGITGTLTLGAACASAGITVLIGNDLNICANNHCASFETATA
MAFISWFALAPSCVLNFWSMASR

You could either redirect this to a file:

$ curl https://www.uniprot.org/uniprot/A2zZ669.fasta > A2Z669.fasta
or use the -o| - -output option to name the output file:

$ curl -o A2Z669.fasta https://www.uniprot.org/uniprot/A2Z669.fasta

You can also use wget (web get, which may also need to be installed) to download the
sequence file like so:

$ wget https://www.uniprot.org/uniprot/A22669.fasta

Whichever tool you use, you should now have a file called A2Z669.fasta with the
sequence data:

$ cat A2Z669.fasta

>sp|A2Z669 | CSPLT_ORYSI CASP-like protein 5A2 0S=Oryza sativa subsp.
indica 0X=39946 GN=0sI_33147 PE=3 SV=1
MRASRPVVHPVEAPPPAALAVAAAAVAVEAGVGAGGGAAAHGGENAQPRGVRMKDPPGAP
GTPGGLGLRLVQAFFAAAALAVMASTDDFPSVSAFCYLVAAAILQCLWSLSLAVVDIYAL
LVKRSLRNPQAVCIFTIGDGITGTLTLGAACASAGITVLIGNDLNICANNHCASFETATA
MAFISWFALAPSCVLNFWSMASR

I know this is a book on Python, but it's worth learning how to write a basic bash
program. Just as some stories can be told in a haiku and others are sprawling novels,
some tasks are easily expressed using a few shell commands and others require thou-
sands of lines of code in a more complex language. Sometimes I can write 10 lines of
bash to do what I need. When I hit about 30 lines of bash, I generally move to Python
or Rust.

Here is how I could automate downloading the proteins with a bash script:

#!/usr/bin/env bash (1]

if [[$# -ne 1]]; then ©
printf "usage: %s FILE\n" $(basename "$0") (3]
exit 1 O

fi

Getting Started | 231

® 6 o o0 o

& 6 0 o ©

®

OUT_DIR="fasta" @
[[! -d "$OUT_DIR"]] && mkdir -p "$0UT_DIR" @

while read -r PROT_ID; do Q
echo "$PROT_ID" ©
URL="https://www.uniprot.org/uniprot/${PROT_ID}" (o]
OUT_FILE="SOUT_DIR/S${PROT_ID}.fasta" d)
wget -q -0 "$OUT_FILE" "$URL" @

done < $1 ®

echo "Done, see output in \"$OUT_DIR\"." ®

The shebang (#!) should use the env (environment) to find bash.
Check that the number of arguments ($#) is 1.

Print a usage statement using the program basename ($0).

Exit with a nonzero value.

Define the output directory to be fasta. Note that in bash you can have no spaces
around the = for variable assignment.

Create the output directory if it does not exist.

Read each line from the file into the PROT_ID variable.

Print the current protein ID so the user knows something is happening.
Construct the URL by using variable interpolation inside double quotes.

Construct the output filename by combining the output directory and the pro-
tein ID.

Call wget with the -q (quiet) flag to fetch the URL into the output file.

This reads each line from the first positional argument ($1), which is the input
filename.

Let the user know the program has finished and where to find the output.

I can run this like so:

$./fetch_fasta.sh tests/inputs/1.txt
A27669

B5zC00

PO7204_TRBM_HUMAN

232

| Chapter 11: Finding a Protein Motif: Fetching Data and Using Regular Expressions

P20840_SAG1_YEAST

Done, see output in "fasta".
Now there should be a fasta directory containing the four FASTA files. One way to
write the mprt.py program would be to fetch all the input files first using something
like this and then provide the FASTA files as arguments. This is a very common pat-
tern in bioinformatics, and writing a shell script like this is a great way to document
exactly how you retrieved the data for your analysis. Be sure you always commit pro-
grams like this to your source repository, and consider adding a Makefile target with
a name like fasta that is flush-left followed by a colon and the command on the next
line indented with a single tab character:

fasta:
./fetch_fasta.sh tests/inputs/1.txt
Now you should be able to run make fasta to automate the process of getting your
data. By writing the program to accept the input file as an argument rather than hard-
coding it, I can use this program and multiple Makefile targets to automate the pro-
cess of downloading many different datasets. Reproducibility for the win.

Downloading Sequences Files with Python

I'll translate the bash utility to Python now. As you can see from the preceding pro-
gram, there are several steps involved to fetch each sequence file. I don’t want this to
be a part of main() as it will clutter the program, so I'll write a function for this:

def fetch_fasta(fh: TextIO, fasta_dir: str) -> List[str]: (1]
""" Fetch the FASTA files into the download directory """

return [] (2]

© The function will accept a filehandle for the protein IDs and a download direc-
tory name, and will return a list of the files that were downloaded or were already
present. Be sure to add typing.List to your imports.

© For now, return an empty list.
I want to call it like this:

def main() -> None:
args = get_args()
files = fetch_fasta(args.file, args.download_dir)
print('\n'.join(files))
Run your program and ensure it compiles and prints nothing. Now add the following
Python code to fetch the sequences. You'll need to import os, sys, and requests, a
library for making web requests:

Getting Started | 233

https://oreil.ly/nYSUM

® 6 o o0 ©

® &6 6 6 ©6 © ©o

def fetch_fasta(fh: TextIO, fasta_dir: str) -> List[str]:
""" Fetch the FASTA files into the download directory """

if not os.path.isdir(fasta_dir): (1]
os.makedirs(fasta_dir)

files = [] ©
for prot_id in map(str.rstrip, fh): (4)
fasta = os.path.join(fasta_dir, prot_id + '.fasta') (5)
if not os.path.isfile(fasta): (6]
url = f'http://www.uniprot.org/uniprot/{prot_id}.fasta' (7]
response = requests.get(url)
if response.status_code == 200: (9]
print(response.text, file=open(fasta, 'wt')) ®
else:
print(f'Error fetching "{url}": "{response.status_code}"',
file=sys.stderr) (1]
continue
files.append(fasta) ®
return files ®
Create the output directory if it does not exist.
Create the directory and any needed parent directories.
Initialize the return list of filenames.
Read each protein ID from the file.

Construct the output filename by combining the output directory plus the pro-
tein ID.

Check if the file already exists.

Construct the URL to the FASTA file.

Make a GET request for the file.

A response code of 200 indicates success.

Write the text of the response to the output file.

Print a warning to STDERR that the file could not be fetched.

Skip to the next iteration.

234

| Chapter 11: Finding a Protein Motif: Fetching Data and Using Regular Expressions

® Append the file to the return list.

@ Return the files that now exist locally.

os.makedirs() is an example of a function that will throw an
exception if it fails. This might happen due to the user having
insufficient permissions to create a directory, or because of a disk
\ error. What would be the point in my catching and handling such
an error? If my program is unable to fix a problem, I feel it’s better
to let it crash loudly, producing an error code and a stacktrace of
what went wrong. A human would have to fix the underlying prob-
lems before the program could work. Catching and mishandling
the exception would be far worse than letting the program crash.

That logic almost exactly mirrors that of the bash program. If you run your program
again, there should be a fasta directory with the four files, and the program should
print the names of the downloaded files:

$./mprt.py tests/inputs/1.txt
fasta/A2Z669.fasta
fasta/B5ZC00.fasta
fasta/P07204_TRBM_HUMAN.fasta
fasta/P20840_SAG1_YEAST.fasta

Writing a Regular Expression to Find the Motif
The Rosalind page notes:

To allow for the presence of its varying forms, a protein motif is represented by a
shorthand as follows: [XY] means either X or Y and {X} means any amino acid except
X. For example, the N-glycosylation motif is written as N{P}[ST]{P}.

The Prosite website is a database of protein domains, families, and functional sites.
The details for the N-glycosylation motif show a similar convention for the consensus

pattern of N-{P}-[ST]-{P}. Both patterns are extremely close to the regular expres-
sion shown in Figure 11-1.

Anything not "P"

—

N [~P] [ST] [~P]

! !

Literal "N" Either "S" or “T"

Figure 11-1. A regular expression for the N-glycosylation protein motif

Getting Started | 235

https://oreil.ly/aFwWe
https://oreil.ly/VrQLl

In this regex, the N indicates the literal character N. The [ST] is a character class rep-
resenting either the character S or T. It’s the same as the regex [GC] I wrote in Chap-
ter 5 to find either G or C. The [~P] is a negated character class, which means it will
match any character that is not P.

Some people (OK, mostly me) like to represent regexes using the notation of finite
state machines (FSMs), such as the one shown in Figure 11-2. Imagine the pattern
entering on the left. It first needs to find the letter N to proceed to the next step. Next
can be any character that is not the letter P. After that, the graph has two alternate
paths through the letters S or T, which must be followed again by a not-P character. If
the pattern makes it to the double circle, the match was successful.

S

Figure 11-2. Graphical depiction of an FSM to identify the N-glycosylation motif

In Chapter 8, I pointed out a problem when using regular expressions to find over-
lapping text. There are no instances of this in the first test file, but another of the
datasets I used to solve the problem did have two overlapping motifs. Let me demon-
strate in the REPL:

>>> import re
>>> regex = re.compile('N[~P][ST][~P]")

I'm using the re.compile() function here to force the regex engine
to parse the pattern and create the necessary internal code to do the
matching. This is similar to how compiled languages like C use
source code that humans can edit and read into machine code that
computers can directly execute. This transformation happens once
when you use re.compile(), whereas functions like re.search()
must recompile the regex on each call.

Here is the relevant portion of the protein sequence for P07204_TRBM_HUMAN
that has the pattern starting at both the first and second positions (see Figure 11-3).
The re.findall() function shows that only the pattern starting at the first position is
found:

>>> seq = 'NNTSYS'
>>> regex.findall(seq)
['NNTS']

236 | Chapter 11:Finding a Protein Motif: Fetching Data and Using Regular Expressions

NNTSYS
I

Figure 11-3. This sequence contains two copies of the motif that overlap

As in Chapter 8, the solution is to wrap the regex in a look-ahead assertion
using ?=(<pattern>), which itself will need to be wrapped in capturing parentheses:

>>> regex = re.compile(' (?=(N[*P]I[STI[*P]))")

>>> regex.findall(seq)

['NNTS', 'NTSY']
I need to know the positions of the matches, which I can get from re.finditer().
This will return a list of re.Match objects, each of which has a match.start() func-
tion that will return the zero-offset index of the match’s starting position. I need to
add 1 to report the position using 1-based counting:

>>> [match.start() + 1 for match in regex.finditer(seq)]

[1, 2]
This should be enough for you to solve the rest of the problem. Keep hacking until
you pass all the tests. Be sure to download a dataset from the Rosalind site and verify
that your solution gives an answer that passes the test with that, too. See if you can
also write a version that doesn't use regular expressions. Go back and study the FSM
model and think about how you can implement those ideas in Python code.

Solutions

I will present two variations to solve this problem. Both use the same get_args() and
fetch_fasta() functions shown previously. The first uses a regular expression to
find the motif, and the second imagines how to solve the problem in a horrible, deso-
late intellectual wasteland where regular expressions don’t exist.

Solution 1: Using a Regular Expression

The following is my final solution using a regular expression. Be sure to import re
and Bio.SeqIO for this:

def main():
args = get_args()
files = fetch_fasta(args.file, args.download_dir) (1)
regex = re.compile('(?=(N[~P][STI[*P]))") (2]

for file in files: ©

prot_id, _ = os.path.splitext(os.path.basename(file)) (4]
recs = Seql0.parse(file, 'fasta') (5)
if rec := next(recs): (6]

Solutions | 237

© ¢ 6 6 6 o o

9]

if matches := list(regex.finditer(str(rec.seq))): (7]
print(prot_1id) (8]
print(*[match.start() + 1 for match in matches]) ©

Fetch the sequence files for the protein IDs in the given file. Put the files into the
indicated download directory.

Compile the regex for the N-glycosylation motif.

Iterate through the files.

Get the protein ID from the basename of the file minus the file extension.
Create a lazy iterator to fetch the FASTA sequences from the file.

Attempt to retrieve the first sequence record from the iterator.

Coerce the sequence to a str, then try to find all the matches for the motif.
Print the protein ID.

Print all the matches, correcting to 1-based counting.

In this solution, I used the os.path.basename() and os.path.splitext() functions.
I often use these, so I want to make sure you understand exactly what they do. I first
introduced the os.path.basename() in Chapter 2. This function will return the file-
name from a path that might include directories:

>>> import os

>>> basename = os.path.basename('fasta/B5ZC00.fasta')
>>> basename

'B5ZC00.fasta’

The os.path.splitext() function will break a filename into the part before the file
extension and the extension:

>>> 0s.path.splitext(basename)
('B5ZC00', '.fasta')

File extensions can provide useful metadata about a file. For
instance, your operating system may know to use Microsoft Excel
to open files ending in .xIs or .xIsx. There are many conventions for

FASTA extensions, including .fasta, .fa, .fna (for nucleotides),
and .faa (for amino acids). You can put whatever extension you like
on a FASTA file or none at all, but remember that a FASTA file is
always plain text and needs no special application to view it. Also,
just because a file has a FASTA-like extension does not necessarily
mean it’s a FASTA file. Caveat emptor.

238

| Chapter 11: Finding a Protein Motif: Fetching Data and Using Regular Expressions

In the preceding code, I don't need the extension, so I assign it to the variable _
(underscore), which is a convention indicating that I don't intend to use the value. I
could also use a list slice to grab the first element from the function:

>>> o0s.path.splitext(basename)[0]
'B52C00'

Solution 2: Writing a Manual Solution

If I were writing a program like this for production use, I would use a regular expres-
sion to find the motif. In this context, though, I wanted to challenge myself to find a
manual solution. As usual, I want to write a function to encapsulate this idea, so I
stub it out:

def find_motif(text: str) -> List[int]: (1)
""" Find a pattern in some text """

return [] (2]

© The function will take some text and return a list of integers where the motif can
be found in the text.

® For now, return the empty list.

The biggest reason to have a function is to write a test where I encode examples I
expect to match and fail:

def test_find_motif() -> None:
""" Test find_pattern """

assert find_motif('') == [] (1)

assert find_motif('NPTX') == [] (2}

assert find_motif('NXTP') == [] (3

assert find_motif('NXSX') == [0] (4]

assert find_motif('ANXTX') == [1] ©

assert find_motif('NNTSYS') == [0, 1] O

assert find_motif('XNNTSYS') == [1, 2] Q

assert find_motif('XNNTSYSXNNTSYS') == [1, 2, 8, 9] (&)

)

Ensure the function does not do something silly like raise an exception when
given the empty string.

This should fail because it has a P in the second position.
This should fail because it has a P in the fourth position.

This should find the motif at the beginning of the string.

® 06 o ©

This should find the motif not at the beginning of the string.

Solutions | 239

O This should find overlapping motifs at the beginning of the string.
@ This should find overlapping motifs not at the beginning of the string.

O This is a slightly more complicated pattern containing four copies of the motif.

I can add these functions to my mprt.py program and I can run pytest on that
source code to ensure that the tests do fail as expected. Now I need to write the
find_motif() code that will pass these tests. I decided I would again use k-mers, so I
will bring in the find_kmers() function (and test it, of course, but I'll omit that here)
from Chapters 9 and 10:

def find_kmers(seq: str, k: int) -> List[str]:
""" Find k-mers in string """

n = len(seq) - k + 1

return [] if n < 1 else [seq[i:1 + k] for 1 in range(n)]
Since the motif is four characters long, I can use this to find all the 4-mers in a
sequence:

>>> from solution2_manual import find_kmers

>>> seq = 'NNTSYS'

>>> find_kmers(seq, 4)

['NNTS', 'NTSY', 'TSYS']
I will also need their positions. The enumerate() function I introduced in Chapter 8
will provide both the indexes and values of the items in a sequence:

>>> list(enumerate(find_kmers(seq, 4)))
[(0, "NNTS'), (1, 'NTSY'), (2, 'TSYS")]
I can unpack each position and k-mer while iterating like so:
>>> for 1, kmer in enumerate(find_kmers(seq, 4)):
print(i, kmer)

O NNTS

1 NTSY

2 TSYS

Take the first k-mer, NNTS. One way to test for this pattern is to manually check each
index:

>>> kmer = 'NNTS'
>>> kmer[0] == 'N' and kmer[1] != 'P' and kmer[2] in 'ST' and kmer[3] != 'P'
True

I know the first two k-mers should match, and this is borne out:

>>> for 1, kmer in enumerate(find_kmers(seq, 4)):
kmer[0] == 'N' and kmer[1] != 'P' and kmer[2] in 'ST' and kmer[3] != 'P'

240 | Chapter 11:Finding a Protein Motif: Fetching Data and Using Regular Expressions

True
True
False

While effective, this is tedious. I would like to hide this code in a function:

def is_match(seq: str) -> bool:
""" Find the N-glycosylation

return len(seq) == 4 and (seq[0] == 'N' and seq[1] != 'P'
and seq[2] in 'ST' and seq[3] != 'P')

Here is a test I wrote for the function:

def test_is_match() -> None:
" Test is_match """

assert not is_match('') (1]
assert is_match('NASA') (2]
assert is_match('NATA')

assert not is_match('NATAN') (3]
assert not is_match('NPTA") (4]
assert not is_match('NASP') (5)

If a function accepts a string parameter, I always test with an empty string.

The next two sequences should match.

(1]

(2]

© This sequence is too long and should be rejected.

O This sequence has a P in the second position and should be rejected.
(5]

This sequence has a P in the fourth position and should be rejected.
That makes the code much more readable:

>>> for 1, kmer in enumerate(find_kmers(seq, 4)):
print(i, kmer, is_match(kmer))

O NNTS True
1 NTSY True
2 TSYS False

I only want the k-mers that match. I could write this using an if expression with a
guard, which I showed in Chapters 5 and 6:

>>> kmers = list(enumerate(find_kmers(seq, 4)))
>>> [1 for 1, kmer in kmers if is_match(kmer)]
[0, 1]

Solutions | 241

Or using the starfilter() function I showed in Chapter 9:

>>> from iteration_utilities import starfilter

>>> list(starfilter(lambda i, s: is_match(s), kmers))

[(®, "NNTS'), (1, 'NTSY')]
I only want the first elements from each of the tuples, so I could use a map() to select
those:

>>> matches = starfilter(lambda i1, s: is_match(s), kmers)

>>> list(map(lambda t: t[0], matches))

[o, 1]
For what it’s worth, Haskell uses tuples extensively and includes two handy functions
in the prelude: fst() to get the first element from a 2-tuple, and snd() to get the sec-
ond. Be sure to import typing.Tuple for this code:

def fst(t: Tuple[Any, Any]) -> Any:
return t[0]

def snd(t: Tuple[Any, Any]) -> Any:
return t[1]

With these functions, I can eliminate the starfilter() like this:

>>> list(map(fst, filter(lambda t: is_match(snd(t)), kmers)))

[o, 1]
But notice a very subtle bug if I try to use the filter()/starmap() technique I've
shown a couple of times:

>>> from itertools import starmap

>>> list(filter(None, starmap(lambda i1, s: 1 if is_match(s) else None, kmers)))

[1]
It only returns the second match. Why is that? It’s due to using None as the predicate
to filter(). According to help(filter), “If [the] function is None, return the items
that are true” In Chapter 1, I introduced the ideas of truthy and falsey values. The
Boolean values True and False are represented by the integer values 1 and 0, respec-
tively; hence, the actual number zero (either int or float) is technically False, which
means that any nonzero number is not-False or, if you will, truthy. Python will evalu-
ate many data types in a Boolean context to decide if they are truthy or falsey.

In this case, using None as the predicate for filter() causes it to remove the number
0:

>>> list(filter(None, [1, 0, 2]))
[1, 2]

242 | Chapter 11:Finding a Protein Motif: Fetching Data and Using Regular Expressions

I came to Python from Perl and JavaScript, both of which also
silently coerce values given different contexts, so I was not so sur-
prised by this behavior. If you come from a language like Java, C, or
Haskell that has stricter types, this is probably quite troubling. I
often feel that Python is a very powerful language if you know
exactly what youre doing at all times. This is a high bar, so its
extremely important when writing Python to use types and tests
liberally.

In the end, I felt the list comprehension was the easiest to read. Here’s how I wrote my
function to manually identify the protein motif:

def find_motif(text: str) -> List[int]:
""" Find a pattern in some text """

kmers = list(enumerate(find_kmers(text, 4))) (1)
return [1 for 1, kmer in kmers if is_match(kmer)] (2]

© Get the positions and values of the 4-mers from the text.

® Select those positions for the k-mers matching the motif.

Using this function is almost identical to how I used the regular expression, which is
the point of hiding complexities behind functions:

def main() -> None:
args = get_args()
files = fetch_fasta(args.file, args.download_dir)

for file in files:
prot_id, _ = os.path.splitext(os.path.basename(file))
recs = SeqlO.parse(file, 'fasta')
if rec := next(recs):
if matches := find_motif(str(rec.seq)): (1)
pos = map(lambda p: p + 1, matches) (2]
print('\n'.join([prot_id, ' '.join(map(str, pos))])) (3]

© Try to find any matches to the motif.
® The matches are a list of 0-based indexes, so add 1 to each.

© Convert the integer values to strings and join them on spaces to print.

Although this works and was fun (your mileage may vary) to write, I would not want
to use or maintain this code. I hope it gives you a sense of how much work the regular
expression is doing for us. Regexes allow me to describe what 1 want, not how to
get it.

Solutions | 243

Going Further

The Eukaryotic Linear Motifs database example provides regexes to find motifs that
define functional sites in proteins. Write a program to search for any occurrence of
any pattern in a given set of FASTA files.

Review

Key points from this chapter:

e You can use command-line utilities like curl and wget to fetch data from the
internet. Sometimes it makes sense to write a shell script for such tasks, and
sometimes it’s better to encode this using a language like Python.

A regular expression can find the N-glycosylation motif, but it'’s necessary to
wrap it in a look-ahead assertion and capturing parentheses to find overlapping
matches.

o It’s possible to manually find the N-glycosylation motif, but it’s not easy.

o The os.path.splitext() function is useful when you need to separate a file-
name from the extension.

« File extensions are conventions and may be unreliable.

244 | Chapter 11: Finding a Protein Motif: Fetching Data and Using Regular Expressions

http://elm.eu.org/elms

CHAPTER 12

Inferring mRNA from Protein:
Products and Reductions of Lists

As described in the Rosalind mRNA challenge, the goal of this program is to find the
number of mRNA strings that could produce a given protein sequence. You'll see that
this number can become exceedingly large, so the final answer will be the remainder
after dividing by a given value. I hope to show that I can turn the tables on regular
expressions by trying to generate all the strings that could be matched by a particular
pattern. I'll also show how to create the products of numbers and lists as well as how
to reduce any list of values to a single value, and along the way I'll talk about some
memory issues that can cause problems.

You will learn:

« How to use the functools.reduce() function to create a mathematical
product() function for multiplying numbers

« How to use Python’s modulo (%) operator
« About buffer overflow problems
o What monoids are

« How to reverse a dictionary by flipping the keys and values

Getting Started

You should work in the 12_mrna directory of the repository. Begin by copying the
first solution to the program mrna. py:

$ cd 12_mrna/
$ cp solutioni_dict.py mrna.py

245

https://oreil.ly/ZYelo

As usual, inspect the usage first:

$./mrna.py -h
usage: mrna.py [-h] [-m int] protein

Inferring mRNA from Protein

positional arguments:
protein Input protein or file (1)

optional arguments:
-h, --help show this help message and exit
-m int, --modulo int Modulo value (default: 1000000) (2]

© The required positional argument is a protein sequence or a file containing a
protein sequence.

® The - -modulo option defaults to 1,000,000.

Run the program with the Rosalind example of MA and verify that it prints 12, the
number of possible mRNA sequences modulo 1,000,000 that could encode this pro-
tein sequence:

$./mrna.py MA

12
The program will also read an input file for the sequence. The first input file has a
sequence that is 998 residues long, and the result should be 448832:

$./mrna.py tests/inputs/1.txt
448832

Run the program with other inputs and also execute the tests with make test. When
you are satisfied you understand how the program should work, start over:

$ new.py -fp 'Infer mRNA from Protein' mrna.py
Done, see new script "mrna.py".

Define the parameters as described in the usage. The protein may be a string or a file-
name, but I chose to model the parameter as a string. If the user provides a file, I will
read the contents and pass this to the program as I first demonstrated in Chapter 3:

class Args(NamedTuple):
""" Command-line arguments
protein: str (1]
modulo: int @

def get_args() -> Args:
""" Get command-line arguments

parser = argparse.ArgumentParser(

246 | Chapter 12: Inferring mRNA from Protein: Products and Reductions of Lists

description='Infer mRNA from Protein',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('protein’', (1)
metavar='protein',
type=str,
help='Input protein or file')

parser.add_argument('-m', (2)
'--modulo’',
metavar='int',
type=int,
default=1000000,
help='Modulo value')

args = parser.parse_args()

if os.path.isfile(args.protein): (3]
args.protein = open(args.protein).read().rstrip()

return Args(args.protein, args.modulo)
The required protein argument should be a string which may be a filename.
The modulo option is an integer that will default to 1000000.

If the protein argument names an existing file, read the protein sequence from
the file.

Change your main() to print the protein sequence:

def main() -> None:
args = get_args()
print(args.protein)

Verify that your program prints the protein both from the command line and a file:

$./mrna.py MA

MA

$./mrna.py tests/inputs/i.txt | wc -c (1)
998

© The -c option to wc indicates I only want a count of the number of characters in
the input.

Your program should pass the first two tests and fail the third.

Creating the Product of Lists

When the input is MA, the program should print the response 12, which is the num-
ber of possible mRNA strings that could have produced this protein sequence, as

Getting Started | 247

shown in Figure 12-1. Using the same RNA encoding table from Chapter 7, I see that
the amino acid methionine (M) is encoded by the mRNA codon sequence AUG,' ala-
nine (A) has four possible codons (GCA, GCC, GCG, GCU), and the stop codon has
three (UAA, UAG, UGA). The product of these three groups is 1 x 4 x 3 = 12.

AUG, GCA, UAA
M AUG AUG, GCA, UAG
AUG, GCA, UGA
AUG, GCC, UAA
GCA AUG, GCC, UAG
GCC AUG, GCC, UGA
GCG AUG, GCG, UAA
GCU AUG, GCG, UAG
AUG, GCG, UGA
UAA AUG, GCU, UAA
Stop UAG AUG, GCU, UAG
UGA AUG, GCU, UGA

Figure 12-1. The Cartesian product of all the codons that encode the protein sequence
MA results in 12 mRNA sequences

In Chapter 9, I introduced the itertools.product() function that will generate the
Cartesian product from lists of values. I can produce all possible combinations of the
12 codons in the REPL like so:

>>> from itertools import product

>>> from pprint import pprint

>>> combos = product(*codons)
If you try printing combos to see the contents, you'll see it’s not a list of values but a
product object. That is, this is another lazy object that will wait to produce the values
until you need them:

>>> pprint(combos)
<itertools.product object at 0x7fbdd822daco>

I can use the list() function to coerce the values:
>>> pprint(list(combos))

[('AUG', 'GCA', 'UAA'),
('AUG', 'GCA', 'UAG'),

1 While there are other possible start codons, this is the only one considered by the Rosalind problem.

248 | Chapter 12: Inferring mRNA from Protein: Products and Reductions of Lists

('AUG', 'GCA', 'UGA'),
('AUG', 'GCC', 'UAA"),
('AUG', 'GCC', 'UAG'),
('AUG', 'GCC', 'UGA'),
('AUG', 'GCG', 'UAA'),
('AUG', 'GCG', 'UAG'),
('AUG', 'GCG', 'UGA'),
('AUG', 'GCU', 'UAA"),
('AUG', 'GCU', 'UAG'),
('AUG', 'GCU', 'UGA')]
I want to show you a sneaky little bug waiting for you. Try printing the combos again:

>>> pprint(list(combos))

(]
This product object, like a generator, will yield the values only once and then will be
exhausted. All subsequent calls will produce an empty list. To save the results, I need
to save the coerced list to a variable:

>>> combos = list(product(*codons))

The length of this product is 12, meaning there are 12 ways to combine those amino
acids to produce the sequence MA:

>>> len(combos)
12

Avoiding Overflow with Modular Multiplication

As the length of the input protein sequence grows, the number of possible combina-
tions will grow extremely large. For example, the second test uses a protein with a file
of 998 residues, resulting in approximately 8.98 x 10* putative mRNA sequences.
The Rosalind challenge notes:

Because of memory considerations, most data formats that are built into languages
have upper bounds on how large an integer can be: in some versions of Python, an int
variable may be required to be no larger than 2°'-1, or 2,147,483,647. As a result, to
deal with very large numbers in Rosalind, we need to devise a system that allows us to
manipulate large numbers without actually having to store large numbers.

Very large numbers pose the risk of exceeding the memory limitations for the size of
an integer, especially on older 32-bit systems. To avoid this, the final answer should
be the number of combinations modulo 1,000,000. The modulo operation returns the
remainder when one number is divided by another. For example, 5 modulo 2 =1
because 5 divided by 2 is 2 with a remainder of 1. Python has the % operator to com-
pute the modulo:

>>> 5 % 2
1

Getting Started | 249

The answer for the 998-residue protein is 448,832, which is the remainder after divid-
ing 8.98 x 10 by 1,000,000:

$./mrna.py tests/inputs/1.txt

448832
In Chapter 5, I introduce the NumPy module for mathematical operations. As you
might expect, there is a numpy. prod() function that will compute the product of a list
of numbers. Unfortunately, it can quietly fail and return @ when I try to compute
something as large as the factorial of 1,000:

>>> import numpy as np

>>> np.prod(range(1, 1001))

0
The problem here is that NumPy is implemented in C, which is faster than Python,
and the C code tries to store a larger number than will fit into the memory available
for an integer. The unfortunate result is 0. It's common to call this type of error a
buffer overflow, where here the buffer is an integer variable but it could be a string,
floating-point number, list, or any other container. Generally speaking, Python pro-
grammers don’t have to worry about memory allocations the way programmers do in
other languages, but here I must be aware of the limitations of the underlying library.
Because the maximum size of an int can differ depending on the machine,
numpy.prod() is an unreliable solution and should be avoided.

Since Python 3.8, there exists a math.prod() function that can calculate incredibly
large products such as the factorial of 1,000. This is because all the computation hap-
pens inside Python, and integers in Python are virtually unbounded, meaning they are
limited only by the available memory on your machine. Try running this on your
computer:

>>> import math
>>> math.prod(range(1, 1001))

Notice, however, the result is @ when I apply the modulo operation:

>>> math.prod(range(1, 1001)) % 1000000

0
Once again, I've bumped up against an overflow that quietly fails, this one due to
Python’s use of a float in the division operation, which is a bounded type. For the
provided tests, you should not encounter a problem if you use math.prod() and
modulo the results. In the solutions, I will show a way to compute the product of an
arbitrarily large set of numbers using the modulo operation to avoid integer overflow.
This should be enough for you to solve the problem. Keep working until your pro-
gram passes all the tests.

250 | Chapter 12: Inferring mRNA from Protein: Products and Reductions of Lists

Solutions

I present three solutions that mostly differ in the structure of a dictionary used to
represent the RNA translation information and in how to compute the mathematical
product of a list of numbers.

Solution 1: Using a Dictionary for the RNA Codon Table

For my first solution, I used the RNA codon table from Chapter 7 to find the number
of codons for each residue:

>>> c2aa = {
'AAA': 'K', 'AAC': 'N', 'AAG': 'K', 'AAU': 'N', 'ACA': 'T',
'ACC': 'T', 'ACG': 'T', 'ACU': 'T', 'AGA': 'R', 'AGC': 'S',
'AGG': 'R', 'AGU': 'S', 'AUA': 'I', 'AUC': 'I', 'AUG': 'M',
"AUU': 'I', 'CAA': 'Q', 'CAC': 'H', 'CAG': 'Q', 'CAU': 'H',
'CCA': 'P', 'ccc': 'P', 'CCG': 'P', 'CCU': 'P', '"CGA': 'R',
'cGC': 'R', 'CGG': 'R', 'CGU': 'R', 'CUA': 'L', 'CcucC': 'L',
'CUG': 'L', 'CUU': 'L', 'GAA': 'E', 'GAC': 'D', 'GAG': 'E',
'"GAU': 'D', 'GCA': 'A', 'GCC': 'A', 'GCG': 'A', 'GCU': 'A',
'GGA': 'G', 'GGC': 'G', 'GGG': 'G', 'GGU': 'G', 'GUA': 'V',
'GuC': 'V', 'GUG': 'V', 'GUU': 'V', 'UAC': 'Y', 'UAU': 'Y',
'UcCA': 'Ss', ‘'ucc': 's', 'ucg': 's', 'ucu': 's', 'uacC': 'c',
'UGG': 'W', 'UGU': 'C', 'UUA': 'L', 'UuC': 'F', 'UUG': 'L',
.. 'WUU': "', 'UAA': "', 'UAG': '*', 'UGA': '*',

-}
I want to iterate over each amino acid in the protein sequence MA plus the stop
codon to find all the encoding codons. Note that sequences from Rosalind do not ter-
minate with the stop codon, so I must append *. I can use a list comprehension with a

guard to express this:

>>> protein = 'MA'
>>> for aa in protein + '*':
print(aa, [c for c, res in c2aa.items() if res == aa])

M ['AUG']
A ['GCA', 'GCC', 'GCG', 'GCU']
* ['UMA', 'UAG', 'UGA']

I don’t need the actual list of codons that encode a given residue, only the number
which I can find using the len() function:

>>> possible = [
len([c for c, res in c2aa.items() if res == aa])
. for aa in protein + '*'

-]
>>>
>>> possible
[1, 4, 3]

Solutions | 251

The answer lies in multiplying these values. In the previous section, I suggested you
could use the math.prod() function:

>>> import math

>>> math.prod(possible)

12
Although this will work perfectly well, I'd like to take this opportunity to talk about
reducing a sequence of values to a single value. In Chapter 5, I introduced the sum()
function that will add the numbers 1, 4, and 3 to create the result 8:

>>> sum(possible)

8
It does this in pairs, first adding 1 + 4 to get 5, then adding 5 + 3 to get 8. If I change
the + operator to *, then I get a product and the result is 12, as shown in Figure 12-2.

Sum Product
1473 1473
+ *

T 7
5+3 4*3

8 12

Figure 12-2. Reducing a list of numbers using addition and multiplication

This is the idea behind reducing a list of values, and its precisely what the
functools.reduce() function helps us to do. This is another higher-order function,
like filter() and map() and others I've used throughout the book, but with an
important difference: the lambda function will receive two arguments instead of only
one. The documentation shows how to write sum():

reduce(...)
reduce(function, sequence[, initial]) -> value

Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.

For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.

Here is how I could use this to write my own version of sum():

252 | Chapter 12: Inferring mRNA from Protein: Products and Reductions of Lists

>>> from functools import reduce
>>> reduce(lambda x, y: x + y, possible)
8

To create a product, I can change the addition to multiplication:

>>> reduce(lambda x, y: x * y, possible)
12

Monoids

For what it's worth, a homogeneous list of numbers or strings could be thought of as a
monoid, which is an algebraic structure with a single associative binary operation and
an identity element. For a list of numbers under addition, the binary operation is +,
and the identity element is 0. The identity element, or neutral element, is a special
value you could combine with another element under the binary operation that leaves
the element unchanged. Since 0 + #n = n, then 0 is the identity element for addition
and is the appropriate value for the initial argument to reduce():

>>> reduce(lambda x, y: x +vy, [1, 2, 3, 4], 0)
10

It’s also the appropriate return value when adding an empty list of numbers:

>>> reduce(lambda x, y: x + vy, [1, 0)
0

Under multiplication, the operator is * and the identity element is 1 because 1 * n = n:

>>> reduce(lambda x, y: x * vy, [1, 2, 3, 4], 1)
24

The product of an empty list is 1, so this is the correct initial value for reduce():

>>> reduce(lambda x, y: x * vy, [], 1)
1

A list of strings under concatenation would also use +, and the result is a new string:

>>> reduce(lambda x, y: x +y, ['M', 'A'], '")
MA

The identity element for strings is the empty string:

>>> reduce(lambda x, y: x + vy, [1, '")

This is the same value returned when passing the empty list to str. join():

>>> ' join([])

Even lists themselves are monoids. They can be combined using the + operator or
operator.concat(), and the identity value is the empty list:

Solutions | 253

>>> reduce(operator.concat, [['A'], ['list', 'of'], ['values']], [])

['A", 'list', 'of', 'values']
These identity values are the defaults for collections.defaultdict(). That is, a
defaultdict(int) initializes to 0, defaultdict(str) uses the empty string, and
defaultdict(list) uses the empty list.

Monoids such as these can be reduced to a single value by progressively applying the
associative binary operation, hence the name of the reduce() function. If you find this
kind of theory interesting, you might be interested to learn more about the Haskell
programming language and category theory.

Note that Python has an 1d() function that will “return the identity of an object,’
which is a unique numerical representation of a value in Python, akin to a memory
address, and so is not at all like monoidal identity.

I can use functools.reduce() to write my own product() function:

def product(xs: List[int]) -> int: (1]
""" Return the product """

return reduce(lambda x, y: x * y, xs, 1) (2]

© Return the product of a list of integers.

® Use the functools. reduce() function to progressively multiply the values. Use 1
for the initial result to ensure that an empty list returns 1.

Why would I do this? Intellectual curiosity, for one, but I also want to show how I
could use this to write a function that works without relying on Python’s unbounded
integers, which this version does. To avoid overflowing in any step of the reduction, I
need to incorporate the modulo operation into the function itself rather than apply-
ing it to the end result. Given that I'm not a math wizard, I didn’t know how to write
such a function. I searched the internet and found some code which I modified into
this:

def mulmod(a: int, b: int, mod: int) -> int: (1)
""" Multiplication with modulo """

def maybemod(x): (2]
ret = (x % mod) if mod > 1 and x > mod else x
return ret or x

res =0 @
a = maybemod(a) (5]
while b > 0: @
ifb%2==1: @
res = maybemod(res + a) (&)

254 | Chapter 12: Inferring mRNA from Protein: Products and Reductions of Lists

a = maybemod(a * 2) (o]
b//=2®

return res

)

The mulmod() function accepts two integers a and b to multiply with an integer
modulo value mod.

This is a closure around the mod value to possibly return a value modulo mod.

If the result is 0, return the original value; otherwise, return the computed value.
Initialize the result.

Possibly reduce the size of a.

Loop while b is greater than @.

Check if b is an odd number.

Add a to the result and possibly modulo the result.

Double a and possibly modulo the value.

& 606 06 ¢ © 6 6 o o

Halve b using floor division, eventually resulting in 0 and terminating the loop.
Following is the test I wrote:

def test_mulmod() -> None:
Wi Text mulmod """

assert mulmod(2, 4, 3) ==
assert mulmod(9223372036854775807, 9223372036854775807, 1000000) == 501249

I chose those large numbers because they are the sys.maxsize on my machine:

>>> import sys
>>> sys.maxsize
9223372036854775807

Note that this is the same answer that I can get from math.prod(), but my version
does not rely on Python’s dynamic integer sizing and is not tied (as much) to the
available memory on my machine:

>>> import math
>>> math.prod([9223372036854775807, 9223372036854775807]) % 1000000
501249

To integrate this, I wrote a modprod() function and added a test as follows:

Solutions | 255

def modprod(xs: List[int], modulo: int) -> int:
""" Return the product modulo a value """

return reduce(lambda x, y: mulmod(x, y, modulo), xs, 1)

def test_modprod() -> None:
" Test modprod """

assert modprod([], 3) ==
assert modprod([1, 4, 3], 1000000) == 12
n = 9223372036854775807
assert modprod([n, n], 1000000) == 501249

Note that it can handle the earlier example of the factorial of 1,000. The answer to this
is still too large to print, but the point is that the answer is not 0:

>>> modprod(range(1, 1001), 1000000)

The final answer is the products of these numbers modulo the given argument. Here
is how I put it all together:

def main() -> None:

args = get_args()

codon_to_aa = {
'"AAA': 'K', 'AAC': 'N', 'AAG': 'K', 'AAU': 'N', 'ACA': 'T',
'"ACC': 'T', 'ACG': 'T', 'ACU': 'T', 'AGA': 'R', 'AGC': 'S',
'AGG': 'R', 'AGU': 'S', "AUA': 'I', 'AUC': 'I', 'AUG': 'M',
'AUU': 'I', 'CAA': 'Q', 'CAC': 'H', 'CAG': 'Q', 'CAU': 'H',
'CCA': 'P', 'CcCCc': 'P', 'CCG': 'P', 'CCU': 'P', 'CGA': 'R',
'cGC': 'R', 'CGG': 'R', 'CGU': 'R', 'CUA': 'L', 'CuC': 'L',
'CuG': 'L', 'Cuu': 'L', 'GAA': 'E', 'GAC': 'D', 'GAG': 'E',
'GAU': 'D', 'GCA': 'A', 'GCC': 'A', 'GCG': 'A', 'GCU': 'A'",
'GGA': 'G', 'GGC': 'G', 'GGG': 'G', 'GGU': 'G', 'GUA': 'V',
'GUC': 'V', 'GUG': 'V', 'GUU': 'V', 'UAC': 'Y', 'UAU': 'Y',
'UCA': 'S', 'ucc': 's', 'ucGg': 's', 'ucu': 's', 'ucC': 'C',
'UGG': 'W', 'UGU': 'C', 'UUA': 'L', 'UuC': 'F', 'UUG': 'L',
'Wuu': 'F', 'UAA': '*', 'UAG': '*', 'UGA': '*',

}

possible = [(2]
len([c for c, res in codon_to_aa.items() if res == aa])
for aa in args.protein + '*'

1
print(modprod(possible, args.modulo)) (3]

© A dictionary encoding RNA codons to amino acids.

