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2.1 INTRODUCTION

In the last couple of years, we have generated and organized an unprecedented
amount of data. The number of data created worldwide is huge and grows exponen-
tially. In 2020, we generated about 64.2 Zettabytes, 30 times more than 10 years ago
[1]. This phenomenon, known as “big data”, where data is characterized by five Vs
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26 Semantic Web Technologies

(Volume, Velocity, Variety, Veracity, and Value) [2]. Volume refers to the amount
of data, Velocity refers to the speed of data generation, Variety refers to different
types of data. Veracity and Value refer to the quality of data and benefits of the data
respectively. While the first three Vs are used to characterize the key properties of
big data, the 4th V (i.e., Veracity) is important to make big data operational [3]. It
has become one of the critical factors for creating value because of big data’s inher-
ent uncertainty in the form of biases, ambiguities, and inaccuracies [4]. As the con-
sequence, with a large amount of available data, often from a diversity of sources, it
is impossible to assess data veracity manually [5]. Methods, algorithms, as well as
tools for assessing data veracity automatically, are highly required.

Data veracity refers to the inconsistency and data quality problems, where
poor quality data would affect the results of data analyses [3]. The quality of
data influences the extraction of useful and valuable knowledge [6], where the
presence of uncertainty in the data may negatively impact the effectiveness and
the accuracy of the analyses [7]. Therefore, an assessment method for data verac-
ity that deals with uncertain or imprecise data need to look into multiple factors
including data inconsistency, incompleteness, ambiguities, as well as deception
[8]. More than that, data from multiple sources introduce data conflicts, making
data veracity assessment even more challenging [9]. Veracity is also compromised
by the occurrence of intentional deceptions such as fake news, malicious rumors,
and fabricated reviews [3].

Due to the wide variety of factors and sources that could affect data veracity, we
limited our work to the unintentional factor only, specifically those are originated
from data consistency and data uncertainty. There are three main sources for data
inconsistency, namely the difference in storage format, semantic expression, and
value [10]. Storage format refers to the types of the medium where data is stored,
most likely in various formats including structured, semi-structured, and unstruc-
tured. The semantic expression refers to the way an object is described, where
multiple expressions can be used to describe the same object. A value refers to
a measured result of the physical quantity, where various types of inconsistency
could happen when measuring an object due to human as well as equipment fac-
tors. Sources of data uncertainty are also varied, including data collection vari-
ance, concept variance, and multi-modality [7]. Variance in data collection could
be introduced by environmental conditions as well as data sampling. The same
concept might be used not similarly, introducing concept variance. Data complex-
ity and noise from multiple sensors are examples of multi-modality sources for
data uncertainty. Dealing with these multitude sources of data consistency and
uncertainty is about filtering out or amending the data through data cleaning and
data reduction [11], a necessary step toward successfully big data analytics.

2.1.1 MoTnvaTION AND RESEARCH CHALLENGES

Biodiversity research is organized into domains that cover distinct spheres of
biodiversity knowledge, e.g., taxonomy, geographical distribution, or functional
traits of organisms [12]. In this work, we focus on the studies of the distribution
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of life across space and time, providing a key link between organisms and their
environment, also known as biogeography. To study the link, a biodiversity infor-
mation system would hold various information about the organisms and their
observed environments. Typically, biodiversity data contains observations of the
occurrences of specific species that can be identified by a specific taxonomic
name at a specific geographic location at a specific time [13]. As an example, the
Global Biodiversity Information Facility (GBIF)' has recorded 1 billion records
of species occurrences in 2018.> The record is constantly growing as data are
provided by more than 1,600 institutions across the globe. Another example is
Pl@ntNet,’ a citizen science project that helps users to identify plants based on
pictures provided by citizens. The project has published more than 6,6 million
records of occurrences in two datasets.* Another example is eBird,” a citizen sci-
ence project that enables volunteered observers to report bird observations. The
project has published an observation dataset with more than 700 million records
of occurrences.®

In general, biodiversity data can be produced in two methods, data collection
and data mobilization [14]. In the first method, data generation will be started
with a field survey where researchers would visit (predetermined) locations to
observe species occurrences or even to collect specimens. In this step, informa-
tion that is related to the locations, as well as the observation time, will be also
recorded. In the case of citizen science projects, observation can also be per-
formed by amateurs, normally by using instruments such as wireless devices or
portable microscopes [15,16]. For specimen collection, the specimens will be
preserved in a special room such as a laboratory. If not done yet, each record or
specimen will be identified further to determine the correct taxonomic name.
Then, all those data will be entered into a biodiversity information system. In
the second method, data will be extracted from preserved specimens or works of
literature such as checklists and taxonomic monographs.

Our work is motivated by the relatively complex procedures to produce
high-quality biodiversity data as described above. Based on multiple factors
involved during data production, we hypothesized that biodiversity data tends
to be noisy. The noise which will affect data veracity could come from multiple
factors as follow:

1. First, location factors. At least, two locations are involved in data genera-
tion, namely field observation, and laboratory identification. This situa-
tion contributes to data corruption such as missing values. For example,
information about the habitat of a species that supposed to be collected
from the field was forgotten. In the case of extraction of distributional
information from preserved specimens, many important characteristics,
e.g., plant growth form, vegetative height, or stem specific density could
be missing [14].

2. Second, time factors. the id time differences between field observation
to lab identification. Process errors such as data redundancy are highly
possible.
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3. Third, human factors. error also possible to have happened in the last
phase, data entry. While data entry is performed independently it will be
performed manually by humans so data entry errors can happen.

We believe that these three factors have a tremendous impact on the data veracity
of biodiversity data. To the best of our knowledge, there is no existing work yet to
investigate this problem.

2.1.2 ReseARcH OBJECTIVES

In this chapter, we propose an automatic method to assess the veracity of biodi-
versity data through data consistency analysis. Data consistency analysis can be
performed from a variety of perspectives, including database development, com-
puting strategy, and data science [10]. In this work, we use the perspective of data
science especially big data management, where data that are scattered in distrib-
uted sources is required to be integrated, where data consistency across multiple
sources 1s important to ensure high quality integrated data. The proposed method
utilizes a data mapping solution to align data from multiple sources into a pre-
defined structure by using a standardized vocabulary in a way data consistency
can be measured and compared. Data mapping solutions bring many advantages,
for example, exposing underneath schema of relational databases [17]. Exposing
the schema of multiple databases is important in big data analytics. The expose
would help users to have a better understanding of the structure of the databases,
and at the same time help users to optimize queries to those databases. Data
mapping solutions also would enable dataset trustworthiness by exposing the
provenance of mapping quality [18]. It is more effective to assess and refine data
mapping definitions than to assess and refine the quality of a dataset directly.
Furthermore, a data mapping definition can be refined further to improve the
quality of data [19]. Based on the assessment of data mapping quality, if a prob-
lem (for example data types inconsistency) is detected then a mapping definition
refinement can be suggested to automatically improve the mappings.

Our research question is as follows: “How have data inconsistency in struc-
tures, value types, and granularities affected the veracity of open biodiversity
data?”. As reflected in this research question, we would like to investigate the
impact of three sources of data inconsistency on the veracity of biodiversity
data. First, data structure consistency refers to how elements of data are struc-
tured. Second, value types consistency refers to how a similar element data is
used across multiple sources. Third, data granularity consistency refers to how
specific a similar element data has been described. The rest of the chapter will
be organized as follows: relevant and related works including our contributions
will be explained in Section 2.2. Our method to measure data consistency will
be described in Section 2.3. After presenting our results in Section 2.4, we sum-
marize our chapter in Section 2.5.
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2.2 RELATED WORK

We align our work with two prominent research areas, namely big data veracity
analysis and data quality analysis of biodiversity data. In this section, we describe
several related works from each area and outline our contributions.

