
Daniel Vaughan

Data Science:
 The Hard Parts
Techniques for Excelling at Data Science

DATA

Data Science: The Hard Parts

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

This hands-on guide offers a set of techniques and best practices
that are often missed in conventional data engineering and
data science education. A common misconception is that great
data scientists are experts in the “big themes” of the discipline,
namely ML and programming. But most of the time, these tools
can only take us so far. In reality, it’s the nuances within these
larger themes, and the ability to impact the business, that truly
distinguish a top-notch data scientist from an average one.

Taken as a whole, the lessons in this book make the difference
between an average data scientist candidate and an exceptional
data scientist working in the field. Author Daniel Vaughan has
collected, extended, and used these skills to create value and
train data scientists from different companies and industries.

With this book, you will:

•	 Ensure that your data science workflow creates value

•	 Design actionable, timely, and relevant metrics

•	 Deliver compelling narratives to gain stakeholder buy-in

•	 Use simulation to ensure that your ML algorithm is the
right tool for the problem

•	 Identify, correct, and prevent data leakage

•	 Understand incrementality by estimating causal effects

Daniel Vaughan has led data teams across different companies
and sectors and is currently advising several fintech companies
on how to ensure the success of their data, ML, and AI initiatives.
Author of Analytical Skills for AI and Data Science (O’Reilly), he
has more than 15 years of experience developing machine
learning and more than eight years leading data science
teams. Daniel holds a PhD in economics from NYU.

US $65.99	 CAN $82.99
ISBN: 978-1-098-14647-4

“Daniel has written
another masterpiece to
serve as the connective
tissue for value creation
between data scientists
and business executives.
This book is the missing
manual for commercial
success from data
science.”

—Adri Purkayastha
Global Head of AI Technology Risk, BNP Paribas

“Covers everything from
economics to advertising
to epidemiology and how
to apply data science
techniques in practice.
It starts where most
books end—with the
actual decision-making
processes driven by data
insights. A long-overdue
addition to any data
scientist’s bookshelf.”

—Brett Holleman
Freelance data scientist

Daniel Vaughan

Data Science: The Hard Parts
Techniques for Excelling at Data Science

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14647-4

[LSI]

Data Science: The Hard Parts
by Daniel Vaughan

Copyright © 2024 Daniel Vaughan. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Aaron Black
Development Editor: Corbin Collins
Production Editor: Jonathon Owen
Copyeditor: Sonia Saruba
Proofreader: Piper Editorial Consulting, LLC

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

November 2023: First Edition

Revision History for the First Edition
2023-10-31: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098146474 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data Science: The Hard Parts, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098146474

This book is dedicated to my brother Nicolas,
whom I love and admire very much.

Table of Contents

Preface. xi

Part I. Data Analytics Techniques

1. So What? Creating Value with Data Science. 3
What Is Value? 3
What: Understanding the Business 4
So What: The Gist of Value Creation in DS 6
Now What: Be a Go-Getter 7
Measuring Value 7
Key Takeaways 9
Further Reading 10

2. Metrics Design. 11
Desirable Properties That Metrics Should Have 11

Measurable 11
Actionable 12
Relevance 12
Timeliness 12

Metrics Decomposition 13
Funnel Analytics 13
Stock-Flow Decompositions 14
P×Q-Type Decompositions 15

Example: Another Revenue Decomposition 15
Example: Marketplaces 15
Key Takeaways 16
Further Reading 17

v

3. Growth Decompositions: Understanding Tailwinds and Headwinds. 19
Why Growth Decompositions? 19
Additive Decomposition 20

Example 20
Interpretation and Use Cases 21

Multiplicative Decomposition 22
Example 23
Interpretation 23

Mix-Rate Decompositions 24
Example 25
Interpretation 26

Mathematical Derivations 26
Additive Decomposition 27
Multiplicative Decomposition 27
Mix-Rate Decomposition 28

Key Takeaways 28
Further Reading 29

4. 2×2 Designs. 31
The Case for Simplification 31
What’s a 2×2 Design? 32
Example: Test a Model and a New Feature 33
Example: Understanding User Behavior 35
Example: Credit Origination and Acceptance 37
Example: Prioritizing Your Workflow 38
Key Takeaways 39
Further Reading 40

5. Building Business Cases. 41
Some Principles to Construct Business Cases 41
Example: Proactive Retention Strategy 42
Fraud Prevention 43
Purchasing External Datasets 44
Working on a Data Science Project 45
Key Takeaways 46
Further Reading 46

6. What’s in a Lift?. 47
Lifts Defined 47
Example: Classifier Model 48
Self-Selection and Survivorship Biases 49
Other Use Cases for Lifts 50

vi | Table of Contents

Key Takeaways 51
Further Reading 51

7. Narratives. 53
What’s in a Narrative: Telling a Story with Your Data 53

Clear and to the Point 54
Credible 55
Memorable 56
Actionable 57

Building a Narrative 57
Science as Storytelling 57
What, So What, and Now What? 59

The Last Mile 60
Writing TL;DRs 60
Tips to Write Memorable TL;DRs 61
Example: Writing a TL;DR for This Chapter 61
Delivering Powerful Elevator Pitches 63
Presenting Your Narrative 64

Key Takeaways 65
Further Reading 65

8. Datavis: Choosing the Right Plot to Deliver a Message. 67
Some Useful and Not-So-Used Data Visualizations 67

Bar Versus Line Plots 67
Slopegraphs 69
Waterfall Charts 70
Scatterplot Smoothers 71
Plotting Distributions 72

General Recommendations 73
Find the Right Datavis for Your Message 73
Choose Your Colors Wisely 74
Different Dimensions in a Plot 75
Aim for a Large Enough Data-Ink Ratio 75
Customization Versus Semiautomation 76
Get the Font Size Right from the Beginning 76
Interactive or Not 77
Stay Simple 77
Start by Explaining the Plot 77

Key Takeaways 78
Further Reading 78

Table of Contents | vii

Part II. Machine Learning

9. Simulation and Bootstrapping. 81
Basics of Simulation 82
Simulating a Linear Model and Linear Regression 84
What Are Partial Dependence Plots? 87
Omitted Variable Bias 91
Simulating Classification Problems 94

Latent Variable Models 94
Comparing Different Algorithms 96

Bootstrapping 97
Key Takeaways 100
Further Reading 100

10. Linear Regression: Going Back to Basics. 103
What’s in a Coefficient? 103
The Frisch-Waugh-Lovell Theorem 106
Why Should You Care About FWL? 109
Confounders 110
Additional Variables 112
The Central Role of Variance in ML 114
Key Takeaways 118
Further Reading 119

11. Data Leakage. 121
What Is Data Leakage? 121

Outcome Is Also a Feature 122
A Function of the Outcome Is Itself a Feature 122
Bad Controls 122
Mislabeling of a Timestamp 123
Multiple Datasets with Sloppy Time Aggregations 123
Leakage of Other Information 124

Detecting Data Leakage 124
Complete Separation 126
Windowing Methodology 128

Choosing the Length of the Windows 130
The Training Stage Mirrors the Scoring Stage 131
Implementing the Windowing Methodology 131

I Have Leakage: Now What? 132
Key Takeaways 133
Further Reading 134

viii | Table of Contents

12. Productionizing Models. 135
What Does “Production Ready” Mean? 135

Batch Scores (Offline) 136
Real-Time Model Objects 138

Data and Model Drift 138
Essential Steps in any Production Pipeline 140

Get and Transform Data 141
Validate Data 142
Training and Scoring Stages 143
Validate Model and Scores 143
Deploy Model and Scores 144

Key Takeaways 144
Further Reading 145

13. Storytelling in Machine Learning. 147
A Holistic View of Storytelling in ML 147
Ex Ante and Interim Storytelling 148

Creating Hypotheses 149
Feature Engineering 152

Ex Post Storytelling: Opening the Black Box 154
Interpretability-Performance Trade-Off 155
Linear Regression: Setting a Benchmark 156
Feature Importance 158
Heatmaps 160
Partial Dependence Plots 162
Accumulated Local Effects 164

Key Takeaways 166
Further Reading 166

14. From Prediction to Decisions. 169
Dissecting Decision Making 169
Simple Decision Rules by Smart Thresholding 171

Precision and Recall 172
Example: Lead Generation 173

Confusion Matrix Optimization 175
Key Takeaways 177
Further Reading 178

15. Incrementality: The Holy Grail of Data Science?. 179
Defining Incrementality 179

Causal Reasoning to Improve Prediction 180
Causal Reasoning as a Differentiator 180

Table of Contents | ix

Improved Decision Making 181
Confounders and Colliders 181
Selection Bias 185
Unconfoundedness Assumption 188
Breaking Selection Bias: Randomization 189
Matching 191
Machine Learning and Causal Inference 194

Open Source Codebases 194
Double Machine Learning 196

Key Takeaways 197
Further Reading 198

16. A/B Tests. 201
What Is an A/B Test? 201
Decision Criterion 202
Minimum Detectable Effects 205

Choosing the Statistical Power, Level, and P 208
Estimating the Variance of the Outcome 209
Simulations 209
Example: Conversion Rates 211
Setting the MDE 212

Hypotheses Backlog 213
Metric 213
Hypothesis 214
Ranking 214

Governance of Experiments 214
Key Takeaways 215
Further Reading 216

17. Large Language Models and the Practice of Data Science. 219
The Current State of AI 219
What Do Data Scientists Do? 221
Evolving the Data Scientist’s Job Description 223

Case Study: A/B Testing 225
Case Study: Data Cleansing 225
Case Study: Machine Learning 226

LLMs and This Book 226
Key Takeaways 228
Further Reading 228

Index. 231

x | Table of Contents

Preface

I’ll posit that learning and practicing data science is hard. It is hard because you are
expected to be a great programmer who not only knows the intricacies of data struc‐
tures and their computational complexity but is also well versed in Python and SQL.
Statistics and the latest machine learning predictive techniques ought to be a second
language to you, and naturally you need to be able to apply all of these to solve actual
business problems that may arise. But the job is also hard because you have to be a
great communicator who tells compelling stories to nontechnical stakeholders who
may not be used to making decisions in a data-driven way.

So let’s be honest: it’s almost self-evident that the theory and practice of data science is
hard. And any book that aims at covering the hard parts of data science is either ency‐
clopedic and exhaustive, or must go through a preselection process that filters out
some topics.

I must acknowledge at the outset that this is a selection of topics that I consider the
hard parts to learn in data science, and that this label is subjective by nature. To make
it less so, I’ll pose that it’s not that they’re harder to learn because of their complexity,
but rather that at this point in time, the profession has put a low enough weight on
these as entry topics to have a career in data science. So in practice, they are harder to
learn because it’s hard to find material on them.

The data science curriculum usually emphasizes learning programming and machine
learning, what I call the big themes in data science. Almost everything else is expected
to be learned on the job, and unfortunately, it really matters if you’re lucky enough to
find a mentor where you land your first or second job. Large tech companies are great
because they have an equally large talent density, so many of these somewhat under‐
ground topics become part of local company subcultures, unavailable to many
practitioners.

This book is about techniques that will help you become a more productive data sci‐
entist. I’ve divided it into two parts: Part I treats topics in data analytics and on the
softer side of data science, and Part II is all about machine learning (ML).

xi

While it can be read in any order without creating major friction, there are instances
of chapters that make references to previous chapters; most of the time you can skip
the reference, and the material will remain clear and self-explanatory. References are
mostly used to provide a sense of unity across seemingly independent topics.

Part I covers the following topics:

Chapter 1, “So What? Creating Value with Data Science”
What is the role of data science in creating value for the organization, and how do
you measure it?

Chapter 2, “Metrics Design”
I argue that data scientists are best suited to improve on the design of actionable
metrics. Here I show you how to do it.

Chapter 3, “Growth Decompositions: Understanding Tailwinds and Headwinds”
Understanding what’s going on with the business and coming up with a compel‐
ling narrative is a common ask for data scientists. This chapter introduces some
growth decompositions that can be used to automate part of this workflow.

Chapter 4, “2×2 Designs”
Learning to simplify the world can take you a long way, and 2×2 designs will help
you achieve that, as well as help you improve your communication with your
stakeholders.

Chapter 5, “Building Business Cases”
Before starting a project, you should have a business case. This chapter shows you
how to do it.

Chapter 6, “What’s in a Lift?”
As simple as they are, lifts can speed up analyses that you might’ve considered
doing with machine learning. I explain lifts in this chapter.

Chapter 7, “Narratives”
Data scientists need to become better at storytelling and structuring compelling
narratives. Here I show you how.

Chapter 8, “Datavis: Choosing the Right Plot to Deliver a Message”
Investing enough time on your data visualizations should also help you with your
narrative. This chapter discusses some best practices.

Part II is about ML and covers the following topics:

Chapter 9, “Simulation and Bootstrapping”
Simulation techniques can help you strengthen your understanding of different
prediction algorithms. I show you how, along with some caveats of using your

xii | Preface

favorite regression and classification techniques. I also discuss bootstrapping that
can be used to find confidence intervals of some hard-to-compute estimands.

Chapter 10, “Linear Regression: Going Back to Basics”
Having some deep knowledge of linear regression is critical to understanding
some more advanced topics. In this chapter I go back to basics, hoping to provide
a stronger intuitive foundation of machine learning algorithms.

Chapter 11, “Data Leakage”
What is data leakage, and how can you identify it and prevent it? This chapter
shows how.

Chapter 12, “Productionizing Models”
A model is only good if it reaches the production stage. Fortunately, this is a well-
understood and structured problem, and I show the most critical of these steps.

Chapter 13, “Storytelling in Machine Learning”
There are some great techniques you can use to open the black box and excel at
storytelling in ML.

Chapter 14, “From Prediction to Decisions”
We create value from improving our decision-making capabilities through data-
and ML-driven processes. Here I show you examples of how to move from pre‐
diction to decision.

Chapter 15, “Incrementality: The Holy Grail of Data Science?”
Causality has gained some momentum in data science, but it’s still considered
somewhat of a niche. In this chapter I go through the basics, and provide some
examples and code that can be readily applied in your organization.

Chapter 16, “A/B Tests”
A/B tests are the archetypical example of how to estimate the incrementality of
alternative courses of action. But experiments require some strong background
knowledge of statistics (and the business).

The last chapter (Chapter 17) is quite unique because it’s the only one where no tech‐
niques are presented. Here I speculate on the future of data science with the advent of
generative artificial intelligence (AI). The main takeaway is that I expect the job
description to change radically in the next few years, and data scientists ought to be
prepared for this (r)evolution.

This book is intended for data scientists of all levels and seniority. To make the most
of the book, it’s better if you have some medium-to-advanced knowledge of machine
learning algorithms, as I don’t spend any time introducing linear regression, classifi‐
cation and regression trees, or ensemble learners, such as random forests or gradient
boosting machines.

Preface | xiii

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/dshp-repo.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

xiv | Preface

https://oreil.ly/dshp-repo
mailto:bookquestions@oreilly.com

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Data Science: The
Hard Parts by Daniel Vaughan (O’Reilly). Copyright 2024 Daniel Vaughan,
978-1-098-14647-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/data-science-the-hard-parts.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Preface | xv

mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/data-science-the-hard-parts
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Acknowledgments
I presented many of the topics covered in the book at Clip’s internal technical semi‐
nars. As such I’m indebted to the amazing data team that I had the honor of leading,
mentoring, and learning from. Their expertise and knowledge have been instrumen‐
tal in shaping the content and form of this book.

I’m also deeply indebted to my editor, Corbin Collins, who patiently and graciously
proofread the manuscript, found mistakes and omissions, and made suggestions that
radically improved the presentation in many ways. I would also like to express my
sincere appreciation to Jonathon Owen (production editor) and Sonia Saruba (copy‐
editor) for their keen eye and exceptional skills and dedication. Their combined
efforts have significantly contributed to the quality of this book, and for that, I am
forever thankful.

Big thanks to the technical reviewers who found mistakes and typos in the contents
and accompanying code of the book, and who also made suggestions to improve the
presentation. Special thanks to Naveen Krishnaraj, Brett Holleman, and Chandra
Shukla for providing detailed feedback. Many times we did not agree, but their con‐
structive criticism was at the same time humbling and reinforcing. Needless to say, all
remaining errors are my own.

They will never read this, but I’m forever grateful to my dogs, Matilda and Domingo,
for their infinite capacity to provide love, laughter, tenderness, and companionship.

I am also grateful to my friends and family for their unconditional support and
encouragement. A very special thank-you to Claudia: your loving patience when I
kept discussing some of these ideas over and over, even when they made little to no
sense to you, cannot be overstated.

Finally, I would like to acknowledge the countless researchers and practitioners in
data science whose work has inspired and informed my own. This book wouldn’t
exist without their dedication and contributions, and I am honored to be a part of
this vibrant community.

Thank you all for your support.

xvi | Preface

PART I

Data Analytics Techniques

CHAPTER 1

So What? Creating Value with Data Science

Data science (DS) has seen impressive growth in the past two decades, going from a
relatively niche field that only the top tech companies in Silicon Valley could afford to
have, to being present in many organizations across many sectors and countries.
Nonetheless, many teams still struggle with generating measurable value for their
companies.

So what is the value of DS to an organization? I’ve found that data scientists of all
seniorities struggle with this question, so it’s no wonder the organizations themselves
do so. My aim in this first chapter is to delineate some basic principles of value cre‐
ation with DS. I believe that understanding and internalizing these principles can
help you become a better data scientist.

What Is Value?
Companies exist to create value to shareholders, customers, and employees (and
hopefully society as a whole). Naturally, shareholders expect to gain a return on their
investment, relative to other alternatives. Customers derive value from the consump‐
tion of the product, and expect this to be at least as large as the price they paid.

In principle, all teams and functions ought to contribute in some measurable way to
the process of value creation, but in many cases quantifying this is far from obvious.
DS is not foreign to this lack of measurability.

In my book Analytical Skills for AI and Data Science (O’Reilly), I presented this gen‐
eral approach to value creation with data (Figure 1-1). The idea is simple: data by
itself creates no value. The value is derived from the quality of the decisions that are
made with it. At a first level, you describe the current and past state of the company.
This is usually done with traditional business intelligence (BI) tools such as dash‐
boards and reports. With machine learning (ML), you can make predictions about the

3

future state and attempt to circumvent the uncertainty that makes the decision pro‐
cess considerably harder. The summit is reached if you can automate and optimize
some part of the decision process. That book was all about helping practitioners make
better decisions with data, so I will not repeat myself here.

Figure 1-1. Creating value with data

As intuitive as it may be, I’ve found that this depiction is too general and abstract to
be used in practice by data scientists, so over time I’ve translated this into a frame‐
work that will also be handy when I introduce the topic of narratives (Chapter 7).

It boils down to the same principle: incremental value comes from improving an
organization’s decision-making capabilities. For this, you really need to understand
the business problem at hand (what), think hard about the levers (so what), and be
proactive about it (now what).

What: Understanding the Business
I always say that a data scientist ought to be as knowledgeable about the business as
their stakeholders. And by business I mean everything, from the operational stuff, like
understanding and proposing new metrics (Chapter 2) and levers that their stake‐
holders can pull to impact them, to the underlying economic and psychological fac‐
tors that underly the business (e.g., what drives the consumer to purchase your
product).

Sounds like a lot to learn for a data scientist, especially since you need to keep updat‐
ing your knowledge on the ever-evolving technical toolkit. Do you really have to do
it? Can’t you just specialize on the technical (and fun) part of the algorithms, tech
stack, and data, and let the stakeholders specialize on their (less fun) thing?

4 | Chapter 1: So What? Creating Value with Data Science

My first claim is that the business is fun! But even if you don’t find it exhilarating, if
data scientists want to get their voices heard by the actual decision-makers, it is abso‐
lutely necessary to gain their stakeholders’ respect.

Before moving on, let me emphasize that data scientists are rarely the actual decision-
makers on business strategy and tactics: it’s the stakeholders, be it marketing, finance,
product, sales, or any other team in the company.

How to do this? Here’s a list of things that I’ve found useful:

Attend nontechnical meetings.
No textbook will teach you the nuts and bolts of the business; you really have to
be there and learn from the collective knowledge in your organization.

Get a seat with the decision-makers.
Ensure that you’re in the meetings where decisions are made. The case I’ve made
for my teams at organizations with clearly defined silos is that it is in the best
interest of everyone if they’re present. For example, how can you come up with
great features for your models if you don’t understand the intricacies of the
business?

Learn the Key Performance Indicators (KPIs).
Data scientists have one advantage over the rest of the organization: they own the
data and are constantly asked to calculate and present the key metrics of the
team. So you must learn the key metrics. Sounds obvious, but many data scien‐
tists think this is boring, and since they don’t own the metric—in the sense that
they’re most likely not responsible for attaining a target—they are happy to dele‐
gate this to their stakeholders. Moreover, data scientists ought to be experts at
metrics design (Chapter 2).

Be curious and open about it.
Data scientists ought to embrace curiosity. By this I mean not being shy about
asking questions and challenging the set of accepted facts in the organization.
Funny enough, I’ve found that many data scientists lack this overall sense of curi‐
osity. The good thing is that this can be learned. I’ll share some resources at the
end of the chapter.

Decentralized structures.
This may not be up to you (or your manager or your manager’s manager), but
companies where data science is embedded into teams allow for business speciali‐
zation (and trust and other positive externalities). Decentralized data science struc‐
ture organizations have teams with people from different backgrounds (data
scientists, business analysts, engineers, product, and the like) and are great at mak‐
ing everyone experts on their topic. On the contrary, centralized organizations
where a group of “experts” act as consultants to the whole company also have
advantages, but gaining the necessary level of business expertise is not one of them.

What: Understanding the Business | 5

So What: The Gist of Value Creation in DS
Why is your project important to the company? Why should anyone care about your
analysis or model? More importantly, what actions are derived from it? This is at the
crux of the problem covered in this chapter, and just in passing I consider it one of
those seniority-defining attributes in DS. When interviewing candidates for a posi‐
tion, after the necessary filter questions for the technical stuff, I always jump into the
so what part.

I’ve seen this mistake over and over: a data scientist spends a lot of time running their
model or analysis, and when it’s time to deliver the presentation, they just read the
nice graphs and data visualizations they have. Literally.

Don’t get me wrong, explaining your figures is super important because stakeholders
aren’t usually data or data visualization savvy (especially with the more technical stuff;
surely they can understand the pie chart on their report). But you shouldn’t stop
there. Chapter 7 will deal with the practicalities of storytelling, but let me provide
some general guidelines on how to develop this skill:

Think about the so what from the outset.
Whenever I decide to start a new project, I always solve the problem backwards:
how can the decision-maker use the results of my analysis or model? What are
the levers that they have? Is it even actionable? Never start without the answers to
these questions.

Write it down.
Once you have figured out the so what, it’s a great practice to write it down. Don’t
let it play a secondary role by focusing only on the technical stuff. Many times
you are so deeply immersed into the technical nitty-gritty that you get lost. If you
write it down, the so what will act as your North Star in times of despair.

Understand the levers.
The so what is all about actionables. The KPIs you care about are generally not
directly actionable, so you or someone at the company needs to pull some levers
to try to impact these metrics (e.g., pricing, marketing campaigns, sales incen‐
tives, and so on). It’s critical that you think hard about the set of possible actions.
Also, feel free to think out of the box.

Think about your audience.
Do they care about the fancy deep neural network you used in your prediction
model, or do they care about how they can use your model to improve their met‐
rics? My guess is the latter: you will be successful if you help them be successful.

6 | Chapter 1: So What? Creating Value with Data Science

Now What: Be a Go-Getter
As mentioned, data scientists are usually not the decision-makers. There’s a symbiotic
relationship between data scientists and their stakeholders: you need them to put
your recommendations into practice, and they need you to improve the business.

The best data scientists I’ve seen are go-getters who own the project end to end: they
ensure that every team plays its part. They develop the necessary stakeholder man‐
agement and other so-called soft skills to ensure that this happens.

Unfortunately, many data scientists lie on the other side of the spectrum. They think
their job starts and ends with the technical part. They have internalized the functional
specialization that should be avoided.

Don’t be afraid to make product recommendations even when the
product manager disagrees with you, or to suggest alternative com‐
munication strategies when your marketing stakeholder believes
you’re trespassing.
That said, be humble. If you don’t have the expertise, my best
advice before moving to the now what arena is to go back to the
what step and become an expert.

Measuring Value
Your aim is to create measurable value. How do you do that? Here’s one trick that
applies more generally.

A data scientist does X to impact a metric M with the hope it will improve on the
current baseline. You can think of M as a function of X:

Impact of X = M X − M baseline

Let’s put this principle into practice with a churn prediction model:

X
Churn prediction model

M
Churn rate, i.e., the percentage of active users in period t − 1 that are inactive in
period t

Baseline
Segmentation strategy

Measuring Value | 7

Notice that M is not a function of X! The churn rate is the same with or without a
prediction model. The metric only changes if you do something with the output of the
model. Do you see how value is derived from actions and not from data or a model?
So let’s adjust the principle to make it absolutely clear that actions (A) affect the
metric:

Impact of X = M A X − M A baseline

What levers are at your disposal? In a typical scenario, you launch a retention cam‐
paign targeting only those users with a high probability of becoming inactive the next
month. For instance, you can give a discount or launch a communication campaign.

Let’s also apply the what, so what, and now what framework:

What
How is churn measured at your company? Is this the best way to do it? What is
the team that owns the metric doing to reduce it (the baseline)? Why are the
users becoming inactive? What drives churn? What is the impact on the profit
and loss?

So what
How will the probability score be used? Can you help them find alternative levers
to be tested? Are price discounts available? What about a loyalty program?

Now what
What do you need from anyone at the company involved in the decision-making
and operational process? Do you need approval from Legal or Finance? Is Prod‐
uct OK with the proposed change? When is the campaign going live? Is Market‐
ing ready to launch it?

Let me highlight the importance of the so what and now what parts. You can have a
great ML model that is predictive and hopefully interpretable. But if the actions taken
by the actual decision-makers don’t impact the metric, the value of your team will be
zero (so what). In a proactive approach, you actually help them come out with alter‐
natives (this is the importance of the what and becoming experts on the problem).
But you need to ensure this (now what). Using my notation, you must own M A X ,
not only X.

Once you quantify the incrementality of your model, it’s time to translate this to
value. Some teams are happy to state that churn decreased by some amount and stop
there. But even in these cases I find it useful to come up with a dollar figure. It’s easier
to get more resources for your team if you can show how much incremental value
you’ve brought to the company.

In the example this can be done in several ways. The simplest one is to be literal about
the value.

8 | Chapter 1: So What? Creating Value with Data Science

Let’s say that the monthly average revenue per user is R and that the company has
base of active users B:

Cost of Churn A, X = B × Churn A X × R

If you have 100 users, each one bringing $7 per month, and a monthly churn rate of
10% churn, the company loses $70 per month.

The incremental monetary value is the difference in the costs with and without the
model. After factoring out common terms, you get:

ΔCost of Churn A, baseline, X = B × ΔChurn A; X, baseline × R

If the previously used segmentation strategy saved $70 per month, and the now laser-
focused ML model creates $90 in savings, the incremental value for the organization
is $20.

A more sophisticated approach would also include other value-generating changes,
for instance, the cost of false positives and false negatives:

False positive
It’s common to target users with costly levers, but some of them were never going
to churn anyway. You can measure the cost of these levers. For instance, if you
give 100 users a 10% discount on the price P, but of these only 95 were actually
going to churn, you are giving away 5 × 0 . 1 × P in false positives.

False negative
The opportunity cost from having bad predictions is the revenue from those
users that end up churning but were not detected by the baseline method. The
cost from these can be calculated with the equations we just covered.

Key Takeaways
I will now sum up the main messages from this chapter:

Companies exist to create value. Hence, teams ought to create value.
A data science team that doesn’t create value is a luxury for a company. The DS
hype bought you some leeway, but to survive you need to ensure that the business
case for DS is positive for the company.

Value is created by making decisions.
DS value comes from improving the company’s decision-making capabilities
through the data-driven, evidence-based toolkit that you know and love.

Key Takeaways | 9

The gist of value creation is the so what.
Stop at the outset if your model or analysis can’t create actionable insights. Think
hard about the levers, and become an expert on your business.

Work on your soft skills.
Once you have your model or analysis and have made actionable recommenda‐
tions, it’s time to ensure the end-to-end delivery. Stakeholder management is key,
but so is being likeable. If you know your business inside out, don’t be shy about
your recommendations.

Further Reading
I touch upon several of these topics in my book Analytical Skills for AI and Data Sci‐
ence (O’Reilly). Check out the chapters on learning how to ask business questions and
finding good levers for your business problem.

On learning curiosity, remember that you were born curious. Children are always
asking questions, but as they grow older they forget about it. It could be because
they’ve become self-conscious or a fear of being perceived as ignorant. You need to
overcome these psychological barriers. You can check out A More Beautiful Question:
The Power of Inquiry to Spark Breakthrough Ideas by Waren Berger (Bloomsbury) or
several of Richard Feynman’s books (try The Pleasure of Finding Things Out [Basic
Books]).

On developing the necessary social and communication skills, there are plenty of
resources and plenty of things to keep learning. I’ve found Survival of the Savvy:
High-Integrity Political Tactics for Career and Company Success by Rick Brandon and
Marty Seldman (Free Press) quite useful for dealing with company politics in a very
pragmatic way.

Extreme Ownership: How U.S. Navy Seals Lead and Win by Jocko Willink and Leif
Babin (St. Martin’s Press) makes the case that great leaders exercise end-to-end
(extreme) ownership.

Never Split the Difference by Chris Voss and Tahl Raz (Harper Business) is great at
developing the necessary negotiation skills, and the classic and often-quoted How to
Win Friends and Influence People by Dale Carnegie (Pocket Books) should help you
develop some of the softer skills that are critical for success.

10 | Chapter 1: So What? Creating Value with Data Science

1 In linear regression, for example, measurement error on the features creates statistical bias of the parameter
estimates.

CHAPTER 2

Metrics Design

Let me propose that great data scientists are also great at metrics design. What is met‐
rics design? A short answer is that it is the art and science of finding metrics with
good properties. I will discuss some of these desirable properties shortly, but first let
me make a case for why data scientists ought to be great at it.

A simple answer is: because if not us, who else? Ideally everyone at the organization
should excel at metrics design. But data practitioners are the best fit for that task.
Data scientists work with metrics all the time: they calculate, report, analyze, and,
hopefully, attempt to optimize them. Take A/B testing: the starting point of every
good test is having the right output metric. A similar rationale applies for machine
learning (ML): getting the correct outcome metric to predict is of utmost importance.

Desirable Properties That Metrics Should Have
Why do companies need metrics? As argued in Chapter 1, good metrics are there to
drive actions. With this success criterion in mind, let’s reverse engineer the problem
and identify necessary conditions for success.

Measurable
Metrics are measurable by definition. Unfortunately, many metrics are imperfect, and
learning to identify their pitfalls will take you a long way. So-called proxy metrics or
proxies that are usually correlated to the desired outcome abound, and you need to
understand the pros and cons of working with them.1

11

A simple example is intentionality. Suppose you want to understand the drivers for
early churn (churn of new users). Some of them never actually intended to use the
product and were just trying it out. Hence, measuring intentionality would greatly
improve your prediction model. Intentionality isn’t really measurable, so you need to
find proxies, for instance, the time lag between learning about the app and starting to
use it. I’d argue that the faster you start using it, the more intent you have.

Another example is the concept of habit used by growth practitioners. Users of an
app usually finish onboarding, try the product (the aha! moment), and hopefully
reach habit. What is good evidence that a user reached this stage? A common proxy is
the number of interactions in the first X days since the user first tried it. To me, habit
is all about recurrence, whatever that means for each user. In this sense, the proxy is at
best an early indicator of recurrence.

Actionable
To drive decisions, metrics must be actionable. Unfortunately, many top-line metrics
aren’t directly actionable. Think of revenue: it depends on the user purchasing the
product, and that cannot be forced. But if you decompose the metric into submetrics,
some good levers may arise, as I’ll show in the examples.

Relevance
Is the metric informative for the problem at hand? I call this property relevance since
it highlights that a metric is only good relative to a specific business question. I could
use informative, but all metrics are informative of something. Relevance is the prop‐
erty of having the right metric for the right problem.

Timeliness
Good metrics drive actions when you need them to. If I learn that I have terminal
cancer, my doctors won’t be able to do much about it. But if I get checked regularly,
they may find an early symptom, thereby opening the menu of treatments at my
disposal.

Customer churn is another example. It’s commonly measured and reported using a
one-month-of-inactivity window: the percentage of users that were active one month
and inactive the next month. Unfortunately, this metric can create false positives:
some users were just taking a break and didn’t churn.

One way to get a more robust metric is to increase the inactivity window from one to
three months, say. The longer the time window, the less likely a user is just taking a
break. But the new metric has degraded in terms of timeliness: you now have to wait
three months to flag a customer who churned, and it might be too late to launch a
retention campaign.

12 | Chapter 2: Metrics Design

Metrics Decomposition
By decomposing a metric you may be able to improve on any of these properties. I
will now cover in detail several tricks that will help you achieve this.

Funnel Analytics
Funnels are a sequence of actions that go one after the other. For example, in the ear‐
lier habit example, the user first needs to set up their account, try the product, and
use it recurrently. Whenever you have funnels, you can use a simple trick to find sub‐
metrics. Let me show the trick in abstract first and then provide some concise
examples.

Figure 2-1 shows a typical funnel: it is a sequence of stages between an entry point E
and the output M (abusing notation; these also represent the corresponding metric).
My objective is to improve on M. Internal stages are denoted as s1, s2, s3, and each
provides a metric denoted with an mi correspondingly indexed.

Figure 2-1. A typical funnel

The decomposition works like this: you move from right to left, multiplying by the
current submetric, and dividing by the previous one. To guarantee that you never lose
the equality, finish by multiplying the metric at the beginning of the funnel (E).
Notice that after canceling out common terms, the end result is M = M, ensuring that
this is indeed a decomposition of the original metric.

M = M
m3

×
m3
m2

×
m2
m1

×
m1
E × E

Each fraction can be interpreted as a conversion rate, that is, the percentage of units
available in the previous stage that make it to the current stage. Usually one or all of
these submetrics have better properties than the original metric M. Now that you
understand the technique, it’s time to put it into action.

A typical sales funnel works just like this. My aim is to increase sales, but this requires
several steps. Here I’ll simplify the funnel a bit:

• Lead generation (L: number of leads)
• First contact (C1: number of first contacts)

Metrics Decomposition | 13

• Second contacts (C2: number of second contacts)

• Make an offer (O: number of offers made)
• Close the sale (S: number of sales)

The decomposition becomes:

S = S
O × O

C2
×

C2
C1

×
C1
L × L

To increase the number of sales, you can increase the number of leads, or increase the
conversion between stages. Some actions are related to the data scientist (for example,
improving the quality of the leads), others to the sales team (such as, whether they are
making enough first contacts; if not, the company might need to increase the size of
the sales force or hire different people). Maybe they should change the negotiation or
pricing strategies to improve the offer-to-sale rate. Or even make improvements on
the product! You can have the best leads or the best sales force but still lack product-
market fit.

Stock-Flow Decompositions
Stock-flow decompositions are useful when you care about a metric that accumulates.
Let’s start by defining these concepts: a stock variable is one that accumulates and is
measured at a specific point in time. Flow variables don’t accumulate and are meas‐
ured over a period of time. A useful analogy is a bathtub: the volume of water at time
t is equal to the volume at time t − 1, plus the water that came in through the faucet
between these two moments in time, minus the water that went down the drain.

The most common scenario is when you want to understand Monthly Active Users
(MAU). I’ll spell out the decomposition first, and comment after:

MAUt = MAUt − 1 + Incoming Userst − Churned Userst

If the objective is to grow the MAU for the company, you can either increase cus‐
tomer acquisition or reduce churn. Incoming Users can potentially be open into New
Users and Resurrected Users, providing at least one new lever.

Similar decompositions apply for any stock variable (such as balances in a bank
account).

14 | Chapter 2: Metrics Design

P×Q-Type Decompositions
Another common scenario is trying to improve revenue. The trick here is to multiply
and divide by a reasonable metric to arrive at submetrics that are most easily
leveraged:

Revenue = Revenue
Units Sold × Units Sold = Unit Price × Sales

This shows how to decompose revenue as the product of unit (average) price and
sales: R = p × q. To increase revenue you can either increase the price or sales. Inter‐
estingly, sales depend negatively on the price, so the relationship is nonlinear, making
it a preferred tool for revenue optimization.

Example: Another Revenue Decomposition
Starting from the fact that revenue is generated by active users, you may attempt a
similar decomposition that could prove valuable for certain problems and choices of
levers:

Revenue = Revenue
MAU × MAU = ARPU × MAU

I just expressed revenue as a function of Average Revenue per User (ARPU) and
active users. I could plug in the MAU stock equation if I want to find even more lev‐
ers. Similarly, I could also plug in the p × q decomposition to expand the list.

Example: Marketplaces
As a final example, consider a marketplace: a two-sided platform that matches buyers
(B) and sellers (S). Think Amazon, eBay, Uber, Airbnb, and so forth.

Let’s consider a simplified funnel:

Sellers Listed Items Views Purchases

Under this interpretation, the company first onboards Sellers that start listing items
that get viewed and end up in a purchase. Your objective is to increase Purchases.

Example: Marketplaces | 15

2 You can give the extra term a probabilistic interpretation if views are generated at random from the set of
listed items. But this really defeats the purpose of the decomposition.

Using the funnel logic, this translates to (capital letters denote the corresponding
metric in each step):

P = P
V × V

L × L
S × S

To include the other side of the market, let’s apply another one of the tricks discussed
earlier, so that total Viewed items equals the number of Buyers times the average
number of Views per Buyer:

V = V
B × B

After some rearranging I arrive at:

P = P
V × V

B × L
S × 1

L × B × S

It follows that to increase purchases you can either:

• Increase the checkout efficiency (P/V)
• Increase Buyers’ engagement (V /B)
• Increase Sellers’ engagement (L/S)
• Increase the volume of Buyers or Sellers

To guarantee that the equality is maintained, I have an extra term that lacks an obvi‐
ous interpretation (1/L). I don’t really care about this extra term, since I now have
five submetrics that can be leveraged in different ways.2

Key Takeaways
These are the key takeaways from this chapter:

You need good metrics to drive actions.
Metrics design is critical if your aim is to find levers that can drive actions. I have
reverse engineered the problem to arrive at some desirable properties for metrics
design.

16 | Chapter 2: Metrics Design

Desirable properties that good metrics should have.
A good metric must be measurable, actionable, relevant, and timely.

Decomposing metrics into submetrics allows you to improve on these properties.
Funnel-type decompositions are easy to use, and once you get used to them,
you’ll start to see funnels everywhere.

A simple trick of multiplying and dividing by one metric can take you very far.
But the choice of that metric is far from obvious, and you need good knowledge
of the business to find it.

Metrics design is an iterative process.
It’s fine to start with imperfect metrics, but it’s even better if you make this a con‐
stant iterative process.

Further Reading
You can check out my book Analytical Skills for AI and Data Science if you want some
complementary information, but this chapter is more comprehensive on the actual
techniques used. In that book, I also show how the R = p × q decomposition can be
used for revenue optimization.

A discussion on metrics design for growth enthusiasts can be found in Hacking
Growth: How Today’s Fastest-Growing Companies Drive Breakout Success by Sean Ellis
and Morgan Brown (Currency).

While not a book on metrics design but rather on OKRs, Measure What Matters by
John Doerr (Portfolio) is certainly worth a read. I’ve used the techniques presented
here to find submetrics that can actually be targeted by specific teams. To the best of
my knowledge, there’s no other published resources on these topics from a data sci‐
ence perspective.

Further Reading | 17

1 In Chapter 10, I discuss why you need variation in the inputs to explain variation in the output metric.

CHAPTER 3

Growth Decompositions: Understanding
Tailwinds and Headwinds

Chapter 2 described some techniques to find better metrics that can drive actions.
This chapter deals with a completely different subject: how you can decompose met‐
rics to understand why a metric changed. In corporate jargon these changes are usu‐
ally associated with tailwinds or headwinds, that is, factors that positively or
negatively affect the state of the company.

Why Growth Decompositions?
Data scientists are frequently asked to help understand the root cause of a change in a
metric. Why did revenues increase quarter over quarter (QoQ) or month over month
(MoM)? In my experience, these are very hard questions to answer, not only because
many things can be happening at the same time, but also because some of these
underlying causes are not directly measurable or don’t provide enough variation to be
informative.1 Typical examples are things like the state of the economy or the regula‐
tory environment, as well as decisions made by competitors.

Nonetheless, I’ve found that you can use some other source of variations that, when
coupled with the following techniques, can give you hints of what’s going on.

19

Additive Decomposition
As the name suggests, this decomposition is handy when the metric (output) you
want to understand can be expressed as the sum of other metrics (inputs). In the case
of two inputs, this can be expressed as yt = y1, t + y2, t. Note that I’m using a time
subscript.

The decomposition says that the growth of the output from t − 1 to t (gy, t) is the
weighted average of the input’s growth rates:

gy, t = ω1, t − 1gy1, t + ω2, t − 1gy2, t

where weights add up to one, ω1, t − 1 + ω2, t − 1 = 1.

Importantly, the weights are the relative importance of each input in the previous
period. So an input that had a larger share in t-1 will be given more weight.

Example
The additive setting is quite common in data warehouses where you have fact and
dimensional tables. I’ve found that a grammar analogy helps distinguish one from the
other: facts reflect actions or verbs, and dimensions are adverbs that describe the
action. Fact tables usually store metrics that are relevant to the company, and dimen‐
sional tables store dimensions that help you understand the metrics.

Here’s a typical SQL query that generates the dataset needed as input:

SELECT DATE_TRUNC('MONTH', ft.fact_timestamp) AS month,
 dt.dimension1 AS dim_values,
 SUM(ft.my_metric) AS monthly_metric
FROM my_fact_table ft
LEFT JOIN my_dim_table dt ON ft.primary_key = dt.primary_key
GROUP BY 1,2
ORDER BY 1,2

For example, it can be that the metric is customer purchases and you want to open
this by geographical regions. Since total sales must be the sum of sales across regions,
this decomposition becomes handy. It will help you understand if growth rates in one
or several regions are the main drivers for an acceleration or deceleration at the
national level.

20 | Chapter 3: Growth Decompositions: Understanding Tailwinds and Headwinds

The sample query highlights how you can easily create an aggregate
table that splits a metric using different dimensions. The process
looks like this:

1. Create a pipeline that periodically updates the aggregate table
across different dimensions.

2. Write a script that computes the decomposition for one
dimension and outputs the results as a table (see the GitHub
repo).

3. Loop over all dimensions with that script.
4. The end result is a table with all sources of variations.

At this point, you need your knowledge of the business to identify
patterns in the changes. This is usually the hardest part and
requires extensive knowledge of the business.

Interpretation and Use Cases
As mentioned, with the additive decomposition, the growth rate in the output equals
the weighted average of the growth rates in the inputs. Nonetheless, I prefer to think
of growth contributions by each segment or dimensional value, where each contribu‐
tion is equal to the product of the lagged weight and the corresponding growth rate.

Simplifying the Additive Decomposition
Growth in Output = SUM(inputs’ contributions to growth)

The decomposition is especially useful when you have several dimensions that can be
used simultaneously and can jointly provide hints about the underlying factors.

Going back to the sales example, you can apply the decomposition using geographical
regions, socioeconomic status (SES) of the store’s neighborhood, and some type of
customer segment (e.g., by tenure).

The conclusion might be something like: national sales decreased 7 percentage points
(pp) MoM mainly because:

• The Southwest region decelerated 14 pp MoM.
• Stores in high SES areas decelerated faster.
• Deceleration was relatively uniform across tenures.

As warned earlier, notice that you are not really finding the root causes; at best you
have enough hints for what’s driving the change. Is the Southwest region economy

Additive Decomposition | 21

https://oreil.ly/dshp-repo
https://oreil.ly/dshp-repo

decelerating? Were there changes in pricing in these stores? What is customer satis‐
faction looking like in high SES customers?

Figure 3-1 shows a waterfall plot of the regional contributions for a simulated exam‐
ple. In this case, there was a 4.6% decline at the national level, explained mainly by a
strong deceleration in the Northwest region (5.8 pp). Southwest and West regions
also decelerated, and the South had a strong quarter.

Figure 3-1. Regional contributions to growth

Multiplicative Decomposition
The multiplicative decomposition works when the output metric can be expressed as
the product of two or more inputs. Chapter 2 showed how these arise naturally in
many setups, for instance in p × q cases.

The decomposition says that whenever yt = y1, t × y2, t, then:

gy, t = g1, t + g2, t + g1, t × g2, t

In words, the growth rate in the output is equal to the sum of the growth rates and a
combined effect.

22 | Chapter 3: Growth Decompositions: Understanding Tailwinds and Headwinds

2 If you use a log transformation, you can use a Taylor expansion to get the same result that the growth rate of a
product is just the sum of the growth rates of the inputs.

Example
Let’s use the revenues decomposition from Chapter 2 and see that these are the prod‐
uct of Average Revenue per User (ARPU) and Monthly Active Users (MAU):

Revenues = ARPU × MAU

If revenues grew, it could be because ARPU accelerated, MAU increased, or both
changed in the same direction. More importantly, with the decomposition you can
actually quantify each of these.