@ Iterate through the residues of the protein plus the stop codon, then find the
number of codons matching the given amino acid.

© Print the product of the possibilities modulo the given value.

256 | Chapter 12: Inferring mRNA from Protein: Products and Reductions of Lists

Solution 2: Turn the Beat Around

For this next solution, I decided to reverse the keys and values of the RNA codons
dictionary so that the unique amino acids form the keys and the values are the lists of
codons. It’s handy to know how to flip a dictionary like this, but it only works if the
values are unique. For instance, I can create a lookup table to go from DNA bases like
A or T to their names:

>>> base_to_name = dict(A='adenine', G='guanine', C='cytosine', T='thymine')

>>> base_to_name['A']

'adenine’
To turn that around so I could go from the name to the base, I can use dict.items()
to get the key/value pairs:

>>> list(base_to_name.items())
[('A', 'adenine'), ('G', 'guanine'), ('C', 'cytosine'), ('T', 'thymine')]

I then map() those through reversed() to flip them, and finally pass the result to the

dict() function to create a dictionary:

>>> dict(map(reversed, base_to_name.items()))
{'adenine': 'A', 'guanine': 'G', 'cytosine': 'C', 'thymine': 'T'}

If I try that on the RNA codons table from the first solution, however, I'll get this:

>>> pprint(dict(map(reversed, c2aa.items())))

{'*': 'UGA',
'A': 'GCU',
'c': 'uGu',
'D': 'GAU',
"E': 'GAG',
"F': 'uuu',
'G': 'GGU',
"H': 'CAU',
"I': 'AUU',
'K': 'AAG',
"L': 'UUG',
"M': 'AUG',
'N': 'AAU',
P o'CCU',
'Q': 'CAG',
'R': 'CGU',
'S': 'ucu',
'T': 'ACU',
"V':o'GUU',
"W': 'UGG',
'Y': 'UAU'}

You can see that ’'m missing most of the codons. Only M and W have just one codon.
What happened to the rest? When creating the dictionary, Python overwrote any
existing values for a key with the newest value. In the original table, for instance,

Solutions | 257

UUG was the last value indicated for L, so that was the value that was left standing.
Just remember this trick for reversing dictionary key/values and ensure that the val-
ues are unique. For what it's worth, if I needed to do this, I would use the collec
tions.defaultdict() function:

>>> from collections import defaultdict

>>> aa2codon = defaultdict(list)

>>> for k, v in c2aa.items():
aa2codon[v].append(k)

>>> pprint(aa2codon)
defaultdict(<class 'list's,
{'*": ['"UAA', "UAG', 'UGA'],

"A': ['GCA', 'GCC', 'GCG', 'GCU'l,
'C': ['UGC', 'ucu'],
'D': ['GAC', 'GAU'],
'E': ['GAA', 'GAG'],
'F': ['UuC', 'UUU'],
'G': ['GGA', 'GGC', 'GGG', 'GGU'],
"H': ['CAC', 'CAU'],
'T': ['AUA', 'AUC', 'AUU'],
'K': ['AAA', 'AAG'],
'L': ['CUA', 'CuC', 'CUG', 'CUU', 'UUA', 'UUG'],
'M': ['AUG'],
'N': ['AAC', 'AAU'],
"P': ['CCA', 'CCC', 'CCG', 'CCU'l,
'Q': ['CAA', 'CAG'],
'R': ['AGA', 'AGG', 'CGA', 'CGC', 'CGG', 'CGU'],
'S': ['AGC', 'AGU', 'UCA', 'UCcC', 'ucG', 'ucu'l,
'T': ['ACA', 'ACC', 'ACG', 'ACU'],
'V': ['GUA', 'GUC', 'GUG', 'GuUU'],
"W': ['UGG'],
'Y': ['UAC', 'UAU']})

This is the data structure I used in the following solution. I also show how to use the
math.prod() function rather than rolling my own:

def main():

args = get_args()

aa_to_codon = {
'A': ['GCA', 'GCC', 'GCG', 'GCU'],
'C': ['uGC', 'UGU'],
'D': ['GAC', 'GAU'],
'E': ['GAA', 'GAG'],
'"F': ['UuC', 'uuu']
'G': ['GGA', 'GGC', 'GGG', 'GGU'],
'H': ['CAC', 'CAU'],
'"T': ['AUA', 'AUC', 'AUU'],
'K': ['AAA', 'AAG'],
"L': ['CuA', 'CUC', 'CUG', 'CUU', '"UUA', 'UUG'],
'M'": ['AUG'],
'N': ['AAC', 'AAU'],

258 | Chapter 12: Inferring mRNA from Protein: Products and Reductions of Lists

'P': ['CCA', 'CCC', 'CCG', 'CCU'],
'Q': ['CAA', 'CAG'],
'R': ['AGA', 'AGG', 'CGA', 'CGC', 'CGG', 'CGU'],
's': ['AGC', 'AGU', 'UCA', 'UCC', 'UCG', 'ucu'l,
'T': ['ACA', 'ACC', 'ACG', 'ACU'],
'v': ['GUA', 'GUC', 'GUG', 'GUU'],
"W': ['UGG'],
'y': ['UAC', 'UAU'],
"*': ['UMA', 'UAG', 'UGA'],
}

possible = [len(aa_to_codon[aa]) for aa in args.protein + '*'] @
print(math.prod(possible) % args.modulo) (3]

© Represent the dictionary using the residues as the keys and the codons for the
values.

® Find the number of codons encoding each amino acid in the protein sequence
plus the stop codon.

©® Usemath.prod() to calculate the product, then apply the modulo operator.

This version is much shorter and assumes that the machine will have enough mem-
ory to compute the product. (Python will handle the memory requirements to repre-
sent astronomically large numbers.) For all the datasets given to me by Rosalind, this
was true, but you may one day encounter the need to use something like the
mulmod() function in your travels.

Solution 3: Encoding the Minimal Information

The previous solution encoded more information than was necessary to find the sol-
ution. Since I only need the number of codons that encode a given amino acid, not
the actual list, I could instead create this lookup table:

>>> codons = {
'A': 4, 'C': 2, 'D': 2, 'E': 2, '"F': 2, 'G': 4, 'H': 2, 'I': 3,
'K': 2, 'L': 6, '"M': 1, 'N': 2, 'P': 4, 'Q': 2, 'R': 6, 'S': 6,
Ce 'T': 4, 'V': 4, '"W': 1, 'Y': 2, '*': 3,
-}

A list comprehension will return the numbers needed for the product. I will use 1 for
the default argument to dict.get() here in case I find a residue not present in my
dictionary:

>>> [codons.get(aa, 1) for aa in 'MA*']

[1, 4, 3]

Leading to this code:

Solutions | 259

def main():

args = get_args()

codons = {
'A': 4, 'C': 2, 'D': 2, '"E': 2, '"F': 2, 'G': 4, 'H': 2, 'I': 3,
'K': 2, 'L': 6, 'M': 1, 'N': 2, 'P': 4, 'Q': 2, 'R': 6, 'S': 6,
'T': 4, 'V': 4, '"W': 1, 'Y': 2, '"*¥': 3,

}

nums = [codons.get(aa, 1) for aa in args.protein + '*'] (2]

print(math.prod(nums) % args.modulo) (3]

© Encode the number of codons for each amino acid.
® Find the number of codons for each amino acid plus the stop.

© Print the product of the combinations modulo the given value.

Going Further

In a sense, I've reversed the idea of a regular expression match by creating all the pos-
sible strings for a match. That is, the 12 patterns that could produce the protein MA
are as follows:

$./show_patterns.py MA
1: AUGGCAUAA
2: AUGGCAUAG
: AUGGCAUGA
: AUGGCCUAA
: AUGGCCUAG
¢ AUGGCCUGA
: AUGGCGUAA
: AUGGCGUAG
AUGGCGUGA
10: AUGGCUUAA
11: AUGGCUUAG
12: AUGGCUUGA

O oo ~NOUL W

Essentially, I could try to use this information to create a single unified regular
expression. That might not be easy or even possible, but it’s an idea that might help
me find a genomic source for a protein. For example, the first two sequences differ by
their last base. The alternation between A and G can be expressed with the character
class [AG]:

AUGGCAUAA
+ AUGGCAUAG

AUGGCAUA[AG]

Could you write a tool that would combine many regular expression patterns into a
single one?

260 | Chapter 12: Inferring mRNA from Protein: Products and Reductions of Lists

Review

Key points from this chapter:

o The itertools.product() function will create the Cartesian product of a list of
iterables.

o functools.reduce() is a higher-order function that provides a way to combine
progressive pairs of elements from an iterable.

« Pythons % (modulo) operator will return the remainder after division.

« Homogeneous lists of numbers and strings can be reduced under monoidal oper-
ations like addition, multiplication, and concatenation to a single value.

« A dictionary with unique values can be reversed by flipping the keys and values.

o The size of integer values in Python is limited only by the available memory.

Review | 261

CHAPTER 13

Location Restriction Sites:
Using, Testing, and Sharing Code

A palindromic sequence in DNA is one in which the 5" to 3’ base pair sequence is
identical on both strands. For example, Figure 13-1 shows that the reverse comple-
ment of the DNA sequence GCATGC is the sequence itself.

N

5

Complement

_— Reverse complement

A —H = 0O o

a0 X 4 o 0O

3 C

Figure 13-1. A reverse palindrome is equal to its reverse complement

I can verify this in code:

>>> from Blo import Seq

>>> seq = 'GCATGC'

>>> Seq.reverse_complement(seq) == seq
True

As described in the Rosalind REVP challenge, restriction enzymes recognize and cut
within specific palindromic sequences of DNA known as restriction sites. They typi-
cally have a length of between 4 and 12 nucleotides. The goal of this exercise is to find
the locations in a DNA sequence of every putative restriction enzyme. The code to
solve this problem could be massively complicated, but a clear understanding of some

263

https://oreil.ly/w3Tdm

functional programming techniques helps to create a short, elegant solution. I will
explore map(), zip(), and enumerate() as well as many small, tested functions.

You will learn:

« How to find a reverse palindrome
« How to create modules to share common functions

o About the PYTHONPATH environment variable

Getting Started

The code and tests for this exercise are in the 13_revp directory. Start by copying a
solution to the program revp.py:

$ cd 13_revp
$ cp solutionl_zip_enumerate.py revp.py

Inspect the usage:

$./revp.py -h
usage: revp.py [-h] FILE

Locating Restriction Sites

positional arguments:
FILE Input FASTA file @

optional arguments:
-h, --help show this help message and exit

© The only required argument is a single positional file of FASTA-formatted DNA
sequences.

Have a look at the first test input file. The contents are identical to the example on the
Rosalind page:
$ cat tests/inputs/1.fa

>Rosalind_24
TCAATGCATGCGGGTCTATATGCAT

Run the program with this input and verify that you see the position (using 1-based
counting) and length of every reverse palindrome in the string having a length
between 4 and 12, as illustrated in Figure 13-2. Note that the order of the results is
unimportant:

$./revp.py tests/inputs/1.fa

54

74
17 4

264 | Chapter 13: Location Restriction Sites: Using, Testing, and Sharing Code

|l—l| | 1 |
TCAATGCATGCGGGTCTATATGCAT
1 2 3 4 5 6 7 8 9 101 1213 14 1516 17 18 19 20 21 22 23 24 25
| | '—‘l |

|

Figure 13-2. The locations of the eight reverse palindromes found in the sequence
TCAATGCATGCGGGTCTATATGCAT.

Run the tests to verify that the program passes, then start over:

$ new.py -fp 'Locating Restriction Sites' revp.py
Done, see new script "revp.py".

Here is a way to define the program’s parameter:

class Args(NamedTuple):
""" Command-line arguments
file: Textlo @

def get_args() -> Args:
""" Get command-line arguments

parser = argparse.ArgumentParser(
description='Locating Restriction Sites',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('file', (2]
help="Input FASTA file',
metavar='FILE',
type=argparse.FileType('rt'))
args = parser.parse_args()
return Args(args.file)

© The only parameter is a file.

© Define a parameter that must be a readable text file.

Have the main() function print the input filename for now:

Getting Started | 265

def main() -> None:
args = get_args()
print(args.file.name)
Manually verify that the program will produce the correct usage, will reject bogus
files, and will print a valid input’s name:

$./revp.py tests/inputs/1.fa
tests/inputs/1.fa

Run make test and you should find you pass some tests. Now youre ready to write
the bones of the program.

Finding All Subsequences Using K-mers

The first step is to read the sequences from the FASTA input file. I can use
SeqIO.parse() to create a lazy iterator and then use next() to get the first sequence:

>>> from Bio import SeqIO

>>> recs = SeqIO.parse(open('tests/inputs/1.fa'), 'fasta')
>>> rec = next(recs)

>>> seq = str(rec.seq)

>>> seq

'TCAATGCATGCGGGTCTATATGCAT'

The preceding code is unsafe to use if the file is empty, such as
tests/inputs/empty.fa. If you try to open this file in the same way
and call next(), Python will raise a StopIteration exception. In

\ your code, I recommend you use a for loop that detects the
exhaustion of the iterator and gracefully exits.

>>> empty = SeqlO.parse(open('tests/inputs/empty.fa'), 'fasta')
>>> next(empty)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Library/Frameworks/Python.framework/Versions/3.9/1ib/python3.9/
site-packages/Bio/SeqIO/Interfaces.py", line 73, in __next__
return next(self.records)
StopIteration

I need to find all the sequences between 4 and 12 bases long. This sounds like another
job for k-mers, so I'll bring in the find_kmers() function from Chapter 9:
>>> def find_kmers(seq, k):

n = len(seq) - k + 1
return [] if n < 1 else [seq[i:1 + k] for 1 in range(n)]

266 | Chapter 13: Location Restriction Sites: Using, Testing, and Sharing Code

I can use range() to generate all the numbers between 4 and 12, remembering that
the end position is not included so I have to go up to 13. As there are many k-mers
for each k, I'll print the value of k and how many k-mers are found:

>>> for k in range(4, 13):
print(k, len(find_kmers(seq, k)))
22
21
20
19
18
17
10 16
11 15
12 14

O 00 ~NO UV b

Finding All Reverse Complements

I showed many ways to find the reverse complement in Chapter 3, with the conclu-
sion that Bio.Seq.reverse_complement() is probably the easiest method. Start by
finding all the 12-mers:

>>> kmers = find_kmers(seq, 12)

>>> kmers

['TCAATGCATGCG', 'CAATGCATGCGG', 'AATGCATGCGGG', 'ATGCATGCGGGT',
'TGCATGCGGGTC', 'GCATGCGGGTCT', 'CATGCGGGTCTA', 'ATGCGGGTCTAT',
'TGCGGGTCTATA', 'GCGGGTCTATAT', 'CGGGTCTATATG', 'GGGTCTATATGC',
"GGTCTATATGCA', 'GTCTATATGCAT']

To create a list of the reverse complements, you could use a list comprehension:

>>> from Bio import Seq
>>> revc = [Seq.reverse_complement(kmer) for kmer in kmers]

Or use map():
>>> revc = list(map(Seq.reverse_complement, kmers))
Either way, you should have 12 reverse complements:

>>> revc

['CGCATGCATTGA', 'CCGCATGCATTG', 'CCCGCATGCATT', 'ACCCGCATGCAT',
'GACCCGCATGCA', 'AGACCCGCATGC', 'TAGACCCGCATG', 'ATAGACCCGCAT',
'"TATAGACCCGCA', 'ATATAGACCCGC', 'CATATAGACCCG', 'GCATATAGACCC',
'"TGCATATAGACC', 'ATGCATATAGAC']

Putting It All Together

You should have just about everything you need to complete this challenge. First, pair
all the k-mers with their reverse complements, find those that are the same, and print
their positions. You could iterate through them with a for loop, or you might

Getting Started | 267

consider using the zip() function that we first looked at in Chapter 6 to create the
pairs. This is an interesting challenge, and I'm sure you can figure out a working solu-
tion before you read my versions.

Solutions

I’ll show three variations to find the restriction sites, which increasingly rely on func-
tions to hide the complexities of the program.

Solution 1: Using the zip() and enumerate() Functions

In my first solution, I first use zip() to pair the k-mers and reverse complements.
Assume k=4:

>>> seq = 'TCAATGCATGCGGGTCTATATGCAT'

>>> kmers = find_kmers(seq, 4)

>>> revc = list(map(Seq.reverse_complement, kmers))
>>> pairs = list(zip(kmers, revc))

I also need to know the positions of the pairs, which I can get from enumerate(). If I
inspect the pairs, I see that some of them (4, 6, 16, 17, and 20) are the same:

>>> pprint(list(enumerate(pairs)))
[(0, ("TCAA", "TTGA")),
(1, ("CAAT", "ATTG")),
(2, ("AATG", "CATT")),
(3, ("ATGC", "GCAT")),
(4, ("TGCA", "TGCA™)),
(5, ("GCAT", "ATGC")),
(6, ("CATG", "CATG")),
(7, ("ATGC", "GCAT")),
(8, ("TGCG", "CGCA™)),
(9, ("GCaGG", "ccacMyy,
(10, ("CGGG", "cCCCG")),
(11, ("GGGT", "ACCC")),
(12, ("GGTC", "GACC")),
(13, ("GTCT", "AGAC")),
(14, ("TCTA", "TAGA")),
(15, ("CTAT", "ATAG")),
(16, ("TATA", "TATA")),
(17, ("ATAT", "ATAT")),
(18, ("TATG", "CATA")),
(19, ("ATGC", "GCAT")),
(20, ("TGCA", "TGCA")),
(21, ("GCAT", "ATGC"))]

I can use a list comprehension with a guard to find all the positions where the pairs
are the same. Note I add 1 to the index values to get 1-based positions:

>>> [pos + 1 for pos, pair in enumerate(pairs) if pair[0] == pair[1]]
[5, 7, 17, 18, 21]

268 | Chapter 13: Location Restriction Sites: Using, Testing, and Sharing Code

In Chapter 11, I introduced the functions fst() and snd() for getting the first or sec-
ond elements from a 2-tuple. I'd like to use those here so I don’t have to use indexing
with the tuples. I also keep using the find_kmers() function from previous chapters.
It seems like it’s time to put these functions into a separate module so I can import
them as needed rather than copying them.

If you inspect the common.py module, you'll see these functions and their tests. I can
run pytest to ensure they all pass:

$ pytest -v common.py

test session starts

common.py::test_fst PASSED [33%]
common.py::test_snd PASSED [66%]
common.py::test_find_kmers PASSED [100%]

3 passed in 0.01s

Because common.py is in the current directory, I can import any functions I like
from it:

>>> from common import fst, snd
>>> [pos + 1 for pos, pair in enumerate(pairs) if fst(pair) == snd(pair)]
[5, 7, 17, 18, 21]

PYTHONPATH

You can also place modules of reusable code into a directory that is shared across all
your projects. You can use the PYTHONPATH environment variable to indicate the loca-
tion of additional directories where Python should look for modules. According to
the PYPATH documentation, it will:

Augment the default search path for module files. The format is the same as the
shell’s PATH: one or more directory pathnames separated by os.pathsep (e.g., colons
on Unix or semicolons on Windows). Nonexistent directories are silently ignored.

In Appendix B, I recommend that you install binaries and scripts to a location like
$HOME/ . local/bin and use something like $HOME/ . bashrc to set your PATH to include
this directory. (I prefer .local so that it is hidden from the normal directory listing.) I
would likewise suggest you define a location for sharing common Python functions
and modules and set your PYTHONPATH to include this location: perhaps something
like $HOME/ . local/11ib.

Here is how I incorporated these ideas in the first solution:

def main() -> None:
args = get_args()

Solutions | 269

https://oreil.ly/0MpPP

for rec in SeqlO.parse(args.file, 'fasta'): (1]
for k in range(4, 13): (2]
kmers = find_kmers(str(rec.seq), k) (3]
revc = list(map(Seq.reverse_complement, kmers)) (4)
for pos, pair in enumerate(zip(kmers, revc)): (5]
if fst(pair) == snd(pair): (6]
print(pos + 1, k) (7]

Iterate over the records in the FASTA file.

Iterate through all the values of k.

Find the k-mers for this k.

Find the reverse complements of the k-mers.

Iterate through the positions and pairs of k-mer/reverse complement.

Check if the first element of the pair is the same as the second element.

®© ©¢ 6 6 6 o o

Print the position plus 1 (to correct for 0-based indexing) and the size of the
sequence k.

Solution 2: Using the operator.eq() Function

Though I like the fst() and snd() functions and want to highlight how to share
modules and functions, I'm duplicating the operator.eq() function. I first intro-
duced this module in Chapter 6 to use the operator.ne() (not equal) function, and
I've also used the operator.le() (less than or equal) and operator.add() functions
elsewhere.

I can rewrite part of the preceding solution like so:

for pos, pair in enumerate(zip(kmers, revc)):
if operator.eq(*pair): (1]
print(pos + 1, k)

© Use the functional version of the == operator to compare the elements of the pair.
Note the need to splat the pair to expand the tuple into its two values.

I prefer a list comprehension with a guard to condense this code:

def main() -> None:
args = get_args()
for rec in SeqlO.parse(args.file, 'fasta'):
for k in range(4, 13):
kmers = find_kmers(str(rec.seq), k)

270 | Chapter 13: Location Restriction Sites: Using, Testing, and Sharing Code

revc = map(Seq.reverse_complement, kmers)
pairs = enumerate(zip(kmers, revc))

for pos in [pos + 1 for pos, pair in pairs if operator.eq(*pair)]: (1]
print(pos, k)

© Use a guard for the equality comparison, and correct the position inside a list
comprehension.

Solution 3: Writing a revp() Function

In this final solution, it behooves me to write a revp() function and create a test. This
will make the program more readable and will also make it easier to move this func-
tion into something like the common. py module for sharing in other projects.

As usual, I imagine the signature of my function:

def revp(seq: str, k: int) -> List[int]: (1]
""" Return positions of reverse palindromes

return [] (2]

© 1 want to pass in a sequence and a value for k to get back a list of locations where
reverse palindromes of the given size are found.

® For now, return the empty list.

Here is the test I wrote. Note that I decided that the function should correct the
indexes to 1-based counting:

def test_revp() -> None:
" Test revp "M

assert revp('CGCATGCATTGA', 4) == [3, 5]
assert revp('CGCATGCATTGA', 5) == []
assert revp('CGCATGCATTGA', 6) == [2, 4]
assert revp('CGCATGCATTGA', 7) == []
assert revp('CCCGCATGCATT', 4) == [5, 7]
assert revp('CCCGCATGCATT', 5) == []
assert revp('CCCGCATGCATT', 6) == [4, 6]

If I add these to my revp.py program and run pytest revp.py, I'll see that the test
fails as it should. Now I can fill in the code:

def revp(seq: str, k: int) -> List[int]:
""" Return positions of reverse palindromes """
kmers = find_kmers(seq, k)
revc = map(Seq.reverse_complement, kmers)
pairs = enumerate(zip(kmers, revc))
return [pos + 1 for pos, pair in pairs if operator.eq(*pair)]

Solutions | 271

If I run pytest again, I should get a passing test. The main() function is now more
readable:

def main() -> None:
args = get_args()
for rec in SeqIO.parse(args.file, 'fasta'):
for k in range(4, 13): (1]
for pos in revp(str(rec.seq), k): (2]
print(pos, k) (3]

O Iterate through each value of k.
© [terate through each reverse palindrome of size k found in the sequence.

© Print the position and size of the reverse palindrome.

Note that it’s possible to use more than one iterator inside a list comprehension. I can
collapse the two for loops into a single one, like so:

for k, pos in [(k, pos) for k in range(4, 13) for pos in revp(seq, k)]: (1]
print(pos, k)

@ First iterate the k values, then use those to iterate the revp() values, returning
both as a tuple.

I would probably not use this construct. It reminds me of my old coworker, Joe, who
would joke: “If it was hard to write, it should be hard to read!”

Testing the Program

I'd like to take a moment to look at the integration test in tests/revp_test.py. The first
two tests are always the same, checking for the existence of the expected program and
that the program will produce some usage statement when requested. For a program
that accepts files as inputs such as this one, I include a test that the program rejects an
invalid file. I usually challenge other inputs too, like passing strings when integers are
expected, to ensure the arguments are rejected.

After T've checked that the arguments to the program are all validated, I start passing
good input values to see that the program works as expected. This requires that I use
valid, known input and verify that the program produces the correct, expected out-
put. In this case, I encode the inputs and outputs using files in the tests/inputs direc-
tory. For instance, the expected output for the input file I.fa is found in I.fa.out:

$ 1s tests/inputs/
1.fa 2.fa empty.fa
1.fa.out 2.fa.out empty.fa.out

272 | Chapter 13: Location Restriction Sites: Using, Testing, and Sharing Code

The following is the first input:

$ cat tests/inputs/1.fa
>Rosalind_24
TCAATGCATGCGGGTCTATATGCAT

and the expected output is:

$ cat tests/inputs/1.fa.out
54
7 4
17 4
18 4
21 4
46
6 6
20 6

The second input file is significantly larger than the first. This is common with the
Rosalind problems, and so it would be ugly to try to include the input and output
values as literal strings in the test program. The expected output for the second file is
70 lines long. The last test is for an empty file, and the expected output is the empty
string. While that may seem obvious, the point is to check that the program does not
throw an exception on an empty input file.

In tests/revp_test.py, I wrote a run() helper function that takes the name of the input
file, reads the expected output filename, and runs the program with the input to
check the output:

def run(file: str) -> None: (1)
Wi Run the test """

expected_file = file + '.out' (2]
assert os.path.isfile(expected_file) (3]

rv, out = getstatusoutput(f'{PRG} {file}') (4)
assert rv == 0

expected = set(open(expected_file).read().splitlines()) (6]
assert set(out.splitlines()) == expected

The function takes the name of the input file.
The output file is the name of the input file plus .out.
Make sure the output file exists.

Run the program with the input file and capture the return value and output.

® 06 o © o

Make sure the program reported a successful run.

Testing the Program | 273

O Read the expected output file, breaking the contents on lines and creating a set of
the resulting strings.

@ Break the output of the program on lines and create a set to compare to the
expected results. Sets allow me to disregard the order of the lines.

This simplifies the tests. Note that the INPUT* and EMPTY variables are declared at the
top of the module:

def test_ok1() -> None:
run(INPUT1)

def test_ok2() -> None:
run(INPUT2)

def test_mepty() -> None:
run(EMPTY)
I would encourage you to spend some time reading the *_test.py files for every pro-
gram. I hope that you will integrate testing into your development workflow, and I'm
sure you can find ample code to copy from my tests, which will save you time.

Going Further

The minimum (4) and maximum (12) values for the length of the sites are hardcoded
in the program. Add command-line parameters to pass these as integer options using
those default values. Change the code to use the given values, and add tests to ensure
the correct sites are found for different ranges of these values.

Write a program that can identify English palindromes such as “A man, a plan, a
canal—Panamal!” Start by creating a new repository. Find several interesting palin-
dromes to use in your tests. Be sure to provide phrases that are not palindromes and
verify that your algorithm rejects those, too. Release your code to the internet, and
reap the fame, glory, and profit of writing open source software.

Review

Key points from this chapter:

» You can reuse functions by placing them into a module and importing them as
needed.

o The PYTHONPATH environment variable indicates directories which Python should
search when looking for modules of code.

274 | Chapter 13: Location Restriction Sites: Using, Testing, and Sharing Code

CHAPTER 14
Finding Open Reading Frames

The ORF challenge is the last Rosalind problem I'll tackle in this book. The goal is to
find all the possible open reading frames (ORFs) in a sequence of DNA. An ORF is a
region of nucleotides between the start codon and the stop codon. The solution will
consider both the forward and reverse complement as well as frameshifts. Although
there are existing tools such as TransDecoder to find coding regions, writing a
bespoke solution brings together many skills from previous chapters, including read-
ing a FASTA file, creating the reverse complement of a sequence, using string slices,
finding k-mers, using multiple for loops/iterations, translating DNA, and using regu-
lar expressions.

You will learn:

» How to truncate a sequence to a length evenly divisible by a codon size
o How to use the str.find() and str.partition() functions

o How to document a regular expression using code formatting, comments, and
Python’s implicit string concatenation

Getting Started

The code, tests, and solutions for this challenge are located in the 14_orf directory.
Start by copying the first solution to the program orf. py:

$ cd 14_orf/
$ cp solutionl_iterate_set.py orf.py

If you request the usage, you'll see the program takes a single positional argument of
a FASTA-formatted file of sequences:

275

https://oreil.ly/DPWXc

$.Jorf.py -h
usage: orf.py [-h] FILE

Open Reading Frames

positional arguments:
FILE Input FASTA file

optional arguments:
-h, --help show this help message and exit

The first test input file has the same content as the example on the Rosalind page.
Note that I've broken the sequence file here, but it’s a single line in the input file:

$ cat tests/inputs/1.fa

>Rosalind_99
AGCCATGTAGCTAACTCAGGTTACATGGGGATGACCCCGCGACTTGGATTAGAGTCTCTTTTGGAATAAG\
CCTGAATGATCCGAGTAGCATCTCAG

Run the program with this input file and note the output. The order of the ORFs is
not important:

$./orf.py tests/inputs/1.fa
M

MGMTPRLGLESLLE
MLLGSFRLIPKETLIQVAGSSPCNLS
MTPRLGLESLLE

Run the test suite to ensure the program passes the tests. When you are satisfied with
how your program should work, start over:

$ new.py -fp 'Open Reading Frames' orf.py

Done, see new script "orf.py".
At this point, you probably need no help in defining a single positional file argument,
but here is the code you can use:

class Args(NamedTuple):

""" Command-line arguments
file: TextIO

def get_args() -> Args:
""" Get command-line arguments """

parser = argparse.ArgumentParser(
description='0pen Reading Frames',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file', (1)
help='Input FASTA file',
metavar='FILE',
type=argparse.FileType('rt'))

276 | Chapter 14: Finding Open Reading Frames

args = parser.parse_args()
return Args(args.file)

© Define a positional argument that must be a readable text file.
Modity the main() to print the incoming filename:

def main() -> None:
args = get_args()
print(args.file.name)
Verify that the program prints the usage, rejects bad files, and prints the filename for
a valid argument:

$./orf.py tests/inputs/1.fa
tests/inputs/1.fa

At this point, your program should pass the first three tests. Next, I'll talk about how
to make the program find ORFs.

Translating Proteins Inside Each Frame

It might be helpful to write a bit of pseudocode to help sketch out what needs to
happen:

def main() -> None:
args = get_args()

Iterate through each DNA sequence in the file:
Transcribe the sequence from DNA to mRNA
Iterate using the forward and reverse complement of the mRNA:
Iterate through 0, 1, 2 for frames in this sequence:
Translate the mRNA frame into a protein sequence
Try to find the ORFs in this protein sequence

You can use a for loop to iterate through the input sequences using Bio.SeqI0:
def main() -> None:

args = get_args()

for rec in SeqIO.parse(args.file, 'fasta'):
print(str(rec.seq))

Run the program to verify that this works:

$./orf.py tests/inputs/1.fa
AGCCATGTAGCTAACTCAGGTTACATGGGGATGACCCCGCGACTTGGATTAGAGTCTCTTTTGGA\
ATAAGCCTGAATGATCCGAGTAGCATCTCAG

I need to transcribe this to mRNA, which entails changing all the Ts to Us. I'll let you
use whatever solution from Chapter 2 you like so long as your program can now
print this:

Getting Started | 277

$./orf.py tests/inputs/1.fa
AGCCAUGUAGCUAACUCAGGUUACAUGGGGAUGACCCCGCGACUUGGAUUAGAGUCUCUUUUGGA\
AUAAGCCUGAAUGAUCCGAGUAGCAUCUCAG

Next, refer to Chapter 3 and have your program print both the forward and reverse
complements of this sequence:

$./orf.py tests/inputs/1.fa
AGCCAUGUAGCUAACUCAGGUUACAUGGGGAUGACCCCGCGACUUGGAUUAGAGUCUCUUUUGGA\
AUAAGCCUGAAUGAUCCGAGUAGCAUCUCAG
CUGAGAUGCUACUCGGAUCAUUCAGGCUUAUUCCAAAAGAGACUCUAAUCCAAGUCGCGGGGUCA\
UCCCCAUGUAACCUGAGUUAGCUACAUGGCU

Refer to Chapter 7 to translate the forward and reverse complements to proteins:

$.Jorf.py tests/inputs/1.fa

SHVANSGYMGMTPRLGLESLLE*A*MIRVASQ

LRCYSDHSGLFQKRL*SKSRGHPHVT*VSYMA
Now, rather than reading each mRNA sequence from the beginning, implement fra-
meshifts by reading them starting from the zeroth, first, and second characters, which
you can do using a string slice. If you use Biopython to translate the mRNA slice, you
may encounter the warning:

Partial codon, len(sequence) not a multiple of three. Explicitly trim the sequence or
add trailing N before translation. This may become an error in the future.

To fix this, I created a function to truncate a sequence to the nearest even division by
a value:

def truncate(seq: str, k: int) -> str:
""" Truncate a sequence to even division by k """

return

Figure 14-1 shows the results of shifting through the string 8123456789 and truncat-
ing each result to a length that is evenly divisible by 3.

r 11 11 1 T 11 11 1 1
0123456789 123456789 23456789

Shift 0 Shift 1 Shift 2

Figure 14-1. Truncating the various frameshifts to a length that is evenly divisible by the
codon size 3
Here is a test you could use:

def test_truncate() -> None:
""" Test truncate """

seq = '0123456789'
assert truncate(seq, 3) == '012345678'

278 | Chapter 14: Finding Open Reading Frames

assert truncate(seq[1:], 3) == '123456789'
assert truncate(seq[2:], 3) == '234567'

Change your program to print the protein translations for the three shifts for both
the forward and reverse complements of the mRNA. Be sure to print the entire trans-
lation, including all stop (*) codons, like so:

$./orf.py tests/inputs/1.fa
SHVANSGYMGMTPRLGLESLLE*A*MIRVASQ
AM*LTQVTWG*PRDLD*SLFWNKPE*SE*HL
PCS*LRLHGDDPATWIRVSFGISLNDPSSIS
LRCYSDHSGLFQKRL*SKSRGHPHVT*VSYMA
*DATRIIQAYSKRDSNPSRGVIPM*PELATW
EMLLGSFRLIPKETLIQVAGSSPCNLS*LHG

Finding the ORFs in a Protein Sequence

Now that the program can find all the protein sequences from each frameshift of the
mRNA, it’s time to look for the open reading frames in the proteins. Your code will
need to consider every interval from each start codon to the first subsequent stop
codon. The codon AUG is the most common start codon, and it codes for the amino
acid methionine (M). There are three possible stop codons shown with the asterisk
(*). For example, Figure 14-2 shows that the amino acid sequence MAMAPR* con-
tains two start codons and one stop codon and so has two possible proteins of
MAMAPR and MAPR. Although it is common for tools to report only the longer
sequence, the Rosalind challenge expects all possible sequences.

1
MAMAPR*
I |

Figure 14-2. The protein sequence MAMAPR* has two overlapping open reading frames
I decided to write a function called find_orfs() that will accept an amino acid string
and return a list of ORFs:

def find_orfs(aa: str) -> List[str]: (1]
""" Find ORFs in AA sequence """

return [] (2]

© The function accepts a string of amino acids and returns a list of possible protein
strings.

® For now, return the empty list.

Here is a test for this function. If you can implement the find_orfs() that passes this
test, then you should be able to pass the integration test:

Getting Started | 279

def test_find_orfs() -> None:
""" Test find_orfs """

assert find_orfs('') == [] (1]

assert find_orfs('M') == [] (2]

assert find_orfs('*') == [] (3]

assert find_orfs('M*') == ['M'] (4]

assert find_orfs('MAMAPR*') == ['MAMAPR', 'MAPR'] 6

assert find_orfs('MAMAPR*M') == ['MAMAPR', 'MAPR'] G

assert find_orfs('MAMAPR*MP*') == ['MAMAPR', 'MAPR', 'MP'] (7]

The empty string should produce no ORFs.
A single start codon with no stop codon should produce no ORFs.

A single stop codon with no preceding start codon should produce no ORFs.

© o © ©

The function should return the start codon even if there are no intervening bases
before the stop codon.

© This sequence contains two ORFs.
O This sequence also contains only two ORFs.

© This sequence contains three putative ORFs in two separate sections.

Once you can find all the ORFs in each mRNA sequence, you should collect them
into a distinct list. I suggest you use a set() for this. Though my solution prints the
OREFs in sorted order, this is not a requirement for the test. The solution will bring
together many of the skills you've already learned. The craft of writing longer and
longer programs lies in composing smaller pieces that you understand and test. Keep
plugging away at your program until you pass all the tests.

Solutions

I'll present three solutions to finding ORFs using two string functions and regular
expressions.

Solution 1: Using the str.index() Function

To start, here is how I wrote the truncate() function that will assuage the
Bio.Seq.translate() function when I try to translate the various frame-shifted
mRNA sequences:

def truncate(seq: str, k: int) -> str:
""" Truncate a sequence to even division by k """

280 | Chapter 14: Finding Open Reading Frames

length = len(seq) (1)
end = length - (length % k) (2]
return seq[:end]

© Find the length of the sequence.
® The end of the desired subsequence is the length minus the length modulo k.

© Return the subsequence.

Next, here is one way to write the find_orfs() that uses the str.index() function to
find each starting M codon followed by a * stop codon:
def find_orfs(aa: str) -> List[str]:
orfs =[] @
while 'M' in aa:
start = aa.index('M") (3]
if '*' in aa[start + 1:]: (4]
stop = aa.index('*', start + 1) (5]
orfs.append(''.join(aa[start:stop])) (6]
aa = aa[start + 1:]
else:
break ©

return orfs

Initialize a list to hold the ORFs.

Create a loop to iterate while there are start codons present.
Use str.index() to find the location of the start codon.

See if the stop codon is present after the start codon’s position.
Get the index of the stop codon after the start codon.

Use a string slice to grab the protein.

®© ©6 6 6 66 o0 o

Set the amino acid string to the index after the position of the start codon to find
the next start codon.

O Leave the while loop if there is no stop codon.
Here is how I incorporate these ideas into the program:
def main() -> None:
args = get_args()

for rec in SeqIO.parse(args.file, 'fasta'): (1]
rna = str(rec.seq).replace('T', 'U'") (2]

Solutions | 281

orfs = set() (3]

for seq in [rna, Seq.reverse_complement(rna)]: (4]
for 1 in range(3): (5]
if prot := Seq.translate(truncate(seq[i:], 3), to_stop=False): (6]
for orf in find_orfs(prot):
orfs.add(orf) 0

print('\n'.join(sorted(orfs))) @
Iterate through the input sequences.
Transcribe the DNA sequence to mRNA.
Create an empty set to hold all the ORFs.
Iterate through the forward and reverse complement of the mRNA.
Iterate through the frameshifts.
Attempt to translate the truncated, frame-shifted mRNA into a protein sequence.

Iterate through each ORF found in the protein sequence.

© ¢ © 6 6 o6 o0 o

Add the OREF to the set to maintain a unique list.

Print the sorted ORFs.

Solution 2: Using the str.partition() Function

Here is another approach to writing the find_orfs() function that uses str.parti
tion(). This function breaks a string into the part before some substring, the sub-
string, and the part after. For instance, the string MAMAPR*MP* can be partitioned
on the stop codon (*):

>>> 'MAMAPR*MP*'.partition('*")

('MAMAPR', '*', 'MP*')
If the protein sequence does not contain a stop codon, the function returns the entire
sequence in the first position and empty strings for the others:

>>> 'M'.partition('*")

(M,
In this version, I use two infinite loops. The first tries to partition the given amino
acid sequence on the stop codon. If this is not successful, I exit the loop. Figure 14-3
shows that the protein sequence MAMAPR*MP* contains two sections that have start
and end codons.

282 | Chapter 14: Finding Open Reading Frames

MAMAPR*MP *
L I I

— T

MAMAPR* MP *
1

Figure 14-3. The protein sequence MAMAPR*MP* has three ORFs in two sections

The second loop checks the first partition to find all the subsequences starting with
the M start codon. So in the partition MAMAPR, it finds the two sequences
MAMAPR and MAPR. The code then truncates the amino acid sequence to the last
partition, MP?*, to repeat the operation until all ORFs have been found:

def find_orfs(aa: str) -> List[str]:
""" Find ORFs in AA sequence """

orfs = [] (1)
while True: @
first, middle, rest = aa.partition('*') (3]
if middle == '': @
break

last = 0 ©

while True: @
start = first.find('M', last) (7]
if start == -1: ©

break

orfs.append(first[start:]) (o]
last = start + 1 ©®

aa = rest

return orfs ®

Initialize a list for the ORFs to return.
Create the first infinite loop.

