

MASTERING
SOFTWARE Quality

Assurance
Best Practices, Tools and Techniques

for Software Developers

Murali Chemuturi

J. Ross Publishing; All Rights Reserved

Copyright © 2011 by Murali Chemuturi

ISBN 978-1-60427-032-7

Printed and bound in the U.S.A. Printed on acid-free paper
10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Chemuturi, Murali, 1950-
Mastering software quality assurance : best practices, tools and techniques for

software developers / by Murali Chemuturi.
p. cm.

Includes index.
ISBN 978-1-60427-032-7 (hardcover : alk. paper)

1. Computer software—Development. I. Title.
QA76.76.Q35C45 2010
005.1′4—dc22 2010019184

This publication contains information obtained from authentic and highly regarded
sources. Reprinted material is used with permission, and sources are indicated. Reasonable
effort has been made to publish reliable data and information, but the author and the pub-
lisher cannot assume responsibility for the validity of all materials or for the consequences
of their use.

All rights reserved. Neither this publication nor any part thereof may be reproduced,
stored in a retrieval system or transmitted in any form or by any means, electronic, me-
chanical, photocopying, recording or otherwise, without the prior written permission of the
publisher.

The copyright owner’s consent does not extend to copying for general distribution for
promotion, for creating new works, or for resale. Specific permission must be obtained from
J. Ross Publishing for such purposes.

Direct all inquiries to J. Ross Publishing, Inc., 5765 N. Andrews Way, Fort Lauderdale,
Florida 33309.

Phone: (954) 727-9333
Fax: (561) 892-0700

Web: www.jrosspub.com

J. Ross Publishing; All Rights Reserved

TABLE OF CONTENTS

Foreword ... vii
Preface .. ix
About the Author ... xiii
Acknowledgments ... xv
Web Added Value™ .. xvii

Chapter 1. Quality Assurance Basics ... 1
Connotations of the Word Quality ... 1
What Is Quality? .. 2
Specifications .. 3
Definition of Quality from the Standpoint of the Provider 4
Quality and Reliability .. 5
Evolution of the Concepts of Quality ... 8
Quality Gurus ... 11
Total Quality Management ... 16
Are We Giving Adequate Importance to Quality in Organizations? 17
Organizational Goals and Quality Goals ... 20
Is a Quality Department in Software Development Organizations
Really Needed? ... 22
The Present Scenario in Software Development Organizations 23

Chapter 2. Four Dimensions of Quality .. 25
Background ... 25
Specification Quality .. 26
Design Quality .. 27
Development (Software Construction) Quality .. 29
Conformance Quality .. 30

iiiJ. Ross Publishing; All Rights Reserved

iv Mastering Software Quality Assurance

Ensuring Quality in Specifications ... 31
Ensuring Quality in Design .. 32
Ensuring Quality in Development (Software Construction) 33
Ensuring Conformance Quality ... 33

Chapter 3. Software Product Quality .. 35
Functionality Standpoint ... 35
White Box (Glass Box) Standpoint ... 38
Presence of Defects in the Product ... 41
Program Quality .. 44
Measurement of Product Quality .. 48

Chapter 4. Organizational Environment that Fosters a Quality
Culture .. 61
Quality and Organizational Environment ... 61
Need for an Independent Quality Assurance Department 62
The Role of the Quality Assurance Department .. 64
The Position of the Quality Assurance Department in an Organization ... 66
Organization of the Quality Assurance Department 68
Organization and Staffing of the Quality Assurance Department 74
A Well-Defined and Institutionalized Software Development Process 76
Explicit System of Rewards and Recognition for Achieving Excellence
in Quality .. 80
Commitment and Involvement of Senior Management in Fostering a
Culture of Quality in the Organization .. 82
Final Words .. 83

Chapter 5. Software Verification .. 85
Verification ... 85
Walkthroughs (Peer Reviews) .. 89
Inspections .. 102
Audits .. 110
Verification Process ... 124
Implementation of Verification Activities in Projects 126

Chapter 6. Validation ... 129
Definition of Validation .. 129
Validation of Software Designs .. 132
Validating the Product Specifications .. 133
Validating the Software Product .. 133

J. Ross Publishing; All Rights Reserved

Table of Contents v

Testing Different Types of Software Products ... 135
Testing Basics ... 139
Approaches to Testing ... 143
Test Case Design .. 146
Test Environment .. 161
Testing Scenarios ... 163
Project Testing or Embedded Testing ... 163
Product Testing .. 169
Best Practices in Testing ... 178
Automation of Testing and Use of Testing Tools 183
Final Words about Software Testing ... 186

Chapter 7. Software Product Quality: Reliability 187
Software Disasters .. 187
Software Reliability .. 189
Cause of Software Failures ... 192
Prediction of Software Reliability .. 194
Software Reliability Improvement .. 195

Chapter 8. Process Quality .. 197
Process Quality Evolution ... 197
Process ... 199
Process Quality ... 200
Process Definition .. 201
Aligning the Process with a Process Model .. 205
Process Improvement .. 206
Process Stabilization .. 209
Software Development Process .. 211
Components of a Process ... 211
Process Certification .. 213

Chapter 9. New Paradigm for Software Quality .. 217
Current Certification Paradigms .. 217
The Fallacy of Certifications ... 219
Criticisms of Maturity Models ... 221
A New Paradigm for Software Quality Assurance 228
Final Words .. 233

Appendix A. Audit Process .. 235

Appendix B. Defect Resolution Methodology .. 247

J. Ross Publishing; All Rights Reserved

Appendix C. Guidelines for Error Guessing ... 257

Appendix D. Guidelines for Graphical User Interface Quality
Conformance ... 263

Appendix E. Guidelines for Stress Testing ... 273

Appendix F. Guidelines for Negative Testing ... 279

Appendix G. Measurement of Quality ... 287

Appendix H. Quality Assurance of Databases .. 305

Appendix I. Coding Guidelines .. 309

Appendix J. Sample Review Process .. 323

Appendix K. Software Quality Assurance Plan ... 337

Appendix L. Abbreviations .. 345

Index ... 347

vi Mastering Software Quality Assurance

J. Ross Publishing; All Rights Reserved

FOREWORD

As I sit surrounded by the majestic forests and
glacial lakes in the North American state of
Maine, I am reminded of how the laws of nature,
planet Earth’s natural processes, have carefully
constructed, nurtured, and sustained this stun-
ning example of natural engineering and process
implementation.

Strict compliance with this natural process,
rather than process experimentation and impro-

visation, has allowed these forests to grow and thrive unencumbered by the
special cause of variation from destructive forces. Indeed, the natural world has
suffered from attempts to circumvent this process with disastrous results, and
when left to recover does so with alarming alacrity and efficiency. There is much
to be learned from this natural process that can be applied to the software
engineering discipline.

Granted, software engineering does not have the luxury of unlimited time
and resources, and business will not wait eons for change to occur. But the
application of and compliance with a basic process architecture—which in-
cludes at its foundation software quality assurance—is the key to wringing value
from engineering process improvement.

A thoughtfully constructed architecture with software quality assurance serv-
ing the foundational role of mentor, messenger, and accelerator will lay a foun-
dation for flexibility in a process designed to serve and support a wide variety
of projects with different objectives. In this sense, we require a “set of standard
processes,” not a single standard process, that comply with our process archi-
tecture and are supported by a robust and flexible software quality assurance
organization.

viiJ. Ross Publishing; All Rights Reserved

Like a great concert violinist who spends years embracing and developing the
discipline and mechanics of his or her craft before learning his or her first
concerto and venturing onto the concert stage, software engineers cannot achieve
creative success without embracing an appropriate process architecture and
learning to master their craft by first mastering the natural laws that guide them.

Too long has software engineering been hampered by cowboy-style coding—
a behavior that appears heroic at the time, but that proves to be damaging in
so many ways in the long run. It’s high time someone wrote at length about the
role of software quality assurance and process compliance in the software en-
gineering field. Murali’s book breaks new ground and gives us a glimpse into
the promise of disciplined, productive, and efficient software engineering. It
paints a picture of a brighter future for an industry that has long been suffering
from cost and quality issues and will allow software engineers to reach new levels
of performance and creativity.

Jeff Dalton
President and CEO, Broadsword Solutions Corporation
www.broadswordsolutions.com
SCAMPI Lead Appraiser
www.askTheCMMIAppraiser.com

viii Mastering Software Quality Assurance

J. Ross Publishing; All Rights Reserved

PREFACE

Gerald M. Weinberg, author of the book The Psychology of Computer Program-
ming, is attributed with the quote “If builders built houses the way programmers
built programs, the first woodpecker to come along would destroy civilization.”
According to an anonymous quote, “Software and cathedrals are much the
same; first we build them, then we pray.” And the confidence in software de-
velopers continues to grow.

If manufacturers controlled and assured quality the way software developers
do, I think many accidents and injuries, even fatalities, would be the sad result.
Many, many improvements have been made in the way programs are written,
but even after nearly 50 years of software development history, the approach to
software quality still leaves much to be desired. While manufacturing learned
from construction and construction in turn learned from manufacturing, soft-
ware development stubbornly refuses to learn from either industry, especially in
the matter of quality assurance of deliverables.

At the beginning of my career in the 1970s, I was employed at a manufac-
turing organization that produced control instrumentation for atomic reactors.
In that organization, quality was sacrosanct and very rigorous. The result of such
high standards of quality is that in a third-world country (as it was in the 1970s,
when the reactors were built), the atomic reactors have been working without
accident or mishap for the last 40 years! I attribute that record to the importance
that was given to quality assurance. I narrate but one incident from that expe-
rience: On the last day of the fiscal year, the quality department held up a
shipment that would have added significantly to the financial results, as it found
a “tiny scratch” on the painted surface of the back side of one piece of the
equipment. Even though the scratched surface would have been facing a wall,
rectification was insisted upon, and the shipment was released late in the evening
only after the “tiny scratch” was fixed. The paint shop guys worked furiously

ixJ. Ross Publishing; All Rights Reserved

to repair that insignificant defect. The boss did not berate the quality depart-
ment for pointing out an insignificant defect, but rather educated the handlers
on the necessity of careful handling.

Contrast this with the software industry, where important software such as
an operating system is shipped with so many bugs that it needs a service pack
within three months of its release to make it function and another service pack
a year later to fix the remaining bugs. Windows 2000 had four service packs,
XP had three service packs, and a service pack for Vista has already been re-
leased. I have come across a few situations where software is delivered with
known defects to be corrected as part of warranty services or product support.

When I switched over to the software development industry in the early
1980s, my first surprise was that there was no inspection or testing of the pro-
grams developed. The programmer certified the program, and if there were any
issues with it, they were due to improper data or usage. The programmer would
make the program better, if and when necessary. Never was it said that perhaps
the program lacked quality, nor did anybody accept that inferior quality was a
possibility.

Things did change later on. Peer reviews and testing emerged as standard
procedure, followed soon after by independent verification and validation. But
even now, I do not find the rigor of software quality assurance to be anywhere
near the rigor of quality assurance that I was used to in the manufacturing
industry where I was employed in the early 1970s. Most people in the software
development industry abhor the terms “inspection” and “testing” and use veri-
fication and validation instead. Whereas inspection and testing imply detail and
have a ring of authority to them, verification and validation somehow connote
cursory actions that lack any true authority. In manufacturing, inspection is
carried out by persons specialized in inspection, and testing is carried out by
persons specialized in testing. In the software industry, however, the “indepen-
dent” in independent verification and validation means someone other than the
person who programmed the software; it does not mean a specialist.

In manufacturing, there are no agencies that certify the maturity of capabil-
ity, such as the Software Engineering Institute (SEI) of Carnegie Mellon Uni-
versity, except for the International Organization for Standardization (ISO),
which certifies for process quality. While automobiles have been manufactured
for over 100 years, an automobile manufacturing capability maturity model does
not exist! A quality department is sine qua non in the manufacturing industry
even though no certification model requires it. In the software development
industry, however, no model suggests that a quality department is necessary.

I know of many software development organizations that do not have a
quality assurance department. Most of these organizations are ISO certified and

x Mastering Software Quality Assurance

J. Ross Publishing; All Rights Reserved

rated at a Capability Maturity Model or Capability Maturity Model Integration
maturity level 3 or higher by SEI. The software development industry seems to
understand that quality assurance is nothing but testing. You can find many
advertisements seeking applications for the position of quality assurance engi-
neer—to do software testing. How this misunderstanding came about, I do not
know, but nothing could be more wrong than this misconception.

There is a lot of room for improvement in quality assurance in the software
development industry, and a comprehensive reference on quality assurance is
needed that ties together all aspects of quality assurance, not as the software
development industry does but in its true spirit. Hence this book.

Feel free to e-mail me at murali@chemuturi.com with your thoughts, ques-
tions, or criticisms. I will respond to all e-mails. I look forward to hearing your
feedback.

Murali Chemuturi

Preface xi

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

ABOUT THE AUTHOR

Murali Chemuturi is an information technology and
software development subject matter expert, hands-
on programmer, author, consultant, and trainer. In
2001, he formed Chemuturi Consultants, an infor-
mation technology consulting and software develop-
ment firm that helps software development organi-
zations achieve their quality and value objectives. The
firm provides training in several software engineer-
ing and project management areas such as software
estimation, test effort estimation, function point
analysis, and software project management, to name
a few. The firm also offers a number of products to
aid project managers and software development pro-

fessionals, such as PMPal, a software project management tool, and EstimatorPal,
FPAPal, and UCPPal, a set of software estimation tools.

Mr. Chemuturi has over 15 years of industrial experience in various engi-
neering and manufacturing management positions, as well as more than 23
years of information technology and software development experience. His most
recent position prior to forming his own firm was Vice President of Software
Development at Vistaar e-Business Pvt., Ltd.

Mr. Chemuturi’s undergraduate degrees and diplomas are in electrical and
industrial engineering and he holds an MBA and a postgraduate diploma in
computer methods and programming. He has several years of academic expe-
rience teaching a variety of computer and information technology courses such
as COBOL, Fortran, BASIC, computer architecture, and database management
systems.

xiiiJ. Ross Publishing; All Rights Reserved

In addition to being a widely published author in professional journals, Mr.
Chemuturi is a member of the Institute of Electrical and Electronics Engineers,
a senior member of the Computer Society of India, and a Fellow of the Indian
Institute of Industrial Engineering

xiv Mastering Software Quality Assurance

J. Ross Publishing; All Rights Reserved

ACKNOWLEDGMENTS

When I look back, I find that there are so many people to whom I should be
grateful. Be it because of their commissions or omissions, they made me a
stronger and a better person and both directly and indirectly helped to make
this book possible. It would be difficult to acknowledge everyone’s contributions
here, so to those whose names may not appear, I wish to thank you all just the
same. I will have failed in my duty if I did not explicitly and gratefully acknowl-
edge the following persons:

� My parents, Appa Rao and Vijaya Lakshmi, the reason for my very
existence. Especially my father, a rustic agrarian, who by personal
example taught me the virtue of hard work and how sweet the aroma
of sweat from the brow can be.

� My family, who stood by me like a rock in difficult times. Especially
my wife, Udaya Sundari, who gave me the confidence and the belief
that “I can.” And my two sons, Dr. Nagendra and Vijay, who pro-
vided me the motive to excel.

� My two uncles, Raju and Ramana, who by personal example taught
me what integrity and excellence mean.

� Drew Gierman, Publisher & Vice President of Sales at J. Ross Pub-
lishing, especially for his belief in the content of this book, for his
generous allocation of time, and for leading me by the hand through
every step of making this book a reality.

� Steve Buda, Sandy Pearlman, and the staff of J. Ross Publishing, all
of whom were involved in bringing this book to the public.

� Ms. Sandra Rychel of Montreal, Canada, who pored over every word
of this book to ensure that each is the right one. But for her editing
genius, this book would not have been as readable as it is now.

xvJ. Ross Publishing; All Rights Reserved

To all of you, I humbly bow my head in respect and salute you in acknowledg-
ment of your contribution.

Murali Chemuturi

xvi Mastering Software Quality Assurance

J. Ross Publishing; All Rights Reserved

xvii

Free value-added materials available from
the Download Resource Center at www.jrosspub.com

At J. Ross Publishing we are committed to providing today’s professional with
practical, hands-on tools that enhance the learning experience and give readers
an opportunity to apply what they have learned. That is why we offer free
ancillary materials available for download on this book and all participating
Web Added Value™ publications. These online resources may include interac-
tive versions of material that appears in the book or supplemental templates,
worksheets, models, plans, case studies, proposals, spreadsheets and assessment
tools, among other things. Whenever you see the WAV™ symbol in any of our
publications, it means bonus materials accompany the book and are available
from the Web Added Value Download Resource Center at www.jrosspub.com.

Downloads available for Mastering Software Quality Assurance: Best Practices,
Tools and Techniques for Software Developers consist of a comprehensive tool for
assistance in software testing (TestPal), a tool for increasing personal effective-
ness (PET), and templates illustrated within the text that are adaptable to your
own needs.

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

1

1
QUALITY ASSURANCE
BASICS

CHAPTER OVERVIEW

� Connotations of the word quality from the standpoint of end users,
providers of goods and services, industry associations, and govern-
ment bodies

� Existing definitions and a proposed comprehensive definition for the
term quality

� Difference between quality and reliability
� Evolution of the concepts of quality
� Brief sketches of the quality gurus
� Introduction to total quality management
� Importance given to quality in software development organizations

CONNOTATIONS OF THE WORD QUALITY

We often see the word quality used as a stand-alone term, without any adjectives
attached to it. People do not normally use the term good quality to express their
satisfaction with the products or services they use. To say that a certain product
is a quality product implies that the product is of good quality. On the other
hand, people certainly use the term bad quality to express their dissatisfaction
with the products or services they use. Therefore, the adjective good is implicitly
attached to the word quality in the minds of most people. Thus, the word quality
connotes good quality to most people, including technical professionals.

J. Ross Publishing; All Rights Reserved

2 Mastering Software Quality Assurance

Before attempting a more elaborate definition of quality, let us consider the
various connotations the word invokes, as it means different things in different
sections of society:

� For a customer or end user of a product, quality connotes defect-free
functioning, reliability, ease of use, acceptable levels of fault toler-
ance during use, and safety from injury to people or property.