Figure 3-2 shows one possible visualization of the decomposition for a simulated
ARPU example. In this case, the main driver for MoM growth is a considerable acceler‐
ation in average revenue per user (contributing ~31pp or around 96% of the total reve‐
nue growth). Notice that the combined effect is very small, as it is the product of the
growth rates of the inputs. Many times you can just drop it, if it really is negligible.2

Figure 3-2. Multiplicative decomposition of ARPU

Interpretation
In a multiplicative setting, the growth of the output is the sum of growth in inputs
plus a combined effect. With more than two inputs, this still holds but you need to
add the sum of the combined effects.

Multiplicative Decomposition | 23

Simplifying the Multiplicative Decomposition
Growth in Output = SUM(growth in inputs) + combined effect

Mix-Rate Decompositions
Mix-rate decompositions take a bit from each of the additive and multiplicative decom‐
positions. Suppose that your output metric is a weighted average of other metrics:

yt = ∑
s

ws, txs, t = ��˙��

where the last equality is just expressing the sum as a dot or inner product of the cor‐
responding vectors (in bold).

Let me spell out the decomposition and then explain the terms:

Δyt = Δy
x + Δy

w + Δ� · Δ�

Where:

Δyt
First difference for the output metric. I’ve found that keeping everything as dif‐
ferences—instead of growth rates—is usually all that’s needed, and it considera‐
bly simplifies the notation.

Δy
x

What would the change in the output be if the weights are kept fixed at the initial
values, and only the inputs change? The notation signals that only inputs (super‐
script) are allowed to change the output (subscript).

Δy
w

What would the change in the output be if the inputs are kept fixed at the initial
values, and only the weights change?

Δ� · Δ�
This is the inner product of the changes in weights and inputs.

24 | Chapter 3: Growth Decompositions: Understanding Tailwinds and Headwinds

When I first started thinking about this decomposition, I started with the intuition in
the second and third points, which are counterfactual (i.e., you can’t observe them)
and quite useful for storytelling purposes. The math didn’t add up, so I had to go
through the derivation. I once presented this to a stakeholder and they called it mix-
rate; it appears that this term was used some time ago, but after searching the web I
couldn’t find much, so I’m not really sure about its origin or usage. The term is good,
though, as there are two potential sources of change:

• Changes in the weights (mix)
• Changes in the inputs (rates)

Example
Weighted averages arise everywhere. Think about this: you have one metric and cus‐
tomer segments. It’s intuitive to believe that the metric will be a weighted average of
the metrics for the segments. This is always the case with ratio metrics. Let’s try it
with the average revenue per user for two segments:

ARPU = R
MAU

=
R1 + R2

MAU1 + MAU2

=
R1

MAU1

MAU1
MAU1 + MAU2

+
R2

MAU2

MAU2
MAU1 + MAU2

= ω1ARPU1 + ω2ARPU2

Note that weights are the relative share of monthly active users in the period for each
segment. As usual, weights must add up to one.

Figure 3-3 shows one possible visualization of this decomposition for a simulated
dataset for the ARPU example (with three segments). Had there not been any changes
in the shares, ARPU would have increased by $3.2 (rate); similarly, had there not
been any changes in ARPU per segment, average revenue per user would have fallen
by $1.6 (mix).

Mix-Rate Decompositions | 25

Figure 3-3. Example of a mix-rate decomposition

Interpretation
The interpretation is straightforward: a change in the metric is equal to the sum of
the partialled-out parts (that is, fixing one component at initial values and allowing
the other to change) and the combined effect of both changes.

Simplifying the Mix-Rate Decomposition
Growth in Metric = SUM(partialled-out effects) + combined effect

As mentioned earlier, I find the first part quite compelling for storytelling purposes,
since you’re effectively simulating what would’ve happened if only the weights or the
rates had changed.

Mathematical Derivations
Let’s dive into the math; understanding the derivation is crucial for coding purposes.
I’ve found myself debugging a function because I did not use the right weights, or
because the time subscripts were wrong.

26 | Chapter 3: Growth Decompositions: Understanding Tailwinds and Headwinds

In what follows I’ll simplify by assuming only two summands (additive), multiples
(multiplicative), or segments (mix-rate). It’s easy to check that these generalize to
more inputs or segments (but you need to be careful, as you can see in the code repo).

Also, I denote the growth rate of x as gt =
Δxt

xt − 1
, with Δxt : = xt − xt − 1 the first differ‐

ence of x.

Additive Decomposition
Since y is additive:

yt = y1, t + y2, t

Let’s take the first differences now to get:

Δyt = Δy1, t + Δy2, t

Finally, to get growth rates:

Δyt
yt − 1

=
Δy1, t

y1, t − 1

y1, t − 1
yt − 1

+
Δy2, t

y2, t − 1

y2, t − 1
yt − 1

= ω1, t − 1
Δy1, t

y1, t − 1
+ ω2, t − 1

Δy2, t
y2, t − 1

or

gy, t = ω1, t − 1g1, t + ω2, t − 1g2, t

Multiplicative Decomposition
Since y is multiplicative:

yt = y1, t × y2, t

Taking a first difference of the output and adding and subtracting an extra term (that
helps factor out extra terms):

Δyt = y1, ty2, t − y1, t − 1y2, t − 1 + y1, ty2, t − 1 − y1, ty2, t − 1 = y1, tΔy2, t + y2, t − 1Δy1, t

Mathematical Derivations | 27

https://oreil.ly/dshp-repo

To get growth rates, you just need to be a bit careful and remember that the output is
multiplicative for all time periods:

Δyt
yt − 1

=
y1, t

y1, t − 1

Δy2, t
y2, t − 1

+
y2, t − 1
y2, t − 1

Δy1, t
y1, t − 1

= 1 + g1, t g2, t + g1, t = g1, t + g2, t + g1, tg2, t

Note that if you have more than two inputs, you need to sum all combinations of
products.

Mix-Rate Decomposition
Recall that for the mix-rate case, the output metric can be expressed as a weighted
average of the metric for segments:

yt = �� · ��

where the weights add up to one, and bold letters denote vectors.

In this case I’ll work backward and show that after some simplifications you will
arrive at the original expression. Not the most elegant way, but I would rather do it
this way instead of adding and subtracting terms that you wonder where they came
from.

Δy
x + Δy

w + Δ� · Δ� = �� − 1 · Δ� + �� − 1 · Δ� + Δ� · Δ�
Replacing the definitions

= Δ� · Δ� + �� − 1 + Δ�˙�� − 1
Factoring out Δ�

= ���� − �� − 1�� − 1
Simplifying

= Δyt

Key Takeaways
These are the key takeaways from this chapter:

Finding root causes for changes in time is usually very hard.
You need enough variation in the drivers to estimate impacts.

28 | Chapter 3: Growth Decompositions: Understanding Tailwinds and Headwinds

Growth decompositions are useful to get hints about the underlying root causes.
By exploiting these extra sources of variations (from other input metrics), you’re
able to hypothesize what drove the change. I’ve shown three decompositions that
might work for the problem you face: additive, multiplicative, and mix-rate.

Further Reading
To the best of my knowledge, there’s not much published literature on this. My
impression is that this knowledge is shared within company data teams and cultures,
but never gets out to the more general public. I learned about the additive decompo‐
sition in a previous job, and worked out the other two as needed.

The math is relatively straightforward, so there’s no need to develop it further. If
you’re still interested, the methods I’ve used can be found in any introductory book
or lecture notes on discrete calculus.

Further Reading | 29

CHAPTER 4

2×2 Designs

Some years ago, when I was starting my career in data science, a consulting firm came
to the office and started sketching these extremely simplified views of our business.
My immediate reaction was to dismiss these sketches as a trick in their sales-driven
bag. Today I embrace them for communication and storytelling purposes, as well as
useful aids to simplify a complex business.

I believe that a natural growth path in data science (DS) is to go from making things
overly complex to doing smart simplification. By smart I mean what Einstein
expressed when saying you should aim at making “everything as simple as possible,
but not simpler.” The beauty of this quote is that it shows how difficult it is to achieve
this. In this chapter, I’ll make a case for using a tool designed for the specific purpose
of simplifying a complex world.

The Case for Simplification
You may find it ironic that I make a case for simplification in the age of big data,
computational power, and sophisticated predictive algorithms. These tools allow you
to navigate the ever-increasing volumes of data and thus have undoubtedly improved
data scientists’ productivity, but they don’t really simplify the world or the business.

Let’s stop for a second on this last thought: if more data means more complexity, then
data scientists are now definitely capable of making sense of more complexity. None‐
theless, the fact that you can make projections of high-dimensional data onto lower-
dimensional scores does not mean you have a better understanding of how things
work.

There are many cases one can make for simplification, from the aesthetic to the more
functional and pragmatic. For the data scientist, simplification helps their under‐
standing and framing of what’s most important when starting a project. Moreover, it’s

31

a great communication tool. As Richard Feynman said, “If you cannot explain some‐
thing in simple terms, you don’t understand it.” On the technical side, it’s quite com‐
mon to apply Occam’s razor to choose the simplest model that has a given predictive
performance.

What’s a 2×2 Design?
Figure 4-1 shows a typical design. As this last word suggests, you play an active role in
deciding which features to concentrate on, which of course vary, depending on the
use case.

Figure 4-1. A typical 2×2 design

Note how I’ve simplified the world by concentrating only on two factors or features
that I believe are relevant for the task at hand. Factors 1 and 2 vary across the hori‐
zontal and vertical axis, respectively. Moreover, I’ve discretized a possibly continuous
world by setting some threshold levels that are represented by dashed vertical and
horizontal lines, dividing the world into four quadrants:

A
Users with high factors 1 and 2

B
Users with low factor 1 and high factor 2

C
Users with low factors 1 and 2

D
Users with high factor 1 and low factor 2

Depending on the use case, I can play around with these thresholds.

32 | Chapter 4: 2×2 Designs

In experimental designs, these factors usually correspond to different treatments in
the test, such as the color and message used in a banner, or price and frequency of
communication. The first example deals with discrete factors, and the latter with con‐
tinuous features. Needless to say, with discrete factors you lose the sense of ordering
explicit in the diagram.

Ideally, every other relevant factor should remain constant. This more general scien‐
tific principle allows you to single out the impact of these two factors on the metric of
interest. In Chapter 10 I will come back to this line of reasoning, but for now note
that this partialling out is crucial in your attempt to simplify the world: by changing
one factor at a time, with everything else fixed, you can gain some insight into each
factor’s role.

In statistical 2×2 designs, this partialling out is guaranteed by using a proper random‐
ization scheme that makes participants in each treatment and control ex ante equal on
average. This somewhat cryptic phrase means that before the test, treatment and con‐
trol groups don’t differ too much, on average.

These designs are well known by statistical practitioners, and the topic is usually cov‐
ered when studying analysis of variance (ANOVA). The objective here is to see if
there are differences in the means of an outcome metric across groups. Treatments
are often discrete, but the design allows for continuous treatments by conveniently
setting thresholds.

This same setting can be used in nonexperimental scenarios. The typical example
used by consulting firms is to segment the customer base using only two features that
may or may not be behavioral. I’ve commonly used it when I can decompose a metric
in a multiplicative way (like the p × q decomposition seen in Chapter 2).

For instance, take unit price and transactionality. Quadrant A represents customers
that are willing to pay high unit prices and transact a lot (yielding high average reve‐
nue per user). Note that here I cannot guarantee that everything else remains constant,
as in the experimental setting. Nonetheless, it still allows me to focus on, and only on,
the two features that I care about.

I’ll now show some examples.

Example: Test a Model and a New Feature
A typical scenario where I use the 2×2 framework is when I want to simultaneously test
a new model and the effectiveness of a lever. Testing the lever is commonly done
without this framework, just by having two randomized groups: one receives the base‐
line (control), and the other gets the new lever (treatment). When the experiment is
finished, I run the typical statistical testing suite on the differences in means. The 2×2
design expands on this idea by allowing you to also test the performance of your model.

Example: Test a Model and a New Feature | 33

Figure 4-2 shows the 2×2 design. On the horizontal axis I have the probability score
(in this example, coming from a classification model). The vertical axis shows
whether I’ve turned on or off the lever considered for the test: lever on means that
you display the new alternative to some users, and off means that the baseline lever is
active.

Figure 4-2. 2×2 test of a model and a lever

Note how the 2×2 design works here: you treat those users in groups A and B in the
diagram, and the control group is composed of groups C and D. Variation in both
dimensions allows you to do some testing of the lever and the model.

To get a real sense of the benefits of the design, imagine that you want to do a cross-
selling campaign. For this, you trained an ML classification model that predicts who
will accept an offer or not. If the model is predictive, high probability scores should
have high true positive rates.

You want to test it using a new communication campaign that makes salient the bene‐
fits of buying the new product (“customers who use the new heart rate monitor fea‐
ture on their smartwatch increase their running performance by 15%”). Let’s also
assume that the baseline campaign solely provided information on the new feature
(“our new smartwatch includes state-of-the art monitoring for runners”). The metric
for success is conversion rate (CR), measured as Purchases/Users in the campaign.

The hypotheses to be tested are as follows:

Monotonicity
Higher probability scores have higher conversion rates: CR A > CR B and
CR D > CR C

34 | Chapter 4: 2×2 Designs

Effectiveness
The new communication lever is more effective than the baseline:
CR B = CR C and CR A > CR D

The reason I expect CR D > CR C is that some users make a purchase organically,
without the need of having a communication displayed. If the model is predictive (in
a true positive sense), the conversion rates should also be increasing with the score.

Similarly, I expect CR B = CR C because I’m targeting users with a low probability
of making a purchase, according to the model. It’s true that great communication
campaigns might convert some of these low-intentionality users, but I see no reason
to expect the impact of the communication lever to be statistically significant.

To set up the experiment you must bring in statistical size and power considerations,
where sample size and minimum detectable effects are critical. Usually, you don’t have
large enough samples, so an option is to just settle for having a good design for the
lever (as in a classic A/B test framework), and a suboptimal design for your model. In
this case, you may only have casual evidence of the model’s performance. I’ve found
this to be enough in most cases, but if you can go all in and have a good design for
both factors, please do so. After the experiment is run, you can then test these
hypotheses and get some evidence of model performance in real-life settings and the
impact of a lever.

Example: Understanding User Behavior
I started discussing 2×2 statistical designs because thanks to the power of randomiza‐
tion, you control for other factors that may impact the metric of interest. Other use
cases for the 2×2 framework generally lack this very nice property. Nonetheless, it
may still be useful, as I hope this example shows.

Not so long ago I decided to set up a 2×2 framework to understand product-market
fit for a specific product. For this, I took two factors that were critical for fit, and
focused on quadrant A to single out those users that were doing great on both. I then
built an ML classification model where users in group A were labeled with a one, and
everyone else was labeled with a zero. The objective was to understand who these
users were. In Chapter 13 I’ll show how this can be done in practice, without the 2×2
framework.

In that particular use case, I used customer engagement and unit price. Group A con‐
sists of users who are highly engaged and are willing to pay high tickets. Engagement
is usually a good proxy for product-market fit, so combining it with a proxy for reve‐
nue gave me what may be called profitable fit.

Example: Understanding User Behavior | 35

1 Some companies also report the “undiscounted” LTV, so this expression simplifies to the summands on the
numerator.

Let me give another example that applies the same logic. Recall that customer lifetime
value (LTV) is the present value of a users’ lifetime relationship with the company:

LTV = ∑
t

rt × st

1 + d t

Here, rt is the revenue at time t, st is the probability of surviving from t–1 to t, and d
is a discount rate. Sometimes, instead of revenue you can use a profit metric that also
takes into account some form of costs, but in many companies, especially start-ups,
it’s common to use a revenue metric to compute the ratio of LTV to customer acquisi‐
tion costs (CAC).1

As you can see, LTV can be expressed as the (discounted) inner product of revenue
and survival probability streams. Suppose you want to understand what type of users
have a high LTV. Who are they? What makes them so special? And most importantly,
are there levers to move some users to the top LTV bucket?

Figure 4-3 shows the already familiar setting. On the horizontal axis I have a proxy
for survival probability, and revenue is on the vertical axis. Since LTV is the inner
product of streams at different time periods, you need to find ways to make both of
these one-dimensional. There are several ways to do so, none without their own
problems.

Figure 4-3. LTV in a 2×2 framework

36 | Chapter 4: 2×2 Designs

Forgetting about those details for now, you can proceed as I did in the previous
example:

1. Label users in group A with ones and everyone else with zeros, and train a classi‐
fication model that predicts being a quadrant A user.

2. Open the black box and try to learn something about users that have a high prob‐
ability of being in quadrant A (using the methods presented in Chapter 13).

3. Scoring the complete user base, and using some threshold score, you can calcu‐
late the opportunity size for the product.

There are at least two methods to go from streams across time to two dimensions:

Aggregate.
The simplest way is to use an aggregate statistic like average or median survival
rates and revenue. Note that aggregation with sums might put at a disadvantage
younger cohorts for revenue (for example, a user transacting for 20 months can
generate 20× more revenue than a new user).

Choose an arbitrary period.
If you’ve found in the past that the first six months are critical for survival (or
revenue), you can just set this and use the corresponding values at that point in
time.

Example: Credit Origination and Acceptance
A somewhat different example is the case of correlated outcomes. Take the case of a
credit product (such as a credit card). These products are somewhat problematic
because of adverse selection (riskier users are more likely to accept an expensive loan
offer).

Figure 4-4 shows a somewhat typical scenario. Adverse selection creates the positive
correlation, so users who are more likely to accept a loan offer are also more likely to
default (A).

The 2×2 design simplifies the decision-making process: which customers should you
target?

Offers in quadrant B.
These customers are more likely to accept and to repay the loan. This is the safest
move.

Adjust the thresholds to get more volume.
You can also move the threshold definitions for low or high risk of default. This
may help you find more volume if scale is of utmost importance. Credit

Example: Credit Origination and Acceptance | 37

originators commonly do this type of calibration given their risk appetite. The
2×2 design lets you focus on one lever (risk threshold).

Figure 4-4. 2×2 loan origination example

Example: Prioritizing Your Workflow
A final example that is constantly used by consultants should help you prioritize
projects. Here, the two dimensions used are value (of the project to the company) and
how much effort is needed to complete it.

The idea is that you should rank competing projects along these two dimensions. In
Figure 4-5, you can see that projects x and y are almost as good in terms of value, but
x is to be preferred since it takes considerably less effort to complete. Similarly, rank‐
ing activities y and z is relatively easy since both require comparable efforts, but the
former creates substantially more value. In general, the top left quadrant is where you
want most of your projects to live.

As rich as this 2×2 view may be, it has its limitations. For instance, how do you com‐
pare projects x and z? In Chapter 5, I present an alternative that can be used more
generally to compare and rank any set of projects.

38 | Chapter 4: 2×2 Designs

Figure 4-5. Prioritization of effort

Key Takeaways
These are the key takeaways from this chapter:

Case for simplification
The amount of data at your disposal notwithstanding, simplifying the world is
necessary if the objective is to improve your understanding of a complex world
and business. Moreover, it helps in communicating technical results to the stake‐
holders and allows you to focus on what appears to be of first-order importance.

2×2 diagrams
These tools simplify high-dimensional spaces into two-dimensional plots that
allow you to focus on specific features or factors that are most relevant to the
problem at hand.

Use Case 1: Testing a model and a lever
A common use case is 2×2 statistical designs. One such example is when you
want to simultaneously test the effectiveness of a lever and the predictive perfor‐
mance of an ML model. You get crisp hypotheses that can go through the formal
statistical testing process. Randomization guarantees that everything else remains
constant, on average.

Use Case 2: Understanding your customers
By singling out two specific features, you can use the framework as a starting
point for more sophisticated approaches. This chapter described how this frame‐
work can be used to understand which users have a high LTV.

Key Takeaways | 39

Use Case 3: Correlated features
When there are correlated features, the 2×2 framework allows you to simplify the
decision-making process. The example I used was loan origination, where offer
acceptance depends on the probability of default because of adverse selection.

Further Reading
In my book Analytical Skills for AI and Data Science, I argue that learning to simplify
is an essential skill for data scientists. The discussion is way more general than this
chapter, and I did not cover 2×2 designs. I also discuss LTV and the design of A/B
tests.

The Laws of Simplicity by John Maeda (MIT Press) takes a designer’s point of view on
how to achieve simplicity. While it may sound unrelated, I’ve found that somewhat
orthogonal points of views have always deepened my understanding of a problem.

2×2 statistical designs can be found in most statistical textbooks where ANOVA is
covered. Statistical Methods in Online A/B Testing: Statistics for Data-Driven Business
Decisions and Risk Management in E-Commerce by Georgi Zdravkov Georgiev (inde‐
pendently published) has a good discussion of testing with multiple variants and
other related topics.

The type of adverse selection used in the loan origination example is covered in any
microeconomic textbook discussing information asymmetries. If you do not have an
economics background, the technical nitty-gritty might be an overreach. In my opin‐
ion, the important part to remember is that users self-select using information about
themselves that is not known by the decision-maker, and this creates a lot of
problems.

40 | Chapter 4: 2×2 Designs

CHAPTER 5

Building Business Cases

Learning to write a business case for a model or experiment is a critical skill that data
scientists ought to develop. Not only can it help you quickly learn whether a new
project is worth your time and effort, but it can also help you gain stakeholder buy-
in. Moreover, it is consistent with the type of extreme ownership that will make you
shine.

Business cases can be as complex as you want, but many times you can come up with
good-enough estimates. In this chapter, I will go through the fundamentals of busi‐
ness case creation.

Some Principles to Construct Business Cases
While every business case is different, most can be built using the same underlying
principles: you compare making a decision or not, calculate costs and benefits of all
options, consider only incremental changes, and many times you can account only
for unit economics.

Decisions
Business cases are most commonly built to evaluate a new decision that is under
consideration, be it a new campaign, a change in a lever, or any other decision.

Costs, benefits, and breakeven
Most interesting decisions have trade-offs. A critical starting point is to enumer‐
ate the main costs and benefits derived from the decision. The business case will
be built around net benefits calculated as the monetary difference between bene‐
fits and costs. Breakeven is synonymous with having zero net benefits and serves
as the limit case, or worst-case scenario, for your decision.

41

Incrementality
A good business case should only take into account those costs and benefits that
arise from the decision. For example, your salary can be viewed as a cost if you’re
running an experiment, but this is not incremental since the company would also
have to pay you if you were doing something else. Only incremental costs and
benefits should be included.

Unit economics
Most of the time it only matters what happens to your average customer, so you
can just focus on the incremental costs and benefits for this isolated unit. The
business case depends on the sign of the net benefits you calculate for this unit;
usually, scaling to the whole customer base affects both costs and benefits in the
same proportion, leaving the sign of aggregate net benefits unaffected.

Example: Proactive Retention Strategy
Let’s evaluate whether the company should launch a proactive retention strategy. On
the costs side, you need to give a customer an incentive to stay. There are many ways
to do this, but most can be easily translated to a monetary figure c. On the benefits
side, a customer that stays for one extra month generates average revenue per user r
that was going to be lost.

Suppose you target a customer base of size B. Of these, A accept the incentive. Also,
out of those targeted, only TP were really going to churn (true positives). The break‐
even condition is obtained by equalizing costs and benefits:

B × A
B × c = B × TP

B × r

You can see one of the techniques presented in Chapter 2 at play. Notice how, in this
case, you can focus only on the average unit:

A
B × c = TP

B × r

It makes sense to run the campaign when the net benefit is nonnegative:

TP
B × r − A

B × c ≥ 0

The first fraction is just the true positive rate in the campaign base or sample; the sec‐
ond fraction is the acceptance rate. Alternatively, and conveniently, you can also view
these as sample estimates for the expected benefit and cost, so that your decision

42 | Chapter 5: Building Business Cases

problem maps neatly to one under uncertainty: before the campaign you don’t know
who will accept the incentive or who will actually churn in its absence.

You can now plug in some numbers to simulate the business case under different sce‐
narios. Moreover, you can also analyze the levers at your disposal. Here there are
three levers for the business case to work:

Improve the true positive rate.
You can help the business case by making more accurate predictions with your
machine learning (ML) model, in a true positive sense.

Keep costs under control.
You can lower the value of the incentive (c). Sometimes it’s safe to assume that
the acceptance rate increases with it, so both terms go in the same direction.

Target only customers with high ARPU.
It makes intuitive sense that incentives should be prioritized to high-value cus‐
tomers. In the inequality, this corresponds to a higher r.

Note how incrementality kicks in: on the benefits side, you should only include the
saved ARPU from those customers who were really going to churn (true positives).
Those who were going to stay, independently of the incentive, increase the cost if they
accept but provide no incremental benefits.

What about false negatives? Remember these are customers that are not targeted and
churn. You can include the lost revenue as a cost so that you can trade off precision
and recall in your ML implementation.

Fraud Prevention
Banks frequently establish transaction limits for fraud prevention purposes (and for
anti-money laundering). Let’s build a business case for the decision to block a trans‐
action whenever it exceeds the limit.

Intuitively, there are two costs: fraud cost (cf) and the lost or forgone revenue if a cus‐
tomer churns (cch). For simplicity I will assume that a customer with a blocked trans‐
action churns with certainty, but this assumption is easy to relax in applications. On
the revenue side, if a transaction is allowed to go through, the company gets the ticket
amount (t).

Once a transaction comes in, you can either accept or block it. Independently of the
action, it can be legitimate or not. Table 5-1 shows costs and benefits for all four com‐
binations of actions and outcomes.

Fraud Prevention | 43

Table 5-1. Costs and benefits for fraud prevention

Action Outcome Benefits Costs
Accept Fraud t cf

Accept Legit t 0

Block Fraud 0 0

Block Legit 0 cch

Denote by p the probability that a given transaction is fraudulent. Computing the
expected net benefits from each possible action, you get:

E net benefits accept = p t − c f + 1 − p t = t − pc f

E net benefits block = − 1 − p cch

Blocking a transaction with ticket t is optimal whenever net benefits from blocking
exceed those from accepting the transaction:

E net benefits block − E net benefits accept = pc f − t + 1 − p cch ≥ 0

This last inequality is at the heart of the business case. On the benefits side, if the
transaction is fraudulent, by blocking you save the cost from fraud (cf). On the cost
side, by blocking a transaction you effectively neglect the revenue t and incur the
potential cost of churn (cch) if the transaction is not fraudulent.

As before, let’s turn the attention to the levers. Other than blocking or accepting, you
can always choose the limit (L) such that higher tickets will get blocked and anything
else will be accepted. But where is the limit in this inequality?

The probability of being fraudulent is usually a function of this limit: p(t|L). In many
applications it’s common that this function is increasing in the limit; this arises when‐
ever fraudsters are looking for short-term and quick, relatively large rewards. By set‐
ting a sufficiently large limit, you can then focus on high probability transactions.
The cost of fraud is usually the ticket itself, so there’s also this direct effect on the ben‐
efits. There is a trade-off, however: if a transaction is not fraudulent, you risk the
churn of high-value customers.

Purchasing External Datasets
This logic applies for any decision you want to analyze. Without going into details, I’ll
briefly discuss the case to purchase an external dataset, a decision that most data sci‐
ence teams evaluate at some point.

44 | Chapter 5: Building Business Cases

The cost is whatever your data provider decides to charge for it. The benefit is the
incremental revenue your company can create with the data. In some cases this is
straightforward since the data itself improves the decision-making process. I’m think‐
ing of use cases like KYC (know your customer) or identity management. In cases
like these you can map the data to revenue almost one-to-one.

In most other cases that are interesting from a data science perspective, the incremen‐
tal revenue depends on critical assumptions. For example, if you already have an ML
model in production used in the decision-making process, you can quantify the mini‐
mum incremental performance that makes the business case positive, given this cost.
Alternatively, you can try to negotiate better terms, given this incremental
performance.

The idea can be summarized by something like this:

KPI augmented dataset − KPI original dataset ≥ c

The KPI is a function of your ML model performance metric. I emphasize the func‐
tion part because you need to be able to convert the performance metric into a mone‐
tary value, like revenue, to make it comparable with the costs. Note that by using the
original dataset as a benchmark, you consider only incremental effects.

Working on a Data Science Project
As suggested in Chapter 1, data scientists should engage in projects that are incre‐
mental for the company. Suppose you have two alternative projects, A and B. Which
should you start with? Using the same logic, you should choose project A if:

revenue A − cost A ≥ revenue B − cost B

To make a decision you need to plug in some numbers, for which the calculation is a
project in and of itself. What matters here is the intuition you get from the inequality:
prioritize those projects for which there’s substantial incremental net revenue, given
your implementation costs.

In Chapter 4, I showed how a simple 2×2 framework can help you prioritize your
workflow by ranking each project on the value and effort axes. As useful as it is, with
this graphical device you may end up having trouble ranking projects that dominate
in one dimension and get dominated in the other dimension (for example, projects x
and z in Figure 4-5). The previous inequality solves this problem by using a common
scale (money) to value effort (cost) and revenue.

Working on a Data Science Project | 45

Key Takeaways
These are the key takeaways from this chapter:

Relevance
Learning to write business cases is important for stakeholder management and
extreme ownership purposes, as well as for allocating data science resources
across alternative projects.

Principles of business case writing
Typically, you need to understand cost and benefits, as well as breakeven. Focus
only on incremental changes. Many times, you only need to care about unit eco‐
nomics affecting your average customer.

Further Reading
In my book Analytical Skills for AI and Data Science, I describe techniques that will
help you simplify your business case to focus only on first-order effects. It will also
help you understand decision making under uncertainty.

This cost-benefit analysis is standard in economic analysis. What I’ve labeled here as
incrementality is commonly known as marginal analysis. Three books that I’d recom‐
mend to noneconomists are: The Armchair Economist: Economics and Everyday Life
by Steven E. Landsburg (Free Press), Doughnut Economics: Seven Ways to Think Like
a 21st-Century Economist by Kate Raworth (Chelsea Green Publishing), and Naked
Economics: Undressing the Dismal Science by Charles Wheelan (W. W. Norton).

46 | Chapter 5: Building Business Cases

CHAPTER 6

What’s in a Lift?

There are very simple techniques that help you accomplish many different tasks. Lifts
are one of those tools. Unfortunately, many data scientists don’t understand lifts or
haven’t seen their usefulness. This short chapter will help you master them.

Lifts Defined
Generally speaking, a lift is the ratio of an aggregate metric for one group to another.
The most common aggregation method is taking averages, as these are the natural
sample estimates for expected values. You’ll see some examples in this chapter.

Lift metric, A, B = Metric aggregate for group A
Metric aggregate for group B

In the more classical data mining literature, the aggregate is a frequency or probabil‐
ity, and group A is a subset of group B, which is usually the population under study.
The objective here is to measure the performance of a selection algorithm (for exam‐
ple, clustering or a classifier) relative to the population average.

Consider the lift of having women as CEOs in the US. Under a random selection
baseline, there should be roughly 50% female CEOs. One study estimates this number
at 32%. The lift of the current job market selection mechanism is 0.32/0.5 = 0.64, so
women are underrepresented relative to the baseline population frequency.

47

https://oreil.ly/27yD1

As the name suggests, the lift measures how much the aggregate in one group increa‐
ses or decreases relative to the baseline. A ratio larger or smaller than one is known as
uplift or downlift, respectively. If there’s no lift, the ratio is one.

Example: Classifier Model
Suppose you train a classifier to predict customer churn. You have a dataset where
users who churned are labeled with a one, and those who are still active are labeled
with a zero. The baseline churn rate is obtained by taking the sample average of the
outcome.

One common performance metric to track is the true positive rate by score decile in
the test sample, which translates to churn rate by decile in this example. To compute
it, you just need to sort the users by score and divide the test sample into 10 equally
sized buckets or deciles. For each bucket, compute the churn rate.

This metric is useful because it informs you about at least three important aspects:

Lifts
Dividing the churn rate per decile by the churn rate in the test sample, you com‐
pute the corresponding lifts. This is an estimate of how well the model is identi‐
fying churners in each decile relative to the company’s churn rate.

Monotonicity
Is the score informative? If the probability score is informative, in a true positive
sense, higher scores should have higher churn rates.

Top decile performance
In many applications, you just target users in the highest decile. In this example,
you may only want to give a retention incentive to those who are likeliest to
churn. The true positive rate for that decile is your first estimate of what can be
expected in the retention campaign.

Figure 6-1 shows true positive rates (TPRs) and lifts for a simulated example. The clas‐
sifier identifies churners at 2.7× the average rate in the top decile. This is a good find‐
ing if you want to convince your stakeholder to use the output from your model. You
can also benchmark this lift against the one obtained through their current selection
mechanism.

48 | Chapter 6: What’s in a Lift?

Figure 6-1. TPR and lifts for the churn model example

Self-Selection and Survivorship Biases
Self-selection arises when an individual chooses to enroll in a group. Examples can be
groups with formal enrollment (such as a political party or a team) or informal
enrollment (for example, purchasers of your product, users of a feature, and the like).
The important thing is that there is some intrinsic characteristic that drives the indi‐
vidual to become a member.

Survivorship bias is a type of self-selection in reverse: some users end up in your sam‐
ple (“survive”) because of some characteristic they have. The classical example is the
case of World War II fighter planes analyzed by statistician Abraham Wald. The les‐
son is that you may end up with incorrect conclusions because of the biased nature of
your sampling process.

Chapter 15 discusses the relevance of self-selection bias for data scientists; for now, it
suffices to show how lifts can help you quickly identify the presence of this bias.

Self-Selection and Survivorship Biases | 49

https://oreil.ly/0Y9oW

Table 6-1 shows the typical way this is presented: the rows include some features or
characteristics you believe are important to understand the selection problem; col‐
umns highlight group membership as well as lift. Here I only include four variables
for a customer:

• Monthly spend on the company’s products
• Satisfaction score
• Monthly income
• Tenure

Table 6-1. Lifts in a churn example

Active Churned Lift
Monthly spend 29.9 32.7 1.1

Customer satisfaction score 10.00 10.08 1.01

Income (K) 46.52 54.80 1.18

Tenure (months) 9.84 8.14 0.83

Generally, the more features you have, the better the understanding of your selection
mechanism that you can get with lifts. For instance, why not include geographical or
industry segments or the number of products the customer has already purchased
from the company?

Each cell in the table shows the average of the corresponding feature for active and
churned users, as well as the lift. For instance, average spend for active and churned
users is $29.9 and $32.7, respectively. Looking at the lift column, it’s easy to recognize
a pattern: churners have a higher income (lift is 1.18, or an 18% increase), spend
more (1.1), and have been a customer for a shorter time (0.83). Customer satisfaction
scores are not important (negligible uplift). One possible story for these findings is
that relatively better-off customers have higher expectations for the products; this
seems to be a product for a lower socioeconomic status segment.

In any case, you get the idea: a quick and dirty approach to understanding a selection
mechanism is to construct lift tables. If features are selected correctly, you can imme‐
diately get a sense of what’s going on with the underlying group.

Other Use Cases for Lifts
The technique is very simple to use: identify a metric and groups, and compute the
ratio. The selection mechanism can be anything you find relevant.

50 | Chapter 6: What’s in a Lift?

For instance, you can use the 2×2 diagrams presented in Chapter 4 and focus on one
of the quadrants. Lifts are very simple to use and might help you understand what
drives the users in that group.

Another common use case is when analyzing self-selection in marketing campaigns.
In the absence of selection bias, you can measure the impact of a campaign using a
control group. Lifts will very quickly let you know if you can proceed that way or not.

Similarly, many surveys end up with biased results because of differences in response
rates across groups. In the past, I’ve automated representativeness checks for cus‐
tomer satisfaction surveys using lifts.

Key Takeaways
These are the key takeaways from this chapter:

Defining lifts
A lift is a ratio of an aggregate metric for one group to another. Averages are the
most common aggregation method.

Lifts in machine learning
You can compute lifts with classifier models by showing the predictive perfor‐
mance of the model relative to the overall sample. I presented a churn prediction
example and computed lifts for true positive rates across score deciles.

Self-selection
More generally, lifts can be applied to understand the extent of self-selection or
survivorship bias in your sample. By computing the lift of a metric in those users
who self-selected themselves into a group, you can easily understand the selec‐
tion drivers.

Further Reading
Lifts are covered in many classical data mining books; for instance, see Data Mining:
Practical Machine Learning Tools and Techniques by Ian Witten et al. (Morgan
Kaufmann).

More references can be found in academic articles and the blogosphere. Examples are
“Lift Analysis—A Data Scientist’s Secret Weapon” by Andy Goldschmidt on KDnug‐
gets and “ROC Curve, Lift Chart and Calibration Plot” by Miha Vuk and Tomaz Curk
(Metodoloski Zvezki 3 no. 1, 2006: 89–108).

Further Reading | 51

https://oreil.ly/KfBaL
https://oreil.ly/KfBaL

CHAPTER 7

Narratives

You’ve spent weeks working on your project and are now ready to present the results.
It feels like you’re almost done, and just have to deliver the output.

Many data scientists think this way, and put little to no effort into building compel‐
ling narratives. As described in Chapter 1, to have end-to-end ownership, it is critical
to persuade your stakeholders to take action with your results. This type of extreme
ownership is critical to create value; hence, you must master the art of storytelling.

There are plenty of resources out there to learn about storytelling (I’ll suggest some at
the end of this chapter). This chapter builds on that body of knowledge, but I will
deviate slightly to highlight some skills that are specific to data science.

What’s in a Narrative: Telling a Story with Your Data
Using a standard dictionary definition, a narrative is just a sequence of connected
events. These connections make a story. I will enrich this definition by saying that it
should also accomplish an objective.

What is the objective that you want to achieve? In general narratives, it could be to
persuade or engage. These apply also to data science (DS), of course, but most impor‐
tantly, you want to create value, and for that you need to drive actions. A successful
story should help you accomplish this objective.

Let’s reverse engineer the problem and identify conditions that help us achieve this:

• Clear and to the point
• Credible
• Memorable
• Actionable

53

Clear and to the Point
Clarity is a relative concept that varies with the context and depends very much on
your audience. Technical details of your machine learning (ML) implementation can
be very clear to your data science team, but they are usually cryptic to your business
stakeholder. Identifying your audience is a first critical step in building a clear narra‐
tive. Choosing the right language and tone for the right audience is thus critical.

DS is inherently a technical subject. As such, data scientists are very often tempted to
include fancy technical jargon in their presentations (even better if there are some
accompanying equations). But delivering a story is not about you. It’s always good
advice to put all the technical material in a technical appendix section, if you want to
include one.

A common mistake is to think that technical language will buy you credibility (more
on this later). Sometimes this comes in the form of trying to prove that the data sci‐
ence toolkit is necessary for the organization. My advice is to balance this desire
against the benefits of having an effective communication that accomplishes your
objective. Creating powerful narratives is about the latter.

In a regular DS development process, it’s quite normal to run many tests and create
multiple visualizations. When trying to make a case for the amount of work they have
put into it, some people are tempted to include everything they can in the presenta‐
tion, thereby distracting and overwhelming the audience. Focus only on the key mes‐
sages, and include results that reinforce them. Everything else should be dropped. If
something is not directly helping your delivery, but might still be useful, put it in the
appendix. But try not to clutter the appendix; this section also serves a specific pur‐
pose in your presentation (if not, drop it).

Achieving the right amount of simplicity takes a lot of practice and effort; it’s a skill in
its own right. A good tip is to start writing what you think are the key messages, and
then start dropping everything else from the presentation. Iterate until convergence:
stop when you’ve dropped so much that the message is not clear anymore.

This advice also applies to sentences and paragraphs. Use short sentences, with fewer
than 10 words, if possible. Long sentences and paragraphs are visually exhausting, so
you can assume they won’t be read. Once I have a first draft, I go through each sen‐
tence and paragraph and make them as short and clear-cut as possible.

Clarity should be channel independent. Many times you prepare for a live presenta‐
tion and fail to recognize that part of the audience—possibly C-level—will read it at
some other point in time. You must therefore make it self-explanatory.

This applies not only to text but also to data visualizations. Be sure you label all rele‐
vant axes and write meaningful titles. If there’s something you want to highlight in a

54 | Chapter 7: Narratives

specific figure, you may include visual aids—such as highlighting, text, or boxes—to
help direct your audience’s attention.

Data visualizations are an intrinsic part of the delivery of data science narratives.
These principles apply to any figures you prepare. I will cover some good practices
for data visualizations in Chapter 8.

Tips to Achieve Clarity
Here are some key tips to achieve clarity:

Audience
Start by identifying your audience and guaranteeing that the language and tone
are consistent.

Technical jargon
Control your temptation to include technical jargon. Always put the technical
material in the appendix.

Focus on the key messages
The key messages should be clear from the outset, and the narrative should be
built around them. Anything else should be dropped.

Delete distractions
Write your first draft, then start dropping anything that’s not necessary. This also
applies to sentences and paragraphs.

Self-explanatory
Narratives should always be self-explanatory, independent of how you deliver
them.

Datavis
Apply all of the above tips to your data visualizations.

Credible
In business settings, compelling narratives must be credible. Unfortunately, this is a
very subtle property: it takes time to gain, but is terribly easy to lose. In data presenta‐
tions there are three dimensions that you should care about:

• Data credibility
• Technical credibility
• Business credibility

What’s in a Narrative: Telling a Story with Your Data | 55

Data quality is at the core of the first dimension, and you should make it a practice to
include checks at the source as well as during the development cycle. Data scientists
write a lot of code, an error-prone activity. The worst happens when your code
actually runs, but the results may just not be right (logic errors). In my experience,
this happens a lot. The best programmers have made testing an intrinsic part of their
day-to-day workflow.

Moreover, data can’t be disentangled from its context, so your results must make
sense from a business perspective. I’ve seen many data scientists lose their credibility
because they didn’t check that their results made sense. At a minimum, you should
know the order of magnitude for the key metrics you’re working with. At best, you
should know the metrics by heart. Don’t forget to always challenge your results before
presenting them.

Technical credibility is usually granted by stakeholders. But great powers come with
great responsibility. Data scientists need to learn to use the right tool for each prob‐
lem, and master the techniques. It’s always a good practice to have an internal semi‐
nar series where you can be challenged by your peers.

As described in Chapter 1, it’s crucial to show business expertise with your audience.
Your technical delivery might be impeccable, but if things don’t make sense from a
business standpoint, you’ll lose credibility with your stakeholders. I’ve seen data sci‐
entists start with faulty assumptions about how the product or business works.
Another common mistake is to make incredible assumptions about the customers’
behavior; always ask yourself if you would do this or that if you were the customer.

Tips to Achieve Credibility
Here are some tips to achieve credibility:

Data credibility
Check your results to ensure that they make sense from a business perspective.

Technical credibility
When possible, make it a practice to present your technical results to knowledge‐
able peers.

Business credibility
Aim for being as knowledgeable about the business as your stakeholder.

Memorable
In ordinary narratives this is usually achieved by injecting some form of struggle or
suspense, effectively making the sequence less linear. I learned the hard way that these
are generally not good strategies for DS narratives.

56 | Chapter 7: Narratives

In DS, memorability is most often created by an Aha! moment. These usually arise
when you show an unexpected result that can create value. This last part is important:
in business settings, intellectual curiosities are only short-term memorable. The best
Aha! moments are those that drive actions.

Many authors suggest creating unforgettable narratives by using the right combina‐
tion of data and emotions, and there is indeed evidence that the human brain recalls
what tickles your heart better than plain scientific evidence. I agree with this general
point, but in my opinion it’s not the best practice to aim at TED-type narratives and
delivery. You should rather keep it simple and find actionable insights that are almost
always memorable by themselves.

Aha! moments, in the form of actionable and somewhat unexpec‐
ted insights, are the best way to achieve memorability.

Actionable
If you’ve gone through the previous chapters, it shouldn’t come as a surprise that I
believe this ought to be your North Star and the main character in your story.

Before starting your narrative, ensure that your project has actionable insights. If not,
go back to the drawing board. I’ve seen presentations where something interesting is
shown, but the audience is left thinking So what?

Identify levers that arise from your analysis. A presentation without
actionable insights cannot be effective at creating value.

Building a Narrative
The previous section presented some properties that are necessary to create success‐
ful narratives, as well as some tips that will help you ensure that these are satisfied in
practice. I’ll now cover the process of creating narratives.

Science as Storytelling
Many data scientists think of storytelling as something independent, even orthogonal,
to their technical expertise, only exercised at the delivery stage. My claim is that data
scientists should become scientists and make it an inherent part of their end-to-end
workflow.

Building a Narrative | 57

With this in mind, let me suggest two alternative processes to building a narrative:

• First, do the technical work, and then create the narrative.
• Start with an initial narrative, develop it, iterate, and when you are ready, sharpen

the storytelling for delivery.

The first process is the most common in data science: practitioners first do the hard
technical work and then fit a narrative to their results. Usually, this ends up being a
collage of findings that may be interesting or relevant but lack a story.

In contrast, the second process makes storytelling an integral part of the data science
workflow (Figure 7-1). In this setting you start with a business question, do the hard
work of understanding the problem and come up with some stories or hypotheses,
test them with data, and after some iterations, you’re finally ready to deliver the
results. This process may even force you to go back and redefine the business
question.

Figure 7-1. Iterative narratives

Storytelling is present at the beginning (stage 2), in the middle as you iterate and
refine your hypotheses (stage 3), and at the end (stage 4). These narratives are not
quite the same, but are certainly connected.

You, and your need for understanding, are the audience for the initial narrative; your
business stakeholders are the audience for the final one. As mentioned, the language
and tone are different. But the important thing is that the key messages at the end are
direct descendants of those at the beginning, purified by the iterative process in the
middle.

You should come into a project with a first candidate set of key messages that you
think will be delivered at the end. These may not be entirely right, but more often
than not—if you have enough business expertise—they aren’t too far off from the
final ones. With this approach, the process of creating a narrative for your

58 | Chapter 7: Narratives

presentation starts before you even get to the data. It will guide you during this stage
and will help you iterate. Thanks to this intermediate stage, you’re able to catch mis‐
takes and find errors (in data quality, logic, coding, or even your understanding of the
business); this is usually the place where Aha! moments arise. The delivery-stage nar‐
rative switches audiences and communicates the final and refined messages.

