

IoT Fundamentals with a Practical Approach is an insightful book that serves
as a comprehensive guide to understanding the foundations and key concepts of
Internet of Things (IoT) technologies.

The book begins by introducing readers to the concept of IoT, explaining the
significance and potential impact on various industries and domains. It covers
the underlying principles of IoT, including its architecture, connectivity, and
communication protocols, providing readers with a solid understanding of how
IoT systems are structured and how devices interact within an IoT ecosystem.

This book dives into the crucial components that form the backbone of IoT
systems. It explores sensors and actuators, explaining their roles in collecting
and transmitting data from the physical environment. The book also covers
electronic components used in IoT devices, such as microcontrollers, communi-
cation modules, and power management circuits. This comprehensive under-
standing of the building blocks of IoT allows readers to grasp the technical
aspects involved in developing IoT solutions.

Security is a vital aspect of IoT, and the book dedicates a significant portion
to exploring security challenges and best practices in IoT deployments. It delves
into topics such as authentication, encryption, access control, and secure firm-
ware updates, providing readers with essential insights into safeguarding IoT
systems against potential threats and vulnerabilities.

This book also addresses the scalability and interoperability challenges of IoT.
It discusses IoT platforms and frameworks that facilitate the development and
management of IoT applications, highlighting their role in enabling seamless
integration and communication between devices and systems.

The book is written in a clear and accessible manner and includes real-world
examples, making it suitable for both beginners and professionals looking to
enhance their understanding of IoT. It serves as a valuable resource for engineers,
developers, researchers, and decision-makers involved in IoT projects and pro-
vides them with the knowledge and tools necessary to design, implement, and
secure IoT solutions.

IoT Fundamentals
with a Practical Approach

https://taylorandfrancis.com

IoT Fundamentals with
a Practical Approach

Neera Batra

Sonali Goyal

Designed cover image: © Shutterstock

First edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Neera Batra and Sonali Goyal

Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the consequences
of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowl-
edged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, repro-
duced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying, microfilming, and recording, or in any
information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks
and are used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-30969-9 (hbk)
ISBN: 978-1-032-30970-5 (pbk)
ISBN: 978-1-003-30748-8 (ebk)

DOI: 10.1201/9781003307488

Typeset in Sabon

by SPi Technologies India Pvt Ltd (Straive)

http://www.copyright.com
http://www.copyright.com
http://dx.doi.org/10.1201/9781003307488

v

Contents

About the Authors	 xi

	 1	Introduction to IoT (Internet of Things)	 1

	1.1	 Introduction to the Internet  1
	1.1.1	 What is the Internet of Things (IoT)?  2
	1.1.2	 What are the things?  3
	1.1.3	 Internet of Things vs the Internet  4
	1.1.4	 Comparison table between the Internet

of Things and the Internet  4
	1.1.5	 Main differences between the Internet

of Things and the Internet  4
	1.1.6	 Goals of IoT  5
	1.1.7	 Origin of the IoT  5
	1.1.8	 Evolution of IoT  6
	1.1.9	 The history of the Internet of Things  7

	1.2	 How does IoT work?  8
	1.2.1	 Scenario 1: IoT in your home  9
	1.2.2	 Scenario 2: IoT in transport  10

	1.3	 IoT components  10
	1.4	 Advantages of IoT  11
	1.5	 Disadvantages of IoT  12
	1.6	 Different IoT scenarios  14
	1.7	 IoT characteristics  14
	1.8	 Applications of IoT  15
	1.9	 Challenges of the Internet of Things (IoT)  15

	 2	IoT architecture	 17

	2.1	 Physical design of IoT  17
	2.1.1	 Things in IoT  17
	2.1.2	 IoT Protocols  19

vi  Contents

	2.2	 Logical design of IoT  23
	2.2.1	 IoT functional blocks  24
	2.2.2	 IoT communication models  24
	2.2.3	 IoT communication APIs  26

	2.3	 IoT-enabling techniques  30
	2.3.1	 Wireless Sensor Network (WSN)  30
	2.3.2	 Cloud computing  31
	2.3.3	 Big Data analytics  33
	2.3.4	 Communications protocols  33
	2.3.5	 Embedded systems  34

	2.4	 IoT levels  34
	2.4.1	 IoT level 1  35
	2.4.2	 IoT level 2  35
	2.4.3	 IoT level 3  36
	2.4.4	 IoT level 4  37
	2.4.5	 IoT level 5  37
	2.4.6	 IoT level 6  38

	2.5	 Architectural overview of the Internet of Things (IoT)  39
	2.5.1	 Sensing layer  41
	2.5.2	 Network layer  41
	2.5.3	 Data processing layer  42
	2.5.4	 Application layer  42
	2.5.5	 Stage 5 of IoT architecture  43
	2.5.6	 IoT architecture example: intelligent lighting  43

	2.6	 Reference model and architecture  45
	2.6.1	 IoT reference model  45
	2.6.2	 IoT reference architecture  52

	2.7	 Mapping to the WSO2 platform  62
	2.7.1	 The device layer  62
	2.7.2	 The aggregation/bus layer  63
	2.7.3	 The analytics and event processing layer  63
	2.7.4	 The external communications layer  64
	2.7.5	 The device management layer  64
	2.7.6	 The identity and access management layer  64

	2.8	 Design principles for IoT  65
	2.9	 IoT and M2M technology  66

	2.9.1	 How IoT M2M works  66
	2.9.2	 IoT M2M applications  67
	2.9.3	 Difference between IoT and M2M  68

	2.10	 Real-world design constraints  68
	2.10.1	 Devices and networks  68

Contents  vii

	 3	Protocols in IoT	 71

	3.1	 MQTT (Message Queuing Telemetry Transport)  71
	3.1.1	 Why was MQTT created?  71
	3.1.2	 Who uses MQTT?  72
	3.1.3	 Advantages of MQTT  72

	3.2	 How it works  72
	3.2.1	 Levels of QoS in MQTT  74

	3.3	 Zigbee  79
	3.3.1	 Zigbee Alliance  79
	3.3.2	 Who uses Zigbee?  79
	3.3.3	 How Zigbee works  80
	3.3.4	 Zigbee network topologies  81
	3.3.5	 Applications of Zigbee technology  83

	3.4	 Bluetooth/BLE  84
	3.4.1	 Applications of Bluetooth in IoT  85
	3.4.2	 What is Bluetooth low energy?  86
	3.4.3	 How does BLE use less power?  86
	3.4.4	 What is Bluetooth low energy used for?  86
	3.4.5	 Indoor location tracking  88
	3.4.6	 Architecture of BLE  90

	3.5	 HTTP  92
	3.5.1	 HTTP protocol in IoT  93
	3.5.2	 Why HTTP is not suitable for IoT?  94

	3.6	 Wi-Fi  95
	3.6.1	 How does Wi-Fi work?  96
	3.6.2	 Applications of Wi-Fi  97

	3.7	 TCP/UDP  98
	3.7.1	 How Transmission Control Protocol works  98
	3.7.2	 The three phases of TCP operations  99
	3.7.3	 TCP segments  99
	3.7.4	 Congestion control  100
	3.7.5	 Error detection  100

	3.8	 Advanced Message Queuing Protocol (AMQP)  101
	3.8.1	 How AMQP works  102

	3.9	 Constrained Application Protocol (CoAP)  103
	3.9.1	 CoAP layer  106
	3.9.2	 CoAP protocol security  106

	3.10	 CoAP vs MQTT  108
	3.11	 RF  108

	3.11.1	 Electric current  109
	3.11.2	 Applications of RF  109

viii  Contents

	3.11.3	 Frequency bands  110
	3.11.4	 How is RF used?  111
	3.11.5	 How are people exposed to RF radiation?  111

	3.12	 IPv4/IPv6  112
	3.12.1	 The First major protocol  112
	3.12.2	 Components  112
	3.12.3	 Benefits of IPv4  113
	3.12.4	 Anatomy of IPv4 address  113
	3.12.5	 Dynamic IP addresses  113
	3.12.6	 IPv4 limitations  114
	3.12.7	 Introduction to IPv6  114
	3.12.8	 What is IPv6 in IoT?  114
	3.12.9	 Advantages of IPv6 in the Internet of Things  115
	3.12.10	 The IPv6 revolution  115
	3.12.11	 What are the risks?  116
	3.12.12	 The role of automation  116

	3.13	 6LoWPAN  116
	3.13.1	 Advantages of 6LoWPAN  117
	3.13.2	 6LoWPAN application areas  118
	3.13.3	 6LoWPAN security  119
	3.13.4	 6LoWPAN interoperability  119

	 4	Introduction to sensors and actuators� 121

	4.1	 Introduction to sensors  121
	4.2	 Introduction to actuators  122
	4.3	 Controller  122
	4.4	 What connects sensors and actuators in IoT devices?  123

	4.4.1	 Sensors characteristics  124
	4.4.2	 Static characteristics  124
	4.4.3	 Dynamic characteristics  125

	4.5	 Sensor classification  125
	4.6	 IoT sensor types  127

	4.6.1	 Temperature sensors  128
	4.6.2	 Pressure sensors  129
	4.6.3	 Motion sensors  130
	4.6.4	 Level sensors  131
	4.6.5	 Image sensors  132
	4.6.6	 Proximity sensors  132
	4.6.7	 Chemical sensors  134
	4.6.8	 Gas sensors  134
	4.6.9	 Smoke sensors  136

Contents  ix

	4.6.10	 Infrared (IR) sensors  137
	4.6.11	 Ultrasonic sensors  141
	4.6.12	 Acceleration sensors  143
	4.6.13	 Gyroscopic sensors  145
	4.6.14	 Humidity sensors  147
	4.6.15	 Optical sensors  147

	4.7	 Actuators  148
	4.7.1	 Hydraulic actuators  149
	4.7.2	 Pneumatic actuators  150
	4.7.3	 Thermal actuators  151
	4.7.4	 Electromechanical actuators  152

	 5	Electronic components used in IoT	 157

	5.1	 Electronics components  157
	5.1.1	 Breadboard  157
	5.1.2	 Resistor  165
	5.1.3	 Potentiometer  169
	5.1.4	 PWM  173
	5.1.5	 Jumper Wire  175
	5.1.6	 Arduino  175
	5.1.7	 Arduino UNO  182
	5.1.8	 Arduino UNO Pinout  194

	5.2	 What is setup? What type of code is written
in the setup block?  199

	5.3	 What is loop? What type of code is written
in the loop block?  199

	5.4	 Why is it recommended to set the mode of
pins as OUTPUT?  200
	5.4.1	 Can We Set the pinMode as INPUT?  201

	5.5	 What is the difference between digitalRead ()
and digitalWrite ()?  201
	5.5.1	 Arduino syntax and program flow  202
	5.5.2	 Functions  203
	5.5.3	 Spaces  204
	5.5.4	 Tools tab  204
	5.5.5	 Uses of parentheses ()  204
	5.5.6	 Semicolon ;  204
	5.5.7	 Program flow  204
	5.5.8	 Flow charts  205
	5.5.9	 Arduino Serial |Serial.begin()  206

x  Contents

	5.6	 What is the difference between Serial.print()
and Serial.println()?  210
	5.6.1	 Data types  211

	 6	Introduction to Arduino	 216

	6.1	 Why Arduino?  216
	6.2	 What makes up an Arduino?  218
	6.3	 What does it do?  219
	6.4	 What’s on the board?  219

	6.4.1	 Power (USB/Barrel Jack)  220
	6.4.2	 Pins (5V, 3.3V, GND, Analog,

Digital, PWM, AREF)  220
	6.4.3	 Raspberry Pi  233
	6.4.4	 What Raspberry Pi models have been released?  233
	6.4.5	 Top 6 models of Raspberry Pi  234
	6.4.6	 How to install Raspbian on the Raspberry Pi  236
	6.4.7	 Raspberry Pi pins  241
	6.4.8	 General Purpose Input Output (GPIO) Pins  242
	6.4.9	 I2C, SPI, and UART: Which do you use?  243
	6.4.10	 I2C – Inter-Integrated Circuit  244
	6.4.11	 SPI – Serial Peripheral Interface  244
	6.4.12	 UART – Universal Asynchronous

Receiver/Transmitter  244
	6.4.13	 Ground (gnd)  245
	6.4.14	 5v  245
	6.4.15	 3v3  245

	 7	Security aspects in IoT	 251

	7.1	 Security spectrum  251
	7.2	 Perceptual layer security  254
	7.3	 Security in the hotel industry  260
	7.4	 Case study: IP camera  261
	7.5	 IoT security tools  263

Index	 266

xi

About the Authors

Dr. Neera Batra is an accomplished scholar with a robust academic back-
ground. In 2012, she earned her Doctor of Philosophy (PhD) in Computer
Science & Engineering from Maharishi Markandeshwar (deemed to
be University), Mullana, Ambala, India. Prior to this, she obtained her
Master of Technology (MTech.) in Computer Science & Engineering from
Kurukshetra University, Kurukshetra, India, in 2007.

Since 2007, Dr. Neera Batra has been actively engaged in both teaching
and research and development. Her dedication to academia is evident
through her supervision of numerous MTech. and PhD theses, contributing
significantly to the academic and professional growth of her students.

Dr. Batra’s scholarly contributions also extend beyond the classroom.
She has authored and published over 70 research papers in prominent
national and international journals, in addition to presenting her work at
various refereed national and international conferences. Her commitment
to innovation is further exemplified by her impressive portfolio of 16 pat-
ented inventions.

Dr. Batra’s research interests are multifaceted, with a focus on cutting-
edge areas such as the Internet of Things (IoT), machine learning, and soft-
ware engineering. Her valuable contributions to these fields demonstrate her
expertise and dedication to advancing the frontier of knowledge.

Dr. Sonali Goyal is an accomplished academic and researcher in the field of
machine learning and the Internet of Things. As an associate professor in the
Department of CSE, MMEC, Maharishi Markandeshwar (deemed to be
University), Mullana, she has made significant contributions to the advance-
ment of knowledge in her field. With a strong background in both theory
and practical applications, she has dedicated herself to exploring the poten-
tial of cutting-edge technologies. Her academic career spans over 12 years,
during which she has been actively engaged in teaching, mentoring and con-
ducting research. In terms of research, Dr. Sonali Goyal has a prolific record,
having authored 25 research papers on various aspects of machine learning

xii  About the Authors

and the Internet of Things. Her work demonstrates a deep understanding of
the underlying principles and a keen ability to apply them to practical prob-
lems. In addition to her research papers, she has also obtained five patents
for her innovative contributions to the field. She has also authored a book,
showcasing her ability to communicate complex concepts effectively.

1DOI: 10.1201/9781003307488-1

1.1 � INTRODUCTION TO THE INTERNET

The Internet is an increasingly important part of everyday life for people all
around the world. It is the foremost important tool and the most prominent
resource, being used by almost every person across the globe. The Internet is
a worldwide network of billions of computers and other electronic devices.
Through its use, it’s possible to access almost any information, commu-
nicate with anyone else in the world, and do much more. In other words,
the Internet is a widespread interconnected network of computers and
electronic devices (which support the system). It creates a communication
medium to share and obtain information online. If your device is connected
to the Internet then you will be able to access all the applications, websites,
social media apps, and many more services.

At present, the Internet is considered to be the fastest medium for sending
and receiving information. It connects millions of computers, web pages,
websites, and servers. Using the Internet you can send emails, photos, vid-
eos, and messages to our loved ones. You can do all of this by connecting a
computer to the Internet, which is also known as ‘going online’. Overview
of IoT (Internet of Things).

Humans’ desire for a comfortable living develops from their curiosity
about the mechanical world. Over the last few decades, humankind had
experienced a transformational technological journey which has crossed
many new frontiers. These frontiers have interacted with human beings and
performed every possible work in a shorter period of time and with a much
greater degree of accuracy. With the advent of ‘smart concepts’, the world is
now becoming increasingly connected. A more accurate term for it might be
a hyper-connected world. These smart concepts include smartphones, smart
devices, smart applications, and smart cities. These smarter concepts form
an ecosystem of devices whose basic work is to connect various devices to
send and receive data. The Internet of Things is the one dominant technol-
ogy which keeps an eye on connected smart devices. The Internet of Things

Chapter 1

Introduction to IoT
(Internet of Things)

http://dx.doi.org/10.1201/9781003307488-1

2  IoT Fundamentals with a Practical Approach

has bought applications from fiction to fact, thereby enabling the fourth
industrial revolution. It has laid an incredible impact on the technical, social,
economic factors and also on the lives of human and machines. Scientists
claim that the potential benefits to be derived from this technology will pro-
duce a future in which the smart objects sense, think, and act. The IoT is the
trending technology and embodies various related concepts such as fog
computing, edge computing, communication protocols, electronic devices,
sensors, geolocation etc. The chapter presents comprehensive information
about the evolution of Internet of Things, moving from its present develop-
ments to its futuristic applications.

With the advent of the latest techniques and technologies, there was a
need for a concept that would describe how the Internet would expand as
sensors and intelligence are added to physical items such as consumer
devices or physical assets and these objects are connected to the Internet.
The vision and concept have existed for years; however, there has been an
acceleration in the number and types of things that were required to be
being connected and used in the technologies for identifying, sensing, and
communicating. Here comes the technology’s “IoT” to the rescue.

There is presently a great deal of noise at the moment about the IoT and
its future impact on everything from the way we travel and do our shopping
to the way in which manufacturers keep track of inventory. But what is the
Internet of Things? How does it work? And is it really that important?

1.1.1 � What is the Internet of Things (IoT)?

The term Internet of Things, or IoT, is the name given to the collective net-
work of connected devices and the technology that facilitates communication
between devices and the cloud, as well as between the devices themselves.
Thanks to the invention of inexpensive computer chips and the spread of
high bandwidth telecommunication, we now have billions of devices con-
nected to the Internet. This means everyday devices such as toothbrushes,
vacuums, cars, and a wide range of machines can use sensors to collect data
and respond intelligently to users.

The IoT integrates everyday “things” with the Internet. Computer engi-
neers have been adding sensors and processors to everyday objects since the
1990s. However, progress was initially slow because the chips were big and
bulky. Low-power computer chips, called Radio Frequency Identification
(RFID) tags, were first used to track expensive equipment. As computing
devices shrank in size, these chips also became smaller, faster, and smarter
over time.

The IoT is presently a hot technology across the globe. Government, aca-
demia, and industry are involved in different aspects of research, implemen-
tation, and business with IoT. The technology cuts across different application
domain verticals, ranging from civilian to defence sectors. Among the sec-
tors in which the IoT is being disseminated are agriculture, space,

Introduction to IoT (Internet of Things)  3

healthcare, manufacturing, construction, water, and mining, which are pres-
ently transitioning their legacy infrastructure to support IoT. Today it is pos-
sible to envision pervasive connectivity, storage, and computation, which, in
turn, gives rise to the construction of different IoT solutions. IoT-based
applications such as an innovative shopping system, infrastructure manage-
ment in both urban and rural areas, remote health monitoring and emer-
gency notification systems, and transportation systems, are gradually
increasing their reliance on IoT-based systems. Therefore, it is very impor-
tant to learn the fundamentals of this emerging technology.

IoT includes an extraordinary number of objects of all shapes and sizes –
from smart microwaves, which automatically cook your food for the right
length of time, to self-driving cars, whose complex sensors detect objects in
their path, to wearable fitness devices that measure your heart rate and the
number of steps you’ve taken that day, then use that information to suggest
exercise plans tailored to you. There are even connected footballs that can
track how far and fast they are thrown and record those statistics via an app
for future training purposes.

Let’s start with a simple real-life example: Rajesh, in between his road
trips, notices some problem with the check engine light. However, he is
unaware of the intensity of the problem. The good part is that the sensor
that triggers the check engine light monitors the pressure in the inner brake
line. This sensor is one of the many sensors present in the car which con-
stantly communicate with each other. A component, called the diagnostic
bus, gathers the data from all these sensors and then passes it to the gateway
in the car. The gateway collects and sorts the data from different sensors.

Before this connection can take place, the car’s gateway and platform
must register with each other and confirm a secure communication connec-
tion. The platform keeps on constantly gathering and storing information
from hundreds of cars worldwide, building a record in a database. The man-
ufacturer has added rules and logic to the platform. The platform triggers an
alert in his car, after sensing the brake fluid has dropped below the recom-
mended level. The manufacturer then sends him an appointment for servic-
ing of his car, and the car’s problem is rectified.

1.1.2 � What are the things?

Things are objects either of the physical world (physical things) or of the
information world (the virtual world) which are capable of being identified
and integrated into communication networks. Physical things exist in the
physical world and are capable of being sensed, actuated, and connected.
These include, for example, the surrounding environment, industrial robots,
goods, and electrical equipment. Virtual things, by contrast, exist in the
information world and are capable of being stored, processed, and accessed.
Example of these include multimedia content and application software. The
thing in the IoT could also be alive, as would be the case, for example, with

4  IoT Fundamentals with a Practical Approach

a person with a diabetes monitor implant or an animal with a tracking
device.

1.1.3 � Internet of Things vs the Internet

The main difference between the Internet of Things and the Internet is the
identity of the content creator. On the conventional Internet, content is con-
sumed on a request basis. In the IoT, on the other hand, the material is often
consumed by sending a notice or initiating an action when a condition of
interest is discovered.

As stated earlier, the IoT is a network of physical items that is infused with
technology and linked to the Internet, as well as to other connected devices.
These items capture and transmit information about how they’re utilized and
their surroundings. Status data, automation data, and location data are three
forms of IoT data that vary depending on the device that generates it and the
case study involved. The Internet is a vast network that connects numerous
computers and other electronic gadgets all around the world. Anyone can get
nearly any information, interact with anyone on the globe, and do a lot more
using the Internet. Decentralization is a feature of the internet. Nobody pos-
sesses the Internet or has control over who can access it.

1.1.4 � Comparison table between the Internet of Things
and the Internet (Table 1.1)

1.1.5 � Main differences between the Internet of
Things and the Internet

	 1.	With the Internet of Things, increased attention is placed on the actual
world rather than the virtual world, promoting a better balance of
virtual and real experiences. This is in contrast to the Internet, which is
more inclined towards the virtual world as shown in above Table 1.1.

Table 1.1  The Internet of Things (IoT) vs the Internet

Parameters of comparison Internet of things Internet

Objective Focused on the
actual world.

Focused more on the virtual world.

Tasks that are done
so far

Content creation. Content generation and
consumption.

Based on Concepts of
physical-first.

Concepts of physical-first and
digital-first.

Connection type Multipoint. Point-to-point as well as multipoint.
Content combined with Explicitly defined

operators.
Physical linkages.

Introduction to IoT (Internet of Things)  5

	•	 The IoT is primarily concerned with content creation, whereas the
Internet is concerned with both content generation and consumption.

	•	 The IoT is based on the physical-first notion, whereas the Internet
is based on both the physical-first and digital-first concepts.

	•	 IoT uses a multipoint connection, whereas the Internet uses both
point-to-point and multipoint connections.

	•	 Physical linkages between websites are used to connect users on the
conventional Internet whereas in the Internet of Things the content
is merged using operators that are expressly stated.

The IoT is a collection of interconnected devices. As a result, higher inte-
gration abilities and end-to-end thinking are required for the Internet of
Things. Smart homes and smart cities, as well as manufacturing, telemedi-
cine, and precision agriculture, are all being advanced by the Internet of
Things.

While the full promise of the Internet of Things has yet to be realized, it
already has a wide range of practical uses in the real world. The Internet is
a global network that allows enterprises, governments, colleges, and other
institutions to communicate with one another. The result is a maze of wires,
computer systems, storage systems, routers, servers, repeaters, satellites, and
Wi-Fi towers that allow digital data to go around the globe.

1.1.6 � Goals of IoT

The goals of the IoT are to extend to Internet connectivity from standard
devices such as computers, mobile phones, and tablets to relatively “dumb”
devices such as a toaster. IoT makes virtually everything “smart,” by improv-
ing aspects of our life with the power of data collection, AI algorithm, and
networks.

1.1.7 � Origin of the IoT

Development and historical background: The idea of adding intelligence
via sensors and other hardware components to physical devices in order to
enable connectivity between them has been debated since the 1980s. At that
time, however, we were only able to go as far as Internet-connected vending
machines. The limitations at this time were expensive components, bulkier
computer chips, and the inconsistent Internet signal. The introduction and
adoption of RFID tags helped to curb the issue to a certain extent. In addi-
tion, the adoption of IPv6 helped the idea to progress further.

The expression Internet of Things was first used in 1999 by Kevin Ashton,
the executive director of Auto-ID labs at MIT, while he was giving a presen-
tation for Procter & Gamble. In his presentation, he noted how in today’s
computer, i.e. the Internet at that time, the computer was dependent on
personal input. Almost all the data collected on the Internet was captured

6  IoT Fundamentals with a Practical Approach

by people either typing, pressing a record button, or scanning a barcode.
People are incapable of capturing all the data in the world and if we have
computers that can inherit all the data without any input from us, this
would reduce both the levels of waste and the costs involved. We would
know when things need to be repaired or replaced considering the best for
everyone.

Before 1999, the phrase was referred to as Radio Frequency Identification
(RFID), which was used for tracking consignments. One of the first exam-
ples of the IoT was the installation of the Coca-Cola machine at Carnegie
Melon University in the 1980s, which meant that local programmers would
connect the machine with the Internet and check the availability and tem-
perature of the Coca-Cola, checking if it is cold enough before physically
going to take it out from the refrigerator. Kevin Ashton believed that if all
the devices are designated in such a way the computer could manage to
track the databases and inventory them. In 1999 he coined the term ‘Internet
of Things’, but it took the technology at least another decade to catch up
with the idea. In one of the first applications of the IoT, RFID tags were
added to types of equipment to track their location. Following this, prices
have been falling for the sensors, hardware, and Internet connections, pav-
ing the way to connect possibly everything to the Internet. Slowly and
steadily, IoT has started to spread from manufacturing and businesses to
homes and offices. At present, most of the areas are possibly connected to
the Internet, allowing the IoT to emerge as one of the most essential tech-
nologies in the coming years.

As of now, devices are designed in a way to track them from anywhere.
The IoT provides an ample supply of opportunities to interconnect our
devices and equipment. Inventory control is one of the prominent advan-
tages of the Internet of Things.

1.1.8 � Evolution of IoT

	•	 1970 – The actual idea of connected devices was proposed
	•	 1990 – John Romkey created a toaster which could be turned on/off

over the network
	•	 1995 – Siemens introduced the first cellular module built for machine-

to-machine (M2M) communication
	•	 1999 – The term “Internet of Things” was used by Kevin Ashton dur-

ing his work at P&G which became widely accepted
	•	 2004 – The term was mentioned in famous publications like the

Guardian, the Boston Globe, and Scientific American
	•	 2005 – UN’s International Telecommunications Union (ITU) pub-

lished its first report on this topic.
	•	 2008 – The Internet of Things was born

Introduction to IoT (Internet of Things)  7

	•	 2011 – Gartner, the market research company, include “The Internet
of Things” technology in their research

	•	 On 15 October 2015 the Internet Society published this 50-page
whitepaper, providing an overview of the IoT and exploring related
issues and challenges.

	•	 22 Oct 2015 – PDF file updated with higher-quality cover image and
a title page.

	•	 6 Jan 2016 – PDF file updated with new graphic design. Filename
changed to include “-en” for English.

	•	 18 Apr 2016 – Russian translation published.
	•	 17 Aug 2016 – Spanish translation published.

The Internet of Things is an emerging topic of technical, social, and eco-
nomic significance. Consumer products, durable goods, cars and trucks,
industrial and utility components, sensors, and other everyday objects are
being combined with Internet connectivity and powerful data analytic capa-
bilities that promise to transform the way in which we work, live, and play.
Projections for the impact of IoT on the Internet and the wider global econ-
omy are impressive, with some anticipating that by 2025 there will be as
many as 100 billion connected IoT devices and a global economic impact of
more than $11 trillion.

At the same time, however, the Internet of Things raises significant chal-
lenges that could stand in the way of realizing its potential benefits.
Attention-grabbing headlines about the hacking of Internet-connected
devices, surveillance concerns, and privacy fears have already raised public
concerns. Technical challenges remain and new policy, legal, and develop-
ment changes are emerging. As a matter of principle, developers and users of
IoT devices and systems have a collective obligation to ensure they do not
expose users and the Internet itself to potential harm. Accordingly, a collab-
orative approach to security will be needed to develop effective and appro-
priate solutions to IoT security challenges that are well suited to the scale
and complexity of the issues.

1.1.9 �The history of the Internet of Things

The idea of devices exchanging information without human appeared not
long ago. Full automation of data transmission was discussed in the late
1970s. At that time this approach was considered as “pervasive computing”.
It took several decades for technologies’ development to start talking about
the Internet of Things.

As mentioned above, In the second half of the 1990s, the Briton Kevin
Ashton was working for Procter & Gamble enterprises and was engaged in the
optimization of the production process. He noticed that this process directly
depends on the speed of transmission and processing of data. It can take days

8  IoT Fundamentals with a Practical Approach

for people who collect the data. The use of RFID has allowed accelerating the
process of data transfer directly between devices. He had an idea of things to
be collected, processed and transmitted with no human involvement. He
decided to call it an “Internet of Things” and became a visionary at that time.

It took almost a decade for the “Internet of Things” term to come into
common use in everyday life. Together with artificial intelligence, IoT has
become a cutting edge in the development of information technology. So, in
2008 IPSO Alliance created an alliance of companies that supported the
development of the Internet of Things technologies. It has become a signal
for large corporations.

In the summer of 2010, it became known that the Google Street View
service was not only showing panoramic photos, but was also able to collect
data through the use of Wi-Fi. Experts talked about the development of a
new protocol for data transmission, which would allow the free exchange of
data between devices. In the same year, China announced that it was plan-
ning to include the Internet on the list of priority research areas for the next
five years. It became clear that not only large corporations but also the gov-
ernment were interested in collecting, processing, and storing data. In 2011,
Gartner, a market research firm, named the IoT in its list of the most promis-
ing emerging technologies.

Over the next few years the Internet of Things essentially conquered the
world. In 2012, the largest European Internet conference Le Web was
devoted to this topic. Many of the key business magazines, such as Forbes,
Fast Company, and Wired, began to make active use of the term. The whole
world started to discuss the Internet of Things while the companies launched
the Internet of Things technology race. In 2013, IDC published a study that
predicted the growth of the IoT market by 2020 to $8.9 trillion.

In January 2014, Google bought a $3.2 million company that was devel-
oping smart home appliances and building management systems. Since then,
the world market has fully understood that the nearest future belongs to the
Internet of Things. In the same year, the globally important American
Consumer Electronics Show was held in Las Vegas under the heading of the
Internet of Things.

1.2 � HOW DOES IoT WORK?

Devices and objects with built-in sensors are connected to an Internet of
Things platform, which integrates data from the different devices and
applies analytics to share the most valuable information with applications
built to address specific needs.

These powerful IoT platforms can pinpoint exactly what information is
useful and what can safely be ignored. This information can be used to
detect patterns, make recommendations, and detect possible problems
before they occur. Figure 1.1 shows life before and after IoT.

Introduction to IoT (Internet of Things)  9

For example, if I own a car manufacturing business, I might want to know
which optional components (leather seats or alloy wheels, for example) are
the most popular. Using Internet of Things technology, I can:

	•	 Use sensors to detect which areas in a showroom are the most popular,
and where customers linger longest;

	•	 Drill down into the available sales data to identify which components
are selling fastest;

	•	 Automatically align sales data with supply, so that popular items don’t
go out of stock.

The information picked up by connected devices enables people to make
smart decisions about which components to stock up on, based on real-time
information, which helps them to save time and money.

With the insights provided by advanced analytics comes the power to
make processes more efficient. Smart objects and systems mean you can
automate certain tasks, particularly ones which are repetitive, mundane,
time-consuming, or even dangerous.

Let’s look at some examples to see what this looks like in real life.

1.2.1 � Scenario 1: IoT in your home

Imagine you wake up at 7a.m. every day to go to work. Your alarm clock
does the job of waking you just fine. That is, until something goes wrong.
Your train’s cancelled and you have to drive to work instead. The only prob-
lem is that it takes longer to drive, and you would have needed to get up at
6.45a.m. to avoid being late. Oh, and it’s also pouring with rain, so you’ll
need to drive slower than usual. A connected or IoT-enabled alarm clock
would reset itself based on all these factors, to ensure you got to work on
time. It could recognize that your usual train is cancelled, calculate the driv-
ing distance and travel time for your alternative route to work, check the
weather and factor in slower travelling speed because of heavy rain, and cal-
culate when it needs to wake you up so you’re not late. If it’s super-smart, if

Figure 1.1  Before and After IoT.

10  IoT Fundamentals with a Practical Approach

might even sync with your IoT-enabled coffee maker, to ensure your morn-
ing caffeine’s ready to go when you get up.

1.2.2 � Scenario 2: IoT in transport

Having been woken by your smart alarm, you’re now driving to work. On
comes the engine light. You’d rather not head straight to the garage, but
what if it’s something urgent? In a connected car, the sensor that triggered
the check engine light would communicate with others in the car. A com-
ponent called the diagnostic bus collects data from these sensors and passes
it to a gateway in the car, which sends the most relevant information to the
manufacturer’s platform. The manufacturer can use data from the car to
offer you an appointment to get the part fixed, send you directions to the
nearest dealer, and make sure the correct replacement part is ordered so it’s
ready for you when you show up.

The cost of integrating computing power into small objects has now
dropped considerably. For example, you can add connectivity with Alexa
voice services capabilities to microcontrollers with less than 1 MB embedded
RAM, such as for light switches. A whole industry has sprung up with a
focus on filling our homes, businesses, and offices with IoT devices. These
smart objects can automatically transmit data to and from the Internet. All
these “invisible computing devices” and the technology associated with them
are collectively referred to as the Internet of Things.

1.3 � IoT COMPONENTS

Below, we list four fundamental components of the IoT system, which tells
us how it works:

	 1.	Sensors/Devices: Sensors or devices are key component that help you
to collect live data from the surrounding environment. All this data
may have various levels of complexities. It could be a simple tempera-
ture monitoring sensor, or it may be in the form of the video feed.

A device may have various types of sensors which performs mul-
tiple tasks apart from sensing. For example, a mobile phone is a device
which has multiple sensors like GPS and a camera but your smart-
phone is unable to sense these things.

	 2.	Connectivity: All the collected data is sent to a cloud infrastructure.
The sensors should be connected to the cloud using various mediums
of communications. These communication mediums include mobile or
satellite networks, Bluetooth, Wi-Fi, WAN, etc.

	 3.	Data Processing: Once that data is collected, and it gets to the cloud,
the software performs processing on the gathered data. This process

Introduction to IoT (Internet of Things)  11

can be just checking the temperature, reading on devices like AC or
heaters. However, it can sometimes also be very complex, such as iden-
tifying objects, using computer vision on video.

	 4.	User Interface: The information needs to be available to the end-user
in some way which can be achieved by triggering alarms on their
phones or sending them notification through email or text message.
The user sometimes might need an interface which actively checks
their IoT system. For example, the user has a camera installed in his
home. He wants to access video recording and all the feeds with the
help of a web server.

Before we understand the impact IoT can have on our way of living, it’s
important to consider its advantages and disadvantages:

1.4 � ADVANTAGES OF IoT

There are a number of advantages of IoT:

	 1.	Communication: IoT encourages the communication between devices,
also famously known as machine-to-machine (M2M) communication.
Because of this, the physical devices are able to stay connected and
hence the total transparency is available with lesser inefficiencies and
greater quality.

	 2.	Automation and control: Due to physical objects getting connected
and controlled digitally and centrally with wireless infrastructure,
there is a large amount of automation and control in the workings.
Without human intervention, the machines are able to communicate
with each other leading to faster and timely output.

	 3.	 Information: It is obvious that having more information helps mak-
ing better decisions. Whether it is mundane decisions as needing
to know what to buy at the grocery store or if your company has
enough widgets and supplies, knowledge is power and more knowl-
edge is better.

	 4.	Monitor: The second most obvious advantage of IoT is monitoring.
Knowing the exact quantity of supplies or the air quality in your home,
can further provide more information that could not have previously
been collected easily. For instance, knowing that you are low on milk
or on printer ink could spare you another trip to the store in the near
future. Furthermore, a monitoring of the expiry dates of products can
and will improve safety.

	 5.	Time: As hinted in the previous examples, the amount of time saved
because of IoT could be quite large. And in today’s modern life, we all
could use more time.

12  IoT Fundamentals with a Practical Approach

	 6.	Money: The biggest advantage of IoT is saving money. If the price
of the tagging and monitoring equipment is less than the amount of
money saved, then the Internet of Things will be adopted widely. IoT
fundamentally proves to be very helpful to people in their daily rou-
tines by making the appliances communicate to each other in an effec-
tive manner, thereby saving and conserving energy and cost. Allowing
the data to be communicated and shared between devices and then
translating it into our required way, it makes our systems effective.

	 7.	Automation of daily tasks leads to the better monitoring of devices:
The IoT allows you to automate and control the tasks that are carried
out on a daily basis, avoiding human intervention. M2M communica-
tion helps to maintain transparency in the processes. It also leads to
uniformity in the tasks. It can also maintain the quality of service. We
can also take necessary action in case of emergencies.

	 8.	Efficient and saves time: M2M interaction provides better efficiency,
meaning that accurate results can be obtained quickly. This results in
the saving of valuable time. Instead of repeating the same tasks every
day, it enables people to do other creative jobs.

	 9.	Saves money: The optimum utilization of energy and resources can be
achieved by adopting this technology and keeping the devices under
surveillance. We can be alerted in case of possible bottlenecks, break-
downs, and damages to the system. Hence, we can save money by
using this technology.

	 10.	Better quality of life: All the applications of this technology culminate
in increased comfort, convenience, and better management, thereby
improving the quality of life.

1.5 � DISADVANTAGES OF IoT

Some of the disadvantages of IoT are detailed below:

	 1.	Compatibility: Currently, there is no international standard of com-
patibility for the tagging and monitoring equipment. I believe this
disadvantage is the most easy to overcome. The manufacturing com-
panies of these equipment just need to agree to a standard, such as
Bluetooth, USB, etc. This is nothing new or innovative.

	 2.	Complexity: As with all complex systems, there are more opportuni-
ties of failure. With the Internet of Things, failures could sky-rocket.
For instance, let’s say that both you and your spouse each get a mes-
sage saying that your milk has expired, and both of you stop at a
store on your way home, and you both purchase milk. As a result,
you and your spouse have purchased twice the amount that you both

Introduction to IoT (Internet of Things)  13

need. Or perhaps a bug in the software ends up automatically order-
ing a new ink cartridge for your printer each and every hour for a few
days, or at least after each power failure, when you only need a single
replacement.

	 3.	Privacy/Security: With all of this IoT data being transmitted, the risk
of losing privacy increases. For instance, how well encrypted will the
data be kept and transmitted with? Do you want your neighbors or
employers to know what medications that you are taking or your
financial situation?

	 4.	Safety: Imagine if a notorious hacker changes your prescription. Or,
alternatively, if a store automatically ships you an equivalent product
to which you are allergic, or a flavor that you do not like, or a product
that has already expired. As a result, safety is ultimately in the hands
of the consumer to verify any and all automation.

As all the household appliances, industrial machinery, public sector
services such as water supply and transport, and many other devices are
connected to the Internet, a lot of information is available on it. This
information is prone to attack by hackers. It would be disastrous if pri-
vate and confidential information is accessed by unauthorized intruders.

	 5.	Compatibility: As devices from different manufacturers will be inter-
connected, the issue of compatibility in tagging and monitoring crops
up. Although this disadvantage may drop off if all the manufactur-
ers agree to a common standard, even after that, technical issues will
persist. Today, we have Bluetooth-enabled devices and compatibility
problems exist even in this technology! Compatibility issues may
result in people buying appliances from a certain manufacturer, lead-
ing to its monopoly in the market.

	 6.	Complexity: The IoT is a diverse and complex network. Any failure or
bugs in the software or the hardware will have serious consequences.
Even power failure can cause a lot of inconvenience.

	 7.	Lesser Employment of Menial Staff: Unskilled workers and helpers
may end up losing their jobs given the effect of automation of daily
activities. This can lead to unemployment issues in the society. This is
a problem with the advent of any technology and can be overcome
with education. With daily activities becoming automated, naturally,
there will be fewer human resources will be required; this will primar-
ily impact unskilled workers and less educated staff. This may create a
wider unemployment issue in society.

	 8.	Technology Takes Control of Life: Our lives will be increasingly con-
trolled by technology, and we will become increasingly dependent
upon it. The younger generation is already becoming addicted to tech-
nology for every little thing. We have to decide how much of our daily
lives we are willing to mechanize and have controlled by technology.

14  IoT Fundamentals with a Practical Approach

1.6 � DIFFERENT IoT SCENARIOS

Imagine a scenario in which:

	•	 Your fridge can identify that you have run out of milk; it contacts
the supermarket and orders the quantity you usually need, and also
informs you by sending a message on your phone!

	•	 Your alarm rings at 6:30 a.m.; you wake up and switch it off. As soon
as you switch off your alarm, it conveys to the boiler to heat water
to a temperature you prefer and also the coffee maker starts brewing
coffee!

	•	 You are on your way while returning home from work and you use
an app on your mobile to switch on the lights, the AC in your home,
and tune the TV to your favorite channel so that your house is ready
to welcome you before you even open your door!

	•	 What would really make a refrigerator “smart” would be if it could
read tags and alert owners when their food is about to reach their
expiry date, for example. Alternatively, perhaps, it could refer to an
online calendar and make orders on a regular basis for certain items
to be delivered.

1.7 � IoT CHARACTERISTICS

	 1.	Connectivity: This needs little further explanation. With everything
going on in IoT devices and hardware, with sensors and other elec-
tronics and connected hardware and control systems there needs to be
a connection between various levels.

	 2.	Things: Anything that can be tagged or connected as such as it’s
designed to be connected. From sensors and household appliances to
tagged livestock. Devices can contain sensors or sensing materials can
be attached to devices and items.

	 3.	Data: Data is the glue of the Internet of Things, the first step towards
action and intelligence.

	 4.	Communication: Devices get connected so they can communicate data
and this data can be analyzed. Communication can occur over short
distances or over a long range to very long range. Examples: Wi-Fi,
LPWA network technologies such as LoRa or NB-IoT.

LPWA, at its core, is a public wide-area network (WAN) with the
capability to connect tens of billions of devices spread out over hun-
dreds of millions of square miles. LPWA delivers lower data rates than
a traditional WAN (like an LTE network).

	 5.	 Intelligence: The aspect of intelligence as in the sensing capabilities in
IoT devices and the intelligence gathered from Big Data analytics (also
Artificial Intelligence).

Introduction to IoT (Internet of Things)  15

	 6.	Action: The consequence of intelligence. This can be manual action,
action based upon debates regarding phenomena (for instance in smart
factory decisions) and automation, often the most important piece.

	 7.	Ecosystem: The place of the Internet of Things from a perspective of
other technologies, communities, goals and the picture in which the
Internet of Things fits. The Internet of Everything dimension, the plat-
form dimension and the need for solid partnerships.

1.8 � APPLICATIONS OF IoT

IoT solutions are widely used in numerous companies across industries.
Some of the most common IoT applications are given in Table 1.2.

1.9 � CHALLENGES OF THE INTERNET OF THINGS (IoT)

At present, the IoT faces many challenges, such as:

	•	 Insufficient testing and updating
	•	 Concern regarding data security and privacy

Table 1.2  Some common IoT applications

Application type Description

Smart thermostats Helps you to save resource on heating bills by knowing your
usage patterns.

Connected cars IoT helps automobile companies handle billing, parking,
insurance, and other related stuff automatically.

Activity trackers Helps you to capture heart rate pattern, calorie expenditure,
activity levels, and skin temperature on your wrist.

Smart outlets Remotely turn any device on or off. It also allows you to track
a device’s energy level and get custom notifications directly
into your smartphone.

Parking sensors IoT technology helps users to identify the real-time availability
of parking spaces on their phone.

Connect health The concept of a connected health care system facilitates real-
time health monitoring and patient care. It helps in improved
medical decision-making based on patient data.

Smart city Smart city offers all types of use cases which include traffic
management to water distribution, waste management, etc.

Smart home Smart home encapsulates the connectivity inside your homes.
It includes smoke detectors, home appliances, light bulbs,
windows, door locks, etc.

Smart supply chain Helps you in real time tracking of goods while they are on the
road, or getting suppliers to exchange inventory information.

16  IoT Fundamentals with a Practical Approach

	•	 Software complexity
	•	 Data volumes and interpretation
	•	 Integration with AI and automation
	•	 Devices require a constant power supply which is difficult
	•	 Interaction and short-range communication

Key benefits of IoT technology are as follows:

	•	 Technical Optimization: IoT technology helps a lot in improving tech-
nologies and making them better. Example, with IoT, a manufacturer
is able to collect data from various car sensors. The manufacturer ana-
lyzes them to improve its design and make them more efficient.

	•	 Improved Data Collection: Traditional data collection has its limita-
tions and its design for passive use. IoT facilitates immediate action on
data.

	•	 Reduced Waste: IoT offers real-time information leading to effective
decision-making and the management of resources. For example, if a
manufacturer finds an issue in multiple car engines, he can track the
manufacturing plan of those engines and solves this issue with the
manufacturing belt.

	•	 Improved Customer Engagement: IoT allows you to improve customer
experience by detecting problems and improving the process.

17DOI: 10.1201/9781003307488-2

The term “Internet of Things” (IoT) refers to the process by which devices or
number of objects is connected to one another over the Internet. These items
could include a heart rate monitor, a smart remote or a smart car.

Communication devices in IoT:

Sensors: Devices that transforms physical factors into electrical impulses,
such as temperature and motion. For instance, automated farm moni-
toring can display the present state of the crops, such as how many
require water and how much water will be applied to satisfy those
needs. This is all due to the Internet of Things (IoT): first, the tem-
perature sensor attached to the plant pot detects the low temperature,
then it uses any of the microprocessor platforms such as Raspberry
Pi, Arduino boards, etc., then it uses Internet options like Wi-Fi and
Bluetooth to receive sensor signals; finally, it notifies the person and
the motion sensor attached to the tap, which activates to pour it.

Actuators: These are the devices that simply translate electrical signals
into physical movements, acting as the opposite of sensors.

RFID Tags: Wireless microchips are used to tag everything over them for
automatic, one-of-a-kind identification. These can be found on credit
cards, car ignition keys, and other items. IoT’s primary objective is
the connectivity of things; hence RFID tags and IoT technology work
hand in hand and are utilized to offer a unique identifier for the linked
“things” in IoT.

2.1 � PHYSICAL DESIGN OF IoT

2.1.1 �Things in IoT

The “things” in IoT refers to IoT devices which have unique identities and
can perform remote sensing, actuating, and monitoring capabilities. IoT
devices can exchange data with other connected devices and applications.

Chapter 2

IoT architecture

http://dx.doi.org/10.1201/9781003307488-2

18  IoT Fundamentals with a Practical Approach

The design of an IoT system corresponds to the number of individual
node devices with their associated protocols which are being utilized for the
creation of a functional IoT ecosystem. In this system, each and every node
device can be used to perform tasks like remote sensing, actuating, monitor-
ing, and so on by relying on physically connected devices. It may also be
capable of transmitting information through different types of wireless or
wired connections (Figure 2.1).

Connectivity: Devices such as USB hosts and the Ethernet are used for
connectivity between the devices and the server.

Processor: A processor like a CPU and other units are used to process the
data. These data are further used to improve the decision quality of an
IoT system.

Audio/Video Interfaces: An interface such as HDMI and RCA devices is
used to record audio and videos in a system.

Input/Output Interface: To give input and output signals to sensors, and
actuators we use things like UART, SPI, CAN, etc.

Storage Interfaces: Things like SD, MMC, and SDIO are used to store the
data generated from an IoT device. Other things, like DDR and GPU,
are used to control the activity of an IoT system.

The devices generate data, and the data is used to perform analysis and
carry out operations to improve the system. For example, a moisture sensor
is used to obtain the moisture data from a location, and the system analyses
it to give an output. Figure 2.2 shows different types of IoT devices.

Figure 2.1  Things in IoT.

IoT architecture  19

2.1.2 � IoT Protocols

These protocols are used to establish communication between a node device
and a server over the Internet. This can be used to send commands to an IoT
device and to receive data from it. We use different types of protocols that
are present on both the server side and the client side and these protocols are
managed by network layers like application, transport, network, and link
layer, as shown in Figure 2.3.

Figure 2.2  IoT devices.

20  IoT Fundamentals with a Practical Approach

2.1.2.1 � Link layer

Link layer protocols determine how data is physically sent over the net-
work’s physical layer or medium (coaxial cable or other or radio wave). This
layer determines how the packets are coded and signaled by the hardware
device over the medium to which the host is attached (e.g. coaxial cable).
Here we explain some Link Layer Protocols:

	•	 802.3-Ethernet: Ethernet is a set of technologies and protocols that
are used primarily in LANs. This was first standardized in the 1980s
by the IEEE 802.3 standard. IEEE 802.3 defines the physical layer and
the medium access control (MAC) sub-layer of the data link layer for
wired Ethernet networks. Ethernet is classified into two categories:
classic Ethernet and switched Ethernet. These standards provide data
rates from10 Mb/s to 40Gb/s and higher.

	•	 802.11-WiFi: IEEE 802.11 is part of the IEEE 802 set of LAN proto-
cols and specifies the set of media access control (MAC) and physical
layer (PHY) protocols for implementing wireless local area network
(WLAN) Wi-Fi computer communication in various frequencies,
including but not limited to 2.4 GHz, 5 GHz, and 60 GHz frequency
bands. These standards provide data rates from1 Mb/s up to 6.75 Gb/s.

Figure 2.3  IoT protocols.

IoT architecture  21

	•	 802.16-Wi-MAX: The standard for Wi-MAX technology is a standard
for Wireless Metropolitan Area Networks (WMANs) that has been
developed by working group number 16 of IEEE 802, specializing in
point-to-multipoint broadband wireless access. These standards pro-
vide data rates from 1.5 Mb/s to 1 Gb/s.

	•	 802.15.4-LR-WPAN: A collection of standards for low-rate wireless
personal area network. The IEEE’s 802.15.4 standard defines the MAC
and PHY layer used by, but not limited to, networking specifications
such as Zigbee, 6LoWPAN, Thread and WiSUN. The standards pro-
vide low-cost and low-speed communication for power-constrained
devices. These standards provide data rates from 40 Kb/s to 250 Kb/s.

