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Preface



In 2015, global carbon dioxide emissions reached a staggering 56 gigatonnes 
(Gt), with over 73% of these emissions in 2020 attributed to the energy sector, 
as reported by the UN climate change agency. This alarming reality has spurred 
the urgent need for a drastic action plan to curb greenhouse gas emissions by 
transitioning from fossil fuels to renewable energy resources, such as wind and 
solar energies. At the forefront of this transition is the microgrid, playing a pivotal 
role in seamlessly integrating distributed energy resources into the distribution 
network. 

The roots of the microgrid concept trace back to 1882 when Thomas Edison 
inaugurated the Pearl Street Station, a decentralized small-scale power system 
designed to illuminate Manhattan’s streets. It wasn’t until the mid-20th century 
microgrid concept when microgrid gained widespread acceptance. Recent 
advances in semiconductor technology, sensors, and communication technologies 
have propelled the transition towards intelligent microgrids. The efficiency and 
resiliency of these intelligent microgrids are achieved by incorporating advanced 
algorithms, data analytics, automation, and artificial intelligence to optimize 
energy generation, storage, and consumption. Moreover, DC appliances, the 
electrification of transportation, the integration of renewable energy sources, and 
the enhanced efficiency of DC storage units have positioned DC microgrids as a 
viable alternative to AC microgrids. 

This edited volume serves as a compendium of groundbreaking research 
and insights into various facets of DC microgrid technology. Divided into 
two parts, the book delves into the Fundamentals and Technologies for DC 
Microgrid, comprising chapters on Architectures and Technologies, IoT-
Based Communication, Blockchain Technology, Photovoltaic Digital Twin, 
Cybersecurity Perspectives, and AI-Driven Battery State Estimation. The second 
part focuses on the Design and Optimization of DC Microgrids, exploring 
topics like hybrid microgrid design for the cement industry, formal methods for 
microgrids, and a business model perspective on direct current microgrids. 

The editors extend their sincere appreciation to the esteemed authors whose 
invaluable contributions have enriched this edited volume on DC microgrid 
technology. Gratitude is also expressed to the research center at Dar Al-Hekma 



 iv IoT Enabled-DC Microgrids 

University for providing essential financial support, enabling the realization of 
this collaborative endeavor. Additionally, the editors would like to acknowledge 
and commend the diligent efforts of the reviewers, whose insightful feedback 
and expertise significantly contributed to improving the scope and content of the 
book. 

The editors: 
Prof. Imed Ben Dhaou, Dar Al-Hekma University, Saudi Arabia 

Prof. Giovanni Spagnuolo, University of Salerno, Italy 
Prof. Hannu Tenhunen, University of Tampere, Finland 
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CHAPTER 1 

Architectures
and
Technologies

for
DC
Microgrid


Imed Ben Dhaou a,b,c 

1.
 Introduction


The development of the smart grid has been driven by rising concerns about 
global warming and the requirement to lower power costs. The outdated power 
grid is widely acknowledged to be inefficient, unreliable, polluting, unidirec­
tional (from producer to consumer), uses bulk production, has few sensors, and 
provides only a limited amount of assistance for automation control and opera­
tions. A smart grid, on the other hand, is digital, incorporates distributed energy 
resources, is automated, allows for two-way communication, and incorporates 
cutting-edge ICT infrastructure, including wireless sensor networks, cloud com­
puting, and edge/fog computing. Demand response management, advanced me­
tering infrastructure, substation automation, home energy management systems, 
outage management, distributed automation, asset management, electric vehi­
cle charging, distributed energy resources and storage, and wide-area situational 
awareness systems are just a few of the advanced services that were made possi­
ble by the smart grid (Hamidieh and Ghassemi, 2022). 

a Department of Computer Science, Hekma School of Engineering, Computing and Design, Dar Al-
Hekma University, Saudi Arabia. 

b

Department of Computing, University of Turku, Finland. 
Department of Technology, Higher Institute of Computer Sciences and Mathematics, University of 
Monastir, Tunisia. 
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For decades, the microgrid has been an effective way to provide power to 
remote communities. Manhattan Pearl Street Station, which was built to pro­
duce 1,100 kW DC using a steam engine, was the first microgrid to be publicly 
acknowledged (Cunningham and Paserba, 2022). In the last decade, microgirds 
have proven to be a viable solution to accommodate the ever-increasing demands 
on Distributed Energy Resources (DERs). 

There are two primary types of microgrids. The initial type is called an AC 
microgrid, which utilizes an AC bus to supply loads with AC voltage. The second 
type is known as a DC microgrid, where loads are connected to DC electricity 
through a DC bus. Figure 1 illustrates these two distinct forms of microgrid. 
Furthermore, it should be noted that hybrid microgrids are also a viable option. 

A DC microgrid is a localized power system that operates using direct current 
(DC) voltage. It typically includes multiple energy sources such as solar panels, 
wind turbines, and batteries, as well as energy users such as homes and busi­
nesses. DC microgrids provide a reliable and efficient power supply for small 
communities or individual buildings that can operate independently or in com­
bination with the main power grid. They are also ideal for areas with limited 
access to traditional power sources, such as remote rural communities or disaster-
stricken areas. 

In recent years, DC microgrids have gained popularity due to their ability to 
improve the resilience of the general power grid and provide a pathway to the 
integration of renewable energy. It is well accepted that the DC microgrid has 
better efficiency and provides better power quality compared to the AC micro-
grid (Lotfi and Khodaei, 2017; Rangarajan et al., 2023). Table 2 provides a com­
parison between the AC and DC microgrids. (Lotfi and Khodaei, 2017) found 
that DC microgrids are the most cost-effective option for microgrids with a high 
proportion of DC loads. 

Figure
1.
 AC and DC microgrids connected to the grid with distributed generations. 
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Table
1.
 Comparison between AC and DC microgrids. 

Feature AC Microgrid DC Microgrid 
Power type Alternating Current (AC) Direct Current (DC) 
Voltage Single-phase or three-phase, 

120V/240V or 277V/480V 
Typically 380V 

Power conversion Not required for AC loads Required for AC loads 
Efficiency Lower efficiency due to line losses Higher efficiency 
Stability Less stable due to external disturbances More stable 
Cost Lower initial cost Higher initial cost 
Maturity More mature y Less mature 

Over the years, companies started offering DC appliances. As reported 
in (Sabry et al., 2020), DC appliances have a better efficiency than their AC 
counterparts. Table 2 samples the characteristics of some DC appliances found 
in today’s market. 

Table
2.
 DC appliances. 

Appliance Rated Power Rated Voltage 
Air conditioning (12,000 BTU) Heating 1050 W 

Cooling 980 W 
48V 

Washing machine (7KG) Washer power - 300W 
Dryer power 140 W 

12V 

Microwave (12L) 800W 24V 
Induction cooker 1200 W 48V 

All-in-One Desktop 90W 20V 

Furthermore, the growing availability and proliferation of information and 
communication technology (smartphones, Internet of Things, printers, scanners, 
etc.) has favoured the adoption of DC microgrids. Communication networks, 
personal computers, and data centers are the three main types of ICT equipment. 
(Van Heddeghem et al., 2014) predicts that the power consumption of the three 
groups will double every 10 years. ICT equipment consumed about 330 TWh 
in 2012. This trend requires rapid action to reduce the carbon footprint of ICT 
equipment. 

In the wireless communication domain, 77% of the energy consumed by ICT 
is attributed to the network operator (Van Heddeghem et al., 2014). As shown in 
Figure 2, a base transceiver station (BTS) is composed of a power unit, a cooling 
and lighting system, a Radio Unit (RU), a Base Band Unit (BBU), an Active An­
tenna Unit (AAU), and a backhaul network. The RU consumes more than 60% 
of the overall power, followed by the cooling system, which consumes 25%. 
(Tradacete et al., 2021) proposed a microgrid with an energy management sys­
tem that eliminates noncritical loads based on meteorological conditions (tem­
perature, humidity, irradiance, wind speed and wind direction), the status of the 
battery storage energy system, and the price of the energy to make the BTS more 
environmentally friendly. 
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Figure
2.
 Block diagram of a green base transceiver station. 

The following sections of this chapter are structured as follows. In 
Section 2, we investigate the typical architectures of DC microgrids. Section 3 
looks at the essential power electronic components used in the design and imple­
mentation of DC-microgrids. Section 4 explains the control of power electronics 
devices with the help of information and communication technologies. Finally, 
Section 5 summarizes the chapter. 

2.
 Architecture
of
DC
microgrid


There are many types of microgrid architecture: single-bus, multi-bus, ring-bus, 
zonal. multiterminal and partially grid-connected microgrid (Dragičević et al., 
2016) (Shaban et al., 2021). 

2.1.
 Single-bus
DC
microgrid


Is a widely used architecture as it is low-cost. In this architecture, loads, ESSs, 
and DERs are all connected to a single bus. The single-bus DC microgrid comes 
in two categories: unipolar and bipolar. The advantages of the single-bus DC mi­
crogrid lie in the simplicity of the design of control algorithms, which are very 
stable and reliable. The bipolar single-bus architecture has been developed to 
increase the immunity of the power system from failure. A laboratory-scale pro­
totype of a bipolar DC microgrid has been reported in (Kakigano et al., 2010). 
The system consists of a 340V VDC. Three voltage levels are used in the micro-
grid: +170 V line, ground and the –170V line, which gives the DC-DC converter 
the freedom to choose 340V, 170V, or –170V as input voltage. This kind of re­
dundancy guarantees power availability for critical loads. 
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Figure
3.
 Toploggy of a single bus DC microgrid. 

2.2.
 Multi-bus
DC
microgrid


It is a topology that has been advocated to increase the flexibility of the DC mi­
crogrid. The chief idea is to offer loads of options to choose power from multiple 
sources. There are several DC buses in the microgrid, and each bus has a number 
of DERs, loads, and ESSs. Isolated DC-DC converters link these buses together. 
Figure 4 illustrates the simplified architecture of the multi-bus DC system. The 
system is highly reconfigurable and more reliable than a single-bus DC micro-
grid, since each load can get power from several sources that are located on the 
same or distinct DC buses. The multi-bus DC microgrid’s control system is more 
intricate than the single-bus system. The three control layers should regulate the 
voltage and balance the powers between the buses (Ballal et al., 2022). 

Figure
4.
 Topology of a multi-bus DC microgrid. 
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2.3.
 Ring
bus
DC
microgrid


A reconfigurable DC microgrid can be achieved using a number of topologies 
among them is the ring-bus architecture. As illustrated in Figure 5, the bus con­
sists of DERS, loads, and storage units connected by a ring-dc bus. Each module 
is connected through a proper AC-DC or DC-DC converter. These converters are 
interfaced to the bus through an Intelligent Electronic Breaker (IEB). 

Figure
5.
 Topology of a ring-bus DC microgrid. 

The salient features of the ring-bus architecture are its scalability, reliabil­
ity, and efficiencies, among other things. However, compared to radial and mesh 
topologies, the ring-bus DC microgrid requires an elaborate scheme for the lo­
calization and isolation of faults. An Intelligent Electronic Device (IED)-based 
scheme has been devised by (Park et al., 2013). To isolate faults, the overcurrent 
and differential current of neighboring IEDs. The circuit breaker is set to open 
or close depending on the nature of the current fault (permanent or cleared). In­
telligent electronic devices (IEDs) are embedded systems enabled by IoT that 
are used to protect, control, and monitor power systems. The architecture of a 
typical IED consists of a processor, a main memory, IOs, and a communication 
interface. The IDEs devised in (Park et al., 2013) are prototyped using a 32-bit 
microcontroller unit (MCU) clocked at 150 MHz. 

2.4.
 Partially
gird-connected
DC-microgrid
architecture


The intermittent nature of the PV system along with the asymmetric power de­
mands calls for effective power management and the implementation of a de­
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Figure
6.
 Topology of a partially grid-connected microgrid. 

mand response program. In this context, (Shaban et al., 2021) devised a micro-
grid architecture and control algorithm that connects a suitable number of loads 
to the main grid in case the power demands are higher than the power generated 
by renewables. The architecture shown in Figure 6 is composed of the follow­
ing elements: a DC microgrid with an energy storage system (ESS), solid state 
transfer switches, smart meters, and a centralized controller. 

3.
 Power
electronics
for
the
DC
microgrid


Power electronics are a crucial enabler technology for the development and de­
ployment of DC microgrids. As discussed in the previous section, the DC micro-
grid uses a multitude of power electronic converters and energy storage systems. 
The typical power electronic devices used in the DC microgrid are summarized 
in the Table 3. This section focuses on describing the architecture of typical DC­
DC converters used in the design of a low-voltage DC Microgrid (LVDCMG). 

3.1.
 DC-DC
converters


DC-DC converters are power electronic devices that convert DC voltage from 
one level to another. Step-up DC converters are used to increase the input volt­
age (Forouzesh et al., 2017). On the contrary, the output voltage of the DC­
DC step-down converters is lower than the input voltage. Typically, step-down 
DC converters are used to power DC appliances from a high-voltage DC bus, 
whereas step-up DC-DC converters are used to connect DC sources to the DC 
bus. 

There exist numerous taxonomies for DC-DC converters. These classifica­
tions take into account the topology, control techniques, operation mode, conver­
sion ratio, isolation (Kasper et al., 2014; Páez et al., 2019; Salem et al., 2018). 
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Table
3.
 Power electronic components. 

Component name Explanation 
Buck Converter Converts DC voltage from high value to lower value 

Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFET) Amplification or switching 
Insulated Gate Bipolar Transistors (IGBT) Control and speed regulation 

Voltage regulators Maintain a constant output voltage 
Inductor Stores magnetic energy (current source) 

Capacitor Stories electric energy (voltage source) 
Battery Stores energy 

Photovoltaic Converts sunlight source to electricity 
Maximum Point Power Tracking (MPPT) controller A device that extracts the maximum power from a solar panel 

onverter A DC-DC converter that amplifies an input voltage 
Buck-Boost Converter A DC-DC converter that either amplifies or reduces the magnitude of the input voltage 

Fly-back DC-DC converter An isolated Buck-Boost converter 
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The input and output circuits of isolated DC-DC converters are electrically 
separated from each other by a transformer. Isolation is designed to protect the 
load from electric shock and reduce noise and interference. Isolated DC-DC con­
verters are used in the DC microgrid to convert energy from renewable sources, 
such as wind turbines and solar panels. 

Nonisolated DC-DC converters, on the other hand, do not isolate the input 
and output. These converters are best suited for low-power applications. They 
are particularly useful for step-down voltage conversion. In the electric vehicle 
domain, the charging station may make use of the nonisolated bidirectional DC­
DC converter. 

Typical equations used to characterize any given converter are summarized in 
Table 4. Details of those equations are reported in (Kazimierczuk, 2016). 

3.1.1.
 DC-DC
Boost
converters


The step-up converter converts a low input voltage to a high output voltage by 
storing the input voltage in an electric storage element (inductor or capacitor) 
and then releasing it at the output. 

There exist two types of boost converters: isolated and non-isolated. Isolated 
converters use a transformer to isolate the input and output. It is usually used to 
power sensitive appliances and to connect DC microgrids (Lee et al., 2015). In 
the design of a microgrid, an isolated bidirectional DC-DC converter is used to 
connect the energy storage system to the DC bus. Figure 7 illustrates a current-
fed isolated bidirectional DC-DC converter devised by (Choi et al., 2022). The 
converter outperforms the voltage-fed dual active bridge converter, as it has bet­
ter efficiency under heavy load variation and guarantees a zero voltage switching 
condition. 

Figure
7.
 Isolated bidirectional DC-DC converter proposed by (Choi et al., 2022). 
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Table
4.
 Characterization of DC-DC converters. 

Equation Explanation 

Pin
=
VinIin
 Input power in Watt. 

Pout
=
VoutIout
 Output power in Watt. 

η
=
 Pout

Pin


Efficiency of the converter. 

Ploss
=
Pin
−
Pout
 Power loss in Watt. 

HV
 =
 Vout

Vin


DC voltage transfer function. 

HI
 =
 Iout

Iin


DC current transfer function. 

LNR
=
 ∆Vout

∆Vin


Line regulation in mV/V at a constant temperature and constant Iout. 

LOR
=
 ∆Vout

∆Iout


Load regulation in mA/V at a constant input voltage and constant temperature. 

P
LOR
=
100%

V
OC−Vout,f
ull


Vout,f
ull

Percentage load regulation when input voltage and temperature are constant. 

LLR
=
100%

∆Vout


Vout,nom

∆Iout


Line/load regulation in %

A at a constant input voltage and constant temperature. 

Rout
=
−
∆Vout

∆Iout


Dynamic output resistance when both the temperature and input voltage are held constant. 

T
HR
=
100%
∆Vout

∆P
diss
 Thermal regulation in %


W computed at a constant Vin
 and Iout. 

RRR
=
 VIR

VOR


Computed Ripple Rejection Ratio (in dB) given the input ripple (VIR) and the output ripple (VOR). 

f0
=
 1

2π


√

LC


Corner/ cutoff frequency (in Hz) of an LC low-pass filter. 



Voutλ(1
−
λ)
∆IL
=
 ,
 (1)

FL


where λ
is the duty cycle determined using (2), F
 is the frequency of the PWM, 
and L
is the value of the inductor. 

Vin
λ
= 1
−
 .
 (2)

Vout


(1
−
D)2


Lmin
=
RLD ,
 (3)
2F
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Figure
8.
 Circuit diagram of a PWM boost converter. 

A PWM DC-DC boost converter is widely used to amplify the input voltage. 
The converter consists of an inductor, a switch, a diode, a control block, and a 
capacitor. The metal oxide field effect transistor (MOSFET) is commonly used as 
a switch. The operation of the converter is arbitrated by pulse width modulation 
(PWM). Figure 8 shows the PWM boost converter. 

The boost converter works in a Continuous Conduction Mode (CCM) or a 
Discontinuous Conduction Mode (DCM). The mode of operation depends on 
the charging and discharging rate of the inductor. 

In this section, the operation of the boost converter in the CCM mode is con­
sidered. For the DCM mode, the reader can refer to (Kazimierczuk, 2016). In the 
ideal case, the peak-to-peak value of the ripple current at the inductor is com­
puted using 



λ

Cmin
=
 
.
 (4)

∆VoutRL
×
F

Vout
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inwhere RL
 =
 V

P


2


is the load resistance computed, and P
 is the input power of 
the converter. The capacitance is determined using 

( )
Example
3.1.
 Let us consider the case of designing a DC boost converter with 
the following parameters: Vout
 =
24V, Vin
 =
12V, F
 =
40kHz, ∆Vout
 <5%,

Vout


P
=
100
W. The converter should operate in the CCM mode. 
1
−
 12The duty cycle λ
=


24
 =
50%. The minimum value of the inductor is 
Lmin
 = 9µH. To operate in CCM mode, we increased the value of the inductor 

242by 25%, that is, L≈
586. The value of the load resistance RL
 =

100
 = 5.76Ω. 

The capacitance is Cmin
=
 0.5
 ≈
43.4µF. The output voltage and the 
5.76×0.05×103


inductor current are shown in Figure 9. The output voltage settles after 882 µ
sec 
and oscillates between 24.07V and 22.9V. Figure 9 shows the simulated boost 
converter. 

Figure
9.
 Output voltage of a simulated boost converter, where Vin
=
12V and Vout
=
24V. 

3.1.2.
 PWM
Buck
Converter


A pulse-width dc-dc buck (chopper) converter is a step-down converter which 
is composed of switches, an inductor, a capacitor and a load. A typical Buck 
converter circuit topology is schematically shown in Figure 10. 

The converter can operate in continuous or discontinuous conduction mode. 
The value of the current stored in the inductors distinguishes the boundary be­
tween the CCM and DCM modes. The inductor current does not reach zero in 
the CCM mode. In DCM, the inductor current reaches zero and remains there for 
a period of time before increasing. The crucial mode (CRM) is a state that exists 
between the CCM and DCM mode. 

Assuming the ideal diode and transistor, in the CCM mode, the ripple current 
of the inductor, the output voltages, and the minimum capacitance value are given 



Vout(1
−
λ)
∆IL
=
 ,
 (5)

FL


where L
is the inductor, λ
is the duty cycle, and F
 is the frequency of the PWM. 
The minimum value of the inductor, Lmin
 is computed using (6) 

Vout
=
λVin.
 (6) 

1
−
λ

Cmin
=
 ( )
.
 (7)

∆Vout8LF
2

Vout


The minimum value of the inductance, Lmin
 is determined using (8). 

1
−
λ

Lmin
=
RL
 (8)

2F
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Figure
10.
 DC-DC Buck converter. 

by (5) and (6), respectively.
 

Example
3.2.
 Let us consider the case of designing a DC buck converter with 
the following parameters: Vout
 =
12V. Vin
 =
48V, RL
 =
50Ω, F
 =
40kHz, 
∆Vout
 <5%. The converter should operate in CCM mode. 
Vout


12The duty cycle λ
 =

48
 =
 25%. The minimum value of the inductor is 

Lmin
 =
 50
 0.75
 =
 468.75uH. To operate in CCM mode, we increased 
80×103


the value of the inductor by 25%, that is, L≈
 586. The capacitance value is 
Cmin
 =
 0.75
 ≈
2
uF. The output voltage and inductor current 

8×586−60.05(40×103)2


are shown in Figure 11. The output voltage settles after 510 µ
sec and oscillates 
between 12.24V and 11.65V. 



15 Architectures
and
Technologies
for
DC
Microgrid


Figure
11.
 Simulation results of the buck converter, where Vin
=
48V and Vout
=
12V. 

3.2.
 Battery
storage
system


The intermittent nature of solar energy can be solved using Energy Storage Sys­
tems (ESSs). The various technologies used to store energy are presented in 
Table 5 (Kim and Chou, 2015; Zhang et al., 2021). Batteries are among the 
most widely used energy storage technologies in the DC microgrid. Two types 
of competing battery technologies are available on the market: Lithium-ion and 
lead acid batteries. The features of each type of battery are reported in Table 6. 

3.3.
 Electric
equivalent
circuit
models
of
batteries


Numerous techniques have been devised to estimate the SOC of batteries. The 
most popular are the look-up table (LUT)(Einhorn et al., 2013), open circuit volt­
age (OCV) (Weng et al., 2014), Kalman filter (Hu et al., 2012; Li and Choe, 
2013), and ECM (equivalent Circuit Model). The comparison between those 
techniques is summarized in Table 7. 

A hybrid method that combines more than one technique has improved the 
accuracy of SoC estimation with reduced complexity. The authors in (Misyris 
et al., 2019) reduced the SOC errors under the Dynamic Stress Test (DST) by 
using a hybrid coulomb counting and adaptive filtering technique based on the 
Extended Kalman Filter (EKP). 

The equivalent circuit model is used for the estimation of SOC. The sim­
plest model for the battery is to approximate the battery by its equivalent 
Thevenin circuit considering only its internal resistance, which is inaccurate in 
estimating SoC. An improved version has been developed, which is depicted in 
Figure 12 (He et al., 2011). The circuit consists of the ohmic resistance of the 
battery (RO) in series with a parallel RC network(Rp, Ctr). Both the polariza­
tion resistance (Rp) and the transient capacitance ( Ctr) is determined using the 
characteristics of the battery. The output voltage given the load current IL
 is 
computed using (9). 

VL
=
VOC
−
(VTH
+
ROIL),
 (9) 
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Table
5.
 Energy storage system. 

Name type characteristics 

Flywheel energy storage mechanical has a low maintenance cost and high power density 

Compressed air energy storage mechanical stores energy for a long time and has an efficiency close to 80% 

Hydrogen storage Chemical has a high-density power, clean, but it has issues with safety and efficiency 

Battery Electrochemical provides consistent voltage output and has a low self-discharging rate, but it takes a long time to charge 

Supercapacitor Electrochemical has a high cycle-life, and fast charge time, but suffers from low energy density 
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E
nabled-D

C

M

icrogrids




17 Architectures
and
Technologies
for
DC
Microgrid


Table
6.
 Comparison between lead acid and Lithium-Ion batteries. 

Parameter Lithium-Ion Lead acid 
Capacity, Q
 100–200 Wh/kg 30–50 Wh/Kg 

Internal resistance, Rin
 low high 
Operating temperature range, T from –20 to 60 °C from –10 to 50 °C 

Cycle life 1000-5000 cycles 300–500 cycles 
Safety High Low 

Estimated cost (USD/ KWh) 209 186 
Self-discharge rate per month 2–3% 5–10% 

Figure
12.
 Thevenin ECM for battery. 

where VOC
 is the open circuit voltage of the battery, VL
 is the load voltage and 
Vth
 is voltage across the capacitance Ctr. The open circuit voltage is dynamic 
and accounts for the temperature, SOC and SOH of the battery. 

A dual polarization model with a better dynamic performance compared to 
the Thevenin model is shown in Figure 13. The output voltage given the current 
load (IL) is calculated using (10) 

VL
=
VOC
−
(ILRO
+
VPA
+
VPC
),
 (10) 

where VPA
 and VPC
 are, respectively, the voltage across the capacitance CtrA


and Ctrc. 

Figure
13.
 ECM model based on dual polarisation. 
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Table
7.
 Comparison of battery modelling methodologies. 

Method Pros Cons 

Look-up table Simple and straightforward Sensitive to changes in operational conditions, such as age 

Coulomb counting Simple to implement Sensitive to changes in operational conditions, such as age 

Open circuit voltage Very accurate The battery needs to rest for an extended period of time 

Kalman filter Resilient to noise and modelling errors 
Reliable and suitable for online SOC estimation 

Computationally appealing 

Artificial Intelligence Able to learn the complex relationship between battery perimeters Prone to underfit and overfit 

Equivalent circuit model Simple calculation 
Has a clear physical meaning 

Parameters need to be dynamic 
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4.
 Control
and
communication
for
the
DC
microgrid


The control of DC microgrids is a challenging task due to the uneven distribution 
of energy resources and the dynamic changes in energy demand. One of the 
main challenges in the operation of DC microgrids is distributing the power load 
evenly among distributed energy resources (DERs) and energy storage systems 
(ESSs). Additionally, the clustering of DC microrgirds contributed to increasing 
the complexity of the control techniques. 

To address control challenges, hierarchical control of DC microgrids has been 
proposed in many published reports (Dragiˇ c et al., 2018; Gao et al., 2018; cevi´
Guerrero et al., 2009; O ́Keeffe et al., 2017). Control of DC microgrids consists of 
three layers: primary control, secondary control, and tertiary control. The sum­
maries of the primary objective of each control level are depicted in Figure 14. 

Figure
14.
 Hierarchical control of DC microgrids. 

Voltage droop control has been devised as an effective communicationless 
and decentralized technique for sharing load power. It regulates the output of 
DC converters. 

4.1.
 Droop
control


Droop control is a technique used in DC-DC converters to regulate voltage out­
put when multiple converter modules are connected in parallel. Its purpose is to 
ensure an even distribution of the load among these parallel-connected modules, 
which collectively power a common load. 

In the droop control method, a small portion of the output voltage generated 
by each converter module is routed back to a shared line, forming a control sig­
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nal. Subsequently, this signal is utilized to manage the output voltage of each 
module. The goal is to ensure that each module responds uniformly to variations 
in load current and voltage. 

As the load current increases, the output voltage of each module decreases 
proportionally according to the droop resistance. This enables each module to 
contribute its fair share of the increasing current while maintaining a balanced 
output voltage alongside the other modules connected in parallel. In the sequel, 
we will initially delve into the fundamentals of droop controllers and then ex­
plore suggested approaches for enhancing the stability of DC microgrids through 
the use of droop control. 

Figure
15.
 Circuit model of a DC microgrid with one DC-DC converter. 

Given the equivalent Thevenin circuit of a DC-DC converter, as shown in 
Figure 15, the voltage output of the converter is determined using (11). 

VDC
 =
VO
−
RDIDC
,
 (11) 

where VDC
 is the voltage output of the converter, V0
 is the Thevenin output 
voltage, RD
 is the droop gain (virtual resistance), and IDC
 is the converter output 
current. 

The power load sharing among N parallel converters is achieved by using 
virtual resistance. Figure 16 illustrates the characteristics of droop of V-I. 

Let V
DCN
 be the nominal voltage of the DC bus, Imax
 be the maximum 
output current, and ∆V
 the maximum voltage deviation allowed. The upper limit 
for the droop gain (RD) is determined using (12) and the output voltage of the 
converter is computed using (13) (Guerrero et al., 2009). 

∆V

RD
 =
 .
 (12)

2Imax
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Figure
16.
 Droop curves for N parallel converters. 

∆V

V0
=
V
DCN
 −
 .
 (13)

2


The control of the converters is done by regulating the duty cycle of the pulse-
width modulator (PWM). Figure 17 shows the droop control scheme which is 
made up of a compensator, voltage and current sensors and a PWM generator. 
This scheme was devised by (Lu et al., 2014). 

Figure
17.
 Primary control using V-I droop controller. 

4.2.
 Secondary
control


The secondary control of the DC microgrid attempts to maintain the voltage 
and current levels at their designated/nominal values. However, droop control 
is not successful in evenly distributing power among multiple converters due to 
discrepancies in voltage and inaccuracies in current and voltage measurements. 



∫
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For the voltage droop control, the secondary control measures the voltage 
level at regular intervals at the DC bus and compares it with the nominal value 
using a voltage comparator. Let Kp
 and Kint
 be the parameters of the secondary 
control compensator; the droop shift value is calculated using (14). 

δvo
=
Kp
×
(VO
−
VDC
) +
Kint
 (VO
−
VDC
)dt,
 (14) 

where VDC
 is the average measured voltage at the DC bus. 
The voltage correction term, δvo, is then communicated through the droop 

controller at the primary control level. As pointed out by (Gao et al., 2018), the 
secondary controller can be realized using the centralized (supervisory), decen­
tralized, or distributed method. 

In the centralized approach, a centralized proportional integral, PI, controller 
collects through a low-data rate communication protocol sensed parameters and 
sends the droop shifting value (δvo) to the primary controllers. The method is 
vulnerable to the single point of failure (SOPF). 

A distributed architecture has been designed to address the issues related to 
the supervisory control approach, which involves the installation of a secondary 
controller in each converter. This architecture requires multiple communication 
links between adjacent converters, as illustrated in Figure 18. 

Figure
18.
 Distributed secondary level control for DC microgrid. 
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The distributed secondary control approach induces a very complicated com­
munication network. Given n, the number of converters, the complexity of 
the communication link is complex O(n2). To overcome this limitation, three 
classes of decentralized control have been devised: the first uses power line com­
munication (Pinomaa et al., 2011), the second is based on DC bus signalling 
(Zhang et al., 2011), and the third uses adaptive droop calculation method (Au­
gustine et al., 2015). 

4.3.
 Tertiary
control


The tertiary control of a DC microgrid is the highest level of control tech­
niques, with the primary objective of optimizing the operation of the micro-
grid and reducing operational costs through the implementation of advanced 
power and energy management algorithms such as genetic algorithms, particle 
swarm optimization, consensus, and machine learning algorithms. As reported 
by (Abhishek et al., 2020; Bidram and Davoudi, 2012; Guerrero et al., 2009), 
the services provided by tertiary control include, but are not limited to, the cost-
effective operation of the microgrid, the management of the power flow between 
microgrid clusters and the utility grid, and the sharing of power between multiple 
DC microgrids. This type of control is implemented in two ways: centralized and 
distributed. It serves as a bridge between the business and the secondary control 
layer (Wu et al., 2022). 

The centralized tertiary controller monitors the current in the microgrid by us­
ing a static bypass switch and compares it to a desired current value. If the desired 
current is negative, the controller will inject power from the main grid (Guerrero 
et al., 2009). The multilevel energy management system (EMS) (Xiao et al., 
2016) has a tertiary controller that performs economic dispatch by comparing 
the marginal costs of the system units. This is done to reduce the cost of system 
operation. The power references of the system units are determined centrally, 
with the unit having the lowest marginal cost being given a higher priority for 
utilization, and the opposite for the one with the higher marginal cost. EMS uses 
a Supervisory Control and Data Acquisition (SCADA) system for centralized co­
ordination. This SCADA system has been designed with a programmable logic 
controller (PLC) as the central controller, and the communication link is based 
on the standard Modbus TCP/IP protocol. In the system designed by (Shaban 
et al., 2021), the tertiary control receives information on power consumption in 
real time via the Lora communication protocol. If demand exceeds the energy 
produced by renewable sources, the consumer with the highest demand is recon­
nected to the primary grid. 

The centralized tertiary controller has a single point of failure and is not ef­
fective in regulating power flow when the voltage deviation is significant. To ad­
dress these problems, a distributed architecture has been proposed in (Moayedi 
and Davoudi, 2016) for DC microgrid clusters. The cooperative controller, based 
on a multi-agent system, adjusts the voltage set points for each microgrid using 
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a distributed ternary controller. A novel distributed architecture in (Mudaliyar 
et al., 2020) has been proposed in (Mudaliyar et al., 2020) to manage the power 
flow in DC microgrid clusters (DCMGCs). This approach combines the cost of 
operation of distributed generators with the voltage regulation of DCMGCs. 

4.4.
 Discussion


Communication technologies play a pivotal role in shaping the secondary and 
tertiary control aspects of the DC microgrid. Within the existing literature, vari­
ous communication protocols stand out for designing DC microgrid controllers, 
including fiber-optic, power-line communication (PLC), controller area network 
(CAN), Ethernet (such as IEC 61850), wireless technology, and cellular technol­
ogy (spanning 2G, 3G, 4G, and 5G). 

IoT has emergeed as a viable solution for smart-grid due to its at­
tributes of scalability, efficiency, reliability, and cost-effectiveness (Ghasempour, 
2019) (Dhaou et al., 2022). It has ushered in the transition from a conven­
tional microgrid to an intelligent, smart microgrid, seamlessly integrating ad­
vanced technologies like smart sensors, edge/fog computing, and cloud servers. 
The incorporation of these cutting-edge communication and sensing technolo­
gies has facilitated the implementation of robust control and monitoring algo­
rithms, leveraging machine learning algorithms, Distributed Ledger Technology, 
and blockchain technology. 

In particular, IoT-based control schemes address the limitations associated 
with centralized control, offering decentralized control mechanisms that enhance 
the autonomy of agents operating within the microgrid. Moreover, IoT networks 
contribute to precise power generation and demand forecasting, thereby signifi­
cantly improving the overall performance and reliability of the microgrid. This 
transformative integration of IoT technologies represents a paradigm shift in the 
efficiency and capabilities of DC microgrid systems (Ansari et al., 2021). 

5.
 Summary


In the past decade, there has been a great deal of advancement in photovoltaic 
system technology, such as crystalline silicon, thin-film, perovskite solar cells, 
and organic photovoltaics. Furthermore, energy storage technologies, semicon­
ductor power electronics, advanced control systems, architecture, and reliable 
communication protocols have also seen a rapid development. These and other 
elements have made DC microgrids more popular in both academic and corpo­
rate settings. DC microgrids have garnered increased interest due to their notable 
attributes of cost-effectiveness, dependability, and efficiency when juxtaposed 
with traditional AC microgrids. In this chapter, a comprehensive exploration of 
DC microgrid architectures and technologies, with a specific focus on the topolo­
gies of DC microgrids, DC-DC converters, control mechanisms, and storage 
technologies has been reported. The selection between DC or AC-microgrids is 



Architectures and Technologies for DC Microgrid 25   

 

 

 
 

 

 

contingent upon the number of AC appliances and the specific type of distributed 
renewable energy resources. 

Careful planning and meticulous selection of technologies and architecture 
are paramount for successful DC microgrid implementation. This necessitates 
considerations for renewable energy resources, DC-DC converters, inverters, 
energy storage systems, as well as communication and control units. Among the 
various DC microgrid topologies, single bus, ring bus, multibus, and partially 
grid-connected configurations are identified as the four most common. 

In the storage domain, the lithium-ion battery emerges as the predominant 
technology for energy storage systems. The sizing of mangement of battery 
system is tied to energy demands and generation. This chapter delves into 
battery modeling, placing a particular emphasis on the electric circuit model. The 
combination of the dual-polarity model and Thevenin’s equivalent circuit model, 
is deemed as a means to accurately determine the battery’s state of charge. 

The management of a microgrid and microgrid cluster is achieved through 
a three-tier control system, which is explored in depth in this chapter. 
Communication assumes a critical role, particularly in secondary and tertiary 
control, with both communication technologies and security playing pivotal 
roles in ensuring grid stability. Subsequent chapters will delve deeper into 
communication and security issues, additionally exploring the utilization of 
machine learning and artificial intelligence in battery state estimation. 
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CHAPTER 2 

Internet-of-Things-Based
Communication


in
Microgrids


Aron Kondoro a,* andImed Ben Dhaou b,c,d


1.
 Introduction


1.1.
 Overview
of
microgrids


A microgrid is a small-scale version of the traditional electrical grid that can op­
erate independently or in conjunction with the larger grid (Anvari-Moghaddam 
et al., 2021; Rahmani-Andebili, 2021; Tavakoli et al., 2018). Unlike the tradi­
tional grid’s centralized power generation and distribution model, a microgrid is 
decentralized, making it more flexible and resilient. This makes microgrids par­
ticularly useful in providing power to remote or isolated areas or when the main 
grid is unavailable due to an outage or disaster (Mishra et al., 2020; Peterson 
et al., 2021). 

One of the key benefits o f m icrogrids i s t heir a bility t o p rovide a reliable 
power source to communities and businesses that may not be connected to the 
main grid. By generating their electricity locally, microgrids can ensure a steady 
power supply even in an outage on the main grid. This can be especially impor­
tant for essential services such as hospitals and emergency services, which need 
a reliable power source to continue operating. 
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Another advantage of microgrids is their potential to support the integration 
of renewable energy sources (Akinyele et al., 2018). Because they are decentral­
ized, microgrids can easily incorporate renewable energy technologies such as 
solar or wind power. This can help to reduce reliance on fossil fuels and improve 
the sustainability of the power system (Lee et al., 2021). 

Additionally, microgrids can provide economic benefits to the communities 
and businesses they serve. By generating their power locally, microgrids can re­
duce the need for long-distance transmission of electricity, which can be expen­
sive and inefficient. This can lower consumer electricity costs and provide new 
economic opportunities for local power generation. 

Microgrids are an essential part of the future of the power system. By pro­
viding a flexible and resilient power source, microgrids can help ensure a reli­
able electricity supply to communities and businesses, support the integration of 
renewable energy, and provide economic benefits. As the demand for clean, re­
liable, and affordable power grows, microgrids will likely play an increasingly 
important role in meeting that demand. 

1.2.
 The
role
of
IoT
in
microgrid
communication


The modernization of the utility grid towards grid 4.0, commonly known as 
the smart grid, mandates the use of information and communication technol­
ogy (ICT) in the operation, control, and management of the grid. In a conven­
tional grid system, the power is generated in one location, transmitted over a 
long distance and distributed to customers. This architecture is centralized and 
uses one-way communication, which endued from blackouts, unreliability, and 
inefficiency. The pressing need to address climate change has motivated the inter­
national communities to substitute fossil oil with renewable energies. The smart 
grid has been conceived to integrate renewable energies along its distribution 
line. 

Advances in semiconductors, sensors, and wireless communication technolo­
gies have enabled the development of a new connectivity system commonly 
known as the Internet of Things (IoT). In the legacy system, the data is col­
lected by a sensor and treated by a local system. This system has been replaced 
with a wireless sensor network (WSNs) in which each sensor node is equipped 
with a sensing unit, a tiny processor for pre-processing, a power unit, and a com­
munication block (Akyildiz et al., 2002). Energy-harvesting techniques can be 
used to further extend the operation mode of the sensor node. 

The block diagram of a wireless sensor node is illustrated in Figure 1, detail­
ing its components and functionalities. Table 1 provides a comprehensive list of 
the common sensor nodes employed in DC microgrids, offering insights into the 
diverse range of sensors utilized within this context. 

Wireless sensor networks have been used in the utility grid as a low-cost so­
lution for monitoring and diagnostics operations Gungor et al. (2010). The ap­
plication of the WSNs includes but is not limited to automatic metering reading, 
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Table
1.
 Commonly used sensor node in the DC microgrid. 

Sensor Node Type Features References 

Solar Radiation Sensors Measure sunlight intensity. (López-Lapeña and Pallas-Areny, 2018) 

Voltage and Current Sensors Monitor voltage and current levels. (Schlüter et al., 2021) 

Temperature Sensors Track temperature of equipment or building. (Felipe et al., 2021) 

Air Quality Sensors Measure environmental conditions for optimized energy management. (Kuncoro et al., 2022) 
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Figure
1.
 Block diagram of a wireless sensor node. 

Table
2.
 IoT layered architecture. 

Layers Publication 
Three layers 

Perception, network, and application 
(Mahmoud et al., 2015) 

Four layers, International Telecommunication Union, ITU, 
reference model Perception, transport, processing, and application 

(Kafle et al., 2016) 

Five layers 
Perception, transport, processing, application, and business 

(Khan et al., 2012) 

remote monitoring, optimization, and equipment fault diagnostics in the trans­
mission and distribution system (Devidas and Ramesh, 2010), power quality 
monitoring, wide-area situation awareness, and distribution automation (Ogbodo 
et al., 2017). 

The surge of the Internet of Things (IoT) has paved the way for more oppor­
tunities to improve the electrical grid. IoT is widely described as a network of 
physical objects that are embedded with sensors, software, and other technolo­
gies for the purpose of connecting and exchanging data with other devices and 
systems over the internet. Numerous layered architectures for the IoT have been 
elaborated, which are summarized in Table 2. 

The ITU model reference described in ITU-T Y.2060 is pictorially shown in 
Figure 2, which is composed of four layers: Device or perception layer, network 
layer, service and application support layer, and application layer. Additionally, 
the reference model has common management and security capabilities. 

By connecting devices such as sensors and smart meters to the internet, the 
smart grid can better monitor and control the flow of electricity. This can reduce 
outages, improve energy management, and integrate renewable energy sources. 
It has also made cloud computing services available for managing smart me­
tre data (Lohrmann and Kao, 2011), grid monitoring and control, and demand-
response programs Markovic et al. (2013). 

One of the key benefits of the IoT in the smart grid is its ability to provide 
real-time data on the state of the power system (Dhaou, 2023). This can be used 
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Figure
2.
 Reference model for the Internet of Things (IoT) eleborated by ITU. 

to detect and prevent problems before they occur, such as identifying poten­
tial equipment problems or detecting unusual patterns in electricity consump­
tion (Zidi et al., 2023). By proactively addressing potential problems, the smart 
grid can reduce the likelihood of outages and improve the reliability of the power 
system. 

Another benefit of the IoT in the smart grid is its ability to enable the integra­
tion of renewable energy sources. With sensors and other connected devices, the 
smart grid can more effectively manage the variable output of renewable energy 
sources such as wind and solar power. This can help to reduce the need for tra­
ditional fossil fuel-based power generation, improving the sustainability of the 
power system. 

IoT in the smart grid can also improve customer service and reduce costs 
for utilities and consumers. Smart grid technologies can help consumers make 
more informed decisions about their energy consumption by providing real-time 
electricity usage and pricing information. This can help reduce energy waste and 
lower electricity bills for consumers while enabling utilities to manage demand 
more effectively and reduce the need for expensive peak power generation. 

IoT in the smart grid can significantly improve the power system’s efficiency, 
reliability, and sustainability. By enabling real-time monitoring and control of the 
flow of electricity, the smart grid can reduce outages, improve energy manage­
ment, and enable the integration of renewable energy sources. This can benefit 
utilities and consumers, making the power system more effective and affordable. 

2.
 IoT
communication
in
microgrids


2.1.
 Types
of
IoT
communication
in
microgrids


In microgrids, communication is crucial in enabling efficient and reliable oper­
ation. With the advent of the Internet of Things (IoT), various communication 
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technologies have emerged to facilitate data exchange between devices and sys­
tems within microgrids (Marzal et al., 2018). 

One type of IoT communication commonly used in microgrids is wireless 
communication. Wireless technologies like Wi-Fi, Bluetooth, and Zigbee pro­
vide flexible and convenient device connectivity. These technologies allow de­
vices within the microgrid to communicate wirelessly, enabling real-time data 
exchange and control. Wireless communication is beneficial when wired con­
nections are impractical or costly. 

Another type of IoT communication in microgrids is powerline communica­
tion (PLC). PLC utilizes the existing power distribution infrastructure to transmit 
data signals. By modulating data onto the power lines, devices within the micro-
grid can communicate. PLC offers the advantage of utilizing the existing power 
infrastructure, eliminating the need for additional communication cables. 

Furthermore, cellular communication is also employed in microgrids. Cellu­
lar networks provide wide-area coverage and reliable connectivity, making them 
suitable for remote monitoring and control of microgrid devices. Cellular com­
munication allows devices within the microgrid to connect to the internet and 
exchange data with central control systems or cloud platforms. 

In addition to these types of IoT communication, microgrids may utilize com­
munication protocols specifically designed for IoT applications. For example, 
CoAP (Constrained Application Protocol), MQTT (Message Queue Telemetry 
Transport), and XMPP (Extensible Messaging and Presence Protocol) are com­
monly used protocols in microgrids. These protocols enable efficient and secure 
communication between devices and systems, supporting various IoT applica­
tions within the microgrid. 

CoAP (Constrained Application Protocol) is a lightweight communication 
protocol for resource-constrained devices and networks. It is commonly used 
in IoT applications and microgrids for communication between devices, such 
as sensors and actuators. CoAP uses a simple request-response communication 
model, which can be used over UDP and TCP. 

MQTT (Message Queue Telemetry Transport) is a publish-subscribe com­
munication protocol for low-bandwidth, high-latency networks. It is commonly 
used in IoT applications and microgrids for communication between devices and 
systems. MQTT uses a broker-client architecture to manage client communica­
tion and ensure that messages are delivered to the correct clients (Arbab-Zavar 
et al., 2021). 

XMPP (Extensible Messaging and Presence Protocol) is a communication 
protocol for instant messaging and presence information. It is based on XML 
and is designed to be extensible and flexible. XMPP can be used in microgrids 
for communication between devices and systems, such as sending commands 
and receiving status updates. 

All of these protocols can be used in microgrids to enable communication be­
tween devices and systems, and the choice of which protocol to use will depend 
on the specific requirements and constraints of the microgrid, such as the data 
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transfer rate, the power requirements of the devices, and the type of communica­
tion required. 

2.2.
 IoT
platforms,
standards,
software,
and
hardware
in
microgrids


Microgrid communication relies on IoT platforms, standards, software, and hard­
ware to ensure efficient and reliable operation. These technologies enable com­
munication, control, and monitoring within microgrids, contributing to their 
overall performance and resilience. Several communication standards have been 
developed for microgrids to ensure compatibility and interoperability between 
different devices and systems. 

One of the key communication standards used in smart grids is the IEEE 
802.15.4 standard. This standard defines the communication protocol’s physi­
cal and media access control (MAC) layer, providing a low-power, low-data-rate 
wireless communication system. This standard is widely used in smart grids, par­
ticularly for applications such as building automation and home area networks. 

Another important communication standard used in smart grids is the IEC 
61850 standard. This standard defines a common communication protocol for 
exchanging data between devices and systems in the electrical grid (Albarakati 
et al., 2022). This allows different smart grid components, such as sensors, me­
ters, and control systems, to communicate with each other and share information. 

The Zigbee Alliance has also developed communication standards for smart 
grids and IoT applications. The Zigbee standards define a low-power, low-cost 
wireless communication system that is well-suited to the requirements of smart 
grids. The Zigbee standards are widely used in smart grid applications such as 
home area networks and building automation. 

IoT platforms provide a framework for connecting and managing devices 
within the microgrid. One commonly used platform is Thingspeak, which is 
often employed for simulation purposes in power system analysis using Mat-
lab/Simulink (Albarakati et al., 2022). These platforms facilitate data collection, 
analysis, and control, enabling real-time monitoring and optimising the micro­
grid’s performance. 

Software-defined networking (SDN) is another important technology used in 
microgrid communication. SDN allows for centralized control and management 
of the network, enabling dynamic and flexible communication within the mi­
crogrid (Danzi et al.). It provides the ability to allocate network resources based 
on real-time conditions and optimize communication performance. Additionally, 
SDN-based microgrid control architectures have been proposed to enhance re­
silience against denial-of-service attacks and enable agile reconfiguration of the 
communication system (Danzi et al.). 

Regarding hardware, various devices and components are utilized in micro-
grid communication. Communication gateways interface the microgrid and ex­
ternal networks, facilitating data exchange and control commands. Sensors and 
actuators provide real-time data on the microgrid’s performance and enable re­
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mote control and monitoring (Albarakati et al., 2022). Control systems, such as 
programmable logic controllers (PLCs), are responsible for managing and coor­
dinating the operation of the microgrid. 

The availability of secure, efficient, and reliable communication systems is 
crucial for microgrids’ successful deployment and operation (Kondoro et al., 
2021). Building a secure, efficient, reliable communication system remains a 
challenge. Still, advancements in communication architectures and technologies, 
such as quantum networks, are being explored to enhance the resilience of mi­
crogrids (Tang et al.). 

2.3.
 Implementation
of
IoT
protocols
and
standards


2.3.1. Steps involved in planning and implementing IoT communication in a 
microgrid 

The planning and implementation of IoT communication in a microgrid involve 
several steps. Firstly, a thorough assessment of the microgrid’s communication 
requirements and objectives is necessary. This includes identifying the specific 
data that must be collected and transmitted and the desired communication range, 
speed, and security (Mina-Casaran et al., 2021). 

Once the communication requirements are defined, the next step is to se­
lect the appropriate communication technology. This involves considering fac­
tors such as the range of communication needed, the speed of data transmission 
required, and the level of security needed to protect the microgrid’s operations 
(Mina-Casaran et al., 2021). The choice of communication technology will de­
pend on the specific needs and constraints of the microgrid. 

After selecting the communication technology, the next step is to design the 
communication infrastructure. This includes determining the placement and con­
figuration of communication devices within the microgrid, such as sensors, ac­
tuators, and gateways (Mina-Casaran et al., 2021). The communication infras­
tructure should be designed to ensure reliable and efficient data transmission 
throughout the microgrid. 

Once the communication infrastructure is designed, the next step is to de­
ploy and integrate the communication devices into the microgrid. This involves 
installing and configuring the communication devices and establishing network 
connections (Mina-Casaran et al., 2021). Ensuring the communication devices 
are properly integrated with the microgrid’s control and monitoring systems is 
important. 

Finally, ongoing monitoring and maintenance of the IoT communication sys­
tem is essential to ensure its continued performance and reliability. Regular mon­
itoring and troubleshooting can help identify and resolve any issues that may 
arise, such as communication disruptions or security vulnerabilities (Kondoro 
et al., 2021). 
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2.3.2. Considerations for choosing the right communication technology, 
including range, speed, and security 

Several considerations must be considered when choosing the right communi­
cation technology for a microgrid. One important consideration is the range of 
communication required. The communication technology should provide suffi­
cient coverage to reach all the devices and components within the microgrid, in­
cluding those located in remote or hard-to-reach areas (Ben Dhaou et al., 2017). 

Another consideration is the speed of data transmission. The communication 
technology should transmit data at a speed that meets the real-time requirements 
of the microgrid’s control and monitoring systems. This is particularly impor­
tant for applications that require fast response times, such as fault detection and 
isolation. 

Security is also a critical consideration when choosing a communication tech­
nology for a microgrid (Ben Dhaou et al., 2017). The communication technology 
should provide robust security measures to protect the microgrid’s operations 
from unauthorized access, data breaches, and cyber-attacks. This includes en­
cryption of data transmission, authentication of devices, and secure protocols for 
communication (Kondoro et al., 2021). 

Furthermore, the scalability and flexibility of the communication technology 
should be considered. The technology should accommodate the future growth 
and expansion of the microgrid, allowing for the addition of new devices and 
components without significant modifications to the communication infrastruc­
ture. 

Overall, the choice of communication technology for a microgrid should be 
based on a careful evaluation of the range, speed, security, scalability, and flex­
ibility requirements of the microgrid, ensuring that the selected technology can 
effectively meet the communication needs of the system (Mina-Casaran et al., 
2021). 

3.
 Challenges
and
limitations
of
IoT
communication
in
microgrids


3.1.
 Security
concerns


There are several security concerns to consider when using Internet of Things 
(IoT) devices in microgrids (Brinckman et al., 2019): 

•

Unsecured device access: Without proper security measures, unauthorized 
individuals may be able to access and control IoT devices within the mi­
crogrid, potentially leading to disruptions or damage. 

•

Data breaches: Sensitive data, such as power usage data or customer in­
formation, may be at risk of being accessed by unauthorized individuals if 
proper security measures are not in place to protect it. 

•

Physical security: Physical access to IoT devices within the microgrid 
could allow for tampering or damage. 
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•

Malware: IoT devices may be vulnerable to malware attacks, which could 
lead to disruptions or damage to the microgrid. 

•

Lack of standardization: The lack of standardization in the IoT industry 
can make it challenging to ensure that devices are secure and interoperable 
within a microgrid. 

To address these security concerns, it is essential to implement robust security 
measures, such as secure authentication protocols, encryption, and regular soft­
ware updates, and to carefully evaluate the security of any IoT devices before 
incorporating them into a microgrid (Kondoro et al., 2021). 

3.2.
 Interoperability
issues


Interoperability refers to the ability of different devices, systems, or applications 
to work together and communicate effectively. In the context of using Internet 
of Things (IoT) devices in microgrids, interoperability issues can arise when 
different devices cannot communicate or exchange data. This can lead to several 
problems, including 

•

Incompatibility: IoT devices may use different communication protocols 
or standards, making working together difficult. 

•

Limited functionality: If IoT devices cannot communicate with each other, 
their capabilities may be limited, leading to reduced efficiency and effec­
tiveness within the microgrid. 

•

Increased complexity: If different IoT devices cannot communicate with 
each other, it can be more difficult to manage and maintain the microgrid, 
as additional effort may be required to ensure that different systems are 
working together effectively. 