What, So What, and Now What?
Once you’ve reached the delivery stage, you need to put some structure onto your
narrative. Some people like to follow the standard approach to storytelling—also
known as the narrative arc—that has three acts: setup, struggle, and resolution.

While this may work for some, I prefer a different sequence that reinforces your key
objective of driving actions: what, so what, and now what? Not surprisingly, this cor‐
responds closely to the process described in Chapter 1.

What?
This section is about describing the business problem and its importance to the com‐
pany at this point in time. It should also include some quantitative information on the
context, like the recent evolution of the main KPIs and opportunity sizing.

Imagine that you are trying to quantify the impact of giving price discounts. In this
section you can provide some context, like the recent frequency of price changes, the
range or distribution, and some high-level impact on sales, retention, or revenue. If
there’s some evidence, even if casual, you can also highlight the strategic importance
in the current competitive landscape.

So what?
The critical thing about this section is to focus on actionability. The main results are
going to be here, including those that generate Aha! moments.

Generally speaking, Aha! moments come in two flavors:

• Unexpected results
• Somewhat expected results (directionally speaking) but with an unexpected twist

that can come from quantification or actionability

I prefer the second type because you should have a bias for action. If you have unex‐
pected results and an action plan, you nailed it.

Going back to the pricing example, dropping prices usually boosts sales. This is the
expected behavior, so showing a negative correlation won’t create an Aha! moment,
and the audience may end up with the feeling that you are reinventing the wheel.

Building a Narrative | 59

But if you say that users are relatively price insensitive for prices $5.30 or higher, but
that below that price, each additional $1.00 discount boosts sales by 1,000 units, you
have captured their attention. The message is similar, but there’s a surprise compo‐
nent that comes from quantifying things. Moreover, this is a call to action that needs
to become the centerpiece of the last section.

Now what?
This section is about next steps. What do you need from the rest of the company to
capture this value? Who needs to be involved? Here, I like to actually suggest specific
next steps. I’ve seen data scientists be shy about this because they aren’t usually the
actual decision-makers.

With the pricing example, most likely you rely on the marketing team to design and
communicate the actual discount strategy. Finance may also need to approve the
plan. Any other teams affected should also be included.

The Last Mile
In her book The Hard Truth About Soft Skills (Harper Business), Peggy Klaus suggests
that long-term success is 75% about soft skills and the rest is technical knowledge. I’m
not sure if that’s right, but directionally speaking I cannot agree more: data scientists
invest substantial time and effort in achieving technical excellence, but their careers
depend more on those soft skills that have been neglected.

In the last mile, it’s now time to switch from your scientist to your salesperson per‐
sona. I’ve learned from personal experience that many great projects fail because of
lack of preparation at this stage.

Writing TL;DRs
TL;DRs (too long; didn’t read) are a great tool to check whether your narrative is
sharp and concise enough. They have become a standard in tech companies, and I’ve
made it a practice to always start with one.

Many executives won’t spend much time on your work unless they see something that
catches their attention. Great TL;DRs are written to achieve that.

60 | Chapter 7: Narratives

Tips to Write Memorable TL;DRs
Some people like to write a first draft of the TL;DR before writing down the actual
document. This is a great way to ensure that the TL;DR is consistent with your narra‐
tive and guarantee that the contents are aligned with it. After finishing, they go back
and iterate on the TL;DR.

The approach I prefer is to write down the narrative first (some people draw an actual
sketch in pen and paper), work on the contents, and only then go back and write the
TL;DR. To me, the TL;DR is the last thing you write, and I always sketch the narrative
first.

The two approaches may sound similar, but the TL;DR is a really sharpened version
of the narrative. The narrative is a high-level view of the story tying the sequence of
events; the TL;DR is its laser-focused version.

I tend to structure the TL;DR in the same way as the narrative: What, So What, Now
What. As before, the What section makes the case for your audience’s attention, the
So What summarizes the main findings and actionables, and the Now What are sug‐
gested next steps.

A good tip is to think of your document as a news article and think
about alternative headlines. Great headlines in data science must
have the same properties I’ve been talking about: simple, credible,
memorable, and actionable. Credibility restricts you from
overselling.

Finally, everything in your TL;DR should have a slide that expands on it. If it was
important enough to make it to the TL;DR, you better have some accompanying
material.

Example: Writing a TL;DR for This Chapter
Figure 7-2 shows an archetypical TL;DR you might encounter. It’s cluttered, and, evi‐
dently, I was trying to include every single detail of the work. It has very long senten‐
ces, and a small enough font to make it fit the page. It’s certainly not readable. It’s also
memorable, but for the wrong reasons.

The Last Mile | 61

Figure 7-2. TL;DR version 0

In Figure 7-3 I applied some of the tips given earlier to reduce the clutter: simplify
and cut some of the sentences. Had I wanted to, I could have increased the font size. I
could’ve done more, but realized that the best thing was to go back to the drawing
board and start from scratch.

Figure 7-3. TL;DR version 1

Figure 7-4 shows the results of this last iteration. Starting from scratch allowed me to
focus on the key messages. You can see that I followed the what, so what, now what

62 | Chapter 7: Narratives

pattern. In a real data science TL;DR, I would’ve highlighted some key results that are
both quantified and actionable. The only call to action here is to practice.

Figure 7-4. TL;DR version 2

It’s also evident that I’m using a bullet point style. There are many detractors to this
approach, but as everything it has its pros and cons. On the con side, it certainly
restricts your creativity (imagine all you can do with a blank piece of paper). On the
pro side, it forces you to write in a simple, clear, and orderly way. I can quickly see if
my sentences are too long (sentences that take two lines are to be avoided, if possible).

As I said before, I don’t think that TED-style presentations are a good fit in data sci‐
ence or business settings. Nonetheless, if you’re skillful enough and it fits your com‐
pany’s culture, go right ahead. But bullet points tend to work well in business settings.

Delivering Powerful Elevator Pitches
Here’s a trick that I learned some time ago when I was presenting to my manager: if
someone starts a presentation and it’s pretty obvious that it lacks a narrative, interrupt
and ask that person to give you the elevator pitch. More often than not, there’s no ele‐
vator pitch.

Elevator pitches are supposed to be the 10-to-20-second presentation that you would
give to the CEO if you happen to meet on the elevator. You really want to sell your

The Last Mile | 63

work! But there’s a catch: you only have until you get to your floor. At that point,
you’ve lost your chance to interact.

This has only happened to me once or twice, so I don’t think of elevator pitches liter‐
ally. Rather, I think of them as part of the narrative creation toolkit. Good narratives
should be easy to summarize in an elevator pitch form. If you can’t, most likely you
have a problem with your story, and it’s time to iterate.

The next time you’re working on your project, try your elevator
pitch before and after you think you’re done. That’s your litmus test.

Presenting Your Narrative
Here are some good tips for the delivery stage:

Ensure that you have a well-defined narrative.
If you followed the iterative approach, the narrative was always there, and you
just need to discipline yourself. If you didn’t, sketch the narrative before starting
your deck or memo. When you’re done, have someone go through your slides
and ask for their version of the narrative. The narrative should be apparent to
anyone if they only focus on the key messages per slide. If they can’t identify it,
you need to go back to the drawing board. There should also be clear and natural
transitions between these messages.

Each slide should have a clear message.
If a slide doesn’t have a clear message consistent with your narrative, drop it.

Always practice giving the presentation.
This is always true, but especially so if your audience includes top executives in
the organization (and you should want this to be the case). A good practice is to
record yourself: not only will this help you manage your time, but it will also help
you identify any tics and mannerisms you may have.

Time management.
Before presenting, you should already know how long it takes you without inter‐
ruptions, so you better plan for the extra time. Also remember that you are the
sole owner of your presentation, so you’re entitled to (kindly) move on from
questions that are taking you away from the key messages.

Quantify whenever you can, but don’t overdo it.
It goes without saying that DS is a quantitative field. Very often, however, I see
data scientists describing their results in qualitative or directional terms. Instead
of saying “Bad user experience increases churn,” put some numbers into that

64 | Chapter 7: Narratives

statement: “Each additional connection failure decreases net promoter score by
3 pp.” That said, don’t overstate your results: if you’re working with estimates,
most likely you can round up your result to the nearest integer.

Key Takeaways
These are the key takeaways from this chapter:

Effective narratives in data science
Effective narratives are sequences of events connected by a story with the objec‐
tive of driving action.

Properties of good narratives
To drive action, narratives must be clear and to the point, credible, memorable,
and actionable.

Science as storytelling
I suggest an iterative approach to creating a narrative: start with the business
problem and create stories or hypotheses that address the problem, test and
refine them with the data iteratively, and finish with the delivery-stage narrative.
This last narrative naturally evolves from the initial hypotheses.

Structure of a narrative
You may wish to follow the narrative arc: setup, struggle, and resolution. I’ve
found it more effective to follow a simple and to-the-point storyline: what, so
what, now what. These almost map one-to-one, but in data science I see little
value in creating suspense or a sense of struggle.

TL;DRs and elevator pitches
These are great tools for achieving the right amount of simplification and to
double-check that you indeed have a coherent narrative. TL;DRs may work as
teasers for high-level executives who will only spend time going through the
material if there’s something memorable and actionable.

Practice makes perfect
Invest enough time practicing the delivery. If possible, record yourself.

Further Reading
There are many great references on narratives and storytelling with data. Storytelling
with Data by Cole Nussbaumer Knaflic (Wiley) is great at improving your data visual‐
ization techniques, but also has a very good chapter on building narratives. I haven’t
covered datavis in this chapter, but this is a critical skill for data scientists who are
creating a story. Chapter 8 goes into some of these skills. In a similar vein, Effective
Data Storytelling: How to Drive Change with Data, Narrative and Visuals by Brent

Further Reading | 65

Dykes (Wiley) is full of good insights. I found very useful his discussion on the inter‐
play among data, visuals, and narrative.

Simply Said: Communicating Better at Work and Beyond by Jay Sullivan (Wiley)
emphasizes the value of simplicity in general communication, written or not. His
advice on writing short sentences (less than 10 words) is powerful.

It Was the Best of Sentences, It Was the Worst of Sentences: A Writer’s Guide to Crafting
Killer Sentences by June Casagrande (Ten Speed Press) is targeted at writers, but there
are a ton of great suggestions to become a better communicators. Her emphasis on
thinking about the audience (“the Reader is king”) should be the North Star when
building narratives.

Resonate: Present Visual Stories that Transform Audiences by Nancy Duarte (John
Wiley and Sons) is great if you want to learn the art of storytelling from a designer’s
point of view. You will also find tons of details on many topics covered here in Made
to Stick: Why Some Ideas Survive and Others Die by Chip Heath and Dan Heath (Ran‐
dom House). Their six principles will resonate quite a bit: simplicity, unexpectedness,
concreteness, credibility, emotions, and stories.

The Hard Truth About Soft Skills: Workplace Lessons Smart People Wish They’d
Learned Sooner by Peggy Klaus makes a strong case for focusing on your soft skills.
Data scientists focus early on developing their technical expertise, thereby neglecting
the so-called soft skills. The hard truth is that your career depends critically on the
latter.

On narratives in the scientific method, the article by David Grandy and Barry Bick‐
more, “Science as Storytelling”, provides more details on the analogy between the sci‐
entific method and storytelling.

66 | Chapter 7: Narratives

https://oreil.ly/3rn9-

CHAPTER 8

Datavis: Choosing the Right Plot
to Deliver a Message

Chapter 7 went through some good practices to build and deliver powerful narratives
in data science. Data visualizations (datavis) are powerful tools to enrich your narra‐
tives and are a field of study on their own. As such, they need to be chosen as com‐
munication devices. The question you should always ask yourself is: is this plot helping
me convey the message I want to deliver? If the answer is negative, you should go back
to the drawing board and find the right plot for your message. This chapter goes
through some recommendations that will help you improve your visualization skills.

Some Useful and Not-So-Used Data Visualizations
The field of datavis has evolved quite a bit in the last few decades. You can find online
references, catalogues, and taxonomies that should help you find the right type of
graph for your question. You can check the Data Visualisation Catalogue or from
Data to Viz.

Unfortunately, many practitioners stick to default alternatives such as line and bar
plots, often used interchangeably. In this chapter, I’ll review some less well-known
types of plots you can use, and discuss some pitfalls that are common among data
practitioners. This is in no way exhaustive, so at the end of this chapter I’ll point to
some great resources that will provide a more complete picture of the field.

Bar Versus Line Plots
Let’s start with the most basic question of all: when should you use bar and line plots?
One common recommendation is to use bars for categorical data and lines for contin‐
uous data. The most common scenario for continuous data is when you have a time

67

https://oreil.ly/BHQ1t
https://oreil.ly/m75Ww
https://oreil.ly/m75Ww

series, that is, a sequence of observations indexed by a time subscript (yt). Let’s check
the validity of this recommendation.

Remember that a plot should help you deliver a message. With categorical data, such
as average revenue per user across customer segments, most likely you want to high‐
light differences across segments. Moreover, there’s no obvious ordering for the cate‐
gories: you might want to sort them to help deliver a message or not, or you might
just stick to alphabetical order. Bars are great communication devices since it’s easy to
look and compare the heights of the bars.

With time series, it’s common to highlight several properties of the data:

• The sequential ordering that time provides
• The mean or average level
• The trend or growth rate
• Any curvature

Line plots are great if you care about any of these messages.

Figures 8-1, 8-2, and 8-3 display bars and lines for categorical data and two time ser‐
ies (short and long). Starting with categorical data, bars allow for easy comparison of
the metric across segments. Line plots, on the other hand, are not great to visualize
differences across segments. This is because the continuity of a line gives the incorrect
perception that the segments are somehow connected. It requires some extra effort
for the viewer to understand what you are plotting, putting at risk the message you
want to deliver.

Looking at time series data, you might think that bars do an OK job, at least if the
sample is short enough. Once you increase the sample size, unnecessary clutter arises,
and then you must doubt your choice for the plot. Note that a line clearly and quickly
tells you something about the trend and level, without the extra ink. More on this
later when I discuss the data-ink ratio.

Figure 8-1. Bars and lines for customer segments

68 | Chapter 8: Datavis: Choosing the Right Plot to Deliver a Message

Figure 8-2. Bars and lines for a time series

Figure 8-3. Bars and lines for a long time series

Slopegraphs
I learned about slopegraphs when I was going through Edward Tufte’s The Visual Dis‐
play of Quantitative Information (Graphics Press), and it took me some time to grasp
their usefulness. One way to think about slopegraphs is that they are great when you
need to convey a trend message for categorical data. In a sense, slopegraphs combine
the best of bars and lines, since they allow you to compare trends across segments.

Figure 8-4 shows an example of a slopegraph. You can see that lines easily convey
trends for each segment, and the visualization allows for easy comparisons across seg‐
ments. In this example, I only have five segments, so getting the labels right is easy,
but it can be challenging to get a readable plot with more segments. Nonetheless,
there are other tools that can help you out with this, such as using a legend and differ‐
ent colors or line styles (such as dashes, dots, and the like).

Some Useful and Not-So-Used Data Visualizations | 69

Figure 8-4. A slopegraph to highlight differences in trends

Waterfall Charts
Waterfall charts (Figure 8-5) are very often used by business stakeholders, and were
famously popularized by McKinsey. The idea here is to decompose a change in a met‐
ric using segments or categories. I used waterfall charts in Chapter 3 since they’re
great at plotting the output of those decompositions.

Be careful when one of the segments has a substantially different scale, which often
happens when you are using growth rates and some category has a very small starting
value. Also, remember that this type of plot is useful when the message is about the
decomposition.

70 | Chapter 8: Datavis: Choosing the Right Plot to Deliver a Message

Figure 8-5. Revenue by customer segments

Scatterplot Smoothers
Scatterplots are great when you want to convey a message regarding the correlation
between two variables X and Y. Unfortunately, with large datasets it’s very hard to dis‐
play that relationship, even if present.

There are several alternatives to handle this problem. The simplest solution is to cre‐
ate a plot with a random sample of your data. Generally, this is good enough since
most of the time you don’t need the complete dataset. Alternatively, you can use a
hexagonal bin plot that in practice reduces the dimensionality by coloring the density
of hexagonal areas. The same principle applies to contour plots, but this requires a bit
of preprocessing on your part.

An alternative solution is to use a scatterplot smoother that fits a nonlinear smoother
on your data. This nonlinear function is general enough to help you find a relation‐
ship if there’s one. You must be careful, however. One good principle in data visuali‐
zation is to try not to alter the nature of the data (or graphical integrity as Tufte calls
it), and smoothing techniques may alter the viewer’s perception of the data.

Figure 8-6 shows three plots: the first scatterplot uses the entire dataset with 10 mil‐
lion observations. The second repeats the exercise with a small enough random sam‐
ple of the original dataset. The third plot presents the original data and a cubic
scatterplot smoother. Presenting the data is always a good practice: that way the
viewers can decide for themselves if the smoother is a good representation of the
relationship.

Some Useful and Not-So-Used Data Visualizations | 71

https://oreil.ly/sf_MH
https://oreil.ly/sf_MH
https://oreil.ly/91Mtn

Figure 8-6. Scatterplot for a large dataset simulated with a quadratic generating process

Plotting Distributions
Distributions are critical for data scientists, and it’s always a good practice to plot or
print some quantiles of your metric before even starting to work on your project. It’s
less obvious that you should present distributions to your stakeholders, since they are
hard to understand and this might create unnecessary confusion.

Histograms are the standard way to plot a distribution: these are just frequencies of
occurrences in sorted, mutually exclusive subsets of the domain of your metric or
bins. Kernel density estimates (KDE) plots give a smoothed estimate of the distribu‐
tion and depend on two key parameters: a kernel or smoothing function and the
bandwidth. Figure 8-7 shows a histogram and a Gaussian KDE for a simulated
mixed-normal data.

Figure 8-7. Histogram and KDE plot for simulated data

When plotting KDEs, be careful with the scale. KDEs are smoothed
estimates for the underlying distribution, ensuring that they inte‐
grate to one, rendering the scale meaningless. When I plot KDEs, I
usually drop the vertical labels as they might create confusion. In
Figure 8-7, I rescaled the axis to make it comparable to the one in
the histogram.

72 | Chapter 8: Datavis: Choosing the Right Plot to Deliver a Message

https://oreil.ly/29aJ3

With stakeholders, I rarely use histograms or KDEs as these usually have more infor‐
mation than needed to deliver the message. Most of the time you only need a few
quantiles that can be presented with other visualizations, such as a standard box plot.
One exception is when I want to highlight something about the distribution that mat‐
ters to my message; a typical use case is when I want to show that there’s something in
the domain of the metric that shows anomalous behavior, like in fraud prevention.

If you want to highlight shifts in the distribution, you can use box plots. A typical sce‐
nario is when you want to show that the quality of your sales or customers has
changed, say because the average ticket has improved in time. Since the sample aver‐
age is sensitive to outliers, you may want to show what has driven this change.

Figure 8-8 shows two alternative ways to plot these changes. The plot on the left
shows the standard box plot, and on the right I just decided to plot the minimum and
maximum, and the 25%, 50%, and 75% quantiles using a line plot. The box plot con‐
tains much more information than is needed to convey the message, so I decided to
make two changes:

• Present only the data that is absolutely necessary (quantile).
• Use a line plot according to the recommendations at the beginning of the chapter.

Figure 8-8. Two alternatives to plot changes in distribution

General Recommendations
After going through some common pitfalls in data visualization, let’s jump right into
some general recommendations for good design and execution.

Find the Right Datavis for Your Message
The type of plot you choose can alter the way your audience perceives the data, so
you’d better find the one that really helps you convey your message. For instance, do
you want to compare amounts between categories? A change in time? Proportions?
Uncertainty? You can find several resources online that will guide you, depending on

General Recommendations | 73

https://oreil.ly/mTEfe

what you want to communicate. For instance, the Data Visualisation Catalogue dis‐
plays different types of plots depending on “what you want to show.”

I can’t reinforce enough that what matters is the message. As such, I always recom‐
mend trying several plots before deciding on the final output. It takes longer, but the
last mile is critical. Figure 8-9 shows one plot that I discarded when preparing this
chapter. It felt like a great idea to try a box plot and a line plot at the same time, but
the delivery was not helping with my message (too much clutter).

Figure 8-9. A plot that didn’t help with the message

Choose Your Colors Wisely
One common mistake is thinking of color as a decorative feature for the plot. That
may be true in a marketing setting, but in datavis, colors must be selected wisely to
convey a message.

The common scenario is bar plots: you have one metric across categories and you
want to show an interesting insight about one or several segments. A good recom‐
mendation is to choose one and only one color for all bars. I’ve seen many data science
presentations where the speaker decides that the plot looks great if each bar has a dif‐
ferent color. Take a step back and think about your viewers: will they think that you’re
superb at combining colors? That’s possible, but many people actually think that the
different colors represent a third variable that you want to highlight. In cases like this,
where color conveys exactly the same information as the labels on the horizontal axis,
it’s better to choose only one color.

Figure 8-10 shows three examples: the first plot highlights what you want to avoid,
since your segment labels and color represent the same dimension. The middle plot
eliminates this redundancy. The third plot shows an example where coloring helps
you deliver a message: you want your audience to focus on segment b that had terri‐
ble performance. If color is not enough, you can include other text annotations.

74 | Chapter 8: Datavis: Choosing the Right Plot to Deliver a Message

https://oreil.ly/_S7G-

Figure 8-10. Examples with coloring

Different Dimensions in a Plot
The previous example can be generalized to other types of decorative features, such as
different marker types or line styles. The same principle applies: use only one such
feature if it conveys redundant information and may confuse the audience.

That said, you can use those extra features if you have additional information that is
important for your message. The best example is a bubble plot: this is similar to a
scatter plot where you want to say something about the relationship between two
variables X and Y, and you also include a third variable Z, represented by the diame‐
ter of the circular marker, or bubble. An example is shown in Figure 8-11.

Figure 8-11. A third dimension with a bubble plot

Aim for a Large Enough Data-Ink Ratio
When discussing the use of bars in Figure 8-3, I mentioned that you should avoid
clutter; the bars themselves are just providing redundant information. Edward Tufte
formalized this intuition with the data-ink ratio concept. He defines data-ink as the
“non-erasable core of a graphic.” The data-ink ratio is the ratio of data-ink to the total
ink in the graphic. You lower this ratio when you include noninformative features in
the plot; alternatively, if you really just stick to representing the data and nothing else,
you improve upon it.

General Recommendations | 75

1 See, for example, McGurgan et al., “Graph Design: The Data-Ink Ratio and Expert Users,” in Proceedings of the
16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applica‐
tions (VISIGRAPP) 3 (2021): 188–194.

While Tufte supports the idea of maximizing the ratio, I treat the data-ink ratio more
as a North Star than a law set in stone, and there are indeed studies in visual percep‐
tion that contradict Tufte’s recommendation.1 For instance, including extra informa‐
tion to highlight something for your audience, as in the rightmost plot in Figure 8-10,
increases the ratio and is therefore a bad practice. You can judge for yourself, but I’ve
found it useful to help the audience direct their attention to the details that help me
get my point across.

Customization Versus Semiautomation
In a typical scenario, data scientists use visualization tools that help improve their
productivity. These semiautomated tools reduce the time-to-delivery of the plot but
usually provide little space for customization. Aim for flexible tools that allow you to
easily customize your plots.

I tend to support being on the customization side of this spectrum.
Going back to basics with a general-enough tool like Python’s Mat‐
plotlib that allows for a very large degree of customization can only
improve your ability to create the right plot. The learning curve can
be steep at the beginning, but after a while you’ll be able to create
almost any plot you imagine with no substantial effort.

Get the Font Size Right from the Beginning
This may sound like a no-brainer, but this is a mistake I see very frequently in data
science presentations. Choose large enough font sizes for your plots and always check
that every label is readable. And always include a title and labels for your vertical and
horizontal axes. Aim at designing self-explanatory and readable plots.

A good practice when you use Python’s Matplotlib is customizing the rcParams. For
instance, to ensure that I always have a large enough default font size, I always include
something along the following lines at the top of my notebook or script, right after
importing the necessary modules:

set plotting parameters from the beginning
font = {'family' : 'monospace',
 'weight' : 'normal',
 'size' : 14}
axes = { 'titlesize' : 22,
 'labelsize' : 20}
figure = {'figsize':(10,4),

76 | Chapter 8: Datavis: Choosing the Right Plot to Deliver a Message

https://oreil.ly/m4rz3

 'autolayout':True}
matplotlib.rc('font', **font)
matplotlib.rc('axes', **axes)
matplotlib.rc('figure', **figure)

If you think that these new default parameters won’t work for a specific graph, just
overwrite them for that plot.

Interactive or Not
Interactive plots have gained quite a bit of popularity, first with the development of
JavaScript libraries such as D3.js, and now with their availability in Python and R. In
Python you can find several tools to make your plots interactive; among the most
popular are Plotly, Seaborn, and Altair, among others.

In static plots, such as the ones in this chapter, communication with the audience
goes in one direction (from the creator to the audience). In many cases, this is not
optimal since the audience can’t inspect the data by themselves. Interactive plots help
bridge this gap.

However, for most common use cases, they are just an overshoot. The recommenda‐
tion here is to only use them whenever it’s advisable that your audience inspect the
data. Otherwise, stick to static plots with a clear message.

Stay Simple
In Chapter 7, I made a case for creating simple narratives, and this is especially true
for data visualizations. Your objective is to deliver a message, and complex graphs
make it unnecessarily difficult for your audience to understand it. Moreover, if you’re
giving a live presentation, it is very likely that you’ll get questions that will distract
you from your main message.

Start by Explaining the Plot
A common mistake is to assume that the audience understands the plot and jump
right in to explain the main insights derived from it. That’s why you should start by
clarifying your plot: state clearly what’s on the vertical and horizontal axis, and choose
one part of the plot (such as a marker, line, or bar) and explain it. Once you ensure
that the plot is clear, you can deliver your message.

General Recommendations | 77

https://d3js.org
https://plotly.com
https://oreil.ly/CsVh7
https://oreil.ly/zWKfz

Key Takeaways
These are the key takeaways from this chapter:

Purpose of data visualizations
Visualizations should aid you in delivering a message. Before presenting a plot,
ensure that there is a message to deliver; otherwise, drop the plot.

Types of plots
Choose the type that best suits your delivery. Bars are great to compare a metric
across categories. Lines are better if your metric is continuous or to display time
series. Understand the difference and choose wisely.

General recommendations
Aim for simple visualizations and avoid clutter. Choose your colors wisely, and
always ensure that the plot is readable by adjusting the font size. Ensure that your
axes are labeled and that the labels make sense. Include the units when it’s not
self-explanatory. Avoid interactive plots unless strictly necessary.

Further Reading
One of the most cited references in datavis is The Visual Display of Quantitative Infor‐
mation by Edward Tufte (Graphics Press). Among many topics, he discusses in detail
the data-ink ratio. Along with John Tukey and William Cleveland, Tufte is considered
one of the foundational experts in the field.

Another mandatory reference for datavis enthusiasts is The Grammar of Graphics by
Leland Wilkinson (Springer). R’s popular ggplot library was inspired by Wilkinson’s
ideas, and it has had a profound effect on the profession and other widely used visu‐
alization libraries and tools.

A historical account of datavis can be found in “A Brief History of Data Visualization”
by Michael Friendly, published in the Handbook of Data Visualization (Springer).

There are many great modern references on this topic. I highly recommend Claus
Wilke’s Fundamentals of Data Visualization: A Primer on Making Informative and
Compelling Figures (O’Reilly).

Jake VanderPlas’s Python Data Science Handbook (O’Reilly) has some great examples
for topics discussed here and will help you understand some of the intricacies of Mat‐
plotlib. All of his code is on GitHub.

Kennedy Elliott’s “39 Studies About Human Perception in 30 Minutes” reviews some
of the evidence regarding how different plots alter the perception of an object and
their relative efficiency to convey distinct messages.

78 | Chapter 8: Datavis: Choosing the Right Plot to Deliver a Message

https://oreil.ly/DcoGO
https://oreil.ly/Y698n
https://oreil.ly/aneqb

PART II

Machine Learning

CHAPTER 9

Simulation and Bootstrapping

The application of different techniques in the data scientist’s toolkit depends critically
on the nature of the data you’re working with. Observational data arises in the nor‐
mal, day-to-day, business-as-usual set of interactions at any company. In contrast,
experimental data arises under well-designed experimental conditions, such as when
you set up an A/B test. This type of data is most commonly used to infer causality or
estimate the incrementality of a lever (Chapter 15).

A third type, simulated or synthetic data, is less well-known and occurs when a person
re-creates the data generating process (DGP). This can be done either by making
strong assumptions about it or by training a generative model on a dataset. In this
chapter, I will only deal with the former type, but I’ll recommend references at the
end of this chapter if you’re interested in the latter.

Simulation is a great tool for data scientists for different reasons:

Understanding an algorithm
No algorithm works universally well across datasets. Simulation allows you to
single out different aspects of a DGP and understand the sensitivity of the algo‐
rithm to changes. This is commonly done with Monte Carlo (MC) simulations.

Bootstrapping
Many times you need to estimate the precision of an estimate without making
distributional assumptions that simplify the calculations. Bootstrapping is a sort
of simulation that can help you out in such cases.

Levers optimization
There are some cases when you need to simulate a system to understand and
optimize the impact of certain levers. This chapter doesn’t discuss this topic, but
does provide some references at the end.

81

Before delving into these topics, let’s start with the basics of simulation.

Basics of Simulation
A data generating process (DGP) states clearly the relationships among inputs, noise,
inputs, and outputs in a simulated dataset. Take this DGP as an example:

y = α0 + α1x1 + α2x2 + �

x1, x2 ∼ N 0, Σ

� ∼ N 0, σ2

This says that the dataset is comprised of one outcome (y) and two features (x1, x2).
The outcome is a linear function of the features and noise. All of the information
needed to simulate the dataset is included, so the DGP is fully specified.

To create the data, follow these steps:

1. Set up some parameters. Choose the values for α0, α1, α2, the 2 × 2 covariance
matrix Σ, and the residual or pure noise variance σ2.

2. Draw from the distributions. Here, I decided that the features follow a mean-zero
multivariate normal distribution, and that the residuals are to be independently
drawn from a mean-zero normal distribution.

3. Compute the outcome. Once all of the inputs are drawn, you can compute the out‐
come y.

The second step is at the heart of simulation, so let’s discuss this first. Computers can’t
simulate truly random numbers. But there are ways to generate pseudorandom draws
from distributions that have some desirable properties expected when there’s pure
uncertainty. In Python the random module includes several pseudorandom number
generators that can be easily used.

Nonetheless, let’s take a step back and try to understand how these pseudorandom
number generators work. I will now describe the inverse transform sampling method.

Suppose you are able to draw a uniform random number u ∼ U 0, 1 , and you want
to draw from a distribution with a known cumulative distribution function (CDF),
F x = Prob X ≤ x . Importantly, you can also compute the inverse of the CDF. The
steps are (Figure 9-1):

1. Generate K independent draws uk ∼ U 0, 1 .

82 | Chapter 9: Simulation and Bootstrapping

https://oreil.ly/rDWrf

2. For each uk find xk = F−1 uk : the latter are independent draws from the desired
distribution.

Figure 9-1. Inverse transform sampling

The following code snippet shows how to calculate the inverse CDF for a logistic ran‐
dom variable. Each uniform random number is passed as an argument, and then all
you need to do is compute the inverse of the CDF, given some location and scale
parameters:

def logistic_cdf_inverse(y, mu, sigma):
 """
 Return the inverse of the CDF of a logistic random variable
 Inputs:
 y: float: number between 0 and 1
 mu: location parameter
 sigma: scale parameter
 Returns:
 x: the inverse of F(y;mu,sigma)
 """
 inverse_cdf = mu + sigma*np.log(y/(1-y))
 return inverse_cdf

Figure 9-2 shows a Q-Q plot comparing Numpy’s logistic random number generator
and my own implementation using the inverse transform sampling just described, for
three different sample sizes. Q-Q plots are great to visually inspect whether two dis‐
tributions are similar. This is done by comparing corresponding quantiles for the dis‐
tributions on the horizontal and vertical axes: equal distributions must have the same
quantiles creating a plot that lies on the 45-degree diagonal (dashed), so you are look‐
ing for any departures from this ideal scenario. You can see that as the sample size
increases, Numpy’s logistic random number generator and my own implementation
get closer.

Basics of Simulation | 83

https://oreil.ly/yPHM6
https://oreil.ly/nnt5k

Figure 9-2. Numpy’s and my own logistic random variable generator for different sample
sizes

One last important piece of information has to do with the seed of random number
generators. Pseudorandom numbers are generated through a dynamic process like
xt = f xt − 1,⋯, xt − k, x0 . The seed is the initial value of the sequence, so given the
process (and its parameters), you can always replicate the complete sequence. In
practice, seeds are used for the purpose of replication. In the code to this chapter,
you’ll see that I always set a seed to ensure that the results don’t change when I run
the code again.

Simulating a Linear Model and Linear Regression
The simplest simulation that is still useful in machine learning (ML) is that of a linear
model. I will now simulate the following model:

y = 2 + 3 . 5x1 − 5x2 + �

x1, x2 ∼ N 0, diag 3, 10

� ∼ N 0, 1

Note that the features are independent draws from a normal distribution (covariance
matrix is diagonal, and bold denotes vectors or matrices), and that residuals follow a
standard normal distribution.

You are now ready to run the MC simulation. A typical simulation is comprised of
the following steps:

84 | Chapter 9: Simulation and Bootstrapping

1. Fix parameters, seeds, and sample size (N). This ensures that one single MC
experiment can be performed.

2. Define what you wish to accomplish. Typically, you want to test the performance
of an ML algorithm against the true DGP, for instance, by computing the bias.

3. Fix a number of simulations (M), estimate, and save the parameters. For each
experiment, simulate and train the model, and compute the metric defined in the
previous step. For the case of bias, it would be something like:

Bias θ, θ = E θ − θ

Where θ is the true parameter of interest (set up in step 1), θ is an estimate com‐
ing from an ML model, and the expectation is usually replaced with the sample
mean across the M simulations.

Figure 9-3 shows the results from an MC simulation with three hundred experiments
for the linear model defined and parameterized earlier. The estimated parameters for
each experiment are saved, and the plot shows the sample mean and 95% confidence
intervals, as well as the true parameters. The 95% confidence intervals are calculated
directly from the results of the simulation by finding the 2.5% and 97.5% quantiles
across the M experiments.

This is the plain vanilla simulation where all of the assumptions of ordinary least
squares (OLS) are satisfied, so it’s no surprise that linear regression does a great job at
estimating the true parameters.

Figure 9-3. Results from an MC experiment with linear regression

Simulating a Linear Model and Linear Regression | 85

Now that I’ve used an MC simulation to verify that OLS estimates are unbiased, I’ll
try something more interesting. What happens when the signal-to-noise ratio
changes?

Intuitively, the signal-to-noise ratio (SNR) measures the amount of information pro‐
vided by the model (signal) relative to that from the unexplained part of the model
(noise). In general, the more informative features you include, the higher the SNR for
your prediction model.

Using the first simulation as a baseline, it’s straightforward to change the SNR by
changing the residual variance σ2 and holding the variance of the features fixed.
Figure 9-4 plots the results from a new MC simulation with the same parameters as
before, except for the residual variance, which is now one thousand times larger.

Figure 9-4. Linear regression and decreasing the SNR

You can visually validate that OLS remains unbiased in the sense that the average of
the estimates is very close to the true parameters. But because of the lower SNR, esti‐
mates are now less precise (larger confidence intervals). This is a typical symptom
when your SNR is not high enough.

Relevance of SNR
SNR is a very useful concept that all data scientists should feel comfortable with. Not
so long ago, I was estimating the incrementality of a new product (B) on the compa‐
ny’s revenue. This was particularly important because product B could be cannibaliz‐
ing the older product (A), in the sense that the customers were not generating more
revenue by using B, but rather they were substituting the use of A with B so that over‐
all revenue remained the same.

86 | Chapter 9: Simulation and Bootstrapping

This was a frustrating project because my team had already attempted incrementality
estimation for the product, and had found mixed results (sometimes positive, some‐
times negligible). I decided to use one of the techniques in Chapter 15 and again
found that there was a positive but statistically insignificant effect. The reason was
SNR: revenue from product B was still very low relative to the natural variance of the
higher revenues from A. Learning this was humbling: even if there was an incremen‐
tal effect, unless B scaled faster, you wouldn’t be able to find it! Had I figured this out
earlier, I could’ve saved a lot of time, effort, and organizational frustration.

What Are Partial Dependence Plots?
Notwithstanding its subpar predictive performance, linear regression is still great
from an interpretability standpoint. To see this, take the simple linear model used
before:

y = α0 + α1x1 + α2x2 + �

Since the residual is mean-zero by assumption, calculating the conditional expecta‐
tion and partial derivatives, you get:

∂E y �
∂xk

= αk

This shows that each parameter can be interpreted as the marginal effect of the corre‐
sponding feature on the expected outcome (conditioning on everything else). Put dif‐
ferently: in the linear world, a one-unit change in a feature is associated with a change
in αk units in the outcome. This makes OLS potentially great from a storytelling
perspective.

Partial dependence plots (PDPs) are the counterpart for nonlinear models, such as
random forest or gradient boosting regression:

y = f x1, x2

where f represents the possibly nonlinear function that you want to learn.

What Are Partial Dependence Plots? | 87

1 While I find this method intuitive, it’s not the standard way to compute PDPs. In Chapter 13, I’ll discuss this
in depth.

2 Alternatively, you can trim the outliers and set the extremes at some chosen quantiles. The code in the repo
allows for this setting, which is very helpful in applications.

You can easily calculate PDPs for feature j by following these steps:1

1. Train the model. Train the model using the training sample, and save the model
object.

2. Calculate the means of the features. Calculate the means of the K features
� = x1,⋯, xK . Because of random sampling, it shouldn’t matter if you use the
test or training sample.

3. Create a linear grid for the j-th feature x j. Fix a grid size G and create the grid as
grid x j = x0 j, x1 j,⋯, xGj , where indices 0 and G are used to denote the mini‐
mum and maximum values of the feature in your sample.2

4. Compute a means-grid matrix. Matrix � � has the linear grid for x j in the corre‐
sponding column, and means for all other features elsewhere:

� � =

x1 x2 ⋯ x0 j ⋯ xK

x1 x2 ⋯ x1 j ⋯ xK

⋮ ⋮ ⋱ ⋮ ⋮

x1 x2 ⋯ xGj ⋯ xK G × K

5. Make a prediction. Using your trained model, make a prediction using the
means-grid matrix. This gives you the PDP for feature j:

PDP x j = f � �

Note that the partial derivative and the partial dependence plots answer a very similar
question: what is the predicted change in the outcome when only one feature is
allowed to vary? With nonlinear functions, you need to fix everything else at some
value (standard practice is the sample mean, but you can choose otherwise). The par‐
tial derivative focuses on changes, while the PDP plots the entire predicted outcome
given a feature that is allowed to vary.

88 | Chapter 9: Simulation and Bootstrapping

https://oreil.ly/dshp-repo

The pseudocode I’ve shown you works well for continuous features. With categorical
features, you need to be careful with the “grid”: instead of creating a linear grid, you
just create an array of possible values, such as {0,1} for a dummy variable. Everything
else is the same, but a bar plot makes more sense here, as explained in Chapter 8.

I’ll now use the first model I simulated to compare the results from a linear regression
and scikit-learn’s gradient boosting regression (GBR) and random forest regression
(RFR). This is a useful benchmark to set: nonlinear algorithms are expected to be
more powerful at identifying nonlinearities, but are they also good when the true
underlying model is linear?

Figure 9-5 plots the true slopes along with the estimated PDPs for GBR and RFR,
using the maximum depth = 1 parameter that governs the maximum height of each
tree in both algorithms. This is not an unreasonable choice here since the model is
linear in the parameters and features; a single tree wouldn’t be able to learn the DGP,
but this restriction is less important for ensembles. All other metaparameters are
fixed at scikit-learn’s default values.

It’s interesting to see that out-of-the-box GBR makes a great job at recovering the true
parameter for both features. RFR does a decent job with x2 but not with x1.

Figure 9-5. PDPs for GBR and RFR regression (max. depth = 1)

What Are Partial Dependence Plots? | 89

https://oreil.ly/UNDoi
https://oreil.ly/fFCoh

Figure 9-6 shows the results when maximum depth = 7 and everything else is set at
the default values as before. GBR performs well again, and with the additional
allowed nonlinearity, RFR is also able to estimate the true parameters. Interestingly,
with maximum depth ≥ 3, the right shape of the PDP for x1 starts to be recovered
(results in the repo for this chapter). What’s going on here?

Figure 9-6. PDPs for GB and RF regression (max. depth = 7)

This simulation has two parameters that simultaneously give more weight to the sec‐
ond feature x2: it was drawn from a normal distribution with higher variance
(σ22 = 10 > 3 = σ11), and the corresponding parameter is also larger in absolute
value. This means that one standard deviation change in x2 has a larger impact on y
than a corresponding change in x1. The result is that RFR tends to select the second
feature more often in the first and only split of each tree.

Figure 9-7 shows the results when I switch the variances of the simulated features and
everything else remains the same. You can see that RFR now does a better job at esti‐
mating the true effect of the first feature and a relatively bad one (but not terrible as
before) for the second feature. Since the parameters were not changed—only the var‐
iance from the distributions that were drawn—x2 still gets sufficient weight at the first
splits of each tree in the ensemble, so the algorithm is able to pick up part of the true
effect.

90 | Chapter 9: Simulation and Bootstrapping

https://oreil.ly/dshp-repo

Figure 9-7. PDPs when variances of features are switched (max. depth = 1)

You may wonder if there’s another metaparameter that can be optimized to reduce
the bias in this RFR estimation. As mentioned, the problem appears to be that x2 is
given more weight, so it ends up being selected for the first split in the tree (and any
further splits if the maximum depth is increased). One way to proceed is by changing
the default parameter max_features that sets the number of randomly chosen fea‐
tures that are allowed to compete in each split. The default value is the total number
of features (two in this example), so x1 always loses. But if you change it to one fea‐
ture, thanks to the randomness of the selection, you force the ensemble to give it a
free pass sometimes. Figure 9-8 shows the results of making this change.

Figure 9-8. Random forest PDPs (max. depth = 1 and max. features = 1)

Omitted Variable Bias
In linear regression, omitted variable bias takes place when the data scientist fails to
include one feature that must have been included and is correlated to any other
included feature, creating biased parameter estimates and thus, suboptimal predictive
performance.

Omitted Variable Bias | 91

https://oreil.ly/IqzUA

To explain how the bias works, let’s go back to the simple two-feature linear model
presented at the beginning of the chapter, but assume now that the data scientist
includes only the first feature and estimates:

y = β0 + β1x1 + η

The true unobserved coefficient for the included variable is α1, so comparing it to the
coefficient from the misspecified model (β1), you can show that:

β1 = α1 + α2
Cov x1, x2

Var x1
Bias

It follows that there’s bias when the two features are uncorrelated. Moreover, the sign
of the bias depends on the sign of α2 × Cov x1, x2 .

Let’s start by simulating the same DGP as before, but excluding x2. I’ll do this for a
grid of correlation coefficients, since these are bounded to the [−1,1] interval and are
thus easier to work with. Recall that the true parameter is α2 = −5, so the sign of the
bias will be negative the sign of the correlation:

Sgn Bias = − Sgn Cov x1, x2

To simulate x1, x2 ∼ N 0, Σ ρ , you can simplify the parameterization by having unit
variances so that:

Σ ρ =
1 ρ
ρ 1

The steps to run the simulation are as follows:

1. Fix a correlation parameter ρ from the grid.
2. Simulate the DGP given this correlation parameter.
3. For each MC experiment, estimate the parameters excluding the second feature.
4. Compute the bias across all MC experiments.
5. Repeat for all other elements of the grid.

92 | Chapter 9: Simulation and Bootstrapping

Figure 9-9 shows the results from an MC simulation with different correlation
parameters. Four results are noteworthy:

• Bias is null when features are uncorrelated.
• The sign of the bias is negative the sign of the correlation parameter.
• With unit correlation coefficient, bias equals the parameter of the excluded

feature.
• There’s no bias for the intercept (by definition, uncorrelated with the omitted

variable).

Figure 9-9. Bias as a function of the correlation parameter

Let’s summarize this last finding: if you’re going to use linear regression, think really
hard about the features you need to include! That’s why including some controls is
always recommended even if you have only weak hypotheses about the underlying
causal mechanism (for instance, including geographical dummies can help you miti‐
gate the extent of omitted variable bias with features that vary at that level).

This said, these days almost no one uses OLS except in introductory courses or text‐
books or when estimating causal effects (Chapter 15). A natural question is whether
the more predictive algorithms also suffer from this problem.

To answer this, let’s run an MC experiment and compute the bias from OLS and GBR.
But I first need to find a way to estimate parameters with GBR that are comparable to
those in the linear DGP. Inspecting a PDP (Figure 9-5) suggests a simple way to do it:

1. Construct the partial dependence plot for x1.

2. Run a linear regression pdp = γ0 + γ1Grid x1 + ζ.

3. Use the estimated slope parameter γ1 to compute the bias.

Omitted Variable Bias | 93

3 To simulate a multinomial logistic model, you need to use a different technique that takes into account some
properties of logistic multinomial models.

