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8.1 � INTRODUCTION

Machine learning techniques, especially supervised ones, have been widely 
used in numerous applications, including natural language processing, biologi-
cal image classification, stock market analysis, self-driving cars, and precision 
agriculture [1]. Furthermore, with the increased availability of data and computa-
tional resources, techniques in many applications have been widely accepted [2]. 
In biodiversity research, machine learning techniques have been used for multiple 
purposes, such as plant sciences, mainly on images of herbarium specimens [3]. 
Plant morphology, growth and development, the ecological interactions of plants 
with herbivores, and other related cases may now be analyzed quickly, precisely, 
and easily using machine learning. These techniques could also be used to assess 
the global change biology by processing herbarium data known to have biases 
over space, time, and phylogeny [4]. Machine learning can also help the basis of 
biological research, such as improving the accuracy of species identification [5]. 
The discovery of phenological patterns on unprecedented scales has also been 
made possible by machine learning and combined data from herbarium speci-
mens and spatiotemporal data retrieved from specimen labels [6].

When it comes to herbarium specimens, it is widely known that this is the 
most valuable data source for biodiversity research. From about 3,100 herbaria 
around the World, there are a total of 390 million botanical specimens.1 Extinct, 
uncommon, endemic, and common botanical specimens are all preserved in her-
barium collections to serve as a reference for future study. Many efforts have 
been performed to digitize the specimens and share them, so they can be used by 
researchers all over the world. An example of the portals that provide digitized 
specimen data is the Integrated Digitized Biocollections (iDigBio) Portal, which 
has a collection of approximately 131 million digitized specimens.2

Without a doubt, these data sources offer a great potential to help us learn 
more about biodiversity, and machine learning techniques are one approach 
to achieve that. Multiple works have been done in this area. For example, to 
identify leaves and other components from digitized herbarium specimens 
[7], and to discover patterns and trends of plant-herbivores interactions [8–11]. 
Further biological analysis can also be performed, for example, to determine 
the driver of shifting interactions such as phenological change, distributional 
shifts, and urbanization [10]. Another example is using machine learning to 
segment plant tissues in herbarium specimen images and removes the back-
ground pixels [12].

For supervised training of machine learning models, large training datasets are 
necessary [13]. Data variability is an essential aspect of machine learning, espe-
cially for object identification or object classification tasks. Therefore real-world 
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image variation is essential to ensure the results [14]. But on the other hand, using 
uncontrolled natural images might be seriously misleading, dangerously leading 
in the incorrect direction. Labeled data is made up of a large set of representa-
tive photos that have been labeled or highlighted with the relevant features. An 
extensive and accurate labeled dataset, the ground truth, is required for training 
the algorithm [15]. Recent advancements in machine learning approaches, such 
as deep learning techniques, can generate features automatically, which saves fea-
ture engineering costs, but in return, may require larger volumes of labeled data 
[16]. The size and quality of training datasets will affect the quality of the trained 
models [17]. Due to those requirements, it is now essential to share the raw data 
and, most importantly, the annotated/labeled data.

8.1.1 �A nnotation of Digitized Herbarium Specimen

Figure 8.1 shows two images of annotated digitized herbarium specimens. Each 
image consists of at least two types of information:

	 1.	The sheet on the right bottom side of each image depicts the specimen’s 
label, which includes information about the spatiotemporal dimension of 
the specimen, as well as when and where the specimen was collected. 
It also contains information about the person who has collected it and 
taxonomic data on the specimen.

	 2.	The images themselves depict parts of a plant such as leaves, branches, 
flowers, and fruits. The yellow rectangles alongside the annotations 
indicate where the images have been annotated. The first image has six 
annotations, while the second image has 21 annotations scattered around 
their leaves. As can be seen, the annotated areas’ size is not uniform, and 
two annotations can overlap the others.

FIGURE 8.1  Two examples of annotated digitized herbarium specimens.
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In this work, we focus on the second type of information, namely parts of the 
specimen that has been annotated. The annotations in this example will be used to 
identify objects of interest within images of herbarium specimens. Furthermore, 
using machine learning techniques, the annotations will be utilized to build a 
model for automatic object classification.