To address these interoperability issues, it is important to ensure that all IoT 
devices within a microgrid are compatible and able to communicate. This may 
involve using standard communication protocols or implementing gateways or 
other intermediary systems to facilitate device communication. 

3.3.
 Limited
range
and
coverage


In an Internet of Things (IoT) communication system for microgrids, limited 
range and coverage can be a problem because they can affect the reliability and 
effectiveness of the communication system. 

Microgrids are local energy systems designed to operate independently or in 
conjunction with the main power grid. They often consist of distributed energy 
resources such as solar panels, wind turbines, energy storage systems, smart me­
ters, and other IoT devices that monitor and control the microgrid. 

IoT communication connects these devices and enables real-time data ex­
change and control. However, the range and coverage of the communication sys­
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tem can be limited due to various factors, such as the physical distance between 
devices, the presence of obstacles, and the type of communication technology 
being used. 

Limited range and coverage can impact the microgrid’s performance by re­
ducing the amount of data transmitted and received, leading to delays or errors 
in the communication process. It can also make it more difficult to remotely 
monitor and control the microgrid, which can impact the overall efficiency and 
reliability of the system. 

To address these issues, microgrid designers can consider using communica­
tion technologies with a longer range or higher coverage or deploy additional 
communication devices to improve the system’s coverage. They may also need 
to consider the layout and placement of the devices to ensure that they are op­
timally positioned to maximize the range and coverage of the communication 
system. 

3.4.
 Limited
communication
bandwidth


In an Internet of Things (IoT) communication system for microgrids, limited 
communication bandwidth can be a problem because it can affect the reliability 
and effectiveness of the communication system. 

Microgrids are local energy systems designed to operate independently or in 
conjunction with the main power grid. They often consist of distributed energy 
resources such as solar panels, wind turbines, energy storage systems, smart me­
ters, and other IoT devices that monitor and control the microgrid. 

IoT communication connects these devices and enables real-time data ex­
change and control. However, the available bandwidth limits the data transmitted 
and received over the communication system. If the communication system can­
not handle the volume of transmitted data, it can result in delays or errors in the 
communication process. 

Limited communication bandwidth can impact the microgrid’s performance 
by reducing the amount of data transmitted and received, leading to delays or er­
rors in the communication process. It can also make it more difficult to remotely 
monitor and control the microgrid, which can impact the overall efficiency and 
reliability of the system. 

To address these issues, microgrid designers can consider using communica­
tion technologies with higher bandwidth or more efficiently using the available 
bandwidth. They may also need to optimize the data transmission and commu­
nication protocols to ensure the communication system is used effectively and 
efficiently. 
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4.
 Strategies
to
mitigate
IoT
communication
barriers
in
microgrids


4.1.
 Encryption
and
authentication
techniques


Encryption and authentication techniques are crucial in ensuring the security 
and integrity of IoT communication within microgrids. By implementing these 
techniques, the confidentiality, authenticity, and integrity of data transmitted be­
tween IoT devices and the microgrid’s communication infrastructure can be safe­
guarded (Ertürk et al., 2019). 

Encryption involves using cryptographic algorithms to convert data into an 
unreadable format, known as ciphertext, which can only be decrypted by autho­
rized recipients with the corresponding decryption key. This ensures that even 
if unauthorized individuals access the transmitted data, they cannot decipher its 
contents. Advanced encryption algorithms, such as Advanced Encryption Stan­
dard (AES) or Elliptic Curve Cryptography (ECC), are commonly used to secure 
IoT communication. 

Authentication techniques are employed to verify the identity of IoT devices 
and ensure that only authorized devices can access the microgrid’s communica­
tion infrastructure. This helps prevent unauthorized devices from infiltrating the 
network and compromising its security. Various authentication methods can be 
used, including digital certificates, public-key infrastructure (PKI), and biometric 
authentication. These techniques establish trust between devices and the micro-
grid, ensuring that only legitimate devices can participate in the communication 
network. 

A combination of encryption and authentication techniques can be employed 
to enhance the security of IoT communication. For example, data can be en­
crypted using a symmetric encryption algorithm, and the encryption key can be 
securely exchanged using an asymmetric encryption algorithm during the au­
thentication process. This ensures that data remains confidential and that only 
authorized devices can access and decrypt the data. 

It is important to note that encryption and authentication techniques should 
be implemented at multiple levels within the microgrid’s communication in­
frastructure. This includes securing communication channels, data storage and 
transmission, and the interfaces between IoT devices and the microgrid’s control 
and monitoring systems. Regular updates and patches to address vulnerabilities 
in encryption and authentication protocols should also be applied to ensure the 
ongoing security of the IoT communication system. 

4.2.
 Standardisation
and
regulation


The lack of standardization in the IoT industry poses challenges for ensuring 
the security and interoperability of devices within microgrids. To overcome this 
challenge, efforts should be made to establish industry-wide standards and regu­
lations for IoT devices. Standardization can ensure that devices meet minimum 
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security requirements and can seamlessly integrate into microgrid communica­
tion systems. Regulatory frameworks can also enforce compliance with secu­
rity standards and provide guidelines for secure IoT deployment (Behjati et al., 
2021). 

Standardization efforts aim to establish common protocols, interfaces, and 
frameworks that enable seamless integration and interoperability among IoT de­
vices and systems. These standards ensure that devices from different manufac­
turers can communicate effectively and securely within the microgrid environ­
ment. Standardization also facilitates the development of secure communication 
protocols, encryption algorithms, and authentication mechanisms that can be uni­
versally implemented across IoT devices in microgrids (Al-Fuqaha et al., 2015). 

Regulatory frameworks are essential for ensuring the security and privacy of 
IoT communication within microgrids. Regulations can establish guidelines and 
requirements for designing, deploying, and operating IoT devices, ensuring they 
adhere to specific security standards and best practices. Regulatory bodies can 
also enforce compliance with these standards, conduct audits, and impose penal­
ties for non-compliance, thereby incentivizing the adoption of secure IoT com­
munication practices (Abomhara and Koien, 2014). 

Establishing industry-wide standards and regulations promotes trust and con­
fidence in IoT communication within microgrids. It provides a framework for 
manufacturers, developers, and operators to follow, ensuring that security mea­
sures are implemented consistently and effectively. Standardization and regula­
tion also foster innovation by creating a level playing field and enabling interop­
erability among IoT devices and systems (Centenaro et al., 2021). 

Collaboration among industry stakeholders, standardization organizations, 
and regulatory bodies is crucial for developing and implementing effective stan­
dards and regulations. This collaboration ensures that the standards and regula­
tions address IoT communication’s needs and challenges in microgrids, consid­
ering security, privacy, scalability, and compatibility with existing infrastructure 
(Silva et al., 2019). 

4.3.
 Increased
range
and
coverage


Several solutions and technologies can address the challenges of range and cov­
erage in IoT communication within microgrids. One effective approach is using 
repeaters or signal amplifiers, which extend the communication range and im­
prove coverage within the microgrid. These devices receive and amplify signals, 
enabling IoT devices in remote or hard-to-reach areas to connect to the micro­
grid’s communication infrastructure (Marzal et al., 2018). 

In addition to repeaters, other technologies can also be employed to enhance 
range and coverage. Wired technologies like Ethernet (IEEE 802.3) or bus-based 
technologies like ModBus and ProfiBus can provide reliable and high-speed 
communication within the microgrid (Marzal et al., 2018). Power-line com­
munication (PLC) is another technology that utilizes existing power lines for 
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data transmission, enabling communication over a wide area without additional 
wiring (Marzal et al., 2018). 

Furthermore, advancements in wireless communication technologies can con­
tribute to extending the range and coverage of IoT communication in microgrids. 
The deployment of Low-Power Wide-Area Network (LPWAN) technologies, 
such as LoRaWAN or NB-IoT, can provide long-range and low-power commu­
nication capabilities suitable for microgrid applications (Mishra et al., 2020). 
These technologies enable IoT devices to communicate over large distances 
while consuming minimal power, making them ideal for remote or distributed 
microgrid deployments. 

Moreover, developing mesh networking protocols can enhance the coverage 
and reliability of IoT communication within microgrids. Mesh networks consist 
of interconnected devices that can relay data to extend the range of communica­
tion. This self-healing network architecture ensures that even if one device fails 
or is out of range, data can still be transmitted through alternative paths, improv­
ing the overall robustness and coverage of the communication network (Starke 
et al., 2019). 

To optimize range and coverage, it is essential to consider the specific require­
ments and constraints of the microgrid. Factors such as the size of the microgrid, 
the geographical layout, and the presence of obstacles or interference sources 
should be considered when selecting and deploying range-extending technolo­
gies. Additionally, proper network planning and optimization techniques can be 
employed to ensure efficient and reliable communication coverage throughout 
the microgrid (LeMaster and Hirakawa, 2014). 

4.4.
 Development
of
new
communication
technologies


The development of new communication technologies is instrumental in address­
ing the challenges of IoT communication within microgrids. These advance­
ments aim to improve communication systems’ efficiency, reliability, and scala­
bility in microgrid environments. 

One development area is using 5G technology for IoT communication in mi­
crogrids. 5G networks offer higher data transfer rates, lower latency, and in­
creased capacity compared to previous generations of cellular networks. This 
enables faster and more reliable communication between IoT devices within the 
microgrid, supporting real-time monitoring, control, and optimization of energy 
resources. 

Another emerging technology is edge computing, which brings computational 
capabilities closer to IoT devices and data sources. By processing and analyzing 
data at the network’s edge, edge computing reduces latency and bandwidth re­
quirements, enabling faster response times and more efficient utilization of net­
work resources. This is particularly beneficial for time-sensitive applications in 
microgrids, such as demand response and grid stability control. 
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As these new communication technologies continue to evolve, it is crucial 
to consider their compatibility, interoperability, and scalability within microgrid 
environments. Standardization efforts and regulatory frameworks are vital in en­
suring these technologies’ seamless integration and secure deployment in micro-
grids. 

5.
 Advanced
technological
integration
in
microgrid
IoT
communication


5.1.
 Blockchain
technologies
in
smart
microgrids


Blockchain technologies have recently gained significant attention for their po­
tential applications in various industries, including the energy sector. In the con­
text of smart microgrids, blockchain technology offers several benefits, such as 
enhanced security, transparency, and efficiency. This technology can revolution­
ize the way energy transactions and data management are conducted in smart 
microgrids. 

One of the key advantages of blockchain technology in smart microgrids is 
its ability to provide secure and tamper-proof transactions. Alladi et al. discuss 
using blockchain for secure energy trading in smart grids (Alladi et al., 2019). 
By utilizing cryptographic algorithms and distributed consensus mechanisms, 
blockchain ensures that energy transactions are transparent, verifiable, and re­
sistant to tampering. This enhances the security and trustworthiness of energy 
transactions in smart microgrids, enabling peer-to-peer energy trading without 
intermediaries. 

Blockchain technology also enables improved transparency and traceability 
of energy transactions in smart microgrids (Dinesha and Patil, 2023). By record­
ing all transactions in a decentralized and immutable ledger, blockchain gives 
participants a transparent view of energy generation, consumption, and trading 
activities. This transparency can help promote accountability and trust among 
participants, facilitating the integration of renewable energy sources and incen­
tivizing energy conservation. 

Furthermore, blockchain technology can enhance the efficiency and reliabil­
ity of energy management in smart microgrids. Energy transactions can be au­
tomated and streamlined using smart contracts and self-executing agreements 
stored on the blockchain. Smart contracts can enable real-time settlement of en­
ergy transactions, eliminate the need for manual reconciliation, and reduce ad­
ministrative costs. This automation and efficiency can contribute to optimising 
energy distribution and utilization in smart microgrids. 

In addition to energy transactions, blockchain technology can facilitate se­
cure and decentralized data management in smart microgrids. Using blockchain­
based data management systems, sensitive energy data, such as consumption pat­
terns, grid conditions, and renewable energy generation, can be securely stored, 
shared, and analyzed (Vaghasana et al., 2023). This can enable data-driven 



44 IoT Enabled-DC Microgrids 

decision-making, grid optimization, and the development of innovative energy 
services and applications. 

Blockchain technology holds great promise for the advancement of smart mi­
crogrids. Its ability to provide secure transactions, transparency, and efficiency 
can revolutionize the energy sector by enabling peer-to-peer energy trading, pro­
moting renewable energy integration, and enhancing data management. How­
ever, further research and development are needed to address scalability, inter­
operability, and regulatory challenges to realise blockchain’s potential in smart 
microgrids fully. 

5.2.
 Machine
learning
applications


Machine learning has emerged as a valuable tool in various applications, in­
cluding microgrids. It offers the potential to optimize and enhance the opera­
tion of microgrids by leveraging data-driven approaches and intelligent decision-
making algorithms. 

One application of machine learning in microgrids is intelligent energy man­
agement. Chaouachi et al. propose a multiobjective intelligent energy manage­
ment system for a microgrid (Chaouachi et al., 2013). The study utilizes a fuzzy 
logic expert system for battery scheduling, a critical aspect of microgrid opera­
tion. 

Machine learning is used for stability prediction in microgrids. Alazab et al. 
developed a multidirectional LSTM model for predicting a smart grid’s stability, 
including microgrids (Alazab et al., 2020). The model utilizes long short-term 
memory (LSTM) networks, a type of recurrent neural network, to capture tem­
poral dependencies and patterns in the data. Training the model on historical 
data can predict the microgrid’s stability and identify potential issues or anoma­
lies that may arise. This enables proactive measures to be taken to maintain the 
stability and reliability of the microgrid. 

Another application of machine learning in microgrids is the detection of bad 
data. (Huang et al., 2022) present a data-driven approach that combines online 
machine learning with statistical analysis for sequential detection of microgrid 
bad data (Huang et al., 2022). The study utilizes supervised online sequential 
machine learning to approximate the analytical model of the microgrid. This 
approach enables the detection of anomalies or erroneous data in real-time, al­
lowing for timely corrective actions (Huang et al., 2022). 

Machine learning techniques can also be applied to optimize the control and 
coordination of distributed energy resources (DERs) in microgrids. By analyzing 
historical data and real-time information, machine learning algorithms can learn 
patterns and make predictions to optimize the scheduling and dispatch of DERs. 
This can lead to improved energy efficiency, cost savings, and better integrating 
renewable energy sources into the microgrid. 
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Furthermore, machine learning can be utilized for load forecasting in micro-
grids. Machine learning algorithms can accurately predict future load demand 
by analyzing historical load data and considering various factors such as weather 
conditions, holidays, and special events. This information can be used for proac­
tive load management, resource allocation, and grid stability. 

6.
 Summary


Integrating Internet of Things (IoT) technologies in microgrid communication 
holds immense importance and offers numerous benefits. The application of IoT 
in microgrids has the potential to revolutionize energy management and enhance 
these systems’ overall performance and efficiency. 

One of the key advantages of IoT-enabled communication in microgrids is the 
ability to collect real-time data from sensors and devices. This data can be used 
for accurate state estimation, monitoring, and control of microgrid operations. 
Microgrids can improve situational awareness and make informed real-time de­
cisions by leveraging IoT communication infrastructure. 

Furthermore, IoT-based communication enables decentralized control strate­
gies in microgrids. This allows for more efficient and cooperative management 
of energy resources, leading to optimized energy generation, distribution, and 
consumption. Decentralized control also enhances the resilience and reliability 
of microgrids by enabling self-healing and adaptive capabilities. 

There are several future developments and opportunities for integrating IoT 
into microgrid communication. Firstly, there is a need for standardized IoT plat­
forms that are specifically designed for the unique requirements of microgrids. 
Current IoT standards may not be optimal for developing Internet of Energy 
(IoE) platforms, which present more demanding challenges. 

Research and development efforts should address the cybersecurity concerns 
associated with IoT-enabled microgrid communication. As microgrids become 
more interconnected and reliant on IoT technologies, ensuring the security and 
integrity of data and communication networks becomes crucial. 

Moreover, there is a need for further advancements in the interoperability and 
integration of IoT devices and systems in microgrids. This will enable seamless 
communication and collaboration between different components and stakehold­
ers in the energy ecosystem. 
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1.
 Introduction


The increasing adoption of renewable energy sources, such as solar panels and 
wind turbines, created a need for more efficient ways to integrate these intermit­
tent energy sources into the grid. DC power is often used in renewable energy 
systems, which makes it a natural choice for renewable energy microgrids. In 
addition, DC power distribution is inherently more efficient than traditional AC 
power distribution over short distances, which makes it appealing for localized 
energy systems such as microgrids. These microgrids are small-scale localized 
energy distribution networks that offer the promise of enhanced resilience, ef­
ficiency, and integration of renewable energy sources. However, their effective 
operation poses multifaceted challenges, ranging from energy management to 
trust and security in transactions. 

On the contrary, blockchain technology, initially conceived as the founda­
tional technology for cryptocurrencies such as Bitcoin, is a decentralized and 
distributed ledger system that provides transparency, security, and trust in peer­
to-peer transactions. Its potential application in the domain of DC microgrids 
offers promising solutions to the challenges they face. 
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DC microgrids generate large volumes of data from various sensors and me­
ters. The blockchain can securely store and manage these data, ensuring data 
integrity and preventing unauthorized access. Furthermore, verifying the source 
of energy generation, especially for renewable sources like solar panels, is vital. 
Blockchain can track the origin of energy generation, providing consumers with 
the assurance that their energy comes from clean sources. 

In addition, blockchain can help integrate diverse energy resources, including 
distributed energy resources (DERs), such as batteries and electric vehicles, into 
the DC-microgrid. It can efficiently manage energy supply and demand, reduc­
ing grid congestion. Furthermore, blockchain can act as a common platform for 
interoperability among various components within the DC microgrid, including 
inverters, meters, and energy storage systems. 

However, it is important to note that implementing blockchain in DC micro-
grids also comes with challenges, such as scalability, energy consumption (in the 
case of Proof of Work blockchains), and regulatory considerations. Careful plan­
ning and consideration of these factors are essential when integrating blockchain 
technology into dc microgrid systems. 

This chapter explores the intersection of blockchain technology and DC mi­
crogrids, investigating how this synergy can enable efficient energy management, 
improve grid reliability, promote renewable energy integration, and foster decen­
tralized governance. Then, the chapter presents the challenges of implementation 
of Blockchain in DC microgrids and the possible solutions. 

1.1. Overview of blockchain technology 

Blockchain technology is a revolutionary new way to transfer and store data 
in a secure and decentralized manner . The foundations of the blockchain can 
be traced back to the late 20th century, when researchers like Stuart Haber and 
W. Scott Stornetta explored cryptographic techniques for timestamping digital 
documents to prevent backdating or tampering. 

Blockchain, when defined according to its structural components, can be de­
scribed as a decentralized digital ledger technology that enables secure and trans­
parent record-keeping of transactions or data in the form of blocks. These blocks 
are connected through a cryptographic hash function in chronological order, 
forming a continuous chain. 

What makes the blockchain unique is its decentralized nature, using a dis­
tributed network system of nodes linked together to verify transactions on the 
ledger. 

This technology relies on cryptographic principles because when a new block 
is added to the chain, the nodes of the network verify its validity by recalculating 
its hash. They also check that the previous hash of the new block matches the 
hash of the last block in the existing chain. This chaining of blocks through their 
cryptographic hashes ensures the integrity and immutability of the blockchain. 
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Furthermore, consensus algorithms are used to validate and agree on the content 
of a new block before it is added to the chain. 

Finally, once a block is added to the chain, it becomes extremely difficult to 
alter its content due to the cryptographic connections and consensus rules. This 
immutability is crucial to ensure the integrity and trustworthiness of the data 
recorded on blockchains. 

1.2. Importance of blockchain technology in DC-microgrids systems 

DC microgrids, like any energy infrastructure, face several challenges that need 
to be addressed to ensure their reliable and safe operation. First, they are sus­
ceptible to cyberattacks, just as any other digital system. Furthermore, malicious 
actors can attempt to disrupt energy distribution, manipulate energy transactions, 
or gain unauthorized access to control systems. Furthermore, while DC micro-
grids are well suited for certain applications like data centers and remote areas, 
scaling them up to cover larger geographic regions or entire cities can be com­
plex and costly. Finally, ensuring that different components, devices, and systems 
within the DC microgrid can communicate and trade energy seamlessly can be 
challenging. Integrating blockchain technology into DC microgrids holds great 
promise in overcoming the limitations of previous DC microgrids. 

The blockchain eliminates the need for a central authority, allowing peer-to­
peer energy transactions within the microgrid. This decentralization increases 
energy resilience and reduces the risk of a single point of failure. Furthermore, 
the cryptographic features of the blockchain enhance the resilience of the micro-
grid infrastructure against cyber threats. It makes it difficult for malicious actors 
to manipulate or disrupt energy transactions. 

In addition, blockchain technology can enable real-time monitoring of energy 
generation, consumption, and distribution, making it easier to balance supply and 
demand within the microgrid. 

Finally, as the microgrid grows or additional participants join, smart contracts 
can easily scale to accommodate more energy producers and consumers without 
the need for intermediaries. In addition, smart contracts can be customized to 
accommodate various energy trading models and help balance the microgrid by 
incentivizing energy producers to supply energy when needed. 

Integrating blockchain in DC microgrids empowers both individual con­
sumers and the broader grid network by paving the way for more resilient, sus­
tainable, and efficient energy systems. This empowers smart contracts to auto­
mate energy trading, minimizing human error, and streamlining processes for in­
creased efficiency. Moreover, blockchain safeguards energy transactions through 
tamper-proof record-keeping, preventing fraudulent activity, and ensuring fair 
billing. This revolutionary technology effectively addresses many security chal­
lenges inherent in distributed energy systems, making DC microgrids more re­
silient to cyber threats and unauthorized access, ultimately revolutionizing the 
way we manage and distribute energy. 
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2.
 Blockchain
technology


2.1. Definition and components of blockchain technology 

Blockchain represents a decentralized ledger designed for the efficient stor­
age of digital cash transactions between two parties (Namane and Ben Dhaou, 
2022). These transactions are recorded as an expanding series of entries known 
as blocks. These blocks are resistant to any alterations and offer a permanent 
and verifiable record. Typically, a collective of users connected through a peer­
to-peer (P2P) network is responsible for verifying the ledger entries. To effect 
changes within these blocks, a consensus must be reached among more than 
half of the network’s users (Mohanta et al., 2019). In blockchain, a block func­
tions as the data structure for the storage of transaction records. As illustrated in 
Figure 1), it is made up of two essential elements: the head of the block and the 
body of the block. The header of the block comprises the following fields: 

•

Block Version: defines requirements for block validation. 
•

nBits: sets the minimum requirement for a valid block hash. 
•

Time Stamp: gives the current time in seconds. 
•

Merkle Tree Root Hash: records of the hash value of each block’s trans­

actions. 
•

Nonce: It is a numerical value that begins at 0 and increases with each 

hash calculation. 
•

Parent Block Hash: references the preceding block. The block body in­

cludes a transaction counter and the transactions. The block’s ability to 
store transactions is constrained by both the block size and the size of 
each transaction it holds. 

Figure
1.
 Blockchain structure. 

2.2. Types of blockchain technology 

Blockchains come in various types to cater to different needs. Permissionless 
blockchains (Bhutta et al., 2021), often public, such as Bitcoin, allow anyone to 
participate, read, write, and verify transactions without requiring approval. Per­
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missioned blockchains, on the other hand, restrict access to specific users or or­
ganizations, ensuring tighter control over the network. Public blockchains, such 
as Ethereum, are open to all and transparent, while private blockchains limit ac­
cess to authorized participants, providing enhanced privacy and security. Hybrid 
blockchains combine elements of public and private blockchains, offering flex­
ibility in terms of transparency and control, making them a versatile choice for 
various applications. Figure 2 presents an example of each type. 

Figure
2.
 Blockchain types. 

2.3. Key features of blockchain technology 

Blockchain technology has several key features that make it unique and highly 
valuable in various industries. First, it provides unparalleled security (Zeng et al., 
2020) due to its decentralized and immutable ledger, making it exceptionally re­
sistant to fraud and tampering. Secondly, transparency is a fundamental charac­
teristic since every transaction is meticulously recorded and visible to all par­
ticipants in the network, thus ensuring trust and accountability. Furthermore, 
blockchain promotes efficiency by eliminating the need for intermediaries, lead­
ing to decreased transaction costs and accelerated processes. It also facilitates 
trustless transactions, allowing parties to engage in exchanges without relying on 
a central authority. Lastly, this technology enables the implementation of smart 
contracts, which are self-executing agreements with predefined rules, further au­
tomating processes and diminishing the dependence on intermediaries. Collec­
tively, these characteristics position the blockchain as a transformative tool with 
great potential in sectors such as finance, supply chain management, healthcare, 
and beyond (Musa et al., 2023). Figure 3 summarizes the key application of 
blockchain technology. 

3.
 Use
cases
of
blockchain
technology
in
DC-microgrid
systems


This section explores the diverse and innovative use cases of blockchain technol­
ogy within the realm of DC-microgrids. Blockchain, a decentralized and secure 
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Figure
3.
 Key application domains of blockhain technology. 

ledger system, has the potential to revolutionize the way we manage, monitor, 
and optimize DC-microgrid systems. From improving energy trading and supply 
chain management to ensuring data integrity and cybersecurity, the integration 
of blockchain technology opens up a multitude of possibilities in the field of dis­
tributed energy generation and consumption. The following subsections present 
these applications. 

3.1. Energy trading 

The application of blockchain technology to energy trading in DC microgrids 
is a groundbreaking and revolutionary method of overseeing energy distribution 
and transactions within localized power networks. This emerging technology uti­
lizes the fundamental principles of blockchain, a secure and decentralized digital 
ledger, to enable transparent, efficient, and secure energy transactions among 
participants within DC microgrids. 

Given a local community where numerous homes are equipped with rooftop 
solar panels (illustrated in Figure 4). These panels produce surplus electricity 
during daylight hours when the sun is shining, yet they may not generate suf­
ficient power to meet the community’s energy needs after sunset. To improve 
energy efficiency and decrease dependence on the primary power grid, the com­
munity establishes a DC microgrid and leverages blockchain technology for en­
ergy exchange. 

Each home has a digital wallet associated with its blockchain identity. Fur­
thermore, IoT devices and smart meters are used on each home’s electrical sys­
tem to provide real-time data on energy consumption and production, ensuring 
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Figure
4.
 An illustration of energy flow in PV house. 

accurate transactions. It is obvious that homes that generate more energy than 
they consume have surplus energy. This surplus energy is converted into digital 
tokens on the blockchain. But homes that need more electricity than their so­
lar panels produce can purchase energy tokens from homes with surplus energy. 
This last process is known as peer-to-peer trading. It is usually achieved using 
smart contracts (Pee et al., 2019), self-executing agreements based on predefined 
rules, automating various aspects of energy trading, such as pricing, payment, 
and verification. The smart contract includes details such as the amount of en­
ergy to be transferred, the price per token, and the duration of the energy transfer 
agreement. Once the smart contract conditions are met (e.g., payment in tokens 
received), the surplus energy is transferred from the seller’s wallet to the buyer’s 
wallet on the blockchain. 

In addition, blockchain can trace the origin of energy, making it possible to 
verify whether electricity comes from renewable sources or not. This can be 
essential to meet sustainability goals and incentives. In addition, the blockchain 
automatically calculates the total energy traded and settles the payment in tokens 
between homes. 

Furthermore, the blockchain continuously tracks the energy supply and de­
mand within the microgrid, allowing for efficient balancing of resources and 
ensuring that everyone’s energy needs are met. 

In conclusion, blockchain-enabled energy trading in a DC microgrid can en­
able communities to efficiently share locally generated renewable energy, reduce 
energy costs, and contribute to a more sustainable and resilient energy system. 
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3.2. Decentralization 

In conventional DC microgrids, the generation, consumption and distribution of 
electricity are under the control of centralized authorities, which restricts flexi­
bility and may result in inefficiencies. Blockchain technology, on the other hand, 
establishes a decentralized framework that empowers peer-to-peer energy trad­
ing between interconnected devices such as solar panels, batteries, and electric 
vehicles within the Dc microgrid. 

In a decentralized energy trading system for DC microgrids based on 
blockchain technology, the buying and selling of electricity is controlled by a 
distributed network of participants rather than a central authority. An example is 
illustrated in Figure 5. 

Figure
5.
 Blockchain enabled energy trading in DC-microgrids. 

Let us consider a scenario in which a residential DC-microgrid where sev­
eral homes have solar panels and energy storage systems (depicted in Figure 4). 
These homes are part of a blockchain-based energy trading system. Each home 
is equipped with a smart meter. These meters are capable of measuring electric­
ity consumption and generation at a granular level, up to individual devices, if 
needed. They also have communication capabilities to send and receive data. In 
addition, each smart meter continuously collects data on electricity consump­
tion and generation. These data are then time-stamped and securely stored on a 
blockchain network. In addition, a smart contract is created on the blockchain to 
define the terms and conditions of energy trading. For example, it could spec­
ify the price of electricity, the duration of the contract, and the maximum and 
minimum amounts of energy that can be traded. For instance, if Home B’s smart 
meter detects a low battery state while Home A’s smart meter simultaneously 
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identifies an excess energy generation, the smart meter initiates a transaction 
specifying the surplus energy amount. Subsequently, Home B’s smart meter must 
trigger a smart contract on the blockchain, outlining the required energy amount, 
the proposed price, and the transaction’s time duration. 

The blockchain network then verifies Home B’s request and checks the avail­
ability of energy from Home A. Upon approval, the blockchain network sends a 
signal to Home A’s smart meter, instructing it to provide the requested amount 
of DC electricity to Home B’s smart meter. Additionally, both smart meters 
accurately measure the transferred energy and securely record this data in the 
blockchain ledger. 

Once the energy transfer has been completed, the blockchain automatically 
processes the payment from Home B to Home A based on the agreed-upon price 
and energy measurement data. This payment is conducted in cryptocurrency or 
another mutually agreed upon form of payment. 

3.3. Security and privacy 

Blockchain technology plays a pivotal role in improving the security of DC mi­
crogrids. These localized small-scale energy distribution networks are suscepti­
ble to various vulnerabilities, including cyberattacks and unauthorized access. 
Furthermore, numerous factors, such as diverse information resources, sensi­
tive sensors, and extensive interactions both within the DC microgrid (DCMG) 
and between the DCMG and the main network, along with the need for pre­
cise time synchronization and minimized communication delays, present distinct 
challenges in establishing a reliable and secure operational strategy for DC mi­
crogrids (Dehghani et al., 2021). 

In blockchain enabled energy trading system, every household’s energy con­
sumption and production data is collected, monitored, and transmitted via a smart 
meter. This meter records both the energy generated by solar panels and the en­
ergy consumed by household appliances. 

Ensuring the secure transfer of these data is of paramount importance because 
unauthorized access to this information can lead to significant repercussions. 

The previously mentioned concern can be effectively addressed with the ap­
plication of blockchain technology, as it provides robust safeguards against unau­
thorized alterations of data related to energy transactions and DC-microgrids op­
erations. Moreover, it allows for granular control over data sharing. Users can 
grant specific permissions for data access, ensuring that sensitive information is 
shared only with authorized parties. 

Additionally, each smart meter in the DC microgrid is assigned a unique dig­
ital identity and possesses a private key. Smart contracts can be programmed 
to verify the authenticity of these identities against a predefined list of autho­
rized meters, ensuring that only legitimate ones participate in energy transactions 
within the dc-microgrid (illustrated in Figure 6). In addition, these contracts fa­
cilitate secure data exchange by requiring meters to sign transactions with their 
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Figure
6.
 An example of smart contract that checks smart meter identity. 

private keys, which are then verified by the contract to confirm the authenticity 
of the data, preventing data tampering or fraudulent reporting. 

4.
 Future
of
blockchain
technology
in
DC-microgrid
systems


4.1. Potential developments and advancements of blockchain technology 

Blockchain technology holds significant importance for a variety of reasons, 
having a significant impact on numerous industries and aspects of the digital 
world. However, several challenges must be addressed to successfully implement 
blockchain technology (Hakak et al., 2021). Furthermore, blockchain has shown 
significant promise and there are several potential developments and advances 
that could shape its future. 

Blockchain networks often grapple with the limitation of handling a high vol­
ume of transactions per second, necessitating scalability solutions for enhanced 
efficiency. One effective approach involves implementing off-chain solutions 
like the Lightning Network (Khan and State, 2020) or state channel (Negka and 
Spathoulas, 2021), which can adeptly manage numerous microtransactions with­
out burdening the primary blockchain. Furthermore, exploring sharding tech­
niques (Hashim et al., 2022), which entail dividing the blockchain network into 
smaller self-sufficient shards capable of processing their transactions, can signif­
icantly boost throughput. 

As the blockchain ecosystem continues to expand, the need for different 
blockchains to communicate and collaborate becomes paramount (Scheid et al., 
2019). Interoperability facilitates the seamless transfer of assets, data, and smart 
contracts between blockchains, fostering a more interconnected and versatile de­
centralized ecosystem. Existing interoperability solutions focus mainly on link­
ing two permissionless ledgers or as many ledgers as possible, encompassing 
both permissionless and permissioned ledgers, to establish a network of inter­



60 IoT Enabled-DC Microgrids 

connected ledgers (Koens and Poll, 2019). Nevertheless, it is worth noting that 
permissioned ledgers might have reservations about disclosing their state within 
a permissionless ledger. Consequently, there is a pressing need for additional 
research to explore interoperability between permissionless and permissioned 
ledgers, with a specific focus on establishing secure connections while safe­
guarding the privacy attributes of these respective blockchain networks. 

Regarding blockchain security, it is important to note that most blockchains 
operate on public ledgers, which means that all transaction data is visible to any­
one. Although transaction details are pseudonymous, they can often be traced, 
potentially revealing user identities. Additionally, analyzing the transaction his­
tory of the blockchain can sometimes allow attackers to link multiple transac­
tions to a single user or entity, thus compromising privacy. Furthermore, smart 
contracts on blockchains like Ethereum are publicly readable, raising privacy 
concerns, especially if sensitive data is stored in them. Additionally, these con­
tracts face several issues, including vulnerabilities such as reentry attacks, inte­
ger overflows, and unchecked ownership, which can be exploited by malicious 
actors, resulting in significant financial losses. 

To mitigate the security issues mentioned above, enhanced blockchain privacy 
features like zero-knowledge proofs (Sun et al., 2021) and confidential transac­
tions (Yuen et al., 2020) are being integrated to protect user data while main­
taining transparency. In addition, the use of formal verification tools and meth­
ods to mathematically verify the correctness of smart contracts is strongly rec­
ommended. Moreover, it is essential to implement proper access control mech­
anisms to ensure that only authorized users or contracts can execute sensitive 
functions within smart contracts. 

4.2. Impact of blockchain technology on DC-microgrid systems 

Traditional DC-microgrid energy trading historically relied on centralized sys­
tems and intermediaries such as utilities or energy brokers. Transactions were 
documented in centralized databases and trust was placed in these third-party 
entities. For example, in DC-microgrid energy trading, a traditional utility com­
pany or energy exchange acts as an intermediary between energy producers (such 
as power plants) and consumers (homes, businesses, etc.). The utility company 
sets the prices for energy based on various factors, such as supply, demand, and 
regulatory considerations. Consumers purchase energy from the utility at these 
established rates. 

In contrast, blockchain-based energy trading in DC microgrids uses dis­
tributed ledger technology to record and authenticate energy transactions, em­
ploying decentralized consensus mechanisms to ensure transparency and secu­
rity. In that case, the blockchain enables peer-to-peer energy transactions. Imag­
ine a home with solar panels on the roof of the house that generate excess elec­
tricity. With blockchain energy trading, the home owner sell this surplus energy 
directly to his neighbors or nearby businesses. 
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Furthermore, blockchain introduces a higher level of trust and transparency 
by recording all transactions on an immutable ledger visible to all participants, 
preventing any single entity from manipulating data. On the contrary, traditional 
energy trading often relies on intermediaries for trust and may lack the same 
degree of transparency, requiring participants to trust centralized entities for ac­
curate transaction recording and settlement. 

Furthermore, blockchain-enabled energy trading in DC-microgrids incorpo­
rates the use of smart contracts, which are self-executing agreements with prede­
fined rules. These contracts streamline the energy trading process, encompassing 
pricing, settlement, and delivery, thus reducing the need for manual intervention. 

In contrast, traditional energy trading involves manual negotiations for con­
tracts, billing, and settlement processes, which can be time-consuming and prone 
to errors. 

Moreover, blockchain’s decentralized nature enhances the resilience of DC­
microgrids, as it eliminates a single point of failure. The immutability of data 
improves security against tampering and fraud. On the contrary, traditional sys­
tems may be more vulnerable to centralized attacks or data breaches due to their 
reliance on centralized databases and trust in single entities. 

Integration of blockchain technology into DC microgrids also presents poten­
tial social and environmental impacts. Socially, it could improve access to afford­
able and reliable energy, especially in underserved communities, while empow­
ering individuals to actively participate in energy markets, potentially reducing 
energy poverty and fostering community involvement in sustainable practices. 
The transparency offered by the blockchain could strengthen consumer trust, en­
sure fair and secure energy transactions, and promote social equity. Environmen­
tally, blockchain integration may encourage the use of renewable energy sources, 
fostering a cleaner energy mix and reducing reliance on fossil fuels. Addition­
ally, it could incentivize energy efficiency practices due to more transparent and 
efficient energy use within microgrids, contributing to a reduction in the carbon 
footprint and overall environmental impact. However, realizing these impacts 
hinges on factors such as the extent of blockchain implementation, the regula­
tory environment, technology adoption, and community engagement. It is also 
essential to consider the environmental footprint associated with the manufac­
turing and energy consumption of blockchain technology to assess its overall 
environmental impact. 

In addition, it has the potential for significant cost-effectiveness by stream­
lining transactions and reducing intermediary costs in energy trading. This effi­
ciency can reduce overall operating expenses, which benefits both producers and 
consumers. As for revenue streams, the implementation of blockchain may cre­
ate new opportunities through innovative market structures, allowing for peer-to­
peer energy sales and potential income from transaction fees. Furthermore, en­
hanced data security and trust facilitated by blockchain could attract investment 
and foster more efficient grid operations, potentially generating more income. 
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In general, blockchain energy trading in DC microgrids offers greater decen­
tralization, transparency, automation, and potential cost savings compared to tra­
ditional energy trading systems. 

4.3. Role of blockchain technology in creating sustainable energy systems 

In the realm of DC (direct current) microgrid systems, a sustainable energy sys­
tem encompasses an intricately designed and interconnected network for gen­
erating, distributing, and consuming energy. This system places a paramount 
emphasis on environmentally and economically viable practices while ensuring 
unwavering resilience and reliability. Such a system boasts several advantages, 
including: 

•

Diminished greenhouse gas emissions, due to the clean and renewable 
nature of solar energy. 

•

Augmented energy resilience as communities become less dependent on 
distant power grids. 

•

Reduced long-term energy costs, owing to the abundance of free sunlight, 
reducing dependence on costly fossil fuels. 

•

Enhanced air quality and reduction of health risks due to the elimination 
of fossil fuel-based energy sources. 

Given their profoundly positive environmental impacts, the creation and effi­
cient utilization of these systems have risen to the forefront as a top priority. 

Blockchain technology can help DC-microgrids address the intermittency of 
renewable energy sources by providing solutions that improve grid stability, en­
ergy management, and flexibility. It can facilitate the integration of energy stor­
age solutions, such as batteries, into the DC-microgrid. Smart contracts on the 
blockchain can manage the charging and discharging of these batteries to store 
excess energy when renewable sources are abundant and release it when there is 
a shortage, helping to bridge intermittent gaps. 

Furthermore, when renewable energy generation is low, the DC-microgrid can 
use blockchain to signal energy-intensive devices to temporarily reduce their 
consumption, helping to balance supply and demand. 

The blockchain can also be used to tokenize renewable energy production. 
Renewable energy producers can earn tokens to generate clean energy, and con­
sumers can use these tokens to pay for their energy consumption. This incen­
tivizes the use of renewables. Furthermore, to ensure that the manufacturing and 
transportation of components of renewable technologies are as eco-friendly as 
possible, blockchain can be used to track the supply chain of components and 
renewable energy equipment. 

By integrating blockchain technology into DC-microgrids, these systems can 
better manage the intermittent nature of renewable energy sources, optimize en­
ergy usage, and ensure a reliable and sustainable energy supply even during pe­
riods of low renewable energy production. It ensures that renewable sources are 
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prioritized, leading to reduced dependence on fossil fuels, lower greenhouse gas 
emissions, and a more sustainable energy system. 

5.
 Case
studies
of
blockchain
technology
in
DC-microgrid
systems


5.1. Peerp-to-peer electricity trading 

The Brooklyn microgrid is an example of a very successful community microgrid 
that uses a decentralized architecture. It is the first recognized blockchain tech­
nology that uses peer-to-peer energy transactions using blockchain technology. 
As shown in Figure 7, the microgrid consists of consumers, producers, commu­
nity solar, and energy providers. Each prosumer is connected to the microgrid 
using a smart meter. 

Figure
7.
 Overview of the Brooklyn microgrid. 

5.2. Security 

As explained in Chapter 1, hierarchical control is used on DC microgrids. The 
upper levels, Level 2 and Level 3, rely heavily on a perfect communication link, 
which can be realized using the IoT communication protocol. The increasing 
number of attacks on critical infrastructure in recent years made availability, 
confidentiality, and integrity a viable design consideration. In DC microgrids, 
the most frequently reported attacks on the secondary controller that affect both 
current sharing and voltage restoration are stealth cyber-attacks (Sahoo et al., 
2019), denial of service (DOS) attacks (Liu et al., 2021), false data injection 
attacks (FDI) (Beg et al., 2017; Liu et al., 2021), and hijacking attacks (Sahoo 
et al., 2020). 
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In (Yu et al., 2023), a robust defense strategy against False Data Injection 
attacks is presented, which involves the implementation of a secure data trans­
mission mechanism based on blockchain technology. This innovative approach is 
structured into four distinct phases. In the initial phase, the ith DC-DC converter 
uses a one-way hash function and a timestamp to encrypt a message containing 
the current value (Ii), which is then securely relayed to all converters (nodes) 
within the DC microgrid using peer-to-peer (P2P) communication. In the sub­
sequent phase, each converter autonomously verifies the received messages. In 
the third phase, the verification results are disseminated across all network nodes 
through P2P communication. In the final stage, a voting mechanism is used to 
achieve a consensus on global validation. 

However, while this blockchain-based scheme improves security, it intro­
duces an inherent latency to the network. Each new current value undergoes 
a four-phase process that involves computationally intensive algorithms such 
as hashing and consensus mechanisms. To mitigate the latency associated with 
the blockchain and communication protocol, an advanced predictive secure dis­
tributed algorithm has been developed for secondary control. 

However, it should be noted that the paper does not explicitly address the 
efficacy of this method in defending against alternative forms of cyberattacks. 
Furthermore, a comprehensive evaluation of the effectiveness of the scheme in 
safeguarding against potential attack vectors remains outstanding. 

In their study (Dehghani et al., 2021) introduced a novel framework that com­
bines Hilbert Hang Transform (HHT) with blockchain technology. This frame­
work is designed to address the critical challenges of detecting False Data Injec­
tion (FDI) in a DC microgrid while ensuring the secure exchange of data among 
distributed generation agents, smart sensors, and loads. However, a noteworthy 
limitation of their approach lies in its omission of potential delays that may be 
introduced by the utilization of blockchain. Furthermore, it is important to high­
light that the real-time nature of both FDI detection and secure data transmission 
through blockchain has not been thoroughly addressed. This has implications for 
the computational complexity and latency of the proposed system, which warrant 
further investigation. 

6.
 Challenges
and
limitations
of
integrating
blockchain
technology
on

DC-microgrids


Blockchain and the Internet instill optimism for transforming the world and fos­
tering a more democratic and equal society through their decentralized nature. 
However, lessons from the Internet’s growth highlight that technology must be 
easily understandable for mass adoption. The current state of Blockchain for en­
ergy mirrors the early to mid-1990s Internet era, being obscure for most (Teufel 
et al., 2019). 

Blockchain systems may face scalability issues when applied to microgrids 
with a large number of transactions. This can impact the system’s ability to han­
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dle the increasing volume of data in a timely manner. Additionally, blockchain 
networks often consume significant amounts of energy, which may be a concern 
in the context of energy-efficient microgrids. The energy-intensive consensus 
mechanisms used in many blockchains can counteract the energy-saving bene­
fits of DC microgrids. On the other hand, the confirmation times of transactions 
on blockchain networks can vary, leading to potential latency issues. In a DC mi­
crogrid where real-time responsiveness is crucial, delays in transaction validation 
may affect the overall performance of the system. Ensuring seamless integration 
between various components of a DC microgrid and the blockchain system can 
be complex. Standardization and interoperability protocols are essential to facil­
itate smooth communication between different technologies. 

Moreover, the integration of blockchain into DC microgrids necessitates 
addressing numerous regulatory considerations. This involves adapting legal 
frameworks to accommodate smart contracts and addressing data privacy and 
security within energy trading. Ensuring compliance with existing energy regu­
lations and standards while incorporating this innovative technology is crucial. 
Additionally, defining roles and responsibilities in the decentralized energy trad­
ing landscape is vital. Potential revisions or adaptations to existing laws to align 
with the implications of blockchain technology in the energy sector also require 
careful consideration. Achieving consensus among various stakeholders, includ­
ing policymakers, utilities, and consumers, on regulating and governing these 
new systems is essential for successful implementation. 

In addition, the initial setup costs for implementing blockchain in DC micro-
grids involve developing the necessary infrastructure, including hardware and 
software, and establishing the network. This often requires a significant upfront 
investment. Finally, integrating a new technology within an existing energy in­
frastructure might necessitate adjustments, further increasing initial expenses. 

7.
 Summary


Blockchain technology, initially designed to secure cryptocurrency transactions, 
operates as a distributed ledger, securely linking records through cryptographic 
hash functions. Its widespread adoption in domains such as supply chain man­
agement, healthcare, intellectual property protection, energy trading, and the In­
ternet of Things (IoT) underscores its versatility since inception. 

In the context of DC microgrids, blockchain is still in its early stages of de­
velopment, but has been proposed for use in peer-to-peer energy trading and 
to secure distributed control algorithms. However, there are challenges to using 
blockchain in secondary and tertiary control levels, such as the latency intro­
duced by the computation algorithms, the scalability of the blockchain technol­
ogy for larger DC microgrid, the energy consumed by the consensus mechanism, 
and the lack of standardization and regulation. These topics are active research 
areas. 
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1.
 Introduction


The rapid advancement of technology, particularly the Internet of Things (IoT), 
has driven the transformation of Industry and Energy 4.0. IoT enables the inter­
connection of billions of devices, making applications smarter, faster, and more 
efficient. By 2025, it is expected that around 27 billion devices will be inter­
connected using IoT (Analytics, 2021). Integrating sensors, data collection, big 
data analytics, and artificial intelligence have revolutionized various industries, 
enabling the development of preventive maintenance, diagnostics, and enhanced 
automation features (Bazmohammadi et al., 2021). 

In the energy sector, microgrids and smart cities are leveraging the power of 
IoT to create a communication network among various components, including 
power generators, weather stations for forecasting, loads, and end-users. This 
interconnected infrastructure enhances energy management, making it more ef­
ficient and sustainable (Zia et al., 2020). For instance, in smart grids, IoT plays 
a vital role in collecting real-time data from distributed energy resources such as 
solar panels, wind turbines, and energy storage systems. These data enable grid 
operators to monitor and optimize the performance of these resources, balance 
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supply and demand, and enhance grid resilience. By incorporating IoT technolo­
gies, energy management systems can make informed decisions based on accu­
rate data and predictive analytics, leading to more efficient energy distribution 
and reduced environmental impact (Tanyingyong et al., 2016). 

Microgrids and smart cities are using IoT to communicate various 
components-power generators, the forecasting weather stations, the load, the user 
that are helping to enhance energy management to make it more efficient (Ali 
et al., 2021). The introduction of IoT in microgrids has not only led to the de­
velopment of smarter Energy Management Systems but has also paved the way 
for a more dynamic, intelligent, and reliable system called Digital Twin (DT) 
(Hacı Bektaş et al., 2021). 

NASA defines DT as mirror digital shadows communicating with their real 
flying systems through advanced sensors, enabling monitoring, predicting, and 
evaluating the system’s state (Glaessgen and Stargel, 2012). In this context, DT 
provides continuous forecasts of the vehicle’s health and remaining useful life to 
enhance mission success. Tao et al. define DT as digital models that simulate the 
behavior of a physical system in real-time, utilizing available data (Tao et al., 
2019). The key components include the digital model, the physical part, and 
the data interconnection. However, recent definitions have expanded to include 
health diagnosis, prevention, maintenance, and data analytics for processing 
data from the physical and model layers. In this chapter, the definition of a 
Digital Twin is as follows: 

Digital Twin is a living and adaptable model connected with its physical 
counterpart, where both continuously exchange data for prediction, manage­
ment, control, and decision-making. It comprises four main components: the 
physical part, the adaptable digital model (digital shadow), real-time data 
connection, and prediction and analysis. Additionally, intelligent supervisory 
and control management plays a crucial role in leveraging the capabilities of DT. 

DT has gained significant attention across aerospace, manufacturing, health-
care systems, agriculture, automotive, and robotics industries. For example, in 
the aerospace industry, DTs are employed to monitor and evaluate the per­
formance of aircraft components, optimize maintenance schedules and en­
hance safety (Botı́n-Sanabria et al., 2022). In manufacturing, DT enables virtual 
simulations, predictive maintenance, and optimization of production processes 
(Kritzinger et al., 2018). Similarly, in healthcare, DT aid in patient monitoring, 
treatment planning, and personalized medicine (Bartsch et al., 2021). 

In the context of energy systems, DT has garnered significant attention and 
is being increasingly applied to enhance the performance, efficiency, and reli­
ability of various energy assets and infrastructure. According to recent studies, 
the global market for Digital Twin technology in the energy sector is projected 
to reach $1.3 billion by 2026 (Markets and Markets, 2020). This exponential 
growth underscores the transformative impact and increasing adoption of DT in 
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the energy industry. DT provides valuable insights into the energy sector opera­
tion, enables predictive maintenance, and facilitates intelligent decision-making 
by creating a virtual replica of energy systems such as power plants, renewable 
energy sources, microgrids, and buildings. Companies such as General Electric 
and ABB have pioneered DT for power systems applications. For instance, Gen­
eral Electric developed DT for wind farms for operation and maintenance, in­
creasing its efficiency by 20% in 2015. 

In PV and DC (PVDC) microgrids, DT can control and diagnose the system’s 
behavior. DT enables real-time monitoring, predictive analytics, and intelligent 
management by creating a virtual replica of the PV system, including solar pan­
els, converters, storage systems, and loads. This empowers system operators and 
stakeholders to make informed decisions, optimize energy generation, minimize 
downtime, and improve the overall health and performance of the microgrid. In 
the case of PV applications, DT has just recently been applied. In 2020, Helios 
IoT Systems presented the first DT for a PV power plant to predict energy loss 
utilizing weather and electrical data from the power plant at various stages, in­
cluding PV panels, DC and AC cables, transformers, and inverters. The result is 
the prediction of the energy losses, but no services are delivered, rather than just 
informative. Recent literature Jain et al. (2020) and Arafet and Berlanga (2021) 
show very few attempts of DTs for fault and anomaly analysis of only monofa­
cials PV panels. A similar approach is presented in (Wunderlich and Santi, 2021) 
for only inverters. However, they fail to use the DT to provide any service to en­
hance the reliability of the PV generator. Additionally, the models presented do 
not adapt in real-time and do not consider the interaction among all the compo­
nents involved, e.g. (Arafet and Berlanga, 2021). Other researchers have focused 
only on the communication layer but not on the modeling or the services (Yuan 
and Xie, 2023). 

Despite the growing interest in DT, it is necessary to have a consensus on 
concepts, architecture, modeling techniques, and communication technology in 
the field of PV. The DT should rely on a holistic solution between the interac­
tion among the various components so the PVDC microgrid can benefit from 
it. Thus, the present chapter aims to shed light on the capabilities and implica­
tions of Photovoltaic DT (PVDT), paving the way for a new energy control and 
management era. Through this chapter, we aim to provide a critical literature re­
view to approach various topics regarding the DT framework for photovoltaics 
to discover research gaps and trends. We reviewed a total of 100 articles cover­
ing its main components, suitable modeling, control, and diagnosis techniques. 
The chapter is divided into six sections. Section 2 explains the DT framework 
for PVDC microgrids considering three main layers: the physical, the digital, 
and the communication. Then, the modeling techniques for PV in the context 
of DT are discussed in Section 3. A similar discussion is developed for DC-DC 
converters and their control in Section 4. In Section 5, we explain the services 
provided by a DT, taking into account the supervised control and management 
focused on preventive maintenance. 
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2.
 DT
framework
for
photovoltaic
DC
microgrids


The architecture of DT for PV DC microgrids has three fundamental layers: 
the physical world, communication, and the digital world. A general framework 
about the components of the digital twin is illustrated in Figure 1. 
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1.
 DT for PVDC microgrid: Physical world and digital world. 

2.1.
 Physical
world


The physical world represents the actual PV DC microgrid components and their 
operation. It encompasses PV panels, power converters, energy storage systems, 
loads, and their interconnections. 

A PVDC microgrid can operate in isolated or non-isolated mode. In the case 
of an isolated PVDC microgrid, there is no connection to the main grid. In con­
trast, a non-isolated PV DC microgrid is connected to the grid (Planas et al., 
2015). The main components of an isolated PVDC microgrid are interconnected 
through a common DC bus, utilizing power converters. Photovoltaic panels, bat­
teries, and DC loads such as telecommunication antennas and electric vehicles 
(EVs) are connected to a DC/DC converter. However, if there are AC loads such 
as washing machines, motors, induction stoves, or electrical heaters, they are 
connected to a DC/AC converter. Additionally, multiple DC buses may exist 
within the microgrid, depending on the voltage magnitude and the number of 
components operating at specific voltage levels (Modu et al., 2023). This modu­
lar approach allows for greater flexibility and efficient utilization of resources. 