Figure 9-10 plots simulated bias for the case of independent (left plot) and correlated
(right plot) features for OLS and GBR without metaparameter optimization. As
expected, with independent features, bias is indistinguishable from zero (see the
confidence intervals). With positively correlated features, bias is negative and statisti‐
cally different from zero, and this is true for both OLS and GBR. The results are dis‐
couraging and humbling: you cannot fix a data problem with an algorithm.

Figure 9-10. OLS and GBR bias for independent and correlated features

As a general rule, don’t expect your algorithm to fix a problem with
your data. There are robust algorithms, but none is bulletproof.

Simulating Classification Problems
As you may recall, in classification problems the outcome variable is categorical
rather than continuous. These problems arise frequently in data science (DS), with
typical use cases that include predicting customer churn (two categories: a user
churned or didn’t churn), problems where a customer needs to accept or reject an
offer, such as cross- and up-selling or any other marketing campaign, predicting
fraud, and many others.

Latent Variable Models
One standard way to simulate binomial classification models is by using latent vari‐
ables.3 A variable is latent if it can’t be directly observed but affects an observable out‐
come. This definition will become more clear after inspecting the following DGP:

94 | Chapter 9: Simulation and Bootstrapping

https://oreil.ly/K5d8i

z = α0 + α1x1 + α2x2 + �

y =
0 if z < 0
1 if z ≥ 0

� ∼ Logistic μ, s
x1, x2 ∼ N 0, Σ

The latent variable is z, and it follows a simple linear model with logistic disturban‐
ces. You only observe the binomial variable y that depends on the sign of the latent
variable.

The choice of the distribution for the disturbances can help you simulate models with
more or less balanced outcomes. Symmetric distributions like the Gaussian or logistic
generate balanced outcomes, but you can choose an asymmetric distribution if you
want to focus the simulation on the “unbalancedness” of the data (you can also hand-
pick different thresholds without changing the distribution and achieve the same
result).

One important difference with linear regression models is that usually the parameters
in the DGP for the latent variable are not identifiable, meaning that they can’t be
directly estimated; only normalized versions of the parameters can be estimated. To
see this, notice that:

Prob y = 1 = Prob �′α + � ≥ 0
= Prob − � ≤ �′α

= Prob − �
σ
�

≤ �′α
σ
�

= F �′α/σ
�

where F is the CDF for the logistic distribution, and I’ve used the fact that the logistic
PDF is symmetric. The last equation shows that true parameters are indistinguishable
from normalized parameters α/σ�. In the simulation, I will report both sets of param‐
eters to highlight this fact.

Marginal effects in classification models measure the impact of an infinitesimal
change in one feature on the probability of interest. In linear regression this was just
the coefficient corresponding to each feature, but since CDFs are nonlinear in the
parameters, the calculation is not as straightforward for classification models. Since
the derivative of the CDF is the PDF, after applying the chain rule for differentiation,
you get:

Simulating Classification Problems | 95

4 A critical assumption in OLS is that the disturbances have the same variance (homoskedastic). In contrast,
heteroskedastic disturbances have different variance parameters, and OLS is no longer optimal in a very pre‐
cise sense. Weighted least squares are an alternative to OLS when the form of the heteroskedasticity can be
estimated.

∂Prob y = 1
∂xk

= f �′α α
�

= e�′α

1 + e�′α 2 αk

Note how nonlinearity kicks in: in order to calculate the marginal effect of one fea‐
ture, you need to evaluate f �′α . As with PDPs, the standard practice is to use the
sample means of the features to compute the inner product with the estimated
parameters. The sign of the marginal effect depends only on the sign of the true
parameters, which is always a desirable property.

Comparing Different Algorithms
I will now run an MC simulation to compare the results from three different models:

Linear probability model
Run OLS on the observed binary outcome and features. I do not correct for het‐
eroskedasticity using weighted least squares, which is the standard practice when
you want to report confidence intervals (but it doesn’t affect the bias).4

Logistic model
Standard logistic regression. I present both the estimated parameters and the
marginal effects obtained from the last equation.

Gradient boosting classifier
From the scikit-learn library. To make it comparable, I compute the slope of the
PDP.

The parameters for the simulation are as follows:

α0, α1, α2 = 2, 3.5, −5

σ11 = σ22 = s = 1

σ12 = σ21 = μ = 0

σ
�
2 = s2π2 /3 ≈ 3.28

α0/σ
�
, α1/σ

�
, α2/σ

�
≈ 1.1, 1.9, −2.8

96 | Chapter 9: Simulation and Bootstrapping

https://oreil.ly/rfsei
https://oreil.ly/H3JkU

The last line shows the true normalized parameters that will serve as a benchmark.

Results can be found in Figure 9-11. The two main lessons from this simulation are:

True parameters are not identified.
Compared to the true parameters in the DGP, estimated parameters from the
logistic regression are off since they are not identifiable. Nonetheless, estimates
are very close to normalized parameters as expected: compare the estimates (1.0,
1.8, −2.6) with the true normalized parameters earlier.

The three methods estimate the right marginal effects.
Theoretical marginal effects from the logistic regression (PDF times the coeffi‐
cient), coefficients from a linear probability model, and PDP slopes from GBR
are in agreement.

Figure 9-11. Classification simulation: comparison of estimates

Lessons from the Classification Simulation
When using a gradient boosting or random forest classifier, you can use the PDP to
start opening the black box. In some cases, it’s convenient to estimate linear regression
directly on binary outcomes (linear probability model): estimated parameters can be
interpreted as marginal effects on the probability. Be careful with confidence intervals
and predicted values: to get good confidence intervals, you need to use weighted least
squares or a robust estimator, and predicted values are not bounded to the unit inter‐
val (so you may end up with negative or larger-than-one probabilities).

Bootstrapping
Monte Carlo simulation is all about generating datasets by specifying the DGPs. In
contrast, bootstrapping generates samples from the current dataset and is mostly used
to quantify the variance of an estimate. Examples of estimates that are relevant in data

Bootstrapping | 97

science are PDPs (and marginal effects), precision and recall, and the like. Since these
depend on the sample at your disposal, there will always be some sampling variation
that you may want to quantify.

To describe how bootstrapping works, assume that the number of observations in
your sample is N. Your estimate is a function of your sample data, so:

θ = θ yi, �� i = 1
N

A pseudocode for bootstrapping is:

1. Set the number of bootstrap samples (B).
2. For each sample b = 1, ..., B:

a. Randomly select, with replacement, N rows from your dataset.
b. Calculate and save your estimate, given this bootstrap sample:

θ
b

= θ yi
b, ��

�

� = 1
�

3. Calculate the variance or confidence interval using the B estimates. For instance,
you can calculate the standard deviation like this:

SD θ =
∑b = 1

B θ
b

− AVG θ
b 2

B − 1

A typical use case is when you decide to plot the true positive rate (TPR) after divid‐
ing your sample in equally spaced buckets, such as deciles (see Chapter 6). In classifi‐
cation models it’s natural to expect that the score is informative of the actual
occurrence of the event, implying that the TPR should be a nondecreasing function of
the score (higher scores, higher incidence).

To give a concrete example, suppose you trained a churn model predicting whether a
customer will stop purchasing in the next month or not. You make a prediction for
two customers and get the scores ŝ1 = 0.8 and ŝ2 = 0.5. Ideally, these would represent
actual probabilities, but in most cases, scores and probabilities don’t map one-to-one,
so this requires some calibration. But even if the scores can’t be interpreted as proba‐
bilities, it would be great if they’re at least directionally correct, in the sense that the
first customer is more likely to churn.

Plotting TPRs by buckets allows you to see if your model is informative in this sense.
But there’s a catch! Because of sampling variation, monotonicity really depends on
the desired granularity. To see this principle in action, Figure 9-12 shows TPR for

98 | Chapter 9: Simulation and Bootstrapping

quintiles, deciles, and 20-tiles (ventiles), along with bootstrapped 95% confidence
intervals. You can see that monotonicity holds when I use quintiles and deciles. What
happens when you decide to increase the granularity to 20 equally spaced buckets? If
you hadn’t plotted the confidence intervals, you would’ve concluded that there’s
something off with your model (see buckets 11, 15, and 19). But it’s all about sam‐
pling variation: once you take this into account, you can safely conclude that these
buckets are not statistically different from their neighbors.

Figure 9-12. Bootstrapping TPRs from a classification model

If you have a statistics background, you may think that bootstrapping is unnecessarily
complicated in this example, since you just need to calculate the parametric variance
of the TPR per bucket, which follows a binomial distribution (so for deciles, the

Bootstrapping | 99

variance can be calculated as N /10 × TPRd × 1 − TPRd). With this you can calculate
parametric confidence intervals. You’re right; bootstrapping is most useful when:

• You want to calculate the variance without making distributional assumptions
(that is, nonparametric estimation).

• Computing the variance analytically is hard or computationally expensive.

Key Takeaways
These are the key takeaways from this chapter:

No algorithm works universally well across datasets.
Since real-world data is not perfect, you may want to check if the algorithm per‐
forms correctly in a simulated example.

Algorithms won’t fix data issues.
Knowing the limitations of each training algorithm is critical. Moreover, if you
have issues with your data, don’t expect the algorithm to fix them.

Simulation as a tool for understanding algorithm limitations.
In this chapter, I’ve presented several examples where simulation provides
insights into the pros and cons of different algorithms. Other examples can be
found in the repo for this chapter (outliers and missing values).

Partial dependence plots are great tools for opening the black box of many ML
algorithms.

To showcase the power of simulation, I computed PDPs and compared them to
the parameters of linear regression and classification.

Bootstrapping can help you quantify the precision of your estimates.
Bootstrapping is similar to Monte Carlo simulation in the sense that you draw
repeated samples—not from simulated DGPs but from your dataset—and infer
some statistical properties with this information.

Further Reading
The field of simulation is vast, and this chapter barely scratched the most basic prin‐
ciples. Simulation is an essential tool in Bayesian statistics and generative ML models.
For the former, you can check Andrew Gelman et al., Bayesian Data Analysis, 3rd ed.
(Chapman and Hall/CRC Press). A great reference for the latter is Kevin Murphy’s
Machine Learning: A Probabilistic Perspective (MIT Press). He also has two updated
versions that I haven’t reviewed but should be great.

100 | Chapter 9: Simulation and Bootstrapping

https://oreil.ly/dshp-repo

Monte Carlo Statistical Methods by Christian Robert and George Casella (Springer) is
a now classic reference on the vast and complex field of Monte Carlo simulations and
how to draw from distributions. Note that this book is for the technically inclined.

You can find more information on bootstrapping in The Elements of Statistical Learn‐
ing: Data Mining, Inference, and Prediction, 2nd ed., by Trevor Hastie et al. (Springer,
and available online on the author’s web page). You can also find information on
some of the methods used for linear and logistic regression.

Practical Synthetic Data Generation by Khaled El Emam et al. (O’Reilly) provides
some useful information on simulating synthetic data. As I mentioned at the begin‐
ning of the chapter, you can simulate data by making assumptions about the data
generating processes behind a dataset, or you can train a model on real-world data
that can be used to generate synthetic datasets. This book provides some practical
guidance on how to do it.

The omitted variable bias and the lack of identification in logistic regression are
pretty standard results that can be found in any econometrics textbook. See for
instance William Greene’s Econometric Analysis, 8th ed. (Pearson).

In Analytical Skills for AI and Data Science, I discuss the use of simulation for levers
optimization. Scott Page’s The Model Thinker: What You Need to Know to Make Data
Work for You (Basic Books) is a good reference if you want to explore this subject. See
also Stochastic Simulation by Brian Ripley (Wiley).

Further Reading | 101

https://oreil.ly/QvSUb

1 OLS stands for ordinary least squares, which is the standard method used to train linear regression. For con‐
venience I treat them as equivalent, but bear in mind that there are other loss functions that can be used.

CHAPTER 10

Linear Regression: Going Back to Basics

Linear regression (OLS1) is the first machine learning algorithm most data scientists
learn, but it has become more of an intellectual curiosity with the advent of more
powerful nonlinear alternatives, like gradient boosting regression. Because of this,
many practitioners don’t know many properties of OLS that are very helpful to gain
some intuition about learning algorithms. This chapter goes through some of these
important properties and highlights their significance.

What’s in a Coefficient?
Let’s start with the simplest setting with only one feature:

y = α0 + α1x1 + �

The first parameter is the constant or intercept, and the second parameter is the slope,
as you may recall from the typical functional form for a line.

Since the residuals are mean zero, by taking partial derivatives you can see that:

α1 = ∂E y
∂x1

α0 = E y − α1E x1

103

As discussed in Chapter 9, the first equation is quite useful for interpretability rea‐
sons, since it says that a one-unit change in the feature is associated with a change in
α1 units of the outcome, on average. However, as I will now show, you must be careful
not to give it a causal interpretation.

By substituting the definition of the outcome inside the covariance, you can also
show that:

α1 =
Cov y, x1
Var x1

In a bivariate setting, the slope depends on the covariance between the outcome and
the feature, and the variance of the feature. Since correlation is not causation, you
must be cautious not to interpret these causally. A non-null covariance can arise from
different factors:

Direct causation
As you would like to interpret it (x1 y).

Reverse causation
x1 y, since the covariance is symmetric on the arguments.

Confounders
A confounder is any third variable that affects both x and y, but these are other‐
wise unrelated (Figure 10-1).

Figure 10-1. Confounders

Estimates from linear regression provide information about the
degree of correlation between a feature and an outcome, and it can
only be interpreted causally in very specific situations (see Chap‐
ter 15). This warning also applies to other ML algorithms such as
gradient boosting or random forests.

A more general result applies for multiple regression (that is, a regression with multi‐
ple covariates):

104 | Chapter 10: Linear Regression: Going Back to Basics

αk =
Cov y, xk
Var xk

where xk is the residual from running a regression of the k-th feature on all other
features (–k):

xk = xk − �−�θ−�

For the bivariate linear model, the snippet in Example 10-1 shows that linear regres‐
sion and the simpler covariance formula agree numerically.

Example 10-1. Verifying that OLS and the bivariate covariance formula agree

def compute_alpha_1feat(ydf, xdf):
 """Compute alpha using var-cov formula and linear regression
 for the simple case of y = a + b x
 Inputs:
 ydf, xdf: dataframes with outcome and feature
 Outputs:
 Estimated coefficients from two methods: Cov() formula and
 linear regression
 """
 # Using covariance formula
 cat_mat = ydf.copy()
 cat_mat['x'] = xdf['x1'] # concatenate [y|x] so I can use the .cov() method
 vcv = cat_mat.cov()
 cov_xy = vcv['y'].loc['x']
 var_x = vcv['x'].loc['x']
 beta_vcv = cov_xy/var_x
 # using linear regression
 reg = LinearRegression(fit_intercept=True).fit(xdf, ydf.values.flatten())
 beta_reg = reg.coef_[0]

 return beta_vcv, beta_reg

compute and print
b_vcv, b_reg = compute_alpha_1feat(ydf=ydf, xdf=Xdf[['x1']])
decimals = 10
print(f'Alpha vcv formula = {b_vcv.round(decimals=decimals)}')
print(f'Alpha OLS = {b_reg.round(decimals=decimals)}')

Alpha vcv formula = 3.531180168,
Alpha OLS = 3.531180168

For the case of more than one feature, you can use the following function to verify
that the more general covariance formula agrees with OLS. Note that I first compute
the residuals of a regression of feature k on all other features:

What’s in a Coefficient? | 105

def compute_alpha_n_feats(ydf, xdf, name_var):
 """
 Compute linear regression coefficients by:
 1. Orthogonalization (Cov formula)
 2. OLS
 Inputs:
 ydf, xdf: dataframes with outcome and features
 name_var: string: name of feature you want to compute
 Outputs:
 Coefficient for name_var using both methods

 """
 # Run regression of name_var on all other features and save residuals
 cols_exc_x = np.array(list(set(xdf.columns) - set([name_var])))
 new_x = xdf[cols_exc_x]
 new_y = xdf[name_var]
 reg_x = LinearRegression().fit(new_x, new_y.values.flatten())
 resids_x = new_y - reg_x.predict(new_x)
 # Pass residuals to Cov formula
 cat_mat = ydf.copy()
 cat_mat['x'] = resids_x
 vcv = cat_mat.cov()
 cov_xy = vcv['y'].loc['x']
 var_x = vcv['x'].loc['x']
 beta_vcv = cov_xy/var_x
 # using linear regression
 reg = LinearRegression().fit(xdf, ydf.values.flatten())
 all_betas = reg.coef_
 ix_var = np.where(xdf.columns == name_var)
 beta_reg = all_betas[ix_var][0]

 return beta_vcv, beta_reg

The more general covariance formula leads to an important result called the Frisch-
Waugh-Lovell theorem.

The Frisch-Waugh-Lovell Theorem
The Frisch-Waugh-Lovell theorem (FWL) is a powerful result that helps build a lot of
intuition about the inner workings of linear regression. It essentially says that you can
interpret the OLS estimates as partialled-out effects, that is, effects net of any other
dependencies between features.

Say that you’re running a regression of sales per customer on the price they paid and
state dummy variables. If a stakeholder asks you if the price coefficient can be
explained by state-wise variation in pricing, you can use the FWL theorem to con‐
vincingly say that these are net effects. The price effect has already been cleaned out of
any differences in pricing across states (you have already controlled for state
differences).

106 | Chapter 10: Linear Regression: Going Back to Basics

To present the theorem I’ll use the simpler two-feature linear model again, but the
theorem applies to the more general case of any number of regressors:

y = α0 + α1x1 + α2x2 + �

FWL states that you can estimate a specific coefficient, say α1, by using a two-step
process:

1. Partialling out x2:

a. Run a regression of y on x2 and save the residuals: y1.

b. Run a regression of x1 on x2 and save the residuals: x1.

2. Regression on residuals:
a. Run a regression of y1 on x1. The slope is an estimate of α1.

The partialling-out step removes the effect of any other regressor on the outcome and
the feature of interest. The second step runs a bivariate regression on these residuals.
Since we have already partialled out the effect of x2, only the effect of interest remains.

Example 10-2 shows the results when I simulate a linear model with three features,
and estimate each coefficient using the FWL partialling-out method and plain linear
regression. I use the code snippet in Example 10-2 to make the comparison.

Example 10-2. Checking the validity of FWL

def check_fw(ydf, xdf, var_name, version = 'residuals'):
 """
 Check the Frisch-Waugh theorem:
 Method 1: two-step regressions on partialled-out regressions
 Method 2: one-step regression
 Inputs:
 ydf, xdf: dataframes with Y and X respectively
 var_name: string: name of feature we want to apply the FW for
 version: string: ['residuals','direct'] can be used to test
 both covariance formulas presented in the chapter
 'residuals': Cov(tilde{y}, tilde{x})
 'direct': Cov(y, tilde{x})
 """
 # METHOD 1: two-step regressions
 nobs = ydf.shape[0]
 cols_exc_k = np.array(list(set(xdf.columns) - set([var_name])))
 x_k = xdf[cols_exc_k]
 # reg 1:
 reg_y = LinearRegression().fit(x_k, ydf.values.flatten())
 res_yk = ydf.values.flatten() - reg_y.predict(x_k)
 # reg 2:

The Frisch-Waugh-Lovell Theorem | 107

 new_y = xdf[var_name]
 reg_x = LinearRegression().fit(x_k, new_y.values.flatten())
 res_xk = new_y.values.flatten() - reg_x.predict(x_k)
 res_xk = res_xk.reshape((nobs,1))
 # reg 3:
 if version=='residuals':
 reg_res = LinearRegression().fit(res_xk, res_yk)
 else:
 reg_res = LinearRegression().fit(res_xk, ydf.values.flatten())
 coef_fw = reg_res.coef_[0]
 # METHOD 2: OLS directly
 reg = LinearRegression().fit(xdf, ydf.values.flatten())
 coef_all = reg.coef_
 ix_var = np.where(xdf.columns == var_name)[0][0]
 coef_ols = coef_all[ix_var]

 return coef_fw, coef_ols

cols_to_include = set(Xdf.columns)-set(['x0'])
decimals= 5
print('Printing the results from OLS and FW two-step methods \nVersion = residuals')
for col in ['x1', 'x2', 'x3']:
 a, b = check_fw(ydf, xdf=Xdf[cols_to_include], var_name=col, version='residuals')
 print(f'{col}: FW two-steps = {a.round(decimals=decimals)},
 OLS = {b.round(decimals=decimals)}')

Printing the results from OLS and FW two-step methods
Version = residuals
x1: FW two-steps = 3.66436, OLS = 3.66436
x2: FW two-steps = -1.8564, OLS = -1.8564
x3: FW two-steps = 2.95345, OLS = 2.95345

Going back to the covariance formula presented earlier, FWL implies that:

αk =
Cov yk, xk

Var xk

where as before, xk denotes the residuals from a regression of feature k on all other
features, and yk denotes the residuals from a regression of the outcome on the same
set of features. The Python script allows you to test that both versions of the general
covariance formula give the same results (using the version argument).

An important property of OLS is that the estimated residuals are orthogonal to the
regressors (or any function of the regressors), a process also known as orthogonaliza‐
tion. You can use this fact to show that the two covariance formulas are equivalent.

108 | Chapter 10: Linear Regression: Going Back to Basics

Importantly, orthogonalization always has to be performed on the feature of interest.
If you only orthogonalize the outcome y, the covariance formula is no longer valid,
unless the features are already orthogonal with each other, so in general:

αk ≠
Cov yk, xk

Var xk

Why Should You Care About FWL?
I’ve presented several versions of the orthogonalization result, so you should expect it
to be relevant. The main takeaway is this:

You can interpret each coefficient from linear regression as the net effect of each fea‐
ture after cleaning it from the effects from any other feature.

Here’s one typical scenario where this interpretation matters a lot:

x1 ∼ N 0, σ1
2

x2 = β0 + β1x1 + �

y = α0 + α1x1 + α2x2 + η

In this case, x1 has a direct and an indirect effect on the outcome y. An example could
be your state or geographic dummy variables. These tend to have direct and indirect
effects. When you interpret the coefficient of x2, it would be great if you can say that
this is net of any state differences, since you’re already controlling for that variable.

Figure 10-2 shows the true parameter, OLS estimate, and gradient boosting regres‐
sion (GBR) partial dependence plot (PDP) for a simulation of the previous data gen‐
erating process. Thanks to FWL, you know that OLS will capture net effects correctly.
GBR does well for x2, but not so well for x1.

To understand what’s going on, recall how PDPs are calculated: fix one feature at the
sample mean, create a grid for the one you care about, and make a prediction. When
you fix x2, x1 displays a combination of direct and indirect effects, and the algorithm
doesn’t know how to separate them. This just reinforces the message that OLS is great
for interpretability purposes, but requires quite a bit of effort to get the performance
that even a relatively out-of-the-box GBR has with nonlinear models.

Why Should You Care About FWL? | 109

Figure 10-2. OLS and gradient boosting with direct and indirect effects

Confounders
Now that I’ve described the FWL theorem, I want to go back to the problem of con‐
founders (Figure 10-1). Suppose that a confounder (w) affects two otherwise unrela‐
ted variables:

x = αx + βxw + �x

y = αy + βyw + �y

�x ⊥⊥ �y

�x, �y ⊥⊥ w

where the symbol ⊥⊥ denotes statistical independence. Using the covariance formula
for the slope coefficient in a regression of y on x, it becomes apparent why OLS shows
spurious results:

Cov y, x
Var x =

βxβyVar w

βx
2Var w + Var �x

What if you first cleaned that common factor out? That’s exactly what FWL tells you
that linear regression does, so you can safely run a regression of the form:

y = α0 + α1x1 + α2w + �

By also including the common factor w, OLS will effectively partial out its effect.
Figure 10-3 shows the results of estimating the bivariate and spurious regression (left

110 | Chapter 10: Linear Regression: Going Back to Basics

2 At a high level, a time series is stationary when its probability distribution doesn’t change in time. Weak statio‐
narity refers only to the first two moments, and strong stationarity requires that the joint distribution is con‐
stant. The mean for a trending variable changes, so it can’t be stationary (unless it’s trend-stationary).

3 AR(1) denotes an autoregressive process of order 1.

plot) and the partialled-out version when you also include the third factor as in the
previous equation (right plot). I also include 95% confidence intervals.

Without controlling for the confounder, you would conclude that x and y are indeed
correlated (confidence interval away from zero), but once you control for w, this
becomes the only relevant (statistically significant) factor.

Figure 10-3. FW and controlling for confounders (estimate and 95% CI)

This result is very useful in many applications. In time series analysis, for example, it’s
quite common to have trend-stationary variables that can be modelled like this:

y1t = α1 + β1t + �1t

y2t = α2 + β2t + �2t

Thanks to FWL, you already know why these are called trend-stationary: once you
control for a time trend (t above), thereby cleaning them from this effect, you end up
with a stationary time series.2

Suppose you run a regression of one on the other:

y2t = θ0 + θ1y1t + ζt

Since you’re not controlling for the common trend, you will end up incorrectly con‐
cluding that they are correlated. Figure 10-4 shows regression results from a
simulation of two trend-stationary AR(1) processes that are unrelated by design.3 The

Confounders | 111

https://oreil.ly/ewcVV

plot shows the estimated intercept (constant) and slope for the second variable (y2),
as well as 95% confidence intervals.

Figure 10-4. OLS on spurious time series regression

It’s quite common to have spurious correlation with time series, as
they most often display a time trend. Since it can act as a con‐
founder, it’s always recommended to include a linear time trend as
a control. This way you clean up any noise that may arise from this
potential confounder.

Additional Variables
Chapter 9 described the omitted variable bias that showed that excluding a variable
that should have been included results in biased OLS estimates and thus, reduced pre‐
dictive performance; importantly, this is also true for other machine learning (ML)
algorithms.

What happens if instead of omitting important variables, you include additional irrel‐
evant features? One of the nice properties of OLS is that including uninformative fea‐
tures creates no bias, and only affects the variance of the estimates. Figure 10-5
reports the mean and 90% confidence intervals for each estimated parameter from a
Monte Carlo simulation, where:

• Only one feature is informative (x1, with true coefficient α1 = 3).

• Four more uninformative controls are included when the model is trained.
• Two models are trained: OLS and an out-of-the-box gradient boosting

regression.

Both algorithms perform correctly on two fronts: they are able to correctly estimate
the true parameter, and dismiss the uninformative variables.

112 | Chapter 10: Linear Regression: Going Back to Basics

4 Recall that the OLS estimator is X′X −1X′Y.

Figure 10-5. Effect of including uninformative controls

However, you must be cautious with ensemble learning algorithms since these tend to
be quite sensitive when uninformative features are included, if these are highly corre‐
lated with the real underlying variables. You can typically see this with the dummy
variable trap. The typical scenario arises with models with a dummy variable, like the
following:

y = α0 + α1x + α2Dl + �

Dl =
1 if customer is left‐handed
0 if customer is right‐handed

In OLS, the dummy variable trap arises when you include an intercept and dummies
for all available categories. In this example, you can only include one dummy variable
for left- or right-handedness, but not both, because the cross-product matrix X′X is
not invertible (and thus the OLS estimates don’t exist).4 The solution is to always leave
out the dummy variable for a reference category, in the example, the right-handed
category.

This computational restriction doesn’t exist with ensemble algorithms like random
forests or gradient boosting regression, but since dummy variables like Dl and Dr = 1
− Dl are perfectly correlated, it’s normal to find both ranking very high in terms of
feature importance. Since they provide the exact same information, the performance
of the algorithm doesn’t improve by including both. This is one useful intuitive fact
that arises naturally by understanding OLS.

Additional Variables | 113

Avoid the Dummy Variable Trap
In OLS, there is a dummy variable trap when you include an intercept and dummies
for all categories in a categorical variable; in this case, the estimator doesn’t exist.

If you use ensemble learning, you don’t have this computational restriction, but these
redundant features provide no extra information or predictive performance.

The Central Role of Variance in ML
One central tenet in ML is that you need variation in the features and the outcome for
your algorithm to identify the parameters, or put differently, to learn the correlation.
You can see this directly in the covariance formulation presented at the beginning: if x
or y are constant, the covariance is zero, and hence OLS can’t learn the parameter.
Moreover, if x is constant, the denominator is zero, and thus the parameter doesn’t
exist, a result strongly connected to the dummy variable trap.

You need variation in the inputs if you want to explain variation in
the output. This is true for any ML algorithm.

You may recall that in OLS, the estimates for the coefficients and the covariance
matrix are:

β = X′X −1X′Y

Var β = s2 X′X −1

where s2 is the sample estimate of the residual variance, and XN × P is the feature
matrix, including the vector of ones that correspond to the intercept.

From these equations, two results follow:

Conditions for identification
There can’t be perfect correlation between features (perfect multicollinearity) for
the cross-product matrix X′X to be positive definite (full rank or invertible).

Variance of the estimates
The more correlated the features, the higher the variance of the estimates.

While the first part should be straightforward, the second requires a bit of mathemat‐
ical manipulation to show for the general case of multiple regression. In the repo for

114 | Chapter 10: Linear Regression: Going Back to Basics

https://oreil.ly/dshp-repo

5 In a bivariate setting, Var β1 = Var residual /Var x .

this chapter, I include a simulation that verifies this condition in the case of multiple
regression. For a simple bivariate regression, it’s easy to show that the variance of the
estimate is negatively related to the sample variance of the feature, so having covari‐
ates that exhibit more variation provides more information, thereby improving the
precision of the estimates.5

Figure 10-6 plots the average and 95% confidence intervals for the estimates from
OLS and gradient boosting regression after simulating a bivariate linear DGP where
Var(x1) is increased over a grid. As discussed, for OLS the variance of the estimate
decreases as the covariate displays more variation. Notably, the same is true for GBR.

Figure 10-6. Variance of an estimate for OLS and GBR

This principle is at play in a practice that is not uncommon among data scientists.
Imagine that you’re running a regression like the following:

yi = α + ∑
s

θsDis + γzs i + �i

Dis =
1 if customer i lives in state s
0 otherwise

zs i = state sample average of z given the state where i lives

If y denotes sales per customer and z household income, this model says that sales
vary across states (dummy variables) and that there’s an independent effect whereby
richer states also purchase more (proxied with the average household income for
each state).

While your intuition might be right, you won’t be able to train this model with OLS
since there’s perfect multicollinearity. In other words, the state dummy variables and
state averages of any metric you can think of provide the exact same information. And
this is true for any ML algorithm!

The Central Role of Variance in ML | 115

Dummy Variables and Group-Level Aggregates
If you include dummy variables to control for group-level variation, there’s no need to
include aggregates for any other feature at that same level: the two provide exactly the
same variation.

For instance, if you include state dummy variables, and you’re tempted to also include
average household spend per state and median prices per state, no matter how different
they sound, they provide exactly the same amount of information.

To check this, I simulate a simple model using the data generating process I just cov‐
ered, where I include three states (and thus, two dummy variables to avoid the
dummy variable trap) drawn from a multinomial distribution (code can be found in
the repo). Example 10-3 shows that the features matrix is indeed low rank, implying
that there’s perfect multicollinearity.

Example 10-3. State dummies: effect of dropping the state average

Show that X is not full column rank (and thus, won't be invertible)
print(f'Columns of X = {Xdf.columns.values}')
rank_x = LA.matrix_rank(Xdf)
nvars = Xdf.shape[1]
print(f'X: Rank = {rank_x}, total columns = {nvars}')
what happens if we drop the means?
X_nm = Xdf[[col for col in Xdf.columns if col != 'mean_z']]
rank_xnm = LA.matrix_rank(X_nm)
nvars_nm = X_nm.shape[1]
print(f'X_[-meanz]: Rank = {rank_xnm}, total columns = {nvars_nm}')

Columns of X = ['x0' 'x1' 'D1' 'D2' 'mean_z']
X: Rank = 4, total columns = 5
X_[-meanz]: Rank = 4, total columns = 4

To check that the same point is valid for more general nonlinear algorithms, I ran a
Monte Carlo (MC) simulation of this same model, training it with gradient boosting
regression (no metaparameter optimization) and calculated the mean squared error
(MSE) for the test sample using the complete set of features and after dropping the
redundant mean feature. Figure 10-7 shows the average MSE along with 90% confi‐
dence intervals for MSE. You can verify that the predictive performance is virtually
the same, as you would expect if the extra variable provides no additional
information.

116 | Chapter 10: Linear Regression: Going Back to Basics

https://oreil.ly/dshp-repo

Figure 10-7. Results from MC simulation for gradient boosting

Use Case: Detecting Fraud
To see the power of this intuition, let’s go into a high-stakes use case. If the goal is to
build a fraud-detection ML model, which features should you include? Here’s one
possible story that applies very generally.

Since fraudsters don’t want to get caught, they will try to appear as normal consumers.
However, they don’t usually know the distribution of the metrics, whereas you do
know it. Suppose you have some metric x, like the amount or ticket of the transaction.
One way you can transform it to help the algorithm detect an anomaly is by creating a
ratio of the feature relative to some benchmark, like the 95% quantile:

xnorm = x
xq95

With this transformation, whenever x is higher than the selected quantile, it will be
larger than one, and the hope is that the algorithm might detect some pattern indica‐
tive of fraud.

By now you’d be right to be suspicious about this logic, since the normalized feature
has exactly the same information as the original one. In the code repo you can find an
MC simulation for this use case, and you can verify that this is indeed correct.

The Central Role of Variance in ML | 117

https://oreil.ly/dshp-repo

Key Takeaways
These are the key takeaways from this chapter:

Why learn linear regression?
Understanding linear regression should help you build some important intu‐
itions that apply more generally to other nonlinear algorithms, such as random
forests or boosting techniques.

Correlation is not causation.
In general, machine learning algorithms only provide information about the cor‐
relation of features and outcome. The result is clear cut in linear regression, so
this should serve as your benchmark when thinking about other learning algo‐
rithms.

Frisch-Waugh-Lovell theorem.
This is an important result in linear regression that states that the estimates can
be interpreted as the net effect after controlling for the remaining covariates.

FWL and confounders.
Thanks to FWL, you can control for confounders just by including them in your
set of features. One common example is in time series analysis, where it’s always a
good practice to control for a deterministic trend. This acts as a safeguard against
getting spurious results when the outcome and features display some trend.

Irrelevant variables.
In linear regression, it is safe to include uninformative controls. Ensemble learn‐
ing algorithms might be sensitive to irrelevant variables if these are sufficiently
correlated to informative features. You won’t bias your estimates, but this may
lead you to conclude that some variable has predictive power when it doesn’t.

The dummy variable trap.
In linear regression, it’s always a good practice to include an intercept or constant
term. If you include dummy variables, you must always exclude one category that
will serve as a reference or base. For instance, if you include a female dummy
variable, the male category serves as a reference for interpretation purposes.

The dummy variable trap in ensemble learning.
Nothing forbids you from including dummy variables for all categories with ran‐
dom forest or gradient boosting machines. But you also gain nothing from it:
these variables provide no extra information that can improve the predictive per‐
formance of your model.

118 | Chapter 10: Linear Regression: Going Back to Basics

Variance is critical for machine learning.
Without sufficient variance in your features, your algorithm won’t be able to
learn the underlying data generating process. This is true for linear regression
and general machine learning algorithms.

Further Reading
Linear regression is covered in most statistics, machine learning, and econometrics
textbooks. The treatment in Trevor Hastie et al., The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd ed. (Springer), is superb. It discusses
regression by successive orthogonalization, a result that is closely related to the FWL
theorem.

Chapter 3 of Mostly Harmless Econometrics: An Empiricist’s Companion by Joshua
Angrist and Jörn-Steffen Pischke (Princeton University Press) provides a very deep
discussion on the fundamentals of linear regression, as well as the derivations for the
covariance formulas presented in the chapter. This book is great if you want to
strengthen your intuitions on regression.

The FWL theorem is covered in most econometrics textbooks. You can check out
William Greene’s Econometric Analysis, 8th ed. (Pearson).

Further Reading | 119

CHAPTER 11

Data Leakage

In “Leakage in Data Mining: Formulation, Detection, and Avoidance,” Shachar Kauf‐
man et al. (2012) identify data leakage as one of the top 10 most common problems
in data science. In my experience, it should rank even higher: if you have trained
enough real-life models, it’s unlikely you haven’t encountered it.

This chapter is devoted to discussing data leakage, some symptoms, and what can be
done about it.

What Is Data Leakage?
As the name suggests, data leakage occurs when some of the data used for training a
model isn’t available when you deploy your model into production, creating subpar
predictive performance in the latter stage. This usually happens when you train a
model:

• Using data or metadata that won’t be available at the prediction stage
• That is correlated with the outcome you want to predict
• That creates unrealistically high test-sample predictive performance

The last item explains why leakage is a source of concern and frustration for data sci‐
entists: when you train a model, absent any data and model drift, you expect that the
predictive performance on the test sample will extrapolate to the real world once you
deploy the model in production. This won’t be the case if you have data leakage, and
you (your stakeholders and the company) will suffer a big disappointment.

Let’s go through several examples to clarify this definition.

121

Outcome Is Also a Feature
This is a trivial example, but helps as a benchmark for more realistic examples. If you
train a model like this:

y = f y

you’ll get perfect performance at the training stage, but needless to say, you won’t be
able to make a prediction when your model is deployed in production (since the out‐
come is, by definition, not available at the time of prediction).

A Function of the Outcome Is Itself a Feature
A more realistic example is when one of the features is a function of the outcome.
Suppose you want to make a prediction of next month’s revenue and, using the P × Q
decomposition described in Chapter 2, you include the unit price (Revenue/Sales) as
a feature. Many times, the unit price calculation is done upstream, so you just end up
using a table that contains prices without really knowing how they are calculated.

The Importance of Data Governance
The case of a feature that is itself a function of the outcome highlights the importance
of data governance for data science, and machine learning more specifically. Having
well-documented pipelines, thorough data lineage tracking, and variable definitions is
a critical asset in any data-driven company.

Data governance may be costly for the organization, but the returns from embarking
on it early on are well worth it.

Bad Controls
As described in Chapter 10, it’s good to include features that you may think help con‐
trol for sources of variation, even if you don’t have a strong hypothesis for the under‐
lying causal mechanism. This is generally true, unless you include bad controls, which
are themselves outcomes affected by the features.

Take these data generating processes (DGPs) as an example:

yt = f �t − 1 + �t

zt = g yt + ζt

You may think that controlling for z when training a model to predict y can help you
clean out some of the effects. Unfortunately, since z won’t be available at the time of

122 | Chapter 11: Data Leakage

prediction, and is correlated with y, you end up with a nontrivial example of data
leakage.

Note that leakage here arises both from using information that’s not present at the
time of prediction and from including the bad control. If z displays enough autocor‐
relation in time, even if you control for its lagged value (zt − 1), you will still have
unreasonably high predictive performance.

Mislabeling of a Timestamp
Suppose you want to measure the number of monthly active users in a given month.
A typical query that would produce the desired metric looks like this:

SELECT DATE_TRUNC('month', purchase_ts) AS month_p,
 COUNT(DISTINCT customer_id) AS mau
FROM my_fact_table
GROUP BY 1
ORDER BY 1;

Here you have effectively labeled these customers using the beginning-of-month
timestamp, which for many purposes might make sense. Alternatively, you could’ve
labeled them using the end-of-period timestamp, which could also be appropriate for
different use cases.

The point is that the labeling choice may create data leakage if you incorrectly think
that the metric was measured before the time suggested by your timestamp (so you
would, in practice, be using information from the future to predict the past). This is a
common problem encountered in practice.

Multiple Datasets with Sloppy Time Aggregations
Suppose you want to predict customer churn using a model like this:

Prob churnt = f Δsalest − 1
t , num. productst

There are two hypotheses at work here:

• Customers who have decreased their sales in the previous period are more likely
to churn (they are effectively signaling their decreased engagement).

• Customers with a deeper relationship with the company, as measured by the
number of other products they are currently using, are less likely to churn.

One possible cause for leakage occurs when the second feature includes information
from the future, so that trivially, a customer who is active with one product next

What Is Data Leakage? | 123

month cannot have churned. This might occur because you end up querying your
data with something like the following code:

WITH sales AS (
-- subquery with info for each customer, sales and delta sales,
-- using time window 1
),
prods AS (
 -- subquery with number of products per customer using time window 2
)
SELECT sales.*, prods.*
FROM sales
LEFT JOIN prods ON sales.customer_id = prods.customer_id
AND sales.month = prods.month

The problem arises because the data scientist was sloppy when filtering the dates in
each subquery.

Leakage of Other Information
The previous examples dealt with leakage of data, either from the features or the out‐
come itself. In the definition, I also allowed for metadata leakage. This next example
will help clarify what this means. In many ML applications, it’s normal to transform
your data by standardizing it like this:

ystd = y − mean y
std y

Suppose you standardize your training sample using the moments from the complete
dataset, which of course includes the test sample. There are cases where these leaked
moments provide extra information that won’t be available in production. I’ll provide
an example later in this chapter that showcases this type of leakage.

Detecting Data Leakage
If your model has unreasonably superior predictive performance, you should suspect
that there’s data leakage. Not so long ago, a data scientist from my team was present‐
ing the results from a classification model that had an area under the curve (AUC) of
1! You may recall that the AUC is bounded between 0 and 1, where an AUC = 1
means that you have a perfect prediction. This was clearly suspicious, to say the least.

These extreme cases of having a perfect prediction are quite rare. In classification set‐
tings, I get suspicious whenever I get an AUC > 0.8, but you shouldn’t take this as a
law written in stone. It’s more of a personal heuristic that I’ve found useful and

124 | Chapter 11: Data Leakage

1 Also, remember that the AUC is sensitive to having imbalanced outcomes, so my heuristic really must be
taken with a grain of salt, to say the least.

2 An alternative is to use the coefficient of determination or R2 that is also bounded to the unit interval.

informative with the class of problems I have encountered in my career.1 In regres‐
sion settings it’s harder to come up with similar heuristics, since the most common
performance metric, the mean square error, is bounded from below by zero, but it
really depends on the scale of your outcome.2

Ultimately, the best way to detect leakage is by comparing the real-life performance of
a productive model with the test sample performance. If the latter is considerably
larger, and you can rule out model or data drift, then you should look for sources of
data leakage.

Use your and your organization’s knowledge of the modeling prob‐
lem at hand to decide what is a suspicious level of superior predic‐
tive performance. Many times, detecting data leakage only happens
when you deploy a model in production and get subpar perfor‐
mance relative to that of your test sample.

To show the improved performance from data leakage, I ran Monte Carlo (MC) sim‐
ulations for two of the examples described earlier. Figure 11-1 shows the impact of
including a bad control: I train models with and without data leakage, and the plot
shows the mean and 90% confidence intervals across MC simulations. The mean
squared error (MSE) with leakage is around a quarter of when the bad control is not
included. With the code in the repo, you can check that when the bad control is inde‐
pendent from the outcome, there’s no data leakage and the models have the same per‐
formance. You can also tweak the degree of autocorrelation to check that even a
lagged bad control can create leakage.

Figure 11-1. Data leakage with a bad control

Detecting Data Leakage | 125

https://oreil.ly/hi693

3 An AR(1) process is a time series with an autoregressive component of order 1. You can check Chapter 10 for
more information.

In the second example, I’ll show how bad standardization and leaking moments can
affect the performance. Figure 11-2 presents mean MSE as well as 90% confidence
intervals from an MC simulation using the following DGP:3

xt ∼ AR 1 with a trend

yt = f xt + �t

I use the first half of the sample for training purposes and the second half to test the
model. For the leakage condition, I standardize the features and outcome using the
complete dataset mean and standard deviation; for the no leakage condition, I use the
moments for each corresponding sample (train and test). As before, it’s quite mani‐
fest how the data leakage artificially improves the performance.

Figure 11-2. Data leakage from incorrect scaling (MSE)

What’s the logic behind this type of leakage problem? I decided to include a time
trend so that the mean and standard deviation from the complete dataset informs the
algorithm at training time that the outcome and feature are increasing, thereby pro‐
viding extra information that won’t be available when the model is deployed. Without
a trend component the leakage disappears, as you can check with the code in the
repo.

Complete Separation
Before moving on, I want to discuss the topic of complete or quasi-complete separa‐
tion. In classification models, you may have an unusually high AUC because of this
phenomenon, and this may or may not signal data leakage.

126 | Chapter 11: Data Leakage

https://oreil.ly/hi693
https://oreil.ly/hi693

Complete separation arises in the context of linear classification (think logistic regres‐
sion) when a linear combination of the features perfectly predicts the outcome y. In
cases like these, the minimum loss function (many times, the negative of the log like‐
lihood function) doesn’t exist. This typically happens when the dataset is small, when
you work with imbalanced data, or when you used a continuous variable and a
threshold to create a categorical outcome and include the variable as a feature. In the
latter case, there is data leakage.

Quasi-complete separation arises when a linear combination of the features perfectly
predicts a subset of your observations. This is much more common, and may happen
when you include one or several dummy variables that, when combined, create a sub‐
set of observations for which there’s a perfect prediction. In this case, you may need
to check if there’s data leakage or not. For instance, it may be that there’s a business
rule that says that cross-selling can only be offered to customers who live in a given
state and if they have a minimum tenure. If you include tenure and state dummy vari‐
ables, you will have quasi-complete separation and data leakage.

Real-Life Battle Scars from Quasi-Complete Separation
Several years ago a data scientist from my team was presenting the results from a clas‐
sification model designed to improve the company’s cross-selling campaign efficiency.
The predictive performance was not incredibly high, but given his choice of features,
I did find it unreasonably high.