� For a customer or end user of a service, quality connotes reliability
of performance, ease of obtaining service, expert service, pleasant
service, and protection from consequential damage.

� For a producer of goods, quality connotes conformance of the prod-
uct to specifications, which may be defined by a government body,
an industry association or standards body, or by the producer’s own
organization.

� For a provider of services, quality connotes meeting deadlines and de-
livery of service that conforms to customer specifications and standards
which may have been set by a government body, an industry association
or standards body, or by the provider’s own organization.

� For government bodies, quality connotes safety and protection of
consumers from fraud.

� For an industry association or standards body, quality connotes
safeguarding the industry’s reputation, protecting the industry from
fraud and lawsuits, and addressing the concerns of consumers, gov-
ernment bodies, and the industry itself.

Given the above distinctions in the meaning of quality, it is clear that the word
has multiple connotations attached to it.

WHAT IS QUALITY?

Before proceeding further, we first need to define the word quality in a manner
that addresses all the connotations noted above. The International Organization
for Standardization (ISO 9000, second edition, 2000) defines quality as the
degree to which a set of inherent characteristics fulfills requirements. Quality
can be used with such adjectives as poor, good, or excellent. Inherent, as opposed
to assigned, means existing inside something, as a permanent characteristic.

This definition contains three key terms: requirements, characteristics, and degree.
Requirements can be stated by a customer in a made-to-order scenario or by prod-

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 3

uct specifications in a commercial off-the-shelf product scenario. Characteristics
refers to the capability of the deliverable or, in other words, the robustness (fitness)
of the product. The word degree implies that quality is a continuum, beginning with
zero and moving toward, perhaps, infinity. This inference, however, is ambiguous
and leads to the wrong perception. What is the level at which quality is called
“poor” or “good” or “excellent”? More importantly, who is authorized to define
the terms “poor,” “good,” and “excellent”?

Another popular definition of quality, as defined by Joseph Moses Juran, is
fitness for use, with fitness and use being crucial to proper understanding of
quality. Unless we define these two key words, the definition of quality is in-
complete. Consumer interpretations and provider interpretations of these two
terms often are at loggerheads.

SPECIFICATIONS

Because fitness and use are crucial terms, they cannot be left open to interpretation.
Organizations often define these two terms in their specifications for a product or
service they provide. Let us look closely at the attributes of specifications:

� Specifications may be explicit or implicit. Explicit means that the
provider selects the specifications and makes them available to cus-
tomers. Implicit means that the specifications are not defined but are
understood to be necessary; examples include safety, security, and
fault tolerance requirements.

� Specifications may be defined by either the provider or an external
body, such as a government organization, an industry association, or
a standards body. They are made available to customers, and they are
adhered to by the provider.

Oftentimes, providers resort to unethical definitions of specifications and
provide services or products that can be detrimental to customers and perhaps
to the industry. This has resulted in industry organizations coming together to
form associations, such as manufacturers associations and service provider as-
sociations, which define specifications for their particular industry’s products or
services. Governments also step in and form standards bodies, which define
specifications for various products and services. Defense departments of various
countries often define specifications for the diverse range of products to be used
by their armed forces. These specifications stipulate a minimum set of standards

J. Ross Publishing; All Rights Reserved

4 Mastering Software Quality Assurance

to be adhered to by providers of products or services, so that fitness for use is
defined and ensured.

Such formally defined specifications become industry standards and are re-
leased by industry associations to the general public for a nominal fee that covers
the cost of production and distribution of these standards. Examples of bodies
that release standards on a regular basis include the American National Stan-
dards Institute, British Standards Institute, Joint Services Specifications, Deutsches
Institut für Normung, ISO, International Electrotechnical Commission, Inter-
national Telecommunications Union, National Electrical Manufacturers Asso-
ciation, and Institute of Electrical and Electronics Engineers. In recognition of
their contributions to quality and general consumer well-being, a day has been
set aside every year to celebrate such organizations: World Standards Day is
October 14.

Standards specify, at a minimum, the following:

1. Attributes of the components that make up a product, which may
include the material used and the dimensions and methods of testing
the product

2. The intended use of the product or service
3. The limitations of the product that need to be conveyed to customers
4. The process by which the components are made
5. The security and safety parameters that need to be built in

Understanding that specifications are at the heart of quality, we can now
define the term in a more cogent manner. Moreover, it is important that quality
be defined from the standpoint of the provider, as it is the provider that builds
quality into products or services, and it is at the provider’s location where
quality is ensured.

DEFINITION OF QUALITY FROM THE STANDPOINT
OF THE PROVIDER

Quality is an attribute of a product or service provided to consumers
that conforms in toto to or exceeds the best of the available specifications
for that product or service. It includes making those specifications avail-
able to the end user of the product or service.

The specifications that form the basis of the product or service pro-
vided may have been defined by a government body, an industry as-

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 5

sociation, or a standards body. Where such a definition is not available,
the provider may define the specifications.

This definition of quality mandates that the provider:

� Define specifications if they are not already defined by a higher body,
such as a government body, an industry association, or a standards
organization

� Adhere to the best of the available definition of specifications
� Ensure conformance is 100% or better—no less
� Make available to the customer the specifications to which conform-

ance is ensured

The result of a product or service that meets the above definition of quality
is that the customer is able to effectively use the product for the length of its
life or enjoy the service fully. This result further mandates that the provider is
responsible for providing any support that is required by the customer for the
enjoyment or utilization of the product or service throughout its life.

Any product or service that meets the requirements of this definition is rated
a “quality product/service,” and any product or service that does not meet the
requirements of this definition is rated “poor quality.”

QUALITY AND RELIABILITY

Quality and reliability are intertwined and are inseparable, but what does reli-
ability mean?

Reliability of a product is its capability to function at the defined level
of performance for the duration of its life.

Two phrases are critical in this definition:

1. Defined level of performance—Performance level is defined in the
specifications for the product or service. It should be 100% or more
of the specifications and no less. Continuous use is also a specifica-
tion. For example, a car may be capable of being driven at 100 miles
per hour, but how long can a car withstand being driven continuously
at that speed? Normally, performance is defined at two levels: normal
performance and peak performance .

J. Ross Publishing; All Rights Reserved

6 Mastering Software Quality Assurance

2. Duration of its life—Duration needs to be specified for normal per-
formance as well as peak performance. A product has two lives:
� First life or initial life—Initial life, before any repairs become

necessary, normally is specified as the warranty or guarantee pe-
riod. After expiration of this life, regular maintenance may be
required to maintain performance at the level specified for the
product.

� Operating life—The period of time after the warranty expires,
assuming maintenance is performed. After expiration of this life,
it may not be economical to maintain the product to operate at
the specified level of performance.

In other words, quality involves delivering the specified functionality under the
specified conditions, and reliability involves delivering the specified functional-
ity at a specified level of performance over the duration of the product life, even
with slight deviations in the specified conditions.

While initial life is specified by manufacturers as the warranty period, the
life after the warranty period usually is not specified. If it is, it is specified with
such stipulations as “subject to the condition that the product is maintained and
serviced by our own expert technicians” or something similar. If product main-
tenance is entrusted to the manufacturer or its authorized maintenance shop,
the manufacturer specifies two norms: mean time between failures and mean
time to repair.

Mean time between failures is the average period between two successive
failures, assuming that proper maintenance is performed every time and main-
tenance conforms to the manufacturer’s stipulations. It is expressed in the num-
ber of running hours for the product. Mean time to repair is the average time
it takes to restore the product to its original functionality by carrying out the
necessary repairs. It is expressed in the number of clock hours it takes to repair
the product. Reliability is gauged by these two measures.

In terms of software, an observation often made is that software has no
moving parts that cause the product to deteriorate through wear and tear. Once
a software product functions at its defined level of quality and functionality,
there should be no need for maintenance. Therefore, the term reliability should
not be applicable to software. However, this reasoning is true only if the con-
figuration on which the software product runs remains unaltered. If the hard-
ware and software configurations are unchanged, no repairs should be neces-
sary, rendering the attribute of reliability inapplicable. These days, however,

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 7

many other factors play a role in how stable the hardware and software configu-
ration remains. The following are a few common situations that can alter the
configuration of hardware and software:

1. New operating systems enter the market every three years.
2. New Web browsers or updates to current browsers are released regularly.
3. New viruses and spyware are unleashed on unsuspecting Internet

users.
4. Computers often are flooded with a host of new tools, ranging from

office suites to antivirus software to downloadable utilities.
5. Changes are introduced to tiers (middleware) in multitier architec-

ture software products.
6. Software products may make use of shared libraries that are part of

the system software supplied along with the operating system. It is
likely that these shared libraries are updated or modified.

7. Software products may make use of third-party code libraries to
perform special functions such as rules processing, database inde-
pendence, etc. These third-party code libraries may be updated or
modified.

8. Installing and uninstalling utilities on a system may result in changes
to or removal of the shared libraries used by a software product.

All of these activities change the configuration of the system on which a software
product is running, and this is where the question of software reliability comes
into play. A software product is said to be reliable if it can withstand minor
patches to the operating system and to the middleware.

As software quality professionals cannot predict what future upgrades will
be made to the system software (be it the operating system, database, browser,
or middleware), they cannot specify the reliability of software in running hours.
They also may not be able to specify the mean time between failures of a soft-
ware product in running hours, because a software product does not fail due
to use over a number of hours. It can, however, fail due to a change in the system
configuration. Such is the case with mean time to repair, because the repair is
not to restore the software to as near the original condition as possible but rather
to remove the impact of some change in the system configuration.

Nonetheless, software quality professionals recognize that the term reliability
is applicable to the domain of software. Some hints for building reliable software
are offered in this book.

J. Ross Publishing; All Rights Reserved

8 Mastering Software Quality Assurance

EVOLUTION OF THE CONCEPTS OF QUALITY

Although quality is an age-old word, its understanding at the organizational
level has evolved in recent times, especially since World War II. Initially, it was
thought that only the artisan could achieve a “quality” product state. However,
as the Industrial Revolution moved manufacturing out of artisans’ shops and
into factories, with multiple artisans working on a single product, the supervisor
became pivotal in achieving a quality product. If a part was missing or a bolt
was loose, it was the supervisor’s fault for not noticing it. As pressure on the
supervisor to ensure quality increased, actual supervision took a back seat, which
affected productivity and production.

It finally dawned on management that appointment of an independent
inspector was needed to ensure that every part was mounted properly and every
bolt was tightened. Thus came about the profession of inspection, along with
the development of a host of inspection tools, techniques, and methods. Inspec-
tion became a research area in itself. Examples of tools developed specifically for
inspection that are now standard in manufacturing milieus include “go/no-go”
gauges and inspection jigs.

Inspection, as a link in the manufacturing chain (see Figure 1.1), served well
for some time, but became inadequate as the functionality of products became
more varied. Ensuring that every part is properly mounted and that every bolt
is properly tightened was soon found to be inadequate to ensure proper func-
tioning of products. This was especially true for electrical products like motors
and machines, as such products required functionality testing in addition to
overall inspection. It was realized that inspection alone was not enough to ensure
the quality of products and that products leaving the factory should be tested
for their functionality as well.

Around the same time, subcontracting of the manufacture of parts to spe-
cialized manufacturers began to take place, starting in the auto industry. This
brought in a new issue: ensuring the quality of inputs. Thus, inward inspection
(inspection of parts received from suppliers and subcontractors) and testing also
arose. Batch and job manufacturing also began to emerge around the same time,
resulting in a new concept: quality control (see Figure 1.2). A host of new lit-

Figure 1.1. Inspection

Inspection

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 9

erature on methods of quality control came into being, including sampling
inspection, statistical quality control, control charts, and so on.

Up to this point, the emphasis in terms of quality was on ensuring the quality
of manufacturing. As competition increased among manufacturers and as or-
ganizations began to provide similar—and perhaps better—products, it was
discovered that products can fail because of design defects, even if the manu-
facturing quality was tightly controlled. One example that comes to mind is two
brands of two-wheel scooters: Vespa and Lambretta. Both were similar in terms
of horsepower and in the specification of being able to accommodate two people,
yet they were different in design. The Vespa used a shaft-based power transmis-
sion, while the Lambretta used a chain-based power transmission. Lambretta
ultimately closed down, while Vespa is still in business today. The lack of popu-
larity of the Lambretta scooter was not due to an issue of manufacturing quality.
Rather, it was an issue of design, and therefore an issue that affected the very
survival of the organization itself. The quality of a product design, which de-
pends on the specifications set for that product, is equally, if not more, crucial
to the success of the product as is the control of quality during the manufac-
turing stage.

In order to achieve better design, it became necessary for manufacturers to
establish design guidelines, drawing upon the experience and knowledge of
organizations in a particular industry, as well as feedback from the field (cus-
tomer complaints, maintenance personnel observations, and studying competi-
tors’ products). This resulted in the development of standards and guidelines to
ensure quality of design and specifications. Design reviews followed to ensure
quality in product design.

While this aspect of product design surely belonged in the arena of quality,
it was beyond the capacity of an organization’s quality control department. This
development gave rise to the concept of quality assurance (as depicted in Figure
1.3), an integral part of manufacturing that includes inspection, testing, and
standards for design.

There is a misconception in the software development industry that quality
assurance means testing. I am not sure how this misconception came about.
Testing is testing; quality assurance encompasses inspection (verification), test-

Figure 1.2. Quality control

Inspection Testing

J. Ross Publishing; All Rights Reserved

10 Mastering Software Quality Assurance

ing, and standards. In the glossary of the Capability Maturity Model Integration
(CMMI®) model document for development (version 1.2, 2006), quality assur-
ance is defined as “a planned and systematic means for assuring management
that the defined standards, practices, procedures, and methods of the process are
applied.”

One occurrence of note that had a significant impact on the evolution of the
concepts of quality was the transformation Japanese manufacturing organiza-
tions underwent. Japanese manufacturers rose from their reputation as suppliers
of cheap, poor-quality goods to become suppliers of high-quality products. It
was a phenomenal transformation, and studies conducted on Japanese manu-
facturing methods were widely publicized. Some of these methods include quality
control circles, zero defects, and right first time.

One of the Japanese techniques widely adopted by manufacturers across the
world is quality control circles, or simply quality circles, as they popularly be-
came known. A quality circle is a voluntary association of workers from the same
facility who meet to discuss quality-related issues in their facility and come up
with possible solutions to improve quality. If their discussions point out a defect,
together they come up with a solution, trying it out on a pilot basis and pre-
senting the results to management. If management is satisfied with the proposal,
it is implemented, and the members of the quality circle that came up with the
suggestion are rewarded.

It was reported that the Japanese manufacturing industry benefited greatly
from these quality circles, and these benefits were felt all over the world in the
form of improved goods from Japan, a nation now known for its high-quality
products. While the concept of quality circles was welcomed by other econo-
mies, its implementation did not produce such spectacular results elsewhere.
India in particular wholeheartedly adopted this concept and spent a consider-
able amount of resources to implement it, but did not achieve any tangible or
auditable, positive, and commensurate results.

However, what the transformation in the quality of Japanese products did
result in was the awareness that quality is not just the responsibility of the quality

Figure 1.3. Quality assurance

Standards and Guidelines

Inspection Testing

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 11

department alone; it is an organizational issue. If quality is neglected, the very
survival of the organization may be at stake. This realization led to the devel-
opment of the concept of total quality management, which requires the entire
organization be involved in achieving quality—not just in terms of deliverables,
but in every activity of the organization. The organization is seen as a culture—
a culture based on quality—that views quality as a critical ingredient in all of
its activities.

The development of technology created a new dimension to help achieve
quality: robots. Japan again took the lead and extensively deployed robots in its
factories. Since the chance of human error was removed from a significant
number of operations, the probability of defects was eliminated. Thus, the need
for inspection became marginal, although testing remained important. It simply
was not possible to inspect everything. Take, for example, a gearbox assembly.
Once assembled, the inside cannot be inspected unless the gearbox is opened,
but if it is opened, it has to be reassembled. This gave rise to the concept of
process quality, which embeds the concept of quality into the manufacturing
process itself.

QUALITY GURUS

No book on quality can be complete without noting the contributions of the
pioneers in quality: William Edwards Deming, Joseph Moses Juran, and Philip
Bayard Crosby. Very brief sketches of these gurus are given in the following
sections.

William Edwards Deming

Dr. William Edwards Deming is considered by most people to be the father of
modern philosophy on quality. Deming was a consultant to Japan in the early
1950s and helped Japanese companies attain worldwide success. The Japanese
government recognized his contribution and honored him with the Order of the
Sacred Treasure, Second Class in 1960.

In the 1970s, Deming’s philosophy was summarized by his Japanese disciples
as follows:

� When organizations concentrate on quality, quality tends to rise over
a period of time, and costs tend to fall.

� If organizations focused on costs, costs would rise and quality would
decline over a period of time.

J. Ross Publishing; All Rights Reserved

12 Mastering Software Quality Assurance

In short, quality improves productivity. This philosophy was proven by Japanese
companies, and they are among the world’s best today.

In 1981, after it incurred a loss of $3 billion, Ford Motor Company recruited
Deming as a consultant. By 1986, Ford became the most profitable of the Ameri-
can automobile manufacturers. The turnaround was credited to Deming. He
proposed a new way of looking at management, offering 14 key principles for
business success in his book Out of the Crisis, published in 1986. These prin-
ciples, now known as the famous “Deming’s 14 Points,” can be summarized as
follows:

1. Constancy of purpose—Create constancy of purpose toward im-
provement of product and service. The purpose is important, and
it needs to be constant over a period of time.

2. Adopt the new philosophy—Conditions change, and the philoso-
phy ought to be aligned with the current conditions.

3. Statistical inferencing—Deming advocated the use of statistical tech-
niques for quality control in place of 100% inspection of mass-
produced components.

4. Price—When making buying decisions, Deming suggested doing
away with the practice of awarding contracts on the basis of lowest
price. This rationale gave rise to the present-day two-bid (technical
bid and financial bid) system for selecting vendors.

5. Improve continuously—Find problems and solve them.
6. On-the-job training—Deming advocated that organizations pro-

vide learning opportunities on the job, as well as guided learning.
7. Supervision—Deming advocated leadership in place of supervision

in organizations.
8. Fear—Deming strongly felt that fear should not be used as a mo-

tivator in organizations. He suggested driving fear out of organiza-
tions so that everyone can work effectively.