8.1.2 �M otivation

Dealing with such a vast amount of data requires a systematic approach. Machine 
learning techniques are sometimes unfamiliar to scientists who work with data. 
Having tools that assist scientists in processing data and revealing its potential 
is critical. For example, plant scientists may use an object detection application 
programming interface (API) to assist an object detection pipeline in detect-
ing morphological features of a plant specimen [18]. A workflow for generating 
high-quality image masks for segmentation tasks can also be made available to 
scientists outside of the domain to help them [12]. Another example is providing a 
tool to annotate an image with specific pre-defined labels [11].

Despite the efforts to make digitized herbarium specimens more accessible, 
there are still several issues and challenges that remain. One challenge is finding 
efficient pre-processing techniques to produce a learning system that can deal with 
data collected from various sources. This problem arises as a result of data being 
scattered over multiple areas, systems, and applications. The “meaning” of the data 
may differ from one source to another, which may significantly impact the quality 
of the machine learning outcomes [2]. The discrepancies label in the annotated 
images is one example. In order to perform correctly, machine learning requires 
a sufficient amount of data training with the proper label. There are several chal-
lenges introduced by labeling data that have motivated our work, as follows:

	 1.	Various annotation data formats. There are a number of picture annota-
tion tools available, such as LabelMe3 [19] and VGG Image Annotator 
(VIA)4 [20], each with its own data format. There are a couple of widely 
used data formats, such as the JSON-based Common Object in Context 
(COCO) data format5 and the XML-based Visual Object Classes (VOC).6

	 2.	Labels tend to be noisy. Label noise can significantly impact the perfor-
mance of deep learning models [21]. Since erroneous predictions might 
influence decision, so labeling requires domain expertise with a wide 
range of knowledge and the capacity to make precise label.

	 3.	A label is applied individually without considering the relations to 
another annotation. As an illustration, in a digital image of a herbarium 
specimen, as can be seen in Figure 8.1, we can annotate the part of the 
plants like leaves and the damage caused by herbivores on the leaves. 
Both annotations are self-contained for each case and do not consider 
the relation between them. However, the annotation for the damages 
indicates that the damages happened on the leaves. Such that we can 
infer the relations that the damages are parts of the leaves.
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The rest of the paper will be organized as follows: Section 8.2 lists and discusses 
a few related works and outlines our contribution. After that, our research meth-
odology will be explained in Section 8.3. Finally, Section 8.4 presents our results 
and discusses our findings before concluding our work and explaining a few 
future works in Section 8.5.

8.2 � RELATED WORK

In this section, we describe a few related works from various topics. Then, we 
align our work to two broad research topics: ontology and semantic annota-
tion for biodiversity research. Finally, at the end of this section, we outline our 
contributions.

8.2.1 �O ntology for Biodiversity Research

Biodiversity science, like most other fields, has been flooded with a huge amount of 
data. Biological specimens that have been collected in various herbaria across the 
world have become a valuable data source for biodiversity research. Furthermore, 
technology has also introduced a new data source, so-called born-digital [22], in 
which data is collected digitally without collecting a specimen first. Combining 
these digital data with traditional data sources like data from in situ and remote 
sensors, community data resources, biodiversity databases, and data from citizen 
science have pushed this field into Big Data Era [23]. Besides the Volume of the 
available data, this research area also deals with the Variety and Veracity of the 
data. The two latter mentioned dimensions are related to and determine the qual-
ity of the data. Data collected by multiple organizations and stored in various 
formats are two examples of how semantic technologies such as ontology, could 
play a key role in big data analytics.

Ontologies play a crucial role in improving data aggregation and integration 
across the biodiversity domain in this area. They can be used to describe physi-
cal samples, sampling processes, and biodiversity observations that involve no 
physical sampling [24]. It has been predicted that the data will become less 
centralized, but the need for cross-species queries will become more common 
[25]. That is why ontologies would help scientists to achieve that. For example, 
Plant Ontology (PO) has been widely used to describe plant anatomy and mor-
phology, as well as stages of plant development [26]. A simplified version of PO 
also can be used to drive a question answering dialog between non-expert users 
and a knowledge-base about Capsicum [27]. Another widely used ontology is 
the Darwin Core (DC), a standard for sharing data about the occurrence of life 
on earth and its associations with the environment [28]. It provides terminology 
for describing multiple types of information from an organism, such as taxo-
nomic, location, and sampling protocol. It can be used to not only record the 
occurrence of a species at a specific time and location but also to manage alien 
species [29] and as a hub to connect data across multiple biodiversity informa-
tion systems [30].
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8.2.2 � Semantic Annotation for Biodiversity Research