Even though the veracity dimension of big data remains under-explored com-
pared to the other dimensions, many works have been done to analyze it in several
big data applications. Reference [4] proposes a big data veracity index by defin-
ing three main theoretical dimensions of veracity, namely objectivity, truthful-
ness, and credibility. The index was used to assess systematic variations of textual
information across multiple datasets. They found that each dimension might con-
tribute to the overall quality to a different degree, and therefore should be assigned
different weights. Since the multi-modality of information sources could amplify
the veracity of data, reference [9] proposes cross-modal truth discovery by pre-
dicting the truth label of claims through linkage analysis of various events from
multiple sources. The approach was able to infer the reliability of sources with
no or little prior knowledge. In another work, reference [20] proposes a platform
to estimate data veracity by extracting entities, relations, and structures of claims
to be combined in a way the veracity label of data and trustworthiness scores of
the sources can be determined. Multiple methods can be used to determine the
veracity data of electronic medical records, including process mining and using
ontology [8]. In the process mining method, data quality will be assessed by map-
ping the chronological time/date within the records. Ontology can be used to
share quality metrics. Standardized terminology can also provide data correction
for misspelt words in unstructured text fields. And most recently, the big data
should be transformed into smart data where data must be appropriately sorted,
structured, and analyzed [6,11]. Smart data aim to filter out or amend imperfect
data through data cleaning and data reduction, for example for dealing with data
redundancy or contradiction.

Data quality is also becoming a major issue in the field of biodiversity sci-
ence. Numerous factors could affect data veracity, including observation error,
expertise, and reliability of the primary data collectors, possible data corrup-
tion during secondary data management and analysis, and any other factor that
might increase uncertainty [21]. The integration of biodiversity data deals with
the availability, quality, and interoperability of data which are mostly based on
disaggregated data types [14]. One of the challenges is missing or inconsistent
data items that can be solved with the data imputation method where a value
will be estimated (using logical and statistical approaches) to replace the missing
data. The increase of “big unstructured data™ has highlighted the discrepancy in
global data availability between data quantity and data quality [22]. It is neces-
sary to do benchmarking big unstructured data against high-quality structured
datasets, as well as developing purpose-specific rankings to assess data quality. A
controlled vocabulary and data annotation could improve data quality and fitness
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for use [23]. Also, the communities which have the necessary expertise to vali-
date, curate, and improve data from diverse sources should be integrated into the
data [24]. This approach would enable researchers to engage effectively and effi-
ciently with vast volumes of complex data, to contribute through simple curatorial
actions to improve digital knowledge. Furthermore, integrating and transform-
ing biodiversity data into a knowledge graph requires extensive data cleaning
and cross-linking [13]. For instance, converting data from multiple sources into a
specific format requires multiple steps. Even though a set of declarative mapping
rules can be used to align entities from multiple sources to a targeted scheme [25],
it remains challenging to reconcile entities across multiple sources.

In line with these two broad research areas explained above, we outline our
main contribution as a method to assess data veracity in biodiversity data, such
as sources, comparison of veracity types. Based on the definition of sources of
noises from [6], our work assesses the “attribute noises” which can be explained
as a corruption of data in the values of the input attributes. In this type of veracity
source, the factors can be erroneous attribute values, missing values, or incom-
plete attributes. In contrast with existing works that mainly rely on machine
learning approaches, we lay our work on the fundamental approach for data inte-
gration, namely data mapping. We map element data from multiple sources into
one defined data structure in a way the noise will prevail. Our work is different
from the data mapping approach in [8], which was utilized for the correction of
misspelt words only. Our method goes beyond that, namely assessment of data
consistency in structure, data values, as well as data granularity.

2.3 METHOD

In this section, we introduce our method to assess data veracity of open biodi-
versity data. We measure and compare data inconsistency across multiple data
sources. Three sources of data inconsistency will be investigated, namely data
structure inconsistency, data value types inconsistency, and data granularity
inconsistency. First, we define our data definitions as an approach to representing
data from multiple sources into one generic schema. Second, we describe how to
measure three types of inconsistency from the obtained mappings. And finally,
our research procedures will be explained at the end of this section.

2.3.1 Data DerNITIONS

To be able to measure the three types of data consistency, we introduce several
definitions and formalizations as follows:

1. Vocabulary: Vocabulary is a collection of data attributes that can be
used to describe an object. Each attribute has a name and an expected
type of value. As an illustration, to describe a biological specimen, it is
necessary to have a few data attributes such as the name of the speci-
men, where and when the specimen was collected, and so on. Further, an
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attribute “name” should have a textual value, an attribute “date” should
have a date value, etc. In the field of biodiversity, several existing vocab-
ularies have been used widely. One of them is Darwin Core,” a data stan-
dard for publishing and integrating biodiversity information [26]. We
use this vocabulary due to its wide adoption.

2. Dataset: Dataset is a collection of data objects, where each object is
described with one or more attributes that are available in the selected
vocabulary.

3. Dataset vocabulary: Dataset vocabulary is a collection of data attri-
butes, where each object is described with one or more attributes that are
available in the selected vocabulary. It is worthy to mention that every
dataset could use less or a greater number of attributes available in the
vocabulary.

2.3.2 DATA CONSISTENCY ANALYSIS

After introducing the basic definitions of our data mapping solution, we con-
structed our data consistency measurement as follows:

1. Data structure consistency: The first measurement applies to the data-
set level, meaning that it can be used to measure consistency across data-
sets. Two datasets will be called consistent if every related data objects
in both datasets utilize similar data attributes. One dataset may have a
richer structure than the other.

2. Data type consistency: The second measurement is applicable to attri-
bute level, meaning that it will be used to compare attributes across data
objects within a dataset or to compare related data objects across data-
sets. Two data objects will be called consistent if both objects utilize a
similar data type for their relevant attributes.

3. Data granularity consistency: The third measurement is applicable at
the data value level, meaning that it will be used to compare values of
related attributes of data objects within a dataset or across multiple datas-
ets. We use a semantic similarity® metric to measure the distance between
two values. Semantic distance is a metric to measure how far a concept is
from other concepts in a knowledge organization system. By identifying
concepts in a data value of an attribute, we can map each concept to a
knowledge organization system such that the semantic distance between
them can be measured. If an attribute is data granularity consistent then
all values of this attribute should be mapped to the same concept.

We model the value of an attribute by using a Simple Knowledge Organization
System (SKOS),” a vocabulary and data model for expressing knowledge organiza-
tion systems for data referencing and reusing. For example, the concept “location”
will be modeled in SKOS as shown in Table 2.1. There are three important semantic

LS A 1

relations, namely “broader”, “narrower”, and “related”. The relation *‘broader” and
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TABLE 2.1

Modelling of Concept “Location” Using SKOS

Subject Predicate Object

ex:Island rdf:type skos:Concept
skos:prefLabel “Pulau” @id
skos:prefLabel “Island” @en

ex:StateProvince

ex:Country

skos:related
skos:related
rdf:type
skos:prefLabel
skos:prefLabel
skos:altLabel
skos:broader
rdf:type
skos:prefLabel
skos:prefLabel
skos:narrower

ex:StateProvince
ex:Country
skos:Concept
“Provinsi” @id
“State Province” @en
“Province” @en
ex:Country
skos:Concept
“Negara” @id
“Country” @en
ex:StateProvine

“narrower’” are transitive relations to represent if a concept is broader or narrower than
others respectively. The relation “related” is a reflexive relation to represent that a con-
cept is related to the other and vice versa. The model can also be visualized in a graph
representation as shown in Figure 2.1. This graph depicts that “StateProvince” has a
broader concept so-called “Country™ and “Country’ has a narrower concept so-called
“StateProvince”. An “Island” is related to both *StateProvince” and “Country™.