Partition the amino acid sequence on the stop codon.

© o © ©

The middle will be empty if the stop codon is not present, so break from the
outer loop.

Set a variable to remember the last position of a start codon.
Create a second infinite loop.

Use the str.find() method to locate the index of the start codon.

Solutions | 283

The value -1 indicates that the start codon is not present, so leave the inner loop.
Add the substring from the start index to the list of ORFs.
Move the last known position to after the current start position.

Truncate the protein sequence to the last part of the initial partition.

® 6 & 06 ©o

Return the ORFs to the caller.

Solution 3: Using a Regular Expression

In this final solution, I'll once again point out that a regular expression is probably
the most fitting solution to find a pattern of text. This pattern always starts with M,
and I can use the re.findall() function to find the four Ms in this protein sequence:

>>> import re

>>> re.findall('M', 'MAMAPR*MP*M')

[IM" |MI’ IM" IMI]
The Rosalind challenge does not consider noncanonical start codons, so an ORF will
always start with an M and extend to the first stop codon. In between these, there can
be zero or more not-stop codons which I can represent using a negated character
class of [~*] that excludes the stop codon followed by a * to indicate that there can be
zero or more of the preceding pattern:

>>> re.findall('M[**]*', 'MAMAPR*MP*M')

['MAMAPR', 'MP', 'M']
I need to add the stop codon * to this pattern. Because the literal asterisk is a meta-
character, I must use a backslash to escape it:

>>> re.findall('M[A*]**', 'MAMAPR*MP*M')
['MAMAPR*', 'MP*']

I can also place the asterisk inside a character class where it has no meta meaning:

>>> re.findall('M[A*]*[*]', 'MAMAPR*MP*M')
["MAMAPR*', 'MP*']

Figure 14-4 shows this pattern using a finite state machine diagram.

284 | Chapter 14: Finding Open Reading Frames

M ‘ - *

Figure 14-4. A finite state machine diagram of the regular expression to find an open
reading frame

I can see that this pattern is close to working, but it’s only finding two of the three
ORFs because the first one overlaps the second one. As in Chapters 8 and 11, I can
wrap the pattern in a positive look-ahead assertion. Further, I will use parentheses to
create a capture group around the ORF up to the stop codon:

>>> re.findall(' (2=(M[~*]*)[*])", 'MAMAPR*MP*M"')
['MAMAPR', 'MAPR', 'MP']

Here is one version of the find_orfs() that uses this pattern:

def find_orfs(aa: str) -> List[str]:
""" Find ORFs in AA sequence """

return re.findall(' (?=(M[**]*)[*])', aa)

While this passes test_find_orfs(), this is a complicated regex that I will have to
relearn every time I come back to it. An alternate way to write this is to place each
functional piece of the regex on a separate line, followed by an end-of-line comment,
and rely on Python’s implicit string concatenation (first shown in Chapter 2) to join
these into a single string. This is my preferred method to find the ORFs:

def find_orfs(aa: str) -> List[str]:
""" Find ORFs in AA sequence """

pattern = ((1)

(2= # start positive look-ahead to handle overlaps
(! # start a capture group

'M' # a literal M

"[~*]*" # zero or more of anything not the asterisk
! # end the capture group

"] # a literal asterisk

DR # end the look-ahead group

return re.findall(pattern, aa) (2]

© The parentheses group the following lines such that Python will automatically
join the strings into a single string. Be sure there are no commas or Python will
create a tuple.

® Use the pattern with the re.findall() function.

Solutions | 285

This is a longer function, but it will be much easier to understand the next time I see
it. One downside is that yapf that I use to format my code will remove the vertical
alignment of the comments, so I must manually format this section. Still, I think it’s
worth it to have more self-documenting code.

Going Further

Expand the program to process multiple input files, writing all the unique ORFs to an
indicated output file.

Review

Key points from this chapter:

+ The Bio.Seq.translate() function will print warnings if the input sequence is
not evenly divisible by three, so I wrote a truncate() function to trim the
protein.

o The str.find() and str.partition() functions each present ways to find sub-
sequences in a string.

o A regular expression remains my preferred method to find a pattern in some
text.

« A complicated regex can be written over multiple lines with comments so that
Python will implicitly concatenate them into a single string.

286 | Chapter 14: Finding Open Reading Frames

PART I
Other Programs

In the chapters in this part, I'll show you several programs I've written that capture
patterns I have used repeatedly in bioinformatics. First, I'll show you how to write a
program to find basic statistics from sequence files and format an output table. Next,
I'll demonstrate how to select sequences using pattern matching on the header infor-
mation followed by a program that will create artificial DNA sequences using data
learned from training files. Then I'll show you a program that explores randomness
to subsample sequences, and I'll finish by using Python to parse delimited text files
both with and without header information. I hope you'll find patterns in these pro-
grams you can use when writing your own.

CHAPTER 15

Seqmagique: Creating
and Formatting Reports

Often in bioinformatics projects, you'll find yourself staring at a directory full of
sequence files, probably in FASTA or FASTQ format. You'll probably want to start by
getting an idea of the distribution of sequences in the files, such as how many are in
each file and the average, minimum, and maximum lengths of the sequences. You
need to know if any files are corrupted—maybe they didn't transfer completely from
your sequencing center—or if any samples have far fewer reads, perhaps indicating a
bad sequencing run that needs to be redone. In this chapter, I'll introduce some tech-
niques for checking your sequence files using hashes and the Seqmagick tool. Then
I’ll write a small utility to mimic part of Seqmagick to illustrate how to create format-
ted text tables. This program serves as a template for any program that needs to pro-
cess all the records in a given set of files and produce a table of summary statistics.

You will learn:

« How to install the segmagick tool

« How to use MD5 hashes

» How to use choices in argparse to constrain arguments
« How to use the numpy module

« How to mock a filehandle

o How to use the tabulate and rich modules to format output tables

289

https://oreil.ly/VI9gr

Using Seqmagick to Analyze Sequence Files

seqmagick is a useful command-line utility for handling sequence files. This should
have been installed along with the other Python modules if you followed the setup
instructions in the Preface. If not, you can install it with pip:

$ python3 -m pip install seqmagick

If you run segmagick --help, you’ll see the tool offers many options. I only want to
focus on the info subcommand. I can run this on the test input FASTA files in the
15_seqmagique directory like so:

$ cd 15_seqgmagique
$ segmagick info tests/inputs/*.fa

name alignment min_len max_len avg_len num_seqs
tests/inputs/1.fa FALSE 50 50 50.00 1
tests/inputs/2.fa FALSE 49 79 64.00 5
tests/inputs/empty.fa FALSE 0 0 0.00 0

In this exercise, you will create a program called seqmagique.py (this should be pro-
nounced with an exaggerated French accent) that will mimic this output. The point of
the program is to provide a basic overview of the sequences in a given set of files so
you can spot, for instance, a truncated or corrupted file.

Start by copying the solution to segmagique.py and requesting the usage:

$ cp solutionl.py segmagique.py
$./segmagique.py -h
usage: seqmagique.py [-h] [-t table] FILE [FILE ...]

Mimic segmagick

positional arguments:
FILE Input FASTA file(s) @

optional arguments:
-h, --help show this help message and exit
-t table, --tablefmt table (2]
Tabulate table style (default: plain)

© The program accepts one or more input files which should be in FASTA format.

® This option controls the format of the output table.

Run this program on the same files and note that the output is almost identical,
except that I have omitted the alignment column:

$./segmagique.py tests/inputs/*.fa
name min_len max_len avg_len num_seqs
tests/inputs/1.fa 50 50 50.00 1

290 | Chapter 15: Seqmagique: Creating and Formatting Reports

tests/inputs/2.fa 49 79 64.00 5
tests/inputs/empty.fa 0 0 0.00 0

The --tablefmt option controls how the output table is formatted. This is the first
program you’ll write that constrains the value to a given list. To see this in action, use
a bogus value like blargh:

$./segmagique.py -t blargh tests/inputs/1.fa

usage: seqmagique.py [-h] [-t table] FILE [FILE ...]

segmagique.py: error: argument -t/--tablefmt: invalid choice: 'blargh'

(choose from 'plain', 'simple', 'grid', 'pipe', 'orgtbl', 'rst',

'mediawiki', 'latex', 'latex_raw', 'latex_booktabs')

Then try a different table format, such as simple:

$./segmagique.py -t simple tests/inputs/*.fa

name min_len max_len avg_len num_seqs
tests/inputs/1.fa 50 50 50.00 1
tests/inputs/2.fa 49 79 64.00 5
tests/inputs/empty.fa 0 0 0.00 0

Run the program with other table styles and then try the test suite. Next, I'll talk
about getting data for our program to analyze.

Checking Files Using MD5 Hashes

The first step in most genomics projects will be transferring sequence files to some
location where you can analyze them, and the first line of defense against data cor-
ruption is ensuring that the files were copied completely. The source of the files may
be a sequencing center or a public repository like GenBank or the Sequence Read
Archive (SRA). The files may arrive on a thumb drive, or you may download them
from the internet. If the latter, you may find that your connection drops, causing
some files to be truncated or corrupted. How can you find these types of errors?

One way to check that your files are complete is to compare the file sizes locally with
those on the server. For instance, you can use the 1s -1 command to view the long
listing of files where the file size, in bytes, is shown. For large sequence files, this is
going to be a very large number, and you will have to manually compare the file sizes
from the source to the destination, which is tedious and prone to error.

Another technique involves using a hash or message digest of the file, which is a signa-
ture of the file’s contents generated by a one-way cryptographic algorithm that creates
a unique output for every possible input. Although there are many tools you can use
to create a hash, I'll focus on tools that use the MD5 algorithm. This algorithm was
originally developed in the context of cryptography and security, but researchers have
since identified numerous flaws that now make it suitable only for purposes such as
verifying data integrity.

Checking Files Using MD5 Hashes | 291

https://oreil.ly/2eaMj
https://oreil.ly/kGNCv
https://oreil.ly/kGNCv

On macOS, I can use md5 to generate a 128-bit hash value from the contents of the
first test input file, like so:

$ md5 -r tests/inputs/1.fa
c383c386a44d83c37ae287f0aa5ael1d tests/inputs/1.fa

I can also use openssl:

$ openssl md5 tests/inputs/1.fa
MD5(tests/inputs/1.fa)= c383c386a44d83c37ae287f0aa5aelld

On Linux, I use md5sum:

$ md5sum tests/inputs/1.fa

c383c386a44d83c37ae287f0aa5aelld tests/inputs/1.fa
As you can see, no matter the tool or platform, the hash value is the same for the
same input file. If I change even one bit of the input file, a different hash value will be
generated. Conversely, if I find another file that generates the same hash value, then
the contents of the two files are identical. For instance, the empty.fa file is a zero-
length file I created for testing, and it has the following hash value:

$ md5 -r tests/inputs/empty.fa

d41d8cd98f00b204e9800998ecf8427e tests/inputs/empty.fa
If T use the touch foo command to create another empty file, I'll find it has the same
signature:

$ touch foo

$ md5 -r foo

d41d8cd98f00b204e9800998ecf8427e foo
It's common for data providers to create a file of the checksums so that you can verify
that your copies of the data are complete. I created a tests/inputs/checksums.md5
like so:

$ cd tests/inputs
$ md5 -r *.fa > checksums.md5

It has the following contents:

$ cat checksums.md5
C383c386a44d83c37ae287f0aa5aelld 1.fa
863ebc53e28fdfe6689278e40992db9d 2.fa
d41d8cd98f00b204€9800998ecf8427¢e empty.fa

The md5sum tool has a --check option that I can use to automatically verify that the
files match the checksums found in a given file. The macOS md5 tool does not have an
option for this, but you can use brew install md5shailsum to install an equivalent
md5sum tool that can do this:

$ md5sum --check checksums.md5
1.fa: 0K

292 | Chapter 15: Seqmagique: Creating and Formatting Reports

2.fa: OK

empty.fa: OK
MD5 checksums present more complete and easier ways to verify data integrity than
manually checking file sizes. Although file digests are not directly part of this exer-
cise, I feel it's important to understand how to verify that you have complete and
uncorrupted data before beginning any analyses.

Getting Started

You should work in the 15_segmagique directory for this exercise. I'll start the pro-
gram as usual:

$ new.py -fp 'Mimic segmagick' segmagique.py
Done, see new script "segmagique.py".

First I need to make the program accept one or more text files as positional parame-

ters. I also want to create an option to control the output table format. Here is the
code for that:

import argparse
from typing import NamedTuple, TextIO, List

class Args(NamedTuple):
""" Command-line arguments
files: List[TextIO]
tablefmt: str

def get_args() -> Args:
"""Get command-line arguments"""

parser = argparse.ArgumentParser(
description="Argparse Python script',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file', (1)
metavar='FILE',
type=argparse.FileType('rt'),
nargs='+"',
help="Input FASTA file(s)')

parser.add_argument('-t',
'--tablefmt',
metavar='table',
type=str,
choices=[
'plain', 'simple', 'grid', 'pipe', 'orgtbl', 'rst',
'mediawiki', 'latex', 'latex_raw', 'latex_booktabs'

1

Getting Started | 293

default='plain’',
help='Tabulate table style')

args = parser.parse_args()
return Args(args.file, args.tablefmt)

© Define a positional parameter for one or more readable text files.

© Define an option that uses choices to constrain the argument to a value in the
list, making sure to define a reasonable default value.

Using chotices for the --tablefmt really saves you quite a bit of work in validating
user input. As shown in “Using Seqmagick to Analyze Sequence Files” on page 290, a
bad value for the table format option will trigger a useful error message.

Modify the main() function to print the input filenames:

def main() -> None:
args = get_args()
for fh in args.files:
print(fh.name)

And verify that this works:

$./segmagique.py tests/inputs/*.fa
tests/inputs/1.fa

tests/inputs/2.fa
tests/inputs/empty.fa

The goal is to iterate through each file and print the following:

name
The filename

min_len
The length of the shortest sequence

max_len
The length of the longest sequence

avg_len
The average/mean length of all the sequences

num_seqs
The number of sequences

If you would like to have some real input files for the program, you can use the
fastq-dump tool from NCBI to download sequences from the study “Planktonic
Microbial Communities from North Pacific Subtropical Gyre™

294 | Chapter 15: Seqmagique: Creating and Formatting Reports

https://oreil.ly/Vmb0w
https://oreil.ly/aAGUA
https://oreil.ly/aAGUA

$ fastg-dump --split-3 SAMNG0E0EO13 @

© The --split-3 option will ensure that paired-end reads are correctly split into
forward/reverse/unpaired reads. The SAMNO0000O13 string is the accession of one
of the samples from the experiment.

Formatting Text Tables Using tabulate()

The output of the program will be a text table formatted using the tabulate() func-
tion from that module. Be sure to read the documentation:

>>> from tabulate import tabulate
>>> help(tabulate)

I need to define the headers for the table, and I decided to use the same ones as Seq-
magick (minus the alignment column):

>>> hdr = ['name', 'min_len', 'max_len', 'avg_len', 'num_seqs']

The first test file, tests/inputs/1.fa, has just one sequence of 50 bases, so the columns
for this are as follows:

>>> f1 = ['tests/inputs/1.fa', 50, 50, 50.00, 1]

The second test file, tests/inputs/2.fa, has five sequences ranging from 49 bases to 79
with an average length of 64 bases:

>>> f2 = ['tests/inputs/2.fa', 49, 79, 64.00, 5]

The tabulate() function expects the table data to be passed positionally as a list of
lists, and I can specify the headers as a keyword argument:

>>> print(tabulate([f1, f2], headers=hdr))

name min_len max_len avg_len num_seqs
tests/inputs/1.fa 50 50 50 1
tests/inputs/2.fa 49 79 64 5

Alternatively, I can place the headers as the first row of data and indicate this is the
location of the headers:

>>> print(tabulate([hdr, f1, f2], headers='firstrow'))

name min_len max_len avg_len num_seqs
tests/inputs/1.fa 50 50 50 1
tests/inputs/2.fa 49 79 64 5

Note that the default table style for the tabulate() function is simple, but the plain
format is what I need to match Seqmagick’s output. I can set this with the tablefmt
option:

>>> print(tabulate([f1, f2], headers=hdr, tablefmt='plain'))
name min_len max_len avg_len num_seqs

Getting Started | 295

https://oreil.ly/kBCQU
https://oreil.ly/kBCQU

tests/inputs/1.fa 50 50 50 1

tests/inputs/2.fa 49 79 64 5
One other thing to note is that the values in the avg_len column are being shown as
integers but should be formatted as floating-point numbers to two decimal places.
The floatfmt option controls this, using syntax similar to the f-string number for-
matting I've shown before:

>>> print(tabulate([f1, f2], headers=hdr, tablefmt='plain', floatfmt='.2f"'))

name min_len max_len avg_len num_seqs
tests/inputs/1.fa 50 50 50.00 1
tests/inputs/2.fa 49 79 64.00 5

Your job is to process all the sequences in each file to find the statistics and print the
final table. This should be enough for you to solve the problem. Don’t read ahead
until you can pass all the tests.

Solutions

I'll present two solutions that both show the file statistics but differ in the formatting
of the output. The first solution uses the tabulate() function to create an ASCII text
table and the second uses the rich module to create a fancier table sure to impress
your labmates and principal investigator (PI).

Solution 1: Formatting with tabulate()

For my solution, I first decided to write a process() function that would handle each
input file. Whenever I approach a problem that needs to handle some list of items, I
prefer to focus on how to handle just one of the items. That is, rather than trying to
find all the statistics for all the files, I first want to figure out how to find this informa-
tion for just one file.

My function needs to return the filename and the four metrics: minimum/maximum/
average sequence lengths, plus the number of sequences. Just as with the Args class, I
like to create a type based on a NamedTuple for this so that I have a statically typed
data structure that mypy can validate:

class FastaInfo(NamedTuple):
""" FASTA file information """
filename: str
min_len: int
max_len: int
avg_len: float
num_seqs: int

Now I can define a function that returns this data structure. Note that 'm using the
numpy .mean() function to get the average length. The numpy module offers many
powerful mathematical operations to handle numeric data and is especially useful for

296 | Chapter 15: Seqmagique: Creating and Formatting Reports

multidimensional arrays and linear algebra functions. When importing the depen-
dencies, it's common to import the numpy module with the alias np:

import numpy as np
from tabulate import tabulate
from Bio import SeqIO

You can run help(np) in the REPL to read the documentation. Here’s how I wrote
this function:

def process(fh: TextIO) -> Fastalnfo: (1]
""" Process a file """

if lengths := [len(rec.seq) for rec in SeqlO.parse(fh, 'fasta')]: (2]
return FastaInfo(filename=fh.name,
min_len=min(lengths), (4]
max_len=max(lengths), (5]
avg_len=round(float(np.mean(lengths)), 2), (6]
num_seqgs=len(lengths)) (7]

return FastaInfo(filename=fh.name, (&)
min_len=0,
max_len=0,
avg_len=0,
num_seqs=0)

The function accepts a filehandle and returns a FastaInfo object.

Use a list comprehension to read all the sequences from the filehandle. Use the
len() function to return the length of each sequence.

The name of the file is available through the fh.name attribute.
The min() function will return the minimum value.

The max() function will return the maximum value.

© 6 6 o

The np.mean() function will return the mean from a list of values. The round()
function is used to round this floating-point value to two significant digits.

© The number of sequences is the length of the list.

© If there are no sequences, return zeros for all the values.

As always, I want to write a unit test for this. While it’s true that the integration tests I
wrote cover this part of the program, I want to show how you can write a unit test for

a function that reads a file. Rather than relying on actual files, I'll create a mock or
fake filehandle.

Solutions | 297

The first test file looks like this:

$ cat tests/inputs/1.fa
>SEQO
GGATAAAGCGAGAGGCTGGATCATGCACCAACTGCGTGCAACGAAGGAAT

I can use the 10.StringIO() function to create an object that behaves like a
filehandle:

>>> import io

>>> f1 = '">SEQO\nGGATAAAGCGAGAGGCTGGATCATGCACCAACTGCGTGCAACGAAGGAAT\N' (1)

>>> fh = 10.StringI0O(f1) (2]

>>> for line in fh:

print(line, end="") (4]
>SEQO
GGATAAAGCGAGAGGCTGGATCATGCACCAACTGCGTGCAACGAAGGAAT

This is the data from the first input file.
Create a mock filehandle.

Iterate through the lines of the mock filehandle.

© © © ©

Print the line which has a newline (\n), so use end="'" to leave off an additional
newline.

There’s a slight problem, though, because the process() function calls the fh.name
attribute to get the input filename, which will raise an exception:

>>> fh.name
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: '_i0.StringI0' object has no attribute 'name’
Luckily, there’s another way to create a mock filehandle using Pythons standard
unittest module. While I favor the pytest module for almost everything I write,
the unittest module has been around for a long time and is another capable frame-
work for writing and running tests. In this case, I need to import the unit
test.mock.mock_open() function. Here is how I can create a mock filehandle with
the data from the first test file. I use read_data to define the data that will be returned
by the fh.read() method:

>>> from unittest.mock import mock_open

>>> fh = mock_open(read_data=f1)()

>>> fh.read()

' >SEQO\NnGGATAAAGCGAGAGGCTGGATCATGCACCAACTGCGTGCAACGAAGGAAT\N'

In the context of testing, I don't care about the filename, only that this returns a string
and does not throw an exception:

298 | Chapter 15: Seqmagique: Creating and Formatting Reports

https://oreil.ly/EGvXh
https://oreil.ly/EGvXh

>>> fh.name
<MagicMock name='open().name' id='140349116126880'>

While I often place my unit tests in the same modules as the functions they test, in
this instance, I'd rather put this into a separate unit.py module to keep the main pro-
gram shorter. I wrote the test to handle an empty file, a file with one sequence, and a
file with more than one sequence (which are also reflected in the three input test
files). Presumably, if the function works for these three cases, it should work for all
others:

from unittest.mock import mock_open (1]
from seqmagique import process

def test_process() -> None:
" Test process """

empty = process(mock_open(read_data='"')()) ©
assert empty.min_len ==

assert empty.max_len == 0

assert empty.avg_len ==

assert empty.num_seqgs ==

one = process(mock_open(read_data='>SEQO\nAAA')()) (4]

assert one.min_len == 3
assert one.max_len == 3
assert one.avg_len ==

assert one.num_seqs == 1

two = process(mock_open(read_data='>SEQO\nAAA\n>SEQ1\nCCCC')()) (5]
assert two.min_len == 3

assert two.max_len ==

assert two.avg_len == 3.5

assert two.num_seqs ==

Import the mock_open() function.
Import the process() function I'm testing.
A mock empty filehandle that should have zeros for all the values.

A single sequence with three bases.

® 6 o6 o o

A filehandle with two sequences of three and four bases.

Solutions | 299

Use pytest to run the tests:

$ pytest -xv unit.py

test session starts

unit.py::test_process PASSED [100%]

1 passed in 2.55s

Where to Place Unit Tests

Note that the preceding unit.py module imports the process() function from the
seqmagique.py module, so both modules need to be in the same directory. If I were
to move unit.py to the fests directory, then pytest would break. I encourage you to
try the following and note the errors.

You should get a notice like ModuleNotFoundError: No module named seqmagique:

$ cp unit.py tests
$ pytest -xv tests/unit.py

As noted in the documentation, I must invoke pytest as follows to add the current
directory to sys.path so that seqmagique. py can be found:

$ python3 -m pytest -xv tests/unit.py

Placing unit.py in the same directory as the code it’s testing is slightly more conve-
nient as it means I can run the shorter pytest command, but grouping all the tests
into the tests directory is tidier. I would normally prefer to have this module as tests/
unit_test.py so that pytest will automatically discover it, and I would use a make tar-
get to run the longer invocation. Mostly I just want you to be aware of different ways
to organize your code and tests.

Here is how I use my process() function in main():
def main() -> None:
args = get_args()
data = [process(fh) for fh in args.files] (1)
hdr = ['name', 'min_len', 'max_len', 'avg_len', 'num_segs'] (2]
print(tabulate(data, tablefmt=args.tablefmt, headers=hdr, floatfmt='.2f')) (3]

@ Process all the input files into a list of FastaInfo objects (tuples).

® Define the table headers.

©® Use the tabulate() function to print a formatted output table.

300 | Chapter 15: Seqmagique: Creating and Formatting Reports

https://oreil.ly/um7N7

To test this program, I run it with the following inputs:

o The empty file
o The file with one sequence
o The file with two sequences

o All the input files

To start, I run all these with the default table style. Then I need to verify that all 10 of
the table styles are created correctly. Combining all the possible test inputs with all
the table styles creates a high degree of cyclomatic complexity—the number of differ-
ent ways that parameters can be combined.

To test this, I first need to manually verify that my program is working correctly.
Then I need to generate sample outputs for each of the combinations I intend to test.
I wrote the following bash script to create an out file for a given combination of an
input file and possibly a table style:

$ cat mk-outs.sh
#!/usr/bin/env bash

PRG=". /segmagique.py" (1)
DIR="./tests/inputs" (2]
INPUT1="${DIR}/1.fa" ©
INPUT2="${DIR}/2.fa"
EMPTY="${DIR}/empty.fa"

$PRG $INPUT1 > "${INPUT1}.out" @

$PRG $INPUT2 > "${INPUT2}.out"

$PRG SEMPTY > "${EMPTY}.out"

$PRG $INPUT1 SINPUT2 $EMPTY > "$DIR/all.fa.out"

STYLES="plain simple grid pipe orgtbl rst mediawiki latex latex_raw
latex_booktabs"

for FILE in SINPUT1 $INPUT2; do (5)
for STYLE in $STYLES; do
SPRG -t $STYLE SFILE > "SFILE.S$S{STYLE}.out"
done
done

echo Done.

© The program being tested.
® The directory for the input files.

© The input files.

Solutions | 301

O Run the program using the three input files and the default table style.

© Run the program with two of the input files and all the table styles.

The tests in tests/seqmagique_test.py will run the program with a given file and will
compare the output to one of the out files in the tests/inputs directory. At the top of
this module, I define the input and output files like so:

TEST1 = ('./tests/inputs/1.fa', './tests/inputs/1.fa.out')

I define a run() function in the module to run the program with the input file and
compare the actual output to the expected output. This is a basic pattern you could
copy for testing any program’s output:

def run(input_file: str, expected_file: str) -> None:
""" Runs on command-line input """

expected = open(expected_file).read().rstrip() (1]
rv, out = getstatusoutput(f'{RUN} {input_file}') (2]
assert rv == 0

assert out == expected (4]

Read the expected output from the file.

(~)

Run the program with the given input file using the default table style.

]

Check that the return value is 0.

Check that the output was the expected value.
I use it like so:

def test_inputl() -> None:
""" Runs on command-line input """

run(*TEST1) @

© Splat the tuple to pass the two values positionally to the run() function.
The test suite also checks the table styles:

def test_styles() -> None:
""" Test table styles """

styles = [(1)
'plain', 'simple', 'grid', 'pipe', 'orgtbl', 'rst', 'mediawiki’,
'latex', 'latex_raw', 'latex_booktabs'

]

for file in [TEST1[0], TEST2[0]]: ©®
for style in styles:

302 | Chapter 15: Seqmagique: Creating and Formatting Reports

expected_file = file + '.' + style + '.out' (4]
assert os.path.isfile(expected_file) (5)
expected = open(expected_file).read().rstrip() (6]

flag = '--tablefmt' if random.choice([0, 1]) else '-t' (7]
rv, out = getstatusoutput(f'{RUN} {flag} {style} {file}') ()
assert rv == 0

assert out == expected

Define a list of all possible styles.

Use the two nonempty files.

Iterate through each style.

The output file is the name of the input file plus the style and the extension .out.
Check that the file exists.

Read the expected value from the file.

Randomly choose the short or long flag to test.

© ¢ © 6 6 o6 o o

Run the program with the flag option, style, and file.

© Ensure that the program ran without error and produces the correct output.

If I make a change such that the program no longer creates the same output as before,
these tests should catch it. This is a regression test, where I am comparing how a pro-
gram works now to how it previously worked. That is, a failure to produce the same
output would be considered a regression. While my test suite isn't completely exhaus-
tive, it covers enough combinations that I feel confident the program is correct.

Solution 2: Formatting with rich

In this second solution I want to show a different way to create the output table, using
the rich module to track the processing of the input files and make a fancier output
table. Figure 15-1 shows how the output looks.

Solutions | 303

$./segmagique_rich.py tests/inputs/*.fa

Working... 100% 0:00:00
Name Min. Len | Max. Len | Avg. Len | Num. Seqgs
tests/inputs/1.fa 50 50 50.0 1
tests/inputs/2.fa 49 79 64.0 5
tests/inputs/empty.fa 0 0] 0 0

Figure 15-1. The progress indicator and output table using the rich module are fancier

I still process the files in the same way, so the only difference is in creating the output.
I first need to import the needed functions:

from rich.console import Console
from rich.progress import track
from rich.table import Table, Column

Here is how I use these:

def main() -> None:
args = get_args()

table = Table('Name', (1]
Column(header="'Min. Len', justify='right'),
Column(header="'Max. Len', justify='right'),
Column(header="'Avg. Len', justify='right'),
Column(header="'Num. Seqs', justify='right'),
header_style="bold black")

for fh in track(args.file): (2]
file = process(fh) (3]
table.add_row(file.filename, str(file.min_len), str(file.max_len), (4]
str(file.avg_len), str(file.num_seqs))

console = Console() (5]
console.print(table)

© Create the table to hold the data. The Name column is a standard, left-justified
string field. All the others need to be right-justified and require a custom Column
object.

© Iterate through each filehandle using the track() function to create a progress
bar for the user.

Process the file to get the statistics.

Add the file’s statistics to the table. Note that all the values must be strings.

304 | Chapter 15: Seqmagique: Creating and Formatting Reports

© Create a Console object, and use it to print the output.

Going Further

The segmagick tool has many other useful options. Implement your own versions of
as many as you can.

Going Further | 305

Review

Key points from this chapter:

The seqmagick tool provides many ways to examine sequence files.

There are many ways to verify that your input files are complete and not corrup-
ted, from examining file sizes to using message digests such as MD5 hashes.

The chotices option for argparse parameters will force the user to select a value
from a given list.

The tabulate and rich modules can create text tables of data.
The numpy module is useful for many mathematical operations.

The 10.StringI0() and unittest.mock.mock_open() functions offer two ways
to mock a filehandle for testing.

Regression testing verifies that a program continues to work as it did before.

306

| Chapter 15: Seqmagique: Creating and Formatting Reports

CHAPTER 16

FASTX grep: Creating a Utility Program
to Select Sequences

A colleague asked me once to find all the RNA sequences in a FASTQ file that had a
description or name containing the string LSU (for long subunit RNA). Although it’s
possible to solve this problem for FASTQ files by using the grep program' to find all
the lines of a file matching some pattern, writing a solution in Python allows you to
create a program that could be expanded to handle other formats, like FASTA, as well
as to select records based on other criteria, such as length or GC content. Addition-
ally, you can add options to change the output sequence format and introduce con-
veniences for the user like guessing the input file’s format based on the file extension.

In this chapter, you will learn:
« About the structure of a FASTQ file
« How to perform a case-insensitive regular expression match

o About DWIM (Do What I Mean) and DRY (Don’t Repeat Yourself) ideas in code

» How to use and and or operations to reduce Boolean values and bits

1 Some say this is short for global regular expression print.

307

Finding Lines in a File Using grep

The grep program can find all the lines in a file matching a given pattern. If I search
for LSU in one of the FASTQ files, it finds two header lines containing this pattern:

$ grep LSU tests/inputs/lsu.fq
@ITSLSUmock2p.ITS_M01380:138:000000000-COGKM:1:1101:14440:2042 2:N:0
@ITSLSUmock2p.ITS_M01384:138:000000000-CO9GKM:1:1101:14440:2043 2:N:0

If the goal were only to find how many sequences contain this string, I could pipe this
into we (word count) to count the lines using the -1 option:

$ grep LSU tests/inputs/lsu.fq | wc -1
2

Since my goal is to extract the sequence records where the header contains the sub-
string LSU, I have to do a little more work. As long as the input files are in FASTQ
format, I can still use grep, but this requires a better understanding of the format.

The Structure of a FASTQ Record

The FASTQ sequence format is a common way to receive sequence data from a
sequencer as it includes both the base calls and the quality scores for each base. That
is, sequencers generally report both a base and a measure of certainty that the base is
correct. Some sequencing technologies have trouble, for instance, with homopolymer
runs, like a poly(A) run of many As where the sequencer may be unable to count the
correct number. Many sequencers also lose confidence in base calls as the reads grow
longer. Quality scores are an important means for rejecting or truncating low-quality
reads.

Depending on the sequencer, some bases can be hard to distin-
guish, and the ambiguity may be reported using IUPAC codes I
describe in Chapter 1, such as R for A or G or N for any base.

The FASTQ format is somewhat similar to the FASTA format used in many of the
problems in the Rosalind challenges. As a reminder, FASTA records start with a >
symbol followed by a header line that identifies the sequence and may contain meta-
data. The sequence itself follows, which may be one (possibly long) line of text or
might be split over multiple lines. In contrast, FASTQ records must always be exactly
four lines, as shown in Figure 16-1.

308 | Chapter 16: FASTX grep: Creating a Utility Program to Select Sequences

?

| | 1
.4—@ParamolB_ITS_MOlBSO:138:000000000-C9GKM:1:1101:8813:1878 1:N:0
‘ GGAAGGATCATTACAGAGAACATGCCCTTTGTGGTATATCTCCCACCCTTTGTTTACAATACTTTTTTTC

1
TTCCTTCCCCTTCTTCTAGTCCTCTTGCCTTTTCTCCTCTTTTCCTGCCTAAGTTTCCCTAACACTGTTTTT
TTTATGCTGTCTCATTTCTATACAATAGTTACAAACTTTCTACAACGTATCTCTTGTTTCTTGCTTCTATGA
TGTTCTCAGCGACATGCGTTATGTAATGTGAATTTCAGAATTCATTGTATCATCCAATCTTT
.4—3 +

‘ GGG : @FGFGCFF<@FGGGGGG, C,66<CE@F, ,, ,;,<,<<@,,6,9,69CC,<EQ,<, ,6,,CC6,CC+66<]

6,,:,,,66:,:4?E,C,,,,,,,<,,,,:B,,::,,5,9,5,55:44,,,,,,55,55,49,67?,9ACA+
4e-,c,3=,8,¢,,,8,,6,3,,,33,,6@Q,,,,,445;3,,5,,,*3,7:;=A;,,54@;,,3,5,,,5,,
++++5+5+4%%)))8%0)) /)) +; ++331++43:+3++))1943+31++/7)9)))).//76

Figure 16-1. The elements of a FASTQ record—although the long lines are wrapped in
this display, the actual record contains exactly four lines

Let’s take a closer look at the contents of this figure:

1. The first line starts with the @ symbol and contains the header information.
2. The second line contains the sequence with no line breaks.

3. The third line begins with the + symbol. Often it will be only this symbol, but
sometimes the header information may be repeated.

4. The fourth line contains the quality scores for each base in the sequence and also
has no line breaks.

5. The sequence ID is all characters up to the first space.
6. Additional metadata may follow the ID and is included in the description.

7. Each base in the sequence has a partner in the quality line representing the confi-
dence that this base is correct.

A FASTQ header has the same structure as the header in a FASTA record, with the
exception that it starts with the @ sign instead of the >. The sequence identifier is usu-
ally all the characters after @ up to the first space. The second line containing the
sequence cannot contain any line breaks, and each base in the sequence has a corre-
sponding quality value in the fourth line. The quality scores on the fourth line use the
ASCII values of the characters to encode the certainty of the base call. These scores
are represented using the printable characters from the ASCII table first introduced
in Chapter 3.

The first 32 values in the ASCII table are unprintable control characters and the
space. The printable characters start at 33, with punctuation followed by numbers.
The first letter, A, is not found until 65, and uppercase characters precede lowercase.
The following is the output from the asciitbl.py program included in the reposi-
tory that shows the ordinal values of the 128 values from the ASCII table:

The Structure of a FASTQRecord | 309

$./asciitbl.py

0 NA 26 NA 52 4 78 N 104 h
1 NA 27 NA 53 5 79 0 105 i
2 NA 28 NA 54 6 80 P 106 j
3 NA 29 NA 55 7 81 Q 107 k
4 NA 30 NA 56 8 82 R 108 1
5 NA 31 NA 57 9 83 S 109 m
6 NA 32 SPACE 58 : 84 T 110 n
7 NA 331 59 ; 85 U 111 o
8 NA 34" 60 < 86 V 112 p
9 NA 35 # 61 = 87 W 113 q
10 NA 36 $ 62 > 88 X 114 r
11 NA 37 % 63 ? 89 Y 115 s
12 NA 38 & 64 @ 9 7 116 t
13 NA 39 ! 65 A 91 [117 u
14 NA 40 (66 B 92 \ 118 v
15 NA 41) 67 C 93] 119 w
16 NA 42 * 68 D 94 A 120 x
17 NA 43 + 69 E 95 _ 121 y
18 NA 44 70 F 9% ° 122 z
19 NA 45 - 71 G 97 a 123 {
20 NA 46 . 72 H 98 b 124 |
21 NA 47 |/ 731 99 ¢ 125 }
22 NA 48 0 74 3 100 d 126 ~
23 NA 49 1 75 K 101 e 127 DEL
24 NA 50 2 76 L 102

25 NA 51 3 77 M 103 g

Look at the quality line of the FASTQ record in Figure 16-1 and see how the charac-
ters change from higher values like uppercase letters at the beginning to lower values
like punctuation and numbers toward the end. Note that the @ and + symbols on the
fourth line represent possible quality values and so would not be metacharacters
denoting the beginning of a record or the separator line. For this reason, FASTQ
records can’t use newlines to break the sequence (like in FASTA records) or quality
lines: the symbols @ and + might end up as the first character on a line, making it
impossible to find the start of a record. Combine this with the utterly useless third
line that often consists of a single + symbol, and which sometimes needlessly recapit-
ulates all the header information, and you see why biologists should never be allowed
to define a file format.

There are multiple encoding standards using various ranges to rep-
resent the quality scores.

Because FASTQ records must be four lines long, I can use the -A|--after-context
option for grep to specify the number of lines of trailing context after each match:

310 | Chapter 16: FASTX grep: Creating a Utility Program to Select Sequences

$ grep -A 4 LSU tests/inputs/lsu.fq | head -4
@ITSLSUmock2p.ITS_M01380:138:000000000-COGKM:1:1101:14440:2042 2:N:0
CAAGTTACTTCCTCTAAATGACCAAGCCTAGTGTAGAACCATGTCGTCAGTGTCAGTCTGAGTGTAGATCTY
CGGTGGTCGCCGTATCATTAAAAAAAAAAATGTAATACTACTAGTAATTATTAATATTATAATTTTGTCTA\
TTAGCATCTTATTATAGATAGAAGATATTATTCATATTTCACTATCTTATACTGATATCAGCTTTATCAGA\
TCACACTCTAGTGAAGATTGTTCTTAACTGAAATTTCCTTCTTCATACAGACACATTAATCTTACCTA

+
EFGGGGGGGGGCGGGGGFCFFFGGGGGFGGGGGGGGGGGFGGGGGGGFGFFFCFGGFFGGGGGGGGGFGGGY
GFGGGDG<FD@4@CFFGGGGCFFAFEFEG+,9,,,,99,,,5,,49,4,8,4,444,4,4,,,,,,,,,,,\
39538555303, 55553593376,3, 5555558555555, tttHttttttt++3++25+++0+*+0+*0+%\
*X))HQ))1 [FRFRR IR R Rk kkkk kkkkkkk QRkkkkxxx [((/).)))1)).).).

This works as long as the substring of interest occurs only in the header, which is the
first line of a record. If grep managed to find a match in any other line in the record,
it would print that line plus the following three, yielding unusable garbage. Given that
I would like to control exactly which parts of the record to search and the fact that the
input files might be in FASTQ, FASTA, or any number of other formats, it quickly
becomes evident that grep won’t take me very far.

Getting Started

First, I'll show you how my solution works, and then I'll challenge you to implement
your version. All the code and tests for this exercise are in the 16_fastx_grep directory
of the repository. Start by changing into this directory and copying the solution to
fastx_grep.py:

$ cd 16_fastx_grep
$ cp solution.py fastx_grep.py

The grep usage shows that it accepts two positional arguments, a pattern and one or
more files:

$ grep -h

usage: grep [-abcDEFGHhI1JL1mnOogRSsUVvwxZ] [-A num] [-B num] [-C[num]]
[-e pattern] [-f file] [--binary-files=value] [--color=when]
[--context[=num]] [--directories=action] [--label] [--line-buffered]
[--null] [pattern] [file ...]