9. Barriers—Deming scorned watertight walls between departments
in organizations. He recommended that people work together so
that they can learn from each other.

10. Methods—Deming recommended development and provision of
right methods of working to obtain results. He was against exhor-
tations and slogans. He stated that targets, without using the right
methods to achieve them, are meaningless. He clarified that most
of the causes of low quality and low productivity are beyond the
people who perform the work.

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 13

11. Eliminate quotas—Perhaps Deming recognized the unlimited po-
tential of human beings to improve productivity. He therefore ar-
gued that numerical quotas should be eliminated. He suggested man-
agement by objectives and leadership in order to improve output.

12. Pride—Deming argued that workers feel proud of their work-re-
lated achievements, and they should not be robbed of this pride by
annual performance appraisals. He suggested the removal of any
barriers that could stand between workers and their pride in their
workmanship.

13. Retraining and education—Deming strongly advocated educating
employees as a means of increasing their awareness and improving
their sense of responsibility and ownership.

14. Management—Deming suggested a structured management to drive
the above 13 points in the organization, to achieve the desired trans-
formation in the organization.

Deming short-listed the four stumbling blocks to transforming a business
into a vibrant organization caused by management:

1. Neglecting long-range planning
2. Relying on technology to solve problems
3. Seeking proven methods rather than developing new solutions
4. Hiding behind the excuse “our problems are different”

Deming advocated a four-step cycle for transformation to a successful business:

1. Plan—Plan for the action.
2. Do—Carry out and implement the plan.
3. Check—Check the results of the action and draw inferences.
4. Act—Modify the plan as necessary.

Deming’s 14 principles and plan-do-check-act cycle are used outside the
manufacturing area, in various fields, with success.

Joseph Moses Juran

Dr. Joseph Juran led an active working life for about 70 years, and his Quality
Control Handbook (first edition, 1951) is still a reference for quality professionals
today. Juran started his career at the Hawthorne Works of Western Electric and

J. Ross Publishing; All Rights Reserved

14 Mastering Software Quality Assurance

rose to the position of chief industrial engineer at its headquarters. Later, Juran
became chairman of the department of administrative engineering at New York
University, where he taught for quite a few years. He was also a consultant and
the author of several books.

Juran was an active member of the American Management Association, on
behalf of which he delivered many lectures internationally. His management
philosophies are now embedded in American and Japanese management phi-
losophy. He developed a quality trilogy, which can be summarized as follows:

1. Quality planning—Begin by identifying customers and their needs,
and then develop a product that meets those needs. Optimize the
product so as to meet the organization’s needs as well as the custom-
ers’ needs. That is, quality starts with specifications and design.

2. Quality improvement—Define a process that can produce the prod-
uct, and then optimize the process. That is, quality depends on the
process.

3. Quality control—Test and prove that the process can successfully
produce the product, and then implement the proven process in
operations.

The Union of Japanese Scientists and Engineers invited Juran to Japan to
teach the principles of quality management after World War II. His lectures
were published as a book titled Managerial Breakthrough (1964). He was awarded
the Order of the Sacred Treasure, Second Class by the emperor of Japan. Juran
also founded the Juran Institute, a consulting company through which he could
propagate his ideas and work; it is one of the leading consultancies in quality
management.

He was the first to incorporate human aspects into quality management,
which helped to shape the concept of total quality management. Joseph Juran
also is credited with the popular definition of quality: fitness for use.

Philip Bayard Crosby

Philip Crosby was a businessman and author who contributed to general man-
agement theory and quality management practices. He began his career at ITT
Corporation and then opened his own consultancy under the banner Philip
Crosby Associates, Inc., which now operates in eight countries. His books Quality
Is Free (1979) and Quality without Tears (1984) are still popular today.

Crosby defined quality as conformance to certain specifications set forth by
management and not to some vague concept of “goodness.” The specifications

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 15

are not arbitrary either; they must be set according to customer needs and wants.
Crosby promoted the popular phrase “do it right the first time,” or DIRFT, and
the concept of zero defects. He compiled four principles of quality:

1. The definition of quality is conformance to requirements, not to the
concepts of goodness or elegance.

2. The system of quality is prevention, which is preferable to quality
inspections.

3. The performance standard for quality is zero defects, not “that’s close
enough.”

4. The measurement of quality is the price of nonconformance (poor
quality), not indices. This is the precursor to the concept of the cost
of poor quality.

Crosby defined a 14-step process for management to follow in order to
achieve and improve quality:

1. Be committed to quality, and ensure that this commitment is clear
to everyone in the organization.

2. Create quality improvement teams, with representatives from all
departments.

3. Measure the process to determine the current and potential quality
issues.

4. Compute the cost of quality (or poor quality).
5. Raise quality awareness in all employees.
6. Take visible action to correct quality issues.
7. Monitor the progress of quality improvement, and establish mecha-

nisms to monitor the zero defects concept.
8. Train supervisors in quality improvement.
9. Hold “zero defects” days.

10. Encourage employees to create their own quality improvement goals
(this is perhaps the precursor to the Software Engineering Institute’s
Personal Software Process).

11. Encourage employee communication with management about ob-
stacles to quality.

12. Recognize the efforts of participants (workers) in achieving and
improving quality.

13. Create quality councils.
14. Do it all over again. Quality improvement is endless.

J. Ross Publishing; All Rights Reserved

16 Mastering Software Quality Assurance

Crosby listed five key characteristics of a successful organization:

1. People routinely do things “right the first time.”
2. Change is anticipated and is used to the organization’s advantage.
3. Growth is consistent and profitable.
4. New products and services are developed when necessary.
5. Everyone is happy to work in the organization.

Here are some of Crosby’s most popular quotes:

1. “Quality has to be caused, not controlled.”
2. “Quality is the result of a carefully constructed cultural environment.

It has to be the fabric of the organization, not part of the fabric.”
3. “Very few of the great leaders ever get through their careers without

failing, sometimes dramatically.”
4. “You have to lead people gently toward what they already know is

right.”
5. “Change should be a friend. It should happen by plan, not by accident.”
6. “In a true zero defects approach, there are no unimportant items.”

Philip Crosby believed that management has the primary responsibility for
ensuring quality in the organization.

TOTAL QUALITY MANAGEMENT

The most popular quality concept in the manufacturing industry today is total
quality management (TQM). Almost all professionally managed manufacturing
companies have implemented TQM and practice it diligently. The software
development industry, knowingly or unknowingly, leapfrogged into TQM
through process quality certifications such as ISO and CMMI®. ISO defines
TQM as “a management approach for an organization, centered on quality,
based on the participation of all its members, and aiming at long-term success
through customer satisfaction and benefits to all members of the organization
and to society.”

TQM is an organization-wide quality initiative, which means it involves the
entire organization in the management of quality. One major aim of TQM is
to reduce process variation within the organization. In Japan, TQM includes
four steps:

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 17

1. Kaizen—Focus on continuous process improvement, to make every
process in the organization visible, repeatable, and measurable.

2. Atarimae hinshitsu—Belief that products will function as they are
designed to function.

3. Kansei—Study the way a user uses the product, to facilitate improve-
ment of the product.

4. Miryoketuki hinshitsu—Belief that products should have aesthetic
value along with usability. For example, a car needs to look attractive
in addition to its capability to transport people.

TQM advocates quality standards in all aspects of organizational function-
ing, as well as the philosophy of “do it right the first time.” It also recommends
elimination of waste in all its forms. As it stands today, TQM is adopted to some
degree in organizations that have quality assurance at their heart, with inspec-
tion, testing, and standards implemented thoroughly and consistently.

Although the concept of quality was developed in manufacturing organiza-
tions, all of the concepts discussed above are relevant to software development
organizations as well.

ARE WE GIVING ADEQUATE IMPORTANCE TO
QUALITY IN ORGANIZATIONS?

The term “we” is used here to mean providers of software development services,
because although consumers can demand better quality, they have no control
over it. They can raise their voices against poor quality and perhaps abstain from
purchasing poor-quality goods and services, but it is providers that can supply
goods and services of better quality.

The quality function in an organization is akin to the audit function in the
finance department of an organization. What is the negative impact of not
having an audit function? Management may steal money from the organization.
Recognizing this possibility, governments made it mandatory that an external
auditor, one approved by a statutory body or certified by a professional asso-
ciation of public or chartered accountants, audit a company’s books of accounts
and certify that the finances are managed honestly. These external auditors are
expected to ensure integrity in an organization’s accounting process. When we
see an organization’s audited financial report, we believe that it is an honest
statement of the financial position of that organization. The external auditor is

J. Ross Publishing; All Rights Reserved

18 Mastering Software Quality Assurance

viewed as a watchdog over management, to safeguard the interests of the
organization’s owners (that is, the shareholders).

While the practice of external auditing of an organization’s books, either yearly
or quarterly, is mandatory in most countries, it is not mandatory for an organi-
zation to include the quality function as one of the departments that regularly
undergoes external quality audits. This may be surprising, but the fact of the matter
is that many organizations do not have a robust quality department. Some orga-
nizations do have a quality department, but in name only; the department does not
have any real authority to prevent defective products from reaching customers. Few
organizations have a robust quality department that is empowered to exercise
authority in stopping shipments to customers if necessary.

Why is this? Is it because shareholders’ money needs to be protected, but not
the interests of consumers, who are putting trust in a product or service, risking
money, safety, and perhaps health? Does this mean that the quality of goods or
services is unimportant? Does this imply that the adage “buyer beware” is an
adequate safeguard against poor quality?

Software now runs almost everything in this world, from financial systems
to airplanes to weapon systems and many more applications. The purpose of
some software has strategic importance, and perhaps the purpose of other soft-
ware is trivial. What is the level of importance being accorded to quality by
software development organizations?

Most governments are focused on money more than the quality aspects of
products or services being offered by organizations. But what is the purpose of
safeguarding the accounting process of an organization that is producing poor-
quality goods or services and is heading toward failure?

While mandatory declarations of financial results make it feasible to com-
pute a host of financial ratios (metrics?) that allow us to ascertain the financial
health of an organization, there is no way we can compute the quality metrics
necessary for us to assess the quality health of an organization. Most organiza-
tions never declare what their defect density is. Worse still, most organizations
do not even have the wherewithal to derive such metrics. A significant number
of organizations, especially in the software development field, do not have a
head for their quality department.

When we learn that an organization has been appraised by the Software
Engineering Institute using CMMI® or that an organization has obtained cer-
tification from ISO, we feel confident about the organization’s commitment to
quality. Surprisingly, these certifying bodies do not insist that an organization
have a quality department, let alone a competent quality department chief.
Their methods of certification do not include ensuring that internal quality

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 19

controls are in place and are doing their job diligently, as is the case in the field
of finance.

Generally speaking, the quality function is one of the most neglected organs
of an organization. Of course, there are exceptions, but for most organizations,
quality is a headache, and when there is a conflict, management can—and
almost always does—rule against the quality department. Yet management cannot
rule against an audit in the field of finance. While it only seems logical to have
a similar system in place for the quality function in any industry, including
software development, the reality is quite the reverse. Although it is possible for
the head of an organization’s internal audit department to become the head of
the finance department and for the head of finance to become the CEO, it is
a very rare occurrence for the head of the quality department to become CEO
of the organization.

Activists like Ralph Nader have forced industries to focus on quality. Ini-
tially, all guarantees and warranties were against “manufacturing defects,” but
activism and lawsuits forced industry to expand guarantees and warranties to
cover all defects, including design defects.

Unfortunately, however, such activism is absent in the area of software
development, and as a result, quality is given scant respect in this industry.
Perhaps about 10% of software development organizations may be able to declare
their auditable defect density.

Most software development organizations do not have full-fledged, full-
time, and fully staffed quality departments. This does not mean to say that
products are released without any inspection or testing. Although such activities
are carried out by the technical department, most software development com-
panies do not designate a set of their qualified professionals to tend to the task
of the quality function, as is the normal practice in the manufacturing industry.
The main function of the quality department in software development organi-
zations, where there is one, is to interface with the certifying agencies and ensure
that certification is obtained or maintained. The quality department also guides
and assists the technical departments in keeping and updating records that are
necessary to maintain certification. Championing the organizational quality comes
second to certificates.

The most popular process model in the software development industry,
CMMI® of the Software Engineering Institute of Carnegie Mellon University,
does not mandate a full-time quality department. The second most popular
issuer of certificates, ISO 9000, which mandates a quality policy and a quality
management system for the organization, also does not mandate a quality de-
partment. It is as if they are saying, “As long as you manage quality, it is okay.

J. Ross Publishing; All Rights Reserved

20 Mastering Software Quality Assurance

We are not concerned how you do it.” This goes against the very grain of the
process quality they evangelize.

Processes are important, and who champions those processes should be
considered equally important. The above models seem to take umbrage at TQM,
in which the CEO is the quality champion. True, the total productive mainte-
nance concept also nominates the CEO as the chief production manager. The
marketing concept designates the CEO as the chief marketing manager. The
CEO may be responsible for every function in the organization, but each de-
partment needs a separate head. That way, each department receives due atten-
tion besides allowing the CEO to focus equal attention on all functions.

Under the marketing concept, the marketing department has a head in
addition to the CEO. Under total productive maintenance, the organization has
a production manager and perhaps a maintenance manager as well, besides the
CEO. It is only the quality department that does not seem to need a professional
and knowledgeable department head in many organizations. The general feeling
within industry is that the quality department can be managed by the technical
head on a part-time basis. Surprising, isn’t it?

ORGANIZATIONAL GOALS AND QUALITY GOALS

Every organization has goals, mostly financial in nature. The most common
organizational goals can be classified as follows:

� Strategic (survival, growth)
� Financial (revenue, profit)
� Marketing (reach, share, customer support)
� Product (innovation, quality, reliability, delivery)
� Human resources (staff retention, growth, succession)

Of the above classes, the ones that attract the attention of senior management
are strategic and financial goals. Market forces compel senior management to
focus its attention on marketing and product goals, as these have a significant
impact on the strategic goals. The remaining goals are delegated to the next line
of management to focus on and achieve. Quality goals, which are normally part
of product goals, are further relegated downward. It is rather rare to see quality
goals distinguished as a separate set of goals. Financial charts frequently are
displayed behind the desk of the CEO (and in the lobby of the corporate

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 21

headquarters) in most organizations, but it is uncommon to find a CEO who
has quality charts anywhere in his or her office (or in the lobby, for that
matter).

Should the CEO be focusing on quality goals? Is it not the function of the
development manager to ensure the quality demanded by the customer? The
TQM philosophy states that the CEO needs to be the chief quality manager of
the organization. Without the focus and support of the CEO, the quality func-
tion becomes an appendage of the technical department.

Quality goals can either be generic for all software development organiza-
tions or specific to an organization. Quality goals can include the following:

� Achieve and surpass industry benchmarks for product quality
� Achieve and surpass industry benchmarks for product reliability
� For productivity goals of quality assurance activities specifically, reduce

time spent on inspection, testing, and other related quality assurance
activities, by process improvement and usage of better tools

� Reduce the cost of quality assurance, meaning the amount of money
expended on quality assurance activities, without any reduction in
quality levels

� Quality improvement goals specific to an organization, such as
� Reduction in defect density
� Reduction in defect injection rate
� Improvement in sigma level

The first and second goals focus on quality at the product level, while the rest
focus on quality at the organizational level. Also, quality goals dovetail into
product goals. Therefore, quality goals ought to be shared by the technical
department responsible for delivery and the quality department responsible for
monitoring organizational quality. Since the CEO is responsible for achieving
the organizational goals with respect to all functions, with the actual responsi-
bilities delegated to lower level managers, achievement of quality goals needs to
be delegated as well. But is the technical manager in charge of delivery the right
choice for delegating the achievement of quality goals? The technical manager’s
primary responsibility is to deliver—and deliver on time; quality of deliverables
is a close second. When the possibility of having to delay delivery to fix a quality
issue arises, most often delivery takes precedence. Therefore, it is necessary to
have a quality champion in the organization, whose primary responsibility is
achieving the organization’s quality goals. That entity is the quality department.

J. Ross Publishing; All Rights Reserved

22 Mastering Software Quality Assurance

IS A QUALITY DEPARTMENT IN SOFTWARE
DEVELOPMENT ORGANIZATIONS REALLY NEEDED?

I had occasion to discuss this very topic with the CEO of a medium-sized
software development organization, which is preparing itself for CMMI® ap-
praisal. I was trying to impress on him the need for a fully staffed quality
department with a full-time and knowledgeable quality head. He asked me,
“Why do we need a quality department? We are performing peer reviews and
independent tests rigorously. What additional value can a quality department
add? I do not wish to increase overhead without any benefit to the organiza-
tion.” He went on to add that instituting a quality department would directly
undermine the commitment of the technical department to quality, in that the
technical department would believe that management no longer has confidence
in its ability to build in quality. I explained in as much detail as he allowed me,
which I offer below, what a quality department can achieve.

Here is why software development organizations need a quality department
that is fully staffed with competent professionals and with a full-time, competent
quality head:

1. The quality viewpoint would be provided unhindered by delivery
objectives at any time.

2. Continuous implementation of quality assurance activities would be
ensured, without exception.

3. By continuously monitoring the quality achievements of the orga-
nization, a quality department would be able to:
a. Prevent deterioration of organizational quality before any real

damage is caused
b. Drive the organization to higher levels of quality and, thus, to-

ward excellence
4. Process performance would be measured and analyzed to determine

if it is achieving its organizational objectives, as well as to make it
feasible to effect necessary improvements to ensure that the pro-
cesses perform as designed.

5. Organizational quality achievements would be benchmarked with
peer organizations, and industry benchmarks would be applied to
the organizational processes, thus raising the bar of quality levels.

6. There would be an in-house expert on matters of quality and analy-
sis, who would continuously hone the organization’s leading edge
on quality expertise.

J. Ross Publishing; All Rights Reserved

Quality Assurance Basics 23

7. Expert support and training on how to achieve quality objectives
would be provided to technical teams.

8. A repository for quality data generated by the organization would
be made available to those who need it.

9. Defect analysis would be carried out and elimination of the top
causes of defects would be facilitated, pushing the organization toward
achieving “right first time.”