2.3.3 DATA MAPPING PROCEDURES

After describing our formalization to measure data consistency in the previous
sub-sections, now we introduce our data mapping procedures. Figure 2.2 shows
our mapping procedures that consist of three main activities as explained in the
following sub-sections.

1. Data crawling and extraction: In this first activity, data will be crawled
and extracted from several sources. Since most of the data are available
over the Web, a web-scraping method will be employed to extract the
required data. The input of this activity is a list of Uniform Resource
Locator (URL). The output will be a collection of files, where each file
contains data as a tuple in the form of (key, [values]). In each tuple, a
“key” has a list of zero, one, or more “values’.

2. Data mapping: From every tuple obtained in the previous activity, its
“key” will be mapped to a relevant attribute of the selected vocabulary.
The relevancy will be determined by users that have a wide variety of
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Negara Provinsi

skos:prefLabel skos:prefLabel Province
skos:prefLabel skos:narrower el

StateProvince

Country

skos:prefLabel

rdf:type skos:broader

skos:related State

skos:related Province
skos:Concept
rdf:type @
skos:prefLabel skos:prefLabel
Island Pulau
FIGURE 2.1 Visualization of concepts “location” using SKOS.
Vocabulary
I B/ Data Structure

l Analysis
List of Data Crawling Key- Data " Data Type
URLs & Extraction Values Mapping Analysis

Data Granularity
Analysis

' | | |

User

FIGURE 2.2 Research methodology.

expertise in data science. As output, a list of (key, attribute) will be pro-
duced. In case of no relevant attribute can be identified, then a tuple (key,
Null) will be produced.

3. Data analysis: For analysis, we constructed a third collection of tuples
based on the defined mapping in the previous activity. Technically, the
process will be performed as (key, [values])+ (key, attribute)=(attribute,
[values]). To answer our research question, three types of analyses will
be performed, explained as follow:

a. To measure data structure consistency, the tuples (key, attribute) will
be compared from one dataset to another. We expected to be able to
identify which attributes are widely used and which ones are not.
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b. To measure data type consistency, the data type of “values™ of selected
“key” in tuples (key, [values]) will be matched with the data type of
“values” defined for “attribute’ in the relevant tuples (attribute, [values]).

¢. To measure data granularity consistency, “values” of selected
“attribute” in tuples (attribute, [values]) will be aligned with con-
cepts from a defined knowledge system. The distance between one
concept to another will be computed to measure the granularity of
the relevant “attribute™ which is associated with “key™.

Apart from the above three types of analyses, we also would like to collect tuples
(key, Null) to be analyzed further for vocabulary enrichment in the future.

2.4 RESULT

In this section, we describe our results, discuss our findings, and summarize the
lessons learned from the findings.

2.4.1 DATASET

To assess open biodiversity data, we collected data from multiple sources with a
few limitations as follows:

1. We limited our biodiversity data that are related to data observation of
species occurrences at a specific location at a specific time.

2. We limited our data collection to the publicly available data, published
on the Web.

3. From each dataset, we are limited by the publicly available fields only.
To the best of our knowledge, not all fields of the database are opened to
the public.

The summary of the dataset is shown in Table 2.2. We collected more than 60,000
records of species occurrences from nine sources. It covers botanical as well as
zoological data.

2.4.2 DATASET VOCABULARY

As explained in Section 2.3, we need to construct a dataset vocabulary based on the
mapped “attributes” of the selected vocabulary i.e. Darwin Core Terms. As result,
there are 72 terms were used in our collections of datasets as shown in Figure 2.3.

2

The top three terms belong to class “Taxon”, “Location”, and “Event’ respectively.

2.4.3 DATA STRUCTURE ANALYSIS

To analyze data structure across multiple datasets, we computed how each dataset
uses our vocabulary and which attributes are not used in each dataset as shown
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TABLE 2.2
Collection of Datasets
No. URL # Specimen
1 http://ibis.biologi.lipi.go.id/ 10,629
2 http://ibis.biologi.lipi.go.id/mzb/ 1,749
3 http://bankbiji.krbogor.lipi.go.id/katalog 114
4 http://sindata.krcibodas.lipi.go.id/ 1,969
5 http://ipbiotics.apps.cs.ipb.ac.id/ 1,074
http://indobiosys.org/ 14,222
6 http://ipt.biologi.lipi.go.id/ 17,250
7 Herbarium of Andalas University 1,128
8 Museum Zoologi Bogor 14,043
9 Tambora Muda Indonesia
Total 62,178

ResourceRelations
1.4%

R Hlovel Event
ecord-leve

19.79
8.5% 9.7%
Location
21.1%
MeasurementOrFac
1.4% Taxon
Identification 25.4%

4.2%

Occurrence
18.3%

FIGURE 2.3 The proportion of 72 Darwin Core terms that are used as our dataset
vocabulary.

in Figures 2.4 and 2.5 respectively. As shown in Figure 2.4, class “Location”
was widely used across datasets but has an uneven distribution. Class “Taxon” is
also widely used across datasets with better distribution. Other classes were used
only partially, for example, class “Event” was used in eight datasets only, class
“MeasurementOrFact” was used in two datasets, or class “ResourceRelationship”
was used in one dataset only. When identifying which terms are used in each
dataset, we obtained results as shown in Figure 2.5. The ratio of terms used that
are available in our vocabulary across multiple datasets was very low. Only two
datasets were utilized above 50%, two datasets use less than 40%, 1 less than
30%, 2 less than 20%, and even less than 10% for one dataset.
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Occurrence ' |V
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Identification
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MeasurementOrF
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Location
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IResourceRelation
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FIGURE 2.4 Proportion of our dataset vocabulary across datasets.
B UnusedTerms M Used Terms
100%
75%
50%
25%
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| 11 11 I\ \" VI VIl Vil IX

FIGURE 2.5 Proportion of used and un-used attributes across datasets.
From these two results, we explain the situation as follows:

1. Data structure if very heterogeneous

2. High consistency is found in several classes, namely “Taxon” and
“Event” due to their relatively equal distribution across multiple data-
sets. This indicates that the potential for data integration can be started
with these two classes.
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Even though we found a relatively low consistency across multiple datasets, we
would like to outline potential biases during our data collection and processing
as follow:

1. data collection bias refers to how data were collected by different organi-
zations according to the research question that they would like to answer.
For example, one organization is probably concerned only about specific
species in specific locations and therefore terms that are related to the
habitat would not be recorded.

2. data mapping bias refers to a possible error caused by an incorrect align-
ment between “key” of data to “attribute” in the selected vocabulary.

2.4.4 Darta Type ANALYSIS

To analyze data type consistency across multiple datasets, we selected the attri-
bute “eventDate” of class “Event” which according to the definition of Darwin
Core can be used to specify the date-time or interval during which an “Event”
occurred. It is recommended to use a date that conforms to ISO 8601-1:2019."°
The standard provides an unambiguous representation of dates and times to avoid
misinterpretation of numeric representations of dates and times across different
conventions. The attribute was used in seven datasets, but in two datasets the
value of the attribute was presented as a combination with values from other
fields, and therefore they were discarded. We also disregarded records that have
empty values in their corresponding attributes. The result from five datasets is
shown in Figure 2.6.