Request help from the fastx_grep.py program and see that it has a similar interface
that requires a pattern and one or more input files. Additionally, this program can
parse different input file formats, produce various output formats, write the output to
a file, and perform case-insensitive matching:

$./fastx_grep.py -h

usage: fastx_grep.py [-h] [-f str] [-0 str] [-o FILE] [-1i]
PATTERN FILE [FILE ...]

Grep through FASTX files

positional arguments:

Getting Started | 31

PATTERN Search pattern (1)
FILE Input file(s) @

optional arguments:

-h, --help show this help message and exit

-f str, --format str Input file format (default:) (3]

-0 str, --outfmt str Output file format (default:) (4]

-0 FILE, --outfile FILE
Output file (default: <_io.TextIOWrapper (5]
name='<stdout>"' mode='w' encoding='utf-8's)

-1, --insensitive Case-insensitive search (default: False) (6]

© The regular expression (pattern) is the first positional argument.
® One or more positional file arguments are required second.

© The input file format of the sequences, either fasta or fastq. The default is to guess
from the file extension.

O The output file format, one of fasta, fastq, or fasta-2line. The default is to use the
same as the input file.

© The output filename; the default is STDOUT.

O Whether to perform case-insensitive matches; the default is False.

This program has a more complicated set of arguments than many of the programs
from Part I. As usual, I like to use a NamedTuple to model the options:

from typing import List, NamedTuple, TextIO

class Args(NamedTuple):
""" Command-line arguments
pattern: str (1]
files: List[TextIO] (2]
input_format: str
output_format: str (4)
outfile: TextI0o @
insensitive: bool @

The regular expression to use.
One or more input files.

The format of the input file, such as FASTA or FASTQ.

© o © ©

The format of the output file.

312 | Chapter 16: FASTX grep: Creating a Utility Program to Select Sequences

© The name of the output file.

O Whether to perform case-insensitive searching.

Here is how I define the program’s parameters:

def get_args() -> Args:
""" Get command-line arguments

parser = argparse.ArgumentParser(
description='Grep through FASTX files',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('pattern’, (1)

parser.

parser.

parser.

parser.

parser.

args =

metavar='PATTERN',
type=str,
help='Search pattern')

add_argument('file’',

metavar='FILE',

nargs='+"',
type=argparse.FileType('rt'), (2]
help="Input file(s)')

add_argument('-f',

'--format',

help="Input file format',
metavar='str',
choices=['fasta', 'fastq'], (3]
default="")

add_argument('-0',

'--outfmt',

help='0Output file format',

metavar='str',

choices=['fasta', 'fastq', 'fasta-2line'], (4]
default="")

add_argument('-o',

'--outfile',

help='0Output file',
type=argparse.FileType('wt'), (5]
metavar='FILE',
default=sys.stdout)

add_argument('-1', (6]

'--insensitive',
help='Case-insensitive search',
action='store_true')

parser.parse_args()

Getting Started

313

return Args(pattern=args.pattern,
files=args.file,
input_format=args.format,
output_format=args.outfmt,
outfile=args.outfile,
insensitive=args.insensitive)

The pattern will be a string.

The inputs must be readable text files.

Use choices to constrain the input values. The default will be guessed from the
input file extension.

O Constrain values using choices; default to using the input format. The fasta-2line
option will not break long sequences over multiple lines and so will use only two
lines per record.

© The output file will be a writable text file. The default is STDOUT.

O A flag to indicate case-insensitive searching. The default is False.

If you run the following command to search for LSU in the Isu.fq test file, you should
see eight lines of output representing two FASTQ records:

$./fastx_grep.py LSU tests/inputs/lsu.fq | wc -1
8

If you search for lowercase Isu, however, you should see no output:

$./fastx_grep.py lsu tests/inputs/lsu.fq | wc -1
0

Use the -1]| - -insensitive flag to perform a case-insensitive search:

$./fastx_grep.py -1 lsu tests/inputs/lsu.fq | wc -1
8

You can use the -o] - -outfile option to write the results to a file instead of STDOUT:

$./fastx_grep.py -o out.fg -1 lsu tests/inputs/lsu.fq
$ wc -1 out.fq
8 out.fq

If you look at the out.fq file, you'll see it’s in FASTQ format just like the original input.
You can use the -0|--outfmt option to change this to something like FASTA and
look at the output file to verify the format:

$./fastx_grep.py -0 fasta -o out.fa -i lsu tests/inputs/lsu.fq

$ head -3 out.fa
>ITSLSUmock2p.ITS_MO1380:138:000000000-C9GKM:1:1101:14440:2042 2:N:0

314 | Chapter 16: FASTX grep: Creating a Utility Program to Select Sequences

CAAGTTACTTCCTCTAAATGACCAAGCCTAGTGTAGAACCATGTCGTCAGTGTCAGTCTG
AGTGTAGATCTCGGTGGTCGCCGTATCATTAAAAAAAAAAATGTAATACTACTAGTAATT

Try using the fasta-2line output format to see how the long sequences are not broken
over multiple lines. Note that the program also works on FASTA input without my
having to indicate the file format because it is guessed from the .fa file extension:

$./fastx_grep.py -o out.fa -i lsu tests/inputs/lsu.fa
$../15_segmagique/segmagique.py out.fa

name min_len max_len avg_len num_seqs
out.fa 281 301 291.00 2

Run pytest -v to see all the tests for the program, which include guessing the file
format, handling empty files, searching lowercase and uppercase input both with and
without case-sensitivity, writing output files, and writing different output formats.
When you think you understand all the options your program must handle, start
over:

$ new.py -fp 'Grep through FASTX files' fastx_grep.py
Done, see new script "fastx_grep.py".

Guessing the File Format

If you look at out.fa created in the preceding section, you'll see it’s in FASTA format,
matching the input format, but I never indicated the input file format. The program
intelligently checks the file extension of the input file and guesses at the format using
the assumptions in Table 16-1. Similarly, if no output format is specified, then the
input file format is assumed to be the desired output format. This is an example of the
DWIM principle in software development: Do What I Mean.

Table 16-1. Common file extensions for FASTA/Q files

Extension Format

fasta FASTA

fa FASTA
fna FASTA (nucleotides)
faa FASTA (amino acids)
fy FASTQ

fastq FASTQ

Your program will similarly need to guess the format of the input files. I created a
guess_format() function that takes the name of a file and returns a string of either
fasta or fastq. Here is a stub for the function:

def guess_format(filename: str) -> str:
""" Guess format from extension """

Getting Started | 315

return

Here is the test I wrote. After defining the arguments, I would recommend you start
with this function. Do not proceed until your code passes this:

def test_guess_format() -> None:
""" Test guess_format """

assert guess_format('/foo/bar.fa') == 'fasta'
assert guess_format('/foo/bar.fna') == 'fasta'
assert guess_format('/foo/bar.faa') == 'fasta'
assert guess_format('/foo/bar.fasta') == 'fasta'
assert guess_format('/foo/bar.fq') == 'fastq'
assert guess_format('/foo/bar.fastq') == 'fastq'

assert guess_format('/foo/bar.fx') == "'
It might help to sketch out how the program should work:

def main():
get the program arguments

for each input file:
guess the input format or complain that it can't be guessed
figure out the output format from the args or use the input format

for each record in the input file:
if the sequence ID or description matches the pattern:
write the sequence to the output file in the output format

For instance, I can run the program on three input files by using the shell glob
*.f[aq] to indicate all the files with an extension starting with the letter f and fol-
lowed by either a or g:

$ ls tests/inputs/*.f[aq]
tests/inputs/empty.fa tests/inputs/lsu.fa tests/inputs/lsu.fq

This should write four sequences to the file out.fa:

$./fastx_grep.py -0 fasta -o out.fa -i lsu tests/inputs/*.f[aq]
$../15_seqgmagique/segmagique.py out.fa

name min_len max_len avg_len num_seqs

out.fa 281 301 291.00 4

This is a complex program that may take you quite a while to fin-
ish. There is value in your struggle, so just keep writing and run-
ning the tests, which you should also read to understand how to
challenge your program.

316 | Chapter 16: FASTX grep: Creating a Utility Program to Select Sequences

Solution

In my experience, this is a realistically complicated program that captures many pat-
terns I write often. It starts by validating and processing some number of input files.
I’'m a truly lazy programmer? who always wants to give as little information as possi-
ble to my programs, so I'm happy to write a little code to guess the file formats
for me.

Guessing the File Format from the File Extension
I'll start with the function for guessing a file’s format from the file extension:

def guess_format(filename: str) -> str:
""" Guess format from extension """

ext = re.sub('~[.]', '', os.path.splitext(filename)[1]) (1)

return 'fasta' if re.match('f(ast|aln)?a$', ext) else 'fastq' if re.match((2]
'f(ast)?q$', ext) else "'

@ Use the os.path.splitext() function to get the file extension and remove the
leading dot.

® Return the string fasta if the extension matches one of the patterns for FASTA
files from Table 16-1, fastq if it matches a FASTQ pattern, and the empty string
otherwise.

Recall that os.path.splitext() will return both the root of the filename and the
extension as a 2-tuple:

>>> import os
>>> os.path.splitext('/foo/bar.fna')
('/foo/bar', '.fna')

Since I'm only interested in the second part, I can use the _ to assign the first member
of the tuple to a throwaway:

>>> _, ext = os.path.splitext('/foo/bar.fna')
>>> ext
'.fna'

Instead, I chose to index the tuple to select only the extension:

>>> ext = os.path.splitext('/foo/bar.fna')[1]
>>> ext
'.fna'

2 According to Programming Perl by Tom Christiansen et al. (O’Reilly, 2012), the three great virtues of a pro-
grammer are laziness, impatience, and hubris.

Solution | 317

https://oreil.ly/XnvaC

Since I don’t want the leading dot, I could use a string slice to remove this, but this
looks cryptic and unreadable to me:

>>> ext = os.path.splitext('/foo/bar.fna')[1][1:]

>>> ext

'fna’
Instead, I'd prefer to use the re.sub() function I first introduced in Chapter 2. The
pattern I'm looking for is a literal dot at the beginning of the string. The caret » indi-
cates the start of the string, and the . is a metacharacter that means one of anything.
To show that I want a literal dot, I must either place a backslash in front of it like ~\.
or place it inside a character class as in ~[.]:

>>> import re

>>> ext = re.sub('~[.]', '', os.path.splitext('/foo/bar.fna')[1]) (1)

>>> ext
'fna'

© Use re.sub() to remove a literal dot at the beginning of the file extension.

As shown in Table 16-1, there are four common extensions for FASTA files which I
can represent using one compact regular expression. Recall that there are two func-
tions in the re module for searching:

« re.match() finds a match from the beginning of a string.

« re.search() finds a match anywhere inside a string.
In this example, I'm using the re.match() function to ensure that the pattern (the
first argument) is found at the beginning of the extension (the second argument):

>>> re.match('f(ast|a|n)?as$', ext)
<re.Match object; span=(0, 3), match='fna'>

To get the same results from re.search(), I would need to use a caret at the begin-
ning to anchor the pattern to the start of the string:

>>> re.search('~f(ast|aln)?a$', ext)
<re.Match object; span=(0, 3), match='fna'>

Figure 16-2 describes each part of the regular expression.

318 | Chapter 16: FASTX grep: Creating a Utility Program to Select Sequences

Literal *f" Optional Literal "a”

RI . I/—/‘

A f (ast|aln) 2 a §

~—

Start of string “ast”, "a”, or "n" End of string

Figure 16-2. A regular expression for matching the four FASTA patterns

It may help to see this drawn as a finite state machine diagram, as shown in
Figure 16-3.

Figure 16-3. A finite state machine diagram for matching the four FASTA patterns

As there are only two patterns for FASTQ files, the pattern is somewhat simpler:

>>> re.search('~f(ast)?q$', 'fq')

<re.Match object; span=(0, 2), match="'fq'>
>>> re.search('~f(ast)?q$', 'fastq')
<re.Match object; span=(0, 5), match='fastq'>

Figure 16-4 explains this regular expression.

Literal "f" Optional Literal "q"

A f (ast) 2 q $

— L

Start of string Literal "ast” End of string

Figure 16-4. A regular expression for matching the two FASTQ patterns

Figure 16-5 shows the same idea expressed as a finite state machine.

Solution | 319

Figure 16-5. A finite state machine diagram for matching the two FASTQ patterns

| Love It When a Plan Comes Together

Following is how I wrote main() using the structure I introduced in the first part of
the chapter:

def main() -> None:
args = get_args()
regex = re.compile(args.pattern, re.IGNORECASE if args.insensitive else 0) (1]

for fh in args.files: (2]
input_format = args.input_format or guess_format(fh.name) (3]

if not input_format: (4)
sys.exit(f'Please specify file format for "{fh.name}"')

output_format = args.output_format or input_format (5]

for rec in SeqIO.parse(fh, input_format): (6]
if any(map(regex.search, [rec.id, rec.description])): (7]
SeqlO.write(rec, args.outfile, output_format)

Compile a regular expression to find the given pattern.
Iterate through the input files.

Use the input format or guess it from the filename.
Exit with an error if there is no input file format.

Use the output format or use the input format.

Iterate through each sequence in the file.

See if either the sequence ID or description matches the pattern.

© ¢ © 6 6 o o0 o

If so, write the sequence to the output file.

There are several items Id like to highlight, and I'll start with my use of sys.exit()
to halt the program in the middle of processing the files if I'm unable to decide on the
output file format. This is a value I don't necessarily expect from the user, and one

320 | Chapter 16: FASTX grep: Creating a Utility Program to Select Sequences

that I'm hoping I can figure out when the program is running. If I can’t, then I need
to return an error message to the user and an exit value to the operating system to
indicate a failure. I need the user to start over and correct the missing information
before I can continue.

I also want to point out my use of the any() function, which has a corollary in the
all() function. Both functions reduce a list of truthy values to a single Boolean value.
The all() function will return True if all the values are truthy, and False otherwise:

>>> all([True, True, True])
True
>>> all([True, False, True])
False

While the any() function will return True if any of the values are truthy and False
otherwise:

>>> any([True, False, True])

True

>>> any([False, False, False])

False
I use this with the compiled regular expression to search the record’s ID and descrip-
tion fields. That regex is also using the re.IGNORECASE flag to turn on case-insensitive
matching. To explain this, I'd like to go on a tangent into how Python combines
Boolean values using and and or and bits using the respective bitwise operators &
and |.

Combining Regular Expression Search Flags

By default, regular expressions are case-sensitive, but this program needs to handle
both case-sensitive and case-insensitive searching. For example, if I search for lower-
case Isu but the record header has only uppercase LSU, I would expect this to fail:

>>> import re
>>> type(re.search('lsu', 'This contains LSU'))
<class 'NoneType'>

One way to disregard case is to force both the search pattern and string to uppercase
or lowercase:

>>> re.search('lsu'.upper(), 'This contains LSU'.upper())
<re.Match object; span=(14, 17), match='LSU'>

Another method is to provide an optional flag to the re.search() function:

>>> re.search('lsu', 'This contains LSU', re.IGNORECASE)
<re.Match object; span=(14, 17), match='LSU'>

This can be shortened to re.I:

Solution | 321

>>> re.search('lsu

', 'This contains LSU', re.I)

<re.Match object; span=(14, 17), match='LSU'>

In the program, I use this when I compile the regular expression:

O If args.insensitive is True, then use the re.IGNORECASE option when compil-

I first showed how to compile a regular expression in Chapter 11. The advantage is
that Python only has to parse the pattern once, which usually makes your code run
faster. Here I need to decide whether to change to case-insensitive matching using an
optional flag. I can alter many aspects of the regular expression matching with other
such flags, which can be combined using the bitwise or | operator. I think it’s best to

regex = re.compile(args.pattern, re.IGNORECASE if args.insensitive else 0) (1]

ing the pattern; otherwise, use 0, which means no options.

start with the documentation from help(re):

Looking closely, I can find that re.IGNORECASE is an enum or enumeration of possible

Each function other than purge and escape can take an optional 'flags' argument

consisting of one or more of the following module constants, joined by "|".
A, L, and U are mutually exclusive.

A ASCII

I IGNORECASE
LOCALE
M MULTILINE

-

S DOTALL
VERBOSE
U UNICODE

>

values:

According to the documentation, this is “a subclass of enum.IntFlag,” which is

For string patterns, make \w, \W, \b, \B, \d, \D

match the corresponding ASCII character categories
(rather than the whole Unicode categories, which is the
default).

For bytes patterns, this flag is the only available
behaviour and needn't be specified.

Perform case-insensitive matching.

Make \w, \W, \b, \B, dependent on the current locale.
"A" matches the beginning of lines (after a newline)

as well as the string.

"$" matches the end of lines (before a newline) as well
as the end of the string.

"." matches any character at all, including the newline.
Ignore whitespace and comments for nicer looking RE's.
For compatibility only. Ignored for string patterns (it
is the default), and forbidden for bytes patterns.

>>> type(re.IGNORECASE)

<enum 'RegexFlag's>

described thusly:

Base class for creating enumerated constants that can be combined using the bitwise
operators without losing their IntFlag membership. IntFlag members are also sub-

classes of int.

322

| Chapter 16: FASTX grep: Creating a Utility Program to Select Sequences

https://oreil.ly/J6Wsy
https://oreil.ly/nONMy
https://oreil.ly/l1dyG

This means that re.IGNORECASE is deep down an int, just like False is actually 0 and
True is actually 1. I used a little detective work to figure out the integer values of the
flags by adding o:

>>> for flag in sorted([re.A, re.I, re.L, re.M, re.S, re.X, re.u]):
print(f'{flag:15} {flag + 0:5} {0 + flag:#011b}"')

re.IGNORECASE

2 0b0OO000O10
re.LOCALE 4 0b00000O100
re.MULTILINE 8 0b000001000
re.DOTALL 16 0bOOOO100OO
re.UNICODE 32 0b0001000060
re.VERBOSE 64 0b001000O0O
re.ASCII 256 0b100000000

Note how each value is a power of 2 so that each flag can be represented by a single,
unique bit. This makes it possible to combine flags using the | operator mentioned in
the documentation. To demonstrate, I can use the prefix 0b to represent a string of
raw bytes. Here are the binary representations of the numbers 1 and 2. Note that each
uses just a single bit set to 1:

>>> one = 0b0O1
>>> two = 0b010

If T use | to or the bits together, each of the three bits is combined using the truth
table shown in Table 16-2.

Table 16-2. Truth table for or (])

First Second Result

T T T

T F T
F T T
F F F

As shown in Figure 16-6, Python will look at each bit and select 1 if either bit is 1, and
0 only if both bits are 0, resulting in 0b@11, which is the binary representation of the
number 3 because the bits for positions 1 and 2 are both set:

>>> one | two
3

Solution | 323

421

01—1
10
11
Figure 16-6. When or-ing each column of bits, a 1 in any position yields a 1; if all bits
are 0, the result is 0

—2

oOe¢—O O

—3

When using the & operator, Python will only yield a 1 when both bits are 1; otherwise,
it will return 0, as shown in Table 16-3.

Table 16-3. Truth table for and (&)

First Second Result

T T T

T F F
F T F
F F F

Therefore, using & to combine one and two will result in the value 0b000, which is the
binary representation of 0:

>>> one & two
0

I can use the | operator to join multiple regular expression bitflags. For example,
re.IGNORECASE is 2, which is represented as 0b010, and re.LOCALE is 4, which is rep-
resented as 0b100. Bitwise or combines these as 0b110, which is the number 6:

>>> 0b010 | 0b100
6

I can verify that this is true:

>>> (re.IGNORECASE | re.LOCALE) ==
True

To return to the re.compile() function, the default is to match case:

>>> regex = re.compile('lsu')
>>> type(regex.search('This contains LSU'))
<class 'NoneType'>

If the user wants case-insensitive searching, then I want to execute something like
this:

324 | Chapter 16: FASTX grep: Creating a Utility Program to Select Sequences

>>> regex = re.compile('lsu', re.IGNORECASE)
>>> regex.search('This contains LSU')
<re.Match object; span=(14, 17), match='LSU'>

One way to avoid this would be to use an if statement:

regex = None
if args.insensitive:
regex = re.compile(args.pattern, re.IGNORECASE)
else:
regex = re.compile(args.pattern)
I dislike this solution as it violates the DRY principle: Don’t Repeat Yourself. I can
write an if expression to choose either the re.IGNORECASE flag or some default value
that means no flags, which turns out to be the number 0:

regex = re.compile(args.pattern, re.IGNORECASE if args.insensitive else 0)

If I wanted to expand this program to include any of the additional search flags from
the documentation, I could use | to combine them. Chapters 6 and 12 talk about the
idea of reducing multiple values to a single value. For instance, I can use addition to
reduce a list of numbers to their sum, or multiplication to create the product, and
reduce a list of strings to a single value using the str. join() function. I can similarly
use bitwise | to reduce all the regex flags:

>>> (re.A | re.I | re.L | re.M | re.S | re.X | re.U) +0

382
Because these flags use unique bits, it’s possible to find out exactly which flags were
used to generate a particular value by using the & operator to determine if a given bit
is on. For instance, earlier I showed how to combine the flags re.IGNORECASE and
re.LOCALE using |:

>>> flags = re.IGNORECASE | re.LOCALE

To see if a given flag is present in the flags variable, I use &. It will be returned when I
and it because only the 1 bits present in both values will be returned:

>>> flags & re.IGNORECASE
re.IGNORECASE

If I and a flag thats not present in the combined values, the result is 0:

>>> (flags & re.VERBOSE) + 0
[¢]

That's a lot of information about combining bits. So, if you don’t know, now you
know.

Solution | 325

Reducing Boolean Values

I'd like to bring this back to the any() function I used in this program. As with the
bitwise combinations of integer values, I can similarly reduce multiple Boolean val-
ues. That is, here is the same information as in Table 16-2, using the or operator to
combine Booleans:

>>> True or True
True

>>> True or False
True

>>> False or True
True

>>> False or False
False

This is the same as using any() with a list of Booleans. If any of the values is truthy,
then the whole expression is True:

>>> any([True, True])
True

>>> any([True, False])
True

>>> any([False, True])
True

>>> any([False, False])
False

And here is the same data as in Table 16-3, using and to combine Booleans:

>>> True and True
True

>>> True and False
False

>>> False and True
False

>>> False and False
False

This is the same as using all(). Only if all of the values are truthy will the whole
expression be True:

>>> all([True, Truel)
True

>>> all([True, False])
False

>>> all([False, True])
False

>>> all([False, False])
False

326 | Chapter 16: FASTX grep: Creating a Utility Program to Select Sequences

Here is the line of code where I use this idea:
if any(map(regex.search, [rec.id, rec.description])):

The map() function feeds each of the rec.id and rec.description values to the
regex.search() function, resulting in a list of values that can be interpreted for their
truthiness. If any of these is truthy—meaning I found a match in at least one of the

fields—then any() will return True and the sequence should be written to the output
file.

Going Further

Sometimes the sequence header contains key/value metadata like “Organism=Oryza
sativa” Add an option to search these values. Be sure you add an input file example to
the tests/inputs directory and the appropriate tests to tests/fastx_grep_test.py.

Expand the program to handle additional input sequence formats like GenBank,
EMBL, and SwissProt. Again, be sure to add example files and tests to ensure that
your program works.

Alter the program to select sequences with some minimum length and quality score.

Review

Key points from this chapter:

o The FASTQ file format requires each record to be represented by four lines: a
header, the sequence, a separator, and the quality scores.

 Regular expression matches can accept flags that control, for example, whether to
perform a case-insensitive match. By default, regexes are case-sensitive.

« To indicate multiple regex flags, use the | (or) bitwise operator to combine the
integer values of the flags.

« Boolean values can be reduced using and and or operations as well as the any()
and all() functions.

o The DWIM (Do What I Mean) aesthetic means you try to anticipate what your
user would want a program to do naturally and intelligently.

o The DRY (Don’t Repeat Yourself) principle means that you never duplicate the
same idea in your code but rather isolate it to one locus or function.

Going Further | 327

CHAPTER 17

DNA Synthesizer: Creating Synthetic Data
with Markov Chains

A Markov chain is a model for representing a sequence of possibilities found in a
given dataset. It is a machine learning (ML) algorithm because it discovers or learns
patterns from input data. In this exercise, I'll show how to use Markov chains trained
on a set of DNA sequences to generate novel DNA sequences.

In this exercise, you will:

+ Read some number of input sequence files to find all the unique k-mers for a
given k.

 Create a Markov chain using these k-mers to produce some number of novel
sequences of lengths bounded by a minimum and maximum.
o Learn about generators.

o Use a random seed to replicate random selections.

Understanding Markov Chains

In Claude Shannon’s “A Mathematical Theory of Communication” (1948), the author
describes a Markoff process that is surprisingly similar to graphs and the finite state
diagrams I've been using to illustrate regular expressions. Shannon describes this pro-
cess as “a finite number of possible states of a system” and “a set of transition proba-
bilities” that one state will lead to another.

For one example of a Markov process, Shannon describes a system for generating
strings of text by randomly selecting from the 26 letters of the English alphabet and a
space. In a “zero-order approximation,” each character has an equal probability of

329

https://oreil.ly/8Gka4

being chosen. This process generates strings where letter combinations like bz and gr
might appear as frequently as st and qu. An examination of actual English words,
however, would show that the latter two are orders of magnitude more common than
the first two:

$ for LETTERS in bz qr st qu
> do echo -n SLETTERS && grep SLETTERS /usr/share/dict/words | wc -1; done

bz 4
qr 1
st 21433
qu 3553

To more accurately model the possible transition from one letter to another, Shannon
introduces a “first-order approximation...obtained by choosing successive letters
independently but each letter having the same probability that it has in the natural
language”” For this model, I need to train the selection process on representative texts
of English. Shannon notes that the letter e has a probability of 0.12, reflecting the fre-
quency of its use in English words, whereas w, being much less frequently used, has a
probability of 0.02, as shown in Figure 17-1.

0.12

0.02 W

Figure 17-1. A finite state diagram that includes the probability of moving from any

« » « »

character in English to the letters “e” or “w

Shannon goes on to describe a “second-order approximation” where subsequent let-
ters are “chosen in accordance with the frequencies with which the various letters fol-
low the first one” This relates to k-mers that I used several times in Part I. In
linguistics, these are called N-grams. For instance, what possible 3-mers could be cre-
ated given the 2-mer th? The letters e or r would be rather likely, whereas z would be
impossible as no English word contains the sequence thz.

I can perform a rough estimation of how often I can find these patterns. I find
approximately 236K English words using we -1 to count the lines of my system dic-
tionary:

$ wc -1 /usr/share/dict/words
235886 /usr/share/dict/words

330 | Chapter 17: DNA Synthesizer: Creating Synthetic Data with Markov Chains

To find the frequency of the substrings, I need to account for the fact that some words
may have the pattern twice. For instance, here are a few words that have more than
one occurrence of the pattern the:

$ grep -E '.*the.*the.*' Jusr/share/dict/words | head -3
diathermotherapy

enthelminthes

hyperthermesthesia

I can use grep -1io to search in a case-insensitive fashion (-1) for the strings thr and
the, while the -o flag tells grep to return only the matching strings, which will reveal
all the matches in each word. I find that thr occurs 1,270 times, while the occurs 3,593
times:
$ grep -io thr /usr/share/dict/words | wc -1
1270
$ grep -io the /usr/share/dict/words | wc -1
3593
Dividing these numbers by the total number of words leads to a frequency of 0.005
for thr and 0.015 for the, as shown in Figure 17-2.

0.005

0015 g

Figure 17-2. A finite state diagram showing the probability of moving from “th” to either

« » « »

an r oran e

I can apply these ideas to generate novel DNA sequences by reading some sample
sequences and noting the ordering of the bases at the level of some k-mer like 10 base
pairs (bp). It's important to note that different training texts will affect the model. For
instance, English words and spellings have changed over time, so training on older
English texts like Beowulf and Canterbury Tales will yield different results than arti-
cles from modern newspapers. This is the learning part of machine learning. Many
ML algorithms are designed to find patterns from some sets of data to apply to
another set. In the case of this program, the generated sequences will bear some
resemblance in composition to the input sequences. Running the program with the
human genome as training data will produce different results than using a viral meta-
genome from an oceanic hydrothermal flume.

Understanding Markov Chains | 331

Getting Started

You should work in the 17_synth directory containing the inputs and tests for this
program. Start by copying the solution to the program synth.py:

$ cd 17_synth
$ cp solution.py synth.py

This program has a large number of parameters. Run the help to see them:

$./synth.py -h

usage: synth.py [-h] [-o FILE] [-f format] [-n number] [-x max] [-m min]
[-k kmer] [-s seed]
FILE [FILE ...]

Create synthetic DNA using Markov chain

positional arguments:
FILE Training file(s) (1]

optional arguments:
-h, --help show this help message and exit
-0 FILE, --outfile FILE
Output filename (default: out.fa) (2]
-f format, --format format
Input file format (default: fasta) (3]
-n number, --num number
Number of sequences to create (default: 100) (4]
-X max, --max_len max
Maximum sequence length (default: 75) (5]
-m min, --min_len min
Minimum sequence length (default: 50) (6]
-k kmer, --kmer kmer Size of kmers (default: 10) (7]
-s seed, --seed seed Random seed value (default: None) 0

The only required parameter is one or more input files.

The output filename will default to out.fa.

The input format should be either fasta or fastq and defaults to the first.
The default number of sequences generated will be 100.

The default maximum sequence length is 75 bp.

The default minimum sequence length is 50 bp.

The default k-mer length is 10 bp.

© ©¢ ©6 6 6 6 o o

The default random seed is the None value.

332 | Chapter 17: DNA Synthesizer: Creating Synthetic Data with Markov Chains

As usual, I create an Args class to represent these parameters. I use the following

typing imports. Note the Dict is used later in the program:

from typing import NamedTuple, List, TextIO, Dict, Optional

class Args(NamedTuple):
""" Command-line arguments
files: List[TextIo] @
outfile: TextIo @
file_format: str (3]
num: int
min_len: int (5]
max_len: int (6]
k: int @
seed: Optional[int] @

The input files will be a list of open filehandles.

The outfile will be an open filehandle.

The file_format of the input files is a string.

The number of sequences to generate (num) is an integer.
The min_len is an integer.

The max_len is an integer.

The k for k-mer length is an integer.

© ©¢ © 6 6 o o o

The random seed can either be the value None or an integer.
Here is how I define the program’s parameters:

def get_args() -> Args:
""" Get command-line arguments """

parser = argparse.ArgumentParser(
description="'Create synthetic DNA using Markov chain',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file',
help='Training file(s)',
metavar='FILE',
nargs='+',
type=argparse.FileType('rt')) (1)

parser.add_argument('-o',
'--outfile',
help='0Output filename',

Getting Started

333

metavar='FILE',
type=argparse.FileType('wt'), (2]
default='out.fa')

parser.add_argument('-f',
'--format',
help='Input file format',
metavar='format',
type=str,
choices=['fasta', 'fastq'], (3]
default="'fasta')

parser.add_argument('-n',
'--pum',
help='Number of sequences to create',
metavar='number',
type=int,
default=100) @

parser.add_argument('-x",
'--max_len',
help='Maximum sequence length',
metavar='max',
type=int,
default=75) ©

parser.add_argument('-m',
'--min_len',
help='Minimum sequence length',
metavar='min',
type=int,
default=50) @

parser.add_argument('-k',
'--kmer',
help='Size of kmers',
metavar='kmer',
type=int,
default=10) (7]

parser.add_argument('-s',
'--seed',
help='Random seed value',
metavar='seed',
type=int,
default=None) (8]

args = parser.parse_args()
return Args(files=args.file,

outfile=args.outfile,
file_format=args.format,

334 | Chapter 17: DNA Synthesizer: Creating Synthetic Data with Markov Chains

num=args.num,
min_len=args.min_len,
max_len=args.max_len,
k=args.kmer,
seed=args.seed)

© The type restricts the values to readable text files, and the nargs requires one or
more values.

® The type restricts the value to a writable text file, and the default filename will be
out.fa.

]

The choices restrict the values to either fasta or fastq, and the default will be
fasta.

The type restricts this to a valid integer value, and the default is 100.
The type restricts this to a valid integer value, and the default is 75.

The type restricts this to a valid integer value, and the default is 5.

®© © 6 ©

The type restricts this to a valid integer value, and the default is 10.

O The type restricts this to a valid integer value, and the default is None.

It might seem a little odd that the seed has type=int but has a default of None because
None is not an integer. What I'm saying is that if the user provides any value for the
seed, it must be a valid integer; otherwise, the value will be None. This is also reflected
in the Args.seed definition as an Optional[int], which means the value can either
be int or None. Note that this is equivalent to typing.Union[int, None], the union
of the int type and None value.

Understanding Random Seeds

There is an element of randomness to this program as you generate the sequences. I
can start with Shannon’s zero-order implementation where I select each base inde-
pendently at random. I can use the random.choice() function to select one base:

>>> bases = list('ACGT')
>>> import random

>>> random.choice(bases)
lGl

Getting Started | 335

If I wanted to generate a 10-bp sequence, I could use a list comprehension with the
range() function, like this:

>>> [random.choice(bases) for _ in range(10)]

[IG|, |TI’ IA‘, 'AI’ ICI’ 'TI, ICI, 'Tl, ICI, ITI]
I could further select a random sequence length between some minimum and maxi-
mum length using the random. randint() function:

>>> [random.choice(bases) for _ in range(random.randint(10, 20))]

['e¢*, 'r', 'c', 'A', 'c', 'c', 'A', 'G', 'c', 'A', 'G']
If you execute the preceding code on your computer, it's highly unlikely you will see
the same output as shown. Fortunately, these selections are only pseudorandom as
they are produced deterministically by a random number generator (RNG). Truly
random, unreproducible choices would make testing this program impossible.

I can use a seed or initial value to force the pseudorandom selections to be predicta-
ble. If you read help(random.seed), you'll see that the “supported seed types are
None, int, float, str, bytes, and bytearray.” For instance, I can seed using an
integer:

>>> random.seed(1)

>>> [random.choice(bases) for _ in range(random.randint(10, 20))]
[IA‘, IGI’ IA‘, ITI’ IT', 'TI, IT', lcl, ‘A', 'Tl, ‘A', IT|]

I can also use a string:

>>> random.seed('markov')

>>> [random.choice(bases) for _ in range(random.randint(10, 20))]

[IG|’ |AI’ IG|’ ICI’ ITI’ IAI, IA" 'CI, |Gl, ITI’ |Cl’ IC|’ |Cl’ IG|’ IGI]
If you execute the preceding code, you should get the exact output shown. By default,
the random seed is None, which you’ll notice is the default for the program. This is the
same as not setting the seed at all, so when the program runs with the default it will
act in a pseudorandom manner. When testing, I can provide a value that will produce
a known result to verify that the program works correctly.

Note that I have forced the user to provide an integer value. Although I find using
integers to be convenient, you can seed using strings, numbers, or bytes when writing
your own programs. Just remember that the integer 4 and the string '4' are two dif-
ferent values and will produce different results:

>>> random.seed(4) (1)

>>> [random.choice(bases) for _ in range(random.randint(10, 20))]
['e', ‘A, 't', ', 'ct, 'A', 'A', 'A', 'T', 'G', 'A', 'C', 'G']
>>> random.seed('4"') (2]

>>> [random.choice(bases) for _ in range(random.randint(10, 20))]
['¢', 'a', 't', 'c', 'G', 'G', 'A', 'G', 'A', 'C', 'C', 'A']

© Seed using the integer value 4.

336 | Chapter 17: DNA Synthesizer: Creating Synthetic Data with Markov Chains

© Seed using the string value '4".

The random seed affects every call to random functions from that point forward. This
creates a global change to your program, and so should be viewed with extreme cau-
tion. Typically, I will set the random seed in my program immediately after validating
the arguments:
def main() -> None:

args = get_args()

random.seed(args.seed)
If the seed is the default value of None, this will not affect the random functions. If the
user has provided a seed value, then all subsequent random calls will be affected.

Reading the Training Files

The first step in my program is to read the training files. Due to how I defined this
argument with argparse, the process of validating the input files has been handled,
and I know I will have a List[TextIO] which is a list of open filehandles. I will use
Bio.SeqIO0.parse(), as in previous chapters, to read the sequences.

From the training files, I want to produce a dictionary that describes the weighted
possible bases that can follow each k-mer. I think it’s helpful to use a type alias to
define a couple of new types to describe this. First, I want a dictionary that maps a
base like T to a floating-point value between 0 and 1 to describe the probability of
choosing this base. I'll call it a WeightedChoice:

WeightedChoice = Dict[str, float]

For instance, in the sequence ACGTACGC, the 3-mer ACG is followed by either T or
C with equal likelihood. I represent this like so:

>>> choices = {'T': 0.5, 'C': 0.5}

Next, I want a type that maps the k-mer ACG to the choices. I'll call this a Chain as it
represents the Markov chain:

Chain = Dict[str, WeightedChoice]
It would look like this:
>>> weighted = {'ACG': {'T': 0.5, 'C': 0.5}}

Each k-mer from the sequences in the input file will have a dictionary of weighted
options for use in selecting the next base. Here is how I use it to define a function to
read the training files:

def read_training(fhs: List[TextIO], file_format: str, k: int) -> Chain: (1)
" Read training files, return dict of chains """

pass (2]

Getting Started | 337

© The function accepts a list of filehandles, the file format of the files, and the size
of the k-mers to read. It returns the type Chain.

® Use pass to do nothing and return None for now.

Since k-mers figure prominently in this solution, you may want to use the
find_kmers() function from Part I. As a reminder, for a function with this signature:

def find_kmers(seq: str, k: int) -> List[str]:
""" Find k-mers in string

I would use the following test:

def test_find_kmers() -> None:
""" Test find_kmers """

assert find_kmers('ACTG', 2) == ['AC', 'CT', 'TG']

assert find_kmers('ACTG', 3) == ['ACT', 'CTG']

assert find_kmers('ACTG', 4) == ['ACTG']
I think it’s helpful to see exactly what goes into this function and what I expect it to
return. In the tests/unit_test.py file, you’ll find all the unit tests for this program. Here
is the test for this function:

def test_read_training() -> None: (1]
""" Test read_training """

f1 = 10.StringI0('>1\nACGTACGC\n') @
assert read_training([f1], 'fasta', 4) == { ©
'ACG': { 'T': 0.5, 'C': 0.5},

'"CGT': { 'A': 1.0 },
'"GTA': { 'C': 1.0 },
'"TAC': { 'G': 1.0 }
}
f2 = 10.5tringIO('@1\nACGTACGC\n+\n!t!t1rrier) (4)

assert read_training([f2], 'fastq', 5) == { ©
"ACGT': { 'A': 1.0 },
'"CGTA': { 'C': 1.0 },
'"GTAC': { 'G': 1.0 },
'"TACG': { 'C': 1.0 }
}

The function takes no arguments and returns None.
Define a mock filehandle containing a single sequence in FASTA format.

Read the data in FASTA format and return the Markov chains for 4-mers.

© o © o

Define a mock filehandle containing a single sequence in FASTQ format.

338 | Chapter 17: DNA Synthesizer: Creating Synthetic Data with Markov Chains

©® Read the data in FASTQ format and return the Markov chains for 5-mers.

To help you better understand k-mers, I've included a program called kmer_tiler.py
that will show you the overlapping k-mers in a given sequence. The first test in the
preceding function checks that the 3-mer ACG is followed by either T or C with equal
probability to create the 4-mers ACGT and ACGC. Looking at the output from
kmer_tiler.py, I can see these two possibilities:

$./kmer_tiler.py ACGTACGC -k 4
There are 5 4-mers in "ACGTACGC."
ACGTACGC
ACGT @
CGTA

GTAC

TACG

ACGC @

© ACG followed by T.

® ACG followed by C.

Using this information, I can create Shannon’s second-order approximation. For
instance, if I randomly select the 3-mer ACG to start generating a new sequence, I can
add either T or C with equal probability. Given this training data, I could never
append either A or G, as these patterns never occur.

This is a tricky function to write, so let me give you some pointers. First, you need to
find all the k-mers in all the sequences in all the files. For each k-mer, you need
to find all the possible endings for a sequence of length k - 1. That is, if k is 4, you
first find all the 4-mers and then note how the leading 3-mer can be completed with
the last base.

I used collections.Counter() and ended up with an interim data structure that
looks like this:

{
'"ACG': Counter({'T': 1, 'C': 1}),
'"CGT': Counter({'A': 1}),
'"GTA': Counter({'C': 1}),
'"TAC': Counter({'G': 1})
}

Since the input files are all DNA sequences, each k-mer can have at most four possi-
ble choices. The key to the Markov chain is in giving these values weights, so next, I
need to divide each option by the total number of options. In the case of ACG, there
are two possible values each occurring once, so they each get a weight of 1/2 or 0.5.
The data structure I return from this function looks like the following:

Getting Started | 339

'ACG': {'T': 0.5, 'C': 0.5},
'CGT': {'A': 1.0},
'GTA': {'C': 1.0},
'"TAC': {'G': 1.0}

}

I recommend you first focus on writing a function that passes this test.

Generating the Sequences

Next, I recommend you concentrate on using the Chain to generate new sequences.
Here is a stub for your function:

def gen_seq(chain: Chain, k: int, min_len: int, max_len: int) -> Optional[str]: (1)
""" Generate a sequence """

return '' @

© The function accepts the Chain, the size of the k-mers, and the minimum and
maximum sequence length. It might or might not return a new sequence as a
string, for reasons I'll explain shortly.