	•	 2G/3G/4G-Mobile Communication: These are different types of tele-
communication generations. IoT devices based on these standards can
communicate over the cellular networks. Data rates for these stan-
dards range from 9.6 Kb/s up to 100 Mb/s.

2.1.2.2 � Network layer

The network layer is responsible for the sending of IP data grams from the
source network to the destination network. It performs the host addressing
and packet routing. We used IPv4 and IPv6 for host identification. IPv4 and
IPv6 are hierarchical IP addressing schemes.

IPv4: Internet Protocol address (IP address) is a numerical label assigned
to each device connected to a computer network that uses the Internet
Protocol (IP) for communication. An IP address serves two main func-
tions: host or network interface identification and location addressing.
Internet Protocol version 4 (IPv4) defines an IP address as a 32-bit
number. However, because of the growth of the Internet and the deple-
tion of available IPv4 addresses, a new version of IP (IPv6), using 128
bits for the IP address, was standardized in 1998. IPv6 deployment has
been ongoing since the mid-2000s.

IPv6: Internet Protocol version 6 (IPv6) is the successor to IPv4. IPv6 was
developed by the Internet Engineering Task Force (IETF) to deal with
the long-anticipated problem of IPv4 address exhaustion. In December
1998, IPv6 became a Draft Standard for the IETF, who subsequently
ratified it as an Internet Standard on 14 July 2017. IPv6 uses a 128-
bit address, theoretically allowing 2128, or approximately 3.4 × 1038
addresses.

6LoWPAN: This is an acronym forIPv6 over Low-Power Wireless
Personal Area Networks. 6LoWPAN is the name of a concluded work-
ing group in the Internet area of the IETF. This protocol allows for the
smallest devices with limited processing ability to transmit informa-
tion wirelessly using an Internet protocol. 6LoWPAN can communi-
cate with 802.15.4 devices as well as other types of devices on an IP
network link like WiFi.

22  IoT Fundamentals with a Practical Approach

2.1.2.3 � Transport layer

This layer provides functions such as error control, segmentation, flow con-
trol, and congestion control. Thus, this layer protocols provide end-to-end
message transfer capability independent of the underlying network:

TCP: TCP (Transmission Control Protocol) is a standard that defines
how to establish and maintain a network conversation through
which application programs can exchange data. TCP works with the
IP, which defines how computers send packets of data to each other.
Together, TCP and IP are the basic rules defining the Internet. The
Internet Engineering Task Force (IETF) defines TCP in the Request for
Comment (RFC) standards document number 793.

UDP: User Datagram Protocol (UDP) is a Transport Layer protocol. UDP
is a part of Internet Protocol suite, referred as the UDP/IP suite. Unlike
TCP, it is an unreliable and connectionless protocol. Thus, there is no
need to establish connection prior to data transfer. It is useful for time-
sensitive applications that have very small data units to exchange and
do not want the overhead of connection setup.

2.1.2.4 � Application layer

Application layer protocols define how the applications interface with the
lower-layer protocols to send over the network. Port numbers are used for
application addressing (e.g. port 80 for HTTP, port 22 for SSH etc.).

HTTP: Hypertext Transfer Protocol (HTTP) is an application-layer pro-
tocol for transmitting hypermedia documents, such as HTML. It was
designed for communication between web browsers and web servers,
but it can also be used for other purposes. HTTP follows a classi-
cal client–server model, with a client opening a connection to make
a request, then waiting until it receives a response. HTTP is a state-
less protocol, meaning that the server does not keep any data (state)
between two requests. HTTP includes commands such as GET, PUT,
POST, HEAD, TRACE, OPTIONs etc. HTTP uses URI’s (Uniform
Resource Identifiers) to identify HTTP resources.

CoAP: CoAP-Constrained Application Protocol is a specialized Internet
Application Protocol for constrained devices, as defined in RFC 7252.
It enables devices to communicate over the Internet. The protocol is
especially targeted at constrained hardware such as 8-bit microcon-
trollers, low-power sensors, and similar devices which cannot run on
HTTP or TLS. It is a request response model; however, it runs on top
of UDP instead of TCP. CoAP uses client–server architecture where
clients communicate with servers using connectionless datagrams.

IoT architecture  23

WebSocket: The WebSocket Protocol enables two-way communication
between a client running untrusted code in a controlled environment
and a remote host that has opted in to communications from that
code. The security model used for this is the origin-based security
model commonly used by web browsers.

MQTT: MQTT is a machine-to-machine (M2M)/Internet of Things con-
nectivity protocol. It was designed as an extremely lightweight publish/
subscribe messaging transport and useful for connections with remote
locations where a small code footprint is required and/or network
bandwidth is at a premium. It is well suited for constrained environ-
ments where the devices have limited processing and memory resources
and network bandwidth is low. MQTT uses a client server architecture
where the client (IoT device) connects to the server (MQTT broker)
and publishes messages to topics on the server. The broker forwards
the messages to the clients subscribed to topics.

XMPP: Extensible Messaging and Presence Protocol (XMPP) is a com-
munication protocol for message-oriented middleware based on XML
(Extensible Markup Language). It enables the near-real-time exchange
of structured, yet extensible data between any two or more network
entities.

DDS: The Data Distribution Service (DDS) is a middleware proto-
col and API standard for data-centric connectivity from the Object
Management Group (OMG). It integrates the components of a system
together, providing low-latency data connectivity, extreme reliability,
and a scalable architecture that business and mission-critical Internet
of Things (IoT) applications need.

AMQP: The AMQP IoT protocols consist of a hard and fast of compo-
nents that route and save messages within a broker carrier, with a set
of policies for wiring the components together. The AMQP protocol
enables patron programs to talk to the dealer and engage with the
AMQP model. It supports both point to point and publisher/subscriber
models, routing and queueing.

2.2 � LOGICAL DESIGN OF IoT

This design of the IoT system refers to an abstract representation of the
entities and processes without going into the low-level specifics of the imple-
mentation. To understand the logical design of IoT, some terms are used:

	•	 IoT functional blocks
	•	 IoT communication models
	•	 IoT communication APIs

24  IoT Fundamentals with a Practical Approach

2.2.1 � IoT functional blocks

An IoT system contains a number of functional blocks, which provides the
system the capabilities for identification, sensing, actuation, communication
as well as management. There are number of functional blocks including:

	•	 Device: an IoT system comprises devices that provide sensing, actua-
tion, monitoring, and control functions.

	•	 Communication: handles the communication for the IoT system.
	•	 Services: services for device monitoring, device control service, data

publishing services and services for device discovery.
	•	 Management: this block provides various functions to govern the IoT

system.
	•	 Security: this block secures the IoT system and by providing functions

such as authentication, authorization, message integrity, and data security.
	•	 Application: an interface that the users can use to control and monitor

various aspects of the IoT system. Application also allows users to view
the system status and view or analyze the processed data (Figure 2.4).

2.2.2 � IoT communication models

	•	 Request–Response Model: This is actually a communication model
based on a client–server concept in which the client sends the request
to the server and the server responds to that request. Whenever the
server receives a request from the client, it decides how to respond.
This means firstly that it will fetch the data, retrieve the resource rep-
resentation, prepare the response and then send the response to the
client. Request–response is a stateless communication model and each
request–response pair is independent of others.

HTTP works as a request–response protocol between a client and
server. A web browser may be the client and an application on a com-
puter that hosts a web site may be the server.

Example: A client (browser) submits an HTTP request to the
server; then the server returns a response to the client. The response

Figure 2.4  Logical design of IoT.

APPLICATION

DEVICE

SERVICESMANAGEMENT SECURITY

COMMUNICATION

IoT architecture  25

contains status information about the request and may also contain
the requested content as shown in Figure 2.5.

	•	 Publish–Subscribe Model: This is a communication model that involves
publishers, brokers, and consumers. The publishers are the source of
data. They will send the data to the topics which are managed by
the broker. Publishers are unaware of the consumers. Consumers sub-
scribe to the topics which are managed by the broker. When the broker
receives the data for a topic from the publisher, it sends the data to all
the subscribed consumers as shown in Figure 2.6.

	•	 Push–Pull Model: It is a communication model in which the data
producers push the data to queues and the consumers pull the data
from the queues. Producers do not need to be aware of the consumers.
Queues help in decoupling the messaging between the producers and
consumers. Queues also act as a buffer which helps in situations when
there is a mismatch between the rate at which the producers push data
and the rate at which the consumer pull data as shown in Figure 2.7.

	•	 Exclusive Pair Model: This is a bidirectional, fully duplex communica-
tion model that uses a persistent connection between the client and
server. Firstly, the connection is setup; it will remain open until the

Figure 2.5  Request response communication model.

Client

Send request
to server

ResourcesServer

Receives
requests from
clients,
process that
request,
prepare
response and
send to clients

Figure 2.6  Publish-subscribe model.

Subscriber 1

Subscriber 3

Subscriber 2
Publisher

Topic A

Topic B

26  IoT Fundamentals with a Practical Approach

client sends a request to close the connection. The client and the server
can send messages to each other after connection setup. Exclusive pair
is state full communication model and the server is aware of all the
open connections. Figure 2.8 shows the client–server interactions in
the exclusive pair model.

2.2.3 � IoT communication APIs

There are generally two APIs for IoT Communication. These IoT Communication
APIs are:

	•	 REST-based Communication APIs
	•	 WebSocket-based Communication APIs

Figure 2.7  Push pull model.

PUBLISHER

Send Messages
to Queue

Consumer 1

Consumer 2

Figure 2.8  Exclusive pair model.

Client Server

Request to setup connection

Response accepting the request

Message from Client to Server

Message from Server to Client

Connection Close Request

Connection Close Response

IoT architecture  27

2.2.3.1 � REST-based communication APIs

Representational state transfer (REST) is a set of architectural principles by
which you can design Web services. The Web APIs that focus on systems’
resources and how resource states are addressed and transferred. REST APIs
that follow the request response communication model, the rest architectural
constraint apply to the components, connector, and data elements within a dis-
tributed hypermedia system. The rest architectural constraints are as follows:

Client-server: The principle behind the client-server constraint is the sep-
aration of concerns. For example, clients should not be concerned with
the storage of data which is the concern of the server. Similarly, the
server should not be concerned about the user interface, which is the
concern of the client. Separation allows client and server to be inde-
pendently developed and updated.

Stateless: Each request from client to server must contain all the informa-
tion necessary to understand the request and cannot take advantage
of any stored context on the server. The session state is kept entirely
on the client.

Cache-able: Cache constraints requires that the data within a response to
a request be implicitly or explicitly leveled as cache-able or non-cache-
able. If a response is cache-able, then a client cache is given the right
to reuse that response data for later, equivalent requests. Caching can
either partially or completely eliminate some instructions and improve
efficiency and scalability.

Layered system: This constrains the behavior of components such that
each component cannot see beyond the immediate layer with which
they are interacting. For example, the client cannot tell whether it is
connected directly to the end server or to an intermediately along the
way. System scalability can be improved by allowing intermediaries to
respond to requests instead of the end server, without the client having
to do anything different.

Uniform interface: This constraint requires that the method of communi-
cation between client and server must be uniform. Resources are identi-
fied in the requests (by URLs in web-based systems) and are themselves
separate from the representations of the resources data returned to the
client. When a client holds a representation of resources, it has all the
information required to update or delete the resource you (provided
the client has required permissions). Each message includes enough
information to describe how to process the message.

Code on demand: Servers can provide executable code or scripts for
clients to execute in their context. This constraint is the only one that
is optional.

A RESTful web service is “Web API” implemented using HTTP and REST
principles. REST is most popular IoT Communication APIs. Table 2.1 shows

28 
IoT

 Fundam
entals w

ith a Practical A
pproach

Table 2.1  Request methods and actions

Uniform
Resource
Identifier (URI) GET PUT PATCH POST DELETE

Collection,
such as
https://api.
example.com/
resources/

List the URIs and
perhaps other details
of the collection’s
members.

Replace the entire
collection
with another
collection.

Not generally used Create a new entry in the
collection. The new
entry’s URI is assigned
automatically and is
usually returned by the
operation.

Delete the entire
collection.

Element, such
as https://
api.example.
com/
resources/
item5

Retrieve a
representation of the
addressed member
of the collection,
expressed in an
appropriate Internet
media type.

Replace the
addressed
member of the
collection, or if
it does not exist,
create it.

Update the addressed
member of the
collection.

Not generally used. Treat
the addressed member
as a collection in its
own right and create a
new entry within it.

Delete the addressed
member of the
collection.

https://api.example.com/resources/
https://api.example.com/resources/
https://api.example.com/resources/
https://api.example.com/resources/item5
https://api.example.com/resources/item5
https://api.example.com/resources/item5
https://api.example.com/resources/item5
https://api.example.com/resources/item5

IoT architecture  29

how the client send requests to URI are using the methods defined by the
HTTP protocol.

2.2.3.2 � Web Socket-based communication API

Web Socket APIs allows bidirectional, full duplex communication between
clients and servers, as shown in Figure 2.8. It follows the exclusive pair com-
munication model. Unlike request–response models such as REST, the Web
Socket APIs allow full duplex communication and do not require a new
connection to be setup for each message to be sent.

Web Socket communication begins with a connection setup request sent
by the client to the server. The request (called a Web Socket handshake) is
sent over HTTP and the server interprets it is an upgrade request. If the
server supports a Web Socket protocol, the server responds to the web socket
handshake response. After the connection setup, the client and server can
send data/messages to each other in full duplex mode. Web Socket API
reduces the network traffic and latency as there is no overhead for connec-
tion setup and termination requests for each message. Web Socket is suitable
for IoT applications that have low latency or high throughput requirements.
Thus, Web Socket is the most suitable IoT Communication API for an IoT
system (Figure 2.9).

	 1.	Request to setup Web Socket Connection
	 2.	Response accepting the request

Figure 2.9  Web Socket API’s.

Initial
Handshake

ServerClient

1

2

3

4

5

6

7

8

Bidirectional
Communication

Closing
Connection

Web Socket

30  IoT Fundamentals with a Practical Approach

	 3.	Data Frame
	 4.	Data Frame
	 5.	Data Frame
	 6.	Data Frame
	 7.	Connection Close Request
	 8.	Connection Close Response

2.3 � IoT-ENABLING TECHNIQUES

IoT is enabled by several technologies, including wireless sensor networks,
cloud computing, Big Data analytics, communication protocols, embedded
systems etc., as shown in Figure 2.10. This section describes each and every
enabling techniques used in IoT:

	•	 Wireless sensor network
	•	 Cloud computing
	•	 Big Data analytics
	•	 Communications protocols
	•	 Embedded system

2.3.1 � Wireless Sensor Network (WSN)

This comprises a number of distributed devices with sensors which are used
to monitor the environmental and physical conditions. A wireless sensor
network consists of end nodes, routers, and coordinators. End nodes have
several sensors attached to them where the data is passed to a coordinator
with the help of routers. The coordinator also acts as the gateway that con-
nects WSN to the Internet.

Example:

	•	 Weather monitoring system
	•	 Indoor air quality monitoring system
	•	 Soil moisture monitoring system

Figure 2.10  IoT enabling techniques.

IoT Enabling Technologies

Embedded SystemsBig Data Analytics

Communication ProtocolsWireless Sensor Networks

Cloud Computing

IoT architecture  31

	•	 Surveillance system
	•	 Health monitoring system

2.3.2 � Cloud computing

Cloud computing provides us with the means by which we can access appli-
cations as utilities over the Internet. Within this context, the notion of the
cloud means something which is present in remote locations. Using cloud
computing, users can access any resources from anywhere like databases,
web servers, storage, any device, and any software over the Internet.

Characteristics

	•	 Broad network access
	•	 On-demand self-services
	•	 Rapid scalability
	•	 Measured service
	•	 Pay-per-use

It provides different services like:

	•	 IaaS (Infrastructure as a Service): IaaS (Infrastructure as a Service) is
also known as Hardware as a Service (HaaS). It is one of the layers
of the cloud computing platform and allows customers to outsource
their IT infrastructures, such as servers, networking, processing, stor-
age, virtual machines, and other resources. In traditional hosting ser-
vices, IT infrastructure was rented out for a specific period of time,
with pre-determined hardware configuration. The client paid for the
configuration and time, regardless of the actual use. With the help of
the IaaS cloud computing platform layer, clients can dynamically scale
the configuration to meet changing requirements and are billed only
for the services actually used.

Major IaaS providers include Google Compute Engine, Amazon
Web Services and Microsoft Azure, among others.

Examples: Web Hosting, Virtual Machine etc. (Figure 2.11).
	•	 PaaS (Platform as a Service): Platform as a Service (PaaS) provides a

runtime environment. It allows programmers to easily create, test, run,
and deploy web applications. One can purchase these applications
from a cloud service provider on a pay-per-use basis and access them
using the Internet connection. In PaaS, back-end scalability is man-
aged by the cloud service provider, so end-users do not need to worry
about managing the infrastructure. PaaS includes infrastructure (serv-
ers, storage, and networking) and platform (middleware, development
tools, database management systems, business intelligence, and more)
to support the web application life cycle.

Example: Google App Engine, Force.com, Joyent, Azure (Figure 2.12).

32  IoT Fundamentals with a Practical Approach

	•	 SaaS (Software as a Service): This is also known as “On-Demand
Software”. It is a software distribution model in which services are
hosted by a cloud service provider. These services are available to
end-users over the Internet, meaning that the end-users do not need
to install any software on their devices to access these services. SaaS
applications are otherwise known as web-based software, on-demand
software, or hosted software. SaaS applications run on a SaaS pro-
vider’s service and they manage security availability and performance.

Example: Google Docs, Gmail, office etc. (Figure 2.13).

Figure 2.11  IaaS providers.

Amazon web services

TATA
CommunicationsSify TechnologyReliance

Communication
Net magic Solutions

Amazon
web
services

Net
magic

Reliance
Communi
cation

Sify

TATA

Figure 2.12  PaaS providers.

Google
AppEngine

Cloud
Foundary
From
VMWare

App Fog
Windows
AzureSalesforce.com

App
Engine

Salesforce

Windows
Azure

App
fog

Cloud

IoT architecture  33

2.3.3 � Big Data analytics

This refers to the method of studying massive volumes of data, or the so-
called Big Data. It involves the collection of data whose volume, velocity,
or variety is simply too massive and tough to store, control, process, and
examine the data using traditional databases. Big Data is gathered from a
variety of sources, including social network videos, digital images, sensors,
and sales transaction records.

There are several steps involved in analyzing Big Data:

	•	 Data cleaning
	•	 Munging (Wrangling)
	•	 Processing
	•	 Visualization

Examples of Big Date might include:

	•	 Bank transactions
	•	 Data generated by IoT systems for the location and tracking of vehicles
	•	 E-commerce and in Big-Basket
	•	 Health and fitness data generated by a IoT system such as through a

fitness band

2.3.4 � Communications protocols

They are the backbone of IoT systems and enable network connectivity
and linking to applications. Communication protocols allow devices to
exchange data over the network. Multiple protocols often describe different
aspects of a single communication. A group of protocols designed to work
together is known as a protocol suite; when implemented in software they
are a protocol stack.

They are used in:

	•	 Data encoding
	•	 Addressing schemes

Figure 2.13  SaaS providers.

You Tube

facebook

Amazon.com

ebay
G m a i l

34  IoT Fundamentals with a Practical Approach

2.3.5 � Embedded systems

It is a combination of hardware and software used to perform special
tasks. It includes microcontroller and microprocessor memory, networking
units (Ethernet Wi-Fi adapters), input output units (display keyword etc.),
and storage devices (flash memory).It collects the data and sends it to the
Internet. Embedded systems are used in a variety of applications:

	 1.	Digital camera
	 2.	DVD player, music player
	 3.	 Industrial robots
	 4.	Wireless routers etc.

2.4 � IoT LEVELS

An IoT architecture element varies on the basis of applications used. On
the basis of this fact, various levels are defined for an IoT system. Let us
understand these IoT levels with their elements and examples of their
usage. Developing an IoT Level Template system consists of the following
components:

	 1.	Device: These may be sensors or actuators capable of identifying,
remote sensing, or monitoring.

	 2.	Resources: These are software components on IoT devices for access-
ing and processing. Storing software components or controlling
actuators connected to the device. Resources also include software
components that enable network access.

	 3.	Controller Service: This is a service that runs on the device and inter-
acts with web services. The controller service sends data from the
device to the web service and receives commands from the application
via web services for controlling the device.

	 4.	Database: Stores data generated from the device.
	 5.	Web Service: This provides a link between IoT devices, applications,

databases, and analysis components.
	 6.	Analysis Component: It performs an analysis of the data generated by

the IoT device and generates results in a form which are easy for the
user to understand.

	 7.	Application: It provides a system for the user to view the system status
and view product data. It also allows users to control and monitor
various aspects of the IoT system.

Let us take the example of an air conditioner whose temperature has to be
monitored to understand IoT levels.

IoT architecture  35

2.4.1 � IoT level 1

This level consists of air conditioner, temperature sensor, data collection and
analysis, and control & monitoring apps. The data sensed is stored locally.
The data analysis is done locally. Monitoring and control is carried out
using a mobile app or a web app. The data generated in this level application
is not huge. All of the control actions are performed through the Internet.

	•	 Example: Room temperature is monitored using a temperature sensor
and data is stored/analysed locally. Based on the analysis, a control action
is triggered using a mobile app or it can just help in status monitoring.

Example: We can understand with the help of an example. Let’s
look at the IoT device that monitors the lights in a house. The lights
are controlled through switches. The database has maintained the sta-
tus of each light; in addition, REST services deployed locally allow
retrieving and updating the state of each light and trigger the switches
accordingly. To control the lights and applications, the application has
an interface. The device is connected to the Internet and hence the
application can also be accessed remotely (Figure 2.14).

2.4.2 � IoT level 2

This level consists of the air conditioner, the temperature sensor, and Big
Data (Bigger than level-1, data analysis done here), cloud and the control
& monitoring app. This level-2 is more complex than level-1. In addition,
the rate of sensing is faster than at level-1. This level has a voluminous size

Figure 2.14  IoT level 1.

36  IoT Fundamentals with a Practical Approach

of data, and hence cloud storage is used. Data analysis is carried out locally.
The cloud is used for only storage purposes. Based on data analysis, control
action is triggered using the web app or the mobile app.

	•	 Examples: Agriculture applications, room freshening solutions based
on odor sensors etc.
Example: A cloud-based application is used for monitoring and con-
trolling the IoT system. A single node monitors the soil moisture in the
field, which is sent to the database on the cloud using REST APIS. The
controller service continuously monitors moisture levels (Figure 2.15).

2.4.3 � IoT level 3

This level consists of the air conditioner, temperature sensor, Big Data col-
lection (bigger than level-1), the cloud (for data analysis) and the control
& monitoring app. Data here is voluminous i.e. Big Data. The frequency of
data sensing is fast and collected sensed data is stored on the cloud as there
is such a large volume of it. Data analysis is done on the cloud side and
based on analysis control action is triggered using mobile app or web app.

	•	 Examples: Agriculture applications, room freshening solutions based
on odor sensors etc.

Example: A node is monitoring a package using devices like an acceler-
ometer and gyroscope. These devices track vibration levels. Controller
service sends sensor data to the cloud in the rear time using Web Socket
APL. Data is stored in the cloud and visualized using a cloud-based
application. The analysis component triggers an alert if vibration levels
cross a threshold (Figure 2.16).

Figure 2.15  IoT level 2.

IoT architecture  37

2.4.4 � IoT level 4

This level consists of multiple sensors, data collection and analysis, and a
control & monitoring app. At this level-4, multiple sensors are used which
are independent of the others. The data collected using these sensors are
uploaded to the cloud separately. Cloud storage is used at this level because
of the huge data storage required. The data analysis is performed on the
cloud and based on which control action is triggered, using either a web app
or a mobile app.

Example: Analysis is done on the cloud and the entire IoT system has moni-
tored the cloud using an application. Noise monitoring of an area requires
various nodes to function independently of each other. Each has its own
controller service. Data is stored in a cloud database (Figure 2.17).

2.4.5 � IoT level 5

This level consists of multiple sensors, coordinator node, data collection
and analysis and control & monitoring app. This level is similar to level-4,
which also has huge data and hence they are sensed using multiple sensors at
much faster rate and simultaneously. The data collection and data analysis is
performed at the cloud level. Based on analysis, control action is performed
using mobile app or web app.

Example: A monitoring system has various components: end nodes col-
lect various data from the environment and send it to the coordinator
node. The coordinator node acts as a gateway and allows the data to
be transferred to cloud storage using REST API. The controller service
on the coordinator node sends data to the cloud (Figure 2.18).

Figure 2.16  IoT level 3.

38  IoT Fundamentals with a Practical Approach

2.4.6 � IoT level 6

At this level, the application is also cloud-based and data is stored in the
cloud. Multiple independent end nodes perform sensing and actuation and
send data to the cloud. The analytics components analyze the data and
store the results in the cloud database. The results are visualized with a

Figure 2.17  IoT level 4.

Figure 2.18  IoT level 5.

IoT architecture  39

cloud-based application. The centralized controller is aware of the status of
all the end nodes and sends control commands to the nodes.

Example: Weather monitoring consists of sensors that monitor different
aspects of the system. The end nodes send data to cloud storage. Analysis
of components, applications, and storage areas in the cloud. The cen-
tralized controller controls all nodes and provides inputs (Figure 2.19).

2.5 � ARCHITECTURAL OVERVIEW OF THE INTERNET
OF THINGS (IoT)

Can you imagine a huge variety of smart devices under the centralized con-
trol of one “brain”? To a certain extent, it’s possible with the evolution of
the Internet of Things – the network of physical objects with sensors and
actuators, software, and network connectivity that enable these objects to
gather and transmit data and fulfill users’ tasks.

The effectiveness and applicability of such a system directly correlate with
the quality of its building blocks and the way in which they interact, and
there are various approaches to IoT architecture. In this, there is hands-on
experience of a scalable and flexible IoT architecture. IoT technology has a
wide variety of applications and the use of the Internet of Things is growing
much faster. Depending upon the different application areas of the Internet
of Things, it works accordingly to the way in which it has been designed/
developed. But there is no single standard architecture of working which is

Figure 2.19  IoT level 6.

40  IoT Fundamentals with a Practical Approach

followed universally. The architecture of IoT depends upon its functionality
and implementation in different sectors. Still, there is a basic process flow
based upon which IoT is built. The basic fundamental architecture of IoT is
i.e., 4 Stage IoT architecture (Figures 2.20–2.22).

From Figure 2.22, it is clear that there are four layers present which can
be divided as follows: sensing layer, network layer, data processing layer, and
application layer.

These are explained below.

Figure 2.20  Basic architecture of IoT.

Figure 2.21  Five layered architecture of IoT.

IoT architecture  41

2.5.1 � Sensing layer

Sensors, actuators, and devices are present in this sensing layer. The outstand-
ing feature about sensors is their ability to convert the information obtained
in the outer world into data for analysis. In other words, it’s important to
start with the inclusion of sensors in the four stages of an IoT architecture
framework to get information in an appearance that can be actually pro-
cessed. For actuators, the process goes even further—these devices are able
to intervene the physical reality. For example, they can switch off the light
and adjust the temperature in a room. Because of this, sensing and actuating
stage covers and adjusts everything needed in the physical world to gain the
necessary insights for further analysis. These sensors or actuators accepts
data (physical/environmental parameters), processes data, and emits data
over network.

2.5.2 � Network layer

Internet/network gateways, Data Acquisition System (DAS) are present in
this layer. The outstanding feature about sensors is their ability to convert
the information obtained in the outer world into data for analysis. In other
words, it’s important to start with the inclusion of sensors in the four stages
of an IoT architecture framework to get information in an appearance that

Figure 2.22  Four layered architecture of IoT.

42  IoT Fundamentals with a Practical Approach

can be actually processed. For actuators, the process goes even further—
these devices are able to intervene the physical reality. For example, they
can switch off the light and adjust the temperature in a room. Because of
this, sensing and actuating stage covers and adjusts everything needed in
the physical world to gain the necessary insights for further analysis. DAS
performs data aggregation and conversion function (collecting data and
aggregating data then converting analog data of sensors to digital data etc.).
Advanced gateways which mainly opens up connection between sensor
networks and the Internet also performs many basic gateway functional-
ities like malware protection, and filtering also sometimes decision-making
based on inputted data and data management services, etc.

2.5.3 � Data processing layer

This is the processing unit of the IoT ecosystem. Here data is analyzed
and pre-processed before sending it to the data center from where data is
accessed by software applications often termed as business applications
where data is monitored and managed and further actions are also pre-
pared. So here edge IT or edge analytics comes into picture. During this
moment among the stages of IoT architecture, the prepared data is trans-
ferred to the IT world. In particular, edge IT systems perform enhanced
analytics and pre-processing here. For example, it refers to machine learn-
ing and visualization technologies. At the same time, some additional pro-
cessing may happen here, prior to the stage of entering the data center.
Likewise, Stage 3 is closely linked to the previous phases in the building
of architecture of IoT. Because of this, the location of edge IT systems
is close to the one in which sensors and actuators are situated, creating
a wiring closet. At the same time, the residing in remote offices is also
possible.

2.5.4 � Application layer

This is the fourth and last layer of IoT architecture. The data center or
the cloud is the management stage of data, where data is managed and
is used by end-user applications in sectors such as agriculture, healthcare,
aerospace, farming, and defense, etc. The main processes on the final stage
of IoT architecture happen in data center or cloud. Precisely, it enables in-
depth processing, along with a follow-up revision for feedback. Here, the
skills of both IT and OT (operational technology) professionals are needed.
In other words, the phase already includes the analytical skills of the highest
rank, in both the digital and human worlds. Therefore, the data from other
sources may be included here to ensure an in-depth analysis. After meeting
all the quality standards and requirements, the information is brought back
to the physical world but in a processed and precisely analyzed appearance
already.

IoT architecture  43

2.5.5 � Stage 5 of IoT architecture

In fact, there is an option to extend the process of building a sustain-
able IoT architecture by introducing an extra stage in it. This refers to
initiating a user’s control over the structure, if only your result doesn’t
include full automation, of course. The main tasks here are visualization
and management. After including Stage 5, the system turns into a circle
where a user sends commands to sensors/actuators (Stage 1) to perform
some actions.

2.5.6 � IoT architecture example: intelligent lighting

Let’s see how our IoT architecture elements work together through the
example of smart yard lighting as a part of a smart home, a bright illustra-
tion of how an IoT solution simultaneously contributes to user convenience
and energy efficiency. There are various ways a smart lighting system can
function, and we’ll cover basic options in Figure 2.23.

Basic components: Sensors take data from the environment (for exam-
ple, daylight, sounds, people’s movements). Lamps are equipped with
actuators to switch the light on and off. A data take stores raw data

Figure 2.23  Intelligent lighting system.

44  IoT Fundamentals with a Practical Approach

coming from sensors. A Big Data warehouse contains the extracted
info smart home dwellers’ behavior on various days of the week,
energy costs, and more.

Manual monitoring and manual control: Users control a smart lighting
system with a mobile app featuring the map of the yard. With the
app, users can see which lights are on and off and send commands to
the control applications that further transmit them to lamp actuators.
Such an app can also show which lamps are about to fail.

Data analytics: Analyzing the way users apply smart lighting, their sched-
ules (either provided by users or identified by the smart system), and
other info gathered with sensors, data analysts can make and update
the algorithms for control applications.

Data analytics also helps in assessing the effectiveness of the IoT
system and revealing problems in the way the system works. For exam-
ple, if a user switches off the light right after a system automatically
switches it on and vice versa, there might be gaps in the algorithms,
and it’s necessary to address them as soon as possible.

Automatic control’s options and pitfalls: The sensors monitoring natural
light send the data about the light to the cloud. When the daylight is
not sufficient (according to the previously stated threshold), the con-
trol apps send automatic commands to the actuators to switch on the
lamps. The rest of the time the lamps are switched off.

However, a lighting system can be “deceived” by street illumination,
lamps from neighboring yards, and any other sources. Extraneous
light captured by sensors can make the smart system conclude that it
is light enough, and that any lighting should be switched off. Thus,
it makes sense to give the smart system a better understanding of the
factors that influence lighting and to accumulate these data in the
cloud.

When sensors monitor motions and sounds, it’s not enough just
to switch on the light when movements or sounds are identified in
the yard or to switch all the lamps off in the silence. Movements and
sounds can be produced, for example, by pets, and cloud applications
should distinguish between human voices and movements and those
of pets. The same issues apply to noises coming from the street and
neighboring houses, and also other sounds. To address this issue, it’s
possible to store the examples of various sounds in the cloud and com-
pare them with the sounds coming from the sensors.

Machine learning: Intelligent lighting can apply models generated by
machine learning, for example, to recognize the patterns of smart
home owners’ behavior (leaving home at 8 a.m., coming back at 7
p.m.) and accordingly adjust the time when lights are switched on and
off (for example, to switch any lamps on 5 minutes before they will
be needed).

IoT architecture  45

Analyzing users’ behavior in a long-term perspective, a smart sys-
tem can develop advanced behavior. For example, when sensors don’t
identify the typical movements and voices of home inhabitants, a
smart system can “suppose” that smart home dwellers are on a holi-
day and adjust its behavior accordingly: for example, the system might
occasionally switch on the lights to give the impression that the house
is not empty (for security reasons), but also not keep the lights on all
the time to reduce energy consumption.

User management options: To ensure efficient user management, the
smart lighting system can be designed for several users with role
distribution: for example, owner, inhabitants, guests. In this case,
the user with the title “owner” will have full control over the sys-
tem (including changing the patterns of smart light behavior and
monitoring the status of the yard lamps) and priorities in giving
commands (when several users give contradicting commands, the
owner’s command will be the default instruction); other users will
have access to only a limited number of the system’s functions.
“Inhabitants”, for example might be enabled to switch the lamps on
and off with no opportunity to change settings. Similarly, “Guests”
will be able to switch lights on and off in some parts of the house
and would have no access to controlling the lights, for example,
near the garage.

Apart from role distribution, it’s essential to consider ownership
(as soon as one system can control over 100,000 households, and it’s
important that a dweller of a smart home manages the lighting in their
own yard, and not that of a neighbor).

2.6 � REFERENCE MODEL AND ARCHITECTURE

An Architecture Reference Model (ARM) consists of two main parts: a ref-
erence model and a reference architecture.

	•	 A reference model describes the domain using a number of sub-models
(Figures 2.24 and 2.25).

2.6.1 � IoT reference model

The foundation of an IoT Reference Architecture description is an IoT
reference model. A reference model describes the domain using a num-
ber of sub-models. The domain model of an architecture model captures
the main concepts or entities in the domain in question, in this case M2M
and IoT.

46  IoT Fundamentals with a Practical Approach

2.6.1.1 � IoT domain model

The domain model captures the basic attributes of the main concepts and
the relationship between these concepts. A domain model also serves as a
tool for human communication between people working in the domain in
question and also between people who work across different domains.

Model notation and semantics (Figure 2.26)

Figure 2.24  IoT model.

Figure 2.25  IoT reference model.

IoT architecture  47

Main concepts

The IoT is a support infrastructure for enabling objects and places in the
physical world to have a corresponding representation in the digital world
(Figure 2.27).

The devices are physical artifacts with which the physical and virtual
worlds interact. Devices, as mentioned before, can also be physical entities
for certain types of applications, such as management applications when the

Figure 2.26  IoT domain model.

Figure 2.27  Representation of physical world.

48  IoT Fundamentals with a Practical Approach

interesting entities of a system are the devices themselves and not the sur-
rounding environment. In the case of the IoT domain model, three kinds of
device types are most important:

	 1.	Sensors:

	•	 These are simple or complex devices that typically involve a trans-
ducer which converts physical properties such as temperature into
electrical signals.

	•	 These devices include the necessary conversion of analog electrical sig-
nals into digital signals, e.g. a voltage level to a 16-bit number, process-
ing for simple calculations, potential storage for intermediate results,
and potentially communication capabilities to transmit the digital rep-
resentation of the physical property as well receive commands.

	•	 A video camera might be another example of a complex sensor that
could detect and recognize people.

	 2.	Actuators:

	•	 These are also simple or complex devices that involve a transducer
that converts electrical signals to a change in a physical property
(e.g. turn on a switch or move a motor).

	•	 These devices also include potential communication capabilities,
the storage of intermediate commands, processing, and the conver-
sion of digital signals to analog electrical signals.

	 3.	Tags:

	•	 Tags in general identify the physical entity to which they are
attached. In reality, tags can be devices or physical entities but not
both, as the domain model shows.

	•	 An example of a tag as a device is a Radio Frequency Identification
(RFID) tag, while an example of a tag as a physical entity might be a
paper-printed immutable barcode or a Quick Response (QR) code.

	•	 Either an electronic device or a paper-printed entity tag contains a
unique identification that can be read by optical means (bar codes
or QR codes) or radio signals (RFID tags).

	•	 The reader device operating on a tag is typically a sensor, or sometimes
a combined sensor and actuator, as in the case of writable RFID tags.

2.6.1.2 � Information model

A virtual entity in the IoT domain model is the “Thing” in the Internet of
Things; the IoT information model captures the details of a virtual entity-
centric model. Similar to the IoT domain model, the IoT information model is
presented using Unified Modeling Language (UML) diagrams (Figure 2.28).

Relationship between core concepts of IoT domain model and IoT infor-
mation model (Figure 2.29).

IoT architecture  49

Figure 2.28  IoT information model.

1

11

1

1

1

*
*

*

*

*

**

*

*

0..

0..

0..

0.. 0..
0.. 0..

0.. 1..

0..

Attribute Value
Container

Value

Virtual Entity

Service
Description

Association
MetaData

Device
Description

Resource
Description

association

hosting

-entityType
-identifier

-attributeName
-attributeType

-serviceType
-metadataName
-metadataType
-metadataValueexposure

Figure 2.29  IoT domain and information model.

0..

0..

0..

0..

0.. 0..

0..

0.. 0..

1..

1

*

*

*

*

*

*

*

1
1

1

1

1Virtual Entity

Service

Resource Device

AttributeVirtual Entity

-attributeName
-attributeType

-entityType
-identifier

Service
Description Association

MetaData
-serviceType

-metadataName
-metadataType
-metadataValue

Device
Description

hosts

exposes

is associated with

Association

exposure

hosting

Value

Value
Container*

Resource
Description

*

50  IoT Fundamentals with a Practical Approach

2.6.1.3 � Functional model

The IoT functional model aims to describe principally the functional groups
(FG) and their interaction with the ARM, while the functional view of a
reference architecture describes the functional components of an FG, inter-
faces, and interactions between the components. The functional view is
typically derived from the functional model in conjunction with high-level
requirements (Figure 2.30).

	•	 Device functional group: The device FG contains all the possible func-
tionality hosted by the physical devices that are used for increment the
physical entities. This device functionality includes sensing, actuation,
processing, storage, and identification components, the sophistication
of which depends on the device’s capabilities

	•	 Communication functional group: The communication FG abstracts
all the possible communication mechanisms used by the relevant
devices in an actual system in order to transfer information to the
digital world components or other devices.

	•	 IoT service functional group: The IoT service FG corresponds mainly
to the service class from the IoT domain model, and contains single
IoT services exposed by resources hosted on devices or in the network
(e.g. processing or storage resources).

	•	 Virtual entity functional group: The virtual entity FG corresponds to
the virtual entity class in the IoT domain model, and contains the nec-
essary functionality to manage associations between virtual entities
with themselves as well as associations between virtual entities and
related IoT services, i.e. the association objects for the IoT information

Figure 2.30  IoT function model.

IoT architecture  51

model. Associations between virtual entities can be either static or
dynamic, depending on the mobility of the physical entities related to
the corresponding virtual entities.

	•	 IoT service organization functional group: The purpose of the IoT ser-
vice organization FG is to host all functional components that support
the composition and orchestration of IoT and virtual entity services.
Moreover, this FG acts as a service hub between several other functional
groups, such as the IoT process management FG when, for example,
service requests from applications or the IoT process management are
directed to the resources implementing the necessary services.

	•	 IoT process management functional group: The IoT process manage-
ment FG is a collection of functionalities that allows smooth inte-
gration of IoT-related services (IoT services, virtual entity services,
composed services) with the enterprise (business) processes.

	•	 Management functional group: The management FG includes the
necessary functions for enabling fault and performance monitoring
of the system, configuration for enabling the system to be flexible
to changing user demands, and accounting for enabling subsequent
billing for the usage of the system. Support functions such as manage-
ment of ownership, administrative domain, rules and rights of func-
tional components, and information stores are also included in the
management FG.

	•	 Security functional group: The security FG contains the functional
components that ensure the secure operation of the system as well as
the management of privacy. The security FG contains components for
the authentication of users (applications, humans), the authorization
of access to services by users, secure communication (ensuring integ-
rity and confidentiality of messages) between entities of the system
such as devices, services, applications, and, last but not least, assurance
of privacy of sensitive information relating to human users.

	•	 Application functional group: The application FG is just a placeholder
that represents all the needed logic for creating an IoT application.
The applications typically contain custom logic tailored to a specific
domain such as a smart grid.

2.6.1.4 � Communication model

Safety: The IoT reference model can only provide IoT-related guidelines
for ensuring a safe system to the extent possible and controllable by a
system designer.

E.g.: smart grid.
Privacy: Because interactions with the physical world may often include

humans, protecting user privacy is of the utmost importance for an
IoT system. The IoT-A privacy model depends on the following func-
tional components: identity management, authentication, authoriza-
tion, and trust &reputation.

52  IoT Fundamentals with a Practical Approach

Trust: Generally, an entity is said to ‘trust’ a second entity when the first
entity makes the assumption that the second entity will behave exactly
as the first entity expects.

Security: The security model for IoT consists of communication secu-
rity that focuses mostly on the confidentiality and integrity protec-
tion of interacting entities and functional components such as Identity
Management, Authentication, Authorization, and Trust & Reputation.

There are several reasons why reference architecture for IoT is a good thing:

	•	 IoT devices are inherently connected – we need a way of interacting
with them, often with firewalls, network address translation (NAT)
and other obstacles in the way.

	•	 There are billions of these devices already and the number is growing
quickly; we need architecture for scalability. In addition, these devices
are typically interacting 24x7, so we need a highly-available (HA)
approach that supports deployment across data centers to allow disas-
ter recovery (DR).

	•	 The devices may not have User Interfaces (UIs) and certainly are designed
to be “everyday” usage, so we need to support automatic and managed
updates, as well as being able to remotely manage these devices.

	•	 IoT devices are very commonly used for collecting and analyzing
personal data. A model for managing the identity and access con-
trol for IoT devices and the data they publish and consume is a key
requirement.

Our aim is to provide an architecture that supports integration between
systems and devices.

In the next section, we will dig into these requirements deeper and outline
the specific requirements we are looking for in a range of categories.

2.6.2 � IoT reference architecture

There are some specific requirements for IoT that are unique to IoT devices
and the environments that support them, e.g. many requirements emerge
from the limited-form factors and power available to IoT devices. Other
requirements come from the way in which IoT devices are manufactured
and used. The approaches are much more like traditional consumer product
designs than existing Internet approaches. Of course, there are a number of
existing best practices for the server-side and Internet connectivity that need
to be remembered and factored in.

We can summarize the overall requirements into some key categories:

	•	 Connectivity and communications
	•	 Device management

IoT architecture  53

	•	 Data collection, analysis, and actuation
	•	 Scalability
	•	 Security
	•	 HA
	•	 Predictive analysis
	•	 Integration

2.6.2.1 � Connectivity and communications

Existing protocols, such as HTTP, have a very important place in many
devices. Even an 8-bit controller can create simple GET and POST requests
and HTTP provides an important unified (and uniform) connectivity.
However, the overhead of HTTP and some other traditional Internet pro-
tocols can be an issue for two main reasons. Firstly, the memory size of the
program can be an issue on small devices. However, the bigger issue is the
power requirements. In order to meet these requirements, we need a simple,
small and binary protocol. We will look at this in more detail below. We also
require the ability to cross firewalls.

In addition, there are devices that connect directly and those that connect
via gateways. The devices that connect via a gateway potentially require two
protocols: one to connect to the gateway, and another from the gateway to
the cloud.

Finally, there is obviously a requirement for our architecture to support
transport and protocol bridging, e.g. we may wish to offer a binary protocol
to the device, but allow an HTTP-based API to control the device that we
expose to third parties.

2.6.2.2 � Device management

While many IoT devices are not actively managed, this is not necessarily
ideal. We have seen active management of PCs, mobile phones, and other
devices become increasingly important, and the same trajectory is both likely
and desirable for IoT devices. What are the requirements for IoT device
management? The following list covers some widely desirable requirements:

	•	 The ability to disconnect a rogue or stolen device
	•	 The ability to update the software on a device
	•	 Updating security credentials
	•	 Remotely enabling or disabling certain hardware capabilities
	•	 Locating a lost device
	•	 Wiping secure data from a stolen device
	•	 Remotely re-configuring Wi-Fi, GPRS, or network parameters

The list is not exhaustive, and conversely covers aspects that may not be
required or possible for certain devices.

54  IoT Fundamentals with a Practical Approach

2.6.2.3 � Data collection, analysis, and actuation

A few IoT devices have some form of UI, but in general IoT devices are
focused on offering one or more sensors, one or more actuators, or a combi-
nation of both. The requirements of the system are that we can collect data
from very large numbers of devices, store it, analyze it, and then act upon it.

The reference architecture is designed to manage very large numbers of
devices. If these devices are creating constant streams of data, then this cre-
ates a significant amount of data. The requirement is for a highly scalable
storage system, which can handle diverse data and high volumes.

The action may happen in near real time, so there is a strong requirement
for real-time analytics. In addition, the device needs to be able to analyze
and act on data. In some cases this will be simple, embedded logic. On more
powerful devices we can also utilize more powerful engines for event pro-
cessing and action.

2.6.2.4 � Scalability

Any server-side architecture would ideally be highly scalable, and be able
to support millions of devices all constantly sending, receiving, and acting
on data. However, many “high-scalability architectures” have come with an
equally high price – in hardware, software, and complexity. An important
requirement for this architecture is to support scaling from a small deploy-
ment to a very large number of devices. Elastic scalability and the ability to
deploy in a cloud infrastructure are essential. The ability to scale the server
side out on small cheap servers is an important requirement to make this an
affordable architecture for small deployments as well as large ones.

2.6.2.5 � Security

Security is one of the most important aspects for IoT. IoT devices are often
collecting highly personal data, and by their nature they are bringing the
real world onto the Internet (and vice versa). This brings three categories
of risks:

	•	 Risks that are inherent in any Internet system, but that product/IoT
designers may not be aware of

	•	 Specific risks that are unique to IoT devices
	•	 Safety to ensure no harm is caused by, for instance, misusing actuators

The first category includes simple things such as locking down open ports
on devices (like the Internet-attached fridge that had an unsecured SMTP
server and was being used to send spam).

The second category includes issues specifically related to IoT hardware,
e.g. the device may have its secure information read. For example, many IoT
devices are too small to support proper asymmetric encryption. Another

IoT architecture  55

specific example is the ability for someone to attack the hardware to under-
stand security. Another example – university security researchers who
famously reverse-engineered and broke the Mifare Classic RFID card solu-
tion. These sort of reverse engineering attacks are an issue compared with
pure web solutions where there is often no available code to attack (i.e.
completely server-side implementation).

Two very important specific issues for IoT security are (1) the concerns
about identity and (2) access management. Identity is an issue where there
are often poor practices implemented. For example, the use of clear text/
Base64 encoded user IDs/passwords with devices and machine-to-machine
(M2M) is a common mistake. Ideally, these should be replaced with man-
aged tokens such as those provided by OAuth/OAuth24.

Another common issue is to hard-code access management rules into
either client- or server-side code. A much more flexible and powerful
approach is to utilize models such as “Attribute Based Access Control” and
“Policy Based Access Control”.

Our security requirements therefore should support:

	•	 Encryption on devices that are powerful enough
	•	 A modern identity model based on tokens and not user IDs/passwords
	•	 The management of keys and tokens as smoothly/remotely as possible

and
	•	 Policy-based and user-managed access control for the system based on

XACML

This concludes the set of requirements that we have identified for the refer-
ence architecture. Of course, any given architecture may add further require-
ments. Some of those may already be met by the architecture, and some may
require further components to be added. However, our design is for a modu-
lar architecture that supports extensions, which copes with this demand.

The reference architecture consists of a set of components. Layers can be
realized by means of specific technologies, and we will discuss options for
realizing each component. There are also some cross-cutting/vertical layers
such as access/identity management (Figure 2.31).

The layers are:

	•	 Client/external communications – Web/Portal, Dashboard, APIs
	•	 Event processing and analytics (including data storage)
	•	 Aggregation/bus layer – ESB and message broker
	•	 Relevant transports – MQTT/HTTP/XMPP/CoAP/AMQP, etc.
	•	 Devices

The cross-cutting layers are:

	•	 Device manager
	•	 Identity and access management

56  IoT Fundamentals with a Practical Approach

2.6.2.6 � The device layer

The bottom layer of the architecture is the device layer. Devices can be
of various types, but in order to be considered as IoT devices, they must
have some communications that either indirectly or directly attaches to the
Internet. Examples of direct connections are:

	•	 Arduino with Arduino Ethernet connection
	•	 Arduino Yun with a Wi-Fi connection
	•	 Raspberry Pi connected via Ethernet or Wi-Fi
	•	 Intel Galileo connected via Ethernet or Wi-Fi Examples of indirectly

connected device include
	•	 ZigBee devices connected via a ZigBee gateway
	•	 Bluetooth or Bluetooth Low Energy devices connecting via a mobile

phone
	•	 Devices communicating via low power radios to a Raspberry Pi

There are many more such examples of each type. Each device typically
needs an identity. The identity may be one of the following

	•	 A unique identifier (UUID) burnt into the device (typically part of the
System-on-Chip, or provided by a secondary chip)

	•	 A UUID provided by the radio subsystem (e.g. Bluetooth identifier,
Wi-Fi MAC address)

Figure 2.31  IoT reference architecture.

IoT architecture  57

	•	 An OAuth2 Refresh/Bearer Token (this may be in addition to one of
the above)

	•	 An identifier stored in nonvolatile memory such as EEPROM

For the reference architecture we recommend that every device has a UUID
(preferably an unchangeable ID provided by the core hardware) as well as
an OAuth2 Refresh and Bearer token stored in EEPROM.

The specification is based on HTTP; however, (as we will discuss in the
communications section) the reference architecture also supports these flows
over MQTT.