Data annotation provides multiple advantages. First, it allows for data enrichment 
by embedding more information. Resulting in more efficient data discovery, so 
the data can be found, accessed, integrated, and re-used. Digital images of speci-
mens from natural history collections must be bound to semantically rich data 
across museums to provide a unified user experience [31]. Semantic enrichment 
of herbarium specimen digital data would reduce the orthographic data vari-
ances, particularly for person and place names [32]. Further, data standardization 
and harmonization can be accomplished simply by using dictionary mapping to 
annotate data set columns [33]. It will improve discovery, interoperability, re-use, 
traceability, and reproducibility of the data.

Data annotation also can be used to encode knowledge into data by labeling 
objects of interest from texts, digital images, or videos as an example. The encoded 
labels can be used to enhance the data as well as serve as training material for auto-
matic data extraction and classification. For example, multiple annotations of named 
entities in historic biological texts have been used to fine-tune a machine-learned 
classifier [34]. In that case, an annotation framework was developed based on a mod-
ified version of the Model-Annotate-Model-Annotate (MAMA) cycle. As a result, 
links between the exploration of biodiversity literature and document retrieval can 
be provided. The utilization of optical character recognition (OCR) would automate 
the acquisition process of herbarium specimen metadata [35]. Combined with other 
specimen image analysis services, the approach would provide a high degree of 
automation for information extraction from herbarium specimens. An approach for 
semi-automated extraction of named entities from natural history archival collec-
tions also can be developed by using the semantic annotation of the collections [36]. 
In that case, digital images of the field book will be annotated by drawing a bound-
ing box over the image and attaching additional information. A tool for marine 
image annotation would increase efficiency and effectiveness in the manual anno-
tation process [37]. In another case, images can be annotated by selecting features 
of interest (e.g., flowers, birds, or patterns) as tokens with bounding boxes from the 
images [38]. Finally, tokens can be associated with properties or traits (e.g., colors, 
behaviors) derived from pre-defined domain ontologies.

8.2.3 �C ontributions

In line with the two research areas discussed above, we outline our contributions 
as follows:

	 1.	 In contrast with existing works that primarily introduced new annota-
tion tools, our solution would utilize existing annotation tools. We focus 
more on the annotation format produced by each annotation tool and 
align them to a unified schema to achieve a common annotation. To the 
best of our knowledge, none of the existing works have looked into this 
situation.
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	 2.	Similar to other existing approaches, our solution would also allow anno-
tating digitized images based on the entities and properties of pre-defined 
ontology. But, instead of treating the annotations as independent entities, 
our solution would also consider the relationship between them. These 
inferred relations can be used to fine-tune the performed classification 
tasks.

8.3 � METHOD

This section describes our research methodology, followed by our method to 
develop a uniform schema, and how to align annotations produced by various 
tools to the schema through mapping rules.

8.3.1 �M ethodology

Figure 8.2 shows our research methodology. It consists of three main activities 
as follows:

	 1.	Schema development activity. It is a method for identifying and formal-
izing information taken from digitized herbarium specimens, as well as 
its structure. Interviewing domain experts, in this case botanists, is how 
the activity is carried out. As a result, a schema will be created that cov-
ers plant characteristics.

	 2.	Labeling activity. It is a process of marking all regions of interest and 
their relevant labels for each herbarium specimen image. Domain 
experts can perform this task using any existing tools they usually use. 
This activity produces two types of information, are regions of interest 
(typically by using bounding boxes) and their relevant labels.

	 3.	Mapping activity. It is a process to align marked objects of interest with 
a pre-defined schema. As a result, at the end of the process, a unified 
annotation will be obtained.