10. Continuity of the organization’s initiatives for quality improvement
would be championed.

11. A “watchdog,” “in-house customer representative,” and “eyes and
ears” of management in matters of product and deliverable quality
of the organization would exist, raising its voice when quality trends
show a downturn.

Thus, the quality department has a vital role to play in the organization. Yet a
full-fledged quality department in software development organizations is still
not common practice.

THE PRESENT SCENARIO IN SOFTWARE DEVELOPMENT
ORGANIZATIONS

The software development industry has not imported the quality philosophy,
techniques, and tools from the manufacturing industry. While independent
teams of inspectors and testers are the norm in the manufacturing industry, the
software development industry uses project team members to conduct inspec-
tions and testing. Some organizations do have an independent testing depart-
ment to conduct system testing and coordinate acceptance testing, but this is
not a norm across the industry.

Insistence on certification by outsourcing organizations such as the U.S.
Department of Defense forced software development organizations to seek cer-
tifications and maturity level ratings from authorized agencies. Now it is becom-
ing normal to see the quality department in a software development organiza-
tion coordinate the certification activities under the umbrella of process quality
rather than champion product quality.

Every software development organization’s brochure contains a statement
about its commitment to quality, but this statement is not supported by a strong
quality department within the organization. When you question such a com-
pany, it asserts that it puts less emphasis on quality conformance activities and

J. Ross Publishing; All Rights Reserved

24 Mastering Software Quality Assurance

places more emphasis on activities that build quality into the product, such as
training staff, providing tools, defining processes, conducting audits, and so on.
Such companies make it sound as if everybody in the organization is quality
conscious and that quality is everybody’s responsibility. Yet the fact remains that
quality is an unwanted child in the organization, because “everybody’s respon-
sibility” generally means that no one can be held accountable.

To sum up, the present scenario in software development organizations is
characterized by the following assertions:

1. All companies firmly state their commitment to quality. Most orga-
nizations do have one or more certifications/maturity ratings.

2. Very few organizations have a full-fledged quality department, staffed
by competent professionals and led by a knowledgeable quality pro-
fessional. Most companies either have a quality department in name
only or not at all.

3. Where there is a quality department in name only, its role is relegated
to interfacing with certifying agencies rather than championing or-
ganizational quality.

4. Quality assurance is understood as being equal to testing in most
software development organizations.

5. Most software development organizations do not have auditable
measurement data for their quality capability. Most do not even
attempt it.

6. Most software development organizations do not have objective quality
goals.

7. Most software development organizations place the quality function
under the technical department, whose primary responsibility is
delivery.

8. Most software development organizations do not have independent
inspection and testing teams; the development teams perform these
activities.

This is the quality scenario in the software development industry. Clearly,
there is a lot of room for improvement. The focus of this book is how to achieve
quality at the product level and how to monitor and improve quality at the
organizational level.

J. Ross Publishing; All Rights Reserved

25

2
FOUR DIMENSIONS
OF QUALITY

CHAPTER OVERVIEW

� Four dimensions essential to achieve quality: specifications, design,
construction, and conformance

� How to build in quality in each of the four dimensions
� How to ensure quality in each of the four dimensions

BACKGROUND

Quality has four dimensions (as depicted in Figure 2.1):

1. Specification quality
2. Design quality
3. Development (software construction) quality
4. Conformance quality

Specifications are the starting point in the journey of providing a product or
service, followed by design and then development. Conformance quality is
ensuring how well that quality is built into the deliverable at every stage. These
dimensions are discussed in detail in this chapter.

J. Ross Publishing; All Rights Reserved

26 Mastering Software Quality Assurance

SPECIFICATION QUALITY

Specification quality refers to how well the specifications are defined for the
product or service being provided. Specifications have no predecessor activity,
and all other activities succeed specifications. Thus, if the specifications are
weak, design will be weak, resulting in the development and manufacture of an
inferior or incorrect product, and the effort spent on ensuring that quality is
built in will have been wasted. Therefore, it is of paramount importance that
specifications are comprehensive and well defined and that they take into ac-
count all possible aspects that have a bearing on the quality of the product.

Specifications normally should include the following six aspects:

1. Functionality aspects—Specify what functions are to be achieved by
the product or service.

2. Capacity aspects—Specify the load the product can carry (such as
250 passengers on a plane or 100 concurrent users for a Web appli-
cation) or the number of persons to whom a service can cater.

Figure 2.1. Four dimensions of quality

Specifications
D

ev
el

o
p

m
en

t
Quality Design

C
o

n
fo

rm
an

ce

J. Ross Publishing; All Rights Reserved

Four Dimensions of Quality 27

3. Intended use aspects—Specify the need or needs the product or ser-
vice satisfies.

4. Reliability aspects—Specify how long the product can be enjoyed
before it needs maintenance, or the surety of delivering the service
and the conformance to the user requirements.

5. Safety aspects—Specify the threshold levels for ensuring safety to
persons and property from use of the product or service.

6. Security aspects—Specify any threats for which the product or ser-
vice needs to be prepared.

How do we make sure that we have comprehensive and correct specifications?
The first aspect of ensuring that specifications are drawn up right is to engage
qualified persons, such as business analysts or systems analysts, to carry out the job.
These professionals must be properly trained to carry out requirements engineer-
ing. The second aspect is to either develop in-house standards or adopt the stan-
dards of a professional association or a standards body that the analysts are to
follow. These standards set minimum levels in drawing up specifications.

Initially, specifications should be developed for a product in the usual way.
In an internal or external customer-driven project scenario, user requirements
are collected. In a commercial off-the-shelf product scenario, requirements are
gathered from a market survey exercise.

Once requirements have been collected, they need to be developed. This
involves separating the requirements into functional requirements, usability
requirements, safety and security requirements, reliability requirements, and so
on. These requirements also must be checked against organizational standards
for usability, safety, and security, and any missing requirements need to be filled
in. Then, each class of requirements is analyzed for comprehensiveness against
either the backdrop of an existing product or a past project. If neither is avail-
able, functional experts should scrutinize and fill in the missing requirements.
If access to experts is not available, then a team inside the organization is formed
to carry out a brainstorming exercise to ensure that the specifications are com-
prehensive in all the classes. In a commercial off-the-shelf product scenario, a
second market survey to tap the potential users can be conducted to improve
the specifications.

DESIGN QUALITY

Design quality refers to how well the product or service to be delivered is de-
signed. The objectives for design are to fulfill the specifications defined for the

J. Ross Publishing; All Rights Reserved

28 Mastering Software Quality Assurance

product or service being provided. Design determines the shape and strengths
of the product or service. Therefore, if the design is weak, the product or service
will fail, even if the specifications are very well defined. Although design is a
creative activity, it can be split into two phases: conceptual design and engineer-
ing. Conceptual design selects the approach to a solution from the myriad ap-
proaches available. Engineering uses the approach selected and works out the
details to realize the solution. Conceptual design is the creative part of the
process, and engineering is the details part.

Let’s use the design of a bridge as an example to illustrate the difference
between conceptual design and engineering. A bridge can be either a simply
supported bridge or a suspension bridge. A simply supported bridge has a number
of equally spaced pillars (columns) that support the bridge and the traffic that
flows on it. A suspension bridge has a pillar at each end, with cables drawn from
these two pillars to support the bridge. For this class of bridge, there are many
alternatives for the suspension material, location of the pillars, design of the
pillars, design of the suspension cables, and so on. Conceptual design decides
these aspects. Engineering design works out details such as the dimensions for
each component, selection of materials, methods of jointing, and so on.

In terms of software, conceptual design refers to software architecture, navi-
gation, number of tiers, approaches to flexibility, portability, maintainability,
and so on. Engineering design refers to database design, program specifications,
screen design, report design, etc. Software design normally contains the follow-
ing elements:

1. Functionality design
2. Software architecture
3. Navigation
4. Database design
5. Development platform
6. Deployment platform
7. User interface design
8. Report design
9. Security

10. Fault tolerance
11. Capacity
12. Reliability
13. Maintainability
14. Efficiency and concurrence
15. Coupling and cohesion

J. Ross Publishing; All Rights Reserved

Four Dimensions of Quality 29

16. Program specifications
17. Test design

How do we ensure that the right designs are selected and implemented? As
with specification quality, before software design is attempted, it is essential that
qualified people, trained in the art and science of software design, are in place.
Either software design standards are developed in-house or, alternatively, they
are adopted from a professional association or a standards body. These stan-
dards assist designers to achieve the best design possible.

It is normal to conduct a brainstorming session at the beginning of a soft-
ware design project, to select one optimum design alternative and to decide on
the overall design aspects, such as the number of tiers, technology platform,
software coupling and cohesion, etc. A brainstorming session helps designers
arrive at the best possible solution for the project at hand. A prototype of the
design may be created and evaluated, which is normal practice specifically in the
case of commercial off-the-shelf product development.

The final design is then evaluated against the organizational standards to
ensure that the design will work for the project. The design is subjected to
reviews from peers, experts, and managers as required before carrying out the
detailed design of the entire product.

DEVELOPMENT (SOFTWARE CONSTRUCTION) QUALITY

In certain fields, there is no way quality can be tested without destroying the
product itself. For example, the thickness and adherence of paint on a surface
cannot be ensured without destroying the paint itself. Various shafts used in
automobiles are forged and heat treated to make them stronger, and there is
practically no way to test them to ensure that the desired qualities are built in
without destroying the shafts. In such cases, in-process inspection is performed
to ensure that the process is adhered to diligently and a few samples are sub-
jected to destructive testing.

Fortunately, when it comes to software, nothing needs to be destroyed during
testing, and corrections can be made without any material loss, but testing takes
much longer to perform in the software development field than it does in
manufacturing. Inspection and testing take only a fraction of the time it takes
to fabricate a part or a product in manufacturing, but software testing can
sometimes take more time and effort than it takes to develop the software. It
is commonly agreed that 100% testing is not practical in the software develop-

J. Ross Publishing; All Rights Reserved

30 Mastering Software Quality Assurance

ment field. Therefore, the way in which software is developed assumes greater
importance.

Normally, the following activities form part of developing software:

1. Create the database and table structures
2. Develop dynamically linked libraries for common routines
3. Develop screens
4. Develop reports
5. Develop unit test plans
6. Develop associated process routines for all other aspects, such as

security, efficiency, fault tolerance, etc.

Good-quality construction is achieved by adhering to the coding guidelines
of the programming language being used. Normally there is a separate coding
guideline for every programming language used in an organization. It is custom-
ary to define the coding guidelines before beginning to write programs in a
language. Coding guidelines contain naming conventions, code formatting,
efficiency guidelines, and defect prevention guidelines that help developers write
reliable and defect-free code. Of course, it is very important to have qualified
people trained in software development. Construction follows software design,
and it should always conform to the design document. In this way, good quality
in construction can be achieved. Sample coding guidelines are given in Appen-
dix I.

CONFORMANCE QUALITY

Conformance quality deals with how well an organization ensures that quality
is built into a product through the above three dimensions. It is one thing to
do a quality job, but it is quite another to unearth any defects lurking in the work
product and ensure that a good-quality product is indeed built. Essentially,
conformance quality examines how well quality control is carried out in the
organization.

How do we determine how well an organization conducts the activities that
ensure that quality is indeed built into a deliverable? One way to ascertain the
efficacy of quality assurance activities is to use a set of quality metrics. These
metrics include the defect removal efficiency of each of the quality control
activities, product quality, and the defect density. Another way to ascertain the

J. Ross Publishing; All Rights Reserved

Four Dimensions of Quality 31

efficacy of quality assurance activities is to compare industry benchmark data
for quality metrics with the organizational metrics. Appendix G covers quality
metrics and measurements in greater detail.

This book discusses how to build quality into a deliverable and ensure that
quality is built into the first three dimensions mentioned (software specifica-
tions, design, and construction), as well as ensure the quality of conformance
itself through quality measurement and metrics.

ENSURING QUALITY IN SPECIFICATIONS

This is the first activity in building either a product or a service. Needless to say,
it is a creative activity. In the software industry, specifications are referred to as
user requirements. That is, end users of a software product perceive them as the
requirements for the proposed product. The following are possible scenarios for
obtaining user requirements:

1. A business analyst conducts a feasibility study, writes up a report, and
draws up the user requirements. The analyst:
a. Meets with all the end users and notes their requirements and

concerns
b. Meets with the function heads and notes their requirements and

concerns
c. Meets with management personnel and notes their requirements

and concerns
d. Consolidates the requirements and presents them to select end

users, function heads, and management personnel and receives
their feedback, if any

e. Implements the feedback and finalizes specifications
2. A ready set of user requirements is presented as part of a request for

proposal
3. A request for proposal points to a similar product and requests rep-

lication with client-specific customization

Regardless of the scenario, once the specifications are ready, quality assur-
ance steps in. The role of quality assurance in this area is to ensure that the
specifications are exhaustive and cover all areas, including functionality, capac-
ity, reliability, safety, security, intended use, etc.

J. Ross Publishing; All Rights Reserved

32 Mastering Software Quality Assurance

The tools for building quality into specifications are as follows:

1. Process documentation—Details the methodology for gathering, de-
veloping, analyzing, and finalizing the specifications

2. Standards and guidelines, formats, and templates—Specify the mini-
mum set of specifications that needs to be built in

3. Checklists—Help analysts to ensure comprehensiveness of the speci-
fications

Using these tools, analysts can develop specifications that are comprehensive
and are clear in order to carry out the next activity (which is design) and that
ensure quality is built into specifications.

The tools that can be used to carry out quality assurance to ensure quality
of specifications are expert reviews and peer reviews. The methodology for
carrying out an expert review is detailed in Chapter 5.

ENSURING QUALITY IN DESIGN

Put simply, the process of design is converting product specifications (or user
requirements) into design documents that can be used by programmers to develop
the source code required for the product being built. Normally, software design
is a two-step process:

1. Conceptual design—Referred to as high-level design, functional de-
sign specification, software requirements specification, and software
architecture design. In this step, the overall architecture of the soft-
ware product, including the number of tiers, modules, approaches to
achieving the functionality, database design, robustness, reliability,
and security, are determined and documented. This document is used
by the designers to carry out the engineering design.

2. Engineering design—Referred to as low-level design, detailed design
specification, software design description, and software program
design. In this step, detailed specifications are drawn up for each
program unit, screen, report, table, etc., and programmers use this
document to develop source code.

The tools for building quality into design include the following:

1. Process documentation—Details the methodology for design alter-
natives to be considered, criteria for selecting the alternative for the
project, and finalizing the conceptual design.

J. Ross Publishing; All Rights Reserved

Four Dimensions of Quality 33

2. Standards and guidelines, formats, and templates—Specify the pos-
sible software architectures along with their attendant advantages and
disadvantages, the methodology for short-listing of design alterna-
tives, and so on.

3. Checklists—Help designers to ensure that design is carried out com-
prehensively and appropriately.

Using these tools, designers can develop designs that are comprehensive, are
clear in order to carry out the next activity (which is software construction), and
ensure that quality is built into designs.

The tools that are available for ensuring quality of design are expert reviews,
peer reviews of each design specification, and managerial reviews of the overall
design. The methodology for conducting reviews is detailed in Chapter 5.

ENSURING QUALITY IN DEVELOPMENT
(SOFTWARE CONSTRUCTION)

Development is the act of building the software product in conformance with
the design. In this stage, the source code is developed and is linked with the pre-
existing code libraries, to complete the code required for the product. This code
is converted into executable code that can run on the hardware selected. This
is also the stage in which the database is designed and built, so that data can
be loaded and used by the software.

How is quality built into a product during the development stage? It is built
in by adhering to the organizational standards for code quality as well as the
coding guidelines for the development language being used. Uncontrolled changes
can wreak havoc with code quality. Therefore, change management and con-
figuration management assume importance for ensuring code quality.

There are two techniques to ensure that quality is built into a product:
reviews (walkthroughs) and testing. These are detailed in Chapters 5 and 6.

ENSURING CONFORMANCE QUALITY

Ensuring that conformance quality is at desirable levels in the organization is
achieved through quality measurements and metrics. Defect removal efficiency
of verification and validation activities, defect injection rate, and defect density
are all used for this purpose. In addition, projects are benchmarked at the
organizational level and trend analysis is performed. These methods are detailed

J. Ross Publishing; All Rights Reserved

34 Mastering Software Quality Assurance

in Appendix G. Audits also are conducted to ensure that projects conform to
various applicable standards for building quality into all activities, including
specifications and design. In addition, organizational data is benchmarked against
industry benchmarks, and corrective or preventive actions are taken to ensure
that organizational conformance is indeed on a par with the industry.

Conformance quality is built in through process definition and continuous
improvement for all software development activities as well as quality assurance.
Conformance quality is ensured through metrics and measurement.

Table 2.1 summarizes the techniques available for ensuring quality in each
of the four dimensions of quality.

Table 2.1. Conformance techniques for four dimensions of quality

Quality How to Techniques for
dimension build in quality ensuring quality

Quality of
specifications

Quality of
design

Quality of
development

Conformance
quality

Specification development pro-
cess documentation; standards
and guidelines, formats, and tem-
plates for defining specifications;
and checklists

Software design process docu-
mentation; standards and guide-
lines, formats, and templates for
software design; and checklists

Coding guidelines, configuration
management, and change man-
agement

Diligent application of all quality
assurance activities in the orga-
nization, process definition, and
improvement

Expert reviews, peer reviews,
and brainstorming

Expert reviews, peer reviews,
managerial reviews, and
brainstorming

Peer reviews and software
testing

Audits, measurement and
metrics for quality assurance
activities, and benchmarking
of organizational metrics
against industry metrics

J. Ross Publishing; All Rights Reserved

35

3
SOFTWARE
PRODUCT QUALITY

CHAPTER OVERVIEW

� How to achieve quality from the standpoint of core functionality and
ancillary functionality

� How to achieve quality in the code
� Errors, defects, and faults in software
� How to achieve software program quality
� How to measure the quality of a software product using a composite

metric

FUNCTIONALITY STANDPOINT

Software product quality has multiple attributes. In this chapter, we will exam-
ine these attributes, starting with the highest in importance. The basic and most
important attribute of a software product—or any other product, for that
matter—is that it delivers its specified functionality accurately. A product has
two types of functionality: core functionality and ancillary functionality.