As shown in Figure 2.6, seven formats were employed, where one format rep-
resents date intervals, one represents a specific date with time intervals and the
other represents a specific date and time. One dataset uses four different formats,
while four others use only one format. We also found that only one format was

yyyy-MM-dd to yyyy-MM-dd l 145
yyyy-MM-dd, HH:mm-HH:mm I 165

yyyy-MM-dd, HH:mm | 292

yyyy-MM-dd HH:mm:ss I 1074

Data Format

yyyy 2

0 5000 10000 15000 20000 25000 30000

FIGURE 2.6 Number of records that use different data formats in our datasets.
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used consistently across two datasets, namely (yyyy-MM-ddTHH:mm:ssZ). Only
one format specified a time zone designator (Z) explicitly, which is turn out to be
employed by most of the data records.

We explain the situation as follows:

1. Multiple formats can be used across multiple datasets that still conform
to a standard (such as ISO 8601).

2. A time zone designator is not adopted wide enough, which could lead to
multiple issues when integrating data from multiple sources.

2.4.5 DATA GRANULARITY ANALYSIS

To assess data granularity consistency, we selected three attributes in our dataset
vocabulary that refer to a geographical location. The attributes are “country”,
“locality”, and “island” from class “Location”. An attribute “country” refers
to the name of the country or major administrative unit in which a “Location”
occurs, “locality” refers to the specific description of the “Location”, and “island”
refers to the name of the island on or near which the “Location” occurs. These
three attributes were selected because, based on our mapping, they were used
across multiple datasets. Three datasets were used attribute “country”, five and
one datasets were used attributes “locality” and “island” respectively. From
every selected attribute, we constructed a knowledge system as depicted in
Figure 2.1. The knowledge system consists of three concepts, namely “Country”,
“StateProvince”, and “Island”. After that, we analyze how those concepts were
utilized in our datasets and the result is shown in Figure 2.7.

As shown in Figure 2.7, the three concepts to represent a geographical loca-
tion were used differently across multiple datasets. Concepts of “Country” and
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0%

| ] 1] v Vv Vi Vil Vil IX
w Island 0 0 |38,835|7,3913 1,291 32,671 0
m StateProvince:| 0 0 |31,068(72,754 47,673 32,419| 100
= Country 100 | 100 (30,097|19,855 51,036 34,91 0

FIGURE 2.7 Portions of datasets that use different concepts to specify a geographical
location.
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“StateProvince” were used consistently in two and one datasets, respectively. Two
datasets used a different concept, namely “GeoCoordinate”. In the remaining four
datasets, those three concepts have been used simultaneously. We describe this
situation as follows:

1. The level of granularity is varying across multiple sources. Forcing to
follow a specific granularity level is hard, especially in the case of data
mobilization. In this case, the information related to a geographical loca-
tion can be missing due to various factors. For example, the name of a
place has been changed.

2. The use of attribute “GeoCoordinate” is becoming popular and should
be used as the first option. In the case of data mobilization, it is impor-
tant to have a global mapping from textual name to this attribute such
that the granularity level can be consistent.

2.5 CONCLUSION

In this chapter, we introduced a method to assess data veracity of open biodiver-
sity data. The method performs a consistency analysis on three important sources
of data consistency, namely data structure, data type, and data granularity. To the
best of our knowledge, our work is the first one that investigated these sources
thoroughly. The analysis was performed in the context of the big data ecosystem,
where data is distributed across multiple sources, presented in various formats,
and maintained by multiple organizations. Our main objective was to assess the
veracity of biodiversity data automatically which can be used further to improve
the quality of data.

Three sources of data consistency were investigated. First, data structure
analysis, applied at the datasets level, was intended to measure how a defined
vocabulary was utilized across multiple datasets. Second, data type analysis,
applied at the data attribute level, was intended to measure how the data type
of an attribute is used within a dataset or across multiple datasets. Third, data
granularity analysis, applied at the data value level, was intended to measure how
multiple concepts were used in values of selected attributes. As our datasets, we
collected publicly available biodiversity data more than 60,000 records of species
occurrences that are available in nine distributed data sources. Our analysis was
conducted in several systematic steps, namely:

1. Data collection, where biodiversity data from multiple sources were col-
lected. In most cases, web-scraping techniques were used to extract the
relevant pair of (key, [values]) for every element data that was presented
on a website.

2. Data mapping, where every extracted “key” is mapped to the most suit-
able attribute in a selected vocabulary to produce a pair of (key, attribute).
We used the Darwin Core as our vocabulary due to its wide adoption in
the biodiversity area.
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3. Based on the mapping, we constructed a final collection of (attribute, [val-
ues]). After that, several statistics regarding data consistency were computed.

As a result, we obtained:

1. There is a high number of terms (72 in total) that were utilized across nine
datasets. The terms are classified in Taxon, Location, Occurrence, Event,
Record-level, Identification, MeasurementOrFact, and ResourceRelations.

2. The terms were utilized imbalance across sources. A class of terms such
as Occurrence is widely used but three sources underused it compared to
the others. The same case with terms in class Location, widely used but
under usage by five sources.

3. There is a high diversity of ways to represent a specimen. Even though
we obtained 72 terms in our vocabulary, only two data sources utilized
more than 50%.

4. We also identified data inconsistency in data type and data granularity. We
identified different ways to define data value for a term with type DateTime.
Different granularities were used to specify the value for a location.

In conclusion, due to the high inconsistency found in all three sources, performing
analysis of big biodiversity data requires more effort in the step of preprocessing
step. Data integration as the first step toward analytics requires the implementa-
tion of recent technologies to fill the gap. Those technologies are including:

1. Data value completion, which is including link prediction by using
machine learning.

2. Data modelling can be used to suppress the level of inconsistency that
can be developed further to extend the existing vocabulary. For example,
to have a better representation of location or habitat.
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8.1 INTRODUCTION

Machine learning techniques, especially supervised ones, have been widely
used in numerous applications, including natural language processing, biologi-
cal image classification, stock market analysis, self-driving cars, and precision
agriculture [1]. Furthermore, with the increased availability of data and computa-
tional resources, techniques in many applications have been widely accepted [2].
In biodiversity research, machine learning techniques have been used for multiple
purposes, such as plant sciences, mainly on images of herbarium specimens [3].
Plant morphology, growth and development, the ecological interactions of plants
with herbivores, and other related cases may now be analyzed quickly, precisely,
and easily using machine learning. These techniques could also be used to assess
the global change biology by processing herbarium data known to have biases
over space, time, and phylogeny [4]. Machine learning can also help the basis of
biological research, such as improving the accuracy of species identification [5].
The discovery of phenological patterns on unprecedented scales has also been
made possible by machine learning and combined data from herbarium speci-
mens and spatiotemporal data retrieved from specimen labels [6].

When it comes to herbarium specimens, it is widely known that this is the
most valuable data source for biodiversity research. From about 3,100 herbaria
around the World, there are a total of 390 million botanical specimens.' Extinct,
uncommon, endemic, and common botanical specimens are all preserved in her-
barium collections to serve as a reference for future study. Many efforts have
been performed to digitize the specimens and share them, so they can be used by
researchers all over the world. An example of the portals that provide digitized
specimen data is the Integrated Digitized Biocollections (iDigBio) Portal, which
has a collection of approximately 131 million digitized specimens.?