® For now, return the empty string.

When stubbing a function, I interchange pass with returning some
dummy value. Here I use the empty string since the function
returns a str. The point is only to create a function that Python
parses and which I can use for testing. At this point, I expect the
function to fail.

Here is the test I wrote for this:

def test_gen_seq() -> None: (1)
""" Test gen_seq """

chain = { (2]
'ACG': { 'T': 0.5, 'C': 0.5},
'"CGT': { 'A': 1.0 },
'"GTA': { 'C': 1.0 },
'"TAC': { 'G': 1.0 }
}

state = random.getstate() (3]
random.seed(1)

assert gen_seq(chain, k=4, min_len=6, max_len=12) == 'CGTACGTACG' (5)
random.seed(2)
assert gen_seq(chain, k=4, min_len=5, max_len=10) == 'ACGTA' (7]

random.setstate(state) 0

340 | Chapter 17: DNA Synthesizer: Creating Synthetic Data with Markov Chains

The function accepts no arguments and returns None.

This is the data structure returned by the read_training() function.
Save the current global state of the random module.

Set the seed to a known value of 1.

Verify that the proper sequence is generated.

Set the seed to a different known value of 2.

Verify that the proper sequence is generated.

© ©¢ 6 6 6 oo o ©

Restore the random module to any previous state.

As noted before, calling random.seed() globally modifies the state
of the random module. I use random.getstate() to save the current
state before modifying and then restore that state when the testing
is finished.

This is a tricky function to write, so I'll give you some direction. You will first ran-
domly select the length of the sequence to generate, and the random. randint() func-
tion will do just that. Note that the upper and lower bounds are inclusive:

>>> min_len, max_len = 5, 10

>>> import random

>>> seq_len = random.randint(min_len, max_len)

>>> seq_len
9

Next, you should initialize the sequence using one of the keys from the Markov Chain
structure. Note the need to coerce the list(chain.keys()) to avoid the error
“dict_keys object is not subscriptable™:

>>> chain = {

'ACG': { 'T': 0.5, 'C': 0.5},
'CGT': { 'A': 1.0 },
'GTA': { 'C': 1.0 },

'TAC': { 'G': 1.0 }

-}

>>> seq = random.choice(list(chain.keys()))

>>> seq

'ACG'

I decided to set up a loop with the condition that the length of the sequence is less
than the chosen sequence length. While inside the loop, I will keep appending bases.

Getting Started | 341

To select each new base, I need to get the last k - 1 bases of the ever-growing
sequence, which I can do using a list slice and negative indexing. Here’s one pass
through the loop:
>>> k = 4
>>> while len(seq) < seq_len:
prev = seq[-1 * (k - 1):]
print(prev)
break

ACG
If this previous value occurs in the given chain, then I can select the next base using
the random.choices() function. If you read help(random.choices), you will see that
this function accepts a population from which to select, weights to consider when
making the selection, and a k for the number of choices to return. The keys of the
chain for a given k-mer are the population:

>>> opts = chain['ACG']

>>> pop = opts.keys()

>>> pop
dict_keys(['T', 'C'])

The values of the chain are the weights:

>>> weights = opts.values()
>>> weights
dict_values([0.5, 0.5])

Note the need to coerce the keys and values using 1list(), and that

random.choices() always returns a list even when you ask for just one, so you’ll
need to select the first value:

>>> from random import choices

>>> next = choilces(population=1ist(pop), weights=1list(weights), k=1)

>>> next

['r]
I can append this to the sequence:

>>> seq += next[0]

>>> seq

"ACGT'
The loop repeats until either the sequence is the correct length or I select a previous
value that does not exist in the chain. The next time through the loop, the prev 3-mer
will be CGT, as these are the last three bases in seq. It happens that CGT is a key in
the chain, but you may sometimes find that there is no way to continue the sequence
because the next k-mer doesn't exist in the chain. In this case, you can exit your loop
and return None from the function. This is why the gen_seq() function signature

342 | Chapter 17: DNA Synthesizer: Creating Synthetic Data with Markov Chains

returns an Optional[str]; I don’t want my function to return sequences that are too
short. I recommend that you not move on until this function passes the unit test.

Structuring the Program

Once you can read the training files and generate a new sequence using the Markov
chain algorithm, you are ready to print the new sequences to the output file. Here is a
general outline of how my program works:

def main() -> None:
args = get_args()
random.seed(args.seed)
chains = read_training(...)
seqs = calls to gen_seq(...)
print each sequence to the output file
print the final status

Note that the program will only generate FASTA output, and each sequence should be
numbered from 1 as the ID. That is, your output file should look something like this:

>1

GGATTAGATA

>2

AGTCAACG
The test suite is pretty large as there are so many options to check. I recommend you
run make test or read the Makefile to see the longer command to ensure that you are
properly running all the unit and integration tests.

Solution

I have just one solution for this program as it'’s complicated enough. I'll start with my
function to read the training files, which requires you to import defaultdict() and
Counter() from the collections module:

def read_training(fhs: List[TextIO], file_format: str, k: int) -> Chain:
""" Read training files, return dict of chains """

counts: Dict[str, Dict[str, int]] = defaultdict(Counter) (1]
for fh in fhs: @
for rec in SeqlO.parse(fh, file_format): (3]
for kmer in find_kmers(str(rec.seq), k): (4)
counts[kmer[:k - 1]][kmer[-1]] += 1 (5)

def weight(fregs: Dict[str, int]) -> Dict[str, float]: (6]
total = sum(fregs.values()) (7]
return {base: freq / total for base, freq in freqs.items()} (8]

return {kmer: weight(freqs) for kmer, freqs in counts.items()} (o]

Solution | 343

Initialize a dictionary to hold the Markov chains.
Iterate through each filehandle.
Iterate through each sequence in the filehandle.

Iterate through each k-mer in the sequence.

® 06 o6 o0 o

Use the prefix of the k-mer as the key into the Markov chain, and add to the
count of the final base.

Define a function that will turn the counts into weighted values.
Find the total number of bases.

Divide the frequencies of each base by the total.

® 06 © ©o

Use a dictionary comprehension to convert the raw counts into weights.

This uses the find_kmers() function from Part I, which is:

def find_kmers(seq: str, k: int) -> List[str]:
""" Find k-mers in string """

n = len(seq) - k + 1 @
return [] if n < 1 else [seq[i:1 + k] for 1 in range(n)] (2]

© The number of k-mers is the length of the sequence minus k plus 1.

® Use alist comprehension to select all the k-mers from the sequence.

Here is how I wrote the gen_seq() function to generate a single sequence:

def gen_seq(chain: Chain, k: int, min_len: int, max_len: int) -> Optional[str]:
""" Generate a sequence """

seq = random.choice(list(chain.keys())) (1]
seq_len = random.randint(min_len, max_len)

while len(seq) < seq_len: (3)
prev = seq[-1 * (k - 1):] (4]
if choices := chain.get(prev): (5)
seq += random.choices(population=1list(choices.keys()), (6]
weights=1list(choices.values()),
k=1)[0]
else:
break @

return seq if len(seq) >= min_len else None (8]

344 | Chapter 17: DNA Synthesizer: Creating Synthetic Data with Markov Chains

Initialize the sequence to a random choice from the keys of the chain.

Select a length for the sequence.

Execute a loop while the length of the sequence is less than the desired length.
Select the last k - 1 bases.

Attempt to get a list of choices for this k-mer.

Randomly choose the next base using the weighted choices.

®© © 6 6 6 o0 o

If we cannot find this k-mer in the chain, exit the loop.

Return the new sequence if it is long enough; otherwise return None.

To integrate all these, here is my main() function:

def main() -> None:
args = get_args()
random.seed(args.seed) (1]
if chain := read_training(args.files, args.file_format, args.k): (2]
seqs = (gen_seq(chain, args.k, args.min_len, args.max_len) (3]
for _ in count())

for 1, seq in enumerate(filter(None, seqs), start=1): (4]
print(f'>{i}\n{seq}', file=args.outfile) ()
if 1 == args.num:
break

print(f'Done, see output in "{args.outfile.name}"."') (7]
else:
sys.exit(f'No {args.k}-mers in input sequences.') (8]

Set the random seed.

Read the training files in the given format using the given size k. This may fail if
the sequences are shorter than k.

Create a generator to produce the sequences.

Use filter() with a predicate of None to remove falsey elements from the segs
generator. Use enumerate() to iterate through the index positions and sequences
starting at 1 instead of 0.

© Print the sequence in FASTA format using the index position as the ID.

Solution | 345

O Break out of the loop if enough sequences have been generated.
© Print the final status.

O Let the user know why no sequences could be generated.

I'd like to take a moment to explain the generator in the preceding code. I use the
range() function to generate the desired number of sequences. I could have used a
list comprehension like so:

>>> from solution import gen_seq, read_training
>>> import io

>>> f1 = 10.StringIO('>1\nACGTACGC\n")

>>> chain = read_training([f1], 'fasta', k=4)

>>> [gen_seq(chain, k=4, min_len=3, max_len=5) for
['CGTACG', 'CGTACG', 'TACGTA']

_ 1in range(3)]
A list comprehension will force the creation of all the sequences before moving to the
next line. If I were creating millions of sequences, the program would block here and
likely use a large amount of memory to store all the sequences. If I replace the square
brackets [] of the list comprehension with parentheses (), then it becomes a lazy
generator:

>>> seqs = (gen_seq(chain, k=4, min_len=3, max_len=5) for

>>> type(seqs)
<class 'generator's>

in range(3))

I can still treat this like a list by iterating over the values, but these values are only
produced as needed. That means the line of code to create the generator executes
almost immediately and moves on to the for loop. Additionally, the program only
uses the memory needed to produce the next sequence.

One small problem with using range() and the number of sequences is that I know
the gen_seq() function may sometimes return None to indicate that random choices
lead down a chain that didn’t produce a long enough sequence. I need the generator
to run with no upper limit, and T'll write code to stop requesting sequences when
enough have been generated. I can use itertools.count() to create an infinite
sequence, and I use filter() with a predicate of None to remove falsey elements:

>>> seqs = ['ACGT', None, 'CCCGT']

>>> list(filter(None, segs))
['ACGT', 'CCCGT']

I can run the final program to create an output file using the defaults:

$./synth.py tests/inputs/*
Done, see output in "out.fa".

And then I can use segmagique.py from Chapter 15 to verify that it generated the
correct number of sequences in the expected ranges:

346 | Chapter 17: DNA Synthesizer: Creating Synthetic Data with Markov Chains

$../15_segmagique/segmagique.py out.fa
name min_len max_len avg_len num_seqs
out.fa 50 75 63.56 100

Flippin’ sweet.

Going Further

Add a sequence - -type option to produce either DNA or RNA.

Expand the program to handle paired-end sequences where the forward and reverse
reads are in two separate files.

Now that you understand Markov chains, you might be interested to see how they are
used elsewhere in bioinformatics. For instance, the HMMER tool uses hidden Mar-
kov models to find homologs in sequence databases and to create sequence
alignments.

Review

Key points from this chapter:

» Random seeds are used to replicate pseudorandom selections.

» Markov chains can be used to encode the probabilities that a node in a graph can
move to another node or state.

o A list comprehension can be made into a lazy generator by replacing the square
brackets with parentheses.

Going Further | 347

http://hmmer.org

CHAPTER 18

FASTX Sampler: Randomly Subsampling
Sequence Files

Sequence datasets in genomics and metagenomics can get dauntingly large, requiring
copious time and compute resources to analyze. Many sequencers can produce tens
of millions of reads per sample, and many experiments involve tens to hundreds of
samples, each with multiple technical replicates resulting in gigabytes to terabytes of
data. Reducing the size of the input files by randomly subsampling sequences allows
you to explore data more quickly. In this chapter, I will show how to use Python’s
random module to select some portion of the reads from FASTA/FASTQ sequence
files.

You will learn about:

+ Nondeterministic sampling

Getting Started

The code and tests for this exercise are in the 18_fastx_sampler directory. Start by
copying the solution for a program called sampler . py:

$ cd 18_fastx_sampler/

$ cp solution.py sampler.py
The FASTA input files for testing this program will be generated by the synth.py
program you wrote in Chapter 17. If you didn't finish writing that program, be sure
to copy the solution to that filename before executing make fasta to create three
FASTA files with 1K, 10K, and 100K reads, each between 75 and 200 bp in length,
with filenames of nlk.fa, n10k.fa, and n100k.fa, respectively. Use seqmagique.py to
verify that the files are correct:

349

$../15_segmagique/seqmagique.py tests/inputs/n1*

name min_len max_len avg_len num_seqgs
tests/inputs/n100k.fa 75 200 136.08 100000
tests/inputs/n10k.fa 75 200 136.13 10000
tests/inputs/nik.fa 75 200 135.16 1000

Run sampler.py to select the default of 10% of the sequences from the smallest file. If
you use a random seed of 1, you should get 95 reads:
$./sampler.py -s 1 tests/inputs/nik.fa
Wrote 95 sequences from 1 file to directory "out"
The results can be found in a file called nlk.fa in an output directory named out. One
way to verify this is to use grep -c to count how many times it finds the symbol > at
the start of each record:
$ grep -c '>' out/nik.fa
95
Note that there is a pernicious error waiting for you if you happen to forget the
quotes around >:
$ grep -c > out/nik.fa
usage: grep [-abcDEFGHhI1JIL1mnOoqRSsUVvwxZ] [-A num] [-B num] [-C[num]]
[-e pattern] [-f file] [--binary-files=value] [--color=when]
[--context[=num]] [--directories=action] [--label] [--line-buffered]
[--null] [pattern] [file ...]
Wait, what just happened? Remember that > is the bash operator to redirect the
STDOUT from one program into a file. In the preceding command, I ran grep without
enough arguments and redirected the output into out/nlk.fa. The output you see is
the usage that is printed to STDERR. Nothing was printed to STDOUT, so this null output
overwrote the out/nik.fa file and it is now empty:
$ wc out/nik.fa
0 0 0 out/nik.fa
I point this out because I have lost several sequence files due to this gem. The data has
been lost permanently, so I must rerun the earlier command to regenerate the file.
After doing that, I recommend instead that you use segmagique.py to verify the
contents:
$../15_segmagique/seqmagique.py out/nik.fa

name min_len max_len avg_len num_seqs
out/nik.fa 75 200 128.42 95

Reviewing the Program Parameters

This is a fairly complex program with many options. Run the sampler.py program to
request help. Notice that the only required arguments are the input files, as all the
options are set to reasonable defaults:

350 | Chapter 18: FASTX Sampler: Randomly Subsampling Sequence Files

$./sampler.py -h
usage: sampler.py [-h] [-f format] [-p reads] [-m max] [-s seed] [-o DIR]
FILE [FILE ...]

Probabilistically subset FASTA files

positional arguments:
FILE Input FASTA/Q file(s) @

optional arguments:

-h, --help show this help message and exit
-f format, --format format

Input file format (default: fasta) (2]
-p reads, --percent reads

Percent of reads (default: 0.1) (3]
-m max, --max max Maximum number of reads (default: 0) (4]
-s seed, --seed seed Random seed value (default: None) (5]
-0 DIR, --outdir DIR Output directory (default: out) (6)

One or more FASTA or FASTQ files are required.

The default sequence format of the input files is FASTA.

By default, the program will select 10% of the reads.

This option will stop sampling when a given maximum is reached.

This option sets the random seed to reproduce the selections.

© 06 6 o o0 o

The default directory for the output files is out.

As with previous programs, the program will reject invalid or unreadable input files,
and the random seed argument must be an integer value. The -p| - -percent option
should be a floating-point value between 0 and 1 (not inclusive), and the program
will reject anything outside of that range. I manually validate this argument and use
parser.error(), as in Chapters 4 and 9:

$./sampler.py -p 3 tests/inputs/nik.fa

usage: sampler.py [-h] [-f format] [-p reads] [-m max] [-s seed] [-o DIR]
FILE [FILE ...]

sampler.py: error: --percent "3.0" must be between 0 and 1

The -f|--format option will only accept the values fasta or fastq and will default
to the first. I use the choices option with argparse, as in Chapters 15 and 16, to
automatically reject unwanted values. For instance, the program will reject a value of
fastb:

$./sampler.py -f fastb tests/inputs/nik.fa

usage: sampler.py [-h] [-f format] [-p reads] [-m max] [-s seed] [-o DIR]
FILE [FILE ...]

Getting Started | 351

sampler.py: error: argument -f/--format: invalid choice:
'fastb' (choose from 'fasta', 'fastq')

Finally, the -m|--max option defaults to ®, meaning that the program will sample
about - -percent of the reads with no upper limit. Practically speaking, you may have
input files with tens of millions of reads but you only want at most 100K from each.
Use this option to halt sampling when the desired number is reached. For instance, I
can use -m 30 to stop sampling at 30 reads:

$./sampler.py -m 30 -s 1 tests/inputs/nik.fa
1: nik.fa
Wrote 30 sequences from 1 file to directory "out"

When you think you understand how the program should work, start over with your
version:

$ new.py -fp 'Probabilistically subset FASTA files' sampler.py
Done, see new script "sampler.py".

Defining the Parameters

The arguments to the program contain many different data types, which I represent
with the following class:

class Args(NamedTuple):
""" Command-line arguments
files: List[TextIO] (1]
file_format: str
percent: float (3]
max_reads: int (4)
seed: Optional[int] (5]
outdir: str

The files are a list of open filehandles.

The input file format is a string.

The percentage of reads is a floating-point value.
The maximum number of reads is an integer.
The random seed value is an optional integer.

o
(2]
(3]
o
e
(6]

The output directory name is a string.
Here is how I define the arguments with argparse:
def get_args() -> Args:

parser = argparse.ArgumentParser(
description="'Probabilistically subset FASTA files',

352 | Chapter 18: FASTX Sampler: Randomly Subsampling Sequence Files

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('file',

parser.

parser.

parser.

parser.

parser.

args =

metavar='FILE',
type=argparse.FileType('r'), (1)
nargs='+',

help='Input FASTA/Q file(s)')

add_argument('-f',

'--format',

help='Input file format',
metavar='format',

type=str,

choices=['fasta', 'fastq'], (2]
default="'fasta')

add_argument('-p',

'--percent’,
help='Percent of reads',
metavar='reads',
type=float, (3]
default=.1)

add_argument('-m',

'--max',

help='Maximum number of reads',
metavar='max',

type=int,

default=0) @

add_argument('-s',

'--seed',

help='Random seed value',
metavar='seed',

type=int,

default=None) (5]

add_argument('-o0',

'--outdir',

help='0Output directory',
metavar='DIR',

type=str,

default='out"') (6]

parser.parse_args()

if not 0 < args.percent < 1: (7]

parser.error(f'--percent "{args.percent}" must be between 0 and 1')

if not os.path.isdir(args.outdir): (&)
os.makedirs(args.outdir)

Getting Started

353

return Args(files=args.file, (o]
file_format=args.format,
percent=args.percent,
max_reads=args.max,
seed=args.seed,
outdir=args.outdir)

Define the file inputs as one or more readable text files.

Use choices to restrict the file formats and default to fasta.

The percent argument is a floating-point value with a default of 10%.

The maximum number of reads should be an integer with a default of 6.
The random seed value is optional but should be a valid integer if present.
The output directory is a string with a default value of out.

Verify that the percentage is between 0 and 1.

© ©¢ 6 6 6 o6 o ©

Create the output directory if it does not exist.

Return the Args object.

Note that, while the program will accept both FASTA and FASTQ inputs, it should
only write FASTA-formatted output files.

Nondeterministic Sampling

Since there is no inherent ordering to sequences, one might be tempted to take the
first however many sequences indicated by the user. For instance, I could use head to
select some number of lines from each file. This would work on FASTQ files as long
as this number is a divisor of four, but such an approach could create an invalid file
for most any other sequence format, like multiline FASTA or Swiss-Prot.

I've shown several programs that read and select sequences from files, so I could
repurpose one of those to select records until the desired number is reached. When I
was first asked to write this program by my boss, I did exactly this. The output was
unusable, however, because I had not realized that the input was a synthetic dataset
created by a colleague to simulate a metagenome, which is an environmental sample
comprised of unknown organisms. The input file was created by concatenating vari-
ous reads from known genomes so that, for instance, the first 10K reads were from a
bacteria, the next 10K from another bacteria, the next 10K from representative arch-
aea, the next 10K from viruses, and so on. Taking just the first N records failed to
include the diversity of the input. It was not only a boring program to write, but

354 | Chapter 18: FASTX Sampler: Randomly Subsampling Sequence Files

worse, it always generated the same output and so could not be used to generate dif-
ferent subsamples. This is an example of a deterministic program because the outputs
were always the same given the same inputs.

Since I needed to find a way to randomly select some percentage of the reads, my first
thought was to count the reads so I could figure out how many would be, for
instance, 10%. To do this, I stored all the sequences in a list, used len() to figure out
how many were present, and then randomly selected 10% of the numbers in this
range. While such an approach might work for very small input files, I hope you can
see how this fails to scale in any meaningful way. It’s not uncommon to encounter
input files with tens of millions of reads. Keeping all that data in something like a
Python list could easily require more memory than is available on a machine.

Eventually, I settled on a solution that reads one sequence at a time and randomly
decides whether to choose or reject it. That is, for each sequence I randomly select a
number from a continuous uniform distribution between 0 and 1, meaning that all val-
ues in this range are equally likely to be selected. If that number is less than or equal
to the given percentage, I select the read. This approach only ever holds one sequence
record in memory at a time, and so should scale at least linearly or O(n).

To demonstrate the selection process, I'll import the random module and select a
number between 0 and 1 using the random. random() function:

>>> import random
>>> random.random()
0.465289867914331

It’s unlikely that you’ll get the same number as I do. We have to agree on a seed to
both produce the same value. Use the integer 1, and you should get this number:

>>> random.seed(1)
>>> random.random()
0.13436424411240122

The random.random() function uses a uniform distribution. The
random module can also sample from other distributions, like nor-
mal or Gaussian. Consult help(random) to see these other func-
tions and how to use them.

As I iterate through the sequences in each file, I use this function to select a number.
If the number is less than or equal to the selected percentage, I want to write the
sequence to an output file. That is, the random. random() function ought to produce a
number less than or equal to .10 about 10% of the time. In this way, I'm using a non-
deterministic approach to sampling because the selected reads will be different each
time I run the program (assuming I do not set a random seed). This allows me to

Getting Started | 355

generate many different subsamples from the same input file, which could prove use-
ful in generating technical replicates for analyses.

Structuring the Program

You may feel somewhat overwhelmed by the complexity of this program, so I'll
present pseudocode you may find helpful:

set the random seed

iterate through each input file
set the output filename to output directory plus the input file's basename
open the output filehandle
initialize a counter for how many records have been taken

iterate through each record of the input file
select a random number between 0 and 1
if this number is less than or equal to the percent
write the sequence in FASTA format to the output filehandle
increment the counter for taking records

if there is a max number of records and the number taken is equal
leave the loop

close the output filehandle

print how many sequences were taken from how many files and the output location

I would encourage you to run the solution.py program on one file and then on sev-
eral files and try to reverse-engineer the output. Keep running the test suite to ensure
your program is on track.

I hope you can see how similar in structure this program is to many previous pro-
grams that process some number of input files and create some output. For example,
in Chapter 2 you processed files of DNA sequences to produce files of RNA sequen-
ces in an output directory. In Chapter 15, you processed sequence files to produce a
summary table of statistics. In Chapter 16, you processed sequence files to select
those records matching a pattern and wrote the selected sequences to an output file.
The programs in Chapters 2 and 16 most closely resemble what you need to do here,
so I recommend you borrow from those solutions.

Solutions

I want to share two versions of a solution. The first works to solve the exact problem
as described. The second solution goes beyond the original requirements because I
want to show you how to overcome two common problems you may face in process-
ing large bioinformatics datasets, namely opening too many filehandles and reading
compressed files.

356 | Chapter 18: FASTX Sampler: Randomly Subsampling Sequence Files

Solution 1: Reading Regular Files

If you are dealing with a limited number of uncompressed input files, the following
solution is appropriate:

def main() -> None:
args = get_args()
random.seed(args.seed) (1]

total_num = 0 (2]

for 1, fh in enumerate(args.files, start=1): (3]
basename = os.path.basename(fh.name)
out_file = os.path.join(args.outdir, basename)
print(f'{i:3}: {basename}') @

out_fh = open(out_file, 'wt') (5]
num_taken = 0

for rec in SeqIO.parse(fh, args.file_format): (7]
if random.random() <= args.percent: 0
num_taken += 1
SeqlO.write(rec, out_fh, 'fasta')

if args.max_reads and num_taken == args.max_reads: (o]
break

out_fh.close() ®
total_num += num_taken

num_files = len(args.files) (11]

print(f'Wrote {total_num:,} sequence{"" if total_num == 1 else "s"} '
f'from {num_files:,} file{"" if num_files == 1 else "s"} '
f'to directory "{args.outdir}"')

© Set the random seed, if present. The default None value will be the same as not
setting the seed.

® Initialize a variable to note the total number of sequences selected.
Iterate through each input filehandle.

Construct the output filename by joining the output directory with the file’s base-
name.

O Open the output filehandle for writing text.
O Initialize a variable to note how many sequences have been taken from this file.

@ Iterate through each sequence record in the input file.

Solutions | 357

O If the record is randomly selected, increment the counter and write the sequence
to the output file.

© If there is a maximum limit defined and the number of records selected is equal
to this, exit the inner for loop.

® Close the output filehandle and increment the number of total records taken.

® Note the number of files processed and inform the user of the final status.

Solution 2: Reading a Large Number of Compressed Files

The original problem does not involve reading compressed files, but you will often
find that data will be stored in this way to save bandwidth in transferring data and
disk space in storing it. Python can directly read files compressed with tools like zip
and gzip, so it’s not necessary to uncompress the input files before processing.

Additionally, if you are processing hundreds to thousands of input files, you will find
that using type=argparse.FileType() will cause your program to fail because you
may exceed the maximum number of open files your operating system will allow. In
that case, you should declare Args.files as List[str] and create the parameter like
this:
parser.add_argument('file',

metavar='FILE',

type=str, (1)

nargs="+"',

help='Input FASTA/Q file(s)')

© Set the parameter type to one or more string values.

This means you will have to validate the input files yourself, which you can do in the
get_args() function, like so:

if bad_files := [file for file in args.file if not os.path.isfile(file)]: (1)
parser.error(f'Invalid file: {", ".join(bad_files)}') (2]

© Find all the arguments that are not valid files.

® Use parser.error() to report the bad inputs.

The main() processing needs to change slightly as now args.files will be a list of
strings. You will need to open the filehandles yourself with open(), and this is the
crucial change to your program needed to handle compressed files. I will use a simple
heuristic that examines the file extension for .gz to determine if a file is zipped and
will instead use the gzip.open() function to open it:

358 | Chapter 18: FASTX Sampler: Randomly Subsampling Sequence Files

def main() -> None:
args = get_args()
random.seed(args.seed)

total_num = 0

for 1, file in enumerate(args.files, start=1): (1]
basename = os.path.basename(file)
out_file = os.path.join(args.outdir, basename)
print(f'{i:3}: {basename}')

ext = os.path.splitext(basename)[1] (2]

fh = gzip.open(file, 'rt') if ext == '.qgz
out_fh = open(out_file, 'wt')

num_taken = 0

else open(file, 'rt') (3]

for rec in SeqIO.parse(fh, args.file_format):
if random.random() <= args.percent:
num_taken += 1
SeqlO.write(rec, out_fh, 'fasta')

if args.max_reads and num_taken == args.max_reads:
break

out_fh.close()
total_num += num_taken

num_files = len(args.files)
print(f'Wrote {total_num:,} sequence{"" if total_num == 1 else "s"}
f'from {num_files:,} file{"" if num_files == 1 else "s"} '

f'to directory "{args.outdir}".")

args.files is now a list of strings, not filehandles.
Get the file extension.

If the file extension is .gz, use gzip.open() to open the file; otherwise, use the
normal open() function.

Finally, there are times when nargs="+" will also not work. For one project, I had to
download over 350,000 XML files. Passing all these as arguments will lead to an
“Argument list too long” error from the command line itself. My workaround is to
accept the directory names as arguments:

parser.add_argument('-d',
'o-dir',
metavar='DIR',
type=str,
nargs='+",
help='Input directories of FASTA/Q file(s)')

Solutions | 359

I then use Python to recursively search the directories for files. For this code, I added
from pathlib import Path so that I could use the Path.rglob() function:

files = []
for dirname in args.dir:
if os.path.isdir(dirname):
files.extend(list(Path(dirname).rglob('*')))

if not files:
parser.error('Found no files')

return Args(files=files,
file_format=args.format,
percent=args.percent,
max_reads=args.max,
seed=args.seed,
outdir=args.outdir)

The program can continue as before because Python does not have a problem storing
several hundred thousand items in a list.

Going Further

This program always produces FASTA output. Add an --outfmt output format
option so that you can specify the output format. Consider detecting the input file
format and writing the output format in the same way as you did in Chapter 16. Be
sure to add the appropriate tests to verify that your program works.

Review

o The > record marker in a FASTA file is also the redirect operator in bash, so care
must be taken to quote this value on the command line.

o Deterministic approaches always produce the same output for the given input.
Nondeterministic approaches produce different outputs for the same inputs.

o The random module has functions to select numbers from various distributions,
such as the uniform and normal distributions.

360 | Chapter 18: FASTX Sampler: Randomly Subsampling Sequence Files

CHAPTER 19
Blastomatic: Parsing Delimited Text Files

Delimited text files are a standard way to encode columnar data. You are likely famil-
iar with spreadsheets like Microsoft Excel or Google Sheets, where each worksheet
may hold a dataset with columns across the top and records running down. You can
export this data to a text file where the columns of data are delimited, or separated by
a character. Quite often the delimiter is a comma, and the file will have an extension
of .csv. This format is called CSV, for comma-separated values. When the delimiter is
a tab, the extension may be .tab, .txt, or .tsv for tab-separated values. The first line of
the file usually will contain the names of the columns. Notably, this is not the case
with the tabular output from BLAST (Basic Local Alignment Search Tool), one of the
most popular tools in bioinformatics used to compare sequences. In this chapter, I
will show you how to parse this output and merge the BLAST results with metadata
from another delimited text file using the csv and pandas modules.

In this exercise, you will learn:

o How to use csvkit and csvchk to view delimited text files

« How to use the csv and pandas modules to parse delimited text files

Introduction to BLAST

The BLAST program is one of the most ubiquitous tools in bioinformatics for deter-
mining sequence similarity. In Chapter 6, I showed how the Hamming distance
between two sequences is one measure of similarity and compared this to the concept
of alignment. Whereas the Hamming distance compares both sequences starting
from the beginning, an alignment with BLAST starts wherever both sequences begin
to overlap and will allow for insertions, deletions, and mismatches to find the longest
possible areas of similarity.

361

I'll show you the National Center for Biotechnology (NCBI) BLAST web interface,
but you can use blastn if you have BLAST installed locally. I will compare 100
sequences from the Global Ocean Sampling Expedition (GOS) to a sequence database
at NCBI. GOS is one of the earliest metagenomic studies, dating from the early 2000s
when Dr. Craig Venter funded a two-year expedition to collect and analyze ocean
samples from around the globe. It’s a metagenomic project because the genetic mate-
rial was taken directly from an environmental sample. The purpose of using BLAST is
to compare the unknown GOS sequences to known sequences at NCBI to determine
their possible taxonomic classification.

I used the FASTX sampler from Chapter 18 to randomly select the 100 input sequen-
ces in tests/inputs/gos.fa:

$../15_segmagique/seqmagique.py tests/inputs/gos.fa
name min_len max_len avg_len num_seqs
tests/inputs/gos.fa 216 1212 1051.48 100

I used the NCBI BLAST tool to compare these sequences to the nr/nt (nonredundant
nucleotide) database using the blastn program to compare nucleotides. The results
page allows me to select the detailed results for each of the 100 sequences. As shown
in Figure 19-1, the first sequence has four hits or matches to known sequences. The
first and best hit is about 93% identical over 99% of its length to a portion of the
genome of Candidatus Pelagibacter, a marine bacteria of the SAR11 clade. Given that
the GOS query sequence came from the ocean, this seems a likely match.

Sequences producing significant alignments Download “ [Select columns ¥ Show (]
select all 4 sequences selected GenBank Graphics Distance tree of results [EAMSA Viewer
e e Max Total Query E Per.
Description Scientific Name Acc. Len -
Az S Score | Score Cover value | Ident w°" | Accession
v v | v - v
Candidat sp. FZCC0015 complete genome Candidatu: i .. 492 492 99% T7e-135 92.94% 1364101 CP031125.1
Candidat sp. HIMB1321 genome assembly 1 Candidatu: i .. 342 342 99% 7e-90 85.00% 1320749 LT840186.1
Buchnera aphidicola (Mi i isolate MCAR-56B co... Buchneraaphidicola (Micr... 97.1 97.1 32% 6e-16 8273% 642296 CP048747.1
i of is braccata isolate PbraSym chromo... i endo.. 953 953 30% 2e-15 8381% 512214 CP046232.1

Figure 19-1. The first GOS sequence has four possible matches from nr/nt

Figure 19-2 shows how similar the query sequence is to a region of the Candidatus
Pelagibacter genome. Notice how the alignment allows for single-nucleotide varia-
tions (SNVs) and gaps caused by deletions or insertions between the sequences. If
you want to challenge yourself, try writing a sequence aligner. You can see an example
in Figure 19-2.

362 | Chapter 19: Blastomatic: Parsing Delimited Text Files

https://oreil.ly/POkOV
https://oreil.ly/gXErw
https://oreil.ly/qywN2

Candidatus Pelagibacter sp. FZCC0015 chromosome, complete genome
Sequence ID: CP031125.1 Length: 1364101 Number of Matches: 1

Range 1: 801257 to 801595 GenBank Graphics Next Match A Previous Match
Score Expect Identities Gaps Strand
492 bits(266) 7e-135 316/340(93%) 3/340(0%) Plus/Minus
Query 3 AAAATTTAATTCATGATAATGTTGAGATAACGAGTCAAAACCATGGATTTGAAGTAGTTA 62

) |||||IIII|||||I| [11]] || IIIII I|||||III||II| |||IIII|I||||
Sbjct 801595 AATGTA AAGTCAAAACCATGGTTTTGAAGTAG 801536
Query 63 AACAAACATTACCTAAAAATATTGAGGTCACACATAAAATCTTTGTTTGATAATAGTATT 122

) || ||IIII|||| I||III||||| I|I|III||||| II||I |||||IIII|I||||
Sbjct 801535 CAAAAAATA! TTGATAATAGT. 801477
e e I T T T,
Sbjct 801476 GAAGGTATTAAACTAAAAAACAAACCAGTCTTTTCAGTTCAATATCATCCAGAATCTAA 801417
e I T T o
Sbjct 801416 GGGACCTCAAGATA(TTTATTTGTTTCAAGAATTTATTAACAACATGAAAAAAAAT 801357
Query 242 ?ccaaaaaci;aaaatlgatattaaaaaa-TATTAGTTGTAGGAGCTGGTCCAATAATTATAG 300

) LELLTTLTILT] III|||||I|II|I||||||II|||I|||||IIII||||||
Sbjct 801356 GCCAAAAAM TTAAAAAAATATTGGTTGTAGGAGC! 801297
S e
Sbjct 801296 ACAAGCATGTGAATTTGATTATTCAGGGACACAAGCATGT 801257

Figure 19-2. The alignment of the top BLAST hit

As interesting as it is to explore each individual hit, I want to download a table of all
the hits. There is a Download All menu with 11 download formats. I chose the “Hit
table(csv)” format and split this data into hitsl.csv and hits2.csv in the tests/inputs
directory:

$ wc -1 tests/inputs/hits*.csv
500 tests/inputs/hitsl.csv
255 tests/inputs/hits2.csv
755 total

If you open these files with a text editor, you'll see they contain comma-separated val-
ues. You can also open a file with a spreadsheet program like Excel to see the data in
columnar format, and you may notice that the columns are not named. If you were
on a remote machine like a cluster node, you would likely not have access to a graphi-
cal program like Excel to inspect the results. Further, Excel is limited to about 1 mil-
lion rows and 16,000 columns. In real-world bioinformatics, it’s pretty easy to exceed
both of those values, so I'll show you command-line tools you can use to look at
delimited text files.

Introduction to BLAST | 363

Using csvkit and csvchk

First, I'd like to introduce the csvkit module, “a suite of command-line tools for con-
verting to and working with CSV.” The requirements.txt file for the repo lists this as a
dependency, so it’s probably installed. If not, you can use this command to install it:

$ python3 -m pip install csvkit

This will install several useful utilities, and I encourage you to read the documenta-
tion to learn about them. I want to highlight csvlook, which “renders a CSV file in
the console as a Markdown-compatible, fixed-width table” Run csvlook --help to
view the usage and notice there is an -H|--no-header-row option to view files that
have no header row. The following command will display the first three rows of the
hits table. Depending on the size of your screen, this might be unreadable:

$ csvlook -H --max-rows 3 tests/inputs/hitsl.csv

The csvchk program will transpose a wide record like this to a tall one vertically ori-
ented with the column names on the left rather than across the top. This, too, should

have been installed with other module dependencies, but you can use pip to install it
if needed:

$ python3 -m pip install csvchk

If you read the usage, you'll see that this tool also has an -N| - -noheaders option. Use
csvchk to inspect the first record in the same hits file:

$ csvchk -N tests/inputs/hitsl.csv
// *kk¥kk* Racord 1 *xkkxkx //
Fieldl : CAM_READ_0234442157
Field2 : CP031125.1

Field3 : 92.941

Field4 : 340
Field5 : 21
Field6 : 3
Field7 : 3
Field8 : 340

Field9 : 801595

Field10o : 801257

Field1l : 6.81e-135

Field12 : 492
The output files you can download from NCBI BLAST match the output formats
from the command-line versions of the BLAST programs, like blastn for comparing
nucleotides, blastp for comparing proteins, etc. The help documentation for blastn
includes an -outfmt option to specify the output format using a number between 0
and 18. The preceding output file format is the “Tabular” option 6:

364 | Chapter 19: Blastomatic: Parsing Delimited Text Files

https://oreil.ly/QDAn2
https://oreil.ly/QDAn2
https://oreil.ly/T2QSo

*** Formatting options
-outfmt <String>

alignment view options:

0 = Pairwise,

= Query-anchored showing identities,
= Query-anchored no identities,
= Flat query-anchored showing identities,
= Flat query-anchored no identities,
BLAST XML,
= Tabular,
= Tabular with comment lines,
= Segalign (Text ASN.1),
= Seqalign (Binary ASN.1),
Comma-separated values,
11 = BLAST archive (ASN.1),
12 = Seqalign (JSON),
13 = Multiple-file BLAST JSON,
14 = Multiple-file BLAST XML2,
15 = Single-file BLAST JSON,
16 = Single-file BLAST XML2,
17 = Sequence Alignment/Map (SAM),
18 = Organism Report

Vo ~NOULLDE WNBRE
1]

=
(o]
n

You may find yourself wondering why the tabular output file does not contain the
column headers. If you read through all the formatting options, you may notice that
output format 7 is “Tabular with comment lines,” and you may ask yourself: Is this
the option that will include the column names? Dear reader, you will be sorely disap-
pointed to learn it does not.! Option 7 is the same as the “Hits table(text)” option on
the NCBI BLAST page. Download and open that file to see that it contains metadata
about the search as unstructured text on lines that begin with the # character. Because
so many languages (including Python) use this as a comment character to indicate a
line that should be ignored, it's common to say that the metadata is commented out,
and many delimited text parsers will skip these lines.

So what are the column names? I must parse through hundreds of lines of the blastn
usage to find that “Options 6, 7, 10 and 17 can be additionally configured” to include
any of 53 optional fields. If the fields are not specified, then the default fields are as
follows:

» qaccver: Query sequence accession/ID

« saccver: Subject sequence accession/ID

« pildent: Percentage of identical matches

« length: Alignment length

1 You may say to yourself, “My God! What have they done?”

Using csvkitand csvchk | 365

o mismatch: Number of mismatches

« gapopen: Number of gap openings

« gstart: Start of alignment in query
« gend: End of alignment in query

o sstart: Start of alignment in subject
« send: End of alignment in subject

« evalue: Expect value

« bitscore: Bit score

If you look again at the usage for csvchk, you'll find there is an option to name the
-f|--fieldnames for the record. Following is how I could view the first record from

a hits file and specify column names:

$ csvchk -f 'gseqid,sseqid,pident,length,mismatch,gapopen,gstart,qgend,\
sstart,send,evalue,bitscore' tests/inputs/hitsl.csv

// *kkkkk Record 1 *kkkkk //

gseqid : CAM_READ_0234442157
sseqid : CPO31125.1
pident 1 92.941
length : 340
mismatch : 21

gapopen : 3

qstart HE

qend : 340

sstart ¢ 801595
send : 801257
evalue : 6.81e-135
bitscore : 492

This is a much more useful output. If you like this command, you can create an alias

called blstchk in bash, like so:

alias blstchk='csvchk -f "gseqid,sseqid,pident,length,mismatch,gapopen,)\

gstart,qend,sstart,send,evalue,bitscore

Most shells allow you to define aliases like this in a file that is read
each time you start a new shell. In bash, you could add this line to a
file in your SHOME directory, like .bash_profile, .bashrc, or .profile.
Other shells have similar properties. Aliases are a handy way to cre-
ate global shortcuts for common commands. If you wish to create a
command shortcut inside a particular project or directory, consider
using a target in a Makefile.