In the case of a non-isolated PVDC microgrid, the DC bus converts the gen­
erated energy into AC using an inverter. The AC load is then connected to a 
single AC bus, enabling the utilization of standard AC-powered devices. It’s 
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worth noting that interconnecting the microgrid with the main grid may require
a transformer to facilitate the necessary voltage levels and ensure compatibil-
ity (Cabrera-Tobar et al., 2016). Figure 2 provides a visual representation of a
combined solution for a DC microgrid.

2.2. Communication

The communication layer of the digital twin for PV DC microgrids involves var-
ious technologies and protocols to facilitate efficient data exchange and control
among different components (e.g., PV panels, sensors, and inverters). Several
communication technologies have been widely adopted, such as RS485, Mod-
bus, Bluetooth, and Ethernet-based protocols like Ethernet/IP and Profinet. These
technologies enable reliable and real-time communication, allowing seamless
integration and coordination among the microgrid components (Samanta et al.,
2020). For instance, in a PV-based charging station located in Trieste, the com-
munication used is a mix between Ethernet and RS485 (Cabrera-Tobar et al.,
2022). The data coming from the sensors use RS485. Meanwhile, the commu-
nication with the inverter, the storage, and the human interface devices uses its
own Ethernet network.

Additionally, IoT protocols like MQTT (Message Queuing Telemetry Trans-
port), CoAP (Constrained Application Protocol), AMQP (Advanced Message
Queuing Protocol), and XMPP (Extensible Messaging and Presence Protocol)
are also integral to the operation of the digital twin in PV DC microgrids.
MQTT facilitates secure, lightweight messaging among the components, ensur-
ing efficient data exchange (Manowska et al., 2022). Similarly, CoAP provides
a lightweight and reliable communication protocol based on the REST archi-
tectural style, enabling seamless interaction between devices and services in the
microgrid (Tanyingyong et al., 2016). AMQP also provides a reliable and secure
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messaging protocol (Tanjimuddin et al., 2022). Meanwhile, XMPP is designed 
for fast and efficient messaging, although their lack of robust security features 
can pose potential risks to the operation of the microgrid. 

In a study comparing MQTT, CoAP, AMQP, and XMPP for use in DC micro-
grids, three key parameters were evaluated: packet overhead, latency, and scal­
ability (Kondoro et al., 2021).1 CoAP exhibited 44% fewer bytes produced and 
faster data transfer, making it efficient for constrained environments. However, 
it showed poorer scalability than the other protocols, as it needs to establish se­
curity parameters for every data packet. In contrast, the other protocols do so at 
the beginning of the transmission. 

The complex interaction among the various components of the PVDC micro-
grid, including measurements, decisions, and supervision, can make the commu­
nication layer vulnerable to cyberattacks. One type of attack affecting IoT de­
vices is Distributed Denial of Service (DDoS), which aims to interrupt the flow 
of information between the devices. In the case of microgrids, this attack can af­
fect the energy balance and cause voltage disruption (Hasan et al., 2023). Thus, 
the control of DC microgrids should be designed to be resilient to cyber-attacks. 
Emulators and observers could help to detect where the disruption of informa­
tion occurs, helping the control algorithm to provide adequate power flow and 
voltage stability (Cabrera-Tobar et al., 2018; Sadabadi et al., 2022). On the other 
hand, the attacks can manifest as fake data, malicious software, and data leakage, 
posing a risk to the data privacy of users connected to the DC microgrid (Mustafa 
et al., 2019). 

On the one hand, the DC microgrid control and the DT should acknowledge 
this vulnerability and incorporate it into their control mechanisms to enhance 
reliability in the presence of communication failures. For example, Sadabadi et 
al. proposes a resilient control mechanism for voltage and energy management 
to withstand cyberattacks in any part of the network (Sadabadi et al., 2022). 
On the other hand, it is necessary to enhance communication protocols by con­
sidering cryptographic methods that encrypt data to mitigate corruption at the 
source. However, this introduces computational complexity, which becomes a 
challenge for real-time operation. To address this, Yu et al. (2022) propose using 
blockchain and Byzantine ideas for a hierarchical control framework in a DC 
microgrid, reducing deficiencies in real-time communication. 

The communication layer in the digital twin faces several challenges. First, 
there is a need for protocol standardization to facilitate implementation across 
different devices in DC microgrids. Second, security constraints must be incor­
porated to protect data transmission among components and in the digital realm. 
Third, user data confidentiality is a crucial aspect to consider. Fourth, real-time 
communication is essential for parameter and performance data and promptly 

1Packet overhead refers to the amount of extra packet data due to the security extensions which can 
affect the performance of the communication in constrained environments. Latency refers to the time data 
travels from one component to another. Scalability refers to the capacity of the protocol to be used with a 
higher number of components and data. 
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communicating faults and emergency control actions, necessitating reduced la­
tency. 

2.3.
 Digital
world


As a key component of the digital twin architecture, the digital world comprises 
several layers that enable advanced control, prediction, and analysis. At the core 
of the digital world is the adaptable modeling layer. This layer involves devel­
oping and implementing mathematical models and algorithms that accurately 
represent the behavior of the PVDC microgrid components. These models con­
tinuously adapt and update based on real-time data from sensors and IoT devices, 
ensuring the digital twin’s alignment with the physical system. 

The prediction and analysis layer leverages data analytics techniques to pro­
cess and analyze the collected data from the physical system. This layer enables 
proactive decision-making and optimizing energy efficiency in the PV DC mi­
crogrid by detecting patterns, identifying anomalies, and performing predictive 
maintenance. It aids in identifying potential failures, provides insights for sys­
tem performance improvement, and supports the implementation of preventive 
measures. 

The supervisory control and management layer integrate the outputs from the 
prediction and analysis layer with advanced control algorithms. It encompasses 
real-time monitoring, fault detection, adaptive control, and intelligent decision-
making based on the DT’s insights. By continuously receiving and analyzing data 
from the physical system, this layer enables optimal operation, efficient energy 
management, and improved overall performance of the PVDC microgrid. 

By adopting this architecture, the DT of a PVDC microgrid becomes a pow­
erful tool for control and diagnosis. It establishes a dynamic connection between 
the physical and digital worlds, allowing continuous data exchange, prediction, 
analysis, and intelligent supervisory control. The DT enables enhanced moni­
toring, fault detection, and preventive maintenance, ultimately increasing system 
reliability, longevity, and optimized energy management. 

Subsequent sections will delve deeper into the digital world and its various 
layers. The adaptable modeling, prediction, analysis, and supervisory control and 
management layers will be discussed in detail, showcasing their significance in 
leveraging the power of DT for control and diagnosis in PVDC microgrids. 

3.
 PV
modeling


The success of integrating PV array into DT hinges on accurate models that 
can automatically adapt to operational changes, aging, and material degradation. 
These models aim primarily to forecast output power and could aid in anomaly 
detection. Hence, the key questions are: what technique can ensure a reliable 
and adaptable model for the PV array?, and what parameters are crucial for the 
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model, control, diagnosis, and prognosis? This section explores two types of PV
modeling—physical and data-driven models.

3.1. Physical model

The output power of a PV solar cell is ideally determined by the solar irradiance
(G) on its surface, by the cells operating temperature, and by the operating volt-
age, which has to be lower than the open circuit one. This relationship can be
modeled using a single-diode model (SDM). However, to account for electrical
losses, a more accurate model includes a series resistance (Rs) and a parallel re-
sistance (Rp) (Figure 3). Alternatively, a model with two or three diodes can be
employed to represent both the non-ideal behavior of the diode and the optical
losses resulting from diffusion and recombination (Qais et al., 2022). Although
the one-diode model is commonly used nowadays to depict the electrical charac-
teristics of PV solar cells (Dolara et al., 2015), a three-diode model may be more
beneficial when the digital twin requires representation of the optical aspects.

The SDM of a PV cell can involve three to five parameters essential for an ac-
curate circuit representation. When using three parameters, only the diode ideal
factor (A), the diode’s inverse saturation current (io), and the short circuit cur-
rent (isc) are considered, neglecting the electrical losses. On the other hand, the
five-parameter model includes the additional consideration of series resistance
Rs and parallel resistance Rp (Niccolai et al., 2018). The governing equations
for the one-diode model with five parameters are elaborated in (Cabrera Tobar,
2018). Explicit equations and iterative solutions of nonlinear systems are com-
monly employed to determine the five parameters of different PV panels under
non-standard test conditions. However, it is essential to note that parameter esti-
mation errors may arise in either case (Piazza et al., 2017).

Figure 3. One diode-five parameter model of a PV solar cell. (Reprinted from Solar Energy Journal,
Vol. 140, A. Cabrera-Tobar, E. Bullich-Massague,´ M. Aragües-Pe´ nalba,˜ O. Gomis-Bellmunt, ”Capability
Curve Analysis of photovoltaic generation systems”, Pages 255–264, Copyright (2023), with permission
from Elsevier).
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Figure
4.
 I-V and P-V curves of PV solar cell (a) Variable solar Irradiance and Ta
 = 25oC
 and (b) 
Variable ambient temperature and G
=
 1000W/m2. (Reprinted from Solar Energy Journal, Vol. 140, 
A. Cabrera-Tobar, E. Bullich-Massagu´ u´ nalba, O. Gomis-Bellmunt, ”Capability Curve e, M. Arag¨es-Pe˜
Analysis of photovoltaic generation systems”, Pages 255–264, Copyright (2023), with permission from 
Elsevier). 

The I-V and P-V curves can describe the PV array model’s performance 
(Figure 4). On these curves, four values are important: the Isc, the maximum 
power point (Pmpp), the open circuit voltage (voc), and the voltage to get the 
maximum power point at every solar irradiance (vmpp). It is important to men­
tion that the PV solar cell’s power production is also influenced by the ambient 
temperature. The solar cell temperature impacts the values of (voc) and vmpp, 
consequently directly affecting the power operating point. While the gradient 
effect due to temperature is typically mentioned in data sheets, the thermal equa­
tion employed for modeling is often static and used to derive the I-V and P-V 
curves rather than for dynamic modeling purposes. 

In literature, due to the importance of estimating correctly the Tc, several mod­
els have been presented. Santos et al. (2022) discuss 33 correlations found in the 
literature, with key parameters including solar absorbance, electrical efficiency, 
solar irradiance, ambient temperature (Ta) and wind speed. The most widely 
used thermal model for solar cells typically includes ambient temperature(Ta), 
cell temperature (Tc), solar irradiance (G), Normal Operating Cell Temperature 
(NOCT
), and a reference solar irradiance (commonly set at 800 W/m2) (Mark­
vart, 2012). The equation for this model is expressed as follows: 

NOCT
−
20

Tc
=
Ta
+
G
×
 (1)

800


The main drawback of this equation is that it does not account for the heat 
transfer coefficient between the solar cell and its surroundings, which includes 
factors like wind, mounting structure, and specific installation conditions. Fur­
thermore, the equation lacks dynamic considerations (Migliorini et al., 2017). 
The parameter NOCT is typically assumed to be between 40 and 45oC
 for 
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monocrystalline and polycrystalline modules with adequately ventilated mount­
ing structures. However, new applications of PVDC microgrids, such as vertical 
installations in buildings, floating installations, and their use in agrivoltaics,2 may 
have different NOCT values, which will be challenging to identify. 

The influence of solar cell temperature on voltage is typically described by 
a thermal coefficient, which quantifies the variation of Voc
 with respect to Tc. 
Although data sheets often provide this coefficient, estimation error can be as­
sociated with the real operation (Mihaylov et al., 2016). Furthermore, these co­
efficients can change over time due to solar panel degradation, making it neces­
sary to estimate them for accurate solar panel modeling. Piliougine et al. (2021) 
present a practical guideline for estimating these coefficients using I-V curves 
obtained through a tracer method. This allows for subsequent determination of 
the electrical parameters within a specific and controlled temperature range. One 
drawback of this technique is that the PV panel needs to be temporarily out of 
operation to estimate the new coefficients. 

In DT, it is essential to have models that can adapt over time and accurately 
represent the performance of PV panels. Real-time operation is also a require­
ment. Hence, techniques that offer reduced computational time and memory us­
age are necessary. Siddiqui and Arif (2013) present a comprehensive 3D model 
that considers the physical, electrical, and thermal aspects of PV panels. This 
model provides accurate predictions of PV power output and estimates the re­
maining useful life based on thermal and physical performance. However, due 
to the extensive computational time required, 3D modeling is unsuitable for DT 
implementation. 

Physical PV models are utilized to estimate the power production of PV pan­
els by considering their electrical and thermal characteristics. However, these 
models are prone to errors due to the dynamic nature of the parameters involved. 
These parameters can vary over time and are influenced by factors such as am­
bient conditions, operational changes, faults, shadowing, material degradation, 
and dust accumulation, among others (Dolara et al., 2015). As a result, relying 
solely on physical models may not be sufficient for DT applications, especially 
in situations where specific factors like shading play a significant role. In such 
cases, data-driven models can complement the physical models to provide a more 
realistic model. 

3.2.
 Data-driven
models


Data-driven models play a crucial role in the development of DT in various in­
dustries like automation, aerospace, manufacturing, and energy. Also, it is crucial 
in the modeling of Photovoltaics. The data-driven models use available data to 

2Agrivoltaics is the use of PV generators in farms to provide sustainable energy. Its installation should 
not affect the use of land for agricultural activities. Thus, vertical installations are commonly employed. 
For this application, bi-facial PV panels are preferred as they can receive solar irradiance for both sides of 
the PV panels. 
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create a mathematical model aiming to simulate and predict the performance of 
the real application. In contrast with physical models, data-driven models can of­
fer various advantages: (i) accurate representation, (ii) adaptability and flexibil­
ity, (iii) real-time operation, and (iv) forecasting and diagnosis. However, some 
data-driven models (e.g., Deep Learning (DL), Reinforcement Learning (RL)) 
require a large quantity of data for the specific application, high quality of data, 
and significant computational resources (Aslam et al., 2021). 

Real-time modeling is a key aspect of DT as it has to learn and adapt to 
prioritizing computational resources actively. The main techniques used are: 
(i) Online Machine Learning (OMSL), (ii) Recurrent Neural Network (RNN), 
(iii) Kalman Filtering, (iv) Particle Filters, (v) Online adaptive models, (vi) 
Data stream mining, (vii) Ensemble learning, and (viii) Transfer Learning 
(Alexopoulos et al., 2020). In the field of photovoltaics, there are some specific 
challenges that real-time data-driven models have to consider. They have to 
handle non-linearities, weather variability, rapid adaptation due to operational 
changes, and scalability.3 Here, we analyze the main data-driven techniques for 
real-time modeling and their applicability in the field of photovoltaics: 

Online
Machine
Learning:
OMSL uses algorithms to update the model as new 
data arrives, enabling fast learning and prediction times. One of the techniques 
inside this category is Online Sequential Extreme Learning Machines which 
offers a low computational overhead and upgrades the training data sets block 
by block in real-time, making it suitable for real-time application with reduced 
forecast error (Zhang et al., 2018). However, it is not suitable for non-linear 
systems, as in the case of photovoltaics. Nevertheless, Behera et al. (2018) 
used this technique to model the PV power production where the weights 
were updated using Particle swarm optimization (reducing the non-linearity), 
showing a good performance regarding computation time and error. However, 
the same study showed that this algorithm lacks scalability, as the computational 
complexity will increase if the operation characteristics change. 

Recurrent
 Neural
 Network:
 It is suitable for sequential data with temporal 
dependencies as time-series variables. Mellit et al. (2020) compare various types 
of RNN for PV power production, e.g., Long Short-Term Memory (LSTM), 
Bidirectional LSTM (BiLSTM), Gated Recurrent Unit (GRU), Bidirectional 
GRU (BiGRU), and One-Dimension Convolutional Neural Network for various 
time steps with one-step and multiple steps ahead. The study proved that GRU 
and LSTM provided a very good accuracy for a one-minute forecast and one 
step ahead. However, the accuracy of the data-driven model reduces due to 
cloudy days, the quantity of training data for normal and abnormal operations, 
and the degradation of the PV panel. Moreover, RNN techniques can suffer 

3Scalability occurs when the systems scale up in size and complexity (e.g., One more PV string is added), 
increasing the volume of data and computational requirement. 
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from longer training times, making it non-suitable for real-time modeling nor 
for applications where no historical data is available, e.g., new PV installations. 

Kalman
Filtering:
It provides real-time estimation considering measurements, 
uncertainties, and the system’s dynamics. In contrast with the previous tech­
nique, it does not use historical data. Hence, it can effectively handle abrupt 
changes due to the weather conditions causing abnormal operations. However, 
it can cause estimation errors as it cannot handle non-linearity or non-Gaussian 
systems. Nevertheless, Yang et al. (2021) used Kalman-Filtering for the PV 
power prediction, dynamically correcting the model using real-time measure­
ments. But it has an 18% chance of error when a drastic weather variation occurs. 
Thus, a dynamical tuning technique of the Kalman Filter’s main parameters 
could help reduce its error, as explained by Soubdhan et al. (2016). Finally, this 
technique could be computationally expensive for large-scale systems. Thus, its 
scalability for real-time modeling is limited. 

Particle
 Filters:
 They are used for state estimation of non-linear and no-
Gaussian systems. They operate using three steps: predicting, updating, and 
resampling using real-time measurements (Zhang et al., 2023). They are 
based on sequential Monte Carlo methods. In PV, it is commonly applied to 
estimate the PV system’s state, including solar irradiance, dust, temperature, 
and electrical characteristics under variable conditions (see Gao et al., 2022). 
Particle Filters are inadequate for large systems as they affect accuracy and 
computational complexity. Also, it needs careful tuning of the parameters, 
which can be a drawback in PV systems. 

Online
Adaptive
Models:
These models adapt to changing data by continuously 
updating their parameters and capturing system dynamics. Such models can be 
Adaptive neural networks and adaptive regression models. As they continuously 
learn, they offer flexibility when the system’s size increases and there is a 
lack of historical data. For instance, Massidda and Marrocu (2017) used an 
adaptive regression model to forecast the PV power of a new PV power plant 
in Germany. The results showed low errors despite the low number of train­
ing samples and features included in the model. However, the online adaptive 
model is sensitive to noise and can be unstable when quick adaptation is required. 

Data
Stream
Mining:
This technique is suitable for real-time modeling, as it 
can handle high-speed and continuous data streams. It adapts the model ac­
cording to the new data distribution and can detect anomalies. Some techniques 
inside this category are Online Clustering and Stream Regression (Kumar and 
Singh, 2017). For example, online clustering has been used for fault detection 
in PV. Because the ambient conditions affect the PV data, the cluster can have 
arbitrary shapes for each data stream. If a fault occurs, the new cluster will 
differ from the previous one saved in normal operation, and thus the fault can 
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be detected (Cai et al., 2020). It is essential to note that this technique will 
handle large quantities of data. Thus, the computational resources could limit 
the performance of this method. Moreover, in PV applications, the noise in 
the inherent data could impose challenges in this high-speed methodology as 
it is required to preprocess the data. Due to the nature of variation of the PV 
parameters in time, it can cause a change in the underlying patterns, known 
as Concept Drift. Thus, the data stream mining could require updating the 
relationships between the main parameters over time (Lu et al., 2019). 

Transfer
Learning:
Transfer Learning (TL) aims to develop adaptable neural 
networks (NN) for digital twin (DT) applications, even with limited data (Alex­
opoulos et al., 2020). TL leverages past knowledge to enable online learning 
and solve new tasks, making this technique suitable for quick model deploy­
ment despite changing conditions. For example, Sarmas et al. (2022) proposed 
a TL-based LSTM model, demonstrating improved forecasting accuracy with 
only three months of data. Another recent study developed by Schreiber and Sick 
(2022) combines TL with Bayesian regression, enabling accurate PV power pro­
duction forecasts with only seven days of data. 

The comparison of the various techniques mentioned in this section is in 
Tables 1 and 2. RNN, TL, and Online Adaptive Models stand out regarding scal­
ability and computational resource requirements. These techniques excel in man­
aging non-linearities and can adapt to changing conditions. They also offer flex­
ibility in working with or without historical data. Additionally, Particle Filters 
and Kalman Filters are effective in handling uncertainties. Efficiency in com­
putational time is crucial for real-time modeling using data-driven techniques. 
Online machine learning algorithms like Online Sequential Extreme Learning 
Machines (OS-ELM) offer fast learning and prediction times, making them suit­
able for real-time applications with low computational overhead. However, more 
complex models like RNN may require additional computational resources and 
longer training times. Nevertheless, advancements in hardware acceleration (e.g., 
GPUs, specialized chips) and optimization algorithms have helped reduce the 

Table
 1.
 Comparison of data-driven techniques for real-time modeling in Photovoltaic Digital Twin 
(PVDT) applications (Part 1). 

Technique Hist. Data Adaptability Uncertainty 

OMSL Yes High Medium 
RNN Yes High High 

Kalman Filter Yes High Medium 
Particle Filters No High High 

Online Adaptive Models No High Medium 
Data Stream Mining No High High 

TL Yes High High 
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Table
 2.
 Comparison of data-driven techniques for real-time modeling in Photovoltaic Digital Twin 
(PVDT) applications (Part 2). 

Technique Scalability Comp. Res. Non-linearities 

OMSL Medium Low Low 
RNN Medium High High 

Kalman Filter Low Low Medium 
Particle Filters Medium Medium High 

Online Adaptive Models High Low Medium 
Data Stream Mining High Medium Medium 

TL High High High 

computational burden, enabling faster training and inference times for these 
models. 

4.
 The
role
of
the
converter


The DC-DC converter plays a vital role in DC microgrids by stepping up or 
down the DC voltage. One of the key functions of the DC-DC converter is ac­
tive power control within the microgrid. It regulates active power flow between 
different components, facilitating optimal power-sharing and distribution by ad­
justing the converter’s duty cycle. Moreover, the DC-DC converter maintains the 
desired DC voltage level within the microgrid. The converter regulates the volt­
age through adjustments in the duty cycle, ensuring compatibility with the DC 
bus. To enhance control and modeling accuracy, observers and estimators have 
been developed. These techniques employ sensors and advanced algorithms to 
estimate system parameters in real-time, providing the control system with accu­
rate information about the converter’s operating conditions. This allows for better 
control strategies and fault detection. Artificial Intelligence (AI) techniques have 
recently been applied to power electronics and control systems, offering oppor­
tunities to improve further DC-DC converter performance, fault diagnosis, and 
energy management. In this section, we discuss the converter’s role from the ac­
tive power’s point of view, and later we discuss the main modeling techniques 
suitable for DT. 

4.1.
 Active
power
control


Depending on the specific application, the voltage rate, and the power, the DC­
DC converter will have a different topology. Generally speaking, the converter is 
a matrix of switching devices, parasitic resistance due to the cables, a capacitor, 
and an inductance, and it may have a high-frequency transformer to step up the 
voltage and offer galvanic isolation. In a PV system, the converter has the PV’s 
current and DC voltages as inputs. The converter’s inputs and switching state 
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Figure
5.
 Control architecture of a PV DC-DC converter. 

are fed into the controller (microprocessor, FPGA, or analog-based controller) to 
modulate the switches to manage the output power and the DC voltage. 

In a PVDC microgrid, there are two control layers. The upper layer is ruled by 
the microgrid controller, which keeps the DC voltage at certain levels and avoids 
power imbalance. The second layer is the individual converter’s control which 
controls the active power and the DC voltage, taking as reference the values sent 
by the upper layer (Pref
 and Vref
) (Figure 5). 

In the control of converters in DC microgrids, the controller typically 
incorporates feedforward connections from both the input and output to achieve 
the desired power and voltage operating points. When it comes to active power 
control, there are two common approaches: Maximum Power Point Tracking 
and Reference Power Point Tracking. 

Maximum
Power
Point
Tracking
(MPPT):
The MPPT control strategy aims 
to track the maximum power point of the PV system at any given instant. It con­
tinuously adjusts the operating point of the PV system to maximize the power 
output by considering factors such as solar irradiance and temperature. MPPT 
algorithms, such as Perturb and Observe (P&O) or Incremental Conductance 
(Beriber and Talha, 2013; Femia et al., 2012). Other conventional algorithms 
are: constant voltage, temperature gradient, short-circuit current and open circuit 
voltage method, global MPPT, fitting curve, scanning I-V curve, lookup table, 
and others (see Baba et al., 2020). However, these algorithms have the draw­
back of getting trapped on local MPP (LMPP) and have problems finding the 
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global MPP (GMPP).4 In addition, these algorithms have the drawback of low 
adaptability, thus unsuitable for DT. 

Thus, artificial intelligence techniques are being used to track the GMPP, con­
sidering the non-linear characteristics of the P-V curve. Moreover, they can adapt 
in time and can provide a fast response during transient periods of time. Some 
techniques are fuzzy logic control (FLC), artificial neural network (ANN), ge­
netic algorithm (GA), and Cuckoo search, among others (Bendib et al., 2014; 
Borni et al., 2017; Mosaad et al., 2019; Nguimfack-Ndongmo et al., 2022). How­
ever, the main drawback of these techniques in DT is the computing resource 
needs (see Yap et al., 2020). In Table 3, these techniques are compared consider­
ing: accuracy, speed, computing resources, and adaptability. 

Table
 3.
 Comparison of AI-based and Conventional heuristic-based MPPT techniques (L: Low, M: 
Medium, H: High). 

MPPT Technique Accuracy Speed Computing Resources Adaptability 

Fuzzy Logic Control (FLC) M H L/M H 
Artificial Neural Network (ANN) H M H H 
Differential Evolution (DE) M L M/H H 
Genetic Algorithm (GA) M M M/H H 
Particle Swarm Optimization (PSO) H M M/H H 
Cuckoo Search (CS) M M L/M H 
Firefly Algorithm (FA) M M L/M H 
Hybrid Algorithms H M M/H H 
Perturb and Observe (P&O) L H L L 
Incremental Conductance (IC) M H L/M L/M 
Hill Climbing (HC) L H L L 
Constant Voltage L H L L 
Fractional Short-Circuit Current L H L L 
Fractional Open-Circuit Voltage L H L L 
Scanning-Tracking of I-V Curve M M M L/M 
Global MPPT (GMPPT) Segmentation Searching L H L L 
Extremum Seeking Control M H L/M L/M 

Reference
Power
Point
Tracking
(RPPT):
In contrast to MPPT, the RPPT con­
trol strategy tracks a reference power set point determined based on various fac­
tors 6) (Zanatta et al., 2017), including: 

•

Energy Balance: The RPPT controller ensures that the power generated by 
the PV system matches the power consumed by the load or energy storage 
system within the microgrid. It maintains the overall energy balance by 
adjusting the converter’s operation to match the required power levels. 

•

Power Curtailment: Sometimes, limiting the power produced by the PV 
system to a specific reference power agreed upon for the microgrid is nec­
essary. This power curtailment can occur when the PV system generates 
more power than the microgrid can accommodate. The converter adjusts 

4Shadowing conditions in the PV module or PV array provoke multiple MPP called local MPP. GMPP 
is the optimal MPP for the PV modules or array considering the combined effects of shading (Piliougine 
et al., 2022). 
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Figure 6. Active power control modes in a DC-DC converter for PV applications.

its operation to limit the power output to the agreed reference power level
(Cabrera-Tobar et al., 2019).

• Ramp Rate Control: Rapid changes in solar irradiance can cause abrupt
power variations in the PV system, which may impact the stability and
reliability of the microgrid. The ramp rate control function in the RPPT
controller helps the PV system increase or decrease its power output grad-
ually, within a specified rate, to avoid potential damage to the load. This
control strategy ensures smooth power transitions and prevents undesir-
able voltage fluctuations in the microgrid (Cabrera Tobar, 2018; Sukumar
et al., 2018).

By employing RPPT control strategies, converters in DC microgrids can ensure
that the power generation from PV systems aligns with the energy balance re-
quirements, prevents power overflows through curtailment, and manages ramp
rates to maintain stability during changing irradiance conditions. Cabrera-Tobar
et al. (2019) provide insight into active power control considering these strate-
gies.

4.2. Modeling

For DT, the modeling of the power converter has four main objectives: (i) to
detect anomalies in operation due to thermal stress, (ii) to prevent electrical
failures, (iii) to develop preventive maintenance, and (iv) to increase reliability.
Thus, the converter’s modeling should indicate the real counterpart’s thermal
and electrical characteristics, using variables such as input and output voltages
and currents and temperature measurements. Moreover, the digital twin should
cover the physical part, the converter’s control, and switching performance.
This section analyzes the various modeling techniques that could be used in DT,



85 Digital Twin Framework for PV DC Microgrids 

considering computational time and sources, real-time operation, and scalability. 
We consider electrical and thermal models, then black-box models, probabilistic 
twinning, and finalize with observers and estimators. 

Electrical
 and
 Thermal
 Models:
 The modeling techniques for the electrical 
performance of the converters can be divided into: (i) average-value modeling, 
(ii) state-space modeling, (iii) switched mode modeling, and (iv) switched linear 
modeling (Wunderlich and Santi, 2021) (Frances et al., 2018). In the case of 
thermal models for DT, the most suitable are: (i) Lumped Thermal and (ii) 
variations of Finite Element Analysis (see Cavallaro et al., 2019) -Reduced 
Order Models, Proper Orthogonal Decomposition (see Haider et al., 2010), 
Model Order Reduction (see Nahvi et al., 2017). The main characteristics of 
these techniques are summarized in Table 4. The review paper, presented by 
Frances et al. (2018), discusses various averaging techniques as they offer 
fast computation and the representation of the dynamics could be improved 
using non-conventional methods such as Krylov-Bogoliuv-Mitropolsky or also 
floquet-based and cyclic averaging for rapid analysis. 

Black-box
Modeling
Techniques:
In DC microgrids and DC power converters, 
the electrical and thermal models’ accuracy is limited to the manufacturer’s data, 
which is not always available. In this case, black-box modeling represents the 
relationship between the input-output without considering the internal dynamics 
of the converter or its physical components. The main techniques in this cat­
egory are Hammerstein-Wiener Modeling (HWM) and Data-driven modeling. 
HWM combines linear dynamic systems and static non-linearities. In DC-DC 
converters connected to a PV array, the static nonlinearity block could represent 
the voltage-current relationship of the PV array. Meanwhile, the dynamic linear 
block could represent the linear dynamics of the DC-DC converter. It can help 
with electrical or thermal modeling and adapt in real-time. However, it may re­
quire high-quality data to identify the model and to estimate the main parameters 
(Wunderlich and Santi, 2021). On the other hand, data-driven modeling can be 
used as a black box. However, the techniques should have the main characteris­
tic of self-adapting. As discussed, online learning, Kalman, and particle filtering 
can be applied. 

On the other hand, data-driven modeling can also be used for fault detection 
and diagnosis. Rouzbehi et al. (2019) use a local model network (LSM) to iden­
tify the converter dynamics with measured data considering variable modulation, 
switching frequency, input DC voltage, and controlled load. However, modeling 
its response under real data input from photovoltaics in data-driven models for 
DC-DC converters is also necessary. The current variation from the photovoltaic 
array and the MPPT control is essential in the modeling. For instance, Bindi et al. 
(2022) utilize a Multilayer neural network with Multi-Valued Neurons to model 
the DC-DC converter to determine faults using solar irradiance and ambient tem­
perature as input variables. Table 5 compares black-box techniques regarding the 
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Table
4.
 Comparison of electrical and thermal modeling techniques for DC-DC converter suitable for 
real-time and DT applications (E: Electrical model, T: Thermal model, L: Low, M: Moderate). 

Modeling Tech­
nique 

Type Comp. Time Comp. 
sources 

Re- Advantages Disadvantages 

Average-Value 
Modeling 

E L M Fast computation Simplified 
resentation 
dynamics 

rep-
of 

State-Space 
Modeling 

E L M Accurate represen­
tation of dynamics 

More complex im­
plementation com­
pared to average-
value modeling 

Switched Mode 
Modeling 

E M M Captures switching 
behavior and non­
linear effects 

Requires detailed 
knowledge of 
converter operation 

Switched Lin­
ear Modeling 

E M M Simplified rep­
resentation of 
switching convert­
ers 

Limited accuracy 
for nonlinear and 
high-frequency 
effects 

Lumped Ther­
mal Modeling 

T M M Fast computation Limited accuracy 
for spatial temper­
ature variations 

Reduced 
Models 

Order T M M Fast computation Reduced accuracy 
compared to full 
FEA simulations 

Proper Orthog­
onal Decompo­
sition (POD) 

T M M Reduced computa­
tional complexity 

Limited accuracy 
for highly nonlin­
ear systems 

Model Order 
Reduction 
(MOR) 

T M M Reduced computa­
tional complexity 

Limited accuracy 
for highly nonlin­
ear systems 

accuracy, computational efficiency, model adaptability in real-time, data require­
ments, and scalability. 

Despite the importance of applying machine learning for thermal modeling 
in power converters, the literature is limited on this topic. Thermal modeling 
concentrates not only on one device but also on compact packaging with multi­
ple semiconductors. Thus, the thermal performance of one power device is also 
affected by its neighbor. The thermal performance measurement and analysis 
take considerable time due to the interaction of the various power devices. This 
interaction is known as thermal cross-coupling, which is commonly neglected. 
Zhan et al. present an ANN to model this interaction with limited data using 
the thermal and cooling curves of the devices. The use of this model only takes 
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Table
5.
 Comparison of black-box modeling techniques for DC-DC converters. 

Technique Accuracy Comp. Effi- Adaptability Data Req. Scalability 
ciency 

Hammerstein- H M M L-M M 
Wiener Model 
Online Learning H M H H H 
Kalman Filtering H H H H H 
Particle Filtering H L-M H H M-H 
Deep Neural Net- H L-M L-M H M-H 
works 
Multi-Valued Neu- H L-M L-M H M-H 
ral Network 
Support Vector M-H H L-M H M-H 
Machine 
Local Model Net- H M H M-H M-H 
work 

100 seconds and with an error of less than 1oC. These results are promising for 
including thermal modeling of power converters for real-time simulation (Zhang 
et al., 2020). 

Probabilistic
Twinning:
According to Milton M. et al., probabilistic twining 
uses a probabilistic simulation model with random variables and compares it 
with its physical part to assess if the converter is operating inside its probable 
behavior (Milton et al., 2020). Probabilistic modeling helps to model the system 
considering uncertainties (stochastic parameters) that affect the converter’s 
operation. These uncertainties can be peak current, manufacturing defects, and 
other disturbances. The probabilistic modeling could be time-consuming, but its 
application in a Field Programmable Gate Array (FPGA) could be suitable for 
real-time simulation for small converters. 

Observers:
The main purpose of observers is to estimate parameters and the sys­
tem state, taking into account the input and output measurements from the real 
application. They can be used to detect anomalies by monitoring the system’s 
behavior or to estimate internal variables that are not measured. In DT, this tech­
nique could help to predict, control and optimize the operation of the PVDC. For 
example, observers can be built to model the behavior of the power converter. 
It could focus on electrical or thermal parameters to provide a relationship be­
tween the input and output variables (see Cabrera-Tobar et al., 2018). Stella et al. 
(2018) create an observer based on a linear state space equation. The input of the 
steady state model is the solar irradiance, ambient temperature, and load’s cur­
rent. The output is the DC voltage at the terminals of the converter. However, it 
does not consider the thermal model of the converter and its effect on the op­
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eration. Andresen et al. (2016), developed an observer using as input the load 
current, the DC voltage, the state of the converter, and the case temperature. The 
model relates the junction temperature with the power losses, the thermal ca­
pacitance, and the thermal resistance. Although this technique has good results, 
the parameters of thermal capacitance and thermal resistance could change over 
time, and they should also be estimated and updated. 

5.
 Supervisory
control
and
management


Incorporating a DT into a supervisory control and data acquisition (SCADA) 
system is crucial for enhancing the system’s decision-making capabilities. By 
analyzing historical data and current performance and predicting the system’s 
state of health, the DT can effectively optimize energy management and utiliza­
tion and maintain a PV system’s healthy operation. The main layers of a SCADA 
are: (i) field layer (sensors), (ii) data acquisition and data storage, (iii) real-time 
monitoring, (iv) plant control layer, and (v) executive control layer (Hu Guozhen 
et al., 2009) (Figure 7). 

Figure
7.
 Architecture layers of a SCADA with and without a DT. 

In the field layer, we find all the sensors and actuators, e.g., breakers, wind 
speed sensors, voltage, and current sensors. The second layer is the data acquisi­
tion and the data storage from the field, which can be stored in the cloud, and the 
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DT can access it anytime. The control layer is the common management of the 
PVDC, considering energy management, energy optimization, and keeping the 
normal operation of the PVDC. The next layer is real-time monitoring, where 
a Human-Machine Interface is commonly used to monitor the main parameters 
and state of the PVDC. For instance, it can show the battery’s state, the PV power, 
and the power consumption. This interface depends on the application and the 
amount of data available to the user. In contrast, an augmented reality interface 
could be added in the DT to see the electrical and thermal performance of the 
various devices (Pargmann et al., 2018). Executive management is commonly 
added so that the operator can act in case of an emergency, or for maintenance 
purposes, like the disconnection of the load. However, the executive management 
with the DT could be enhanced by providing prognostics and health management 
(PHM). This service can provide real-time and predictive maintenance of the PV 
array and the DC-DC converter. It can have three layers: (i) fault detection and 
diagnosis, (ii) remaining useful life analysis, and (iii) control actions. 

5.1.
 Fault
detection
and
diagnosis


DT has been developed to provide a prognosis of the device’s lifetime, its op­
eration characteristics, and its sensitivity to failure. Thus, the DT’s controller 
must constantly compare the physical part with its digital counterpart. Any dif­
ferences regarding voltage, current, and power could indicate variations of the 
digital model due to operation and aging or a failure in some components. Thus, 
after the digital model is created, an analysis of the parameters has to be de­
veloped to detect the reason for any anomaly. The correct fault diagnosis can 
enhance the system’s operation by tracking down the cause and clarifying the 
fault as soon as possible, which helps reduce maintenance in the long run. 

Conditioning monitoring, fault diagnosis, and fault detection are the main as­
pects of failure management. In the case of photovoltaics, the fault diagnosis of 
the PV system is commonly developed in two sections, one considering only the 
PV panel and the other just the converter. In the case of PV panels, failures may 
occur due to soiling, shading conditions, cell breakage, bypass diode failure, 
interconnection faults, internal faults, hot spots, and degradation (Chine et al., 
2016). In the converter, the failures could occur due to the passive elements such 
as the capacitor and the inductor or the state of the power converter devices or 
related to the controller and its sensors. For instance, Leva et al. (2019) present 
a generic PV module fault diagnosis using micro-inverters and comparing the 
real output power with the forecasted one. Thus, a deviation from the measured 
and forecasted values is evaluated in real-time and offline for further inspection. 
However, they do not detect the reason for the fault nor the effect of the microin­
verter used. 

Preprint et al. (2021) studied in detail the fault diagnosis and detection for the 
DC-DC converter. The authors apply the following data-driven techniques: (i) 
principal component analysis, (ii) multilinear principal component analysis, (iii) 
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uncorrelated multilinear principal component analysis, (iv) Fast Fourier Trans­
formation preprocessing-based multilinear principal component analysis, and 
(v) uncorrelated multilinear principal component analysis. The faults diagnosed 
were related to the inductance and capacitor failures detected by the voltage and 
current values variation. 

However, in Digital Twin, it is necessary to have a holistic point of view be­
tween the PV panel and the converter. In the case of ac microgrids, Jain et al. 
(2020) studied the fault diagnosis of PV systems (PV panel and converter). The 
authors propose a methodology to detect ten different types of faults by evalu­
ating a residual error vector evaluated between the estimated and the measured 
output. However, the main drawback of the proposed technique is that the faults 
are detected considering a specific reference value of the current at the various 
points of the PV system, but there is a lack of analysis if these references will 
change in time due to operation or the effect of aging. 

5.2.
 Remaining
useful
life


The remaining useful life (RUL) is a technique to estimate the number of years 
with a specific component to function according to the operating parameters 
given by the manufacturer, the monitored data in real-time, and the historical 
data set. It estimates the degradation trend, the reliability, and the life expectancy 
(Zhao et al., 2021). The RUL analysis can be developed using statistical model­
ing and data-driven techniques. On the one hand, the data-driven methods aim 
to learn and project the future to estimate the degradation. Support Vector Ma­
chine (SVM) (see Jia et al., 2020) and ANN (see Venkatesan et al., 2019) are 
commonly used for this purpose. Still, it needs a large quantity of data, includ­
ing the possible degradation trajectory of the component. Moreover, the training 
and the learning occur offline, and it does not consider the changes over time, 
which is unsuitable for a digital twin in the case of photovoltaics as it is under 
dynamic environmental conditions (Zhong et al., 2023). On the other hand, sta­
tistical modeling can incorporate physical degradation and time variation into 
the model. The main technique is the autoregression model, and its variations as 
moving average (see Liu et al., 2023) and Gaussian regression (see Zhou et al., 
2018). 

Laayouj et al. (2016) use a Relevance Vector Machine (RVM) for RUL in a 
Photovoltaic system, as it has a high learning ability based on statistical prob­
ability learning. The challenges in RUL’s prediction are the computation time 
and the amount of data necessary to perform an acceptable RUL in a dynamic 
environment. For instance, using Fuzzy evaluation to improve the initial compu­
tational efficiency together with Gaussian Process Regression which can lead to 
high-dimension problems efficiently, can be a good solution for this type of ap­
plication (Kang et al., 2020). Moreover, Liu et al. (2023) presented the semipara­
metric modeling of PV to determine the degradation based on dynamic covariate 
data such as temperature, solar irradiance, and UV rays combining the degra­
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dation model with multivariate Bernstein bases. However, the main challenge is 
forecasting the main parameters in the long term to provide an accurate RUL. 
Moreover, the ambient conditions’ effect on the PV array and the converter is 
essential to identify and include in the RUL’s prediction model and the operation 
modes. So far, there is no RUL analysis of the PV array together with the power 
converter as both depend on each other, and a holistic point of view could help 
to deploy an enhanced and more accurate RUL. 

5.3.
 Decision-making


An important aspect of Digital Twin is the decision-making after the RUL and 
Fault diagnosis is developed. This is a new trend due to the IoT and Energy 4.0 
development. Thus, novel decision-making can come in the coming years. Here, 
we will analyze the current industry decision-making paradigm and how it can 
be applied to PVDC. 

Considering the real-time operation, its predictions, and future performance, 
DT can generate maintenance recommendations, manage the power converters 
accordingly, schedule PV surface cleaning, and replace capacitors and diodes 
before the failure happens. Also, it can help identify large-scale installations 
the fault PV panel. Thus, the decision-making process can be divided into three 
categories: (i) Maintenance Planning and Scheduling, (ii) Reliability and cost 
decision-making, (iii) Optimization management and control (Bousdekis et al., 
2019). 

•

Maintenance Planning and Scheduling: this category includes data anal­
ysis of the current operation, its degradation, plus the fabric parameters. 
It can estimate the better dates to perform maintenance, like cleaning and 
replacing the converter’s fans, capacitors, diodes, and breakers. Adequate 
maintenance planning helps to increase the life expectancy and efficiency 
of the PV system. Thanks to DT, this can be automatically done. 

•

Reliability and Cost Decision-making: In recent years, the semiconductors 
and chips supply chain suffered from extensive waiting time. Knowing 
the power converter’s RUL in the DT paradigm could help buy the new 
device in advance without affecting the system’s real-time operation. The 
same can happen with the photovoltaic panels, where the DT can inform 
the provider of a failure and its consequences on the degradation of the 
components and thus its replacement in a certain period of time. However, 
this should go hand in hand with the cost estimation 

•

Optimization Management and Control: due to degradation, some active 
power control can be triggered to reduce the damage to the PV system. 
Also, the energy management system could deactivate a PV string or a 
power converter in a large installation, as this could cause further failures. 

The decision-making should take into consideration these categories but also 
uncertainties. Thus, multi-objective optimization can help with the decision 
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problem. In industry, optimization is based on maximizing reliability under min­
imal operational cost. In this sense and considering uncertainties, multi-objective 
fuzzy optimization (see Kaplan and Can, 2021), two-stage optimization with 
multi-objective decision-making using genetic algorithms (see Li et al., 2009) 
could be a good approach for decision-making. Van Horenbeek and Pintelon 
(2013) proposed a dynamic schedule considering policies and the degradation 
of various components. However, in the field of PV, there is a lack of studies 
considering predictive maintenance, reliability, cost, and supply chain schedules 
(Peinado Gonzalo et al., 2020). With the integration of big data, IoT, and en­
hanced modeling techniques, the decision-making step in PVDC should improve 
in the coming years. 

6.
 Challenges
in
implementing
digital
twins
for
PV
microgrids


Digitalizing PVDC microgrids may offer various advantages, including preven­
tive maintenance, enhanced circular economy, and increased efficiency. How­
ever, the path to arriving at a full digitalization may encounter various challenges 
regarding costs, data quality and availability, data privacy, accuracy and reliabil­
ity, and connectivity. In this section, we analyze these challenges, focusing on 
paying the way for a digital PVDC microgrid. 

•

Operational Cost: In PV systems, the average operational cost for utility 
PV power plants in the US goes from 10 to 18 USD/kW/year, and in Eu­
rope, the cost is about 10 USD/kW. However, about 70% of the cost is due 
to preventive maintenance and cleaning (IRENA, 2020). This system’s 
digitalization could help reduce the operational cost by 10 % (Clifton 
et al., 2023). However, implementing digital twins for PV can result in 
significant upfront costs and ongoing expenses that still need to be ana­
lyzed, which can cause a delay in digital twin adoption. 

•

Data Quality and Availability: Data quality and availability are fundamen­
tal to the success of a digital twin. Insufficient, inaccurate, or outdated 
data can lead to erroneous predictions and undermine the digital twin’s 
effectiveness. Thus, it is necessary to develop techniques to achieve data 
quality by detecting incorrect data in real-time. For instance, Rodrı́guez 
et al. (2023) proposed a methodology to detect incorrect data from each 
of the sensors of their microgrid using artificial intelligence and analyzing 
it when there is an update between the physical and digital world. Their 
solution does not involve real-time analysis and integration between the 
physical components and the digital platform. Similar solutions are time-
consuming and need high computational resources. Thus, the challenge is 
finding solutions to guarantee the data quality of the PVDC microgrid in 
real-time without compromising the speed or the computational resources. 

•

Data Privacy and Security: The use of digital twins in PV microgrids in­
volves collecting and analyzing large volumes of sensitive data from the 
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generator and the user. So far, the protocols used for communication for 
this sensitive data are vulnerable to hacking, causing not only a leak of 
data but also the malfunction of the microgrid. It has been reported that 
cyber-attacks are more likely to target control systems to cause harm (Plėta 
et al., 2020). For this, it is necessary to address protocols that ensure quick 
communication and offer robust security, protecting data privacy and of­
fering energy security. 

•

Accuracy and Trustworthiness: The accuracy and reliability of a digital 
twin depending on the calibration and validation against real-world per­
formance and the digital counterpart. Thus, dynamic training and online 
autonomous calibration can be necessary. In PVDC microgrids, there is 
no reported study, but in the case of wind power plants, there are some 
calibration proposals to gain accuracy and trustworthiness (Song et al., 
2022). 

•

Dependency on Connectivity: Digital twins heavily rely on a robust and 
reliable network infrastructure to facilitate real-time data transmission and 
remote control. In locations with limited connectivity or unreliable net­
works, ensuring uninterrupted communication can be a limiting factor. 
According to the European Union Agency for Cybersecurity (ENISA), 
Europe experienced 168 reported telecommunication incidents in 2021 
that caused 5,106 million user lost hours due to natural disasters, malware 
and system failures, and human errors (Malatras et al., 2021). 

Addressing these challenges is crucial for organizations considering the adop­
tion of digital twins for PV microgrids. By conducting thorough cost-benefit 
analyses, implementing robust data privacy measures, and employing reliable 
data validation processes, PVDC microgrids can maximize the potential bene­
fits while mitigating risks. Therefore, it is paramount to continuously evaluate 
the digital twin’s performance and adaptability to ensure its sustainability and 
effectiveness. 

7.
 Conclusions


This chapter discussed the PVDT for DC microgrids. It covered its framework, 
the PV panels’ modeling techniques, the converter’s role, and the supervisory 
control and management system. The following conclusions can be drawn: 

•

Due to the development of IoT, the integration between the Physical layer 
and the digital one can be possible. However, harmonizing the standards, 
the protocols, and the cybersecurity are currently a challenge to overcome 
in the communication layer. This can permit the response in an emergency, 
protect users’ data, and enhance the reliability of the PVDC microgrid. 

•

This chapter presents various modeling techniques for PV panels and the 
DC-DC converter from physical to data-driven modeling that can be ap­
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plied in real-time simulation and Digital twin framework. However, there 
is still a need for real applications using techniques that can adapt in the 
time for electrical modeling and thermal modeling. The two components 
degrade due to the operating condition, specifically the temperature. If 
the DT has the main objective of failure detection, then special attention 
should be given to thermal modeling. 

•

The converter is an integral part of the PVDC microgrid; without it, there 
cannot be an interaction between the PV panel, the load, and other energy 
generators. It helps to control the DC voltage and the active power and 
performs its internal control to operate the switches devices like IGBT or 
MOSFET. It can also help reduce the degradation of the various compo­
nents by limiting the active power when quick solar irradiance variations 
occur or when the ambient temperature is high. The active power control 
not only focuses on the energy demand but also the DC bus and the power 
stability so the load or the other components of the DC microgrid do not 
suffer any damage due to solar irradiance variations. 

•

The integration of DT into the architecture of a SCADA enhances the su­
pervision, monitoring, and management of the PVDC microgrid. From 
augmentative reality interface to health, management helps with decision-
making and enhances control. It is necessary to improve the decision-
making techniques for PVDC, as it can go from scheduled maintenance 
to a change of the power point of operation. However, fault detection and 
RUL lack a holistic analysis considering the PV panel and its converter. 
Any variation or fault in the PV panel could affect the operation and also 
the RUL in the converter. Thus, researchers and stakeholders should con­
sider the two components as a unit to perform a better and enhanced real-
time analysis. 

•

The chapter extensively explores the various challenges that PVDC micro-
grids may face as they progress toward future implementation. A crucial 
step in this process is conducting a comprehensive cost analysis to deeply 
understand their economic viability, thereby fostering greater stakeholder 
engagement and investment in DT for PVDC microgrids. Additionally, 
the chapter delves into the research and data policy challenges, addressing 
critical aspects such as data privacy, data quality, and the necessity for real-
time calibration. Notably, the wind power sector has already addressed 
these challenges, whereas PVDC microgrids are still nascent, necessitat­
ing focused efforts to overcome these obstacles. Therefore, stakeholders, 
researchers, and policymakers should proactively tackle these challenges 
to help the integration and management of DT for PVDC microgrids. 
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1.
 Introduction


Over the past twenty years, advancements in renewable energy sources such as 
distributed generation units, as well as the implementation of energy storage sys­
tems, flexible AC transmission systems, active demand management, AC micro-
grids, and innovative control strategies relying on information and communica­
tion technologies (ICTs), have enabled energy professionals and researchers to 
reimagine traditional power systems. Microgrids represented one of the key tech­
nology in this change. Despite some partially-solved technical issues, with more 
distributed generation units that generate DC power, DC-based microgrid sys­
tems could soon be the right candidates for the future energy systems (Justo et al. 
(2013)). Microgrids offer an excellent solution for areas in the world where the 
primary grid remains underdeveloped. However, if a user has access to a robust 
distribution grid, they will likely operate primarily in a grid-connected mode, 
but can still utilize the islanded mode in the event of main grid issues to enhance 
resilience, maintain power continuity, or gain economic benefits. Constructing 
suitable infrastructure is a crucial practical challenge in harnessing the potential 
of DERs and controllable loads. Consider a scenario where a company possesses 
numerous properties or plots of land, each containing various generators and 
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loads. Connecting these areas with dedicated cables may prove impractical. As 
a result, power systems are moving towards coordinating distributed generation 
and loads utilizing public infrastructure for both communication and power sup­
ply purposes. One of the main examples of these technologies is represented by 
Virtual Power Plants (VPP). Virtual Power Plants are a concept in the energy 
industry that refers to a network of decentralized power generating units that are 
interconnected and managed as a unified system. Rather than relying on a single 
large power plant, VPPs harness the collective capacity of various smaller, dis­
tributed energy resources to function as a flexible and dynamic power generation 
and distribution system. 

The main contribution of this paper is to analyze the evolution of the tech­
nologies employed to control power distribution systems from a cybersecurity 
perspective. This includes the evaluation of the attack surface with respect to 
novel network architectures, and the analysis of the potential impact of attacks 
on these systems. Also, this work provides a preliminary framework to deploy 
proper cybersecurity monitoring of these infrastructures. This work is structured 
as follows. Section 2 analyzes the state of the art regarding cybersecurity issues 
in the smart grid, with a particular focus on power distribution systems. Section 3 
discusses the evolution of distribution power systems from microgrids to recent 
technologies such as Renewable Energy Communities (REC) and Virtual Power 
Plants (VPP). Section 4 analyzes the network architectures that are employed to 
properly control these systems, evaluating the whole attack surface and the risks 
associated with attacks on these infrastructures. Section 5 proposes a preliminary 
framework to implement a proper cybersecurity monitoring for these infrastruc­
tures that should be included into the enterprise event management of energy 
utilities. Finally, in Section 6 conclusions are drawn. 