When I asked him to open the black box, we found that the top variable in terms of
predictive performance was a state dummy variable, which made no sense at all for
this use case (there was nothing about the product that made it a better fit for cus‐
tomers in that state). After discussing the results with the sales team, we quickly real‐
ized that in the past quarter, the cross-selling campaigns had only targeted customers
from that state. As a matter of fact, the sales team geographically rotated the cam‐
paigns to avoid being identified by the competitors. Since the data scientist had
included data from the past two quarters, the state dummy created quasi-complete
separation.

Many people are reluctant to label this as data leakage since the state dummies will be
available at prediction time. They argue that it’s more likely a case of model drift since
part of the DGP appears to change in time. I prefer to label it as metadata leakage that
can be easily avoided by excluding the state dummies, since the DGP doesn’t really
change. (The underlying factors for a customer to accept or reject an offer are the
same given that they get an offer. But they have to get an offer!)

Let’s simulate a case where this happens by using a latent variable approach, as
described in Chapter 9. The data generating process is as follows:

Complete Separation | 127

x1, x2 ∼ N 0, 1

z = α0 + α1x1 + α2x2 + �

y = 1z ≥ 0

x3i =
1 for i rand. selected from j: y j = 1 with probability p

0 otherwise

where 1z ≥ 0 is an indicator variable that takes the value 1 when the condition on the
subscript applies and 0 otherwise.

The idea is simple: the true DGP is a binomial latent variable model with two covari‐
ates, but I create a third feature, used at training time, by randomly selecting without
replacement from the observations with yi = 1. This way I can simulate different
degrees of separation, including the case of complete and no separation (p = 1 and
p = 0, respectively). As usual, I train a logistic regression and a gradient boosting
classifier (GBC) without metaparameter optimization.

I ran an MC simulation, and Figure 11-3 plots the lift in median AUC on the test
sample across all experiments, where I benchmark everything with respect to the case
of no separation. You can see that separation creates an increased AUC of up to 10%
to 15% relative to the baseline, depending on whether I use a logistic regression or
GBC.

Figure 11-3. Lift in AUC for quasi-complete separation

The lesson here is that separation increases the AUC in a classification setting, and
this may indicate data leakage that needs to be inspected further.

Windowing Methodology
I will now describe a windowing methodology that should help reduce the likelihood
of data leakage in your model. As described earlier, data leakage can occur for many

128 | Chapter 11: Data Leakage

different reasons, so this is in no way a bulletproof technique. Nonetheless, I’ve found
that it helps you discipline the process of training a model, and reduces some of the
most obvious risks of leakage.

As a starting point, I separate the learning process into two stages:

Training stage
This is the stage where you train a model by dividing your sample into training
and testing, etc.

Scoring stage
Once you’ve trained your model and you’ve deployed it in production, you use it
to score a sample. It can be a one-at-a-time prediction, as in online, real-time
scoring, or scoring of a larger sample.

It’s easy to forget, but in machine learning (ML), the scoring stage reigns. It’s so impor‐
tant that I devote Chapter 12 to discuss some necessary properties and processes that
need to be set up to ensure that this stage is at its best. For now, just remember that
this stage is where most value is created, and since this should be your North Star, it
should be granted nobility status.

In ML, the scoring stage takes the leading role, and everything else
should be set up to maximize the quality and timeliness of the pre‐
dictions of this stage.

Figure 11-4 shows how the window methodology works. The starting point is the
scoring stage (downmost timeline). Suppose you want to make a prediction at time
tp. This time period serves to divide the world into two windows:

Prediction window
You’re usually interested in predicting an event or a random variable associated
to an event. For this you need to set up a prediction window for that event to
occur (tp, tp + P]. For example, you want to predict if a customer will churn in the
next 30 days. Or you want to predict your company’s revenue during the first
quarter of the year. Or you may want to predict if a customer will rate a book or a
movie in the next two weeks after finishing reading or watching it.

Observation window
Once you define a time horizon for your prediction to be evaluated, you need to
define how much history you want to include to inform your prediction
[tp − O, tp]. The name is derived from the fact that this, and only this, is the
information we observe at scoring time.

Windowing Methodology | 129

Note that the prediction window is open on the left by design: this helps prevent data
leakage as it explicitly separates what you observe at the time of prediction.

Figure 11-4. Windowing methodology

Let’s go through an example to ensure that these concepts are clear. I want to train a
churn model that predicts for each customer the likelihood they will churn during the
next month. Since the scoring stage reigns, suppose I want to score all of the active
users today (tp). By definition, the prediction window starts from tomorrow and ends
one month from tomorrow. At that point I have to be able to assess whether any of
the customers churned or not. To make this prediction, I will use the last three
months of information, so this is my observation window. Any transformations of the
features are restricted to this timeframe. For instance, I may think that the most
recent past matters, so I can compute the ratio of weekly interactions four weeks ago
to last week’s (if the ratio is larger than one, engagement increased this last month).

Choosing the Length of the Windows
You may wonder who chooses the lengths of the observation and prediction win‐
dows, and what considerations are taken into account. Table 11-1 summarizes some
of the main considerations when deciding the lengths of both windows.

Table 11-1. Considerations when choosing window lengths

Prediction (P) Observation (O)
Owner Business - data scientist Data scientist

Predictive
performance

Feasibility of short- vs. long-term prediction Relative weight of distant past

Data Historical data at your disposal Historical data at your disposal

The length of the observation window is chosen by the data scientist, primarily based
on the predictive performance of the model. For instance, is the recent past more pre‐
dictive? The prediction window is primarily chosen by taking into account business
considerations regarding the timeliness of a decision, and as such, it ought to be
mostly owned by the business stakeholder.

130 | Chapter 11: Data Leakage

It’s important to acknowledge that longer prediction windows are usually less risky, in
the sense that it’s harder to be wrong (for example, predicting the existence of artifi‐
cial general intelligence in the next one thousand years versus the next two years).
But really short time horizons may be infeasible given the current granularity of your
data (for example, predicting if a customer will churn in the next 10 minutes when
you only have daily data).

Finally, the length of the prediction window affects how long the observation window
must be. If the CFO asks me to predict revenue over the next five years, I can either
have short observation windows and dynamic forecasts (where forecasts are used
successively as features), or I can have a long enough observation window to make
such a heroic forecast.

The Training Stage Mirrors the Scoring Stage
Once these windows are defined at the scoring stage, you’re now ready to set up and
define the training stage. As you might suspect from Figure 11-4, the training stage
should always mirror what happens in the later scoring stage: the observation and
prediction windows for the training stage map one-to-one to those at the scoring
stage, and are thus constrained by them.

For instance, it’s quite customary that you want to train the model with the most
recent data at your disposal. Since you’ll need P time periods to evaluate your predic‐
tion and O periods to create your features, this means that you need to set
[tp − P − O, tp − P] as your training observation window, and (tp − P, tp] as your
training prediction window.

Formally defining these windows helps you discipline and constrain what you expect
to accomplish with the model. On the one hand, it ensures that only historical data is
used for future predictions, preventing common leakage issues. You can see this more
directly in the following equations:

Scoring : y
tp, tp + P

= f X
tp − O, tp

Training : y
tp − P, tp

= f X
tp − P − O, tp − P

Implementing the Windowing Methodology
Once you have defined them, you can enforce these on your code with something like
the following snippet:

import datetime
from dateutil.relativedelta import relativedelta

Windowing Methodology | 131

def query_data(len_obs: int, len_pre: int):
 """
 Function to query the data enforcing the chosen time windows.
 Requires a connection to the company's database

 Args:
 len_obs (int): Length in months for observation window (O).
 len_pre (int): Length in months for prediction window (P).

 Returns:
 df: Pandas DataFrame with data for training the model.
 """
 # set the time variables
 today = datetime.datetime.today()
 base_time = today - relativedelta(months = len_pre) # t_p - P
 init_time = base_time - relativedelta(months = len_obs)
 end_time = base_time + relativedelta(months = len_pre)

 init_str = init_time.strftime('%Y-%m-%d')
 base_str = base_time.strftime('%Y-%m-%d')
 end_str = end_time.strftime('%Y-%m-%d')

 # print to check that things make sense
 print(f'Observation window (O={len_obs}): [{init_str}, {base_str})')
 print(f'Prediction window (P={len_pre}): [{base_str}, {end_str}]')
 # create query
 my_query = f"""
 SELECT
 SUM(CASE WHEN date >= '{init_str}' AND date < '{base_str}'
 THEN x_metric ELSE 0 END) AS my_feature,
 SUM(CASE WHEN date >= '{base_str}' AND date <= '{end_str}'
 THEN y_metric ELSE 0 END) AS my_outcome
 FROM my_table
 """
 print(my_query)
 # connect to database and bring in the data
 # will throw an error since the method doesn't exist
 df = connect_to_database(my_query, conn_parameters)
 return df

Summing up, the window methodology helps you enforce a minimal requirement
that you can only use the past to predict the future. Other causes of data leakage may
still be present.

I Have Leakage: Now What?
Once you have detected the source of leakage, the solution is to remove it and retrain
your model. In some cases this is quite obvious, but in others it can take substantial
time and effort. Here’s a list of things you can attempt to identify the source of
leakage:

132 | Chapter 11: Data Leakage

Check time windows.
Ensure that you’re always using past information to predict the future. This can
be done by enforcing a strict time windowing process such as the one just
described.

Check any data transformations done and enforce best practices.
A good practice is to use scikit-learn pipelines or similar to ensure that the trans‐
formations are done with the correct datasets and that there are no leaking
moments or metadata.

Ensure that you have thorough knowledge of the business processes behind the creation
of the data.

The more you know about the processes behind the creation of your data, the
easier it is to identify potential sources of leakage or quasi-complete separation in
the case of classification models.

Iteratively remove features.
On a regular basis you should run a diagnostic check to identify the most predic‐
tive features (in some algorithms you can do this with feature importance). Cou‐
pled with your knowledge of the business, this should help you identify if
something looks off. You can also try iteratively removing the most important
features to see if predictive performance changes dramatically in any iteration.

Key Takeaways
These are the key takeaways from this chapter:

Why care about data leakage?
Data leakage generates subpar predictive performance when the model is
deployed in production, relative to the performance you would expect from your
test sample. It creates organizational frustration, and you may even put at risk
any stakeholder buy-in you may have.

Identifying leakage.
A typical symptom of leakage is having unusually high predictive performance on
your test sample. You must rely on your knowledge of the problem and the com‐
pany’s experience with these models. It’s always a good practice to present your
results to more experienced data scientists, and also discuss them with your busi‐
ness stakeholders. If you suspect there’s data leakage, you must start auditing
your model.

Things to check if you suspect you have data leakage.
Check if you have enforced a strict time windowing process that guarantees that
you always predict the future with the past, and not the other way around. Also,

Key Takeaways | 133

https://oreil.ly/iOEs1
https://oreil.ly/uW6PY

check if you have any data transformations where moments or metadata might be
leaking.

In ML, scoring reigns.
The litmus test for an ML model is its performance in production. You should
direct all of your time and effort to ensure that this is the case.

Further Reading
In my opinion there isn’t much depth in most of the published accounts on data leak‐
age found in published books (many mention it just in passing). You can find several
useful blog posts on the web: for instance, Christopher Hefele’s comment on data
leakage at the ICML 2013 Whale Challenge or Prerna Singh’s post “Data Leakage in
Machine Learning: How It Can Be Detected and Minimize the Risk”.

Kaufman et al., “Leakage in Data Mining: Formulation, Detection, and Avoidance,”
(ACM Transactions on Knowledge Discovery from Data 6 no. 4, 2012), is a must-read
for anyone interested in understanding leakage. They categorize two types of data
leakage as those coming from features and those coming from training examples. I
decided to deviate a bit from this categorization.

On the problem of complete and quasi-complete separation, the classical reference is
A. Albert and J. A. Anderson, “On the Existence of Maximum Likelihood Estimates
in Logistic Regression Models” (Biometrika 71 no. 1, 1984). A textbook presentation
can be found in Chapter 11 of Russell Davison and James MacKinnon, Econometric
Theory and Methods (Oxford University Press).

The problem of bad controls is well known in the literature of causal inference and
causal machine learning. To the best of my knowledge, it was first labeled liked that
by Angrist and Pischke in Mostly Harmless Econometrics (Princeton University Press).
A more recent and systematic study can be found in Carlos Cinelli et al., “A Crash
Course in Good and Bad Controls” (Sociological Methods and Research, 2022). In this,
chapter I used a rather loose version of the bad control definition.

134 | Chapter 11: Data Leakage

https://oreil.ly/j7B4l
https://oreil.ly/G92H-
https://oreil.ly/G92H-

CHAPTER 12

Productionizing Models

As argued in Chapter 11, the scoring stage reigns in machine learning (ML) since this
is the part where all value is created. It’s so important that new specialized roles—such
as ML engineer and MLOps—have been created to take care of all of the intricacies
involved. However, many companies still lack specialized talent, and the job ends up
being part of the data scientists’ responsibilities.

This chapter provides a helicopter view of production-ready models specifically tar‐
geted at data scientists. At the end of the chapter, I will provide some references that
will take you deeper into this relatively new topic.

What Does “Production Ready” Mean?
In her book Designing Machine Learning Systems: An Iterative Process for Production-
Ready Applications (O’Reilly), Chip Huyen states that the process of productionizing
or operationalizing ML entails “deploying, monitoring, and maintaining (a model).”
Thus, a working definition for a productionized model is that it has been deployed,
monitored, and maintained.

A more direct definition is that a model is production ready when it’s set for con‐
sumption by the end user, be it a human or a system. By consumption I mean making
use of the predictive scores, which can take place offline or online, and can be done
by a human or by another system or service (Figure 12-1).

135

Figure 12-1. Categories of production-ready models

Batch Scores (Offline)
Typically, batch scoring entails creating a prediction for a group of rows in a table (be
it customers, users, products, or any other such entity) given a set of columns or fea‐
tures. These scores are saved in a table for later consumption.

Batch scoring is very common when:

• The predictive performance isn’t greatly improved by having the most up-to-date
information.

• You don’t have to make a decision with the most up-to-date information.
• You don’t have the engineering, infrastructure, or human talent to deploy the

model for real-time consumption.

For instance, if you want to predict customer churn over the next month, having
granular details of their interactions over the last minute should not improve the
quality of the predictions substantially, making batch scoring a suitable method to
productionize the model.

Table 12-1 shows an example of how these scores can be saved in a table. Note that
the granularity for the table is customer_id x timestamp so that you are effectively
saving the history of all predictions across customers.

Table 12-1. Example of a table with batch scores

Customer_id Score Timestamp

1 0.72 2022-10-01

1 0.79 2022-11-01

2 0.28 2022-10-01

2 0.22 2022-11-01

… … …

136 | Chapter 12: Productionizing Models

This design might work well for human consumption, as a simple SQL query on an
analytical database can be used to retrieve the data; moreover, if you make it part of
your data model (say, of your data warehouse), it can be used to create more complex
queries that may be needed. Figure 12-2 shows a simplified example of how this can
be accomplished. It shows two fact tables, one that includes the scores from one spe‐
cific ML model and another one from the business (such as sales), and several dimen‐
sion tables. Links between fact and dimensional tables denote that the tables can be
joined using primary or secondary keys. Designing the scoring layer as part of your
data warehouse can facilitate its consumption, since it allows for easy joining and fil‐
tering.

Figure 12-2. Your ML scores as part of a data warehouse

This last design can also work in the case of consumption by a system or service
when latency is not one of the main considerations. A typical use case is when scores
trigger a communication with your customers (for example, a retention or cross-
selling campaign). The pipeline will first query the database, possibly filtering for the
top most recent scores, and these customer IDs are then sent to a communication
application that sends the emails or SMS (Figure 12-3).

Figure 12-3. Pipeline for system consumption of scores

What Does “Production Ready” Mean? | 137

https://oreil.ly/k05Co
https://oreil.ly/5e3uH
https://oreil.ly/5e3uH

Real-Time Model Objects
Real-time models are usually not stored as tables, but rather as serialized objects that
can be consumed online as new data arrives. Figure 12-4 shows how this process works:
your models live in a model store that could be an S3 bucket or a more specialized tool
such as MLflow or AWS SageMaker.

The important thing is that these objects can be consumed by another service that
takes the most recent data for one specific example (such as a customer or a transac‐
tion) to create a single prediction score. As the diagram shows, often the feature vec‐
tor for one example includes both real-time and batch data. Importantly, the vector
has to match exactly what you used when training the model.

Figure 12-4. Example of online scoring

From this diagram you can already see the complexities that arise in online scoring:

Data architecture
Your data model should allow for querying of real-time and batch data, so you
might end up needing something like a lambda or kappa architecture.

Function as a Service (FaaS)
Your design should also be able to consume data and the model object on the fly,
which is commonly achieved through FaaS with cloud computing providers and
a microservice architecture. Once you create a score, this is most likely consumed
by another service that may, for instance, make a decision, given the score and
business rules.

Data and Model Drift
One way of thinking about ML is that you are trying to learn the data generating pro‐
cess (DGP) for an outcome, given some data. When this is done correctly, you can
make predictions from similar data:

138 | Chapter 12: Productionizing Models

https://mlflow.org
https://oreil.ly/yzExy
https://oreil.ly/BTYlN

1 Recall that with constant velocity and acceleration x = x0 + v0t + g
2 t2, where g is the surface force of gravity.

On Mars, the force of gravity is ~38% of Earth’s.

True DGP : y = f W

Learning the DGP : y, X t f

The first equation denotes the true DGP that links the outcome variable to a set of
true underlying covariates (W). The second equation shows the process of learning
this DGP using the data available at a given point in time, that includes the outcome
(y) and features (X). Note that the set of features need not coincide with the true
underlying covariates.

Since scoring reigns, you should really care about the quality of the predictions when‐
ever you make those predictions. The performance of a model can change in time for
two main reasons: data drift or model drift. There is data drift when the joint distri‐
bution for your data changes in time. There is model drift when the underlying DGP
changes. If you don’t retrain your model periodically, data or model drift will generate
a decay in the predictive performance. Therefore, you should ensure that you include
proper monitoring in your production pipeline, as well as periodic retraining.

Many people have trouble understanding model drift at first, so let me explain the
concept with two examples. Suppose you want to attempt a version of Galileo’s lean‐
ing tower experiment where you let go a resting tennis ball from a chosen height and
the objective is to measure the time it takes to hit the ground. You collect measure‐
ments of height and time xt, t , and estimate a linear regression like this:

xt = α0 + α1t + α2t2 + �

The true DGP is given by the laws of physics, and specifically on the surface force of
gravity, so it will vary if you run the experiment on Mars or on Earth.1

Another example, one closer to the business, has to do with trends and influencers.
At the risk of oversimplifying, let me pose that the probability of your product being
purchased by some customer i depends on its price and other stuff:

Prob purchasei = True = gi p, stuff

This is the DGP for customer i, which I don’t know, but I’m willing to bet that it
might change if all of a sudden Jungkook starts promoting it on social media.

Data and Model Drift | 139

https://oreil.ly/LmYrT
https://oreil.ly/k0Apk
https://oreil.ly/k0Apk
https://oreil.ly/oFkaY

Specifically, I would expect a lower price sensitivity for customers in the segment who
like Korean pop and follow him. The old DGP gi has drifted to something like gi .

A Cautionary Tale of Model Drift: Zillow Offers
In 2021, the real estate marketplace Zillow suffered a loss of more than $500 million
in one of the best known cases of model drift. To understand what happened, imagine
that you have a good prediction model for property prices; you can then buy proper‐
ties if you predict that their price will increase, and make a profit on the price differ‐
ential (buy cheap, sell expensive).

Zillow Offers was a product that attempted to do exactly that. Long story short, at the
beginning it did great, so the company scaled the product, but at some point the
model started drifting and the predictions were no longer good. The company ended
up owning properties that could only be sold at a loss. Had Zillow monitored and
retrained its model, it would’ve had a chance to learn the new DGP and make the cor‐
rect buying decisions.

Essential Steps in any Production Pipeline
Figure 12-5 shows the minimal required steps that most ML pipelines should include.
Following the recommendation in Chapter 11, I have separate tasks for the scoring
and training stages, but they share several stages. I also use a lighter shade of gray to
denote stages where you store metadata for monitoring purposes. I will now describe
each stage in more detail.

Figure 12-5. Generic production pipelines

140 | Chapter 12: Productionizing Models

Get and Transform Data
As the names suggest, the get_data() stage creates a connection and queries the data
source; given this raw data, the transform_data() step applies a predefined set of in-
memory transformations on some or all of the columns of your table. It’s not uncom‐
mon for the first method to be SQL-based, while the latter can be run using Python
(or Spark).

While I have separated the two stages, depending on the nature of the problem it may
be advisable to merge these into one unique stage. Let’s consider the pros and cons of
establishing this modular separation.

Although modularization is usually a good practice—allowing for cleaner and more
expedited debugging and data and model governance—it can impose computational
costs or restrictions that can be better addressed by pushing both operations to the
querying engine. This is especially true since querying engines are normally opti‐
mized and resourced to handle large datasets, while you may end up with fewer
resources to transform the smaller subset of the data actually needed.

On the other hand, SQL is great to query tabular data, but it may not provide enough
flexibility to create complex transformations that are easier to achieve with Python or
Spark.

Moreover, separation allows for a fully focused and independent transformation
stage. This is important because feature engineering plays a critical role in developing
performant ML models. Hence, modularization allows for a more thorough docu‐
menting and reviewing of the main transformations of your model.

Finally, breaking each stage into independent modules is great to allow more expedi‐
ted code reviewing and thus shorter deployment cycles.

If you are memory constrained to make some transformations, but
your querying engine can perform some high-memory computa‐
tions, it’s sometimes advisable to push some or all of the transfor‐
mations to the querying stage.

You may rightly suspect that these stages are shared by the training and scoring pipe‐
lines, explaining why I decided to use a function-like notation. If you use a window‐
ing methodology, such as the one described in Chapter 11, the get_data() method
can easily be parameterized to query data for a given time window.

Outputs for the transform_data() stage in the training pipeline are the final arrays
needed to train your model; for supervised learning, it would be something like this:

transform_data(get_data(Data)) ⇒ y, X

Essential Steps in any Production Pipeline | 141

https://oreil.ly/R6dhb

For the scoring data, it would only be an array of features X.

Validate Data
This is the first monitoring stage of each pipeline, and is used to store metadata and
alert for the presence of data drift. This stage can be decomposed into two substages:

1. Calculate and save statistics. Compute a set of predefined statistics for the distri‐
butions of the output and features, and save in a table.

2. Test for data drift. Given the current and historical statistics just saved, run a test
to see if the changes are pure noise or signal. The output should be either creat‐
ing an alert or not.

Table 12-2 shows an example of a table that stores distribution metadata for all of a
company’s models. This table can be used to store deciles for outcome and features
for all models, and for the training and score stages, so it’s easy to use for reporting,
testing, and monitoring just by applying filters.

Table 12-2. Example of a table with deciles

Model Stage Metric Decile Value Timestamp

churn training outcome d1 100 2022-10-01

… … outcome … … …

… … outcome d10 1850 2022-10-01

churn training feature1 d1 -0.5 2022-10-01

… … feature1 … … …

… … feature1 d10 1.9 2022-10-01

… … … … … …

In this example, I chose to save the deciles for each variable in the dataset, since these
capture quite a bit of information from the corresponding distributions.

For testing, there are many alternatives. If you have enough history and want to fol‐
low a traditional hypothesis testing route, you can run regressions for each metric
and decile (dm, t), such as this:

dm, t = αm + βmt + �m, t

where t, as a feature, denotes a time trend: if the p value for βm is lower than a desired
threshold level (10%, 5%, 1%), you can reject the null that the parameter is 0, so you
have evidence of metric m drifting.

142 | Chapter 12: Productionizing Models

Alternatively, you can use a nonparametric test similar to the ones used in Chapter 9
where you calculate upper and lower quantiles in the historical distributions and
check whether the new observation lies within that confidence interval (for example,
to compute 95% confidence intervals, you calculate q2 . 5 %, q97 . 5 %).

Some people prefer to run Kolmogorov-Smirnov tests, so you might need to save a
different set of metadata, but the logic is the same.

Whatever you decide to use, my recommendation is to keep it sim‐
ple. Often, all you need is a dashboard that plots this metadata,
which enables you to set up simple alerts for when changes occur.
When you productionize a model, it’s often the case that the sim‐
pler, the better.

Training and Scoring Stages
Once you have your training data ready, you can proceed with the formal process of
training where you usually do the following:

1. Divide the sample into training, test, and validation subsamples.
2. Optimize metaparameters and minimize a loss function.

The output from the train_model() stage is a model object that can be used for pre‐
diction purposes:

train_model(transform_data(get_data(Data))) ⇒ f

Similarly, the score_data() method uses some features X to create a prediction or
score:

score_data(transform_data(get_data(Data)), f()) ⇒ s

As mentioned earlier, this score can be saved on a table for offline consumption or
passed to another service for online consumption.

Validate Model and Scores
Before moving on, it’s a good practice to save some metadata again that will help cre‐
ate alerts for model or data drift. In this stage, I like to create the same metadata in
validate_data(), but only passing the test sample scores (validate_model()) or the
actual scores (validate_scores()). If you follow this route, you actually reuse the
previous method, but just pass a different dataset across stages and pipelines; every‐
thing else is taken care of (such as updating the metadata table and alerting).

Essential Steps in any Production Pipeline | 143

https://oreil.ly/4j73f

Note that for online consumption you need to gather enough data for validation, but
the logic is essentially the same.

Deploy Model and Scores
As the names suggest, the objective of these stages is to save the model and scores.
For the training pipeline, you will have to serialize the model object and save it using
some persisting storage (such as disk, S3 bucket, or the like). Adopting good naming
and versioning conventions will help with cataloging the models.

The topic of model serialization is important and technical, so I will provide more
references at the end of this chapter.

The deployment of the scores depends on whether consumption is offline or online.
In offline scoring, you just write the scores in a table to make it available for con‐
sumption. In online scoring, not only should you make the score available for
consumption by another service, but you should also store it in a table.

Key Takeaways
These are the key takeaways from this chapter:

Scoring reigns. Productionizing your model should be at the top of your priorities
since only productive models can create value for an organization.

What is production ready?
A model is productive when it is ready for consumption. Since most of the time a
model will be consumed at different periods of time, you must create a process to
guarantee that the model has enduring predictive performance.

Model and data drift.
There is model drift when the data generating process for your outcome changes.
Data drift refers to changes in the distribution of your outcome or features.
When left unhandled, data and model drift will create a decay in your model’s
predictive performance over time. The best way to avoid drift is to retrain your
models in a recurrent way.

Production pipelines.
It’s good to set a minimal structure for your production pipelines. Here I propose
to have modular and separate training and scoring pipelines that share some of
the methods or stages. Critically, you should include stages where you create and
store metadata that will alert you if there’s model or data drift.

144 | Chapter 12: Productionizing Models

https://oreil.ly/r8tzX
https://semver.org

Keep it simple.
Deploying in production is a complex sequence of steps, so the recommendation
is to keep each of these as simple as possible. Unnecessary complexity may end
up compounding, making it very hard to find the source of a problem when this
comes up (and it will come up).

Further Reading
Written by an industry expert, Chip Huyen’s Designing Machine Learning Systems is
great, providing many of the critical technical details left out in this chapter. I cannot
recommend this enough.

I found Valliappa Lakshmanan et al., Machine Learning Design Patterns: Solutions to
Common Challenges in Data Preparation, Model Building, and MLOps (O’Reilly), very
useful. The aim is to synthesize a set of ML design practices that can be used across
the board. Since it was written by three Google engineers, you will find that their
examples rely extensively on Google’s infrastructure, so many times it’s not obvious
how to translate that to other cloud service providers. But if you’re able to abstract
away this nuisance, you’ll find this book a great read and resource.

Kurtis Pykes’s blog post “5 Different Ways to Save Your Machine Learning Model,”
discusses different ways to serialize your ML model.

Lu et al., “Learning under Concept Drift: A Review,” (April 2020, retrieved from
arXiv), present a comprehensive review of concept drift, which is sometimes taken to
encompass both data and model drift.

On the Zillow Offers model drift case, you can read the MarketWatch article by Jon
Swartz (November 2021), “Zillow to Stop Flipping Homes for Good as It Stands to
Lose More Than $550 Million, Will Lay Off a Quarter of Staff,” or Anupam Datta’s
“The Dangers of AI Model Drift: Lessons to Be Learned from the Case of Zillow
Offers” (The AI Journal, December 2021).

Further Reading | 145

https://oreil.ly/2Lsuq
https://oreil.ly/3dRLZ
https://oreil.ly/RBHY2
https://oreil.ly/J-lWA
https://oreil.ly/J-lWA
https://oreil.ly/NMo5A
https://oreil.ly/NMo5A

CHAPTER 13

Storytelling in Machine Learning

In Chapter 7, I argued that data scientists ought to become better storytellers. This
holds true in general, but it takes on special importance with regard to machine
learning (ML).

This chapter walks you through the main aspects of storytelling in ML, starting with
feature engineering and finishing with the problem of interpretability.

A Holistic View of Storytelling in ML
Storytelling plays two related but distinct roles in ML (Figure 13-1). The better-
known role is a salesperson, where you need to engage with an audience, possibly to
gain or maintain stakeholder buy-in, a process that usually takes place after you’ve
developed a model. The lesser-known role is a scientist, where you need to find
hypotheses that will guide you throughout the process of developing the model.

Figure 13-1. Storytelling in ML

147

Since the former takes place after you have developed your model, I call it ex post
storytelling; your scientist persona is mostly invoked before (ex ante) and during
(interim) the process of training the model.

Ex Ante and Interim Storytelling
Ex ante storytelling has four main steps: defining the problem, creating hypotheses,
feature engineering, and training the model (Figure 13-2). While they usually flow in
that direction, there’s a feedback loop between all of them, so it’s not uncommon that
after you train a first model, you iterate on the features, hypotheses, or even on the
problem itself.

Figure 13-2. Ex ante storytelling

The first step is always the problem definition: what do you want to predict and why?
This is better done early and collaboratively with your stakeholders to ensure you
have their buy-in, as many promising ML projects fail because of this.

Recall from Chapter 12 that a model is only good if it has been deployed in produc‐
tion. Deploying to production is a costly endeavor, not only in terms of time and
effort, but also in terms of any alternative project you could’ve been working on
(opportunity cost). Because of this, it’s always good to ask yourself: do I really need an
ML implementation for this project? Don’t fall into the trap of doing ML just because
it’s sexy or fun: your objective should always be to create the maximum value, and ML
is just one more tool in the bag.

Finally, in the problem definition, don’t forget to have good answers to the questions:

• How is this model going to be used?
• What are the levers that can be pulled using predictions from the model?
• How does it improve your company’s decision-making capabilities?

Having sound answers to these questions will help the business case for developing
an ML model, thereby increasing the likelihood of success.

148 | Chapter 13: Storytelling in Machine Learning

As a general recommendation, the sooner you involve your stake‐
holders in the definition of the problem, the better. This helps with
having stakeholder buy-in from the outset. Also ensure that ML is
the appropriate tool for the problem at hand: deploying, monitor‐
ing, and maintaining a model are costly, so you should have a good
business case for it.

Creating Hypotheses
With a well-defined problem, you can now switch into your scientist persona and
start creating hypotheses for the problem at hand. Each of these hypotheses is a story
about the drivers for your prediction; it’s in this specific sense that scientists are also
storytellers. Successful stories improve the predictive performance of your model.

At this point, the key questions are: what am I predicting, and what drives this predic‐
tion? Figure 13-3 shows a high-level overview of the types of prediction problems and
their relationship to the levers at your disposal. Understanding the levers is critical to
ensure that an ML model creates value (Chapter 1).

Figure 13-3. Lever-behavior-metrics flow

From here it follows that most prediction problems fall into one of these categories:

Metrics that arise from human behavior
Many times, the metric that you care about depends on your customers acting in
some specific way. For instance, will my user click on a banner? Will they pur‐
chase the product at the reference price? Will they churn next month? How much
time will they spend on the marketplace?

Metrics that arise from systems behavior
Metrics depend also on how your systems perform. One of the best well-known
examples is data center optimization, and most specifically, cracking the air cool‐
ing problem. Another is predicting the loading time for your web page, which
has been found to directly impact churn metrics.

Ex Ante and Interim Storytelling | 149

https://oreil.ly/5guWh
https://oreil.ly/5guWh
https://oreil.ly/xXtbS

Downstream metrics
Many times you just care about aggregate downstream metrics, such as revenue.
This is most common with data scientists working directly in financial planning
and analysis (FP&A).

Many data scientists struggle with the process of creating and engi‐
neering features that are predictive. A general recommendation is
to always start by writing down and discussing with others a list of
hypotheses for the prediction problem. Only then should you move
forward with the process of feature engineering. Don’t forget to
write down the reasons you believe a hypothesis might be right.
Only with this rationale will you be able to challenge your logic and
improve upon a given story.

Some high-level recommendations to come up with hypotheses for your problem are:

Know your problem really well.
The not-so-secret sauce to building great ML models is to have substantial
domain expertise.

Be curious.
This is one defining trait that makes a data scientist a scientist.

Challenge the status quo.
Don’t be afraid to challenge the status quo. This includes challenging your own
hypotheses and iterating when needed (be aware of any signs of confirmation
bias on your side).

This said, let’s go into some more specific recommendations on how to proceed on
your hypothesis discovery and formulation.

Predicting human behavior
For predicting human behavior, it’s useful to always remember that people do what
they want and can do. You may want to go to Italy, but if you can’t afford it (money or
timewise), you won’t do it. Tastes and resource availability are of first-order impor‐
tance whenever you want to predict human behavior, and this can take you a long
way toward coming up with hypotheses for your problem.

Thinking about motivations will also force you to think really hard about your prod‐
uct. For instance, why would anyone want to buy it? What is the value proposition?
Which customers would be willing to pay for it?

150 | Chapter 13: Storytelling in Machine Learning

Challenge the Status Quo: Lessons from the Trench
Not so long ago, a data scientist from one of my teams was working on a prediction
model to cross-sell a relatively new product that was having trouble gaining traction
and scale. This was a product with a relatively weak value proposition, so understand‐
ing which customers would be willing to use and pay for it was very hard (and thus so
was building a model to predict that!).

I worked with her and after doing some hard work toward understanding the prod‐
uct, the value proposition, and our customers, we came back with the recommenda‐
tion that unless there was some serious redesigning of the product, we would not
have product-market fit. It took us almost one year to convince the stakeholders that
this was indeed the case, and at certain points several of them were not happy with us.

Another trick is to use your capacity to empathize with your customers; ask yourself
what would you do if you were them? Of course, the easier it is to put yourself in their
shoes, the better (for me it would be really hard to put myself in an influencer’s or
professional boxer’s shoes). This trick can take you far, but bear in mind that you may
not be your typical customer, which brings me to the next trick.

At least at the beginning, aim for understanding and modeling your average cus‐
tomer. You should first and foremost get first-order effects right, meaning that mod‐
eling the average unit of analysis will buy you quite a bit of predictive performance.
I’ve seen many data scientists start hypothesizing about corner or edge cases which,
by definition, will have a negligible impact on overall predictive performance. Corner
cases are interesting and important, but for prediction, it’s almost always better to
start with the average cases.

Predicting system behavior
Some of the previous remarks also apply for predicting a system. The main difference
is that since systems lack purpose or sentience, you can restrict yourself to under‐
standing technical bottlenecks.

Clearly, you have to master the technical details of your system, and the more knowl‐
edgeable you become about the physical constraints, the easier it will be to come up
with hypotheses.

Predicting downstream metrics
Downstream metrics prediction is both harder and easier than predicting individual
metrics that result from human or system behavior. It’s harder because the more dis‐
tanced from the underlying drivers the metric is, the weaker and more diffused your
hypotheses become. Moreover, it inherits the difficulty of coming up with stories

Ex Ante and Interim Storytelling | 151

about these drivers, and some of these may compound and create higher-level com‐
plexity.

This said, many times you can do some hand-waving and exploit the time and space
correlations to create some features. In a sense, you’re accepting that any stories you
come up with will be beaten by a simple autoregressive structure that is common in
time series and spatial autoregressive models.

Feature Engineering
Generally speaking, the process of feature engineering entails converting hypotheses
into measurable variables that have enough signal to help your algorithm learn the
data generating process. It’s a good practice to split this into several stages, as depicted
in Figure 13-4.

Figure 13-4. Feature engineering flow

The stages for feature engineering are:

Create a set of ideal features.
The first step is about translating your hypotheses into ideal features, if you were
able to measure everything precisely. This step is important, as it allows you to
set a baseline for the second stage.

An example is the role that intentionality has on early churn, defined as those cus‐
tomers that try a product once and leave. One hypothesis is that these customers
didn’t really intend to use the product (because they were just trying it, or the sale
was pushed, or there was sales fraud, or the like). Wouldn’t it be great if you could
ask them and they answered truthfully? Unfortunately, this isn’t practical or ach‐
ievable.

Approximate the ideal features with realistic features.
If you realize that the ideal set of features is unavailable, you need to find good
proxy features, that is, features that are correlated with the ideal ones. Many
times, the degree of correlation can be very low, and you need to settle for includ‐
ing controls with a very weak correspondence to the original hypothesis.

An example of the latter is how culture affects your tastes and thus your likeli‐
hood to purchase a product. For instance, there may be cultural differences to
explain why users in different countries decide to accept or reject the cookies in

152 | Chapter 13: Storytelling in Machine Learning

https://oreil.ly/HDGj-

their browser (people from some countries may be more sensitive to sharing this
information). Needless to say, measuring culture is hard. But if you suspect that
country-level variation will capture a big part of the variation of the cultural
hypothesis, all you need is to include country dummy variables. It’s a relatively
weak set of features because these will proxy any feature at this level, and not only
culture (for instance, differences in regulatory environments).

Transform features.
This is the process of extracting the maximal amount of signal from your features
by applying a set of transformations on them. Note that I’m departing a bit from
the literature, since most textbook treatments on feature engineering refer exclu‐
sively to this stage.

This stage involves transformations such as scaling, binarizing and one-hot
encoding, imputation of missing values, feature interactions, and the like. I pro‐
vide several references at the end of this chapter where you can consult the vast
array of available transformations.

Importantly, transformations depend on your data and the algorithm of your
choice. For instance, with classification and regression trees you may not need to
take care of outliers by yourself, since the algorithm will do it for you. Similarly,
with generally nonlinear algorithms, like trees and tree-based ensembles, you
need not include multiplicative interactions.

Example: Predicting Sales
Suppose that you want to predict sales at a geographical area (g). A typical use case for
such a model is when you want to direct your sales force to locations with the highest
sales potential, as predicted by the model.

I’ll use a trick from Chapter 2 to get crisper stories:

salesg = TAMg ×
salesg
TAMg

= TAMg × Prob unit sale in g

This just says that total sales in unit g must equal the total addressable market (TAM),
multiplied by the probability of a sale in that area.

By doing this, instead of coming up with hypotheses for the number of sales per loca‐
tion, I can now focus on stories that will help me predict TAM and stories to explain
why the company makes a sale. The latter involves human behavior, and the former is
an aggregate metric.

Ex Ante and Interim Storytelling | 153

https://oreil.ly/Hak0v
https://oreil.ly/ralbT
https://oreil.ly/ralbT
https://oreil.ly/MhGuK
https://oreil.ly/bT-1q

To model TAM, I need to first understand who is my target customer and then find
stories about what makes them cluster in certain locations. For instance, to predict
the TAM for this book, I want to estimate the number of data scientists in a given
location. One plausible story is that data scientists are where companies need them. I
can further refine this story by arguing that company size matters (because of the
amount of data needed to make the business case for the data scientist positive, but
also because data scientists are relatively expensive and only large enough companies
can hire them), that industry mix matters (because more capital-intensive industries
may have more automated systems-generated data than more labor-intensive indus‐
tries with more manual processes, or because of regulatory pressures, or because of
market concentration differences), and that population size and age distributions
matter (because the field is relatively new and younger people, but not too young, are
more willing to invest in learning a hard technical subject like data science). These
hypotheses guide what type of data I need to look for to solve this prediction problem.

To model the probability of a sale being made, there must be people who want and
can afford the product (demand), and the product must be available to them in those
locations (supply). Ideal features to model demand are consumer preferences for the
product as well as household income. Preferences are generally hard to get, but can be
approximated with the company’s previous sales per location, or with online search
behavior (such as Google trends or data available by similar vendors). Supply-side
data is easier to get since I should know if the company and its competitors have a
presence in different locations.

Ex Post Storytelling: Opening the Black Box
The problem of ex post storytelling is mainly one of understanding why your model
makes predictions as it does, what are the most predictive features, and how these are
correlated to predictions. The two main points you want to convey to your audience
are:

• The model is incrementally predictive, that is, the prediction error is lower than
that of the baseline alternative.

• The model makes sense. A good practice is to start discussing the hypotheses,
how they were modeled, and how they are consistent with the results.

Generally speaking, a model is interpretable if you can understand what drives its pre‐
dictions. Local interpretability aims at understanding specific predictions, such as
why a customer is deemed highly likely to default on a credit. Global interpretability
aims at providing a general understanding of how features affect the outcome. This
topic deserves a book-length presentation, but in this chapter I can only delve into
the more practical matters, and specifically, I will only go through methods to achieve
global interpretability, as I’ve found these to be most useful for storytelling purposes.

154 | Chapter 13: Storytelling in Machine Learning

Before opening the black box, be sure that your model has enough
predictive performance, and that there’s no data leakage. You’ll
need to devote enough time and effort into ex post storytelling, so
you’d better start with a good prediction model.
Also, when presenting performance metrics, try to make them as
relatable to your audience as possible. Common metrics, such as
the root mean square error (RMSE) or the area under the curve
(AUC), can be cryptic for your business stakeholder. It’s generally
worth the effort to translate them to precise business outcomes. For
instance, if you have a 5% lower RMSE, how is the business better?

Interpretability-Performance Trade-Off
It can be argued that an ideal ML algorithm is both performant and interpretable.
Unfortunately, there is usually a trade-off between interpretability and predictive per‐
formance, so you have to give up part of your understanding of what’s happening
inside the algorithm if you want to achieve lower prediction error (Figure 13-5).

On one side of the spectrum, you have linear models that are generally considered to
be highly interpretable but have subpar predictive performance. This set includes lin‐
ear and logistic regression, as well as nonlinear learning algorithms, such as classifica‐
tion and regression trees. On the other side of the spectrum are the more flexible, and
usually highly nonlinear, models, like deep neural networks, tree-based ensembles,
and support vector machines. These algorithms are generally known as black box
learners. The objective is to open the black box and gain a better understanding of
what’s going on.

Figure 13-5. Interpretability-performance trade-off

Before moving on, it’s not obvious that you need to interpret the results, so let’s
briefly discuss why you may want to do so:

Ex Post Storytelling: Opening the Black Box | 155

Adoption and buy-in
Many people need to understand why a prediction is made in order to accept it as
valid, thereby adopting it. This is most common in organizations that are not
used to the ML approach, and decisions are usually made using a quasi-data-
driven approach that involves a lot of gut instinct. You may find it easier for your
stakeholders to accept your results and sponsor your project if you are able to
open the black box for them.

Low real-world predictive performance
Opening the black box is one of the most effective ways to detect and correct
problems like data leakage (Chapter 11).

Ethics and regulatory requirements
In certain industries it’s actually required that companies explain why a certain
prediction was made. For instance, in the US, the Equal Opportunity Act entitles
anyone to ask for the reasons why a credit was denied. A similar criterion applies
with the European General Data Protection Regulation (GDPR). Even if you are
not required to, you may want to validate whether the predictions and subse‐
quent decisions follow a minimal ethical standard by opening the black box.

Linear Regression: Setting a Benchmark
Linear regression provides a useful benchmark to understand interpretability (see
also Chapter 10). Consider the following simple model:

y = α0 + α1x1 + α2x2 + �

By making strong linearity assumptions about the underlying data generating pro‐
cess, you immediately get:

Effect directionality
The sign of each coefficient tells you if the feature is positively or negatively cor‐
related with the outcome, after controlling for all other features.

Effect magnitude
Each coefficient is interpreted as the change in the outcome associated with a
one-unit change in each feature, holding other features fixed. Importantly, no
causal interpretation can be given without further assumptions.

Local interpretability
From the first two items, you can assert why any individual prediction was made.

Some data scientists make the mistake of giving the absolute magnitude of the coeffi‐
cients a relative importance interpretation. To see why this doesn’t work, take the

156 | Chapter 13: Storytelling in Machine Learning

https://oreil.ly/5zj9j

following model, where revenue is expressed as a function of the size of the sales force
and paid marketing spend (search engine marketing or SEM):

revenue = 100 + 1000 × Num. sales execs + 0 . 5 × SEM spend

This says that, on average and holding other factors fixed, each additional:

• Sales executive is associated with an increase of $1,000 in revenue.
• Each dollar spent on SEM (for example, bids on Google, Bing, or Facebook ads)

is associated with an increase of 50 cents in revenue.

You would be tempted to conclude that increasing the size of the sales force is more
important for your revenues, compared to paid marketing spend. Unfortunately, this
is an apples-to-oranges comparison since each feature is measured in different units.
A trick to measure everything in the same units is to run a regression on standardized
features:

y = β0 + β1x1 + β2x2 + η

where z = z − mean z
std z for any variable z

Note that regression coefficients on standardized variables are generally different
from those in the original model (hence the different greek letters), and thus have a
different interpretation: by standardizing all features, you measure everything in
units of standard deviations (unitless is a better term), ensuring that you compare
apples to apples. You can then say things like: x1 is more important than x2, since an
additional standard deviation in x1 increases revenue by more than a corresponding
increase in x2.