366 |

Chapter 19: Blastomatic: Parsing Delimited Text Files

Here is how I use the blstchk command:

$ blstchk tests/inputs/hitsil.csv
// *hkkkkk Record 1 *kkkkk //
gseqid : CAM_READ_0234442157
sseqid : CPO31125.1

pident : 92.941

length : 340
mismatch : 21
gapopen : 3

gstart 3

qend : 340
sstart : 801595
send : 801257
evalue : 6.8le-135

bitscore : 492

The goal of the program in this chapter is to link the BLAST hits to the depth and
location of the GOS sequences found in the file tests/inputs/meta.csv. 1 will use

the -g|--grep option to csvchk to find the preceding query sequence,
CAM_READ_0234442157:

$ csvchk -g CAM_READ_0234442157 tests/inputs/meta.csv
// *kkkkk Record 1 k*hkkkkk //

seq_1id : CAM_READ_0234442157
sample_acc : CAM_SMPL_GS112

date . 8/8/05

depth 1 4573

salinity . 32.5

temp 1 26.6

lat_lon : -8.50525,80.375583

The BLAST results can be joined to the metadata where the former’s gseqid is equal
to the latter’s seq_1id. There is a command-line tool called join that will do exactly
this. The inputs must both be sorted, and I will use the -t option to indicate that the
comma is the field delimiter. By default, join assumes the first column in each file is
the common value, which is true here. The output is a comma-separated union of the
fields from both files:

$ cd tests/inputs/

$ join -t , <(sort hitsl.csv) <(sort meta.csv) | csvchk -s "," -N - (1]
// *kkkkk Racord 1 *xrkkx //

Fieldl : CAM_READ_0234442157

Field2 : CP046232.1

Field3 : 83.810

Field4 : 105
Fields : 12
Field6é : 5

Field7 : 239
Field8 : 340

Fileld9 : 212245

Using csvkitand csvchk | 367

Field10 : 212143

Field11l : 2.24e-15

Field12 : 95.3

Field13 : CAM_SMPL_GS112
Field14 : 8/8/05

Field15 : 4573

Field16 : 32.5

Field17 : 26.6

Field18 : -8.50525,80.375583

@ The two positional inputs to join use shell redirection < to read in the results of
sorting the two input files. The output from jotin is piped to csvchk.

Although it’s good to know how to use join, this output is not particularly useful
because it does not have the column headers. (Also, the point is to learn how to do
this in Python.) How might you add headers to this information? Would you cobble
together some shell commands in a bash script or a Makefile target, or would you
write a Python program? Lets keep moving, shall we? Next, I'll show you how the
program should work and the output it will create.

Getting Started

All the code and tests for this exercise can be found in the 19_blastomatic directory of
the repository. Change to this directory and copy the second solution to the program
blastomatic.py:

$ cd 19_blastomatic/
$ cp solution2_dict_writer.py blastomatic.py

The program will accept the BLAST hits and the metadata file and will produce an
output file showing the sequence ID, the percent identity match, the depth, and the
latitude and longitude of the sample. Optionally, the output can be filtered by the per-
cent identity. Request help from the program to see the options:

$./blastomatic.py -h
usage: blastomatic.py [-h] -b FILE -a FILE [-o FILE] [-d DELIM] [-p PCTID]

Annotate BLAST output

optional arguments:
-h, --help show this help message and exit
-b FILE, --blasthits FILE
BLAST -outfmt 6 (default: None) (1)
-a FILE, --annotations FILE
Annotations file (default: None) (2]
-0 FILE, --outfile FILE
Output file (default: out.csv) (3]
-d DELIM, --delimiter DELIM
Output field delimiter (default:) @

368 | Chapter 19: Blastomatic: Parsing Delimited Text Files

-p PCTID, --pctid PCTID
Minimum percent identity (default: 0.0) (5)

The tabular output file from a BLAST search in -outfmt 6.
An annotations file with metadata about the sequences.
The name of the output file, which defaults to out.csv.

The output file delimiter, which defaults to a guess based on the output file
extension.

The minimum percent identity, which defaults to 6.

If I run the program using the first hits file, it will write 500 sequences to the output
file out.csv:

$./blastomatic.py -b tests/inputs/hitsl.csv -a tests/inputs/meta.csv
Exported 500 to "out.csv".

I can use csvlook with the - -max-rows option to view the first two rows of the table:

$ csvlook --max-rows 2 out.csv

gseqid	pident	depth	lat_lon
oomoernoennnne	eee	e	ernenn e
CAM_READ_0234442157	92.941	4,573	-8.50525,80.375583
CAM_READ_0234442157	85.000	4,573	-8.50525,80.375583
...		R	

Or I can use csvchk with -1 --1imit to do the same:

$ csvchk --limit 2 out.csv

/] *¥xxx%x Record 1 **xxxx [/

gqseqid : CAM_READ_0234442157
pident : 92.941

depth : 4573

lat_lon : -8.50525,80.375583

|| ***%%% Record 2 ****%% [/

gseqid : CAM_READ_0234442157
pident : 85.000

depth : 4573

lat_lon : -8.50525,80.375583

If I want to only export hits with a percent identity greater than or equal to 90%, I can
use the -p| - -pctid option to find that only 190 records are found:

$./blastomatic.py -b tests/inputs/hitsl.csv -a tests/inputs/meta.csv -p 90
Exported 190 to "out.csv".

I can peek at the file to see that it appears to have selected the correct data:

$ csvlook --max-rows 4 out.csv
| gqseqid | pident | depth | lat_lon

Getting Started | 369

| CAM_READ_0234442157 | 92.941 | 4,573 | -8.50525,80.375583 |

JCVI_READ_1091145027519	97.368	2	44.137222,-63.644444
JCVI_READ_1091145742680	98.714	64	44.690277,-63.637222
JCVI_READ_1091145742680	91.869	64	44.690277,-63.637222

Using awk and cut with Delimited Text

If I only wanted to inspect the second column of data, I could use the cut tool, which
has the -f option to select the second field (1-based counting) and the -d option to
indicate the comma as the delimiter:

$ cut -f2 -d, out.csv

Alternatively, I could use awk with the -F option to indicate the comma as the field
separator and the instruction {print $2} (also 1-based) to indicate that it should
print the second field:

$ awk -F, '{print $2}' out.csv

The quotes in the awk command must be delimited by single
quotes in bash because double quotes would try to interpolate
the variable $2. Ah, the vagaries of shell quoting.

If I additionally wanted to verify that all the values in the second column were indeed
greater than or equal to 90, I could use awk with cut. Note I need to add @ to the first
field to force awk to treat the value as an integer:
$ cut -f2 -d, out.csv | awk 'S$S1 + 0 >=90' | wc -1
190
Or I could use awk to only print the values of column 2 when they are greater than or
equal to 90:

S awk -F"," '$2 + 0 >= 90 {print $2}' out.csv | wc -1
190

Or, since Perl was one of my first true loves, here’s a Perl one-liner:

S perl -F"," -ane 'SF[1] >= 90 && print($F[1], "\n")' out.csv | wc -1
190
It is well worth your time to learn how to use these small, limited tools like join,
paste, comm, awk, sed, grep, cut, sort, and even Perl. Sufficient proficiency with these
tools and Unix pipes can often obviate writing longer Python programs.

370 | Chapter 19: Blastomatic: Parsing Delimited Text Files

The blastomatic.py program defaults to writing the output to the comma-separated
file out.csv. You can use the -d|--delimiter option to specify a different delimiter
and the -o| - -outfile option to specify a different file. Note that the delimiter will be
guessed from the extension of the output filename if it is not specified. The exten-
sion .csv will be taken to mean commas, and otherwise tabs will be used.

Run make test to see the full test suite. When you think you understand how the
program should work, start anew:

$ new.py -fp 'Annotate BLAST output' blastomatic.py
Done, see new script "blastomatic.py".

Defining the Arguments
Here is the class I used to define my arguments:

class Args(NamedTuple):
""" Command-line arguments
hits: TextIo @
annotations: TextI0 @
outfile: TextI0 ©
delimiter: str @
pctid: float (5]

The BLAST hits file will be an open filehandle.
The metadata file will be an open filehandle.
The output file will be an open filehandle.

The output file delimiter will be a string.

® 06 o o0 o

The percent identity will be a floating-point number.
Here is how I parse and validate the arguments:

def get_args():
""" Get command-line arguments """

parser = argparse.ArgumentParser(
description='Annotate BLAST output',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('-b"',
'--blasthits’,
metavar='FILE',
type=argparse.FileType('rt'), (1)
help='BLAST -outfmt 6',
required=True)

Getting Started | 371

parser.add_argument('-a',
'--annotations',
help='Annotations file',
metavar='FILE',
type=argparse.FileType('rt'), (2]
required=True)

parser.add_argument('-o',
'--outfile',
help='0Output file',
metavar='FILE',
type=argparse.FileType('wt'), (3]
default='out.csv')

parser.add_argument('-d',
'--delimiter',
help='Output field delimiter', @
metavar='DELIM',
type=str,
default="")

parser.add_argument('-p',
'--pctid',
help='Minimum percent identity', (5]
metavar='PCTID',
type=float,
default=0.)

args = parser.parse_args()
return Args(hits=args.blasthits, (6]
annotations=args.annotations,
outfile=args.outfile,
delimiter=args.delimiter or guess_delimiter(args.outfile.name), (7]
pctid=args.pctid)
The BLAST file must be a readable text file.

The metadata file must be a readable text file.

The output file must be a writable text file.

© o o ©

The output field delimiter is a string that defaults to the empty string I will guess
from the output filename.

()

The minimum percent identity should be a floating-point number that defaults to
0.

372 | Chapter 19: Blastomatic: Parsing Delimited Text Files

O Create the Args object. Note that the fields of Args do not need to match the
parameter names.

@ I wrote a function to guess the delimiter from the output filename.

This program has two required file arguments: the BLAST hits, and
the annotations. I don’t want to make these positional arguments
because then my user would have to remember the order. It’s better
to have these as named options, but then they become optional,

which I don’t want either. To overcome this, I use required=True
for both the file parameters to ensure the user supplies them.

You might like to start with the guess_delimiter() function. Here is the test I wrote:

def test_guess_delimiter() -> None:
""" Test guess_delimiter """

assert guess_delimiter('/foo/bar.csv') == "','
assert guess_delimiter('/foo/bar.txt') == "\t'
assert guess_delimiter('/foo/bar.tsv') == '\t'
assert guess_delimiter('/foo/bar.tab') == "\t'
assert guess_delimiter('') == "\t'

Start your main() with some minimal code that will work:

def main() -> None:
args = get_args()
print('hits', args.hits.name)
print('meta', args.annotations.name)

Verify that this works:

$./blastomatic.py -a tests/inputs/meta.csv -b tests/inputs/hitsl.csv

hits tests/inputs/hitsil.csv

meta tests/inputs/meta.csv
At this point, you should be able to pass several tests when you run make test. Next,
I’ll show you how to parse the delimited text files.

Parsing Delimited Text Files Using the csv Module

Python has a csv module that will handle delimited text files easily, but I would first
like to show you exactly what it’s doing so you can appreciate how much effort it
saves. To begin, I will open the metadata file and read the headers from the first line. I
can call the fh.readline() method on a filehandle to read one line of text. This will
still have the newline attached, so I call str.rstrip() to remove any whitespace from
the right side of the string. Finally, I call str.split(',') to break the line on the
delimiting comma:

Getting Started | 373

>>> fh = open('tests/inputs/meta.csv')

>>> headers = fh.readline().rstrip().split(',"')

>>> headers

['seq_1d', 'sample_acc', 'date', 'depth', 'salinity', 'temp', 'lat_lon']

So far, so good. I'll try parsing the next line of data:

>>> line = fh.readline()

>>> data = line.split(',"')

>>> data

['JCVI_READ_1092301105055', 'JCVI_SMPL_1103283000037', '2/11/04', '1.6', '',
'25.4"', '"-0.5938889', '-91.06944""']

Can you see a problem here? I have split the lat_Llon field, which contains a comma,
into two values, giving me eight values for seven fields:

>>> len(headers), len(data)

(7, 8)
Using str.split() will not work because it fails to consider when the separator is
part of the field value. That is, when the field separator is enclosed in quotes, it’s not a
field separator. Notice that the lat_lon value is properly quoted:

>>> 1line[50:]
'11/04,1.6,,25.4,"-0.5938889,-91.06944"\n\ '

One way to correctly parse this line uses the pyparsing module:

>>> import pyparsing as pp

>>> data = pp.commaSeparatedList.parseString(line).asList()

>>> data

['JCVI_READ_1092301105055', 'JCVI_SMPL_1103283000037', '2/11/04', '1.6',
'Y, '25.4', '"-0.5938889,-91.06944""']

That’s close, but the lat_lon field still has the quotes around it. I can use a regular
expression to remove them:

>>> import re

>>> data = list(map(lambda s: re.sub(r'A"|"$', '', s), data)) (1]

>>> data

['JCVI_READ_1092301105055', 'JCVI_SMPL_1103283000037', '2/11/04', '1.6', '',
'25.4', '-0.5938889,-91.06944"']

© This regular expression replaces a quote anchored to either the beginning or the
end of a string with the empty string.

Now that I have a list of the headers and a list of the data for a given record, I could
create a dictionary by zipping these together. I've used the zip() function in Chapters
6 and 13 to join two lists into a list of tuples. Because zip() is a lazy function, I must
use the 1ist() function in the REPL to force the evaluation:

>>> from pprint import pprint
>>> pprint(list(zip(headers, data)))

374 | Chapter 19: Blastomatic: Parsing Delimited Text Files

[('seq_id', 'JCVI_READ_1092301105055'),
('sample_acc', 'JCVI_SMPL_1103283000037'),
('date', '2/11/04"),

('depth', '1.6'),
('salinity', ''),
('"temp', '25.4'),
('lat_lon', '-0.5938889,-91.06944')]

I can change the 1ist() function to dict() to turn this into a dictionary:

>>> pprint(dict(zip(headers, data)))
{'date': '2/11/04',
'depth': '1.6',
'lat_lon': '-0.5938889,-91.06944"',
'salinity': '',
'sample_acc': 'JCVI_SMPL_1103283000037',
'seq_1d': 'JCVI_READ_1092301105055',

"temp': '25.4'}

I could iterate through each line of the file and create a dictionary of the records by
zipping the headers and data. That would work just fine, but all this work has already
been done for me in the csv module. Following is how I can parse the same file into a
list of dictionaries using csv.DictReader(). By default, it will use the comma as the
delimiter:

>>> import csv
>>> reader = csv.DictReader(open('tests/inputs/meta.csv'))
>>> for rec in reader:

pprint(rec)

break

{'date': '2/11/04',
'depth': '1.6',
'lat_lon': '-0.5938889,-91.06944",
'salinity': '',
'sample_acc': 'JCVI_SMPL_1103283000037',
'seq_1d': 'JCVI_READ_1092301105055',

"temp': '25.4'}
That’s much easier. Here’s how I might use this to create a dictionary of all the anno-
tations keyed on the sequence ID. Be sure to add from pprint import pprint for
this:
def main():
args = get_args()
annots_reader = csv.DictReader(args.annotations, delimiter=',') o

annots = {row['seq_1d']: row for row in annots_reader} (2]
pprint(annots)

© Use csv.DictReader() to parse the CSV data in the annotations filehandle.

Getting Started | 375

® Use a dictionary comprehension to create a dictionary keyed on the seq_id field
from each record.

Run this with the input files and see if you get a reasonable-looking data structure.
Here I'll redirect STDOUT to a file called out and use head to inspect it:

$./blastomatic.py -a tests/inputs/meta.csv -b tests/inputs/hitsl.csv > out

S head out
{'CAM_READ_0231669837': {'date': '8/4/05',
'depth': '7',
'lat_lon': '-12.092617,96.881733",

'salinity': '32.4',

'sample_acc': 'CAM_SMPL_GS108',

'seq_id': 'CAM_READ_0231669837',

"temp': '25.8'},

'CAM_READ_0231670003': {'date': '8/4/05',

'depth': '7',

'lat_lon': '-12.092617,96.881733',
Before I move on to reading the BLAST hits, I'd like to open the output filehandle.
The format of the output file should be another delimited text file. By default it will
be a CSV file, but the user may choose something else, like a tab separator. The first
line of the file should be the headers, so I'll immediately write those:

def main():
args = get_args()
annots_reader = csv.DictReader(args.annotations, delimiter=',')
annots = {row['seq_1d']: row for row in annots_reader}

headers = ['qseqid', 'pident', 'depth', 'lat_lon'] (1]
args.outfile.write(args.delimiter.join(headers) + '\n') (2]

© These are the output file’s column names.

® args.outfile is a filehandle opened for writing text. Write the headers joined on
the args.delimiter string. Be sure to add a newline.

Alternatively, you could use print() with a file argument:
print(args.delimiter.join(headers), file=args.outfile)

Next, I'll cycle through the BLAST hits. It's necessary to supply the fieldnames to
csv.DictReader() since the first line of the file is missing the column names:

def main():
args = get_args()
annots_reader = csv.DictReader(args.annotations, delimiter=',")
annots = {row['seq_i1d']: row for row in annots_reader}

headers = ['qseqid', 'pident', 'depth', 'lat_lon']
args.outfile.write(args.delimiter.join(headers) + '\n')

376 | Chapter 19: Blastomatic: Parsing Delimited Text Files

hits = csv.DictReader(args.hits, (1]
delimiter=',"',
fieldnames=[
'qseqid', 'sseqid', 'pident', 'length',
'mismatch', 'gapopen', 'gstart', 'gend',
'sstart', 'send', 'evalue', 'bitscore'

D)

for hit in hits: @
if float(hit.get('pident', -1)) < args.pctid: (3]
continue
print(hit.get('gseqid')) (4]

@ Parse the BLAST CSV file.

©® Iterate through each BLAST hit.

© Skip those hits where the percent ID is less than the minimum. Use the float()
function to convert the text to a floating-point value.

O Print the query sequence ID.

Run this version of the program with a minimum percent ID of 90, and verify that
you get 190 hits from the first file:

$./blastomatic.py -a tests/inputs/meta.csv -b tests/inputs/hitsl.csv -p 90 \

| we -1

190
If the BLAST hit’s gseqid value is found as a seq_id in the metadata file, then print to
the output file the sequence ID, the percent ID from the BLAST hit, and the depth
and latitude/longitude values from the metadata file. That should be enough to get
you rolling on this program. Be sure to run the tests to verify that your program is
correct.

Parsing Delimited Text Files Using the pandas Module

The pandas module presents another effective way to read a delimited file. This mod-
ule, along with NumPy, is one of the foundational Python libraries used in data sci-
ence. I'll use the pd.read_csv() function, which closely resembles the read_csv()
function from the R programming language, if you are familiar with that. Note that
the function can read text delimited by any delimiter you specify using a sep field
separator, but the default is a comma.

Getting Started | 377

Normally the delimiter is a single character, but it’s possible to split
text using a string. If you do this, you may encounter the warning
“ParserWarning: Falling back to the python engine because the ¢
engine does not support regex separators (separators > 1 char and
different from \s+ are interpreted as regex); you can avoid this
warning by specifying engine=python”

It's common to import pandas with the alias pd:

>>> import pandas as pd

>>> meta = pd.read_csv('tests/inputs/meta.csv')
Much of pandas is based on ideas from R. A pandas dataframe is a two-dimensional
object that holds all the columns and rows of the metadata file in a single object, just
like a dataframe in R. That is, the reader in the previous example is an interface used
to sequentially retrieve each of the records, but the pandas dataframe is a full repre-
sentation of all the data from the file. As such, the size of a dataframe will be limited
to the amount of memory on your computer. Just as I've warned about using
fh.read() to read an entire file into memory, you must be judicious about which files
can be practically read using pandas. If you must process millions of rows of delimi-
ted text in gigabyte-sized files, I would recommend using cvs.DictReader() to pro-
cess one record at a time.

If you evaluate the meta object in the REPL, a sample of the table will be shown. You
can see that pandas used the first row of the file for the column headers. As indicated
by ellipses, some of the columns have been elided due to the constrained width of the
screen:

>>> meta

seq_id ... lat_lon
0 JCVI_READ_1092301105055 ... -0.5938889,-91.06944
1 JCVI_READ_1092351051817 ... -0.5938889,-91.06944
2 JCVI_READ_1092301096881 ... -0.5938889,-91.06944
3 JCVI_READ_1093017101914 ... -0.5938889,-91.06944
4 JCVI_READ_1092342065252 ... 9.164444,-79.83611
95 JCVI_READ_1091145742670 ... 44.,690277,-63.637222
96 JCVI_READ_1091145742680 ... 44.690277,-63.637222
97 JCVI_READ_1091150268218 ... 44.,690277,-63.637222
98 JCVI_READ_1095964929867 ... -1.9738889,-95.014725
99 JCVI_READ_1095994150021 ... -1.9738889,-95.014725

[100 rows x 7 columns]

To find the number of rows and columns in a dataframe, inspect the meta.shape
attribute. Note that this is not followed by parentheses because it is not a method call.
This dataframe has 100 rows and 7 columns:

378 | Chapter 19: Blastomatic: Parsing Delimited Text Files

>>> meta.shape
(100, 7)

I can inspect the meta.columns attribute for the column names:

>>> meta.columns

Index(['seq_id', 'sample_acc', 'date', 'depth', 'salinity', 'temp', 'lat_lon'],

dtype='object')
One advantage to dataframes is that you can query all the values from a column using
a syntax that looks like accessing a field in a dictionary. Here I'll select the salinity
values, and note that pandas has converted the values from text to floating-point val-
ues, with missing values represented, with NaN (not a number):

>>> meta['salinity']

0 NaN
1 NaN
2 NaN
3 NaN
4 0.1
95 30.2
96 30.2
97 30.2
98 NaN
99 NaN

Name: salinity, Length: 100, dtype: float64

I can find the rows with a salinity greater than 50 using syntax almost identical to that
in R. This returns an array of Boolean values based on the predicate salinity is greater
than 50:

>>> meta['salinity'] > 50

0 False
1 False
2 False
3 False
4 False
95 False
96 False
97 False
98 False
99 False

Name: salinity, Length: 100, dtype: bool

I can use these Booleans values as a mask to only select the rows where this condition
is True:

>>> meta[meta['salinity'] > 50]

seq_id ... lat_lon
23 JCVI_READ_1092351234516 ... -1.2283334,-90.42917
24 JCVI_READ_1092402566200 ... -1.2283334,-90.42917

Getting Started | 379

25 JCVI_READ_1092402515846 ... -1.2283334,-90.42917

[3 rows x 7 columns]

The result is a new dataframe, so I could then look at the salinity values that were
found:

>>> meta[meta['salinity'] > 50]['salinity']

23 63.4
24 63.4
25 63.4

Name: salinity, dtype: float64

If you read the BLAST hits file with pandas, you will need to supply the column
names as you did in the previous example:
>>> cols = ['gseqid', 'sseqid', 'pident', 'length', 'mismatch', 'gapopen',

'qstart', 'qend', 'sstart', 'send', 'evalue', 'bitscore']
>>> hits = pd.read_csv('tests/inputs/hitsl.csv', names=cols)

>>> hits

gseqid sseqid ... evalue bitscore
[¢] CAM_READ_0234442157 (P031125.1 6.810000e-135 492.0
1 CAM_READ_0234442157 LT840186.1 7.260000e-90 342.0
2 CAM_READ_0234442157 (P048747.1 6.240000e-16 97.1
3 CAM_READ_0234442157 (P046232.1 2.240000e-15 95.3
4 JCVI_READ_1095946186912 (CP038852.1 0.000000e+00 1158.0

.000000e+00 1834.
.000000e+00 1834.
.000000e+00 1834.
.000000e+00 1834.
.000000e+00 1834.

495 JCVI_READ_1095403503430 EU805356.
496 JCVI_READ_1095403503430 EU804987.
497 JCVI_READ_1095403503430 EU804799.
498 JCVI_READ_1095403503430 EU804695.
499 JCVI_READ_1095403503430 EU804645.

R R R R PR
ool ol oNC)
ool ol oo R

[500 rows x 12 columns]

One element of this program is to select only those hits with a percent ID greater than
or equal to some minimum. pandas will automatically convert the pident column to
a floating-point value. Here I will select those hits with a percent ID greater than or
equal to 90:

>>> wanted = hits[hits['pident'] >= 90]
>>> wanted

gseqid sseqid ... evalue bitscore
[¢] CAM_READ_0234442157 (P031125.1 6.810000e-135 492.0
12 JCVI_READ_1091145027519 (CP058306.1 6.240000e-06 65.8
13 JCVI_READ_1091145742680 CP000084.1 0.000000e+00 1925.0
14 JCVI_READ_1091145742680 (P038852.1 0.000000e+00 1487.0
111 JCVI_READ_1091145742680 (P022043.2 1.320000e-07 71.3

.000000e+00 1834.
.000000e+00 1834.
.000000e+00 1834.
.000000e+00 1834.

495 JCVI_READ_1095403503430 EU805356.
496 JCVI_READ_1095403503430 EU804987.
497 JCVI_READ_1095403503430 EU804799.
498 JCVI_READ_1095403503430 EU804695.

R R R R
[clcl o)
(ool oMo R

380 | Chapter 19: Blastomatic: Parsing Delimited Text Files

499 JCVI_READ_1095403503430 EU804645.1 ... 0.000000e+00 1834.0

[190 rows x 12 columns]

To iterate over the rows in a dataframe, use the wanted.iterrows() method. Note
that this works like the enumerate() function in that it returns a tuple of the row
index and the row value:

>>> for 1, hit in wanted.iterrows():

print(hit)

break
gseqid CAM_READ_0234442157
sseqid CPO31125.1
pident 92.941
length 340
mismatch 21
gapopen 3
gstart 3
qend 340
sstart 801595
send 801257
evalue 0.000
bitscore 492.000

Name: 0, dtype: object

To print a single field from a record in the dataframe, you can treat the record like a
dictionary using field access through square brackets or by using the familiar
dict.get() method. As with dictionaries, the first method will create an exception if
you misspell a field name, while the latter method will quietly return None:

>>> for 1, hit in wanted.iterrows():

print(hit['gseqid'], hit.get('pident'), hit.get('nope'))
break

CAM_READ_0234442157 92.941 None

As in the previous example, I recommend you first read the metadata and then iterate
through the BLAST hits. You can look up the metadata from the meta dataframe by
searching over the seq_id field. The sequence IDs in the metadata file are unique, so
you should only find at most one:

>>> seqs = meta[meta['seq_id'] == 'CAM_READ_0234442157']
>>> seqs

seq_1id sample_acc ... temp lat_lon
91 CAM_READ_0234442157 CAM_SMPL_GS112 ... 26.6 -8.50525,80.375583

[1 rows x 7 columns]

You can either iterate over the matches or use the iloc accessor to get the first
(zeroth) record:

Getting Started | 381

>>> seqs.iloc[0]

seq_1id CAM_READ_0234442157
sample_acc CAM_SMPL_GS112
date 8/8/05
depth 4573.0
salinity 32.5
temp 26.6
lat_lon -8.50525,80.375583

Name: 91, dtype: object
If you fail to find any matches, you will get an empty dataframe:

>>> seqs = meta[meta['seq_id'] == 'X']

>>> seqs

Empty DataFrame

Columns: [seq_1id, sample_acc, date, depth, salinity, temp, lat_lon]
Index: []

You can inspect the segs.empty attribute to see if it’s empty:

>>> seqs.empty
True

or inspect the rows value from segs. shape:

>>> seqs.shape[0]

0
Dataframes can also write their values to a file using the to_csv() method. As with
read_csv(), you can specify any sep field separator, and the default is the comma.
Note that by default pandas will include the row index as the first field of the output
file. T generally use index=False to omit this. For example, I'll save the metadata
records with a salinity greater than 50 to the salty.csv file with one line of code:

>>> meta[meta['salinity'] > 50].to_csv('salty.csv', index=False)
I can verify that the data was written using csvchk or csvlook:

$ csvchk salty.csv
// *khkkkkk Record 1 *kkkkk //

seq_id : JCVI_READ_1092351234516
sample_acc : JCVI_SMPL_1103283000038
date . 2/19/04

depth 1 0.2

salinity : 63.4

temp . 37.6

lat_lon : -1.2283334,-90.42917

A thorough review of pandas is well beyond the scope of this book, but this should be
enough for you to figure out a solution. If you would like to learn more, I recom-
mend Python for Data Analysis by Wes McKinney (O’Reilly, 2017) and Python Data
Science Handbook by Jake VanderPlas (O’Reilly, 2016).

382 | Chapter 19: Blastomatic: Parsing Delimited Text Files

https://oreil.ly/kAtUU
https://oreil.ly/1V94U
https://oreil.ly/1V94U

Solutions

I have four solutions, two using the csv module and two using pandas. All of the sol-

utions use the same guess_delimiter() function, which I wrote like this:

def guess_delimiter(filename: str) -> str:
""" Guess the field separator from the file extension

ext = os.path.splitext(filename)[1] (1]
return ',' i1f ext == '.csv' else '\t' (2]

@ Select the file extension from os.path.splitext().

® Return a comma if the file extension is .csv and the tab character otherwise.

Solution 1: Manually Joining the Tables Using Dictionaries

This version closely follows all the suggestions from earlier in the chapter:

def main():
args = get_args()
annots_reader = csv.DictReader(args.annotations, delimiter=',") (1]
annots = {row['seq_1d']: row for row in annots_reader} (2]

headers = ['qseqid', 'pident', 'depth', 'lat_lon'] (3]
args.outfile.write(args.delimiter.join(headers) + '\n') (4]

hits = csv.DictReader(args.hits, (5]
delimiter="',",
fieldnames=[
'qseqid', 'sseqid', 'pident', 'length',
'mismatch', 'gapopen', 'gstart', 'gend’',
'sstart', 'send', 'evalue', 'bitscore'

D

num_written = 0 (6]
for hit in hits: @
if float(hit.get('pident', -1)) < args.pctid: (8]
continue

if seq_id := hit.get('qseqid'): (o]
if seq := annots.get(seq_id): ®
num_written += 1
args.outfile.write(
args.delimiter.join(®
map(lambda s: f'"{s}"', [
seq_1id,
hit.get('pident'),
seq.get('depth'),
seq.get('lat_lon')
DY+ "\n")

Solutions

383

& 6 ® &6 6 6 ©6 ©¢ © 6 6 o o o

args.outfile.close() ®
print(f'Exported {num_written:,} to "{args.outfile.name}"."') (14]

Create a parser for the annotations file.

Read all the annotations into a dictionary keyed on the sequence ID.
Define the headers of the output file.

Write the headers to the output file.

Create a parser for the BLAST hits.

Initialize a counter for the number of records written.
Iterate through the BLAST hits.

Skip records with a percent ID less than the minimum.
Attempt to get the BLAST query sequence ID.

Attempt to find this sequence ID in the annotations.

If found, increment the counter and write the output values.
Quote all the fields to ensure the delimiter is protected.
Close the output file.

Print a final status to the user. The comma in the formatting for num_written will
add a thousands separator to the number.

Solution 2: Writing the Qutput File with csv.DictWriter()

This next solution differs from the first only in that I use csv.DictWriter() to write
the output file. I generally prefer to use this method as it will handle, for instance,
properly quoting fields that contain the field separator:

def main():
args = get_args()
annots_reader = csv.DictReader(args.annotations, delimiter=',')
annots = {row['seq_i1d']: row for row in annots_reader}

writer = csv.DictWriter((1)
args.outfile,
fieldnames=['gseqid', 'pident', 'depth', 'lat_lon'],

384

| Chapter 19: Blastomatic: Parsing Delimited Text Files

delimiter=args.delimiter)
writer.writeheader() (2]

hits = csv.DictReader(args.hits,
delimiter=',"',
fieldnames=[
'qseqid', 'sseqid', 'pident', 'length',
'mismatch', 'gapopen', 'gstart', 'gend',
'sstart', 'send', 'evalue', 'bitscore'

D)

num_written = 0

for hit in hits:
if float(hit.get('pident', -1)) < args.pctid:

continue

if seq_1d := hit.get('qseqid'):
if seq := annots.get(seq_id):
num_written += 1
writer.writerow({ (3]
'qseqid': seq_id,
'pident': hit.get('pident'),
'depth': seq.get('depth'),
'lat_lon': seq.get('lat_lon'),
1))

print(f'Exported {num_written:,} to "{args.outfile.name}".') (4]

Create a writer object to create the delimited text output file.

Write the header row to the output file.

Solution 3: Reading and Writing Files Using pandas

The pandas version is a little simpler in some ways and a little more complicated in
others. I chose to store all the output records in a Python list and instantiate a new
dataframe from that to write the output file:

def main():

args = get_args()
annots = pd.read_csv(args.annotations, sep=',"') (1)
hits = pd.read_csv(args.hits, (2]

sep=","',

names=[

Write a row of data, passing in a dictionary with the same keys as the fieldnames
defined for the writer.

The formatting instruction {:,} will cause the number to be printed with thou-
sands separators.

Solutions

385

© o © ©

® 6 6 06 O © o©o

'qseqid', 'sseqid', 'pident', 'length', 'mismatch’,
'gapopen', 'gstart', 'gend', 'sstart', 'send',
'evalue', 'bitscore'
D
data = [] ©
for _, hit in hits[hits['pident'] >= args.pctid].iterrows(): (4]
meta = annots[annots['seq_id'] == hit['gseqid']] (5)
if not meta.empty:
for _, seq in meta.iterrows(): (7]
data.append({ (&)
'qseqid': hit['qgseqid'],
'pident': hit['pident'],
'depth': seq['depth'],
'lat_lon': seq['lat_lon'],
b

df = pd.DataFrame.from_records(data=data) (o]
df.to_csv(args.outfile, index=False, sep=args.delimiter) ®

print(f'Exported {len(data):,} to "{args.outfile.name}".") (11
Read the metadata file into a dataframe.
Read the BLAST hits into a dataframe.
Initialize a list for the output data.

Select all the BLAST hits with a percent ID greater than or equal to the minimum
percent.

Select the metadata for the given query sequence ID.

Verify that the metadata is not empty.

Iterate over the metadata records (even though there should only be one).
Store a new dictionary with the output data.

Create a new dataframe from the output data.

Write the dataframe to the output file, omitting the dataframe index values.

Print the status to the console.

386

| Chapter 19: Blastomatic: Parsing Delimited Text Files

Solution 4: Joining Files Using pandas

In this last solution, I use pandas to join the metadata and BLAST dataframes, much
like the join program I illustrated earlier in the chapter:

def main():
args = get_args()
annots = pd.read_csv(args.annotations, sep=',', index_col='seq_1id') (1]
hits = pd.read_csv(args.hits,
sep=',"',
index_col="'qseqid’, (2]
names=[
'qseqid', 'sseqid', 'pident', 'length', 'mismatch’',
'gapopen', 'gstart', 'gend', 'sstart', 'send',
'evalue', 'bitscore'

D
joined = hits[hits['pident'] >= args.pctid].join(annots, how='inner") (3]

joined.to_csv(args.outfile, (4]
index=True,
index_label="qgseqid’,
columns=['pident', 'depth', 'lat_lon'],
sep=args.delimiter)

print(f'Exported {joined.shape[0]:,} to "{args.outfile.name}".')
Read the annotations file and set the index column to seq_1id.
Read the BLAST hits and set the index column to gseqid.

Select the BLAST hits with the desired percent ID, and perform an inner join to
the annotations using the index columns.

O Write the desired columns of the joined dataframe to the output file using the
indicated delimiter. Include the index and name it gseqid.

The join operation is quite complex, so let me take a moment to explain this. First,
each dataframe must have a unique index, which by default is the row index:

>>> import pandas as pd

>>> annots = pd.read_csv('tests/inputs/meta.csv')

>>> annots.index

RangeIndex(start=0, stop=100, step=1)
Instead, I want pandas to use the seq_1id column as the index, which I indicate with
the index_col argument:

>>> annots = pd.read_csv('tests/inputs/meta.csv', index_col='seq_id")

Solutions | 387

I can also indicate the zeroth field:
>>> annots = pd.read_csv('tests/inputs/meta.csv', index_col=0)
Now the index is set to the seq_1id:

>>> annots.index[:10]

Index(['JCVI_READ_1092301105055', 'JCVI_READ_1092351051817',
"JCVI_READ_1092301096881', 'JCVI_READ_1093017101914"',
'JCVI_READ_1092342065252', 'JCVI_READ_1092256406745"',
"JCVI_READ_1092258001174', 'JCVI_READ_1092959499253",
'JCVI_READ_1092959656555', 'JCVI_READ_1092959499263'],

dtype='object', name='seq_id')

Similarly, I want the BLAST hits to be indexed on the query sequence ID:

>>> cols = ['gseqid', 'sseqid', 'pident', 'length', 'mismatch', 'gapopen',
'qstart', 'gend', 'sstart', 'send', 'evalue', 'bitscore']

>>> hits = pd.read_csv('tests/inputs/hitsl.csv', names=cols, index_col='qgseqid"')

>>> hits.index[:10]

Index(['CAM_READ_0234442157', 'CAM_READ_0234442157', 'CAM_READ_0234442157',
'CAM_READ_0234442157"', 'JCVI_READ_1095946186912',
'JCVI_READ_1095946186912', 'JCVI_READ_1095946186912"',
'JCVI_READ_1095946186912', 'JCVI_READ_1095946186912"',
"JCVI_READ_1091145027519'],

dtype='object', name='gseqid')

I can select the BLAST hits with pident greater than or equal to the minimum. For
instance, I find 190 rows with a value of 90:

>>> wanted = hits[hits['pident'] >= 90]
>>> wanted.shape
(190, 11)

The resulting dataframe is still indexed on the gseqid column, so I can join it to the
annotations where the index values (the sequence IDs) are in common. By default,
pandas will perform a left join, selecting all the rows from the first or left dataframe
and substituting null values for rows that have no mate in the right dataframe. A right
join is the opposite of a left join, selecting all the records from the right dataframe
regardless of matches to the left. Since I only want the hits that have annotations, I
use an inner join. Figure 19-3 demonstrates the joins using Venn diagrams.

388 | Chapter 19: Blastomatic: Parsing Delimited Text Files

Leftjoin Right join Inner join

Figure 19-3. A left join selects all the records from the left table, a right joins selects all
the records from the right table, and an inner join selects only those records present in
both

The join operation creates a new dataframe with the columns of both dataframes, just
like the join tool I showed in “Using csvkit and csvchk” on page 364:

>>> joined = wanted.join(annots, how='inner')

>>> joined

sseqid pident ... temp lat_lon
CAM_READ_0234442157 CPO31125.1 92.941 ... 26.6 -8.50525,80.375583
JCVI_READ_1091120852400 CP012541.1 100.000 ... 25.0 24.488333,-83.07
JCVI_READ_1091141680691 MN693562.1 90.852 ... 27.7 10.716389,-80.25445
JCVI_READ_1091141680691 MN693445.1 90.645 ... 27.7 10.716389,-80.25445
JCVI_READ_1091141680691 MN693445.1 91.935 ... 27.7 10.716389,-80.25445

JCVI_READ_1095913058159 (CP000437. 94.737 41.485832,-71.35111

1 9.4
JCVI_READ_1095913058159 AM286280.1 92.683 9.4 41.485832,-71.35111
JCVI_READ_1095913058159 DQ682149.1 94.737 9.4 41.485832,-71.35111
JCVI_READ_1095913058159 AM233362.1 94.737 9.4 41.485832,-71.35111
JCVI_READ_1095913058159 AY871946.1 94.737 9.4 41.485832,-71.35111

[190 rows x 17 columns]

Another way to write this is to use the pd.merge() function, which will default to an
inner join. I must indicate which columns to use for the joins from the left and right
dataframes, which in this case are the indexes:

>>> joined = pd.merge(wanted, annots, left_index=True, right_index=True)

I can use the joined.to_csv() method to write the dataframe to the output file. Note
that the common sequence IDs are the index, which has no column name. I want the
index included in the output file, so I use index=True and index_name='gseqid' so
that the file matches the expected output:

>>> out_fh = open('out.csv', 'wt')

>>> joined.to_csv(out_fh, index=True, index_label='qgseqid’',
columns=["'pident', 'depth', 'lat_lon'], sep=',")

Solutions | 389

Going Further

Add the options to filter by other fields like temperature, salinity, or BLAST e-value.

Default to including all the columns from both files in the output file, and add an
option to select a subset of the columns.

Review

Key points from this chapter:

Shell aliases can be used to create shortcuts for common commands.

Delimited text files do not always have column headers. This is the case with
BLAST’s tabular output formats.

The csv and pandas modules can read and write delimited text files.