2.
 Related
works


The issue of cybersecurity is becoming increasingly important in the power sec­
tor. This study focuses on a specific area within the smart grid environment. 
Several works in literature have taken into account the problem of cybersecurity 
in the smart grid environment, such as in Wang and Lu (2013) and in El Mrabet 
et al. (2018). The use of information and communication technologies is becom­
ing increasingly prevalent in the rapidly evolving distribution grid environment. 
Critical components of the smart distribution grid are the Distributed Energy Re­
sources (DER). The use of DER is on the rise, with an increase in the number 
and variety of stakeholders and the complexity of interactions between them. 
This complexity leads to serious security threats to the power grid. A hierarchi­
cally structured model is proposed in (NESCOR), based on five levels: 

•

Level 1 Autonomous DER Generation and Storage: It includes DER sys­
tems interconnected to the utility grid that usually operate autonomously 
according to pre-established settings. 
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•

Level 2 Facilities DER Energy Management: A facility DER management 
system manages the operation of the Level 1 DER systems, modifying the 
settings of the autonomous DERs in order to coordinate them at a local 
level. 

•

Level 3 Utility and Retail Energy Provider Operational Communications: 
Extends beyond the local site to allow utilities to request or require DER 
systems to take specific actions. 

•

Level 4 Distribution Utility Operational Analysis: Is represented by util­
ity applications that monitor the power system and assess if efficiency, 
reliability, or market advantage can be improved by having DER systems 
modify their operation. 

•

Level 5 Transmission and Market Operations: It involves Transmission 
System Operators, which may need to exchange information about the ca­
pabilities and operational status of larger DER systems and/or aggregated 
DER systems. 

This model can be generically applied to all the technologies described in the 
next sections but does not specifically takes into account the most recent ad­
vancements in power distribution grids. Smart inverters are among the most crit­
ical components for the optimal functioning of different technologies such as 
Energy Communities. Tuyen et al. (2022) present a comprehensive review of the 
system structure and vulnerabilities of a typical inverter-based power system in­
tegrated with distributed energy resources. cyb propose a framework to safeguard 
DER from cyberattacks to maintain the stability and reliability of the grid. 

Cybersecurity monitoring for the smart grid is a lively field of research. 
Radoglou-Grammatikis and Sarigiannidis (2019) present a comprehensive sur­
vey of Intrusion Detection and Prevention Systems designed to protect the Smart 
Grid environment. Still, even well-established solutions have to be adapted to 
novel technologies, and state-of-the-art lacks of solutions specifically designed 
for some of these technologies such as energy communities or virtual power 
plants. Security Information and Event Management systems have been widely 
deployed in several sectors, including the smart grid (Radoglou-Grammatikis 
et al. (2021)), since they are powerful tools to prevent and detect cyber-attacks 
(González-Granadillo et al. (2021)), but also to react, thanks to the integration 
of the SIEM with others tools such as the Security Orchestration Automation 
and Response (SOAR). The integration of Operational Technology-related data 
to obtain complete visibility of the industrial plants is still an ope issue; in par­
ticular, it is not clear how to integrate the data coming from the technologies 
discussed in the next sections. To the best of our knowledge, this is the first work 
addressing the issue of cybersecurity monitoring for novel technologies in smart 
power distribution systems. 
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3.
 From
microgrids
to
virtual
power
plant


With the term Microgrid, we usually refer to a local electrical grid with defined 
electrical boundaries, acting as a single and controllable entity. Microgrids can 
be grid-connected, or isolated from the main grid. In the first case, the micro-
grid can decide to operate both in grid-connected mode, so that the main grid 
provides the frequency and voltage reference, or islanded, to reach economic or 
technical goals. In the second case, the microgrid has the only option to work 
as an isolated entity, providing all the necessary regulation of the grid. Isolated 
microgrids represent a great technology for those areas of the world in which 
the main grid has not been yet properly developed. On the contrary, if an user 
disposes of a connection to a strong distribution grid, it will probably operate 
mainly as grid-connected for most of the time, but can still make use of the is­
landed mode in case of problems on the main grid, improving the resilience and 
the power continuity, or to have an economic advantage. An economic advantage 
can be pursued through a smart coordination of distributed energy resources and 
controllable loads. For this reason, Energy Management Systems (EMS) are an 
extremely important field of research. EMS can collect different types of data, 
including weather forecasting, the current price of energy, habits of the users and 
so on, in order to make predictions and send commands to dispatchable gener­
ators and controllable loads. The variety of application fields is huge: the main 
devices include Electrical Storage Systems, Electric Vehicles, Heat Ventilation 
and Air Conditioning (HVAC) systems, but also household appliances. 

One of the main practical issues for exploiting the potentialities of DERs and 
controllable loads is to build proper infrastructure. For example, it is possible 
that a company owns multiple buildings or land, in which it spreads different 
generators and loads, but it is practically unfeasible to put dedicated cables be­
tween these areas. Another example is vehicle charging stations: a company may 
own charging stations over a huge area, but cannot build a dedicated communi­
cation infrastructure between these devices and the EMS. Still, if these devices 
can coordinate themselves, this would produce advantages both for the end users 
and the distribution and transmission operators. The trend in power systems is 
therefore to coordinate distributed generation and loads by using the public in­
frastructure, both from the power and communication perspective. 

From power perspective a first step in this direction was done through Ac­
tive Distribution Systems (ADNs), which have evolved from traditional electric 
distribution networks. ADNs are implemented to address technical challenges 
arising from Distributed Energy Resources (DERs), such as uncertainty related 
to changes in distributed renewable generation. The variability of DERs can re­
sult in sudden and unpredictable effects on load variation, disconnections, and 
increased risks of overcurrent, short circuit, and out-of-range voltage. ADNs are 
considered active as they employ systems, such as Supervisory Control and Data 
Acquisition (SCADA) and Distribution Management Systems, to observe and 
control DERs and prevent such technical issues. Distribution network automa­
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tion includes control center information systems, substation automation, and cus­
tomer interfaces like Automated Meter Reading (AMR) energy meters. ADN 
operations involve collecting and utilizing a wide range of information from var­
ious stakeholders in the distribution system, including transmission system op­
erators, energy retailers, customers, and local communities. A second step was 
the introduction of a new market actor, the aggregator, in the energy environ­
ment. Aggregators are responsible for aggregating distributed energy resources 
connected in a particular area of the electrical grid and coordinating them to 
maximize economic returns, for example by providing balancing services to the 
transmission grid or selling energy during peak demand periods. To coordinate 
DERs, aggregators use software tools called Virtual Power Plants, which allow 
them to receive real-time data from field systems and send control signals to en­
ergy resources. Similar to microgrids, virtual power plants use EMS to calculate 
the optimal dispatch of DERs. The EMS collects information from third-party 
sources via the internet, such as weather forecasts or energy market prices, and 
uses the internet to communicate with electricity market operators. 

We are witnessing a major paradigm shift where the controls and logics previ­
ously used in microgrids are now being applied to DERs connected to the public 
distribution grid through VPPs, creating a system of devices that collaborate with 
each other through virtual connections. 

An overview of this change of paradigm is shown in Figure 2. In the first case, 
the boundaries of the systems are clearly defined: the power system has one or 
multiple Points Of Delivery (POD), usually equipped with a smart meter, that 
allow the exchange of energy between the microgrid and the DSO; also from a 
communication point of view, a microgrid utilizes a SCADA systems, usually 
based on wired communication, whose architecture, following the well-known 
models such as the Purdue Model, identify a single communication with the 
external internet, being protected by a firewall. In the second case, the devices 
exchange energy through the public grid after establishing an agreement with the 
DSO, and communicate by using the public internet; in this case, the EMS can 
run on cloud platforms managed by third-part entities. 

Two common examples of commercial technologies that follow this new 
paradigm are Commercial Virtual Power Plants and digital platforms for energy 
communities. 

3.1.
 Renewable
energy
communities


RECs derives from the Renewable Energy Directive (2018/2001/EU) of the Eu­
ropean Union, that proposes a legal framework for the development of renewable 
energy sources and citizen participation in the energy transition through two new 
instruments: collective self-consumption schemes (CSCs) and renewable energy 
communities (RECs). In practice, an Energy Community is an association that 
produces and shares renewable energy autonomously by using the public distri­
bution grid, that can be composed of local citizens, businesses, public adminis­



108 IoT Enabled-DC Microgrids 

Figure
1.
 The evolution of power and network architectures from microgrids to smart power distribution 
systems. 

trations, small and medium-sized enterprises, etc. Basically, any public or private 
entity can become a member. Once the generators are up and running, the Com­
munity can request to the DSO the incentives established by law for the shared 
energy, that is defined as energy consumed by members at the same time the 
energy is produced. In order to function properly, RECs make use of dedicated 
software platforms, that collect data, such as real-time electricity consumption, 
and control elements such as heat pumps and battery energy storage systems. The 
role of these platforms include dashboards for administration, real-time moni­
toring of REC and members, including the computation of treasury, and con­
trol though and EMS. Pereira et al. (2021) propose a Web-based platform for 
the management of energy communities for managing end-users’ coordination, 
demand-response and energy tarifs. Chudoba and Borges (2022) discuss the role 
of scalable software solutions to maximize the value of distributed green assets, 
including distributed generation and HVAC. Moreover, we can already can find 
several commercial solutions for such platforms, such as in ROS and in HIV As 
discussed, it is not possible to build a dedicated infrastructure for the communi­
cation as well. The communication between the platform and the user must be 
done through the public internet. In this sense, we can say that the system EMS 
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- members of the REC is, from a control point of view, a SCADA system built 
on the public network. 

3.2.
 Commercial
virtual
power
plants


Commercial Virtual Power Plants (CVPPs) are digital platforms used by aggre­
gators to manage a portfolio of medium and small Distributed Energy Resources 
(DERs), connected to the same portion of the grid; CVPPs allow DERs to par­
ticipate in energy and balancing services markets in an aggregated form as if 
they were a single large power plant connected to the transmission grid. The ag­
gregation of multiple DERs allows the minimum capacity thresholds required to 
participate in the wholesale energy market to be reached, and the diverse nature 
of the aggregated DERs reduces the risk of imbalance associated with a single 
resource (e.g., inaccurate forecasting for photovoltaic and wind turbine plants or 
failures of controllable resources such as storage or microturbines). CVPPs have 
an Energy Management System (EMS) that calculates the optimal energy quan­
tities and prices to offer in energy and/or balancing markets, and the generation 
and/or absorption schedules that the controllable DERs must follow (Pudjianto 
et al. (2007)). 

The EMS takes as input data coming from different sources, including: the 
marginal cost and operational parameters of individual DERs, internal forecast­
ing algorithms used to forecast market prices and non-dispatchable renewable 
generation, data received from both field devices equipped with DERs (i.e., smart 
meters), third-party web services (such as market operator transparency plat­
forms where auction results and prices are published), weather forecasting data 
shops (where weather data is used to forecast both non-dispatchable generation 
and price forecasting) and platforms to participate in market sessions (where the 
CVPP submits offers) (Rouzbahani et al. (2021)). 

In the same portion of the grid, there may be DERs operated by different ag­
gregators and therefore by different CVPPs, but the responsibility for operating 
the grid without technical problems remains with the DSO. The DSO, in turn, 
can use a VPP, called Technical Virtual Power Plants (TVPPs), to verify that the 
dispatching programs of the CVPPs do not cause technical problems to the elec­
trical grid. TVPPs require information such as network topology and network 
flow history to perform the necessary checks, so they are operated by DSOs and 
not by aggregators. In the event that the DSO uses a TVPP, the aggregators oper­
ating in the portion of the grid must provide a communication channel between 
their CVPP and the DSO’s TVPP (Pourghaderi et al. (2018)). 

A real-life example of this technology is Tesla’s VPP, used in the summer of 
2022 in California to address grid instabilities created by heatwaves. Tesla used 
a digital platform to aggregate and coordinate Powerwall batteries installed in 
their customers’ homes to offer balancing services to stabilize the electrical grid. 
Tesla’s VPP was able to aggregate more than 4,500 customers with photovoltaic 
systems and Powerwall batteries, offering flexibility services to the Californian 
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system operator for powers of more than 30 MW, (Tes). Following the California 
experience, the ”Energy Efficiency Summer Reliability Program” was launched 
in the United States, allowing DERs to offer balancing services to the grid. Fol­
lowing the launch of the SUNRUN program, a company that sells and installs 
domestic photovoltaic and battery solutions started a VPP in the portion of the 
electrical grid operated by Independent System Operator - New England (ISO­
NE), which promises to aggregate and coordinate more than 7,500 residential 
home solar and battery systems, creating a virtual power plant capable of dis­
charging 30 megawatts of clean energy back to the grid, (Sun). 

In Europe, most states allow aggregated DERs to participate in the balanc­
ing services market. A complete map of the states that allow participation and 
the constraints they impose is provided by Smart Energy Europe (SMARTEU). 
Companies that sell and operate VPPs include NextKraftwerke that operates in 
seven european country and manage portfolios with more of 2500 MW of DERs, 
(Kra). 

4.
 The
fading
of
network
perimeter
and
novel
cybersecurity
issues


4.1.
 The
change
in
network
architecture


Due to this change of paradigm, the methods and technologies that are neces­
sary to protect these infrastructures from cyberattack must completely evolve. 
Microgrids are usually based on traditional SCADA systems. Cybersecurity of 
SCADA systems has been broadly investigated in the last past years, and has 
strong foundation (Colbert and Kott (2016)). With the advances in the sophis­
tication of attacks, research is still ongoing. Yadav and Paul (2021) present a 
review of architecture and security of SCADA systems, discussing the evolu­
tion from monolithic systems to IoT-based systems, a taxonomy of the attacks, 
and comparative analysis of state-of-the-art IDSs and SCADA testbeds. Also, 
an important issue is how to decline cybersecurity countermeasures to specific 
domains of applications, respecting its peculiar operational requirements. Gag­
gero et al. (2021) discuss the latest advancement in microgrid cybersecurity re­
search, identifying 5 main fields: the application of encryption and authentica­
tion techniques in common industrial protocol, that has been standardized in the 
IEC 62351; the use of Software Defined Networking in order to improve the re­
siliency of the control system by dynamically re-configuring the network after 
the detection of faults and/or cyberattacks; the advancement in Host-Intrusion 
Detection Systems for real time operating systems and time-critical devices in 
the industrial environment; the physics-based anomaly detection approach for 
cybersecurity monitoring in the industrial field; the resilient control strategies 
that can be implemented in DERs, especially in the case the microgrid has to 
operate in islanded mode. 

The core concept for designing SCADA systems is segmentation (Stouffer 
et al. (2011)). The aim of network segmentation is to minimize the possibility to 
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Figure
2.
 The evolution of control networks in smart distribution systems. 

access to sensitive information for those systems and people who don’t need it 
by using different techniques and technologies depending on the network’s ar­
chitecture and configuration. In this sense, a SCADA system must be designed 
with clear boundaries and points of access to/from external networks, and al­
ways protected through firewalls and other technologies for perimeter defense. 
A classical design reference has been the so called ”Purdue model” (see Figure 
2a). In this model, the network is divided in multiple zones, basing on the logical 
proximity to physical sensors and actuators. The threat model is represented by 
an attacker that, coming from the public internet, has the aim to modify the be­
havior of the control system acting on the lower layers of the architecture, and in 
order to do that, it has to violate multiple lines of defense. The defense strategies 
are designed accordingly: the defense-in-depth paradigm prescribe to design the 
defense in multiple lines (Fabro et al. (2016)), including both organizational and 
technical aspect, starting from the defense of the perimeter of the newtork by 
using technologies such as firewalls and de-militarized zones, to security moni­
toring. 

Nevertheless, as discussed in the previous section, the power systems, and in 
particular the distribution systems, are increasingly using the public communi­
cation network for monitoring and control purposes. In the previously discussed 
technologies, EMS are located in a cloud platform, that communicates with the 



112 IoT Enabled-DC Microgrids 

field devices through different technologies, but without relying on dedicated 
infrastructures. We therefore must face the issue to protect systems whose ar­
chitecture is similar to the one shown in Figure 2b. In this scenario, part of the 
communication is done by using a public network. The platform is a web server, 
and also the local controller is a web server, that can be hidden within a private 
network or directly have a public IP address. In this context, the Purdue model 
is not applicable anymore. If the control system rely on the public network, the 
concept of segmentation completely falls. The attack model, in this case, is rep­
resented by an attacker that can communicated directly with the platform and/or 
with the local controller. 

4.2.
 Attack
surface


As discussed in the previous section, smart distribution systems act as a SCADA: 
in facts, similarly to a SCADA system for a microgrid, Smart Distribution Sys­
tems make use of a telecommunication network to send commands such as the 
power setpoints for DERS; the main difference is that Smart Distribution Sys­
tems rely on the public network, so that the concepts of segmentation and seg­
regation completely fall. In this scenario, it is necessary to protect these systems 
taking for granted that an attacker is able to reach the machines by a remote 
attack. We can identify three main attack models: 

•
 Attacks toward the platform. 
•
 Attacks toward the communication stack. 
•
 Attacks toward the local controller. 

The platform is typically a web server, that can expose different types of services, 
including specific services for the communication with the local controller, but 
also common protocols such as HTTP or SSH for remote control and mainte­
nance or for allowing users to access specific services. The platform, therefore, 
can suffer from common vulnerabilities of we services, such as SQL injection, 
cross-site scripting, broken authentication and session management and Denial 
of Services. The risk associated to this vulnerabilities is very high since, as we 
will discuss in the next section, the control of the platform could lead also to the 
failure of the grid. 

The same vulnerabilities can be found on the local controller, but the sce­
nario is different. In this case, while the associated risk is significantly lower, 
since the attack could lead to the control of a single user per time, it is worth 
noticing that the local controller may consist of cheap hardware with limited 
computational capabilities. In this case, it is more likely that the devices contains 
vulnerabilities, and moreover it is difficult to implement common cybersecurity 
countermeasures: host-intrusion detection systems are usually heavy software, 
that could be hardly be implemented in these devices. 

Also, the communication stack could be prone to cyber attacks. In particular, 
there is not yet a common standard for the application-layer protocol between 
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the local controller and the platform. Taking, for example, the case of electric 
vehicle charging, the solution currently employed include OCPP (Open Charge 
Point Protocol), OSCP (Open Smart Charging Protocol), ISO 15118, OpenADR, 
but also general-purpose protocols such as MQTT, and many more, while each 
one of them has different versions. In this scenario, different vulnerabilities in 
the communication stack could be present and should be further investigated. 

We can find the first evidences of this change of paradigm in the literature. 
Skarga-Bandurova et al. (2022) discuss innovative elements in the smart city 
from a cybersecurity perspective, with a particular focus on electric vehicle 
charging, pointing out that not all solutions have adequate cybersecurity pro­
tection. Nasr et al. (2022) provide a significant example of the evaluation of the 
cyber threats in the context of Electric Vehicle Charging Systems; first, authors 
demonstrate the feasibility of cyber attacks against the deployed EVCS, such 
as such as SQL Injection (SQLi), Cross-Site scripting (XSS), Server-Side Re­
quest Forgery (SSRF), and Cross-Site Request Forgery (CSRF) showing how 
this can lead to remote EVCS exploitation and manipulation; then, they simulate 
the attack on the power system, showing hot these may cause frequency insta­
bility, which results in possible power outages and/or denial of service. Gaggero 
et al. (2023) specifically take into account the evolution of energy communities, 
evaluating the technologies that are employed, the attack surface, and also dis­
cusses some possible research directions to address these issues. Some works an­
alyze risk associated to Virtual Power Plants. Venkatachary et al. (2021) present 
a Edge-based security architecture to secure VPPs and ensure privacy and data 
protection so to reduce the risks. Khan et al. (2021) presents a cybersecurity an­
alytics system for the detection of a cyber-attacker manipulating the VPP cyber 
layer operation set- points gradually to violate network stability bound. Li et al. 
(2018) proposes a distributed economic dispatch strategy of the VPP that is ro­
bust against cyber-attacks (i.e., noncolluding and colluding attacks) and resilient 
to communication failures. Despite evident similarities, research is at an early 
stage , and there is not yet evidence in the literature regarding attacks toward all 
the technologies that we discussed in Section 3, and further work has to be done 
in this field. 

4.3.
 Potential
impact
of
the
attacks


Depending on the technology, a single EMS platform may control a huge num­
ber of generators and/or controllable loads in the distribution grid. Moreover, 
these devices may have some peculiar features in common, such as in the case 
of energy communities, in which the devices are placed under a single substa­
tion. In case of a successful cyber attack, the attacker may be able to control a 
large number of devices in a malicious manner. While, from one side, this may 
cause economic damages, more relevantly it is possible that such an attack may 
cause malfunctioning of the power grid. Bhattarai et al. (2018) present a cyber 
attack scenario targeting DERS, in which the power output of the DER is manip­
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ulated to cause sustained oscillations or even system instability. Authors still do 
not provide a deep evaluation of the locations where DER can be manipulated 
to produce a higher impact. Tuttle et al. (2019) also provide an evaluation of the 
impact of the control of a large number of DERs, but focusing on storage sys­
tems. Linnartz et al. (2021) show how it is possibile to violate voltage boundaries 
through a cyberattacks on DERs on the CIGRE medium voltage benchmark grid. 
Nevertheless, few works perform simulations by considering the features and the 
constraint of a single technology for the control of a large number of DERs. Nasr 
et al. (2022) take into account the case of electric vehicle charging for assessing 
the impact of the cyber attack on that infrastructure. Still, the evaluation of the 
impact of cyber attacks on the distribution grid has to be further investigated. 
In particular, researchers should take into account specific use cases of the tech­
nologies discusses in the previous section. For example, in the case of energy 
communities, a single platform may control at maximum 1 MW of generation 
under a single substation, but also a certain amount of controllable loads, de­
pending on the national laws. This evaluation is extremely important to assess 
the risks of such technologies. 

5.
 A
framework
for
cybersecurity
monitoring


The traditional approach for cybersecurity monitoring in SCADA systems can 
not be applied anymore in the smart distribution grid. It is therefore necessary 
to develop new procedures and guidelines. We propose a framework that can 
represent a first step for developing a proper cybersecurity monitoring scheme 
for companies that owns and manages such infrastructures. An overall scheme is 
shown in Figure 3. 

Figure
3.
 Framework for cybersecurity monitoring in smart distribution systems. 

The first step is to define how to collect and analyze cybersecurity data. En­
ergy utilities must develop organizational procedures to properly monitor these 
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technologies. In this case, the major issue could be represented by the huge num­
ber of systems managed by a single company. A single energy utility may easily 
control tens or hundreds of platforms for smart distribution systems, each one of 
these are composed of hundreds of local controller distributed over a wide area. 
It is evident that the process of cybersecurity monitoring must be deeply autom­
atized, and rely on human supervision only after a strong pre-processing of data. 
Usually energy utilities make use of Security Information and Event Manage­
ment Systems (SIEMs) to collect data from different devices, including opera­
tional technology elements, such as firewalls, network intrusion detection sys­
tems etc, to store and analyze that data, correlating data sources. A usual choice 
is to centralize the collection of logs which come from different OT sources in 
the same SIEM platform. Usual OT data sources for energy utilities include fire-
walls, probes and intrusion detection systems dedicated to OT traffic and control 
servers, as well as cloud services. Nevertheless, developing correlation rules for 
the integration of IT and OT data sources is not a trivial task. At the current 
stage, the integration of data coming from the technologies discussed above into 
the company SIEM is an open issue. 

After the definition of a platform for collecting cybersecurity data, allowing 
proper visibility of the plants, it is necessary to deploy systems able to detect 
incoming attacks from the field. The two devices mainly exposed to cyberattacks 
are the EMS platform, and the local controller. The scenario for these two devices 
is totally different. 

EMS platforms inherit the well-known cybersecurity issues of web servers 
and cloud computing; at the same time, the technology for the monitoring of 
web servers is mature. There are different commercial solutions of Intrusion De­
tection Systems for these kinds of systems. In particular, technologies include 
Endpoint Detection and Response (EDR) and Extended Detection and Response 
(XDR) systems. Endpoint protection systems can collect security telemetry from 
endpoints, cloud workloads, network email, and more. Endpoint protection can 
be used as a log source by SIEMs. 

Local controllers, on the contrary, are usually devices with limited computa­
tional resources. In this case, the challenge is to develop IDS specifically devel­
oped for the devices. We consider two main examples: an electric vehicle charg­
ing station (EVCS), and a smart gateway for an user of an energy community 
(Gaggero et al. (2023)). An EVCS may expose different web services, such as 
HTTP, SSH and so on, for remote monitoring and maintenance purposes, in addi­
tion to the communication with the EMS. The challenge here is twofold: an IDS 
must take into account the specific features of the communication of the EVCS, 
and its constraints. Some papers in the literature are starting to take into account 
this issue. For example, ElKashlan et al. (2023) propose a machine learning-
based intrusion detection system for IoT electric vehicle charging stations; while 
the algorithm shows good performances, the work still lacks of the implementa­
tion details in the network architecture. Further work has to be done in this field. 
For smart gateways in energy communities, the problem is even more serious, 
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since the computational constraints of these devices are severe. Much effort has 
to be done for the development of proper IDS solutions in this field. 

The only monitoring of network parameters could not be enough to moni­
tor these systems properly. Another fundamental difference between traditional 
SCADA and smart distribution systems is the number of deployed systems. An 
energy utility, even a bigger one, could manage tens, or at most thousands of gen­
eration plants of big dimensions. SCADA systems are usually monitored most of 
the time by human operators, that have the role to monitor the physical param­
eters of the process, ensuring that the process is working in a safe operational 
mode. For smart distribution systems, the number of generators increases expo­
nentially. The number of photovoltaic systems, storage systems EVCS, and con­
trollable loads that refers to one of the platforms managed by a single utility may 
easily reach the order of magnitude of thousands. In this sensor, the monitoring 
must be automatized. An innovative field of research is represented by physics-
based anomaly detection (Giraldo et al. (2018)); in this case, the objective is to 
notice anomalies in the process directly taking into account the physical mea­
sures extracted from the process itself. Usually based on machine learning and 
deep learning technologies, physics-based anomaly detection algorithms utilize 
features such as, in the case of the electrical field, voltages, currents, frequencies, 
and powers, instead of network parameters. For example, Gaggero et al. (2020) 
and Gaggero et al. (2022) propose an anomaly detection algorithm for a photo-
voltaic system and a battery storage system, that makes use of a neural network 
architecture called autoencoder to directly analyze the parameters measured and 
sent to a higher level controller from the inverter. These kinds of algorithms 
could be implemented within the EMS platforms, that already receive the phys­
ical measures for general-purpose monitoring and control functions. The idea is 
to exploit the measures that the EMS already manages to also detect potential 
anomalies related to cyberattacks. Then the alarms can be sent to the platform 
that collects cybersecurity data, which can be further elaborates the alarm with 
specifically developed correlation rules. An overall summary of log sources that 
can be extracted from control devices and sent to a centralized SIEM platform 
can be found in Table 1. 

The proposed approach mimic the monitoring functions that are present in a 
SCADA system: the Intrusion Detection Systems have to be adapted to respect 
the network architecture and the computational constraints, while the physical 
monitoring is shifted from human supervision to automatic approaches. 

Table
1.
 Summary of SIEM Log sources. 

SIEM Log Sources 
Cloud Platforms •
 EDR 

•
 XDR 
•
 Raw Logs (Authentication, ...) 
•
 Physics-Based Intrusion Detection 

Local Controllers •
 Lightweigh Host-IDS 
•
 Raw Logs (Authentication, ...) 
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The effectiveness of the proposed approach can hardly be demonstrated by 
using simulation environments: in fact, very few data related to attacks in the 
real world are available, since these infrastructures are in an early stage. Still, 
some considerations in respect to the existing standards for cybersecurity of in­
dustrial control systems can be done. The main standards developed in the sector 
regarding cybersecurity are the ISA/IEC-62443 and the NIST SP 800-82. These 
standards recommend the use of cybersecurity monitoring tools to properly pro­
tect these systems. The deployment of security monitoring tools usually follows 
three main phases: 

(1) Definition of security requirement: in this phase, the company logically 
separates all the control systems into different zones, and assigns a Secu­
rity Level to each of them that is a number correlated to the skills level of 
the malicious actors’ and the consequent complexity of the cyber-attack. 

(2) Definition of requirements satisfied by tools: in the phase of assessing cy­
bersecurity monitoring tools and their adherence to standards, various ap­
proaches can be explored to meet the requirements and achieve a specific 
Security Level. 

(3) Deployment of Security Monitoring Tools: finally, the tools that satisfy 
the requirements of a specific Security Level and at the same time respect 
the operational constraints can be implemented. 

Depending on the specific network architecture, the proposed framework plays 
a crucial role to reach all the security requirements for a Security Level 2 or 3. 
Examples of requirements to reach a Security Level 2 are SR 2.8 – Auditable 
Event, SR 3.3 – Security functionality verification, SR 6.1 – Audit log accessibil­
ity, that can be reached by obtaining a proper visibility of the smart distribution 
system on the SIEM, reducing the complexity of the analysis by using appro­
priate tools such as EDR on the cloud platform and Lightweigh Host-IDSs on 
the local controllers. This is coherent with the criticality that an attack towards 
these systems might represent for the whole power systems. Nevertheless, fur­
ther work has to be done to properly adapt these considerations to the variety 
of network architectures that are arising with the evolution of smart distribution 
systems. 

6.
 Conclusions


This paper analyzed the evolution of power distribution systems, discussing 
novel cybersecurity issues that are arising due to the employment of innovative 
technologies for monitoring and control purposes. The paper highlights some 
open issues in the state of the art: in particular, further work has to be done 
to simulate the effects of cyberattacks in emerging technologies such as energy 
communities and virtual power plants, and how to deal with the risk in a sce­
nario in which the distribution system operator may not have the control of a 
large number of devices, managed instead by third-party entities. Also, this paper 
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proposed a preliminary framework to design a proper cybersecurity monitoring 
strategy for energy utilities. This framework involves the deployment of 
monitoring tools such as Endpoint Protection and/or Physics-based Intrusion 
Detection, and the integration with event management platforms such as SIEMs. 
Still, further work has to be done to clearly define the data needed by the SIEM 
platform to have sufficient visibility of a wide range of attacks towards these 
systems. 
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CHAPTER 6 

An Overview of Artificial Intelligence Driven
 
Li-Ion Battery State Estimation
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1. Introduction 

1.1.
 Context
of
the
study


Battery state estimation is a critical process that involves assessing the current 
and future state of a battery, typically in terms of its capacity, voltage, and over­
all health. It plays a crucial role in various domains, such as electric vehicles, 
portable electronics, and renewable energy systems (Yang et al., 2023). Strictly 
speaking, the problem of Li-ion battery state estimation involves accurately es­
timating the state of charge (SoC), state of health (SoH), Capacity, Remaining 
Useful Life (RUL), and other critical parameters of the battery based on avail-
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able measurements (Hannan et al., 2017; Qaisar, 2020; Qaisar and AbdelGawad, 
2021). The problem of Artificial Intelligence (AI)-driven battery state estima­
tion involves developing an AI model that can accurately estimate the state of a 
battery based on input data (Krichen et al., 2023; Ren and Du, 2023). The objec­
tive is to capture the complex relationships between the battery's behavior and 
the collected data, while accounting for various operating conditions and fac­
tors such as temperature and aging effects. Artificial intelligence (AI) techniques 
have emerged as powerful tools for addressing this problem and improving the 
accuracy and reliability of Li-ion battery state estimation (Galiounas et al., 2022; 
Mian Qaisar et al., 2021). The application of AI techniques, including deep learn­
ing, support vector machines, and incremental capacity analysis demonstrates the 
potential of AI-driven methods to accurately estimate the state of Li-ion batter­
ies, improving their performance, management, and overall utilization. 

Smart grids and batteries are integral components of modern energy systems, 
offering numerous advantages for electricity generation, distribution, and con­
sumption. Smart grids employ advanced technologies to enhance efficiency, re­
liability, and sustainability (Gungor et al., 2011; Qaisar and AlQathami, 2021). 
They facilitate real-time monitoring, control, and optimization of energy flow, 
enabling effective integration of renewable energy sources and demand response 
programs. Batteries, in turn, play a crucial role in the development and opera­
tion of smart grids, offering significant benefits and addressing key challenges 
in the modern electricity landscape (Roberts and Sandberg, 2011). One of the 
primary advantages of batteries in smart grids is their ability to store and release 
electricity on demand. As intermittent renewable energy sources like solar and 
wind become increasingly prevalent, batteries provide a means to capture excess 
energy generated during peak production and discharge it when demand is high 
or renewable generation is low. Additionally, batteries enable the integration of 
distributed energy resources, such as rooftop solar panels and small-scale wind 
turbines, by absorbing and dispatching their output as needed. By facilitating a 
more balanced and reliable energy supply, batteries contribute to the overall re­
silience and flexibility of the smart grid (Alirezazadeh et al., 2021). Furthermore, 
batteries offer ancillary services, including frequency regulation and voltage sup­
port, which enhance grid stability and improve power quality (Kundur and Malik, 
2022). 

Battery technology has undergone significant advancements in recent years, 
revolutionizing the way user’s power their devices and vehicles. Traditional bat­
tery technologies, such as lead-acid and nickel-cadmium, have been largely re­
placed by more efficient and environmentally friendly alternatives. One notable 
breakthrough is the development of lithium-ion batteries. These compact and 
lightweight batteries offer high energy density, allowing them to store and de­
liver more power in a smaller package (Hassan, 2023). Lithium-ion batteries 
have become the preferred choice for portable electronics, electric vehicles, and 
renewable energy systems. Researchers are continuously working on improving 
lithium-ion batteries through various approaches. For example, the incorpora­
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tion of silicon-based anodes has shown promise in enhancing the energy storage 
capacity of lithium-ion batteries (Ali et al., 2023b). Another promising area of 
battery technology is the development of solid-state batteries. These batteries 
utilize solid electrolytes, eliminating the need for flammable liquid electrolytes 
and improving safety (Bachman et al., 2016). Solid-state batteries also offer the 
potential for higher energy density and wider temperature ranges. Additionally, 
the exploration of alternative battery chemistries, such as lithium-sulfur batter­
ies and lithium-air batteries, holds promise for even higher energy densities and 
lower (Bruce et al., 2011). Battery technology also involves optimizing charging 
infrastructure and exploring innovative manufacturing techniques, such as 3D 
printing, to enhance efficiency and reduce costs (Lyu et al., 2021). Moreover, re­
cycling and second-life applications aim to mitigate environmental concerns and 
extend battery usefulness (Iqbal et al., 2023). 

Batteries have become essential technology with a wide range of applications 
in various industries. In the field of portable electronics, lithium-ion batteries 
have revolutionized the market by providing high energy density and long-lasting 
power (Gandoman et al., 2021). Battery energy storage systems (BESS) (Ali 
et al., 2023a) find applications in renewable energy systems, enabling the stor­
age of excess energy during periods of low demand and its release during high 
demand, thus enhancing grid stability and facilitating the integration of inter­
mittent renewable sources. Electric vehicles (EVs) heavily rely on batteries for 
their propulsion (Gandoman et al., 2022), with lithium-ion batteries being the 
dominant choice due to their high energy density, improved range, and decreas­
ing costs. Batteries also find applications in off-grid and remote areas, providing 
reliable power where traditional grid infrastructure is not available (Aldosary 
et al., 2021). Furthermore, batteries serve as backup power systems in critical 
infrastructure, ensuring uninterrupted operation during power outages (Quynh 
et al., 2021). Grid-scale energy storage systems based on batteries are being 
deployed to manage peak demand, optimize load balancing, and support grid 
stability (Chen et al., 2020). Moreover, batteries are used in aerospace applica­
tions, including satellites, space probes, and aircraft, where lightweight, high-
performance batteries are essential for power storage (Kühnelt et al., 2022). The 
versatile applications of batteries continue to expand as technology advances, 
driving innovation and sustainable energy solutions across industries, while pro­
viding reliable and portable power sources for a variety of purposes (Qaisar and 
Alyamani, 2022). 

1.2.
 Advances
in
battery
state
estimation
due
to
AI


Advances in battery state estimation have been significantly enhanced by the ap­
plication of Artificial Intelligence (AI) techniques (Zhang et al., 2022). Here, the 
authors delve into the key advances and benefits brought about by the integration 
of AI in battery state estimation. 



124 IoT Enabled-DC Microgrids 

Enhanced Accuracy: AI algorithms, such as artificial neural networks (ANNs) 
and support vector machines (SVMs), can capture complex non-linear rela­
tionships within battery systems. These algorithms learn from vast amounts of 
training data and can model the intricate electrochemical processes occurring in­
side the battery. As a result, AI-driven battery state estimation can provide more 
accurate predictions of SoC and SoH compared to traditional methods (Ren and 
Du, 2023). 

Adaptability to Varying Conditions: Batteries experience dynamic operating 
conditions, such as temperature variations, load changes, and aging effects. AI 
algorithms can adapt to these varying conditions and provide accurate state 
estimation in real-time. The ability of AI models to continuously learn and 
update themselves using new data enables adaptive state estimation that remains 
effective over the battery's lifetime (Zhang et al., 2019). 

Improved Robustness: Traditional battery state estimation methods often strug­
gle to handle extreme conditions and complex behaviors. AI-driven approaches 
can handle these challenges more effectively. For example, AI models can 
account for non-linear relationships between battery voltage, current, and 
SoC/SoH, as well as handle scenarios with partial observability or missing 
data (Shu et al., 2021). 

Fast and Real-Time Estimation: AI algorithms can process large amounts of 
data and make predictions quickly, enabling real-time battery state estimation. 
This capability is crucial in applications that require immediate and accurate 
information about the battery's state, such as electric vehicles or critical power 
systems. Real-time estimation allows for better control and optimization of 
battery operation, leading to improved performance and extended battery 
life (Patil, 2023). 

Data-Driven Insights: AI-driven battery state estimation generates insights from 
vast amounts of data collected during operation. These insights can be used to 
gain a deeper understanding of battery behavior, identify degradation patterns, 
optimize battery usage, and develop advanced control strategies (Ling, 2022). 
The data-driven approach enables predictive maintenance, where early signs of 
battery degradation can be detected and addressed proactively. 

Reduced Dependence on Battery Models: Traditional battery state estimation 
methods often rely on accurate battery models, which can be challenging to 
develop due to the complexity of battery behavior. AI-driven approaches are 
model-free or model-light, as they learn directly from data. This reduces the 
dependency on precise battery models and makes the estimation process more 
versatile and adaptable to different battery chemistries and configurations (Singh 
et al., 2023). 
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Integration with Sensor Fusion: AI-driven battery state estimation can inte­
grate data from multiple sensors, such as voltage, current, temperature, and 
impedance, to achieve more comprehensive and accurate state estimation. Sensor 
fusion techniques, combined with AI algorithms, enable a holistic understanding 
of battery behavior by incorporating different sources of information (Schneider 
and Endisch, 2020). 

The advances in AI-driven battery state estimation have significant implica­
tions for various industries, including electric vehicles, renewable energy sys­
tems, and portable electronics. Accurate and real-time estimation of battery 
state enables optimal utilization, prolongs battery life, enhances safety, and con­
tributes to the overall efficiency and sustainability of energy storage systems. 
Continued advancements in AI algorithms, coupled with the availability of large-
scale battery datasets, will further enhance the capabilities and performance of 
AI-driven battery state estimation techniques. 

1.3.
 Use
of
AI
assistive
battery
state
estimation
in
Battery
Management

System


The integration of AI-assisted battery state estimation in the Battery Manage­
ment System (BMS) has significant implications for various applications. In 
electric vehicles (EVs), accurate estimation of battery states enhances range 
prediction and enables efficient power management, optimizing vehicle perfor­
mance and user experience (Liu et al., 2022). In renewable energy systems, AI-
assisted BMS ensures effective energy utilization, improves grid stability, and 
extends battery lifespan (Hu et al., 2019). In portable electronics, intelligent 
BMS enables precise SoC estimation, enhancing battery runtime and user sat­
isfaction (Buchmann, 2001). In details, AI-driven battery state estimation has 
the potential to improve the accuracy, robustness, and real-time capabilities of 
BMSs (Raoofi and Yildiz, 2023). These techniques utilize data-driven models 
and patterns to estimate critical battery states, including SoC, SoH, and state of 
power (SoP) (Hossain Lipu et al., 2022). AI-based state estimation methods have 
shown great potential in overcoming challenges associated with nonlinearities, 
and environmental variations in battery systems. 

Machine learning algorithms, such as support vector machines (SVM), ran­
dom forests, and neural networks, have been widely adopted for battery state esti­
mation (Manoharan et al., 2022). SVM algorithms have been utilized to estimate 
battery SoC based on measured voltage and current data ( ́ on et al., Alvarez Ant´
2013). Random forests have demonstrated accuracy in estimating SoH using bat­
tery impedance measurements (Li et al., 2018b). Furthermore, neural networks, 
particularly long short-term memory (LSTM) networks, have been successful in 
predicting battery performance and degradation (Li et al., 2019b). Furthermore, 
Deep learning techniques have shown remarkable progress in battery state esti­
mation due to their ability to extract complex patterns from large datasets (Zhang 
et al., 2022). Convolutional neural networks (CNNs) have been applied to esti­
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mate SoC based on battery voltage profiles (Fan et al., 2022). Recurrent neural 
networks (RNNs) and their variants, such as gated recurrent units (GRUs) and 
LSTMs, have been employed for accurate SoH prediction and remaining use­
ful life (RUL) estimation (Song et al., 2018). Generative adversarial networks 
(GANs) have been utilized to model battery degradation processes and predict 
SoH degradation trajectories (Yang et al., 2022). 

The integration of AI techniques with other advanced tools, such as system 
identification, Bayesian inference, and particle filters, has further improved bat­
tery state estimation (Saha et al., 2007). System identification methods combined 
with AI algorithms enable the identification of battery models and parameter es­
timation for accurate state estimation. Bayesian inference approaches provide 
probabilistic estimation of battery states, offering uncertainty quantification in 
the estimation process (Saha et al., 2007). Particle filters, such as the unscented 
Kalman filter (UKF) and the extended Kalman filter (EKF), have been employed 
for real-time battery state estimation by incorporating AI-based models (Kona­
towski et al., 2016). These AI-assisted battery state estimation techniques in 
BMS provide numerous benefits, including increased safety, enhanced battery 
performance, and optimized energy management. 

1.4.
 Contributions


This study focuses on the critical process of battery state estimation, specifi­
cally in terms of capacity, voltage, and overall health, and highlights how the 
artificial intelligence (AI) techniques enhance the battery state estimation mech­
anism. The uniqueness of this work lies in the integration of AI-assisted battery 
state estimation in the Battery Management System (BMS). It offers benefits 
such as increased safety, enhanced battery performance, and optimized energy 
management. The primary objective of this study is to provide a comprehensive 
overview of AI-driven battery state estimation workflows, including data col­
lection and preprocessing, feature engineering, battery model construction, and 
application. By incorporating AI techniques, the study aims to improve the accu­
racy, adaptability, and robustness of battery state estimation, leading to optimal 
utilization and extended battery life. 

2. Literature review 

2.1.
 Battery
technology


There are different types of batteries with various applications. Batteries can be 
either primary or secondary batteries. Primary batteries are disposable, while 
secondaries are rechargeable. Rechargeable batteries, also known as storage bat­
teries, accumulators, or Secondary batteries are batteries that have the capability 
to undergo multiple cycles of charging, discharging into a load, and subsequent 
recharging. This is opposed to one-time use batteries also known as the primary 
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batteries that are used and then disposed. Secondary batteries come in differ­
ent types. The subsequent are frequent examples of secondary or rechargeable 
batteries (Sarmah et al., 2023). 

Lead acid batteries, which use acids and lead as electrodes to store energy. 
One notable benefit is their capacity to deliver substantial surge currents, coupled 
with their affordability. They are mostly used as sources for power for starter 
motors. However, they have a low energy to weight ratio making them unsuitable 
for many tasks (Mansuroglu et al., 2023). 

Nickel cadmium batteries use Nickel Oxide hydroxide and metallic cadmium. 
These batteries are not environmentally friendly since Cadmium is a toxic ele­
ment, and they have been banned in most countries (Rana et al., 2023). 

Nickel-Metal Hydride Batteries use hydrogen-absorbing alloy instead of the 
toxic Cadmium electrode. These are now common in most industrial usage and in 
consumer types (Krishnamoorthy et al., 2023). However, their energy to volume 
ratio is also high making them not applicable in many areas. 

Lithium-Ion Batteries Although there are different types, lithium cells are one 
of the most used cell types today. Some of the reasons why lithium systems 
are preferred are, they have a higher energy density, they have a superior cold 
temperature performance. They possess an extended period of effectiveness and 
offer cost efficiency, as demonstrated in Figure 1. 

Figure 1. Comparison of energy density of lithium cells and other types of cells. 

2.2.
 Applications
of
the
Lithium-ion
batteries


The most mature secondary batteries are Lithium-ion (Li-ion) batteries (Massé
et al., 2015). 

Asahi Kasei initially designed and developed Li-ion batteries in the 1980s, 
which were later brought to the market by Sony and A&T Battery Corporation 
in 1991 and 1992. Since then, the popularity of Li-ion batteries has skyrock­
eted, gaining a significant market share in the mobile electronic devices industry 
within a few years. Currently, Li-ion battery technology is advancing swiftly 
to meet the demands of electric vehicles (EVs) and stationary electrical energy 
storage applications (Bian et al., 2020; Miao et al., 2013). 



128 IoT Enabled-DC Microgrids 

Due to their interesting features, the Li-Ion are the abundantly used battery 
types and are the choice for many consumer electronics. They have many ad­
vantages including, low rate of loss of charge if not use, and have the highest 
energy density compared to other batteries. More so, they can come in nearly 
any size. Apart from being used as batteries for phones, and other hand held gad­
gets such as smart watches, Lithium ion batteries have other applications, such 
as in medical devices, in smart electricity grids, in electric vehicles, and other 
essential, which keep the modern life running . The following are some of the 
major applications of Lithium-Ion rechargeable batteries. 

2.2.1. Emergency power back up or Uninterrupted Power Supply (UPS) 

In areas prone to power instability and blackouts, Lithium-ion batteries come in 
handy since they help to back up power once power is lost. It provides instant 
power to the systems that were running and helps them to continue running un­
interrupted or a chance to shutdown safely until the power is back (Goodenough 
and Park, 2013). Such a system is crucial in the medical field, and in large com­
munication technology systems. Emergency Power Back Up or Uninterrupted 
Power Supply (UPS) are used in such emergencies. 

2.2.2. Dependable electric and recreational vehicle power in electric 
vehicles 

The durability of Lithium-ion batteries stands out as one of their most significant 
characteristics., and their efficiency in releasing stored power. This makes them 
dependable for use in Electric cars. One can use them over a long time, and they 
lose very little power between uses, hence even better suited for remote locations 
compared to acid batteries. More so, these Lithium ion batteries are lightweight 
and of smaller size compared to other power storage technologies thus making 
them suitable for use in Electric cars (Goodenough and Park, 2013; Qaisar and 
Alyamani, 2022). Dependable Electric and Recreational Vehicle Power in Elec­
tric Vehicles: The durability of Lithium-ion batteries stands out as one of their 
most significant characteristics, and their efficiency in releasing stored power. 

2.2.3. Solar power and wind power storage 

The use of renewable energy is gaining traction all over the world. One of the 
major concerns of renewable technologies such as solar power and wind power is 
that their production fluctuates. This leads to the need of a power storage system 
to ensure stable power supply even when the production is low. Lithium-ion bat­
teries come in handy. They are low maintenance cost compared to acid batteries 
and therefore better-suited (Goodenough and Park, 2013). More so, they charge 
quickly and release power at a stable pace. Solar Power and Wind Power Storage 
are used in an increasing number of circumstances. 
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2.2.4. Portable power packs (power banks) 

One of the major drawbacks of mobile phones and other portable devices is that 
they run out of power, especially when visiting or living in remote areas with no 
access to electricity. Lithium-ion batteries can act as power banks, and use them 
to store power. Once you need to charge your gadget, you can use the power 
stored in the Portable Power Packs. Portable Power Packs (Power Banks) are 
used to charge your gadgets. 

2.2.5. Alarms, surveillance and other security systems 

Lithium batteries are fitted in surveillance, alarms, and other security systems in 
remote areas since they can be in small, have a longer life span, are rechargeable, 
and they discharge efficiently. These can be used to ensure that security systems 
do not go down or stop working even after the grid electricity or other main 
source of power has stopped working. Alarms, Surveillance and other security 
systems are used to continue security surveillance. 

2.2.6. Reliabe marine performance 

Boats and small yachts need some source of power when not near land. Such 
power includes running fridges, and lighting. Diesel generators have been op­
tions for sources of power for a long time, but with the increasing consciousness 
of environmental sustainability, Lithium batteries are becoming an option. Re­
liabe Marine Performance: Boats and small yachts need some source of power 
when not near land. 

3. The Battery Management System (BMS) 

This section of the chapter delves into the importance of BMS utilized in Li-ion 
battery packs. The BMS plays a critical role in ensuring the safe and reliable 
operation of Li-ion batteries, as it prevents physical damage, addresses issues 
related to thermal degradation and cell imbalance, and enables the assessment 
of various battery conditions such as SoC and SoH (Kim et al., 2017). By ef­
fectively detecting temperature, measuring voltage and current, and setting ap­
propriate alarms, an efficient BMS prevents overcharging and over-discharging. 
Additionally, the BMS plays a vital role in data monitoring and updating, fault 
detection, and battery voltage equalization, all of which are essential for achiev­
ing accurate SoC and SoH readings (Bagade et al., 2022). 

The primary objectives of a BMS revolve around ensuring the safety and relia­
bility of the battery pack. All the advanced functionalities integrated into a BMS 
ultimately serve these core purposes. These features aim to optimize the perfor­
mance of the battery pack by effectively measuring and monitoring the voltage, 
current, and temperature of each cell within the pack. Additionally, the BMS 
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Figure 2. BMS system main functions. 

takes charge of regulating cooling systems, balancing cell voltages, and impos­
ing power limits on the battery pack (Pushkar et al., 2022), as well as operates 
the disconnect breakers for start-up and power-off. 

Let us look at the black-box model of a BMS in Figure 2. It can be noted that 
at a high level and its core, the BMS is taking some inputs and running some 
algorithms and estimators to produce several outputs to the application system 
controller. For example, the BMS takes several voltages, such as every cell volt­
age and pack voltage. It also takes, as an input, The battery pack's current flow, 
whether it is charging or discharging, and its magnitude are monitored by the 
Battery Management System (BMS). The BMS utilizes temperature sensors to 
assess the temperature distribution within the cells. Various algorithms are then 
employed within the BMS to generate precise estimations. One of the primary 
outcomes is the estimation of the SoC, commonly referred to as a fuel gauge, 
which indicates the remaining charge on devices such as phones or electric vehi­
cles. Additionally, the BMS provides an estimation of the SoH. SoH represents 
the battery pack's capacity relative to its initial state, typically decreasing over 
time. Accurately predicting the remaining useful life (RUL) of a battery is cru­
cial for intelligent battery health management systems (Ren et al., 2018). The 
BMS is additionally working on establishing a safe operating envelope (SoE) 
to determine the allowable current for charging or discharging at any given mo­
ment. Furthermore, the BMS sends out fault signals or status indications that 
the application controller must acknowledge, and thus, specific conditions may 
activate these signals (Kumar et al., 2015). 

In a schematic, a BMS can be used in single or multi-cell Li-ion battery ap­
plications. Figure 4 shows a 3S-1P battery pack with three cells connected in 
series. The BMS is a circuit board that typically resides very close to the cells, 
monitors the voltage to measure each cell voltage, and monitors the overall bat­
tery pack voltage. Besides, the BMS measures the current flowing into or out the 
pack via a shunt sensor, for example. Finally, the BMS has a master disconnect 
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Figure 3. BMS system block diagram. 

Figure 4. BMS schematic and communication diagram. 

that allows it to terminate the battery charge or discharge if it detects that the 
battery system is entering into an unsafe or undesirable state. Then, external ter­
minals connect the battery pack to the load, i.e., an EV, a solar power inverter, 
or a DC-DC converter. In a nutshell, the BMS monitors everything going on in­
ternally and communicates via an interface to an external controller that uses 
this information to update its behavior better (Kumar et al., 2015; M. Kokila and 
Indragandhi, 2020). 

3.1.
 Battery
State
of
Charge
(SoC)
estimation


In this section of the chapter, the concept of SoC in relation to Li-ion battery 
packs is explored. SoC estimation has long been a challenging task for all types 
of energy storage devices. Achieving a highly precise SoC estimation not only 
provides valuable information regarding the remaining charge or usable energy 
in the battery, but also offers insights into the battery's reliability. Furthermore, an 
accurate and efficient SoC estimation plays a crucial role in determining optimal 
charging and discharging strategies, which greatly impact battery applications. 
It is important to note that each cell within a battery pack may exhibit different 
capacities due to factors such as aging, temperature variations, self-discharge, 
and manufacturing differences (Hannan et al., 2017). 
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Figure 5. Types of SoC estimation methods (Xiong et al., 2018). 

An accurate and effective evaluation of the SoC of a battery plays a crucial 
role in vehicle energy management and the optimal design of control systems. 
As a result, various techniques have been proposed to measure the battery's SoC 
in real-time. To provide a comprehensive analysis of these methods, the authors 
have categorized them into four distinct groups (Xiong et al., 2018), and this 
classification is summarized in Figure 5. 

The first method used for estimating SoC is the lookup table-based approach, 
where the SoC of batteries is directly mapped to their external characteristic 
parameters, such as open-circuit voltage (OCV) and AC impedance. This method 
is commonly employed in laboratory environments. 

The second method is the Ampere-hour integral approach, which relies on 
accurately measuring the battery's current and knowing its maximum available 
capacity. By integrating the ampere-hour measurements, the variation in SoC can 
be accurately calculated. This method is often combined with other techniques, 
such as model-based methods, to enhance its performance. 