The trick here is to find a way to convert the original units into a common unit (in
this case, standard deviations). But any other common unit could also work. For
instance, imagine that each additional sales executive costs $5,000 per month, on
average. Since marketing spend is already in dollars, you end up saying that on aver‐
age, each additional dollar spent in:

• Sales executives is associated with a 20 cent increase in revenue
• Paid marketing is associated with a 50 cent increase in revenue

While this last method also works, standardization is a much more common method
to find a common unit for all features. The important thing to remember is that
you’re now able to rank features in some meaningful way.

Ex Post Storytelling: Opening the Black Box | 157

1 It’s easy to show that in linear regression, rescaling a feature x to kx changes the true coefficient from α to α/k.

Figure 13-6 plots the estimated coefficients, along with 95% confidence intervals, for
a simulated linear model with two zero-mean, normally distributed features (x1, x2),
as in the previous equations. Features z1, z2, z3 are additional variables correlated to
x2, but are otherwise unrelated to the outcome. Importantly, I set the true parameters
to α1 = α2 = 1 and Var x1 = 1, Var x2 = 5. This has two effects:

• It increases the signal-to-noise ratio for the second feature, thereby making it
more informative.

• It increases the true coefficient:1 β2 = 5α2.

Figure 13-6. Regression in linear versus standardized features

By standardizing both features, it becomes noteworthy that the second feature ranks
higher in terms of importance, as defined earlier. Thanks to the confidence intervals,
you can also conclude that the last three features are uninformative. An alternative to
the statistical approach would be to use regularization, such as in a Lasso regression.

Feature Importance
Many times you want to rank the features according to some objective measure of
importance. This is useful for ex ante and ex post storytelling purposes. From an ex
post point of view, you can say things like: we found that the time of the transaction is
the most important predictor of fraud, which might help you sell the result of your
model, and will also deliver potentially great Aha! moments for you and your audi‐
ence (see also Chapter 7).

From an ex ante point of view, having a way to rank features by importance can help
you iterate on your hypotheses or feature engineering, or improve your understand‐
ing of a problem. If you have well-thought-out hypotheses and your results look sus‐
picious, it’s more likely that you made a programming error on the feature
engineering side, or that you have data leakage.

158 | Chapter 13: Storytelling in Machine Learning

Earlier, I used standardized features in a linear regression to get one possible such
importance ranking:

Standardized feature importance in linear regression
A feature x is more important than feature z if a one standard deviation increase
in x is associated with a larger change in the outcome, in absolute value.

Alternatively, importance can be defined in terms of each feature’s amount of infor‐
mation content for the prediction problem at hand. Intuitively, the higher the infor‐
mation content of a feature (for a given outcome), the lower the prediction error if
the feature is included. There are two commonly used metrics that follow this route:

Impurity-based feature importance
A feature x is more important than feature z, from a node impurity point of view,
if the relative improvement in prediction error from nodes where x was chosen as
a splitting variable is larger than the corresponding increase for z.

Permutation importance
A feature x is more important than feature z, from a permutation point of view, if
the relative loss in performance when the values of x are permuted is larger than
that for z.

Note that impurity-based feature importance only works for tree-based ML algo‐
rithms. Every time a node is split using a feature, the improvement in performance is
saved, so at the end you can compute the share of improvements for all features rela‐
tive to the total improvement. With ensembles, this is the average across all trees
grown.

On the other hand, permutation importance works with any ML algorithm since you
just shuffle the values of each feature (several times, as in a bootstrapping procedure)
and compute the loss in performance. The intuition is that the actual order matters
more for important features, so there should be a larger loss in performance from the
permutation of values.

Figure 13-7 shows permutation and impurity-based feature importances using the
same simulated dataset as before, trained with a gradient boosting regression (no
metaparameter optimization), along with 95% confidence intervals. Confidence
intervals for permutation importances are computed parametrically (assuming nor‐
mality) using the means and standard deviations provided by scikit-learn. I obtain
analogous intervals for impurity-based features using bootstrapping (see Chapter 9).

Ex Post Storytelling: Opening the Black Box | 159

https://oreil.ly/acJDH
https://oreil.ly/84XXY

Figure 13-7. Feature importances for simulated model using gradient boosting regression

Heatmaps
Heatmaps are very easy to compute and are generally quite good at visually displaying
the correlation between each feature and the predicted outcome. This is quite handy
to say things like when x increases, y falls. Many hypotheses are stated directionally, so
a quick first test of whether this holds in practice is quite useful. The process to calcu‐
late them is as follows:

1. Split the predicted outcome (regression) or probability (classification) in deciles,
or any other quantile.

2. For each feature x j and decile d, calculate the average across all units in that
bucket: x j, d.

These can be arranged in a table with deciles in the columns, and features in the rows.
It’s usually good to order the features using some measure of importance so that you
focus on the most relevant features first.

Figure 13-8 shows a heatmap for the linear regression trained on the previous simula‐
ted example, where features have already been sorted by feature importance. Just by
inspecting the relative shades for each feature (row), you can easily identify any pat‐
terns, or lack thereof.

160 | Chapter 13: Storytelling in Machine Learning

Figure 13-8. Feature heatmap for previous simulated example

For instance, x2 is positively correlated with the outcome, as expected since the true
coefficient in the simulation is equal to one. Units in the lower decile have -3.58 units
on average, and this increases monotonically up to 4.23 units on average for the top
decile.

Inspecting the row for x1 shows the main problem that heatmaps have: they present
bivariate correlations only. The true correlation is positive (α1 = 1), but the heatmap
fails to capture this monotonicity. To understand why, notice that x1 and x2 are nega‐
tively correlated (Figure 13-9). However, the larger variance of the second feature
gives it more predictive power, and thus more weight in the final ordering of the pre‐
dicted outcome (and deciles). These two facts break the monotonicity that was
expected for the second feature.

Figure 13-9. x2 and x1 are negatively correlated

Ex Post Storytelling: Opening the Black Box | 161

Partial Dependence Plots
With partial dependence plots (PDPs), you predict the outcome or probability by
only changing one feature at a time, while fixing everything else. It’s quite appealing
because of the similarity to what you get from taking the partial derivatives in linear
regression.

In Chapter 9, I used the following method to calculate PDPs that captures this intu‐
ition very closely. You first calculate the means for all features, then create a linear
grid of size G for the feature you want to simulate, and assemble everything into a
matrix of the form:

� � =

x1 x2 ⋯ x0 j ⋯ xK

x1 x2 ⋯ x1 j ⋯ xK

⋮ ⋮ ⋱ ⋮ ⋮

x1 x2 ⋯ xGj ⋯ xK G × K

You then use this matrix to create a prediction with your trained model:

PDP 1 x j = f � j

This method is fast and intuitively appealing, and it also allows you to quickly simu‐
late the impact of interactions between features. However, from a statistical point of
view, it’s not really correct since the average of a function is generally different from
the function evaluated on the averages of the inputs (unless your model is linear). The
main advantage is that it requires only one evaluation of the trained model.

The correct way to do it—and the method used by scikit-learn to compute PDPs—
requires N (sample size) evaluations of the trained model for each value g in the grid.
These are then averaged out to get:

PDP 2 x j = g = 1
N ∑

i = 1

N
f x1, i,⋯, x j − 1, i, g, x j + 1, i,⋯, xK, i

Interactions can be easily simulated by changing several features at a time. In practice,
often the two methods provide similar results, but this really depends on the distribu‐
tion of the features and the real unobserved data generating process.

Before moving on, notice that in this last computation you have to compute a predic‐
tion for each row in your dataset. With individual conditional expectation (ICE) plots,

162 | Chapter 13: Storytelling in Machine Learning

https://oreil.ly/waddK

2 The implementation on the code repo provides the ICE and the PDP.

you visually display these effects across units, making it a method of local interpreta‐
bility, as opposed to PDPs.2

Let’s simulate a nonlinear model to see the two methods in action, using the following
data generating process:

y = x1 + 2x1
2 − 2x1x2 − x2

2 + �

x1 ∼ Gamma shape = 1, scale = 1

x2 ∼ N 0, 1

� ∼ N 0, 5

I use a gamma distribution for the first feature to highlight the effect that outliers may
have when you use either method.

Figure 13-10 shows the estimated and true PDPs using both methods. PDPs for the
first feature capture well the shape of the true relationship, but the two methods start
diverging from each other for larger values of x1. This is expected because the sample
mean is sensitive to outliers, so with the first method you end up using an average
unit with a relatively large first feature. With the second method, this isn’t as pro‐
nounced since individual predictions are averaged out, and in this particular example
the functional form smooths out the effect of the outliers.

Figure 13-10. PDPs using both methods in the simulated data

While PDPs are great, they are biased with correlated features. For instance, if x1 and
x2 are positively correlated, both will then have small or large values at the same time.
But with a PDP you may end up unrealistically imposing a small value (from the
grid) for x1 when the corresponding value for the second feature is large.

To see this in practice, I simulated this modified version of the previous nonlinear
model:

Ex Post Storytelling: Opening the Black Box | 163

https://oreil.ly/dshp-repo

3 At the time of writing, two Python packages are available that calculate ALEs: ALEPython and alibi. You can
find my own implementation for the case of continuous features and no interactions in the code repo.

y = x1 + 2x1
2 − 2x1x2 − x2

2 + �

x1, x2 ∼ N 0, Σ ρ

� ∼ N 0, 5

where the features are now drawn from a multivariate normal distribution with a
covariance matrix indexed by a correlation parameter. Figure 13-11 plots the estima‐
ted and true PDPs for uncorrelated (ρ = 0) and (ρ = 0 . 9) correlated features, where
you can readily verify that PDPs are biased when features are correlated.

Figure 13-11. PDPs with correlated and uncorrelated features

Accumulated Local Effects
Accumulated local effects (ALE) is a relatively new method that takes care of the
shortcomings of PDPs when handling correlated features. It’s also less computation‐
ally expensive since the number of evaluations of the trained function is smaller.3

As discussed, the problem with PDPs arises from imposing unrealistic values of a fea‐
ture given its correlation with the remaining ones, which end up biasing the esti‐
mates. As before, you start by creating a grid for any feature k under inspection. ALE
handles this by doing three things:

164 | Chapter 13: Storytelling in Machine Learning

https://oreil.ly/znDHe
https://oreil.ly/QIZkS
https://oreil.ly/dshp-repo

Focusing on local effects
For a given value in the grid g, select only those units (i) in your data for which
the value of the feature falls in a neighborhood of that point
(i: g − δ ≤ xik ≤ g + δ). With correlated features, all of these units should have
relatively consistent values for all other variables.

Computing the slope of the function
Within that neighborhood, you compute the slope for each unit, and these are
then averaged out.

Accumulating these effects
For visualization purposes, all of these effects are accumulated: this allows you to
move from the local level of a neighborhood in the grid to the global range of the
feature.

The second step is quite important: instead of just evaluating the function on one
point of the grid, you actually compute the slope of the function in the interval.
Otherwise, you might end up confusing the effect of the feature of interest with that
of other highly correlated features.

Figure 13-12 shows the ALE for the same simulated dataset used before, along with
bootstrapped 90% confidence intervals. With uncorrelated features (first row), ALE
does a great job of recovering the true effects. With correlated features (second row),
the true effect of the second feature is recovered correctly, but some parts for the first
feature still display some bias; nonetheless, ALE still does a better job than PDPs.

Figure 13-12. ALE for the same simulated data (90% CI)

Ex Post Storytelling: Opening the Black Box | 165

Key Takeaways
These are the key takeaways from this chapter:

Holistic storytelling in ML
In its most common usage, the act of storytelling in ML comes after you’ve devel‐
oped your model and faced your stakeholders. The holistic approach presented
in this chapter supports a vision where your scientist persona creates and iterates
through stories that help you create a good predictive model, and then switches
to the more traditional salesperson persona.

Ex ante storytelling
Ex ante storytelling starts by creating stories or hypotheses about what drives the
outcome you aim to predict. These are then translated to features through a mul‐
tistep feature engineering stage.

Ex post storytelling
Ex post storytelling helps you understand and interpret the predictions coming
from your model. Techniques like heatmaps, partial dependence plots, and accu‐
mulated local effects should help you tell a story about the role that different fea‐
tures have on your outcome. Feature importance provides a way to rank them.

Structure the storytelling into steps
At least at the beginning, it’s good to put some structure on your storytelling
toolkit, both from an ex ante and ex post point of view.

Further Reading
I discuss first- and second-order effects in Analytical Skills for AI and Data Science.

Rolf Dobelli’s The Art of Thinking Clearly (Harper) is good if you want to gain some
knowledge of the many biases and heuristics that are present in human behavior.
These can greatly enrich the set of hypotheses for your specific problem.

On the problem of feature engineering, from a data transformation point of view,
there are several comprehensive references out there. You can check out Alice Zheng
and Amanda Casari’s Feature Engineering for Machine Learning (O’Reilly), Sinan
Ozdemir’s Feature Engineering Bookcamp (Manning), Soledad Galli’s Python Feature
Engineering Cookbook, 2nd ed. (Packt Publishing), or Wing Poon’s “Feature Engineer‐
ing for Machine Learning” series of blog posts.

I adapted Figure 13-5 from Figure 2.7 in An Introduction to Statistical Learning with
Applications in R, 2nd ed. by Gareth James et al. (Springer) and available online from
the authors. This book is highly recommended if you’re more interested in gaining
some intuition than in understanding the more technical details.

166 | Chapter 13: Storytelling in Machine Learning

https://oreil.ly/Zg3EI
https://oreil.ly/Zg3EI
https://oreil.ly/LZPDX
https://oreil.ly/LZPDX

On ML interpretability, I highly recommend Christoph Molnar’s Interpretable
Machine Learning: A Guide for Making Black Box Models Explainable (available
online, independently published, 2023). Trevor Hastie et al., The Elements of Statisti‐
cal Learning: Data Mining, Inference, and Prediction, 2nd ed. (Springer), has an excel‐
lent discussion on feature importance and interpretability for different algorithms (in
particular, sections 10.13 and 15.13.2). Finally, Michael Munn and David Pitman give
a very comprehensive and up-to-date overview of the different techniques in Explain‐
able AI for Practitioners: Designing and Implementing Explainable ML Solutions
(O’Reilly).

On ALEs, you can check the original article by Daniel W. Apley and Jingyu Zhu, “Vis‐
ualizing the Effects of Predictor Variables in Black Box Supervised Learning Models”
(August 2019, retrieved from arXiv). Molnar’s account on ALE is very good, but this
article can provide some further details into a somewhat less intuitive algorithm.

Further Reading | 167

https://oreil.ly/FujJr
https://oreil.ly/FujJr
https://oreil.ly/gbZlu

1 One may even ask if LLMs are really going to change the trend of adoption in a significant way. I believe that
the fundamentals haven’t really changed yet, at least until machines reach artificial general intelligence (AGI).
But I’ll discuss this topic in Chapter 17.

CHAPTER 14

From Prediction to Decisions

According to a survey done by McKinsey, 50% of their respondent organizations had
adopted artificial intelligence (AI) or machine learning (ML) in 2022, a sharp 2.5x
increase relative to 2017, but still lower than the peak reached in 2019 (58%). If AI is
the new electricity and data the new oil, why did adoption stall before the advent of
large language models (LLMs) such as ChatGPT and Bard?1

While the root causes are varied, the most proximate cause is that the majority of
organizations have yet to find a positive return on investment (ROI). In “Expanding
AI’s Impact With Organizational Learning”, Sam Ransbotham and his collaborators
argue that only “10% of companies obtain significant financial benefit from artificial
intelligence technologies.”

Where does this ROI come from? At its core, ML algorithms are predictive proce‐
dures, so it’s natural to expect that most value is created by improved decision-
making capabilities. This chapter goes into some of the ways that predictions improve
decisions. Along the way, I will present some practical methods that will help you
move from prediction to improved decision making.

Dissecting Decision Making
Prediction algorithms attempt to circumvent uncertainty, and doing so is extremely
important in improving our decision-making capabilities. For instance, I can try to
predict tomorrow’s weather in my hometown for the pure pleasure of doing so. But
the prediction itself facilitates and improves our ability to make better decisions in

169

https://oreil.ly/Kl_7y
https://oreil.ly/O_tsb
https://oreil.ly/bU0xd
https://oreil.ly/Stpro
https://oreil.ly/izJb7
https://oreil.ly/izJb7

the face of this uncertainty. It’s not hard to find many use cases where different people
and organizations would be willing to pay for this information (think farmers, party
planners, the telecommunications industry, government agencies like NASA, etc.).

Figure 14-1 shows diagramatically the role that uncertainty plays in decision making.
Starting from the right, once uncertainty is resolved, there is an outcome that affects
some metric you care about. This outcome depends on the set of levers (actions) at
your disposal and their interplay with the underlying uncertainty. For example, you
don’t know if it will rain today (uncertainty) and you care about being comfortable
and dry (outcomes). You can decide to take your umbrella or not (levers). Naturally,
if it rains, you’re better off taking your umbrella (you’re dry), but if it doesn’t, the best
decision is leaving it (you’re more comfortable since you don’t have to take it with
you).

Figure 14-1. Decisions under uncertainty

In Table 14-1 I’ve assembled some common use cases in ML, where I highlight the
roles that decision and uncertainty play, and some possible outcomes. Let’s go
through the first row, the case of health insurance claims processing. Given a new
claim, you must decide to review it manually or approve a payment, since a claim
might be illegitimate. Illegitimate claims unnecessarily increase the insurer’s costs, but
review processes are often quite involved and take a substantial amount of time and
effort. If you were able to predict correctly, you could lower prediction error and your
costs, as well as increase customer satisfaction.

170 | Chapter 14: From Prediction to Decisions

https://oreil.ly/4V5Du

Table 14-1. Examples of ML use cases

Category Use case Decision Uncertainty Outcome
Service operations Claims processing Automatic payment

versus review
Legitimate or not Reduction of manual

process (cost), higher
customer satisfaction,
lower fraud

Service operations Staffing Hire or relocate Staff size depends on
demand

Higher customer
satisfaction, lower unused
resources (cost)

Service operations Proactive
customer support

Call or not call a
customer

Will a customer have a
problem I can solve

Improve satisfaction and
lower churn

Supply chain optimization Demand
forecasting

Manage inventory Inventory depends on
demand

Higher sales and lower
depreciation costs

Fraud detection Chargeback
prevention

Approve or decline a
transaction

Legitimate or not Lower fraud-related costs,
higher customer
satisfaction

Marketing Lead generation Call or not call a
potential customer

Will they buy or not Higher sales efficiency

ML-based products Recommender
system

Recommend A or B Will they buy or not Higher engagement,
lower churn

Thinking first about decisions and outcomes, and only then about ML applications,
can take you a very long way in developing a strong data science practice at your
organization.

Thinking about decisions and levers is a great way to find new ML
use cases at the workplace. The process is:

1. Identify the key decisions made by your stakeholder (along
with the relevant metrics and levers).

2. Understand the role of uncertainty.
3. Make a business case for building an ML solution.

Simple Decision Rules by Smart Thresholding
As opposed to regression, simple decision rules arise naturally in classification mod‐
els in the form of thresholding. I will describe the case of a binomial model (two out‐
comes), but this same principle can be adjusted to the more general multinomial case.
The typical scenario is something like this:

Do τ =
A if pi ≥ τ

B if pi < τ

Simple Decision Rules by Smart Thresholding | 171

2 Note that in the ML literature, recall is commonly taken as the true positive rate.

Here pi is the predicted probability score for unit i, and τ is a threshold chosen by
you. The rule activates action A if the score is large enough, and action B otherwise.
Note that a similar rationale applies if you replace the predicted probability with a
predicted continuous outcome. However, the simplified structure inherent to classifi‐
cation settings allows you to include the cost of different prediction errors in your
deliberation.

In a nutshell, everything boils down to a thorough understanding of false positives
and negatives. In a binomial model, outcomes are usually labeled as positive (1) or
negative (0). Once you have a predicted probability score and a threshold, units with
a higher (lower) probability are predicted as positives (negatives). See the confusion
matrix in Table 14-2.

Table 14-2. A typical confusion matrix

Actual/predicted N τ P τ
N TN FP

P FN TP

Rows and columns in the confusion matrix denote actual and predicted labels,
respectively. As mentioned, predicted outcomes depend on the chosen threshold (τ).
Thus, you can classify every instance in your sample as true negative (TN), true posi‐
tive (TP), false negative (FN), or false positive (FP), depending on whether the pre‐
dicted label matches the true label or not. Cells in the matrix denote the number of
cases for each category.

Precision and Recall
Two common performance metrics in classification problems are the precision and
recall:

Precision = TP
TP + FP

Recall = TP
TP + FN

Both metrics can be thought of as true positive rates, but each considers different uni‐
verses.2 Precision answers the question: out of everything I said is positive, what per‐
centage was actually positive? On the other hand, recall answers the question: out of
everything that’s actually positive, what percentage did I predict correctly? When you

172 | Chapter 14: From Prediction to Decisions

use precision as your considerations, you are really thinking about the cost of a false
positive; with recall, what matters is the cost of a false negative.

Figure 14-2 shows precision and recall curves for three alternative models trained on
a simulated latent variable linear model for a balanced outcome. The first column
shows a classifier that assigns a probability score by drawing random uniform num‐
bers in the unit interval; this random classifier will serve as a baseline. The middle
column plots precision and recall obtained from a logistic regression. The final col‐
umn switches the predicted classes, on purpose, to create an inverse probability score
where a higher score is associated with lower incidence rates.

You can readily see several patterns: precision always starts at the fraction of positive
cases in your sample, and can be relatively straight (random classifier), increasing, or
decreasing. Most of the time you get an increasing precision, since most models tend
to outperform random classifiers and are at least somewhat informative of the out‐
come you want to predict. Though theoretically possible, a negatively sloped preci‐
sion is highly unlikely.

Precision is better behaved, in the sense that it always starts at one and then decreases
to zero, and only the curvature changes. A nice concave function (middle plot) is to
be generally expected, and is also related to the fact that in healthy classification mod‐
els, scores are informative of the probability of occurrence.

Figure 14-2. Precision and recall for different models

Example: Lead Generation
Take the example of a lead generation campaign, where you score leads to predict
which will end in a sale. Your data consists of successful (sale) and failed (no sale)
contacts for a historical sample of leads previously used by the telemarketing team.

Consider the simple decision rule to contact a customer if the predicted probability is
higher than a threshold. An FN is a lead that would’ve become a sale had it been sent

Simple Decision Rules by Smart Thresholding | 173

3 I assume that the contact ratio is one, so every call ends in a contact. In applications this is usually not true, so
not only does the funnel need to be expanded, but you may also need to adjust your model.

4 Sample size was normalized to 100 and the outcome is balanced, so there are only ~50 true positive cases.

to the marketing team, and an FP is a lead that was incorrectly sent for contact, so it
didn’t end up in a sale. The cost of a false negative is the forgone revenue from the
sale, and the costs of a false positive are any resources spent on the processing of a
lead (for instance, if the hourly salary of a telemarketing executive is $X, and each
lead takes k minutes to be processed, the cost of each false positive is $kX/60).

A simple volume threshold rule works like this: the sales team tells you how much
volume (V) they can handle each period (day or week), and you send them the top V
leads according to the estimated probability score. Clearly, by fixing the volume you
also implicitly set the threshold of your decision rule.

Let’s look at a simplified lead generation funnel (see also Chapter 2) to understand the
effects of such a rule:3

Sales = Sales
Called

1

× Called
Leads

2

× Leads
3

= Conv. Eff τ
Precision

× Call Rate FTE × Leads τ

Total sales depend on the conversion efficiency (1), call rate (2), and the volume of
leads (3). Note that conversion efficiency and the volume of leads depend on the
threshold you choose: in an idealized setting, conversion efficiency is equal to the pre‐
cision of your model, and the number of leads depends on the scores distribution. On
the other hand, the call rate depends on the number of full-time equivalent (FTE) or
total employees of the sales team: large enough sales forces will be able to call every
lead in the sample.

With this you can see why and when the volume rule may work. By sorting the leads
on the probability score in a descending fashion, and contacting only the top V, you
optimize conversion efficiency (since precision is an increasing function in predictive
classification models). You also take care of idle resources in the telemarketing team:
if you send more than they’re able to handle, leads with lower scores won’t be contac‐
ted in the current time window; if you send less, there will be idle sales agents.

Figure 14-3 plots the product of (1) and (3) as a function of the threshold set for the
same simulated sample and the same three models used before.4 Moving from right to
left, you can see that lowering the threshold is always better from a total sales per‐
spective, explaining why a volume rule usually works well for telemarketing teams.

174 | Chapter 14: From Prediction to Decisions

Figure 14-3. Optimizing total sales

One potential source of confusion arising from this figure is that it may suggest that
you should set the threshold to zero (call every scored lead) instead of just following
the volume rule. Put differently, should the sales team hire the exact number of FTEs
that guarantee that the call rate is maximized and that all leads are contacted? The
answer is negative: if the score is informative, leads with lower predicted scores are
also less likely to convert, so the cost of an additional FTE (certain) will be larger than
the (uncertain) benefit from the additional sale. The volume rule assumes that the
size of the team is fixed, and then optimizes for the largest precision and sales, given
this team size.

Confusion Matrix Optimization
The case of lead generation is somewhat atypical, because you effectively put zero
weight to false negatives and focus only on optimizing precision. But this is not true
for most problems (and even with lead generation, there’s a case to be made to
include false positives in the choice of a threshold). To see this, consider the case of
fraud, where for any incoming transaction, you need to predict whether it’s going to
be fraudulent or not.

A typical decision rule blocks a transaction for large enough probability scores. False
positives typically translate to infuriated customers (lower customer satisfaction and
higher churn). On the other hand, a false negative creates a direct cost of fraud. This
tension gives rise to interesting optimization problems for threshold selection.

Confusion Matrix Optimization | 175

5 While this is correct for the profit calculation, you may want to use the conditional probabilities, given a pre‐
diction error for the cost calculation. The chosen threshold doesn’t change since this amounts to a rescaling of
the objective function.

The general idea is to find the threshold that minimizes the expected cost from incor‐
rect predictions; alternatively, if you think you should also include the value from
correct predictions, you can choose the threshold to maximize the expected profits.
These can be expressed as:

E Cost τ = PFP τ cFP + PFN τ cFN

E Profit τ = PTP τ bTP + PTN τ bTN − PFP τ cFP + PFN τ cFN

where Px, cx, bx denote the probability of a true or false positive or negative (x), and
their associated cost or benefit, respectively. Probabilities are estimated using the fre‐
quencies in the confusion matrix as Px = nx/∑y ny, and depend on the chosen
threshold.5

Figure 14-4 shows sample estimates using the same simulated dataset as before;
importantly, I assume a symmetric case where all costs and benefits have the same
value (normalized to one). You can see that for cost (left) and profit optimization
(right), the optimal threshold is ~0.5, as expected in a model with balanced outcomes
and symmetrical cost/benefit structure.

Figure 14-4. Symmetric expected cost and profits

Figure 14-5 shows the effect of doubling the cost of a false positive and negative on
the optimal threshold. Directionally speaking, you would expect that increasing the
cost of a false positive increases the threshold, as you put more weight on the preci‐
sion of the model. Alternatively, a higher cost of a false negative lowers the optimal
threshold since you put more weight on the recall.

176 | Chapter 14: From Prediction to Decisions

Figure 14-5. Asymmetric expected costs

You can use this method to find suitable thresholds that will transform your classifi‐
cation model into a decision rule. The process involves the following steps:

1. Train a classifier with good predictive performance.
2. For cost minimization, set suitable costs for prediction errors. Because of the

structure of the problem, you need only have relative costs (such as, the cost of a
false negative is 3x that of a false positive; that is, you can normalize everything
with respect to one outcome).

3. A similar consideration applies for profit maximization.
4. These can be computed for different threshold values and optimized.

Key Takeaways
These are the key takeaways from this chapter:

Moving from prediction to decisions is critical if you want to find positive ROI for your
data science practice.

ML is a set of predictive algorithms that can, first and foremost, greatly improve
your organization’s decision-making capabilities.

Threshold decision rules abound in ML.
Many regression and classification models give rise to simple decision rules that
trigger actions if the predicted outcome is greater than, equal to, or lower than a
predetermined threshold.

Decision rules in classification models.
Because of the simplified outcome structure, classification models give rise to
decision rules that can be easily optimized. One such optimization path takes
into account the costs and benefits from different prediction outcomes (true and
false positives or negatives). I showed how a simple volume-threshold rule arises

Key Takeaways | 177

when you only care about the precision of your model, and the more complete
case where false positives and negatives matter.

Further Reading
My book Analytical Skills for AI and Data Science goes in depth into many of the
themes of this chapter. Importantly, I did not cover the practical problem of threshold
optimization described here.

Ajay Agrawal et al., Power and Prediction: The Disruptive Economics of Artificial Intel‐
ligence (Harvard Business Review Press) strongly reinforce the point that the poten‐
tial for AI and ML to disrupt the economy depends on their ability to improve our
decision-making capabilities.

178 | Chapter 14: From Prediction to Decisions

CHAPTER 15

Incrementality: The Holy Grail of
Data Science?

In the past I’ve argued that incrementality is the holy grail of data science. This state‐
ment depends critically on the hypothesis that I’ve maintained throughout: that data
science creates value by improving a company’s decision-making capabilities. This
chapter expands on this topic, but most importantly, I will present some techniques
that should build some basic intuitions that will become handy if and when you
decide to delve deeper. As usual, the topic is worthy of a book-length treatment, so I
will provide several references at the end of this chapter.

Defining Incrementality
Incrementality is just another name for causal inference applied to decision-making
analytics. If you recall from Figure 14-1, a typical decision comprises an action or
lever, and an outcome that depends on the underlying uncertainty. If the lever
improves the outcome, and you’re able to isolate any other factors that might explain
the change, you can say (with some degree of confidence) that it was incremental. For
later reference, the action is also known as the treatment, following the more classical
medical literature of controlled experiments, where some patients receive a treatment,
and the remaining control group receives a placebo.

Causality is commonly defined by use of counterfactuals. As opposed to facts—some‐
thing that we observe—counterfactuals attempt to provide an answer to the question:
what if I had followed a different course of action? You can then say that an action
has a causal effect on the outcome if the result is unique against all possible
counterfactuals.

179

https://oreil.ly/or6gY

1 Just in passing, note that in this example there are alternative counterfactual stories that could explain the
higher revenue. A very common one is peak seasonal sales, where customers are just more willing to spend
more on your product.

For instance, imagine you can pull a binary lever with only two possible actions, A
and B (such as giving a price discount or not), and you observe an outcome Y (reve‐
nue). You end up giving a discount to all of your customers and find that revenue
increases. Was the discount incremental on revenue? Alternatively, is this effect
causal? To answer these questions, you need to estimate the counterfactual revenue,
where every other factor is fixed and the only thing that changes is that you don’t give
a discount. The difference in these potential outcomes is the causal effect of the
discount.1

By quantifying incrementality, you are able to identify and choose actions that put the
company on an improving path. This is commonly associated with prescriptive ana‐
lytics, as opposed to its descriptive and predictive counterparts. Most data scientists
working on machine learning (ML) strictly focus on prediction and devote little to no
time to think about causality, so you might wonder if this is really a critical skill to
learn. Before moving on to more practical matters, I’ll argue that it is.

Causal Reasoning to Improve Prediction
Even if you restrict your role as data scientist to prediction, you ought to care about
causality in a very broad sense. As argued in Chapter 13, for engineering good, pre‐
dictive features, you need to have some basic causal intuitions about the outcome you
want to predict. This can be seen from the definition of supervised learning:

y = f x1, x2,⋯

Given variation in your features and outcome xk, y , the task is to learn the data gen‐
erating process (f). But this implicitly assumes a direction of causality from features
to outcome. The process of feature engineering starts by formulating casual hypothe‐
ses of the type a higher value of feature k increases outcome because…. Moreover, the
predictive performance of your model may be negatively impacted if you include fea‐
tures that are spuriously correlated with the outcome, as explained in Chapter 10.

Causal Reasoning as a Differentiator
At the time of writing this book, GPT-4 and similar large language models (LLMs)
are making us rethink the role of humans in many areas. Data scientists have heard
about these risks before with the advent of automated machine learning.

180 | Chapter 15: Incrementality: The Holy Grail of Data Science?

https://oreil.ly/afagR

But these technologies can make you more productive if you let the machines take
care of everything that can be automated and devote your unique human capabilities
on top of them. Even with the most recent advances, it seems safe to predict that for
now, humans are uniquely suited to engage in causal reasoning by way of counterfac‐
tuals and building models of how the world works. Chapter 17 discusses this topic in
detail.

Improved Decision Making
There is also the problem of how you create value for your organization. As I’ve
argued throughout this book, data scientists are uniquely endowed with skills to
improve a company’s decision-making capabilities. If you follow this route, incre‐
mentality is the holy grail and there’s no way you can escape thinking about causality.

But this route also requires you to rethink your role as data scientist, augmenting it
from just prediction to enhanced decision making (where prediction plays an impor‐
tant, but secondary, role).

A typical scenario is the launch of a new feature or new product. When you launch a
new feature, you’d better have an outcome or metric that you are trying to optimize.
For instance, you may care about customer engagement, as measured by activity time
or page visit frequency. If you’re able to show that the feature was incremental on that
metric, you can recommend expanding its use or augmenting it. Alternatively, if you
don’t find it to be incremental, or even worse, that the metric deteriorated, the best
course of action is to roll the feature back.

The launch of new products adds the more interesting concept of cannibalization. For
example, when Apple decided to launch the iPhone, the sales of the iPod dropped sig‐
nificantly and were thus cannibalized. Similarly, the streaming business for Netflix
eventually displaced and cannibalized the original online DVD rental business. A
somewhat different final example is the case of Starbucks opening a new store that
may cannibalize the sales of neighboring stores. In all of these cases, estimating the
incrementality for the new product or stores can have a deep impact on the compa‐
ny’s P&L and decision-making capabilities.

Confounders and Colliders
Chapter 10 mentioned confounders and bad controls as examples of how things can
go wrong with linear regression. Mastering these concepts is again of key practical
importance when dealing with causality. I’ll now review these concepts and highlight
some places where you should direct your attention when thinking about
incrementality.

Confounders and Colliders | 181

https://oreil.ly/QarTm
https://oreil.ly/Zu5jM
https://oreil.ly/BCgCA

2 The DAG approach to identification is popular among computer scientists and epidemiologists, and the
potential outcomes approach is most popular among statisticians and economists. I will talk more about the
latter in what follows.

One very useful tool to think about causality is directed acyclic graphs (DAGs). A
graph is a set of nodes and links between the nodes. In this setting, nodes represent
variables, and links denote causal relationships. When links are interpreted direction‐
ally, the graph becomes directed. For instance, if x causes y, there will be a directed
link x y. The word acyclic precludes the existence of loops; if x y, it can’t be that
x y, so causal relationships are unidirectional. Judea Pearl, a computer scientist
and Turing Award winner for his work on Bayesian networks, developed and popu‐
larized an approach to causal analysis using DAGs. Given your data and your DAG,
the question is whether you can identify a specific causal effect. Identification is dif‐
ferent from estimation, which uses statistical techniques to compute the sample
estimate.2

Figure 15-1 shows DAGs for the simplest cases of a confounder and a collider where
there’s no causal effect from x to y. The left DAG shows that there are two causal rela‐
tions (c x, c y), so c is a common cause for both x and y. On the right, there are
also two causal relations (c x, c y), so c is a common effect.

Figure 15-1. DAGs with confounder and collider: no causal effect

Confounder bias arises when two possibly unrelated variables (x, y) have a common
cause (c). If you run a regression of y on x, without controlling for c, you will find that
they are spuriously correlated. If the confounder is observed, all you need to do is
condition on the confounder, and the causal relation, if any, will be identified. The
problem arises with unobserved confounders, since by definition you can’t control for
them. In this case, you won’t be able to identify the causal effect, if there is one.

A collider is a common effect of two variables, and is a typical example of a bad con‐
trol, in the sense that including it in your regression will bias your estimates. If you

182 | Chapter 15: Incrementality: The Holy Grail of Data Science?

run a regression of y on x and control for c, you will find a spurious relation that
doesn’t exist.

To get a sense of what happens, I simulate the following data generating processes for
a confounder (note that there’s no causal effect from x to y):

c ∼ N 0, 1
�x ∼ N 0, 1

�y ∼ N 0, 2

x = 10 + 0 . 5c + �x

y = −2 + 3c + �y

Similarly, the data generating processes for a collider are (again, there’s no causal
effect from x to y):

�x ∼ N 0, 1

�y ∼ N 0, 2

�c ∼ N 0, 0 . 1

x = 10 + �x

y = −2 + �y

c = 5 − 2x + 10y + �c

I then run a Monte Carlo (MC) simulation where I estimate linear regressions of y on
x with and without controlling for c. I report the estimated coefficient for the feature
x and 95% confidence intervals in Figure 15-2.

Figure 15-2. Confounder and collider bias (parameter estimate and 95% confidence
interval)

Confounders and Colliders | 183

3 Note that the back-door criterion also includes a condition to not control for the descendants of the treatment
(the variable that causes an outcome).

4 The DGP is essentially the same as before, but I introduced two changes: I draw c, proxy ∼ N 0, Σ ρ to allow
for different correlation coefficients between the true unobserved confounder (c) and the observed proxy, and
I model the outcome as y = â2 + 3c − 2x + �y so that there is a causal effect from x to y.

For the confounder case, not controlling for c creates a statistically significant spuri‐
ous correlation that would incorrectly indicate that x and y are related (even worse,
you might end up concluding that x causes y). Notably, this correlation disappears
once you include the confounder in the regression, leading to a correct inference
about the nonexistent relation.

With the collider, the opposite happens: since it’s a bad control, excluding it from the
regression allows you to estimate a statistically insignificant effect of x on y. If you
mistakenly think that c should be included as a feature, you end up concluding that
there’s a causal effect when there is none.

Both of these biases are pervasive in applications and unfortunately depend critically
on your causal model for the outcome. Put differently, before attempting to estimate a
causal effect, you must come up with a model (a DAG) for your outcome. Only then
can you decide whether your available data is sufficient for identification for a given
causal effect. Specifically, you must control for any confounders and ensure that you
don’t control for colliders (and sometimes these two considerations clash with each
other, since a variable might be a confounder and a collider at the same time).

This process is often called the back-door criterion: with confounders you have to
close any back doors by controlling for them, and with colliders the opposite applies;
otherwise, you open those back doors and can’t identify the causal effect.3

Another practical problem that arises has to do with proxy confounders. As already
mentioned, unobserved confounders preclude identification of a causal effect, so you
might be tempted to use proxy variables that are somewhat correlated with the con‐
founder. The hope is that you can still estimate a causal effect using these less-than-
optimal substitutes. Unfortunately, the answer is not good: the extent of the bias
depends critically on the strength of the correlation. Figure 15-3 shows this for an
MC simulation for the case of a confounder and a true causal effect of x on y.4

184 | Chapter 15: Incrementality: The Holy Grail of Data Science?

5 The distinction between the different types of selection bias is important. As I will show later, randomization
precludes selection into the treatment, but doesn’t solve the problem of post-treatment selection.

Figure 15-3. Confounder bias with correlated proxies

Selection Bias
Selection bias is a very important concept for causal analysis, but it has different
meanings to different schools of thought. For statisticians and economists, it’s associ‐
ated with selection into the treatment, and for computer scientists it refers to a post-
treatment selection that changes the sample of respondents; the former is a kind of
confounding bias, and the latter produces a completely different DAG (better associ‐
ated with survivorship bias, as discussed in Chapter 6). In this section I’ll refer to the
former (selection into the treatment), which is commonly associated with the poten‐
tial outcomes literature. I will now introduce this notation.5

The idea of potential outcomes is closely related to counterfactuals. Consider the case
of a binary treatment (D), where each unit i either gets it (Di = 1) or not (Di = 0).
There’s a unique potential outcome associated with each level of the treatment, deno‐
ted by Y1i or Y0i, corresponding to getting or not getting the treatment, respectively.
For each unit we observe one and only one of these potential outcomes, denoted by
Y i; the other potential outcome is counterfactual so you don’t observe it. The relation
between the observed outcome and the potential outcomes can be summarized by:

Yi =
Y1i if Di = 1

Y0i if Di = 0

Alternatively, Y i = Y0i + Y1i − Y0i Di, which maps quite neatly to the structure of a
linear regression of the outcome on the treatment dummy variable and an intercept.

Selection Bias | 185

https://oreil.ly/TGxkr
https://oreil.ly/TGxkr

One advantage of thinking about causality in terms of potential outcomes is that the
problem is essentially one of missing data. Table 15-1 shows one example, where each
row denotes a customer. You only observe Y and D, from which you can immediately
fill out the potential outcomes using the above logic. Were we able to observe each
counterfactual outcome, we would be able to estimate the causal effect.

Table 15-1. Potential outcomes and missing values

Y Y0 Y1 D
1 6.28 6.28 NaN 0

2 8.05 8.05 NaN 0

18 8.70 NaN 8.70 1

7 8.90 NaN 8.90 1

0 9.23 9.23 NaN 0

16 9.44 NaN 9.44 1

To provide an example, suppose I want to estimate whether providing a GitHub repo
with accompanying code for the book is incremental to the book’s sales. My intuition
is that knowing that there’s available code increases the likelihood of a purchase,
either because potential customers think the book is of higher quality, or because they
know that the learning path is easier with code, I’d like to quantify the effect, since
creating a code repo is costly. I will communicate and make it available to a sample of
visitors to my web page (Di = 1); to the remaining visitors I don’t make it available
(Di = 0). The outcome is a binary variable, denoting a sale (Y i = 1) or no sale
(Y i = 0).

For each unit i, Y1i − Y0i is the causal effect of providing code. Since only one of these
is observed for each unit, we need to estimate it using the sample of those who get
and don’t get the treatment. One natural way to estimate it is the observed difference in
means: E Y i Di = 1 − E Y i Di = 0 . In practice, you replace the expectations with
sample moments to get YDi = 1 − YDi = 0, explaining why I say it’s observed.

The bad news is that the observed difference does not estimate the causal effect in the
presence of selection bias:

E Yi Di = 1 − E Yi Di = 0
Observed Difference in Means

= E Y1i − Y0i Di = 1
ATT (casual effect)

+ E Y0i Di = 1 − E Y0i Di = 0
Selection Bias

This decomposition is quite handy because it shows that in the presence of selection
bias, the observed difference in means will deviate from the causal effect of interest,
commonly denoted by the average treatment effect on the treated (ATT). The ATT
answers the following question: looking only at those who received the treatment,

186 | Chapter 15: Incrementality: The Holy Grail of Data Science?

6 Note that there are alternative casual effects you can estimate, namely the average treatment effect (ATE) or
the average treatment effect on the untreated (ATU). I provide references at the end of this chapter.

what is the expected difference in outcomes between what they got and what they
would’ve gotten had they not received the treatment? The second outcome is coun‐
terfactual, so the difference provides the causal effect on them.6

The third term represents selection bias and shows why the observed difference in
means may deviate from the causal effect. To explain what this means, I will now use
the following notation:

Selection Bias = E Y0i Di = 1
A

− E Y0i Di = 0
B

Going back to the example, you can think of the code repo as a costly lever for a com‐
pany (in this case, me) that can be assigned to everyone, or assigned selectively.
Figure 15-4 shows the two types of selection bias. When there’s positive (negative)
selection, the causal effect tends to be overestimated (underestimated).

Figure 15-4. Positive and negative selection

Let’s start with positive selection, which happens if I give the treatment to those that
are already more likely to purchase the book. Alternatively, the probability of a sale is
from the upstart higher for those who get the repo, independent of the incrementality
of the lever. This means that A ≥ B, overestimating the casual effect. A similar argu‐
ment shows that with negative selection A ≤ B, and the casual effect is
underestimated.

Selection bias is pervasive in observational data. Either you (or someone from the
company) selected the participants in the treatment, or the customers self-selected
themselves. The code repo example is typical of selection by the company, but

Selection Bias | 187

self-selection is also very common. In Chapter 4 I introduced the idea of adverse
selection where the riskiest customers—in terms of not being able to repay a loan—
are also more willing to accept the offer. Adverse selection is a common example of
self-selection.

A thorough understanding of selection bias in your specific use
case can take you very far in your quest to understand and estimate
causal relations. Whenever you are looking at incrementality, ask
yourself if there’s any type of selection bias possible. This means
that you have to think hard about the selection mechanism into the
treatment you’re analyzing.

Luckily, checking for selection bias is conceptually straightforward: take a set of pre‐
treatment variables X and compute the difference for those in the treatment and con‐
trol groups. Pretreatment variables are those that may affect selection into the
treatment. Chapter 6 showed how lifts can be used, but for statistical reasons it’s more
common to use difference in means instead of a ratio (as this gives rise to a standard
t-test).

Figure 15-5. Selection bias and confounders

Figure 15-5 shows an example of a DAG that can be used to model selection bias.
There are two sets of pretreatment variables (Z1,⋯, Z4, X), all affecting selection into
treatment (D). Outcome (Y) depends on the treatment and X. Note that X is a con‐
founder, and that variables Zk create no bias if you control for the treatment. These
other pretreatment variables may differ across treatment and control groups, but
these differences don’t create selection bias.

Unconfoundedness Assumption
With this in mind, it’s time to introduce the main assumption needed for the identifi‐
cation of causal effects. This assumption goes by different names, such as uncon‐
foundedness, ignorability, conditional exchangeability, selection on observables, and
conditional independence.

188 | Chapter 15: Incrementality: The Holy Grail of Data Science?

The assumption means that the potential outcomes and selection into treatment are
statistically independent, conditional on a set of observed controls:

Y0, Y1 ⊥⊥ D X

This critical assumption has two alternative interpretations, one from the point of
view of the decision-maker (owner of the selection mechanism) and the other from
the data scientist’s perspective.