Without a doubt, these data sources offer a great potential to help us learn
more about biodiversity, and machine learning techniques are one approach
to achieve that. Multiple works have been done in this area. For example, to
identify leaves and other components from digitized herbarium specimens
[7], and to discover patterns and trends of plant-herbivores interactions [8—11].
Further biological analysis can also be performed, for example, to determine
the driver of shifting interactions such as phenological change, distributional
shifts, and urbanization [10]. Another example is using machine learning to
segment plant tissues in herbarium specimen images and removes the back-
ground pixels [12].

For supervised training of machine learning models, large training datasets are
necessary [13]. Data variability is an essential aspect of machine learning, espe-
cially for object identification or object classification tasks. Therefore real-world
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image variation is essential to ensure the results [14]. But on the other hand, using
uncontrolled natural images might be seriously misleading, dangerously leading
in the incorrect direction. Labeled data is made up of a large set of representa-
tive photos that have been labeled or highlighted with the relevant features. An
extensive and accurate labeled dataset, the ground truth, is required for training
the algorithm [15]. Recent advancements in machine learning approaches, such
as deep learning techniques, can generate features automatically, which saves fea-
ture engineering costs, but in return, may require larger volumes of labeled data
[16]. The size and quality of training datasets will affect the quality of the trained
models [17]. Due to those requirements, it is now essential to share the raw data
and, most importantly, the annotated/labeled data.

8.1.1 ANNOTATION OF DiGITIzZED HERBARIUM SPECIMEN

Figure 8.1 shows two images of annotated digitized herbarium specimens. Each
image consists of at least two types of information:

1. The sheet on the right bottom side of each image depicts the specimen’s
label, which includes information about the spatiotemporal dimension of
the specimen, as well as when and where the specimen was collected.
It also contains information about the person who has collected it and
taxonomic data on the specimen.

2. The images themselves depict parts of a plant such as leaves, branches,
flowers, and fruits. The yellow rectangles alongside the annotations
indicate where the images have been annotated. The first image has six
annotations, while the second image has 21 annotations scattered around
their leaves. As can be seen, the annotated areas’ size is not uniform, and
two annotations can overlap the others.

FIGURE 8.1 Two examples of annotated digitized herbarium specimens.
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In this work, we focus on the second type of information, namely parts of the
specimen that has been annotated. The annotations in this example will be used to
identify objects of interest within images of herbarium specimens. Furthermore,
using machine learning techniques, the annotations will be utilized to build a
model for automatic object classification.

8.1.2 MOTIVATION

Dealing with such a vast amount of data requires a systematic approach. Machine
learning techniques are sometimes unfamiliar to scientists who work with data.
Having tools that assist scientists in processing data and revealing its potential
is critical. For example, plant scientists may use an object detection application
programming interface (API) to assist an object detection pipeline in detect-
ing morphological features of a plant specimen [18]. A workflow for generating
high-quality image masks for segmentation tasks can also be made available to
scientists outside of the domain to help them [12]. Another example is providing a
tool to annotate an image with specific pre-defined labels [11].

Despite the efforts to make digitized herbarium specimens more accessible,
there are still several issues and challenges that remain. One challenge is finding
efficient pre-processing techniques to produce a learning system that can deal with
data collected from various sources. This problem arises as a result of data being
scattered over multiple areas, systems, and applications. The “meaning” of the data
may differ from one source to another, which may significantly impact the quality
of the machine learning outcomes [2]. The discrepancies label in the annotated
images is one example. In order to perform correctly, machine learning requires
a sufficient amount of data training with the proper label. There are several chal-
lenges introduced by labeling data that have motivated our work, as follows:

1. Various annotation data formats. There are a number of picture annota-
tion tools available, such as LabelMe3 [19] and VGG Image Annotator
(VIA)* [20], each with its own data format. There are a couple of widely
used data formats, such as the JSON-based Common Object in Context
(COCO) data format’® and the XML-based Visual Object Classes (VOC).6

2. Labels tend to be noisy. Label noise can significantly impact the perfor-
mance of deep learning models [21]. Since erroneous predictions might
influence decision, so labeling requires domain expertise with a wide
range of knowledge and the capacity to make precise label.

3. A label is applied individually without considering the relations to
another annotation. As an illustration, in a digital image of a herbarium
specimen, as can be seen in Figure 8.1, we can annotate the part of the
plants like leaves and the damage caused by herbivores on the leaves.
Both annotations are self-contained for each case and do not consider
the relation between them. However, the annotation for the damages
indicates that the damages happened on the leaves. Such that we can
infer the relations that the damages are parts of the leaves.
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The rest of the paper will be organized as follows: Section 8.2 lists and discusses
a few related works and outlines our contribution. After that, our research meth-
odology will be explained in Section 8.3. Finally, Section 8.4 presents our results
and discusses our findings before concluding our work and explaining a few
future works in Section 8.5.

8.2 RELATED WORK

In this section, we describe a few related works from various topics. Then, we
align our work to two broad research topics: ontology and semantic annota-
tion for biodiversity research. Finally, at the end of this section, we outline our
contributions.

8.2.1 ONTOLOGY FOR BIODIVERSITY RESEARCH

Biodiversity science, like most other fields, has been flooded with a huge amount of
data. Biological specimens that have been collected in various herbaria across the
world have become a valuable data source for biodiversity research. Furthermore,
technology has also introduced a new data source, so-called born-digital [22], in
which data is collected digitally without collecting a specimen first. Combining
these digital data with traditional data sources like data from in situ and remote
sensors, community data resources, biodiversity databases, and data from citizen
science have pushed this field into Big Data Era [23]. Besides the Volume of the
available data, this research area also deals with the Variety and Veracity of the
data. The two latter mentioned dimensions are related to and determine the qual-
ity of the data. Data collected by multiple organizations and stored in various
formats are two examples of how semantic technologies such as ontology, could
play a key role in big data analytics.

Ontologies play a crucial role in improving data aggregation and integration
across the biodiversity domain in this area. They can be used to describe physi-
cal samples, sampling processes, and biodiversity observations that involve no
physical sampling [24]. It has been predicted that the data will become less
centralized, but the need for cross-species queries will become more common
[25]. That is why ontologies would help scientists to achieve that. For example,
Plant Ontology (PO) has been widely used to describe plant anatomy and mor-
phology, as well as stages of plant development [26]. A simplified version of PO
also can be used to drive a question answering dialog between non-expert users
and a knowledge-base about Capsicum [27]. Another widely used ontology is
the Darwin Core (DC), a standard for sharing data about the occurrence of life
on earth and its associations with the environment [28]. It provides terminology
for describing multiple types of information from an organism, such as taxo-
nomic, location, and sampling protocol. It can be used to not only record the
occurrence of a species at a specific time and location but also to manage alien
species [29] and as a hub to connect data across multiple biodiversity informa-
tion systems [30].
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8.2.2 SEMANTIC ANNOTATION FOR BIODIVERSITY RESEARCH

Data annotation provides multiple advantages. First, it allows for data enrichment
by embedding more information. Resulting in more efficient data discovery, so
the data can be found, accessed, integrated, and re-used. Digital images of speci-
mens from natural history collections must be bound to semantically rich data
across museums to provide a unified user experience [31]. Semantic enrichment
of herbarium specimen digital data would reduce the orthographic data vari-
ances, particularly for person and place names [32]. Further, data standardization
and harmonization can be accomplished simply by using dictionary mapping to
annotate data set columns [33]. It will improve discovery, interoperability, re-use,
traceability, and reproducibility of the data.