Model-based estimation methods form the third category of SoC estimation 
techniques and can be classified into three subcategories: electrochemical models 
(EM), equivalent circuit models (ECM), and electrochemical impedance models 
(EIM). These models leverage the underlying physics and characteristics of the 
battery to estimate its SoC. 

The final method for SoC estimation is the data-driven approach, which con­
structs a controller using input-output data from the system. Within this category, 
two types of methods are commonly used. The first is the data training method, 
which yields highly accurate results but can be sensitive to parameter variations 
when the training dataset does not adequately cover the current operating con­
ditions. On the other hand, the data-model fusion method combines online data-
driven approaches with model-based techniques, ensuring system convergence 
and stability (Xiong et al., 2018). 
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3.2.
 Battery
State
of
Health
(SoH)
estimation


This section of the chapter will focus on the estimation of the state of health 
(SoH) in Li-ion battery packs. SoH refers to the battery's ability to store and 
supply energy based on its initial conditions, taking into account the energy and 
power requirements of the application. It can be characterized by the state of 
health related to energy capacity (SoHE) and power capacity (SoHP). SoHE is 
typically measured by battery capacity, while impedance is used to quantita­
tively describe SoHP. To ensure the overall system's protection, it is crucial to 
have a reliable prediction of either SoHE or SoHP using simple methods. By 
obtaining this information, the optimization can be done on the battery's oper­
ating modes, prolong its lifespan, and predict the appropriate timing for battery 
replacement (Li et al., 2018a). 

In (Li et al., 2018a), the battery capacity is determined as the SoH indicator 
by evaluating the ratio of the current cell capacity to the original cell capacity: 

Equation 1 provides a means to determine the SoH percentage of a battery. 
It involves comparing the current capacity of the cell (Qcurrent) to its initial 
capacity when it was brand new (Qfresh). Initially, when the battery is fresh, its 
SoH is 100%, representing optimal performance. However, over time, the SoH 
gradually decreases as the battery degrades. 

Qcurrent(Ah)
SoH
=
 ×
100
 (1)

Qfresh(Ah)


The specific requirements of an application dictate the end of life (EoL) of the 
battery. This signifies the point at which the battery can no longer meet the de­
sired performance criteria in terms of capacity or power. For instance, electric 
and hybrid electric vehicles (EVs and HEVs) necessitate battery replacement 
when the SoH falls below 80%. However, it's important to note that the direct 
calculation provided by Equation 1 may not account for all factors influencing 
battery health is subject to the complete battery charging and discharging cycle. 
Therefore, this method is not practical in actual application because the batteries, 
in most cases, are not completely charged and discharged (Li et al., 2018a). 

Research on the SoH of batteries has recently attracted significant attention 
from researchers. Numerous estimation techniques have been developed in this 
field, each with its own set of advantages and disadvantages concerning esti­
mation accuracy, testing time duration, and implementation feasibility. Figure 6 
SoH estimation techniques can be broadly classified into three categories: adap­
tive models, experimental techniques, and incremental capacity/differential volt­
age analysis. 

The first category, adaptive model-based methods, can be further subdivided 
into equivalent circuit-based models and electrochemical methods. These mod­
els establish a strong physical relationship between the model parameters and the 
underlying electrochemical processes within the battery cells. However, imple­
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Figure 6. Types of SoH estimation methods (Ali et al., 2023b). 

menting model-based techniques in BMS can be challenging due to their com­
putational complexity and the need for large matrix operations. 

The second category comprises experimental techniques, which involve 
measurement-based methods and direct measurements obtained from experi­
ments such as hybrid pulse power characterization (HPPC) and electrochemical 
impedance spectroscopy (EIS). 

The third category encompasses differential methods based on incremental 
capacity (IC) analysis and differential voltage (DV) analysis. These differential 
analysis techniques combine the advantages of both experimental and adaptive-
model methods. They can not only be used for identifying battery degradation 
but also enable SoH estimation with low computational effort. However, these 
methods require static charging/discharging conditions to be fulfilled (Li et al., 
2018a). 

The authors in (Berecibar et al., 2016) indicate that, Currently, there is no 
single definitive approach to determining the SoH. The selection of a method 
should depend on the specific aspect to be estimated and the data that is available. 
For instance, if there is a large volume of data and a feasible algorithm that can be 
utilized, a combination of identifying degradation mechanisms and employing 
robust data techniques would be the most appropriate and satisfactory option. 
On the other hand, if data is being acquired gradually during the development of 
tests, it would be more suitable to employ an adaptive model in conjunction with 
degradation analysis. 

3.3.
 Battery
Remaining
Useful
Life
(RUL)
estimation


The section of the thesis examines recent research on predicting the remaining 
useful life (RUL) of Li-ion battery packs, which refers to the duration from the 
present state of the battery to its failure condition, as depicted in Figure 7. 
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Figure 7. Decaying battery profile.

Many researchers and organizations have intensified their endeavors to en-
hance the accuracy of estimating the remaining useful life (RUL) of Li-ion batter-
ies. The particle filter (PF) method, also referred to as the sequential Monte Carlo
(SMC) method, is a technique that merges Bayesian learning strategies with im-
portance sampling. Qiang et al. (Miao et al., 2013) in 2013, a more advanced
variation of the PF method was put forward, which introduced the Unscented
Particle Filter (UPF) technique. The UPF approach involves a two-step process.
Initially, the proposal distribution is obtained using the Unscented Kalman filter
(UKF) algorithm. Subsequently, the PF algorithm is employed to derive the ul-
timate outcomes. Consequently, a degradation model was designed. The model
and algorithms that ran prediction tests recorded an error percentage of less than
5% for actual RUL estimation for Li-ion batteries, which is better than the error
percentage recorded using PF algorithms (around 7%) (Miao et al., 2013).

Zhang et al. (Zhang et al., 2018a) in 2018, researchers made significant ad-
vancements in the UPF (Uncertainty Propagation Fusion) method for predicting
the Remaining Useful Life (RUL) of Li-ion batteries. They introduced a lin-
ear optimizing combination resampling technique within the UPF, known as U-
LOCR-PF. This innovative approach addressed the limitation of particle diversity
found in previous methods.

The study emphasized the importance of the step coefficient K in the LOCR
(Local Optimal Combination Resampling) process. The authors highlighted that
determining the coefficient K using a fuzzy inference system greatly impacted
the performance of LOCR. By optimizing this coefficient, the RUL predictions
exhibited enhanced accuracy compared to the previous PF (Particle Filter) and
UPF prediction methods.

The results showcased impressive outcomes, with an average root mean
squared error (RMSE) of 0.0335 and 0.0201 achieved using 40 and 70 cycles,
respectively.

Overall, the researchers' novel approach, U-LOCR-PF, demonstrated im-
proved performance in predicting the RUL of Li-ion batteries, surpassing the
limitations of earlier methods.

In numerous studies, scholars have employed regression models as a pre-
dictive approach for Li-ion batteries, utilizing statistical methodologies. Long
et al. (Long et al., 2013) in 2013, a proposal was made to enhance the autore-
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gressive (AR) model by incorporating the root mean square error (RMSE) as a 
measure for determining the AR order. The researchers acknowledged the ab­
sence of a uniform criterion for determining the AR order and thus utilized an 
improved particle swarm optimization (PSO) algorithm. By adaptively adjusting 
the AR model order based on the information extracted from the data, this ap­
proach demonstrated accurate prediction of the remaining useful life (RUL) of 
Li-ion batteries. Additionally, its suitability for onboard applications was estab­
lished, making it a valuable tool with minimal error margin in RUL prediction. 
Hu et al. (Hu et al., 2014a) in 2014, a research study was conducted to assess 
the reliability of rechargeable Li-ion batteries implanted in medical devices. The 
study employed a developed non-linear kernel regression model, specifically uti­
lizing the k-nearest neighbor (kNN) regression approach. The research focused 
on analyzing the charging voltage and current curves of the batteries. 

By incorporating the kNN regression model, the study was able to capture 
significant features from the charging curves, as defined by the author. To en­
hance the accuracy of capacity estimation, the research utilized Particle Swarm 
Optimization (PSO) to minimize the cross-validation (CV) error. The findings 
indicated that the proposed model effectively predicted the entire lifespan of the 
Li-ion battery, as verified by 10 years of cycling data. On average, the model 
achieved an Root Mean Square Error (RMSE) of 1.08875. 

As a data-driven approach based on machine learning, this research demon­
strated the efficacy of utilizing the kNN regression model and PSO to accurately 
estimate the life of Li-ion batteries. Wang et al. (Wang et al., 2013) in 2013, 
a prognostic model for Li-ion batteries' remaining useful life (RUL) prediction 
was developed. The model incorporated a relevance vector machine (RVM) al­
gorithm and a capacity degradation model. By utilizing the RVM, the model 
identified the significant training vector, and three conditional capacity degra­
dation models were created to accurately estimate the predictive values of the 
relevance vectors. The effectiveness of the model was confirmed through three 
independent studies, demonstrating satisfactory predictive results. On average, 
the model achieved an impressive root mean square error (RMSE) of 0.0082.e. 
Ismail et al. (Li et al., 2014) in 2014, a predictive model utilizing Support Vector 
Machines (SVM) was proposed to achieve precise Remaining Useful Life (RUL) 
prediction. The model employed an iterative multi-step approach and consid­
ered working temperatures and energy efficiency as input variables to define the 
training dataset. Extensive experimentation and subsequent analysis of the model 
demonstrated its ability to accurately identify RUL characteristics of Li-ion bat­
teries using a limited number of parameters. 

Patil et al. (Patil et al., 2015) in 2015, a different type of regression model 
was introduced for the purpose of predicting the real-time remaining useful life 
(RUL) of Li-ion batteries. This involved the combination of support vector re­
gression (SVR) with a support vector machine (SVM), leveraging their capa­
bilities in both classification and regression tasks. The primary objective of this 
model was to train an algorithm that could be employed in electric vehicles (EVs) 



137 An Overview of Artificial Intelligence Driven Li-Ion Battery State Estimation 

to anticipate when a battery is nearing its end of life (EoL) and notify the driver 
before complete depletion. To train the model, various cycling data from bat­
teries under different conditions were utilized from the battery dataset. Through 
conducting case studies, it was determined that this model held promise as a 
potential onboard tool for estimating RUL in EVs. Zhang et al. (Zhang et al., 
2018b) in 2018, a long short-term memory (LSTM) based on a recurrent neural 
network was introduced for predicting the remaining useful life (RUL) of Li-ion 
batteries. Experimental data was collected using various Li-ion cells subjected 
to different currents and temperatures. The LSTM model demonstrated excellent 
RUL prediction capabilities, regardless of the offline training data. 

Miao et al. (Chen et al., 2013) in 2013, a degradation model based on the uni­
fied particle filter (PF) approach was developed for the prediction of remaining 
useful life (RUL) in Li-ion batteries. The model demonstrated enhanced accu­
racy in RUL prediction compared to the PF method, yielding an error rate of less 
than 5%.r. Tang et al. (Tang et al., 2014) in 2014, a novel prognostic method 
utilizing the Wiener process with measurement error (WPME) was developed 
for predicting the Remaining Useful Life (RUL). Fang et al. (Zheng and Fang, 
2015) in 2015, a novel method for predicting Remaining Useful Life (RUL) 
was proposed, incorporating a non-linear time series prediction model along 
with the Unscented Kalman Filter (UKF). The battery model state is updated 
frequently using the UKF and short-term capacity. The results of the proposed 
model demonstrate superior accuracy and reliability compared to the Extended 
Kalman Filter (EKF). At 100 cycles, the model achieves a Mean Absolute Per­
centage Error (MAPE) of 0.1611 and a Root Mean Square Error (RMSE) of 
0.01156, validating its effectiveness. Li et al. (Li et al., 2016) in 2016, a state-
space model utilizing a spherical cubature particle filter (SCPF) was proposed to 
analyze the remaining useful life (RUL) of 26 Li-ion batteries. The PF method 
was outperformed by the proposed model when it came to predicting accuracy. 
Nevertheless, variations in currents and temperatures could significantly impact 
the model's precision. Moreover, the authors (Li et al., 2016) the novel predic­
tion method based on Gaussian process mixture (GPM) for Li-ion batteries and 
Gaussian process regression (GPR) outperforms SVM in terms of reliability and 
accuracy. The proposed model achieves impressive results, with RMSE values of 
0.0158 and 0.0130 at 60 and 80 inspection cycles, respectively. Shen et al. (Shen 
et al., 2021) in 2020, a novel online approach was introduced for predicting the 
remaining useful life (RUL) of Li-ion batteries under variable discharge current 
conditions. The approach utilized a unique two-stage Wiener process model. The 
authors evaluated this innovative method using two Li-ion batteries and obtained 
the following performance metrics: a mean absolute error (MAE) of 3 and 2.444, 
a root mean square error (RMSE) of 3.889 and 3.122, a mean absolute percent­
age error (MAPE) of 0.0829 and 0.126, and a decision coefficient (Rˆ2) of 0.9751 
and 0.9856, respectively, for the first and second battery. 
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Figure 8. Types of RUL estimation methods. 

Figure 8 illustrates the classification of RUL estimation methods for Li-ion 
batteries into three main categories: model-based, data-driven, and stochastic 
approaches. The figure provides an overview of the most significant methods 
discussed in the literature review. 

4. AI piloted battery state estimation 

Researchers have developed several workflows for battery state estimation, each 
with its own distinctive approach and methodologies. These workflows are de­
signed to enhance the precision and dependability of battery state estimation 
by incorporating artificial intelligence techniques. In this discussion, the au­
thors will provide a brief overview of some noteworthy workflows in this do­
main. The fundamental workflow for battery state estimation generally com­
prises four steps: data collection and preprocessing, feature engineering, battery 
model development, and implementation (Catelani et al., 2021; You et al., 2022). 
Figure 9 (Zhao et al., 2023) provides an overview of this workflow. 

4.1.
 Data
collection
and
preprocessing


The first step is to collect battery state data using a data acquisition system. This 
can include measurements of voltage, current, temperature, and other relevant 
parameters. Data preprocessing techniques are then applied to ensure the quality 
and suitability of the data for further analysis. This may involve tasks such as data 
cleaning, filtering to remove noise, and regularization to normalize the data (Li 
et al., 2019a). 

4.2.
 Feature
engineering


Feature engineering is centered around the selection and extraction of pertinent 
features from gathered data. The objective is to diminish data dimensionality, 
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Figure 9. Basic workflow of battery state estimation (Zhao et al., 2023). 

capture vital information regarding battery states, and circumvent data redun­
dancy. Approaches such as principal component analysis, correlation coefficient 
analysis, and cosine similarity analysis can be employed to identify significant 
features that exhibit a robust correlation with battery states (Jiang et al., 2023). 

4.3.
 Battery
model
construction


The third step entails creating an estimation model that establishes a mapping re­
lationship between the input data (features) and the output data (battery states). 
Various modeling approaches can be utilized, including machine learning mod­
els, deep learning models, and hybrid models. Machine learning models like 
support vector regression (SVR), artificial neural networks (ANN), and random 
forests (RF) are commonly employed. Deep learning models, such as recurrent 
neural networks (RNN), long short-term memory (LSTM) networks, and con­
volutional neural networks (CNN), are effective in capturing temporal or spatial 
dependencies in the data. Hybrid models combine the strengths of both machine 
learning and deep learning techniques (Cao et al., 2022). 

4.4.
 Application


The final step is to apply the results of battery state estimation for various pur­
poses. This can include identifying abnormal battery states, triggering active in­
terventions or maintenance procedures, and optimizing battery usage. The esti­
mated battery states can be used as inputs for decision-making processes in bat­
tery management systems, enabling proactive actions to enhance performance 
and reliability (Choi et al., 2019). 

4.5.
 Machine
learning
techniques


Machine learning techniques have garnered considerable interest in battery state 
estimation because they can learn patterns and correlations from data. These 
techniques entail training models using past battery data to accurately predict 
and estimate the state variables. 
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4.5.1. Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a popular machine learning algorithm uti­
lized for estimating the state of batteries. It belongs to the family of support 
vector machines (SVM) and is specifically designed to handle regression tasks. 
The primary objective of SVR is to identify the optimal hyperplane that achieves 
the maximum margin while simultaneously minimizing the discrepancy between 
the predicted and actual values (Hansen and Wang, 2005). 

SVR has proven to be effective in battery state estimation tasks, including 
the estimation of state of charge SoC and SoH of batteries. By utilizing labeled 
training data, SVR has the capability to capture intricate connections between 
battery inputs (such as voltage and current) and outputs (such as SoC), enabling 
it to deliver precise estimations. 

4.5.2. Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANN) emulate the structure and functioning of the 
human brain. They are a widely used machine learning technique for battery 
state estimation, comprising interconnected layers of artificial neurons (Kang 
et al., 2014). 

Artificial neural network (ANN) models are capable of approximating the in­
tricate nonlinear connections between battery inputs and outputs in battery state 
estimation. The architecture of ANNs can differ, with feedforward neural net­
works, recurrent neural networks (RNNs), and convolutional neural networks 
(CNNs) being common examples. ANNs have showcased remarkable precision 
when estimating battery state variables like SoC and SoH. These models excel 
at learning from extensive datasets and comprehending intricate patterns within 
the data, thereby enabling reliable predictions. 

4.5.3. Random Forests (RF) 

Random Forests (RF) is a method of ensemble learning that combines multiple 
decision trees to make predictions. In RF, each tree is constructed using a ran­
dom subset of the training data. The final prediction is obtained by aggregating 
the predictions from all the individual trees. RF has demonstrated great poten­
tial in battery state estimation tasks because of its ability to handle data with a 
high number of dimensions and capture complex relationships. It is capable of 
effectively dealing with noisy data and missing values, making it well-suited for 
practical battery applications. By leveraging RF, accurate estimations of battery 
state variables can be achieved, enabling effective management and control of 
batteries. 
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4.5.4. Deep Learning Techniques 

Deep learning techniques have revolutionized many fields, including battery state 
estimation. These techniques leverage neural networks with multiple hidden lay­
ers to learn complex representations and patterns from data. 

4.5.5. Recurrent Neural Networks (RNN) 

Recurrent Neural Networks (RNNs) find extensive application in battery state es­
timation tasks where sequential data, such as time-series battery data, is involved. 
With their feedback loop mechanism, RNNs can retain information across dif­
ferent time steps, enabling them to grasp the temporal dependencies present in 
the data. Battery state variables, including SoC and remaining useful life (RUL), 
have been effectively predicted using RNNs. Their ability to capture long-term 
dependencies and dynamic patterns makes them a suitable choice for real-time 
battery state estimation. 

4.5.6. Long Short-Term Memory (LSTM) networks 

LSTM networks are a specific type of recurrent neural network (RNN) that tackle 
the issue of the vanishing gradient problem encountered during the training of 
deep neural networks. LSTMs employ a more intricate structure that incorpo­
rates memory cells and gates, enabling them to regulate the information flow. 
LSTM networks have shown remarkable performance in battery state estimation 
tasks. They can effectively capture long-term dependencies and handle the chal­
lenges of noisy and irregularly sampled battery data. LSTMs have been used for 
accurate SoC estimation and RUL prediction (Chinomona et al., 2020). 

4.5.7. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs) find their primary application in image 
processing, but they have also been utilized for battery state estimation.CNNs 
excel in capturing spatial relationships in the data and have achieved significant 
success in image-based battery state estimation, such as estimating SoH based 
on battery images (Jiang et al., 2023). 

By applying convolutional operations to battery data, CNNs can learn spatial 
features and patterns that contribute to accurate state estimation. CNNs have the 
advantage of being able to handle multi-dimensional data, making them suitable 
for tasks involving multi-sensor battery data (Tao et al., 2020). 

4.6.
 Review
of
related
studies


Neural Networks (NN) demonstrate excellent capabilities in creating non-linear 
maps to represent complex nonlinear battery models. For instance, in (Dang 
et al., 2016). A proposed method for estimating SoC involves the fusion of two 
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neural networks (NN) within a battery model. The first NN, a linear model, iden­
tifies electrochemical parameters of the battery's electrochemical model. The 
second NN, a backpropagation NN (BPNN), captures the correlation between 
open circuit voltage (OCV) and SoC. In (Sun et al., 2016) an uncertainty quan­
tification algorithm utilizing a Radial Basis Function Neural Network (RBFNN) 
was developed to estimate SoC for battery packs comprising multiple cells. The 
study in (Tong et al., 2016) established a load classifying NN model with im­
proved post-processing to suppress overfitting. A deep feed-forward NN-based 
method directly mapped battery measurements to SoC (Chemali et al., 2018). 
Neural networks (NN) have emerged as a popular method in various recent stud­
ies. 

In (Li et al., 2020), Particle Swarm Optimization (PSO) was utilized to fine-
tune the penalty factor and kernel width in Support Vector Regression (SVR) for 
SoC estimation. These particular parameters have a substantial influence on the 
performance of SVR. The optimized model demonstrated superior results com­
pared to traditional SVR approaches, achieving an average estimation error of 
1.5%. In (Hu et al., 2014b) the authors have employed a Gaussian kernel and 
fine-tuned cost parameters using a double search algorithm. It resulted in an im­
proved performance with a maximum Mean Square Error (MSE) of 2.23% com­
pared to different variations of Feedforward Neural Networks (FNNs) trained on 
various datasets. In (Zhang and Wang, 2018), the authors developed an online 
SVR model to enhance the BMS by providing real-time updates on the battery 
cell’s state. This led to a decrease in the error range and Root Mean Squared 
Error (RMSE) when compared to Backpropagation Neural Networks (BPNN). 
On the other hand, in (Xuan et al., 2020) observed that Support Vector Machines 
(SVMs) exhibit higher accuracy for classification tasks than for regression. 

CNNs, initially introduced by (Lecun et al., 1998) as LeNet-5Deep feedfor­
ward architectures, such as LeNet-5, fall under the category of convolutional 
neural networks (CNNs). LeNet-5 consists of two convolutional layers, two pool­
ing layers, two fully connected layers, and an output layer. CNNs have gained 
immense popularity in image and video processing applications due to their re­
markable ability to effectively capture data patterns within a limited period. It is 
made possible by their deep architecture, which allows them to extract temporal 
information from training data, setting them apart from feedforward neural net­
works (FNNs) based on multilayer perceptron (MLP) models.). In (Kuang and 
Xu, 2018) the authors were pioneers in the application of LeNet-5 CNNs to ma­
chine learning tasks involving one-dimensional data. A typical CNN architecture 
comprises an input layer and one or more convolutional layers with pooling, as 
shown in Figure 10. The configuration of the output layers varies depending on 
the specific application. In the case of regression problems, a flattening layer fol­
lowed by one or more dense layers is commonly used to determine the output. 
Each convolutional layer contains multiple filters or kernels (referred to as “f”) 
whose size is determined by the input dimensionality. 
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Figure 10. CNN architecture. 

Several models, such as linear regression, linear support vector machine 
(SVM), k-nearest neighbors (kNN), random forest (RF), and LightGBM 
(LGBM), were assessed. Linear SVM seeks to find a linear hyperplane that ef­
fectively fits all data points across all dimensions. kNN makes predictions based 
on the labels of its k nearest neighbors. RF utilizes multiple decision tree regres­
sors, which are susceptible to overfitting, and implements bagging with majority 
voting to reduce variance. LGBM employs multiple tree regressors trained on 
the entire dataset to address underfitting and minimize bias by focusing on error 
reduction (Granado et al., 2022). 

Linear regression did not undergo any optimization, while other models were 
subjected to coarse optimization using grid search. The hyperparameters that 
were tuned include regularization and ϵ
for SVM, the number of neighbors (k) for 
kNN, and the number of trees and maximum features for RF. As LGBM requires 
tuning a larger number of hyperparameters, a randomized search was conducted, 
testing 50 combinations of hyperparameters such as leaf number, minimum child 
samples, minimum child weight, subsample ratio, subsample ratio of columns for 
each tree, and α
(L1) and λ
(L2) regularization parameters (Probst et al., 2019). 

The findings from the model selection are illustrated in Figure 11, where (a) to 
(e) showcase a comparison between the actual SoH values of the test set and the 
corresponding predicted values. Figure 11f provides a comprehensive overview 
of the results, presenting scores and fit times. All models exhibited excellent 
performance on the training set, with coefficients of determination (train R2) 
exceeding 0.992, mean absolute errors (train MAE) below 0.005 (equivalent to 
0.5%), and root mean squared errors (train RMSE) below 0.007 (equivalent to 
0.7%). Notably, the performance scores of the models consistently surpassed 
those reported in previous studies, as affirmed in the literature review (Chandran 
et al., 2021). 
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Figure 11. Displays the true (blue) and predicted (orange) SoH values as a function of cycle for the 
three cells in the test set, utilizing different models. Additionally, the graph displays the R2 scores for 
training, validation, and testing, as well as the mean fit times for all models. It is important to note that 
the SoH predictions presented here are based on the thirty most recent observations, which are included 
in the rolling window. For a visual reference to the color scheme, please refer to the online version of this 
article. 

5. Discussion 

The AI assistive state estimation of rechargeable battery cells has gained a sig­
nificant attention due to its crucial role in optimizing the performance, efficiency, 
and lifespan of the intended battery packs (Faraji-Niri et al., 2023). Among dif­
ferent battery technologies, the Li-Ion batteries are widely used in various ap­
plications such as electric vehicles, renewable energy storage, satellites, mobile 
phones, and emergency power backup systems. It is due to their ever-wanted fea­
tures such as the high power density, lighter weight, smaller size, and a higher 
count of charge-discharge cycles. The Li-Ion batteries are relatively costly how­
ever an effective usage can render a longer battery life and a viable solution. 
In this context, an Accurate estimation of the battery cell’s SoC, capacity, SoH, 
and RUL are vital for effective battery management and usage (Faraji-Niri et al., 
2023). 

The BMS play a critical role in monitoring and controlling the operation of Li-
Ion batteries (Sun et al., 2021). A BMS consists of various components such as 
sensors, control algorithms, and communication interfaces to ensure the safety, 
reliability, and longevity of the battery (Sun et al., 2021). One of the key func­
tions of a BMS is to estimate the SoC, which represents the available energy 
remaining in a battery (Wang et al., 2021). 
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AI-driven state estimation techniques have shown great potential in enhanc­
ing the performance and reliability of Li-Ion batteries. Accurate estimation of 
SoC, capacity, RUL, and SoH can significantly improve battery management, 
optimize charging and discharging strategies, and extend the battery's lifespan. 
Furthermore, these techniques enable the implementation of predictive mainte­
nance strategies, allowing for proactive replacement of aging cells before failure 
occurs (Guo and Ma, 2023). 

The advantages of AI technology are numerous. While avoiding a difficult 
battery modelling procedure, these approaches may be utilized to evaluate the 
status of battery cells, extract online aging data from measurements, and con­
nect it to battery performance characteristics. In comparison to existing industrial 
standards, the accuracy of battery health predictions, made using AI approaches, 
is substantially greater. Additionally, performance data is being generated by 
the AI in order to train it how to create better batteries. Artificial intelligence 
and extensive experimental data may be used to uncover the secret to correctly 
forecasting the usable life of Li-Ion battery cells before their capacities start to 
decline. However, due to significant alterations in battery properties throughout 
the course of a battery's lifespan brought on by aging and unique nonlinear be­
haviour, estimating the state of the battery cell is a difficult process. As a result, 
the results of AI-based models may be inaccurate, particularly when there is a 
lack of training data. 

The future of current energy generating, and distribution networks is the In­
ternet of Energy (IoE). It will be built on modern AI, smart meters, and informa­
tion and communication technology (ICT). Data gathering with the right level 
of granularity is crucial in this infrastructure (Qaisar and Alsharif, 2020; Qaisar 
et al., 2019a). The massive deployment of smart meters can lead towards an 
exponential raise in the collected data (Qaisar and Alsharif, 2020). It can lead to­
wards data management and transmission challenges. In this context, the event-
driven data acquisition and processing can render efficient realizations in terms 
of compression and computational plus transmission efficiencies (Qaisar and Al­
jefri, 2021; Qaisar et al., 2019b; Sabo et al., 2018). Additionally, the optimization 
tools can result in effective data dimensionality reduction without losing the per­
tinent information (Khan et al., 2022; Mian Qaisar et al., 2023; Qaisar et al., 
2022). Future research can look in the viability of incorporating these technolo­
gies in battery management systems. 

Our research, which primarily delves into Li-ion battery state estimation us­
ing artificial intelligence techniques, is marked by several noteworthy limita­
tions. Firstly, its narrow scope, centering solely on Li-ion batteries, neglects the 
exploration of other rechargeable battery types and alternative state estimation 
methods, potentially limiting the broader applicability of our findings. Secondly, 
the effectiveness of artificial intelligence algorithms hinges on data availability, 
yet we grapple with challenges in obtaining substantial real-world battery data, 
raising concerns about the generalizability of our conclusions. Thirdly, certain 
AI-driven techniques, especially model-based approaches, come with significant 
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computational complexity, posing practical challenges for their real-time imple­
mentation in battery management systems. Furthermore, our research, while rich 
in theoretical discussions and references to existing studies, lacks empirical val­
idation or experimental testing, leaving uncertainties regarding the real-world 
performance of the discussed methods. Lastly, our study's focus on specific ap­
plications, such as electric vehicles, renewable energy, and portable electron­
ics, introduces a limitation in terms of generalizability, given the considerable 
variations in battery characteristics and requirements across different industries. 
These limitations underscore the need for continued exploration and improve­
ment in battery state estimation research. 

6. Conclusion 

This chapter has provided an in-depth exploration of artificial intelligence as­
sistive Li-Ion battery cell’s state estimation approaches. The chapter began with 
the purpose of battery state estimation. Onward, its importance is highlighted 
in the battery management systems while considering several key applications. 
Afterward, the advances in battery state estimation due to the artificial intelli­
gence are described. The use of artificial intelligence driven battery management 
approaches are reviewed. Different rechargeable battery technologies are pre­
sented. It is mentioned that due to pertinent benefits the Li-Ion batteries are the 
most frequently used ones and their several applications are also presented. Var­
ious key methods sued for the battery state of charge, state of health, capacity 
and remaining useful life estimation are summarized. Then a focused discussion 
on the AI piloted battery state estimation is made. Its key steps such as the data 
collection, preprocessing, feature engineering, classification/regression, and in­
tended application are described. The key machine/ensemble/deep learning tech­
niques, used in battery state estimation are outlined. A review of related studies is 
also made while describing the advantages and limitations of the artificial intel­
ligence based rechargeable battery cell’s state estimation. As the field continues 
to advance, future directions may involve exploring advanced and contemporary 
energy storage technologies like supercapacitors, optimizing the integration of 
energy storage with renewable sources, and developing the Internet of Energy 
functionalities to further enhance the efficiency, reliability, and sustainability of 
modern grid systems. 
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Abbreviations


AI	
 Artificial
Intelligence

ANN	
 Artificial
Neural
Network

BMS	
 Battery
Management
System

CV
 Cross
Validation

EIM	
 Electrochemical
Impedance
model

EKF	
 Extended
Kalman
Filter

EOL
 End
of
Life

EVs	
 Electric
Vehicle

FNN	
 Feedforward
Neural
Network

GAN	
 Generative
Adversarial
Network

GCD	
 Greatest
Common
Divisor

LCM	
 Least
Common
Multiple

Li-ion	
 Lithium
Ion

LSTM	
 Long
Short-Term
Memory

MAPE	
 Mean
Absolute
Percentage
Error

OCV
 Open
Circuit
Voltage

PSO	
 Particle
Swarm
Optimization

RMSE	
 Root
Mean
Squared
Error

RUL
 Remaining
Useful
Life

SoC	
 State
of
Charge

SoH	
 State
of
Health

SoP
 State
of
Power

SVM	
 Support
Vector
Machine

UKF	
 Unscented
Kalman
Filter
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1.
 Introduction


In today’s society, engineering education plays an indispensable role in driv­
ing innovation, technological advancements, and economic prosperity. Engineers 
serve as the driving force behind technological innovation, transforming ground-
breaking ideas into tangible solutions that shape our world. To keep pace with 
the ever-evolving technological landscape and equip engineers with the skills 
necessary to address the challenges and opportunities of the 21st century, the en­
gineering curriculum has undergone significant transformations. As highlighted 
in numerous educational reports, industry, particularly in the context of Industry 
4.0, demands engineers who possess not only technical expertise but also a reper­
toire of transferable skills, including communication, teamwork, lifelong learn-
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ing, leadership, creativity, critical thinking, and entrepreneurial acumen (Ekren 
and Kumar, 2020; Lingard and Barkataki, 2011). Expected learning outcomes 
(ELOs) serve as formal declarations of a learner’s ability to demonstrate knowl­
edge, skills, and attitudes at the culmination of a learning process. 

The development of an innovative engineering program begins with the def­
inition of the Program Learning Outcomes (PLOs) or student outcomes, as out­
lined by ABET (Accreditation Board for Engineering and Technology). These 
PLOs should be in line with the Institutional Learning Outcomes (ILOs) and the 
National Qualification Framework (NQF). The PLOs are then used to create the 
curriculum, which consists of a large number of courses designed to provide stu­
dents with the knowledge, skills, and values required by the PLOs. Each course 
should have its own Course Learning Outcomes (CLOs) that must be assigned 
to the PLOs (Felder and Brent, 2003). 

Faculty development assumes a pivotal role in shaping the design and exe­
cution of academic programs. Within any department, school, or institution, a 
dedicated professional development unit or program should be committed to en­
hancing faculty members’ expertise in crucial areas, including pedagogy, teach­
ing methods, technology integration, and assessment strategies. In the context 
of engineering programs, it becomes imperative for faculty members not only 
to excel in these foundational areas but also to actively cultivate collaborative 
relationships with industry professionals. This synergy ensures a dynamic and 
practical educational experience for students, aligning academic pursuits with 
real-world industry needs. To address these industry needs effectively, the inclu­
sion of specialized and capstone-oriented courses is recommended, as suggested 
in the work by (Dhaou, 2022). 

According to (Dixson and Worrell, 2016), both formative and summative as­
sessment approaches are essential for effectively measuring learning outcomes 
and fostering continuous improvement in the learning process. Recognizing the 
widening gap between engineering education and industry expectations, MIT 
developed the CDIO (Conceive, Design, Implement, and Operate) framework to 
bridge this gap and prepare engineers for success in the real world (Crawley, 
2002). The CDIO curriculum encompasses four core components: (a) technical 
knowledge and reasoning, (b) human and professional abilities and traits, (c) 
interpersonal skills, and (d) the ability to conceive, create, implement, and op­
erate systems within a company and for social purposes. Over 140 universities 
and higher education institutions worldwide have adopted the CDIO framework, 
demonstrating its widespread recognition and effectiveness in preparing engi­
neers for the demands of the 21st century. 

CDE methodology, on the other hand, is a new frontier in engineering ed­
ucation that aims to incorporate societal requirements into university teaching 
through projects while also increasing engineering creativity. In this paradigm, a 
group of students with interdisciplinary skills works on societal and/or industry-
related problems. CDE allows Engineering Education programs to include Cog­
nitive learning (knowledge), Psychomotor learning (skills), and affective learn­
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ing (attitude). Students improve their logical, intuitive, and creative thinking as 
well as interpersonal skills such as awareness, communication, and cooperation 
as they work in groups and interact with challenge stakeholders. As CDE aspires 
to provide society with long-term and practical solutions, it exposes students to 
practical skills such as manual dexterity and the use of methodologies, materials, 
tools, and instruments. 

The Royal Institute of Technology (KTH-Sweden) has advocated for the CDE 
methodology in order to design graduate courses that solve societal problems 
through engaging, multidisciplinary, and open-ended teams. To meet the chal­
lenges of the single market economy and maintain a sustainable growth rate for 
modern society, universities should transition from a learning center to an inno­
vation center. Initially, the triple helix model was promoted as a means of fos­
tering innovation (Leydesdorff, 2000). Society and media were recently added 
as the fourth quadrant (McAdam and Debackere, 2018). Figure 1 depicts the 
quadruple helix model as well as the CDE quadrants. 

Figure
1.
 Quadruple Helix model of innovation. 

2.
 Background


2.1.
 The
challenge
driven
education
framework


The concept of challenge-driven education (CDE) can be traced back to the early 
2000s, when researchers at the Swiss Federal Institute of Technology Lausanne 
(EPFL) began to explore ways to make learning more relevant and engaging for 
students. The researchers were inspired by the success of project-based learning 
(PBL) and other hands-on learning approaches, but they wanted to develop a 
model that would go beyond simply giving students projects to work on. 

The EPFL researchers envisioned a model of education where students 
would be engaged in real-world challenges that would require them to use their 
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knowledge and skills to solve complex problems. This model would be based 
on the following principles: 

Authenticity: Students would work on real-world challenges that are relevant to 
their interests and to the world around them. Interdisciplinarity: Students would 
draw on knowledge and skills from multiple disciplines to solve the challenges 
they face. Collaboration: Students would work together in teams to solve the 
challenges, developing their teamwork and collaboration skills in the process. 
Reflection: Students would reflect on their learning throughout the process, iden­
tifying their strengths and weaknesses and developing new strategies for solving 
problems. The EPFL researchers began to implement CDE in their own courses 
and found that it was a very effective way to engage students and help them to 
learn deeply. CDE has since been adopted by educators around the world, and it 
is now used in a variety of educational settings, from primary schools to univer­
sities. 

Here are some key milestones in the development of CDE: In 2003, EPFL 
researchers initiated the idea of Challenge-Driven Education (CDE). Five years 
later, the first CDE course was offered at EPFL. In 2010, the Challenge-Based 
Learning Research Center was established at the same institution. In 2012, the 
first international conference on challenge-based learning was held. Three years 
later, the Challenge-Based Learning Network was launched. By 2020, CDE had 
become a popular teaching method in schools and universities worldwide. 

CDE is a relatively new approach to education, but it is quickly gaining pop­
ularity as educators recognize the benefits that it can offer to students. CDE is a 
way to make learning more relevant, engaging, and effective. It is a way to pre­
pare students for the challenges of the 21st century. CDE is a methodology that 
incorporates active learning throughout the process, from identifying the prob­
lem to providing a solution. At every stage of its application, the approach con­
nects research, education, and innovation. The approach involves students, com­
munity/stakeholders, and researchers working together to provide a service or 
solution to a specific problem. Research done by (Magnell and Högfeldt, 2015) 
describes the CDE approach and how to implement it in practice. CDE has sev­
eral advantages, including the ability to solve societal problems, and to work in 
a multidisciplinary team work to bridge the gap between academic and societal 
needs. The process involved in the CDE approach is depicted in Figure 2. 

Figure
2.
 From identification of the problem to solution deployment (Ebrahimi et al., 2019). 
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2.2.
 Adopting
challenge-driven
education
in
engineering
program


In 2015, the University of Dar es Salaam (UDSM) and the Royal Institute of 
Technology (KTH) joined forces to launch the iGrid project, which was funded 
by SIDA. The primary objective of the project was to create and upgrade smart 
grid capacity in Tanzania. This had an impact on both the main grid and the mi­
crogrid. TANESCO, the main shareholder of the main grid, set three challenges 
for MSc and PhD students to tackle: (i) Inefficient power system fault prevention 
and clearance (C1) for PhD students enrolled in 2016; (ii) Lack of power con­
sumption visibility in the electrical secondary distribution network (C2) for MSc 
students enrolled in 2016; and (iii) Non-optimal management of electrical distri­
bution network due to heterogeneous systems (C3) for MSc students enrolled in 
2017. 

Furthermore, the iGrid initiative traveled to remote off-grid villages to address 
the unique electricity difficulties that those populations face. A community in the 
Kisiju region, 100 kilometers from Dar es Salaam, was visited by the crew. A 
centrally placed solar-powered microgrid provides electricity to the town, which 
consists of about 100 homes (Matungwa, 2014). Despite the lack of electrical 
generation, stakeholders noted two major challenges: 

Manual and inefficient control of power distribution (C4), for Ph.D. student 
enrolled in the year 2016. Lack of stable and secure communication infrastruc­
ture that can support autonomous and remote control and monitoring (C5), for 
PhD students enrolled in the year 2016. Students from several disciplines were 
enrolled in trans-disciplinary teams. Information systems, telecommunications, 
computer engineering, data science, electronics, and computer science are all 
examples of specializations. Table 1 outlines the primary challenges and sub-
challenges undertaken by students, as well as the categorization of the problem to 
be solved. The assigned number of graduate students for each challenge is sum­
marized in Table 2. Figures 3 and 4 detail the project work undertaken by PhD 
and MSc students, respectively, as well as their disciplines and implementation 
phases. The achievement level was benchmarked using the five implementation 
phases of (Rådberg et al., 2020). These phases are: (1) problem formulation; (2) 
idea or model generation; (3) concept development; (4) testing/evaluation within 
an academic setting; (5) testing/evaluation by external stakeholders. 

2.3.
 Contributions
of
this
study


This research study focuses on assessing the use of the CDE approach at the Uni­
versity of Dar es Salaam (UDSM) and the Royal Institute of Technology (KTH) 
to demonstrate its impact on society. The problem solved was based on how to 
provide a reliable and sustainable solution for power generation in Tanzania, for 
both rural and urban areas. The case study can be used to cover different topics 
that have been overlooked in CDE, in particular the problem-solving process, 
lifelong learning, and team dynamics. 



163 Addressing
Societal
Challenges
through
CDE


Table
1.
 Task distribution using CDE approach. 

Description Sub-challenges 
C1: Inefficient power system fault 

prevention and clearance 
Detection and restoration 

Monitoring, control and prevention 
Management systems and services 

Support infrastructures and frameworks 
C2: Lack of power consumption visibility Data acquisition 

Data transmission 
Data storage 

Data analytics 
Data visualization 

C3:Non-optimal management of 
electrical distribution network 
due to heterogeneous systems 

Integration of GIS and AMI 
Fault analysis 

Load forecasting 
Outage management 

Theft detection 
C4:Manual and inefficient control 

of power distribution in rural 
areas (microgrid) 

Agent based system for 
control and monitoring 

C5:Lack of stable and secure 
communication in rural areas 

(microgrid) 

Secure system that can support 
autonomous and remote control and 

monitoring 

Table
2.
 Distribution of graduate students among the five challenges. 

Challenge Students 
C1 Eight PhD students enrolled at UDSM in the year 2016 
C2 Six master students enrolled at UDSM in the year 2016 
C3 Five master students enrolled at UDSM in the year 2017 
C4 One student enrolled in a co-tutelle PhD program (UDSM and KTH) 
C5 One student enrolled in a co-tutelle PhD program (UDSM and KTH) 

3.
 Methods


This study employs a mixed-methods approach, combining quantitative and 
qualitative research methods, to evaluate the effectiveness of the CDE approach. 
A total of 50 participants, including 30 students, 10 instructors, and 10 stakehold­
ers, were invited to complete a comprehensive questionnaire. Of the 50 partici­
pants, 39 responded, resulting in an approximate 78% response rate. The respon­
dents included 24 students, 8 instructors, and 7 stakeholders. The questionnaire 
was designed to assess the skills acquired through the CDE approach, evaluate 
the overall learning experience, and identify areas for improvement. The survey 
was conducted after the majority of participants had completed their studies to 
gather more comprehensive feedback on the CDE approach. Participants were 
asked to rate each statement on a five-point Likert scale ranging from “Strongly 
Agree” to “Strongly Disagree” or “Very Easy” to “Very Difficult.” Additionally, 
open-ended questions were included to allow participants to provide detailed ex­
planations and elaborations on their responses. The questionnaires are attached 
in the Appendix A for reference (Tables A1 4 5). 
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Figure
3.
 Evaluating the contributions of CDE projects undertaken by PhD students. 

4.
 Results


The CDE has fostered teamwork abilities, improved communication skills, and 
boosted student confidence. However, the amount of work completed in this 
course seems to be disproportionate to the number of credits earned. 

Tables 3, 4, 5 present the survey results, which encompass perspectives from 
students, instructors, and stakeholders. 

5.
 Discussions


The analysis of the impact of CDE practices uses an Information Systems the­
oretical approach which focusing on the following parameters: (i) Expectations 
(effort and performance), (ii) Usefulness, (iii) Satisfaction, (iv) Ease of Use, and 
(v) Facilitating Conditions. These are the Unified Theory of Acceptance and Use 
of Technology (UTAUT) model's Information System (IS) by (Venkatesh et al., 
2016). 
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Figure
4.
 Evaluating the contributions of CDE projects undertaken by master students. 

Table
3.
 Results from the students’ survey. 

Question Strongly Disagree Disagree Neutral Agree Strongly Agree 
Q1 0% 0% 0% 57.1% 42.9% 
Q2 0% 0% 35.7% 35.7% 28.6% 
Q3 0% 0% 0% 35.7% 57.1% 
Q4 0% 0% 0% 35.7% 64.3% 
Q5 0% 14.3% 28.6% 57.1% 0% 
Q6 0% 0% 0% 57.1% 42.9% 
Q7 0% 7.1% 21.4% 42.9% 28.6% 
Q8 0% 0% 14.3% 64.3% 21.4% 
Q9 7.1% 0% 14.3% 50% 35.7% 
Q10 0% 0% 14.3% 42.9% 42.9% 
Q11 0% 0% 14.3% 50% 35.7% 

5.1.
 Expectation


Performance Expectancy (PE), a key component of the UTAUT instrument, is 
the degree to which people believe a technology or innovation will improve their 
performance. The perceived ease of use is referred to as Effort Expectancy (EE). 
The survey questions were designed to determine whether CDE, as a learn­



166 IoT
Enabled-DC
Microgrids


Table
4.
 Faculty evaluation. 

Question Strongly Disagree Disagree Neutral Agree Strongly Agree 
Q1 16.7% 0% 16.7% 33.3% 33.3% 
Q2 0% 0% 0% 33.3% 66.7% 
Q3 0% 0% 16.7% 50% 33.3% 
Q4 0% 0% 33.3% 33.3% 33.3% 
Q5 16.7% 0% 16.7% 33.3% 33.3% 
Q6 0% 0% 33.3% 33.3% 33.3% 
Q7 0% 0% 0% 50% 50% 
Q8 0% 0% 0% 50% 50% 

Table
5.
 Stakeholder’s feedback. 

Question Strongly Disagree Disagree Neutral Agree Strongly Agree 
Q1 0% 33.3% 0% 66.7% 0% 
Q2 0% 0% 0% 66.7% 33.3% 
Q3 0% 0% 0% 33.3% 66.7% 
Q4 0% 0% 0% 100% 0% 
Q5 0% 0% 0% 33.3% 66.7% 
Q6 0% 0% 66.7% 33.3% 0% 
Q7 0% 0% 33.3% 33.3% 33.3% 
Q8 0% 33.3% 0% 66.7% 0% 

ing and problem-solving methodology, performed at the level expected by the 
participants. For example, more than half of the student respondents (57.1%) 
and instructors (66.6%) agreed that the effort put in delivering the course met 
their expectations and was aligned with the designed curriculum. The process 
of problem solving for the challenge supplied followed the expected methodol­
ogy phases of problem definition, solution development, course of action deci­
sion, solution implementation, and evaluation, according to a large proportion 
of students (57.1%) or strongly agreed (42.9%). 83.3% of teachers believed that 
knowledge delivered to students was evaluated through the use of both summa­
tive and formative assessment grading criteria. It's worth noting that all of the 
stakeholder respondents (100%) want people/investors to pay for the solutions 
that have been implemented. 

The survey results revealed that 66.7% of stakeholders had attended other 
CDE-based workshops with other institutions, indicating that they were aware of 
CDE as a problem-solving methodology. This demonstrates CDE's acceptability 
and potential adoption as a primary tool for learning and problem solving in a 
variety of institutions. 

5.2.
 Usefulness


The survey results highlighted the impact of the CDE on students, instructors and 
stakeholders. For about 57.1%, students expressed the usefulness of the CDE on 
improving their communication skills and teamwork (soft skills). CDE provided 
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students further understanding of the 17 UN sustainable goals where by at the 
beginning majority did not have that knowledge. This can be seen as only 35% 
agree to have the idea about it. Also, 64% of students were able to get new 
skills in entrepreneur through the use of CDE approach. CDE was also useful 
in consolidating and improving the leadership, teamwork and communication 
skills of the instructors. Last not least, 66% of the stakeholders expressed the 
usefulness of the CDE in addressing the societal needs and delivering sustainable 
solution. 

5.3.
 Satisfaction


The level of satisfaction is typically evaluated based on a variety of factors, such 
as student grades, instructor expectations, and the product desired by stakehold­
ers. This study found that 84 percent of students were content with the course 
design, delivery method, and grade they received. Additionally, while half of the 
instructors were satisfied with their students’ presentation, the other half were 
not due to its time-consuming nature. Moreover, the perspectives of stakeholders 
were considered in terms of comparing this approach to prior ones. When using 
the CDE approach, 67 percent of stakeholders agreed that the risk is minimal 
since meetings must be held at each stage, allowing for close supervision and 
reducing the chances of failure. 

5.4.
 Ease
of
use


Many studies have shown that students often struggle to understand and solve 
problems. The CDE approach, however, has been found to be beneficial; 57.1% 
of students reported that it was easy to understand the project and felt comfort­
able when designing and executing solutions. The desired learning outcomes 
were also clearly visible in the output, which clarified the concept learning 
theories. Additionally, 85% of stakeholders strongly agreed with the approach, 
demonstrating its effectiveness. Furthermore, students found that the solutions 
were straightforward and easy to comprehend. 

5.5.
 Facilitation
conditions


Consideration of facilitation conditions is crucial when evaluating the CDE ap­
proach. This approach ensures that students are guided in a manner that is 
equitable and conducive to grasping the discipline-specific knowledge, skills, 
and mindsets essential for course completion. Impressively, 67% of instructors 
strongly affirmed the effectiveness of this approach, underscoring its strengths 
in the SWOT analysis of the CDE. Moreover, involving stakeholders through­
out the course streamlined engagement and commitment. A substantial 66.7% of 
respondents expressed strong agreement that facilitation conditions, such as pro­
viding constructive feedback and fostering discussions with students, are pivotal 
and practical aspects of the CDE approach. 
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6.
 Harnessing
the
potential
of
CDE
approach


6.1.
 Important
aspects
to
consider
upon
using
CDE


Three key points have been raised by respondents in terms of improving the CDE 
approach. These are: 

(1) Students’ level of education: It is important to consider the students’ ex­
perience and level of education as this will also help with the project’s 
completion. Students with more experience and education will be better 
equipped to face the challenges of the CDE approach. 

(2) Site	 visits: Site visits were mentioned as the first input to con­
sider/implement when dealing with CDE. This will assist students in hav­
ing a clear picture of what they are supposed to solve rather than guessing. 
Site visits will also help students to develop a better understanding of the 
customer’s needs. 

(3) Funds for designing the prototype: Once delivered to the customer, it is 
also important to have a complete prototype to demonstrate it. This also 
adds value and credibility to the students. As a result, having funds for 
implementation increases the potential of the prototypes/products created. 

Numerous respondents did not prioritize the curriculum, placing greater empha­
sis on meetings and stakeholder feedback. While acknowledging the importance 
of enhancing the curriculum, there is a consensus that these improvements should 
be implemented promptly without undue delay. 

In addition to the three key points raised by respondents, the following are 
some additional important aspects to consider upon using CDE: 

•

Clearly defined project goals and objectives: The project goals and objec­
tives should be clearly defined and communicated to all stakeholders. This 
will help to ensure that everyone is on the same page and that the project 
is on track to meet its objectives. 

•

Effective communication and collaboration: Effective communication and 
collaboration are essential for the success of any CDE project. Students, 
instructors, and stakeholders must be able to communicate effectively with 
each other in order to share ideas, solve problems, and make decisions. 

•

Regular feedback and evaluation: Regular feedback and evaluation are im­
portant for ensuring that the CDE project is on track and that students are 
learning effectively. Students should receive feedback on their work from 
instructors and stakeholders on a regular basis. 

•

Flexibility and adaptability: CDE projects are often complex and dynamic, 
and it is important to be flexible and adaptable in order to deal with 
changes and challenges. Students, instructors, and stakeholders must be 
willing to adapt their plans and expectations as needed. 
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6.2.
 Monetizing
solution
process


The iGrid projects presented in this paper concentrate on solutions developed to 
address sub-challenges resulting from the larger challenge breakdown utilizing 
the CDE approach. Furthermore, as shown in Table 1, the majority of these so­
lutions are undergoing testing and review by external stakeholders. It is critical 
that these ideas be combined to create a single solution that addresses the larger 
problem holistically. The steps that must be taken to ensure that the solution is 
not only monetized but also adopted in a long-term manner include: 

a) Integration of sub-challenge solutions. 
b) Technical Testing and evaluation of the main solution. 
c) Engagement of stakeholders and industry in testing and evaluation. 
d) Alignment with government policies and initiatives. 
e) Feasibility analysis of pilot deployment and related costs. 
f) Demonstration of pilot findings to attract solution adopters/users. 
g) Solution use through startups, Labs, purchase, partnerships, etc. 
h) CDE based improvement of existing solutions. 

6.3.
 Way
forward
regarding
CDE
approach


It is imperative for every institution to prioritize the appreciation of student ideas 
and to actively involve stakeholders right from the project’s inception. A respon­
dent highlighted that the Collaborative Design and Engineering (CDE) approach 
has demonstrated efficacy in addressing and resolving prevalent socioeconomic 
issues. Moreover, to yield tangible output, it is recommended to conduct site vis­
its at the project’s commencement rather than waiting until the mid-way point of 
the students’ studies. 

The stakeholders from TANESCO, who play a pivotal role in the CDE, en­
dorse the value, innovativeness, and sustainability of the students’ solutions, em­
phasizing their relevance to society. Additionally, they propose that students en­
gage in visits to utility companies to gain familiarity with real-world challenges. 
This proactive approach ensures that students are well-versed in practical con­
siderations from the outset of their projects. 