Core Functionality

Core functionality refers to the main functionalities the product is designed to
fulfill, without which the product is useless. For example, the core functionality

J. Ross Publishing; All Rights Reserved

36 Mastering Software Quality Assurance

of a car is to transport people from one place to another. If a car cannot do that,
it is not useful, no matter how attractive or comfortable it may be.

In terms of a software product, consider, for example, a material manage-
ment system whose core functionality is procurement management and ware-
house management. The exhaustiveness of its core functionality determines its
class among the available products in the market that fulfill the same core
functionality. In the case of material management software, it can be a single-
user version, a multiuser version that is limited to a single location, or a Web-
based application that serves geographically disparate locations. While the core
functionality is similar in all these applications, the quality is different.

Another angle from which to look at the exhaustiveness of core functionality
of a software product is the data volume it can handle. A material management
application that is designed to handle 100,000 items in a warehouse and another
application that is designed to handle a million items have different levels of
quality.

Still another aspect of core functionality is functional flexibility. A material
management application that is designed for a specific industry, such as engi-
neering, for example, should be usable in every type of engineering industry, be
it the fabrication, machining, electrical, or electronics industry. If such is the
case, then the software has functional flexibility.

Core functionality is primarily an aspect of specifications and design.
Benchmarking a software product against other competing products and per-
forming market surveys to ascertain customer perceptions of gaps in current
products are both useful sources of information to increase the core function-
ality of a product under development. The quality of core functionality is en-
sured through expert reviews, peer reviews, positive testing, and functional testing.

Ancillary Functionality

Ancillary functionality is functionality that is supplemental to the core function-
ality. Even if ancillary functionality is absent, the product is still useful. Air-
conditioning in a car is an ancillary functionality; a car is still useful even if it
does not have air-conditioning. Again using the example of material manage-
ment software, allowing executives access to stock information, procurement
status, etc. is an ancillary functionality.

It is the ancillary functionalities that increase the value of a software product.
Ancillary functionalities are further classified into the following subcategories:

1. Safety and security functionalities—These provide safety and secu-
rity to the people using the product as well as to the product itself.

J. Ross Publishing; All Rights Reserved

Software Product Quality 37

The body of a car, for example, protects passengers from injury caused
by flying objects. The windshield protects passengers from the weather
and provides the driver clear visibility. The speedometer provides
velocity information to allow the driver to maintain an acceptable
speed. In material management software, preventing unauthorized
access and restricting modification rights based on the role of the user
are two examples of safety and security functionalities. These
functionalities are achieved through specifications and software de-
sign. The quality of these functionalities is ensured through security
testing.

2. Usability functionalities—These allow the product to be used more
comfortably or more conveniently. The automatic starter in a car was
a great improvement over cranking the engine. A steering wheel is
more convenient than using handlebars to drive a car. The fuel gauge
protects the driver from getting stranded due to unknowingly run-
ning out of gas. All these features facilitate more convenient use of
the product. In material management software, an online help func-
tion, automatic transfer of information from the materials depart-
ment to the finance department, and customizable screen colors are
all examples of usability functionalities. Another excellent example of
a usability functionality that aids users is the alert that comes up on
the screen to indicate that the caps lock key is on. Usability
functionalities are achieved through usability guidelines, design guide-
lines, and software architecture guidelines. The quality of these
functionalities is ensured through reviews and usability testing.

3. Fault tolerance functionalities—Slight misuse or unintended use
should not damage the product. A minor accident should not render
a car unusable. Similarly, software should tolerate unintended use or
misuse to a reasonable degree. Unintended use of software can occur
in a variety of ways, and software should be able to protect itself
against these misuses and maintain its integrity. Fault tolerance
functionalities are achieved through design standards, user interface
design guidelines, and data validations. The quality of these
functionalities is ensured through negative testing.

4. Feel-good functionalities—These functionalities make users feel more
comfortable when using the product. Air-conditioning and a sound
system in a car fall under this category. These functionalities are
referred to as “bells and whistles” in the software industry. Animation
and special graphics are examples of this functionality. Another is an
error message indicated by a beeping sound. Feel-good functionalities

J. Ross Publishing; All Rights Reserved

38 Mastering Software Quality Assurance

are achieved through aesthetics guidelines. The quality of these
functionalities is ensured through expert and managerial reviews.

5. Esteem functionalities—These functionalities enhance the appear-
ance of the product. In a car, the angles and contours in the shape
of the body, custom paint, a removable roof, and automatic windows
are all esteem functionalities. In a software product, jazzy screens
with animation are an esteem function. Esteem functionalities are
achieved through user interface design guidelines and brainstorm-
ing. The quality of these functionalities is ensured through positive
testing.

6. One-upmanship (competitive edge) functionalities—These
functionalities help software developers upstage their competition. A
television set in a car is a one-upmanship functionality, as is a phone
with Internet capability. In materials management, allowing vendors
to see the status of their proposals over the Internet is an example
of one-upmanship functionality. One-upmanship functionalities are
achieved through managerial guidance. The quality of these
functionalities is ensured through normal testing.

The basic attribute needed for a product to claim the quality tag is that it
must perform the functions it is designed to. If the functions are performed
correctly and the results delivered are accurate, the product has basic quality,
which is of the highest importance if the product is said to have quality at all.
Using the example of a car once more, if a car is expected to be able to transport
four people 500 miles at a stretch without stopping and it meets this expectation,
then the basic attribute to claim the quality tag is fulfilled by that car.

The quality of functionality is achieved through the dimension of specifica-
tions, discussed in Chapter 2. The quality of functionality is ensured through
positive testing of the product once it is built. Table 3.1 summarizes software
product quality from a functionality standpoint.

WHITE BOX (GLASS BOX) STANDPOINT

In order to achieve product quality, a software product is built to include the
following characteristics:

1. Maintainability—The product is developed in such a way that it is
maintainable, meaning that functionality can easily be added, re-
moved, or modified. To achieve maintainability, the code must be

J. Ross Publishing; All Rights Reserved

Software Product Quality 39

readable and understandable by programmers other than the original
author. This is made possible by the original coder defining and
adhering to the coding guidelines. The following specific precautions
make code maintainability possible:
� Use standard naming conventions so that subsequent program-

mers can differentiate between program variables, constants, table
fields, etc.

� Format the code in the standard manner so that it is easily read-
able and the beginning and end of multiline statements are clear.

� Use inline documentation statements extensively to help subse-
quent programmers understand the logic.

� Use simple constructs instead of complex constructs.
2. Portability—Portability allows a software product to be shifted from

one platform to another. To achieve this feature, standard constructs
of the programming language should be used, and machine-specific

Table 3.1. Software product quality from a functionality standpoint

Functionality How to achieve How to ensure quality

Core Software specifications and Functional testing,
functionality software design, standards reviews

and guidelines

Ancillary
functionality
Safety and Software specifications and Security testing, reviews
security software design, standards
functionalities and guidelines

Usability Usability guidelines, design Reviews and usability
functionalities guidelines, and software testing

architecture guidelines

Fault tolerance Design standards, user Negative testing
functionalities interface design guidelines,

and data validations

Feel-good Aesthetics guidelines Managerial review
functionalities

Esteem User interface design guide- Positive testing
functionalities lines and brainstorming

One-upmanship Managerial guidance Normal testing
functionalities

J. Ross Publishing; All Rights Reserved

40 Mastering Software Quality Assurance

constructs should be avoided. This means that minimal modifica-
tions are needed when the software product is ported to another
platform that supports the same programming language. This aspect
needs to be included in the language-specific coding guidelines.

3. Flexibility—Flexibility is another key feature a product must have if
it is to be called a “quality product.” Flexibility makes it feasible to
use the product even if some of the values change, or it allows the
product to be used in a slightly different environment than originally
intended. For example, if the tax rate changes, the code should not
need to be changed in order to implement the new tax rate. As another
example, if inventory management software for the manufacturing
industry can be utilized in the pharmaceutical industry without a
code change, then the software is considered to be flexible. Flexibility
is achieved by avoiding both hard coding of constants and parameter-
izing the product as much as possible. This aspect would normally be
part of the coding guidelines.

4. Efficiency—Efficiency means minimizing the consumption of system
resources and execution time. Software consumes random access
memory and central processing unit time while it is in operation.
Minimization is achieved by careful declaration of variables (avoiding
declaration of unused variables, reusing declared variables, etc.), clos-
ing files or tables when their use is finished, and not tying up the
central processing unit with slow peripherals such as printers (which
happens if printing directly from the program instead of spooling
print jobs). Efficiency is achieved by following the efficiency guide-
lines portion of the coding guidelines.

5. Modularity—Modularity refers to building the software product using
stand-alone or near stand-alone modules in such a way that function-
ality is not duplicated, so that when a module is changed, the change
does not impact other modules of the software. Modularity is achieved
by following software architecture guidelines and software design
guidelines.

6. Reusability—Reusability refers to development of source code in such
a way that it can be used again and again in other products. This is
achieved by developing code as classes or as independent components
to the extent possible. Reusability is achieved by following reusability
coding guidelines.

7. Readability—Developed code ought to be readable, and readability
is the first requisite for maintainability. It is achieved by proper for-
matting of the code, allowing recognition of the beginning and end

J. Ross Publishing; All Rights Reserved

Software Product Quality 41

of composite multiline statements. Readability is achieved by follow-
ing the formatting guidelines portion of the coding guidelines.

8. Testability—A software product is testable when every one of its
units can be tested independently. Code should not be written in such
a way that a set of preceding software units must be run in order to
test a software unit. Each software unit on its own ought to be testable
with its test data. Testability makes it easier to fix defects during
development, because testing and fixing defects one unit at a time is
simpler than testing a set of units and trying to locate the origin of
a defect from among all the units. Testability is achieved by following
software design guidelines.

Table 3.2 summarizes product quality features from a white box standpoint.

PRESENCE OF DEFECTS IN THE PRODUCT

It is generally accepted across industries—including the software industry—that
some defects do remain in products even after extensive quality assurance ac-
tivities have been performed. Even so, every organization strives to eliminate all
defects, which quality assurance activities are designed to accomplish. Residual
defects in a product often are the result of gaps in specifications, product design,
or development or due to inadequate testing.

Before proceeding, the following terms need to be understood properly within
the context of software development:

Table 3.2. Summary of product quality features from a white box
standpoint

Feature How to achieve the feature

Maintainability Coding guidelines

Portability Standard constructs and coding guidelines

Flexibility Coding guidelines and avoid hard coding and parameterizing

Efficiency Efficiency guidelines

Modularity Software architecture guidelines and software design guidelines

Reusability Reusability coding guidelines

Readability Formatting guidelines

Testability Software design guidelines

J. Ross Publishing; All Rights Reserved

42 Mastering Software Quality Assurance

� Error or bug—Both words mean the same thing. “Bug” is a collo-
quial term used by software developers, and the process of removing
errors is termed “debugging.” An error is an incorrect step in a
program, an improper data definition (its type and size), or an in-
correct result produced by a step in a program. An error is intro-
duced into a product during the construction stage of software
development and has escaped the net of quality assurance activities
performed on the product.

� Defect—A defect is a pre-existing condition in a finished product.
It can be due to an error or the operating environment in which the
software is being used. A defect can originate in any of the three
stages (specifications, design, or development) and can escape qual-
ity assurance activities.

� Fault—A fault occurs when the operation of the software encounters
a defect. Errors and defects lurk in software until the portion (or
function) where the error or defect resides is accessed by a user. A
fault may result in failure if fault tolerance is not built into the
system.

� Fault tolerance—Fault tolerance is the set of mechanisms built into
a product that provide a corrective action or an alternative action so
that failure does not result. In software products, fault tolerance
refers to the provision of an alternative course of action that facili-
tates continued usage of the other functionalities of the software that
are not defective.

� Failure—Failure is the result of a product encountering a fault when
in operation where a fault tolerance feature is not present. Failure
prevents the smooth changeover to another functionality. It stops
operation of the product, and the only way to resume is to restart
the operation from the beginning. Failure is repeated every time the
same set of conditions recurs until the fault causing the error is
eliminated from the product.

As stated earlier, it is not feasible to build a product that is 100% defect-free.
Thus, the question is: Which defects are permissible and which are not? To help
answer this question, defects can be divided into three classes:

1. Critical defects—Critical defects cause failures. They remain in the
product until corrective action is taken to eliminate them and the
product is updated. These defects must be fixed immediately.

J. Ross Publishing; All Rights Reserved

Software Product Quality 43

2. Major defects—Major defects are fault conditions for which a fault
tolerance feature is built into the product. While these defects do not
interfere with the use of other functionalities, they remain until they
are resolved. However, major defects are not showstoppers; they do
not need to be fixed immediately, but they should be corrected at the
earliest possible time.

3. Minor defects—Minor defects are mere nuisances. They do not cause
failures, and no alternative action is necessary. Functionality can be
used without any interruption, but they are defects just the same.
Examples of minor defects include:
� Spelling error or wrong spelling on a screen (A spelling error is

incorrect in any country, but a wrong spelling is incorrect only in
some countries. For example, “color” is incorrect in countries that
use British spelling, but it is correct in countries that use U.S.
spelling.)

� Misalignment of data on a report
� Text not fully visible in a text box or a combo box
� Need to scroll a screen both vertically and horizontally
� Poor color contrast on a screen

A “quality product” can have no critical defects. Such defects give users a
highly negative impression of the product. The consequence of a critical defect
is that end users are not able to use the functionality until the defect is fixed,
which holds up the customers’ operations. Therefore, critical defects are strictly
forbidden if a product is to be tagged a “quality product.” Critical defects can
be uncovered through software reviews, negative testing, and stress testing, in
addition to the usual types of testing to which a product is subjected.

A minor defect makes a product a laughingstock. It is visible for everyone
to see, point out, and make fun of. A minor defect also is the club with which
a product developer’s quality tag can be beaten. The presence of a minor defect
indicates the laxity with which the quality assurance activities are carried out in
the organization. Minor defects are easy to trap and eliminate, and it is best that
software developers take the time to eliminate them if they want to claim the
quality tag for their product. Minor defects can be uncovered using a careful
system of software verification and checklists during reviews.

A major defect provides an alternative course of action which camouflages
the defect from the user’s view. Furthermore, the user understands that a spe-
cific set of circumstances produces the fault. Since failure does not result from
the defect, the user can continue with the operation and usually is willing to wait

J. Ross Publishing; All Rights Reserved

44 Mastering Software Quality Assurance

for the defect to be fixed. Thus, a major defect is harmless insofar as claims to
a product’s quality tag. Major defects lurk inside a product, and it is very dif-
ficult to uncover and eliminate all of them. They surface only under a specific
set of operating conditions. It is not practical to produce every possible com-
bination of operating conditions during software testing. That is why major
defects continue to lurk inside products.

Thus, software developers can confidently claim that a product is defect-free
as long as there are no critical or minor defects present in the product. The
presence of a few major defects does not affect the status of the quality tag. All
the same, though, a product of true quality should not contain any defects, as
all defects will eventually be discovered by users. One or two defects may not
perturb a user, but too many will certainly cause users to question the product’s
quality tag.

PROGRAM QUALITY

A program is the smallest unit of software. During recent changes in software
development, programs underwent a metamorphosis. Programs from the 1970s
look vastly different than those of today. Today’s programs are now referred to
as routines, methods, classes, objects, components, agents, and macros, among
other names. People may be sensitive about what a program is called, but the
fact remains that all these names are ways of referring to software programs.

Building a quality product begins with the smallest unit of a software prod-
uct, and that is a program. The attributes of a good program are the same as
those of a quality software product (maintainability, flexibility, portability, etc.).
These attributes can be built into the program using general coding guidelines
for all programming and coding guidelines for each programming language
used in an organization. Appendix I provides general coding guidelines as a
reference. In addition to the information found there, the following suggestions
also are helpful in developing good software programs.

As far as possible, do not combine multiple functionalities into one program.
Keep one function for one program. Sometimes that one function can result in
a longer program, but multiple functionalities should not be combined just
because a program is very short. This makes software maintenance easier.

Keep programs short in length. In the days of third-generation-language
programming, structured programming was the norm, with one main calling
routine and multiple called subroutines. Now, however, with event orientation
in program execution, some amount of structured programming is built into the

J. Ross Publishing; All Rights Reserved

Software Product Quality 45

programming language itself. Therefore, it makes more sense to keep each event
response program short. What is a short program? There is no universally de-
fined optimum length for a short program, but the industry rule of thumb is
that 50 to 100 lines is a manageable program. Extreme conditions might call for
longer programs, but as much as possible, keep each routine to a maximum of
100 lines of code.

Make extensive use of callable subroutines (subprograms) instead of writing
longer programs.

Make all programs and subroutines general purpose by passing parameters
to them. This also facilitates reuse of the code in other projects.

Always try to make reuse of proven code wherever possible instead of writing
fresh code from scratch. Proven code has been tested to confirm that all quality
aspects have been built in.

Build as many dynamically linked libraries as possible instead of building the
functionality into programs. Dynamically linked libraries enter random access
memory (RAM) on an as-needed basis. This saves RAM and avoids large amounts
of virtual memory being used.

Avoid hard coding (defining constants inside the program itself) completely
except in the case of flags and counters for finite loops. If there are many
constants, use a parameter file that is read at the start of the program or as
needed, and import the values into the program during execution.

Use only flat files for storing the parameters of the program. If the parameter
data is in a table, some values might need to be hard coded to connect to the
database and open the table.

Always keep only one entry point and one exit point for the program. Multiple
exits in particular can leave some tables, files, or connections open, which can
cause problems.

Do not open files, tables, or database connections at the beginning of the
program; open them just before use. Remember that opening these occupies a
minimum of one block each of RAM (the size of a block changes from system
to system, but the normal size is one kilobyte). In these days of multiuser and
multitasking operating systems, RAM gets filled very fast and the system starts
to use virtual memory from disk. Using large amounts of virtual memory can
result in thrashing (exchanging too many pages from RAM to disk and vice
versa), which causes the computer to slow down.

When opening files or tables or connecting to databases, ensure they are
closed again as soon as the function of reading or updating is completed. Do
not leave these files and database connections to be closed automatically by the
act of closing the programs.