Digitized Herbarium
Specimen

Domain
Experts

Labeling

Label

Schema
Developing

Schema

Mapping
Annotation

Mapping
Rules

Region of
Interest

FIGURE 8.2  Research methodology.
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It is important to note that the produced labels will be highly task-dependent. 
It will depend on the objective of the classification tasks at hand. For example, 
when the classification task considers only damages caused by herbivory, there 
is no need to label the other cause of damages. However, if we also consider the 
spatiality of the damages, it will be necessary to label parts of the plant, such as 
leaves where damages are found.

8.3.2 � Schema Development

An annotation schema will be created to represent annotations uniformly across 
numerous annotation tools and to enrich the annotation by defining relationships 
between entities within an annotated object. The majority of the concepts are 
derived from Plant Ontology (PO), a widely used ontology for describing plant 
anatomy, morphology, and developmental stages [26].

8.3.2.1 � Entities
As the representation of objects or things in the domain of interest, we identify 
several types of entities that can be extracted from digitized herbarium specimens.

8.3.2.1.1 � Plant Morphological Entities
Plant morphology refers to the physical appearance of a plant. Physical character-
istics of a plant that can be found in a herbarium specimen include leaves, fruits, 
flowers, and so on. Leaves, in particular, are an essential feature for species delimi-
tation and recognition [18]. Further, trait information about area, perimeter, shapes, 
colors, textures of leaves can provide important insight into plant species’ ecology 
and evolutionary history [7]. The morphology of plants, such as leaves, flowers, 
fruits, bark, and branches is ideal for image-based plant species identification [5]. 
The challenges lie in the diversity of similar features. For example, leaf morpholo-
gies of plants native to specific regions will be different from the plant from other 
regions [11]. Therefore, it is necessary to have a standardized way to share informa-
tion about these features to ensure they can be consumed and appropriately re-used.

The PO adopt a Gene Ontology (GO) data model to cover flowering plants in 
general. The PO is ideal for sharing knowledge among scientists who know the 
issue but is not always understandable by non-expert users [27]. It has been widely 
used as a common reference ontology for plant structures and development stages. 
In the same vein, we created a modest but powerful ontology that met our require-
ments. We started with a simple ontology to improve Capsicum species literacy.7 
The ontology is a small subset of the PO.

8.3.2.1.2 � Plant-Animal Interactions Entities
Plant-animal interactions can be seen as a process that has immediate and delayed 
effects on both entities that interact [39]. An interaction entails an enormous diver-
sity of outcomes depending on interaction type (predation, symbiosis, parasitism, 
mutualism, commensalism) [40]. Herbarium specimens contain additional infor-
mation, like nutrients, defense compounds, herbivore damage, disease lesions, and 
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sign of physiological processes that capture ecological and evolutionary responses 
[4]. In particular, herbivory damage interactions data can be utilized to uncover var-
ious global change drivers across a diversity of insect herbivore-plant associations.

Examples of plant-animal interactions, in this case the damage caused by her-
bivory, are shown in Figure 8.1. As we can see, several damages on leaves can 
be identified visually. Based on these interactions, further analysis can be per-
formed, for example, to identify different types of interactions and can be asso-
ciated with different types of animals that contribute to the interactions [11].

8.3.2.2 � Entity Relationships
Besides super-class and sub-class relationships, we would like to outline several 
critical other types of relationships.

Table 8.1 shows three essential relationships that can be used to represent how 
entities within digitized herbarium specimens are related to each other. While 
the first relation relates to morphological relationships, the last two relationships 
relate to spatial proximity between entities.

8.3.3 �M apping Rules

Declarative mapping, and more precisely mapping rules, establish relationships 
between various schemas of multiple data sources and a common schema. The 
relationships align data elements from each source to a single common target, 
as well as the appropriate structural and data type transformations. Declarative 
mappings are available in a variety of formats, including the widely used and 
language-independent tables and spreadsheets [41] to highly structured formats 
such as R2RML8 and RML [42]. RML9 defines mapping rules from heteroge-
neous data structures and serializations other than relational databases, for exam-
ple, CSV, XML JSON, to the RDF dataset.

8.4 � RESULT

In this section, we list and discuss our results. First, we describe the character-
istics of our dataset, followed by the description of our schema. After that, the 
mapping procedure will be explained before discussing our findings.

TABLE 8.1
Entity Relationship

No. Relation Meaning

1 part_of This relation represents if an entity is part of another entity. It is a core 
relation to describe a part and its whole.