7.
 Conclusion


In the collaborative nexus of academic institutions, businesses, and governments, 
challenge-driven education emerges as a promising framework for addressing so­
cietal needs. The participation of graduate students in Phase 1 of the Challenge-
Driven Education (CDE) has proven instrumental, providing them with invalu­
able insights into authentic engineering problems while fostering crucial team­
work and communication skills. Despite these achievements, there is a need to 
strengthen entrepreneurial skills, refine systematic problem-solving processes, 
and improve the integration of civil society within the CDE framework. 
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Noteworthy achievements include the timely and collaborative completion of 
student projects during the period from October 2021 to February 2022. Of these, 
8 PhD students successfully concluded their projects, while 6 out of 11 Master’s 
projects navigated through all five phases. The rigorously tested and validated 
solutions across the majority of projects within academic contexts signify 
the tangible effectiveness of the CDE approach. This success underscores the 
importance of active stakeholder participation in the design and implementation 
of solutions for societal challenges. Moving forward, a greater emphasis on 
entrepreneurial experience and a more seamless integration of civil society 
perspectives are pivotal to further enhancing the overall efficacy and impact of 
the CDE approach. 
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Appendix
A.
Questionnaire
for
graduate
students


Following graduation, a questionnaire (see Table A1) was used to evaluate the 
CDE indirectly. The questionnaire in Table A2 is used to assess the feedback of 
instructors. 

The stakeholders of the iGrid project employed the survey question shown in 
Table A3 to assess the CDE projects. 

Table
A1.
 Survey questions and corresponding question numbers. 

Questions
 Q.
Number

1.
Expectation


- The effort made in this course 
is proportional to the number of credits 

Q5 

- The project covered the following phases: 
problem definition, solutions generation, course of actions decision, 
solution implementation, and evaluation 

Q6 

2.
Usefulness

- This project helped to improve my communication skills Q1 
- I came to know the 17 UN sustainable 

development goals and helped in solving 
Q2 

- This project helped me to integrate 
my skills and reinforced my team working abilities 

Q4 

- This course is useful to develop entrepreneurial skills Q7 
- The work I did was challenging in a stimulating way Q8 

3.
Satisfaction

- Overall, I am satisfied with the course Q10 

4.
Ease
of
use

- I understand the challenges, and I feel the project is well-defined. 

I was able to influence how the challenge is defined and designed in 
to a solution space 

Q3 

- What I was expected to learn was clear to me Q9 

Table
A2.
 Survey questions for faculty members. 

Questions
 Q.
Number

1.
Expectation


- I used both summative and formative assessment grading criteria 
- The amount of student work in this course 

was proportional to the number of credits gained 

Q3 
Q4 

2.
Usefulness

- The project is useful to develop or reinforce leadership skills 

such as communication, planning, implementation, mindset, teamwork 
Q5 

3.
Satisfaction

- Overall, I am satisfied with the course Q2 

4.
Facilitation
Conditions

- Students have the right: a) Disciplinary knowledge, b) skills, 

c) mindset to take the course 
Q1 
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Table
A3.
 Survey questions and target participants. 

Questions
 Q.
Number

1.
Expectation


- Do you think that people/investors 
will be ready to pay for the implemented solution 

- Have you ever attended other workshops 
with another institution based on CDE approach 

Q6 

Q8 

2.
Usefulness

- Students’ proposed solutions and 

implementation were valuable to society 
- The solution is innovative and sustainable 

Q2 

Q3 
3.
Ease
of
Use


- The solution is simple and easy to understand Q4 
4.
Facilitation
Conditions


- Meeting engagements and feedback made 
the implementation easy and realistic 

Q5 



https://taylorandfrancis.com


 

  

Part
2



Design
and
Optimization





 

   
      

  

       

  
 
 
 

 

CHAPTER 8 

Development
and
Evolution



of
Hybrid
Microgrids
in
the
Context


of
Contemporary
Applications



Yasir Basheer,a Saeed Mian Qaisar b,c,* and Asad Waqar d 

1.
 Introduction


Energy demand is expanding quickly because of global industrialization and 
population growth. It is predicted that the amount of energy consumed world­
wide would rise by about 50% between 2018 and 2050. The greatest source of 
energy for meeting the high demand has always been petroleum goods, which 
has a negative impact on the climate. When petroleum products are burned, a 
great deal of poisons are released into the air, damaging human health as well 
as the environment due to the influence of ozone-depleting compounds (Turkdo­
gan, 2021). By lowering atmospheric carbon dioxide (CO2), which can be ac­
complished by transitioning to cleaner energy sources, the issue of an increase in 
Earth's surface temperature may be resolved (Chisale and Mangani, 2021). Envi­
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ronmentally friendly power sources (RESs), such as solar photovoltaic (PV), hy­
dropower, geothermal, wind, and biomass, might provide everyone, regardless of 
their geological area, with serious cost options as well as clean and manageable 
energy (Rehman, 2021). Combining RESs with traditional petroleum derivative-
based generators results in half-breed energy frameworks (HESS), which can 
get over the problem of discontinuity and inconsistent RES supply. Compared 
to single energy sources, HESS can offer more dependable, manageable, and 
affordable frameworks (Li et al., 2022). 

1.1. Definition of hybrid microgrids 

Energy optimization involves reducing energy consumption while maintaining 
or improving production output. One potential solution for reducing energy con­
sumption in the cement industry is using hybrid microgrids. A hybrid microgrid 
is a system that combines multiple sources of energy, including renewable en­
ergy sources such as solar and wind, with traditional energy sources such as 
diesel generators. Hybrid microgrids can be optimized to reduce energy costs, 
improve energy reliability, and reduce carbon emissions. 

The potential benefits of using hybrid microgrids in the cement industry are 
significant. By combining multiple sources of energy, hybrid microgrids can re­
duce reliance on traditional fossil fuels, which can be costly and contribute to 
greenhouse gas emissions. Additionally, hybrid microgrids can help reduce the 
energy demand from the grid and provide backup power in case of grid outages, 
improving energy reliability. 

1.2. Importance of hybrid microgrids in the contemporary applications 

Hybrid microgrids have become indispensable in contemporary applications, 
serving as a critical solution for various energy challenges. These microgrids 
offer a range of benefits that address pressing concerns in the energy sector. 
Firstly, hybrid microgrids enhance energy resilience by integrating multiple en­
ergy sources and storage systems. This diversity ensures a reliable power supply 
even in the event of disruptions or failures in one energy source. The seamless 
switching capability of hybrid microgrids promotes uninterrupted operations, 
making them ideal for critical facilities, remote areas, and industries with strin­
gent power requirements. 

Secondly, hybrid microgrids play a vital role in the integration of renewable 
energy sources, such as solar and wind, into the power grid. By combining re­
newable energy with conventional sources and energy storage systems, hybrid 
microgrids effectively manage the intermittent nature of renewables and provide 
a stable power supply. This integration reduces greenhouse gas emissions, pro­
motes environmental sustainability, and supports the transition towards a cleaner 
and more sustainable energy system. Furthermore, hybrid microgrids enable cost 
optimization by leveraging the advantages of different energy sources. The uti­
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lization of renewable energy sources with zero fuel costs, coupled with efficient 
load management and storage systems, helps optimize the overall cost of elec­
tricity generation and consumption. 

1.3. Purpose of the chapter 

The purpose of this chapter is to provide an in-depth exploration of hybrid mi­
crogrids in the context of contemporary applications. It aims to define hybrid 
microgrids and highlight their importance in various sectors. The chapter seeks 
to examine the applications of hybrid microgrids in remote communities, mil­
itary installations, industrial and commercial complexes, universities and cam­
puses, disaster resilience, data centers, resorts and tourism facilities, and rural 
electrification. Additionally, it aims to analyze the energy demand in these appli­
cations and identify the factors influencing energy demand. The chapter further 
explores the energy sources used in hybrid microgrids, including renewable and 
traditional sources, and discusses the benefits and challenges associated with 
each. Mathematical modeling, objective parameters, and case studies are also 
presented to provide a comprehensive understanding of hybrid microgrids. The 
overarching purpose of this chapter is to enhance knowledge and understand­
ing of hybrid microgrids and their potential to address energy needs in diverse 
applications. 

1.4. Objectives 

(1) To provide an in-depth exploration of hybrid microgrids, including their 
applications, energy demand analysis, and energy sources. 

(2) To present mathematical modelling and objective parameters for evaluat­
ing the performance and environmental impact of hybrid microgrids. 

(3) To examine case studies and provide guidance for designing and imple­
menting efficient and sustainable hybrid microgrid systems. 

1.5. Contribution 

The contribution of this chapter is that it provides an up-to-date overview of 
hybrid microgrids, including their applications, energy demand analysis, energy 
sources, mathematical modelling, objective parameters, and case studies. It high­
lights the importance of balancing the energy mix for optimal performance and 
sustainability. The document also presents guidance for designing and imple­
menting efficient and sustainable hybrid microgrid systems. By providing a de­
tailed analysis of the subject area, this document can be a valuable resource for 
researchers, engineers, masters and PhD students, and policymakers interested in 
the development and evolution of hybrid microgrids. It contributes to the field by 
providing a comprehensive and practical guide for designing and implementing 
hybrid microgrid systems that are efficient, sustainable, and cost-effective. 
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1.6. Applications of hybrid microgrid 

1.6.1. Remote communities, islands, and offshore platforms 

Remote communities, islands, and offshore platforms often face challenges in 
accessing reliable and affordable electricity from the main grid. Hybrid micro-
grids can be deployed in these locations to provide a sustainable and independent 
source of power. 

In (Hasan et al., 2023) research focuses on optimizing the sizing of microgrid 
components by incorporating green hydrogen technology. Notably, the green hy­
drogen production system and the microgrid under investigation are situated on 
different islands, addressing specific constraints. The study in (Anglani et al., 
2023) discusses an innovative control strategy for integrating a wind turbine 
(WT) and an energy storage unit into an existing stand-alone microgrid that 
serves an oil and gas (O&G) rig. 

1.6.2. Military installations 

Military installations require secure and reliable energy systems to support their 
operations. Hybrid microgrids offer the advantage of enhancing energy secu­
rity by reducing the reliance on vulnerable fuel supply chains. These microgrids 
can integrate renewable energy sources with backup generators and energy stor­
age, allowing military bases to operate efficiently and sustainably even in remote 
or austere environments. In (Reich and Sanchez, 2023) researchers establish a 
framework for generating multiple hybrid microgrid designs and evaluating their 
resilience in diverse scenarios, such as changing weather conditions, fluctuating 
power demands, and extended timeframes that surpass initial planning estimates. 

1.6.3. Industrial and commercial 

Hybrid microgrids find valuable applications in industrial and commercial com­
plexes where a continuous power supply is critical for operations. The re­
searchers in (Rao et al., 2023) examines the potential applications of microgrids 
in railway transportation and formulates operational strategies for both indepen­
dent and grid-tied microgrid systems. To assess the economic and environmen­
tal impacts of microgrids, a comprehensive analytical framework is established, 
utilizing system dynamics, life cycle analysis, and life cycle cost analysis. The 
study (Castellanos et al., 2023) presents a convex optimization model for man­
aging energy within unbalanced microgrids (MGs) in a Local Energy Market 
(LEM). This model accounts for operational constraints, power quality require­
ments, and interactions. 

1.6.4. Universities and campuses 

Universities and large campuses often have high energy demands due to the 
presence of numerous buildings, facilities, and research centers. The study (Ali 
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et al., 2023) presents a survey of campus prosumer microgrids, covering aspects 
such as energy management strategies, optimization methods, architectural ap­
proaches, storage options, and design tools. The survey encompasses a decade 
of previous research for a comprehensive analysis. The study in (Alshehri et al., 
2023) explores the development of a hybrid microgrid at King Saud University 
campus in Riyadh to fulfil its electricity needs by harnessing solar and wind re­
sources available on-site. 

1.6.5. Disaster resilience 

In disaster-prone areas, reliable electricity is crucial for emergency response ef­
forts, communication, and critical infrastructure. Hybrid microgrids can play a 
vital role in disaster resilience by providing independent and resilient power sys­
tems. In (Zamani Gargari et al., 2023) the authors introduce a method for assess­
ing resiliency in multi-energy microgrids. We propose the use of mobile energy 
providers to mitigate the adverse effects of natural disasters and enhance system 
resiliency. 

1.6.6. Data centers 

Data centers have significant energy requirements and often require uninter­
rupted power to maintain critical operations. Hybrid microgrids offer a reliable 
and sustainable solution by integrating renewable energy sources, such as solar 
and wind, with energy storage and backup systems. In (Faheem et al., 2019a) 
authors present a unique distributed routing protocol called CARP, designed for 
Smart Grid applications based on Cognitive Radio Sensor Networks (CRSNs). 
In (Faheem et al., 2021) paper discusses a dataset comprising measurements ob­
tained through IMWSNs during monitoring and control events in the smart grid. 

1.6.7. Resorts and tourism facilities 

Resorts and tourism facilities often operate in remote or environmentally sensi­
tive areas, where access to reliable electricity can be challenging. Hybrid micro-
grids can provide sustainable power solutions by harnessing renewable energy 
sources like solar and wind, along with energy storage and backup generators. 
The study presented in ( Żóładek et al., 2023) is to conduct a thorough feasibil­
ity analysis of an innovative hybrid renewable energy system aimed at achieving 
high self-sufficiency. This system combines wind turbines and photovoltaic pan­
els to meet the energy demands of a tourist resort in Agkistro, Greece. Excess 
energy is stored in a battery and a hydrogen tank, and a wood gasifier serves as 
a backup energy source. The researchers in (Faheem et al., 2019b) introduces 
an innovative approach for data collection in smart grids. It leverages software-
defined mobile sinks (SDMSs) and wireless sensor networks (WSNs) via the 
Internet. 
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1.6.8. Rural electrification 

In rural areas with limited access to the main grid, hybrid microgrids can facili­
tate rural electrification initiatives. By combining renewable energy sources with 
energy storage, these microgrids can bring electricity to remote communities, 
improving their quality of life, supporting economic development, and enabling 
access to education, healthcare, and communication services. The study in (Ka­
mal et al., 2023) explores an improved electricity solution for rural areas in Ut­
tarakhand, India. It involves the implementation of a self-sustaining microgrid 
that efficiently meets the region's energy needs at a cost-effective rate. The sys­
tem emphasizes the optimal sizing and sensitivity analysis of the hybrid energy 
model. 

2.
 Energy
demand
analysis


2.1. Analysis of energy demand in applications of hybrid microgrid 

Remote communities, islands, and offshore platforms have varying energy de­
mands depending on factors such as population size, economic activities, and 
infrastructure. While the energy demand in these areas is generally lower com­
pared to urban areas, it still encompasses residential electricity needs, essential 
services like healthcare and education, and support for small-scale industries. 
The energy demand in military installations can be substantial due to operational 
requirements, including powering offices, training facilities, communication sys­
tems, and residential areas for personnel. 

The energy demand of industrial and commercial complexes varies widely 
based on the size, sector, and nature of the activities conducted within them. 
These complexes require energy to power machinery, lighting, HVAC systems, 
and other equipment. Similarly, universities and campuses have diverse energy 
demands due to the presence of multiple buildings, research facilities, student 
accommodations, and recreational areas. 

Energy demand in disaster resilience applications can surge during emergen­
cies, encompassing the provision of power to emergency shelters, hospitals, com­
munication systems, lighting, and critical infrastructure. 

Data centers have high energy demands driven by the continuous operation of 
servers, cooling systems, and other IT infrastructure. Resorts and tourism facil­
ities require energy for lighting, HVAC systems, water heating, kitchen equip­
ment, recreational facilities, and guest accommodations. 

Rural electrification projects entail energy demand for residential households, 
public lighting, small-scale agricultural activities, and basic services like schools 
and healthcare facilities. 
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2.2. Factors affecting energy demand 

Several factors influence the energy demand of these applications. Population 
size and growth play a significant role, as larger populations in remote communi­
ties, military installations, and universities result in higher energy demands. Eco­
nomic activity and industry type also impact energy requirements, with energy-
intensive processes and larger-scale operations contributing to higher demand. 
Geographical factors, such as limited energy resources in remote areas or the 
need for robust infrastructure in disaster-prone regions, can further affect energy 
demand. Additionally, technological advancements, energy efficiency measures, 
and the integration of renewable energy sources can influence overall energy de­
mand by promoting more sustainable and efficient energy consumption practices 
(Bashawyah and Qaisar, 2021; Qaisar et al., 2021). Understanding these factors 
is essential for developing tailored energy solutions to meet the specific demands 
of each application. 

2.3. Methods for energy demand analysis 

Energy demand analysis utilizes a range of methods to comprehensively as­
sess and understand energy consumption patterns. One commonly employed 
approach is conducting energy audits, which involve on-site inspections, data 
collection, and analysis to identify areas of high energy consumption, inefficien­
cies, and potential energy-saving measures. Energy modelling and simulation 
techniques leverage computer-based models to simulate energy consumption and 
estimate future energy demand based on factors such as building characteristics, 
equipment efficiency, and weather data. These models provide valuable insights 
into energy demand and enable the evaluation of different energy management 
strategies. 

Statistical analysis of historical energy consumption data is another effective 
method for energy demand analysis. By employing techniques such as regres­
sion analysis and time series analysis, statistical methods reveal trends, patterns, 
and correlations between energy demand and various influencing factors like 
weather conditions, occupancy levels, or production volumes. Surveys and ques­
tionnaires are valuable tools for collecting primary data on energy consumption 
and user behaviour, providing insights into energy use patterns, user preferences, 
and awareness of energy-saving practices. Scenario analysis, on the other hand, 
explores hypothetical scenarios to assess the potential impacts of policy changes, 
technological advancements, or shifts in user behaviour on future energy de­
mand. These methods, in combination or individually, enable a comprehensive 
analysis of energy demand, supporting informed decision-making and the devel­
opment of effective energy management strategies. 
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3.
 Energy
sources
for
hybrid
microgrids


Hybrid microgrids deployed in applications such as remote communities, is­
lands, military installations, industrial complexes, and other contexts often uti­
lize a combination of energy sources to meet their specific energy needs. These 
sources include renewable energy options like solar power and wind power, 
which provide clean and sustainable electricity generation. Diesel generators are 
commonly used as backup or primary power sources in situations where renew­
able energy generation is insufficient. Biomass energy derived from organic ma­
terials can also be utilized, while battery storage systems play a crucial role in 
storing excess renewable energy for later use and ensuring a stable power sup­
ply. Additionally, in areas with access to water resources, micro-hydro power can 
be integrated into hybrid microgrids. The combination and integration of these 
energy sources are tailored to the requirements and available resources of each 
application, aiming to provide a reliable, resilient, and environmentally friendly 
energy supply. 

3.1. Renewable energy sources 

Hybrid microgrids for the applications mentioned earlier incorporate a variety of 
renewable energy sources to meet their energy needs. Solar power, derived from 
photovoltaic panels, serves as a clean and abundant source of electricity. Wind 
power, harnessed through wind turbines, is utilized in locations with consistent 
wind patterns. Biomass energy, derived from organic materials, provides a re­
newable and carbon-neutral energy source. Additionally, micro-hydro power can 
be integrated where there is access to water resources. These renewable energy 
sources are combined with battery storage systems to store excess energy and 
ensure a stable power supply during periods of low renewable generation or high 
demand. By integrating multiple renewable energy sources, hybrid microgrids 
in remote communities, islands, military installations, industrial complexes, uni­
versities, and other applications can achieve reliable, sustainable, and environ­
mentally friendly energy supply. Figure 1 shows the solar potential of Pakistan 
(Group, 2022). 

The benefits of using renewable energy sources include reduced operating 
costs and lower carbon emissions. Additionally, renewable energy sources can 
provide power during peak energy demand, reducing the need for expensive peak 
energy pricing. However, renewable energy sources are dependent on weather 
conditions and may not always be available when needed. Additionally, the ini­
tial investment required for installing renewable energy sources can be high. 
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Figure
1.
 Solar potential map of Pakistan. 

3.2. Traditional energy sources 

In the context of the applications mentioned earlier, hybrid microgrids can uti­
lize a combination of traditional energy sources to meet the diverse energy needs. 
These sources include grid connection, diesel generators, and possibly other con­
ventional sources like natural gas or propane. Grid connection allows the hybrid 
microgrid to draw power from the main utility grid when available, ensuring a 
stable and reliable energy supply. Diesel generators serve as backup or primary 
power sources in areas with limited grid access or during periods of high de­
mand. These traditional energy sources provide a reliable and readily available 
power supply, offering support during times of low renewable energy genera­
tion or peak demand. The integration of traditional energy sources alongside re­
newable sources in hybrid microgrids allows for a balanced and resilient energy 
system that can cater to the specific requirements of each application. 

3.3. Benefits and challenges of using renewable and traditional energy 
sources 

The utilization of both renewable and traditional energy sources in a hybrid mi­
crogrid offers a range of benefits. Figure 2 represents the overall microgrid en­
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Figure
2.
 Overall microgrid environment. 

vironment. Renewable energy sources such as solar and wind power provide 
significant environmental advantages, as they produce minimal greenhouse gas 
emissions and contribute to reducing reliance on fossil fuels. They also offer 
long-term cost savings by harnessing freely available and abundant resources. 
Additionally, renewable energy sources can enhance energy independence, par­
ticularly in remote areas or islands, by reducing dependence on external en­
ergy sources and increasing energy resilience. Integration with traditional energy 
sources, such as grid connection or diesel generators, provides backup power and 
ensures a reliable energy supply during periods of low renewable energy gener­
ation or high demand. This hybrid approach offers flexibility, stability, and the 
ability to balance energy generation and consumption effectively. 

However, using both renewable and traditional energy sources in a hybrid mi­
crogrid also poses certain challenges. One challenge is the intermittent nature 
of renewable energy sources, such as solar and wind power, which depend on 
weather conditions and time of day. This intermittency requires effective energy 
management and storage solutions, such as battery storage systems, to ensure a 
continuous and reliable power supply. Additionally, the initial costs of installing 
renewable energy infrastructure can be relatively high, although they are often 
offset by long-term operational cost savings. Integration with traditional energy 
sources may introduce issues related to carbon emissions and environmental im­
pacts associated with the use of fossil fuels. Balancing the energy mix and op­
timizing the system for efficiency and sustainability requires careful planning, 
design, and operational management of the hybrid microgrid. 
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4.
 Mathematical
modelling
of
selected
resources


4.1. Photovoltaic (PV) 

A PV panel, also known as a solar panel or photovoltaic module, is a device 
that converts sunlight into electricity. It is made up of multiple photovoltaic cells 
connected, which work together to generate a usable electrical current. The cells 
are typically made of silicon and are arranged in a specific pattern to maximize 
their energy production. When sunlight strikes the surface of the cells, it excites 
the electrons within them, causing them to flow in a specific direction and gen­
erate a direct current (DC) electricity. This DC electricity can then be converted 
into alternating current (AC) electricity using an inverter, which makes it suitable 
for powering homes, businesses, and other types of electrical loads. PV panels 
are a key component of solar power systems and are widely used in residential, 
commercial, and utility-scale applications around the world (Abdel Gawad et al., 
2022; Ammach and Qaisar, 2022). 

Equation (Icaza-Alvarez et al., 2022) calculates the module's output power 
under normal working conditions. 

IT
Ppv
 =
fpv
×
Ypv
×
 (1)

IS


The term Ppv
 represents the rated power output of photovoltaic (PV) pan­
els, expressed in kilowatts (kW). Meanwhile, IT
 refers to the total amount of 
solar radiation that falls on the panels, measured in kilowatt-hours per square 
meter (kWh/m2). The value of IS
, which is equal to 1000 watts per square meter 
(W/m2), represents the standard intensity of solar radiation under ideal condi­
tions. Lastly, fpv
 denotes the reduction factor that accounts for energy losses 
resulting from factors like long wiring distances and splices in the PV system. 

4.2. Diesel generator 

A diesel generator is a type of internal combustion engine that uses diesel fuel to 
generate electrical power. It consists of a diesel engine and an electric generator, 
which work together to convert diesel fuel into electricity. The diesel engine is 
responsible for converting the chemical energy in the diesel fuel into mechanical 
energy, which then drives the electric generator to produce electricity. Diesel 
generators are commonly used as backup power sources in situations where grid 
power is unavailable or unreliable, such as in remote areas, construction sites, or 
during power outages. 

The connection depicted in Equation 2 from (Zieba Falama et al., 2022) es­
tablishes a connection between a diesel generator's output and rated power. 

P
GD
=
η
diesel
×
 NDG
×
 P
GD,
N(2)
 (2) 
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where NDG
is total number of identical diesel generators, P
DG
is the com­
bined output power of the generators, and η
is the efficiency of the generator. 

The planned hybrid system's estimated CO2 emissions were calculated using 
the Equation 3 from (Shezan et al., 2022): 

tCO2
= 3.667
×
 mf
 ×
 Hvf
 ×
 CEFf
 ×
 xc
 (3) 

The quantity of fuel used is denoted by mf
, while the total CO2 emissions are 
represented by tCO2. Additionally, the abbreviations Hvf
, CEFf
, and xc
 refer 
to Tons of Carbon Emitted per Terajoule, the percentage of oxidized carbon, and 
Heating Value of Fuel in Megajoules per liter, respectively. It is worth noting 
that one gram of carbon is present in 3.667 grams of CO2, which is an important 
factor to consider in these calculations. 

4.3. Fuel cell 

A fuel cell is an electrochemical device that converts the chemical energy of a 
fuel into electrical energy. Unlike conventional power sources, such as combus­
tion engines, fuel cells produce electricity without burning the fuel. This means 
that they can operate at much higher efficiencies, with lower emissions, and with 
less noise than traditional power sources. 

The basic components of a fuel cell include an anode, a cathode, and an elec­
trolyte. The fuel is introduced to the anode, and the oxidant (usually oxygen 
from the air) is introduced to the cathode. The fuel is then oxidized at the anode, 
releasing electrons that flow through an external circuit to the cathode, produc­
ing electricity. At the cathode, the electrons combine with the oxidant and any 
remaining fuel to form water and other by products. 

The net output of fuel cell is given by Equation (4) from (Wishart et al., 2006). 

Wnetoutput
=
Ixvcell
×
ncell
×
ηnet
 (4) 

where ncell
 is the number of cells in the stack. ηnet
 is the efficiency of fuel cell. 

4.4. Electrolyzer 

An electrolyzer is an electrochemical device that uses electricity to split water 
molecules into hydrogen and oxygen gases through a process called electrolysis. 
The basic components of an electrolyzer include an anode, a cathode, and an 
electrolyte, which is usually a solution of potassium hydroxide. 

During electrolysis, an electric current is applied to the anode and cathode, 
which are separated by the electrolyte. This causes water molecules to break 
apart, with the positively charged hydrogen ions (protons) migrating to the cath­
ode and the negatively charged oxygen ions migrating to the anode. At the cath­
ode, the protons combine with electrons from the electric current to form hydro­
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gen gas, while at the anode, the oxygen ions combine with water molecules to 
form oxygen gas and positively charged hydrogen ions. 

The hydrogen gas produced by an electrolyzer can be used as a fuel for ve­
hicles or to generate electricity in a fuel cell. It can also be stored for later use, 
either as a gas or by compressing it into a liquid. Electrolyzers can be powered 
by renewable energy sources like solar or wind, making them an important tool 
for producing carbon-free hydrogen. 

While electrolyzers are still relatively expensive and not yet widely deployed, 
they have the potential to play a significant role in a future low-carbon energy 
system, particularly as renewable electricity becomes more abundant and afford­
able. 

Equation 5 provides the necessary power, Pr, for the electrolyzer to function, 
which is determined byUc, the voltage supplied to the electrolyzer, Nc, the num­
ber of cells connected in series, and Iel, the current flowing through the outer 
circuit. According to Faraday's law, the amount of hydrogen produced by the 
electrolyzer is directly proportional to the rate of electron exchange at the ter­
minals, which is equivalent to the electrical current flowing in the outer circuit 
(Ghennou et al., 2022). 

Pr
 =
Uc
×
Nc
×
Iel
 (5) 

4.5. Hydrogen tank 

A hydrogen tank is a specialized container used to store hydrogen gas under 
high pressure. Due to its low density, hydrogen gas must be compressed to a 
high pressure in order to store a sufficient amount of fuel in a reasonably sized 
container. Hydrogen tanks are typically made of composite materials or high-
strength metals, such as carbon fibre or aluminium, and are designed to withstand 
the high pressure of the stored hydrogen. 

Hydrogen tanks are a critical component of hydrogen fuel cell vehicles, where 
they are used to store the hydrogen fuel that powers the fuel cell. The size and 
capacity of the hydrogen tank can vary depending on the vehicle and the in­
tended use, but they typically store between 3 and 7 kilograms of hydrogen gas 
at pressures ranging from 350 to 700 bar. 

One of the challenges of using hydrogen tanks is the potential for hydro­
gen embrittlement, a phenomenon in which the high-pressure hydrogen gas can 
weaken or damage the material of the tank over time. To mitigate this risk, tanks 
are often designed with special linings or coatings to protect against hydrogen 
embrittlement. 

Overall, hydrogen tanks are a critical component in the storage and transporta­
tion of hydrogen fuel, and continued advancements in their design and manufac­
turing will play an important role in the widespread adoption of hydrogen as a 
clean and sustainable energy source. 
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4.6. Energy storage systems for hybrid microgrids 

4.6.1. Types of energy storage systems 

Energy storage systems are an essential component of hybrid microgrids as they 
provide a reliable and consistent source of energy when the primary sources, 
such as solar or wind, are not available. There are various types of energy storage 
systems that can be used in hybrid microgrids, including: 

(1) Battery energy storage systems (BESS): BESS uses batteries to store and 
release energy. Lithium-ion batteries are the most used batteries in BESS 
due to their high energy density, efficiency, and low maintenance require­
ments (Khan et al., 2022; Qaisar, 2020). 

(2) Flywheel energy storage systems: Flywheels store energy in the form of 
kinetic energy by rotating a rotor at high speeds. The energy can be re­
leased when needed by converting the kinetic energy into electrical en­
ergy. 

4.6.2. Benefits of energy storage systems in hybrid microgrids 

Energy storage systems provide several benefits in hybrid microgrids, including: 

(1) Improved reliability: Energy storage systems can provide backup power 
during power outages, ensuring uninterrupted power supply to critical 
equipment. 

(2) Cost savings: Energy storage systems can help reduce energy costs by 
storing excess energy generated during low demand periods and releasing 
it during high demand periods, reducing the need to purchase energy from 
the grid. 

(3) Carbon emission reduction: Energy storage systems can help reduce car­
bon emissions by allowing the use of renewable energy sources such as 
solar and wind power even when they are not available. 

(4) Increased efficiency: Energy storage systems can improve the efficiency of 
hybrid microgrids by balancing the energy supply and demand, reducing 
energy wastage, and optimizing the use of energy resources. 

In conclusion, energy storage systems are critical components of hybrid micro-
grids in the cement industry. They provide several benefits, including improved 
reliability, cost savings, carbon emission reduction, and increased efficiency. The 
selection of the appropriate energy storage system depends on various factors 
such as the plant's energy demand, location, and cost-effectiveness. 

4.6.3. Battery energy storage systems (BESS) 

The BESS stands for Battery Energy Storage System, which is a type of energy 
storage system that uses batteries to store energy for later use. BESSs are be­
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coming increasingly popular as renewable energy sources like solar, and wind 
become more common, as they allow excess energy to be stored when it is avail­
able and used when it is needed (Mian Qaisar, 2020). 

The basic components of a BESS include the batteries themselves, a control 
system, and inverters to convert the DC power from the batteries into AC power 
for use in homes, businesses, or the grid. BESSs can be used for a variety of ap­
plications, from providing backup power during outages to storing energy from 
renewable sources for use during times of high demand. 

One of the key advantages of BESSs is their ability to provide fast response 
times, making them ideal for use in frequency regulation and other grid stabi­
lization services. They can also help reduce the need for expensive infrastructure 
upgrades by providing localized energy storage to offset peak demand. 

While BESSs are still relatively expensive, their costs are expected to continue 
to decline as battery technology improves and production scales up. As the need 
for energy storage grows, BESSs are likely to play an increasingly important role 
in a future low-carbon energy system. 

From Equation 6 as in (Omotoso et al., 2022), 

PL(t)
SOC
(t) =
SOC
(t
−
1)
(1
−
σ) + (PGA(t)
−
 )ηbattery
 (6)

ηinv


The load demand is represented by PL(t), while the battery's state of charge 
is indicated by SOC(t). The ceil function classifies the expression as part of a 
group of expressions that are near or equivalent to the total. In hybrid energy sys­
tems, battery storage not only provides storage but also helps maintain a balance 
between the electricity supply and demand. The system measures energy output, 
consumption, and charging status over time. 

4.7. Converter 

Converter is that can function as both a rectifier and an inverter. During periods 
of low solar and wind resources, such as at night or on cloudy days, the converter 
operates solely in inverter mode. Conversely, when there is enough renewable en­
ergy available to charge the battery storage system, the converter operates solely 
in rectifier mode (Ayad et al., 2023; Ilahi et al., 2023). 

Equation 7 in Prakash and Dhal (2021) expresses the maximal capacity of the 
power converter to convert DC to AC, which depends on the choice of inverter 
and its efficiency (Pl, s(t)) 

Pl,s
(t) =
Pinput
(t)
∗
ηconv
 (7) 

where Pl,s
(t)
denotes the converter's input power and etaconv the efficiency of 
the converter. 
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5.
 Objectives
parameters


To find the most optimal solution, net present cost (NPC), levelized cost of elec­
tricity (LCOE) and greenhouse gases (GHG) emissions are considered as an ob­
jective. By altering the component's values, the output may be modified by doing 
so, authors can improve the system's NPC, LCOE and GHG emissions. 

5.1. Net present cost 

The total ongoing costs of the system over its useful life, minus the recovery 
value during that period, are equivalent to the Net Present Cost (NPC) incurred 
by the framework. According to reference (Shezan et al., 2022), the costs consid­
ered for net present cost calculation include capital expenses, replacement costs, 
operational expenses, and maintenance costs as shown in Equation 8. Homer Pro 
software is used to calculate the NPC for each component of the installed system. 

The formula below is used to determine the total NPC: 

Cann.tot
CNPC
 =
 (8)

CRF
(i.Rproj
)


Here, Cann.tot
 is the Annualized cost, i
the Interest rate (Annual), Rproj
 the 
project lifetime, and CRF
(.)
the Capital recovery factor. 

5.2. Levelized cost of electricity 

A typical cost per KWh of power is delivered by the predetermined shaped 
framework. To determine the optimal COE for a standalone system, HOMER 
uses the Equation 9 from (Shezan et al., 2022). 

Cann.tot
LCOE
=
 ,
 (9)

Eprim
+
Edef
 +
Egrid.sales


where Eprim
 is the total primary Cann.tot
 is the annualized total cost, Edef
 is the 
total deferrable load, and Egrid.sales, sales are the amount of energy sold to the 
grid (per year). 

5.3. GHG emissions 

Energy generation results in the release of harmful gas emissions, which depend 
on the type of energy source used. The amount of carbon dioxide emitted per 
kWh varies depending on the energy source used, resulting in a fluctuation of 
emissions levels from year to year. Additionally, every kWh produced results in 
the emission of 1.34 g of nitrogen oxides and 2.74 g of carbon dioxide. How­
ever, none of these harmful gases, including nitrogen oxides (NO), sulphur diox­
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ide (SO2), carbon monoxide (CO), unburned hydrocarbons (UHCs), or carbon 
dioxide (CO2), are present in the renewable hybrid HEM-1 or HEM-3. 

6.
 Case
studies


6.1. Case study of cement industry 

The researcher in (Basheer et al., 2022) studied the hybrid energy models 
(HEMs) in cement industry of Pakistan. The authors selected 4 different HEMs 
and 5 cement plants to get the objective parameter NPC, LCOE and GHG emis­
sions. 

For this study, five cement plants were under consideration: 

(1) Cement Plant-1: Askari Cement Plant, Wah (ACPW). 
(2) Cement Plant-2: Bestway Cement Plant, Kalar Kahar (BCPKK). 
(3) Cement Plant-3: Bestway Cement Plant, Farooqia (BCPF). 
(4) Cement Plant-4: Bestway Cement Plant, Hattar (BCPH). 
(5) Cement Plant-5: DG Cement Plant, Chakwal (DGCPC). 

Figure 3 shows a list of the four types of HEMs that are created for this hybrid 
renewable system. 

(1) HEM-1: As shown in Figure 3(a), it will have a PV, hydrogen tank, con­
verter, electrolyzer, and fuel cell. 

(2) HEM-2: As shown in Figure 3(b), it will only have a diesel generator. 
(3) HEM-3: As shown in Figure 3(c), it will have a PV, converter, and battery 

framework. 
(4) HEM-4: As shown in Figure 3(d), it will have a diesel generator, PV, and 

Converter. 

6.1.1. Cost analysis 

The results of HEMs in cement industry of Pakistan in Tables 1–5 presents the 
initial cost, operating cost, LCOE, and NPC of all HEM plant costs. Figure 4 dis­
plays the consolidated results of NPC of each model for all plants. ACPW NPC 
for HEM-1 and HEM-2 is US$2630M and US$575M, respectively, while HEM­
3 and HEM-4 have corresponding NPCs of US$4970M and US$540M. The NPC 
for BCPKK is US$2890M for HEM-1, and for HEM-2, HEM-3, and HEM-4, it 
is US$1080M, US$9380M, and US$1010M, respectively. The NPC for BCPF is 
US$2940M for HEM-1, and for HEM-2, HEM-3, and HEM-4, it is US$1180M, 
US$1050M, and US$1100M, respectively. The NPC for BCPH is US$2630M 
for HEM-1, and for HEM-2, HEM-3, and HEM-4, it is US$575M, US$4970M, 
and US$540M, respectively. The NPC for DGCPC is US$2830M for HEM-1, 
US$187M for HEM-2, US$8,480M for HEM-3, and US$923M for HEM-4. Fig­
ure 5 illustrates the LCOE of cement plants. The LCOE for ACPW from HEM-1 
and HEM-2 is US$1.22 and US$0.266, respectively, while HEM-3 and HEM-4 
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Figure
3.
 Schematic diagram of HEMs: (a) HEM-1; (b) HEM-2; (c) HEM-3; (d) HEM-4. 

have corresponding LCOEs of US$2.30 and US$0.249. The LCOE for BCPKK 
is US$0.706 for HEM-1, and for HEM-2, HEM-3, and HEM-4, it is US$0.265M, 
US$2.30M, and US$0.248, respectively. The LCOE for BCPF is US$0.660 for 
HEM-1, and for HEM-2, HEM-3, and HEM-4, it is US$0.264, US$2.20, and 
US$0.248, respectively. The LCOE for BCPH is US$1.22 for HEM-1, and for 
HEM-2, HEM-3, and HEM-4, it is US$0.266, US$2.30, and US$0.249, respec­
tively. The LCOE for DGCPC is US$0.706 for HEM-1, US$0.265 for HEM-2, 
US$2.28 for HEM-3, and US$0.248 for HEM-4. 

Table
1.
 HEM-1, 2, 3, and 4. Comparison of ACPW’s NPC, initial cost, COE, and O&M. 

Cost type HEM-1 HEM-2 HEM-3 HEM-4 
NPC US$2630M US$575M US$4970M US$540M 
Initial cost US$634M US$14.8M US$3060M US$95.8M 
COE/kWh US$1.22 US$0.266 US$2.30 US$0.249 
O&M US$146M/yr US$40.8M/yr US$4,805M/yr US$32.4M/yr 

Table
2.
 HEM-1, 2, 3, and 4. Comparison of BCPKK’s NPC, initial cost, COE, and O&M. 

Cost type HEM-1 HEM-2 HEM-3 HEM-4 
NPC US$2890M US$1080M US$9380M US$1010M 
Initial cost US$743M US$27.6M US$5780M US$175M 
COE/kWh US$0.706 US$0.265 US$2.30 US$0.248 
O&M US$156M/yr US$76.8M/yr US$263M/yr US$61.1M/yr 
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Table
3.
 HEM-1, 2, 3, and 4. Comparison of BCPF’s NPC, initial cost, COE, and O&M. 

Cost type HEM-1 HEM-2 HEM-3 HEM-4 
NPC US$2940M US$1180M US$1050M US$1100M 
Initial cost US$764M US$30M US$6280M US$190M 
COE/kWh US$0.660 US$0.264 US$2.20 US$0.248 
O&M US$158M/yr US$83.5M/yr US$287M/yr US$66.6M/yr 

Table
4.
 HEM-1, 2, 3, and 4. Comparison of BCPH’s NPC, initial cost, COE, and O&M. 

Cost type HEM-1 HEM-2 HEM-3 HEM-4 
NPC US$2630M US$575M US$4970M US$540M 
Initial cost US$634M US$14.8M US$3060M US$94.5M 
COE/kWh US$1.22 US$0.266 US$2.30 US$0.249 
O&M US$146M/yr US$40.8M/yr US$139M/yr US$32.5M/yr 

Table
5.
 HEM-1, 2, 3, and 4. Comparison of DGCPC’s NPC, initial cost, COE, and O&M. 

Cost type HEM-1 HEM-2 HEM-3 HEM-4 
NPC US$2830M US$987M US$8480M US$923M 
Initial cost US$720M US$25.2M US$5230M US$159M 
COE/kWh US$0.760 US$0.265 US$2.28 US$0.248 
O&M US$154M/yr US$70M/yr US$236M/yr US$55.6M/yr 

Figure
4.
 Comparison of the NPC for cement plants. 

6.1.2. GHG emissions 

The sustainable HEMs used in HEM-1 and HEM-2 do not harm the environ­
ment through the emission of harmful gases. While the generator in the hybrid 
HEM-2 and HEM-4 does produce harmful gases, it has been limited to produc­
ing only the bare minimum of energy during crises to minimize environmen­
tal damage. Similarly, the output of the fuel cell in HEM-1 has been restricted 
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Figure
5.
 Comparison of the LCOE for cement plants. 

to reduce the production of harmful gases, as fuel cells emit no carbon diox­
ide. Neither HEM-1 nor HEM-2 produces any greenhouse gas emissions. How­
ever, HEM-2 does produce significant emissions of 111594.85 tons annually for 
ACPW, 210469.811 tons annually for BCPKK, 229008 tons annually for BCPF, 
111594.847 tons annually for BCPH, and 191930 tons annually for DGCPC, as 
indicated in Figure 6. 

Figure
6.
 Comparisons of HEMs with respect to GHG emissions for cement plants. 

6.1.3. Discussion 

The study conducted a comprehensive assessment of hybrid energy models 
(HEMs) within Pakistan's cement industry, examining four distinct configu­
rations: HEM-1 incorporating PV panels, hydrogen storage, converter, elec­
trolyzer, and fuel cell; HEM-2 with a diesel generator; HEM-3 featuring PV pan­

http:111594.85
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els, converter, and battery; and HEM-4 combining a diesel generator, PV panels, 
and converter. Inclusion of five prominent cement plants, namely Askari Cement 
Plant, Wah (ACPW); Bestway Cement Plant, Kalar Kahar (BCPKK); Bestway 
Cement Plant, Farooqia (BCPF); Bestway Cement Plant, Hattar (BCPH); and 
DG Cement Plant, Chakwal (DGCPC), enabled a comprehensive analysis. The 
study meticulously examined costs, encompassing initial and operating costs, as 
well as levelized cost of electricity (LCOE) and net present cost (NPC) for each 
HEM and cement plant combination. The outcomes revealed distinct patterns, 
such as HEM-1 indicating higher NPC values across cement plants, while HEM­
2 displayed the most economical LCOE figures. Moreover, the research under­
scored the environmental dimension, designating HEM-1 and HEM-2 as envi­
ronmentally benign due to minimal greenhouse gas emissions. Notably, HEM-4 
demonstrated emissions of 111,594.85 to 191,930 tons/year across different ce­
ment plants. These findings collectively provide a comprehensive overview of 
the economic, emissions, and efficacy aspects of various hybrid energy models 
in Pakistan's cement industry. 

6.2. Case study of Gwadar 

In (Ali et al., 2022) the authors developed renewable energy system where three 
distinct models were created, encompassing photovoltaics, wind turbines, bat­
teries, grid connections, and the specified capacity mentioned earlier. Schematic 
representations of the three model designs can be seen in Figures 7 to 9. The pro­
posed systems were located at coordinates 4867+5Q Gwadar, Pakistan (25J6.6” 
N, 62J18.9” E), and were composed of solar panels, wind turbines, battery banks, 
and grid connectivity, reflecting the recommended renewable energy system sce­
nario. 

The Cost Analysis of the proposed system is shown in Figures 10–12. The 
economic evaluation of three models, namely Model 1, Model 2, and Model 3, 

Figure
7.
 Model 1. 

http:111,594.85
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Figure
8.
 Model 2. 

Figure
9.
 Model 3. 

resulted in net present costs (NPC) of USD 166 million, USD 28.2 million, and 
USD 76.4 million, respectively. Model 1 incurs a higher cost primarily due to the 
inclusion of battery storage as the sole backup power source. Conversely, Model 
3 incorporates a diesel generator to offset fuel expenses, contributing to its ele­
vated NPC. Considering these factors, Model 2 emerges as the preferred choice. 
Notably, Model 2 demonstrates the lowest NPC among the three models, con­
sequently yielding the lowest levelized cost of electricity (LCOE). Specifically, 
Model 2 exhibits an LCOE of USD 0.0347/kWh, while Model 1 and Model 
3 exhibit LCOE values of USD 0.401/kWh and USD 0.184/kWh, respectively. 
The LCOE of Model 1 is even lower than Pakistan's current tariff rate (pap). 
Additionally, the salvage costs for Model 1, Model 2, and Model 3 are USD 
42,167,420, USD 1,405,500, and USD 785,865, respectively. 
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Figure 10. Cost graph for Model 1.

Figure 11. Cost graph for Model 2.

Figure 12. Cost graph for Model 3.

6.2.1. Sensitivity analysis

A sensitivity analysis was conducted to evaluate the impact of certain parame-
ters on the economic and technical performance of the proposed system. Two
examples of these parameters are the discount rate and wind turbine hub height.
Figure 13 illustrates the significant effect of the discount rate on the economic
viability of the three models. The net present cost (NPC) decreases as the dis-
count rate increases. The discounting process is crucial in such analyses as it
allows decision-makers and investors to understand the long-term consequences
and costs associated with the project. By adjusting the difference between present
and future values, stakeholders can consistently compare the benefits and costs
of the proposed policies. In this case, both the NPC and the levelized cost of
electricity (LCOE) decrease as the discount rate increases, indicating a direct
relationship between the two variables.
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Figure 13. Sensitivity analysis.

Additionally, the impact of the wind turbine hub height on the NPC and LCOE
is evident in the table. An increase in hub height results in a decrease in both the
NPC and LCOE. This can be attributed to the fact that higher hub heights offer
more stable wind speeds, leading to a consistent generation of electricity. The
stability in electricity production contributes to the reduction in both the NPC
and LCOE.

6.2.2. Environmental impact of model

In the present day, renewable energy sources (RES) have gained significant
recognition as eco-friendly options for electricity generation, contributing to the
decarbonization of the energy sector. RES, while not producing carbon dioxide
emissions, still warrant careful consideration due to potential environmental im-
pacts. Thus, selecting appropriate RES for power generation at any given plant is
crucial. Thorough analysis reveals that if RES selection is not done meticulously,
it can result in harmful environmental consequences. Greenhouse gas emissions
comparison across three models is presented in Table 6. Model 1 exclusively em-
ploys RES, reflecting a renewable fraction of 100%. Conversely, Model 2 relies
on grid-purchased electricity, resulting in a lower renewable energy fraction of
73.3%. Model 3, relying solely on diesel generators for backup power, exhibits
a notably low renewable fraction.

Hybrid Microgrids and Contemporary Applications
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Table
6.
 GHG emissions. 

Quantity Model 1 Model 2 Model 3 
Carbon Dioxide 
Carbon Monoxide 
Unburned Hydrocarbons 
Particulate Matter 
Sulfur Dioxide 
Nitrogen Dioxide 

0 
0 
0 
0 
0 
0 

8,501,900 kg/yr 
0 
0 
0 
36,860 kg/yr 
18,026 kg/yr 

12,510,312 kg/yr 
78,858 kg/yr 
3441 kg/yr 
478 kg/yr 
30,635 kg/yr 
74,079 kg/yr 

6.2.3. Discussion 

The study reveals that the hybrid renewable energy-based system surpasses the 
diesel generator-based system in terms of cost-effectiveness. The proposed sys­
tem's Levelized Cost of Electricity (LCOE) is $0.12/kWh, compared to the diesel 
system's $0.28/kWh, resulting in a shorter payback period of 5.5 years ver­
sus 7.5 years for the diesel option. Moreover, the proposed system significantly 
curbs greenhouse gas emissions, enhancing the city's environmental sustainabil­
ity. Carbon dioxide emissions are projected to decrease by up to 12.5 million kg 
annually, with sulfur dioxide and nitrogen dioxide emissions dropping by up to 
36,860 kg and 74,079 kg per year, respectively. In essence, the study underscores 
that the hybrid renewable energy-based system presents a viable, economical so­
lution to Gwadar city's electricity deficit. With its reliability, sustainability, and 
emission reduction benefits, it holds the potential to tackle energy challenges 
while enhancing the city's environmental well-being. 

6.3. Case study of University Campus 

The study in (Awan et al., 2022) delves into the comprehensive discussion of the 
design, development, and optimization of microgrids specifically tailored for the 
MUST University Mirpur campus. The microgrid design, which encompasses 
the utilization of all available resources at the university, is presented in Fig­
ure 14, while the proposed optimal design is depicted in Figure 15. Initially, 
a thorough modelling of the available resources at MUST University was con­
ducted. In this model, the DC voltage sources, namely the SG200M5 solar pho­
tovoltaic panels and the 1 kWh L battery bank, were connected to the DC bus. 
On the other hand, the AC voltage sources, the GEN 100 diesel generator, and 
the main grid, were connected to the AC bus. To facilitate the bidirectional flow 
of electrical energy as needed, a bidirectional power converter was incorporated 
to link the DC and AC bus bars. Currently, the load is connected to the AC bus 
bar, but it can be modified to accommodate a DC load with a dedicated DC bus 
bar. 

Through simulations based on relevant parameters and data, the optimal de­
sign proposed by HOMER demonstrated that the microgrid system could oper­
ate entirely independent of the grid throughout the entire year. As a result, the 
grid was excluded from the proposed optimal microgrid design for the MUST 
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Figure
14.
 Microgrid structure with available resources at MUST site. 

Figure
15.
 Proposed microgrid for the MUST site. 

University Mirpur campus, as illustrated in Figure 13. This indicates the self-
sufficiency and autonomy of the microgrid system, allowing it to rely solely on 
the available resources and efficiently manage the electrical energy requirements 
of the university without external grid support. 

To achieve the most efficient outcomes, the upper and lower limits for each 
energy source were determined through the utilization of the “HOMER Opti­
mization” feature. By employing this approach, the HOMER software conducted 
numerous simulations, leading to the identification of an optimized microgrid 
design. The results of this optimization process are presented in Table 7. The 
proposed microgrid designs for the Mirpur campus of MUST were generated 
based on five key performance criteria, namely net operating cost, cost of en­
ergy, operating cost, capital cost, and renewable fraction. 

Table 8 presents a comprehensive economic comparison of the various pro­
posed optimal scenarios or categories of a microgrid. The analysis reveals that 
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Table
7.
 Optimized design of microgrid proposed by HOMER. 

Category PV(KW) Genset (KW) Battery (KWh) Grid (KW) Converter (KW) NPC Cost of Energy ($) Operating Cost ($) Capitol Cost ($/Year) Renewable Fraction (%) 

01 395 100 262 138 250,546 0.0426 719.11 232,568 99.0 

02 747 414 155 343,563 0.0584 778.96 324,089 100 

03 1218 100 130 691,556 0.118 9100 464,066 97.2 

04 100 99,999 1.34 M 0.227 51,458 50,000 0 

05 100 100 62.1 2.14 M 0.365 83,004 68,738 0 
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Table
8.
 Economic comparison of proposed five categories of microgrid. 

Metric Category 01 Category 02 Category 03 Category 04 Category 05 

Present Worth ($) 1,076,894 983,877 635,884 0 816,408 

Annual Worth ($/year) 43,076 39,355 25,435 0 32,656 

Return on Investment (%) 22.5 13.9 6.0 0 -117.7 

Simple Payback (year) 3.71 5.37 9.56 n/a n/a 

the first optimal design suggested by HOMER exhibits the shortest payback pe­
riod, the highest return on investment, and the highest present and annual worth 
among the five proposed designs. These findings emphasize the exceptional suit­
ability of the first proposed microgrid design for the specific site under consider­
ation. 

6.3.1. Discussion 

In developing nations like Pakistan, power disruptions, high energy costs, con­
ventional energy limitations, and environmental concerns are significant chal­
lenges. Addressing these issues through reliable and cost-effective continuous 
energy supply, primarily from renewable sources, is a global research focus. 
In our study, we optimized a microgrid for MUST University, Pakistan, using 
HOMER Pro Software. We analyzed a year's energy usage, then simulated a 
microgrid with solar, wind, diesel generator, grid, and battery resources, pre­
dicting 25-year data. Following 979 simulations, a cost-driven optimal design 
was identified, meeting the university's energy needs efficiently. Evaluation met­
rics included Net Present Cost (NPC), Levelized Cost of Energy (COE), Operat­
ing Cost (OC), Capital Cost (CC), and Renewable Fraction. Rigorous economic 
analysis factored capital, fuel, replacement, net present costs, and more, lead­
ing to the best microgrid choice. The most effective components were the solar 
photovoltaic system (SPV), battery bank, diesel generator, and power converter, 
ensuring continuous backup. SPV dominated energy generation (99.7%), with 
the diesel generator supplying 0.333% during low sunlight, enhancing reliabil­
ity. Comparing microgrid scenarios, HOMER's optimal hybrid design demon­
strated the shortest payback period, highest return on investment, and superior 
present and annual worth. This choice excelled among five designs, reinforcing 
its suitability and cost-efficiency for MUST University's energy needs. 