J. Ross Publishing; All Rights Reserved

46 Mastering Software Quality Assurance

When declaring variables, use as many local variables (local to the routine
in which they are used) as possible. Global (static) variables stay on even though
the routine is closed, and they occupy RAM needlessly until the product closes.

Declare one variable per line. Why? Many languages permit declaring mul-
tiple variables per line. Remember that once the program is promoted to pro-
duction, most organizations do not permit the deletion of lines of code. The
existing line is commented out and a new line is inserted in its place. An ex-
planatory commenting line is added to make this change. If it becomes necessary
to delete one variable from a list of variables that are declared on the same line,
that line needs to be commented out and a new line inserted with all other
variables except the deleted one. This process of commenting and inserting lines
is prone to error. All opportunities for error need to be eliminated.

Avoid “goto” control structure unless absolutely essential. This structure
takes the flow control away from the programmer and could lead to multiple
program exits. Always use subroutines that return control to the calling routine.

When defining naming conventions, do not use names longer than 15 char-
acters, even though most languages permit use of longer names for variables.
Longer names are the leading cause of syntax errors in programs because fre-
quently spelling errors are made when typing. Almost every word can be abbre-
viated to two or three characters. Use abbreviated words instead of full words
to build the names of variables. A 15-character variable name can represent four
words, where each is abbreviated to three characters with three separators be-
tween the words. How often does a variable name require more than four
words?

As far as possible, do not direct output from the program directly to the
printer unless it is printing a receipt across a counter. Large outputs in particular
should be directed to a print file. Spooling utilities provided by the operating
system are much better at controlling the printer than programs developed by
software developers. Spooling utilities take care of events such as paper outage,
paper jam, printer offline, printer not powered up, ink/toner exhausted, etc.
without hanging the computer. Unless the printing is to be done immediately,
it is better to save the report and use other programs that are better at executing
the printing function. When printing from the program, be sure to include an
exhaustive error handling routine.

One of the leading causes of poor-quality software is leaving error handling
to the operating system or the development platform. Each can manage many
errors, but they cause software to close abruptly, resulting in loss of data or data
integrity or requiring the program to restart. To ensure smooth operation, all
errors must be trapped, and an appropriate message that is meaningful to end

J. Ross Publishing; All Rights Reserved

Software Product Quality 47

users must be displayed in addition to an alternative permitted course of action.
The following errors should be handled inside the program itself:

� Connecting to databases—Check for success of connection.
� Opening a flat file—Check for success in opening the file.
� Opening a table—Check for success in opening the table.
� Writing information to a file or a table—Check for success of the

operation.
� Arithmetic division—It is essential to check that the denominator

is not zero before any arithmetic division operation is performed. If
it is, a nonrecoverable error will result.

� Arithmetic multiplication—It is essential to check that the receiv-
ing variable has adequate width to accommodate the result without
truncation.

� Connecting to any device—Check for success of connection.

Many programming languages provide brief statements that can be used by
expert programmers to improve the productivity of programming work. These
statements are good and generally work very well. However, sometimes these
brief statements make it very difficult to trace and debug an error, especially
when debugging an inaccurate result. Writing more lines where one complex
line will do allows developers to step through every line and trace the result to
pinpoint which statement is injecting the error. The gain in programming pro-
ductivity would be lost by the additional debugging time. Also significant is the
fact that developers cannot be sure that software maintenance will be performed
by expert programmers. Programmers who are not experts might find it ex-
tremely difficult to maintain such code efficiently. In view of these consider-
ations, it is better to write multiple lines of code rather than a single brief
advanced line.

Today, most programming languages accommodate longer lines. Although
each line is allowed up to 255 characters, it is impossible to see all 255 characters
in a single line on a screen or on a printout. When the line is wrapped around,
the line breaks are random, which makes it difficult to read and understand the
code. Every programming language allows lines to be broken up by some mecha-
nism. Use that facility, and break long lines into multiple short, convenient lines.
The norm is that a line must be visible on the screen without scrolling horizon-
tally or the line wrapping around. It is thus easier to read, understand, and
maintain the code. By breaking up a long line into multiple short lines, produc-
tivity improves at the peer review and maintenance stages in addition to the
debugging stage.

J. Ross Publishing; All Rights Reserved

48 Mastering Software Quality Assurance

Break up long arithmetic statements into multiple statements. Debugging a
long arithmetic statement for inaccurate results can be quite tedious. Short,
multiple arithmetic statements make it easier to trace the result across each
statement and nail an error.

Use simple algorithms in place of complex algorithms. The following typical
scenario I once came across explains why. An arithmetic computation statement
was in a program. The next statement raised the result to its square. Then the
next statement computed the square root of the result, and this result was used
in the next statement. Apparently, the programmer used this algorithm to avoid
the result going negative (raising any number to its square makes it positive),
as the language did not provide for absolute value function. Finding the square
root of a number is a stack operation, which consumes more time and resources.
Also, the square root might cause a precision problem, due to a long number
of decimals. Instead, the programmer could have used an if-then construct and
multiplied the number by minus one (–1) if the result was negative (or less than
zero). For most complex problems, simple solutions do exist. Use the simpler
ones in place of complex algorithms. Simple solutions improve the efficiency of
software maintenance, if not the efficiency of the execution.

In some programming languages that are available across multiple systems,
there are system-specific extensions that make programming easier. These sys-
tem-specific constructs also can facilitate achievement of functionality that is
not available in the standard language. However, using the system-specific
constructs affects portability. Therefore, as far as possible, do not use system-
specific constructs. Determine whether a library utility that uses the standard
constructs to achieve the same functionality can be developed, and if so, use it
across the software product. If it is absolutely necessary to use system-specific
constructs, see if they can be put into a callable routine so that developers know
which routines need special action when porting the software. Use them inside
the main program if none of the above alternatives are workable.

MEASUREMENT OF PRODUCT QUALITY

The market judges the quality of a commercial off-the-shelf product, and this
judgment is what determines the relative position of the product in the market.
The product is subject to market forces.

For a make-to-order software product, quality is assured by the software
development process and acceptance testing. Acceptance testing can never be
exhaustive. Few companies measure the performance of the software process,
even though it is mandated by such standards as ISO 9000 and by such models

J. Ross Publishing; All Rights Reserved

Software Product Quality 49

as the Capability Maturity Model Integration. Therefore, software product quality
needs to be measured, especially in a make-to-order software development
scenario.

Product quality does not easily lend itself to measurement, let alone to accurate
measurement. The second issue is at what stage the quality of a software product
should be measured. A physical product, such as a car, is subjected to extensive
actual or simulated field trials before it is released to the public. Software prod-
ucts that are commercial off-the-shelf in nature also are subjected to field trials,
but no field trials are performed for software products that are built for a single
customer, except for provision of support during the warranty period. There-
fore, if the quality of a software product is to be measured at all, it has to be
done at the release stage.

I propose a composite metric to measure the quality of a software product,
which is based on the following parameters:

1. An organizational environment that fosters product quality
2. Effectiveness of organizational quality assurance activities
3. Peer review coverage of software artifacts
4. Unit testing coverage of code
5. Exhaustiveness of software testing

In this proposed metric, each of these parameters is rated, and a composite
product quality rating is calculated by assigning a weight to each parameter.
How to rate each of these parameters is discussed in the next sections of this
chapter.

An Organizational Environment that Fosters Product
Quality

Table 3.3 gives the attributes for rating this parameter. The value for the orga-
nizational environment rating (OER) is computed using the following formula:

OER Rating for quality department

 Rating for software process

 Rating for process conformance

 Rating for rewards and recognition

= ×

+ ×

+ ×

+ ×

()

()

()

()

W

W

W

W

o

o

o

o

1

2

3

4

The weights (Wo1, Wo2, Wo3, Wo4) are explained in Table 3.3

J. Ross Publishing; All Rights Reserved

50 Mastering Software Quality Assurance

For the calculations in this chapter, we will use the following values:

Rating for quality department = 4
Rating for software process = 5
Rating for process conformance = 3
Rating for rewards and recognition = 3

Therefore, the value for the OER is

OER

= × + × + × + ×

=

(.) (.) (.) (.)

.

4 0 3 5 0 4 3 0 2 3 0 1

4 1

Keep this value aside until the other values have been computed.

Table 3.3. Attributes for rating an organizational environment that fosters
product quality

Attribute Rating

Existence of a quality department: weight = 0.30 (Wo1)
Fully staffed quality department; independent testing team; quality head equal
in rank and pay with delivery head; champions process and product quality

Fully staffed quality department; independent testing team; quality head lower
in rank and pay compared to delivery head; champions process and product
quality

Fully staffed quality department; independent testing team; quality head lower
in rank and pay compared to delivery head; champions process

Quality department staffed to perform quality audits and to coordinate process
activities; stopgap quality head; coordinates process activities; depends on project
teams for independent testing

Quality department staffed to coordinate process activities; no qualified quality
head; coordinates process; independent testing is the responsibility of project
teams

Existence of software development processes: weight = 0.40 (Wo 2)
Process covers all aspects of software development and quality assurance;
standards and guidelines exist for all software development activities; a formal
metrics and analysis mechanism exists; a formal process improvement mecha-
nism is in place

5

4

3

2

1

5

J. Ross Publishing; All Rights Reserved

Software Product Quality 51

Process covers all aspects of software development and quality assurance;
standards and guidelines exist for all software development activities; formal
process improvement mechanism is in place

Process covers most aspects of software development, but does not fully cover
quality assurance; standards and guidelines do not fully cover all aspects of
software development; process improvement is event driven

Process covers some but not all aspects of software development; process
improvement is not really an important aspect

Organization is not driven by process at all

Process conformance: weight = 0.20 (Wo 3)
Process conformance audits are process driven; all audits are carried out, in
conformance with an approved plan; all nonconformance reports receive serious
attention by management; management review meetings are held, in conform-
ance with approved plan without fail

Process conformance audits are process driven; most audits are carried out,
in conformance with an approved plan; important nonconformance reports re-
ceive serious management attention; management review meetings are held
regularly

Process conformance audits are process driven; audits are conducted regularly,
but not according to an approved plan; nonconformance reports are resolved
by the head of quality, the software engineering group, or by the delivery head;
management review meetings are conducted by the head of quality, the soft-
ware engineering group, or the delivery head

Process audits are process driven; audits are conducted based on organiza-
tional convenience; management review meetings are conducted based on the
convenience of the person chairing the meeting; nonconformance reports are
resolved mostly by the auditor

Process audits are conducted as and when convenient; not process driven;
nonconformance reports remain open for a long time

Rewards and recognition: weight = 0.10 (Wo 4)
A formal mechanism exists to recognize and reward efforts to improve quality
of products, and the awards are given regularly

A formal mechanism does not exist, but rewards are given regularly for efforts
to improve product quality

Recognition and rewards for efforts to improve product quality are given occa-
sionally, but only for outstanding effort

Table 3.3. Attributes for rating an organizational environment that fosters
product quality (continued)

Attribute Rating

4

3

2

1

5

4

3

2

1

5

3

1

J. Ross Publishing; All Rights Reserved

52 Mastering Software Quality Assurance

Effectiveness of Organizational Quality Assurance
Activities

The effectiveness of organizational quality assurance activities should result in
the elimination or minimization of residual defects passed on to the customer.
This effectiveness can be measured using the defect density of the product
delivered, which is also called the sigma value. This aspect is covered in greater
detail in Appendix G on quality metrics and measurement. Use the sigma value
of the organization to derive the effectiveness of organizational quality assurance
activities rating (EQAR). Table 3.4 shows the derivation of this rating. For our
computational purposes, we will assume a value of 4 sigma.

Peer Review Coverage of Software Artifacts

Subjecting all software (information as well as code) artifacts to 100% peer
review and 100% managerial review is a best practice. However, many organi-
zations skip a peer review in some cases, under the assumption that a managerial
review is adequate.

The percentage of artifacts covered by peer review is computed as:

Number of software artifacts covered by peer review

Total number of software artifacts

 × 100

Using this percentage, a peer review coverage rating (PRCR) is derived as shown
in Table 3.5. For our computational purposes, we will assume a value of 90%
coverage.

Table 3.4. Derivation of EQAR

Sigma value of the organization Rating

6 sigma (3 defects per 1 million opportunities) 5

5 sigma (3 defects per 100,000 opportunities) 4

4 sigma (3 defects per 10,000 opportunities) 3

3 sigma (3 defects per 1,000 opportunities) 2

2 sigma (3 defects per 100 opportunities) 1

J. Ross Publishing; All Rights Reserved

Software Product Quality 53

Unit Testing Coverage of Code

Here, unit testing means independent unit testing, which is carried out by a
person who did not code the artifact that is being tested. Subjecting all software
code artifacts to 100% independent unit testing is a best practice. However,
many organizations skip unit testing in some cases, under the assumption that
self unit testing (that is, unit testing by the programmer who coded the artifact)
is adequate.

The percentage of artifacts covered by unit testing is computed as:

Number of software artifacts covered by unit testing

Total number of software artifacts

 × 100

Using this percentage, a unit testing coverage rating (UTCR) is derived as shown
in Table 3.6. For our computational purposes, we will assume a value of 75%
coverage.

Table 3.5. Derivation of PRCR

Percentage of review coverage Rating

100% 5

80% and above, but less than 100% 4

70% and above, but less than 80% 3

60% and above, but less than 70% 2

Less than 60% 1

Table 3.6. Derivation of UTCR

Percentage of unit testing coverage Rating

100% 5

80% and above, but less than 100% 4

70% and above, but less than 80% 3

60% and above, but less than 70% 2

Less than 60% 1

J. Ross Publishing; All Rights Reserved

54 Mastering Software Quality Assurance

Exhaustiveness of Software Testing

Exhaustiveness of software testing on a software product includes two aspects:
the number of tests that should have been conducted and the number of test
cases that should have been executed.

In terms of the number of tests that should have been conducted, each
software product, depending on its nature (number of tiers, functional domain,
development and target platforms, etc.), needs to be subjected to certain types
of tests. Some products, such as reservation systems, require more exhaustive
testing for parallel and concurrent testing than other types of tests. Other prod-
ucts, such as financial systems, need to be more rigorously tested for accuracy
and precision. Products such as online stores need to be tested more for their
response times.

Thus, the types of tests to which a software product should be subjected
depends on its nature. A more exhaustively tested software product has a better
chance of being a quality product than a product that is less exhaustively tested.
The types of testing to which a software product normally should be subjected
are recorded in the test plan document for the project. In the case of outsourced
projects, the types of tests to be carried out are specified by the customer.

This specification needs to be compared with the actual tests that are carried
out. Sometimes all the required tests are not conducted. The following are some
of the reasons why:

1. Due to a lack of time, all the planned or specified tests are not carried
out.

2. Based on the results of peer reviews and initial tests, the decision
might be that further testing is not really necessary.

3. Delivery and schedule pressures might force a decision to abandon
further testing.

The percentage of tests conducted is computed using the following formula:

Number of tests actually conducted

Number of tests that should have been conducted

 × 100

Using this percentage, a rating for exhaustiveness of tests conducted is derived
as shown in Table 3.7.

Similarly, all the planned test cases might not have been executed. The
percentage of test cases executed is computed using the following formula:

J. Ross Publishing; All Rights Reserved

Software Product Quality 55

Number of test cases actually executed

Number of test cases that should have been executed

 × 100

Using this percentage, a rating for exhaustiveness of test cases executed is de-
rived as shown in Table 3.8.

A weight is assigned to each of these two ratings. A weight of 0.6 is assigned
to exhaustiveness of tests conducted, as a test missing altogether is much more
serious than missing a few test cases. A weight of 0.4 is assigned to exhaustive-
ness of test cases executed.

The exhaustiveness of testing rating (ETR) is computed as:

ETR Exhaustiveness of tests conducted Weight

 Exhaustiveness of test cases executed Weight

= ×

+ ×

()

()

Let us assume a rating of 4 for exhaustiveness of tests conducted and a rating
of 5 for exhaustiveness of test cases executed. Thus, the ETR is

Table 3.7. Derivation of exhaustiveness of tests conducted rating

Percentage of tests conducted Rating

100% 5

80% and above, but less than 100% 4

70% and above, but less than 80% 3

60% and above, but less than 70% 2

Less than 60% conducted 1

Table 3.8. Derivation of exhaustiveness of test cases executed rating

Percentage of test cases executed Rating

100% 5

80% and above, but less than 100% 4

70% and above, but less than 80% 3

60% and above, but less than 70% 2

Less than 60% conducted 1

J. Ross Publishing; All Rights Reserved

56 Mastering Software Quality Assurance

ETR 4 0.6) + (5 0.4)

= 2.4 + 2

= 4.4

= × ×(

The composite product quality rating can now be computed.

Composite Product Quality Rating

The first activity in computing the composite product quality rating (CPQR) is
to assign appropriate weights to each of the product quality parameters. Table
3.9 shows the suggested weights.

If the organizational environment is one that fosters product quality, then
all other parameters automatically get the highest importance in the organiza-
tion. That is the reason for assigning the highest weight to this parameter. The
EQAR is higher if the organization fosters product quality, which is dependent
on peer review and unit testing. If peer review and independent unit testing are
carried out effectively and exhaustively, then software testing is automatically
taken care of.

The CPQR is computed using the following formula:

CPQR OER) + EQAR) + PRCR)

+ UTCR) + ETR)

= × × ×

× ×

(((

((

W W W

W W

1 2 3

4 5

Table 3.9. Weights for product quality parameters

Product quality parameter Weight

OER 0.35 (W1)

EQAR 0.25 (W2)

PRCR 0.15 (W3)

UTCR 0.15 (W4)

ETR 0.10 (W5)

Total weight 1.00

J. Ross Publishing; All Rights Reserved

Software Product Quality 57

Substituting the values computed in the above formula, the CPQR is thus:

CPQR 4 .35) + .25) + .15)

+ .15) + 4 .10)

= 1.44 + 0.75 + 0.60 + 0.45 + 0.44

= 3.68

= × × ×

× ×

(. ((

((.

1 0 3 0 4 0

3 0 4 0

The CPQR is 3.68 on a 5-point scale.
The following points should be noted:

1. As unique conditions dictate, it is possible that some organizations
might see the need to add or delete some of the parameters men-
tioned here. They may do so.