2.6.2.7 � The communications layer

The communication layer supports the connectivity of the devices. There are
multiple potential protocols for communication between the devices and the
cloud. The most well-known three potential protocols are:

	•	 HTTP/HTTPS (and RESTful approaches on those)
	•	 MQTT 3.1/3.1.1
	•	 Constrained application protocol (CoAP)

Let’s take a quick look at each of these protocols in turn.
HTTP is well known, and there are many libraries that support it. Because

it is a simple text-based protocol, many small devices, such as 8-bit control-
lers, can only partially support the protocol – for example, enough code to
POST or GET a resource. The larger 32-bit based devices can utilize full
HTTP client libraries that properly implement the whole protocol.

There are several protocols optimized for IoT use. The two best-known
ones are MQTT6 and CoAP7. MQTT was invented in 1999 to solve issues
in embedded systems and SCADA. It has been through some iterations and
the current version (3.1.1) is undergoing standardization in the OASIS
MQTT Technical Committee 8. MQTT is a publish–subscribe messaging
system based on a broker model. The protocol has a very low overheads (as
little as 2 bytes per message), and was designed to support lossy and inter-
mittently connected networks. MQTT was designed to flow over TCP. In
addition, there is an associated specification designed for ZigBee-style net-
works called MQTT-SN (Sensor Networks).

CoAP is a protocol from the IETF that is designed to provide a RESTful
application protocol modeled on HTTP semantics, but with a much smaller
footprint and a binary rather than a text-based approach. CoAP is a more
traditional client–server approach rather than a brokered approach. CoAP
is designed to be used over UDP.

For the reference architecture we have opted to select MQTT as the pre-
ferred device communication protocol, with HTTP as an alternative option.

58  IoT Fundamentals with a Practical Approach

The reasons to select MQTT and not CoAP at this stage are:

	•	 Better adoption and wider library support for MQTT
	•	 Simplified bridging into existing event collection and event-processing

systems and
	•	 Simpler connectivity over firewalls and NAT networks

However, both protocols have specific strengths (and weaknesses) and so
there will be some situations where CoAP may be preferable and could be
swapped in.

In order to support MQTT we need to have an MQTT broker in the
architecture as well as device libraries. We will discuss this with regard to
security and scalability later.

One important aspect with IoT devices is not just for the device to send
data to the cloud/server, but also for the reverse to be possible. This is one of
the benefits of the MQTT specification: because it is a brokered model,
clients connect an outbound connection to the broker, whether or not the
device is acting as a publisher or subscriber. This usually avoids firewall
problems because this approach works even behind firewalls or via NAT.

In the case where the main communication is based on HTTP, the tradi-
tional approach for sending data to the device would be to use HTTP Polling.
This is very inefficient and costly, in terms of both network traffic as well as
power requirements. The modern replacement for this is the Web Socket pro-
tocol which allows an HTTP connection to be upgraded into a full two-way
connection. This then acts as a socket channel (similar to a pure TCP channel)
between the server and client. Once that has been established, it is up to the
system to choose an ongoing protocol to tunnel over the connection.

For the reference architecture we once again recommend using MQTT as
a protocol with Web Sockets. In some cases, MQTT over Web Sockets will
be the only protocol. This is because it is even more firewall-friendly than
the base MQTT specification as well as being able to support pure browser/
JavaScript clients using the same protocol.

Note that while there is some support for Web Sockets on small control-
lers, such as Arduino, the combination of network code, HTTP and Web
Sockets would utilize most of the available code space on a typical Arduino
8-bit device. Therefore, we only recommend the use of Web Sockets on the
larger 32-bit devices.

2.6.2.8 � The aggregation/bus layer

An important layer of the architecture is the layer that aggregates and bro-
kers communications. This is an important layer for three reasons:

	 1.	The ability to support an HTTP server and/or an MQTT broker to
talk to the devices

IoT architecture  59

	 2.	The ability to aggregate and combine communications from different
devices and to route communications to a specific device (possibly via
a gateway)

	 3.	The ability to bridge and transform between different protocols, e.g.
to offer HTTP based APIs that are mediated into an MQTT message
going to the device

The aggregation/bus layer provides these capabilities as well as adapting
into legacy protocols. The bus layer may also provide some simple correla-
tion and mapping from different correlation models (e.g. mapping a device
ID into an owner’s ID or viceversa).

Finally, the aggregation/bus layer needs to perform two key security roles.
It must be able to act as an OAuth2 Resource Server (validating Bearer
Tokens and associated resource access scopes). It must also be able to act as
a policy enforcement point (PEP) for policy-based access. In this model, the
bus makes requests to the identity and access management layer to validate
access requests. The identity and access management layer acts as a policy
decision point (PDP) in this process. The bus layer then implements the
results of these calls to the PDP to either allow or disallow resource access.

2.6.2.9 � The event processing and analytics layer

This layer takes the events from the bus and provides the ability to pro-
cess and act upon these events. A core capability here is the requirement to
store the data into a database. This may happen in three forms. The tradi-
tional model here would be to write a server-side application, e.g. this could
be a JAX-RS application backed by a database. However, there are many
approaches where we can support more agile approaches. The first of these
is to use a Big Data analytics platform. This is a cloud-scalable platform
that supports technologies such as Apache Hadoop to provide highly scal-
able map reduce analytics on the data coming from the devices. The second
approach is to support complex event processing to initiate near real-time
activities and actions based on data from the devices and from the rest of
the system.

Our recommended approach in this space is to use the following
approaches:

	•	 Highly scalable, column-based data storage for storing events
	•	 Map-reduce for long-running batch-oriented processing of data
	•	 Complex event processing for fast in-memory processing and near

real-time reaction and autonomic actions based on the data and activ-
ity of devices and other systems

	•	 In addition, this layer may support traditional application processing
platforms, such as Java Beans, JAX-RS logic, message-driven beans, or
alternatives, such as node.js, PHP, Ruby or Python

60  IoT Fundamentals with a Practical Approach

2.6.2.10 � Client/external communications layer

The reference architecture needs to provide a way for these devices to com-
municate outside of the device-oriented system. This includes three main
approaches. Firstly, we need the ability to create web-based frontends
and portals that interact with devices and with the event-processing layer.
Secondly, we need the ability to create dashboards that offer views into
analytics and event processing. Finally, we need to be able to interact with
systems outside this network using machine-to-machine communications
(APIs). These APIs need to be managed and controlled and this happens in
an API management system.

The recommended approach to building the web front end is to utilize a
modular front-end architecture, such as a portal, which allows simple fast
composition of useful UIs. Of course, the architecture also supports existing
Web server-side technology, such as Java Servlets/JSP, PHP, Python, Ruby,
etc. Our recommended approach is based on the Java framework and the
most popular Java-based web server, Apache Tomcat.

The dashboard is a re-usable system focused on creating graphs and other
visualizations of data coming from the devices and the event-processing
layer.

The API management layer provides three main functions:

	•	 The first is that it provides a developer-focused portal (as opposed to
the user-focused portal previously mentioned), where developers can
find, explore, and subscribe to APIs from the system. There is also sup-
port for publishers to create, version, and manage the available and
published APIs;

	•	 The second is a gateway that manages access to the APIs, performing
access control checks (for external requests) as well as throttling usage
based on policies. It also performs routing and load-balancing;

	•	 The final aspect is that the gateway publishes data into the analytics
layer where it is stored as well as processed to provide insights into
how the APIs are used.

2.6.2.11 � Device management

Device management (DM) is handled by two components. A server-side sys-
tem (the device manager) communicates with devices via various protocols
and provides both individual and bulk control of devices. It also remotely
manages software and applications deployed on the device. It can lock and/
or wipe the device if necessary. The device manager works in conjunction
with the device management agents. There are multiple different agents for
different platforms and device types.

The device manager also needs to maintain the list of device identities and
map these into owners. It must also work with the identity and access

IoT architecture  61

management layer to manage access controls over devices (e.g. who else can
manage the device apart from the owner, how much control does the owner
have vs. the administrator, etc.)

There are three levels of device: non-managed, semi-managed, and fully
managed (NM, SM, FM).

Fully managed devices are those that run a full DM agent. A full DM
agent supports:

	•	 Managing the software on the device
	•	 Enabling/disabling features of the device (e.g. camera, hardware, etc.)
	•	 Managing security controls and identifiers
	•	 Monitoring the availability of the device
	•	 Maintaining a record of the device’s location if available
	•	 Locking or wiping the device remotely if the device is compromised,

etc.

Non-managed devices can communicate with the rest of the network, but
have no agent involved. These may include 8-bit devices where the con-
straints are too small to support the agent. The device manager may still
maintain information on the availability and location of the device if this is
available.

Semi-managed devices are those that implement some parts of the DM
(e.g. feature control, but not software management).

2.6.2.12 � Identity and access management

The final layer is the identity and access management layer. This layer needs
to provide the following services:

	•	 OAuth2 token issuing and validation
	•	 Other identity services, including SAML2 SSO and OpenID Connect

support for identifying inbound requests from the Web layer
	•	 XACML PDP
	•	 Directory of users (e.g. LDAP)
	•	 Policy management for access control (policy control point)

The identity layer may, of course, have other requirements specific to the
other identity and access management for a given instantiation of the refer-
ence architecture. In this section we have outlined the major components of
the reference architecture as well as specific decisions we have taken around
technologies. These decisions are motivated by the specific requirements of
IoT architectures as well as best practices for building agile, evolvable, scal-
able Internet architectures. Of course, there are other options, but this refer-
ence architecture utilizes proven approaches that are known to be successful
in real-life IoT projects we have worked on.

62  IoT Fundamentals with a Practical Approach

2.7 � MAPPING TO THE WSO2 PLATFORM

Reference architecture is useful as it is. However, it is even more useful
if there is a real instantiation. In this section we provide a mapping into
products and capabilities of the WSO2 platform to show how the reference
architecture can be implemented.

The WSO2 platform is a completely modular, open-source enterprise plat-
form that provides all the capabilities needed for the server side of this archi-
tecture. In addition, we also provide some reference components for the
device layer – it is an intractable problem to provide components for all
possible devices, but we do provide either sample code and/or supported
code for certain popular device types.

An important aspect of the WSO2 platform is that it is inherently multi-
tenant. This means that it can support multiple organizations on a single
deployment with isolation between organizations (tenants). This is a key
capability for deploying this reference architecture as a Software-as-a-
Service (SaaS) offering. It is also used by some organizations on-premise to
support different divisions or departments within a group.

The WSO2 platform supports deployment on three different targets:

	 1.	Traditional on-premise servers, including Linux, Windows, Solaris,
and AIX

	 2.	Public cloud deployment, including Amazon EC2, Microsoft Azure,
and Google Compute Engine

	 3.	Hybrid or private cloud deployment on platforms, including OpenStack,
Suse Cloud, Eucalyptus, Amazon Virtual Private Cloud, and Apache
Stratos

The WSO2 platform is based on a technology called WSO2 Carbon, which
is in turn based on OSGi. Each product in the platform shares the same ker-
nel based on Carbon. In addition, each product is made from features that
are composed to provide the required functionality. Features can be added
and subtracted as needed. All the products work together using standard
interoperable protocols, such as HTTP, MQTT, and AMQP. All the WSO2
products are available under the Apache Software License v2.0, which is
a business friendly, non-viral Open Source License. Figure 2.32 shows the
IoT reference architecture layered with the corresponding WSO2 product
capabilities.

2.7.1 �The device layer

We support any device. We have a reference device management capability
on any Linux-based or Android-based device, which can be ported to other

IoT architecture  63

32-bit platforms.WSO2 also can help with MQTT client code for many
device platforms, ranging from Arduino to Android.

2.7.2 �The aggregation/bus layer

We provide two core products that implement this layer:

	•	 WSO2 Enterprise Service Bus (ESB), which provides HTTP, MQTT,
AMQP and other protocol support, protocol mediation and bridg-
ing, data transformation, OAuth2 Resource Server support, XACML
Policy Enforcement Point (PEP) support, and many other capabilities.
WSO2 ESB is highly scalable, providing linear scalability and elastic
scalability. In one deployment it handles more than 2bn requests/day.
Please note that WSO2 ESB does not currently support Web Sockets,
but this is on the roadmap.

	•	 WSO2 Message Broker (MB), which provides the ability to act as an
MQTT broker. WSO2 MB also provides AMQP capabilities and can
provide both persistent and non-persistent messaging. WSO2 MB is
highly scalable and supports elastic scalability. Please note that the
WSO2 MB MQTT support is currently in beta.

2.7.3 �The analytics and event processing layer

WSO2 offers a complete platform for data analytics with WSO2 Data
Analytics Server, an industry first that combines the ability to analyze the
same data at rest and in motion with predictive analysis. WSO2 DAS replaces
WSO2 Business Activity Monitor and WSO2 Complex Event Processor.
WSO2’s analytics platform offers the flexibility to scale to millions of events
per second, whether running on-premises and in the cloud.

Figure 2.32  WSO2 platform.

64  IoT Fundamentals with a Practical Approach

2.7.4 �The external communications layer

Our mapping provides the capabilities of this layer with the following
products:

	•	 WSO2 User Engagement Server (UES)
	•	 This product supports creating and managing portal-based and

traditional Web UIs, including supporting full personalization.
	•	 It is also used by the DAS to manage and host analytics dashboards.

	•	 WSO2 API Manager which
	•	 Manages the lifecycle of the APIs and supports API publishers;
	•	 Offers a developer-focused portal for developers to find, explore

and subscribe to APIs;
	•	 Issues and manages OAuth2 tokens to external developers (note

that when WSO2 Identity Server is also available – see below –
then this function is delegated to that system);

	•	 Gateways external requests and provides throttling and PEP
capabilities;

	•	 Publishes usage, version, and other data into the DAS; and
	•	 Integrates with WSO2 ESB

2.7.5 �The device management layer

WSO2 Enterprise Mobility Management (EMM) provides:

	•	 Mobile device management for iOS, Android, and IoT devices
	•	 A full app store for managing applications and provisioning applica-

tions on to managed devices
	•	 Integration with the identity layer as well as DAS for mobile analytics

2.7.6 �The identity and access management layer

WSO2 Identity Server supports this aspect, and provides the following
capabilities:

	•	 OAuth2 identity provider, issuing, revoking and managing tokens
	•	 Single sign-on support, including SAML2 SSO and Open ID Connect

support
	•	 Support for other identity protocols, including WS-Federation (Passive),

Open ID 2.0, Kerberos, Integrated Windows Authentication (IWA), and
others

	•	 Full support for XACML (including versions 2.0 and 3.0), acting as a
PDP, PIP, and PAP

	•	 The ability to integrate between different identity providers and ser-
vice providers, including identity brokering

	•	 Support for identity provisioning, including SPML and SCIM support

IoT architecture  65

The WSO2 platform is the only modular, open-source platform to provide
all these capabilities (and more). As such, it is the ideal basis for creating and
deploying this IoT reference architecture.

One further aspect that is highly worthy of consideration is the use of a
Platform-as-a-Service (PaaS). WSO2 provides the WSO2 Private PaaS prod-
uct which is based on the Apache Stratos project. This provides a managed,
elastically scalable, HA deployment of the products mentioned above and
also manages tenancy, self-service subscription, and many other aspects. It
also supports managing many other useful server-side capabilities, including
PHP, MySQL, MongoDB and others. We have not shown the PaaS layer on
the IoT reference architecture as some deployments may not need this
capability.

2.8 � DESIGN PRINCIPLES FOR IoT

In this part, the focus is on design principles of IoT that one needs to follow
to design IoT products/services. These design principles allow the developers
to analyze and implement the IoT:

Interoperability: The IoT is going to develop in a number of areas and
it may find that in a number of applications its very diversity can be
the main obstacle to its own growth. The devices that will be form-
ing the IoT will be countless and of different types i.e. varying tech-
nical profiles will operate (from household appliances to wearable,
from autonomous vehicles to drones, and so on), manufactured by
thousands of different companies, each with their own standards. It
is basically the ability for systems or components of systems to com-
municate with each other, regardless of their manufacturer or techni-
cal specifications. Imagine that you are travelling in an autonomous
vehicle and you need to communicate with other vehicles on the road
to co-ordinate your movements and to be able to drive safely. What
if they could not do so because each vehicle is manufactured by a
different company which would make the exchange of information
impossible? In this type of situation, even people’s lives could be put
at risk. This makes interoperability an important principle of IoT
development.

Virtualization: Devices or systems must be able to simulate and create a
virtual copy of real world. For example, imagine a factory environ-
ment, with nodes deployed for temperature monitoring & control,
or machine monitoring & control and a central head controlling the
entire factory. In the case of a slight or obvious temperature rise (of
factory/machinery), the nodes should be automatically able to control
temperature (let’s say by changing thermostat’s temperature/coolant

66  IoT Fundamentals with a Practical Approach

flow) and then report to the central head later, since it was not a huge
deal and didn’t need immediate attention.

Decentralization: This is the ability of each device to work independently,
in case of issues or the absence of a controlling master.

Real-Time Capability: An IOT device/system needs to be able to collect
data, store or analyse it, and make decisions according to new findings
in real time.

Service Orientation: Products must be customer-oriented. People and
smart objects/devices must be able to connect efficiently through the
Internet of Services to create products based on the customer’s speci-
fications. E.g. One might make an IOT application but find that it is
not useful to any customer as it doesn’t satisfy any of their needs or
address any of their problems.

Modularity: an IOT device’s ability to adapt to a new market is essential.

2.9 � IoT AND M2M TECHNOLOGY

IoT M2M(machine-to-machine) verbal exchange involves two machines
“speaking,” or exchanging information, without human interaction. This
consists of serial connection, power line connection (percent), or Wi-Fi com-
munications inside the business Internet of Things (IoT).

Switching over to Wi-Fi has made the M2M verbal exchange a lot simpler
and enabled greater packages to be relayed.

In widespread, when a person says M2M communication, they regularly
are regarding cellular communication for embedded gadgets.

Examples of M2M communication in this example would be vending
machines sending out inventory records or ATM machines obtaining the
authorization to dispense cash.

2.9.1 � How IoT M2M works

As previously stated, device-to-system communicate makes the Internet of
Things possible. In step with Forbes, M2M is among the fastest-growing
forms of connected tool technologies inside the marketplace proper now,
largely due to the fact M2M technology can connect millions of gadgets
inside an unmarried community. The variety of linked gadgets includes
whatever from vending machines to medical device to automobiles to homes
(Figure 2.33).

This sounds complex, but the driving concept behind the idea is pretty
simple. Essentially, M2M networks are very just like LAN or WAN net-
works, but are solely used to allow machines, sensors, and controls, to
communicate.

IoT architecture  67

Those gadgets feed facts they acquire returned to other gadgets inside the
network. This system lets in a human to evaluate what is going on across the
complete network and issue suitable instructions to member gadgets (Figure
2.34 and Table 2.2).

2.9.2 � IoT M2M applications

M2M systems use point-to-point communications between machines, sen-
sors and hardware over cellular or wired networks, while IoT systems rely
on IP-based networks to send data collected from IoT-connected devices to
gateways, the cloud or middleware platforms

Figure 2.33  IoT and M2M.

Figure 2.34  IoT M2M applications.

68  IoT Fundamentals with a Practical Approach

2.9.3 � Difference between IoT and M2M (Table 2.2)

2.10 � REAL-WORLD DESIGN CONSTRAINTS

2.10.1 � Devices and networks

The devices that form networks in the M2M area network domain must
be selected, or designed, with certain functionality suitable to IoT applica-
tions. The devices must have an energy source (e.g. batteries), computa-
tional capability (e.g. an MCU), appropriate communications interface (e.g.
a Radio Frequency Integrated Circuit (RFIC) and front-end RF circuitry),
memory (program and data), and sensing (and/or actuation) capability.
These must be integrated in such a way that the functional requirements
of the desired application can be satisfied with additional nonfunctional
requirements.

Table 2.2  IoT vs M2M

Basis of IoT M2M

Abbreviation Internet of Things Machine to machine
Intelligence Devices have objects that are

responsible for decision-making
Some degree of intelligence is

observed in this
Connection type

used
The connection is via

network and using various
communication types.

The connection is point to
point

Communication
protocol used

Internet protocols are used such
as HTTP, FTP, and Telnet.

Traditional protocols and
communication technology
techniques are used

Data Sharing Data is shared between other
applications that are used
to improve the end-user
experience.

Data is shared with only the
communicating parties.

Internet Internet connection is required
for communication

Devices are not dependent
on the Internet.

Scope A large number of devices yet
scope is large.

Limited scope for devices.

Business type
used

Business 2 Business (B2B) and
Business 2 Consumer (B2C)

Business 2 Business (B2B)

Open API support Supports Open API integrations. There is no support for Open
APIs

Examples Smart wearable’s, Big Data and
Cloud, etc.

Sensors, data and information,
etc.

IoT architecture  69

2.10.1.1 � Functional requirements

	 1.	 Specific sensing and actuating capabilities
	 2.	Sensing principle and data requirements: Sometimes continuous sam-

pling of sensing data is required. For some applications, sampling after
specific intervals is required.

	 3.	The parameters such as higher network throughput, data loss, energy
use, etc. are decided based on sensing principle.

2.10.1.2 � Sensing and communications field

The sensing field is to be considered for sensing in local area or distributed
sensing. The distance between sensing points is also an important factor to
be considered. The physical environment has an implication for the commu-
nications technologies selected and the reliability of the system in operation
thereafter. Devices must be placed in close enough proximity to communi-
cate. Where the distance is too great, routing devices may be necessary.

2.10.1.3 � Programming and embedded intelligence

Devices in the IoT are heterogeneous, such as various computational archi-
tectures including MCUs (8-, 16-, 32-bit, ARM, 8051, RISC, Intel, etc.),
signal conditioning (e.g. ADC), and memory (ROM, S/F/D) RAM, etc.),
communications media, peripheral components (sensors, actuators, buttons,
screens, LEDs), etc. In every case, an application programmer must consider
the hardware selected or designed, and its capabilities.

Application-level logic decides the sampling rate of the sensor, the local
processing performed on sensor readings, the transmission schedule (or
reporting rate), and the management of the communications protocol stack,
among other things. The programmers have to reconfigure and reprogram
devices in case of changes in the devices in IoT applications.

2.10.1.4 � Power

Power is essential for any embedded or IoT device. Depending on the appli-
cation, power may be provided by the mains, batteries, or hybrid power
sources. Power requirements of the application are modeled prior to deploy-
ment. This allows the designer to estimate the cost of maintenance over time.

2.10.1.5 � Gateway

Gateway devices or proxies are selected according to the needs of data
transitions.

70  IoT Fundamentals with a Practical Approach

2.10.1.6 � Nonfunctional requirements

The non-functional requirements are both technical and non-technical.

	 1.	Regulations: For applications that require placing nodes in public
places, prior permissions are important. Radio frequency (RF) regula-
tions limit the power with which transmitters can broadcast.

	 2.	Ease of use, installation, maintenance, accessibility: This relates to
positioning, placement, site surveying, programming, and the physical
accessibility of devices for maintenance purposes.

	 3.	Physical constraints: Integration of additional electronics into existing
system. These might include suitable packaging, the kind and size of
antenna, the type of power supply etc.

2.10.1.7 � Financial cost

Financial cost considerations are as follows:

	•	 Component selection: Typically, the use of these devices in the M2M
area network domain is to reduce the overall cost burden. However,
there are research and development costs that are likely to be incurred
for each individual application in the IoT which requires device
development or integration. Developing devices in small quantities is
expensive.

	•	 Integrated device design: Once the energy, sensors, actuators, compu-
tation, memory, power, connectivity, physical, and other functional
and non-functional requirements are considered, it is likely that an
integrated device must be produced.

2.10.1.8 � Data representation and visualization

Each IoT application has an optimal visual representation of the data and
the system. Data that are generated from heterogeneous systems have het-
erogeneous visualization requirements. There are currently no satisfactory
standard data representation and storage methods that satisfy all of the
potential IoT applications.

71DOI: 10.1201/9781003307488-3

As discussed in the previous chapter, protocols are used to establish commu-
nication between anode device and a server over the Internet. They help to
send commands to an IoT device and receive data from an IoT device over
the Internet. People use different types of protocols that are present on both
the server and the client side and these protocols are managed by network
layers like application, transport, network, and link layers.

3.1 � MQTT (MESSAGE QUEUING TELEMETRY
TRANSPORT)

MQTT is a machine-to-machine (M2M), Internet of Things (IoT) con-
nectivity protocol. It was designed as an extremely lightweight publish/
subscribe messaging transport protocol and is useful for connections with
remote locations where a small code footprint is required and/or network
bandwidth is at a premium. It makes it easy for communication between
multiple devices. It is a simple messaging protocol designed for the con-
strained devices and with low bandwidth, so it’s a perfect solution for the
internet of things applications.

3.1.1 � Why was MQTT created?

MQTT was created with the goal of collecting data from many devices
and then transporting that data to the IT infrastructure. It is lightweight,
and therefore ideal for remote monitoring, especially in M2M connec-
tions which require a small code footprint or where the network band-
width is limited. MQTT was invented in 1999 by Dr. Andy Stanford-Clark
and Arlen Nipper. The co-inventor Nipper is the president of Cirrus Link
Solutions, the company which developed the Cirrus Link MQTT Modules
for Ignition.

Chapter 3

Protocols in IoT

http://dx.doi.org/10.1201/9781003307488-3

72  IoT Fundamentals with a Practical Approach

3.1.2 � Who uses MQTT?

MQTT was originally developed for the low-bandwidth, high-latency data
links used in the oil and gas industry. However, MQTT is now used in many
applications beyond this sector, from controlling smart lighting systems to
Facebook Messenger and Amazon Web Services (AWS) IoT. Overall, MQTT
appears to be the protocol best suited for the control systems used by indus-
trial organizations and we can expect that its rapid rate of adoption will
only increase in future.

3.1.3 � Advantages of MQTT

The MQTT protocol allows your supervisory control and data acquisition
(SCADA) system to access Industrial Internet of Things (IIoT) data. MQTT
brings many powerful benefits to your process:

	•	 It distributes information more efficiently
	•	 It increases scalability
	•	 It reduces network bandwidth consumption dramatically
	•	 It reduces update rates to seconds
	•	 It is very well-suited for remote sensing and control
	•	 It maximizes available bandwidth
	•	 It has extremely low overheads
	•	 It is very secure, with permission-based security
	•	 It is used by the oil and gas industry, Amazon, Facebook and other

major businesses
	•	 It saves development time
	•	 Publish/subscribe protocols collects more data with less bandwidth

than polling protocols

3.2 � HOW IT WORKS

To understand the MQTT architecture, we first look at the components of
the MQTT.

	•	 Message
	•	 Client
	•	 Server or broker
	•	 TOPIC

Message: The message is the data that is carried out by the protocol across
the network for the application. When the message is transmitted over the
network, then the message contains the following parameters:

Protocols in IoT  73

	 1.	Payload data
	 2.	Quality of Service (QoS)
	 3.	Collection of Properties
	 4.	Topic Name

Client: In MQTT, the client has two roles: as subscriber and publisher. The
clients subscribe to the topics to publish and receive messages. In simple
terms, we can say that if any program or device uses an MQTT, then that
device is referred to as a client. A device is a client if it opens the network
connection to the server, publishes messages that other clients want to see,
subscribes to the messages that it is interested in receiving, unsubscribes
from the messages that it is not interested in receiving, and closes the net-
work connection to the server.

In MQTT, the client performs two operations:

Publish: When the client sends the data to the server, then we call this
operation publishing.

Subscribe: When the client receives the data from the server, then we call
this operation subscribing.

Server: This is the device or a program that allows the client to publish
the messages and subscribe to the messages. A server accepts the net-
work connection from the client, accepts the messages from the client,
processes the subscribe and unsubscribe requests, forwards the appli-
cation messages to the client, and closes the network connection from
the client.

TOPIC: The label provided to the message is checked against the sub-
scription known by the server is known as TOPIC.

To understand the process more clearly, we will consider a real-world
example. Suppose a device has a temperature sensor and wants to send
the rating to the server or the broker. If the phone or desktop appli-
cation wishes to receive this temperature value on the other side, then
two things will have happened. The publisher first defines the topic; for
example, the temperature then publishes the message, i.e., the tempera-
ture’s value as shown in Figure 3.1. After publishing the message, the
phone or the desktop application on the other side will subscribe to the

Figure 3.1  Publish subscribe model.

Publisher SubscriberTopic

74  IoT Fundamentals with a Practical Approach

topic, i.e., temperature, and then receive the published message, i.e., the value
of the temperature. The server or the broker’s role is to deliver the published
message to the phone or the desktop application as shown in Figure 3.2.

3.2.1 � Levels of QoS in MQTT

Quality of Service (QoS) defines the reliability of the message delivery pro-
cess in MQTT. MQTT provides three QoS levels for message delivery: QoS
0, QoS 1, and QoS 2 as shown in Figure 3.3. You can have different QoS
levels for publishing and for subscribing to messages. The MQTT broker
that you are using might not support all three levels of QoS. For example,
ThingSpeak MQTT supports only QoS 0.

Figure 3.2  Function of broker.

Protocols in IoT
 

75

Figure 3.3  Levels of QoS.

76  IoT Fundamentals with a Practical Approach

QoS 0 Level for Publish: The publisher sends message to the MQTT bro-
ker only once as shown in Figure 3.4.
The broker does not acknowledge receipt of the message.

QoS 1 Level for Publish: The publisher sends the message to the MQTT bro-
ker at least once as shown in Figure 3.5. The publisher stores the message
until it receives an acknowledgment from the broker. If no acknowledg-
ment is received after 10 seconds, the publisher resends the message. In this
level, the same message might be delivered to the broker more than once.

QoS 2 Level for Publish: The publisher sends the message to the MQTT
broker exactly once. The publisher stores the message until it gets
an acknowledgment from the broker. Once the acknowledgment is
received, the publisher and the broker discard the stored messages.
QoS2 uses additional acknowledgments to ensure that no duplicate
message is delivered to the broker as shown in Figure 3.6.

Figure 3.4  QoS Level 0.

Figure 3.5  QoS Level 1.

Protocols in IoT  77

QoS 0 Level for Subscribe: The MQTT broker sends the message to the cli-
ent only once as shown in Figure 3.7. The client does not acknowledge
receipt of the message.

QoS 1 Level for Subscribe: The MQTT broker sends the message to the
client at least once as shown in Figure 3.8. The MQTT broker stores the
message until it gets an acknowledgment from the client. If no acknowl-
edgment is received after 10 seconds, the broker resends the message. In
this level, the same message might be delivered more than once.

Figure 3.6  QoS Level 2.

Figure 3.7  QoS Level 0 (for subscribe).

78  IoT Fundamentals with a Practical Approach

QoS 2 Level for Subscribe: The MQTT broker sends the message to the
client exactly once as shown in Figure 3.9. The MQTT broker stores
the message until it gets an acknowledgment from the client. Once
the acknowledgment is received, the broker and the subscriber discard
the stored messages. QoS2 uses additional acknowledgments to ensure
that no duplicate message is delivered.

Figure 3.9  QoS Level 2 (for subscribe).

Figure 3.8  QoS Level 1(for subscribe).

Protocols in IoT  79

3.3 � ZIGBEE

Zigbee is a short-range, low-power, low-data rate wireless protocol used
primarily for home automation and industrial control. In contrast to Wi-Fi
networks used to connect endpoints to high-speed networks, Zigbee sup-
ports much lower data rates and uses a mesh networking protocol to avoid
hub devices and create a self-healing architecture.

3.3.1 � Zigbee Alliance

The Zigbee Alliance works to simplify wireless product integration in order
to help product manufacturers introduce energy-efficient wireless control
into their products faster and more cost-effectively. Alliance members cre-
ate standards that offer reliable, secure, low-power, and easy-to-use wire-
less communication, using an open standards development process to guide
their work. The alliance is organized by committees, work groups, study
groups, taskforces, and special interest groups.

There are three types of membership with different rights and benefits:

	•	 An adopter offers access to final, approved specifications, participation
in interoperabilityeventsandaccesstostandardwork/taskgroupdocuments
anddevelopmentactivities.

	•	 A participant offers voting rights in work groups and has early access
to all Zigbee Alliance standards and specifications in development.

	•	 A promoter offers automatic voting rights in all work groups, final
approval rights on all standards and a seat on the alliance’s board of
directors.

3.3.2 � Who uses Zigbee?

Zigbee is used by a variety of cable and telecommunication companies in
their set-top boxes, satellite transceivers, and home gateways to provide
home monitoring and energy management products to their customers.
Zigbee is also used by vendors that provide connected lighting products for
homes and businesses. With Zigbee-based smart home products, consumers
can control LED figures, light bulbs, remote controls, and switches both at
home and remotely to improve energy management. Utility companies can
use Zigbee in their smart meters to monitor, control, inform, and automate
the delivery and use of energy and water. Smart meters give the consum-
ers the information and automation needed to reduce energy use and save
money. Zigbee-based products also enhance the shopping experience for
consumers by enabling faster checkouts, in-store assistance, and in-store
item location. Zigbee helps retailers operate more efficiently by ensuring

80  IoT Fundamentals with a Practical Approach

items don’t run out of stock and supporting just-in-time inventory practices
as well as monitoring temperatures, humidity, spills, and soon. Zigbee sup-
ports a number of devices, including intelligent shopping carts, personal
shopping assistants, electronic shelf labels, and asset-tracking tags.

Application areas: Zigbee protocols are intended for embedded applica-
tions requiring low power consumption and tolerating low data rates. The
resulting network will use very little power. Individual devices must have a
battery life of at least two years to pass certification.

Typical application areas include:

	•	 Home automation
	•	 Wireless sensor networks
	•	 Industrial control systems
	•	 Embedded sensing
	•	 Medical data collection
	•	 Smoke and intruder warning
	•	 Building automation
	•	 Remote wireless microphone configuration

3.3.3 � How Zigbee works

There are three classes of Zigbee devices:

	•	 Zigbee coordinator (ZC): The most capable device, the coordinator
forms the root of the network tree and may bridge to other networks.
There is precisely one Zigbee coordinator in each network since it
is the device that started the network originally (the Zigbee Light
Link specification also allows operation without a Zigbee coordina-
tor, making it more usable for off-the-shelf home products). It stores
information about the network, including acting as the trust center
and repository for security keys. It is responsible for forming a central-
ized network.

	•	 Zigbee router (ZR): As well as running an application function, a
router can act as an intermediate node between the coordinator and
end devices, passing data on from other nodes. Zigbee router devices
provide routing services to network nodes. Routers can also serve
as end nodes. In contrast to end nodes, routers are not designed
to sleep and should generally remain on as long as a network is
established.

	•	 Zigbee end device (ZED): It contains enough functionality to talk to
the parent node (either the coordinator or a router); it cannot relay
data from other devices. This relationship allows the node to be asleep
a significant amount of the time thereby giving long battery life. A
ZED requires the least amount of memory and thus can be less expen-
sive to manufacture than a ZR or ZC.

Protocols in IoT  81

3.3.4 � Zigbee network topologies

The Zigbee network layer is responsible for the formation of the network.
There are three Zigbee network topologies: star, cluster tree, and mesh.
These three Zigbee topologies come under one of the two network topolo-
gies mentioned in the IEEE 802.15.4, i.e. star and peer-to-peer.

Star Topology: In a Star network configuration, there is one coordina-
tor and any number of end devices as shown in Figure 3.10. All the
end devices are connected to the coordinator and the individual end
devices are isolated, both physically and electrically, i.e. no direct com-
munication between end devices.

All the information must pass through the coordinator, even including the
information from one end device to another as shown in Figure 3.11.

Figure 3.10  Star topology.

Figure 3.11  Zigbee architecture.

82  IoT Fundamentals with a Practical Approach

Cluster Tree Topology: This is a type of peer-to-peer topology. In this, the
end devices join the network via the coordinator or the router as shown
in Figure 3.12. As the Zigbee router extends the range of the Zigbee
network, the end device need not be in the range of the coordinator.

Even in tree topology, the end devices cannot communicate with each
other directly, but the router can communicate with other routers and the
coordinator.

Mesh Topology: The Zigbee mesh topology is also a peer-to-peer topol-
ogy and is an extension to the cluster tree topology. The end devices
that are configured as a full function device (FFD) can directly commu-
nicate with other FFD devices (either routers or end devices) as shown
in Figure 3.13. But end devices configured as a reduced function device
(RFD), still need to communicate through routers or coordinators.

Figure 3.12  Cluster tree topology.

Protocols in IoT  83

3.3.5 � Applications of Zigbee technology

Zigbee networking and Zigbee technology have a wide range of applica-
tions, such as home automation, healthcare, and material tracking. Let us
outline a few applications of Zigbee technology, where Zigbee devices can
increase efficiency and reduce cost.

Home Automation

	•	 Security Systems
	•	 Meter Reading Systems
	•	 Light Control Systems
	•	 HVAC Systems

Consumer Electronics

	•	 Gaming Consoles
	•	 Wireless Mouse
	•	 Wireless Remote Controls

Industrial Automation

	•	 Asset Management
	•	 Personnel Tracking
	•	 Livestock Tracking
	•	 Healthcare
	•	 Hotel Room Access
	•	 Fire Extinguishers

Figure 3.13  Mesh topology.

84  IoT Fundamentals with a Practical Approach

3.4 � BLUETOOTH/BLE

Bluetooth is a wireless technology standard used for exchanging data
between Bluetooth-enabled fixed and mobile devices over short distances
using low-energy radio waves and building personal area networks (PANs)
as shown in Figure 3.14. It is a connection-oriented technology, meaning that
connection needs to be established between Bluetooth-compliant devices
before data transfer takes place. It is used as a wireless alternative to RS-
232 data cables. It can transfer text files, photos, videos, and more between
mobile phones and other smart electronic devices. The Bluetooth project
was initiated by the Special Interest Group (SIG) formed by four companies,
IBM, Intel, Nokia and Toshiba, for interconnecting computing and com-
municating devices using short-range, low-powered, inexpensive wireless
radios. As a result, it is also important for the rapidly growing Internet of
Things, including smart homes and industrial applications. When Bluetooth
devices connect to each other (for example, your phone and your wireless
speaker), this follows the parent–child model, meaning that one device is the
parent and other devices are the children. The parent transmits information
to the child and the child listens for information from the parent.

A Bluetooth network is called a piconet and a collection of interconnected
piconets is called a scatternet.

Piconet: This is a type of Bluetooth network that contains one primary
node (called the master node) and seven active secondary nodes (called
slave nodes). Thus, we can say that there are a total of 8 active nodes
which are present at a distance of 10 meters. The communication
between the primary and secondary nodes can be either one-to-one
or one-to-many. Possible communication is only between the mas-
ter and slave; Slave–slave communication is not possible. It also has

Figure 3.14  Bluetooth.

Protocols in IoT  85

255 parked nodes; these are secondary nodes and cannot participate in
communication unless it becomes converted to the active state.

Scatternet: This is formed by using various piconets. A slave that is pres-
ent in one piconet can act as master (or we can say primary) in another
piconet. This kind of node can receive a message from a master in one
piconet and deliver the message to its slave in the other piconet where
it is acting as a slave. This type of node is referred to as a bridge node.
A station cannot be mastered in two piconets.

3.4.1 � Applications of Bluetooth in IoT

Bluetooth Topologies: Pair, Broadcast, Mesh as shown in Figure 3.15:

Pair: Bluetooth as a means of pairing two devices. This might include, for
example, a computer paired with a wireless mouse.

Broadcasting: Bluetooth as a means of having one device broadcast infor-
mation to many devices or vice versa. This includes, for example, play-
ing music on smart speakers and simultaneously casting photos to a
projector, both using a single iPhone.

Mesh: Bluetooth as a way of connecting many devices to many others as
if in a spider’s web. For example, connecting 1,278 overhead lights in
a warehouse to each other to dim and brighten lights automatically
based upon activity and personal preferences.

Bluetooth is a useful technology for data transfers. It’s now found in various
devices and is popular for everything from music streaming to file sharing.
One disadvantage of Bluetooth is that it can use a substantial amount of
battery power on your device. If you leave a Bluetooth connection on all
day, the additional power consumption is noticeable. This is particularly
problematic for devices with limited power, such as those belonging to the
Internet of Things, or even just your smartphone. Bluetooth Low Energy
(BLE) has been designed to address this problem. So, what exactly is BLE
and how does it work?

Figure 3.15  Bluetooth topologies.

86  IoT Fundamentals with a Practical Approach

3.4.2 � What is Bluetooth low energy?

Bluetooth Low Energy (BLE) is based on Bluetooth. It was released in 2011,
and it is also referred to as either Bluetooth Smart or Bluetooth 4.0. BLE is
designed to offer many of the same features as Bluetooth, but focusing on
low power. As a result, it is not as fast as Bluetooth and is not suitable for
transferring large files. It is, however, ideal for transferring small amounts of
data with minimal power consumption. BLE has made it possible for a wide
range of small IoT devices, such as sensors and tags, to communicate despite
not having large batteries.

3.4.3 � How does BLE use less power?

BLE uses the same radio wavebands as Bluetooth and allows two devices to
exchange data in many of the same ways. The difference is that BLE devices
remain asleep in between connections. They are also designed to only com-
municate for a few seconds when they do connect.

3.4.4 � What is Bluetooth low energy used for?

BLE is never going to replace Bluetooth. But it has become the standard
technology for many applications.

3.4.4.1 � Smart devices

Most smart devices use BLE to communicate with one another. Many
smart devices have limited power and would not be able to support normal
Bluetooth use. BLE is also found in most smartphones, so it provides easy
compatibility.

3.4.4.2 � Proximity marketing

BLE can be used to send promotional messages to nearby smartphones.
This allows marketing to be targeted to people based solely on their loca-
tion. For example, a store might send notifications to people as they enter
the premises.

3.4.4.3 � Indoor location tracking

The Global Positioning System (GPS) is obviously effective in location
tracking. However, it is not usually accurate enough to be used within very
small areas such as inside buildings. BLE provides a useful alternative for
indoor tracking. When combined with beacons, it can be used to track a
smartphone from room to room.

Protocols in IoT  87

3.4.4.4 � Asset management

BLE can also be used to track physical items and is therefore popular in
asset management. Each item to be tracked is given a BLE tag. Beacons
are then set up throughout the premises to listen for the unique ID of
each tag.

3.4.4.5 � Is BLE the same as Bluetooth?

One more important question that we need to answer when talking about
Bluetooth Low Energy is how it differs from Bluetooth Classic is shown in
Figure 3.16 the technology we all know for its famous icon that we click on
when we want to pair our devices. Does it differ at all?

The answer is yes. BLE is an independent standard which is incompatible
with the classic Bluetooth. The latter was first introduced commercially over
20 years ago and is now essentially no longer being developed by the
Bluetooth Special Interests Group (SIG). However, not being developed is
not the same as “not being used.” You will frequently find it in devices that
require continuous connection, predominantly audio devices, such as wire-
less speakers or headphones.

Meanwhile, SIG introduced Bluetooth Low Energy in its 2010 Bluetooth
4.0 specification (with, later, the 2016 Bluetooth 5 specification, which was
devoted exclusively to BLE). Its main focus was on the growing market of
health- and fitness-related devices and smart home and indoor location.

3.4.4.6 � Where can you find BLE?

Bluetooth Low Energy is used virtually anywhere, which is one of its core
strengths compared to other low-powered networks. It is a commonly rec-
ognized and applied standard that essentially doesn’t require specialized
compatible hardware to be deployed. So if BLE is so popular, how is it being
used?

Figure 3.16  Bluetooth classic vs Bluetooth low energy.

88  IoT Fundamentals with a Practical Approach

3.4.4.7 � Fitness trackers and smart appliances

This is one of the primary use cases for Bluetooth Low Energy, which argu-
ably made it so ubiquitous. Because Bluetooth technologies (both classic
and BLE) are so commonly available in smartphones, tablets, and laptops,
it stands to reason that personal devices that we frequently pair with them
– such as fitness trackers and various smart appliances – would use these,
too. While you can think of even more constrained devices, smart appliances
and trackers also usually have pretty heavy limitations. The bulk of their
energy goes into basic functioning. Consider your smart band: it probably
measures your steps or monitors your heartbeat continuously, using up a lot
of battery life. If it were constantly relaying that information to your phone,
too, it would drain the battery life a lot faster. This is why manufacturers
look for ways to save energy here and there, and BLE is a perfect solution.

3.4.5 � Indoor location tracking

One of the major BLE benefits is that it can be used for accurate positioning
where GPS cannot be used indoors as shown in Figure 3.17. You can use
BLE-equipped devices as beacons, i.e., to broadcast data to all devices in
the vicinity, rather than to have one-to-one exchange. Based on that, devices
capable of processing that data (such as phones) or simply capturing and
relaying it further (such as access points) can determine the beacon’s position.

This is why BLE is frequently used in indoor navigation systems, for
example, in shopping malls that want to provide customers with GPS-like

Figure 3.17  Indoor location tracking.

Protocols in IoT  89

indoor mapping that will help them navigate to their favorite shop. But
retail software for indoor positioning has a wider range of applications.
Among other things, stores can use platforms such as Linkyfi to identify
potential customers nearby and advertise their best deals (for example,
via push notifications) for more targeted marketing that attracts more
attention.

3.4.5.1 � Contact tracing

Indoor positioning has gained even more importance when occupancy man-
agement became one of the top priorities for all businesses. To keep their
colleagues safe, employers are increasingly looking into BLE-based solutions
for unintrusive contact tracing as shown in Figure 3.18. In this scenario,
people coming into the office are equipped with a simple, single-functioning
BLE tag that collects the information on where they go and whom they come
in contact with. At the same time, it doesn’t store any sensitive data that
might be considered an invasion of privacy. If someone in the office is sick, it
is easy to identify who might have been exposed and contain the outbreak.

Solutions for location-based services, such as Linkyfi Location Engine,
also allow offices to identify how people move around and where they tend
to gather, providing heat maps of the most frequented places. This informa-
tion can be used to manage occupancy and keep everyone safe; it can also
be used to optimize space in general, such as by repurposing underused
spaces.

3.4.5.2 � Employee safety

BLE tags can help keep employees safe in more ways than one. Among the
most common uses of this technology, other than contact tracing, are panic
buttons and fall detection systems.

Panic buttons can be used by bank clerks, hotel staff, or anyone who
works in a job that poses a degree of sudden danger. When carrying a BLE

Figure 3.18  Contact tracing.

90  IoT Fundamentals with a Practical Approach

tag, these workers can discreetly call for help if they feel threatened, for
example, by a suspicious customer. This will immediately alert the security
and, thanks to location tracking, let them know the location of the person
in danger.

With regard to the detection of a fall, BLE tags with movement sensors
can be used in a range of locations, such as construction sites or nursing
homes. Whenever the sensor registers a sudden fall, the BLE tag will auto-
matically send an alert with the information of who’s in danger and where
they are so that they can be helped as quickly as possible.

3.4.5.3 � Asset tracking

It’s not only people that you can track with BLE tags. They can also be used
for asset tracking as shown in Figure 3.19 simply attach the tag to objects
you want to keep an eye on. You can either monitor how they move or, with
geo-fencing, make sure they stay where they should be (e.g. carts in a shop-
ping mall). This has applications for various verticals. For example, in logis-
tics, it can be used to follow cargo. In medicine to monitor essential supplies
so that they can always be easily found when needed. In IT – to track equip-
ment to determine how, where, and when it’s being used and then introduce
optimizations, or to make sure it stays in the office. And these are just a few
examples. It’s applications like these, where the longevity and small data
transfer that BLE allows are becoming crucial differentiators.

3.4.6 � Architecture of BLE

Bluetooth Low Energy architecture is also described as the Bluetooth LE
protocol stack as shown in Figure 3.20. This describes the different parts of
the Bluetooth LE system, their components, and how they interact to yield
the expected results. The BLE protocol stack architecture comprises three
parts: the application layer, the host layer, and the controller layer.

Figure 3.19  Asset tracking.

Protocols in IoT  91

	 1.	The application layer: This is the part that interacts directly with
the user. It contains the user interface, application logic, and general
application architecture. Underneath this layer is the actual hardware,
which comprises the host and the controller layers.

	 2.	The host layer: The host layer follows the application layer. It consists
of various structures:

	 •	 Generic Access Profile (GAP): The GAP is a part of BLE architecture
that describes how BLE devices communicate with each other. It
includes peripheral or broadcaster devices, advertising information
packets, and central device scanning for connection-ready devices.

	 •	 Generic Attribute Profile (GATT): This operates in a similar way
to the GAP. It describes how attributes are formatted, packaged,
and transferred across connected devices following a set of rules.
The devices communicate as a client or a server. The client sends
requests to the GATT server, which stores the attributes and makes
them available on request. The client can either READ or WRITE
or perform both functions on the attribute (data).

	 •	 Attribute Protocol: The attribute protocol lays the foundation for
the GATT profile to function. It is a set of rules guiding how data is
accessed. It defines the GATT protocol’s client–server rules, stating
that a device can be a client, server, or function as both. The attri-
bute protocol also defines the arrangement of data in the form of
attributes, each having a 16-bit attribute handle, a universal unique
identifier (UUID), a value, and a set of permissions. It also defined

Figure 3.20  BLE architecture.

92  IoT Fundamentals with a Practical Approach

the READ and WRITE operations that one can execute on the attri-
bute stored in the server.

	 •	 Security Manager Protocol: This protocol ensures communication
security between two or more BLE devices. It verifies and authenti-
cates the pairing process. It can also prevent harmful tracking of a
device’s Bluetooth address by hiding it.

	 •	 Logical Link Controller and Adaptation Protocol (L2CAP): The
L2CAP is vital to the BLE architecture. It functions as a proto-
col multiplexer by converting multiple protocols into standard
BLE packets. It can also break down and recombine large data
packets.

	 3.	The controller layer: The controller is the physical part of the Bluetooth
Low Energy architecture hardware component. It holds the circuit
which decodes signals. The chip operates on the 2.4GHz radio band,
which it effectively divides into 40 channels. The channels are used for
data transmission and sending advertising packets to establish a con-
nection. The controller consists of the physical layer already described
and the link layer which scans, advertises, creates, and monitors com-
munication between BLE devices.

3.5 � HTTP

The Hypertext Transfer Protocol (HTTP) is an application protocol for dis-
tributed, collaborative, hypermedia information systems that allows users to
communicate data on the World Wide Web as shown in Figure 3.21. HTTP
was invented alongside HTML to create the first interactive, text-based web
browser: the original World Wide Web. Today, the protocol remains one of
the primary means of using the Internet. Hypertext is structured text that
uses logical links (hyperlinks) between nodes containing text. HTTP is the
protocol to exchange or transfer hypertext. The standards development of
HTTP was coordinated by the Internet Engineering Task Force (IETF) and
the World Wide Web Consortium (W3C), culminating in the publication of
a series of Requests for Comments (RFCs).