Datasets can be joined on common columns using the join command-line tool
or in Python by using common keys from dictionaries or common indexes in
pandas dataframes.

pandas is a good choice for reading delimited files if you need access to all the
data in memory—for example, if you need to perform statistical analysis of the
data or want to quickly access all the values for a column. If you need to parse
very large delimited files and can process records independently, then use the csv
module for better performance.

390

| Chapter 19: Blastomatic: Parsing Delimited Text Files

APPENDIX A

Documenting Commands and Creating
Workflows with make

The make program was created in 1976 to help build executable programs from
source code files. Though it was originally developed to assist with programming in
the C language, it is not limited to that language or even to the task of compiling
code. According to the manual, one “can use it to describe any task where some files
must be updated automatically from others whenever the others change” The make
program has evolved far beyond its role as a build tool to become a workflow system.

Makefiles Are Recipes

When you run the make command, it looks for a file called Makefile (or makefile) in
the current working directory. This file contains recipes that describe discrete actions
that combine to create some output. Think of how a recipe for a lemon meringue pie
has steps that need to be completed in a particular order and combination. For
instance, I need to separately create the crust, filling, and meringue and then put
them together and bake them before I can enjoy a tasty treat. I can visualize this with
something called a string diagram, as illustrated in Figure A-1.

391

Prepare lemon meringue pie

Crust Fill crust
Lemon L
e i) 7 g
Sugar filling Temon filling
Egg Yolk Unbaked pie
Separate egg White meéi?ggue .
Sugar [Make

meringue Meringue

\. J

Figure A-1. A string diagram describing how to make a pie, adapted from Brendan Fong
and David Spivak, An Invitation to Applied Category Theory (Seven Sketches in
Compositionality), Cambridge University Press, 2019

It’s not important if you make the pie crust the day before and keep it chilled, and the
same might hold true for the filling, but it’s certainly true that the crust needs to go
into the dish first, followed by the filling and finally the meringue. An actual recipe
might refer to generic recipes for crust and meringue elsewhere and list only the steps
for the lemon filling and baking instructions.

I can write a Makefile to mock up these ideas. I'll use shell scripts to pretend I'm
assembling the various ingredients into some output files like crust.txt and filling.txt.
In the app01_makefiles/pie directory, I've written a combine.sh script that expects a
filename and a list of “ingredients” to put into the file:

$ cd app01_makefiles/pie/

$./combine.sh
usage: combine.sh FILE ingredients

I can pretend to make the crust like this:
$./combine.sh crust.txt flour butter water
There is now a crust.txt file with the following contents:

$ cat crust.txt

Will combine flour butter water
It's common but not necessary for a recipe in a Makefile to create an output file. Note
in this example that the clean target removes files:

all: crust.txt filling.txt meringue.txt (1)
./combine.sh pie.txt crust.txt filling.txt meringue.txt (2]
./cook.sh pile.txt 375 45

filling. txt: (3]
./combine.sh filling.txt lemon butter sugar

392 | Appendix A: Documenting Commands and Creating Workflows with make

meringue.txt: (4]
./combine.sh meringue.txt eggwhites sugar

crust. txt: (5)
./combine.sh crust.txt flour butter water

clean: (6]
rm -f crust.txt meringue.txt filling.txt pie.txt

© This defines a target called all. The first target will be the one that is run when
no target is specified. Convention holds that the all target will run all the targets
necessary to accomplish some default goal, like building a piece of software. Here
I want to create the pie.txt file from the component files and “cook” it. The name
all is not as important as the fact that it is defined first. The target name is fol-
lowed by a colon and then any dependencies that must be satisfied before run-
ning this target.

® The all target has two commands to run. Each command is indented with a Tab
character.

© This is the filling.txt target. The goal of this target is to create the file called
filling.txt. Its common but not necessary to use the output filename as the target
name. This target has just one command, which is to combine the ingredients for
the filling.

This is the meringue. txt target, and it combines the egg whites and sugar.
This is the crust. txt target that combines flour, butter, and water.
Its common to have a clean target to remove any files that were created in the

normal course of building.

As you can see in the preceding example, the target has a name followed by a colon.
Any dependent actions can be listed after the colon in the order you wish them to be
run. The actions for a target must be indented with a Tab character, as shown in Fig-
ure A-2, and you are allowed to define as many commands as you like.

Documenting Commands and Creating Workflows with make | 393

The target name is Dependent rules
terminated with a colon separated by spaces

| 1
) all: crust.txt filling.txt meringue.txt
Indentationmust " /combine.sh pie.txt filling.txt meringue.txt

beaTab, multiple =™ /cook.sh pie.txt 375 45
commands are allowed

Figure A-2. A Makefile target is terminated by a colon and optionally followed by
dependencies; all the target’s actions must be indented with a single tab character

Running a Specific Target

Each action in a Makefile is called a target, rule, or recipe. The order of the targets is
not important beyond the first target being the default. Targets, like the functions in
Python programs, can reference other targets defined earlier or later in the file.

To run a specific target, I run make target to have make run the commands for a
given recipe:

$ make filling.txt
./combine.sh filling.txt lemon butter sugar

And now there is a file called filling.txt:

$ cat filling.txt

Will combine lemon butter sugar
If T try to run this target again, I'll be told there’s nothing to do because the file
already exists:

$ make filling.txt

make: 'filling.txt' is up to date.
One of the reasons for the existence of make is precisely not to do extra work to create
files unless some underlying source has changed. In the course of building software
or running a pipeline, it may not be necessary to generate some output unless the
inputs have changed, such as the source code being modified. To force make to run
the filling.txt target, I can either remove that file or run make clean to remove any of
the files that have been created:

$ make clean
rm -f crust.txt meringue.txt filling.txt pie.txt

Running with No Target

If you run the make command with no arguments, it will automatically run the first
target. This is the main reason to place the all target (or something like it) first. Be

394 | Appendix A: Documenting Commands and Creating Workflows with make

careful not to put something destructive like a clean target first, as you might end up
accidentally running it and removing valuable data.

Here’s the output when I run make with the preceding Makefile:

$ make

./combine.
. /combine.
. /combine.
. /combine.

. /cook.sh
Will cook

sh crust.txt flour butter water

sh filling.txt lemon butter sugar

sh meringue.txt eggwhites sugar

sh pie.txt crust.txt filling.txt meringue.txt
pie.txt 375 45

"pile.txt" at 375 degrees for 45 minutes.

(1]
(2]
(3]
4]
(5]

I run make with no arguments. It looks for the first target in a file called Makefile
in the current working directory.

©

The crust.txt recipe is run first. Because I didn’t specify a target, make runs the all
target which is defined first, and this target lists crust.txt as the first dependency.

Next, the filling.txt target is run.

(3]
O This is followed by the meringue.txt.
© Next I assemble pie.txt.

O And then I “cook” the pie at 375 degrees for 45 minutes.

If T run make again, I'll see that the intermediate steps to produce the crust.txt,
filling.txt, and meringue.txt files are skipped because they already exist:

$ make

./combine.sh pie.txt crust.txt filling.txt meringue.txt
./cook.sh pie.txt 375 45

Will cook "pile.txt" at 375 degrees for 45 minutes.

If I want to force them to be recreated I can run make clean && make, where the && is
a logical and that will only run the second command if the first command succeeds:

$ make clean && make
rm -f crust.txt meringue.txt filling.txt pie.txt
./combine.sh crust.txt flour butter water

. /combine.
./combine.
. /combine.

. /cook.sh
Will cook

sh filling.txt lemon butter sugar

sh meringue.txt eggwhites sugar

sh pie.txt crust.txt filling.txt meringue.txt
pie.txt 375 45

"pile.txt" at 375 degrees for 45 minutes.

Documenting Commands and Creating Workflows with make | 395

Makefiles Create DAGs

Each target can specify other targets as prerequisites or dependencies that must be
completed first. These actions create a graph structure with a starting point and paths
through targets to finally create some output file(s). The path described for any target
should be a directed (from a start to a stop) acyclic (having no cycles or infinite loops)
graph, or DAG, as shown in Figure A-3.

D ——

crust.txt

N———

filling.txt —»[pie.txt]—»[cook.sh]

)

meringue.txt

—

Figure A-3. The targets may join together to describe a directed acyclic graph of actions
to produce some result

Many analysis pipelines are just that—a graph of some input, like a FASTA sequence
file, and some transformations (trimming, filtering, comparisons) into some output,
like BLAST hits, gene predictions, or functional annotations. You would be surprised
at just how far make can be abused to document your work and even create fully func-
tional analysis pipelines.

Using make to Compile a C Program

I believe it helps to use make for its intended purpose at least once in your life to
understand why it exists. I'll take a moment to write and compile a “Hello, World”
example in the C language. In the app01_makefiles/c-hello directory, you will find a
simple C program that will print “Hello, World!” Here is the hello.c source code:

#include <stdio.h> (1]
int main() { (2]
printf("Hello, World!\n"); (3]
return 0; 0
} (5]

© Like in bash, the # character introduces comments in the C language, but this is a
special comment that allows external modules of code to be used. Here, I want to
use the printf (print-format) function, so I need to include the standard I/O
(input/output) module, called stdio. I only need to include the “header” file,
stdio.h, to get at the function definitions in that module. This is a standard
module, and the C compiler will look in various locations for any included files

396 | Appendix A: Documenting Commands and Creating Workflows with make

(5]

to find it. There may be times when you are unable to compile C (or C++ pro-
grams) from source code because some header file cannot be found. For example,
the gzip library is often used to de/compress data, but it is not always installed in
a library form that other programs may include in this way. Therefore, you will
have to download and install the 1ibgz program, being sure to install the headers
into the proper include directories. Note that package managers like apt-get
and yum often have -dev or -devel packages that you have to install to get these
headers; that is, you’ll need to install both 1ibgz and 1ibgz-dev or whatnot.

This is the start of a function declaration in C. The function name (main) is pre-
ceded by its return type (int). The parameters to the function are listed inside
the parentheses after its name. In this case there are none, so the parentheses are
empty. The opening curly brace ({) shows the start of the code that belongs to the
function. Note that C will automatically execute the main() function, and every C
program must have a main() function where the program starts.

The printf() function will print the given string to the command line. This
function is defined in the stdio library, which is why I need to #include the
header file above.

return will exit the function and return the value 0. Since this is the return value
for the main() function, this will be the exit value for the entire program. The
value 0 indicates that the program ran normally—think “zero errors” Any non-
zero value would indicate a failure.

The closing curly brace (}) is the mate for the one on line 2 and marks the end of
the main() function.

To turn that into an executable program you will need to have a C compiler on your
machine. For instance, I can use gcc, the GNU C compiler:

$ gcc hello.c

That will create a file called a.out, which is an executable file. On my Macintosh, this
is what file will report:

$ file a.out
a.out: Mach-0 64-bit executable armé64

And I can execute that:

$./a.out
Hello, World!

I don’t like the name a.out, though, so I can use the -o option to name the output file
hello:

Documenting Commands and Creating Workflows with make | 397

$ gcc -o hello hello.c

Run the resulting hello executable. You should see the same output.

Rather than typing gcc -o hello hello.c every time I modify hello.c, I can put that
in a Makefile:

hello:
gcc -o hello hello.c

And now I can run make hello or just make if this is the first target:

$ make
gcc -o hello hello.c

If I run make again, nothing happens because the hello.c file hasn’t changed:

$ make

make: 'hello' is up to date.
What happens if I alter the hello.c code to print “Hola” instead of “Hello,” and then try
running make again?

$ make
make: 'hello' is up to date.

I can force make to run the targets using the -B option:

$ make -B
gcc -o hello hello.c

And now the new program has been compiled:

$./hello

Hola, World!
This is a trivial example, and you may be wondering how this saves time. A real-
world project in C or any language would likely have multiple .c files with headers (.h
files) describing their functions so that they could be used by other .c files. The C
compiler would need to turn each .c file into a .o (out) file and then link them
together into a single executable. Imagine you have dozens of .c files, and you change
one line of code in one file. Do you want to type dozens of commands to recompile
and link all your code? Of course not. You would build a tool to automate those
actions for you.

I can add targets to the Makefile that don’t generate new files. It's common to have a
clean target that will clean up files and directories that I no longer need. Here I can
create a clean target to remove the hello executable:
clean:
rm -f hello

If I want to be sure that the executable is always removed before running the hello
target, I can add it as a dependency:

398 | Appendix A: Documenting Commands and Creating Workflows with make

hello: clean
gcc -o hello hello.c
It’s good to document for make that this is a phony target because the result of the tar-
get is not a newly created file. I use the .PHONY: target and list all the phonies. Here is
the complete Makefile now:

$ cat Makefile
.PHONY: clean

hello: clean
gcc -o hello hello.c

clean:
rm -f hello
If you run make in the c-hello directory with the preceding Makefile, you should see
this:
$ make

rm -f hello
gcc -o hello hello.c

And there should now be a hello executable in your directory that you can run:

$./hello

Hello, World!
Notice that the clean target can be listed as a dependency to the hello target even
before the target itself is mentioned. make will read the entire file and then use the
dependencies to resolve the graph. If you were to put foo as an additional depend-
ency to hello and then run make again, you would see this:

$ make

make: *** No rule to make target 'foo', needed by 'hello'. Stop.
A Makefile allows me to write independent groups of actions that are ordered by their

dependencies. They are like functions in a higher-level language. I have essentially
written a program whose output is another program.

I'd encourage you to run cat hello to view the contents of the hello file. It's mostly
binary information that will look like gibberish, but you will probably be able to make
out some plain English, too. You can also use strings hello to extract just the
strings of text.

Using make for a Shortcut

Lets look at how I can abuse a Makefile to create shortcuts for commands. In the
app01_makefiles/hello directory, you will find the following Makefile:

Documenting Commands and Creating Workflows with make | 399

$ cat Makefile
.PHONY: hello (1]

hello: (2]
echo "Hello, World!" (3]

Since the hello target doesn't produce a file, I list it as a phony target.

This is the hello target. The name of the target should be composed only of let-
ters and numbers, should have no spaces before it, and is followed by a colon (:).

© The command(s) to run for the hello target are listed on lines that are indented
with a tab character.

I can execute this with make:

$ make
echo "Hello, World!"
Hello, World!

I often use a Makefile to remember how to invoke a command with various argu-
ments. That is, I might write an analysis pipeline and then document how to run the
program on various datasets with all their parameters. In this way, I'm documenting
my work in a way that I can immediately reproduce by running the target.

Defining Variables

Here is an example of a Makefile I wrote to document how I used the Centrifuge pro-
gram for making taxonomic assignments to short reads:

INDEX_DIR = /data/centrifuge-indexes (1)

clean_paired:
rm -rf $(HOME)/work/data/centrifuge/paired-out

paired: clean_paired (2]
./run_centrifuge.py \ (3]
-q S(HOME)/work/data/centrifuge/paired \ (4]
-1 $(INDEX_DIR) \ (5]
-1 'p_compressed+h+v' \
-x "9606, 32630" \
o $(HOME)/work/data/centrifuge/paired-out \
T "C/Fe Cycling"

© Here I define the variable INDEX_DIR and assign a value. Note that there must be
spaces on either side of the =. I prefer ALL_CAPS for my variable names, but this
is my personal preference.

400 | Appendix A: Documenting Commands and Creating Workflows with make

® Run the clean_paired target prior to running this target. This ensures that there
is no leftover output from a previous run.

©® This action is long, so I used backslashes (\) as on the command line to indicate
that the command continues to the next line.

O To have make deference or use the value of the $HOME environment variable, use
the syntax $(HOME).

© $(INDEX_DIR) refers to the variable defined at the top.

Writing a Workflow

In the app01_makefiles/yeast directory is an example of how to write a workflow as
make targets. The goal is to download the yeast genome and characterize various gene
types as “Dubious,” “Uncharacterized,” “Verified,” and so on. This is accomplished
with a collection of command-line tools such as wget, grep, and awk, combined with

a custom shell script called download.sh, all pieced together and run in order by make:

.PHONY: all fasta features test clean

FEATURES = http://downloads.yeastgenome.org/curation/$\
chromosomal_feature/
SGD_features.tab

all: fasta genome chr-count chr-size features gene-count verified-genes \
uncharacterized-genes gene-types terminated-genes test

clean:
find . \(-name *gene* -o -name chr-* \) -exec rm {} \;
rm -rf fasta SGD_features.tab

fasta:
. /download.sh

genome: fasta
(cd fasta && cat *.fsa > genome.fa)

chr-count: genome
grep -e '~>' "fasta/genome.fa" | grep 'chromosome' | wc -1 > chr-count

chr-size: genome
grep -ve '~>' "fasta/genome.fa" | wc -c > chr-size

features:
wget -nc $(FEATURES)

gene-count: features

Documenting Commands and Creating Workflows with make | 401

cut -f 2 SGD_features.tab | grep ORF | wc -1 > gene-count

verified-genes: features
awk -F"\t" '$$3 == "Verified" {print}' SGD_features.tab | \
wc -1 > verified-genes

uncharacterized-genes: features
awk -F"\t" '$$2 == "ORF" && $$3 == "Uncharacterized" {print $$2}' \
SGD_features.tab | wc -1 > uncharacterized-genes

gene-types: features
awk -F"\t" '{print $$3}' SGD_features.tab | sort | uniq -c > gene-types

terminated-genes:
grep -o '/G=[~]*' palinsreg.txt | cut -d = -f 2 | \
sort -u > terminated-genes

test:
pytest -xv ./test.py
I won’t bother commenting on all the commands. Mostly I want to demonstrate how
far I can abuse a Makefile to create a workflow. Not only have I documented all the
steps, but they are runnable with nothing more than the command make. Absent
using make, I'd have to write a shell script to accomplish this or, more likely, move to a
more powerful language like Python. The resulting program written in either lan-
guage would probably be longer, buggier, and more difficult to understand. Some-
times, all you need is a Makefile and some shell commands.

Other Workflow Managers

As you bump up against the limitations of make, you may choose to move to a work-
flow manager. There are many to choose from. For example:

« Snakemake extends the basic concepts of make with Python.

o The Common Workflow Language (CWL) defines workflows and parameters in
a configuration file (in YAML), and you use tools like cwltool or cwl-runner
(both implemented in Python) to execute the workflow with another configura-
tion file that describes the arguments.

o The Workflow Description Language (WDL) takes a similar approach to describe
workflows and arguments and can be run with the Cromwell engine.

« Pegasus allows you to use Python code to describe a workflow that then is written
to an XML file, which is the input for the engine that will run your code.

o Nextflow is similar in that you use a full programming language called Groovy (a
subset of Java) to write a workflow that can be run by the Nextflow engine.

402 | Appendix A: Documenting Commands and Creating Workflows with make

All of these systems follow the same basic ideas as make, so understanding how make
works and how to write the pieces of your workflow and how they interact is the basis
for any larger analysis workflow you may create.

Further Reading

Here are some other resources you can use to learn about make:

o The GNU Make Manual
o The GNU Make Book by John Graham-Cumming (No Starch Press, 2015)
o Managing Projects with GNU Make by Robert Mecklenburg (O’Reilly, 2004)

Documenting Commands and Creating Workflows with make | 403

https://oreil.ly/D9daZ
https://oreil.ly/D8Oyk

APPENDIX B

Understanding $PATH and Installing
Command-Line Programs

PATH is an environment variable that defines the directories that will be searched for a
given command. That is, if I type foo and there’s no built-in command, shell func-
tion, command alias, or program anywhere in my PATH that the shell can execute as
foo, I'll be told this command cannot be found:

$ foo
-bash: foo: command not found

In Windows PowerShell, I can inspect the PATH with echo $env:Path, whereas on
Unix platforms I use the command echo $PATH. Both paths are printed as a long
string with no spaces, listing all the directory names separated by semicolons on
Windows or by colons on Unix. If the operating system didn’t have some concept of a
path, it would have to search every directory on the machine for a given command.
This could take minutes to hours, so it makes sense to restrict the searching to just a
few directories.

Following is my path on my Macintosh. Note that I have to put a dollar sign ($) in
front of the name to tell my shell (bash) that this is a variable and not the literal string
PATH. To make this more readable, T'll use Perl to replace the colons with newlines.
Note that this command will only work on a Unix command line where Perl is
installed:

$ echo SPATH | perl -pe 's/:/\n/g' (1)
/Users/kyclark/.local/bin (2]
/Library/Frameworks/Python.framework/Versions/3.9/bin (3]
Jusr/local/bin (4]

Jusr/bin (5)

/bin

405

Jusr/sbin
/sbin

The Perl substitute (s//) command replaces the first pattern (:) with the second
(\n) globally (g).

This is a custom directory I usually create for installing my own programs.
This is where Python installed itself.

This is a standard directory for user-installed software.

® 06 o ©o

The rest are more standard directories for finding programs.

The directories will be searched in the order they are defined, so
the order can be quite important. For instance, the Python path is
listed before system paths so that when I type python3 it will use
the version found in my local Python directory before one that
might have been preinstalled on my system.

Notice that all the directory names in my PATH end in bin. This is short for binaries
and comes from the fact that many programs exist in a binary form. For example, the
source code for a C program is written in a pseudo-English language that is compiled
into a machine-readable executable file. The contents of this file are binary-encoded
instructions that the operating system can execute.

Python programs, by contrast, are usually installed as their source code files, which
are executed by Python at runtime. If you want to globally install one of your Python
programs, I suggest you copy it to one of the directories that are already listed in your
PATH. For instance, /usr/local/bin is a typical directory for local installations of soft-
ware by the user. It’'s such a common directory that it’s normally present in the PATH.
If you are working on your personal machine, like a laptop, where you have adminis-
trator privileges, you should be able to write new files into this location.

For instance, if I wanted to be able to run the dna.py program from Chapter 1
without providing the full path to the source code, I could copy it to a location in my
PATH:

$ cp 01_dna/dna.py /usr/local/bin

You may not have sufficient permissions to do this, however. Unix systems were
designed from the beginning to be multitenant operating systems, meaning that they
support many different people using the system concurrently. It’s important to keep
users from writing and deleting files they shouldn’t, and so the OS may prevent you
from writing dna.py to a directory that you dont own. If, for instance, you are

406 | Appendix B: Understanding $PATH and Installing Command-Line Programs

working on a shared high-performance computing (HPC) system at a university, you
certainly won't have such privileges.

When you cannot install into system directories, it’s easiest to create a location in
your HOME directory for such files. On my laptop, this is my HOME directory:

$ echo $HOME
/Users/kyclark

On almost all my systems, I create a SHOME/.local directory for installing programs.
Most shells interpret the tilde (~) as HOME:

$ mkdir ~/.local

By convention, files and directories that have names starting with a
dot are normally hidden by the 1s command. You can use s -ato
list all the contents of a directory. You may notice many other dot-
files that are used by various programs to persist options and pro-
gram state. I like to call this .local so I won't normally see it in my
directory listing.

Creating a directory in your HOME for software installations is especially useful when
compiling programs from source, a very common operation in bioinformatics. Most
installations of this sort begin by using a configure program to gather information
about your system, such as the location of your C compiler and such. This program
almost always has a - -prefix option that I'll set to this directory:

$./configure --prefix=$HOME/.local

The resulting installation will put the binary compiled files into $HOME/.local/bin. It
might also install header files and manual pages and other supporting data into other
directories in $HOME/.local.

Wherever you decide to install local programs, you’ll need to ensure that your PATH is
updated to search in that directory in addition to the others. I tend to use the bash
shell, and one of the dotfiles in my HOME is a file called .bashrc (or some-
times .bash_profile or even .profile). I can add this line to put my custom directory
first in the PATH:

export PATH=$HOME/.local/bin:SPATH

You may need something slightly different if you are using a different shell. Recently
macOS started using zsh (Z shell) as the default shell, or your HPC system might use
another shell. They all have the idea of PATH and all allow you to customize this in
some manner. On Windows, you can use this command to append the directory to
your path:

> $env:Path += ";~/.local/bin"

Understanding $PATH and Installing Command-Line Programs | 407

Here is how I can make the directory and copy the program:

$ mkdir -p ~/.local/bin
$ cp 01_dna/dna.py ~/.local/bin

I should now be able to execute dna. py from any location on a Unix machine:

$ dna.py
usage: dna.py [-h] DNA
dna.py: error: the following arguments are required: DNA

Windows shells like cmd. exe and PowerShell don't read and execute the shebang like
Unix shells, so you are required to include the command python.exe or python3.exe
before the program name:

> python.exe C:\Users\kyclark)\.local\bin\dna.py
usage: dna.py [-h] DNA
dna.py: error: the following arguments are required: DNA

Be sure python.exe --version shows that you are using version 3
and not version 2. You may need to install the latest version of
Python. I have only shown Windows commands using
python.exe, assuming this means Python 3, but you may need to
use python3.exe, depending on your system.

408 | Appendix B: Understanding $PATH and Installing Command-Line Programs

Epilogue

The tools we use have a profound (and devious!) influence on our thinking habits, and,
therefore, on our thinking abilities.

—Edsger Dijkstra

This book was inspired by the Rosalind problems, which I've spent years revisiting,
first as I was trying to understand more about biology and then as I learned new pro-
gramming languages. I initially attempted them with Perl, and since have tried using
JavaScript, Haskell, Python, and Rust, with varying degrees of success. I would chal-
lenge you to also write solutions using any other languages you know.

I've tried to show you patterns in Python you can reuse in your own programs. More
than anything, I hope I've demonstrated that types and tests and various formatting
and linting tools can drastically improve the programs you write.

409

Symbols
. (any character), 106
& (bitwise and), 324
| (bitwise or), 323
(comment), 365, 396
== (compare for equality), 27, 37
eq() functional version, 270
{} (curly brackets for string formatting), 32, 119
- (dash)
flag names, 48
parameters, 48
<filename> (dotfiles), 193, 194, 407
$? (exit status variable), 85
+= (increment), 27
&& (logical and), 395
?=(<pattern>) (look-ahead assertion), 184
% (modulo), 249
__name__, 164
$# (number of arguments), 232
I= (operator.ne), 152
| (pipe), 113
< (redirect input), 113
> (redirect output), 192, 350
() (regex capture groups), 184, 285
-> (return value), 17
#! (shebang), 7, 232
* (splat a tuple), 33, 151
_ (throwaway variable), 90, 91
:= (variable assignment and testing), 133, 220
* (zero or more characters), 106

A
alias in bash shell, 366
alias in Python

Index

NumPy imported as np, 297
pandas imported as pd, 378
all() function for boolean, 321, 326
amino acid-codon table, 157, 251-256
and, bitwise (&), 324
and, logical (&&), 395
anonymous functions, 107
any() function for boolean, 321, 326
argparse
about, 7
FileType() to validate File arguments, 49
-h and --help flags, 7
using, 7-10
arguments
$# (number of arguments), 232
blastomatic program, 371
download directory optional argument, 229
get_args() called by main(), 7
HOFs taking other functions as, 99
make with no arguments, 395
named tuples representing, 16-18
new.py for new Python programs, 5
argparse, 7-10
one or more values required, 48, 49
optional, 6, 46
positional as, 114
positional, 6, 46
as optional, 114
sequence file subsampling, 350
parameters defined, 352
testing for no arguments, 22
tetranucleotide frequency, 5-10
type error, 9
valid file as, 113

m

validating soon after program starts, 191
arrays, 122
ASCII (American Standard Code for Informa-
tion Interchange) table, 80, 309
automating
bash script to download proteins, 231
Makefiles, 29
(see also Makefiles)
awk command line tool, 370

B

bag data structure, 41
base frequencies (see tetranucleotide fre-
quency)
base pairs in reverse complement of DNA, 67
bash shell
about using Unix command line, xv
(see also Unix command line)
alias, 366
benchmarking the solutions, 64
Fibonacci sequence, 100
downloading proteins automated, 231
exit status variable, 85
no spaces around = in assignments, 232
PATH environment variable, 269, 405-408
STDOUT piped to STDIN, 113
Beck, Kent, xv
Beizer, Boris, xv
bench tool for benchmarking, 101
benchmarking the solutions
bench tool, 101
Fibonacci sequence, 100
hyperfine tool for multiple runs, 101
finding similar sequences, 184
GC content determination, 134
removing Python pycache directory, 101
transcribing DNA into mRNA, 64
translating mRNA into protein, 170
best practices
about, xi, xx
arguments defined, 5
arguments documented and validated, 191
documentation provided by programs, 4-7,
285
documentation provided by tests, 39, 121,
124
reproducible programs, xii
test-driven development, xv, 29
tools for finding errors, 10

Big O notation, 226
binary search, 220-226
linear search versus, 226
sorted values, 221
Biopython library
Bio.Seq
finding overlaps, 195
reverse_complement(), 81
translate() needing truncation, 280
translating mRNA into protein, 169
Bio.SeqlO
error of partial codon, 278
FASTA parsed, 116, 195, 213, 266
iterating through records, 118, 214
ML training files parsed, 337
open reading frames, 277
error of partial codon, 278
installing, 81
bit manipulation of flags, 321-325
bitwise operators
and (&), 324
or (|), 323
black tool to auto format code, 29
BLAST (Basic Local Alignment Search Tool)
about BLAST, 361-363
about BLAST/GOS goal, 367
about delimited text files, 361
blastn for local execution, 362
default fields listed, 365
blastomatic program created
arguments defined, 371
getting started, 368
output formats, 371
solution 1 dictionaries joining tables,
383
solution 2 csv.DictWriter, 384
solution 3 pandas to read and write, 385
solution 4 pandas joining files, 387
text file delimiter determination, 383
books on data analysis, 382
csv (Python) parsing delimited text, 373
csv.DictWriter, 384
csvchk for CSV files, 364
column names, 366
csvkit module for CSV files, 364
csvlook, 364
GOS (Global Ocean Sampling Expedition)
BLAST hits linked to sequences, 367
URL, 362

412 | Index

output formats, 364
commenting out metadata, 365
awk and cut command line tools, 370
blastomatic program, 371
column names, 365, 380
csv.DictWriter, 384
pandas module parsing delimited text,
377-382
blastomatic input and output, 385
dataframe holding entire file, 378
joining metadata and BLAST data-
frames, 387
web interface (NCBI), 362
book code and tests on GitHub, xvi
supplemental book material, xxii
technical questions or problems, xxii
booleans
all() function for single from list, 321, 326
any() function for single from list, 321, 326
bitwise and operator (&), 324
bitwise or operator (|), 323
integers, 130, 242
map() transforming GC bases into, 130
map() transforming matching pairs into,
150
buffer overflow error, 250
bytecode cache for Python, 101

C

C program compiled via Makefile, 396-398
GNU C compiler, 397

caching previous results (memoization), 98
Iru_cache() (least-recently-used cache), 100

Callable for memoization, 98

Candidatus Pelagibacter genome, 362

capture groups in regular expressions, 184, 285

cat printing to STDOUT, 113

chain() function to concatenate lists, 218

chr() function, 80

Christiansen, Tom, 317

classes
about, xiii
arguments represented by, 50
help(classname) for documentation, 12
TitleCase for names, 14

closure created, 92, 97

codons
amino acid-codon table, 157, 251-256
extracting from mRNA via string slices, 157

formed from RNA base sequences, 157
noncanonical start codons, 284
open reading frames
about, 275
finding in a protein sequence, 279
getting started, 275
set() for collecting ORFs, 280
solution 1 str.index(), 280
solution 2 str.partition(), 282
solution 3 regular expression, 284
translating proteins inside each frame,
277,278
start codons, 158, 275, 279
stop codons, 157, 158, 160, 275, 279
translating into protein, 160
command line (Unix)
about using, xv
bash shell (see bash shell)
blastn for NCBI BLAST, 362
default fields listed, 365
output formats, 364
cloning book code and test repository, xvi
csvchk for CSV files, 364
column names, 366
csvkit module for CSV files, 364
csvlook, 364
curl to transfer server data, 231
delimited files and awk and cut, 370
/dev/null filehandle, 32
downloading protein sequence files,
231-233
file globs to match patterns, 106
file size comparison, 291
grep, 308
Is command to list directory contents, 407
md5 command for hash, 292
openssl md5 for hash, 292
PATH environment variable, 269, 405-408
STDOUT, 56, 113, 192
Common Workflow Language (CWL), 402
comparing for equality (==), 27, 37
eq() functional version, 270
compile defined, 9
C program compiled via Makefile, 396-398
GNU C compiler, 397
complement of DNA string, 67
concatenating lists together, 218
concatenation implicit in Python, 62, 285
tuple if commas present, 285

Index | 413

constant declaration absent, 15
contigs as contiguous sequences, 187
continuous uniform distribution, 355
count() function created, 30-34
count() method for strings, 34-35
Counter() function, 41, 217
counting things in strings
GC content (see GC content determination)
k-mer frequencies, 217-220
tetranucleotides (see tetranucleotide fre-
quency)
CSV (comma-separated values) files
about, 361
about BLAST, 361-363
BLAST table of hits, 363
command line awk and cut tools, 370
csv module (Python) parsing, 373
csv.DictWriter, 384
csvchk, 364
column names, 366
csvkit module, 364
csvlook, 364
pandas module parsing, 377-382
curl to transfer server data, 231
curly brackets ({}) for string formatting, 32, 119
cut command line tool, 370

D
dash (-)

flag names, 48

parameters, 48
data analysis books, 382
data corruption (see sequence file validation)
data sources

GenBank URL, 291

Sequence Read Archive URL, 291
debugging

--debug option flag, 189

log file of runtime messages, 189, 192-195

documentation, 194
logging levels, 194

print() to track progress, 220

STDERR (standard error), 192
decision trees, 27

guard, 129

reverse complement of DNA, 72, 75
decorator functions, 99
delimited text files

about, 361

about BLAST, 361-363
BLAST table of hits, 363
command line awk and cut tools, 370
csv module (Python) parsing, 373
csv.DictWriter, 384
csvchk, 364
column names, 366
csvkit module, 364
csvlook, 364
pandas module parsing, 377-382
deterministic program, 355
/dev/null filehandle, 32
dictionaries
codons translated into protein, 160
Counter() returning, 41
counting characters, 35-38
collections.defaultdict, 39
defaultdict for value default types, 40
flipping key and values, 257
values must be unique, 257, 258
get() method, 37
in operator, 173
items() method, 257
KeyError, 36
ML DNA synthesizer, 337-340
reverse complement of DNA, 75
Dijkstra, Edsger, xii, 409
directed acyclic graphs (DAGs), 208
Makefiles creating, 396
directory contents via listdir(), 106
directory holding output from program, 45-56
DNA
directionality of, 67
finding motifs (see longest shared subse-
quence; sequence similarity)
mRNA into protein (see translating mRNA
into protein)
open reading frames (see open reading
frames)
palindromic sequences, 263
restriction sites (see restriction sites)
reverse complement (see reverse comple-
ment of DNA)
sequence assembly (see sequence assembly)
synthesizer via Markov chains
about Markov chains, 329-331
generating the sequences, 340
getting started, 332
Markoft process, 329

414 | Index

random seeds explained, 335
reading the training files, 337
solution, 343-347
structuring the program, 343
test suite, 343
tetranucleotide frequency (see tetranucleo-
tide frequency)
transcribing into mRNA (see transcribing
DNA into mRNA)
Docker and Linux virtual machine, xvi
documentation
docstring (documentation string), 8
help(), 12
program providing, 4-7, 285
REPL to read, 12
tests providing, 39, 121
Dot language format, 204
dotfiles (.<filename>), 193, 194, 407
downloading protein sequences
command line, 230-233
Python, 233-235
UniProt URL, 230
DRY principle (Don’t Repeat Yourself), 325
DWIM principle (Do What I Mean), 315

E

elif decision tree, 27
enumerate() function, 182, 268
environment variables
PATH, 269, 405-408
PYTHONPATH, 269
shebang (#!), 7, 232
eq() function, 270
equal signs
== (compare for equality), 27, 37
eq() functional version, 270
+= (increment), 27
?=(<pattern>) (look-ahead assertion), 184
1= (operator.ne), 152
:= (variable assignment and testing), 133,
220
no spaces in bash shell assignments, 232
spaces in Makefile assignments, 400
errors
Biopython partial codon, 278
buffer overflow, 250
command not found, 405
descriptive messages, 85
Erlang way, xiv

exceptions not caught, xiv, 235
formatting causing linting failures, 29
iterating an empty FASTA file, 266
KeyError for dictionary, 36
memory issues (see memory issues)
mypy
Bio.Seq.reverse_complement(), 81
imported files missing type annotations,
Xix, 82
ParserWarning from pandas read_csv, 378
permission denied, 4
pylint
Inheriting X, which is not a class, 18
Too few public methods, 18
variable names, xix
runtime error, 10
sorted() with mixed types, 122
strings immutable, 56
sys.exit() for halting program, 106, 320
tools for finding, 10
tuples cannot be changed, 14
type error, 9
mypy and typing named couples, 18
mypy type checker tool, 10
variable never used, 91
exceptions not caught, xiv, 235
(see also errors)
exercises in the book, xix
exit status after execution
$? variable, 85
bash shell to inspect variable, 85
Hello World in C, 397
sys.exit() for errors, 106, 320
zero indicates success, 85

F

f-strings for formatted output, 34, 119
factory functions, 14
False (0), 131, 242
FASTA format
about, 115, 308
error iterating empty file, 266
FASTQ compared, 308
(see also FASTX program created)
file extensions, 238, 315
finding longest shared subsequence, 211
finding sequence overlaps, 195
finding shortest sequence, 213
GC content determination, 116

Index | 415

parsing with Bio.SeqIO, 116, 195, 213
sequence file checking
about, 289
analyzing sequence files, 290
file size comparison, 291
MD5 hashes to check files, 291-293
Seqmagick info command, 290
Seqmagick installation, 290
Seqmagick tool URL, 289
sequence records, 116
UniProt site for protein sequences, 230

FASTQ sequence format

about, 308-311
FASTA compared, 308
(see also FASTX program created)
file extensions, 315
grep for analyzing, 310

FASTX grep created

about FASTQ, 308-311

file format determination, 315, 317

getting started, 311

sampler
about subsampling sequence files, 349
FASTA input files synthesized, 349

(see also synthesizing DNA via Mar-
kov chains)

getting started, 349
nondeterministic sampling, 354
program parameters, 350
program parameters defined, 352
solution 1 regular file input, 357
solution 2 compressed file input, 358
structuring the program, 356

solution, 317-327
all() function for boolean, 321, 326
any() function for boolean, 321, 326
bit manipulation of flags, 321-325
file format determination, 317
main(), 320

Fibonacci sequence

about, 83

about imperative approach, 84, 89, 91
closure created, 92, 97

error messages descriptive, 85

exit value after execution, 85

getting started, 84

list for, 90

list negative indexing, 90
memoization, 98

parameter range checking, 85
solution 1 list as stack, 91-93
solution 2 generator function, 93-96
solution 3 with recursion, 96-100
solutions benchmarked, 100
testing, 102
testing automated, 103-108
file extensions, 238, 315
text file delimiter determination, 383
file globs to match patterns, 106
file input
< (redirect input), 113
compressed files, 358
optional positional argument, 112
path module, 52, 238
reading file into list, 214
memory issues, 215
sequence file subsampling, 357
compressed file input, 358
tetranucleotide frequency, 19
validating File arguments, 49, 113
file output via redirect output (>), 192, 350
filehandle
capturing STDOUT and STDERR, 192
/dev/null in Unix, 32
directory holding output files, 54
mock filehandle, 297
open() function, 19
parameters as, 50
FileType() to validate File arguments, 49
filter() function
file name filtering, 106
GC content determination, 130
Hamming distance determination, 149
find() function, 173
finding similar sequences, 176
start position, 174
finding similar sequences (see sequence simi-
larity)
finite state machine (FSM)
Markoff process, 329
regular expressions, 236, 284
flags
--debug option, 189
one dash versus two, 48
short versus long flag names, 48
flake8 linter to catch errors, 10
pytest extension for, 28
floating point return value, 123

| Index

for loops
_ (throwaway variable), 91
iterating input files, 52, 266
iterating through strings, 25
list comprehension, 78
forking book code and tests to repository, xvii
upstream source, Xviii
format() function for strings, 32, 119
formatting code automatically, 29
formatting tables
rich module, 303
tabulate(), 300
frameshifts in open reading frames, 278
Franklin, Rosalind, xiv
Friedl, Jeffrey, 62
fst() to get first tuple element, 242, 269
functional programming (FP)
Functional Programming HOWTO
iterators, 70
Python suited for FP, xiv
order of functions in program, 30
pure functions versus OOP, xiii
functions
about, xiii
about OOP, xiii
anonymous functions, 107
closure created, 92, 97
count() created, 30-34
decorator functions, 99
factory functions, 14
TitleCase for names, 14
generator for Fibonacci sequence, 93-96
yield suspending functions, 93
get_args(), 7
(see also get_args())
HOFs (higher-order functions), 99
inside-out testing, 23
lambda keyword, 107
lazy functions, 71, 96
main(), 7, 164
name causing shadowing of built-in, 112
naming conventions lowercase, 26
TitleCase for factory functions, 14
one task, few parameters, 32
operators, 152
order of definition in program, 30
partial() to partially apply functions, 107
pure functions, xiii
return value sign (->), 17

test for each function, 32
type(), 13, 25
yield to suspend, 93
yield value, not return value, 94