Data annotation also can be used to encode knowledge into data by labeling
objects of interest from texts, digital images, or videos as an example. The encoded
labels can be used to enhance the data as well as serve as training material for auto-
matic data extraction and classification. For example, multiple annotations of named
entities in historic biological texts have been used to fine-tune a machine-learned
classifier [34]. In that case, an annotation framework was developed based on a mod-
ified version of the Model-Annotate-Model-Annotate (MAMA) cycle. As a result,
links between the exploration of biodiversity literature and document retrieval can
be provided. The utilization of optical character recognition (OCR) would automate
the acquisition process of herbarium specimen metadata [35]. Combined with other
specimen image analysis services, the approach would provide a high degree of
automation for information extraction from herbarium specimens. An approach for
semi-automated extraction of named entities from natural history archival collec-
tions also can be developed by using the semantic annotation of the collections [36].
In that case, digital images of the field book will be annotated by drawing a bound-
ing box over the image and attaching additional information. A tool for marine
image annotation would increase efficiency and effectiveness in the manual anno-
tation process [37]. In another case, images can be annotated by selecting features
of interest (e.g., flowers, birds, or patterns) as tokens with bounding boxes from the
images [38]. Finally, tokens can be associated with properties or traits (e.g., colors,
behaviors) derived from pre-defined domain ontologies.

8.2.3 CONTRIBUTIONS

In line with the two research areas discussed above, we outline our contributions
as follows:

1. In contrast with existing works that primarily introduced new annota-
tion tools, our solution would utilize existing annotation tools. We focus
more on the annotation format produced by each annotation tool and
align them to a unified schema to achieve a common annotation. To the
best of our knowledge, none of the existing works have looked into this
situation.
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2. Similar to other existing approaches, our solution would also allow anno-
tating digitized images based on the entities and properties of pre-defined
ontology. But, instead of treating the annotations as independent entities,
our solution would also consider the relationship between them. These
inferred relations can be used to fine-tune the performed classification
tasks.

8.3 METHOD

This section describes our research methodology, followed by our method to
develop a uniform schema, and how to align annotations produced by various
tools to the schema through mapping rules.

8.3.1 METHODOLOGY

Figure 8.2 shows our research methodology. It consists of three main activities
as follows:

1. Schema development activity. It is a method for identifying and formal-
izing information taken from digitized herbarium specimens, as well as
its structure. Interviewing domain experts, in this case botanists, is how
the activity is carried out. As a result, a schema will be created that cov-
ers plant characteristics.

2. Labeling activity. It is a process of marking all regions of interest and
their relevant labels for each herbarium specimen image. Domain
experts can perform this task using any existing tools they usually use.
This activity produces two types of information, are regions of interest
(typically by using bounding boxes) and their relevant labels.

3. Mapping activity. It is a process to align marked objects of interest with
a pre-defined schema. As a result, at the end of the process, a unified
annotation will be obtained.

Mapping
Rules

Region of ¥

s Interest
-+ Labeling Mapping Annotation

e
3 a Label
[

*
i

‘—b Schema o Schema
PE—— ] Developing
Digitized Herbarium A e
Specimen Domain
Experts

FIGURE 8.2 Research methodology.
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It is important to note that the produced labels will be highly task-dependent.
It will depend on the objective of the classification tasks at hand. For example,
when the classification task considers only damages caused by herbivory, there
is no need to label the other cause of damages. However, if we also consider the
spatiality of the damages, it will be necessary to label parts of the plant, such as
leaves where damages are found.

8.3.2 SCHEMA DEVELOPMENT

An annotation schema will be created to represent annotations uniformly across
numerous annotation tools and to enrich the annotation by defining relationships
between entities within an annotated object. The majority of the concepts are
derived from Plant Ontology (PO), a widely used ontology for describing plant
anatomy, morphology, and developmental stages [26].

8.3.2.1 Entities

As the representation of objects or things in the domain of interest, we identify
several types of entities that can be extracted from digitized herbarium specimens.

8.3.2.1.1  Plant Morphological Entities

Plant morphology refers to the physical appearance of a plant. Physical character-
istics of a plant that can be found in a herbarium specimen include leaves, fruits,
flowers, and so on. Leaves, in particular, are an essential feature for species delimi-
tation and recognition [18]. Further, trait information about area, perimeter, shapes,
colors, textures of leaves can provide important insight into plant species’ ecology
and evolutionary history [7]. The morphology of plants, such as leaves, flowers,
fruits, bark, and branches is ideal for image-based plant species identification [5].
The challenges lie in the diversity of similar features. For example, leaf morpholo-
gies of plants native to specific regions will be different from the plant from other
regions [11]. Therefore, it is necessary to have a standardized way to share informa-
tion about these features to ensure they can be consumed and appropriately re-used.

The PO adopt a Gene Ontology (GO) data model to cover flowering plants in
general. The PO is ideal for sharing knowledge among scientists who know the
issue but is not always understandable by non-expert users [27]. It has been widely
used as a common reference ontology for plant structures and development stages.
In the same vein, we created a modest but powerful ontology that met our require-
ments. We started with a simple ontology to improve Capsicum species literacy.’
The ontology is a small subset of the PO.

8.3.2.1.2 Plant-Animal Interactions Entities

Plant-animal interactions can be seen as a process that has immediate and delayed
effects on both entities that interact [39]. An interaction entails an enormous diver-
sity of outcomes depending on interaction type (predation, symbiosis, parasitism,
mutualism, commensalism) [40]. Herbarium specimens contain additional infor-
mation, like nutrients, defense compounds, herbivore damage, disease lesions, and
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sign of physiological processes that capture ecological and evolutionary responses
[4]. In particular, herbivory damage interactions data can be utilized to uncover var-
ious global change drivers across a diversity of insect herbivore-plant associations.

Examples of plant-animal interactions, in this case the damage caused by her-
bivory, are shown in Figure 8.1. As we can see, several damages on leaves can
be identified visually. Based on these interactions, further analysis can be per-
formed, for example, to identify different types of interactions and can be asso-
ciated with different types of animals that contribute to the interactions [11].

8.3.2.2 Entity Relationships

Besides super-class and sub-class relationships, we would like to outline several
critical other types of relationships.

Table 8.1 shows three essential relationships that can be used to represent how
entities within digitized herbarium specimens are related to each other. While
the first relation relates to morphological relationships, the last two relationships
relate to spatial proximity between entities.

8.3.3 MarpING RULES

Declarative mapping, and more precisely mapping rules, establish relationships
between various schemas of multiple data sources and a common schema. The
relationships align data elements from each source to a single common target,
as well as the appropriate structural and data type transformations. Declarative
mappings are available in a variety of formats, including the widely used and
language-independent tables and spreadsheets [41] to highly structured formats
such as R2RML8 and RML [42]. RML? defines mapping rules from heteroge-
neous data structures and serializations other than relational databases, for exam-
ple, CSV, XML JSON, to the RDF dataset.

8.4 RESULT

In this section, we list and discuss our results. First, we describe the character-
istics of our dataset, followed by the description of our schema. After that, the
mapping procedure will be explained before discussing our findings.

TABLE 8.1

Entity Relationship

No. Relation Meaning

1 part_of This relation represents if an entity is part of another entity. It is a core

relation to describe a part and its whole.

2 adjacent_to This relation represents if an entity is in contact with or in spatial
proximity to another entity.

3 located_in This relation represents if the location of an entity is within the location
of another entity.
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8.4.1 DATASET

To construct our dataset, we digitized the herbarium collection from the Herbarium
of Bogoriense.!” The digitization began with the identification of a collection of
specimens suspected to interact with insects, represented by various damages on
the specimen. The dataset can be explained as follow:

1. We digitized herbarium specimens from Excoecaria agallocha, which
belongs to the genus Excoecaria of Euphorbiaceae. In total, we obtained
244 specimen sheets.