Starting with the decision-maker, recall that selection into the treatment can either be
done by the customer (self-selection) or by the owner of the treatment (you, or some‐
one from your company). The assumption forbids that the decision-maker takes the
potential outcomes into consideration.

For example, when discussing positive and negative selection, I was the owner of the
selection mechanism, and it explicitly depended on whether I wanted to incentivize
potential customers that were more or less likely to purchase organically. This is the
same as saying that selection depended on the potential outcomes: if Y0i = 0, the cus‐
tomer won’t purchase the book without access to the repo, so I may wish to incentiv‐
ize them (negative selection). A similar rationale applies for positive selection. Both
of these cases might lead to a violation of unconfoundedness.

From the data scientist’s perspective, you need to know in advance all of the relevant
variables that could, in principle, affect the selection mechanism (you can then con‐
trol for them and achieve conditional independence). I hope you can see why causal
inference is so hard: not only do you need to have knowledge of the correct model for
your outcome (the DAG), but you also need to observe all relevant variables. The lat‐
ter explains why the assumption is also called selection on observables. Any unob‐
served confounders will result in selection bias. With observational data, both
conditions are very hard to attain, which takes us to A/B testing.

Breaking Selection Bias: Randomization
Randomized controlled trials (RCT), or A/B testing as it’s better known in the corpo‐
rate jargon, are the quintessential method to estimate causal effects. The reason is
that, by design, the unconfoundedness assumption is guaranteed: selection into the
treatment depends only on the outcome of a pseudorandom draw, making it inde‐
pendent of the potential outcomes by construction.

Let’s see how this works in practice. You need to first define the fraction of treated in
a sample (p), which is usually set to one half in most common A/B test designs. You
then draw from a uniform distribution (u) and define selection as:

Breaking Selection Bias: Randomization | 189

7 Marketplaces have demand and supply sides. Examples of demand are the passenger in ridesharing, or guests
for Airbnb.

Di =
1 if u ≥ p
0 if u < p

The following code snippet implements this random selection mechanism. The user
provides the total sample size (n_total), the fraction of treated (frac_treated), and
a seed for the random number generator, which allows for later replication. The out‐
come is a Boolean array that will indicate whether each unit in the sample is selected
(True) or not (False).

def randomize_sample(n_total, frac_treated, seed):
 "Function to find a randomized sample"
 np.random.seed(seed)
 unif_draw = np.random.rand(n_total)
 bool_treat = unif_draw >= frac_treated

 return bool_treat

As mentioned, unconfoudedness is also called (conditional) exchangeability. In the
example, had I randomized selection into the treatment, thanks to exchangeability I
would expect the fraction of those who would organically buy the book to be the
same in the treatment and control groups. Any incremental sales in one group must
depend solely on the lever I provided. This is the beauty of A/B tests.

When randomizing, you must ensure that the stable unit treatment
value assumption (SUTVA) is satisfied. SUTVA has two require‐
ments: (i) the treatment is the same for all individuals who get it
(for instance, in drug trials, all patients must get the same equiva‐
lent dosage), and (ii) there is no interference between units, so the
potential outcome for a unit doesn’t vary with treatment assign‐
ment for other units.
The latter condition is often violated in online marketplaces, such
as Uber, Lyft, or Airbnb. Suppose you want to test if a demand-side
price discount improves revenue.7 The treatment (discount) might
reduce the available supply for the control group, creating an exter‐
nality that affects their potential outcomes. In these cases, it’s better
to use randomization by blocks, where the sample is first split into
mutually exclusive clusters, and treatment is randomized across
clusters instead of across units.

190 | Chapter 15: Incrementality: The Holy Grail of Data Science?

https://oreil.ly/Y3hWH

Matching
As great as it is, A/B testing may not always be at your disposal, especially when the
treatment is sufficiently costly. For instance, suppose you work for a telecommunica‐
tions company that wants to know if installing an antenna (with all the required com‐
ponents) is incremental on its revenues. You can come up with an A/B test design
where you randomize installing new antennas across geographical locations. Given a
large enough sample size, this setup will allow you to estimate their incrementality.
Needless to say, this test is just too costly to perform.

There are several techniques that will allow you to estimate causal effects with obser‐
vational data, but they all depend on the critical unconfoundedness assumption to be
satisfied. Here I just want to mention matching (and propensity score matching),
because it nicely captures the intuition behind selection on observables, and how you
can try to replicate randomization by finding a set of suitable units to be in the con‐
trol group.

One way to think about randomization is that the treatment and control groups are
ex ante equal, meaning that if you randomly choose one unit from each group and
compare them with regard to any set of variables (X), they should be pretty much the
same. A natural question is whether we can create a valid control group ex post, so
that selection on observables applies. This is what matching attempts to do.

The matching algorithm works like this:

1. Propose a DAG for your outcome and ensure that selection on observables is valid.
In practice, this means that you have a reasonable causal model for the selection
mechanism and you can observe all pretreatment features X.

2. Loop over all treated units:
a. Find suitable individual control groups. For each unit i, find the group of m

units that are closest to i in terms of X. Denote it by C i . m is a metaparameter
that controls the bias versus variance trade-off: most people use m = 1, poten‐
tially leading to low bias but large variance. You can increase the number and
play with this trade-off.

b. Compute the average outcome for the control group. Once you have a control
group for unit i, you can compute the average outcome y0i = 1/m ∑ j ∈ C i y j.

c. Calculate the average treatment effect for unit i. Compute the difference
δi = yi − y0i.

3. Calculate the average treatment effect on the treated. The ATT is the average
across all nt individual treatment effects for units in the treatment group (NT):

Matching | 191

8 For instance, see Kacper Kubara’s post, “The Proper Way of Handling Mixed-Type Data. State-of-the-Art Dis‐
tance Metrics”.

ATT = 1
nt

∑
i ∈ NT

δii

I hope you like the simplicity and intuitiveness of the matching algorithm. The key
insight is that each treated unit is matched to a control group that is most similar to it,
with respect to any confounder. With continuous features, all you need to do is com‐
pute the Euclidean distance between i and all nontreated units j:

di j = ∑k xik − x jk
2

What happens if you have mixed data, where your features can be continuous or cate‐
gorical? In principle you can apply a general enough distance function.8 But there’s an
alternative and very important result known as the Propensity Score Theorem (PST)
that I will introduce now.

The propensity score is the probability that a given unit gets the treatment, conditional
on some covariates or controls:

p Xi = Prob Di = 1 Xi

PST says that if unconfoundedness holds conditional on features X, it also holds if
you condition on p X . The importance of this result is mainly computational: if
you’ve already made the critical leap of assuming conditional independence using X,
then you can use the propensity score to match treated with untreated units. The pro‐
pensity score can be estimated with your favorite classification algorithm—such as a
gradient boosting, a random, forest or a logistic classifier—that naturally takes care of
mixed data.

192 | Chapter 15: Incrementality: The Holy Grail of Data Science?

https://oreil.ly/gEn5R
https://oreil.ly/gEn5R

9 Details can be found in the code repo.

Remember that unconfoundedness is an assumption that cannot be
tested with any given dataset. You start with a DAG that captures
your assumptions about any dependencies between the treatment,
the outcome, and any other relevant controls. Everything that fol‐
lows depends on this critical assumption.
Because of this criticality, it’s always a good idea to discuss and
document your identifying assumptions (your DAG) with your
colleagues, data scientists or others. Many times, your business
stakeholders can provide valuable insights into what drives the
selection mechanism.

I’ll sum up the propensity score matching algorithm now, skipping the common
steps:

1. Train a classification algorithm to estimate the probability of getting the treatment.
Using a sample of treated and untreated units, estimate p Xi .

2. Match treated units using the propensity score. For each treated unit i, compute the
absolute differences in propensity scores for all untreated units:

di j = ∣ p Xi − p X j ∣

3. Select the control group using the sorted differences. Sort all differences in an
increasing manner, and assign the top m to control group C i .

As intuitive as matching (and propensity score matching) is, it is computationally
expensive since you have to loop through each treated unit, and for each of these you
then have to loop over each untreated unit, and each feature, so you end up with a
complexity of O nt × nc × k in Big O notation. In the code repo you’ll find two ver‐
sions of the algorithm, one using loops and one that uses Numpy’s and Pandas’
broadcasting capabilities, which considerably reduce the execution time.

To see the two in practice, I simulate a model similar to the one described previously,
with two confounders that affect the selection probability and the outcome, and the
true treatment effect is equal to two.9 For the propensity score, I use two alternative
algorithms: an out-of-the-box gradient boosting classifier (GBC) and logistic regres‐
sion. I bootstrap 95% confidence intervals for each estimator. Figure 15-6 shows the
results, where the horizontal axis of each plot shows what happens when you play
with the size of the control group (m).

Matching | 193

https://oreil.ly/dshp-repo
https://oreil.ly/dshp-repo

Figure 15-6. Results from matching and propensity score matching

It’s clear that all methods correctly estimate the true causal effect, but propensity score
matching with GBC slightly underestimates it (true estimate is still within 95% confi‐
dence intervals). Increasing the size of the individual control groups doesn’t seem to
have an effect, both in terms of bias and variance, for plain matching and propensity
score matching with the logistic regression, but it slightly decreases the confidence
intervals for GBC.

Machine Learning and Causal Inference
Although ML has enjoyed impressive growth in the past few years, it’s safe to say that,
other than A/B tests which are performed regularly at many organizations, causal
inference is still quite niche. In this section I’ll try to summarize some of the most
recent developments that link these two fields of study.

Open Source Codebases
Just as the availability of open source libraries for ML removed some of the barriers
to entry for practitioners, several new initiatives try to do the same for causal
inference.

The causal inference research team at Microsoft has spun several projects that include
EconML, Azua, and DoWhy.

As the contributors to DoWhy explain, their aim is to:

• Provide a modelling framework through casual graphs (DAGs)
• Combine the best of the DAG and potential outcomes approaches
• “Automatically [test] for the validity of assumptions if possible and [assess] the

robustness of the estimate to violations”

The last objective is probably the most appealing to practitioners, since by providing
the treatment, outcome, other data, and a causal model, you can get enough
information about whether you have identification and a range of plausible estimates.

194 | Chapter 15: Incrementality: The Holy Grail of Data Science?

https://oreil.ly/8QMHp
https://oreil.ly/rowav
https://oreil.ly/Ber5G
https://oreil.ly/jaTr2

As you might expect, automation is at the core of the research program led by Judea
Pearl and the computer science crowd.

EconML is a Python library that aims at using state-of-the-art ML techniques to esti‐
mate causal effects. As the name suggests, the provided methods are “at the intersec‐
tion of econometrics and [ML].” You can find some very recent methods that work
under the unconfoundedness assumption, such as double machine learning, doubly
robust learning, and forest based estimators. I will say more about this later.

Azua is a library that aims at using state-of-the-art ML methods to improve decision
making. The problem is divided into two independent stages called next best question
and next best action. The former is concerned about which data needs to be collected
to make better decisions, and includes problems in missing value imputation and
how informative different variables are for a given problem. The latter uses causal
inference to provide optimal actions for well-defined objective functions.

CausalML is another Python library, created by Uber. It includes several ML-based
causal inference estimators for uplift modeling, such as trees and meta-learners. A
similar library is pylift.

To understand uplift modeling, imagine that you train a cross-selling classifier that
will predict which of your customers will purchase a given product in your company.
Once trained, you can plot the distribution of scores, as in Figure 15-7, where I’ve
divided all scored customers into three groups. Group A are customers with a high
probability of a purchase. Customers in group B are less likely, and C are deemed
highly unlikely to purchase.

Which customers should you target in your campaign? Many people decide to target
group A, but these customers are most likely going to make an organic purchase, so
you can use this costly incentive to target other customers. On the other side, group
C are so unlikely that the incentive will be prohibitively costly. With this rationale,
group B is a better candidate to be targeted.

Figure 15-7. Distribution of cross-selling probability scores

Machine Learning and Causal Inference | 195

https://oreil.ly/JmYKa
https://oreil.ly/JmYKa
https://oreil.ly/W2Vn8
https://oreil.ly/Akxdj
https://oreil.ly/3LMlX

The aim of uplift modeling is to formalize this intuitive discussion using the informa‐
tion on your treatment and control groups to estimate incrementality of the
treatment.

Double Machine Learning
ML algorithms are great when the objective is to learn a general data generating pro‐
cess like y = f X . When using DAGs to describe a causal model, no mention is made
of the functional form of the links, just their existence. Traditionally, causal effects are
estimated using linear regression because of its simplicity and transparency. Double
machine learning (DML) and similar techniques aim at using the increased predictive
power and flexibility of nonlinear learners to estimate a causal effect.

To see how ML can improve the estimation of a causal effect, take the following parti‐
ally linear model:

y = θD + g X + u
D = h X + v

As usual, the outcome depends on the treatment and some features, and the treat‐
ment also depends on the set of features (to create confounder or selection bias). The
functions g and h are possibly nonlinear, the treatment effect is given by θ, and u, v
are independent noise terms. Note that nonlinearity potentially kicks in only for the
confounders, but these are not allowed to interact with the treatment.

The idea of the DML estimator is to use the power of nonlinear learners (such as ran‐
dom forests or gradient boosting) to learn each of these functions and estimate the
treatment effect. Without going into the details, the process involves two critical
concepts:

Orthogonalization
As described in Chapter 10, orthogonalization consists of partialling out the
effect of the covariates X on the outcome and the treatment. You use the desired
flexible learner and regress the residuals to obtain the causal effect.

Sample splitting
The sample is randomly split in halves, one used for training and the other for
estimation and evaluation. This is necessary to avoid bias from overfitting, and
provides some desirable large sample properties.

The algorithm works like this:

1. Randomly split the sample in two halves: Sk, k = 1, 2.

2. Using sample l, train your learners on Sl for both g() and h().

196 | Chapter 15: Incrementality: The Holy Grail of Data Science?

10 Note that this expression isn’t exactly what you would obtain from the Frisch-Waugh-Lovell procedure of
regressing partialled out residuals. This expression is actually closer to an instrumental variables estimator (see
the references at the end of this chapter). The creators of double machine learning present another estimator
that follows more closely the FWL logic (see their Section 4).

3. Using units i in sample m ≠ l, estimate the residuals:

ui = yi − g Xi

v i = Di − h Xi

4. Calculate the estimator:10

θ Sl, Sm = 1
nm

∑
i ∈ Sm

v iDi

−1
1

nm
∑

i ∈ Sm
v iui

5. Average the estimates from each subsample:

θ = 0 . 5 × θ Sl, Sm + θ Sm, Sl

In the code repo you can find an implementation and results for simulations using
linear and nonlinear data generating processes. Here I just wanted to show one ave‐
nue where ML has impacted causal inference by providing more powerful and gen‐
eral predictive algorithms.

Key Takeaways
These are the key takeaways from this chapter:

What is incrementality?
Incrementality is causal inference applied to estimating whether a change in a
lever improved a business outcome.

Why care about incrementality (v.0)?
Under the assumption that data science creates value by improving our decision-
making capabilities, incrementality is critical to understand which decisions are
worthy of expanding and which should be rolled back.

Key Takeaways | 197

https://oreil.ly/dshp-repo

Why care about incrementality (v.1)?
Even if improved decision making is not a top priority for you or your team, hav‐
ing a broad understanding of causality should help you improve the predictive
performance of your ML models.

Approaches to causality
Generally speaking, there are two alternative (and complementary) approaches
to identification and estimation of causal effects: the DAG and potential out‐
comes methodologies. The former takes advantage of graphs (and the do-
calculus) to find conditions for identification. The latter transforms the problem
into one of missing data and selection mechanisms, since at any given time, only
one potential outcome can be observed for each unit.

Confounders and colliders
Confounders are common causes, and colliders are common effects for a treat‐
ment and an outcome. Not conditioning for a confounder opens a back door and
results in biased causal estimates. Alternatively, a collider is an example of a bad
control in the sense that including it as a feature in your model (or more gener‐
ally, conditioning on it) will also open a back door and create bias.

Selection bias
For statisticians and economists, selection bias is a type of confounder bias
applied to selection into the treatment. For epidemiologists and computer scien‐
tists, it refers to selection into a sample after the treatment was administered.
Randomization, in the form of RCTs or A/B tests, solves the former but not the
latter.

Randomization and matching
By randomizing selection into the treatment, you effectively break selection (into
the treatment) bias. This explains why A/B tests have become an industry stan‐
dard whenever the option is available. With observational data there are many
techniques that can be used to estimate causal effects, but they all rely on the
unconfoundedness assumption to be valid. Here I discussed matching and pro‐
pensity score matching only.

Further Reading
In my book, Analytical Skills for AI and Data Science, I discuss in depth the relevance
of incrementality and causality for prescriptive data science. A similar view can be
found in Ajay Agrawal et al., Prediction Machines: The Simple Economics of Artificial
Intelligence (Harvard Business Review Press) and the more recent Power and Predic‐
tion: The Disruptive Economics of Artificial Intelligence (Harvard Business Review
Press).

198 | Chapter 15: Incrementality: The Holy Grail of Data Science?

An introductory treatment of casual inference can be found in Chapter 9 of Data
Analysis Using Regression and Multilevel/Hierarchical Models by Andrew Gelman and
Jennifer Hill (Cambridge University Press).

If you’re interested in the DAG approach to causality, an introduction can be found in
Judea Pearl and Dana Mackenzie, The Book of Why: The New Science of Cause and
Effect (Basic Books). A more technical treatment can be found in Pearl’s Causality:
Models, Reasoning and Inference, 2nd ed. (Cambridge University Press). The former is
better suited if you first want to gain some intuition, and the latter provides an in-
depth presentation of DAGS and the do-calculus. Of critical importance are the back-
and front-door criteria for identification.

The potential outcomes approach has been championed by economists and statisti‐
cians. Mostly Harmless Econometrics: An Empiricist’s Companion by Joshua Angrist
and Jorn-Steffen Pischke (Princeton University Press) is a great reference if you’re
interested in understanding selection bias and the many facets of linear regression as
compared to other methods, such as the matching estimators discussed in the chap‐
ter. You can also find a complete treatment of instrumental variables, discussed in a
footnote of the DML estimator.

Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction by
Guido Imbens and Donald Rubin (Cambridge University Press) provides a thorough
introduction to the subject from a potential outcomes perspective, also known as
Rubin’s causal model (Donald Rubin originally formalized and developed the theory).
This is a great reference if you want to understand the role that selection mechanisms
play. SUTVA is also discussed in great detail.

In recent years, several authors have tried to make the best of both approaches. On
the economist’s side, Scott Cunningham’s Causal Inference: The Mixtape (Yale Univer‐
sity Press) and Nick Huntington-Klein’s The Effect: An Introduction to Research Design
and Causality (Chapman and Hall/CRC) discuss several methods for identification
and estimation, and also provide clear introductions to DAGs.

While Miguel Hernan and James Robins are very respected in the DAG literature,
their book Causal Inference: What If (CRC Press) uses potential outcomes to intro‐
duce causality and counterfactuals, and derive many important results using DAGs.

Guido Imbens, who shared the Nobel Prize in economics with David Card and
Joshua Angrist in 2021, has been involved in several discussions with Judea Pearl on
the relative usefulness of both approaches. You can find his view and review in
“Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance
for Empirical Practice in Economics” (working paper, 2020). You might also be inter‐
ested in reading Judea Pearl’s response.

Also, if you’re interested in how these different schools of thought evolved and their
views, you can check the ungated special issue of Observation Studies 8, no. 2 (2022).

Further Reading | 199

https://oreil.ly/j2JfH
https://oreil.ly/mlTOy
https://oreil.ly/DewAm
https://oreil.ly/DewAm
https://oreil.ly/8p3Yr
https://oreil.ly/OcAm8
https://oreil.ly/tz8Hl
https://oreil.ly/MXYlp

It has interviews with Judea Pearl, James Heckman (another Nobel Prize winner in
economics), and James Robins (an epidemiologist who has led the research on causal
inference through structural modeling) on their views about the subject and the dif‐
ferent approaches.

Carlos Cinelli et al., “A Crash Course in Good and Bad Controls” (Sociological Meth‐
ods and Research, 2022, available online), is a systematic discussion on the problem of
bad controls.

Elias Bareinboim et al., “Recovering from Selection Bias in Causal and Statistical
Inference” (Proceedings of the AAAI Conference on Artificial Intelligence 28, no. 1,
2014, also available online) discuss selection bias from the point of view of post-
treatment sample selection. On this topic, you can also read Miguel Hernan’s discus‐
sion of different types of bias, and Louisa H. Smith’s paper “Selection Mechanisms
and Their Consequences: Understanding and Addressing Selection Bias” (Current
Epidemiology Reports 7, 2020, also available online).

Trustworthy Online Controlled Experiments by Ron Kohavi et al. (Cambridge Univer‐
sity Press) discusses many important topics in A/B test design, including the problem
of interference or SUTVA violations. You can also check Peter Aronow et al., “Spillover
Effects in Experimental Data,” in J. Druckman and D. Green, eds., Advances in Experi‐
mental Political Science (Cambridge University Press, arXiv).

Matheus Facure’s Causal Inference in Python (O’Reilly) provides an overview of many
of the topics discussed here in a book-length treatment. You can also check online his
“Causal Inference for the Brave and True”.

On uplift modeling, you can check Shelby Temple’s “Uplift Modeling: A Quick Intro‐
duction” post (Towards Data Science, June 2020). Chapter 7 in Eric Siegel’s Predictive
Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die (Wiley) has an intro‐
duction to the topic for the general public.

Jean Kaddour et al., “Causal Machine Learning: A Survey and Open Problems” (2022,
arXiv), provides an up-to-date summary of many important topics aside from ML
and causality that were not discussed in this chapter.

If you want to learn about double machine learning, the original article is written by
Victor Chernozhukov and his coauthors, “Double/Debiased Machine Learning for
Treatment and Structural Parameters” (Econometrics Journal 21, no. 1, 2018). I also
found useful Chris Felton’s lecture notes and Arthur Turrell’s “Econometrics in Python
Part I— Double Machine Learning” post. There are Python and R packages. The
EconML package also has methods to estimate DML.

200 | Chapter 15: Incrementality: The Holy Grail of Data Science?

https://oreil.ly/TqTkX
https://oreil.ly/ZCxGS
https://oreil.ly/B6rey
https://oreil.ly/uqNR4
https://oreil.ly/ZrQQa
https://oreil.ly/IgsQE
https://oreil.ly/uqdHd
https://oreil.ly/uqdHd
https://oreil.ly/OBIUu
https://oreil.ly/TIcnB
https://oreil.ly/3ZkfG
https://oreil.ly/89gBR
https://oreil.ly/3M6bU
https://oreil.ly/Ks5RT

CHAPTER 16

A/B Tests

Chapter 15 described the importance of randomization to estimate causal effects,
when this option is actually available to the data scientist. A/B tests use this power to
improve an organization’s decision-making capabilities in a process analogous to local
optimization.

This chapter describes A/B tests and should help you navigate the many intricacies of
a relatively simple procedure for improved decision making.

What Is an A/B Test?
In its simplest form, an A/B test is a method to evaluate which one of two alternatives
is better in terms of a given metric. A denotes the default or baseline alternative, and
B is the contender. More complex tests can present several alternatives at the same
time to find the best one. Using the language from Chapter 15, units that get A or B
are also called control and treatment groups, respectively.

From this description you can see that there are several ingredients in every A/B test:

Metric
Being at the heart of improved decision making, the design of A/B tests should
always start by choosing the right metric. The techniques described in Chapter 2
should help you find a suitable metric for the test you want to implement. I’ll
denote this outcome metric with Y.

Levers or alternatives
Once you define a metric, you can go back and think of the levers that most
directly affect it. A common mistake is to start with an alternative (say, the back‐
ground color of a button in your web page or app) and try to reverse engineer

201

some metric. I’ve seen this many times in practice, and it almost always leads to
wasted time, team frustration, and inconclusive results.

Randomized selection
You must always define who gets access to each alternative. A/B tests are also
called randomized controlled trials because, by design, selection into the treatment
is random, thereby breaking any confounder or selection bias that may arise.

Decision Criterion
Each unit i participating in the experiment has an associated outcome, denoted by Y i.
At the end of the experiment, you have collected data on this metric for units in both
groups, and your task is to decide if the new alternative beats the default or not.

There are several ways to pose this problem, but the most common is to compare the
sample averages for both groups. The key difficulty here is that you need to disentan‐
gle signal from noise.

Figure 16-1 shows two typical scenarios. Each plot displays the outcome measure‐
ments for each unit across treatment and control groups (vertical lines), as well as the
sample means (triangles). On the left, you have a pure noise scenario, where the distri‐
butions of outcomes are the same for treatment and control, but if you just compared
the means, you would conclude that lever B was superior. On the right, the treatment
shifted the distribution to the right, creating a real discrepancy between average
outcomes.

Figure 16-1. Disentangling noise and signal

Statistical tests allow you to formalize these intuitions. Typically, a null hypothesis is
contrasted against an alternative, and you compute a test statistic with a known dis‐
tribution. Denote by Yk, k ∈ A, B the sample average for units in group Gk:

202 | Chapter 16: A/B Tests

Yk = 1
Nk

∑
i ∈ Gk

Yi

The most common criterion used in A/B tests is the following:

Keep lever k if Yk − Y j > 0 and the difference is statistically significant

Under this criterion, all you need to do is run a standard t-test that contrasts the null
that there’s no effect against an alternative hypothesis. Denote the difference in aver‐
age outcomes by θ = YB − YA. A two-sided statistical test is:

H0 : θ = 0

H1 : θ ≠ 0

H0 denotes the null hypothesis that there’s no difference in outcomes. Your goal is to
reject this hypothesis with some degree of confidence; if you can’t, you keep the
default lever A (or not, since they are indistinguishable from the point of view of this
specific metric).

Figure 16-2 shows how this is done in practice. The figure shows a theoretical distri‐
bution for your test statistic under the null hypothesis of no effect (note that it’s cen‐
tered at 0), which is usually taken to be a Student’s t distribution. You compute your t
statistic, and if it falls on the shaded area (rejection zone), you can reject the null at α
significance level, which is usually set at 5% or 1%. This is the area of the shaded
region in the plot, and is chosen to be small enough.

Figure 16-2. Deciding whether you keep the alternative treatment

I want to stop here to interpret what I just did. By choosing a small enough signifi‐
cance level, you essentially say: if the null hypothesis is true, seeing such a large value
for the test statistic is so unlikely that maybe my null was wrong. Put differently, highly
unlikely occurrences under the null are taken as evidence for rejecting the null. For

Decision Criterion | 203

1 F denotes the cumulative distribution function for the t distribution.

instance, if you choose a 1% significance level, you should observe a test statistic that
falls on the rejection region 1 in 100 times. But you got it in your experiment! Either
you were extremely unlucky, or your null was wrong. You take the latter route, dis‐
miss luck, and reject the null.

Let’s run through an example using only 10 observations from the dataset on the left
panel in Figure 16-1 (see Table 16-1).

Table 16-1. Outcome for first 10 units

IDs Control Treatment
0 0.62 0.82

1 1.07 0.23

2 0.56 2.47

3 −0.61 0.54

4 2.63 1.12

5 0.17 −0.40

6 0.94 −1.12

7 1.44 2.60

8 2.25 1.39

9 1.42 0.76

Mean 1.05 0.84

For these 10 units, the difference in mean outcomes is θ = 0.84 − 1.05 = −0.21. To
compute the t-statistic, we first need the variance of the difference:

sk
2 = ∑

i ∈ Gk
Yi − Yk

2/ Nk − 1

Var θ = Var YB + Var YA =
sB
2

NB
+

sA
2

NA
= 0.224

t‐stat = θ
Var θ

= − 0.44

Is this t-statistic large enough to reject the null of no effect? We can use a table with
critical values, or alternatively, directly compute the p value (the number of degrees of
freedom is NB + NA − 2):1

204 | Chapter 16: A/B Tests

p value = 2 1 − F ∣ t‐stat ∣ = 0.67

Under the null, there’s a 67% probability of seeing a value at least as extreme as plus/
minus 0.44. Since this is not small enough (usually < 5%), you can’t reject the null
hypothesis that this is pure noise. From a decision point of view, you stay with the
default alternative.

You can also use linear regression to arrive at the exact same result.
To do so, run the regression:

Y = α + θD + �

Once θols is computed, you can use the p value that many packages
precompute. Note that scikit-learn doesn’t compute p values, but
you can use statsmodels to do so. In the code repo, I show you how
to implement this manually, using statsmodel and SciPy’s t-test
method.
Other than simplicity, linear regression also allows you to include
other control variables (features), that may provide smaller confi‐
dence intervals. I will provide references at the end of this chapter.

Minimum Detectable Effects
I hope I’ve convinced you that this decision criterion is quite easy to implement using
the following three-step process:

1. Fix a significance level (say 5%).
2. Compute the test statistic and the p value.
3. Reject the null of no effect if the p value is lower than the significance level.

I discussed similar threshold-based decisions in Chapter 14 where false positives and
negatives arose naturally. It turns out that false positives and negatives play an impor‐
tant role in the design of A/B tests too.

In this context, a false positive arises if you incorrectly conclude there’s an effect of
the experiment; a false negative arises if you incorrectly conclude there’s no effect.

As discussed, the significance level controls the probability of a false positive. When
you reject the null (a positive because you say there is an effect), the probability that
you made a mistake is given by the significance level (α). On the other hand, statisti‐
cal power allows you to control the probability of a false negative, and is critical for
the design of experiments.

Minimum Detectable Effects | 205

https://oreil.ly/nOe0Y
https://oreil.ly/hRZKC
https://oreil.ly/dshp-repo
https://oreil.ly/apotw
https://oreil.ly/apotw

2 The subscript is now α instead of α/2 because I’m considering a one-sided test now.
3 You can find a derivation here.

Figure 16-3 shows two distributions: on the left, the distribution is centered at 0,
assuming that there’s no effect (θ = 0). On the right, I plot another distribution under
the assumption that there is a positive effect (θ* > 0). This second distribution will be
used to discuss false negatives.

For a given significance level, the shaded area FP denotes the probability of a false
positive, where you incorrectly reject the null, thereby concluding there is an effect
when actually there’s none. Now suppose that you conclude that there’s no effect. This
happens whenever your t statistic falls to the left of the critical value tα.2 For this to be
a false negative, it must be that the true distribution is something like the one on the
right, and the shaded area FN denotes the probability of a false negative for that
distribution.

Figure 16-3. Understanding false positives and negatives

The minimum detectable effect (MDE) is the minimum effect of the experiment that
you can detect for a given significance level and statistical power. It is given by the
following formula, where N = NA + NB is the total sample size of the experiment,
P = NB/N is the fraction of treated units, and, as before, tk are critical values from a t
distribution:3

MDE = tα + t1 − β
Var Y

NP 1 − P

Why are MDEs so important for you? Even if a true effect exists, when it’s smaller than
the MDE, you’ll be able to estimate it, but it will appear to be statistically insignificant.
In practice this means that you run a test and conclude that the treatment had no
incremental effect. The question is whether this is a true or a false negative. In under‐
powered tests, you won’t be able to say if it’s one or the other.

206 | Chapter 16: A/B Tests

https://oreil.ly/C-rt9

As this discussion suggests, your objective when designing an A/B test is to achieve
the lowest MDE possible. Small MDEs guarantee that, by design, you will be able to
find equally small signals (the true effect) among all the noisy data you have.

Figure 16-4 shows the relationship between MDEs, sample size, and the variance of
the outcome. For a fixed variance, increasing the sample size in your experiment low‐
ers the MDE. Alternatively: the larger the experiment, the better for estimating small
effects.

Now, fix a sample size and draw a vertical line across the different curves in the fig‐
ure. The noisier your data (higher variance), the higher the MDE. The lesson is that
with noisy data, you need even larger sample sizes to get comparable MDEs.

Figure 16-4. Relationship between MDE, variance, and sample size

To summarize the key points from this section:

• You want to design tests with small MDEs.
• To do so you need to have larger experiments in terms of sam‐

ple size.

As simple as this sounds, keep in mind that designing larger
experiments may impact the operation at your organization. Many
times you need to freeze any communications to participants in a
test for several months, so large experiments also have a downside.
I’ll discuss this later when I talk about governance of experiments.

Example 16-1 shows how you can compute the MDE in Python. To find the critical
values for the t distribution, the user must provide the statistical size (significance)
and power (or use the default values). The number of degrees of freedom are usually
a function of your sample size; here I’m setting it to n − 1, but for large enough sam‐
ple sizes, the correction is unnecessary.

Minimum Detectable Effects | 207

To find the critical values, you use the inverse function of the cumulative distribution
function (CDF). In SciPy you can use the method scipy.stats.t.ppf(). Since I
want the critical value on the right tail of the distribution for tα, I need to subtract the
significance level from one. A similar argument works for the second critical value
(t1 − β), but now focusing on the left tail of the distribution.

Example 16-1. A Python script to compute the MDE

def compute_mde(sample_size, var_outcome, size=0.05, power = 0.85):
 # degrees of freedom: usually a function of sample size
 dof = sample_size - 1
 t_alpha = stats.t.ppf(1-size, dof)
 t_ombeta = stats.t.ppf(power, dof)
 p = 0.5
 den = sample_size*p*(1-p)
 MDE = (t_alpha + t_ombeta)*np.sqrt(var_outcome/den)
 return MDE

Many times you don’t need the MDE, but rather the minimum sample size that is
consistent with a desired MDE, to help you choose the right size of your experiment.
Fortunately you can invert the function and solve for the sample size as a function of
everything else; note that now you have to provide an MDE. Example 16-2 shows
how to do it.

Example 16-2. A Python script to compute the minimum sample size

def compute_sample_size(mde, var_outcome, data_size, size=0.05, power = 0.85):
 # data_size is the number of subjects used to compute the variance of the outcome
 # (var_outcome)
 dof = data_size - 1
 t_alpha = stats.t.ppf(1-size, dof)
 t_ombeta = stats.t.ppf(power, dof)
 sum_t = t_alpha + t_ombeta
 p = 0.5
 sample_size = var_outcome/(p*(1-p))*(sum_t**2/mde**2)
 return sample_size

I will now discuss the choice of the remaining parameters.

Choosing the Statistical Power, Level, and P
It’s common practice that you choose α = 0.05 and β = 0.15. While you would like to
have both be as small as possible, for a fixed MDE you need to trade off one for the
other, which in practice means trading off the probabilities of a false positive and a
false negative (see Figure 16-5). When designing your experiment, you can bring that
into consideration and see what matters most for you. Just remember to interpret

208 | Chapter 16: A/B Tests

https://oreil.ly/Wusn7

these values correctly: 5% is the probability of a false negative under the null, and
15% is the probability of a false positive under the alternative.

Figure 16-5. MDE, significance level, and power

To set the fraction of treated units (P), note that, all else equal, the MDE is minimized
when P = 0.5, so this makes it a reasonable choice. In practice, this means that the
treatment and control groups are equally sized.

Estimating the Variance of the Outcome
The last parameter you need is the variance of your outcome (Var Y). Many times,
you can actually estimate this from your existing data. For instance, if your outcome
is the average revenue per user, you can get a random sample of customers in your
database and estimate the variance across those units.

There’s another trick when the outcome is a binary variable, like a conversion rate.
For instance, if your experiment is designed to see if a new feature improves a conver‐
sion rate, each individual outcome is Y i ∈ 0, 1 , depending on whether it ends in a
sale or not. You can model this as a Bernoulli trial with probability q, for which you
know that the variance is Var Y = q 1 − q . You can use the average of conversion
rates from previous campaigns and substitute it for q in the equation to get an
estimate.

Finally, you can always first run an A/A test. As the name suggests, units in both
groups are presented with the default alternative A. You can then use the results from
this experiment to estimate the variance of the outcome.

Simulations
Let’s run some simulations to insure that all of these concepts are clear. I’ll use the
following simple data generating process for both simulations:

Minimum Detectable Effects | 209

� ∼ N 0, σ2

D ∼ Bernoulli p = 0.5
y = 10 + θD + �

My first simulation uses θ = 0.5, σ2 = 3, so there’s a small true effect (relative to the
noisy data). The second simulation keeps the residual variance the same, but now
there’s no true effect (θ = 0, σ2 = 3). The sample size for each simulation is 500.

For the first simulation, I calculated the minimum sample size that allows me to
detect the true effect (N(MDE = 0.5) = N* = 346). I then created a grid of sample sizes
that go from 50% to 150% of this size, and for each sample size, I draw with replace‐
ment, from the overall sample, 300 subsamples of this size. For each of these I esti‐
mate a linear regression that includes the intercept and the dummy variable, and flag
a positive (negative) whenever the p value for the dummy variable is lower (higher)
than the 5% significance level, as I would if the experiment was real. Finally I com‐
pute the true positive and false negative rates by averaging out the flags.

Figure 16-6 plots the true positive (TPR) and false negative (FNR) rates for the first
simulation, along with the power used to calculate the minimum sample size. As you
would expect, the TPR is increasing and the FNR is decreasing in the sample size:
larger experiments have lower prediction errors.

Figure 16-6. True positive and false negative rates: θ = 0.5

The most important finding is that both lines cross the respective thresholds β = 15 %
when the sample size is as large as the minimum size that I got using the MDE for‐
mula. To repeat myself, this means that even if your experiment had an effect, unless
you have a large enough sample size, you will dismiss it as statistically insignificant.
What is large enough in the simulation? The sample size that lets me detect the true
effect. This shows the beauty of the MDE formula, and hopefully it also helps you
grasp the intuition behind it.

210 | Chapter 16: A/B Tests

Figure 16-7 shows the results for the second simulation where there’s no effect θ = 0.
Using the same decision criterion, if the p value is smaller (larger) than 5%, I flag a
result as a false positive (true negative). The figure should help reinforce your under‐
standing of significance levels and p values. In this case, around 5% of the time you
incorrectly conclude that the experiment had an effect.

Figure 16-7. False positive and true negative rates: θ = 0

Example: Conversion Rates
Let’s run through a more realistic example to see if every concept is clear. You want to
design an A/B test to see whether a different wording for automated email communi‐
cations can improve upon the baseline 4% conversion rate that the company currently
has.

Figure 16-8 shows the conversion rate (baseline + MDE) that you would be able to
detect if you used a one thousand, one million, or one billion sample size. With 1K
customers in the test, you can only detect incremental changes of at least 3.3 pp. For
instance, you won’t be able to detect a highly successful test where the new message
creates a 5.5% conversion rate! If you only have access to a 1K size sample, the recom‐
mendation would be to not run the test, since you will only be able to detect unrealis‐
tically high incremental effects.

If instead you have access to 1M customers, the MDE is now 0.001, so any conversion
rate larger than 4.1% would be detected. This sounds quite promising now, but the
sample size could be prohibitively large to run the experiment. Finally, if you had 1B
customers available, the minimum conversion rate you can detect is 4.003% (MDE =
3.3e − 5). With enlarged sample sizes you can really separate noise from signal.

Minimum Detectable Effects | 211

Figure 16-8. Conversion rate and MDE

Don’t forget, the MDE refers to the incremental change in a metric
caused by the treatment, which follows from the definition of the
random variable you’re doing inference on: θ = YB − YA.

As the example shows, once you fix the MDE, you can find the cor‐
responding minimum detectable metric under the treatment,
which would be:

Minimum Detectable Metric = YA
Baseline

+ MDE

Setting the MDE
At this point I hope I’ve convinced you that:

• Designing experiments must include statistical power and significance considera‐
tions that affect your sample size.

• With underpowered experiments, you might end up saying that a treatment had
no effect, when the problem might actually be that you didn’t use a large enough
sample.

• You need to first set an MDE to find the minimum sample size for your
experiment.

So how do you set the MDE in the first place? An important consideration is that
statistical significance is different from business significance.

Going back to the previous example, even if you had 1B customers to include in your
experiment (half gets the control and half the treatment), does it make business sense
to run the test? What is the business impact of being able to detect a 3.3e − 5 incre‐
mental change? For most companies there’s none, so even if the statistical properties

212 | Chapter 16: A/B Tests

4 Of course, if your company has one billion customers to spare, such a minuscule increase in conversion rates
might generate substantial revenue, but bear with me for the purpose of this example.

are satisfied, from a business standpoint it doesn’t make sense to go ahead with the
experiment.4

You can use this type of reasoning to set a viable MDE with your stakeholders. For
instance, for them it might make sense to find anything upwards of 4.1% conversion
rates, so you must prepare to design a test for 1M customers. If you only have 10K
available, you must discuss with them that you can only detect conversion rates
upwards of 5% (MDE = 0.01). If everyone feels comfortable with such an estimate
(25% increase relative to baseline), it makes sense to run the experiment.

Many times, your stakeholder won’t be able to come up with an answer. If you have
access to previous experiences, use those incremental changes (or an average) as your
MDE to reverse engineer your sample size. Otherwise, use your business knowledge
to come up with something that’s sensible.

Hypotheses Backlog
A/B tests are only as good and informative as the hypotheses tested. I used to work at
a company where the product teams routinely launched ill-designed experiments all
the time. The lack of statistical robustness was not the most worrying aspect, how‐
ever. Most of these experiments lacked well-founded hypotheses.

Having a hypotheses backlog is one critical aspect of developing a culture of experi‐
mentation inside a company. Ideally, this should include a ranked list of hypotheses
that a team wants to test, along with the impacted metric and the arguments that sup‐
port the effect. I’ll discuss each of these now.

Metric
You won’t be surprised to see that I start with the metric. Having a well-defined met‐
ric is a big part of the success of running an experiment. As discussed in Chapter 2,
good metrics are measurable, relevant, timely, and actionable.

In A/B tests, the closest the metric is to the lever, the better, which tends to happen
when the metric is both actionable and relevant. By this I mean that the lever moves
the metric in a direct way, as opposed to a chain of effects that finally end up affecting
the selected metric. Because of this, top-line KPIs are not great metrics to use when
designing a test. As you might imagine, metrics decompositions can help you find the
right metric for your A/B test.

Hypotheses Backlog | 213

Hypothesis
At a minimum, good hypotheses should be causal in the sense that you clearly state
how and why the lever impacts the chosen metric.

The how refers to the directionality of the effect; for instance, the hypothesis “if we
lower the price by 1%, it’s more likely that a customer will make a purchase” clearly
states that a price discount increases the conversion rate. This hypothesis still lacks
the why, that is, an understanding of the mechanism behind the effect. The why is
critical to assess the credibility of the hypothesis, and will also be used for ranking
purposes.

Great hypotheses are also risky, not from a company perspective, but rather from the
test designer perspective. Compare the following two statements that can easily fol‐
low the price discount hypothesis: [the test matters because] the conversion rate will
increase, and [the test matters because] the conversion rate will increase by 1.2 pp. The
former just provides directional guidance, and the latter quantifies the expected
impact. Quantification provides important information that can be used to rank alter‐
native hypotheses.

Ranking
It’s good to understand that running experiments is costly for any organization. On
the one hand, there are direct costs like the time, effort, and other resources used. But
every time you interact with your customers, their perception of the company might
change, possibly leading to customer churn or at least to lower future effectiveness
(think customers flagging you as spam, thereby becoming unreachable). On the other
hand, there’s also the opportunity cost of launching tests that have a larger potential
impact.

Once you consider the costs of launching tests, ranking different
hypotheses becomes critical to guide their prioritization. A good
practice is to share the hypotheses backlog across your organiza‐
tion so that different teams can participate and discuss the ranking
and the other relevant information.

Governance of Experiments
If you make testing an integral part of your data-driven strategy, there will be a point
where a governance framework needs to be implemented and formalized. As with
data governance, I tend to stand on the more pragmatic side where, rather than try‐
ing to accomplish an exhaustive set of tasks, you aim to satisfy a minimalistic set of
objectives (that are actually implementable).

214 | Chapter 16: A/B Tests

Some objectives that might be important for your organization are:

Accountability
Experiments should have a clearly defined owner (usually a team) responsible for
the results, intended or not, from the test.

Business safety
Reasonable guardrails should be implemented to guarantee that no one team’s
experiments can have a significant impact on the business. These guardrails
should turn off the experiment if one or several KPIs exceed some predefined
thresholds.

Customer and human centricity
Experiments that affect the behavior of humans, customers or not, should follow
some minimal ethical standards that align well with the company’s values.

Global versus local effectiveness
When several experiments are running at the same time, it’s necessary to guaran‐
tee that treatment and control groups from different tests don’t overlap. It might
also be necessary to establish a policy on quarantine or resting periods so as to
not affect the global effectiveness of business operations and other tests.

Knowledge incrementality
As key pieces for improved decision making, results from A/B tests should help
grow and nurture a knowledge repository with positive and negative results.

Replicability and reproducibility
Any documentation and code used to design and analyze the results from experi‐
ments should be kept in a company-wide repository for later reproducibility.

Security
The technology stack used for running experiments at scale should adhere to the
company’s data security and data privacy policies.

Transparency and monitoring
Results should be made available as widely and timely as possible.

Key Takeaways
These are the key takeaways from this chapter:

A/B tests are powerful methods to improve an organization’s decision-making
capabilities.

You can think of A/B tests as performing local optimization of your organiza‐
tion’s main metrics.

Key Takeaways | 215

Tests should be designed to achieve a desired statistical power.
A/B tests should be designed taking into account the probabilities of a false posi‐
tive or false negative. Statistical significances control the former, and power con‐
trols the latter. Underpowered experiments may lead you to incorrectly dismiss
the true effect that your experiment has because of an insufficient sample size.

Quantifying an experiment’s minimum detectable effect (MDE) should help you design
tests with good statistical power.