2 adjacent_to This relation represents if an entity is in contact with or in spatial 
proximity to another entity.

3 located_in This relation represents if the location of an entity is within the location 
of another entity.
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8.4.1 �D ataset

To construct our dataset, we digitized the herbarium collection from the Herbarium 
of Bogoriense.10 The digitization began with the identification of a collection of 
specimens suspected to interact with insects, represented by various damages on 
the specimen. The dataset can be explained as follow:

	 1.	We digitized herbarium specimens from Excoecaria agallocha, which 
belongs to the genus Excoecaria of Euphorbiaceae. In total, we obtained 
244 specimen sheets.

	 2.	From each digitized sheet, we asked experts to annotate them with three 
types of damages:

	 a.	 pre-processing (damages that occur before the specimen were 
collected)

	 b.	 during-process (damages that occur during specimen collection and 
or during drying and mounting on a sheet)

	 c.	 insects (damages that occur due to insects during preservation)
	 3.	The VGG Image Annotator was used to conduct the annotation. An 

annotator would draw a bounding box to indicate damage and choose 
one possible source of the damage.

	 4.	 It is important to note that the number of damages on each sheet can be 
multiple and of different types, overlapping damages in a sheet are also 
possible.

Table 8.2 shows the size of our multi-labeled dataset. Each sheet of herbarium 
specimen in our dataset can have several labels. In most cases, all labels occur. 
Our dataset has around three thousand labels in total, which are divided into 
three categories. The distribution of label count for each type of label is shown 
in Figure 8.3. The first three figures depict the distribution of labels for every 
type of damage, pre-processing, during processing, and insects, respectively. 
As we can see, most of the damages are up to six, mainly for every type of 
damage. Finally, the last image depicts the distribution of damages, and as 
we can see, the average damages are 6, 4, and 3 for every type of damage, 
respectively.

TABLE 8.2
Collection of Datasets

No. Types of Labels # Object of Interest 

1 Damages during pre-processing 1,420

2 Damages during process 1,069

3 Damages caused by insects 882

Total 3,371
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8.4.2 � Schema

We developed our schema by re-using terms from multiple existing ontologies as 
follows:

	 1.	The plant structures, we adopted the schema from the OntoCapsicum,11 
an ontology to improve species literacy of Capsicum, which covers mor-
phological characteristics of seeded plants in general [27].

	 2.	The animals, since our research object is plants, we focused on herbi-
vores, animals whose primary food source is plant-based. Herbivores 
can be classified further into frugivores (fruit eaters), granivores (seed 
eaters), nectivores (nectar feeders), and folivores (leaf eaters).

	 3.	The interaction refers to the interaction between herbivores and plants 
which can be characterized by defense mechanism mark or damage on 
the specimens.

	 4.	The interaction mark, the specimen’s spatial dimension can be viewed as 
a mark of interaction (based on the image perspective).

	 5.	The temporal dimension of the interaction represents the time when an 
interaction took place.

Figure 8.4 depicts our schema for annotating herbarium specimens, modeled 
using the Protégé Editor [43]. The core object in a herbarium specimen is the 
“Plant, “ which will be described by the plant’s main morphological traits, 
such as “Flower, “ “Leaf, “ “Fruit, “ and “Stem”. The animal that interacts 
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with the plant is then represented, in this case is a “Herbivore” entity, which 
can be further classified as a “Nectivore, “ a “Frugivore, “ a “Folivore, “ 
and a “Granivore”. Further, an entity “Interaction” will represent the inter-
action between a herbivore and a plant as reflected in a herbarium speci-
men. Next, “InteractionMark” can be used to identify the interaction on the 
specimen, which can be “Damages” or “DefenceMechanism”. Multiple types 
of damages can be identified, such as “MarginFeeding”, “InteriorFeeding”, 
“Skeletonization”, “BlotchMine” and so on. To reflect its spatial location inside 
the specimen image, the marks will be represented as “Region.”. An interac-
tion can also be annotated further with “Temporal” to represent when the inter-
action happened. The schema currently has 44 entities, 6 object attributes, and 
14 data properties in its initial version.