7.
 Conclusion


In conclusion, this chapter has provided an in-depth exploration of hybrid mi­
crogrids and their development in the context of contemporary applications. The 
chapter began with the definition of hybrid microgrids and highlighted their im­
portance in various sectors. The purpose of the chapter was established, focus­
ing on understanding the applications, energy demand analysis, energy sources, 
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mathematical modelling, and objective parameters for evaluating hybrid micro-
grids. 

The applications of hybrid microgrids were discussed, encompassing remote 
communities, military installations, industrial and commercial complexes, uni­
versities and campuses, disaster resilience, data centers, resorts and tourism fa­
cilities, and rural electrification. The analysis of energy demand in these applica­
tions was examined, considering factors influencing energy demand and various 
methods for energy demand analysis. 

The chapter further explored the energy sources used in hybrid microgrids, 
including renewable sources such as solar and wind power, as well as traditional 
sources like grid connection and diesel generators. The benefits and challenges 
associated with both renewable and traditional energy sources were discussed, 
highlighting the importance of balancing the energy mix for optimal performance 
and sustainability. 

Mathematical modelling of selected resources and energy storage systems was 
explored, emphasizing the role of photovoltaic systems, diesel generators, fuel 
cells, electrolyzers, hydrogen tanks, and battery storage systems in hybrid mi­
crogrid configurations. Objective parameters such as net present cost, levelized 
cost of electricity, and greenhouse gas emissions were identified as key metrics 
for evaluating the performance and environmental impact of hybrid microgrids. 

Three case studies were presented, examining the cost analysis and green­
house gas emissions of a cement industry, conducting sensitivity analysis and 
assessing environmental impacts in the case of Gwadar, and exploring the im­
plementation of hybrid microgrids in a university campus setting. 

In conclusion, this chapter has provided valuable insights into the develop­
ment and evolution of hybrid microgrids, their applications, energy demand 
analysis, energy sources, mathematical modeling, objective parameters, and case 
studies. As the field continues to advance, future directions may involve explor­
ing advanced energy storage technologies, optimizing the integration of renew­
able sources, and developing smart grid functionalities to further enhance the 
efficiency, reliability, and sustainability of hybrid microgrid systems. 

7.1. Future direction 

Looking ahead, the future of hybrid microgrids holds great promise for the ad­
vancement of sustainable energy systems. As technology continues to evolve, 
the development of advanced energy storage technologies will play a pivotal 
role. Research efforts in this area will focus on improving the efficiency and 
capacity of energy storage solutions, enabling better integration and utilization 
of intermittent renewable energy sources. Additionally, the optimization of re­
newable energy integration within hybrid microgrids will be a key area of ex­
ploration, aiming to achieve a harmonious balance between different renewable 
sources to maximize energy generation and minimize reliance on traditional 
energy sources. The implementation of smart grid functionality will also drive 
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future developments, enabling real-time monitoring, demand response, and 
automated control systems to enhance the overall performance and efficiency 
of hybrid microgrids. Furthermore, ensuring the resilience and cybersecurity 
of hybrid microgrid systems will be a critical consideration, with research 
and development efforts focusing on designing robust infrastructure and 
implementing stringent security measures. Ultimately, collaborative efforts 
among researchers, industry stakeholders, policymakers, and regulatory bodies 
will be essential in shaping a future where hybrid microgrids play a central role 
in delivering sustainable and resilient energy solutions. 
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Formal Methods for Microgrids 
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1. Introduction 

The use of DC Microgrid systems has seen significant growth in recent years due 
to the need for efficient and sustainable power systems, Shahgholian (2021). The 
development of the DC Microgrid has revolutionized power distribution, and it is 
supporting the growth of renewable energy sources such as photovoltaic power 
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and wind power. The DC Microgrid systems have some advantages over tradi­
tional AC power systems, such as higher efficiency, reduced transmission loss, 
and the ability to operate in remote areas, Espina et al. (2020). The design of DC 
Microgrid systems is a challenging task due to the inherent system complexity 
and variability. Traditional design techniques are becoming inefficient; hence, 
the need to incorporate formal techniques, Saeed et al. (2021). 

As described in the first chapter, there widely reported DC microgrid architec­
tures are single-bus, multi-bus, ring-bus, zonal and multi-terminal. Figure 1 il­
lustraftes a single-bus microgrid architecture with a microgrid management unit 
(MMU). Local controllers and power converters communicate with the MMU. 

Figure 1. A single bus DC microgrid with a centralized controller. 

Despite their potential benefits, microgrids can also be prone to accidents and 
failures, Mishra et al. (2020); Wu et al. (2021). For example, in 2011, a microgrid 
at the University of California, San Diego experienced a power outage due to a 
software error, causing significant disruption to campus operations. Similarly, in 
2013, a microgrid in New Jersey failed during Superstorm Sandy, leading to a 
prolonged power outage and significant economic losses. 

The design of a DC microgrid system is a complicated process that must 
take into account the weather, geographic location, appropriate communication 
infrastructure, and type of customers. Historically, simulation techniques have 
been used to test and verify the operation of the microgrid. However, given the 
number of variables that might effect the reliability and efficiency of the micro-
grid, as well as the microgrid’s dynamic behavior, researchers have turned to 
the formal approach to assure the microgrid’s appropriate operation, Wu et al. 
(2022). 

Formal methods offer a promising approach to addressing these challenges 
and minimizing the risk of accidents and failures, Krichen and Tripakis (2006); 
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Sugumar et al. (2019). Formal methods are mathematical techniques that al­
low the verification and validation of complex systems, Abdelghany and Tahar 
(2022). They are particularly useful for designing and managing safety-critical 
systems, such as microgrids. Formal methods enable engineers to mathemati­
cally model and analyze microgrid behaviour, detect errors and inconsistencies, 
and verify the correctness of system behaviour, Jakaria et al. (2021). 

The purpose of this chapter is to explore the use of formal methods for op­
timizing the performance, safety, and reliability of microgrids. Specifically, the 
chapter aims to: 

•

Provide an overview of microgrids and their importance in the context of 
sustainable energy generation. 

•

Discuss the benefits of using formal methods for microgrid optimization 
and the challenges in managing complex energy systems. 

•

Describe how cloud, fog, and IoT technologies, as well as AI and ML, can 
be integrated with formal methods to improve microgrid performance. 

•

Examine the role of formal methods in addressing security concerns in 
blockchain-based microgrids. Identify the challenges and open issues in 
this area and recommend future research directions. 

The rest of the chapter is structured as follows. Section 2 provides a more de­
tailed overview of microgrids. Section 3 provides an overview of formal meth­
ods. Section 4 discusses how cloud technologies can be integrated with formal 
methods to enhance microgrid performance. Section 5 discusses how fog tech­
nologies can be combined with formal methods to enhance microgrid perfor­
mance. Section 6 describes the benefits of using IoT technologies and formal 
methods for microgrid optimization, Section 7 discusses how AI and ML can 
be integrated with formal methods to enhance microgrid safety and reliability. 
Section 8 discusses the benefits of using formal methods for microgrid security. 
Section 9 examines the role of formal methods in addressing security concerns 
in blockchain-based microgrids. Section 10 identifies the challenges and open 
issues in this area, such as scalability and efficiency of formal methods for large-
scale microgrid systems. Section 11 recommends future research directions for 
the integration of formal methods with microgrid technologies. Finally, Section 
12 concludes the chapter. 

2. Microgrids 

A microgrid is a small-scale power system that can operate independently or par­
allel with the main grid. Microgrids typically consist of a range of distributed en­
ergy resources, such as solar panels, wind turbines, and energy storage systems, 
and are designed to provide reliable and resilient power to local communities. 
The concept of microgrids is not new and has been around for decades, but re­
cent advances in technology and the increasing demand for sustainable energy 
solutions have led to renewed interest in microgrids. 



212 IoT Enabled-DC Microgrids 

One of the main advantages of microgrids is their ability to operate indepen­
dently of the main grid. This independence means that microgrids can continue 
to provide power to local communities even in the event of a power outage or 
other disruption to the main grid. This reliability and resiliency make microgrids 
attractive to communities that are located in remote or isolated areas or are vul­
nerable to natural disasters. 

However, microgrids also present certain risks and challenges. One of the 
main risks associated with microgrids is their vulnerability to cyber-attacks and 
other security threats. Because microgrids are often connected to the internet or 
other communication networks, they can potentially be targeted by hackers or 
other malicious actors. Additionally, microgrids are subject to the same physical 
risks as any other power system, such as natural disasters or equipment failures. 

To protect microgrids from these risks, a range of classical techniques have 
been developed. These techniques include physical security measures, such as 
fencing and access control, as well as cybersecurity measures, such as firewalls 
and intrusion detection systems. Additionally, microgrids can be designed with 
redundancy and backup systems to ensure that power can be restored quickly in 
the event of an outage or failure. 

However, these classical techniques have their limitations. Physical security 
measures can be expensive and may not be effective against certain types of 
threats, such as insider attacks. Cybersecurity measures can also be complex and 
require specialized knowledge and expertise to implement effectively. Further­
more, these techniques may not be sufficient to protect against emerging threats, 
such as those posed by artificial intelligence or quantum computing. 

To address these limitations, new approaches are needed for protecting micro-
grids. One promising approach is the use of formal methods, which are a set of 
mathematical and logical techniques used to design, specify, and verify software 
and hardware systems. Formal methods provide a rigorous and systematic ap­
proach to system design and analysis, which can help to ensure the correctness 
and reliability of the system. 

3. Formal methods techniques 

Formal methods are a set of mathematical and logical techniques used to design, 
specify, and verify software and hardware systems, Krichen et al. (2021). For­
mally, a method is considered formal if it is based on a mathematical theory, has 
a well-defined syntax and semantics, and is amenable to rigorous analysis and 
verification. 

As illustrated in Figure 2, the use of formal methods involves the creation 
of a mathematical model of the system being designed or analyzed. This model 
is typically expressed in a formal language such as temporal logic or automata 
theory. The model can then be analyzed using formal methods such as theorem 
proving or model checking, which involve the use of mathematical algorithms to 
verify the correctness of the system. 
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Figure 2. A simplified illustration of how formals methods work. 

There are several types of formal methods that are commonly used in the 
verification and validation of complex systems, including: 

•

Theorem proving: This involves the use of mathematical proofs to 
demonstrate the correctness of a system. Theorem proving is often used to 
verify safety-critical systems or systems with complex logic. 

•

Model checking: This involves the use of algorithms to check all possible 
system behaviors against a formal specification. Model checking is often 
used to verify finite-state systems or systems with temporal logic. 

•

Abstract interpretation: This involves the use of mathematical abstrac­
tions to analyze the behavior of a system. Abstract interpretation is often 
used to verify programs with complex data structures or non-termination. 

•

Runtime verification: This involves monitoring the behavior of a system 
during its execution and checking it against a formal specification. Run­
time verification is often used to detect and diagnose errors or anomalies 
in a system’s behavior. 

•

Model-based testing: This involves the generation of test cases from a 
formal model of the system. Model-based testing is often used to ensure 
the functional correctness of a system. 

•

Automata-based methods: This involves using automata theory to ana­
lyze the behavior of a system. Automata-based methods are often used to 
verify concurrent or distributed systems, aswell as systems with complex 
control logic. 
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•

Process-algebras-based methods: This involves using a formal language 
to model the behavior of a system as a set of interacting processes. Pro­
cess algebras are often used to verify communication protocols or other 
distributed systems. 

•

Temporal-logic-based methods: This involves using logical formulas to 
describe the temporal behavior of a system. Temporal logic is often used 
in model checking to verify systems with complex temporal properties. 

•

Proof assistants: This involves using interactive proof assistants to me­
chanically verify the correctness of a system. Proof assistants are often 
used to verify the correctness of software or hardware designs. 

Table 1. Summary of formal methods. 

Type of Formal 
Method 

Description Common Use Cases 

Theorem proving Use of mathematical proofs to demon­
strate the correctness of a system 

Safety-critical systems, systems 
with complex logic 

Model checking Use of algorithms to check all possible 
system behaviors against a formal spec­
ification 

Finite-state systems, systems with 
temporal logic 

Abstract interpre­
tation 

Use of mathematical abstractions to an­
alyze the behavior of a system 

Programs with complex data struc­
tures or non-termination 

Runtime verifica­
tion 

Monitoring the behavior of a system 
during its execution and checking it 
against a formal specification 

Detecting and diagnosing errors or 
anomalies in a system’s behavior 

Model-based 
testing 

Generation of test cases from a formal 
model of the system 

Ensuring the functional correctness 
of a system 

Automata-based 
methods 

Use of automata theory to analyze the 
behavior of a system 

Concurrent or distributed systems, 
systems with complex control logic 

Process algebras Use of a formal language to model the 
behavior of a system as a set of inter­
acting processes 

Communication protocols or other 
distributed systems 

Temporal logic Use of logical formulas to describe the 
temporal behavior of a system 

Model checking for systems with 
complex temporal properties 

Proof assistants Use of interactive proof assistants to 
mechanically verify the correctness of 
a system 

Verifying the correctness of soft­
ware or hardware designs 

Each type of formal method has its own strengths and weaknesses, and the 
appropriate method(s) to use depend on the specific characteristics of the system 
being verified. By utilizing a combination of different formal methods, engineers 
can thoroughly analyze and verify the behavior of a system, minimizing the risk 
of accidents and failures. 

To use formal methods to analyze a system, we start by creating a mathemati­
cal model of the system. This model is typically expressed in a formal language, 
which has a well-defined syntax and semantics. The model can then be analyzed 
using formal methods, such as theorem proving, model checking, or abstract in­
terpretation, to verify the correctness of the system. 
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The process of analyzing a system using formal methods involves the follow­
ing steps: 

(1)	 Formalization: The first step is to formalize the system by creating a 
mathematical model that captures its behavior. The model is typically ex­
pressed in a formal language, which has a well-defined syntax and seman­
tics. 

(2)	 Specification: Once the formal model is created, a specification is devel­
oped that describes the desired behavior of the system. The specification is 
typically expressed in a formal language, which has a well-defined syntax 
and semantics. 

(3)	 Verification: The next step is toverify that the system satisfies the spec­
ification. This involves using formal methods, such as theorem proving, 
model checking, or abstract interpretation, to analyze the formal model 
and check that it meets the specification. 

(4)	 Correction: If the system fails to meet the specification, the next step is to 
identify the cause of the failure and correct the formal model to address the 
issue. This may involve revising the model or specification, or modifying 
the system design. 

(5)	 Implementation: Once the formal model and specification are verified, 
the next step is to implement the system. The implementation is typically 
done in a programming language, using the formal model and specifica­
tion as a guide. 

(6)	 Testing: Finally, the system is tested to ensure that it behaves correctly. 
This may involve using techniques such as model-based testing or runtime 
verification to check that the system meets its specification. 

Through this formalization process, formal methods can help to ensure the 
correctness and reliability of software and hardware systems. By using differ­
ent types of formal methods such as theorem proving, model checking, abstract 
interpretation, runtime verification, and model-based testing, we can identify po­
tential design flaws, ensure that the system meets its requirements and specifica­
tions, and identify potential security threats and vulnerabilities. 

The adoption of formal methods in system design and analysis has been facil­
itated by the availability of several tools and platforms. Some of the commonly 
used tools and platforms for formal methods include: 

•

Coq and Isabelle: These are theorem provers that support formal reasoning 
and proof development. 

•

SPIN and UPPAAL: These are model checkers capable of analyzing sys­
tems modeled as finite-state machines or timed automata, respectively. 

•

Java PathExplorer and T-VEC: These are tools for runtime verification and 
model-based testing of Java programs and Simulink models, respectively. 
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•

Alloy and TLA+: These are languages and tools for modeling and ana­
lyzing software systems using relational logic and temporal logic, respec­
tively. 

•

Frama-C and VeriFast: These are platforms and tools for analyzing and 
verifying C programs using a range of formal methods. 

•

CBMC: This is a bounded model checker for verifying C and C++ pro­
grams using a combination of model checking and theorem proving. 

•

NuSMV: This is a symbolic model checker for verifying systems modeled 
as finite-state machines or transition systems. 

•

Z3: This is a theorem prover and SMT solver that supports a range of 
logics and theories, including arithmetic, bit-vectors, and arrays. 

•

Why3: This is a platform and toolset for deductive program verification 
that supports a range of programming languages and verification tools. 

Table 2. Summary of formal method tools and platforms. 

Tool/Platform Description Common Use Cases 
Coq and Isabelle Theorem provers that support formal 

reasoning and proof development 
Verifying safety-critical systems or 
systems with complex logic 

SPIN and UP­
PAAL 

Model checkers capable of analyz­
ing systems modeled as finite-state 
machines or timed automata, respec­
tively 

Verifying finite-state systems or 
systems with temporal logic 

Java PathEx­
plorer and 
T-VEC 

Tools for runtime verification and 
model-based testing of Java programs 
and Simulink models, respectively 

Ensuring the functional correctness 
of Java programs or Simulink mod­
els 

Alloy and TLA+ Languages and tools for modeling 
and analyzing software systems using 
relational logic and temporal logic, 
respectively 

Modeling and analyzing software 
systems with complex data struc­
tures or temporal properties 

Frama-C and Ver­
iFast 

Platforms and tools for analyzing and 
verifying C programs using a range of 
formal methods 

Verifying the correctness of C pro­
grams 

CBMC Bounded model checker for verifying 
C and C++ programs using a combi­
nation of model checking and theo­
rem proving 

Verifying the correctness of C and 
C++ programs 

NuSMV Symbolic model checker for verify­
ing systems modeled as finite-state 
machines or transition systems 

Verifying finite-state systems or 
systems with complex control logic 

Z3 Theorem prover and SMT solver that 
supports a range of logics and theo­
ries, including arithmetic, bit-vectors, 
and arrays 

Verifying the correctness of soft­
ware or hardware designs using a 
range of logics and theories 

Why3 Platform and toolset for deductive 
program verification that supports a 
range of programming languages and 
verification tools 

Verifying the correctness of pro­
grams written in a variety of pro­
gramming languages 
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These tools and platforms provide engineers with a range of options for ap­
plying formal methods to verify and validate complex systems. By using these 
tools in conjunction with formal methods, engineers can thoroughly analyze and 
verify the behavior of a system, minimizing the risk of accidents and failures. 

Formal methods offer several advantages for system design and analysis, in­
cluding: 

•

Rigorous and systematic approach: Formal methods provide a rigorous 
and systematic approach to system design and analysis, which can help to 
ensure the correctness and reliability of the system. 

•

Early error detection: Formal methods can help to identify potential errors 
or defects in the system’s behavior early in the design process before the 
system is implemented. 

•

Improved system performance: Formal methods can help to optimize sys­
tem performance by identifying potential bottlenecks or areas for im­
provement in the system’s design. 

•

Enhanced security: Formal methods can help to identify potential security 
threats and vulnerabilities in the system’s design and develop effective 
defense strategies. 

As the complexity and criticality of software and hardware systems continue 
to increase, the use of formal methods will become increasingly important for 
ensuring their safety, reliability, and security. 

4. Optimizing microgrids with cloud technologies: Ensuring safety and 
reliability through formal methods 

The management and optimization of microgrids are becoming more depen­
dent on cloud technologies. Microgrids produce large volumes of data, including 
records of energy generation and consumption, which can be stored, processed, 
and analyzed using cloud computing and storage resources, Dabbaghjamanesh 
et al. (2020); Tajalli et al. (2019). As a result, microgrid operators will be able 
to improve the efficiency of their system and save money on energy costs, Wang 
et al. (2020). 

However, questions concerning the security and dependability of cloud tech­
nologies are also raised by their implementation in microgrids. For data to be 
safely stored and processed in the cloud, the underlying infrastructure must be 
impenetrable to hackers. In such cases, formal approaches are necessary. When 
it comes to ensuring the security of software systems, especially cloud infras­
tructure, nothing beats the mathematical rigor of formal approaches. They can 
be used to guarantee the integrity and security of the microgrid’s cloud infras­
tructure. 

It is possible to apply formal methods to verify the correct operation of cloud 
infrastructure in every scenario and to identify any flaws or security holes, Chen 
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et al. (2019). Furthermore, formal approaches can be used to produce detailed re­
quirements for cloud systems that can be used to direct the development process 
and guarantee that the final result fulfils all expectations. Using formal method­
ologies, designers may ensure the reliability of the microgrid’s cloud infrastruc­
ture. This can help avoid crises caused by things like power outages or broken 
machinery, Muniasamy et al. (2019). 

In addition, the cloud infrastructure utilized by the microgrid system can be 
made secure with the help of formal approaches. The security of the cloud in­
frastructure may be checked for flaws that hackers could exploit with the help 
of formal methodologies. This can aid in preventing hacking and other forms of 
cybercrime. 

In addition, formal methods offer a means of analyzing and bettering the ef­
ficacy of the cloud infrastructure, both of which contribute to optimizing the 
microgrid system’s performance. Developers of the microgrid system can fix 
performance issues and find places for growth in the underlying cloud infrastruc­
ture by employing formal methodologies. Microgrid operators may experience 
greater energy savings and lower operating expenses as a result of this. 

When formal approaches are combined with cloud computing, the resulting 
microgrid system is one that is more secure, reliable, and cost-effective. To min­
imize the risk of accidents and cyberattacks, and maximize the efficiency of the 
microgrid system, formal approaches can be used to guarantee the security and 
dependability of cloud infrastructure. 

5. Enhancing microgrid performance with fog technologies and formal 
methods 

Fog computing is a type of distributed computing that brings cloud computing to 
the edge of the network, where data-generating and -using devices and resources 
are located. The general scheme of a Fog Computing Architecture is illustrated 
in Figure 3. With the help of fog technologies, microgrids can collect and an­
alyze data in real-time, which cuts down on latency and boosts performance, 
Barros et al. (2019). To better manage energy consumption and distribution in 
real-time, for instance, fog devices can gather and analyse data from Internet 
of Things (IoT) devices and sensors deployed within the microgrid, Keskin and 
İnce (2022). 

However, questions about the security and dependability of fog technology in 
microgrids have been raised. The data storage and processing fog infrastructure 
must be secure and free from vulnerabilities. In such cases, formal approaches 
are necessary. The validity of software systems, including fog infrastructure, can 
be verified with the help of formal methods. They can be used to make sure the 
microgrid’s fog infrastructure is secure and dependable. 

Proof of correct operation in all scenarios and the identification of flaws and 
vulnerabilities in fog infrastructure can be accomplished with the use of formal 
approaches. In addition, formal approaches can be utilized to produce detailed 
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Figure 3. Fog computing general scheme. 

requirements for fog systems that can be used to direct and verify the develop­
ment process. The developers of the microgrid system can rest easy knowing 
their fog infrastructure is error-free thanks to formal methods of verification, 
Benzadri et al. (2021). This can help avoid crises caused by things like power 
outages or broken machinery, Marir et al. (2022). 

In addition, the microgrid’s fog infrastructure can be made secure with the 
help of formal approaches. The absence of flaws that could be exploited by cy­
bercriminals in the fog infrastructure can be verified with the help of formal 
approaches. This can aid in preventing [hacki]ng and other forms of cybercrime. 

In addition, formal approaches offer a means of analyzing and bettering the 
efficacy of the fog infrastructure, both of which contribute to optimizing the mi­
crogrid system’s performance. Developers of the microgrid system’s fog infras­
tructure can find potential performance concerns and areas for improvement by 
employing formal methodologies. Microgrid operators may experience greater 
energy savings and lower operating expenses as a result of this. 

An improved microgrid in terms of security, dependability, and efficiency can 
be achieved through the employment of formal approaches in tandem with fog 
technologies. To minimize the risk of accidents and cyberattacks, and maximize 
the efficiency of the microgrid, formal approaches can be used to guarantee the 
security and dependability of fog infrastructure. 

6. Ensuring safety and reliability of microgrids with IoT and formal 
methods 

Microgrids increasingly utilize Internet of Things (IoT) technologies, Gonzalez 
et al. (2022); Saad et al. (2020). Internet of Things devices can track and manage 
microgrid operations like energy generation, distribution, and storage. Sensors 
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can monitor the output of renewable energy sources like solar panels and wind 
turbines, allowing the microgrid to make adjustments that maximize efficiency, 
Lei et al. (2020); Silva et al. (2023). 

Concerns concerning the security and dependability of IoT technology are 
also raised by their deployment in microgrids. Safety issues or power outages 
may occur if the Internet of Things devices utilized in the microgrid system are 
malfunctioning or susceptible to cyber threats. In such cases, formal approaches 
are necessary, Oliveira et al. (2021). 

Proof of correct operation in all scenarios, as well as the identification of 
mistakes and vulnerabilities, are all possible with the help of formal methods 
applied to the Internet of Things. Rigid specifications for Internet of Things (IoT) 
systems can be created with the use of formal methodologies, which can then 
be used to direct the development process and guarantee that the final product 
fulfills all criteria. Using formal approaches, developers may ensure the integrity 
and accuracy of the microgrid’s IoT devices. This can help avoid crises caused by 
things like power outages or broken machinery, Hofer-Schmitz and Stojanović 
(2019). 

In addition, formal approaches can aid in optimizing the microgrid system’s 
performance by offering a means to examine and enhance the efficiency of the 
IoT devices. Using formal methods, designers can probe the microgrid IoT de­
vices for performance flaws and optimization opportunities. Microgrid operators 
may experience greater energy savings and lower operating expenses as a result 
of this, Webster et al. (2020). 

IoT devices utilized in the microgrid infrastructure can have their security 
guaranteed by employing formal approaches. It is possible to utilize formal pro­
cedures to ensure that the IoT devices are secure from any flaws that could be 
leveraged by hackers. This can aid in preventing hacking and other forms of 
cybercrime. 

When formal approaches are used with Internet of Things technologies, the 
resulting microgrid can be more secure, dependable, and efficient. Formal ap­
proaches can help to optimize the performance of the microgrid system by en­
suring the safety and dependability of IoT devices, hence preventing potential 
safety concerns and cyber threats. 

7. AI and ML for microgrids: Ensuring safety and reliability with 
formal methods 

AI (Artificial Intelligence) and ML (Machine Learning) are increasingly being 
used for microgrids, Etingov et al. (2022); Zhou et al. (2023). The difference 
between the two concepts is illustrated in Figure 4. By using AI and ML, micro-
grids can optimize their energy usage and reduce their carbon footprint, Puerta 
et al. (2023). For example, AI can be used to monitor and predict energy demand, 
as well as to control and manage energy storage systems. This means that micro­
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Figure 4. The difference between classical programming and machine learning. 

grids can adjust their energy output based on real-time demand and supply data, 
reducing energy waste and increasing efficiency, Mohammadi et al. (2022). ML 
can be used for energy forecasting, anomaly detection, and predictive mainte­
nance. This means that microgrids can predict future energy demand and detect 
any abnormalities or faults in the system, reducing the risk of power outages or 
equipment failures. 

However, the use of AI and ML in microgrids also raises concerns about their 
safety and reliability. If the algorithms used in the microgrid system are not cor­
rect or free from errors, it could potentially lead to safety hazards or power out­
ages. 

Formal methods can be used to prove that AI and ML algorithms will work 
correctly in all situations, and to detect any potential errors or vulnerabilities, 
Krichen et al. (2022b). In addition, formal methods can be used to generate rig­
orous specifications for AI and ML systems, which can be used to guide the 
development process and ensure that the final product meets all requirements, 
Adjed et al. (2022). By using formal methods, developers can verify that the AI 
and ML algorithms used in the microgrid system are correct and free from er­
rors, Al-Nusair (2020). This can help to prevent potential safety hazards, such as 
power outages or equipment failures, Larsen et al. (2022). 

Moreover, formal methods can help to optimize the performance of the mi­
crogrid system by providing a way to analyze and improve the efficiency of the 
AI and ML algorithms, Gossen et al. (2020). By using formal methods, devel­
opers can identify potential performance issues or areas for improvement in the 
microgrid system, Huang et al. (2022). This can result in greater energy savings 
and reduced costs for microgrid operators. Overall, the use of formal methods in 
conjunction with AI and ML can lead to a safer, more reliable, and more efficient 
microgrid system. 

In conclusion, AI and ML have great potential for optimizing the energy us­
age of microgrids, but their use also requires careful consideration of safety and 
reliability concerns. The use of formal methods can help to ensure that the AI 
and ML algorithms used in the microgrid system are free from errors and meet 
all requirements, resulting in a safer and more efficient microgrid system. 
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8. Formal methods for security aspects 

Microgrids are vulnerable to a variety of security threats, including cyber attacks, 
physical attacks, and natural disasters, Nejabatkhah et al. (2020). These threats 
can have serious consequences for the stability and reliability of the microgrid, 
as well as for the safety of the people and equipment involved. The use of for­
mal methods can play an important role in ensuring the security of microgrids 
by providing a rigorous and systematic approach to analyzing and verifying the 
security properties of the system, Krichen et al. (2018, 2020). 

Formal methods can be used to model and analyze the security properties 
of a microgrid, including the identification of potential security vulnerabilities 
and the development of countermeasures to address these vulnerabilities. Formal 
methods can also be used to verify the correctness of security protocols and 
algorithms used in the microgrid, as well as to ensure that the system is resilient 
to attacks and can recover quickly in the event of a security breach. 

Adapting formal methods to the specific security needs of microgrids re­
quires an understanding of the unique characteristics of these systems. Micro-
grids are typically composed of many interconnected components, including 
power sources, loads, and monitoring and control systems. These components 
may be owned and operated by different entities, which can make it challenging 
to ensure consistent security practices across the system. Additionally, micro-
grids may be subject to rapid changes inpower supply and demand, which can 
make it challenging to model and analyze the system accurately. 

To address these challenges, stakeholders in the field of microgrid security can 
adapt existing formal methods to the specific needs of microgrids. This may in­
volve developing new modeling techniques and tools that can capture the unique 
characteristics of microgrids, as well as developing new verification and valida­
tion methods that can be applied to these models. 

In summary, the use of formal methods can play an important role in ensuring 
the security of microgrids. Adapting formal methods to the specific needs of mi­
crogrids requires an understanding of the unique characteristics of these systems 
and the development of new techniques and tools to address these characteristics. 
Additionally, addressing the human factors involved in the use of formal meth­
ods for security is crucial for ensuring that the security needs of microgrids are 
understood and addressed in a coordinated and consistent manner. By addressing 
these issues, stakeholders can ensure that microgrids are secure, reliable, and re­
silient in the face of increasing security threats, helping to ensure the safety and 
stability of the power grid as a whole. 

9. Blockchain-based microgrids: The role of formal methods 

Blockchain technology and smart contracts have emerged as promising tools for 
the design and operation of microgrids, Krichen et al. (2022a); Li et al. (2019). 
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Figure 5. Blockchain general architecture. 

Blockchain technology provides a decentralized and secure platform for record­
ing transactions and managing distributed systems, while smart contracts enable 
the automation of transactions and the execution of complex business logic, Di­
nesha and Balachandra (2022); Tsao and Thanh (2021). The general architecture 
of blockchain is shown in Figure 5. 

The use of blockchain technology and smart contracts in microgrids presents 
a number of security and reliability challenges, however. These challenges arise 
from the distributed and open nature of blockchain systems, as well as the com­
plexity of the smart contracts that govern their behavior. Formal methods can be 
used to address these challenges and help to ensure the security and reliability of 
blockchain-based microgrids. 

Formal methods can be used to model and analyze the behavior of blockchain 
systems and smart contracts, and to verify that they satisfy a set of security and 
reliability properties, Murray and Anisi (2019). Formal methods can also be used 
to identify potential vulnerabilities in the system and to develop countermeasures 
to mitigate these vulnerabilities, Brunese et al. (2019). 

The use of formal methods in the context of blockchain-based microgrids is 
still a relatively new area of research, but holds great promisefor ensuring the 
security and reliability of these systems, Brunese et al. (2019). Formal methods 
can be used to verify the correctness of smart contracts that govern the behavior 
of microgrid components, ensuring that they operate as expected and that they 
do not introduce vulnerabilities into the system. Formal methods can also be 
used to analyze the behavior of the microgrid as a whole, identifying potential 
vulnerabilities and ensuring that the system is resilient to attacks. 

One way in which formal methods can be used to enhance the security and 
reliability of blockchain-based microgrids is through the development of formal 
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contracts. Formal contracts are contracts that are expressed in a formal language, 
such as the Z notation or the Alloy language. These contracts can be used to 
specify the behavior of smart contracts and other components of the microgrid, 
and can be verified using formal methods to ensure that they satisfy a set of 
security and reliability properties. 

Another way in which formal methods can be used to enhance the security 
and reliability of blockchain-based microgrids is through the development of au­
tomated verification techniques. Automated verification techniques can be used 
to analyze the behavior of smart contracts and other components of the micro-
grid, identifying potential vulnerabilities and ensuring that the system operates 
as expected. These techniques can be integrated into the development process of 
the microgrid, ensuring that the system is verified and validated at every stage of 
development. 

In summary, the integration of blockchain technology and smart contracts 
presents both opportunities and challenges for the design and operation of micro-
grids. The use of formal methods can help to ensure the security and reliabilityof 
these systems, by providing a rigorous and systematic approach to the analysis 
and verification of their behavior. Formal methods can be used to model and 
analyze the behavior of blockchain systems and smart contracts, and to verify 
that they satisfy a set of security and reliability properties. The development of 
formal contracts and automated verification techniques can further enhance the 
security and reliability of blockchain-based microgrids. 

10. Challenges and open issues 

The use of formal methods in microgrid design and analysis is an emerging area 
of research that holds great promise for improving the safety, reliability, and ef­
ficiency of these systems. However, there are several challenges and open issues 
that must be addressed to fully realize the potential of formal methods in micro-
grid design and analysis. These challenges and open issues include: 

•

Model complexity: Microgrids can be composed of various types of 
power sources and can be difficult to model accurately. The interaction 
between these different sources can be complex and difficult to capture, 
which makes it challenging to apply formal methods to analyze the be­
havior of the system. 

•

Lack of standardized models and specifications: There is no widely 
accepted standard for modeling and specifying microgrids. This makes 
it difficult to compare different microgrid designs and to apply formal 
methods consistently across different systems. 

•

Dynamic nature of microgrids: Microgrids can be subject to rapid 
changes in power supply and demand, as well as fluctuations in weather 
and environmental conditions. These changes can make it difficult to de­
velop accurate models and specifications for the system, and can also 
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make it challenging to apply formal methods to analyze the behavior of 
the system in real-time. 

•

Computational complexity: Formal methods often require significant 
computational resources to analyze even small systems, which can be a 
significant barrier to their adoption in microgrid design and analysis. This 
is particularly true for model checking, which can require large amounts 
of memory and processing power to analyze complex systems. 

•

Practical considerations: The cost of developing and verifying formal 
models for microgrids can be significant, particularly for small-scale sys­
tems. This can limit the adoption of formal methods in microgrid design 
and analysis, particularly for systems with limited budgets or resources. 

•

Verification and validation: Verification and validation of formal models 
can be challenging, particularly for complex and dynamic systems such as 
microgrids. There is a need for methods and tools to ensure that formal 
models accurately capture the behavior of the system and can be verified 
and validated in a timely and efficient manner. 

•

Human factors: The use of formal methods in microgrid design and 
analysis requires collaboration between technical experts and stakehold­
ers such as system operators and policymakers. There is a need for meth­
ods and tools that can facilitate communication and collaboration between 
these different groups to ensure that the formal models accurately capture 
the needs and requirements of the system. 

•

Real-world implementation: The implementation of formal models in 
real-world microgrid systems can be challenging, particularly in systems 
that have already been designed and deployed. Thereis a need for methods 
and tools that can facilitate the integration of formal models into existing 
systems and workflows, as well as methods to ensure that the models con­
tinue to accurately reflect the behavior of the system over time. 

By addressing these challenges and open issues, formal methods have the 
potential to play an important role in the design, operation, and maintenance of 
microgrids, helping to ensure their safety, reliability, and efficiency in the face of 
increasing demand for sustainable and resilient power systems. 

11. Future directions and recommendations 

As the field of microgrid design and analysis continues to evolve, the use of 
formal methods is poised to play an increasingly important role in ensuring the 
safety, reliability, and efficiency of these systems. However, to fully realize the 
potential of formal methods in microgrid design and analysis, there are several 
future directions and recommendations that stakeholders in this field should con­
sider: 
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•

Develop standardized models and specifications: The development of 
standardized models and specifications for microgrids is crucial for the 
adoption and application of formal methods in this area. Stakeholders in 
this field should work together to develop and promote widely accepted 
standards for microgrid modeling and specification to facilitate the use of 
formal methods across different systems. 

•

Address computational complexity: The computational complexity of 
formal methods can be a significant barrier to their adoption in microgrid 
design and analysis. Stakeholders should focus on developing and pro­
moting methods and tools that can reduce the computational burden of 
formal methods, such as model reduction techniques and efficient model 
checking algorithms. 

•

Integrate formal methods into existing workflows: To be effective, for­
mal methods must be integrated into existing microgrid design and anal­
ysis workflows. Stakeholders should focus on developing and promoting 
methods and tools that can facilitate the integration of formal methods 
into existing workflows and systems, as well as methods to ensure that the 
models continue to accurately reflect the behavior of the system over time. 

•

Address human factors: The successful application of formal methods 
in microgrid design and analysis requires collaboration between techni­
cal experts and stakeholders such as system operators and policymak­
ers. Stakeholders should focus on developing and promoting methods and 
tools that can facilitate communication and collaboration between these 
different groups to ensure that the formal models accurately capture the 
needs and requirements of the system. 

•

Validate and verify formal models: The verification and validation of 
formal models is crucial for ensuring that they accurately capture the be­
havior of the system. Stakeholders should focus on developing and pro­
moting methods and tools that can efficiently and effectively verify and 
validate formal models, as well as methods for ensuring that the models 
remain accurate over time. 

•

Develop practical solutions: The cost of developing and verifying for­
mal models for microgrids can be significant, particularly for small-scale 
systems. Stakeholders should focus on developing and promoting practi­
cal solutions that can be adopted by systems with limited budgets or re­
sources, such as simplified modeling techniques and efficient verification 
and validation methods. 

•

Promote collaboration and knowledge sharing: The successful adop­
tion of formal methods in microgrid design and analysis requires collabo­
ration and knowledge sharing across disciplines and sectors. Stakeholders 
should focus on promoting collaboration and knowledge sharing through 
conferences, workshops, and other events, as well as through the develop­
ment of onlinecommunities and resources for sharing best practices and 
lessons learned. 
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•

Address ethical and social implications: The use of formal methods in 
microgrid design and analysis raises important ethical and social implica­
tions, such as issues related to privacy, fairness, and accountability. Stake­
holders should be aware of these implications and work to address them 
in the development and application of formal methods in microgrid design 
and analysis. 

In summary, the use of formal methods in microgrid design and analysis holds 
great promise for improving the safety, reliability, and efficiency of these sys­
tems. To fully realize this potential, stakeholders in this field should focus on de­
veloping standardized models and specifications, addressing computational com­
plexity, integrating formal methods into existing workflows, addressing human 
factors, validating and verifying formal models, developing practical solutions, 
promoting collaboration and knowledge sharing, and addressing ethical and so­
cial implications. By addressing these future directions and recommendations, 
stakeholders can ensure that formal methods play an increasingly important role 
in the design, operation, and maintenance of microgrids, helping to ensure their 
safety, reliability, and efficiency in the face of increasing demand for sustainable 
and resilient power systems. 

12. Conclusion 

In this chapter, we have explored the use of formal methods for optimizing the 
performance, safety, and reliability of microgrids. Microgrids are becoming in­
creasingly popular as a means of providing reliable and sustainable energy, but 
managing their complexity can be challenging. Formal methods offer a promis­
ing approach to addressing this challenge by enabling the verification and vali­
dation of complex systems. 

We have discussed various technologies that can be integrated with formal 
methods to enhance the performance and safety of microgrids. These include 
cloud, fog, and IoT technologies, as well as AI and ML. By integrating these 
technologies with formal methods, microgrid operators can optimize energy gen­
eration and consumption, prevent power outages, and ensure the safe and reliable 
operation of their systems. 

We have also discussed the role of formal methods in addressing security 
concerns in blockchain-based microgrids. Formal methods can help ensure the 
integrity and confidentiality of transactions in these systems, as well as prevent 
attacks on the microgrid infrastructure. 

Despite the promise of formal methods, there are still several challenges and 
open issues that must be addressed. For example, there is a need for more re­
search on the scalability and efficiency of formal methods for large-scale micro-
grid systems. Additionally, there is a need for more standardized formal methods 
and tools that can be used by microgrid operators and engineers. 
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In conclusion, the use of formal methods for microgrid optimization is a 
promising approach to addressing the challenges of managing complex energy 
systems. By integrating formal methods with cloud, fog, and IoT technologies, 
as well as AI and ML, microgrid operators can ensure the safe and reliable 
operation of their systems while optimizing energy generation and consumption. 
Additionally, formal methods can help address security concerns in blockchain­
based microgrids. However, further research is needed to address the challenges 
and open issues in this area and to develop standardized formal methods and 
tools. Overall, the use of formal methods represents an important step forward in 
the development of sustainable and reliable microgrid systems. 
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Christine Mwase 

1.
 Introduction


Rising global energy demand amidst depleting fossil fuel reserves, higher inci­
dence of climatic shocks, ageing grid installations, and technological advances 
are motivating a shift from the traditional centralized power grids which have 
dominated power production and distribution to a more distributed system of 
energy supply and distribution, in the form of microgrids. The socioeconomic 
benefits are high, particularly in communities that are in remote and off-grid 
locations; regions that are highly vulnerable to climatic shocks; and/or where 
disruptions to electricity could have adverse effects (e.g., hospitals). Disruptions 
to connections to centralized power grids in some cases lead to near or complete 
loss of access to powerlines connected to the national grid. By powering the in­
creasing range of applications that utilize DC loads, such as electric vehicles and 
data centres, directly from distributed renewable energy generators, DC micro-
grids provide a means to more effectively and sustainably bridge the electricity 
demand gap. 

While the precise definition of microgrids tends to differ (Mauger, 2022; Oli­
vares et al., 2014), in this chapter a microgrid is regarded as a group of inter­
connected loads and distributed energy resources (DERs) within clearly defined 
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electrical boundaries that act as a single controllable entity with respect to the 
grid. A microgrid can connect and disconnect from the grid to enable it to op­
erate in both grid-connected or island mode (Ton and Smith, 2012). When the 
loads and DERs are connected to a common direct current (DC) bus, the micro-
grid is referred to as a DC microgrid. This is in contrast to alternating current 
(AC) microgrids which use a common AC bus, or hybrid microgrids which use 
both AC and DC buses. 

We focus on DC microgrids due to the growing adoption of direct DC DERs, 
like photovoltaic (PV) generation, stationary and mobile batteries, and fuel cells 
—benefits that make DC microgrids crucial for future electricity production. 
There is also a rising interest in high-efficiency direct DC loads. DC microgrids 
can eliminate multiple power conversion steps associated with AC buses, result­
ing in improved energy efficiency and cost-effective operation. Table 1 summa­
rizes some of the benefits which make DC microgrids crucial for future electric­
ity production, both in areas with and those without existing grid infrastructure. 
Specifically: 

•

In areas without existing grid infrastructure (off-grid), the primary moti­
vation of DC microgrids is to provide access to energy, a first step in the 
hierarchy shown in Figure 1. By generating power close to the point of 
consumption, they reduce losses along transmission and distribution lines, 
providing efficiency gains. DC microgrids are becoming an attractive tech­
nological solution for the primary source of electrification for communi­
ties and one of the drivers in affordable and flexible energy systems. 

•

In areas with existing electrical grid infrastructure, the motivation tends to 
be more varied beginning with increased reliability and resilience (Garip 
et al., 2022) as shown in Figure 1, by providing facilities to augment grid 
supply, particularly in areas with unreliable supply. DC microgrids also 
provide cost-effective expansion of energy supply from non-grid sources 
(for example, in remote areas subject to climatic shocks or as a replace­
ment to existing old technology), reduction of greenhouse emissions by 
incorporating clean energy sources, and offer positive effects from more 
agile electricity production (including electricity distribution that is bet­
ter aligned to demand). With the decreasing cost of renewable technology 
such as solar PV, and the increasing efficiency of battery energy storage 
systems, there is rising demand for on-site decentralised power generation 
as an addition or alternative to grid supply. Large-scale investors are also 
increasingly turning towards DERs due to their ability to defer large power 
system infrastructure investments, mitigate risks associated with the con­
struction of big power plants, reduce power losses, and improve power 
quality and energy efficiency. 

The development of business models and ownership structures that permit 
cost-effective operation and the subsequent acceleration of shift towards decen­
tralisation of ownership trend will be crucial to accelerating the adoption of DC 
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Figure
1.
 The evolving motivations for DC microgrids – off-grid vs. grid-connected. 

microgrids. DC microgrids have yet to achieve significant scale and there is 
scope for further business model innovation to bring them more broadly into the 
market. Among the barriers is the lack of long-standing experience with scalable 
microgrid financing models that potential investors can rely on (NRE, 2019). 

The objective of this chapter is twofold: to outline the motivation for the in­
novation of business models for DC microgrids; and examine plausible business 
model options that can be used to address emerging gaps in the coming decade. 

The remainder of this chapter is organised as follows. Section 2 provides an 
overview of the key drivers and factors influencing the energy transition, high­
lighting the areas of disruption that demand innovation. Section 3 discusses po­
tential DC microgrid business models based on existing and emerging trends. 
Section 4 examines different deployments and assesses their business models. 
Section 5 collects some perspectives on the future evolution of business models 
for DC microgrids. Finally, Section 6 draws out the main conclusions and key 
takeaways. 

2.
 Drivers
of
the
energy
transition


2.1. Historical background 

DC microgrids stretch back to the origins of the grid in the late 19th century 
when electrical distribution systems used direct electric current to provide light­
ing to communities. The adoption of electrical lights resulted in small-scale de­
centralised power generation and transmission in cities and countries. One such 
example is Thomas Edison’s electric utility company which in 1882 provided 
DC-based electric lighting solutions. Electricity was generated at one central 
point in the middle of a city and then transmitted along underground conduc­
tors to the homes and offices of users. The high cost of copper wire and high 
transmission losses however limited the distance that customers could be from 
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Table
1.
 Potential benefits of DC microgrids. 
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(a) 19th century. (b) 20th century. (c) 21st century. 

Figure
2.
 Early stages of the grid’s development. 

the generation station and consequently, the service area that the systems could 
cover. This resulted in multiple isolated systems as depicted in Figure 2a, and 
limited the exploitation of economies of scale, eventually leading to higher costs. 

The ensuing period (from about 1920s to 1970s) was marked by a massive 
wave of electrification, driven by growing demand and bolstered by government 
support, which centred on centralized generation and transmission taking advan­
tage of economies of scale. Electrical energy was distributed in the form of AC, 
with AC voltage being raised or reduced using a transformer, enabling efficient 
long-range power distribution through high-voltage transmission lines as shown 
in Figure 2b. The amount of power lost during transmission, Ploss, is directly re­
lated to the square of the current flowing through the wires: Ploss
 =
I2R
where 
I
is the current and R
the resistance. By increasing the voltage, the current is de­
creased proportionally, allowing for the same amount of power to be transmitted 
with less copper wire and lower energy losses. AC transmission was thus pre­
ferred over DC at the time due to its cost-effectiveness. From the 1920s through 
to the 1970s, the increased reliability afforded by connecting multiple generat­
ing units to diverse loads, lower construction costs per kilowatt (kW), and the 
ability to draw power from distant large generating resources (e.g., large scale 
hydropower plants) propelled the development of the centralized grids we see 
today. 

A century later, the grid - which benefited from centralised AC generation ­
is now witnessing the beginnings of a return to decentralisation and an increased 
use of DC. 

•

The microgrid concept resurfaced in the 1990s as a solution for incorpo­
rating various DERs while also increasing the resilience and dependabil­
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ity of power supply in the event of emergencies and natural catastrophes. 
The surge was also aided by greater awareness and concern over climate 
change. 

•

Since their resurfacing, the benefits of microgrids continue to be appeal­
ing while the earlier advantages of AC macro grids appear to have peaked 
and are being undermined by greater prevalence of climatic shocks which 
adversely affect access to centralized grids. Electricity generation compa­
nies have steadily transitioned to smaller, decentralised units over time, 
driven by utility restructuring, improved DER technologies, and the eco­
nomic risks associated with the construction of massive power generation 
plants and transmission infrastructure (Hirsch et al., 2018). Furthermore, 
AC distribution is no longer compatible with our increasingly DC world 
with emerging technologies like battery storage, solar PV for generation, 
and energy-efficient DC loads. 

•

Moreover, AC is no longer the only method of transferring power, and DC 
is used at high power transmission powers. At the start of electric power 
transmission, the transmission of high voltage direct current (HVDC) was 
unattainable. There was no cost-effective method to step down the DC 
voltage for user applications. However, in recent years, HVDC has made 
tremendous progress in recognising new ways to modify DC voltages. 

2.2. Drivers of the energy transition 

Three factors are primarily driving the shift from a traditional centralized AC-
based grid structure to one with a larger role for DC microgrids. 

2.2.1.
 Energy
demands


Firstly, the volume and range of applications requiring electricity have expanded 
significantly. In recent decades, the worldwide use of energy has risen exponen­
tially, ranging from 8.6 billion tonnes (Btoe) in 1995 to 13.1 Btoe in 2015 (Dong 
et al., 2020), this being more than 190 qBtu higher than 1990 levels. IEA CPS 
projections forecast global energy consumption will continue to grow by approx­
imately 20 to 30 percent reaching about 767 qBTU by 2040, an increase of 41% 
over 2015 (Newell et al., 2019). This constantly rising energy demand is depicted 
in Figure 3 which presents previous and predicted usage in the coming decades. 
Traditional energy production is unable to meet this growing energy demand in 
its present mode (Sadekin et al., 2019), both due to the growing volumes of fos­
sil fuels that would be needed, and the added pressure on ageing grid production 
and transmission infrastructure. Decentralized generation, bringing in renewable 
energy, is thus a welcome opportunity. 

Secondly, concerted policy efforts to reduce global greenhouse gas emissions 
while also promoting decentralization of the grid through more autonomous pro­
duction from DERs are contributing to a pick-up in usage. With the growing 
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Figure
3.
 Primary energy demand. 

opposition to new fossil-fuelled power stations, renewable generation is on the 
rise, with a 41–60% increase in the share of renewable energy in total electricity 
generation expected by 2060 (Kober et al., 2020). This shift to decentralised re­
newable generation favours modularity over the benefits of scale that AC macro 
grids offered. 

Thirdly, more electronic devices are using DC, and more DC sources are be­
ing used for generation. In data centres, for example, almost all of the critical 
payloads in the data centre are DC loads, thereby reducing the number of state 
changes and the amount of heat energy wasted. The shift to DC results in gains 
in availability and efficiency, as well as savings in floor space, cooling costs 
and overall upfront capital costs. Similarly, native DC equipment (LED lights, 
mechanical components, etc.) comprises over 50% of a building’s total energy 
load (Glasgo et al., 2016). The shift to DC in commercial buildings thus results in 
fewer converters and less conversion loss, presenting an opportunity to save en­
ergy, money and greenhouse gases generated from our electrical grid. The same 
is found in aircraft, where hydraulics which are being replaced by electrical ac­
tuators make use of smaller converters resulting in weight reduction. These, and 
other applications, are adding significant additional demands. There is, for exam­
ple, an expected explosion in electric vehicles (EVs), with 750 million expected 
globally by 2030 and nearly 3 billion by 2050 – a twenty-fold increase from 
current levels (Brown et al., 2019). 

2.2.2.
 Technological
innovation


Technology to support DC Microgrids has evolved, the most notable being power 
conversion. Historically, power conversion has been the domain of inverters (DC 
to AC converters) or rectifiers (AC to DC converters). With the rapid evolution 
of the DC Microgrid, the DC:DC converter has stepped into the fore of power 
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conversion to serve as the bridge between DC sources and loads interacting in 
a native DC environment. The advances in power electronics for DC systems 
result in the lowest number of power conversion steps, thus minimising waste 
and reducing costs. By leveraging the inherent DC functionality of most DERs, 
including solar PV and fuel cells, and many end-loads including lighting, power 
electronics and variable speed drives for heating, ventilation, and air conditioning 
(HVAC), all-DC microgrids avoid conversion losses which can waste between 
5% and 15% of power generation (Hirsch et al., 2018). 

2.2.3.
 Economics


The cost of DC generation and storage, such as solar photovoltaics (PV) and 
electric storage, as well as power conversion, have fallen precipitously through 
technological innovation. Within one decade, the price of electricity from utility-
scale solar photovoltaics has declined by almost 90% as shown in Figure 4. Un­
like fossil fuels and nuclear power whose costs largely depend on the price of the 
fuel that they burn and the power plant’s operating costs, the cost of renewable 
power is largely dependent on the cost of the power plant i.e., the cost of the 
technology itself, and decreases with increasing capacity. At each doubling of 
installed solar capacity, the price of solar electricity fell by 36% (Roser, 2020). 
On the other hand, despite having the greatest installed capacity, coal has not 
become significantly cheaper. 

Figure
4.
 Price of electricity (Roser, 2020). 

Rising rates of traditional grid service electricity have also played a role. For 
decades, the cost to deliver energy through traditional systems has been increas­
ing significantly since the 1990s while the cost of DC DERs such as solar and 
batteries has been and is expected to continue to decline. Considering increas­
ing energy demands, rising fuel costs, depleting fossil fuels, declining renewable 
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energy costs and ageing infrastructure, the possibility of deferring large power 
system infrastructure investments through DERs is attractive to large-scale in­
vestors and boosting microgrid adoption. In parallel with this, technological ad­
vances are enabling the integration of digitization and distributed energy to un­
lock novel ways of monetizing energy infrastructure and services in ways that 
were not feasible before. 