HTTP data rides above the TCP protocol, which guarantees the reliability
of delivery, and breaks down large data requests and responses into network-
manageable chunks. TCP is a “connection”-oriented protocol, which means
when a client starts a dialogue with a server the TCP protocol will open a
connection, over which the HTTP data will be reliably transferred. When
the dialogue is complete that connection should be closed. All of the data in
the HTTP protocol is expressed in human-readable ASCII text.

The steps can be summarized as below:

	•	 Client sends a SYN packet to the server.
	•	 Web server responds with SYN-ACK packet.

Protocols in IoT  93

	•	 Client again sends an ACK packet, concluding a connection establish-
ment. This is also commonly referred to as a 3-way handshake.

	•	 Client sends a HTTP request to the server asking for a resource.
	•	 Client waits for the server to respond to the request.
	•	 Web server processes the request, finds the resource and sends the

response to client.
	•	 If no more resources are required by the client, it sends a FIN packet

to close the TCP connection.

3.5.1 � HTTP protocol in IoT

Hyper Text Transfer Protocol (HTTP) is the most well-known example of
an IoT network protocol. This protocol has formed the foundation of data
communication over the web. It is the most common protocol which is used
for IoT devices when there is a lot of data to be published. HTTP is the pro-
tocol used to transfer data over the web. HTTP uses a server–client model.
A client might be a home computer, a laptop, or a mobile device. The HTTP
server is typically a web host running web server software, such as Apache
or IIS.

Is HTTP safe to use? The accurate answer is: it depends. If you are just
browsing the web, looking at cat memes and dreaming about that $200
cable knit sweater, HTTP is fine. However, if you’re logging into your bank

Figure 3.21  HTTP.

94  IoT Fundamentals with a Practical Approach

or entering credit card information in a payment page, it’s imperative that
URL is hyper text transfer protocol secure (HTTPS). Otherwise, your sensi-
tive data is at risk.

3.5.2 � Why HTTP is not suitable for IoT?

One-to-one communication: HTTP is designed for communication
between two systems only at a time. While this works fine for request-
ing resources from the web as a user, it doesn’t fulfill the needs of IOT
setup. In most of the IOT applications at large industries and manufac-
turing units, there are a large number of sensors which are generating
data at the same time and want to push this ahead to the server at the
same time as well. Hence, HTTP does not fulfill the need for one to
many communications between sensors and the server.

Unidirectional: HTTP is unidirectional in the sense that only one system
(client or server) can send a message to the other at any point in time.
This is because it is based on the request–response model where client
has to explicitly request for resources and then server responds with
them. However, in the case of IOT applications, we may need to send
data in both directions simultaneously telemetry and tele command
can be executed at the same time!

Synchronous request–response: After requesting a resource to the server,
the client has to wait for the server to respond. This blocks some sys-
tem resources such as threads, CPU cycles etc. on both the client as
well as the server side. Additionally, this leads to the slow transfer
of data. IOT sensors are small devices with very limited computing
resources and hence cannot work efficiently in a synchronous manner.
All the widely used IOT protocols are based on asynchronous model.

Not designed for event-based communication: Most of the IOT applica-
tions are event-based. The sensor devices measure for some variables
such as temperature, air quality and contents etc. and might need to
take event-driven decisions like turning off a switch etc. HTTP was
designed for a request–response-based communication rather than an
event-driven communication. Also, programming this event-based sys-
tem using HTTP protocol becomes a big challenge, especially because
of the limited computing resources on the sensor devices.

Scalability: HTTP connections utilize high system resources, especially
I/O threads. For every HTTP connection, the client/server also has to
open an underlying persistent TCP connection. As more sensor devices
are added to the network, the load on the server increases. If the sensor
devices themselves are connected to multiple other devices, this puts a
heavy load on the tiny system resources of the sensors. Hence, HTTP
does not scale well for IoT applications.

High Power Consumption: Since HTTP utilizes heavy system resources
as explained above, this also leads to heavy power consumption.

Protocols in IoT  95

Advanced Wireless Sensor Networks of today have battery-operated
sensor devices utilizing wireless network connections. Because of the
heavy power consumption, HTTP is not suitable for advanced Wireless
Sensor Networks.

As is clear from the above, HTTP has severe limitations for IoT applica-
tions. Many advanced application-layer protocols (MQTT, AMQP, CoAP)
have been developed to overcome these limitations.

3.6 � Wi-Fi

Wi-Fi is a wireless networking technology that allows devices such as comput-
ers (laptops and desktops), mobile devices (smartphones and wearables), and
other equipment (printers and video cameras) to interface with the Internet
as shown in Figure 3.22. It allows these devices and many more to exchange
information with one another, creating a network. Wi-Fi has played a foun-
dational role in delivering IoT innovation, providing pervasive connectivity
to connect a wide variety of “things” to each other, to the Internet, and to the
(at present) 18 billion Wi-Fi devices in use around the world. The economic
potential of the Internet of Things is boundless, and Wi-Fi delivers a vast range
of opportunities across a variety of sectors, including smart homes, smart cit-
ies, automotive, healthcare, enterprise, government, and IIoT environments.

Wi-Fi enables users to automate their smart homes and connect a wide
variety of connected household objects, to monitor supply chains and other
critical functions in real time in industrial facilities, and to unlock business
value by increasing productivity and efficiencies for both enterprises and
hybrid-work scenarios. The integration and interoperability delivered by

Figure 3.22  Wi-Fi.

96  IoT Fundamentals with a Practical Approach

Wi-Fi will enable IoT solutions to securely interconnect to one another and
to billions of user-centric devices to unlock the greatest value from IoT
applications and environments.

3.6.1 � How does Wi-Fi work?

Wi-Fi is a wireless technology for networking, which uses electromagnetic
waves to transmit networks. We know that there are many divisions of elec-
tromagnetic waves according to their frequency, such as X-rays, Gamma rays,
radio waves, and microwaves. In Wi-Fi, the radio frequency is used. In trans-
mitting the Wi-Fi signal, there are three mediums as shown in Figure 3.23:

	•	 Base station network or an Ethernet (802.3) connection: This is the
main host network from where the network connection is provided to
the router.

	•	 Access point or router: This is a bridge between a wired network and a
wireless network. It accepts a wired Ethernet connection, converts the
wired connection to a wireless connection and spreads the connection
as a radio wave.

	•	 Accessing devices: This is our mobile phone, computer, etc. from where
we use the Wi-Fi and surf the Internet.

All the electronic devices read data in binary form, also router or our
devices, here routers provide radio waves and those waves are received by
our devices and read the waves in binary form. We all know how a wave
looks like, the upper pick of the wave is known as 1 and the lower pick of
the wave is known as 0 in binary, as in Figure 3.24.

Figure 3.23  Working of Wi-Fi.

Protocols in IoT  97

3.6.2 � Applications of Wi-Fi

Wi-Fi has many applications. It can be used in all the sectors where a com-
puter or any digital media is used; it can also be used for the purposes of
entertainment. Among the applications are the following:

	•	 Accessing the Internet: Using Wi-Fi, we can access the Internet in any
Wi-Fi-capable device wirelessly.

	•	 We can stream or cast audio or video wirelessly on any device using
Wi-Fi for our entertainment.

	•	 We can share files, data, etc. between two or more computers or mobile
phones using Wi-Fi, and the speed of the data transfer rate is also very
high. Also, we can print any document using a Wi-Fi printer, this is
very much used nowadays.

	•	 We can use Wi-Fi as Hotspots, which creates Wireless Internet access
over a particular range of area. Through the use of such hotspots, the
owner of the main network connection can offer temporary network
access to Wi-Fi-capable devices so that the users can use the network
without knowing anything about the main network connection. Wi-Fi
adapters are mainly spreading radio signals using the owner network
connection to provide a hotspot.

	•	 Using Wi-Fi or WLAN we can construct simple wireless connections
from one point to another, known as point-to-point networks. This
can be useful to connect two locations that are difficult to reach by
wire, such as two buildings of corporate business.

	•	 One more important application is voice-over Wi-Fi (VoWi-Fi). Some
years ago, telecom companies had introduced Voice over Long-Term
Evolution(VoLTE). Nowadays they are introduced to VoWi-Fi, by
which we can call anyone by using our home Wi-Fi network, only
one thing is that the mobile needs to connect with the Wi-Fi. Then
the voice is transferred using the Wi-Fi network instead of using the
mobile SIM network, so the call quality is very good. Many mobile
phones are already getting the support of VoWi-Fi.

	•	 Wi-Fi in offices: In an office, all the computers are interconnected
using Wi-Fi. In the case of Wi-Fi, there are no wiring complexities. In

Figure 3.24  Data transmission.

98  IoT Fundamentals with a Practical Approach

addition, the speed of the network is good. For Wi-Fi, a project can be
presented to all the members at a time in the form of an Excel sheet,
PPT, etc. For Wi-Fi, there is no network loss as in cable due to cable
break.

	•	 Also using W-Fi a whole city can provide network connectivity by
deploying routers at a specific area to access the internet. Already
schools, colleges, and universities are providing networks using Wi-Fi
because of its flexibility.

	•	 Wi-Fi is used as a positioning system also, by which we can detect the
positions of Wi-Fi hotspots to identify a device location.

3.7 �TCP/UDP

Transmission Control Protocol (TCP) is a communications standard that
software applications use to exchange data. It sets the parameters for the
exchange, confirms what is being sent, where it is coming from, where it
is going, and whether or not it arrived correctly. Unlike User Datagram
Protocol (UDP), another standard that applications use to exchange data,
TCP is designed for accuracy, rather than speed. In data transport, data
packets can sometimes arrive out of order or be lost. TCP numbers each
packet to ensure that every piece reaches its destination and can be rear-
ranged if needed. When packets don’t arrive within a specified timeframe,
Transmission Control Protocol requests re-transmission of the lost data.

Throughout the entire exchange, TCP maintains the connection between
the two applications, ensuring that both parties send and receive everything
that needs to be transmitted and confirming that it’s correct.

Transmission Control Protocol is the most popular standard for exchang-
ing data over the Internet Protocol (IP), and it’s often referred to as TCP/IP.
Since it helps facilitate the exchange of data over the Internet, TCP is part of
what’s known as the “Transport Layer” of a network.

3.7.1 � How Transmission Control Protocol works

Transmission Control Protocol (TCP) serves as an intermediary between
two applications that need to exchange data. When an application wants to
transmit data, TCP ensures that:

	•	 Data arrives in order
	•	 Data has minimal errors
	•	 Duplicate data gets discarded
	•	 Lost or discarded packets get resent

TCP act rather like a courier for the Internet. Once TCP establishes the
connection and defines the interaction, it boxes up the data, loads it onto
separate trucks, and sends it to its destination via the IP highway.

Protocols in IoT  99

“On the road,” traffic jams (network congestion), detours (traffic load
balancing), and car accidents (network errors) can cause data to arrive out
of order or prevent it from arriving on time.

As the data packets arrive, the recipient essentially signs for them with an
acknowledgment: “I’ve received packet 4.” If the sender does not receive this
acknowledgement within a specified time, it resends the transmission. Once
everything has arrived, TCP terminates the connection.

The entire process happens in three distinct phases, as detailed in the next
section of the chapter.

3.7.2 �The three phases of TCP operations

TCP operations involve numerous steps where the two endpoints use TCP
to make requests, acknowledge each other, and confirm that the exchange is
happening as intended. These steps fit into three main stages:

	 1.	Connection establishment
	 2.	Data transfer
	 3.	Connection termination

The phase names are self-explanatory, but there’s a lot more happening
within each stage of the process.

During the connection establishment phase, TCP facilitates a “three-
way handshake” where the applications request to synchronize and
acknowledge each other. At this stage, TCP sets the parameters for the
exchange and confirms that both entities (such as a server and a client)
can participate in the exchange.

During the data transfer phase, TCP accepts the data being transferred,
breaks it into ordered packets, adds a TCP header to provide context,
and forwards it to the recipient using the Internet Protocol.

During the connection termination phase, the applications wait until they
both acknowledge that the transmission is finished and error-free, and
then TCP closes the connection between them.

3.7.3 �TCP segments

When the Transmission Control Protocol receives a data stream, divides it
up, and adds a TCP header to the transfer, the data stream becomes a “TCP
segment.” The TCP header ensures that when the individual data packets
arrive at their destination, they can easily be arranged in the correct order,
and the recipient can clearly see if anything is missing.

In the connection establishment phase, applications can announce their
Maximum Segment Size (MSS), which defines the largest TCP segment they
will exchange. This represents the largest amount of data that will be

100  IoT Fundamentals with a Practical Approach

transmitted in a single segment. If the MSS is too large, IP fragmentation
will break the individual packets into smaller pieces, increasing the risk that
some packets will get lost and that the applications will have to retransmit
the data multiple times (this increases latency).

3.7.4 � Congestion control

During the data transmission TCP ensures that packets are sent at a pace that
the network’s resources can handle. Initially, TCP only allows a few bytes
to go through the network. This is known as the “Congestion Window”
(CWND). When the recipient acknowledges the data has arrived success-
fully, then TCP exponentially increases the CWND and allows more data
to go through.

After the CWND reaches a specified threshold, the increase becomes lin-
ear. If a packet gets lost, TCP significantly reduces the Congestion Window
and transmits slowly again. Over time, TCP data throughput forms a saw-
tooth pattern, where the transmission rate increases and decreases sharply
to control network congestion.

3.7.5 � Error detection

Unlike UDP, TCP checks transmissions for errors. Using sequence numbers
and a checksum, it determines whether transmissions arrive correctly. If one
bit is inaccurate, the checksum will be incorrect. When that happens, TCP
drops the incorrect segment.

Basis Transmission control protocol (TCP) User datagram protocol (UDP)

Type of service TCP is a connection-oriented
protocol. Connection-
orientation means that the
communicating devices should
establish a connection before
transmitting data and should
close the connection after
transmitting the data.

UDP is the Datagram-oriented
protocol. This is because
there is no overhead for
opening a connection,
maintaining a connection, and
terminating a connection.
UDP is efficient for broadcast
and multicast types of
network transmission.

Reliability TCP is reliable as it guarantees
the delivery of data to the
destination router.

The delivery of data to the
destination cannot be
guaranteed in UDP.

Error checking
mechanism

TCP provides extensive error-
checking mechanisms. It is
because it provides flow
control and acknowledgment
of data.

UDP has only the basic error
checking mechanism using
checksums.

(Continued)

Protocols in IoT  101

Basis Transmission control protocol (TCP) User datagram protocol (UDP)

Acknowledgment Acknowledgment segment is
present.

No acknowledgment segment.

Sequence Sequencing of data is a feature
of Transmission Control
Protocol (TCP). This means
that packets arrive in order at
the receiver.

There is no sequencing of
data in UDP. If the order is
required, it has to be managed
by the application layer.

Speed TCP is comparatively slower
than UDP.

UDP is faster, simpler, and more
efficient than TCP.

Retransmission Retransmission of lost packets
is possible in TCP, but not in
UDP.

There is no retransmission
of lost packets in the User
Datagram Protocol (UDP).

Header Length TCP has a (20–60) bytes
variable length header

UDP has an 8 bytes fixed-length
header.

3.8 � ADVANCED MESSAGE QUEUING PROTOCOL (AMQP)

Advanced Message Queuing Protocol (AMQP) is an open protocol for asyn-
chronous message queuing, which has been developed and matured over
several years as shown in Figure 3.25. AMQP is an open standard, binary
application layer protocol designed for message-oriented middleware i.e.,
AMQP protocol standardizes messaging using producers, brokers, and con-
sumers and messaging increases loose coupling and scalability.

The AMQP was contrived to enable a wide range of applications and
systems to work together, regardless of their internal designs, standardizing
enterprise messaging on an industrial scale. AMQP protocol has been
selected the OASIS industry standards group1, with the intention of it even-
tually becoming an ISO/IEC standard. The AMQP protocol is almost a com-
plete superset, lacking only explicit protocol support for Last-Value-Queues
and will messages. However, its deliberate design for extensibility, using an

Figure 3.25  AMQP.

102  IoT Fundamentals with a Practical Approach

IANA-like approach with a discursive approach, ensures that such features
can be added in a forward-compatible, widely agreed-upon way.

3.8.1 � How AMQP works

Let’s see how AMQP works. It is a protocol that deals with both publish-
ers and consumers. The publishers produce the messages, the consumers
pick them up and process them. It’s the job of the message broker (such as
RabbitMQ) to ensure that the messages from a publisher go to the right
consumers. In order to do that, the broker uses two key components:

	 1.	Exchanges
	 2.	Queues

The following Figure 3.26 shows how they connect a publisher to a
consumer:

As you can see, the setup is pretty straightforward. A publisher sends mes-
sages to a named exchange and a consumer pulls messages from a queue,
or the queue pushes them to the consumer depending on the configuration.
The connections have to be made in the first place, so the question is: how
publishers do and consumers discover each other? The answer is via the
name of the exchange. Usually, either the publisher or the consumer creates
the exchange with a given name and then makes that name public. AMQP
is designed to solve real problems completely.

Figure 3.26  Working of AMQP.

Protocols in IoT  103

3.9 � CONSTRAINED APPLICATION PROTOCOL (CoAP)

IoT devices have very limited resources. For example, they have embedded
processors or controllers, and limited RAM and ROM, and they need to
operate on battery without replacement for weeks, months, or even years.
Even they have to communicate data swiftly; although this may be only
small in amounts, it was on limited network bandwidth. Bringing the web to
constrained devices that lack the capabilities of computer and smartphones
require a special type of IoT protocol. The Constraint Application Protocol
(CoAP) is one such protocol designed to fit this requirement as shown in
Figure 3.27.

CoAP is a specialized web transfer protocol for use with constrained
nodes (low power sensors and actuators) and constrained networks (low
power, lossy network). It enables those nodes to be able to talk with other
constrained nodes over the Internet. The protocol is specifically designed for
M2M applications, such as smart energy, home automation, and many
industrial applications.

CoAP is a web-based protocol that has been specifically designed to con-
nect small, semi-intelligent devices to the Internet of Things (IoT). The CoAP
works with constrained nodes and constrained networks, to facilitate the
compartmentalized deployment of machine-to-machine (M2M) solutions
comprising of a multitude of network-enabled devices.

The CoAP protocol is necessary because traditional protocols such as
TCP/IP are considered “too heavy” for IoT applications that involve con-
strained devices. CoAP protocol runs on devices that support UDP protocol.
In UDP protocol, client and server communicate through connectionless
data grams.

Figure 3.27  CoAP.

Internet

REST

Constrained Environments

CoAP

CoAP

CoAP

Proxy

Client

C

C

C

C

C

Server

Server

104  IoT Fundamentals with a Practical Approach

To put things a little more simply, CoAP Protocol facilitates the rapid
networking of hundreds of IoT-enabled devices, to build a single networked
application, such as could be used for automated manufacturing lines, or a
smart building. CoAP is a specialized web transfer protocol for use with con-
strained devices (such as microcontrollers) and constrained networks in the IoT.

This protocol is used in M2M data exchange, such as smart energy, home
automation, and many industrial applications and is very similar to HTTP.
CoAP protocol is necessary because traditional protocols, such as TCP/IP,
are considered too heavy for IoT applications that involve constrained
devices. CoAP protocol runs on devices that support UDP protocol. In UDP
protocol, client and server communicate through connectionless data grams
as shown in Figure 3.28.

CoAP Architecture: The World Wide Web (WWW) and the constraints
ecosystem are the two foundational elements of the CoAP protocol
architecture as shown in Figure 3.29. Here, the server monitors and
helps in communication happening using CoAP and HTTP while
proxy devices bridge the existing gap for these 2 ecosystem, making
the communication smoother.

CoAP allows HTTP clients (also called CoAP clients here) to talk or exchange
data/information with each other within resource constraints as shown in
Figure 3.30. While one tries to understand this architecture, becoming famil-
iar with some key terms is crucial:

	•	 Endpoints are the nodes of which the host has knowledge.
	•	 The client sends requests and replies to incoming requests.
	•	 The server gets and forwards requests. It also gets and forwards the

messages received in response to the requests it had processed.
	•	 The sender creates and sends the original message.
	•	 The recipient gets the information sent by the client or forwarded by

the server.

Figure 3.28  CoAP protocol stack.

Protocols in IoT  105

Figure 3.29  CoAP architecture.

Figure 3.30  CoAP protocol stack.

106  IoT Fundamentals with a Practical Approach

3.9.1 � CoAP layer

The protocol works through its two layers:

3.9.1.1 � CoAP messages model

This makes UDP transactions possible at endpoints in the confirmable
(CON) or non-confirmable (NON) format. Every CoAP message features a
distinct ID to keep the possibilities of message duplications at bay. The three
key parts involved to build this layer are the binary header, the computer
option, and the payload. As explained before, confirmable texts are reliable
and easy-to-construct messages that are fast; they are resent until the receipt
of a confirmation of successful delivery (ACK) with message ID.

3.9.1.2 � CoAP request/response model

This layer takes care of CON and NON message requests. Acceptance of
these requests depend on the server’s availability. Cases are:

	 1.	 If idle, the server will handle the request right away. If a CON, the cli-
ent will get an ACK for it. If the ACK is shared as a token and differs
from the ID, it is essential to map it properly by matching request-
response pairs.

	 2.	 If there is a delay or a wait involved, the ACK is sent but as an empty
text. When its turn arrives, the request is processed and the client gets
a fresh CON.

The key traits of the request/response model are mentioned next:

	•	 Request or response codes for CoAP are same as for the HTTP, except
for the fact that they are in the binary format (0–8 byte Tokens) in
CoAP’s case.

	•	 Request methods for making calls (GET, PUT, POST, and DELETE)
are declared in the process.

	•	 A CON response could either be stored in an ACK message or forward
as CON/NON.

3.9.2 � CoAP protocol security

The main concern from the security point of view is to provide data integrity,
data authentication and data confidentiality. The CoAP provides security over
Datagram Transportation Layer Security (DTLS) in the application layer as
shown in Figure 3.31. As CoAP runs over the UDP protocol stack, there are

Protocols in IoT  107

chances of data loss or data disordering. But with DTLS security, these two
problems can be solved. DTLS security adds three implementations to CoAP:

	 1.	Packet retransmission
	 2.	Assigning sequence number within handshake
	 3.	Replay detection

The security is designed to prevent eavesdropping, tampering, or data forg-
ery at any cost. Unlike network layer security protocols, DTLS in application
layer protect end-to-end communication. DTLS also avoids cryptographic
overhead problems that occur in lower layer security protocols.

There is a Secured Handshake Mechanism in DTLS, as shown in Figure 3.32.

The CoAP can also be implemented over TCP and over TLS. TCP and
TLS transport for the Constrained Application Protocol (CoAP).

Figure 3.32  Image showing DTLS Secured Handshake Mechanism for CoAP.

Server

Client: Hi

Client: Hi

Request: Hi verification

Server: Hi, server key exchange, server Hi done

Client key exchange, Finished

Finished

Client

Figure 3.31  �Image showing CoAP protocol at application layer in network
architecture.

108  IoT Fundamentals with a Practical Approach

In one example of Client–Server Communication using the CoAP Protocol,
an ESP8266 module is configured as a server and a browser on a laptop is
configured as a client. The CoAP client sends some data to the server and the
server acknowledges it by switching an LED on.

3.10 � CoAP vs MQTT

As there are great similarities, we won’t blame you if you consider these
two identical. For instance, they both are used for IoT devices as they both
necessitate less amounts of network packets causing more power-optimized
performance, less storage consumption, and longer battery power.

CoAP and MQTT are distinct from each other in a number of different
ways as shown in Figure 3.33.

CoAP vs MQTT

3.11 � RF

Radio frequency (RF) is the oscillation rate of an alternating electric current
or voltage or of a magnetic, electric, or electromagnetic field or mechanical
system in the frequency range from around 20 kHz to around 300 GHz.

Figure 3.33  MQTT vs CoAP.

MQTT CoAP

This model has publishers and subscribers as main
participants Uses requests and responses

Central broker handles message dispatching,
following the optimal publisher to client path.

Message dispatching happens on a
unicasting basis (one-to-one). The process
is same as HTTP.

Event-oriented operations Viable for state transfer

Establishing a continual and long-lasting TCP
connection with the broker is essential for the
client.

Involved parties use UDP packets (async)
for message passing and communication.

No message labeling but have to use diverse
messages for different purposes.

It defines messages properly and makes
its discovery easy.

Protocols in IoT  109

3.11.1 � Electric current

Electric currents that oscillate at radio frequencies (RF currents) have spe-
cial properties not shared by direct current or lower audio frequency alter-
nating current, such as the 50 or 60 Hz current used in electrical power
distribution.

	•	 Energy from RF currents in conductors can radiate into space as elec-
tromagnetic waves (radio waves). This is the basis of radio technology.

	•	 RF current does not penetrate deeply into electrical conductors but
tends to flow along their surfaces; this is known as the skin effect.

	•	 RF currents applied to the body often do not cause the painful sensa-
tion and muscular contraction of electric shock that lower-frequency
currents produce. This is because the current changes direction too
quickly to trigger depolarization of nerve membranes. However, this
does not mean RF currents are harmless; they can cause internal injury
as well as serious superficial burns called RF burns.

	•	 RF current can easily ionize air, creating a conductive path through it.
This property is exploited by “high-frequency” units used in electric
arc welding, which use currents at higher frequencies than power dis-
tribution uses.

	•	 Another property is the ability to appear to flow through paths that
contain insulating material, like the dielectric insulator of a capacitor.
This is because capacitive reactance in a circuit decreases with increas-
ing frequency.

	•	 In contrast, RF current can be blocked by a coil of wire, or even a
single turn or bend in a wire. This is because the inductive reactance of
a circuit increases with increasing frequency.

	•	 When conducted by an ordinary electric cable, RF current has a ten-
dency to reflect from discontinuities in the cable, such as connectors,
and travel back down the cable toward the source, causing a condi-
tion called standing waves. RF current may be carried efficiently over
transmission lines such as coaxial cables.

3.11.2 � Applications of RF

	•	 Communications: Radio frequencies are used in communication devices
such as transmitters, receivers, computers, televisions, and mobile
phones, to name just a few. Radiofrequencies are also applied in carrier
current systems, including telephony and control circuits. The MOS inte-
grated circuit is the technology behind the current proliferation of radio
frequency wireless telecommunications devices such as cell phones.

	•	 Medicine: Medical applications of radio frequency: Medical applica-
tions of radio frequency (RF) energy, in the form of electromagnetic
waves (radio waves) or electrical currents, have existed for over 125

110  IoT Fundamentals with a Practical Approach

years and now include diathermy, hyperthermy treatment of cancer,
electro surgery scalpels used to cut and cauterize in operations, and
radiofrequency ablation. Magnetic resonance imaging (MRI) uses
radiofrequency waves to generate images of the human body.

	•	 Measurement: Test apparatus for radio frequencies can include stan-
dard instruments at the lower end of the range, but at higher frequen-
cies, the test equipment becomes more specialized.

3.11.3 � Frequency bands

Radio spectrum: The radio spectrum of frequencies is divided into bands
with conventional names designated by the International Telecommunication
Union (ITU) (Table 3.1).

Table 3.1  Frequency bands

Frequency range
Wavelength

range

ITU designation

IEEE bandsFull name Abbreviation

Below 3 Hz >105km Tremendously low
frequency

TLF —

3–30 Hz 105–104km Extremely low
frequency

ELF —

30–300 Hz 104–103km Super low frequency SLF —
300–3000 Hz 103–100km Ultra low frequency ULF —
3–30kHz 100–10km Very low frequency VLF —
30–300kHz 10–1km Low frequency LF —
300kHz–3

MHz
1 km–100 m Medium frequency MF —

3–30 MHz 100–10 m High frequency HF HF
30–300 MHz 10–1 m Very high frequency VHF VHF
300 MHz–3

GHz
1 m–100 mm Ultra high frequency UHF UHF, L, S

3–30 GHz 100–10 mm Super high
frequency

SHF S, C, X, Ku,
K, Ka

30–300 GHz 10–1 mm Extremely high
frequency

EHF Ka, V, W,
mm

300 GHz–3
THz

1 mm–0.1 mm Tremendously high
frequency

THF —

Protocols in IoT  111

3.11.4 � How is RF used?

The most important use for RF energy is in providing telecommunications
services. Radio and television broadcasting, cellular telephones, personal
communications services (PCS), pagers, cordless telephones, business radio,
radio communications for police and fire departments, amateur radio, micro-
wave point-to-point links and satellite communications are just a few of the
many telecommunications applications of RF energy. Microwave ovens are
an example of anon-telecommunication use of RF energy. Radiofrequency
radiation, especially at microwave frequencies, can transfer energy to water
molecules. High levels of microwave energy will generate heat in water-
rich materials such as most foods. This efficient absorption of microwave
energy via water molecules results in rapid heating throughout an object,
thus allowing food to be cooked more quickly in a microwave oven than in
a conventional oven. Other important non-telecommunication uses of RF
energy include radar and industrial heating and sealing. Radar is a valu-
able tool used in many applications range from traffic speed enforcement
to air traffic control and military surveillance. Industrial heaters and seal-
ers generate intense levels of RF radiation that rapidly heats the material
being processed in the same way that a microwave oven cooks food. These
devices have many uses in industry, including molding plastic materials, glu-
ing wood products, sealing items such as shoes and pocketbooks, and pro-
cessing food products. There are also a number of medical applications of
RF energy, such as diathermy and magnetic resonance imaging (MRI).

3.11.5 � How are people exposed to RF radiation?

People can be exposed to RF radiation from both natural and human-made
sources. The natural sources include:

	•	 Outer space and the Sun
	•	 The sky – including lightning strikes
	•	 The earth itself – most radiation from the Earth is infrared, but a tiny

fraction is RF Human-made RF radiation sources include:
	•	 Broadcasting radio and television signals
	•	 Transmitting signals from cordless telephones, cell phones and cell

phone towers, satellite phones, and two-way radios
	•	 Radar
	•	 Wi-Fi, Bluetooth devices, and smart meters
	•	 Some medical procedures, such as radio frequency ablation (using heat

to destroy tumors)
	•	 “Welding” pieces of polyvinyl chloride (PVC) using certain machines
	•	 Millimeter wave scanners (a type of full body scanner used for security

screening)

112  IoT Fundamentals with a Practical Approach

3.12 � IPv4/IPv6

IP stands for Internet Protocol while v4 refers to the fourth version of the
protocol (IPv4). In 1983, the ARPANET’s major version, IPv4, was put in
use for operation. The addresses it uses are 32-bit values that are written
using decimal format.

3.12.1 �The First major protocol

In the 1970s, the First major Internet Protocol was invented. This protocol
was IPv4 (Internet Protocol Version 4). This protocol was originally designed
to be used as an isolated military network. Following its successful use in the
military area, it was then also adapted for public use. The addresses used in
IPv4 was 32 bit because in the 1970s, 32-bit was the biggest register found
in any common processors. There were, however, a large number of limita-
tions in IPv4, including:

	•	 There were a large number of devices that were connected to the
Internet throughout the world due to which there was a shortage of
address spaces and the size of the address space was exhausting.

	•	 Due to the insufficient size of the IPv4, It was not accommodating addi-
tional parameters, which were leading to weak protocol extensibility.

	•	 Security was one of the major limitations Of IPv4. There was no limit
to the information hosted on the network.

	•	 Service support for IPv4 was very poor.
	•	 50% of all addresses were reserved for the United States of America

because that was the place where the Internet was born.
	•	 Due to the increase in the number of servers connected to the Internet,

there was also an increase in the number Of IPv4 routers. These IPv4
routers also started consuming addresses.

Due to the above-listed limitations, it was clear that a day would come when
IPv4 address space would run out. IPv4 would not last forever. Therefore, in
order to overcome the limitations, a better and new version of the Internet
Protocol, Internet Protocol Version 6 (IPv6), was constructed.

3.12.2 � Components

Network: The part of the system which specifies the determinant assigned
to it. The networking portion also specifies the connection classifica-
tion which has been allocated.

Host part: The hosts include a system on a network in a special manner.
Each client is given this portion of the IPv4 address. The node of every
component of the system will be the same but the guest portion should
differ.

Protocols in IoT  113

Subnet number: The sub-network of IPv4 seems to be the subnet identi-
fier. Regional systems with a large number of nodes are separated into
subnets, each with a subnet identifier.

3.12.3 � Benefits of IPv4

	•	 Encrypted is possible with IPv4 protection to maintain safety and
confidentiality.

	•	 The IPv4 system allotment is considerable, with over 85,000 opera-
tional devices currently. It has become simple to connect several gad-
gets all over a wide network without using NAT.

	•	 It is a networking paradigm that provides both good service and cost-
effective knowledge dissemination.

	•	 IPV4 addresses have been renamed to allow for perfect trans coding.
	•	 Networking is much more flexible and cost-effective since naming is

done more efficiently.
	•	 In multichannel organizations, the transfer of data throughout the sys-

tem is much more specialized.

3.12.4 � Anatomy of IPv4 address

An IPv4 address actually consists of two parts: one that identifies your net-
work and the other that identifies the host (i.e. the device) within the net-
work. These parts aren’t equal or fixed, so to determine the length of the
network part, the address also has a “network mask.” In CIDR notation,
this is a number after a slash that determines how many bits of the address
make up the network prefix. For example, 192.168.0.1/24 indicates that an
IPv4 address 192.168.0.1 has a 24-bit long prefix and that the network it
belongs to contains addresses ranging from 192.168.0.0 to192.168.0.255
(i.e. all having a common value of the first 24 bits). Thanks to routing pro-
tocols such as RIP, OSPF, and BGP, routers can inform each other about the
network addresses that are assigned to them or that they “know of” from
other routers, so that the data packets can be forwarded to the right net-
work and therefore also the right device.

3.12.5 � Dynamic IP addresses

When checking the IPv4 address of your own device, you may find out that
it is not always the same. This is because the DHCP server will assign an IP
address to your device dynamically, i.e., lease it for a specific amount of time.
If your device doesn’t request a DHCP lease renewal in time, then the IPv4
address will be released and assigned to a different device. This mechanism
has been implemented to conserve the very limited pool of IPv4 addresses
available. As a consequence of its architecture, the Internet Protocol version
4 is capable of providing 232 or over 4 billion IP addresses (4 294 967 296,

114  IoT Fundamentals with a Practical Approach

to be precise). If all of them were static we would only be able to provide
roughly half our population with an IP-equipped device. Thanks to dynamic
assignment, we’ve been able to manage with only IPv4 until just the last
decade and have been actively using it alongside IPv6 since it was first intro-
duced. But don’t be fooled – IPv6 adoption is inevitable, and you will see
more of that protocol as the years go by.

3.12.6 � IPv4 limitations

Believe it or not, the IPv4 system in use today was developed by the United
States Department of Defense back in the early 1980s. The protocol was
originally deployed as part of the Advanced Research Projects Agency
Network (ARPANET), which would later become the foundation for the
operation of the modern Internet. The issue, however, is that IPv4 relies on
32-bit addresses, limiting the number of unique identifiers it can accom-
modate to around 4 billion, according to the Federal Communications
Commission. This poses a major obstacle for large-scale IoT deployments
moving forward, as there simply aren’t enough IP addresses for all the
devices planned for deployment. Many businesses have been able to get
around this limitation by implementing additional layers of technology,
such as network address translation, to allow multiple locally connected
devices to share a single public IP address. But with a deluge of new M2M
applications on the rise, this method will not remain sustainable for very
much longer.

3.12.7 � Introduction to IPv6

Internet Protocols are the set of rules which are used in addressing the pack-
ets of data so that they can travel across networks to arrive at the correct
destination. Internet Protocol facilitates the exchange of data between two
different computers. Data to be transferred through the Internet is divided
up into small pieces, called packets. Each packet is recognized by IP infor-
mation which also helps the routers send the packets to the right place.
Internet Protocols are very useful and form the basis for the entire Web
service. These Protocols are the medium between two different systems to
connect with one another. Without these Protocols, using the Internet to
transfer data between two devices would be impossible.

3.12.8 � What is IPv6 in IoT?

Before going on IPv6, there might be a question in your mind that if IPv6 in
IoT is the updated version of IPv4, then where is IPv5?

Well, the answer to your question is that the Internet Engineering Task
Force (IETF) who built IPv4 decided to skip IPv5 as it would also eventually
run out of addresses. Hence, they decided to directly jump on IPv6, where

Protocols in IoT  115

there will be no such concerns. IPv6 is the latest version of the Internet
Protocol. Devices that use the Internet are recognized by their own IP
addresses so that Internet communication can work. IPv6 in IoT identifies
these devices so that they can be located through the Internet easily.

3.12.9 � Advantages of IPv6 in the Internet of Things

	•	 IoT is a vast field of technology. This field includes a large number of
devices and their working is mainly focused via the Internet. IPv6 is
capable of giving out various IP addresses to these IoT devices so that
they can be easily recognized on the Internet and can work efficiently
to transfer data from one IoT device to another.

	•	 IPv6 networks have auto-configuration capabilities which are quite
simple and can be managed easily in larger installations. With the help
of this feature of IPv6, configuration effort and deployment costs in
the field of IoT are reduced drastically.

	•	 IPv6 is capable of sending large data packets simultaneously to con-
serve bandwidth with the help of the rapid transmission of data. Due
to IPv6 in IoT, devices used in IoT will also be able to interact with
each other.

	•	 IPv6 provides far better security than IPv4. It also provides confiden-
tiality, authenticity, and data integrity. This security given by IPv6 is
of the utmost importance to IoT because of its high dependency on
network.

	•	 IPv6 in IoT has a highly efficient multicast communication feature
that eliminates the requirement for routine broadcast messaging. This
improvement helps in preserving the battery life of IoT devices by
reducing the number of packets processed.

	•	 IPv6 provides multiple addresses to devices. Its routing mechanism is
also distributed in a better way than that of IPv4. With the help of this
feature, programmers will have the liberty to assign IoT end-device
addresses that are consistent with their own applications and network
practices.

3.12.10 �The IPv6 revolution

In contrast to IPv4, the IPv6 system is based on 128-bit addresses and is
able to facilitate close to 340 undecillion unique IP identifiers. This is a mas-
sive increase in capability that promises to super-charge the IoT revolution,
but that’s not all the new system improves upon. IPv6 also supports auto-
configuration, integrated security, and a variety of new mobility features,
enabling a higher degree of network complexity. While the IPv6 system is
not backwards-compatible with IPv4, both protocols are able to work in
parallel without significant disruption. For example, upper layer protocols
such as TCP and HTTP function in the same way for both systems.

116  IoT Fundamentals with a Practical Approach

The Internet Society, in partnership with several large companies, for-
mally launched IPv6 in 2012 and has continued to campaign for its adop-
tion over the past seven years. In 2018, the organization reported that
around 25 percent of all Internet-connected networks possess IPv6 connec-
tivity, with 49 countries delivering at least 5 percent of their traffic over the
system.

According to Google, 24 of these countries have IPv6 traffic that exceeds
15 percent of total network usage, which is quite an accomplishment in such
a short time frame. Broadband Internet service providers have been a driv-
ing force in the transition from IPv4, both in the U.S. and abroad. Comcast
leads the charge in the U.S. with IPv6 deployment exceeding 66 percent,
whereas British Sky Broadcasting has reached an impressive 86 percent in
the U.K.

3.12.11 � What are the risks?

DDoS and phishing attacks, data theft, and remote hacking of industrial
control systems, healthcare systems and automotive technologies are all
likely to carry over from IPv4 to IPv6. Mindlin explained that although
the structural elements of IPv6 are naturally beefed up, along with the huge
address space, hackers will eventually find the network vulnerabilities and,
after that, get to work on attacking the higher layers.

It is said that with a vast global amount of reachable IPv6 addresses, each
connected device can be connected directly to the internet network, increas-
ing its visibility and also potentially emphasizing its vulnerability issues.

3.12.12 �The role of automation

Like numerous business processes both within and outside of the IT space,
IPv6 implementation can be made easier with the help of automation.
Williams said while many tool sets are IPv6-aware, the fundamental lack of
education around IPv6 means they may not be consistently used.

As it is with threat modelling, the relative immaturity of the IPv6 space
means there is a dearth of tools currently available.

3.13 � 6LoWPAN

6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks), is
a low-power wireless mesh network where every node has its own IPv6
address. This allows the node to connect directly with the Internet using
open standards.

6LoWPAN came to exist from the idea that the Internet Protocol could
and should be applied even to the smallest devices, and that low-power

Protocols in IoT  117

devices with limited processing capabilities should be able to participate in
the Internet of Things.

3.13.1 � Advantages of 6LoWPAN

Uses Open IP Standards

Offers End-To-End IP addressable Nodes

Offers Self-Healing, Robust and Scalable Mesh Routing

Leaf Nodes Can Sleep For a Long Duration of Time

Offers Thorough Support For The PHY Layer

It is a Standard: RFC 6282

118  IoT Fundamentals with a Practical Approach

	•	 It works great with open IP standard including TCP, UDP, HTTP,
COAP, MATT and web-sockets.

	•	 It offers end-to-end IP addressable nodes. There’s no need for a gate-
way; only a router which can connect the 6LoWPAN network to IP.

	•	 It supports self-healing, robust, and scalable mesh routing.
	•	 Offers both one-to-many & many-to-one routing.
	•	 The 6LoWPAN mesh routers can route data to other nodes in the

network.
	•	 In a 6LowPAN network, leaf nodes can sleep for a long duration of

time.
	•	 It also offers thorough support for the PHY layer which gives freedom

of frequency band & physical layer, which can be used across multiple
communication platforms like Ethernet, Wi-Fi, 802.15.4 or Sub-1GHz
ISM with interoperability at the IP level as shown in Figure 3.34.

	•	 It is a standard: RFC6282.

3.13.2 � 6LoWPAN application areas

With many low-power wireless sensor networks and other forms of wireless
networks designed to tackle specific problems, it is essential that any new
wireless system has a defined area which it addresses. While there are many
forms of wireless networks, including wireless sensor networks, 6LoWPAN
addresses an area that is currently not addressed by any other system, for
example, that of using IP, and in particular IPv6 to carry the data.

Figure 3.34  6LoWPAN protocol stack.

Application Application protocols

Not explicitly used

Not explicitly used

UDP

IPv6

Adaptation layer
6LoW(PAN)

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

ICMP

Presentation

Session

Transport

Network

Data link

Physical

HTTP

ICMPUDP

IP

Ethernet MAC

Ethernet PHY

TCP/IP protocol stack ISO/OSI layer 6LoWPAN protocol stack

TCP

Not explicitly used

Not explicitly used

RTP

Protocols in IoT  119

The overall system is aimed at providing wireless internet connectivity at
low data rates and with a low duty cycle. However, there are many applica-
tions where 6LoWPAN is being used:

	•	 Automation: There are enormous opportunities for 6LoWPAN to be
used in many different areas of automation.

	•	 Industrial monitoring: Industrial plants and automated factories pro-
vide a great opportunity for 6LoWPAN. Major savings can be made
by using automation in everyday practices. Additionally, 6LoWPAN
can connect to the cloud which opens up many different areas for data
monitoring and analysis.

	•	 Smart Grid: Smart grids enable smart meters and other devices to
build a micro-mesh network. They are able to send data back to the
grid operator’s monitoring and billing system using the IPv6.

	•	 Smart Home: By connecting your home IoT devices using IPv6, it is
possible to gain distinct advantages over other IoT systems.

3.13.3 � 6LoWPAN security

It is anticipated that the IoT will offer hackers a huge opportunity to take
control of poorly secured devices and also use them to help attack other
networks and devices.

Accordingly, security is a major issue for any standard such as 6LoWPAN,
and it uses AES-128 link layer security which is defined in IEEE 802.15.4.This
provides link authentication and encryption.

Further security is provided by the transport layer security mechanisms
that are also included. This is defined in RFC 5246 and runs over TCP. For
systems where UDP is used the transport layer protocol defined under RFC
6347 can be used, although this may require some specific hardware
requirements.

3.13.4 � 6LoWPAN interoperability

One key issue of any standard is that of interoperability. It is vital that
equipment from different manufacturers can operate together.

When testing for interoperability, it is necessary to ensure that all layers
of the OSI stack are compatible. To ensure that this can be achieved, there
are several different specifications that are applicable.

Any item can be checked to conform it meets the standard, and also
directly tested for interoperability. 6LoWPAN is a wireless/IoT-style stan-
dard that has quietly gained significant ground. Although initially aimed at
usage with IEEE 802.15.4, it is equally able to operate with other wireless
standards, making it an ideal choice for many applications.

120  IoT Fundamentals with a Practical Approach

6LoWPAN uses IPv6 and this alone has given it a distinct advantage over
other systems. With the world migrating towards IPv6 packet data, a system
such as 6LoWPAN offers many advantages for low-power wireless sensor
networks and other forms of low-power wireless networks.

Basic Requirements of 6LoWPAN:

	•	 The device should have a sleep mode in order to support battery saving
	•	 Minimal memory requirement
	•	 Routing overheads should be lowered

Features of 6LoWPAN:

	•	 It is used with IEEE 802.15,.4 in the 2.4 GHz band. Outdoor range:
~200 m (maximum)

	•	 Data rate: 200kbps (maximum)
	•	 Maximum number of nodes: ~100

Advantages of 6LoWPAN:

	•	 6LoWPAN is a mesh network that is robust, scalable, and can heal on
its own. It delivers low-cost and secure communication in IoT devices.

	•	 It uses IPv6 protocol and so it can be directly routed to cloud plat-
forms. It offers both one-to-many and many-to-one routing.

	•	 In the network, leaf nodes can be in sleep mode for a longer duration
of time.

Disadvantages of 6LoWPAN:

	•	 It is comparatively less secure than Zigbee.
	•	 It has a lower immunity to interference than either Wi-Fi or Bluetooth.

Without the mesh topology, it supports only a short range.

121DOI: 10.1201/9781003307488-4

The new data economy greatly benefits from the Internet of Things (IoT).
An IoT system’s value extends beyond its initial intended use case, such as
in automation. This is due to the fact that an IoT system’s intelligence has
additional value. The source of IoT data is a sensor. Additionally, IoT sen-
sors and actuators can cooperate to provide automation on an industrial
scale. Finally, over time, analysis of the data generated by these sensors and
actuators might yield insightful business information.

Sensor technology is evolving at a rate never before witnessed, driven by
advances in materials science and nanotechnology. As a result, it is becom-
ing more accurate, smaller, and less expensive, and able to measure or detect
things that weren’t previously imaginable. In fact, in a few years we’ll see a
trillion new sensors deployed annually since sensing technology is advanc-
ing so quickly.

4.1 � INTRODUCTION TO SENSORS

A sensor might be more accurately called a transducer. This term can be
applied to any physical object that transforms one form of energy into
another. In a sensor, a physical phenomenon is transformed into an electrical
impulse by the transducer, which then decides the reading. A microphone,
for example, is a sensor that converts sound waves from vibration energy to
electrical energy in a usable fashion so that other parts of the system may
link the electrical energy back to the original sound. A transducer is a gen-
eral phrase that refers to both sensors and actuators. A transducer changes
a signal from one kind of energy into another.

For instance, sound waves are transformed into electrical signals in a
microphone for amplification before being transferred to an output device
like a loudspeaker. This serves as an illustration of a transducer as shown in
Figure 4.1.

Chapter 4

Introduction to sensors
and actuators

http://dx.doi.org/10.1201/9781003307488-4

122  IoT Fundamentals with a Practical Approach

A sensor is a device that generates an output signal in order to detect
physical phenomena. By transforming them into another form, usually elec-
trical pulses, it detects, measures, or indicates any specific physical quantity
such as light, heat, motion, pressure, or similar phenomena. You can set up
sensors so that they react when specific changes take place. For instance, you
could programme the sensor to notify an operator if a room’s temperature
rises too high. In order to warn the control center, the sensor converts the
heat’s physical input into an electrical signal.

4.2 � INTRODUCTION TO ACTUATORS

An actuator is a different kind of transducer which is used in many IoT
systems. Simply put, an actuator works the opposite way from a sensor,
transforming an electrical input into physical movement. The actuators are
in motion. In other words, based on what has been detected, they take cer-
tain physical acts. Actuators come in a variety of forms, such as electric
motors, hydraulic systems, and pneumatic systems. A shutdown valve is a
nice illustration of an actuator. It closes the valve when it gets a signal from
a sensor or control module. An electrical signal is sent into the actuator,
which converts it into a physical action.

4.3 � CONTROLLER

A sensor may gather data and send it to a control center in a general IoT
setup as shown in Figure 4.2. There, the judgment is governed by previously
established rationale. Therefore, in response to the sensed input, a corre-
sponding command operates an actuator. As a result, with the IoT, sensors
and actuators collaborate from opposing ends. We’ll talk more about the
location of the control center within the larger IoT system later.

Figure 4.1  Transducer.

Introduction to sensors and actuators  123

Simply put, the IoT is a collection of numerous deeply connected tech-
nologies rather than a single technology. The gathering, handling, communi-
cation, and analysis of data present numerous difficulties. These IoT devices
gather a lot of data, and it is up to the user to choose which information is
pertinent for their circumstance, where to process or store it, and the pre-
ferred level of communication. Data can be stored, preprocessed, and pro-
cessed on a remote server or right at the network’s edge.

4.4 � WHAT CONNECTS SENSORS AND ACTUATORS
IN IoT DEVICES?

The sensor gathers data and transmits it to the control center in an intel-
ligent IoT system. According to its programming, the control center pro-
cesses the data before giving directions to the actuators to carry out certain
actions. The basic distinction between sensors and actuators in the Internet
of Things can be summarized as follows: the sensor is the brain, and the
actuator is the limb that executes the tasks. Let’s now develop that model
further.

The fundamental infrastructure of an IoT framework is composed of
sensors, actuators, computation servers, and the communication network
as shown in Figure 4.3. Middleware is one of the technologies that is occa-
sionally required. Software known as middleware serves as a conduit
between an operating system, database, and applications, particularly those
running over a network. All autonomous IoT components can be managed
and connected via middleware.

Figure 4.2  Working of controller.

124  IoT Fundamentals with a Practical Approach

4.4.1 � Sensors characteristics

	 1.	 Static
	 2.	Dynamic

4.4.2 � Static characteristics

This refers to how a sensor’s output alters in response to an input change
after reaching a steady state.

	•	 Accuracy: Accuracy is the capacity of measuring devices to produce
a result that is reasonably close to the actual value of the quantity
being measured. It counts mistakes. It is measured by absolute and
relative errors. Compare the output’s accuracy to a more advanced
earlier system.

Absolute error = Measured value – True value
Relative error = Measured value/True value

	•	 Range: This reveals the physical quantity’s greatest and lowest values
that the sensor is truly capable of sensing. There is no sense or form of
reaction outside of these values.