8.4.3 �D ata Mapping

As mentioned earlier in this section, we would like to annotate the damages found 
on herbarium specimens and classify the damages based on the time when the dam-
age occurred. Three classes were defined: prior-processing, during-processing, 
and after-processing (damages caused by insects).

<#InteractionMapping> a rr:TriplesMap;
  rml:logicalSource [
  rml:source “Batch-1-Updated.json”;
  rml:referenceFormulation ql:JSONPath;
  rml:iterator “$._via_img_metadata.[*]”
];
  rr:subjectMap [
  rr:template “http://lipi.go.id/herbarium/{filename}”;
  rr:class hso:Interaction;
];

Flower

Fruit

Leaf

Stem

Region

Skeletonization

BlotchMine
InteractionMark

Interaction

owl:Thing

Animal

Herbivore

Granivore

Folivore

Frugivore

Nectivore

Plant

Temporal

SerpentineMine

MarginFeeding

Damage

StipplingMine

InteriorFeeding

FIGURE 8.4  Schema for annotating herbarium specimens.



193Semantic Annotation of Digitized Herbarium Specimens

  rr:predicateObjectMap [
  rr:predicate hso:hasRegion;
  rr:objectMap [ rr:parentTriplesMap 
<#InteractionMarkMapping>;
  rr:joinCondition [ rr:child “filename”; rr:parent 
“filename”; ];
];
].
<#InteractionMarkMapping> a rr:TriplesMap;
  rml:logicalSource [
  rml:source “Batch-1-Updated.json”;
  rml:referenceFormulation ql:JSONPath;
  rml:iterator “$._via_img_metadata.[*]”
];
  rr:subjectMap [
  rr:template “http://lipi.go.id/herbarium/
{filename}-{size}”;
  rr:class hso:InteractionMark;
];
  rr:predicateObjectMap [
  rr:predicate hso:hasRegion;
  rr:objectMap [ rr:parentTriplesMap <#RegionMapping>;
  rr:joinCondition [ rr:child “filename”; rr:parent “shape_
attributes.id”; ];
];
].

Figure 8.5 shows a snapshot of our mapping rules using RML in combination 
with the Function Ontology (FnO).12 We use JSON files generated by the VGG 
Image Annotator for the input files. We ran into a few issues when generating 
mapping for the files, mainly because the RML has limited support for nested 
data, such as nested objects in a JSON object [44]. We found it challenging to 
map objects in an array because no specific field can distinguish between mem-
bers of the array and map them to their parent object. To solve this issue, we 
pre-processed the input files by inheriting the identification field from the parent 
object into members of the array in the child object. In this way, the parent object 
can be linked to each array member. As shown in Figure 8.5, several mappings 
are defined as a collection of “TriplesMap”. A “logicalSource,” a “subjectMap,” 
and one or more “predicateObjectMap” are all defined in each definition. The 
relationships between entities were defined using “parentTriplesMap” from 
“objectMap” of the source to other related definitions.

The RMLMapper13 is used to generate the annotation based on the updated 
input files. Figure 8.6 shows a snapshot of the annotation produced by the map-
per, and Table  8.3 list the number of corresponding statements/triples. Out of 
244 annotated digital herbarium specimens, we generated 21,058 triples using 
the current mapping rules. The majority of the triples are linked to the spatial 
information of damages detected on specimen images.
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@prefix hso: <http://lipi.go.id/herbarium/> .

hso:2021_03_17_11_52_560001.jpg a hso:Interaction;
hso:hasRegion hso:2021_03_17_11_52_560001.jpg-7739588 .

hso:2021_03_17_11_52_560001.jpg-7739588 a 
hso:InteractionMark;
hso:hasRegion _:00106841-cc4a-4674-8851-1a72d4a1a828,
    _:0c688ab1-b924-4301-b0ed-264e73d314a5 .

_:00106841-cc4a-4674-8851-1a72d4a1a828 a hso:Region;
hso:height "362"^^xsd:int;
hso:width "410"^^xsd:int;
hso:x "3606"^^xsd:int;
hso:y "4373"^^xsd:int.