G

GC content determination
about, 111, 137
FASTA format for input, 115
iterating through records, 118
parsing with Bio.SeqIO, 116
input
file input, 112-114
STDIN, 112-114
STDOUT piped to STDIN, 113
output as formatted number, 119, 126
solution 1 using a list, 120-123
sorted() function, 121, 123
solution 2 type annotations and unit tests,
123-127
solution 3 running max, 127
scalable, 127
solution 4 list comprehension with guard,
129
solution 5 filter(), 130
solution 6 map() and summing booleans,
130
solution 7 regular expression, 131
solution 8 SeqRecord input, 132
solutions benchmarked, 134
GenBank URL, 291
generator function for Fibonacci sequence,
93-96
generator as iterator, 94
itertools.islice(), 95
yield suspending functions, 93
yield value, not return value, 94
get() method for dictionary, 37
get_args()
main() calling, 7
optional parameter, 47
returned object dynamically generated, 9
reverse complement of DNA, 74
Gibran, Kahlil, 74
Git
cloning book code and test repository, xvi
forking to own repository, xvii
upstream source, xviii
GitHub

Index | 417

cloning book code and tests, xvi
forking book code and tests, xvii
upstream source, Xviii
supplemental book material, xxii
Global Ocean Sampling Expedition (GOS)
BLAST hits linked to sequences, 367
URL, 362
GNU C compiler, 397
GNU Make manual, 403
Graham-Cumming, John, 403
graphs in Python, 203-208
De Bruijn from overlapping k-mers, 208
directed acyclic graphs, 208
Makefiles creating, 396
directionality, 206
Graphviz tool, 204
sequence overlap graphs (see overlap
graphs)
Graphviz graphing tool, 204
Dot language format, 204
grep, 308
FASTQ records, 310
guard, 129

H
Hamming distance determination
about, 137
about BLAST sequence comparisons, 361
getting started, 138
iterating characters of two strings, 141
solution 1 iterate and count, 142
solution 2 unit test, 143
solution 2 zip(), 145
solution 4 zip_longest(), 147
solution 5 list comprehension, 148
solution 6 filter(), 149
solution 7 map() with zip_longest(), 150
solution 8 starmap() and operator.ne(), 151
Hamming, Richard, xx, 137
hash for file validation (see MD5 hashes)
Haskell language, 109, 242
Hello World C program, 396-398
Hello World of bioinformatics, 3
(see also tetranucleotide frequency)
help, 12
argparse -h and --help flags, 7
Q to leave, 12
higher-order functions (HOFs), 99
translating mRNA into protein, 167

Hoare, Tony, 124
hyperfine tool for benchmarking, 101

finding similar sequences, 184

GC content determination, 134

removing Python pycache directory, 101
hypothesis module for random test values, 124

|
id() function, 254
identity element, 253
IDE:s (integrated development environments)
about, xvi
cloning book code and test repository, xvii
installing modules, xviii
formatting code, 29
if and elif decision tree, 27
guard, 129
reverse complement of DNA, 72
import statements
argparse module, 8
namedtuple from collections module, 14
in operator, 173
increment (+=), 27
index() of strings, 174
finding open reading frames, 280
finding similar sequences, 177
start position, 175
input for program
< (redirect input), 113
command line or file, 4, 18
/dev/null filehandle, 32
metagenome simulated, 354
multiple files, 46
iterating input files, 52
parameters, 47
validating File arguments, 49
Rosalind.info website, 4, 18
SeqRecord object, 132
sequence file subsampling, 349
(see also sequence file subsampling)
STDIN, 112-114
inside-out testing, 23
installation
book code and tests, xvi
technical questions or problems, xxii
downloading Python, xvi
modules and tools, xviii
new.py for new programs, Xix, 5
pylint and mypy initialization files, xix, 18

418 | Index

integers (int)
booleans as, 130, 242
limits, 249
modular multiplication, 249
map() for converting types, 122
nucleotides represented as, 40
re. IGNORECASE as, 323
sorted() function, 121, 123
integration test, 23
i0.StringIO() for mock filehandle, 298
isinstance() function, 36
iterables
collection items visited individually, 70
Counter() acting on, 41
for loops with, 26, 52
itertools.islice() generating a list, 95
iterators, 70
for loop detecting exhaustion of, 266
itertools.islice() generating a list, 95
itertools.islice() generating a list, 95
TUPAC codes, 42, 308

J

join() function for strings, 33, 53
JSON (JavaScript Object Notation), xvi
Jupyter Notebooks, xvi

K
k-mers
about, 159
counting frequencies of, 217-220
extracting 3-mers via string slices, 157
extracting all k-mers in sequences, 215
finding all subsequences, 266
finding similar sequences, 181
ML DNA synthesizer
dictionary of weighted bases, 337-340
Markoff process, 330
overlapping k-mers in a given sequence, 339
sequence assembly
about, 187, 196
De Bruijn graphs from overlapping k-
mers, 208
debug option, 189
finding overlaps, 195
getting started, 188
grouping sequences by overlap, 196-200
log file of runtime messages, 189, 192,
194

solution 1 set intersections, 200-203
solution 2 graphing all paths, 203-208
subsequences as, 175
Karlton, Phil, 52
KeyError for dictionary, 36
keys of a dictionary (see dictionaries)

L
lambda keyword, 107
assigned to variable, 151
Hamming distance determination, 149, 150,
151
lazy functions
filter(), 130
islice(), 96
reversed(), 71
zip(), 145
lazy object product object, 248
len() function for strings, 35
linters to catch errors in code, 10
formatting causing failure, 29
variable never used, 91
Linux virtual machine with Docker, xvi
md5sum for hash, 292
list comprehension
about, 78
finding similar sequences, 179
guard, 129
Hamming distance determination, 148
reading file into list, 214
reverse complement of DNA, 78
string values to integers, 122
translating mRNA into protein, 165
listdir() for directory contents, 106
lists
arrays versus, 122
concatenating together, 218
enumerate() function, 182
Fibonacci sequence, 90
negative indexing, 90
help(list) for documentation, 12
in operator, 173
itertools.islice() generating a list, 95
monoids, 253
product of, 248-250
string slices to extract codons, 157
types should not be mixed, 122
zero-based indexing, 13
log file of runtime messages, 189, 192-195

Index | 419

documentation, 194

logging levels, 194
logical and (&&) in Makefiles, 395
longest shared subsequence

about, 211

getting started, 211

shortest sequence in FASTA file, 213

solution 1 frequencies of k-mers, 217-220

solution 2 binary search faster, 220-226
look-ahead assertions in regexes, 184, 285
lowercase and uppercase capabilities, 42
Iru_cache() (least-recently-used cache), 100
Is command to list directory contents, 407

M

machine learning (ML)
about Markov chains, 329-331
Markoff process, 329
generating the sequences, 340
getting started, 332
random seeds explained, 335
reading the training files, 337
solution, 343-347
structuring the program, 343
test suite, 343
Macintosh Terminal for command line, xv
main() function, 7, 164
Makefiles
about make program, 391
about Makefiles, 391, 399
clean Makefile to remove files, 398
compiling a C program, 396-398
directed acyclic graphs created by, 396
logical and (&&), 395
resources for learning, 403
shortcuts for commands, 399
test shortcut, 29
testing every solution, 103-108
targets, 392
clean target, 394, 395
new files not generated, 398
phony target, 399
running a specific target, 394
running with no target, 394
variables, 400
workflow within, 401
Managing Projects with GNU Make (Mecklen-
burg), 403
map() function transforming, 122

finding shortest sequence, 215
flipping dictionary keys and values, 257
GC bases into boolean, 130
Hamming distance determination, 150
translating mRNA into protein, 167
Markov chains
about, 329-331
Markoft process, 329
generating the sequences, 340
getting started, 332
random seeds explained, 335
reading the training files, 337
solution, 343-347
structuring the program, 343
test suite, 343
Mastering Regular Expressions (Friedl), 62
A Mathematical Theory of Communication
(Shannon), 329
max() function, 215
optional argument of function to apply, 224
McKinney, Wes, 382
MD5 hashes to check files
about, 291-293
getting started, 293
solution 1 tabulate() to format, 296-303
unit test with mock filehandle, 297
where to place unit tests, 300
solution 2 rich to format, 303
tabulate() to format tables, 295
Mecklenburg, Robert, 403
memoization, 98
decorator functions, 99
Iru_cache() (least-recently-used cache), 100
memoize() as HOF, 99
memory issues
astronomically large numbers, 259
Excel limitations, 363
input file analysis, 355
numpy.prod() should be avoided, 249
pandas dataframe, 378
protein sequences, 249
reading files, 215
sequence file subsampling, 349
(see also sequence file subsampling)
metagenome simulated, 354
metagenomic studies of Global Ocean Sam-
pling Expedition (GOS), 362
min() function, 215
modular multiplication, 249

420 | Index

modulo (%), 249
monoids, 253
mRNA
about, 45
amino acid-codon table, 157, 251-256
codons
amino acid-codon table, 157, 251-256
formed from RNA base sequences, 157
string slices to extract from mRNA, 157
inferring mRNA strings from protein
about, 245
getting started, 245
memory issues, 249
modular multiplication, 249
product of codon-amino acid lists,
248-250
solution 1 mRNA codon table, 251-256
solution 2 dictionary flipping, 257
solution 3 lookup table, 259
k-mers, 159
open reading frames, 277
frameshifts in reading, 278
transcribing from DNA (see transcribing
DNA into mRNA)
translating into protein (see translating
mRNA into protein)
mulmod() function, 259
multiset data structure, 41
Musk, Elon, 50
mypy
about, 10
imported files missing type annotations, xix,
82
pytest extension for, 28
typing named tuples, 16, 18

N

named tuples data structure, 12-14
about, 14
arguments represented by, 16-18
importing namedtuple function, 14
names assigned to tuple fields, 14
output as, 126
tuples cannot be changed, 14, 15
types added to, 15

National Center for Biotechnology Information
(NCBI)
BLAST web interface, 362
Candidatus Pelagibacter genome, 362

nr/nt (nonredundant nucleotide) database,
362
new.py for new Python programs
about the process, xix, 5

argparse
-h and --help flags, 7
using, 7-10

creating program using, 5-7
--force flag to overwrite, 47
installing, xix
simpler version to start, 7
newline at end
print() function adds, 26, 55
rstrip() to remove, 230
write() method does not add, 56
Nextflow, 402
nondeterministic sampling, 354
continuous uniform distribution, 355
random.random() uniform distribution,
355
NoneType for None value, 37
nonredundant nucleotide (nr/nt) database, 362
Notebooks (Jupyter), xvi
nr/nt (nonredundant nucleotide) database, 362
nucleotide counts (see GC content determina-
tion; open reading frames; tetranucleotide
frequency)
NumPy module
about, 296
arrays, 122
importing, 297
mean() function, 296
prod() should be avoided, 250
product of list of numbers, 250
buffer overflow, 250

0

OOP (object-oriented programming), xiii
open reading frames (ORFs)
about, 275
finding in a protein sequence, 279
getting started, 275
set() for collecting ORFs, 280
solution 1 str.index(), 280
solution 2 str.partition(), 282
solution 3 regular expression, 284
translating proteins inside each frame, 277
frameshifts in reading, 278
open() function

Index | 421

small input file, 19 pandas module parsing delimited text, 377-382

text or raw bytes, 54 blastomatic program input and output, 385
write, read, append, 54 dataframe holding entire file, 378
log file, 193 importing, 378
operator.ne (!=), 152 joining metadata and dataframes, 387
operators, 152 parameters
or, bitwise (|), 323 input files, output directory, 47
ord() function, 80 optional parameter, 47
os module positional parameters, 48
directory contents via listdir(), 106 range checking, 85
makedirs, 235 sequence file subsampling, 350
output to files in directory, 52 parameters defined, 352
path.basename, 52, 238 parentheses for regex capture groups, 184, 285
path.dirname, 52 partial() to partially apply functions, 107
path.splitext, 238 translating mRNA into protein, 167
reading input from file, 19 partition() breaking strings into parts, 282
output from program PATH environment variable, 269, 405-408
> redirect output, 192, 350 path module, 52
csv.DictWriter, 384 Pegasus, 402
directory holding, 45-56 permission denied, 4
formatted number, 119, 126 pip package installer
Hello World in C, 397 csvehk, 364
NCBI BLAST, 364 csvkit module, 364
pprint() function (pretty-print), 106 seqmagick, 290
print (see print() function) pipe (|) STDOUT to STDIN, 113
rich to format tables, 303 positive look-ahead assertions, 184
sequence file checking, 289 pprint() function (pretty-print), 106
(see also Seqmagick tool) print() function
STDOUT, 56, 113, 192 arguments, 9
tabulate() to format tables, 295, 296-303 end option, 28, 55
testing output, 23-28 FASTA sequence records, 117
outside-in testing, 23 formatted output, 32
overlap graphs f-string, 34, 119
about, 187 multiple values separated by space, 28
about graphs, 187 newline at end, 26, 55
(see also graphs in Python) end option to change, 28, 55
about sequence assemblers, 196 STDOUT by default, 192
finding overlaps, 195 tracking program progress, 220
getting started, 188 variables, 13, 26
debug option, 189 prod() function
grouping sequences by overlap, 196-200 math.prod() handles large numbers, 250
log file of runtime messages, 189, 192-195 numpy.prod() should be avoided, 250
documentation, 194 product object, 248
logging levels, 194 product() function, 202, 248
solution 1 set intersections, 200-203 programmer virtues, 317
solution 2 graph to find all paths, 203-208 Programming Perl (Christiansen et al.), 317
proteins
P amino acid-codon table, 157, 251-256

palindromic sequences of DNA, 263 codons translated into, 160

422 | Index

(see also translating mRNA into protein)
finding sequences with a motif
about, 227
command line download of sequences,
230-233
getting started, 227
Prosite database, 235
Python download of sequences, 233-235
regular expression to find motif, 235
solution 1 regular expression, 237-239
solution 2 manual find, 239-243
UniProt site, 230
mRNA strings inferred from
about, 245
getting started, 245
memory issues, 249
modular multiplication, 249
product of codon-amino acid lists,
248-250
solution 1 mRNA codon table, 251-256
solution 2 dictionary flipping, 257
solution 3 lookup table, 259
open reading frames (see open reading
frames)
Prosite database of protein information, 235
UniProt site for protein sequences, 230
command line download, 230-233
Python download, 233-235
pseudocode to outline program, 51
pure functions, xiii
PyCharm to clone GitHub repository, xvii
virtual environment optional, xvii
pylint, 10
errors with variable names, xix
flake8 in combination with, 10
Inheriting X, which is not a class, 18
pytest extension for, 28
Too few public methods, 18
pytest tool
about, xi, 5, 298
---cache-clear option to force tests, 29
extensions for pylint, flake8, mypy, 28
tetranucleotide frequency, 5, 20-23, 24
-v flag for verbose output, 21, 24
-x flag to stop on first failing test, 21, 24
Python
about, xi
about OOP, xiii
aliasing, 297, 378

argparse a standard module, 7
best practices, xi, xx
(see also best practices)
bytecode cache, 101
compilation, 9
constant declaration absent, 15
creating programs with new.py, xix, 5
data analysis books, 382
downloading Python, xvi
book code and tests, xvi
installing modules and tools, xviii
new.py for new programs, xix, 5
pylint and mypy initialization files, xix
functional programming online guide, xiv
installing Python programs, 406
integer limit, 249
interactive interpreter (REPL), 11
linter pylint, 10
name causing shadowing of built-in, 112
naming conventions, 14, 26
program execution versus being imported, 9
_ _name__, 165
programs also modules, 164
_ _name__, 164
PYTHONPATH environment variable, 269
shebang (#!) for execution, 7
string concatenation, 62, 285
tuple if commas present, 285
tuples to represent records, 14
versions of Python, xvi, 408
Zen of Python, xiv
zero-based indexing, 13
Python Data Science Handbook (VanderPlas),
382
Python for Data Analysis (McKinney), 382
PYTHONPATH environment variable, 269

R

random number generator (RNG), 336
random() function
choice(), 335
getstate(), 341
random(), 355
seed(), 336, 341, 355
setstate(), 341
range() function
counting down, 216
iteration via, 90
random() used with, 336

Index | 423

re (see regular expressions)
read() function for small files, 19
recursion
binary search, 220-226
Fibonacci sequence, 96-100
memoization, 98
decorator functions, 99

Iru_cache() (least-recently-used cache),

100

reducing sequence of values to single value, 252

refactoring programs, 25

reverse complement of DNA, 73
regular expressions (regexes)

about, 62

breaking across lines, 285

capture groups, 184, 285

character class patterns, 131

compile() function, 236, 322

file glob-regex complications, 106

findall(), 131, 175, 284

finditer(), 175, 183, 237

finite state machine, 236, 284

GC content determination, 131

grep, 308

FASTQ records, 310

help(re) for documentation, 131

IGNORECASE flag, 321

look-ahead assertions, 184, 285

Mastering Regular Expressions book, 62

mixed case strings, 321

open reading frames, 284

overlapping patterns found, 183

protein motif, 235, 237-239

r-string (raw string), 107

search flags combined, 321-325

enumerations, 322

search() recompiling on each call, 236

transcribing DNA into mRNA, 62
REPL (Read-Evaluate-Print-Loop)

about, 11

iterating through strings, 25-28

lists, 12

quitting, 12

reading documentation, 12
replace() function for strings, 45, 56
reproducible programs

about best practices, xi, xx

arguments defined, 5

arguments documented and validated, 191

criteria for, xii
documentation provided by programs, 4-7,
285
documentation provided by tests, 39, 121,
124
test-driven development, xv, 29
tools for finding errors, 10
requirements.txt for Python modules, xviii
resources
Biopython library, 81
book code and tests on GitHub, xv
clone command line, xvi
supplemental book material, xxii
FASTA sequence records, 116
functional programming in Python, xiv
Graphviz graphing tool, 204
Dot language format, 204
hyperfine tool for benchmarking, 101
linter for Python, 10
log file documentation, 194
make information, 403
Mastering Regular Expressions (Friedl), 62
public data repository URLs, 291
Python
data analysis books, 382
download pages, xvi
naming conventions, 26
Rosalind 14 programming challenges, 1
string formatting online guide, 119
Test-Driven Development book, xv
UniProt site for protein sequences, 230
restriction sites
about, 263
finding all reverse complements, 267
finding all subsequences via k-mers, 266
getting started, 264
solution 1 zip() and enumerate(), 268
solution 2 eq(), 270
solution 3 reverse palindromes, 271
testing, 272
return value (->), 17
reverse complement of DNA
about, 67
decision tree creation, 72, 75
finding all, 267
getting started, 68
iterating over a reversed string, 70
iterators, 70
palindromic sequences of DNA, 263

424 | Index

refactoring, 73
solution 1 loop and decision tree, 75
solution 2 dictionary lookup, 75
solution 3 list comprehension, 78
solution 4 str.translate, 78
solution 5 using Bio.Seq, 81
solutions share same get_args(), 74
testing with mypy, 81
reversed() function, 70
flipping dictionary keys and values, 257
lazy function, 71
reverse iterator returned, 70
rich to format tables, 303
Rosalind.info challenges
about Rosalind Franklin, xiv
Fibonacci description, 83
input for program, 4, 18
noncanonical start codons, 284
URL for 14 programming challenges, xiv, 1
rstrip() function, 19, 55
runtime errors, 10
runtime growth of algorithms in Big O nota-
tion, 226

S

Saint-Exupéry, Antoine de, 41
sampling, nondeterministic, 354
scalability
GC content determination, 127
input file analysis, 355
(see also memory issues)
scope of function, 92
searches, linear versus binary, 226
binary search, 220-226
Seq object, 214
Seqmagick tool
about, 289
analyzing sequence files, 290
info command on FASTA files, 290
installing, 290
URL, 289
Seqmagique program created
about md5 hashes, 291-293
about Seqmagick tool, 289
analyzing sequence files, 290
about simple file checks, 291
getting started, 293
solution 1 tabulate() to format, 296-303
unit test with mock filehandle, 297

where to place unit tests, 300
solution 2 rich to format, 303
tabulate() to format tables, 295

sequence assembly

about, 187, 196
finding overlaps, 195
getting started, 188
debug option, 189
grouping sequences by overlap, 196-200
log file of runtime messages, 189, 192-195
documentation, 194
logging levels, 194
solution 1 set intersections, 200-203
solution 2 graph to find all paths, 203-208

sequence file comparison

about BLAST, 361-363

about BLAST/GOS goal, 367

about delimited text files, 361

blastn for local execution, 362
default fields listed, 365

blastomatic program created
arguments defined, 371
getting started, 368
output formats, 371
solution 1 dictionaries joining tables,

383

solution 2 csv.DictWriter, 384
solution 3 pandas to read and write, 385
solution 4 pandas joining files, 387
text file delimiter determination, 383

books on data analysis, 382

csv (Python) parsing delimited text, 373
csv.DictWriter, 384

csvchk for CSV files, 364
column names, 366

csvkit module for CSV files, 364
csvlook, 364

GOS (Global Ocean Sampling Expedition)
BLAST hits linked to sequences, 367
URL, 362

output formats, 364
commenting out metadata, 365
awk and cut command line tools, 370
blastomatic program, 371
column names, 365, 380
csv.DictWriter, 384

pandas module parsing delimited text,
377-382
blastomatic input and output, 385

Index | 425

dataframe holding entire file, 378
joining metadata and BLAST data-
frames, 387
web interface (NCBI), 362
sequence file subsampling
about, 349
FASTA input files synthesized, 349
(see also synthesizing DNA)
getting started, 349
nondeterministic sampling, 354
program parameters, 350
solution 1 regular file input, 357
solution 2 compressed file input, 358
structuring the program, 356
sequence file validation
about, 289
file size comparison, 291
MD5 hashes to check files, 291-293
Seqmagick tool
analyzing sequence files, 290
info command on FASTA files, 290
installing, 290
URL, 289
Sequence Read Archive (SRA) URL, 291
sequence records of FASTA, 116
sequence similarity
about, 171
BLAST versus Hamming distance, 361
(see also BLAST (Basic Local Alignment
Search Tool))
finding subsequences, 173-175
getting started, 171
solution 1 str.find(), 176
solution 2 str.index(), 177
solution 3 list comprehension, 179
solution 4 k-mers, 181
solution 5 regex overlapping patterns, 183
solutions benchmarked, 184
set() for collecting, 280
sets using in operator, 173
Shannon, Claude, 192, 329
shebang (#!), 7, 232
shortest sequence in FASTA file, 213
single-nucleotide polymorphisms (SNPs), 138
single-nucleotide variations (SNVs), 138
Snakemake, 402
snd() to get second tuple element, 242, 269
SNVs (single-nucleotide variations), 362
sorted() function, 121, 123

specifications made incarnate in tests, 29
splatting a tuple (*), 33, 151
Srygley, Louis, 30
St. Hubbins, David, 96
starfilter() function, 203
starmap() function, 151
start codons, 158, 275, 279
status report printed at end of execution
exit status via bash, 85
shared subsequences, 220, 224
writing files to directories, 57
STDERR (standard error), 192
STDIN (standard in), 114
default if file argument empty, 112-114
STDOUT (standard out), 56
cat printing to, 113
piped to STDIN, 113
print() default, 192
stop codons, 157, 158, 160, 275, 279
StringIO() for mock filehandle, 298
strings (str)
arguments, 6
concatenation implicit in Python, 62, 285
tuple if commas present, 285
count() method, 34-35
counting characters in, 25-28
docstring (documentation string), 8
find() function, 173
finding similar sequences, 176
start position, 174
formatting, 119
f-string, 34, 119
online guide to string formatting, 119
print() function, 32
removing trailing whitespace, 19, 55
templates, 32
help(str) for documentation, 12, 25
immutable, 56
in operator, 173
index(), 174
finding open reading frames, 280
finding similar sequences, 177
start position, 175
iterating through, 25-28
iterating over a reversed string, 70
iterators, 70
join() function, 33, 53
len() function, 35

426 | Index

manipulating (see reverse complement of
DNA)
map() for converting types, 122
(see also map() function)
mutating (see transcribing DNA into
mRNA)
partition() breaking strings into parts, 282
replace() function, 45, 56
slices to extract codons from mRNA, 157
sorted() function, 121, 123
translate() function, 78, 165, 280
type error, 9
tools for finding, 10
upper- and lowercase capabilities, 42
stripping white space from strings, 19, 55
subsequences
finding all using k-mers, 266
longest shared
about, 211
getting started, 211
solution 1 frequencies of k-mers,
217-220
solution 2 binary search faster, 220-226
subsequence similarity
about, 171
finding subsequences, 173-175
getting started, 171
solution 1 str.find(), 176
solution 2 str.index(), 177
solution 3 list comprehension, 179
solution 4 k-mers, 181
solution 5 regex overlapping patterns,
183
solutions benchmarked, 184
sum() function, 130, 252
synthesizing DNA via Markov chains
about Markov chains, 329-331
Markoff process, 329
generating the sequences, 340
getting started, 332
metagenome simulated, 354
random seeds explained, 335
reading the training files, 337
sequence file subsampling source files, 349
solution, 343-347
structuring the program, 343
test suite, 343
sys.exit() for errors, 106, 320

T
T (thymine), 45
table formatting
rich module, 303
tabulate(), 300
takewhile() higher-order function, 167
Test-Driven Development (Beck), xv
test-driven development (TDD)
about, xv, 29, 274
about process of, 126
automating testing every solution, 103-108
book test GitHub repository, xv
bug presence not absence, xii
designing tests prevents bugs, xv
documentation provided by, 39, 121, 124
hypothesis module random test values, 124
known inputs to verify outputs, 5
Makefile for testing, 29
pytest tool, xi, 5
tetranucleotide frequency, 20-23, 24
-v flag for verbose output, 21, 24
-x flag to stop on first failing test, 21, 24
running program to test output, 23
specifications made incarnate, 29
test for each function, 32
tetranucleotide frequency
about, 3, 137
argparse, 7-10
creating program via new.py, 5-7
documentation provided by programs, 4-7
getting started, 4
input for program, 4, 18
named tuples, 12-15
adding types to, 15
arguments represented by, 16
refactoring programs, 25
REPL interactive interpreter, 11
solution 1 iterating through strings, 25-30
solution 2 creating count function, 30-34
solution 3 using str.count(), 34-35
solution 4 dictionary to count, 35-38
solution 5 only desired bases counted, 38
solution 6 using collections.defaultdict, 39
solution 7 using collections.Counter, 41
solutions only UPPERCASE, 42
testing
pytest, 5, 20-23
running program to test output, 23

Index | 427

The GNU Make Book (Graham-Cumming),
403
throwaway variable (_), 90, 91
thymine (T), 45
TitleCase for names, 14
transcribing DNA into mRNA
about, 45
arguments
class to represent, 50
number of, 48, 49
getting started, 46
input from files, 46, 48
filehandle, 50
iterating input files, 52
validating File arguments, 49
output to directory, 46
opening output files, 54
output filenames created, 52
out_dir parameter, 47
writing output sequences, 55
parameters of program, 47
pseudocode to outline program, 51
solution 1 using str.replace, 60
solution 2 using re.sub, 62
solutions benchmarked, 64
status report printed at end, 57
str.replace() to accomplish, 45
test suite, 57
TransDecoder to find coding regions, 275
translate() function for strings, 78
frameshifted mRNA sequences, 280
translating mRNA into protein, 165
translating mRNA into protein
about, 155
codons, 157
amino acids from, 157, 251-256
extracting from mRNA via string slices,
157
translating into protein, 160
solution 1 for loop, 161
solution 2 adding unit tests, 162
solution 3 list comprehension, 165
solution 4 HOFs, 167
solution 5 Bio.Seq, 169
solutions benchmarked, 170
True (1), 131, 242
tuples
about, 12-14
cannot be changed, 14, 15

fst() to get first element, 242, 269
named tuples, 14
arguments represented by, 16-18
types added to, 15
records represented by, 14
snd() to get second element, 242, 269
splat (*) to expand tuple, 33
zip() function combining, 145
Turing, Alan, 192
type annotation on variable, 121, 126
type error, 9
defaultdict defining default type, 40
mypy type checker tool, 10
Python ignores type information, 16
sorted() with mixed types, 122
type() function, 13, 25, 36
array values same type, 122
list member types should not be mixed, 122
map() for converting types, 122
NoneType, 37

]
U (uracil), 45
UniProt site for protein sequences
command line download, 230-233
FASTA files, 230
Python download, 233-235
unit testing
about, 23, 31
function that reads a file, 297
where to place unit tests, 300
GC content determination, 123-127
Hamming distance determination, 143
tetranucleotide frequency, 30-34
translating mRNA into protein, 162
unittest module for mock filehandle, 298
Unix command line
about using, xv
bash shell (see bash shell)
blastn for NCBI BLAST, 362
default fields listed, 365
output formats, 364
cloning book code and test repository, xvi
csvchk for CSV files, 364
column names, 366
csvkit module for CSV files, 364
csvlook, 364
curl to transfer server data, 231
delimited files and awk and cut, 370

428 | Index

/dev/null filehandle, 32
downloading protein sequence files,
231-233
file globs to match patterns, 106
file size comparison, 291
grep, 308
Is command to list directory contents, 407
md5 command for hash, 292
openssl md5 for hash, 292
PATH environment variable, 269, 405-408
STDOUT, 56, 113, 192
uppercase and lowercase capabilities, 42
uracil (U), 45

vV

VanderPlas, Jake, 382

variables
:= (assignment and testing), 133, 220
_ (throwaway variable), 90, 91
constant declaration absent, 15
defaultdict defining default type, 40
isinstance() function, 36
lambda assigned to, 151
Makefiles, 400
naming convention lowercase, 26
printing, 13, 26
read() entire file into, 19
strings immutable, 56

(see also strings (str))

type annotation on, 121, 126

type() function, 13, 25, 36
Venter, Craig, 362

]

walrus operator (:=), 133, 220
wget (web get) to transfer server data, 231
Windows
shebang for program execution, 9
Windows Subsystem for Linux (WSL), xvi
Workflow Description Language (WDL), 402
workflow managers, 402
Makefile containing workflow, 401
write() method of filehandles, 56
writing files
directory holding output files, 54
overwrite is default, 54
text or raw bytes, 54
writing output sequences, 55

Y

yapf to auto format code, 29, 286

yield suspending functions, 93
yield value, not return value, 94

Youngman, Henny, 122

z

zip() function combining sequences, 145, 268
zip_longest() function, 147, 150

Index | 429

About the Author

Ken Youens-Clark has been programming for about 25 years. After a wandering
undergraduate education at the University of North Texas that started in music and
ended in English literature, he learned programming on the job using various and
sundry languages. Eventually he ended up in a bioinformatics lab and thought it
seemed way cooler than anything hed done before, so he stuck with that. Ken lives in
Tucson, AZ, where he earned his MS in biosystems engineering in 2019 from the
University of Arizona. When he’s not coding, he enjoys cooking, playing music, rid-
ing bicycles, and being with his wife and three very interesting children.

Colophon

The animal on the cover of Mastering Python for Bioinformatics is the Mojave Rattle-
snake (Crotalus scutulatus), a highly venomous pit viper species found in the deserts
of the southwestern United States and central Mexico.

These heavy-bodied snakes grow up to four feet in length, and are easily recognized
by the prominent rattles on their tails. The Mojave rattlesnake’s belly is often gray, yel-
low, or brown, with light-bordered, dark diamonds or blotches in the scales along its

body.

Mammals are their most common prey, but they also eat birds, lizards, frogs, and
other snakes. It is often suggested that Mojave rattlesnakes are more dangerous than
other species, primarily because the venom produced by most populations has
repeatedly been shown to be more deadly to laboratory mice than the venom of other
rattlesnakes. However, they aren’t usually aggressive toward people unless they feel
threatened.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Dover’s Animals. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

O'REILLY"

There's much more
where this came from.

Experience books, videos, live online
training courses, and more from O'Reilly
and our 200+ partners—all in one place.

Learn more at oreillycom/online-learning

©2019 O'Reilly Media, Inc. O'Reilly

http://www.oreilly.com/online-learning

	Copyright
	Table of Contents
	Preface
	Who Should Read This?
	Programming Style: Why I Avoid OOP and Exceptions
	Structure
	Test-Driven Development
	Using the Command Line and Installing Python
	Getting the Code and Tests
	Installing Modules
	Installing the new.py Program
	Why Did I Write This Book?
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. The Rosalind.info Challenges
	Chapter 1. Tetranucleotide Frequency: Counting Things
	Getting Started
	Creating the Program Using new.py
	Using argparse
	Tools for Finding Errors in the Code
	Introducing Named Tuples
	Adding Types to Named Tuples
	Representing the Arguments with a NamedTuple
	Reading Input from the Command Line or a File
	Testing Your Program
	Running the Program to Test the Output

	Solution 1: Iterating and Counting the Characters in a String
	Counting the Nucleotides
	Writing and Verifying a Solution

	Additional Solutions
	Solution 2: Creating a count() Function and Adding a Unit Test
	Solution 3: Using str.count()
	Solution 4: Using a Dictionary to Count All the Characters
	Solution 5: Counting Only the Desired Bases
	Solution 6: Using collections.defaultdict()
	Solution 7: Using collections.Counter()

	Going Further
	Review

	Chapter 2. Transcribing DNA into mRNA: Mutating Strings, Reading and Writing Files
	Getting Started
	Defining the Program’s Parameters
	Defining an Optional Parameter
	Defining One or More Required Positional Parameters
	Using nargs to Define the Number of Arguments
	Using argparse.FileType() to Validate File Arguments
	Defining the Args Class
	Outlining the Program Using Pseudocode
	Iterating the Input Files
	Creating the Output Filenames
	Opening the Output Files
	Writing the Output Sequences
	Printing the Status Report
	Using the Test Suite

	Solutions
	Solution 1: Using str.replace()
	Solution 2: Using re.sub()

	Benchmarking
	Going Further
	Review

	Chapter 3. Reverse Complement of DNA: String Manipulation
	Getting Started
	Iterating Over a Reversed String
	Creating a Decision Tree
	Refactoring

	Solutions
	Solution 1: Using a for Loop and Decision Tree
	Solution 2: Using a Dictionary Lookup
	Solution 3: Using a List Comprehension
	Solution 4: Using str.translate()
	Solution 5: Using Bio.Seq

	Review

	Chapter 4. Creating the Fibonacci Sequence: Writing, Testing, and Benchmarking Algorithms
	Getting Started
	An Imperative Approach

	Solutions
	Solution 1: An Imperative Solution Using a List as a Stack
	Solution 2: Creating a Generator Function
	Solution 3: Using Recursion and Memoization

	Benchmarking the Solutions
	Testing the Good, the Bad, and the Ugly
	Running the Test Suite on All the Solutions
	Going Further
	Review

	Chapter 5. Computing GC Content: Parsing FASTA and Analyzing Sequences
	Getting Started
	Get Parsing FASTA Using Biopython
	Iterating the Sequences Using a for Loop

	Solutions
	Solution 1: Using a List
	Solution 2: Type Annotations and Unit Tests
	Solution 3: Keeping a Running Max Variable
	Solution 4: Using a List Comprehension with a Guard
	Solution 5: Using the filter() Function
	Solution 6: Using the map() Function and Summing Booleans
	Solution 7: Using Regular Expressions to Find Patterns
	Solution 8: A More Complex find_gc() Function

	Benchmarking
	Going Further
	Review

	Chapter 6. Finding the Hamming Distance: Counting Point Mutations
	Getting Started
	Iterating the Characters of Two Strings

	Solutions
	Solution 1: Iterating and Counting
	Solution 2: Creating a Unit Test
	Solution 3: Using the zip() Function
	Solution 4: Using the zip_longest() Function
	Solution 5: Using a List Comprehension
	Solution 6: Using the filter() Function
	Solution 7: Using the map() Function with zip_longest()
	Solution 8: Using the starmap() and operator.ne() Functions

	Going Further
	Review

	Chapter 7. Translating mRNA into Protein: More Functional Programming
	Getting Started
	K-mers and Codons
	Translating Codons

	Solutions
	Solution 1: Using a for Loop
	Solution 2: Adding Unit Tests
	Solution 3: Another Function and a List Comprehension
	Solution 4: Functional Programming with the map(), partial(), and takewhile() Functions
	Solution 5: Using Bio.Seq.translate()

	Benchmarking
	Going Further
	Review

	Chapter 8. Find a Motif in DNA: Exploring Sequence Similarity
	Getting Started
	Finding Subsequences

	Solutions
	Solution 1: Using the str.find() Method
	Solution 2: Using the str.index() Method
	Solution 3: A Purely Functional Approach
	Solution 4: Using K-mers
	Solution 5: Finding Overlapping Patterns Using Regular Expressions

	Benchmarking
	Going Further
	Review

	Chapter 9. Overlap Graphs: Sequence Assembly Using Shared K-mers
	Getting Started
	Managing Runtime Messages with STDOUT, STDERR, and Logging
	Finding Overlaps
	Grouping Sequences by the Overlap

	Solutions
	Solution 1: Using Set Intersections to Find Overlaps
	Solution 2: Using a Graph to Find All Paths

	Going Further
	Review

	Chapter 10. Finding the Longest Shared Subsequence: Finding K-mers, Writing Functions, and Using Binary Search
	Getting Started
	Finding the Shortest Sequence in a FASTA File
	Extracting K-mers from a Sequence

	Solutions
	Solution 1: Counting Frequencies of K-mers
	Solution 2: Speeding Things Up with a Binary Search

	Going Further
	Review

	Chapter 11. Finding a Protein Motif: Fetching Data and Using Regular Expressions
	Getting Started
	Downloading Sequences Files on the Command Line
	Downloading Sequences Files with Python
	Writing a Regular Expression to Find the Motif

	Solutions
	Solution 1: Using a Regular Expression
	Solution 2: Writing a Manual Solution

	Going Further
	Review

	Chapter 12. Inferring mRNA from Protein: Products and Reductions of Lists
	Getting Started
	Creating the Product of Lists
	Avoiding Overflow with Modular Multiplication

	Solutions
	Solution 1: Using a Dictionary for the RNA Codon Table
	Solution 2: Turn the Beat Around
	Solution 3: Encoding the Minimal Information

	Going Further
	Review

	Chapter 13. Location Restriction Sites: Using, Testing, and Sharing Code
	Getting Started
	Finding All Subsequences Using K-mers
	Finding All Reverse Complements
	Putting It All Together

	Solutions
	Solution 1: Using the zip() and enumerate() Functions
	Solution 2: Using the operator.eq() Function
	Solution 3: Writing a revp() Function

	Testing the Program
	Going Further
	Review

	Chapter 14. Finding Open Reading Frames
	Getting Started
	Translating Proteins Inside Each Frame
	Finding the ORFs in a Protein Sequence

	Solutions
	Solution 1: Using the str.index() Function
	Solution 2: Using the str.partition() Function
	Solution 3: Using a Regular Expression

	Going Further
	Review

	Part II. Other Programs
	Chapter 15. Seqmagique: Creating and Formatting Reports
	Using Seqmagick to Analyze Sequence Files
	Checking Files Using MD5 Hashes
	Getting Started
	Formatting Text Tables Using tabulate()

	Solutions
	Solution 1: Formatting with tabulate()
	Solution 2: Formatting with rich

	Going Further
	Review

	Chapter 16. FASTX grep: Creating a Utility Program to Select Sequences
	Finding Lines in a File Using grep
	The Structure of a FASTQ Record
	Getting Started
	Guessing the File Format

	Solution
	Guessing the File Format from the File Extension
	I Love It When a Plan Comes Together
	Combining Regular Expression Search Flags
	Reducing Boolean Values

	Going Further
	Review

	Chapter 17. DNA Synthesizer: Creating Synthetic Data with Markov Chains
	Understanding Markov Chains
	Getting Started
	Understanding Random Seeds
	Reading the Training Files
	Generating the Sequences
	Structuring the Program

	Solution
	Going Further
	Review

	Chapter 18. FASTX Sampler: Randomly Subsampling Sequence Files
	Getting Started
	Reviewing the Program Parameters
	Defining the Parameters
	Nondeterministic Sampling
	Structuring the Program

	Solutions
	Solution 1: Reading Regular Files
	Solution 2: Reading a Large Number of Compressed Files

	Going Further
	Review

	Chapter 19. Blastomatic: Parsing Delimited Text Files
	Introduction to BLAST
	Using csvkit and csvchk
	Getting Started
	Defining the Arguments
	Parsing Delimited Text Files Using the csv Module
	Parsing Delimited Text Files Using the pandas Module

	Solutions
	Solution 1: Manually Joining the Tables Using Dictionaries
	Solution 2: Writing the Output File with csv.DictWriter()
	Solution 3: Reading and Writing Files Using pandas
	Solution 4: Joining Files Using pandas

	Going Further
	Review

	Appendix A. Documenting Commands and Creating Workflows with make
	Makefiles Are Recipes
	Running a Specific Target
	Running with No Target
	Makefiles Create DAGs
	Using make to Compile a C Program
	Using make for a Shortcut
	Defining Variables
	Writing a Workflow
	Other Workflow Managers
	Further Reading

	Appendix B. Understanding $PATH and Installing Command-Line Programs
	Epilogue
	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