2. Some organizations assign different levels of importance to these
parameters, and therefore might prefer to assign different weights to
them. They may do so.

3. While a 5-point scale is suggested, organizations can use a different
scale.

Do we really need to measure the quality of the product that is developed
against specified user requirements and for a specific order to do so? It is an
accepted fact that there would be some residual defects, and this is measured
by the sigma level of the organization that developed the software product. After
all, it is the end product that we are really interested in, and not the organiza-
tional environment or other factors that are included in the measure described
here.

Sure, the sigma level of the organization alone is adequate to measure the
quality of the product “iff” (a term used in mathematics to mean “if and only
if”) the sigma level is diligently and accurately derived. Most organizations
engaged in development of custom software do not have internal mechanisms
to diligently collate and analyze all customer defect reports and derive the or-
ganizational sigma level. These organizations support the customer only during
the warranty period, with the focus on resolving a defect rather than diligently
recording and analyzing it. Normally organizations designate a project leader or
an equivalent person to provide support to the customer during the warranty

J. Ross Publishing; All Rights Reserved

58 Mastering Software Quality Assurance

period, and the customer communicates with this person. Organizational-level
mechanisms for deriving the organizational sigma level are more frequently
absent than present. After the warranty period ends, the customer is likely to
take on maintenance of the software in-house or entrust it to the original de-
veloper or a third party. The defects that are unearthed during software main-
tenance are never considered for inclusion in the data used to compute the
organizational sigma level.

Therefore, the sigma level alone is inadequate to measure the quality of a
software product produced through custom software development. In the ex-
ample for which we computed the CPQR, the sigma level of the organization
was 5, but the product quality turned out to be only 3.68.

It is very easy to collect the data to compute this metric. The information
needed to derive the organizational environment is most likely available on the
company’s Web site, except perhaps for the existence of a quality department.
This information cannot be classified as confidential by any stretch of the imagi-
nation and is therefore easy to obtain.

The effectiveness of organizational quality assurance activities depends on
the sigma level of the company. Any organization should be glad to share this
information. If an organization does not derive and maintain its sigma value,
consider it to be at a 4-sigma level (that is, 3 defects in 10,000 opportunities)
and proceed further.

Peer review coverage information can be obtained from the review records
of the project. Unit testing coverage information can be obtained from the unit
test plans and unit test logs of the project. Exhaustiveness of testing information
can be obtained from the product test plans and product test logs of the project.
Thus, the information needed to derive the CPQR is easy to obtain, and the
methodology is fairly simple.

How should the CPQR metric be interpreted? Table 3.10 shows the maxi-
mum possible values for each of the factors that go into deriving the CPQR.

Obviously, a CPQR value that tends toward 5 is most desirable. To deter-
mine the minimum acceptable CPQR value, the minimum values that can be
expected from each of these factors used in computing the CPQR in a process-
driven organization need to be known.

Even if an organization does not have a quality department or a rewards and
recognition system, it at least has a software development process, which con-
tributes 0.70 (0.40 × 1.75 = 0.70) toward the CPQR. If a process exists, then at
least sketchy process conformance is in place, which on an average level con-
tributes 0.35 (0.2 × 1.75 = 0.35) toward the CPQR. Thus, the minimum expected
from an organizational environment factor in a process-driven organization is
1.05.

J. Ross Publishing; All Rights Reserved

Software Product Quality 59

A process-driven organization is at least at a 4-sigma level. The effectiveness
of organizational quality assurance activities factor is therefore

(.) .0 25 3 0 75 × =

The peer review coverage factor assuming a rating of 4 would be a minimum
of

(.) .4 0 15 0 60 × =

The unit testing coverage factor assuming a rating of 4 would be a minimum
of

(.) .4 0 15 0 60 × =

The exhaustiveness of testing factor assuming a rating of 4 would be a minimum
of

(.) .4 0 10 0 40 × =

The minimum acceptable CPQR is, therefore,

(.) .1 05 0 75 0 60 0 60 0 40 3 4 + + + + =

Therefore, the CPQR for a software product developed in a process-driven
organization can range from a minimum of 3.4 to a maximum of 5. Of these
factors, organizational environment and effectiveness of organizational quality
assurance activities are beyond the purview of the current project. If those values

Table 3.10. Maximum possible values for CPQR factors

Product quality parameter Maximum possible value

OER 1.75

EQAR 1.25

PRCR 0.75

UTCR 0.75

ETR 0.50

Maximum possible CPQR value 5.00

J. Ross Publishing; All Rights Reserved

60 Mastering Software Quality Assurance

are low, it is an indication that the development organization needs to improve.
If the CPQR is low, the other three values should be inspected and improved
upon.

While a CPQR of 5 is desirable, a value of 4 is not bad. This metric can be
computed before going in for acceptance testing. Then it is possible to insist on
improvements based on the CPQR.

To conclude the discussion on product quality measurement using CPQR,
I would submit that computing this metric is extremely useful, since it is ac-
cepted that 100% testing and 100% defect removal are not possible. The CPQR
provides a quick, reliable, and objectively derived measure that assists the cus-
tomer in judging the quality of the product being delivered and ensures that the
product is as defect-free as it possibly can be.

J. Ross Publishing; All Rights Reserved

61

4
ORGANIZATIONAL
ENVIRONMENT THAT
FOSTERS A QUALITY
CULTURE

CHAPTER OVERVIEW

� Need for an independent quality assurance department
� Definition of the role of the quality assurance department and its

position in an organization
� Organization and staffing of the quality assurance department
� A well-defined and institutionalized process for software development

and quality assurance
� A system of recognition and rewards
� Commitment of senior management

QUALITY AND ORGANIZATIONAL ENVIRONMENT

When we receive something for free, we can be fairly certain it will be more
trouble than it is worth. Nothing good in life is ever free, and there is no such
thing as a free lunch. No statement is truer when speaking of quality. Quality
does not happen by accident; we have to consciously work to achieve it. The first
step in ensuring the quality of anything is to recognize that quality itself is the

J. Ross Publishing; All Rights Reserved

62 Mastering Software Quality Assurance

key to true customer satisfaction and to the very survival of an organization.
Japanese companies realized this in the early 1950s, and look where they are
today in terms of the quality of their products, profitability, and their position
in the world market—they are among the top organizations.

Working to achieve quality first involves setting up a well-defined depart-
ment for the quality function and then providing staff, planning the quality
assurance (QA) activities, and diligently directing and controlling those activi-
ties. Each of these aspects should be monitored and adjusted in order to con-
tinually improve them. The key ingredients for building an organization that
fosters a culture focused on building quality into its end product include the
following:

1. A QA department that champions quality within the organization
2. A well-defined and institutionalized software development process

that focuses on quality and includes a minimum set of QA activities
that need to be performed at the project as well as organizational
level, as well as a system to ensure its continual improvement

3. An explicit system of rewards and recognition for achieving excel-
lence in quality

4. The commitment and involvement of senior management to foster-
ing a culture of quality in the organization

Each of these ingredients is discussed in greater detail throughout this chapter.

NEED FOR AN INDEPENDENT QUALITY
ASSURANCE DEPARTMENT

In the good old days of organizational management, each individual did his or
her assigned job, and the CEO supervised everyone. For example, the marketing
concept, total productive maintenance (TPM), and total quality management
(TQM) implied that the CEO was the chief marketing manager, chief mechanic,
and chief quality manager, respectively. However, such concepts, wonderful as
they are, resulted in some confusion as to roles and responsibilities and provided
leeway for CEOs to do away with departments considered inconvenient—spe-
cifically the QA department. It is true that the CEO is responsible for all activi-
ties in the organization, but equally true is the fact that no CEO alone can
supervise and control all those activities unless the organization is very small.
CEOs delegate responsibilities to next-line managers, who take ownership of the
details.

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 63

While the marketing concept and TPM did not eliminate the positions of
the marketing manager and the maintenance manager, TQM did assist some
organizations in justifying elimination of the quality manager and in some extreme
cases the QA department itself. This was especially so in the software develop-
ment industry and, thus, an unfortunate misuse of a great concept. What is
interesting about some of the organizations that have done this is that they are
certified in both the International Organization for Standardization’s ISO 9000
series of standards and the Software Engineering Institute’s Capability Maturity
Model (CMM®) or Capability Maturity Model Integration (CMMI®)! The CEOs
of such organizations state that they personally look after the quality function
and, as TQM suggests, ensure that all quality activities are embedded within the
development activities themselves.

At a conceptual level, this sounds great, but at a practical, nuts-and-bolts
level, the main responsibilities of a CEO are to deliver results and to show a
profit. A CEO would certainly focus on marketing if the order book were empty.
But would a CEO find time to focus on the quality function, which does not
generate any direct and tangible revenue? Very unlikely!

The TQM philosophy does not advocate doing away with the QA depart-
ment altogether; all it states, in essence, is that the QA department alone cannot
ensure quality and that all personnel, beginning with the CEO, have to work to
achieve quality.

Of those software development organizations that have a QA department,
the department focuses almost entirely on achieving and maintaining such cer-
tifications as ISO and CMMI®. It is rare to find an organization that has a full-
fledged QA department which looks after not only process quality but also
product quality. Rarer still is the software development organization that has
specialized staff to conduct independent verification and validation.

When CEOs take on the role of quality manager on a part-time basis, the
amount of attention and focus they can give to the quality function is diluted
by the daily issues of finances, personnel, customer pressure, delivery concerns,
etc. In such organizations, there is no one person others can easily approach for
guidance on matters pertaining to quality. Quality activities, if they are per-
formed at all, are performed by the people developing the software.

A QA department is essential in a software development organization for the
following reasons:

1. The responsibility for championing quality in the organization is vested
with a specific entity.

2. Developers can obtain counsel and guidance from experts on quality
matters.

J. Ross Publishing; All Rights Reserved

64 Mastering Software Quality Assurance

3. Personnel who specialize in verification and validation can offer their
expertise and knowledge in uncovering most defects, thus vastly
improving quality.

4. No quality activity would be missed during product construction.
5. The benefits of organization-level analyses of measurement and im-

provement of quality can be realized.
6. The concepts of zero defects and right first time can be championed

in the organization, minimizing the need for rework and resulting in
better productivity, quality, and motivation of personnel.

7. Continual monitoring of quality achievements and carrying out trend
analysis enable the organization to proactively resolve quality issues
before they become serious problems.

8. It becomes possible to benchmark quality achievements against com-
parable organizations.

9. The QA department can evaluate and obtain tools that can improve
productivity and quality for the organization.

A full-fledged QA department more than underwrites its own expenses; it can,
in fact, effect a larger savings for the organization. A best practice for a software
development organization that focuses on the quality of its deliverables is to have
an independent, fully staffed, and robust QA department.

THE ROLE OF THE QUALITY ASSURANCE
DEPARTMENT

Each organizational role has a specific purpose and a specialized niche, and it
can be responsible for its own results. Consider the following examples:

� The role of marketing is to win orders, and its performance depends
on its own efforts. It is the custodian of an organization’s order book
and customers.

� Finance arranges required financing and carefully monitors expen-
ditures and revenues. It is the custodian of an organization’s mon-
etary resources.

� Human resources secures the necessary employees for the organiza-
tion. It is the custodian of an organization’s personnel.

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 65

� Delivery (sometimes called the technical department) develops the
necessary software and delivers it to the customers. It is the custo-
dian of an organization’s products and technology.

The QA department is the custodian of the quality of the products built by
the delivery department. Unlike the tangible assets of the departments listed
above, quality is an intangible result of the QA department’s work. If the quality
of the deliverable is great, then the delivery department is viewed as having done
a great job, but if a deliverable is of poor quality, somehow it is the QA depart-
ment that is viewed as not having been adequately diligent in performing quality
control activities.

The role of the QA department was once to act as a “watchdog,” monitoring
the quality of deliverables (see Figure 4.1). Watchdogs not only bark when
something is amiss; they might bite if necessary. This is how the QA department
should be. However, political correctness has changed the role of the QA de-
partment from a watchdog to the “eyes and ears” of management to gauge the
state of organizational quality. “Eyes and ears” are well equipped for conveying
information, but a “bark” or a “bite” is much better suited to galvanizing ac-
tion—the action of rectifying nonconformance and improving quality—along
with conveying information (a “bark” conveys information much more effec-
tively than an e-mail does, even one flagged as “high importance”) on behalf of
management.

Figure 4.1. The role of the quality assurance department

Eyes and ears Watchdog

J. Ross Publishing; All Rights Reserved

66 Mastering Software Quality Assurance

That is why the role of the QA department in software development organiza-
tions should be as a watchdog, as it is in the manufacturing domain.

THE POSITION OF THE QUALITY ASSURANCE
DEPARTMENT IN AN ORGANIZATION

Some organizations place the QA department under the delivery function, based
on the following line of arguments:

� All QA activities are related to delivery.
� All QA suggestions are implemented by the delivery department.
� If the head of the delivery department is convinced of the QA

department’s recommendations, all QA activities are properly imple-
mented. It is impossible to implement QA activities and initiatives
without the cooperation and willingness of the delivery department.

� The QA department should not be allowed to force solutions that are
not implementable by the delivery department. (What better way to
achieve this than by placing the QA department under the control
of the delivery department.)

While the above scenario is the reality in some organizations, it is not a
correct arrangement. These organizations, in essence, take away the “bark” and
the “bite” from the watchdog. The primary responsibility of the delivery head
is to deliver product that passes acceptance testing. For the delivery head, quality
is one of several secondary responsibilities, which include project acquisition,
productivity, staff motivation, team morale, customer satisfaction, profit man-
agement, cost control, technology updates, etc. It is not an exaggeration to say
that quality does not find a place second or third in this list of priorities.

Statistical methods, on which most quality analyses are based, are always
open to misinterpretation and misuse. Changing a few data items can generate
a totally different result. If the QA department is placed under the delivery
function, the following scenarios can arise:

1. Quality analyses can be tailored to suit the delivery department’s
convenience.

2. Certain facts or trends that pose an inconvenience to the delivery
department may never reach the CEO’s attention.

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 67

3. If the delivery department either violates or poorly implements QA
activities or initiatives, the QA manager cannot overstep the delivery
head (his or her boss) to bring the matter to a higher authority
without risking his or her job.

4. If the quality manager and the delivery head disagree on an aspect of
QA, the quality manager has little choice but to accept the decision
of the delivery head.

5. QA initiatives can be restricted by the priorities of the delivery de-
partment. (Instead, they should be dictated by organizational require-
ments and industry trends.)

It is therefore very shortsighted to make the QA department subordinate to the
delivery department. The QA department should be on equal footing with other
departments, including the delivery department, and should report directly to
the CEO. A suggested placement of the QA department is shown in Figure 4.2.

When the QA department is at an equal level with the delivery department,
it can raise issues it might have with the delivery department on matters relating
to quality to a higher level of authority in an effort to resolve them. In the course
of organizational operations, differences of opinion on nonconformance issues
pointed out by the QA department are a common occurrence between the
delivery department and the QA department. When the QA department oper-
ates independently, it is possible to ensure rectification of these nonconfor-
mance issues. Various quality measurements and analyses can be carried out

Figure 4.2. Suggested placement of the quality assurance department in a
software development organization

Human
Resources

Finance Marketing Delivery
Quality

Assurance

Chief Executive

J. Ross Publishing; All Rights Reserved

68 Mastering Software Quality Assurance

regularly, on either an event-driven basis or a periodic basis, with the results
made available to all executives concerned. This would bring about awareness
of and improvements in the organizational processes.

Conflict between the delivery department and the QA department is the one
negative aspect of an organization having an independent QA department, since
the focus of the delivery department is expediting delivery and the focus of the
QA department is uncovering inherent defects. However, such conflicts are
easily manageable, first by having a well-defined process in place and, second,
by escalating the matter to the next level of authority if necessary. Conflict is
part and parcel of an organization’s environment. For example, marketing pushes
for faster delivery in order to beat the competition to the market, while the
delivery department favors slower delivery to ensure the product is defect-free.
Finance pushes for higher selling prices in order to increase profits, while
marketing favors lower prices to win orders. Conflict between the QA depart-
ment and the delivery department is simply one more example.

To achieve better organizational quality, the QA department should be inde-
pendent and on a par with the delivery department.

ORGANIZATION OF THE QUALITY ASSURANCE
DEPARTMENT

What functions should be entrusted to a full-fledged, independent, watchdog-
style QA department in a software development organization? Most software
development organizations that have a QA department entrust it with the pro-
cess quality function (championing the organizational software development
process), interfacing with certifying agencies, and other related activities. Some
organizations consider their independent testing department to be the QA
department. In order to do justice to the organizational function of assuring
quality in deliverables, a comprehensive QA department should perform the
following functions:

� Software development process definition and improvement
� Standards and guidelines development and improvement
� Software inspections and audits
� Software testing
� Measurement and analysis

Each of these functions is discussed below.

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 69

Software Development Process Definition and
Improvement

The software development process includes all aspects of software development
and QA; standards and guidelines for all software development activities; a
formal measurement, metrics, and analysis mechanism; and a formal process
improvement mechanism. Additionally, it may include the processes that guide
other organizational entities, as standards such as ISO 9000 mandate. This
function includes the following activities:

� Initial definition of the software development process for the orga-
nization—This entails identifying people to document the processes,
providing them with the necessary facilities, coordinating QA for the
artifacts developed, piloting the artifacts, and rolling out the process.

� Definition of a process that automatically initiates process improve-
ments based on event triggers or period triggers—This involves
defining the possible event triggers for process improvement (such
as external audits, periodic audits, etc.), defining the period for trig-
gering process improvements, defining the mechanisms for receiving
process improvement suggestions, consolidating all process improve-
ment suggestions and carrying out necessary analyses, obtaining
necessary approvals for implementing the process improvements,
allocating personnel to effect the necessary improvements, and roll-
ing out the revised process.

� Rollout and implementation of the process developed in the orga-
nization—This involves piloting the process on a sample project,
guiding the pilot implementation, receiving and implementing feed-
back (if any) from the field, obtaining necessary approvals, and roll-
ing out the process for implementation.

� Periodic appraisals of the efficacy of process compliance in the or-
ganization—This entails regularly carrying out either audits or pro-
cess compliance appraisals to ensure that process compliance is at
the desired level and to plug deficiencies if any are uncovered.