For instance, the temperature measuring range of a Resistive
Temperature Device (RTD) is between −200°C and 800°C.

	•	 Resolution: Resolution is a crucial parameter when choosing a sen-
sor. The precision improves with increased resolution. Threshold is the
condition where the accretion is equal to zero. It gives the slightest
adjustments to the input that a sensor is capable of detecting.

	•	 Precision: When repeatedly measuring the same quantity under the
same set of guidelines, a measuring instrument must be able to pro-
duce the same reading. It implies agreement between successive read-
ings, NOT closeness to the true value.

Figure 4.3  Sensor to actuator flow.

Introduction to sensors and actuators  125

It has to do with the variability of a collection of measurements. It is a pre-
requisite for accuracy, but is not a sufficient condition.

	•	 Sensitivity: Sensitivity describes the ratio of small changes in the sys-
tem’s response to small changes in its input parameters. It can be deter-
mined from the slope of a sensor’s output characteristics curve. The
little quantity difference will cause the instrument’s reading to change.

	•	 Linearity: The sensor value curve’s departure from a specific straight
line. The calibration curve determines the linearity. Under static cir-
cumstances, the static calibration curve plots the output amplitude
versus the input amplitude. The linearity of a curve is expressed by its
slope, which resembles a straight line.

	•	 Drift: The variation in the sensor’s measurement from a particular
reading when kept at that value for an extended length of time.

	•	 Repeatability: The variation in measurements made sequentially under
the same circumstances. The measurements must be taken over a brief
enough period of time to prevent considerable long-term drift.

4.4.3 � Dynamic characteristics

In this, there are a number of properties of the systems, such as:

Zero-order system

	•	 The output displays a prompt response to the input signal. Energy is
not included for storing elements.

	•	 E.g. potentiometer measure, linear and rotary displacements.

First-order system

	•	 The output steadily approaches its ultimate value. It consists of a com-
ponent for storing and dissipating energy.

Second-order system

	•	 Complex output response makes up it. Before reaching steady state,
the sensor’s output response oscillates.

4.5 � SENSOR CLASSIFICATION

	•	 Passive & Active
	•	 Analog & digital
	•	 Scalar & vector

	 1.	 Passive Sensor: It measures the amount of sunlight that is reflected
back from the Sun as shown in Figure 4.4. It is unable to sense the

126  IoT Fundamentals with a Practical Approach

input on its own. Example: Accelerometer, soil moisture, water
level and temperature sensors. Sleep, stress, light-dependent resis-
tor (LDR), cameras are passive sensors with the flash turned off.

	 2.	 Active Sensor: These are those sensors that sense the input inde-
pendently. It has a separate light or illumination source. Radar is
an example. When the flash is activated, cameras function as active
sensors. It is utilized to keep track of industrial machines in manu-
facturing and networking environments.

	 3.	 Analog Sensor: The response or output of the sensor is some con-
tinuous function of its input parameter as shown in Figure 4.5. Ex:
Temperature sensor, LDR, analog pressure sensor, and analog hall
effect.

	 4.	 Digital sensor: They respond in a binary fashion. They are designed
to overcome the disadvantages of analog sensors. Along with the
analog sensor, it also comprises extra electronics for bit conver-
sion. Example: Passive infrared (PIR) sensor and digital tempera-
ture sensor (DS1620).

Figure 4.4  Active and passive sensor.

Figure 4.5  Analog and digital sensor.

Introduction to sensors and actuators  127

	 5.	 Scalar sensor: It detects the input parameter only based on its mag-
nitude. The answer for the sensor is a function of magnitude of
some input parameter. They are not affected by the direction of
input parameters. Example: temperature, gas, strain, color, and
smoke sensor.

	 6.	 Vector sensor: The response of the sensor depends on the magni-
tude of the direction and orientation of input parameter. Example:
Accelerometer, gyroscope, magnetic field and motion detector
sensors.

4.6 � IoT SENSOR TYPES

Sensors are made to react to a certain range of physical situations. They
then produce a signal (often electrical) that might reflect the severity of the
condition being measured. Light, heat, sound, distance, pressure, or another
more particular circumstance, such as the presence or absence of a gas or
liquid, may be among those conditions. The usual IoT sensors that will be
used are as follows:

	•	 Temperature sensors
	•	 Pressure sensors
	•	 Motion sensors
	•	 Level sensors
	•	 Image sensors
	•	 Proximity sensors
	•	 Water quality sensors
	•	 Chemical sensors
	•	 Gas sensors
	•	 Smoke sensors
	•	 Infrared (IR) sensors
	•	 Ultrasonic sensors
	•	 Acceleration sensors
	•	 Gyroscopic sensors
	•	 Humidity sensors
	•	 Optical sensors

A description of each of these sensors is provided below in Figure 4.6.

128  IoT Fundamentals with a Practical Approach

4.6.1 �Temperature sensors

Temperature sensors detect the temperature of the air or a physical object
and convert that temperature level into an electrical signal that can be
calibrated to accurately reflect the measured temperature as shown in
Figure 4.7. These sensors could monitor the temperature of the soil to help
with agricultural output or the temperature of a bearing operating in a criti-
cal piece of equipment to sense when it might be overheating or nearing the
point of failure.

Example: Air conditioners, refrigerators, manufacturing processes, agri-
culture, and the healthcare industry.

Types of temperature sensors:

	•	 ICs (like LM35)
	•	 Thermistors
	•	 Thermocouples
	•	 RTD (Resistive Temperature Devices) etc.

Figure 4.6  Different types of sensors.

Figure 4.7  Temperature sensor DS1820.

Introduction to sensors and actuators  129

The most commonly used temperature sensor is DHT11 as shown in Figure 4.8.

4.6.2 � Pressure sensors

These measure the pressure or force per unit area applied to the sensor and
can detect things such as atmospheric pressure, the pressure of a stored gas
or liquid in a sealed system such as tank or pressure vessel, or the weight of
an object as shown in Figure 4.9.

BMP180: a popular digital pressure sensor for use in mobile phones,
PDAs, GPS navigation devices, and outdoor equipment.

Figure 4.9  BMP 180.

Figure 4.8  DHT11.

130  IoT Fundamentals with a Practical Approach

4.6.3 � Motion sensors

The movement of a physical object can be detected by motion sensors or
detectors utilizing a variety of technologies, such as passive infrared (PIR),
microwave detection, or ultrasonic, which detects objects using sound.
These sensors can automate the control of doors, sinks, air conditioning and
heating, and other systems in addition to being employed in security and
intruder detection systems. A motion sensor, sometimes known as a motion
detector, is a device used to detect and record movement as shown in Figure
4.10. In addition to phones, paper towel dispensers, game consoles, and vir-
tual reality headsets, motion sensors are commonly employed in home and
commercial security systems. Motion sensors are often embedded systems
that consist of three main parts: a sensor unit, an embedded computer, and
hardware, unlike many other types of sensors (which can be handled and
isolated). Because motion sensors can be configured to carry out incredibly
specialized tasks, these three components come in a variety of sizes and con-
figurations. Motion sensors, for instance, can be used to turn on floodlights,
set off audio alarms, turn on switches, and even call the police.

Motion sensors come in two varieties: active motion sensors and passive
motion sensors. A transmitter and a receiver are both present in active sen-
sors. This kind of sensor measures variations in the amount of sound or
radiation that is reflected back into the receiver in order to detect motion.
An electric pulse is sent to the embedded computer when something disrupts
or modifies the sensor’s field, and the embedded computer then communi-
cates with the mechanical part. Ultrasonic sensor technology is used by the
most popular kind of active motion detectors; these motion sensors produce
sound waves to detect the presence of things. Additionally, tomographic sen-
sors and microwave sensors (which produce microwave radiation) exist
(which transmit and receive radio waves).

Figure 4.10  Active motion sensor.

Introduction to sensors and actuators  131

In contrast to an active motion sensor, a passive motion sensor has no
transmitter. The sensor detects motion based on a perceived rise in radiation
in its environment rather than recording a steady reflection. The passive
infrared (PIR) sensor is the most commonly used passive motion sensor type
in home security systems. The PIR sensor is designed to detect the infrared
radiation that the human body naturally emits. Only infrared is permitted to
pass through the filter that houses the receiver, with a positive charge being
produced in the receiver when a human enters the PIR sensor’s field of detec-
tion. The sensing unit responds to this perceived change by sending electrical
data to the hardware component and embedded computer.

4.6.4 � Level sensors

A level sensor is a device used to maintain, measure, and monitor liquid (and
occasionally solid) levels as shown in Figure 4.11. The sensor turns the observed
data into an electric signal after detecting the liquid level. Although they can
be found in many home products, such as ice makers in refrigerators, level sen-
sors are most frequently utilized in the manufacturing and automotive indus-
tries. Level sensors can be divided into two categories: point level sensors and

Figure 4.11  Level sensors.

132  IoT Fundamentals with a Practical Approach

continuous level sensors. In order to show whether a liquid has entered a
certain point in a container, point level sensors are used. On the other side,
precise liquid level measurements are provided by continuous level sensors.
Invasive and non-contact level sensors are further categories of level sensors.
Non-contact sensors use sound or microwaves, whereas invasive sensors
establish physical contact with the object they are monitoring.

4.6.5 � Image sensors

Images are captured by image sensors and saved digitally for processing as
shown in Figure 4.12. Two of the most prominent examples of the use of
this technology are facial recognition software and licence plate readers.
Image sensors can be used in automated production lines to identify quality
problems, such as how effectively a surface is painted after leaving the spray
booth. Digital cameras, medical imaging systems, night-vision equipment,
thermal imaging equipment, radars, sonars, media houses, and biometric
systems all contain these sensors.

	•	 Through an IoT network, these sensors are employed in the retail sec-
tor to keep track of customers entering the store.

	•	 Through IoT networks, they are employed in offices and corporate
buildings to keep an eye on workers and varied activities.

4.6.6 � Proximity sensors

Through a number of different technology designs, such sensors can deter-
mine whether or not things that approach the sensor are present. Without
any physical contact, these sensors can determine whether or not an object
is nearby. In order to detect changes in the electromagnetic field or return
signal, a proximity sensor frequently emits an electromagnetic field or a

Figure 4.12  Finger print imaging sensor.

Introduction to sensors and actuators  133

beam of electromagnetic radiation (infrared, for example). These are mostly
employed in process control, monitoring, and object counting.

Example: A cell phone (comprised of an infrared LED and an IR light
detector). A proximity sensor detects how close the phone is to an outside
object, such as your ear. This sensing is done to reduce display power con-
sumption while you’re on a call by turning off the LCD backlight.

These approaches include:
Inductive technologies, which are useful for the detection of metal objects.

These are contactless sensors used to only detect metal objects. Common
applications:

	•	 Industrial usages
	•	 Production automation machines that count products and product

transfers
	•	 Security usages
	•	 Detection of metal objects, armory, land mines, etc.

Capacitive technologies, which function on the basis of objects having a dif-
ferent dielectric constant than that of air. These are contactless sensors that
detect both metallic and non-metallic objects, including liquid, powders,
and granular. Common applications:

	•	 Industrial usages
	•	 Production automation machines that count products, product transfers
	•	 Filling processes, pipelines, inks, etc.
	•	 Fluid level, composition, and pressure
	•	 Moisture control
	•	 Non-invasive content detection
	•	 Touch applications
	•	 Photoelectric technologies, which rely on a beam of light to illuminate

and reflect back from an object, or ultrasonic technologies, which use
a sound signal to detect an object nearing the sensor detecting the
presence of objects through emitting a high-frequency ultrasonic range

Common applications

	•	 Distance measurement
	•	 Anemometers for wind speed and direction detection
	•	 Automation production processes
	•	 Fluid detection
	•	 Robotics

4.6.6.1 � Water quality sensors

The requirement to be able to feel and quantify characteristics related to
water quality is dictated by the significance of water to humans on earth,
not only as a source of drinking water but also as a vital component in many
industry processes. Some examples of what is sensed and monitored include:

134  IoT Fundamentals with a Practical Approach

	•	 Chemical presence (such as chlorine levels or fluoride levels)
	•	 Oxygen levels (which may impact the growth of algae and bacteria)
	•	 Electrical conductivity (which can indicate the level of ions present in

water)
	•	 pH level (a reflection of the relative acidity or alkalinity of the water)
	•	 Turbidity levels (a measurement of the amount of suspended solids in

water)

4.6.7 � Chemical sensors

Chemical sensors can be used to monitor the conditions of industrial pro-
cesses by identifying the presence of specific chemicals that may have unin-
tentionally seeped from their containers into areas where people are present.

Chemical sensors come in a wide variety of forms and are all purpose-
built for particular tasks, but they all have two things in common: receptors
and transducers. The receptor is the area of the chemical sensor where the
analyte actually makes contact with it. The receptor’s interactions with the
analyte vary depending on the sensor. For instance, certain receptors may
separate out particular molecules whereas others can react chemically with
the analyte as a whole. The latter are referred to as more selective (sensors
that target molecules in an analyte).

The transducer is the second element that all chemical sensors have in
common. Transducers are in charge of absorbing the chemical data from the
interaction of the receptor and analyte and transforming it into the appro-
priate electrical data. Then, a mechanical part or computer receives this
information. The transducer may change the resistance, cause an audible
alarm, or display the information on a screen (interface).

4.6.8 � Gas sensors

Gas sensors, which are similar to chemical sensors, are calibrated to detect
flammable, poisonous, or combustible gas nearby as shown in Figure 4.13.
Depending on how precisely you wish to detect gas, you can change the sen-
sitivity of the smoke sensor’s built-in potentiometer Different types of gas
sensors are shown in Table 4.1.

Figure 4.13  Gas sensor.

Introduction to sensors and actuators  135

Table 4.1  Gas sensors

Sensor name Gas to measure

MQ-2 Methane, Butane, LPG, Smoke
MQ-3 Alcohol, Ethanol, Smoke
MQ-4 Methane, CNG Gas
MQ-5 Natural gas, LPG
MQ-6 LPG, butane

How does it Work?

	•	 The voltage that the sensor outputs changes accordingly to the smoke/
gas level that exists in the atmosphere. In other words, the relationship
between voltage and gas concentration is the following and is also
shown in Figure 4.14:

	•	 The greater the gas concentration, the greater the output voltage
	•	 The lower the gas concentration, the lower the output voltage

Uses:

	•	 In industries to monitor the concentration of the toxic gases
	•	 In households to detect an emergency incident
	•	 Used at hotels to avoid customers from smoking
	•	 Used in air quality check at offices
	•	 Used in air conditioners to monitor CO2 levels
	•	 Used in detecting fire
	•	 Used to check the concentration of gases in mines

Figure 4.14  Gas sensor working.

136  IoT Fundamentals with a Practical Approach

Examples of specific gases that can be detected include:

	•	 Bromine (Br2)
	•	 Carbon Monoxide (CO)
	•	 Chlorine (Cl2)
	•	 Chlorine Dioxide (ClO2)
	•	 Ethylene (C2H4)
	•	 Ethylene Oxide (C2H4O)
	•	 Formaldehyde (HCHO)
	•	 Hydrazine(s)
	•	 Hydrogen (H2)
	•	 Hydrogen Chloride HCl)
	•	 Hydrogen Cyanide (HCN)
	•	 Hydrogen Peroxide (H2O2)
	•	 Hydrogen Sulfide (H2S)
	•	 Nitric Oxide (NO)
	•	 Nitrogen Dioxide (NO2)
	•	 Ozone (O3)
	•	 Peracetic Acid (C2H4O3)
	•	 Propylene Oxide (C3H6O)
	•	 Sulfur Dioxide (SO2)

4.6.9 � Smoke sensors

Smoke sensors or detectors use optical sensors (photoelectric detection)
or ionization detection to detect the presence of smoke conditions, which
could be an indicator of a fireas shown in Figure 4.15. Smoke detectors
have long been a fixture in both homes and workplaces. Their application
has been easier to use and more convenient with the development of the IoT.
Additionally, giving smoke detectors a wireless connection makes it possible
for them to have other functions that improve security and convenience Air
quality sensor is shown in Figure 4.16.

Figure 4.15  MQ2 smoke sensor.

Introduction to sensors and actuators  137

4.6.10 � Infrared (IR) sensors

Technologies using infrared (IR) sensors pick up the infrared light that is released
by these objects. These kinds of sensors are used by non-contact thermometers
to measure an object’s temperature without having to touch it directly with a
probe or sensor as shown in Figure 4.17. They find use in analyzing the heat
signature of electronics and detecting blood flow or blood pressure in patients.

PIR Sensor, also known as a PIR(motion) sensor or IR sensor, is an abbre-
viation for passive infrared sensor, which is used to detect human or particle
movement within a specific range. It has been widely embraced by the

Figure 4.17  IR sensor.

Figure 4.16  Air quality gas sensor.

138  IoT Fundamentals with a Practical Approach

open-source hardware community for projects including the Arduino and
Raspberry Pi due to its robust function and low cost advantages. It is fre-
quently utilized in applications for automatic lighting and security alarms.

	•	 The module actually consists of a pyroelectric sensor which generates
energy when exposed to heat as shown in Figure 4.18.

	•	 When a human or animal body will get in the range of the sensor it
will detect a movement because the human or animal body emits heat
energy in a form of infrared radiation.

	•	 That’s where the name of the sensor comes from, a passive infrared
(PIR) sensor. The term “passive” means that the sensor is not using any
energy for detecting purposes; it simply works by detecting the energy
given off by the other objects.

	•	 PIR sensors sense general movement, but don’t have information on
who moved or what as shown in Figure 4.19 and Figure 4.20. An
active IR sensor is necessary for this purpose.

	•	 It does not emit the referred IR signals itself; rather, it passively detects
the infrared radiations coming from the human body in the surround-
ing area.

	•	 The detected radiations are converted into an electrical charge, which
is proportional to the detected level of the radiation.

	•	 Used in dark and light time.

Figure 4.18  Pyroelectric sensor.

Introduction to sensors and actuators  139

	•	 The module has just three pins, a Ground and a VCC for powering the
module and an output pin which gives high logic level if an object is
detected as shown in Figure 4.21.

	•	 It has two potentiometers. One for adjusting the sensitivity of the sen-
sor and the other for adjusting the time the output signal stays high
when object is detected. This time can be adjusted from 0.3 seconds up
to 5 minutes.

	•	 Second is distance adjust.

Figure 4.20  PIR Sensor.

Figure 4.19  PIR Sensor.

distance 6 meter

Horizontal range 108.6 degree

PIR Detection

PIR Cube

140  IoT Fundamentals with a Practical Approach

4.6.10.1 � PIR sensor-based automatic door opening system

	•	 Hotels, shopping malls, theatres etc.
	•	 Senses the presence of the human body and sends pulses

4.6.10.2 � Security alarm system based on a PIR sensor

	•	 This sensor senses the infrared radiation which is emitted from the
humans and then gives a digital output

Example of the use of such a sensor include the automatic switching on of
outdoor lights, lift lobby, and the automatic switching on of garden lights,
triggered by the presence of a human being.

4.6.10.3 � What does a PIR sensor detect?

	•	 The detector itself does not emit any energy but passively receives it,
detecting infrared radiation from the environment. Once there is infra-
red radiation from the human body/particle with temperature, focus-
ing on the optical system causes the pyro electric device to generate a
sudden electrical signal and an alarm is issued.

4.6.10.4 � What is the difference between the PIR sensor and
the motion detector sensor?

	•	 An electronic device used to detect the physical movement (motion)
in a given area and it transforms motion into an electric signal, the
motion of any object or the motion of human beings.

Figure 4.21  PIR sensor.

Introduction to sensors and actuators  141

	•	 Used in the security industry. Businesses utilize these sensors in areas
where no movement should be detected at all times, and it is easy to
notice anybody’s presence with these sensors installed.

	•	 Used for intrusion detection systems, automatic door control, toll plaza,
automated sinks, dryers, automated lighting, air conditioning, fan.

	•	 PIR is only one of the technical methods to detect motion, so we will
say PIR sensor is a subset of motion sensor. Because of PIR sensor are
small in size, cheap in price, low-power and very easy to understand.

4.6.11 � Ultrasonic sensors

An ultrasonic sensor is a device that uses ultrasonic sound waves to measure
a target object’s distance and then turns the sound that is reflected back
into an electrical signal as shown in Figure 4.22. The transmitter (which
generates sound using piezoelectric crystals) and the receiver are the two
major parts of an ultrasonic sensor (which encounters the sound after it has
travelled to and from the target).The sensor measures the amount of time
that passes between the transmitter’s sound emission and its contact with
the receiver in order to determine the distance between the object and the
sensor. D = ½ T x C (where D is the distance, T is the time, and C is the
speed of sound ~ 343 meters/second) is the formula for this computation.
When an object or obstruction gets in its way, the ultrasonic it generates at
a frequency of 40,000 Hz will bounce back to the module.

Figure 4.22  Ultrasonic sensor.

142  IoT Fundamentals with a Practical Approach

The HC-SR04 Ultrasonic Module has 4 pins: Ground, VCC, Trig and
Echo. The Ground and the VCC pins of the module needs to be connected
to the Ground and the 5 volt pins on the Arduino Board respectively and the
trig and echo pins to any Digital I/O pin on the Arduino Board.

The HC-SR04 ultrasonic sensor uses SONAR to determine the distance of an
object as shown in Figure 4.23. It offers excellent non-contact range detection
with high accuracy and stable readings in an easy-to-use package from 2 cm to
400 cm or 1″ to 13 feet.

For example, if the object is 10 cm away from the sensor, and the speed of the
sound is 340 m/s or 0.034 cm/μs, the sound wave will need to travel about 294
u seconds as shown in Figure 4.24. But what you will get from the Echo pin will
be double that number because the sound wave needs to travel there and back.

Figure 4.23  Ultrasonic sensor.

Figure 4.24  Ultrasonic sensor.

Introduction to sensors and actuators  143

Ultrasonic sensors are used primarily as proximity sensors. They can be
found in automobile self-parking technology and anti-collision safety systems.
Ultrasonic sensors are also used in robotic obstacle detection systems, as well
as manufacturing technology.

Ultrasonic sensors are also used as level sensors to detect, monitor, and
regulate liquid levels in closed containers.

	•	 Used in parking sensors, liquid level detection sensors, as well as waste
bin sensors.

	•	 Level measurement is a popular application of ultrasonic sensors in
detecting liquid and granular materials.

	•	 IOT smart jar: This checks the level of a jar using an ultrasonic sensor
and send an alert email to the user. The jar includes an ultrasonic sen-
sor at the top of it and uses the ultra-sonic reflected waves to figure out
at what extent the jar is filled and how much space is left inside the jar.
Whenever the amount of content changes in the jar, it is sensed by the
Node MCU, and the same is updated on the web server. This can be help-
ful to track supplies and plan for restocking from anywhere in the world.

4.6.12 � Acceleration sensors

Acceleration sensors, commonly known as accelerometers, measure the rate at
which an object’s velocity changes as shown in Figure 4.25. This is in contrast
to motion sensors, which measure an object’s movement. This modification

Figure 4.25  Accelerometer sensor.

144  IoT Fundamentals with a Practical Approach

could result from rotational motion, a rapid vibration that causes move-
ment with speed variations, or a free-fall scenario (a directional change). In
order to pinpoint an object’s location in space and track its movement, an
accelerometer monitors the acceleration forces that are acting on the object.

These sensors are used in smartphones, vehicles, aircraft, and other appli-
cations to detect the orientation of an object, shake, tap, tilt, motion, posi-
tioning, shock or vibration.

One of several technologies that are employed in acceleration sensors include:

	•	 Hall-effect sensors (which rely on measuring changes in magnetic
fields).

	•	 Capacitive sensors (which depend on measuring changes in voltage
from two surfaces).

	•	 Piezoelectric sensors (which generate a voltage that changes based on
pressure from distortion of the sensor).

4.6.12.1 � Types of accelerometer

Piezoelectric: used in very high temperatures and high frequency range
up to 100 kilohertz.

Piezo-resistive: used in sudden and extreme vibrating applications.
Capacitive: in applications such as a silicon-micro machined sensor mate-

rial and can operate in frequencies up to 1 kilohertz.

At present, Micro Electro-Mechanical System (MEMS) Accelerometer is
being used as it is simple, reliable, and highly cost-effective.

Applications

	 1.	 In machine monitoring.
	 2.	To measure earthquake activity and aftershocks.
	 3.	 Inertial Navigation System (INS): For measuring the position, orienta-

tion, and velocity of an object in motion without the use of any exter-
nal reference. Example: airplane and ship autopilots.

	 4.	 In airbag shooting in cars and vehicle stability control.
	 5.	 In video games consoles such as the PlayStation 5, to make the steer-

ing more controlled, natural and real.
	 6.	 In camcorder to stabilize images.
	 7.	Mounted in spacecraft,
	 8.	Mobile Phone: Accelerometers in mobile phones are used to detect the

orientation of the phone. The gyroscope, adds an additional dimen-
sion to the information supplied by the accelerometer by tracking
rotation or twist.

	 9.	Drones: Accelerometers and gyroscopes are the sensors of choice for
acquiring acceleration and rotational information in drones.

Introduction to sensors and actuators  145

	 10.	Washing Machines have accelerometers that can detect when the load
is out of balance and switch off the electric motor to stop them from
spinning themselves to pieces?

	 11.	Electronic Irons and Fan Heaters, have accelerometers inside that detect
when they fall over and switch them off to stop them causing fires?

4.6.13 � Gyroscopic sensors

Using a three-axis system, gyroscopes (or gyroscopic sensors) are used to
measure an object’s rotation and calculate its rate of movement, or angular
velocity. The orientation of the object can be determined using these sensors
without needing to physically view it.

Gyro sensors, also known as angular rate sensors or angular velocity sen-
sors, are devices that sense angular velocity as shown in Figure 4.26.

It records the rotation/twist about an axis as shown in Figure 4.27 and
Figure 4.28.

Figure 4.27  Gyroscopic sensor.

Yaw/alpha

Roll/
gamma

Y

Z

X

Pitch/
beta

Figure 4.26  Gyroscopic sensor.

146  IoT Fundamentals with a Practical Approach

4.6.13.1 � Types of gyroscope (shown below in Figure 4.29)

4.6.13.2 � Gyro sensor applications

	 1.	 Sensing of angular velocity – Determine the amount of angular veloc-
ity generated. It is used to calculate the actual motion’s magnitude.
Example: Examining athletic movement.

	 2.	Angle sensing, on the other hand, measures the angular velocity caused
by the sensor’s own motion. A CPU uses integration operations to
find angles. An application receives and reflects the changed angle.
Example: Car navigation systems, game controllers, cellular phones.

Figure 4.28  Gyroscopic sensor.

Figure 4.29  Gyro sensor.

GYRO Sensor

Introduction to sensors and actuators  147

	 3.	Control mechanisms– Senses vibration produced by external factors,
and transmits vibration data as electrical signals to a CPU. Used in
correcting the orientation or balance of an object. Example: Camera-
shake correction, vehicle control.

4.6.13.3 � Difference in accelerometer and gyroscope

Accelerometer: It measures linear acceleration based on vibration.
Gyroscope: It determines an angular position based on the principle of

the rigidity of space. Table 4.2 shows the difference between acceler-
ometers and gyroscope.

Table 4.2  Accelerometers vs gyroscope

Accelerometers Gyroscopes

What it is Electromechanical devices
that measure acceleration

A device used for measuring
rotational changes or maintaining
orientation

Cannot distinguish rotation
from acceleration

Unaffected by acceleration

Usage purpose Measure linear acceleration
based on vibration

Measure rate of rotation and angular
position around a particular axis

Applications Commonly found and more
applicable in consumer
electronics

Commonly found and more
applicable in aircrafts, aerial
vehicles

4.6.14 � Humidity sensors

In order to determine how much water vapor is present in the air or another
gas, humidity sensors can measure the relative humidity of those gases. In
order to produce materials, it is essential to control environmental factors.
Humidity sensors allow readings to be obtained and adjustments to be made
to minimize rising or falling levels. HVAC systems frequently use this tech-
nology to keep targeted comfort levels.

4.6.15 � Optical sensors

Optical sensors provide an electrical signal in response to light that is
reflected off of an object, which can then be used to detect or measure a
state. These sensors detect the interruption or reflection of a light beam
brought on by the presence of an object.

The types of optical sensors include:

	•	 Through-beam sensors (which detect objects by the interruption of a
light beam as the object crosses the path between a transmitter and
remote receiver)

148  IoT Fundamentals with a Practical Approach

	•	 Retro-reflective sensors (which combine transmitter and receiver into
a single unit and use a separate reflective surface to bounce the light
back to the device)

	•	 Diffuse reflection sensors (which operate similarly to retro-reflective
sensors except that the object being detected serves as the reflective
surface)

4.7 � ACTUATORS

An actuator is a device that actuates or moves something as shown in
Figure 4.30. An actuator uses some type of energy to provide motion or to
apply a force. For example, an electric motor uses electrical energy to create
a rotational movement or to turn on object, or to move an object. A tire jack
or screw jack uses mechanical energy to provide enough force to lift a car.
In short, an actuator converts some type of energy into motion. Actuators
include motors, gears, pumps, pistons, valves, and switches

	•	 The actuator is a device that transforms a certain form of energy into
motion.

	•	 An actuator basically requires some kind of a control signal and a
source of energy.

Basic Concepts of Actuators: An actuator is something that actuates or
moves something. More specifically, an actuator is a device that coverts an
input energy into motion or mechanical energy. The input energy of actua-
tors can be “manual” (e.g., levers and jacks), hydraulic or pneumatic (e.g.,
pistons and valves), thermal (e.g., bimetallic switches or levers), and electric
(e.g., motors and resonators). In the transducers unit, a transducer was
defined as any device that converts one form of energy to another form of
energy; therefore, by that definition, an actuator can be a specific type of a
transducer. The motor is one such actuator. A motor converts electrical
energy to mechanical energy; therefore, a motor is both an actuator and a
transducer.

Figure 4.30  Actuators.

Introduction to sensors and actuators  149

4.7.1 � Hydraulic actuators

Hydraulic actuators have a cylinder or fluid motor that uses hydraulic
power to generate mechanical motion, which in turn leads to linear, rota-
tory, or oscillatory motion. Given the fact that liquids are nearly impos-
sible to compress, a hydraulic actuator can exert a large force. When the
fluid enters the lower chamber of the actuator’s hydraulic cylinder, the
pressure inside increases and exerts a force on the bottom of the piston,
also inside the cylinder. The pressure causes the sliding piston to move in a
direction opposite to the force caused by the spring in the upper chamber,
making the piston move upward and opening the valve. The downside
with these actuators is the need for many complementary parts and pos-
sibility of fluid leakage An example of hydraulic actuators is JCB machine
shown in Figure 4.31.

4.7.1.1 � Applications of hydraulic systems: five categories

Industrial: Plastic-processing machineries, steel-making and primary
metal extraction applications, automated production lines, machine
tool industries, paper industries, loaders, crushes, textile machinery,
R & D equipment, and robotic systems etc.

Mobile hydraulics: Tractors, irrigation system, earthmoving equipment,
material handling equipment, commercial vehicles, tunnel boring
equipment, rail equipment, building and construction machineries and
drilling rigs etc.

Automobiles: It is used in the systems such as brakes, shock absorbers,
steering system, wind shield, lift and cleaning etc.

Marine applications: It mostly covers ocean-going vessels, fishing boats,
and navel equipment.

Aerospace equipment: There are equipment and systems used for rud-
der control, landing gear, brakes, flight control, and transmission etc.
which are used in airplanes, rockets, and spaceships.

Figure 4.31  JCB machine.

150  IoT Fundamentals with a Practical Approach

4.7.2 � Pneumatic actuators

Pneumatic actuators convert energy, in the form of compressed air, into
mechanical motion as shown in Figure 4.32. Here pressurized gas or com-
pressed air enters a chamber, thereby building up the pressure inside. Once
this pressure goes above the required pressure levels in contrast to the atmo-
spheric pressure outside the chamber, it makes the piston or gear move kineti-
cally in a controlled manner, thus leading to a straight or circular mechanical
motion. Examples include pneumatic cylinders, air cylinders, and air actua-
tors. Cheaper and often more powerful than other actuators, they can quickly
start or stop as no power source has to be stored in reserve for operation.
Often used with valves to control the flow of air through the valve, these actu-
ators generate considerable force through relatively small pressure changes.

Examples of maker projects using pneumatic actuators include lifting
devices and humanoid robots with arms and limbs, typically used for lifting.

	•	 Example 1: The rack and pinion pneumatic actuators are used for the
valve controls on water pipes.

	•	 Example 2: Pneumatic brakes can be very responsive to small changes
in pressure that are applied by the driver. So, pneumatic brakes are
used in trucks. The hydraulic brakes are more common in cars.

	•	 Pneumatic and Hydraulic Dangers
	•	 Pneumatic Dangers
	•	 Air Embolism
	•	 Hose/Pipe Whipping
	•	 Noise
	•	 Crushing/Cutting
	•	 Hydraulic Dangers
	•	 High-Pressure Oil Injection
	•	 Oil Burns
	•	 Crushing/Cutting

Figure 4.32  Pneumatic actuators.

Compressed air

Pneumatic Actuator
Single Acting Cylinder

www.robotplatform.com

Airout
Valve

Introduction to sensors and actuators  151

4.7.2.1 � Electric linear actuators

Now let us consider the electrical actuators, those that run on electricity.
Taking off from the two basic motions of linear and rotary, actuators can be
classified into these two categories: linear and rotaryas shown in Figure 4.33.
Electric linear actuators take electrical energy and turn it into straight line
motions, usually for positioning applications, and they have a push-and-pull
function. They convert energy from the power source into linear motion
using mechanical transmission, electromagnetism, or thermal expansion;
they are typically used whenever tilting, lifting, pulling, and pushing are
needed. They are also known for offering precision and smooth motion con-
trol; this is why they are used in industrial machinery, in computer peripher-
als such as disk drives and printers, opening and closing dampers, locking
doors and for braking machine motions. They are also used in 3D printers
and for controlling valves. Some of them are unpowered and manually oper-
ated with a rotating knob or handwheel.

4.7.3 �Thermal actuators

A thermal actuator is a non-electric motor that generates linear motion in
response to temperature changes as shown in Figure 4.34. Its main components
are a piston and a thermal-sensitive material. When there is a rise in tempera-
ture, the thermal-sensitive materials begin to expand in response, driving the
piston out of the actuator. Similarly, upon detecting a drop in the temperature,
the thermal-sensitive materials inside contract, making the piston retract. Thus
these actuators can be used for carrying out tasks such as releasing latches,
working switches and opening or closing valves. They have many applications,
particularly in the aerospace, automotive, agricultural and solar industries.

4.7.3.1 � Thermal actuators operating principle

A thermostatic actuator consists of a temperature-sensing material. It is this
material that expands and contracts based on the temperature of the device,
causing the piston to move.

Figure 4.33  AC motor, stepper motor, DC motor.

152  IoT Fundamentals with a Practical Approach

4.7.4 � Electromechanical actuators

Electromechanical actuators are mechanical actuators where there’s an elec-
tric motor in place of the control knob or handle as shown in Figure 4.35.
The rotary motion of the motor leads to linear displacement. The inclined
plane concept is what drives most electromechanical actuators; the lead
screw’s threads work like a ramp converting the small rotational force by
magnifying it over a long distance, thus allowing a big load to be moved over
a small distance. While there are many design variations among the electro-
mechanical actuators available today, most have the lead screw and the nut
incorporated into the motion. The biggest advantages are their greater accu-
racy in relation to pneumatics, their longer lifecycle and low maintenance
effort required. On the other hand, they do not boast the highest speed.

Figure 4.34  Thermal actuator.

Figure 4.35  Electromechanical actuators.

Introduction to sensors and actuators  153

Types of Motors:

	 1.	Hydraulic motors
	 2.	Pneumatic motors
	 3.	Clutch/brake motor
	 4.	Stepper motors (DC motor)
	 5.	AC motors
	 6.	Servomotors (DC motor)

4.7.4.1 � Hydraulic motors

Hydraulic motors move a piston through a tube using pressurized fluid.
Hydraulic motors output linear, rotary, or oscillating motion, but accelera-
tion is limited. Hydraulic motors are typically inefficient, can be a fire haz-
ard and require more than usual maintenance.

4.7.4.2 � Pneumatic motors

	•	 Pneumatic motors are air-driven, using either vacuum or compressed
air, which converts energy into linear or rotary motion as shown in
Figure 4.36.

	•	 Air pressure and flow determine speed.

The Illinois-based tech company Bimba adopted the Intellisense platform to
drive its pneumatic components as shown in Figure 4.37.

Figure 4.36  Pneumatic motors.

154  IoT Fundamentals with a Practical Approach

	•	 Three actuators are monitored remotely in the Bimba Intellisense
platform.

	•	 Intellisense incorporates sensors, cylinders, and software that enhance
productivity through the use of real-time data, providing feedback on
pneumatic wear and tear that can be utilized to maximize efficiency.

	•	 This is a prime example of how IoT is driving Industry 4.0 “intel-
ligent” production systems that can communicate in real time with
detailed and predictive information on any particular part.

4.7.4.3 � Clutch/brake motor

	•	 A clutch/brake motor functions by coupling a continuously rotating
motor shaft with a load, stopping only when the load is uncoupled.

	•	 While this motor is easy to apply, relatively inexpensive, and great for
light loads, its acceleration is uncontrolled as well as inaccurate.

4.7.4.4 � Stepper motors (DC motor)

	•	 A stepper motor is a brushless electromechanical device that converts
electrical energy into mechanical energy. It divides rotational motion
into an equal number of steps with the help of actuators, depending on
the application requirement as shown in Figure 4.38. There are many
types of stepper motors such as linear stepper motor, and are made
based on the number of steps per revolution. For motion, they make

Figure 4.37  Pneumatic motors.

Introduction to sensors and actuators  155

use of actuators. Stepper motors offer consistent repetition of move-
ment, speed control, and precision in positioning. They have a number
of industrial applications such as 3D printing, robotics, CNC machin-
ing, medical imaging, and so on.

	•	 Stepper motors (DC motor) are electromechanical, converting a digital
pulse into rotational movement or displacement.

	•	 While stepper motors are not good for varying loads and are typically not
energy-efficient, they are great for constant loads and positional accuracy.

	•	 Examples: vacuum cleaner, hairdryer, elevators, electric windows in
cars, etc.

4.7.4.5 � AC motor

A motor that uses AC power is called an AC motor as shown in Figure 4.39.

Figure 4.39  AC motor.

Figure 4.38  130 DC motor.

156  IoT Fundamentals with a Practical Approach

4.7.4.6 � Servo motors

This is a rotary actuator that allows for the precise control of angular posi-
tion. This makes them suitable for use in closed-loop systems where precise
position control is needed.

Servo motors are part of a closed-loop system and they are a self-contained
electrical device that rotates parts of a machine with high efficiency with
great precision as shown in Figure 4.40.

Servo motors are made up of:

	•	 Control circuit
	•	 Small DC motor
	•	 Potentiometer

Servo motors should be used in fields that require high precision such as:

	•	 Machine tools
	•	 Packaging equipment
	•	 Textile equipment
	•	 Laser processing equipment
	•	 Robots
	•	 Automated production lines etc.

Figure 4.40  Servo motors.

157DOI: 10.1201/9781003307488-5

5.1 � ELECTRONICS COMPONENTS

The Internet of Things, or IoT, refers to any electronic device that is remotely
connected to the internet. IoT technology has been integrated into every
aspect of our modern world. Electronic systems are used in everything from
computers to industrial manufacturing plants, agricultural sciences and
even running the most basic devices in the home, such as lighting. Many of
these technologies rely on their ability to communicate with their operators
remotely through desktop computers or other mobile devices, like smart-
phones and tablets.

As the electronic technology field expands rapidly, more businesses than
ever before are going after a piece of the market share. High-quality, reliable
and robust electronic components in the design of all IoT devices ensure the
longevity of the product and overall customer satisfaction.

IoT devices designed with high-quality electronic components have long-
term, reliable performance that will ultimately steal the market share.
Quality is key and consumers make purchasing decisions largely based on
product reviews.

5.1.1 � Breadboard

A breadboard is a solder-less construction base used for developing an elec-
tronic circuit and wiring for projects with microcontroller boards like Arduino.
A breadboard is categorized as a solder-less board. This means that the com-
ponent does not require any soldering to fit into the board. Thus, we can say
that breadboard can be reused. We can easily fit the components by plugging
their end terminal into the board. Hence, a breadboard is often called a plug-
board. As common as it seems, it may be daunting when first getting started
with using one. The term “breadboard” derives from a literal piece of wood
used to cut bread, on which, back in the early days, people would build elec-
tronic circuits. However, over the years, the design has changed. Now, thanks
to the invention by Ronald J. Portugal, the breadboard we know comes in a
smaller, more portable white plastic and pluggable design.

Chapter 5

Electronic components used in IoT

http://dx.doi.org/10.1201/9781003307488-5

158  IoT Fundamentals with a Practical Approach

The breadboard is a white rectangular board with small, embedded holes
in which electronic components can be insertedas shown in Figure 5.1. It is
commonly used in electronics projects. We can also say that breadboard is a
prototype that acts as a construction base for electronics.

There are three parts in a breadboard, as shown below in Figure 5.2:

The top and bottom holes of a row in a breadboard are connected horizon-
tally, and the center part is connected vertically, as shown in Figure 5.3:

Figure 5.1  Breadboard.

Figure 5.2  Parts of breadboard.

Electronic components used in IoT  159

It means a single horizontal line of a breadboard has the same connection.
It is because the metal strip underneath the breadboard at the top and bot-
tom are connected horizontally. Hence, it provides the same connection in a
row. The two top and bottom parts of a breadboard are generally used for
power connections.

The vertical connection of the center part means a single vertical line in a
breadboard provides the same connection. It is useful when we need to con-
nect the different components in series in Figure 5.3.

For example, let’s connect two resistors in series. These two resistors can
be connected in series in different ways, as shown below in Figure 5.4:

This is because the metal strips underneath the breadboard at the center
are connected vertically. Hence, it provides similar connectivity through a
particular column, as shown in Figure 5.5:

Figure 5.3  Breadboard.

Figure 5.4  Breadboard.

160  IoT Fundamentals with a Practical Approach

The connection between two different components can be created by
inserting a lead in common in Figure 5.6. For example, a jump wire which
acts as a connection between the LED and battery terminal can be con-
nected in any hole in the same vertical line.

Figure 5.5  Breadboard.

Figure 5.6  Breadboard.

Electronic components used in IoT  161

Bus strips are mainly used for power supply connections. Terminal strips
are principally used for electrical components. The holes colored in orange
are connected together. These sets of connecting holes can be called a node,
where it’s possible to interconnect the node from bus strips to terminal strips
with jumper wires.

5.1.1.1 � How to read breadboard rows and columns?

These are written to help you locate the individual hole in the breadboard,
in a manner similar to how finding a cell in an Excel spreadsheet works. The
example as seen below: Hole C12 = Column C, Row 12.

The positive and negative signs on both sides of the breadboard are power
rails, used to power your circuit by connecting battery pack or external
power supply as shown in Figure 5.7.

Figure 5.7  Breadboard reading.

162  IoT Fundamentals with a Practical Approach

Columns at the edges are connected from top to bottom inside the bread-
board generally used for supply and ground. Inside the breadboard, the
holes in each row are connected up to the break in the middle of the board
as shown in Figure 5.8.

For example, A1, B1, C1, D1, and E1 all have a wire inside of the bread-
board to connect them. Then F1, G1, H1, I1, and J1 are all connected, but
A1 is not connected to F1.

5.1.1.2 � Types of breadboard

There are two types of the breadboard, namely solderless and soldered. Let’s
discuss the above two types of the breadboard in detail.

5.1.1.2.1 � Solderless breadboards

As the name implies, solderless boards do not require any soldering after the
electronic components are plugged in. The leads or ends of the components
are inserted into the holes of a breadboard for its functioning.

5.1.1.2.2 � Soldered breadboard

The soldered breadboard is also a board that has a tiny hole embedded into
it. We can insert the terminal of the electronic components into the board.
After the connection is rechecked, we can solder these components.

The common difference between a soldered and a solderless breadboard
is the reusability.

Figure 5.8  Breadboard reading.

Electronic components used in IoT  163

5.1.1.2.3 � Connection setup through a breadboard

Here, we will discuss the connection setup through the breadboard with the
help of one example. The will help us to understand the different connec-
tions involved.

Example: Blinking an LED

The components required for the above example are an LED (any color), a
breadboard, two jump wires, a resistor, and a battery. Here, we have chosen
a red LED. The resistor is connected in series with the LED to limit the cur-
rent across the LED. LED has two terminals, namely cathode (negative ter-
minal) and anode (positive terminal). The structure of LED is shown below
in Figure 5.9:

Connection Setup: The connection setup is listed in the below steps and also
shown in Figure 5.10:

Plug in the two terminals of the LED into the two tiny holes of the bread-
board. We can add or skip the resistor because the battery already provides
a limiting current. Connect one end of a jump wire to the anode of an LED
and the other end of the jump wire to the positive terminal of the battery.
Similarly, connect the cathode of an LED to the negative terminal of the bat-
tery. As soon as the circuit is complete after the terminals are connected to
the battery, the LED will light. The circuit thus formed will appear like the
image shown here:

Figure 5.9  LED blinking.

164  IoT Fundamentals with a Practical Approach

The above circuit connection depicts that the LED and resistor are con-
nected in series. Similarly, we can easily create various projects and circuits
with the help of the breadboard.

Advantages of a Breadboard:

The advantages of using a breadboard are as follows:

	•	 Temporary prototype: We can build a temporary prototype for the
projects with the help of a breadboard.

	•	 Reusable: Today, solderless boards are mostly used in various appli-
cations. This does not require any soldering to fix the components.
Hence, it can be reused.

	•	 Lightweight: The breadboard is made of white plastic, which is light in
weight.

	•	 Easy experimentation: We can quickly insert the leads of the compo-
nents into the tiny holes of the breadboard. The circuit can be created
using various components and circuit design.

	•	 Inexpensive: The breadboards are easily available. It also cost less.
	•	 Easy to use: It does not involve any complex parts. We can easily insert

the required number of components.

Figure 5.10  Connection setup in breadboard.

Electronic components used in IoT  165

	•	 No drilling required: The holes are already embedded in the board.
Hence, we do not require any drilling to insert the electronic components.

	•	 Quick modifying capability: We can easily switch or remove the com-
ponents from the board.

	•	 Available in various sizes: The breadboards are available in various
sizes. We can select the desired size as per the number of components.

	•	 Easy to adjust: The breadboard is easy to adjust in the project or con-
nection setup.

Disadvantages of Breadboard:

	•	 Not suitable for high-current applications.
	•	 Well suited to low-frequency projects.
	•	 Solderless boards are limited to low-frequency applications.
	•	 Requires more physical space for simple circuits.
	•	 A high number of connections in the solderless board make the circuit

messy due to the large number of wires.
	•	 The circuit design does not work well for high-speed design.
	•	 The plugging and unplugging can disturb the other connections.
	•	 Less reliable connections.
	•	 Limited signaling.

Alternatives: There are other alternatives to create a prototype for the proj-
ects and circuit design. Modern computer systems contain various transis-
tors, resistors, and other electronic components to create a prototype. It
does not require any breadboard to build a prototype.

5.1.2 � Resistor

A resistor is a passive electrical component with the primary function to limit
the flow of the electric current in a circuit, thereby minimizing the huge loss
to the electronic devices as shown in Figure 5.11. Resistors resist the flow
of electricity and the higher the value of the resistor, the more it resists, and
the less electrical current will flow through it. For example, to control how
much electricity flows through the LED and therefore how brightly it shines.

Resistors are measured in hundreds of Ohms, thousands of Ohms (kilo
Ohms, kΩ), or millions of Ohms (mega Ohms, MΩ). There are different
values of resistor, 270 Ω, 470 Ω, 2.2 kΩ, and 10 kΩ. These resistors all look
the same, except that they have different-colored stripes on them. These
stripes tell you the value of the resistor. It is important to know how to iden-
tify the nominal resistance and the tolerance of a resistor. For resistors with
+-5% or +-10% tolerance, the color code consists of 4 color bands. For
resistors with +-1% or +-2% tolerance, the color code consists of 5 bands.

166  IoT Fundamentals with a Practical Approach

Resistance is measured based on the color bands on the resistors.
Generally, 4-band, 5-band and 6-band resistors are available. You can calcu-
late the resistance of these resistors using this resistor color code calculator.

The resistor color code works like this and also shown in Table 5.1. For
resistors like this with three colored stripes and then a gold stripe at one end.

Each color has a number, as follows:

Black 0
Brown 1
Red 2
Orange 3
Yellow 4
Green 5
Blue 6
Purple 7
Gray 8
White 9

Table 5.1  The resistor color code table

Color Digit Multiplier Tolerance

Black 0 1
Brown 1 10 ±1%
Red 2 100 ±2%
Orange 3 1,000
Yellow 4 10,000

(Continued )

Figure 5.11  Resistor.

Electronic components used in IoT  167

Color Digit Multiplier Tolerance

Green 5 100,000 ±0.5%
Blue 6 1,000,000 ±0.25%
Violet 7 10,000,000 ±0.1%
Grey 8 ±0.05%
White 9
Gold 0.1 ±5%
Silver 0.01 ±10%
None ±20%

Then we can summarize the different weighted positions of each colored
band which makes up the resistors color code from Table 5.1 in Table 5.2:

Table 5.2  Colored bands

Number
of Colored
Bands

3 Colored
Bands
(E6 Series)

4 Colored
Bands
(E12 Series)

5 Colored
Bands
(E48 Series)

6 Colored Bands
(E96 Series)

1st Band 1st Digit 1st Digit 1st Digit 1st Digit
2nd Band 2nd Digit 2nd Digit 2nd Digit 2nd Digit
3rd Band Multiplier Multiplier 3rd Digit 3rd Digit
4th Band — Tolerance Multiplier Multiplier
5th Band — — Tolerance Tolerance
6th Band — — — Temperature Coefficient

5.1.2.1 � Calculating resistor values

The Resistor Color Code system is all well and good but we need to under-
stand how to apply it in order to get the correct value of the resistor. The
“left-hand”, or the most significant colored band, is the band which is near-
est to a connecting lead with the color-coded bands being read from left to
right as follows:

	 ()= × ΩcolorDigit, Digit, Multiplier Color,Color 10 in Ohms

For example, a resistor has the following colored markings:

	 = = × = Ω2Yellow Violet Red 472 47 10 4700 or 4k7 Ohm.