<#InteractionMapping> a rr:TriplesMap;
rml:logicalSource [

rml:source "Batch-1-Updated.json";
rml:referenceFormulation ql:JSONPath;
rml:iterator "$._via_img_metadata.[*]"

];
rr:subjectMap [

rr:template "http://lipi.go.id/herbarium/{filename}";
rr:class hso:Interaction;

];
rr:predicateObjectMap [

rr:predicate hso:hasRegion;
rr:objectMap [ rr:parentTriplesMap <#InteractionMarkMapping>;

rr:joinCondition [ rr:child "filename"; rr:parent 
"filename"; ];

];
].

<#InteractionMarkMapping> a rr:TriplesMap;
rml:logicalSource [

rml:source "Batch-1-Updated.json";
rml:referenceFormulation ql:JSONPath;
rml:iterator "$._via_img_metadata.[*]"

];

rr:subjectMap [
rr:template "http://lipi.go.id/herbarium/{filename}-{size}";
rr:class hso:InteractionMark;

];

rr:predicateObjectMap [
rr:predicate hso:hasRegion;
rr:objectMap [ rr:parentTriplesMap <#RegionMapping>;

rr:joinCondition [ rr:child "filename"; rr:parent 
"shape_attributes.id"; ];

];
].

FIGURE 8.5  A snapshot of our mapping rules.

http://lipi.go.id
http://lipi.go.id
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_:0c688ab1-b924-4301-b0ed-264e73d314a5 a hso:Region;
hso:height “197”^^xsd:int;
hso:width “330”^^xsd:int;
hso:x “1151”^^xsd:int;
hso:y “3260”^^xsd:int.

8.4.4 �D iscussion

We have introduced a solution to annotate images of herbarium specimens 
semantically. The annotation can be used as data training for herbivory classifi-
cation tasks. Unfortunately, most of the existing tools perform the data labeling 
process individually and have its own format, which is different from the others. 

@prefix hso: <http://lipi.go.id/herbarium/> .

hso:2021_03_17_11_52_560001.jpg a hso:Interaction;
hso:hasRegion hso:2021_03_17_11_52_560001.jpg-7739588 .

hso:2021_03_17_11_52_560001.jpg-7739588 a hso:InteractionMark;
hso:hasRegion _:00106841-cc4a-4674-8851-1a72d4a1a828,

_:0c688ab1-b924-4301-b0ed-264e73d314a5 .

_:00106841-cc4a-4674-8851-1a72d4a1a828 a hso:Region;
hso:height "362"^^xsd:int;
hso:width "410"^^xsd:int;
hso:x "3606"^^xsd:int;
hso:y "4373"^^xsd:int .

_:0c688ab1-b924-4301-b0ed-264e73d314a5 a hso:Region;
hso:height "197"^^xsd:int;
hso:width "330"^^xsd:int;
hso:x "1151"^^xsd:int;
hso:y "3260"^^xsd:int .

FIGURE 8.6  A snapshot of our annotation.

TABLE 8.3
Produced Annotation

No. URL # Triples

1 http://lipi.go.id/herbarium/Interaction 246

2 http://lipi.go.id/herbarium/InteractionMark 246

3 http://lipi.go.id/herbarium/Region 3,396

4 http://lipi.go.id/herbarium/hasRegion 3,642

5 http://lipi.go.id/herbarium/x 3,382

6 http://lipi.go.id/herbarium/y 3,382

7 http://lipi.go.id/herbarium/width 3,382

8 http://lipi.go.id/herbarium/height 3,382

http://lipi.go.id
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As the consequence, finding a common technique for sharing annotations from 
one tool to another is difficult. In this paper, we demonstrated how our strat-
egy may solve the annotation discrepancy and become the bridge for multiple 
tools. Furthermore, the relationship between objects inside annotated specimens 
is taken into account by our system. As a result, the generated annotation can 
recognize the objects in the specimens as well as their relationships.