Calculating the MDE is straightforward, and tells you the smallest incremental
effect you can aspire to estimate for a given significance level and power, sample
size, and variance of the outcome under consideration. For a given MDE, you
can solve for the minimum sample size using the same formula.

Experimental governance.
As your organization becomes more mature and the number of simultaneous
tests that are run scales, you will need to put in place a governance framework
that allows you to achieve some minimal desirable objectives. I propose several
that might suit your organization.

Further Reading
Howard Bloom’s “The Core Analytics of Randomized Experiments for Social
Research,” The SAGE Handbook of Social Research Methods, 2008, available online), or
his “Minimum Detectable Effects: A Simple Way to Report the Statistical Power of
Experimental Designs,” Evaluation Review, 19(5) (available online) should help you
understand the derivations for the MDE formula. You can also check my notes to the
Appendix of Analytical Skills for AI and Data Science (O’Reilly).

Part II of Guido Imbens and Donald Rubin, Causal Inference for Statistics, Social, and
Biomedical Sciences: An Introduction (Cambridge University Press, 2015) discusses at
great length many different aspects of statistical inference using randomization (A/B
tests), such as model-based (Bayesian) inference, Fisher’s exact p values, and Ney‐
man’s repeated sampling. Note, however, that they don’t discuss design issues.

Ron Kohavi, Diane Tang, and Ya Xu’s, Trustworthy Online Controlled Experiments. A
Practical Guide to A/B Testing (Cambridge University Press, 2020) provides a book-
length treatment of the many practical difficulties you may encounter when designing
and running online tests at scale. A significantly shorter and condensed version can
be found in Ron Kohavi and Roger Longbotham, “Online Controlled Experiments
and A/B Tests,” in D. Phung, G. I. Webb, and C. Sammut, eds., Encyclopedia of
Machine Learning and Data Science (Springer, available online)

Nicholas Larsen, et.al, “Statistical Challenges in Online Controlled Experiments: A
Review of A/B Testing Methodology” (arXiv, 2022) provides a recent survey on

216 | Chapter 16: A/B Tests

https://oreil.ly/ZYG15
https://oreil.ly/QCxlC
https://oreil.ly/1S0Es
https://oreil.ly/DDRZd
https://oreil.ly/R0uiR

similar topics. For instance, I haven’t discussed heterogenous treatment effects or
SUTVA violations.

I found Sean Ellis and Morgan Brown’s, Hacking Growth: How Today’s Fastest-
Growing Companies Drive Breakout Success (Currency, 2017) useful to design and
implement successful hypotheses backlogs. While they focus exclusively on topics
related to growth, the approach can be easily generalized.

Further Reading | 217

CHAPTER 17

Large Language Models and the
Practice of Data Science

According to one estimate, almost four thousand jobs were lost from advances in AI
in May 2023 in the US, representing almost 5% of all jobs lost in that month. Another
report from a global investment bank estimates that AI could substitute 25% of all
jobs, and OpenAI, one of the main players in the field, estimates that almost 19% of
all occupations have significant exposure, as measured by the fraction of tasks that
could be impacted by AI. Some analysts claim that data science is itself amenable to
be affected.

So how will large language models (LLMs) like GPT-4, PaLM2, or Llama 2 change the
practice of data science? Will the hard parts presented in this book, or elsewhere,
remain important for your professional development and career advance?

This chapter is quite different from the previous ones, as I won’t discuss any tech‐
niques, but rather, I’ll speculate on the potential short- and medium-term impact of
AI on the practice of data science. I will also discuss whether this book’s content
might pass the test of time with the current disruption of AI.

The Current State of AI
AI is a broad field that encompasses many different techniques, methods, and
approaches, but is generally associated with the use of very large neural networks and
datasets. In the past few years, the pace of advance in the fields of image recognition
and natural language processing has increased substantially, but it is the latter, with
the latest releases of transformer-based LLMs such as OpenAI’s GPT4 and Google’s
Bard, that created the current agitation and worries about their impact on the labor
markets.

219

https://oreil.ly/2CoQ6
https://oreil.ly/xCO5d
https://oreil.ly/IhhLZ
https://oreil.ly/sq6AE
https://oreil.ly/tGzAm
https://oreil.ly/ZWSZ4
https://oreil.ly/ZWSZ4

1 They define “exposure as a measure of whether access to an LLM or LLM-powered system would reduce the
time required for a human to perform a specific (detailed work activity) or complete a task by at least 50
percent.”

2 In the plot I average the three estimates they report in their Table 5, so directionally speaking I’m capturing
the intuition they wish to convey that some skills are more exposed to LLMs.

It’s widely accepted that LLMs are great at performing natural language tasks, includ‐
ing text understanding and generation, summarization, translation, classification, and
code generation. Interestingly, unexpected behavior has emerged as the size of the
models reaches a certain threshold. This includes few-shot learning that allows the
model to learn new tasks from a considerably small number of observations and
chain-of-thought reasoning whereby the model solves a problem by splitting the argu‐
ment into steps.

In a widely discussed paper on the impact of LLMs on the job market, Tyna Eloundou
et al. (2023) look at specific tasks performed by different occupations and classify
them into three groups, depending on their degree of exposure to productivity
enhancements by AI (no exposure, direct exposure, or exposure through LLM-
powered applications).1 Among many other findings of interest, they show that some
skills are more correlated with their measure of exposure. Figure 17-1 shows the cor‐
relation between basic skills and exposure from their analysis.2 As you can see, pro‐
gramming has the strongest positive correlation with exposure and science the most
negative correlation; this suggests that occupations that rely heavily on these skills are
more or less exposed to impact, respectively.

What does this mean for data science? Just from the basic skills, you can hypothesize
that some parts are highly exposed— most prominently programming— and others
less so (specifically science and critical thinking). But it really depends on what you
think a data scientist does. The truth is that data scientists perform a wide variety of
tasks across companies, not only machine learning (ML) and programming.

220 | Chapter 17: Large Language Models and the Practice of Data Science

3 You can find the actual rankings in the repo.

Figure 17-1. Skills positively and negatively correlated to exposure to impact (averages
from Table 5 in Eloundou et al. (2023))

What Do Data Scientists Do?
To better understand data science’s level of exposure to current AI, I’ll now look at
specific tasks done by practitioners in the workplace. For the purpose of the exercise,
I’ll use the list of tasks presented on O*Net, which is commonly used in similar analy‐
ses; it’s not perfect and it’s certainly incomplete, but it still provides a useful bench‐
mark.

Each task will be evaluated with respect to the four main basic skills used in data sci‐
ence: business knowledge, ML and statistics, programming, and soft skills. My sole
aim is to provide a directionally correct assessment, so I’ll use three possible levels
(low, medium, and high), numerically coded as 0, 1, and 3, respectively, and denoted
by x below.

For instance, I rank the task analyze, manipulate, or process large sets of data using
statistical software as high, low, high, and low in business, ML, programming, and soft
skills, respectively. To me, a deep knowledge of the business is required for analyzing,
but other than that, this task relies heavily on programming. I repeat this same process
for all tasks.3

What Do Data Scientists Do? | 221

https://oreil.ly/dshp-repo
https://oreil.ly/fCcZO

To get an exposure estimate, I use the following process:

1. Evaluate each task according to each of the four basic skills.
2. Compute exposure for each task using the following equation:

Exposure = 0.2 ⋅ xB + 0.8 ⋅ xML + 1 ⋅ xP − 0.2 ⋅ xS

Basic skills

− (0.2 ⋅ xB ⋅ xML + 0.2 ⋅ xB ⋅ xP)
Analytical skills

Here are my logic and assumptions behind this formulation:

• All basic skills can be learned by LLMs, at least to some extent. In terms of expo‐
sure, I rank them as Soft < Business < ML < Programming, hence the weights on
the linear part. This order captures the intuition that, at least, in the short term,
programming is more exposed than ML, and this in turn is more exposed than
business knowledge, which in turn is more exposed than soft skills.

• I believe that ML and programming tasks that involve business knowledge
require analytical skills and critical thinking that are going to be harder to
develop until there is human-level or artificial general intelligence (AGI). Hence I
include interaction terms that lower the exposure metric.

The importance of soft skills is worth discussing further: my take is that soft skills will
remain extremely important in human-to-human interactions. But as far-fetched as it
may sound, it’s not hard to imagine a future state where AI completely replaces one of
the humans in the interaction, and soft skills may become irrelevant.

The results are presented in Table 17-1. Out of the 15 tasks listed in the O*Net web‐
site, 40% are classified as skills with high exposure, 20% with medium exposure, and
40% have low exposure. Looking at the exposure metric for specific tasks, to me it
looks directionally correct, and as expected, programming and ML tasks are more
exposed, but the need for analytical skills reduces their overall exposure.

Each of the six tasks with a low exposure metric relies heavily on business knowledge,
analytical skills, or soft skills. Analytical skills play a big role in my low exposure eval‐
uation of all the skills where the data scientist identifies or proposes solutions.

On the other side of the spectrum, tasks that I evaluate as highly exposed are more
easily automated with the current state of the art in AI. At this point in time, some of
these still require an expert human in the loop, but this may not be the case in the
near future.

222 | Chapter 17: Large Language Models and the Practice of Data Science

Table 17-1. Data science tasks and exposure

Tasks Exposure
Deliver oral or written presentations of the results of mathematical modeling and data analysis to management or
other end users.

Low

Recommend data-driven solutions to key stakeholders. Low

Identify business problems or management objectives that can be addressed through data analysis. Low

Identify solutions to business problems, such as budgeting, staffing, and marketing decisions, using the results of
data analysis.

Low

Propose solutions in engineering, the sciences, and other fields using mathematical theories and techniques. Low

Read scientific articles, conference papers, or other sources of research to identify emerging analytic trends and
technologies.

Low

Apply feature selection algorithms to models predicting outcomes of interest, such as sales, attrition, and
healthcare use.

Medium

Analyze, manipulate, or process large sets of data using statistical software. Medium

Design surveys, opinion polls, or other instruments to collect data. Medium

Clean and manipulate raw data using statistical software. High

Identify relationships and trends or any factors that could affect the results of research. High

Test, validate, and reformulate models to ensure accurate prediction of outcomes of interest. High

Apply sampling techniques to determine groups to be surveyed or use complete enumeration methods. High

Compare models using statistical performance metrics, such as loss functions or proportion of explained variance. High

Write new functions or applications in programming languages to conduct analyses. High

Evolving the Data Scientist’s Job Description
Taking the list of 15 tasks that data scientists commonly perform as a benchmark job
description, and assuming the predictions about exposure are at least directionally
correct, it is clear that the practice of data science will need to evolve as more power‐
ful AIs continue to be deployed across companies.

At least with respect to programming, there seems to be a consensus that the current
state of AI significantly improves the productivity of a developer. Tools like GitHub
Copilot and Bard are becoming a standard, and there’s every reason to believe that
data scientists and data engineers are embracing these tools too. Some commentators
have even talked about a 10x productivity enhancement, and a recent survey finds
that more than 90% of developers already use AI as a productivity tool.

At this point, however, it’s clear that the current state of LLMs requires a human
expert in the loop, both to prompt and guide the AI to the desired answer and to
debug some errors that may arise and deal with any possible hallucinations. Also, as
opposed to much work in pure software development, programming with data
requires that the outputs make sense from a business standpoint, and at present this
task requires a knowledgeable human.

Evolving the Data Scientist’s Job Description | 223

https://oreil.ly/wFQg7
https://oreil.ly/wFQg7
https://oreil.ly/a4RD9
https://oreil.ly/n-2WO
https://oreil.ly/4k_AR
https://oreil.ly/ZlGRN

4 To be honest, the fast pace of advance makes it really hard to predict when things might end up happening.

But it’s worth asking whether at some point in the not-so-distant future a business
stakeholder will be able to interact directly with an AI, completely making redundant
the job of a data scientist.

For instance, in many companies data practitioners take a business requirement from
a stakeholder and code the necessary queries in SQL to generate reports or dash‐
boards. This is one task that I think is highly exposed to AI and is thus likely to disap‐
pear from the future job description for data scientists.

So how will the future data science job description look? Assuming again that AGI
hasn’t been reached (otherwise, every occupation will have to be redefined), it seems
to me there are two alternative long(ish)-term scenarios:4

• Nontechnical business stakeholders become data-driven and learn to ask ques‐
tions from data and think analytically and scientifically about their business
problems.

• Data scientists become business and analytically savvy and learn to make busi‐
ness decisions based on the evidence.

In the first scenario, the data science occupation disappears, and nontechnical busi‐
ness people undergo extensive retraining to acquire the skills needed to interact with
an AI and answer business questions in a data-driven way (think of the earlier SQL
example). In this case, the AI enhances the abilities of the business-savvy human.

In the second scenario, it’s the business stakeholder that becomes redundant, and the
data scientist uses the AI to perform the technical tasks and use their unique analyti‐
cal skills and knowledge of the business.

Which scenario, if any, is most likely to emerge? My guess is that it depends on which
skill is more costly to acquire, becoming data driven (and thinking scientifically about
business questions) or becoming business-savvy. From my sole experience and obser‐
vations in the previous decade where being data driven received a lot of attention,
nontechnical business people have not made substantial improvements on the data-
driven front. But neither have data scientists on the business savvy front. Maybe
changes will finally take place when survival is at stake.

224 | Chapter 17: Large Language Models and the Practice of Data Science

Case Study: A/B Testing
I will use the case of A/B testing to explain some of these predictions and specula‐
tions. At its core, A/B testing requires two sets of skills:

Business
Defining and prioritizing the hypotheses backlog to be tested, as well as the out‐
come metric to evaluate the experiment.

Technical
Designing the experiment, randomizing and ensuring that assumptions for iden‐
tification of causal effects are likely to be attained, and measuring the impact.

My guess is that in most companies, at present there is almost complete functional
separation between data scientists and business stakeholders in these realms. But
leaving aside the 1% of cases where highly specialized, frontier knowledge in the
design and evaluation of experiments is required, my guess is that a big part of the
technical details can very much be automated with current technologies (LLMs may
just serve as a mediator). In my opinion, the really hard part of (nonfrontier) A/B
testing is coming up with good metrics and good hypotheses to test.

Humans, enhanced by AI, should be able to take care of the vast majority of tests run
at companies. Thanks to the vast corpus of data used to train the LLMs, I can also see
humans using the AIs in the process of ideating hypotheses, but without a deep
knowledge of how the world and the business works, and the underlying causal
mechanisms, I just don’t see AIs being critical in this arena.

To be sure, I don’t see AIs running the technical side completely on their own. A
knowledgeable human will guide the process. The question is who will that be, and
what will their role be called.

Case Study: Data Cleansing
Data scientists spend quite a bit of time cleaning and transforming data to make it
amenable for more valuable purposes. Again, I will assume that the easy part of the
data cleansing process is the actual execution, using SQL or any other programming
language like Python or R, as is commonly performed today.

The really hard part is making decisions that depend on critical business know-how.
A typical example is whether you should convert null values to zeros or not. The
answer is that in some cases it actually makes sense, but in others it doesn’t. And it
depends on the business setting. Another example is data quality, where you end up
knowing that things are right because they make sense from a business standpoint.

Can a nontechnical business stakeholder take care of these decisions, enhanced by
AIs that help out with the easy parts? I think that the answer is positive, but it may
require some retraining, or at least some well-documented processes. Of course, it’s

Evolving the Data Scientist’s Job Description | 225

not hard to imagine that in the future, these internal playbooks can be used in the
training of a company’s AI agents.

Case Study: Machine Learning
What about ML use cases? As a starting point, a data scientist decides which techni‐
que ought to be used for specific use cases. My guess is that with the current state of
LLMs, AIs can easily help a nontechnical business stakeholder make this decision
(because there are many discussions on the web on when to do what, and this is part
of the corpus used to train the current family of LLMs). Put differently, I don’t see
humans having a comparative advantage in making this decision: again, putting aside
the 1%-ish use cases where highly specialized talent is needed, all you need is a play‐
book that data scientists today learn on the job. Nonetheless, a critical aspect is
understanding why one tool is better than another, and it’s apparent that LLMs are
still far from reaching this level of intelligence.

It is true that the best data scientists today specialize in the technical details of each
predictive algorithm, and use this knowledge to fine-tune the models to make them
more performant. For instance, it’s very easy to train an out-of-the-box gradient
boosting classifier, but it’s harder to know which metaparameters to optimize to
increase predictive performance. But the truth is that there already exist automated
ML frameworks that take care of this. That’s why I no longer think that this is a key
skill that gives data scientists a comparative advantage over AI. Moreover, LLMs can,
or will, be used to suggest an alternative course of action if needed (again, because of
memorization/information retrieval of training data).

So what is the hard part about ML, where humans have a clear comparative advan‐
tage over LLMs? I believe it’s coming up with hypotheses about the underlying causal
mechanisms regarding why a set of features predicts a given outcome. Here, the sci‐
ence part of the job description is critical, and might give some advantage to data sci‐
entists over nontechnical business people in the future.

LLMs and This Book
This book presented techniques aimed at helping you become a more productive data
scientist. Naturally, some of these techniques are more or less exposed to AI, depend‐
ing on the combination of basic underlying skills required to perform them.

In Table 17-2 I show my subjective assessment of each chapter’s exposure, using the
exact same methodology as before. Again, my aim is to be directionally correct only,
and the results look reasonable to me: chapters in the first part rely more on business
knowledge and soft skills, and are less intensive in programming skills and ML or sta‐
tistics knowledge, so they are less exposed. The second part deals more with ML and
statistics, hence the higher exposure.

226 | Chapter 17: Large Language Models and the Practice of Data Science

Table 17-2. Book chapters sorted by exposure

Chapter Main lesson Exposure
1. So What How to measure the impact of your team Low

7. Narratives How to build narratives before and after creating a project Low

6. Lift Technique to see differences across groups Low

2. Metrics Design Find better metrics to action Low

3. Growth Decompositions Understand what’s happening with the business Low

4. 2×2 Designs Simplify to understand complex problems Low

5. Business Cases How to measure the impact of specific projects Low

8. Datavis Extract knowledge and convey a key messages with datavis Medium

15. Incrementality Understand the basics of causality Medium

16. A/B Tests Design of experiments Medium

10. Linear Regression Strengthen your intuition of how ML algorithms work Medium

13. Storytelling ML Storytelling to create features and to interpret results High

14. Predictions to Decisions Making decisions from ML High

9. Simulation and Boot Tools to deepen your understanding of ML algorithms High

11. Data Leakage Identify and correct data leakage High

12. Productionizing Models Minimal framework to deploy in production High

What does this say? Let’s imagine that tasks are either not exposed or completely
exposed; the former means that LLMs are of no value, and the latter means that AIs
can do the tasks by themselves. The truth is that most tasks across occupations are
somewhere in the middle, but let’s dismiss this for now. In this extreme world, you
should be investing in skills of the former type, as they make you special, relative
to LLMs.

The main point of this exercise is that some of the skills learned in the book are worth
more of your time and effort to develop, given the current capabilities of LLMs. Note
that I’m not saying that you should not invest in becoming a great programmer or an
expert in ML or stats. Rather, at least for programming, the rise of LLMs has made
this skill less valuable for you as a data scientist. For ML and stats it’s still too early
to call.

My predictions are, of course, to be taken with a grain of salt, but I do think that it’s
certain that the future of the practice of data science may follow a path where in the
short term, a data scientist’s productivity is augmented by the sole power of LLMs to
generate high-quality code, assisted by knowledgeable humans. The longer term is
much more uncertain, and it’s not unreasonable that the data science practice will be
completely redesigned or even cease to exist, as discussed previously.

LLMs and This Book | 227

Key Takeaways
These are the key takeaways from this chapter:

LLMs are changing the workplace.
2023 will likely be remembered as the first year where AI started to create a
measurable impact on the workforce and the labor markets.

Data science is being impacted as we speak.
Similar to software developers, an immediate impact of AI on the practice of data
science is on programming productivity.

But many other tasks commonly performed by data scientists are also exposed to AI.
I analyze 15 tasks listed by O*Net, and find that the level of exposure is high for
around 40% of the tasks, and medium for 20% of the tasks. Tasks that rely more
heavily on programming are naturally more exposed, but I assume that machine
learning and statistics are also going to be impacted in the medium term. Busi‐
ness knowledge and soft skills are assumed to be less exposed.

Changes in the job description for data science.
My best guess is that the practice of data science will change in the near future,
putting less weight on programming and ML skills, and more emphasis on ana‐
lytical skills, causality, and business knowledge.

Further Reading
Suggested readings on this topic are very likely going to become outdated very
quickly, given the speed of advance of the field. That said, here are some articles that
have guided my understanding of the state of the field.

Tyna Eloundou et al., “GPTs are GPTs: An Early Look at the Labor Market Impact
Potential of Large Language Models,” March 2023, retrieved from arXiv. This paper
provides exposure to AI estimates across occupations. I don’t use the same methodol‐
ogy to quantify the level of exposure of data science, so this paper is certainly worth a
read if you want to come up with alternative scenarios for the practice.

Sebastien Bubeck et al., “Sparks of Artificial General Intelligence: Early Experiments
with GPT-4,” April 2023, retrieved from arXiv. This paper started an interesting
debate on whether we are close to achieving AGI. They argue that in the future this
family of LLMs will most likely be labelled as proto-AGI. Note that many leading
researchers, most notably Yann LeCun (see also here), believe that autoregressive
models can’t lead to AGI.

Ali Borji, “A Categorical Archive of ChatGPT Failures,” April 2023, retrieved from
arXiv. This paper is constantly updated and shows how things can go awry with the
current state of AIs.

228 | Chapter 17: Large Language Models and the Practice of Data Science

https://oreil.ly/lDoUs
https://oreil.ly/aN_xl
https://oreil.ly/rj8tu
https://oreil.ly/2x2KQ
https://oreil.ly/Q9K0V

Grégoire Mialon et al., “Augmented Language Models: A Survey,” February 2023,
retrieved from arXiv. Even if LLMs haven’t attained human-level general intelligence,
there are ways to improve their ability to reason or use external tools, spanning an
even larger spectrum of use cases.

The following two papers discuss emergent capabilities in LLMs as their size contin‐
ues to increase:

Jason Wei et al., “Emergent Abilities of Large Language Models,” October 2022,
retrieved from arXiv.

Rylan Schaeffer et al., “Are Emergent Abilities of Large Language Models a Mirage?,”
May 2023, retrieved from arXiv.

Further Reading | 229

https://oreil.ly/o_WWd
https://oreil.ly/ZcWNn
https://oreil.ly/CEqdI

Index

A
A/B testing, 189-190

components of, 201-202
decision criterion, 202-205
governance, 214-215
hypotheses backlog, 213-214
minimum detectable effects, 205-208

conversion rate use case, 211-212
setting, 212-213
simulations, 209-211
statistical power and level, choosing,

208-209
variance estimates, 209

relation to LLMs, 225
resources for information, 216-217

accumulated local effects (ALE), 164-165
actionable insights in narratives, 57, 59
actionable, metrics as, 12
additive decomposition, 20-22, 27
adverse selection, 37, 188
aggregation, 37, 47
Aha! moments, 59
AI (artificial intelligence)

current state, 219-220
evolution of data science tasks, 223-224

A/B testing case study, 225
data cleansing case study, 225-226
machine learning use cases, 226

exposure of data science tasks, 221-222,
226-227

resources for information, 228-229
ALE (accumulated local effects), 164-165
automated machine learning, 180

average treatment effect on the treated (ATT),
186

Azua, 195

B
back-door criterion, 184
bad controls (data leakage), 122-123
bar plots, 67-68
batch scoring, 136-137
benchmarks for ML, setting with linear regres‐

sion, 156-158
bivariate linear model, 105
black box learners, 155
bootstrapping, 97-100
box plots, 73
breakeven, 41
business cases

external dataset purchase use case, 44
fraud prevention use case, 43-44
principles of, 41-42
proactive retention strategy use case, 42-43
resources for information, 46
workflow prioritization use case, 45

business credibility in narratives, 56
business significance versus statistical signifi‐

cance, 212-213
business, understanding, 4-5

C
cannibalization, 181
causal inference, 179-181

(see also incrementality)
double machine learning, 196-197
open source codebases, 194-196

231

CausalML, 195
causation, 104
churn (and intentionality), 12
churn prediction model, 7-9
clarity

in data visualizations, 55, 77
in narratives, 54-55

classification, simulation in, 94-97
classifier model use case (lifts), 48
coefficients in linear models, 103-106
colliders, 181-184
colors in data visualizations, 74-74
comparing simulation models, 96-97
complete separation and data leakage, 126-128
conditional exchangeability, 188, 190
conditional independence, 188
confounders, 110-112, 181-184
confusion matrix, 172, 175-177
conversion rate use case (A/B testing), 211-212
correlated outcomes, 37
cost-benefit analysis, 41
counterfactuals, 179
covariance, 105-106, 114-117
credibility in narratives, 55-56
credit origination use case (2×2 designs), 37
customer lifetime value (LTV), 36
customer retention strategy use case (business

cases), 42-43
customization of data visualizations, 76

D
DAGs (directed acyclic graphs), 182
data cleansing case study (data science tasks),

225-226
data credibility in narratives, 56
data drift, 138-140
data generating process (DGP), 81, 82
data governance, importance of, 122
data leakage

bad controls, 122-123
complete separation, 126-128
defined, 121
detecting, 124-126
identifying source, 132
metadata, 124
mislabeled timestamps, 123
outcomes as features, 122
resources for information, 134
subquery time aggregations, 123-124

windowing methodology, 128-132
data science

simplification in, 31-32
as storytelling, 57-59
tasks of data scientists

evolution of, 223-226
exposure to AI impact, 221-222, 226-227

value creation
business, understanding, 4-5
defined, 3-4
measuring value, 7-9
resources for information, 10
stakeholder management in, 7
storytelling in, 6

data visualizations
clarity in, 55, 77
resources for information, 78
tips for

colors, 74-74
customization versus semiautomation,

76
data-ink ratio, 75-76
dimensions in plots, 75
font size, 76-77
interactivity, 77
matching plot to message, 73
simplicity, 77

types of
bar plots, 67-68
distributions, 72-73
line plots, 67-68
scatterplot smoothers, 71-71
slopegraphs, 69
waterfall charts, 70

data-ink ratio, 75-76
dataset purchase use case (business cases), 44
datavis (see data visualizations)
decentralized organizational structure, 5
decision criterion (A/B testing), 202-205
decision making

A/B testing (see A/B testing)
confusion matrix optimization, 175-177
incrementality in, 181
lead generation use case, 173-175
precision and recall, 172-173
resources for information, 178
thresholding, 171-172
uncertainty in, 169-171

decomposition of metrics, 13-16

232 | Index

additive decomposition, 20-22, 27
growth decompositions, 19
mix-rate decomposition, 24-26, 28
multiplicative decomposition, 22-23, 27

deploying model and scores, 144
detecting data leakage, 124-126
DGP (data generating process), 81, 82
dimensions in plots, 75
directed acyclic graphs (DAGs), 182
distributions, plotting, 72-73
double machine learning (DML), 196-197
downlift, 48
downstream metrics, predicting, 151
dummy variable trap, 113-114, 116

E
early churn, 12
EconML, 195
elevator pitches, 63-64
ex ante storytelling, 148-154

feature engineering, 152-154
hypotheses creation, 149-152
steps in, 148-149

ex post storytelling, 154-165
accumulated local effects, 164-165
benchmarks with linear regression, 156-158
feature importance, ranking, 158-159
heatmaps, 160-161
interpretability versus performance,

155-156
partial dependence plots, 162-164

experimental data, 81
exposure to AI impact of data science tasks,

220-222, 226-227
external dataset purchase use case (business

cases), 44

F
false negative rates (FNRs), 210
false negatives

in A/B testing, 205-206
in churn prediction model, 9

false positives
in A/B testing, 205-206, 211
in churn prediction model, 9

feature engineering, 152-154
feature importance, ranking, 158-159
features, outcomes as (data leakage), 122
FNRs (false negative rates), 210

font size in data visualizations, 76-77
fraud detection use case (linear regression), 117
fraud prevention use case (business cases),

43-44
Frisch-Waugh-Lovell theorem (FWL), 106-109
funnel analytics, 13-14

G
get_data() stage (production-ready models),

141-142
governance of A/B testing, 214-215
gradient boosting regression (GBR), 89-91
group-level aggregates, 116
growth decomposition, 19

additive, 20-22, 27
mix-rate, 24-26, 28
multiplicative, 22-23, 27

H
habit (in growth), 12
headwinds, 19
heatmaps, 160-161
histograms, 72
human behavior, predicting, 150-151
hypotheses backlog, 213-214
hypotheses, creating, 149-152

I
ICE (individual conditional expectation) plots,

162
ideal features (feature engineering), 152
ignorability, 188
impurity-based feature importance, 159-159
incrementality, 42

confounders and colliders, 181-184
defined, 179-181
in machine learning

double machine learning, 196-197
open source codebases, 194-196

matching algorithm, 191-194
propensity score matching algorithm,

191-194
randomization, 189-190
resources for information, 198-200
selection bias, 185-188
unconfoundedness assumption, 188

individual conditional expectation (ICE) plots,
162

Index | 233

intentionality (and churn), 12
interactive plots, 77
interim storytelling, 148-154

feature engineering, 152-154
hypotheses creation, 149-152
steps in, 148-149

interpretability of models, 154
benchmarks with linear regression, 156-158
performance versus, 155-156

inverse transform sampling method, 82-83

J
job market impact of LLMs, 220

K
Kernel density estimate (KDE) plots, 72
KPIs (Key Performance Indicators) (see met‐

rics)

L
large language models (LLMs)

current state, 219-220
evolution of data science tasks, 223-224

A/B testing case study, 225
data cleansing case study, 225-226
machine learning use cases, 226

exposure of data science tasks, 221-222,
226-227

job market impact, 220
resources for information, 228-229

latent variable models, 94-96
lead generation use case (decision making),

173-175
lever/model testing use case (2×2 designs),

33-35
levers in A/B testing, 201
lifts

classifier model use case, 48
defined, 47
resources for information, 51
self-selection, 49-50
survivorship bias, 49-50
use cases, 50-51

line plots, 67-68
linear regression

in A/B testing, 205
benchmarks with, 156-158
coefficients, 103-106

confounders, 110-112
Frisch-Waugh-Lovell theorem, 106-109
resources for information, 119
simulation of, 84-86
uninformative variables, 112-114
variance in, 114-117

LLMs (see large language models)
LTV (customer lifetime value), 36

M
machine learning use cases (evolution of data

science tasks), 226
marginal analysis, 46
marginal effects, 87, 95
marketing campaign use case (lifts), 51
marketplace example (metrics), 15-16
matching algorithm, 191-194
measurable, metrics as, 11-12
measuring value, 7-9
memorability in narratives, 56-57
metadata leakage, 124
metrics

in A/B testing, 201, 213
decomposition of, 13-16

additive decomposition, 20-22, 27
growth decompositions, 19
mix-rate decomposition, 24-26, 28
multiplicative decomposition, 22-23, 27

design
importance of, 11
resources for information, 17

downstream, predicting, 151
importance of learning, 5
marketplace example, 15-16
precision and recall, 172-173
properties of, 11-12

minimum detectable effects (MDE), 205-208
conversion rate use case, 211-212
setting, 212-213
simulations, 209-211
statistical power and level, choosing,

208-209
variance estimates, 209

minimum sample size in A/B tests, 208
mislabeled timestamps (data leakage), 123
mix-rate decomposition, 24-26, 28
model drift, 138-140
model/lever testing use case (2×2 designs),

33-35

234 | Index

Monte Carlo simulation (see simulation)
multiple regression, 104
multiplicative decomposition, 22-23, 27

N
narrative arc, 59
narratives, 53

(see also storytelling)
characteristics of, 53-57
data science as storytelling, 57-59
elevator pitches, 63-64
presentation tips, 64-65
resources for information, 65-66
sequence for, 59-60
TL:DRs, writing, 60-63
in value creation, 6

negative selection, 187
net benefits, 41
noise in A/B testing, 202
null hypothesis in A/B testing, 202-205

O
observation windows, 129-131
observational data, 81
observed difference in means, 186
omitted variable bias, 91-94
online scoring, 138
open source codebases, 194-196
ordinary least squares (OLS), 85

coefficients, 103-106
confounders, 110-112
Frisch-Waugh-Lovell theorem, 106-109
uninformative variables, 112-114
variance in, 114-117

orthogonalization, 108, 196
outcomes as features (data leakage), 122

P
partial dependence plots (PDPs), 87-91,

162-164
partialled-out effects, 106-108
performance versus interpretability of models,

155-156
permutation feature importance, 159
plots (see data visualizations)
positive selection, 187
precision, 172-173
prediction windows, 129-131

presenting narratives, 64-65
pretreatment variables, 188
prioritization of workflow use case

business cases, 45
two-by-two (2×2) designs, 38

proactive retention strategy use case (business
cases), 42-43

production-ready models
batch scoring, 136-137
data and model drift, 138-140
defined, 135
real-time models, 138
resources for information, 145
steps in pipeline, 140-144

profitable fit, 35
propensity score matching algorithm, 191-194
Propensity Score Theorem (PST), 192-194
properties of metrics, 11-12
proxies, 11
proxy confounders, 184
pseudorandom number generation, 82-84
PST (Propensity Score Theorem), 192-194
PxQ-type decompositions, 15

Q
Q-Q plots, 83
quasi-complete separation, 126-128

R
random forest regression (RFR), 89-91
random number generation, 82-84
randomization, 189-190

(see also A/B testing)
ranking

feature importance, 158-159
hypotheses, 214

real-time models, 138
realistic features (feature engineering), 152
recall, 172-173
recurrence, 12
relevance of metrics, 12
resources for information

A/B testing, 216-217
AI and LLMs, 228-229
business cases, 46
data leakage, 134
data visualizations, 78
decision making, 178
incrementality, 198-200

Index | 235

lifts, 51
linear regression, 119
metrics design, 17
narratives, 65-66
production-ready models, 145
simulation, 100-101
storytelling, 166-167
two-by-two (2×2) designs, 40
value creation, 10

return on investment (ROI), 169
revenue decompositions, 15
RFR (random forest regression), 89-91

S
sales prediction use case (feature engineering),

153-154
sample splitting, 196
scatterplot smoothers, 71
science (see data science)
score_data() stage (production-ready models),

143
scoring stage (modeling), 129, 131

getting and transforming data, 141-142
production-ready models, 143
validating data, 142-143

seeds (pseudorandom number generation), 84
selection bias, 185-188
selection on observables, 188
self-selection in lifts, 49-50
semiautomation of data visualizations, 76
signal in A/B testing, 202
signal-to-noise ratio (SNR), 86-87
significance level (statistical size) in A/B testing,

208-209
simplification

in data science, 31-32
in data visualizations, 77

simulated data, 81
simulation

in A/B testing, 209-211
classification problems, 94-97
comparing models, 96-97
latent variable models, 94-96
linear models, 84-86
omitted variable bias, 91-94
partial dependence plots, 87-91
pseudorandom number generation, 82-84
purpose of, 81
resources for information, 100-101

slopegraphs, 69
SNR (signal-to-noise ratio), 86-87
soft skills, 60, 222
stable unit treatment value assumption

(SUTVA), 190
stakeholder management

in storytelling, 149
in value creation, 7

stationary time series, 111
statistical power in A/B testing, 208-209
statistical significance versus business signifi‐

cance, 212-213
stock-flow decompositions, 14
storytelling

characteristics of, 53-57
data science as, 57-59
elevator pitches, 63-64
in machine learning

ex ante and interim, 148-154
ex post, 154-165
roles in, 147-148

presentation tips, 64-65
resources for information, 65-66, 166-167
sequence for, 59-60
TL:DRs, writing, 60-63
in value creation, 6

subquery time aggregations (data leakage),
123-124

supervised learning, 180
survey response rates use case (lifts), 51
survivorship bias in lifts, 49-50
SUTVA (stable unit treatment value assump‐

tion), 190
system behavior, predicting, 151

T
tailwinds, 19
technical credibility in narratives, 56
thresholding, 171-172

confusion matrix optimization, 175-177
lead generation use case, 173-175
precision and recall, 172-173

time aggregations (data leakage), 123-124
timeliness of metrics, 12
timestamps, mislabeled (data leakage), 123
TL;DRs, writing, 60-63
TPRs (true positive rates), 48, 98-100, 210
training stage (modeling), 129, 131

getting and transforming data, 141-142

236 | Index

production-ready models, 143
validating data, 142-143

train_model() stage (production-ready mod‐
els), 143

transformed features (feature engineering), 153
transform_data() stage (production-ready

models), 141-142
trend-stationary variables, 111
true negatives in A/B testing, 211
true positive rates (TPRs), 48, 98-100, 210
two-by-two (2×2) designs

credit origination use case, 37
defined, 32-33
lifts, 51
resources for information, 40
testing a model and lever use case, 33-35
user behavior use case, 35-37
workflow prioritization use case, 38

U
uncertainty in decision making, 169-171
unconfoundedness assumption, 188, 193
uninformative variables, 112-114
unit economics, 42
unrelated variables in linear regression,

112-114
uplift, 48
uplift modeling, 195
user behavior use case (2×2 designs), 35-37

V
validating

data (in production-ready pipelines),
142-143

model and scores, 143
value creation

business, understanding, 4-5
defined, 3-4
measuring value, 7-9
resources for information, 10
stakeholder management in, 7
storytelling in, 6

variables
dummy variable trap, 113-114
omitted variable bias, 91-94
uninformative, 112-114

variance estimates in A/B testing, 209
variance in linear regression, 114-117
visualizations (see data visualizations)

W
waterfall charts, 70
weighted averages, 25
windowing methodology, 128-132

implementing, 131
length of windows, 130-131
training stage and scoring stage, 131

workflow prioritization use case
business cases, 45
two-by-two (2×2) designs, 38

writing TL;DRs, 60-63

Z
Zillow Offers (and model drift), 140

Index | 237

About the Author
Daniel Vaughan is currently a freelance data scientist and ML/AI practitioner and
strategist. He is the author of Analytical Skills for AI and Data Science (O’Reilly, 2020).
With more than 15 years of experience developing machine learning models and
more than eight years leading data science teams, he is passionate about finding ways
to create value through data science and in developing young talent. He holds a PhD
in economics from NYU (2011). In his free time he enjoys running, walking his dogs
around Mexico City, reading, and playing music.

Colophon
The animal on the cover of Data Science: The Hard Parts is a zebrafish (Danio rerio).
The zebrafish is a freshwater fish in the minnow family and is native to South Asia.
They are named for their five horizontal blue stripes running along their sides to the
end of the tailfin. Males have gold stripes between the blue stripes, while females have
silver stripes instead of gold. In the wild, zebrafish typically reach up to 1.5 inches
long and live two to three years. They generally live in shallow water, including
streams, ponds, and rice paddies.

Zebrafish are popular aquarium fish because, in addition to their vivid colors, they
are easy to care for and easy to breed. Their eggs hatch in two or three days, and they
reach maturity in three to four months. They are also popular in scientific research as
vertebrate model organisms, partly because their transparent eggs and larvae make it
easy to observe their development.

Because of their abundance in their natural habitat, zebrafish are considered a species
of least concern. Many of the animals on O’Reilly covers are endangered; all of them
are important to the world.

The cover illustration is by Karen Montgomery. The cover fonts are Gilroy Semibold
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Data Analytics Techniques
	Chapter 1. So What? Creating Value with Data Science
	What Is Value?
	What: Understanding the Business
	So What: The Gist of Value Creation in DS
	Now What: Be a Go-Getter
	Measuring Value
	Key Takeaways
	Further Reading

	Chapter 2. Metrics Design
	Desirable Properties That Metrics Should Have
	Measurable
	Actionable
	Relevance
	Timeliness

	Metrics Decomposition
	Funnel Analytics
	Stock-Flow Decompositions
	P×Q-Type Decompositions

	Example: Another Revenue Decomposition
	Example: Marketplaces
	Key Takeaways
	Further Reading

	Chapter 3. Growth Decompositions: Understanding Tailwinds and Headwinds
	Why Growth Decompositions?
	Additive Decomposition
	Example
	Interpretation and Use Cases

	Multiplicative Decomposition
	Example
	Interpretation

	Mix-Rate Decompositions
	Example
	Interpretation

	Mathematical Derivations
	Additive Decomposition
	Multiplicative Decomposition
	Mix-Rate Decomposition

	Key Takeaways
	Further Reading

	Chapter 4. 2×2 Designs
	The Case for Simplification
	What’s a 2×2 Design?
	Example: Test a Model and a New Feature
	Example: Understanding User Behavior
	Example: Credit Origination and Acceptance
	Example: Prioritizing Your Workflow
	Key Takeaways
	Further Reading

	Chapter 5. Building Business Cases
	Some Principles to Construct Business Cases
	Example: Proactive Retention Strategy
	Fraud Prevention
	Purchasing External Datasets
	Working on a Data Science Project
	Key Takeaways
	Further Reading

	Chapter 6. What’s in a Lift?
	Lifts Defined
	Example: Classifier Model
	Self-Selection and Survivorship Biases
	Other Use Cases for Lifts
	Key Takeaways
	Further Reading

	Chapter 7. Narratives
	What’s in a Narrative: Telling a Story with Your Data
	Clear and to the Point
	Credible
	Memorable
	Actionable

	Building a Narrative
	Science as Storytelling
	What, So What, and Now What?

	The Last Mile
	Writing TL;DRs
	Tips to Write Memorable TL;DRs
	Example: Writing a TL;DR for This Chapter
	Delivering Powerful Elevator Pitches
	Presenting Your Narrative

	Key Takeaways
	Further Reading

	Chapter 8. Datavis: Choosing the Right Plot
to Deliver a Message
	Some Useful and Not-So-Used Data Visualizations
	Bar Versus Line Plots
	Slopegraphs
	Waterfall Charts
	Scatterplot Smoothers
	Plotting Distributions

	General Recommendations
	Find the Right Datavis for Your Message
	Choose Your Colors Wisely
	Different Dimensions in a Plot
	Aim for a Large Enough Data-Ink Ratio
	Customization Versus Semiautomation
	Get the Font Size Right from the Beginning
	Interactive or Not
	Stay Simple
	Start by Explaining the Plot

	Key Takeaways
	Further Reading

	Part II. Machine Learning
	Chapter 9. Simulation and Bootstrapping
	Basics of Simulation
	Simulating a Linear Model and Linear Regression
	What Are Partial Dependence Plots?
	Omitted Variable Bias
	Simulating Classification Problems
	Latent Variable Models
	Comparing Different Algorithms

	Bootstrapping
	Key Takeaways
	Further Reading

	Chapter 10. Linear Regression: Going Back to Basics
	What’s in a Coefficient?
	The Frisch-Waugh-Lovell Theorem
	Why Should You Care About FWL?
	Confounders
	Additional Variables
	The Central Role of Variance in ML
	Key Takeaways
	Further Reading

	Chapter 11. Data Leakage
	What Is Data Leakage?
	Outcome Is Also a Feature
	A Function of the Outcome Is Itself a Feature
	Bad Controls
	Mislabeling of a Timestamp
	Multiple Datasets with Sloppy Time Aggregations
	Leakage of Other Information

	Detecting Data Leakage
	Complete Separation
	Windowing Methodology
	Choosing the Length of the Windows
	The Training Stage Mirrors the Scoring Stage
	Implementing the Windowing Methodology

	I Have Leakage: Now What?
	Key Takeaways
	Further Reading

	Chapter 12. Productionizing Models
	What Does “Production Ready” Mean?
	Batch Scores (Offline)
	Real-Time Model Objects

	Data and Model Drift
	Essential Steps in any Production Pipeline
	Get and Transform Data
	Validate Data
	Training and Scoring Stages
	Validate Model and Scores
	Deploy Model and Scores

	Key Takeaways
	Further Reading

	Chapter 13. Storytelling in Machine Learning
	A Holistic View of Storytelling in ML
	Ex Ante and Interim Storytelling
	Creating Hypotheses
	Feature Engineering

	Ex Post Storytelling: Opening the Black Box
	Interpretability-Performance Trade-Off
	Linear Regression: Setting a Benchmark
	Feature Importance
	Heatmaps
	Partial Dependence Plots
	Accumulated Local Effects

	Key Takeaways
	Further Reading

	Chapter 14. From Prediction to Decisions
	Dissecting Decision Making
	Simple Decision Rules by Smart Thresholding
	Precision and Recall
	Example: Lead Generation

	Confusion Matrix Optimization
	Key Takeaways
	Further Reading

	Chapter 15. Incrementality: The Holy Grail of
Data Science?
	Defining Incrementality
	Causal Reasoning to Improve Prediction
	Causal Reasoning as a Differentiator
	Improved Decision Making

	Confounders and Colliders
	Selection Bias
	Unconfoundedness Assumption
	Breaking Selection Bias: Randomization
	Matching
	Machine Learning and Causal Inference
	Open Source Codebases
	Double Machine Learning

	Key Takeaways
	Further Reading

	Chapter 16. A/B Tests
	What Is an A/B Test?
	Decision Criterion
	Minimum Detectable Effects
	Choosing the Statistical Power, Level, and P
	Estimating the Variance of the Outcome
	Simulations
	Example: Conversion Rates
	Setting the MDE

	Hypotheses Backlog
	Metric
	Hypothesis
	Ranking

	Governance of Experiments
	Key Takeaways
	Further Reading

	Chapter 17. Large Language Models and the
Practice of Data Science
	The Current State of AI
	What Do Data Scientists Do?
	Evolving the Data Scientist’s Job Description
	Case Study: A/B Testing
	Case Study: Data Cleansing
	Case Study: Machine Learning

	LLMs and This Book
	Key Takeaways
	Further Reading

	Index
	About the Author
	Colophon