The fourth and fifth bands are used to determine the percentage tolerance
of the resistor. Resistor tolerance is a measure of the resistors’ variation

Table 5.1 (Continued)  The resistor color code table

168  IoT Fundamentals with a Practical Approach

from the specified resistive value and is a consequence of the manufacturing
process and is expressed as a percentage of its “nominal” or preferred value.

Typical resistor tolerances for film resistors range from 1% to 10%, while
carbon resistors have tolerances up to 20%. Resistors with tolerances lower
than 2% are called precision resistors with the lower-tolerance resistors
being more expensive.

Most five band resistors are precision resistors with tolerances of either
1% or 2% while most of the four band resistors have tolerances of 5%,
10%, and 20%. The color code used to denote the tolerance rating of a
resistor is given as:

	 = = = =Brown 1%, Red 2%, Gold 5%, Silver 10%

If a resistor has no fourth tolerance band then the default tolerance would
be at 20%.

It is sometimes easier to remember the resistor color code by using short,
easily remembered sentences in the form of expressions, rhymes, and phrases,
called an acrostic, which have a separate word in the sentence to represent
each of the Ten + Two colors.

5.1.2.2 � Resistance computation

Minimum Resistance Value: Multiply the nominal value with the toler-
ance and then subtract this from the nominal value.

Maximum Resistance Value: Multiply the nominal value with the toler-
ance and then add this from the nominal value.

The first two striped are the first two digits of the value, so red, purple
means 2, 7.

The next stripe is the number of zeros that need to come after the first two
digits, so if the third stripe is brown, as it is in the photograph above, then
there will be one zero and so the resistor is 270 Ω.

A simple example is a resistor in series with an LED as shown in Figure 5.12.
Aim – To have a current limiting resistor in series with your LED so that

you can control the amount of current through the LED.
If too much current is going through your LED, it will burn out too fast.

If too little current is going through it, it might not be enough to light the
LED.

Figure 5.12  Resistor.

Electronic components used in IoT  169

E.g. – LED needs 15 mA and has a voltage drop of 2 volts. You have a 5 V
power source that you would like to power it with. Which resistor value do
you need?

Value for the current limiting resistor is 200 Ohms by using Ohm’s Law.

5.1.3 � Potentiometer

A potentiometer is a three-terminal resistor where resistance can be manu-
ally adjusted to control the current flow. Potentiometer (also known as a
pot or potmeter) is defined as a three-terminal variable resistor in which the
resistance is manually varied to control the flow of electric current. as shown
in Figure 5.13. A potentiometer acts as an adjustable voltage divider. It is
a small electronic component whose resistance can be adjusted manually.

Example: controls the rate at which an LED blinks.
We connect three wires to the Arduino board. For example: to control the

audio volume of the radio, fan regulator, sliders in a DJ system.
A potentiometer has three pins. Two terminals (the blue and green) are

connected to a resistive element and the third terminal (the black one) is
connected to an adjustable wiper. The wiper can be moved along the resis-
tive track either by use of a linear sliding control or a rotary “wiper”
contact.

Potentiometers can be used as voltage dividers. To use the potentiometer
as a voltage divider, all the three pins are connected. One of the outer pins is
connected to the GND, the other to Vcc and the middle pin is the voltage
output.

5.1.3.1 � How Does a Potentiometer Work?

A potentiometer is a passive electronic component. Potentiometers work
by varying the position of a sliding contact across a uniform resistance. In
a potentiometer, the entire input voltage is applied across the whole length

Figure 5.13  Potentiometer.

170  IoT Fundamentals with a Practical Approach

of the resistor, and the output voltage is the voltage drop between the fixed
and sliding contact, as shown below.

A potentiometer has the two terminals of the input source fixed to the end
of the resistor. To adjust the output voltage, the sliding contact gets moved
along the resistor on the output side as shown in Figure 5.14.

5.1.3.2 � Potentiometer types

There are two main types of potentiometers:

Rotary potentiometer
Linear potentiometer

Although the basic constructional features of these potentiometers vary, the
working principle of both these types of potentiometers is the same. Note
that these are types of DC potentiometers: the types of AC potentiometers
are slightly different.

5.1.3.2.1 � Rotary potentiometers

The rotary-type potentiometers are used mainly for obtaining adjustable
supply voltage to a part of electronic circuits and electrical circuits as shown
in Figure 5.15. The volume controller of a radio transistor is a popular
example of a rotary potentiometer where the rotary knob of the potentiom-
eter controls the supply to the amplifier.

This type of potentiometer has two terminal contacts between which a
uniform resistance is placed in a semi-circular pattern. The device also has a
middle terminal, which is connected to the resistance through a sliding con-
tact attached with a rotary knob. By rotating the knob one can move the
sliding contact on the semi-circular resistance. The voltage is taken between
a resistance end contact and the sliding contact. The potentiometer is also
named as the POT in short. POT is also used in substation battery chargers

Figure 5.14  Potentiometer.

Electronic components used in IoT  171

to adjust the charging voltage of a battery. There are many more uses of
rotary type potentiometer where smooth voltage control is required.

5.1.3.2.2 � Linear potentiometers

The linear potentiometer is basically the same; the only difference is that here
instead of rotary movement the sliding contact gets moved on the resistor
linearly as shown in Figure 5.16. Here two ends of a straight resistor are con-
nected across the source voltage. A sliding contact can be slide on the resistor
through a track attached along with the resistor. The terminal connected to
the sliding is connected to one end of the output circuit and one of the termi-
nals of the resistor is connected to the other end of the output circuit.

This type of potentiometer is mainly used to measure the voltage across a
branch of a circuit, for measuring the internal resistance of a battery cell, for
comparing a battery cell with a standard cell and in our daily life, it is com-
monly used in the equalizer of music and sound mixing systems.

Figure 5.15  Rotary potentiometers.

172  IoT Fundamentals with a Practical Approach

5.1.3.2.3 � Digital potentiometers

Digital potentiometers are three-terminal devices, with two fixed end ter-
minals and one wiper terminal which is used to vary the output voltage as
shown in Figure 5.17.

Digital potentiometers have various applications, including calibrating a
system, adjusting offset voltage, tuning filters, controlling screen brightness,
and controlling sound volume.

However, mechanical potentiometers suffer from some serious disadvan-
tages which make it unsuitable for applications where precision is required.
Size, wiper contamination, mechanical wear, resistance drift, sensitivity to
vibration, humidity, etc. are among the main disadvantages of a mechanical

Figure 5.16  Linear potentiometers.

Figure 5.17  Digital potentiometers.

Electronic components used in IoT  173

potentiometer. Hence to overcome these drawbacks, digital potentiometers
are more common in applications since it provides higher accuracy.

Motor-Controlled: The speed of the motor and brightness of the LED are
controlled by a potentiometer.

Bar Graph: There are ten LEDs connected to an Arduino Uno and a
potentiometer. When you rotate the potentiometer, the LEDs will be
lit one by one.

Simple LCD Timer With Arduino UNO: The potentiometer is used to
choose the contrast of your LCD screen.

5.1.4 � PWM

Pulse Width Modulation (PWM) is a technique used in controlling the
brightness of LED, the speed control of DC motor, a servo motor or where
you must get analog output with digital means.

The Arduino digital pins either gives us 5 V (when turned HIGH) or 0 V
(when turned LOW) and the output is a square wave signal. So if we want to
dim a LED, we cannot get the voltage between 0 and 5 V from the digital pin,
but we can change the ON and OFF time of the signal. If we will change the
ON and OFF time fast enough then the brightness of the LED will be changed.

PWM is useful in varying the intensity of a signal such as the brightness of
an LED diode, the ping time of sensors, or the power delivery of servomotors
as shown in Figure 5.18.

Figure 5.18  PWM.

174  IoT Fundamentals with a Practical Approach

The Arduino IDE has a built-in function “analogWrite()”, which can be
used to generate a PWM signal. The frequency of this generated signal for
most pins will be about 490 Hz and we can give the value from 0 to 255
using this function.

analogWrite(0) means a signal of 0% duty cycle.
analogWrite(127) means a signal of 50% duty cycle.
analogWrite(255) means a signal of 100% duty cycle.

A 100% duty cycle would mean the output is constantly high, a 50% duty
cycle would mean that half the period is high, and half is low, and a 0% duty
cycle would mean that the signal is constantly off.

Arduino Uno has 6 8-bit PWM channels. The pins with symbol ‘~’ show
that it has PWM support.

The PWM pins are 3, 5, 6, 9, 10 and 11 as shown in Figure 5.19.

Figure 5.19  PWM pins.

Electronic components used in IoT  175

5.1.5 � Jumper wire

Jumper wires are extremely handy components to have on hand, especially
when prototyping . Simply wires that have connector pins at each end, allow-
ing them to be used to connect two points to each other without soldering.

Used with breadboards and other prototyping tools in order to make it
easy to change a circuit as needed.

Basically, we have three types as shown in Figure 5.20:

	 1.	Male to male
	 2.	Female to female
	 3.	Male to female

5.1.6 � Arduino

Arduino acts as the brain of the system and processes the data from the
sensor. Arduino is an open-source hardware platform that is readily avail-
able for hobbyists & enthusiasts across the globe to build projects. It comes
with an ATMega microcontroller that processes the data and facilitates the
proper working of the IoT system. And the beauty is that the Arduino can
be programmed ‘n’ number of times, making it possible for you to build
various types of IoT projects just by changing a simple code. The Arduino
is an open-source electronics platform based on easy-to-use hardware and
software used to build electronics projects. All Arduino boards have one

Figure 5.20  Jumper wires.

176  IoT Fundamentals with a Practical Approach

thing in common, which is a microcontroller. A microcontroller is basically
a really small computer.

With the Arduino, you can design and build devices that can interact with
your surroundings. The Arduino boards are basically a tool for controlling
electronics. They are able to read inputs with their onboard microcontroller
(e.g. light on a sensor, an object near a sensor) and turn it into an output
(drive a motor, ring an alarm, turning on an LED, display information on an
LCD).

With the Arduino, makers and electricians can easily prototype their
products and make their ideas come to life.

5.1.6.1 � Why use the Arduino?

There are many electronic boards out there, so why use the Arduino board?
Well, there are many reasons that make this microcontroller special. The
advantages of using the Arduino include:

	•	 Arduino simplifies microcontrollers for beginners.
	•	 Besides the main microcontroller chip, a microcontroller will require

many different parts for it to work. What Arduino did is that they
took all the essential components of a microcontroller and design it in
a way that is very simple to operate of a piece of PCB. This makes the
Arduino boards welcoming to all beginners!

	•	 Furthermore, with Arduino easy-to-use IDE software for beginners,
the Arduino are easier to learn to program as it uses a simplified ver-
sion of C++ compared to other programming software. Because of
this, the Arduino is commonly cited as the pathway for everyone who
is looking to learn about microcontrollers. With it being optimized
for users of all levels, even advanced users are taking advantage of the
Arduino IDE as well!

	•	 In addition, the Arduino community is very big and many users and
organizations are all using it. Cheap.

	•	 Whenever you are buying something, you will always look at the cost
first. The Arduino are very accessible and cost-effective!

Arduino IDE is also cross-platform which means you can run it on
Windows, Macintosh OSX, and also Linux operating systems making it
much more flexible than when compared with other microcontroller sys-
tems, which can only run Windows.

5.1.6.2 � Wide variety

The Arduino has many variations for you to choose from to allow you to
pick one that suits your project the most!

Electronic components used in IoT  177

Having space constraints? You can get yourself an Arduino Nano, which
is only 43.18 mm by 18.54 mm! Require more memory space and process-
ing power? You can get yourself an Arduino Mega!

We will talk more about all the different types of Arduino’s and their dif-
ferences later on.

5.1.6.3 � Arduino UNO

The development of the Arduino UNO board is considered as new com-
pared to other Arduino boards. This board comes up with numerous fea-
tures that help the user to use this in their project. The Arduino UNO uses
the Atmega16U2 microcontroller, which helps to increase the transfer rate
and contain large memory compared to other boards. No extra devices are
needed for the Arduino UNO board, such as joystick, mouse, keyboard and
many more. The Arduino UNO contains SCL and SDA pins and also have
two additional pins fit near to RESET pin as shown in Figure 5.21.

The board contains 14 digital input pins and output pins in which 6 pins
are used as PWM, 6 pins as analog inputs, USB connection, reset button
and one power jack as shown in Figure 5.22. The Arduino UNO board can
be attached to the computer system buy USB port and also get a power
supply to board from the computer system. The Arduino UNO contains
flash memory of size 32 KB that is used to the data in it. The other feature
of the Arduino UNO is compatibility with other shield and can be com-
bined with other Arduino products.

Figure 5.21  Arduino board.

178  IoT Fundamentals with a Practical Approach

5.1.6.4 � LilyPad Arduino

The LilyPad Arduino is considered as other Arduino board type that is
designed for integrating with wearable projects and e-textile projects. This
board comes in a round shape as shown in Figure 5.23 that helps to decrease
the snagging and can be easily connected to other devices. This board uses
the ATmega328 microcontroller and Arduino bootloader in it. This board
uses very less external component in it that makes the design easy and
compatible.

The board requires a 2 volt to 5 volt power supply and uses large pin
holes so that it can be easily connected to other devices. This board is widely
used for controlling different devices which includes a motor, light, and
switch. The components of this board, such as the sensor board, the input
board, and the output board, can be washable because this board is used in
clothing industries.

Figure 5.22  Arduino UNO.

Electronic components used in IoT  179

5.1.6.5 � Arduino Mega

This board is considered as the microcontroller that uses the AtMega2560
in it as shown in Figure 5.24. There are total of 54 input pins and output
pins in it in which 14 pins are of PWM output, 4 pins are of hardware port,
16 pins as analog inputs. The board also contain one USB connection, ICSP
header, power jack and one REST pin.

Figure 5.23  Lilypad Arduino.

Figure 5.24  Arduino Mega.

180  IoT Fundamentals with a Practical Approach

There are additional pins that act as a crystal oscillator, having a fre-
quency of 16 MHz. The board also has flash memory of 256 KB size which
is used to store the data. The Arduino Mega board can be attached to the
computer system via a USB connection and a power supply can be provided
to the board by using either a battery or an AC to DC adapter. The board
also has a large number of pins fitted into it, making it suitable for more
complex projects.

5.1.6.6 � Arduino leonardo

This board is considered as the microcontroller that uses the AtMega32u4
in it as shown in Figure 5.25. There are a total of 20 digital input pins and
output pins, ofwhich7 pins are used as PWM and 12 pins are used as analog
inputs. The board also contains one micro USB connection, a power jack,
and a RESET button. There are additional pins which act as crystal oscilla-
tors at a frequency of 16 MHz.

The Arduino Leonardo board can be attached to a computer system via a
USB connection and a power supply can be provided to the board by using
a battery or an AC to DC adapter. The microcontroller used by the Arduino
Leonardo has an in-built USB connection that removes any dependency on
an extra processor. As there is no additional USB connection in the board, it
helps the board to act as a mouse or a keyboard for the computer system.
The Arduino Leonardo is considered to be the cheapest of the Arduino
boards.

5.1.6.7 � Arduino Red board

The Arduino Red board is another type of Arduino board that uses the
mini USB cable for getting programmed and the Arduino IDE is used for

Figure 5.25  Arduino Leonardo.

Electronic components used in IoT  181

this purpose. This board is compatible with the Windows 8 operating sys-
tem and there is no need to change the security settings to make this board
work. The Red board uses the FTDI chip and the USB chip to connect to
other devices. As the design of the Red board is very simple, it can easily be
integrated with other projects. The only requirement is to plug in the Red
board and select the appropriate option. It can then upload a program very
quickly. The barrel jack can be used to control the USB cable of the Arduino
Red board.

5.1.6.8 � Arduino shields

Arduino shields are considered to be pre-built circuit boards that are used
to connect other Arduino boards. An Arduino shield is placed on top of an
Arduino boards and this enhances the capability of the board to be con-
nected to the Internet network, to control a motor or an LCD, or to establish
wireless communication as shown in Figure 5.26. There are different type
of shields available to use. These include wireless shields, Ethernet shields,
proto Shields, and GSM shields. The availability of all these different types
helps to increase the compatibility of Arduino boards.

5.1.6.9 � Arduino Nano

The Arduino Nano is a small Arduino board based on an ATmega328P or
an ATmega628 microcontroller. The connectivity is the same as the Arduino
UNO board.

Figure 5.26  Arduino shields.

182  IoT Fundamentals with a Practical Approach

The Nano board is defined as a sustainable, small, consistent, and flexible
microcontroller board. It is small in size compared to the UNO board. The
devices required to start our projects using the Arduino Nano board are
Arduino IDE and mini USB as shown in Table 5.3.

The Arduino Nano includes an I/O pin set of 14 digital pins and 8 analog
pins as shown in Figure 5.27. It also includes 6 power pins and 2 reset pins.

5.1.7 � Arduino UNO

The Arduino UNO is a standard board of Arduino. Here UNO means
‘one’ in Italian. It was named UNO to label the first release of Arduino
Software. It was also the first USB board released by Arduino. It is con-
sidered to be a powerful board which can be used in various projects.
Arduino.cc developed the Arduino UNO board. Arduino UNO is based on

Table 5.3  Arduino board names

Board Name Operating
Volt (V)

Clock
Speed
(MHz)

Digital
i/o

Analog
Inputs

PWM UART Programming
Interface

Arduino Uno
R3

5 16 14 6 6 1 USB via
ATMega16U2

Arduino Uno
R3 SMD

5 16 14 6 6 1 USB via
ATMega16U2

Red Board 5 16 14 6 6 1 USB via FTDI
Arduino Pro

3.3 v/8 MHz
3.3 8 14 6 6 1 FTDI-Compatible

Header
Arduino Pro 5

V/16 MHz
5 16 14 6 6 1 FTDI-Compatible

Header
Arduino Mini

05
5 16 14 8 6 1 FTDI-Compatible

Header

Figure 5.27  Arduino Nano.

Electronic components used in IoT  183

an ATmega328Pmicrocontroller. It is easy to use compared to other boards,
such as the Arduino Mega board, etc. The board consists of digital and ana-
log Input/Output pins (I/O), shields, and other circuits.

The Arduino UNO includes 6 analog pin inputs, 14 digital pins, a USB
connector, a power jack, and an ICSP (In-Circuit Serial Programming) header
as shown in Figure 5.28. It is programmed based on IDE, which stands for
Integrated Development Environment. It can run on both online and offline
platforms. The IDE is common to all available boards of Arduino.

Arduino boards can read analog or digital input signals from different
sensors and turn it into an output, such as activating a motor, turning a LED
on or off, connecting to the cloud and many other actions.

You can control your board functions by sending a set of instructions to
the microcontroller on the board via Arduino IDE (referred to as uploading
software).

Unlike most previous programmable circuit boards, Arduino does not
need an extra piece of hardware (called a programmer) to load a new code
onto the board. You can simply use a USB cable.

Additionally, the Arduino IDE uses a simplified version of C++, making it
easier to learn to program.

Finally, Arduino provides a standard form factor that breaks the func-
tions of the microcontroller into a more accessible package.

Arduino boards based on ATMEGA328 microcontroller
UNO is not the only board in the Arduino family. There are other boards

like Arduino Lilypad, Arduino Mini, Arduino Mega, and Arduino Nano.

Figure 5.28  Arduino UNO.

184  IoT Fundamentals with a Practical Approach

However, the Arduino UNO board became more popular than other boards
in the family because it has documentation that is much more detailed. This
led to its increased adoption for electronic prototyping, creating a vast com-
munity of electronic geeks and hobbyists.

In recent times, the UNO board has become synonymous with Arduino.

The major components of Arduino UNO board are as follows and also
shown in Figure 5.29:

	•	 USB connector
	•	 Power port
	•	 Microcontroller
	•	 Analog input pins
	•	 Digital pins
	•	 Reset switch
	•	 Crystal oscillator
	•	 USB interface chip
	•	 TX RX LEDs

Arduino UNO R3 description in Figure 5.30:

Figure 5.29  Arduino board pins.

Figure 5.30  Arduino board description.

Electronic components used in IoT  185

	•	 Microcontroller Microchip ATmega328P
	•	 Operating Voltage 5 V
	•	 USB Standard Type B
	•	 Digital I/O Pins 14
	•	 PWM Digital I/O Pins 6
	•	 Analog Input Pins 6
	•	 Flash Memory 32 KB
	•	 SRAM 2 KB
	•	 EEPROM 1 KBClock Speed 16 MHz
	•	 USB 2.0 Printer Cable is A-Male to B-Male Cord: One 6-foot-long

(1.8 meters) high-speed multi-shielded USB 2.0 A-Male to B-Male
cable

	•	 Connects mice, keyboards, and speed-critical devices, such as external
hard drives, printers, and cameras to your computer

	•	 Constructed with corrosion-resistant, gold-plated connectors for opti-
mal signal clarity and shielding to minimize interference

	•	 Full 2.0 USB capability/480 Mbps transfer speed

Now let’s take a closer look at each component.

5.1.7.1 � USB Connector

This is a printer USB port used to load a program from the Arduino IDE
onto the Arduino board. The board can also be powered through this port
as shown in Figure 5.31.

Figure 5.31  USB connector.

186  IoT Fundamentals with a Practical Approach

5.1.7.2 � Power Port

The Arduino board can be powered through an AC-to-DC adapter or a
battery as shown in Figure 5.32. The power source can be connected by
plugging in a 2.1 mm center-positive plug into the power jack of the board.

The Arduino UNO board operates at a voltage of 5 volts, but it can with-
stand a maximum voltage of 20 volts. If the board is supplied with a higher
voltage, there is a voltage regulator (it sits between the power port and USB
connector) that protects the board from burning out as shown in Figure 5.33.

Figure 5.32  Power port.

Figure 5.33  1 mm center-positive plug.

Electronic components used in IoT  187

5.1.7.3 � Microcontroller

5.1.7.3.1 � Atmega328P microcontroller

It is the most prominent black rectangular chip with 28 pins. Think of
it as the brains of your Arduino. The microcontroller used on the UNO
board is Atmega328P by Atmel (a major microcontroller manufacturer).
Atmega328P contains the following components as shown in Figure 5.34:

	•	 Flash memory of 32 KB. The program loaded from Arduino IDE is
stored here.

	•	 RAM of 2 KB. This is a runtime memory.
	•	 CPU: It controls everything that goes on within the device. It fetches

the program instructions from flash memory and runs them with the
help of RAM.

	•	 Electrically Erasable Programmable Read Only Memory (EEPROM)
of 1 KB. This is a type of nonvolatile memory, and it keeps the data
even after device restart and reset.

Atmega328P is pre-programmed with bootloader. This allows you to directly
upload a new Arduino program into the device, without using any external
hardware programmer, making the Arduino UNO board easy to use.

Figure 5.34  Microcontroller.

188  IoT Fundamentals with a Practical Approach

5.1.7.4 � Analog input pins

The Arduino UNO board has 6 analog input pins, labeled “Analog 0 to 5”
as shown in Figure 5.35. These pins can read the signal from an analog sen-
sor such as a temperature sensor and convert it into a digital value so that
the system understands. These pins just measure voltage and not the current
because they have very high internal resistance. Hence, only a small amount
of current flows through these pins.

Although these pins are labeled analog and are analog input by default,
they can also be used for digital input or output.

5.1.7.5 � Digital pins

You can find these pins labeled “Digital 0 to 13” as shown in Figure 5.36.
These pins can be used as either input or output pins. When used as output,
these pins act as a power supply source for the components connected to
them. When used as input pins, they read the signals from the component
connected to them.

When digital pins are used as output pins, they supply 40 milliamps of
current at 5 volts, which is more than enough to light an LED.

Some of the digital pins are labeled with tilde (~) symbol next to the pin
numbers (pin numbers 3, 5, 6, 9, 10, and 11). These pins act as normal digi-
tal pins but can also be used for Pulse-Width Modulation (PWM), which
simulates analog output like fading an LED in and out.

Figure 5.35  Analog input pins.

Electronic components used in IoT  189

5.1.7.6 � Reset switch

When this switch is clicked, it sends a logical pulse to the reset pin of the
microcontroller, and now runs the program again from the start as shown
in Figure 5.37. This can be very useful if your code doesn’t repeat, but you
want to test it multiple times.

Figure 5.36  Digital pins.

Figure 5.37  Reset switch.

190  IoT Fundamentals with a Practical Approach

5.1.7.7 � Crystal oscillator

This is a quartz crystal oscillator which ticks 16 million times a second
as shown in Figure 5.38. On each tick, the microcontroller performs one
operation, for example, addition, subtraction, etc.

5.1.7.8 � USB interface chip

Think of this as a signal translator. It converts signals in the USB level to
a level that an Arduino UNO board understands as shown in Figure 5.39.

Figure 5.38  Crystal oscillator.

Electronic components used in IoT  191

5.1.7.9 � TX–RX LEDs

TX stands for transmit, and RX for receive. These are indicator LEDs which
blink whenever the UNO board is transmitting or receiving data as shown
in Figure 5.40.

Figure 5.39  USB interface chip.

Figure 5.40  TX–RX LEDs.

192  IoT Fundamentals with a Practical Approach

5.1.7.10 � Memory

The memory structure is shown in Figure 5.41:

The preinstalled flash has a bootloader, which takes the memory of 0.5
Kb. Here, SRAM stands for Static Random Access Memory, and EEPROM
stands for Electrically Erasable Programmable Read-Only Memory.

5.1.7.11 � How to get started with Arduino UNO

We can program the Arduino UNO using the Arduino IDE. The Arduino IDE
is the Integral Development program, which is common to all the boards.

We can also use Arduino Web Editor, which allows us to upload sketches
and write the code from our web browser (Google Chrome recommended)
to any Arduino board. It is an online platform.

The USB connection is essential to connect the computer with the board.
After the connection, the PWR pins will light in green. It is a green power
LED.

The steps to get started with Arduino UNO are listed below:

Install the drivers of the board.

As soon we connect the board to the computer, Windows from XP to 10 will
automatically install the board drivers.

	•	 But, if you have expanded or downloaded the zip package, follow the
below steps:

	•	 Click on Start->Control Panel->System and Security.
	•	 Click on System->Device Manager->Ports (COM & LPT)->Arduino

UNO (COMxx). If the COM &LPT is absent, look Other Devices-
>Unknown Device.

Figure 5.41  Memory.

Electronic components used in IoT  193

	•	 Right-click to Arduino UNO (COMxx)->Update Driver Software-
>Browse my computer for driver software.

	•	 Select the file “inf” to navigate else, select “ArduinoUNO.inf”.
	•	 Installation Finished.
	•	 Open the code or sketch written in the Arduino software.
	•	 Select the type of board.

Click on ‘Tools’ and select Board, as shown below in Figure 5.42:

Select the port. Click on the Tools -> Port (select the port). The port likely
will be COM3 or higher. For example, COM6, etc. The COM1 and
COM2ports will not appear, because these two ports are reserved for the
hardware serial ports.

Now, upload and run the written code or sketch.
To upload and run, click on the button present on the top panel of the

Arduino display, as shown below:

Within the few seconds after the compile and run of code or sketch, the RX
and TX lights present on the Arduino board will flash.

The ‘Done Uploading’ message will appear after the code is successfully
uploaded. The message will be visible in the status bar.

Figure 5.42  How to select board.

194  IoT Fundamentals with a Practical Approach

5.1.8 � Arduino UNO pinout

The Arduino UNO is a standard board of Arduino, which is based on an
ATmega328P microcontroller. It is easier to use than other types of Arduino
boards.

The Arduino UNO board, with the specification of pins, is shown below
in Figure 5.43:

Let’s discuss each pin in detail.

	•	 ATmega328 Microcontroller
This is a single chip microcontroller of the ATmel family. The pro-
cessor core inside it is an 8-bit one. It is a low-cost, low-powered,
and simple microcontroller. The Arduino UNO and Nano models are
based on the ATmega328 Microcontroller.

Figure 5.43  Arduino UNO pins.

Electronic components used in IoT  195

	•	 Voltage Regulator
The voltage regulator converts the input voltage to 5 V. The primary
function of the voltage regulator is to regulate the voltage level in the
Arduino board. For any changes in the input voltage of the regulator,
the output voltage is constant and steady.

	•	 GND Ground pins. The ground pins are used to ground the circuit.
	•	 TXD and RXD

TXD and RXD pins are used for serial communication. The TXD is
used for transmitting the data, and RXD is used for receiving the data.
It also represents the successful flow of data.

	•	 USB Interface
The USB Interface is used to plug in the USB cable. It allows the board
to connect to the computer. It is essential for the programming of the
Arduino UNO board.

	•	 RESET
It is used to add a Reset button to the connection.

	•	 SCK
It stands for Serial Clock. These are the clock pulses, which are used to
synchronize the transmission of data.

	•	 MISO
It stands for Master Input/Slave Output. The save line in the MISO pin
is used to send the data to the master.

	•	 VCC
This is the modulated DC supply voltage, which is used to regulate
the IC’s used in the connection. It is also called the primary voltage for
IC’s present on the Arduino board. The Vcc voltage value can be either
negative or positive with respect to the GND pin.

	•	 Crystal Oscillator The Crystal oscillator has a frequency of 16 MHz,
which makes the Arduino UNO a powerful board.

	•	 ICSP
This stands for In-Circuit Serial Programming. The users can program
the Arduino board’s firmware using the ICSP pins.

The program or firmware with the advanced functionalities is received by
the microcontroller with the help of the ICSP header.

The ICSP header consists of 6 pins.

196  IoT Fundamentals with a Practical Approach

The structure of the ICSP header is shown below in Figure 5.44:

This is the top view of the ICSP header.

	•	 SDA
This stands for Serial Data. It is a line used by the slave and master to
send and receive data. It is called as a data line, while SCL is called a
clock line.

	•	 SCL
This stands for Serial Clock. It is defined as the line that carries the
clock data. It is used to synchronize the transfer of data between the
two devices. The Serial Clock is generated by the device and it is called
the master.

	•	 SPI
This stands for Serial Peripheral Interface. It is popularly used by the
microcontrollers to communicate with one or more peripheral devices
quickly. It uses conductors for data receiving, data sending, synchroni-
zation, and device selection (for communication).

	•	 MOSI
This stands for Master Output/Slave Input.
The MOSI and SCK are driven by the master.

	•	 SS
This stands for Slave Select. It is the Slave Select line, which is used by
the master. It acts as the enable line.

	•	 I2C
This is the two-wire serial communication protocol. It stands for Inter
Integrated Circuits. The I2C is a serial communication protocol that
uses SCL (Serial Clock) and SDA (Serial Data) to receive and send data
between two devices.
3.3 V and 5 V are the operating voltages of the board.

Figure 5.44  ICSP header.

Electronic components used in IoT  197

5.1.8.1 � Arduino coding basics

Arduino IDE (the Integrated Development Environment) allows us to draw
the sketch and upload it to the various Arduino boards using code. The
code is written in a simple programming language similar to C and C++.
The initial step to start with Arduino is the IDE download and installation.

To start with Arduino programming:

5.1.8.1.1 � Brackets

There are two types of brackets used in the Arduino coding, which are listed
below:

	•	 Parentheses ()
	•	 Curly Brackets { }

Parentheses (): The parentheses brackets are the group of the arguments,
such as method, function, or a code statement. These are also used to
group the math equations.

Curly Brackets { }: The statements in the code are enclosed in the curly
brackets. We always require closed curly brackets to match the open
curly bracket in the code or sketch.

Open curly bracket- '{ '
Closed curly bracket – ' } '

5.1.8.1.2 � Line comment

There are two types of line comments, which are listed below:

	•	 Single line comment
	•	 Multi-line comment

// Single line comment

The text that is written after the two forward slashes are considered as a
single line comment. The compiler ignores the code written after the two
forward slashes. The comment will not be displayed in the output. Such text
is specified for a better understanding of the code or for the explanation of
any code statement.

The // (two forward slashes) are also used to ignore some extra lines of
code without deleting it.

/ * Multi-line comment */

The multi-line comment is written to group the information for clear
understanding. It starts with the single forward slash and an asterisk symbol
(/ *). It also ends with the/ *. It is commonly used to write the larger text. It
is a comment, which is also ignored by the compiler.

198  IoT Fundamentals with a Practical Approach

5.1.8.1.3 � Coding screen

The coding screen is divided into two blocks. The setup is considered as the
preparation block, while the loop is considered as the execution block. It is
shown below in Figure 5.45:

The set of statements in the setup and loop blocks are enclosed with the
curly brackets. We can write multiple statements depending on the coding
requirements for a particular project.

For example:

void setup()
{
Codingstatement1;
Codingstatement2;
.
.
.
Codingstatementn;
}

Figure 5.45  Arduino sketch.

Electronic components used in IoT  199

void loop()
{
Codingstatement1;
Codingstatement2;
.
.
.
Codingstatementn;
}

5.2 � WHAT IS SETUP? WHAT TYPE OF CODE IS
WRITTEN IN THE SETUP BLOCK?

It contains an initial part of the code to be executed. The pin modes, librar-
ies, variables, etc., are initialized in the setup section. It is executed only
once during the uploading of the program and after reset or power up of
the Arduino board.

Zero setup () resides at the top of each sketch. As soon as the program
starts running, the code inside the curly bracket is executed in the setup and
it executes only once.

5.3 � WHAT IS LOOP? WHAT TYPE OF CODE IS WRITTEN
IN THE LOOP BLOCK?

The loop contains statements that are executed repeatedly. The section of
code inside the curly brackets is repeated depending on the value of variables.

Time in Arduino: The time in Arduino programming is measured in a
millisecond.

Where, 1 sec = 1000 milliseconds
We can adjust the timing according to the milliseconds.
For example, for a 5-second delay, the time displayed will be 5000

milliseconds.
Example: Let’s consider a simple LED blink example.
The steps to open such examples are:

	 1.	Click on the File button, which is present on the menu bar.
	 2.	Click on the Examples.
	 3.	Click on the Basics option and click on the Blink button.

200  IoT Fundamentals with a Practical Approach

The example will reopen in a new window, as shown below in Figure 5.46:

	•	 The void setup () would include pinMode as the main function.
pinMode ()

The specific pin number is set as the INPUT or OUTPUT in the pinMode ()
function.
The Syntax is: pinMode (pin, mode)

Where,

pin: It is the pin number. We can select the pin number according to the
requirements.

Mode: We can set the mode as INPUT or OUTPUT according to the cor-
responding pin number.

Let’ understand the pinMode with an example.

Example: We want to set the 12 pin number as the output pin.
Code:

pinMode(12,OUTPUT);

5.4 � WHY IS IT RECOMMENDED TO SET THE MODE
OF PINS AS OUTPUT?

The OUTPUT mode of a specific pin number provides a considerable
amount of current to other circuits, which is enough to run a sensor or to

Figure 5.46  LED blink example.

Electronic components used in IoT  201

light the LED brightly. The output state of a pin is considered as the low-
impedance state. The high current and short circuit of a pin can damage the
ATmel chip. So, it is recommended to set the mode as OUTPUT.

5.4.1 � Can we set the pinMode as INPUT?

The digitalWrite () will disable the LOW during the INPUT mode. The out-
put pin will be considered as HIGH. We can use the INPUT mode to use the
external pull-down resistor. We are required to set the pinMode as INPUT_
PULLUP. It is used to reverse the nature of the INPUT mode. The sufficient
amount of current is provided by the pull-up mode to dimly light an LED,
which is connected to the pin in the INPUT mode. If the LED is working
dimly, it means this condition is working out. Due to this, it is recommended
to set the pin in OUTPUT mode.

	•	 The void loop () would include digitalWrite() and delay() as the main
function.

digitalWrite()

The digitalWrite () function is used to set the value of a pin as HIGH or
LOW.

Where, HIGH: It sets the value of the voltage. For the 5 V board, it will
set the value of 5 V, while for 3.3 V; it will set the value of 3.3 V. LOW: It
sets the value = 0 (GND).If we do not set the pinMode as OUTPUT, the LED
may light dimly.

The syntax is: digitalWrite(pin, value HIGH/LOW)
pin: We can specify the pin number or the declared variable.
Let’s understand with an example.

Example:

digitalWrite(13,HIGH);
digitalWrite(13,LOW);
The HIGH will ON the LED and LOW will OFF the LED connected to pin
number 13.

5.5 � WHAT IS THE DIFFERENCE BETWEEN DigitalRead ()
AND DigitalWrite ()?

The digitalRead () function will read the HIGH/LOW value from the digital
pin, and the digitalWrite () function is used to set the HIGH/LOW value of
the digital pin.

delay ()
The delay () function is a blocking function to pause a program from

doing a task during the specified duration in milliseconds.

202  IoT Fundamentals with a Practical Approach

For example, - delay (2000)
Where, 1 sec = 1000 milliseconds
Hence, it will provide a delay of 2 seconds.
Code:

 digitalWrite(13,HIGH);
 1. delay(2000);
 2. digitalWrite(13,LOW);
 3. delay(1000);

Here, the LED connected to pin number 13 will be ON for 2 seconds and
OFF for 1 second. The task will repeatedly execute as it is in the void loop
().We can set the duration according to our choice or project requirements.

Example: To light the LED connected to pin number 13. We want to
ON the LED for 4 seconds and OFF the LED for 1.5 seconds.

Code:

voidsetup()
{
pinMode(13,OUTPUT);//to set the OUTPUT mode of pin number 13.
}
voidloop()
{
digitalWrite(13,HIGH);
delay(4000);//4 seconds = 4 × 1000 milliseconds
digitalWrite(13,LOW);
delay(1500);//1.5 seconds = 1.5 × 1000 milliseconds
}

5.5.1 � Arduino syntax and program flow

Syntax:
Syntax in Arduino signifies the rules need to be followed for the successful
uploading of the Arduino program to the board. The syntax of Arduino is
similar to the grammar in English. It means that the rules must be followed
in order to compile and run our code successfully. If we break those rules,
our computer program may compile and run, but with some bugs.

Let’s understand with an example. As we open the Arduino IDE, the dis-
play will look like Figure 5.47:

Electronic components used in IoT  203

The two functions that encapsulate the pieces of code in the Arduino pro-
gram are shown below:

	 1.	void setup ()
	 2.	void loop ()

5.5.2 � Functions

	•	 The functions in Arduino combine many pieces of lines of code into
one.

	•	 The functions usually return a value after finishing execution. But here,
the function does not return any value due to the presence of void.

	•	 The setup and loop function have void keyword present in front of
their function name.

	•	 The multiple lines of code that a function encapsulates are written
inside curly brackets.

	•	 Every closing curly bracket ‘}‘ must match the opening curly bracket ‘{‘
in the code.

	•	 We can also write our own functions, which will be discussed later in
this tutorial.

Figure 5.47  Arduino structure.

204  IoT Fundamentals with a Practical Approach

5.5.3 � Spaces

Arduino ignores the white spaces and tabs before the coding statements.
The coding statements in the code are intent (empty spacing at the start-

ing) for the easy reading.
In the function definition, loop, and conditional statements, 1 intent = 2

spaces.
The compiler of Arduino also ignores the spaces in the parentheses, com-

mas, blank lines, etc.

5.5.4 �Tools tab

The verify icon present on the tool tab only compiles the code. It is a quick
method to check that whether the syntax of our program is correct or not.

To compile, run, and upload the code to the board, we need to click on the
Upload button.

5.5.5 � Uses of parentheses ()

It denotes the function like void setup () and void loop ().
The parameter’s inputs to the function are enclosed within the

parentheses.
It is also used to change the order of operations in mathematical operations.

5.5.6 � Semicolon ;

It is the statement terminator in the C as well as C++.
A statement is a command given to the Arduino, which instructs it to take

some kind of action. Hence, the terminator is essential to signify the end of
a statement.

We can write one or more statements in a single line, but with semicolon
indicating the end of each statement.

The compiler will indicate an error if a semicolon is absent in any of the
statements.

It is recommended to write each statement with semicolon in a different
line, which makes the code easier to read.

We are not required to place a semicolon after the curly braces of the
setup and loop function.

Arduino processes each statement sequentially. It executes one statement
at a time before moving to the next statement.

5.5.7 � Program flow

The program flow in Arduino is similar to the flowcharts. It represents the
execution of a program in order.

Electronic components used in IoT  205

We recommend to draw the flowchart before writing the code. It helps us
to understand the concept of code, which makes it the coding simpler and
easier.

5.5.8 � Flow charts

A flowchart uses shapes and arrows to represent the information or sequence
of actions.

An oval ellipse shows the Start of the sequence, and a square shows the
action or processes that need to be performed.

The Arduino coding process in the form of the flowchart is shown below:

Here, the processor enters our code, and the execution of code begins.
After the setup, the execution of the statement in the loop begins.

The example of the flowchart in Arduino is shown below in Figure 5.48:

Figure 5.48  Arduino flowchart.

206  IoT Fundamentals with a Practical Approach

5.5.9 � Arduino Serial |Serial.begin()

Serial Communication: The serial communication is a simple scheme that
uses the UART (Universal Asynchronous Receiver/Transmitter) on the
Microcontroller. It uses:

5 V for logic 1 (high)
0 V for logic 0 (low)

For a 3.3 V board, it uses:

3 V for logic 1 (high)
0 V for logic 0 (low)

Every message sent on the UART is in the form of 8 bits or 1 byte, where1
byte = 8 bits.

The messages sent to the computer from Arduino are sent from PIN 1 of
the Arduino board, called Tx (Transmitter). The messages being sent to the
Arduino from the computer are received on PIN 0, called Rx(Receiver).

These two pins on the Arduino UNO board look like the below image in
Figure 5.49:

When we initialize the pins for serial communication in our code, we can-
not use these two pins (Rx and Tx) for any purpose. The Tx and Rx pins are
also connected directly to the computer.

Figure 5.49  UART.

Electronic components used in IoT  207

The pins are connected to the serial Tx and Rx chip, which acts as a serial
to USB translator. It acts as a medium for the computer to talk to the
Microcontroller.

The chip on the board looks like the below image in Figure 5.50:

The object can include any number of data members (information) and
member functions (to call actions).

The Serial.begin() is a part of the serial object in the Arduino. It tells the
serial object to perform initialization steps to send and receive data on the
Rx and Tx (pins 1 and 0).

Let’s discuss Serial.begin() in detail.
Arduino Mega has four serial ports. The Tx pins on the Mega board are

listed below:

	•	 1 (TX)
	•	 18 (TX)
	•	 16 (TX)
	•	 14 (TX)

The Rx pins on the Mega port are listed below:

	•	 0 (RX)
	•	 19 (RX)
	•	 17 (RX)
	•	 15 (RX)

The communication with the Tx and Rx pins would cause interference and
failed uploads to the particular board.

Figure 5.50  Arduino.

208  IoT Fundamentals with a Practical Approach

If we require a serial port for communication, we need to use a USB-to-
serial adapter. It is a mini USB connector, which converts the USB connection
to the Serial RX and TX. We can directly connect the adapter to the board.

There are five pins present on the USB-to serial adapter, including RX,
TX, reset button, and GND (Ground).

5.5.9.1 � Serial.begin ()

The serial.begin() sets the baud rate for serial data communication. The
baud rate signifies the data rate in bits per second.

The default baud rate in Arduino is 9600 bps (bits per second). We can
specify other baud rates as well, such as 4800, 14400, 38400, 28800, etc.

The Serial.begin() is declared in two formats, which are shown below:

	•	 begin(speed)
	•	 begin(speed, config)

Where,
serial: It signifies the serial port object.
speed: It signifies the baud rate or bps (bits per second) rate. It allows

long data types.
config: It sets the stop, parity, and data bits.

Example 1:

 1. voidsetup()
 2. {
 3. Serial.begin(4800);
 4. }
 5. voidloop()
 6. {
 7. }

The serial.begin (4800) open the serial port and set the bits per rate to 4800.
The messages in Arduino are interchanged with the serial monitor at a rate
of 4800 bits per second.

5.5.9.2 � Arduino serial.print ()

The serial.print () in Arduino prints the data to the serial port. The printed
data is stored in the ASCII (American Standard Code for Information
Interchange) format, which is a human-readable text.

Each digit of a number is printed using the ASCII characters.
The printed data will be visible in the serial monitor, which is present on

the right corner on the toolbar.

Electronic components used in IoT  209

The Serial.print() is declared in two formats, which are shown below:

	•	 print(value)
	•	 print(value, format)

Note: In Serial.print(), S must be written in uppercase.

Where,
serial: It signifies the serial port object.
print: The print () returns the specified number of bytes written.
value: It signifies the value to print, which includes any data type value.
format: It consists of number base, such as OCT (Octal), BIN (Binary),

HEX (Hexadecimal), etc. for the integral data types. It also specifies
the number of decimal places.

5.5.9.3 � Serial.print(value)

The serial.print () accepts the number using the ASCII character per digit
and value up to two decimal places for floating point numbers.

Example 1:

	 1.	 Serial.print(15.452732)

Output:
15.45
It sends bytes to the printer as a single character. In Arduino, the
strings and characters using the Serial.print() are sent as it is.

Example 2:

	 1.	 Serial.print(“HelloArduino”)

Output:
“Hello Arduino”
Serial.print(value, format)

It specifies the base format and gives the output according to the speci-
fied format. It includes the formats Octal -OCT (base 8), Binary-BIN
(base 2), Decimal-DEC (base 10), and Hexadecimal-HEX (base 16).
Let’s understand by few examples.

210  IoT Fundamentals with a Practical Approach

Example 1:

	 1.	 Serial.print(25,BIN)

Output:
11001
It converts the decimal number 25 to binary number 11001.

Example 2:

	 1.	 Serial.print(58,HEX)

Output:
3 A
It converts the decimal number 58 to hexadecimal number 3 A.
Serial.println ()
The Serial.println () means print line, which sends the string followed
by the carriage return (‘\r’ or ASCII 13) and newline (‘\n’ or ASCII 10)
characters. It has a similar effect as pressing the Enter or Return key
on the keyboard when typing with the Text Editor.
The Serial.println() is also declared in two formats, which are shown below:

	 •	 println(value)
	 •	 println(value, format)

5.6 � WHAT IS THE DIFFERENCE BETWEEN Serial.Print()
AND Serial.Println()?

The text written inside the open and closed parentheses in the Serial.println()
moves in a new line. With the help of Serial.print() and Serial.println(), we
can figure the order and execution of certain things in our code.

Let’s understand with an example:
Consider the below code.

1. voidsetup()
2. {
3. Serial.begin(4800);
4. }
5. voidloop()
6. {
7. Serial.print(“Hello”);
8. delay(1000);
9. Serial.println(“Arduino”);//It will print Arduino
followed by a new line.
10. delay(1500);//delay of 1.5 seconds between each printed
line.
11. }

Electronic components used in IoT  211

Click on the Upload button->Serial monitor for the output.
In the output, the word Hello will appear followed by the word Arduino1

second later. After 1.5 second, another line will be printed.

Output

Hello Arduino

Hello Arduino//The next line will be printed after the specified duration.

The output will be printed repeatedly.

Program 2: Turn on LED

int LED = 6;
 // LED connected to pin 6
 void setup ()
{ pinMode(LED, OUTPUT); // set the digital pin as output
}
void loop () {
digitalWrite(LED,HIGH); // turn on led
}

Program 3: Blinking LED

 int LED = 6;
 // LED connected to pin 6
 void setup ()
 { pinMode(LED, OUTPUT); // set the digital pin as output
 }
 void loop () {
 digitalWrite(LED,HIGH); // turn on led
 delay(500); // delay for 500 ms, 1 second=1000 milliseconds
 digitalWrite(LED,LOW); 	 // turn off led
 delay(500); // delay for 500 ms
 }

5.6.1 � Data types

Data types in C refer to an extensive system used for declaring variables or
functions of different types. The type of a variable determines how much
space it occupies in the storage and how the bit pattern stored is inter-
preted. The Arduino environment is really just C++ with library support and
built-in assumptions about the target environment to simplify the coding
process. C++ defines a number of different data types; here we’ll talk only
about those used in Arduino with an emphasis on traps awaiting the unwary
Arduino programmer.

Below is a list of the data types commonly seen in Arduino, with the
memory size of each in parentheses after the type name. Note: signed

212  IoT Fundamentals with a Practical Approach

variables allow both positive and negative numbers, while unsigned vari-
ables allow only positive values.

	•	 Boolean(8 bit) – simple logical true/false
	•	 byte(8 bit) – unsigned number from 0-255
	•	 char(8 bit) – signed number from -128 to 127. The compiler will

attempt to interpret this data type as a character in some circum-
stances, which may yield unexpected results

	•	 unsigned char (8 bit) – same as ‘byte’; if this is what you’re after, you
should use ‘byte’ instead, for reasons of clarity

	•	 word(16 bit) – unsigned number from 0-65535
	•	 unsigned int(16 bit) – the same as ‘word’. Use ‘word’ instead for clarity

and brevity
	•	 int(16 bit) – signed number from -32768 to 32767. This is most com-

monly what you see used for general purpose variables in Arduino
example code provided with the IDE

	•	 unsigned long(32 bit) – unsigned number from 0-4,294,967,295. The
most common usage of this is to store the result of the millis()function,
which returns the number of milliseconds the current code has been
running

	•	 long(32 bit) – signed number from -2,147,483,648 to 2,147,483,647
	•	 float(32 bit) – signed number from -3.4028235E38 to 3.4028235E38.

Floating point on the Arduino is not native; the compiler has to jump
through hoops to make it work.

	•	 The following table provides all the data types that you will use during
Arduino programming:

void Boolean char Unsigned
char

byte int Unsigned int word

long Unsigned
long

short float double array String-char
array

String-object

5.6.1.1 � Void

The void keyword is used only in function declarations. It indicates that the
function is expected to return no information to the function from which it
was called.

Example

 Void Loop () {
 // rest of the code
 }

Electronic components used in IoT  213

5.6.1.2 � Boolean

A Boolean holds one of two values, true or false. Each Boolean variable
occupies one byte of memory.

Example

boolean val = false; // declaration of variable with type boolean and ini-
tialize it with false

boolean state = true; // declaration of variable with type boolean and
initialize it with true

5.6.1.3 � Char

A data type that takes up one byte of memory that stores a character value.
Character literals are written in single quotes like this: ‘A’ and for multiple
characters, strings use double quotes: “ABC”.

However, characters are stored as numbers. You can see the specific encoding
in the ASCII chart. This means that it is possible to do arithmetic operations on
characters, in which the ASCII value of the character is used. For example,
‘A’ + 1 have the value 66, since the ASCII value of the capital letter A is 65.

Example

Char chr_a = ‘a’;//declaration of variable with type char and initialize it
with character a

Char chr_c = 97;//declaration of variable with type char and initialize it
with character 97

5.6.1.4 � Unsigned char

Unsigned char is an unsigned data type that occupies one byte of memory.
The unsigned char data type encodes numbers from 0 to 255.