2. From each digitized sheet, we asked experts to annotate them with three
types of damages:

a. pre-processing (damages that occur before the specimen were
collected)

b. during-process (damages that occur during specimen collection and
or during drying and mounting on a sheet)

c. insects (damages that occur due to insects during preservation)

3. The VGG Image Annotator was used to conduct the annotation. An
annotator would draw a bounding box to indicate damage and choose
one possible source of the damage.

4. It is important to note that the number of damages on each sheet can be
multiple and of different types, overlapping damages in a sheet are also
possible.

Table 8.2 shows the size of our multi-labeled dataset. Each sheet of herbarium
specimen in our dataset can have several labels. In most cases, all labels occur.
Our dataset has around three thousand labels in total, which are divided into
three categories. The distribution of label count for each type of label is shown
in Figure 8.3. The first three figures depict the distribution of labels for every
type of damage, pre-processing, during processing, and insects, respectively.
As we can see, most of the damages are up to six, mainly for every type of
damage. Finally, the last image depicts the distribution of damages, and as
we can see, the average damages are 6, 4, and 3 for every type of damage,
respectively.

TABLE 8.2

Collection of Datasets

No. Types of Labels # Object of Interest
Damages during pre-processing 1,420

2 Damages during process 1,069

3 Damages caused by insects 882

Total 3,371
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8.4.2 SCHEMA

We developed our schema by re-using terms from multiple existing ontologies as
follows:

1. The plant structures, we adopted the schema from the OntoCapsicum,!
an ontology to improve species literacy of Capsicum, which covers mor-
phological characteristics of seeded plants in general [27].

2. The animals, since our research object is plants, we focused on herbi-
vores, animals whose primary food source is plant-based. Herbivores
can be classified further into frugivores (fruit eaters), granivores (seed
eaters), nectivores (nectar feeders), and folivores (leaf eaters).

3. The interaction refers to the interaction between herbivores and plants
which can be characterized by defense mechanism mark or damage on
the specimens.

4. The interaction mark, the specimen’s spatial dimension can be viewed as
a mark of interaction (based on the image perspective).

5. The temporal dimension of the interaction represents the time when an
interaction took place.

Figure 8.4 depicts our schema for annotating herbarium specimens, modeled
using the Protégé Editor [43]. The core object in a herbarium specimen is the
“Plant, ““ which will be described by the plant’s main morphological traits,
such as “Flower, “ “Leaf, “ “Fruit, “ and “Stem”. The animal that interacts
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FIGURE 8.4 Schema for annotating herbarium specimens.

with the plant is then represented, in this case is a “Herbivore” entity, which
can be further classified as a “Nectivore, “ a “Frugivore, “ a “Folivore,
and a “Granivore”. Further, an entity “Interaction” will represent the inter-
action between a herbivore and a plant as reflected in a herbarium speci-
men. Next, “InteractionMark™ can be used to identify the interaction on the
specimen, which can be “Damages” or “DefenceMechanism”. Multiple types
of damages can be identified, such as “MarginFeeding”, “InteriorFeeding”,
“Skeletonization”, “BlotchMine” and so on. To reflect its spatial location inside
the specimen image, the marks will be represented as “Region.”. An interac-
tion can also be annotated further with “Temporal” to represent when the inter-
action happened. The schema currently has 44 entities, 6 object attributes, and
14 data properties in its initial version.

173 113

8.4.3 DATA MAPPING

As mentioned earlier in this section, we would like to annotate the damages found
on herbarium specimens and classify the damages based on the time when the dam-
age occurred. Three classes were defined: prior-processing, during-processing,
and after-processing (damages caused by insects).

<#InteractionMapping> a rr:TriplesMap;
rml:logicalSource [
rml:source “Batch-1-Updated.json”;
rml:referenceFormulation gl:JSONPath;
rml:iterator “$. via_ img metadata. [*]”

1
rr:subjectMap [
rr:template “http://lipi.go.id/herbarium/{filename}”;
rr:class hso:Interaction;

1
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rr:predicateObjectMap [
rr:predicate hso:hasRegion;
rr:objectMap [ rr:parentTriplesMap
<#InteractionMarkMapping>;
rr:joinCondition [ rr:child “filename”; rr:parent
“filename”; 1;
1
1.
<#InteractionMarkMapping> a rr:TriplesMap;
rml:logicalSource [
rml:source “Batch-1-Updated.json”;
rml:referenceFormulation gl:JSONPath;
rml:iterator “$. via_ img metadata. [*]”
1
rr:subjectMap [
rr:template “http://lipi.go.id/herbarium/
{filename}-{size}”;
rr:class hso:InteractionMark;
1
rr:predicateObjectMap [
rr:predicate hso:hasRegion;
rr:objectMap [ rr:parentTriplesMap <#RegionMapping>;
rr:joinCondition [ rr:child “filename”; rr:parent “shape
attributes.id”; 1;
1
1.

Figure 8.5 shows a snapshot of our mapping rules using RML in combination
with the Function Ontology (FnO).> We use JSON files generated by the VGG
Image Annotator for the input files. We ran into a few issues when generating
mapping for the files, mainly because the RML has limited support for nested
data, such as nested objects in a JSON object [44]. We found it challenging to
map objects in an array because no specific field can distinguish between mem-
bers of the array and map them to their parent object. To solve this issue, we
pre-processed the input files by inheriting the identification field from the parent
object into members of the array in the child object. In this way, the parent object
can be linked to each array member. As shown in Figure 8.5, several mappings
are defined as a collection of “TriplesMap”. A “logicalSource,” a “subjectMap,”
and one or more “predicateObjectMap” are all defined in each definition. The
relationships between entities were defined using “parentTriplesMap” from
“objectMap” of the source to other related definitions.

The RMLMapper'? is used to generate the annotation based on the updated
input files. Figure 8.6 shows a snapshot of the annotation produced by the map-
per, and Table 8.3 list the number of corresponding statements/triples. Out of
244 annotated digital herbarium specimens, we generated 21,058 triples using
the current mapping rules. The majority of the triples are linked to the spatial
information of damages detected on specimen images.
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<#InteractionMapping> a rr:TriplesMap;
rml:logicalSource [
rml:source "Batch-1-Updated.json";
rml:referenceFormulation gl:JSONPath;
rml:iterator "$. via img metadata.[*]"
17
rr:subjectMap [
rr:template "http://lipi.go.id/herbarium/{filename}";
rr:class hso:Interaction;
1
rr:predicateObjectMap [
rr:predicate hso:hasRegion;
rr:objectMap [ rr:parentTriplesMap <#InteractionMarkMapping>;
rr:joinCondition [ rr:child "filename"; rr:parent
"filename"; ];
17
1.

<#InteractionMarkMapping> a rr:TriplesMap;
rml:logicalSource [
rml:source "Batch-1-Updated.json";
rml:referenceFormulation gl:JSONPath;
rml:iterator "$. via img metadata.[*]"

1

rr:subjectMap [
rr:template "http://lipi.go.id/herbarium/{filename}-{size}";
rr:class hso:InteractionMark;

17

rr:predicateObjectMap [
rr:predicate hso:hasRegion;
rr:objectMap [ rr:parentTriplesMap <#RegionMapping>;
rr:joinCondition [ rr:child "filename"; rr:parent
"shape attributes.id"; ];
17
].

FIGURE 8.5 A snapshot of our mapping rules.