Our schema represented the processes (i.e., the interaction between organ-
isms) as entities. In this case, objects are integrated with the processes, where a 
process consumes inputs (i.e., parts of a plant) and produced output (i.e., interac-
tion marks such as damages on leaves). This approach is similar to other model-
ing approaches in multiple domains. For example, the General Formal Ontology 
[45] in biological and biomedical areas, the OntoDM [46], and the Data Mining 
Optimization Ontology (DMOP) [47] for data mining processes. A biological 
interaction was viewed as a process, with actors (such as herbivory) performing 
actions (such as consuming the part of plant) and cause something (i.e., damages 
on parts of the plant). It is also important to mention that a set of processes is 
linked to spatial and temporal data. Each specimen contains the location where 
the specimen was collected for the spatial information. Objects within specimen 
images also include the region information where they are found. For the tem-
poral information, each specimen also contains the time when it was collected. 
Furthermore, performed acts should be described in terms of when they occurred 
as points in time. Interactions should be distinguishable based on their places and 
time references. Moreover, as our annotation focused on multiple objects of inter-
est on images, most of them are presented as nested objects. Therefore, we believe 
that preserving a unique identity for each item is essential for mapping definition. 
Instead of identifying objects by their position (such as index of an array), it will 
be better to have an attached identification scheme for consistency throughout 
the mapping process. This object of interest identification approach would make 
it easier to keep track of relationships between herbarium specimens, plant parts, 
and objects of interest contained inside the parts of plant.

8.5 � CONCLUSION

Herbarium specimens have become the primary data source for biodiversity 
research. Multiple organizations collected specimens from various locations and 
kept them in herbaria all around the globe. The attempt to digitize specimens and 
share them publicly has piqued the interest of scientific communities, allowing 
scientists from all around the world to analyze them. As a result, millions of digi-
tized herbarium specimens are available online. From this digital data collection, 
images are the primary data, accompanied by labels on the specimens (such as 
taxonomy, spatial information about where the specimens were collected, tem-
poral information about when the specimens were collected, the person who has 
collected the specimen).

A herbarium specimen holds great valuable information, including spatial and 
temporal information about the specimen, and other additional information that 
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can be found from it. For example, plant structures (such as the shape of leaves, 
and stems) are characteristics that can be extracted from images of herbarium 
specimens. This type of information can be used to develop intelligent applica-
tions, such as a computer vision-based application for automatic species identi-
fication. More than that, images of the specimen could also hold the interaction 
between plant and animal as indicated by the mark of damages or defense mecha-
nisms found on the specimen. The latter type of information can be used further 
for advanced analytics, such as analyzing invasive species, and global warning 
indicators.

When the number of digitized herbarium specimens grows exponentially, 
scientists optimize the data analysis process by automating most of the steps. 
Artificial intelligence techniques such as machine learning are one option to make 
it happen. Machine learning techniques, especially supervised ones, require data 
training to discover the patterns from the data and use them to perform data clas-
sification tasks. In this case, machine learning algorithms would use the pattern 
to classify unknown data. It is widely known that a machine learning algorithm 
needs a sufficient amount of data training with high quality to produce the best 
model with highly accurate results. Unfortunately, this kind of data is not always 
publicly available. Multiple labeling technologies were used to create the majority 
of the shared data. Therefore, the challenge has shifted from data acquisition to 
labeling data in cases when there is a label discrepancy.

This work proposes a method to produce high-quality digitized herbarium 
specimens using semantic annotations. Annotations will be used to identify 
objects of interest in images and how they are related to one another. The anno-
tation was achieved by employing an ontology to uniformly represent labels of 
images in a consistent way that is aligned with the goal of any classification tasks 
at hand. We started by identifying entities found in herbarium specimens before 
defining relations among them. As a result, the constructed ontology can uni-
formly represent objects of interest in digitized herbarium specimens. After that, 
we aligned the ontology with labels generated by multiple image labeling tools 
through declarative mapping rules. As a result, annotations from digitized her-
barium specimens were obtained.

We evaluated our proposed method for an herbivory classification task, where 
images were labeled with three pre-defined classes. During the mapping process, 
we discovered that annotations were successfully created with only minimum 
pre-processing. The main goal of the evaluation was to investigate if we could 
extract data for machine learning tasks while maintaining the links between 
objects in the annotation that needed to be semantically represented. Furthermore, 
by using a shared ontology and declarative mapping rules, we can accommodate a 
variety of categorization tasks. This work is our first attempt to encode knowledge 
into machine learning workflows, which remains under-investigated to the best of 
our knowledge. Moreover, this work is another endeavor to contribute to big bio-
diversity data management and foster research in this area to move forward faster. 
In the future, we would like to extend our work by including numerous types of 
annotation in a variety of categorization tasks across diverse domains.
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