Example

Unsigned Char chr_y = 121; // declaration of variable with type Unsigned
char and initialize it with character y

5.6.1.5 � Byte

A byte stores an 8-bit unsigned number, from 0 to 255.

Example

byte m = 25;//declaration of variable with type byte and initialize it
with 25

214  IoT Fundamentals with a Practical Approach

5.6.1.6 � Int

Integers are the primary data-type for number storage. int stores a 16-bit
(2-byte) value. This yields a range of -32,768 to 32,767 (minimum value of
-2^15 and a maximum value of (2^15) - 1).

The int size varies from board to board. On the Arduino Due, for exam-
ple, an int stores a 32-bit (4-byte) value. This yields a range of -2,147,483,648
to 2,147,483,647 (minimum value of -2^31 and a maximum value of
(2^31) - 1).

Example

int counter = 32;// declaration of variable with type int and initialize it
with 32

5.6.1.7 � Unsigned int

Unsigned ints (unsigned integers) are the same as int in the way that they store
a 2 byte value. Instead of storing negative numbers, however, they only store
positive values, yielding a useful range of 0 to 65,535 (2^16) - 1). The Due
stores a 4 byte (32-bit) value, ranging from 0 to 4,294,967,295 (2^32 - 1).

Example

Unsigned int counter = 60; // declaration of variable with
type unsigned int and initialize it with 60

5.6.1.8 � Word

On the Uno and other ATMEGA-based boards, a word stores a 16-bit
unsigned number. On the Due and Zero, it stores a 32-bit unsigned number.

Example

word w = 1000;//declaration of variable with type word and initialize it
with 1000

5.6.1.9 � Long

Long variables are extended size variables for number storage, and store 32
bits (4 bytes), from -2,147,483,648 to 2,147,483,647.

Example

Long velocity = 102346;//declaration of variable with type Long and ini-
tialize it with 102346

Electronic components used in IoT  215

5.6.1.10 � Unsigned long

Unsigned long variables are extended size variables for number storage and
store 32 bits (4 bytes). Unlike standard longs, unsigned longs will not store
negative numbers, making their range from 0 to 4,294,967,295 (2^32 - 1).

Example

Unsigned Long velocity = 101006;// declaration of variable with
type Unsigned Long and initialize it with 101006

5.6.1.11 � Short

A short is a 16-bit data-type. On all Arduinos (ATMega and ARM-based), a
short stores a 16-bit (2-byte) value. This yields a range of -32,768 to 32,767
(minimum value of -2^15 and a maximum value of (2^15) - 1).

Example

short val = 13;//declaration of variable with type short and initialize it
with 13

5.6.1.12 � Float

Data type for floating-point number is a number that has a decimal point.
Floating-point numbers are often used to approximate the analog and con-
tinuous values because they have greater resolution than integers.

Floating-point numbers can be as large as 3.4028235E+38 and as low as
-3.4028235E+38. They are stored as 32 bits (4 bytes) of information.

Example

float num = 1.352;//declaration of variable with type float and initialize
it with 1.352

5.6.1.13 � Double

On the Uno and other ATMEGA based boards, Double precision floating-
point number occupies four bytes. That is, the double implementation is
exactly the same as the float, with no gain in precision. On the Arduino Due,
doubles have 8-byte (64 bit) precision.

Example

double num = 45.352;// declaration of variable with type double and
initialize it with 45.352

216 DOI: 10.1201/9781003307488-6

Arduino is an open-source electronics platform based on easy-to-use hard-
ware and software. Arduino boards are able to read inputs: light on a sensor,
a finger on a button, or a Twitter message and turn it into an output: acti-
vating a motor, turning on an LED, publishing something online. You can
tell your board what to do by sending a set of instructions to the microcon-
troller on the board. To do so, you use the Arduino programming language
(based on Wiring) and the Arduino Software (IDE) based on Processing.

Over the years Arduino has been the brain of thousands of projects, from
everyday objects to complex scientific instruments. A worldwide community
of makers, students, hobbyists, artists, programmers and professionals, has
gathered around this open-source platform. Their contributions have added
up to an incredible amount of accessible knowledge that can be of great help
to novices and experts alike.

Arduino was born at the Ivrea Interaction Design Institute as an easy tool
for fast prototyping, aimed at students without a background in electronics
and programming. As soon as it reached a wider community, the Arduino
board started changing to adapt to new needs and challenges, differentiating
its offer from simple 8-bit boards to products for IoT applications, and
wearable, 3D printing and embedded environments.

6.1 � WHY ARDUINO?

Thanks to its simple and accessible user experience, Arduino has been used
in thousands of different projects and applications. The Arduino software
is easy to use for beginners, yet flexible enough for advanced users. It runs
on Mac, Windows, and Linux. Teachers and students use it to build low-
cost scientific instruments, to prove chemistry and physics principles or to
get started with programming and robotics. Designers and architects build

Chapter 6

Introduction to Arduino

http://dx.doi.org/10.1201/9781003307488-6

Introduction to Arduino  217

interactive prototypes, musicians and artists use it for installations and to
experiment with new musical instruments. Makers, of course, use it to build
many of the projects exhibited at the Maker Faire, for example. Arduino
is a key tool to learn new things. Anyone, including children, hobbyists,
artists, and programmers, can begin to tinker just following the step-by-
step instructions of a kit or sharing ideas online with other members of the
Arduino community.

There are many other microcontrollers and microcontroller platforms
available for physical computing. Parallax Basic Stamp, Netmedia’s
BX-24, Phidgets, MIT’s Handyboard, and many others offer similar func-
tionality. All of these tools take the messy details of microcontroller pro-
gramming and wrap it up in an easy-to-use package. Arduino also
simplifies the process of working with microcontrollers, but it offers some
advantages for teachers, students, and interested amateurs over other
systems:

	•	 Inexpensive: Arduino boards are relatively inexpensive compared to
other microcontroller platforms. The least expensive version of the
Arduino module can be assembled by hand and even the pre-assembled
Arduino modules cost less than $50.

	•	 Cross-platform: The Arduino Software (IDE) runs on Windows,
Macintosh OSX, and Linux operating systems. Most microcontroller
systems are limited to Windows.

	•	 Simple, clear programming environment: The Arduino Software (IDE)
is easy to use for beginners, yet also flexible enough for advanced
users to take advantage of. For teachers, it’s conveniently based on
the Processing programming environment, so students learning to pro-
gram in that environment will be familiar with how the Arduino IDE
works.

	•	 Open source and extensible software: The Arduino software is pub-
lished as open-source tools, available for extension by experienced
programmers. The language can be expanded through C++ librar-
ies and people wanting to understand the technical details can make
the leap from Arduino to the C programming language on which it’s
based. Similarly, if you want to you can add C code directly into your
Arduino programs.

	•	 Open source and extensible hardware: The plans of the Arduino
boards are published under a Creative Commons license, so experi-
enced circuit designers can make their own version of the module,
extending it and improving it. Even relatively inexperienced users can
build the breadboard version of the module in order to understand
how it works and save money.

218  IoT Fundamentals with a Practical Approach

6.2 � WHAT MAKES UP AN ARDUINO?

Arduinos contain a number of different parts and interfaces together on a
single circuit board. The design has changed through the years, and some
variations also include other parts. But on a basic board, you’re likely to find
the following pieces:

	 •	A number of pins, which are used to connect with various components
you might want to use with the Arduino. These pins come in two
varieties:

	 •	 Digital pins: This can read and write a single state, on or off. Most
Arduinos have 14 digital I/O pins.

	 •	 Analog pins: This can read a range of values, and are useful for
more fine-grained control. Most Arduinos have six of these ana-
log pins.

These pins are arranged in a specific pattern, so that if you buy an add-on
board designed to fit into them, typically called a “shield,” it should fit easily
into most Arduino-compatible devices.

	•	 A power connector, which provides power to both the device itself and
provides a low voltage which can power connected components like
LEDs and various sensors, provided their power needs are reasonably
low. The power connector can connect to either an AC adapter or a
small battery.

	•	 A microcontroller, the primary chip, which allows you to program
the Arduino in order for it to be able to execute commands and make
decisions based on various input. The exact chip varies depending on
what type of Arduino you buy, but they are generally Atmel control-
lers, usually an ATmega8, ATmega168, ATmega328, ATmega1280 or
ATmega2560. The differences between these chips are subtle but the
biggest difference a beginner will notice is the different amounts of
onboard memory.

	•	 A serial connector, which on most newer boards is implemented
through a standard USB port. This connector allows you to communi-
cate to the board from your computer, as well as load new programs
onto the device. Often, Arduinos can also be powered through the USB
port, removing the need for a separate power connection.

	•	 A variety of other small components, like an oscillator and/or a voltage
regulator, which provide important capabilities to the board, although
you typically don’t interact with these directly; just know that they are
there.

Introduction to Arduino  219

6.3 � WHAT DOES IT DO?

The Arduino hardware and software was designed for artists, designers,
hobbyists, hackers, newbies, as shown in Figure 6.1 and anyone interested
in creating interactive objects or environments. Arduino can interact with
buttons, LEDs, motors, speakers, GPS units, cameras, the Internet, and even
your smartphone or your TV. This flexibility combined with the fact that the
Arduino software is free, the hardware boards are pretty cheap, and both
the software and hardware are easy to learn has led to a large community of
users who have contributed code and released instructions for a huge variety
of Arduino-based projects.

For everything from robots and a heating pad and hand warming blanket
to honest fortune-telling machines and even a Dungeons and Dragons dice-
throwing gauntlet, the Arduino can be used as the brains behind almost any
electronics project.

6.4 � WHAT’S ON THE BOARD?

There are many varieties of Arduino boards that can be used for different
purposes as shown in Figure 6.2. Some boards look a bit different from the
one below, but most Arduinos have the majority of these components in
common:

Figure 6.1  Arduino (Wear your nerd cred on your sleepy arm).

220  IoT Fundamentals with a Practical Approach

6.4.1 � Power (USB/Barrel Jack)

Every Arduino board needs a way to be connected to a power source. The
Arduino UNO can be powered from a USB cable coming from your com-
puter or a wall power supply that is terminated in a barrel jack. In Figure
6.2, the USB connection is labeled (1) and the barrel jack is labeled (2). The
USB connection is also how you will load code onto your Arduino board.

Do NOT use a power supply greater than 20 Volts as you will overpower
(and thereby destroy) your Arduino. The recommended voltage for most
Arduino models is between 6 and 12 Volts.

6.4.2 � Pins (5V, 3.3V, GND, Analog, Digital, PWM, AREF)

The pins on your Arduino are the places where you connect wires to con-
struct a circuit (probably in conjunction with a breadboard and some wire).
They usually have black plastic ‘headers’ that allow you to just plug a wire
right into the board. The Arduino has several different kinds of pins, each of
which is labeled on the board and used for different functions.

Figure 6.2  Arduino board.

Introduction to Arduino  221

	•	 GND (3): Short for ‘Ground’. There are several GND pins on the
Arduino, any of which can be used to ground your circuit.

	•	 5V (4) & 3.3V (5): As you might guess, the 5V pin supplies 5 volts
of power and the 3.3V pin supplies 3.3 volts of power. Most of the
simple components used with the Arduino run happily off either 5 or
3.3 volts.

	•	 Analog (6): The area of pins under the ‘Analog In’ label (A0 through
A5 on the UNO) is Analog In pins. These pins can read the signal from
an analog sensor (like a temperature sensor) and convert it into a digi-
tal value that we can read.

	•	 Digital (7): Across from the analog pins are the digital pins (0 through
13 on the UNO). These pins can be used for both digital input (like
telling if a button is pushed) and digital output (like powering an
LED).

	•	 PWM (8): You may have noticed the tilde (~) next to some of the digi-
tal pins (3, 5, 6, 9, 10, and 11 on the UNO). These pins act as normal
digital pins but can also be used for something called Pulse-Width
Modulation (PWM). Think of these pins as being able to simulate ana-
log output (like fading an LED in and out).

	•	 AREF (9): Stands for Analog Reference. Most of the time you can
leave this pin alone. It is sometimes used to set an external reference
voltage (between 0 and 5 Volts) as the upper limit for the analog input
pins.

6.4.2.1 � Reset Button

Just like the original Nintendo, the Arduino has a reset button (10). Pushing
it will temporarily connect the reset pin to ground and restart any code that
is loaded on the Arduino. This can be very useful if your code doesn’t repeat,
but you want to test it multiple times. Unlike the original Nintendo, how-
ever, blowing on the Arduino doesn’t usually fix any problems!

6.4.2.2 � Power LED Indicator

Just beneath and to the right of the word “UNO” on your circuit board,
there’s a tiny LED next to the word ‘ON’ (11). This LED should light up
whenever you plug your Arduino into a power source. If this light doesn’t
turn on, there’s a good chance something is wrong. Time to re-check your
circuit!

6.4.2.3 � TX RX LEDs

TX is short for transmit; RX is short for receive. These markings appear fairly
often in electronics to indicate the pins responsible for serial communication.

222  IoT Fundamentals with a Practical Approach

In our case, there are two places on the Arduino UNO, where TX and RX
appear once by digital pins 0 and 1 and a second time next to the TX and
RX indicator LEDs (12). These LEDs will give us some nice visual indica-
tions whenever our Arduino is receiving or transmitting data (like when
we’re loading a new program onto the board).

6.4.2.4 � Main IC

The black thing with all the metal legs is an IC, or Integrated Circuit (13).
Think of it as the brains of our Arduino. The main IC on the Arduino is
slightly different from board type to board type, but is usually from the
ATmega line of IC’s from the ATMEL company. This can be important,
as you may need to know the IC type (along with your board type) before
loading up a new program from the Arduino software. This information can
usually be found in writing on the top side of the IC. If you want to know
more about the difference between various IC’s, reading the datasheets is
often a good idea.

6.4.2.5 � Voltage Regulator

The voltage regulator (14) is not actually something you can (or should)
interact with on the Arduino. But it is potentially useful to know that it is
there and what it’s for. The voltage regulator does exactly what it says – it
controls the amount of voltage that is let into the Arduino board. Think of it
as a kind of gatekeeper; it will turn away an extra voltage that might harm
the circuit. Of course, it has its limits, so don’t hook up your Arduino to
anything greater than 20 volts.

6.4.2.6 � The Arduino Family

Arduino makes several different boards, each with different capabilities. In
addition, part of being open-source hardware means that others can modify
and produce derivatives of Arduino boards that provide even more form
factors and functionality.

6.4.2.6.1 � Arduino UNO (R3)

The UNO is a great choice for your first Arduino. It has 14 digital input/
output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a
USB connection, a power jack, a reset button and more as shown in Figure
6.3. It contains everything needed to support the microcontroller; simply
connect it to a computer with a USB cable or power it with an AC-to-DC
adapter or battery to get started.

Introduction to Arduino  223

6.4.2.6.2 � LilyPad Arduino

This is the LilyPad Arduino main board! LilyPad is a wearable e-textile
technology developed by Leah Buechley and cooperatively designed by Leah
and SparkFun. Each LilyPad was creatively designed with large connecting
pads and a flat back to allow them to be sewn into clothing with conductive
thread. The LilyPad also has its own family of input, output, power, and
sensor boards that are also built specifically for e-textiles as shown in Figure
6.4. They’re even washable!

Figure 6.3  Arduino UNO.

Figure 6.4  Lilypad Arduino.

224  IoT Fundamentals with a Practical Approach

6.4.2.7 � RedBoard

We use many Arduinos and we’re always looking for the simplest, most
stable one. Each board is a bit different and no one board has everything we
want, so we decided to make our own version that combines all our favorite
features.

The RedBoard can be programmed over a USB Mini-B cable using the
Arduino IDE as shown in Figure 6.5. It’ll work on Windows 8 without hav-
ing to change your security settings (we used signed drivers, unlike the UNO).
It’s more stable due to the USB/FTDI chip we used, plus it’s completely flat
on the back, making it easier to embed in your projects. Just plug in the
board, select “Arduino UNO” from the board menu and you’re ready to
upload code. You can power the RedBoard over USB or through the barrel
jack. The on-board power regulator can handle anything from 7 to 15VDC.

6.4.2.7.1 � Arduino Mega (R3)

The Arduino Mega is like the UNO’s big brother. It has lots (54!) of digital
input/output pins (14 can be used as PWM outputs), 16 analog inputs, a
USB connection, a power jack, and a reset button. It contains everything
needed to support the microcontroller; simply connect it to a computer
with a USB cable or power it with an AC-to-DC adapter or battery to get
started as shown in Figure 6.6. The large number of pins make this board
very handy for projects that require a bunch of digital inputs or outputs
(like lots of LEDs or buttons).

Figure 6.5  RedBoard.

Introduction to Arduino  225

6.4.2.7.2 � Arduino Leonardo

The Leonardo is Arduino’s first development board to use one microcon-
troller with built-in USB as shown in Figure 6.7. This means that it can be
cheaper and simpler. Also, because the board is handling USB directly, code
libraries are available which allow the board to emulate a computer key-
board, mouse, and more!

Figure 6.6  Arduino Mega (R3).

Figure 6.7  Arduino Leonardo.

226  IoT Fundamentals with a Practical Approach

How to set up the Arduino IDE on our computer:

	Step 1:	� First you must have your Arduino board and a USB cable as shown
in Figure 6.8.

	Step 2:	 Download Arduino IDE software.
Download Arduino IDE from the Arduino official website. After
your file download is complete, unzip the file.

	Step 3:	 Power up your board.
Connect the Arduino board to your computer using the USB cable
as shown in Figure 6.9. The green power LED should glow.

Figure 6.8  USB cable.

Figure 6.9  Arduino board.

Introduction to Arduino  227

	Step 4:	 Launch Arduino IDE.
After your Arduino IDE software is downloaded, you need to unzip
the folder. Inside the folder, you can find the application icon with
an infinity label (application.exe).

Double-click the icon to start the IDE as shown in Figure 6.10.

	Step 5:	 Open your first project as shown in Figure 6.11.
Once the software starts, you have two options:

	•	 Create a new project.
	•	 Open an existing project example.

To create a new project, select File → New.

Figure 6.10  Arduino IDE.

228  IoT Fundamentals with a Practical Approach

To open an existing project example, select File → Example → Basics
→ Blink as shown in Figure 6.12.

Figure 6.11  Open project in Arduino.

Figure 6.12  How to open existing project.

Introduction to Arduino  229

	Step 6:	 Select your Arduino board.
To avoid any error while uploading your program to the board, you
must select the correct Arduino board name, which matches with
the board connected to your computer.

Go to Tools → Board and select your board as shown in Figure 6.13.

	Step 7:	 Select your serial port.
Select the serial device of the Arduino board.

Go to Tools → Serial Port menu.
This is likely to be COM3 or higher (COM1 and COM2 are usu-

ally reserved for hardware serial ports).
To find out, you can disconnect your Arduino board and re-open

the menu, the entry that disappears should be of the Arduino board.
Reconnect the board and select that serial port as shown in

Figure 6.14.

Figure 6.13  Select Arduino board.

Figure 6.14  Serial port.

230  IoT Fundamentals with a Practical Approach

	Step 8:	 Upload the program to your board.
A − Used to check if there is any compilation error.
B − Used to upload a program to the Arduino board.
C − Shortcut used to create a new sketch.
D − Used to directly open one of the example sketch.
E − Used to save your sketch.
F − �Serial monitor used to receive serial data from the board and

send the serial data to the board.

Now, simply click the “Upload” button in the environment as shown in
Figure 6.15. Wait a few seconds; you will see the RX and TX LEDs on the
board, flashing. If the upload is successful, the message “Done uploading”
will appear in the status bar.

The Arduino programming language is a modified version of C/C++.
Usually, we program in C++ with the addition of methods and functions. A
program written in Arduino programming language is called sketch and
saved with an .ino extension. You can even use Python to write an Arduino
program. All these languages are text-based programming languages.

6.4.2.8 � Arduino program structure

Arduino programs can be divided into three main parts: Structure, Values
(variables and constants), and Functions as shown in Figure 6.16.

Structure: Software structure consist of two main functions as shown in
Figure 6.17:

	•	 Setup() function
	•	 Loop() function

Figure 6.15  Upload program to board.

Introduction to Arduino  231

Other functions must be created outside the brackets of these two functions.

Structure
StructureVoid setup()
{
}

PURPOSE − The setup() function is called when a sketch starts.
Use it to initialize the variables, pin modes, start using libraries etc.
The setup function will only run once, after each power up or reset of the

Arduino board.

Macros

#define LED 4
--or--
 // Variables

Figure 6.16  Arduino structure.

Figure 6.17  Structure of Arduino.

232  IoT Fundamentals with a Practical Approach

const int LED = 4;	 // NOTE! You can use either 4 or D2
value for the same pin.
 //�Check the schematic picture for the right

values.
void setup()
{ // put your setup code here, to run once:
int LED = 4;
}

Serial.begin()

Serial.begin(): Sets the data rate in bits per second (baud) for serial data
transmission.

This starts serial communication, so that the Arduino can send out com-
mands through the USB connection.

Serial.begin(9600): passes the value 9600 to the speed parameter.

	•	 The value 9600 is called the ‘baud rate’ of the connection.
	•	 This tells the Arduino to get ready to exchange messages with the

Serial Monitor at a data rate of 9600 bits per second.
	•	 9600 is how fast the data is to be sent.

Serial.begin() Function Syntax

void setup()
{ // put your setup code here, to run once:
Serial.begin(9600);
}

Arduino - I/O Functions
The pinMode() function is used to configure a specific pin to behave either

as an input or as an output.
Pins

	•	 The pins on the Arduino board can be configured as either inputs or
outputs.

	•	 Arduino pins are by default configured as inputs

pinMode() Function
 Void setup ()
 {
 pinMode (pin, mode);
 }

	•	 pin − the number of the pin whose mode you wish to set
	•	 mode − INPUT, OUTPUT,

Introduction to Arduino  233

6.4.3 � Raspberry Pi

This is a fully functional low-cost credit-card sized computer, using Linux,
which can be plugged into a monitor or TV as shown in Figure 6.18. To
use it, simply connect it with a USB phone charger to power it, plug in a
mouse and keyboard, and connect it to a TV and monitor together with an
SD card stored with an operating system just like the one in your Phone.
The Raspberry Pi is able to control and interact with electronic components
such as sensors and actuators and explore the Internet of Things (IoT). It is
capable of doing everything you’d expect a desktop computer to do, from
browsing the Internet and playing high-definition video, to making spread-
sheets, word processing and playing games.

These computers are a series of single board computers made by the
Raspberry-Pi foundation, a UK charity that aims to educate people in com-
puting and create easier access to computing education. The Raspberry Pi
launched in 2012 and a number of variations have been released since then.
All over the world people use Raspberry Pi to learn programming skills,
build hardware projects, do home automation etc.

6.4.4 � What Raspberry Pi models have been released?

There have been many generations of the Raspberry Pi line: from Pi 1 to 4,
and even a Pi 400. There has generally been a Model A and a Model B of
most generations. Model A has been a less expensive variant, and tends to
have reduced RAM and fewer ports (such as USB and Ethernet). The Pi Zero

Figure 6.18  Raspberry Pi.

234  IoT Fundamentals with a Practical Approach

is a spinoff of the original (Pi 1) generation, made even smaller and cheaper.
Here’s the lineup so far:

	•	 Pi 1 Model B (2012)
	•	 Pi 1 Model A (2013)
	•	 Pi 1 Model B+ (2014)
	•	 Pi 1 Model A+ (2014)
	•	 Pi 2 Model B (2015)
	•	 Pi Zero (2015)
	•	 Pi 3 Model B (2016)
	•	 Pi Zero W (2017)
	•	 Pi 3 Model B+ (2018)
	•	 Pi 3 Model A+ (2019)
	•	 Pi 4 Model A (2019)
	•	 Pi 4 Model B (2020)
	•	 Pi 400 (2021)

6.4.5 �Top 6 models of Raspberry Pi

The most notable models of Raspberry Pi available on the market are:

6.4.5.1 � Raspberry Pi Zero

This is the cheapest Raspberry model produced by the company and can
be purchased for as little as $5, which is quite impressive considering the
extent of its functionality. Although not the first model to be released, it
boasts a smaller, more compact size than the Raspberry Pi 1. Raspberry Pi
Zero has the same processor and RAM (512 MB) as the Pi 1 Model B+. The
Raspberry Pi Zero does not come with Wi-Fi or Bluetooth, but it can be
made Internet-accessible via USB.

Its slightly more expensive version, Raspberry Pi Zero W, comes with
Bluetooth 4.0 and a built-in 802.11n Wi-Fi connectivity. For projects that
require GPIO pins, other versions of Raspberry Pi may be more suitable.

6.4.5.2 � Raspberry Pi 1

Raspberry Pi 1 Model B was released in 2012. It served as a baseline in size
for future releases. Initially, it had 26 GPIO pins, 256MB RAM capacity,
and a single CPU core. You couldn’t use it for heavy tasks with high process-
ing needs. In 2014, the Raspberry Pi B+ was released with a starting RAM
capacity of 512MB and 40 GPIO pins, becoming standard across all other
models. Raspberry Pi Model B+ is sold at $25 and comes with four USB
ports and an Ethernet connection. Pi 1 Model A+ ($20) can be considered for
faster CPU processing speed, but it comes without an Ethernet connection.

Introduction to Arduino  235

6.4.5.3 � Raspberry Pi 2 B

In February 2015, Raspberry released the 2B model. Compared to the prior
releases, Raspberry Pi 2 B improved significantly, specifically in terms of
memory and speed. The RAM capacity was increased to 1GB. Pi 2B comes
in the standard size, with 4 USB ports. It is currently priced at about $35,
which is pretty affordable.

6.4.5.4 � Raspberry Pi 3

Raspberry Pi 3 B was released in 2016. The B+ version, which came out in
2018, can boast a faster processing unit, Ethernet (802.11ac), and Wi-Fi
than the earlier version. Generally, Raspberry PI 3 offers the user a wide
range of uses. It comes with the standard HDMI and USB ports, 1GB RAM,
and Wi-Fi and Bluetooth connections in addition to the already functional
Ethernet. One remarkable thing about this model is that it doesn’t generate
much heat or consume too much power. This makes it suitable for projects
that require passive cooling and can be acquired at $35.

6.4.5.5 � Raspberry Pi 4B

Released in 2019, the Raspberry Pi 4B is a vast improvement on its prede-
cessors, with a varying memory capacity from 2GB RAM to 8GB RAM.
It also has a faster 1.5GHz processor and a good mix of 2.0 and 3.0 USB
ports. Pi 4B is an ideal Raspberry model as it is suitable for virtually every
use case, having a higher RAM capacity to satisfy even the most dedicated
programmers. Depending on memory, the price ranges from $35 to $75, but
each comes with all connectivity options.

6.4.5.6 � Raspberry Pi 400

This model is unique as it comes in the form of a keyboard. It was launched
in 2020 and operated with 4GB RAM. It comes with standard USB ports
and requires just a monitor and a mouse to make it a home computer set. Pi
400 costs $70 and can be used effectively in classrooms.

Out of the above versions of Raspberry Pi, more prominently use
Raspberry Pi and their features are as follows in Table 6.1.

236  IoT Fundamentals with a Practical Approach

6.4.6 � How to install Raspbian on the Raspberry Pi

The first step in configuring the Raspberry Pi would be to install the Raspbian
operating system. Go to https://www.raspberrypi.org/downloads/ and select
the Raspbian OS as shown in Figure 6.19.

Table 6.1  Raspberry Pi versions

Features Raspberry Pi
Model B+

Raspberry Pi
2 Model B

Raspberry Pi
3 Model B

Raspberry
Pi zero

SoC BCM2835 BCM2836 BCM2837 BCM2835

CPU ARM11 Quad Cortex
A7

Quad Cortex
A53 ARM11

Operating
Freq. 700 MHz 900 MHz 1.2 GHz 1 GHz

RAM 512 MB SDRAM 1 GB SDRAM 1 GB SDRAM 512 MB
SDRAM

GPU 250 MHz
Videocore IV

250MHz
Videocore IV

400 MHz
Videocore IV

250MHz
Videocore IV

Storage micro-SD micro-SD micro-SD micro-SD
Ethernet Yes Yes Yes No

Wireless WiFi and
Bluetooth No No No

Figure 6.19  How to install Raspbian OS.

https://www.raspberrypi.org/downloads/

Introduction to Arduino  237

	•	 Once you download the Raspbian operating system, you would need
to format the SD card and setup the Raspbian OS onto your SD card
as shown in Figure 6.20 and Figure 6.21.

	•	 After the download is finished, you will end up with a zip file. Unzipping
this, you will get an image file and you just write that image onto the
memory card as shown in Figure 6.22 and Figure 6.23.

Figure 6.20  Install operating system in Raspberry Pi.

Figure 6.21  Raspbian OS.

238  IoT Fundamentals with a Practical Approach

Figure 6.22  Installation of OS.

Figure 6.23  Installation OS.

Introduction to Arduino  239

	•	 For Windows-based systems, which is used by most people, the instal-
lation for this image is quite easy as shown in Figure 6.24.

It requires a piece of software called Win32 Disk Imager as shown in
Figure 6.25.

	•	 Download the Win32DiskImager ZIP file.
	•	 Expand the ZIP file to a folder on disk.
	•	 Download a Raspberry Pi distribution disk image.
	•	 Run Win32DiskImager.exe from the install folder.
	•	 Select the source image file and the target device.
	•	 Click on the Write button to copy the image to the SD card.
	•	 Writing an image to a disk takes about 5 minutes for a 2-GB image file.

Once the image is written to the SD card, the SD card may be ejected
and used to boot the Raspberry Pi as shown in Figures 6.26–6.29.

Figure 6.24  Installed OS.

Figure 6.25  Win32 Disk Manager.

240  IoT Fundamentals with a Practical Approach

Figure 6.26  SD card.

Figure 6.27  Raspberry Pi installation settings.

Figure 6.28  Interfaces in Raspberry Pi.

Introduction to Arduino  241

6.4.7 � Raspberry Pi pins

The best thing about any Raspberry Pi, including the new Raspberry Pi 4, is
that you can use it to build all kinds of awesome contraptions, from robots to
retro gaming consoles (and even fart detectors!). Most of the sensors, motors,
lights and other peripherals that make these projects possible connect to the
Pi’s set of GPIO (General Purpose Input Output) pins. These pins offer a
direct connection to the System on Chip (SoC) at the heart of the Pi, enabling
the Pi to communicate with external components as shown in Figure 6.30.
Every Pi model since the Raspberry Pi B+ has had 40 GPIO pins, though on
the Pi Zero and Zero W, you have 40 holes into which you can solder pins or
wires as shown in Figure 6.31. If you haven’t got a soldering iron, fear not,
we have a list of the best soldering irons for you to choose from.

This guide has been updated to reflect the new capabilities of the Raspberry
Pi 4, which still comes with 40 GPIO pins, but has a few extra I2C, SPI, and
UART connections available.

Figure 6.29  Localization in Raspberry Pi.

Figure 6.30  Pin layout in Raspberry Pi.

242  IoT Fundamentals with a Practical Approach

	 1.	Ground pins
	 2.	Power pins
	 3.	Reserved pins
	 4.	Raspberry Pi GPIOs

	 •	 GPIOs are digital pins
	 •	 GPIOs voltage
	 •	 To use a GPIO, first you need to know its number
	 •	 The pin numbers and GPIO numbers are different
	 •	 Pin numbers are in grey, and GPIO numbers in orange
	 •	 Depending on the library you use to manipulate GPIOs, you’ll

either have to use the number of the pin or the GPIO number

6.4.8 � General Purpose Input Output (GPIO) Pins

The GPIO is the most basic, yet accessible aspect of the Raspberry Pi. GPIO
pins are digital which means they can have only two states: off or on. They
can have a direction to receive or send current (input, output respectively)
and we can control the state and direction of the pins using programming
languages such as Python, JavaScript, node-RED etc.

The operating voltage of the GPIO pins is 3.3v with a maximum current
draw of 16mA. This means that we can safely power one or two LEDs
(Light Emitting Diodes) from a single GPIO pin, via a resistor (see resistor
color codes). But for anything requiring more current, a DC motor, for
example, we will need to use external components to ensure that we do not
damage the GPIO.

Controlling a GPIO pin with Python is accomplished by first importing a
library of pre-written codes. The most common library is RPi.GPIO (https://
pypi.org/project/RPi.GPIO/) and this has been used to create thousands
of projects since the early days of the Raspberry Pi. In more recent times a
new library called GPIO Zero (https://pypi.org/project/gpiozero/) has been
introduced, offering an easier entry for those new to Python and basic

Figure 6.31  PIN mode in Raspberry Pi.

https://pypi.org/project/RPi.GPIO/
https://pypi.org/project/RPi.GPIO/
https://pypi.org/project/gpiozero/

Introduction to Arduino  243

electronics. Both of these libraries come pre-installed with the Raspbian
operating system.

GPIO pins have multiple names; the first most obvious reference is their
“physical” location on the GPIO. Starting at the top left of the GPIO, and by
that we mean the pin nearest to where the micro SD card is inserted, we
have physical pin 1, which provides 3v3 power. To the right of that pin is
physical pin 2, which provides 5v power. The pin numbers then increase as
we move down each column, with pin 1 going to pin 3, 5,7 etc. until we
reach pin 39. You will quickly see that each pin from 1 to 39 in this column
follows an odd number sequence. And for the column starting with pin 2 it
will go 4,6,8 etc. until it reaches 40,following an even number sequence.
Physical pin numbering is the most basic way to locate a pin, but many of
the tutorials written for the Raspberry Pi follow a different numbering
sequence.

Broadcom (BCM) pin numbering (aka GPIO pin numbering) seems to be
chaotic to the average user. With GPIO17, 22 and 27 following on from
each other with little thought to logical numbering. The BCM pin mapping
refers to the GPIO pins that have been directly connected to the System on
a Chip (SoC) of the Raspberry Pi. In essence, we have direct links to the
brain of our Pi to connect sensors and components for use in our projects.

You will see the majority of Raspberry Pi tutorials using this reference
and that is because it is the officially supported pin numbering scheme from
the Raspberry Pi Foundation. So it is best practice to start using and learn-
ing the BCM pin numbering scheme as it will become second nature to you
over time. Also note that BCM and GPIO pin numbering refer to the same
scheme. So, for example, GPIO17 is the same as BCM17.

Certain GPIO pins also have alternate functions that allow them to inter-
face with different kinds of devices that use the I2C, SPI, or UART proto-
cols. For example, GPIO3 and GPIO 4 are also SDA and SCL I2C pins used
to connect devices using the I2C protocol. To use these pins with these pro-
tocols we need to enable the interfaces using the Raspberry Pi Configuration
application found in the Raspbian OS, Preferences menu.

6.4.9 � I2C, SPI, and UART: Which do you use?

We’ll get into the specific differences between I2C, SPI, and UART below,
but if you’re wondering which one you need to use to connect to a given
device, the short answer is to check the spec sheet. For example, one tiny
LED screen might require SPI and another might use I2C (almost nothing
uses UART). If you read the documentation that comes with a product (pro-
vided it has some), it will usually tell you which Pi pins to use.

For Raspberry Pi 4 users, note that there are now many more I2C, SPI,
and UART pins available to you. These extra interfaces are activated using
device tree overlays and can provide four extra SPI, I2C, and UART
connections.

244  IoT Fundamentals with a Practical Approach

6.4.10 � I2C – Inter-Integrated Circuit

I2C is a low-speed two-wire serial protocol to connect devices using the
I2C standard. Devices using the I2C standard have a master–slave relation-
ship. There can be more than one master, but each slave device requires a
unique address, obtained by the manufacturer from NXP, formerly known
as Philips Semiconductors. This means that we can talk to multiple devices
on a single I2C connection as each device is unique and discoverable by the
user and the computer using Linux commands such as i2cdetect.

As mentioned earlier, I2C has two connections: SDA and SCL. They work
by sending data to and from the SDA connection, with the speed controlled
via the SCL pin. I2C is a quick and easy way to add many different compo-
nents, such as LCD/OLED screens, temperature sensors, and analog to digi-
tal converters for use with photoresistors etc. to your project. While proving
to be a little more tricky to understand than standard GPIO pins, the knowl-
edge gained from learning I2C will serve you well as you will understand
how to connect higher-precision sensors for use in the field.

The Raspberry Pi has two I2C connections at GPIO 2 and 3 (SDA and
SCL) are for I2C0 (master) and physical pins 27 and 28 are I2C pins that
enable the Pi to talk to compatible HAT (Hardware Attached on Top) add-
on boards.

6.4.11 � SPI – Serial Peripheral Interface

Serial Peripheral Interface (SPI) is another protocol for connecting compati-
ble devices to your Raspberry Pi. It is similar to I2C in that there is a master–
slave relationship between the Raspberry Pi and the devices connected to it.

Typically, SPI is used to send data over short distances between microcon-
trollers and components such as shift registers, sensors, and even an SD
card. Data is synchronized using a clock (SCLK at GPIO11) from the master
(our Pi) and the data is sent from the Pi to our SPI component using the
MOSI (GPIO GPIO10) pin. MOSI stands for Master Out Slave In. If
the component needs to reply to our Pi, then it will send data back using the
MISO pin (GPIO9) which stands for Master In Slave Out.

6.4.12 � UART – Universal Asynchronous
Receiver/Transmitter

Commonly known as “Serial,” the UART pins (Transmit GPIO14, Receive
GPIO15) provide a console/terminal login for headless setup, which means
connecting to the Pi without a keyboard or pointing device. Normally, the
easiest way to do a headless Raspberry Pi setup is simply to control the Pi
over a network or direct USB connection (in the case of Pi Zero).

If there’s no network connection, however, you can also control a headless
Pi using a serial cable or USB to serial board from a computer running a

Introduction to Arduino  245

terminal console. UART is exceptionally reliable and provides access to a Pi
without the need for extra equipment. Just remember to enable the Serial
Console in the Raspberry Pi Configuration application. Chances are that
you won’t want to do this, but the UART support is there if you need it.

6.4.13 � Ground (gnd)

Ground is commonly referred to as GND, gnd or – but they all mean the same
thing. GND is where all voltages can be measured from, and it also completes
an electrical circuit. It is our zero point and by connecting a component, such
as an LED, to a power source and ground the component becomes part of the
circuit and current will flow through the LED and produce light.

When building circuits it is always wise to make your ground connections
first before applying any power as it will prevent any issues with sensitive
components. The Raspberry Pi has eight ground connections along the
GPIO and each of these ground pins connects to one single ground connec-
tion. So the choice of which ground pin to use is determined by personal
preference, or convenience when connecting components.

6.4.14 � 5v

The 5V pins give direct access to the 5V supply coming from your mains
adaptor, less power than used by the Raspberry Pi itself. A Pi can be pow-
ered directly from these pins, and it can also power other 5V devices. When
using these pins directly, be careful and check your voltages before making
a connection because they bypass any safety features, such as the voltage
regulator and fuse which are there to protect your Pi. Bypass these with a
higher voltage and you could render your Pi inoperable.

6.4.15 � 3v3

The 3V pin is there to offer a stable 3.3V supply to power components and to
test LEDs. In reality, it will be rare that you factor this pin into a build, but it
does have a special use. When connecting an LED to the GPIO, we first need
to make sure that the LED is wired up correctly and that it lights up. By con-
necting the long leg of the LED, the anode to the 3.3V pin via a resistor, and
the shorter leg, the cathode, to any of the Ground (gnd) pins we can check
that our LED lights up and is working. This eliminates a hardware fault from
the project and enables us to start building our project with confidence.

Communication protocols through Raspberry Pi 4 pins:

	•	 UART is a multi-master communication protocol. This protocol is quite
easy to use and very convenient for communicating between several
boards: Raspberry Pi to Raspberry Pi, or Raspberry Pi to Arduino, etc.

246  IoT Fundamentals with a Practical Approach

To use UART you need three pins:

	•	 GND that you’ll connect to the global GND of your circuit.
	•	 RX for Reception. You’ll connect this pin to the TX pin of the other

component.
	•	 TX for Transmission. You’ll connect this pin to the RX of the other

component.

	•	 I2C is a master–slave bus protocol (well it can have multiple mas-
ters, but you’ll mostly use it with one master and multiple slaves).
The most common use of I2C is to read data from sensors and actu-
ate some components.

	 •	 SPI is yet another hardware communication protocol. It is a mas-
ter–slave bus protocol. It requires more wires than I2C, but can be
configured to run faster.

For using SPI you’ll need 5 pins:

	•	 GND: what a surprise! Make sure you connect all GND from all your
slave components and the Raspberry Pi together.

	•	 SCLK: clock of the SPI. Connect all SCLK pins together.
	•	 MOSI: means Master Out Slave In. This is the pin to send data from

the master to a slave.
	•	 MISO: means Master In Slave Out. This is the pin to receive data from

a slave to the master.
	•	 CS: means Chip Select. Pay attention here: you’ll need one CS per slave

on your circuit. By default you have two CS pins (CS0 – GPIO 8 and
CS1 – GPIO 7). You can configure more CS pins from the other avail-
able GPIOs.

Introduction to Arduino  247

Installed by default on Raspberry Pi as shown in Figure 6.32:

C
C++
Java
Scratch
Ruby

Program1: To on LED as shown in Figure 6.33:

Figure 6.32  Raspberry Pi installation.

248  IoT Fundamentals with a Practical Approach

Run-> Run Module
GPIO . setmode (GPIO . BCM) (as shown in Figure 6.34 and 6.35):

Figure 6.33  LED program.

Figure 6.34  LED setup.

Introduction to Arduino  249

Program 2: To Blink LED as shown in Figure 6.36:

Figure 6.35  LED connectivity.

Figure 6.36  Blink LED program.

250  IoT Fundamentals with a Practical Approach

Program 3: Brightness control of LED using PWM as shown in Figure 6.37:

Program 4: Brightness gradually increases/decreases

	•	 Use for loop:

P . start(0)
While True:
For X in range (100);
P . Start (X)
Time . sleep (0.1)
For X in range (100);
P . Start (100-X)
Time . sleep (0.1)

Figure 6.37  Brightness control of LED using PWM.

251DOI: 10.1201/9781003307488-7

Every connected device creates opportunities for attackers. These vulner-
abilities are broad, even for a single small device. The risks posed include
data transfer, device access, malfunctioning devices, and always-on/always-
connected devices. The main challenges in security remain the security limi-
tations associated with producing low-cost devices, and the growing number
of devices, which creates more opportunities for attacks.

7.1 � SECURITY SPECTRUM

The definition of a secured device spans from the simplest measures to
sophisticated designs. Security should be thought of as a spectrum of vulner-
ability which changes over time as threats evolve. Security must be assessed
based on user needs and implementation. Users must recognize the impact
of security measures because poorly designed security creates more prob-
lems than it solves.

Example: A German report revealed hackers compromised the security
system of a steel mill. They disrupted the control systems, which prevented
a blast furnace from being shut down properly, resulting in massive damage.
Therefore, users must understand the impact of an attack before deciding on
the appropriate level of protection (Figure 7.1).

The three main point’s attackers can access IoT devices connected to a
network are:

	 1.	The device
	 2.	The cloud
	 3.	The network

	•	 Securing the Device: There are some technologies in the industry
such as embedded SIM Technology (eUICC), M2M-optimized SIM
Technology, SafeNet Hardware Security Modules (HSMs), Trusted
Key Manager, and IP protection to provide security for embedded

Chapter 7

Security aspects in IoT

http://dx.doi.org/10.1201/9781003307488-7

252  IoT Fundamentals with a Practical Approach

devices. My opinion is that IP protection is a little bit out of date.
Current IoT ecosystems should move from such security infrastruc-
tures to something more advanced with encryption technologies.

	 •	 Securing the cloud infrastructure: A major form of threat comes
from the enterprise or cloud environment to which smart devices
are connected. Data encryption, cloud security, and cloud-based
licensing helps technology companies leverage the full potential
of the cloud environment, ensuring their intellectual property is
secured.

	•	 IoT security lifecycle management: Managing the lifecycle of secu-
rity components across the device and cloud spectrum is a critical
element for a robust and long-term digital security strategy. The
security of an Internet of ecosystems is not a one-off activity, but
an evolving part of the Internet of ecosystems. Among the proposed
solutions suggested for building a sustainable security lifecycle
management infrastructure to address current and future security
threats are identity and access management, crypto management,
and maintaining trusted services hubs (Figure 7.2).

Figure 7.1  IoT services.

Security aspects in IoT
 

253

Figure 7.2  IoT security framework.

Network Layer Security

Internet of Things Security

Perceptual Layer
Security

Node Tampering

Fake Node

Side Channel
Attack

Malicious Code
injection

Protecting Sensor
Data

Mass Node
authentication

Physical Damage

Support Layer
Security

Data Security
Data Access and

Authentication

Phishing Attacks

Malwares attack

Malicious Active
X Scripts

Cloud Audit

Tenants Security

Virtualization
Security

Sybil Attack

RFID Spoofing

RFIDS
interference

Network
congestion

Heterogeneity
problem

Denial of service

Routing attacks

Eavesdropping
Attack

Node jamming in
WSN

Interoperability
and portability

Business continuity
 and Disaster

Recovery

Application Layer
Security

254  IoT Fundamentals with a Practical Approach

7.2 � PERCEPTUAL LAYER SECURITY

The perceptual layer consists of resource-constrained IoT devices i.e. sen-
sors, RFID tags, Bluetooth and Zigbee devices. These devices are more prone
to cyber-attacks. As a large amount of IoT devices are physically deployed in
open fields, they encounter many physical attacks, which include:

Node tampering: If an attacker has physical access to sensor nodes, he
or she can replace the full node or part of its hardware. They can
also connect directly to it to alter some sensitive information and gain
access to the node. The sensitive information may be cryptographic
keys or routing table’s routes.

Fake node attacker: A cyber-attacker can add a fake node to the IoT
system and can inject malicious data through this fake node in the
network, thus making low-power devices busy and consuming their
energy. It can also act as a Man in the Middle attack.

Side channel attack: Attackers use the information such as power con-
sumption, time consumption, and electromagnetic radiation from
senor nodes to attack encryption mechanisms.

Physical damage: The adversary can physically damage the IoT device
for denial of service (DoS) purposes. IoT devices are deployed in both
open and closed vicinities and are more susceptible to physical damage
by the attacker.

Malicious code injection: An adversary can physically compromise a
node by inserting malicious code into the node that will give them
illegal access to the system.

Protecting sensor data: The confidentiality requirements of the sensor
data is low as an adversary can place a sensor near to the IoT sys-
tem sensor and can sense the same value. However, its integrity and
authenticity is more important and must be secured.

Mass node authentication: A large number of nodes in an IoT system
face authentication problems. A huge amount of network communica-
tion is required just for authentication purpose, thereby affecting the
performance.

Security requirements of the perceptual layer: First of all, the IoT system
must be physically secured from its adversary gaining access. Node
authentication is also necessary to prevent illegal access to the system.
The integrity confidentiality of data to be transmitted between nodes
is very important, so lightweight cryptographic algorithms should be
designed to securely transmit data between nodes. Key management is
also a problem to be solved in context of IoT.

Network layer security: The core network has sufficient security mea-
sures but certain issues still exist. Traditional security problems can
affect the integrity and confidentiality of data. Many types of network

Security aspects in IoT  255

attacks, such as an eavesdropping attack, a DoS attack, a Man in the
Middle attack, and virus invasion are still affecting the network layer.

Heterogeneity problem: The IoT perceptual layer is the combination of
many heterogeneous technologies. The access network has multiple
access methods, and this heterogeneity makes security and interoper-
ability more challenging.

Network congestion problems: A large amount of sensor data, along with
the communication overheads caused by the presence of a large num-
ber of devices to be authenticated, can cause network congestion. This
problem should be solved by introducing a feasible device authentica-
tion mechanism and competent transport protocols.

RFIDs interference: This is an attack on the network layer in which the
radio frequency signals used by RFIDs are corrupted with noise sig-
nals, thereby causing Denial of Service.

Node jamming in WSN: This is a similar type of attack to radio fre-
quency interference as discussed above for RFIDs. In this attack the
attacker interferes with the radio frequency of wireless sensor net-
works and denies services from WSNs. It is also a type of Denial of
Service attack.

Eavesdropping attack: This involves the sniffing out of traffic in the wire-
less vicinity of WSNs, RFIDs or Bluetooth due to the wireless nature
of the device layer in IoT. Every type of attack starts from information
gathering via sniffing using available tools such as packet sniffers.

Denial of Service: In this attack the adversary overburdens the network
by swamping it with traffic above its capacity and thus the network is
unavailable for useful services to legitimate users.

RFID spoofing: The attacker initially sends spoof RFID signals and read
RFID tags. The attacker then sends fake data with the original RFID
tag and gains full access to the system.

Routing attacks: The adversary can alter the routing information and
distribute it in the network to create routing loops, advertising false
routes, sending error messages, or dropping network traffic.

Sybil attack: In a Sybil attack, a single malicious node claims the identity
of many nodes. This node can cause much damage; it can distribute
false routing information or it can also rag the WSN selection process.

Security requirements of the network layer: Although the existing core net-
work security is mature enough, some security concerns still exist which
are more harmful in the context of IoT, such as Denial of Service and
Distributed Denial of Service attacks, must be prevented in this layer.
Communication protocols must be very mature to solve the problem of
routing attack, congestion problems, and spoofing security problems.

Support layer Security: Support layer security is independent from other
layers and cloud computing security is a large domain of security. The
Cloud Security Alliance (CSA) is setting many standard security frame-
works for clouds. It is also developing mechanism for continuous

256  IoT Fundamentals with a Practical Approach

cloud audits, such as Security Content Automation Protocol (SCAP)
and providing trusted results via Trusted Computing (TCG). This layer
hosts the IoT user’s data and applications, so both should be protected
from security breaches. Among the security concerns at this layer are:

Data security: To keep the data confidential and secure in the cloud it
must be secure from breaches. This can be done by using tools to
detect data migration from cloud, data loss prevention tools, and file
and database activity monitoring. Data dispersion and data fragmen-
tation can also be used for data security in the cloud.

Interoperability and portability: Interoperability and portability among
cloud vendors is a major present-day problem. Different vendors use
different proprietary standards, creating problems for users who want
to migrate from one cloud to another. This heterogeneity also create
security exposure.

Business continuity and disaster recovery: Cloud vendors must provide
a continuity of services in natural disasters such as floods, fires, and
earthquakes. In order to achieve this, the cloud’s physical location
should be suitable so that it is the least affected by such calamities.
It should be in the approach of quick-response teams. Clouds should
also have some data backup plans.