@prefix hso: <http://lipi.go.id/herbarium/>

hso:2021 03 17 11 52 560001.jpg a hso:Interaction;
hso:hasRegion hso:2021 03 17 11 52 560001.jpg-7739588

hso:2021 03 17 11 52 560001.jpg-7739588 a
hso:InteractionMark;
hso:hasRegion :00106841-cc4a-4674-8851-1a72d4ala828,

_:0c688abl-b924-4301-b0ed-264e73d314ab

~:00106841-cc4a-4674-8851-1a72d4ala828 a hso:Region;
hso:height "362"""xsd:int;

hso:width "410""**xsd:int;

hso:x "3606"""xsd:int;

hso:y "4373"*"xsd:int.
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@prefix hso: <http://lipi.go.id/herbarium/>

hso:2021 03 17 11 52 560001.jpg a hso:Interaction;
hso:hasRegion hso:2021 03 17 11 52 560001.3pg-7739588

hso:2021 03 17 11 52 560001.jpg-7739588 a hso:InteractionMark;
hso:hasRegion :00106841-cc4a-4674-8851-1a72d4ala828,
_:0c688abl-b924-4301-b0ed-264e73d314a5

:00106841-cc4a-4674-8851-1a72d4ala828 a hso:Region;
hso:height "362"""xsd:int;

hso:width "410"""xsd:int;

hso:x "3606"""xsd:int;

hso:y "4373"""xsd:int

:0c688abl-b924-4301-b0ed-264e73d314a5 a hso:Region;
hso:height "197"""xsd:int;

hso:width "330"""xsd:int;

hso:x "1151"""xsd:int;

hso:y "3260"""xsd:int

FIGURE 8.6 A snapshot of our annotation.

TABLE 8.3

Produced Annotation

No. URL # Triples
1 http://lipi.go.id/herbarium/Interaction 246
2 http://lipi.go.id/herbarium/InteractionMark 246
3 http://lipi.go.id/herbarium/Region 3,396
4 http://lipi.go.id/herbarium/hasRegion 3,642
5 http://lipi.go.id/herbarium/x 3,382
6 http://lipi.go.id/herbarium/y 3,382
7 http://lipi.go.id/herbarium/width 3,382
8 http://lipi.go.id/herbarium/height 3,382

_:0c688abl-b924-4301-b0ed-264e73d314a5 a hso:Region;
hso:height “197”*"xsd:int;

hso:width “330”"*xsd:int;

hso:x “1151”*"xsd:int;

hso:y “3260”""xsd:int.

8.4.4 DiscussioN

We have introduced a solution to annotate images of herbarium specimens
semantically. The annotation can be used as data training for herbivory classifi-
cation tasks. Unfortunately, most of the existing tools perform the data labeling
process individually and have its own format, which is different from the others.
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As the consequence, finding a common technique for sharing annotations from
one tool to another is difficult. In this paper, we demonstrated how our strat-
egy may solve the annotation discrepancy and become the bridge for multiple
tools. Furthermore, the relationship between objects inside annotated specimens
is taken into account by our system. As a result, the generated annotation can
recognize the objects in the specimens as well as their relationships.

Our schema represented the processes (i.e., the interaction between organ-
isms) as entities. In this case, objects are integrated with the processes, where a
process consumes inputs (i.e., parts of a plant) and produced output (i.e., interac-
tion marks such as damages on leaves). This approach is similar to other model-
ing approaches in multiple domains. For example, the General Formal Ontology
[45] in biological and biomedical areas, the OntoDM [46], and the Data Mining
Optimization Ontology (DMOP) [47] for data mining processes. A biological
interaction was viewed as a process, with actors (such as herbivory) performing
actions (such as consuming the part of plant) and cause something (i.e., damages
on parts of the plant). It is also important to mention that a set of processes is
linked to spatial and temporal data. Each specimen contains the location where
the specimen was collected for the spatial information. Objects within specimen
images also include the region information where they are found. For the tem-
poral information, each specimen also contains the time when it was collected.
Furthermore, performed acts should be described in terms of when they occurred
as points in time. Interactions should be distinguishable based on their places and
time references. Moreover, as our annotation focused on multiple objects of inter-
est on images, most of them are presented as nested objects. Therefore, we believe
that preserving a unique identity for each item is essential for mapping definition.
Instead of identifying objects by their position (such as index of an array), it will
be better to have an attached identification scheme for consistency throughout
the mapping process. This object of interest identification approach would make
it easier to keep track of relationships between herbarium specimens, plant parts,
and objects of interest contained inside the parts of plant.

8.5 CONCLUSION

Herbarium specimens have become the primary data source for biodiversity
research. Multiple organizations collected specimens from various locations and
kept them in herbaria all around the globe. The attempt to digitize specimens and
share them publicly has piqued the interest of scientific communities, allowing
scientists from all around the world to analyze them. As a result, millions of digi-
tized herbarium specimens are available online. From this digital data collection,
images are the primary data, accompanied by labels on the specimens (such as
taxonomy, spatial information about where the specimens were collected, tem-
poral information about when the specimens were collected, the person who has
collected the specimen).

A herbarium specimen holds great valuable information, including spatial and
temporal information about the specimen, and other additional information that
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can be found from it. For example, plant structures (such as the shape of leaves,
and stems) are characteristics that can be extracted from images of herbarium
specimens. This type of information can be used to develop intelligent applica-
tions, such as a computer vision-based application for automatic species identi-
fication. More than that, images of the specimen could also hold the interaction
between plant and animal as indicated by the mark of damages or defense mecha-
nisms found on the specimen. The latter type of information can be used further
for advanced analytics, such as analyzing invasive species, and global warning
indicators.

When the number of digitized herbarium specimens grows exponentially,
scientists optimize the data analysis process by automating most of the steps.
Artificial intelligence techniques such as machine learning are one option to make
it happen. Machine learning techniques, especially supervised ones, require data
training to discover the patterns from the data and use them to perform data clas-
sification tasks. In this case, machine learning algorithms would use the pattern
to classify unknown data. It is widely known that a machine learning algorithm
needs a sufficient amount of data training with high quality to produce the best
model with highly accurate results. Unfortunately, this kind of data is not always
publicly available. Multiple labeling technologies were used to create the majority
of the shared data. Therefore, the challenge has shifted from data acquisition to
labeling data in cases when there is a label discrepancy.

This work proposes a method to produce high-quality digitized herbarium
specimens using semantic annotations. Annotations will be used to identify
objects of interest in images and how they are related to one another. The anno-
tation was achieved by employing an ontology to uniformly represent labels of
images in a consistent way that is aligned with the goal of any classification tasks
at hand. We started by identifying entities found in herbarium specimens before
defining relations among them. As a result, the constructed ontology can uni-
formly represent objects of interest in digitized herbarium specimens. After that,
we aligned the ontology with labels generated by multiple image labeling tools
through declarative mapping rules. As a result, annotations from digitized her-
barium specimens were obtained.

We evaluated our proposed method for an herbivory classification task, where
images were labeled with three pre-defined classes. During the mapping process,
we discovered that annotations were successfully created with only minimum
pre-processing. The main goal of the evaluation was to investigate if we could
extract data for machine learning tasks while maintaining the links between
objects in the annotation that needed to be semantically represented. Furthermore,
by using a shared ontology and declarative mapping rules, we can accommodate a
variety of categorization tasks. This work is our first attempt to encode knowledge
into machine learning workflows, which remains under-investigated to the best of
our knowledge. Moreover, this work is another endeavor to contribute to big bio-
diversity data management and foster research in this area to move forward faster.
In the future, we would like to extend our work by including numerous types of
annotation in a variety of categorization tasks across diverse domains.
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