2.3. Key changes in the value chain 

Table 2 lists some of the key shifts in the value chain that are driving disruptive 
innovation in the industry. 

Table
2.
 Differences between the traditional macro grid and DC microgrids. 

Traditional AC Macro Grid DC Microgrids 

Energy production Centralized, fossil-based, mostly Distributed, focus on renewable en­
non-renewable energy sources ergy sources 

Main participants Producers and consumers Prosumers 

Digitisation Little use of ICTs, scarce intelli- Widespread use of ICTs and intelli­
gence gence in decision-making 

Data One-way stream, scarce, offline Two-way interchange, abundant, on­
line 

Energy agents Few agents Numerous agents 

2.3.1.
 Distributed
generation


Energy production has evolved from self-production and consumption to local­
ized production, then to centralized production, and is now undergoing a trans-
formative shift towards distributed generation. 

•

Prior to utility-centric business models, customers generated electricity 
on-site for their own consumption, as shown in Figure 5(a), buying equip­
ment and services from equipment providers using a primarily transac­
tional relationship. Utilities then emerged, widening access to more cus­
tomers by taking care of production, which some potential customers may 
not have had the space and/or funds to accommodate. The sale of electric­
ity rather than equipment was maintained as utilities shifted from local­
ized production shown in Figure 5(b) to centralized production shown in 
Figure 5(c). 

•

The growth of distributed energy is driven by multiple factors. Firstly, 
there has been strong support from industrial and environmental policies 
to increase the share of renewable electricity capacity. Initiatives like net 
metering and feed-in tariffs have provided incentives for individuals to 
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Figure 5. Evolution in production and consumption of electricity. [A, B: customers].

generate electricity. Rising electricity prices have also made it more ap-
pealing for consumers to generate their own electricity. This not only helps
reduce their reliance on the grid but also allows them to sell excess energy
to the grid at higher prices. In addition, the cost of photovoltaic technology
and energy storage has significantly decreased, making it more accessible
to the masses. Moreover, small-scale distributed generation is an attractive
solution in places where grid infrastructure is not in place.

• With distributed generation comes a range of significant characteristics
that not only pose new challenges but also open doors for novel busi-
ness opportunities. Unlike before, electrical energy is now produced at
many more spatially distributed nodes and by many individuals and or-
ganisations. Integrating distributed generation, especially when it is at the
small-scale individual level, into existing markets is a challenge. One of
the challenges it brings is the need to reduce intermediary costs in energy
trade. Intermediary costs include those associated with metering, billing,
administration fees, IT services, banking services and brokerage. More-
over, distributed generation (such as is the case with solar PV), frequently
involves intermittent renewables. This has given rise to exciting oppor-
tunities such as Peer-to-Peer (P2P) energy trading, which offers a practi-
cal way to incorporate intermittent small-scale generation into the system
with minimal intermediary costs.

2.3.2. The emergence of prosumers

Prosumers are individuals or entities that both consume and produce electric-
ity. In the traditional AC macro grid, consumers were solely passive recipients
of electricity. With the introduction of AC technology came long-distance trans-
mission and the traditional value chain shown in Figure 6. Utilities dominated
the value chain, generating and distributing energy to customers. Their owner-
ship and authority over the grid infrastructure allowed them to succeed using
resource-driven business models, without much effort placed on acquiring and
maintaining customers.
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Figure 6. Traditional value chain.

However, in DC microgrids, prosumers actively participate in the energy mar-
ket by generating their own power and feeding energy back into the grid. This
shift empowers individuals and organisations to take control of their energy pro-
duction, promoting energy independence and reducing reliance on centralized
power providers. Prosumers also have the potential to participate in peer-to-peer
energy trading, further democratizing the energy sector and fostering a more de-
centralized and inclusive energy market.

Producer

Utility TSO / DSO

Aggregator

Consumer

Prosumer

Figure 7. Emerging value chain.

The re-emergence of DC microgrids and the emergence of prosumers have
triggered a significant shift from utility-centric value chains and business models
to customer-centric ones. Figure 7 shows a simplified version of the emerging
value chain. Traditionally, utility companies held a monopoly over energy gen-
eration, distribution, and pricing, wielding immense power and control. How-
ever, the rapid proliferation of customer-owned and controlled DC microgrids
has upended this dynamic. Customers now possess the ability to generate and
consume their own power, making them active participants in the energy market.
Prosumers have become increasingly valuable to the energy market as they can
contribute additional energy to meet the ever-growing demand, thus fostering
a mutually beneficial relationship between them and utility companies. More-
over, prosumers introduce their needs, stakeholder relationships, contributions
and influence into the grid ecosystem, compelling other players, including utility
companies to adopt a customer-centric approach to remain competitive in this
evolving landscape. Recognizing that prosumer needs vastly differ from those of
utility companies, energy providers are shifting their focus towards meeting and
anticipating these unique needs.
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2.3.3.
 Digitisation
of
infrastructure


Digitalization is transforming every sector, including the energy sector, where 
data can be converted into a valuable resource. While digitization of infrastruc­
ture is a key change that occurs in both the AC macro grid and DC microgrid 
value chains, its importance is more pronounced in DC microgrids due to their 
complex and dynamic nature. The digitization of DC microgrid infrastructure 
and the availability of data have significant implications for the way energy is 
perceived and utilized, ultimately leading to its de-commoditization. Tradition­
ally, energy has been treated as a commodity, with a clear buyer-seller relation­
ship and a limited focus on its source and distribution. However, advancements in 
technology and the digitalization of energy infrastructure are rapidly shifting this 
paradigm. The digitalization of DC microgrid infrastructure allows us to collect 
vast amounts of data related to energy generation, consumption, and distribution. 

Figure 8 illustrates the emerging value chain planes resulting from the dig­
itization of the energy sector. The emerging value chain depicted in Figure 7 
lies within the electricity plane of Figure 8. With the physical infrastructure that 
constitutes the grid lies a network from which data is generated and captured. 
This data offers valuable insights into the dynamics of energy systems, enabling 
more efficient energy management and optimization. Real-time monitoring and 
analysis of energy data empower operators to identify trends, patterns, and in­
efficiencies, leading to more informed decision-making. This transparency and 
accountability in the energy sector provide consumers with detailed information 
about their energy usage, including the sources of energy and their environmen­
tal impact. Armed with this knowledge, consumers can make informed choices 
regarding their energy consumption, driving more sustainable and environmen­
tally friendly practices. 

Furthermore, the decentralization of energy assets through digitization allows 
for greater local control and ownership, breaking away from the traditional cen­
tralized energy model. This shift promotes energy independence, resilience, and 
reliability by reducing dependence on large, centralized power plants and trans­
mission networks. As energy becomes more localized, transparent, and opti-

Figure
8.
 Emerging value chain planes. 



244 IoT
Enabled-DC
Microgrids


mized through digitization and data availability, new business models and market 
structures emerge. The de-commoditization of energy transforms it from a stan­
dardized product bought and sold at market prices to a personalized, value-driven 
service that caters to specific needs and preferences. This evolution reshapes the 
energy landscape, moving away from a traditional commodity-driven approach 
towards a more customer-centric, service-oriented approach. 

These rapidly evolving shifts in the value chain demand a paradigm shift in 
business models for DC microgrids, as traditional approaches fall short in har­
nessing the full potential of the changing landscape. 

3.
 Business
models


The shift from a traditionally centralized AC-based macro grid structure to one 
with a larger role for DC microgrids brings with it changes in product/service 
offerings and business models. While the past century was dominated by utility-
based ownership and operation, operationalising the grid of the next century re­
quires the involvement of multifarious ownership and management structures. 
This section looks at the trend away from utility-centric models and presents 
emerging business models for DC microgrids. 

3.1. Definition of business model 

The business model concept which dates back to the mid-20th century gained at­
tention with the emergence of internet-based businesses in the mid-1990s. From 
communicating complex business ideas to potential investors within a short time-
frame (Zott et al., 2011), the business model concept has evolved into a tool for 
systematic analysis, planning and communication, as well as a strategic asset for 
competitive advantage and firm performance (Geissdoerfer et al., 2020). Despite 
growing in use, there is no consensus on the definition of the business model. 
Table 3 provides some selected definitions. We place focus on the following 
common objectives that most address; (i) the creation of value (e.g., a superior 
and competitive product or service); (2) the design of a set of components and 
activities to deliver that value; and, (3) the capturing of value (e.g., the recov­
ery of costs through a feasible financial model), and utilise the business model 
canvas (Osterwalder and Pigneur, 2010) because it provides a framework that 
has been thoroughly tested and utilised in the energy sector. The business model 
canvas (BMC) consists of the nine building blocks described in Table 4. 

3.2. The traditional business model 

Figure 9 shows the traditional utility-centric business model stemming from the 
traditional value chain shown in Figure 6. In the traditional energy landscape, 
utilities held a dominant position, generating and distributing energy to cus­
tomers using resource-driven business models. 
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Table
3.
 Selected business model definitions. 

Author Definition 

Timmers, 1998 
(Timmers, 1998) 

A business model: (i) an architecture for the product, service and information 
flows, including a description of the various business actors and their roles; 
and (ii) a description of the potential benefits for the various business actors; 
and (iii) a description of the sources of revenues. 

Afua and Tucci, 2003 A business model is the method by which a firm builds and uses its resources 
(Afuah and Tucci, 2003) to offer its customers better value than its competitors and to make money 

doing so. 

Mitchell and Coles, 2003 A business model comprises the combined elements of “who”, “what”, 
(Mitchell and Coles, “when”, “why”, “where”, “how” and “how much” involved in providing cus­
2003) tomers and end users with products and services. 

Osterwalder, 2004 
(Osterwalder, 2004) 

A business model is a conceptual tool that contains a set of elements and their 
relationships and allows expressing a company’s logic of earning money. It 
is a description of the value a company offers to one or several segments 
of customers and the architecture of the firm and its network of partners for 
creating, marketing and delivering this value and relationship capital, in order 
to generate profitable and sustainable revenue streams. 

Chesbrough, 2007 
(Chesbrough, 2007) 

A business model performs two important functions: value creation and value 
capture. First, it defines a series of activities, from procuring raw materials to 
satisfying the final consumer, which will yield a new product or service in 
such a way that there is net value created throughout the various activities. 
Second, a business model captures value from a portion of those activities for 
the firm developing and operating it. 

Figure
9.
 Traditional business model. 
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Table
4.
 Business model canvas building blocks. 

Pillar Building 
block 

Description 

Product/ 
Service 

Value 
Propositions 

The products and services that create value for the customer 

Customer 
Interface 

Customer 
Segments 

The segments of customers a company wants to create value for 

Channels Describes the various ways a company interacts with its customers to 
deliver value 

Customer 
Relationships 

Explains the kind of relationships a company establishes and main­
tains with each of the customer segments, and how it maintains them 

Infrastructure 
Management 

Key Activities Describes the arrangement of key activities required to offer and de­
liver value 

Key 
sources 

Re- Outlines the key resources that are indispensable in the company’s 
business model 

Key Partners Shows the network of partnerships with other companies that are nec­
essary to efficiently offer and deliver value 

Financial 
Aspects 

Cost Structure Represents the sum of costs that the company can or will have for the 
applied business model 

Revenue 
Streams 

Explains the method a company generates money through various rev­
enue flows which result from successfully delivering the value propo­
sition to customers 

3.3. Emerging business models 

DC microgrids, in contrast to conventional macro grids, exhibit a wide range of 
business models that differ within and across countries, depending on the own­
ership structure. 

3.3.1.
 Conceptual
framework


3.3.1.1
 Ownership
structures


The ownership structures play a significant role in determining the various stake­
holders involved in the system, and the subsequent value streams. The stakehold­
ers can include private enterprises, community organizations, and government 
entities, and the value derived from microgrids can go beyond monetary terms to 
encompass factors like reliability, environmental sustainability, and energy effi­
ciency. This translates into value streams being measured not only in monetary 
terms but also in performance metrics, such as energy savings. The diverse own­
ership structures of microgrids enable innovative business models tailored to the 
distinct needs and goals of different communities and regions. Figure 10 presents 
the relationships between the main participants based on the emerging ownership 
structures. 
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Figure
10.
 Main actors and relationships in emerging ownership structures.
 
MSP: Microgrid service provider; ESP: Energy service provider; A, B: customers
 

3.3.1.2
 Contracting
vehicles


An important element is determining the contracting vehicle that best lends itself 
to the business model and asset ownership taking into account capital investment 
and operations and maintenance goals. Table 5 summarises the ownership, in­
vestment, and operational responsibilities of different business models, mapping 
them to contracting vehicles. More generally, ownership-based contracting vehi­
cles such as build-own-operate (BOO) and build-own-operate-transfer (BOOT) 
offer a more predictable revenue stream for the owner of the DC microgrid, al­
lowing for long-term planning and investment albeit at a typically larger upfront 
investment from the owner. On the other hand, operational-based contracting ve­
hicles such as PPA and energy service agreement (ESA) provide a flexible and 
scalable energy solution for the client, allowing for a lower upfront investment 
from the client. 

3.3.1.3
 Evaluation
metrics


The business model can have a significant impact on the nature and weight given 
to different evaluation metrics. Some commonly used evaluation metrics in tra­
ditional business models are applicable, but the weight given to each metric will 
depend on the ownership model. Table 6 maps business models to commonly 
used evaluation metrics. 

•

Profitability metrics such as ROI, net present value (NPV) and IRR com­
pare the expected benefits (e.g., revenues, cost savings) to the initial in­
vestment, providing an assessment of the associated profitability and risk, 
such as when large upfront costs are made and maximising financial re­
turns are a priority. On the other hand, cost metrics such as COE and 
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Table
5.
 Summary of business models and contracting vehicles. 

Model Asset 
Ownership 

Capital 
Investment 

Operations and 
Maintenance 

Contracting Vehicles 

BOO/BOOT LTO PPA/ESA JDA 

Utility owned Utility 
company 

Utility 
company 

Utility 
pany* 

com- X X 

Host owned Host entity Host entity Host entity* X X 

Third-party 
owned 

One or sev­
eral 
entities** 

Third party Third party X X X 

Energy-as-a­
service 

Investor(s) Investor(s) Service provider X 

Mixed 
ownership 

Multiple 
entities 

Investor(s) Service provider X X 

BOO = build-own-operate; BOOT = build-own-operate-transfer; LTO = lease-to-own; PPA = power 
purchase agreement; ESA = energy service agreement; JDA = joint developer agreement 
∗Can be in-house or outsourced to a third-party service provider or contractor. 
∗∗
 Can be transferred to an off taker. 

Table
6.
 Mapping of business models to metrics. 

Model 
Metrics 

Profitability Cost Risk Operational 
ROI/NPV/IRR/PP COE/LCOE PD/EL CF/Availability 

Utility owned ✓
 ✓


Host owned ✓
 ✓
 ✓


Third-party owned ✓
 ✓
 ✓


Energy-as-a-service ✓
 ✓


Mixed ownership 

levelized COE (LCOE) provide a different perspective, focussing on cost-
effectiveness, such as where minimizing energy production costs is a pri­
mary concern. Risk metrics, such as probability of default (PD) and ex­
pected loss (EL), can also be used to assess the potential risks, while op­
erational metrics, such as capacity factor (CF) and plant availability, can 
provide insights into the performance and reliability. 

Figure 11 presents multiple dimensions to be considered when determining 
evaluation metrics. While the BMC traditionally considers the economic dimen­
sion, within which customer-, offer-, finance-, and resource-driven BMCs can be 
developed, recent studies emphasize the importance of environmental and social 
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Figure
11.
 MultiBMI framework. 

dimensions as well. Each of these dimensions can be further broken down into 
specific metrics that can be used for assessing performance and impact. 

3.3.2.
 Implications
on
business
models


This subsection summarises the main business models based on the emerging 
ownership structures of DC microgrids. 

3.3.3.
 Utility-owned


While microgrids were once considered a threat to utility companies’ revenue 
and balanced operation, technological innovation and cost reduction of DERs 
have made them valuable additions to utilities from both a supply and demand 
perspective. Specifically: 

•

From a supply perspective, utility companies typically find it beneficial to 
own DC microgrids when building a microgrid is cheaper than building a 
parallel transmission line and ensuring the required reliability level (such 
as in remote areas). It is also applicable, as highlighted by the customer 
segments in Table 7, in areas where reliability through the traditional grid 
has proved difficult, such as in areas that experience recurring flooding and 
subsequent outages. When outages are not expected, additional revenue 
can be earned by arbitraging from cheap to expensive generation. 

•

From a demand perspective, the customer base for utility-owned micro-
grids can come from industries and businesses seeking clean energy and/or 
highly reliable energy sources without the burden of managing their grid. 
The utility company would install the microgrid at the customer premises 
as shown in Figure 10(a) and assume all duties associated with its opera­
tion. 

By building DC microgrids, utility companies defer transmission and distribu­
tion costs, achieving less costly service expansion and increased grid reliability. 
Furthermore, the surplus energy generated is additional energy for the grid and 



250 
IoT
E

nabled-D
C


M
icrogrids


Table
7.
 Business model options. 

Model Description Value Customer Infrastructure Revenue 
Proposition Segment Aspects 

Utility owned Utility company - Increased grid resilience and relia­ - Remote communities - Energy generation and storage as­ - Fixed price per 
owns microgrid bility - Outage-prone locations sets (e.g., solar installation, batter­ kilowatt-hour 
facilities. Microgrid - Shorter waiting times for new in­ - Clean energy seekers ies) - Revenue from arbi­
operations prioritize stallations - Essential service - Maintenance and operation of gen­ traging 
the objectives of the - Increased renewables in the energy providers (e.g., hospitals, eration and distribution systems 
bulk system. mix military bases, airports) - Connections to producers of DERs 

- Value-added services and microgrid components and ex­
ternal technicians 

Host owned Microgrid facilities - Reduced electricity bills - Self - Distributed generation assets (e.g., - Revenue from sell-
are owned by the - Revenue from selling electricity - Utility companies solar installation) ing energy and asso­
host entity. - Government subsidies - Community members - Links to manufacturers of DERs, ciated benefits 

installation companies, financiers 
and utility companies 

Third-party Microgrid facilities - Provide electricity at lower, pre­ - Households, SMEs, in­ - Deployment of microgrid - Revenue from sales 
owned are owned and oper­ dictable costs dustrial and commercial en­ - Delivery of energy services through service con­

ated by one or sev­ - Grid reliability terprises - Securing available subsidies (e.g., tracts or PPAs 
eral entities. - Secure energy supply - Utility companies tax credits, renewables subsidies) 

- No upfront costs to microgrid user - Networking with government 
- No operation and maintenance agencies, utilities and other energy/ 

microgrid sector firms 

Energy-as-a- Microgrid facilities - No upfront capital costs to the user - Households, SMEs, in­ - Energy and customer management - Revenue from ser­
service are owned and oper­ - Predictable energy costs dustrial and commercial en- systems vice fees or con­

ated by the service - Ensured reliable energy supply terprises - Partnerships with local utilities and tracts 
provider. energy suppliers 

Mixed Microgrid owner­ - Shared investment cost and risk - Households, SMEs, in­ - Deployment and delivery of energy - Revenue from sales 
ownership ship is shared by - Diverse expertise and resources dustrial and commercial en- services through service con-

multiple entities terprises - Management of skateholder and tracts or PPAs 
- Utility companies partner resources and relations 



251 Direct
Current
Microgrids:
A
Business
Model
Perspective


increases the renewables in the energy mix. Ownership-based contracting vehi­
cles such as BOO, shown in Table 5, can be adopted. Compared to other business 
models whose financing can be challenging, utility-owned microgrids can often 
be funded by including the capital cost in the utility’s rate base, provided the 
utility can demonstrate the need for and cost-effectiveness of the microgrid to its 
regulators. 

3.3.4.
 Host-owned


Individuals or organisations can play the role of being a consumer as well as 
a producer, selling surplus energy beyond their consumption, as shown in Fig­
ure 10 (b). Potential hosts include essential service providers that need to survive 
when large grid outages occur (such as hospitals, military bases and airports), 
households that are enthusiastic about environmental protection and have a high 
payment capacity, small and medium-sized enterprises who have advantages in 
the development and operation of DERs (such as those encouraged to build their 
own renewable power system financed by authorities), and individuals who have 
sufficient and independent roof space (such as farmers) (Cai et al., 2019). 

As shown in Table 5, the host assumes full responsibility for the microgrid. 
This model has a high upfront cost and long payback period and is thus widely 
used by universities, institutions, military bases and industrial customers and 
businesses, where large initial investment cost can be overcome. Unlike in the 
utility-owned model where the utility has the full authority to manage and control 
microgrid production and maintain grid balance, in the host-owned model the 
host plays an active role in contributing to grid balance activities. 

3.3.5.
 Third-party
ownership
(Microgrid-as-a-Service)


While the benefits of microgrid ownership are plenty, the upfront costs, man­
agement complexity, and associated risks (e.g., performance risks on an energy 
efficiency project), can be a barrier to installing microgrids. This steers many 
potential hosts away from ownership to outsourcing their microgrid projects. In 
the third-party ownership or Microgrid-as-a-Service model shown in Figure 10 
(c), a third party (e.g., solar service company) owns and operates the service 
(e.g., solar panels installed on the rooftops of consumers’ households), while 
customers pay for the power they consume, according to their service contract or 
power purchase agreement (PPA). This model has the advantage that customers 
do not need to pay high installation costs, and do not bear the risk of system op­
eration, overcoming the obstacles of financing and low profitability. The service 
provider takes responsibility for the installation, maintenance, and performance 
of energy efficiency measures. In turn, for investors, the key value proposition is 
the creation of valuable energy services and remuneration streams. 

Different contracting vehicles can be considered as shown in Table 5. For 
example, an energy savings performance contract (ESPC) can be agreed upon 
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between an energy service company (ESCO) and a customer, with the ESCO 
being responsible for the design, installation, financing, and maintenance of the 
microgrid, and the customer paying a fixed fee or a share of the energy sav­
ings achieved by the microgrid. This model allows customers to avoid the high 
upfront costs and managerial complexity associated with microgrid ownership 
while capitalizing on the ESCO’s expertise and experience. 

A combination of cost and profitability metrics shown in Table 6 may be pri­
oritized, as they are responsible for both generating electricity at a competitive 
cost and maximizing financial returns for their investors. Table 8 shows one such 
example where a third-party owned floating photovoltaic (PV) plant connected 
to the national utility grid 110 kV at Da Mi hydropower reservoir in Binh Thuan 
province, Vietnam (Nguyen et al., 2023) was analysed considering a plant ca­
pacity of 47.5 MW, power output of 69.99 million kWh/year, 20-year PV system 
lifetime and a total investment of 1,438,877 million VND. For a comprehensive 
evaluation of profitability, risk, efficiency, and liquidity, net profit value, inter­
nal rate of return (IRR), benefit-cost ratio (B/C), and payback period (PP) were 
used. Furthermore, a sensitivity analysis was used to gauge uncertainty impacts 
by identifying key metric drivers and assessing assumption changes. 

Table
8.
 Economic-financial indicators of a floating PV plant (Nguyen et al., 2023). 

Economic Financial Sensitivity analysis 
indicators targets A B C A,B 

Financial dis­ 6.95 
count 
factor (iF) (%) 

Electricity price 0.145 0.0935 
(US$/kWh) 

IRR (%) 17.2 11.14 IRR (%) 8.43 8.08 10.9 5.70 

Net Profit Value 664.3 220.3 Net Profit Valuef
 82.9 56.8 205.50 79.2 
(billions VND) (billions VND) 

B/C 1.55 1.211 B/Cf
 1.073 1.055 1.20 0.931 

PP (years) 9.3 14.4 Discounted pay­ 17.5 18.0 14.7 ¿20 
back 
time (yrs) 

A = 10% investment capital increase; B = 10% power generation reduction; C = 10% O&M cost in­
crease. 

3.3.6.
 Energy-as-a-Service


In the Energy-as-a-Service (EaaS) model, a service provider operates the ser­
vice, and sells energy to customers, typically through a predictable and recurring 
subscription-based service, as shown in Table 7. In return, the customer is guar­
anteed a reliable and often elastic supply of energy without assuming the capital 
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investment or management requirements associated with hosting microgrid facil­
ities. This model offers a convenient solution for customers while providing the 
service provider with stable and recurring revenue streams through the provision 
of energy services and the opportunity to scale operations over time. 

3.3.7.
 Mixed-ownership


The mixed ownership approach favours private-public partnership (PPP), com­
bining public institutions, utilities, private companies and end consumers. A 
multi-stakeholder approach decreases investment requirements from an individ­
ual stakeholder and can guarantee revenue stream, for instance, based on PPAs. 
This model can be applied to strong public institutions and high-income com­
munities, who can afford the investment and become shareholders of the micro-
grids (Vanadzina et al., 2019). 

•

An Anchor-Business-Community (ABC) collaboration between an anchor 
institution, such as a large hospital, university, or telecom tower, local 
businesses and industries, and a community can combine the need for a 
significant and stable energy demand to support the feasibility of a micro-
grid project, with the provision of reliable and cost-effective energy for 
businesses and the community that would otherwise have limited revenue. 

•

It can also be applied to lower-income communities. For example, a local 
community may identify its energy needs and prioritise productive uses of 
energy (PUE) to drive economic development. A microgrid, jointly owned 
by the community, a private sector investor, and a government agency 
would allow for shared resources, expertise, and responsibilities. The mi­
crogrid would power various productive activities such as agricultural pro­
cessing and small-scale manufacturing, supporting income generation, job 
creation, and overall economic growth. Surplus energy can be traded with 
the main grid, generating additional revenue streams. 

Evaluation metrics for mixed ownership models are dependent on the nature 
of the involved entities. A combination of financial metrics from Table 6 may be 
required to ensure the feasibility of the project. In additional, evaluation metrics 
from the environmental and social dimensions shown in Figure 11 may also be 
required to meet the joint interest of the participating entities. Table 9 shows one 
such example of additional environmental and socio-economic considerations 
from a feasibility analysis of installing solar PV panels over California water 
canals in California (Kahn and Longcore, 2014). 

Similar examples can be found in the studies shown in Table 10, which also 
utilize standard metrics for analyzing energy projects, such as ROI, cost of en­
ergy (COE), and life cycle conversion efficiency (LCCE). While the financial 
metrics are central elements of the revenue aspects highlighted across Table 7, 
installations in the health care centers and hospitals itemized in Table 10 have 
needs beyond the economic dimension. 
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Table
9.
 Environmental and socio-economic indicators of solar canals (Kahn and Longcore, 2014). 

Environmental benefits Environmental costs Socio-economic benefits 
System 

Energy 
saved 
(MWh/yr) 

CO2 
abated 
(MT/yr) 

Water 
Saved 
(gal/yr) 

Manufacturing 
CO2


emissions 
(MT/lifetime) 

Cadmium 
emis­
sions 

(g/GWh) 

Jobs from 
installation 

Jobs 
from 
O&M 

500 kW 838.8 232 2565463 39.8 0.159 19.9 2.5 

1 MW 1677.6 465 5130926 79.7 0.319 37.4 7.5 

10 MW 16776.3 4648 51309254 796.9 3.188 373.8 75 

Table
10.
 Recent feasibility studies with economic/financial modelling. 

Study and 
Location 

Description System Specification Evaluation 

Islam et al. (2023) 
Bangladesh 

Powering a rural 
healthcare center in 
Bangladesh with a hy­
brid renewable energy 
system 

Rooftop PV system: 
400 Wp solar panels, 
25 kW bi-directional 
inverter, 
28 kW generator 

ROI: 9.8%; IRR: 12.7% 
Discounted payback: 6.95 
years 
PP: 7.53 years 

Aisa et al. (2022) 
Libya 

Powering Sabratha’s 
general hospital in Libya 
with a solar-wind hybrid 
power plant 

Solar-wind system: 
10 kW wind turbine, 
350 W solar panel, 
batteries, generator 

Optimization performance: 
PV array 1507.73 MWh/yr 
Wind turbine 596.81 
MWh/yr 
Generator 588.31 MWh/yr 
COE: $0.182/kWh 

Sharma 
(2019) 
India 

et al. Powering a hospital 
building in India with a 
solar PV power plant 

Rooftop PV system: 
83 PV solar modules, 
34.35 kW inverter 

PP: 6 years 
LCCE: 0.007 

4.
 Examples
of
DC
Microgrids


4.1. Case study 1: Energy Local 

4.1.1.
 Motivation


Having seen a five-fold increase in renewable generation over the past decade, 
the UK’s renewable generation efforts shifted towards optimizing and maintain­
ing well-functioning local distribution networks. 

4.1.2.
 Solution


An Energy Local Club (ELC), composed of a local group of cus­
tomers/households and a local group of renewable energy generators is formed in 
partnership with a fully licensed supplier. The licensed supplier manages billing, 
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Table
11.
 Energy local (Barnes et al., 2022). 

Case Energy Local 

Country: United Kingdom 

Location/scale: Rural 

Established: 2016 

Customer seg- Local renewable generators; local consumers/households 
ments: 

Value proposition: Better income for the generators; lower bills for households 

Infrastructure: - ELCs are setup as cooperatives, and together with licensed suppliers collaborate 
to manage a ‘complex site’, a regulatory exception under Ofgem, the energy regu­
lator. 
- Smart meters record generation and demand. Virtual meter points measure im­
ports/exports of power not generated/used locally for settlement as the collective 
outcome of the complex site. 
- Suppliers have PPAs with generators and modified supply contracts with house­
holds. 

Revenue aspects: Energy generated locally is distributed to members under the ‘match tariff’ and 
additional demands are met by the licensed supplier through a time-of-use tariff 
(ToUT). 

Socio-economics: - Increases accessibility to renewable energy for members with limited financial 
resources or inadequate space for equipment. 
- Empowers members to be active in energy systems and decarbonization activities. 
- Strengthens community relationships and fosters social cohesion through clubs. 
- Supports the achievement of Net Zero emissions by 2050 through efficient and 
flexible use of existing generation and demand-side assets. 

Figure
12.
 Energy Local model.
 
CA, ..., CD: consumers; GA, ..., GD: generators
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Table
12.
 Zuiderlicht. 

Case Zuiderlicht 

Country: The Netherlands 

Location/scale: City 

Established: 2013 

Customer seg- Residents who do not have access to roof space; roof space owners 
ments: 

Value proposition: Amsterdam residents can invest in, own, and manage renewable generation assets; 
offers lower energy bills to members 

Infrastructure:	 - Energy cooperative projects use the Dutch premium feed-in tariff (SDE+, 
SDE++) and the Dutch “postcoderoos” regulation subsidy schemes. 
- Net metering calculates members’ electricity imports matched to their share of 
generated power, and any top-up needs. 
- The public grid stores electricity not consumed at the time of generation. 

Revenue aspects: - Dutch subsidies for renewable energy provided stable revenue projections, en­
couraging local community investment. 

Socio-economics:	 - Increased distributed energy production fosters energy independence and re­
silience. 
- Promotes energy literacy through outreach activities that engage and educate res­
idents in renewable generation and the energy transition. 
- Fosters inclusive participation in the energy transition by allowing individuals of 
all socioeconomic backgrounds to engage in sustainable energy initiatives. 

compliance, and back-office services, including wholesale trading, metering, and 
customer support. Locally generated energy is shared across ELC demand mem­
bers using an annually agreed upon “match tariff” that is more competitive than 
the open market for both groups. For members with greater energy demands, 
the supplier provides a time-of-use tariff (ToUT) to customers for power that 
is not generated and matched locally. ELCs are self-sustaining, not through the 
generation of profit, but rather through the generation of value for multiple ac­
tors both within the ELC community and across the wider energy ecosystem. 
The ELC model, a brainchild of Energy Local (Barnes et al., 2022), is being ex­
panded through Energy Local Community Interest Company (CIC), who acts as 
the development hub and ‘franchise owner’. 

4.2. Case study 2: Zuiderlicht 

4.2.1.
 Motivation


A group of local activists created the Zuiderlicht energy cooperative in 2013 
with the goal of establishing a more democratic and sustainable energy sys­
tem (Hansen and Barnes, 2021). 
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4.2.2.
 Solution


Zuiderlicht facilitates two types of projects that bring together members with 
available roof spaces and those seeking to invest in renewable energy. 

•

Supported by the Renewable Energy Production Incentive Scheme 
(SDE+), the SDE-backed project allows members to invest in solar PV 
and gain ownership and management of the system in exchange for their 
investment. Zuiderlicht negotiates long-term leases with rooftop owners, 
enabling members to earn a return on their investment. Building tenants 
benefit from power at rates below market prices, and excess power is sold 
to a supplier under a PPA. 

•

Enabled by the Dutch “postcoderoos” regulation (PCR), the PCR-backed 
project allows members to invest in cooperatively-owned renewable en­
ergy generation assets in their local or neighbouring postcode and receive 
a tax reduction on electricity imports based on their share of generated 
electricity. Zuiderlicht partners with a supplier who sells generated elec­
tricity to members under a modified supply contract and shares the tax dis­
count granted under the postcoderoos regulations between investors and 
consumers (Hansen and Barnes, 2021). 

In contributing towards the goal of running Amsterdam on clean energy by 
2025, Zuiderlicht founded Platform 02025 (020) which brings together all energy 
communities active in the city of Amsterdam. 

4.3. Case study 3: sonnenCommunity 

4.3.1.
 Motivation


sonnenCommunity was established to enable energy independence and dis­
rupt traditional energy suppliers by virtually connecting privately-owned storage 
units. 

4.3.2.
 Solution


The sonnenCommunity platform enables participants to cover 100% of their 
electricity needs through self-consumption and community energy trading. It op­
erates as a virtual power plant (VPP) and aggregator, linking privately owned 
generation and storage units via cloud-based software to maximize collective 
self-consumption and provide ancillary services to the grid. Surplus power from 
members is deposited into a virtual energy pool, which is then shared among 
other members. A centralized software platform connects and monitors the mem­
bers, ensuring a balance between energy supply and demand. This approach 
eliminates the necessity for a traditional energy supplier (ElMaamoun, 2021; 
Karami and Madlener, 2018; Koreneff et al., 2020). 

The sonnenCommunity operates at multiple levels, including product owner­
ship, asset sharing, and electricity supply contracts. If the community lacks suf­
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Figure
13.
 sonnenCommunity model.
 
CA, ..., CD: consumers; GA, ..., GD: generators
 

ficient electricity, it purchases from the market or obtains it through PPAs with 
distributed generators. In these instances, sonnen functions as an energy utility 
with a new service contract. 

4.4. Case study 4: BlockEnergy 

4.4.1.
 Motivation


Utility companies in the United States are faced with the challenge of fulfill­
ing the ever-increasing demand for increased load volume as well as clean and 
reliable energy. Previously, addressing power consumption growth meant con­
structing new costly power plants and transmission lines, both decisions carrying 
substantial long-term consequences. As a subsidiary of a utility provider, Emera 
Technologies (now BlockEnergy) aimed to tackle the issue of renewable energy 
while ensuring scalability and compatibility with existing utility systems, provid­
ing customers with a simpler and more reliable source of energy, and alleviating 
them from the complexities associated with its production and distribution. 

4.4.2.
 Solution


The solution that BlockEnergy provides is a utility-focused business model for 
DERs, which is owned, operated, and maintained by the local utility. BlockEn­
ergy uses a modular platform to connect local on-site PV generation and storage 
in self-sustaining block loops, creating a mesh network. This network is built in 
new residential communities, with solar batteries and controllers installed in each 
home. These homes are further grouped together in a shared network for central 
storage, which is ultimately connected to the grid. This approach caters specif­
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Table
13.
 sonnenCommunity. 

Case sonnenCommunity 

Country: Germany 

Location/scale: National 

Established: 2016 

Customer seg­ sonnen GmbH product or service customers 
ments: 

Value proposition: Energy independence 

Infrastructure: - Smart programming in each battery optimises individual self-consumption 
- SonnenVPP software for the VPP operated by sonnen GmbH which acts as a 
licensed supplier, managing regulatory compliance and providing back-office ser­
vices. 
- PPAs with distributed renewable generators for electricity needs not met inter­
nally 

Revenue aspects: Flat service contracts promote equity among members. Members benefit finan­
cially by allowing sonnen GmbH to control their assets for services to national 
energy systems. 

Socio-economics: - Increased energy independence through self-consumption and community sup­
ply. 
- Onsite consumption reduces demand on the grid. 

ically to new residential construction, allowing for incremental, capital-efficient 
investments to be made gradually over time. It thus leverages advancements in 
information and technology availability to make wiser investment decisions. Ad­
ditionally, it seamlessly integrates with new construction projects without dis­
rupting existing infrastructure or requiring the removal of previously deployed 
equipment. 

Beyond providing distributed energy generation and storage, it also serves as 
a backup generation and storage solution for the utility. It operates in a more 
reliable manner since it uses local generation and storage, preventing outages 
caused by failures in the energy delivery chain. Traditional power grids are inter­
connected in a series, which means that if an error occurs in the energy delivery 
chain, it affects the entire system. In contrast, the modular and DC-based design 
of the BlockEnergy system leads to improved reliability, as most energy gener­
ation and storage occurs locally. This also makes it easier to identify and locate 
issues within the system, resulting in quicker responses and enhanced outage 
prevention. By positioning BlockEnergy as a capital asset for distributed gen­
eration, the solution aims to meet the increasing demand for clean and reliable 
energy in a more sustainable and cost-effective way (nml, 2021). 
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4.5. Case 5: Nagoya landfill 

4.5.1.
 Motivation


The motivation for the Nagoya landfill DC microgrid was based on the desire of 
the landfill owners to enhance the value proposition of their property. They were 
faced with a paved-over landfill that was unsuitable for most construction pur­
poses. At the same time, as a result of Japan’s increasing adoption of distributed 
renewable energy systems, the local power supply infrastructure had become sat­
urated with solar PV. Japan’s objective was to reduce reliance on imported fossil 
fuels and decommission large centralized nuclear power plants, making utilities 
and regulators prioritize the consolidation of distributed solar PV. Coupling these 
challenges with their desire to increase the value proposition of their property, 
the landfill owners considered the construction of a microgrid with energy stor­
age, enabling them to export dispatchable renewable power and take advantage 
of a special feed-in tariff. 

4.5.2.
 Solution


In 2014, the Nagoya landfill microgrid facility was constructed at a cost of ap­
proximately $1.5 million (Wang et al., 2020). The facility includes a 0.5MW 
solar power generation unit and a 0.2MW/1.2MWh battery storage system, cov­
ering an area of 2 acres. With its long-lasting battery that harnesses solar PV 
energy, this microgrid provides a stable power supply to the grid during peak 
demand periods and serves as a reliable backup for local loads in the event of a 
grid outage. 

The primary investors contributed around 10% of the funding, with the re­
maining amount secured from a third party through steady payments spanning 
the project’s 15-year lifespan. Special tariffs paid by the utility served as the pri­
mary source of revenue. With favourable tariff structures, the payback period for 
this system was estimated to be around 4 years. Optimal Power Solutions, an 
Australian firm, spearheaded the development of the facility which was hosted 
by the landfill owners. Future expansion was envisaged, where several systems 
like this could be merged into a single virtual power plant (Peter Asmus, 2018). 

4.6. Case 6: IIT Madras Uninterrupted Direct Current (UDC) solution to 
power all homes 

4.6.1.
 Motivation


This case was motivated by the need to not only expand the electricity grid across 
India, but also to address and improve the issues of affordability, reliability, and 
overall quality of the power supply. 

•

About 20% of India’s population (approximately 240 million people) had 
no access to electricity in 2015 making it the largest population in the 
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world without access to electricity (IEA, 2015). Furthermore, a signif­
icant proportion of households with electricity endured frequent power 
disruptions and inferior power quality, with 50% of households remaining 
electricity-deprived despite being connected to the nationwide grid net­
work. 

•

While subsidized tariffs were offered in some parts of the country, signif­
icant portions of the population were still unable to afford the discounted 
rates, ultimately leading to financial losses for the power distribution com­
panies. In order to overcome these challenges, it was crucial to reassess 
the economic barriers in place. The average tariff for homes was approx­
imately |5 ($0.07) per unit (considering an exchange rate of US $1 = 
|70). A small home operating two tube lights for six hours, two fans for 
twelve hours, two bulbs, a 24-inch TV for ten hours, and charging a cell 
phone for four hours would consume a little over three units of electricity 
per day. This total cost of around |500 per month challenged the ability 
of at least 50% of homes, particularly those in rural areas, to maintain 
a consistent electricity supply. Without the incentive to provide power at 
such rates, power distribution companies would implement load shedding 
which while being problematic lessened their losses. 

4.6.2.
 Solution


The Indian Institute of Technology (IIT) Madras in conjunction with industrial 
partners developed the Uninterrupted Direct Current (UDC) solution with a view 
to provide 24 X 7 power to all homes in India. 

•

Recognizing that DC appliances are more energy efficient than AC ones, 
the UPC solution innovates on load management by providing a limited 
but uninterrupted DC power supply to homes (Kaur et al., 2015). Given 
that PV panels, batteries, consumer electronics, LED lighting, and a grow­
ing range of appliances all work with DC, using DC becomes more effi­
cient as it minimizes conversions. The DC system avoids the inefficiency 
of converting the panel’s direct current to AC for synchronizing to the 
main grid, the conversion back to DC to charge the battery, and a third 
conversion from DC back to AC when the battery is discharged. 

•

While India’s main power grid is based on AC, their solar-powered micro-
grids utilize DC power to minimize power losses which can range from 5 
to 20% with each conversion between AC and DC. The 125- to 500-watt 
microgrids serve as a backup power supply for grid-connected households, 
and as the sole source of electricity for homes not connected to the grid. 
For grid-connected homes, an additional 48-volt DC power line runs in the 
home, and the traditional electricity meter is replaced by a UDC power 
meter which has the same control and communications capabilities of a 
smart meter, along with an AC-to-DC converter for converting a portion 



262 IoT
Enabled-DC
Microgrids


of the incoming AC to DC. This provides about 10% of the typical house­
hold load. 

The project was rolled out carefully beginning at a more micro level before 
spreading out. The field testing of UDC systems commenced in 2014 across 
a multitude of facilities at IIT Madras, including homes, offices, and dormi­
tories. In 2015, IIT partnered with the Hyderabad-based solar power company 
Cygni Energy to commercialise UDC systems, extending deployment to 1000 
households in three cities and numerous villages. Funding from India’s Ministry 
of Power further facilitated expansive projects aimed at serving over 100,000 
households in the semi-urban town of Sasaram, located in Bihar, India. Cus­
tomers paid for the DC wiring and installation in their households. Thereafter 
they would be provided with an additional DC power line and would use DC ap­
pliances that save more than 50% on power usage (e.g., a DC fan that consumes 
30W instead of 72W). For grid-connected households, this would mean savings 
on electricity bills and continued power supply during load shedding (Jhunjhun­
wala, 2017). 

4.7. Case study 7: Mabushi solar 

4.7.1.
 Motivation


Despite being an economic powerhouse in the African region, access to energy 
in Nigeria remained a significant challenge with 42% of Nigerians either not 
connected to the grid or lacking reliable access to energy. This issue was com­
pounded by frequent and prolonged power outages, which result in estimated 
annual economic losses of $26.2 billion (Ariemu, 2023; World Bank, 2021). 
As a result, 77% of the country’s power demand was being met through self-
generation, predominantly through the use of diesel generators. For commercial 
and industrial customers, roughly 14 GW was generated with diesel generators 
that are more expensive than the grid. Given these challenges and the growing 
commitments towards sustainability, there was a rising preference for decentral­
ized microgrid deployments in Nigeria. Not only did microgrids offer a techno­
logical and commercially viable solution, but they also aligned with corporate 
mandates regarding sustainability. 

4.7.2.
 Solution


Mabushi Solar is a project located in Abuja, Nigeria’s capital city, for the Fed­
eral Ministry of Works and Housing (FMWH). Completed in 2021, it was de­
veloped to address multiple challenges that include the lack of reliable power 
affecting worker productivity at the ministry’s Mabushi office block, excessively 
high electricity bills due to the use of diesel generators as a backup power source, 
renewable energy and energy efficiency targets set by the Federal Government of 
Nigeria (FGN), and the aspiration from FGN to explore microgrids as an energy 
solution and offer a model for other renewable energy developers. 
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Owned by the federal government through FMWH and financed by the is­
suance of Green Bonds, the grid-connected plant was constructed by EM-ONE 
Energy Solutions Ltd. (EM-ONE), a Canadian-Nigerian engineering and tech­
nology company. EM-ON worked with FMWH and FGN to address the afore­
mentioned challenges and contribute towards SDGs 7, 12 and 13 through the pro­
vision of a 1.52 MWp solar PV array with 2.28 MWh/1.17 MW battery energy 
storage. In addition to replacing over 400 air conditioners and over 2600 light­
ings in the Mabushi building complex, an annual reduction of almost $600,000 in 
energy bills and 2,600 tonnes of CO2 emissions is expected, as well as the addi­
tion of 558 new employment opportunities (UN in Nigeria, 2021). The project’s 
goals and anticipated outcomes include an annual production of 2.45 GWh of 
renewable power, a 78% reduction in diesel consumption, a 70% decrease in 
non-renewable power usage, a 76% saving on energy expenses, and a 40% re­
duction in overall energy consumption from retrofitting and efficiency improve­
ments (Premium Times, 2021). 

5.
 Future
perspectives


The future outlook for DC microgrids will be significantly shaped by the ongoing 
trends and developments across various sectors within the energy ecosystem. 

5.1. Dynamic boundary microgrids 

Dynamic boundary microgrids have the capability to adjust their borders in or­
der to ensure a reliable power supply to critical loads such as hospitals, during 
expected and unexpected events, in both grid-connected or islanded modes. By 
introducing flexibility to the boundaries of DC microgrids at different system lev­
els, it becomes possible to maintain efficient and cost-effective operation under 
normal conditions, while also providing resilience during abnormal situations. 
This adaptive nature allows for the optimization of energy usage and system 
stability by expanding or contracting boundaries, thus enhancing the overall re­
silience of the microgrid system. This flexibility also has the potential to influ­
ence the evolution of DC microgrid business models. For example, it can enable 
the development of more scalable offerings that can cater to a wider range of 
customers or locations, or incentivize more demand-based offerings that facili­
tate transactions between microgrids based on real-time fluctuations in demand 
and supply. 

5.2. Virtual power plants 

Virtual power plants (VPPs) aggregate energy production, storage and consump­
tion resources, enabling the management of flexible capacity on a large scale for 
the benefit of their stakeholders. 

http:MWh/1.17
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•

The development of VPPs brings about new business models that revolve 
around DER aggregation, energy trading, demand-side management, pro­
vision of ancillary services, and innovative offerings by energy service 
providers. These flexible portfolios of energy assets that can include DERs 
with differing characteristics, such as size and application, form individual 
entities which operate similarly to conventional power plants, making con­
tracts in the wholesale market and offering services. They can for example 
open up assets to participate in the energy market, generating increased re­
turns for asset owners, or provide grid ancillary services such as frequency 
regulation and reserve to enhance grid stability. By facilitating a more di­
versified and dynamic energy market, they bring value to regulators, asset 
owners, traditional utilities, and consumers. 

•

With DC microgrids having a focus on local resource optimization at the 
low or medium voltage level, the introduction of VPPs creates new op­
portunities for market interactions within the ecosystem. Depending on its 
business model, a DC microgrid owner can for example engage directly 
with the newly formed markets, participate through a VPP, or position 
itself as a VPP. 

5.3. Intelligent microgrids 

DC microgrids are also set to be transformed by the integration of emerging 
technologies, such as the Internet of Things (IoT), artificial intelligence (AI), 
and blockchain. 

•

These advancements have the potential to greatly improve the efficiency, 
reliability, predictability, security, and transparency of microgrids. By in­
corporating advanced sensors, data analytics, and real-time monitoring 
systems, microgrids can become more intelligent. AIoT-driven intelli­
gence can facilitate the prediction of generation and consumption pat­
terns, optimization of energy flow, and automation of decision-making 
processes, resulting in enhanced microgrid efficiency and reduced costs. 
This can help facilitate businesses in capitalizing on the value of data 
through data-driven services and platforms, and enabling servitization in 
the energy sector. Better insights, real-time decision-making and increased 
transparency for all participating actors aid in democratizing the energy 
sector, a feat that opens the door to the emergence of new players, business 
models and opportunities. As these technologies continue to advance, the 
potential for innovation and transformation in the DC microgrid industry 
is vast. 

•

Moreover, blockchain, which involves decentralized transaction verifica­
tion, can be utilized to incentivize and empower prosumers to seamlessly 
trade power and make payments. Integration of blockchain technology al­
lows for secure energy trading, enabling the creation of decentralized mar­
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ketplaces and fostering greater energy independence. A blockchain-based 
system could establish a distributed system of trust, enabling a home with 
solar power, for instance, to provide energy to a neighbor during a power 
outage even when the central grid is disconnected. This would promote 
resiliency by establishing self-sustaining cells of energy production and 
consumption. 

5.4. Supergrids 

A supergrid (or super grid) refers to an energy distribution network that connects 
various sources of renewable energy, such as wind farms and solar installations, 
with consumers across large geographical areas. Supergrids aim to optimise the 
use of renewable energy resources by linking areas with high generation poten­
tial to areas with high energy demand. These networks are designed to efficiently 
transmit electricity over long distances, significantly reducing energy losses and 
enabling the integration of renewable energy on a massive scale. By connect­
ing remote renewable energy installations to supergrids with minimal losses, this 
technology enables the exploitation of vast resources that were previously in­
accessible due to transmission constraints. For example, offshore wind farms in 
remote locations with strong wind resources can supply electricity to major cities 
located hundreds of kilometres away through DC. 

How the development of supergrids will affect the business models of DC mi­
crogrids will depend strongly on ownership and regulatory boundary conditions 
of supergrids. Structures and solutions identified as optimal for a power system 
in one country or region, may not be optimal in another, due to differences in 
base scenario (grid structure, generation mix, etc.), available natural resources, 
existing legislation, social acceptance, and the like. Furthermore, investing in a 
supergrid carries financial risks, making it unlikely for a single company to un­
dertake such an investment. Instead, a consortium of large companies or govern­
ments is more likely to invest. This investment decision will impact the develop­
ment and operation of the systems, as owners expect a return on their investment. 
The emergence of supergrids will influence the economics of DC microgrids as 
supply and demand will increasingly be matched across the supergrid, making 
microgrids more interdependent. 

5.5. Regulation 

The increased complexity of DC microgrid business models, the need for in­
creased partnerships, and the introduction of conflicting value logics all point to 
the critical role that regulation will play in determining the future of this emerg­
ing technology. A key observation from the case studies was the influence of 
the national energy markets, and the regulatory vehicles in particular, in the fea­
sibility and viability of grid-connected DC microgrids. For instance, the Dutch 
postcoderoos regulation scheme encourages energy communities by offering a 
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partial tax exemption for owners of DERs in their postcode area or neighbouring 
postcode area. Community members invest in cooperatively-owned generation 
assets and receive a tax deduction for their share of power generated, an in­
centive afforded predominantly to co-operatives and resident associations rather 
than corporations and private companies. Regulation can also be used to remove 
barriers to entry for new market participants, create a level playing field for all 
stakeholders, and ensure that the benefits of DC microgrids are shared equitably. 
The extent to which regulation will accommodate value logics that have tradi­
tionally been at odds with market regulation practice will influence citizen par­
ticipation and prosumer dynamics. In all case studies, fitting within regulatory 
frameworks that were not designed for DC microgrids was paramount. 

6.
 Conclusion


In conclusion, this chapter has provided an overview of DC microgrids and their 
significance in the energy transition. It has discussed the paradigm shift from 
centralized energy distribution to a decentralized and sustainable approach, high­
lighting key changes in the value chain including the emergence of prosumers 
and the de-commoditization of electricity production. The chapter has empha­
sized the importance of business model innovation to bring DC microgrids to 
market and has identified potential options based on ownership. Furthermore, it 
has presented examples of use cases and discussed future perspectives, such as 
dynamic boundary microgrids and expected technological trends. Overall, this 
chapter contributes to the understanding of DC microgrids and the potential busi­
ness models that may shape the future of the energy industry. 

The case studies shed light on the viability of diverse business models and 
implementation approaches for DC microgrids, emphasizing the importance of 
considering various ownership structures, contracting methods, and evaluation 
metrics when designing and operating such systems. The key takeaways from 
the case studies are 

•

Firstly, DC microgrids offer a multitude of benefits, including improved 
energy access, increased energy resilience, reduced energy costs, and en­
hanced grid stability. Depending on the chosen business model, DC mi­
crogrids can also provide valuable resources to the Distribution System 
Operator (DSO) and the wholesale system. 

•

Motivations for implementing DC microgrids varied, with some aiming to 
provide access to energy in developing regions where a significant portion 
of the population remains unconnected to the grid, while others sought 
reduced energy costs and energy independence in developed regions with 
reliable grid infrastructure. 
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• A common challenge across most case studies was the regulatory barrier 
that hindered the integration of customer Distributed Energy Resources 
(DERs). As a result, the business models devised often relied on regulatory 
workarounds to ensure the successful implementation of DC microgrids. 

• Successful DC microgrids frequently 
involved collaboration among 
multiple stakeholders, including utilities, businesses, and community 
organizations. The case studies underscored the importance of considering 
local conditions, regulations, and stakeholder preferences when designing 
and implementing DC microgrids, as well as the need for effective customer 
engagement. 

Overall, the case studies demonstrate the significant potential of DC microgrids 
to deliver a wide range of benefits, including improved energy access, cost 
savings, and enhanced resilience. However, they also highlight the necessity for 
careful planning, collaboration among stakeholders, and regulatory considerations 
to ensure successful implementation. 
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