Cloud audit: The Cloud Security Alliance sets many standards for cloud
vendors. A continuous audit is required to check the compliance of
these security standards to build user trust.

Tenants Security: The data of multiple users may be located at same physical
drive in the cloud or users of Infrastructure as a Service (IaaS) may share
the same physical storage; such users are called tenants. The adversary
can steal his/her tenant’s data as the data share the same physical media.

Virtualization security: Different cloud vendors used different virtualiza-
tion techniques. The security of virtualization is important. Virtual
machine communication can occasionally bypass network security
controls. The secure migration of a virtual machine is required as it
can be a hurdle in cloud audit.

Security Requirements of Support Layer: Internet of Things user data and
application instances resides on cloud and fog nodes. There security
and privacy should not be abused in the cloud. The Cloud Security
Alliance (CSA) has already set many security standards, laws, and reg-
ulations for cloud security. The compliance of these security standards
should be monitored continuously and IoT systems should only use
those clouds which comply with the security standards of CSA.

Application layer security: Different applications at the application layer
have different security requirements. By now there is no standard for
IoT application construction. However, data sharing is one of the char-
acteristics of the IoT application layer. Data sharing face problems of
data privacy and access control. Some of the common security matters
of application layer are:

Security aspects in IoT  257

Data access and authentication: An application may have many users, and
different users may have different access privileges. Proper authentica-
tion and access control mechanism is required at the application layer.

Phishing attacks: The adversary uses infected emails or web links to steal
legitimate user credentials and gain access using those credentials

Malicious Active X scripts: The adversary can send an Active X script to
the IoT user through the Internet and make the IoT user to run the
Active X script, thus compromising the whole system.

Malware attacks: An attacker can attack applications using malware
and can steal data or cause Denial of Service. Trojan horses, worms,
and viruses are among the dangerous malware used by adversaries to
exploit a system.

Security requirements of the application layer: To cope with the appli-
cation layer security, strong authentication and access control mech-
anism is required. Besides these educating the users to use a strong
password is also important. Strong anti-virus software is required to
protect against malware.

Security Threats in Smart Home: Smart home services can be exposed
to cyber-attacks because the majority of service providers do not con-
sider security parameters during the early stages of planning. The pos-
sible security threats in a smart home are eavesdropping, Distributed
Denial of Service (DDoS) attacks, and the leakage of information, etc.
Smart home networks are threatened by unauthorized access. The
possible security threats to smart home are discussed as follows (see
Figure 7.3).

	•	 Trespass: If the smart door lock is effected by malicious codes or it
is accessed by an unauthorized party, the attacker can trespass into a
smart home without smashing the doorway (Figure 7.4). The result of
this effect could be in the form of loss of life or property. To get rid of
such attacks, passwords should be changed frequently. These should
contain at least ten characters because it is very difficult for attackers

Figure 7.3  Security threats in smart home.

258  IoT Fundamentals with a Practical Approach

to break the long password. Similarly, authentication mechanism and
access control may also be applied.

	•	 Monitoring and personal information leakage: Safety is one of the
important purposes of a smart home. Hence there are a lot of sensors
that are used for fire monitoring, baby monitoring, and housebreak-
ing, etc. If these sensors are hacked by an intruder then he can monitor
the home and access personal information (Figure 7.5). To avoid such
an attack, data encryption must be applied between the gateway and
the sensors or user authentication for the detection of unauthorized
parties may be applied.

	•	 DoS/DDoS: Attackers may access the smart home network and send
bulk messages to smart devices such as Clear To Send (CTS)/Request To
Send (RTS). They can also attack targeted device by using malicious codes
in order to perform DoS attacks on other devices that are connected in
a smart home (Figure 7.6). As a result, smart devices are unable to per-
form proper functionalities because of the draining of resources due to

Figure 7.4  Security threats in smart home.

Figure 7.5  Security threats in smart home.

Security aspects in IoT
 

259

Figure 7.6  Security in the hotel industry.

260  IoT Fundamentals with a Practical Approach

such attacks. In order to avoid this attack, it is very important to apply
authentication to block and detect unauthorized access.

	•	 Falsification: When the devices in smart home perform communication
with the application server, the attacker may collect the packets by chang-
ing the routing table in the gateway as shown in Figure 7.7. Although
the secure socket layer (SSL) technique is applied, an attacker can bypass
the forged certificate. In this way, the attacker can misinterpret the con-
tents of data or may leak confidential data. To secure the smart home
network from this attack, an SSL technique with a proper authentication
mechanism should be applied. It is also important to block unauthorized
devices that may try to access the smart home network.

7.3 � SECURITY IN THE HOTEL INDUSTRY

Real-world example: Hackers attacked a North American casino hotel via
an aquarium.

A thermostat in an aquarium located in the hotel lobby was connected to
the hotel’s servers and the Internet. The hackers compromised the thermo-
stat and gained control of it. The hackers then found and accessed the hotel’s
servers via the hotel network. From there, the hackers attacked the hotel
server and moved from there to breach the hotel database. From the data-
base, hackers extracted high-roller information and exported the data back
to the thermostat. The hackers then downloaded the high-roller data from
the thermostat to their own computer.

Are these hotel rooms smart enough to keep you safe and protect your
privacy?

Figure 7.7  USB.

Security aspects in IoT  261

Protecting hotel infrastructure against IoT vulnerabilities. IoT devices:
CCTV, HVAC, electronic key card systems, fire detection. All of these
devices can be hacked. CCTV security cameras could be hacked. A
real-world example: In 2017 a four-star hotel in Austria was targeted
by hackers (Phishing Email).

What hotels can do to mitigate risk:

	•	 Educate employees
	•	 Change the default usernames and passwords on all IoT devices.
	•	 Not have unauthorized access to networked computers(technicians or

maintenance teams),
	•	 Create discrete, firewalled networks that separate IoT devices from

hotel business, guest and visitor Wi-Fi.
Protecting hotel guest room privacy against IoT vulnerabilities: Hacking
guest phones through USB chargers. A real-world example: In 2015,
during talks on the Iran nuclear deal at a five-star hotel in Geneva.

What guests and hotels can do to mitigate risk:

	•	 Turning off smart TVs is not enough to ensure privacy.
	•	 Do not use the room’s USB ports and standard cables to charge your

phone or tablet.
	•	 Hotels should place all guest room IoT devices on a network separate

from the hotel server.
	•	 Smart TVs should be monitored by Intrusion Detection Systems.
	•	 Protecting hotel information systems against IoT vulnerabilities: Hotel

information systems contain everything from guest contact informa-
tion and credit card numbers to hotel financial records, employee files,
and security protocols.

What hotels can do to mitigate risk:

	•	 Isolate all IoT devices
	•	 Systems that need to be connected to the hotel’s internal business net-

work should be carefully set up by expert consultants
	•	 Any IoT devices that do not require internet access should be isolated

from the worldwide internet.

7.4 � CASE STUDY: IP CAMERA

We shall consider the IP camera, how it is vulnerable, and what aspects of
security needed to be considered. There are three components involved in
this product: the camera itself, the controller, and cloud servers. Let us learn
the aspects in which we need to look in for the security (Figure 7.8).

262  IoT Fundamentals with a Practical Approach

Microcontroller unit: It does not have a full-fledged operating system, but
only a dedicated small piece of code, called firmware, which was written for
a particular application.

	•	 Code has to be carefully designed and implemented.
	•	 Second component is the network.
	•	 If the camera and the controller is placed in the unchanged network,

then the controller can easily connect with the camera locally and send
the video with the help of a web server on the camera.

	•	 The Ethernet or Wi-Fi is used.
	•	 The passwords can be changed along with other configurations,

including the image resolution of the web page.

Three remote attacks against the IP camera of interest:

	•	 device scanning attack
	•	 brute force attack
	•	 device spoofing attack.

Using these attacks, we can remotely control any camera.
Security architecture (Figure 7.9): Security architecture is the strategic

design of systems, policies and technologies to protect IT and business assets

Figure 7.8  IP camera.

Security aspects in IoT  263

from cyberthreats. A well-designed security architecture aligns cybersecurity
with the unique business goals and risk management profile of the
organization.

Perception layer (also called the recognition layer): Gathers all type of
information with the help of physical equipment. Physical equipment
includes: RFID reader, sensors etc.

Network layer: The second layer in the architecture is the network layer.
It is responsible for the broadcasting of data. Data collected on numer-
ous essential networks such as the mobile communication network, or
the Wi-Fi network, satellite network, and more.

Support layer: The third layer in the architecture is the support layer. It
acts as a mediator. Grid and cloud computing are mostly used here.

Application layer: The fourth layer in the architecture is called the
application layer. The personalized delivery of application happens,
whatever application the user wants, whatever application the user is
presented with is taken care of in this layer.

7.5 � IoT SECURITY TOOLS

	•	 Encryption
	•	 Password protection
	•	 Two-factor authentication

Biometrics: This is a lightweight cryptographic algorithm or protocol tai-
lored for implementation in constrained environments, including RFID
tags, sensors, contactless smart cards, healthcare devices, and so on.
The lightweight primitives are superior to conventional cryptographic

Figure 7.9  Security architecture.

264  IoT Fundamentals with a Practical Approach

ones, which are currently used in the Internet security protocols e.g.
IPSec, TLS. It also delivers adequate security (Figure 7.10).

Password-based Authentication: This starts to look less attractive as a
security solution for IoT devices, for two reasons: Passwords do not
work well on dumb devices. They lack the power to process or store
passwords. Passwords are a poor means of automated authentication.
Entering a password generally requires a human to do something and
that’s hard to automate. As a result, passwords aren’t good for secur-
ing automated exchanges of information (Figure 7.11).

Two-Factor Authentications (2FA): This is often referred as two-step ver-
ification. It is a security process in which the user provides two authen-
tication factors to verify they are who they say they are. 2FA can be
contrasted with single-factor authentication (SFA), a security process
in which the user provides only one factor, typically a password. Two-
factor authentication provides an additional layer of security and
makes it harder for attackers to gain access. Two-factor authentica-
tion has long been used to control access to sensitive systems and data
(Figure 7.12).

Figure 7.10  End-to-end data protection.

Figure 7.11  Password-based authentication.

Security aspects in IoT  265

Biometrics: This is the process of comparing data for the person’s char-
acteristics to that person’s biometric template in order to determine
resemblance. The reference model is first stored in a database or a
secure, portable element like a smart card. The data stored is then com-
pared to the person’s biometric data in order for it to be authenticated.

Figure 7.12  2-factor authentication.

266

Index

Pages in italics refer to figures and pages in bold refer to tables.

acceleration sensors, 143, 143–145
accelerometers, 36, 126–127, 143

vs. gyroscopic sensors, 147, 147
access management layer, 55, 59, 61,

64–65
ACK, 93, 106
AC motor, 153, 155, 155
acrostic, resistors, 168
active sensor, 126, 126, 130, 130,

130–131
Active X script, 257
actuators, 17–18, 34, 39, 41–44, 48, 54,

69–70, 103, 121–122, 148,
148, 233

electromechanical actuators,
152–156

hydraulic actuators, 149, 149
pneumatic actuators, 149–151, 150
vs. sensors, 123–125, 124
thermal actuator, 151–152, 152

Advanced Message Queuing Protocol
(AMQP), 23, 62–63, 101–102,
101–102

IoT protocols, 23
Advanced Research Projects Agency

Network (ARPANET), 112,
114

aggregation layer, 58–59, 63
air quality gas sensor, 135, 137
Amazon Web Services (AWS), 31, 72
American Consumer Electronics Show, 8
analog input pins, 188, 188, 220–221
Analog Reference (AREF), 220–221
analog sensor, 126, 126, 188, 221
angular rate sensors, 145

angular velocity sensors, 145
API management layer, 26–30, 53, 60,

64
application functional group, 51
application layer security, 22–23,

42, 90–91, 101, 106–107,
256–257, 263

Architecture Reference Model (ARM),
45, 48, 69

aggregation/bus layer, 58–59
client/external communications

layer, 60
communication layer, 57–58
connectivity and communications, 53
data collection, 54
device layer, 56–57
device management (DM), 53,

60–61
event processing and analytics layer,

59
identity and access management, 61
reference model, 45–52, 46
scalability, 54
security aspects, 54–55, 56

Arduino, 175–176, 216–217, 219
advantages, 176
boards, 176–177, 177, 184, 219,

220, 226, 229, 229, 230, 230
Raspberry Pi, see Raspberry Pi
USB/barrel jack, 220

coding
brackets, 197
line comments, 197
screen, 198, 198–199

design, 219

Index  267

flowchart, 205, 205
functions, 203
IDE software, 174, 176, 180,

182–183, 185, 187, 192, 197,
202, 212, 216–217, 224,
226–230, 227

interfaces, 218
Leonardo, 180, 180, 225, 225
LilyPad, 178, 179, 223, 223
Mega, 179, 179–180, 224–225, 225
Nano board, 181–182, 182, 182
parentheses, 204
program flow, 204–205, 230–232, 231
project, 227–228, 228
Red board, 180–181
semicolon, 204
serial port, 229, 229
shields, 181, 181
syntax, 202–203, 203
tool tab, 204
Universal Asynchronous Receiver/

Transmitter, 206, 206–210
UNO, 177, 178, 182–185, 183, 222,

223
analog input pins, 188, 188
crystal oscillator, 190, 190
digital pins, 188, 189
installations, 192–193, 193
memory, 192, 192
microcontroller, 187, 187
pins, 194, 194–196
power port, 186, 186
reset switch, 189, 189
TX–RX LEDs, 191, 191
USB connector, 185, 185

white spaces, 204
Ashton, Briton Kevin, 5–7
asset management, 87, 90, 90
ATMega microcontroller, 175, 177–181,

183, 187, 194, 215, 218, 222
Atmel, 187, 194, 201, 218, 222
attackers, IoT devices, 251–252, 253,

254–255, 257–258, 260, 264
attribute protocol, 91–92
automatic door opening system, PIR

sensor-based, 140

barrel jack connection, 181, 220, 224
Big Data analytics, 14, 30, 33, 35–36, 59
biometrics systems, 132, 263–264, 264,

265

blink LED program, 249, 249
Bluetooth device, 84, 84–85, 234–235,

254–255
vs. Bluetooth low energy, 87, 87
topologies, 85, 85

Bluetooth Low Energy (BLE), 56, 85–88
architecture, 90–92, 91
asset tracking, 90, 90
vs. Bluetooth device, 87, 87
employees safe, 89–90
indoor location tracking, 88, 88–90

BMP 180, 129, 129
Boolean, 212–213
breadboard, 157–161, 158–160, 175,

217, 220
advantages, 164–165
connection setup, 163–164
disadvantages, 165
rows and columns, 161, 161–162,

162
soldered, 162
solderless, 162

Broadcom (BCM), 243
broker’s role, 74, 74
bus layer, 58–59, 63
byte, 57, 100, 206, 209, 212–215

cache constraints, 27
capacitive sensors, 144
capacitive technologies, 133
center-positive plug, 186, 186
character value, 213
chemical sensors, 134
Chip Select (CS), 246
Clear To Send (CTS), 258
client communication layer, 60
Client–Server Communication, 108
client-server constraint, 27
closed-loop system, 156
cloud audit, 256
cloud computing, 30–33, 255, 263
cloud environment, 252
Cloud Security Alliance (CSA), 255–256
cluster tree topology, 82, 82
clutch/brake motor, 154
Coca-Cola machine, 6
communication, 1–3, 6, 10–12, 14, 16,

19–26, 29, 45, 53, 59–60, 95
field, 69
functional group, 50
internet of Things, 17

268  Index

layer, 57–58
model, 51–52
protocols, 33, 245–246, 255

confirmable format (CON), 106
Congestion Window (CWND), 100
connection establishment phase, TCP, 99
connection setup, breadboard, 163–164
connection termination phase, TCP, 99
Constrained Application Protocol

(CoAP), 22, 103–104, 103–105
architecture, 105
message model, 106
vs. message queuing telemetry

transport, 108, 108
protocol security, 106–108, 107
request/response model, 106

contact tracing, 89, 89
controller layer, 90–92, 122–123, 123
crystal oscillator, 180, 190, 190, 195

data access, authentication and, 257
Data Acquisition System (DAS), 41–42,

63–64
data analytics, 44, 63
Data Distribution Service (DDS), 23
Datagram Transportation Layer

Security (DTLS), 106–107,
107

data processing layer, 10–11, 42
data security, 15, 24, 256
data transfer phase, TCP, 99
data types, 211–215

Boolean, 213
byte, 213
character value, 213
double precision floating-point

number, 215
floating-point numbers, 215
int, 214
long variables, 214
short, 215
unsigned char, 213
unsigned ints, 214
unsigned long variables, 215
void keyword, 212
word, 214

DC motor, 151, 154–155, 155, 156,
173, 242

denial of service (DoS), 254–255,
257–258

detector, 130, 136, 140–141, 241
PIR sensor-based, 140

device functional group, 50
device layer, 56–57, 62–63
device management (DM) layer, 53,

60–61, 64
DHCP server, 113
DHT11, 129, 129
diagnostic bus, 3, 10
diffuse reflection sensors, 148
digital pins, 173, 182–183, 188, 189,

201, 211, 218, 220–222
digital potentiometers, 172, 172–173
digitalRead (), vs. digitalWrite (), 201–210
digital sensor, 126, 126
digital temperature sensor (DS1820),

128, 128
digitalWrite (), vs. digitalRead (), 201–210
Distributed Denial of Service (DDoS)

attacks, 255, 257–258
domain model, IoT, 45–48, 47, 49, 50
double precision floating-point number,

215

eavesdropping attack, 107, 255, 257
802.15.4-LR-WPAN, 21
elastic scalability, 54, 63
electric linear actuators, 150–151, 151
electromechanical actuators, 152,

152–156
embedded systems, 30, 34, 57, 130
enabling techniques, IoT, 30, 30

Big Data, 33
cloud computing, 31–33
communications protocols, 33
embedded systems, 34
wireless sensor networks (WSN),

30–31
Enterprise Mobility Management

(EMM), 64
Enterprise Service Bus (ESB), 63
Ethernet, 18, 20, 34, 96, 234–235
event-based communication, 94
event processing layer, 59–60, 63
exclusive pair model, 25–26, 26
Extensible Messaging and Presence

Protocol (XMPP), 23
external communication layer, 60, 64

fake node attacker, 254
falsification, 260
Fast Company magazine, 8
financial cost, 70
finger print imaging sensor, 132, 132

Index  269

first-order system, 125
fitness trackers, 88
5V pin, 220–221, 245
floating-point numbers, 215
Forbes magazine, 8, 66
4 Model B, Raspberry Pi models, 235
functional blocks, IoT, 24
functional groups (FG), 50, 50–51

gas sensors, 134, 134–136, 135, 135
gateway devices, 69
General Purpose Input Output (GPIO),

234, 241–246, 248
Generic Access Profile (GAP), 91
Generic Attribute Profile (GATT), 91
German report, 251
Global Positioning System (GPS), 10,

86, 88, 129, 219
2G mobile communication, 21
3G mobile communication, 21
4G mobile communication, 21
Google, 8, 116
Google Street View, 8
GPIO Zero, 242
Ground (GND) pin, 139, 142, 162,

195, 208, 220–221, 245–246
gyroscopic sensors, 145, 145–146, 146

vs. accelerometers, 147, 147
applications, 146–147
types, 146

gyro sensor, 145, 146
applications, 146–147

hall-effect sensors, 144
Hardware as a Service (HaaS), 31
HC-SR04 ultrasonic sensor, 142
heterogeneous technologies, 255
high-scalability architectures, 54
home scenario, IoT, 9–10
host layer, 90–91
hotel industry security, 259, 260–261
HTML, 22, 92
humidity sensors, 147
hydraulic actuators, 149, 149

applications, 149
hydraulic motors, 153
Hypertext Transfer Protocol (HTTP),

22, 24, 27, 29, 53, 55, 57–59,
62, 92–93, 93

protocol in IoT, 93–95
hypertext transfer protocol secure

(HTTPS), 94

identity management layer, 61, 64–65
IDE software, Arduino, 174, 176, 180,

182–183, 185, 187, 192, 197,
202, 212, 216–217, 224,
226–230, 227

image sensors, 127, 132, 132
In-Circuit Serial Programming (ICSP),

179, 183, 195–196, 196
indoor location tracking, 86, 88,

88–90
inductive technologies, 133
industry technologies, 251–252
information model, IoT, 48, 49, 50–51
infrared (IR) sensors, 137, 137–141
Infrastructure as a Service (IaaS), 31, 32
INPUT mode, 201
integer, 211–212, 214
Integrated Circuit (IC), 222
intelligent lighting system, 43, 43–45
inter-integrated circuit (I2C), 196, 241,

243–244, 246
International Telecommunication Union

(ITU), 110
Internet, 1–2, 6, 8, 10, 13, 17, 19,

21–22, 31–32, 34–35, 41–42,
52–54, 56, 71, 92, 95–98, 103,
112, 114–116, 119, 157, 181,
219, 233, 252, 257, 260–261,
264

comparison with Internet of Things
and, 4, 4

vs. Internet of Things and, 4–5
Internet Engineering Task Force (IETF),

21–22, 57, 92, 114
Internet of Things (IoT), 1–2, 8–9, 9

actuator, 122
Advanced Message Queuing

Protocol, see Advanced
Message Queuing Protocol
(AMQP)

advantages, 11–12
applications, 15, 15
architectural overview, 39–41, 40–41

application layer, 42
data processing layer, 42
intelligent lighting system, 43,

43–45
network layer, 41–42
sensing layer, 41
stage, 43

Architecture Reference Model, see
Architecture Reference Model

270  Index

benefits, 16
biometrics, 263–264, 264, 265
Bluetooth/BLE, see Bluetooth,

Bluetooth Low Energy (BLE)
case study of IP camera, 261–263,

262
challenges, 15–16
characteristics, 14–15
communication devices, 17
comparison with Internet and, 4, 4
components, 10–11
constrained application protocol,

see constrained application
protocol (CoAP)

controller, 122–123, 123
data representation and

visualization, 70
definition, 2–3
design principles, 65–66
development, 5–6
digitalRead () vs. digitalWrite (),

201–210
disadvantages, 12–13
electronics components

Arduino, see Arduino
breadboard, see breadboard
Jumper wires, 175
potentiometer, see potentiometer
Pulse Width Modulation,

173–174
resistor, 165–169

enabling techniques, 30, 30; see also
enabling techniques

evolution, 6–7
goals, 5
history, 7–8
home scenario, 9–10
hotel industry security, 259,

260–261
Hypertext Transfer Protocol, see

Hypertext Transfer Protocol
(HTTP)

vs. Internet, 4–5
IPv4/IPv6, see Internet Protocol

Version 4 (IPv4), Internet
Protocol Version 6 (IPv6)

level template system, see level
template system

logical design, 23, 24
APIs, 26–30
communication model, 24–26
functional blocks, 24

loop statements, 199–200

Low-Power Wireless Personal Area
Networks, see Low-Power
Wireless Personal Area
Networks (6LoWPAN)

machine-to-machine (M2M)
technology, 66–67, 68

message queuing telemetry transport,
see message queuing telemetry
transport (MQTT)

OUTPUT mode, 200–201
password-based authentication,

263–264, 264
perceptual layer security, 254–260
physical and virtual world, 3–4
physical design, 17–18, 18

protocols, 19–23, 20
types, 17–18, 19

power, 70
process management functional

group, 50
radio frequency, see Radio frequency

(RF)
real-world design constraints, 68–70
scenarios, 14
security spectrum, 251–253, 253
sensor, see sensors
Serial.print() vs. Serial.println(),

210–215
service functional group, 50
services, 251, 252
setup section, 199
TCP/UDP, see Transmission

Control Protocol (TCP), User
Datagram Protocol (UDP)

transport scenario, 10
two-factor authentications (2FA),

264–265, 265
Wi-Fi, see wireless networking

technology
WSO2 platform, 62–65, 63; see also

WSO2 platform
Zigbee, 79

Internet Protocol (IP), 21–22, 53,
98–99, 112–115

camera, 261–263, 262
Internet Protocol version 4 (IPv4), 21,

112–113, 115–116
addresses, 113–114
anatomy, 113
benefits, 113
components, 112–113
First major Internet Protocol, 112
limitations, 114

Index  271

Internet Protocol version 6 (IPv6), 5,
21, 112, 114, 119–120

advantages, 115
automation, 116
in IoT, 114–115
Low-Power Wireless Personal Area

Networks, see Low-Power
Wireless Personal Area
Networks (6LoWPAN)

revolution, 115–116
risk, 116

Internet Society, 7, 116
Ivrea Interaction Design Institute, 216

JAX-RS, 59
jumper wires, 161, 175, 175

layered system, 27
LED indicator, 221, 250, 250

blink, 163, 163, 200, 249, 249
connectivity, 249
program, 247, 248
setup, 248

Leonardo, Arduino software, 180, 225,
225

USB cable, 226, 226
level sensors, 131, 131–132, 143
level template system, IoT, 34

level-1, 35, 35
level-2, 35–36, 36
level-3, 36, 37
level-4, 37, 38
level-5, 37, 38
level-6, 38–39, 39

Le Web, 8
LilyPad Arduino, 178, 179, 183, 223,

223
linear potentiometer, 171, 172
link layer protocols, 20–21
Logical Link Controller and Adaptation

Protocol (L2CAP), 92
long variables, 214
loop statements, 199–200, 230, 250

LED blink, 200
Low-Power Wireless Personal Area

Networks (6LoWPAN), 21,
116–117

advantages, 117–118, 118
application, 118–119
interoperability, 119–120
security, 119

LPWA, 14
LR-WPAN, 21

machine learning, 42, 44–45
machine-to-machine (M2M)

technology, 6, 11–12, 23, 45,
55, 66–67, 70–71, 103–104,
114

applications, 67, 67
vs. Internet of Things, 68

Maker Faire, 217
Malicious code injection, 254, 257–258
Malware attacks, 257
management functional group, 51
Man in the Middle attack, 254–255
mass node authentication, 254
Master Input/Slave Output (MISO),

195–196, 244, 246
Master Out Slave In (MOSI), 196, 244,

246
Maximum Segment Size (MSS), 99–100
medium access control (MAC), 20–21
memory, 23, 34, 53, 57, 68–70, 80, 120,

177, 180, 187, 192, 192, 213,
218, 235

mesh topology, 82, 83, 120
Message Broker (MB), 10, 63, 102,

234
Message Queuing Telemetry Transport

(MQTT), 23, 57–59, 62–63
advantages, 72
components, 72–78
vs. constrained application protocol,

108, 108
creations, 71
uses, 72

microcontroller, 10, 22, 34, 104, 157,
175–184, 187, 187, 189–190,
194–196, 206–207, 216–218,
222, 224, 244

Micro Electro-Mechanical System
(MEMS), 144–145

motion detector sensor, 130, 130,
130–131

vs. passive infrared (PIR) sensor,
140–141

MQ2 smoke sensor, 136, 136
multi-line comment, 197

network congestion problems, 255
network layer security, 19, 21, 41–42,

71, 81, 107, 254–255, 263
Nintendo, 221
node tampering, 254
non-confirmable (NON) format, 106
non-functional requirements, 70

272  Index

OASIS, 57, 101
OAuth2 Resource Server, 59, 63
Object Management Group (OMG), 23
Ohm’s Law, 165, 167, 169
1 Model B, Raspberry Pi models, 234
one-to-one communication, 94
optical sensors, 136, 147–148
OUTPUT mode, 200–202

passive infrared (PIR) sensor, 126,
130–131, 137–138, 139–140

vs. motion detector sensor, 140–141
passive motion sensor, 125–126, 126,

130, 130–131
password-based authentication,

263–264, 264
perceptual layer security, 254–260,

263
personal area networks (PANs), 21, 84
pervasive computing approach, 7
Philips Semiconductors, 244
phishing attacks, 116, 257
physical damage attacker, 254
physical layer (PHY), 20–21, 92, 118
physical world, IoT, 3–4, 42, 47, 51
piconet, 84–85
piezoelectric sensors, 144
piezo-resistive sensors, 144
Platform as a Service (PaaS), 31, 32, 65
pneumatic actuators, 149–151, 150
pneumatic motors, 153–154, 153–154
policy decision point (PDP), 59
policy enforcement point (PEP), 59,

63–64
Portugal, Ronald J., 157
pot, see potentiometer
potentiometer, 125, 134, 139, 156, 169,

169–170
types, 170–173

potmeter, see potentiometer
power port, 186, 186
pressure sensors, 126, 129, 129
Procter & Gamble, 5, 7
protecting sensor data, 254
proximity marketing, 86
proximity sensor, 132–134, 143
publish–subscribe model, 25, 25, 73, 73
Pulse-Width Modulation (PWM),

173–174, 173–174, 177,
179–180, 188, 220–221, 224,
250, 250

push–pull model, 25, 26
pyroelectric sensor, 138, 138

Quality of Service (QoS), 12, 74–78,
75–78

quartz crystal oscillator, 190, 190

radio frequency (RF), 2, 68, 70, 96,
108, 255

applications, 109–110
electric currents, 109
frequency bands, 110, 110
radiation, 111
uses, 111

Radio Frequency Identification (RFID),
2, 5–6, 8, 17, 48, 55, 254–255,
263

Raspberry Pi models, 233, 233–234,
236, 241

400 costs, 235
5V pins, 245
4 Model B, 235
General Purpose Input Output,

242–243
ground pin, 245
installation, 238–240, 247
interfaces, 240
inter-integrated circuit, 241,

243–244, 246
1 Model B, 234
pins, 241–242, 241–242
Raspbian operating system, 236,

236–237, 237
SD card, 233, 237, 239, 240,

243–244
Serial Peripheral Interface, 241,

243–244, 246
3 Model B, 235
3.3V pin, 245–250
2 Model B, 235
universal asynchronous receiver/

transmitter, 241, 243–246
Win32 Disk Imager, 239, 239
Zero, 234

Raspbian operating system, 236,
236–241, 237, 243

real-world design constraints, 68–70
recognition layer, 263
RedBoard, 224, 224–230
representational state transfer (REST),

27–29, 28

Index  273

Request for Internet Engineering Task
Force (IETF), 21–22, 57, 92,
114

request–response model, 24–25, 25,
29, 94

Request To Send (RTS), 258
reset button, 177, 180, 195, 208,

221–222, 224
reset switch, 189, 189
resistor, 159, 163–169, 166, 166–167,

168, 170–171, 201, 242, 245
calculation, 167–168
computation, 168–169

resistor color code system, 166,
166–167, 167–168

resistor tolerance, 167–168
retro-reflective sensors, 148
RFC 7252, 22
rotary potentiometers, 170–171, 171
routing attacks, 255
RX LEDs, 221–222, 230, 246

scalar sensor, 127
scatternet, 84–85
SCL, 177, 196, 243–244
SDA, 177, 196, 243–244
SD card, 233, 237, 239, 240, 243–244
second-order system, 125
Secured Handshake Mechanism, in

DTLS, 107
secure socket layer (SSL), 260
security alarm system, PIR sensor-

based, 140
security architecture, 262–263, 263
security aspects, IoT, 54–55, 56
Security Content Automation Protocol

(SCAP), 256
security functional group, 51
security lifecycle management, IoT, 252,

253
Security Manager Protocol, 92
security spectrum, 251–253
security threats, smart home, 257–258,

257–258
sensing field, 69
sensing layer, 40–41
sensors, 17, 48, 121–122, 254, 258,

263
vs. actuators, 123–125, 124
characteristics, 124–125
classification, 125–127

monitoring, 44
types, 127, 128

acceleration, 143, 143–145
chemical, 134
gas, 134, 134–136, 135, 135
gyroscopic, 145, 145–147, 146
humidity, 147
image, 132, 132
infrared (IR), 137, 137–141
level, 131, 131–132
motion, 130, 130–131
optical, 147–148
pressure, 129, 129
proximity, 132–134
smoke, 136, 136
temperature, 128, 128–129, 129
ultrasonic, 141, 141–143, 142
water quality, 133–134

serial.begin(), Arduino, 206–210, 232
Serial Clock (SCK), 195–196
Serial Data (SDA), 196
Serial Peripheral Interface (SPI), 196,

241, 243–244, 246
serial port, Arduino, 193, 207–209,

229, 229
serial.print(), 208–210

vs. Serial.println(), 210–215
Serial.println(), vs. Serial.print(),

210–215
servo motors, 156, 156, 173
setup() function, 94, 122, 163, 198–199,

230–232
short, data types, 215
side channel attack, 254
single-factor authentication (SFA), 264
single line comment, 197
sketch starts, 231
skin effect, 109
Slave Select (SS), 196
smart home, 5, 8, 43–45, 79, 84, 87, 95,

119, 257, 258, 260
smart technologies, 1, 39, 86, 252, 258
smoke sensors, 127, 134, 136, 136
Software as a Service (SaaS), 32, 32, 62
soldered breadboard, 162
solder-less board, 157, 162, 164–165
Special Interest Group (SIG), 79, 84, 87
standing waves, 109
star network, 81, 81
stateless, 22, 24, 27
stepper motor, 151, 154–155, 155

274  Index

supervisory control and data
acquisition (SCADA), 57, 72

support layer security, 255–256, 263
Sybil attack, 255
synchronous request–response, 94
System on Chip (SoC), 56, 241, 243

temperature sensors, 17, 35–36, 73,
126–127, 128, 128–129, 129,
188, 221, 244

tenants security, 256
thermal actuator, 151–152, 152
3 Model B, Raspberry Pi models, 235
3.3V pin, 220–221, 245–250
through-beam sensors, 147
transducer, 48, 121–122, 122, 134, 148
Transmission Control Protocol (TCP),

22, 92–94, 98–99
Congestion Window, 100
error detection, 100, 100–101
phases, 99
segments, 99–100

transport layer, 10, 22, 98, 119
Transport Layer protocol, 22, 119
Trusted Computing (TCG), 256
Twitter, 216
two-factor authentications (2FA),

263–265, 265
2008 IPSO Alliance, 8
2 Model B, Raspberry Pi models, 235
TXD, 195
TX LEDs, 221–222, 230, 246
TX–RX LEDs, 191, 191

ultrasonic sensors, 130, 141, 141–143,
142

unidirectional communication, 94
Unified Modeling Language (UML), 48
uniform interface, 27
universal asynchronous receiver/

transmitter (UART), 206,
206–210, 241, 243–246

UNO, Arduino, 177, 178, 182–185,
183, 222, 223

analog input pins, 188, 188
crystal oscillator, 190, 190
digital pins, 188, 189
installations, 192–193, 193
memory, 192, 192
microcontroller, 187, 187
pins, 194, 194–196
power port, 186, 186

reset switch, 189, 189
TX–RX LEDs, 191, 191
USB connector, 185, 185

unsigned char, 212–213
unsigned ints, 212, 214
unsigned long variables, 215
USB cable, 180–181, 183, 195, 220,

222, 224, 226, 226, 260, 260
connection, 185, 185, 220
Interface, 195
interface chip, 190, 191

User Datagram Protocol (UDP), 22, 57,
98, 100, 100–101, 103–104,
106, 118–119

User Engagement Server (UES), 64
user management, 44–45

VCC, 139, 142, 195
vector sensor, 127
virtual entity functional group, 50
virtualization security, 256
virtual world, IoT, 3–4
Voice over Long-Term Evolution

(VoLTE), 97
voice-over Wi-Fi (VoWi-Fi), 97
void keyword, 203, 212
voltage regulator, 186, 195, 218, 222,

245

water quality sensors, 127, 133–134
Web API, 27
Web Socket-based communication API,

29, 29–30
Web Socket handshake, 29
WebSocket Protocol, 23
wide-area network (WAN), 14, 66
802.11-WiFi, 20
Wi-Fi computer communication, 20
802.16-Wi-MAX, 21
Wi-MAX technology, 21
Win32 Disk Imager, 239, 239
Wired magazine, 8
wireless local area network (WLAN),

20, 97
Wireless Metropolitan Area Networks

(WMANs), 21
wireless networking technology (Wi-Fi),

5, 8, 10, 14, 17, 20, 34, 53,
56, 66, 79, 95–96, 95–96,
234–235

applications, 97–98
data transmission, 96, 97

Index  275

wireless sensor networks (WSN),
30–31, 95, 118, 120, 255

word, data type, 214
World Wide Web (WWW), 92, 104
World Wide Web Consortium (W3C),

92
WSO2 Carbon, 62
WSO2 platform, 62–65, 63

aggregation/bus layer, 63

bus layer, 63
data analytics, 63
device layer, 62–63
device management layer, 64
external communications layer, 64
identity and access management

layer, 64–65

Zigbee technology, 83

https://taylorandfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	About the Authors
	Chapter 1: Introduction to IoT (Internet of Things)
	1.1 Introduction to the Internet
	1.1.1 What is the Internet of Things (IoT)?
	1.1.2 What are the things?
	1.1.3 Internet of Things vs the Internet
	1.1.4 Comparison table between the Internet of Things and the Internet (Table 1.1)
	1.1.5 Main differences between the Internet of Things and the Internet
	1.1.6 Goals of IoT
	1.1.7 Origin of the IoT
	1.1.8 Evolution of IoT
	1.1.9 The history of the Internet of Things

	1.2 How does IoT work?
	1.2.1 Scenario 1: IoT in your home
	1.2.2 Scenario 2: IoT in transport

	1.3 IoT components
	1.4 Advantages of IoT
	1.5 Disadvantages of IoT
	1.6 Different IoT scenarios
	1.7 IoT characteristics
	1.8 Applications of IoT
	1.9 Challenges of the Internet of Things (IoT)

	Chapter 2: IoT architecture
	2.1 Physical design of IoT
	2.1.1 Things in IoT
	2.1.2 IoT Protocols
	2.1.2.1 Link layer
	2.1.2.2 Network layer
	2.1.2.3 Transport layer
	2.1.2.4 Application layer

	2.2 Logical design of IoT
	2.2.1 IoT functional blocks
	2.2.2 IoT communication models
	2.2.3 IoT communication APIs
	2.2.3.1 REST-based communication APIs
	2.2.3.2 Web Socket-based communication API

	2.3 IoT-enabling techniques
	2.3.1 Wireless Sensor Network (WSN)
	2.3.2 Cloud computing
	2.3.3 Big Data analytics
	2.3.4 Communications protocols
	2.3.5 Embedded systems

	2.4 IoT levels
	2.4.1 IoT level 1
	2.4.2 IoT level 2
	2.4.3 IoT level 3
	2.4.4 IoT level 4
	2.4.5 IoT level 5
	2.4.6 IoT level 6

	2.5 Architectural overview of the Internet of Things (IoT)
	2.5.1 Sensing layer
	2.5.2 Network layer
	2.5.3 Data processing layer
	2.5.4 Application layer
	2.5.5 Stage 5 of IoT architecture
	2.5.6 IoT architecture example: intelligent lighting

	2.6 Reference model and architecture
	2.6.1 IoT reference model
	2.6.1.1 IoT domain model
	2.6.1.2 Information model
	2.6.1.3 Functional model
	2.6.1.4 Communication model

	2.6.2 IoT reference architecture
	2.6.2.1 Connectivity and communications
	2.6.2.2 Device management
	2.6.2.3 Data collection, analysis, and actuation
	2.6.2.4 Scalability
	2.6.2.5 Security
	2.6.2.6 The device layer
	2.6.2.7 The communications layer
	2.6.2.8 The aggregation/bus layer
	2.6.2.9 The event processing and analytics layer
	2.6.2.10 Client/external communications layer
	2.6.2.11 Device management
	2.6.2.12 Identity and access management

	2.7 Mapping to the WSO2 platform
	2.7.1 The device layer
	2.7.2 The aggregation/bus layer
	2.7.3 The analytics and event processing layer
	2.7.4 The external communications layer
	2.7.5 The device management layer
	2.7.6 The identity and access management layer

	2.8 Design principles for IoT
	2.9 IoT and M2M technology
	2.9.1 How IoT M2M works
	2.9.2 IoT M2M applications
	2.9.3 Difference between IoT and M2M (Table 2.2)

	2.10 Real-world design constraints
	2.10.1 Devices and networks
	2.10.1.1 Functional requirements
	2.10.1.2 Sensing and communications field
	2.10.1.3 Programming and embedded intelligence
	2.10.1.4 Power
	2.10.1.5 Gateway
	2.10.1.6 Nonfunctional requirements
	2.10.1.7 Financial cost
	2.10.1.8 Data representation and visualization

	Chapter 3: Protocols in IoT
	3.1 MQTT (Message Queuing Telemetry Transport)
	3.1.1 Why was MQTT created?
	3.1.2 Who uses MQTT?
	3.1.3 Advantages of MQTT

	3.2 How it works
	3.2.1 Levels of QoS in MQTT

	3.3 Zigbee
	3.3.1 Zigbee Alliance
	3.3.2 Who uses Zigbee?
	3.3.3 How Zigbee works
	3.3.4 Zigbee network topologies
	3.3.5 Applications of Zigbee technology

	3.4 Bluetooth/BLE
	3.4.1 Applications of Bluetooth in IoT
	3.4.2 What is Bluetooth low energy?
	3.4.3 How does BLE use less power?
	3.4.4 What is Bluetooth low energy used for?
	3.4.4.1 Smart devices
	3.4.4.2 Proximity marketing
	3.4.4.3 Indoor location tracking
	3.4.4.4 Asset management
	3.4.4.5 Is BLE the same as Bluetooth?
	3.4.4.6 Where can you find BLE?
	3.4.4.7 Fitness trackers and smart appliances

	3.4.5 Indoor location tracking
	3.4.5.1 Contact tracing
	3.4.5.2 Employee safety
	3.4.5.3 Asset tracking

	3.4.6 Architecture of BLE

	3.5 HTTP
	3.5.1 HTTP protocol in IoT
	3.5.2 Why HTTP is not suitable for IoT?

	3.6 Wi-Fi
	3.6.1 How does Wi-Fi work?
	3.6.2 Applications of Wi-Fi

	3.7 TCP/UDP
	3.7.1 How Transmission Control Protocol works
	3.7.2 The three phases of TCP operations
	3.7.3 TCP segments
	3.7.4 Congestion control
	3.7.5 Error detection

	3.8 Advanced Message Queuing Protocol (AMQP)
	3.8.1 How AMQP works

	3.9 Constrained Application Protocol (CoAP)
	3.9.1 CoAP layer
	3.9.1.1 CoAP messages model
	3.9.1.2 CoAP request/response model

	3.9.2 CoAP protocol security

	3.10 CoAP vs MQTT
	3.11 RF
	3.11.1 Electric current
	3.11.2 Applications of RF
	3.11.3 Frequency bands
	3.11.4 How is RF used?
	3.11.5 How are people exposed to RF radiation?

	3.12 IPv4/IPv6
	3.12.1 The First major protocol
	3.12.2 Components
	3.12.3 Benefits of IPv4
	3.12.4 Anatomy of IPv4 address
	3.12.5 Dynamic IP addresses
	3.12.6 IPv4 limitations
	3.12.7 Introduction to IPv6
	3.12.8 What is IPv6 in IoT?
	3.12.9 Advantages of IPv6 in the Internet of Things
	3.12.10 The IPv6 revolution
	3.12.11 What are the risks?
	3.12.12 The role of automation

	3.13 6LoWPAN
	3.13.1 Advantages of 6LoWPAN
	3.13.2 6LoWPAN application areas
	3.13.3 6LoWPAN security
	3.13.4 6LoWPAN interoperability

	Chapter 4: Introduction to sensors and actuators
	4.1 Introduction to sensors
	4.2 Introduction to actuators
	4.3 Controller
	4.4 What connects sensors and actuators in IoT devices?
	4.4.1 Sensors characteristics
	4.4.2 Static characteristics
	4.4.3 Dynamic characteristics

	4.5 Sensor Classification
	4.6 IoT sensor types
	4.6.1 Temperature sensors
	4.6.2 Pressure sensors
	4.6.3 Motion sensors
	4.6.4 Level sensors
	4.6.5 Image sensors
	4.6.6 Proximity sensors
	4.6.6.1 Water quality sensors

	4.6.7 Chemical sensors
	4.6.8 Gas sensors
	4.6.9 Smoke sensors
	4.6.10 Infrared (IR) sensors
	4.6.10.1 PIR sensor-based automatic door opening system
	4.6.10.2 Security alarm system based on a PIR sensor
	4.6.10.3 What does a PIR sensor detect?
	4.6.10.4 What is the difference between the PIR sensor and the motion detector sensor?

	4.6.11 Ultrasonic sensors
	4.6.12 Acceleration sensors
	4.6.12.1 Types of accelerometer

	4.6.13 Gyroscopic sensors
	4.6.13.1 Types of gyroscope (shown below in Figure 4.29)
	4.6.13.2 Gyro sensor applications
	4.6.13.3 Difference in accelerometer and gyroscope

	4.6.14 Humidity sensors
	4.6.15 Optical sensors

	4.7 Actuators
	4.7.1 Hydraulic actuators
	4.7.1.1 Applications of hydraulic systems: five categories

	4.7.2 Pneumatic actuators
	4.7.2.1 Electric linear actuators

	4.7.3 Thermal actuators
	4.7.3.1 Thermal actuators operating principle

	4.7.4 Electromechanical actuators
	4.7.4.1 Hydraulic motors
	4.7.4.2 Pneumatic motors
	4.7.4.3 Clutch/brake motor
	4.7.4.4 Stepper motors (DC motor)
	4.7.4.5 AC motor
	4.7.4.6 Servo motors

	Chapter 5: Electronic components used in IoT
	5.1 Electronics components
	5.1.1 Breadboard
	5.1.1.1 How to read breadboard rows and columns?
	5.1.1.2 Types of breadboard
	5.1.1.2.1 Solderless breadboards
	5.1.1.2.2 Soldered breadboard
	5.1.1.2.3 Connection setup through a breadboard

	5.1.2 Resistor
	5.1.2.1 Calculating resistor values
	5.1.2.2 Resistance computation

	5.1.3 Potentiometer
	5.1.3.1 How Does a Potentiometer Work?
	5.1.3.2 Potentiometer types
	5.1.3.2.1 Rotary potentiometers
	5.1.3.2.2 Linear potentiometers
	5.1.3.2.3 Digital potentiometers

	5.1.4 PWM
	5.1.5 Jumper wire
	5.1.6 Arduino
	5.1.6.1 Why use the Arduino?
	5.1.6.2 Wide variety
	5.1.6.3 Arduino UNO
	5.1.6.4 LilyPad Arduino
	5.1.6.5 Arduino Mega
	5.1.6.6 Arduino leonardo
	5.1.6.7 Arduino Red board
	5.1.6.8 Arduino shields
	5.1.6.9 Arduino Nano

	5.1.7 Arduino UNO
	5.1.7.1 USB Connector
	5.1.7.2 Power Port
	5.1.7.3 Microcontroller
	5.1.7.3.1 Atmega328P microcontroller

	5.1.7.4 Analog input pins
	5.1.7.5 Digital pins
	5.1.7.6 Reset switch
	5.1.7.7 Crystal oscillator
	5.1.7.8 USB interface chip
	5.1.7.9 TX–RX LEDs
	5.1.7.10 Memory
	5.1.7.11 How to get started with Arduino UNO

	5.1.8 Arduino UNO pinout
	5.1.8.1 Arduino coding basics
	5.1.8.1.1 Brackets
	5.1.8.1.2 Line comment
	5.1.8.1.3 Coding screen

	5.2 What Is Setup? What Type of Code Is Written in the Setup Block?
	5.3 What Is Loop? What Type of Code Is Written in the Loop Block?
	5.4 Why Is It Recommended to Set the Mode of Pins as OUTPUT?
	5.4.1 Can we set the pinMode as INPUT?

	5.5 What Is the Difference between digitalRead () and digitalWrite ()?
	5.5.1 Arduino syntax and program flow
	5.5.2 Functions
	5.5.3 Spaces
	5.5.4 Tools tab
	5.5.5 Uses of parentheses ()
	5.5.6 Semicolon ;
	5.5.7 Program flow
	5.5.8 Flow charts
	5.5.9 Arduino Serial |Serial.begin()
	5.5.9.1 Serial.begin ()
	5.5.9.2 Arduino serial.print ()
	5.5.9.3 Serial.print(value)

	5.6 What Is the Difference Between Serial.print() and Serial.println()?
	5.6.1 Data types
	5.6.1.1 Void
	5.6.1.2 Boolean
	5.6.1.3 Char
	5.6.1.4 Unsigned char
	5.6.1.5 Byte
	5.6.1.6 Int
	5.6.1.7 Unsigned int
	5.6.1.8 Word
	5.6.1.9 Long
	5.6.1.10 Unsigned long
	5.6.1.11 Short
	5.6.1.12 Float
	5.6.1.13 Double

	Chapter 6: Introduction to Arduino
	6.1 Why Arduino?
	6.2 What makes up an Arduino?
	6.3 What does it do?
	6.4 What’s on the board?
	6.4.1 Power (USB/Barrel Jack)
	6.4.2 Pins (5V, 3.3V, GND, Analog, Digital, PWM, AREF)
	6.4.2.1 Reset Button
	6.4.2.2 Power LED Indicator
	6.4.2.3 TX RX LEDs
	6.4.2.4 Main IC
	6.4.2.5 Voltage Regulator
	6.4.2.6 The Arduino Family
	6.4.2.6.1 Arduino UNO (R3)
	6.4.2.6.2 LilyPad Arduino

	6.4.2.7 RedBoard
	6.4.2.7.1 Arduino Mega (R3)
	6.4.2.7.2 Arduino Leonardo

	6.4.2.8 Arduino program structure

	6.4.3 Raspberry Pi
	6.4.4 What Raspberry Pi models have been released?
	6.4.5 Top 6 models of Raspberry Pi
	6.4.5.1 Raspberry Pi Zero
	6.4.5.2 Raspberry Pi 1
	6.4.5.3 Raspberry Pi 2 B
	6.4.5.4 Raspberry Pi 3
	6.4.5.5 Raspberry Pi 4B
	6.4.5.6 Raspberry Pi 400

	6.4.6 How to install Raspbian on the Raspberry Pi
	6.4.7 Raspberry Pi pins
	6.4.8 General Purpose Input Output (GPIO) Pins
	6.4.9 I2C, SPI, and UART: Which do you use?
	6.4.10 I2C – Inter-Integrated Circuit
	6.4.11 SPI – Serial Peripheral Interface
	6.4.12 UART – Universal Asynchronous Receiver/Transmitter
	6.4.13 Ground (gnd)
	6.4.14 5v
	6.4.15 3v3

	Chapter 7: Security aspects in IoT
	7.1 Security spectrum
	7.2 Perceptual layer security
	7.3 Security in the hotel industry
	7.4 Case study: IP camera
	7.5 IoT security tools

	Index