� Analysis of the results obtained from the process compliance ap-
praisals using process performance measurement—This entails ana-
lyzing any nonconformances uncovered to see if there is a percep-
tible trend that might reveal an assignable reason which can be
addressed or to see if the nonconformances are due purely to chance
occurrences. The results of this analysis are presented to senior man-
agement for informational purposes and for guidance.

J. Ross Publishing; All Rights Reserved

70 Mastering Software Quality Assurance

� Compute and periodically update organizational process capability
baselines that can be used by software project managers during
software project execution. Various capabilities of the organization,
such as productivity for various development platforms, quality ca-
pabilities (sigma level, defect density, and defect injection rate), sched-
ule compliance capability, customer satisfaction, etc., can be com-
puted and published as information for the organization’s stakeholders
so they can use this data in their activities. The data needs to be
updated periodically to reflect recent achievements.

� Compare and contrast organizational processes with those of popu-
lar process models (such as ISO 9000 and CMMI®), and effect pro-
cess improvements that are beneficial for the organization.

� Spearhead organizational initiatives for obtaining compliance certi-
fication from ISO 9000, CMMI®, etc., and guide the organization in
implementing these models in both letter and spirit.

� Interface with the certifying agencies to organize certification audits
or maturity appraisals, and ensure they are concluded successfully
for the organization.

The QA department should be the organizational entity that champions orga-
nizational process initiatives.

Standards and Guidelines Development and
Improvement
Standards and guidelines are part and parcel of organizational processes, but
they deserve special mention for the following reasons:

� They achieve uniformity of output from different people. This makes
software maintenance easier later on.

� They ensure a minimum level of quality in output, even from dis-
parate individuals.

� They save effort of people working on software development.
� They guide new entrants to the organization in carrying out work

efficiently and with less training.
� They are the main tool to achieve higher levels of quality in the

organization.

Some people complain that standards restrict the freedom of creative indi-
viduals. This is true to some extent, but when faced with the choice of either

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 71

an utter lack of uniformity or restriction of freedom, the choice is clearly tilted
in favor of standards and guidelines. Besides, every standard provides for excep-
tion handling with special approval, which ensures that any deviation from a
standard is for the sake of improvement. In other words, there can be exceptions
to standards.

The QA department also champions the definition and improvement of
standards and guidelines for the organization as part of the organizational process
definition and improvement described above.

Software Inspection and Audits

It is possible to assign all software inspections and phase-end audits to specialists
in the QA department. Many organizations use software development personnel
from within the project or from other projects to carry out these activities, but
it is advantageous to have specialists perform inspections and audits. It would
not be economical to keep a large staff of inspectors and auditors to conduct
an organization-wide audit, but it would certainly pay to keep a minimum
number of in-house specialists who conduct phase-end audits and software
inspections. The same set of inspectors and auditors would form part of the
audit team for organization-wide audits. This team would conduct as well as
bring stability and continuity to organization-wide audits, especially when au-
ditors from projects can change from audit to audit. This should be a key
function of the QA department.

Software inspection and audit activities are described in greater detail in
Chapter 5.

Software Testing

The following software testing is carried out in organizations:

1. Unit testing—This is the testing of every software code artifact de-
veloped, including screens, reports, table scripts, stored procedures
(triggers), programs, etc. Unit testing is normally carried out by
someone on the development team other than the author of the unit.

2. Integration testing—This type of testing checks for proper coupling
of software units into modules and modules into a software product.
Integration testing can be conducted by an independent testing team,
although it is frequently conducted by independent peers from the
project team.

J. Ross Publishing; All Rights Reserved

72 Mastering Software Quality Assurance

3. System testing—This type of testing ensures that the product works
without error on all target platforms where it is slated to function.
System testing can be conducted by an independent testing team,
although it is frequently conducted by independent peers from the
project team.

4. Acceptance testing—This type of testing is conducted to ensure that
the software product is accepted by the customer. Acceptance testing
is normally coordinated by the software project manager, but it can
also be coordinated by the QA department.

5. Additional testing—This includes negative testing, load testing, stress
testing, end-to-end testing, etc. Additional testing is conducted on an
as-needed basis by an independent testing team.

Very few software development organizations have an independent testing
department. Most that do have one do not have adequate and qualified staff to
plan and conduct most of the planned testing. Testing departments, in my
observation, typically try to use testing tools to automate product testing mainly
for regression testing purposes and in some cases act as an expert group to guide
and assist the project teams in conducting testing effectively.

In the manufacturing industry, an independent testing team is sine qua non;
that is, mandatory. It is unthinkable that the product designers themselves would
conduct the testing to certify that the product is ready to ship. Only in the
software development industry does the software engineer perform almost every
step in product development—from requirements to design and from coding
to testing—and declare the product fit to use. I concur with the argument that
the effort, duration, and cost of testing in the manufacturing industry are much
less than the effort, duration, and cost to manufacture the product, but this is
not so in the software development industry. In the software development in-
dustry, sometimes the effort, duration, and cost expended for testing software
products exceed these same expenses for developing the software product. There
is some validity to the claim that a project does use independent peers to con-
duct testing, which is equivalent to testing conducted by an independent testing
team, but I would say only to a limited extent. I agree that independent unit
testing, which is white box testing, be carried out within the project team itself,
but other types of testing, which are black box testing, can be carried out by
independent testing teams.

I strongly advocate that the QA department be equipped with testing teams
to conduct the following two tests at least, to ensure that the right product is
built:

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 73

1. Functional testing—This type of testing ensures that all the expected
functions are working as required or designed.

2. Negative testing—This type of testing ensures that adequate data
validation routines, which handle erroneous input that can come
from various sources, are built into the software product. Negative
testing also ensures that unintended use will not crash the software
product. A software crash of any kind sullies an organization’s repu-
tation, even if it is the result of unintended use, and should be pre-
vented through proper testing.

Other types of testing can be entrusted to the testing department if an or-
ganization prefers, and I encourage this. What is important is that the QA
department be equipped with a software testing wing that conducts some types
of software testing and also is recognized as the expert group to guide other
testers in the organization in achieving excellence in testing and thus software
quality.

Software testing is discussed in greater detail in Chapter 6.

Measurement and Analysis
More often than not, measurement and analysis are a neglected area in software
development organizations. Various software process improvement networks
(or SPINs, which are networks of professionals in a geographical area who are
engaged in software development or software quality and are trying to compile
and benchmark numerous quality and productivity figures; SPINs are encour-
aged by the Software Engineering Institute) found that organizations simply do
not have reliable/auditable data. Often, the measurement and analysis function
is entrusted to the project management office, which itself is an appendage of
the delivery department, and therefore does not receive adequate attention. A
common occurrence in the measurement and analysis function is that the time
sheets used in software development organizations to collect details of the effort
spent by the staff are more oriented toward billing and salary administration
than collating and analyzing valuable data.

Measurement and analysis, to be carried out properly, need reasonable
expertise in the field of statistics and engineering analysis. It is rare to find such
people entrusted with this work in software development organizations. While
ISO 9000 and CMMI® do insist that measurement and analysis be carried out,
merely starting the activity qualifies an organization for certification; the orga-
nization can then stall on this activity until the next certification audit or
appraisal.

J. Ross Publishing; All Rights Reserved

74 Mastering Software Quality Assurance

In software development organizations, management often argues that analysis
shows, in auditable figures, facts it already knows, albeit instinctively. Therefore,
management’s question is: What is the added value of diligently performing this
activity?

When it comes to quality in software development organizations, myopia is
the norm rather than the exception, unfortunately. The concepts of quality,
when diligently put into practice, increase productivity by eliminating rework.
This results in reduced costs and higher customer satisfaction, which further
results in increased revenues. Although this fact has been proved beyond reason-
able doubt in Japanese companies such as Sony and Honda, it is overlooked in
software development organizations. The success of Japanese companies is at-
tributed more to their focus on quality than anything else.

When measuring organizational performance, true performance is revealed
when the effect of special occurrences is removed. With true performance fig-
ures, precise plans for improvements can be drawn up and implemented. Using
the measure-analyze-improve-monitor cycle, organizational performance can
be moved into an ever-expanding circle of continual improvement. However,
without proper measurement and analysis of organizational performance, it can
never be known for certain where an organization stands or where it is heading.

Recognizing that measurement and analysis are important for an organiza-
tion is one thing, but entrusting the activity to the right entity is another. The
QA department is the right entity to shoulder this responsibility, because mea-
surement and analysis are really an appendage of the quality function. Real
figures of organizational performance are the tools that put the “bite” in the
“bark” of the QA department, the organizational watchdog. The QA department
can see the true value of measurement and analysis, whereas other departments,
such as the project management office, cannot. Measurement and analysis
demarcate the performance of the QA department itself to a degree.

Therefore, best practice dictates that organizations recognize measurement and
analysis as a critical function and entrust this function to the QA department.

ORGANIZATION AND STAFFING OF THE QUALITY
ASSURANCE DEPARTMENT

A QA department in a software development organization needs to carry out
all the functions described so far in this chapter and can be organized as shown
in Figure 4.3.

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 75

How many people are required in each of these functions is a question that
needs to be answered on a case-by-case basis. The following two main aspects
should be considered in each case:

1. Highest level of service—The requester of the service does not have
to wait to obtain the service.

2. Highest utilization of personnel—There is no idle time for the QA
staff, but the requester of the service might need to wait for some time
to obtain the service.

In reality, the QA department aims to balance these two objectives.
Another aspect that influences staffing is the uniformity of the workload. In

real life, the workload is rarely uniform; it has its peak loads and troughs of
underloading. Balance needs to be achieved between planning for the peak load
period and planning for the underload period.

A manpower strategy needs to be defined as well. The strategy can be either
placing all resources on call or using a strong set of in-house resources and
temporarily hiring additional resources during peak workloads. In the case of
temporary hiring, a decision must be made whether to hire resources in-house
from the delivery department or to hire from outside. One good strategy is to
rotate software developers in the QA department so that they learn the impor-
tance of the quality function firsthand.

Figure 4.3. Suggested organization of the quality assurance department

Process
Quality

Standards
and

Guidelines

Software
Inspections
and Audits

Software
Testing

Measurement
and

Analysis

Head of
Quality Assurance

Department

J. Ross Publishing; All Rights Reserved

76 Mastering Software Quality Assurance

Organizing and staffing a QA department really boils down to manpower
planning, which is best performed by qualified industrial engineers. Manpower
planning involves the following steps:

1. Enumerate all the activities performed by the department based on
each distinct function.

2. Enumerate the number of iterations that might be required in a year
for each activity.

3. Assign the time required to accomplish each enumerated activity per
iteration, in person-hours.

4. Compute the amount of time required to perform all iterations for
each of the enumerated activities.

5. Arrive at the total workload for each distinct function in person-
hours required annually by totaling the times computed in step 4.

6. Arrive at the manpower requirements for each distinct function by
dividing the corresponding workload by 2,000 (the number of per-
son-hours per person per year).

7. Round fractions up to the next whole number. This provides spare
time that can be utilized for other tasks.

8. Alternatively, round down to the next whole number. This could
cause some stress on the resources in times of peak workload, or
temporary hires might be needed to supplement manpower during
peak workload periods.

Table 4.1 shows a sample manpower requirement computation. While this may
seem to be a simple exercise, I strongly suggest employing the help of industrial
engineers, who have specialized knowledge in work study and manpower plan-
ning, to plan the staffing requirements for the QA department.

A WELL-DEFINED AND INSTITUTIONALIZED
SOFTWARE DEVELOPMENT PROCESS

According to a significant number of practitioners, especially software develop-
ers and delivery managers, this is the number one aspect of the parameters for
fostering a quality culture in an organization. However, I rank it second. Unless
there is a watchdog, the process might not be as well defined or implemented
as it is made out to be. There should be “checks and balances” for all human
endeavor. Without proper checks and balances, human endeavor will deterio-
rate over a period of time. Checks and balances (QA) are to human endeavor

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 77

what brakes are to a car. True, brakes do not provide any motive power to the
car (just as QA does not contribute to construction of the product) and they
do consume gas (just as QA expends resources), but brakes save the car and its
passengers from grave danger (just as QA prevents defective products from
reaching customers).

All certification models mandate an organization to have a defined set of
processes to refer to for guidance. A defined process brings to all human re-

Table 4.1. Manpower computation for a quality assurance department

Number of Total
Person-hours iterations person-hours

Activity per iteration per year per year

Phase-end audit (3 per project for 4 75 300
25 projects per year)

Software inspections (3 per project 5 75 375
for 25 projects per year)

Periodic audits (6 per year) 20 6 120

Process improvement coordination 175 4 700
(4 times per year)

Measurement and analysis 80 12 960
(12 times per year)

External audit coordination 40 2 80
(2 times per year)

Assistance to projects, assuming 4,000
10 concurrent projects with 1
person for every 5 projects

Add any further activities in the
manner shown above

Total hours 3.27 or 4 persons 6,535

Total hours specialty-wise

Audits and inspection 0.4 person or 1 person 875

Process definition and improvement 0.35 person or 1 person 700

Measurement and analysis 0.48 person or 1 person 960

Project assistance 2 persons 4,000

Total number of persons required minimum of 4 persons
maximum of 5 persons

J. Ross Publishing; All Rights Reserved

78 Mastering Software Quality Assurance

sources a common understanding of how to carry out their assignments. It also
assists in bringing uniformity of output from a diverse set of individuals working
on different projects in the organization. In addition, a defined process facili-
tates work study to improve methods of working through process improvement.

Defined means documented, and a defined process in this context means a
documented process. Well defined means that the documentation adheres to the
principles of good documentation (meaning it follows organizational, national,
or international documentation guidelines), and the documents are comprehen-
sive and exhaustive in that they cover all relevant aspects of the activity detailed
by the process.

A process in this context is a comprehensive set of documents that defines
the methods for performing a major activity in the organization. It consists of
procedures, formats, templates, standards, guidelines, and checklists. Examples
of a process are the project management process, verification process, validation
process, and measurement and analysis process.

Institutionalization implies that the process is implemented in the organiza-
tion, that all persons in the organization are trained in the process, and that they
all are well versed in the process. They use the process in their daily routines
without being prompted. The process has been in use for a sufficiently long
duration that it has become second nature to the staff while performing their
work. Organizations often claim that they have an institutionalized process within
two months of implementing a process. This cannot possibly be true. After
rolling out a process, it takes years for institutionalization to take hold and for
staff to grasp the spirit of the process and use it in their daily activities without
being prompted and without needing to refer to documents.

The CMMI® model document for development (version 1.2, August 2006)
defines institutionalization as “the ingrained way of doing business that an or-
ganization follows routinely as part of its corporate culture.” It takes time for
a process to become ingrained. How much time depends on the intensity of
education, the seriousness of the implementation, and the individual learning
skills of the organization’s human resources. A safe assumption is that a process
is institutionalized after a minimum of one year from the date of implementa-
tion, provided all individuals are comprehensively trained in the process and
assistance is available if needed.

Thus, a well-defined and institutionalized process in the context of software
development organizations means:

an organization-wide process that is documented, where the documen-
tation adheres to good documentation principles in a comprehensive
and exhaustive manner and covers all relevant aspects of the software

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 79

development activity and all related organizational activities, and all
the staff of the organization are educated in the process. The process is
fully implemented and has been in use in the organization for a suf-
ficiently long duration that all staff are well versed in the process to the
extent that it has become second nature and they can perform the
process without reference to the process documentation.

The first step in institutionalizing a well-defined process is to define it com-
prehensively, accurately, and completely. The following are the major processes
in a software development organization, in alphabetical order:

1. Configuration management process
2. Measurement and analysis process
3. Process definition and improvement process
4. Project management process
5. Quality management process
6. Software construction process
7. Validation process
8. Verification process

Other organizational processes that aid in software development activity include
the following:

1. Administration processes for purchasing, facilities, etc.
2. Human resources processes for recruitment, training, retention, sepa-

ration, etc.
3. Marketing processes for project acquisition, customer relationship

management, revenue management, etc.
4. Finance processes for budgets, expenditure management, profit

management, etc.

Each of these processes has procedures for each of the activities of which it is
comprised. Chapter 8 discusses the topic of process quality further.

One point that requires special mention here is that the software develop-
ment process set should contain processes for QA activities, measurement,
analysis, and improvement of the process itself. The QA process should define
the minimum set of QA activities mandated for each project executed in the
organization. The process improvement process must define the sources of
suggestions for process improvement; the methods for analyzing and short-
listing candidate suggestions for implementation; and procedures for piloting

J. Ross Publishing; All Rights Reserved

80 Mastering Software Quality Assurance

the improvements, updating the process documents, obtaining the approvals,
and rolling out the improved process.

EXPLICIT SYSTEM OF REWARDS AND RECOGNITION
FOR ACHIEVING EXCELLENCE IN QUALITY

All employees are expected, in theory, to perform at their peak
capacity, but this expectation is limited to paper. Peak perfor-
mance normally is seen at the time of initial entry into the orga-
nization and when jobs are threatened. Most other times, em-
ployee performance hovers from just above the penalty-avoidance
level to the above-average level. During planning and goal setting,
only average performance (normal-case scenario), not peak per-
formance (best-case scenario), is considered.

Ergonomic and industrial engineering studies show that peak performance
is not sustainable for long periods, but that it is possible to improve performance
over a period of time. Professor Elton Mayo’s studies at the Hawthorne Works
of Western Electric have shown conclusive evidence that human performance
can rise to unheard-of peaks with the right motivation. While it is not practical
to list and discuss the many current theories on motivation here, it is well
recognized that a properly designed rewards and recognition system does elevate
the commitment of individuals, motivating them to higher levels of perfor-
mance. Therefore, most organizations use a variety of rewards and recognition
systems to motivate employees.

For a rewards and recognition system to be effective and result in higher
levels of performance, it must feature the following characteristics:

� It must be a formal mechanism that recognizes and rewards efforts
to improve the quality of products, with the rewards handed out
regularly.

� It must be based on objective data that is obtained through system-
atic measurement.

� It must set aside a formal occasion when rewards and recognition are
handed out. This occasion should be periodic and held without fail
on the appointed day.

� It must allow star performers (those who always receive rewards and
recognition) to be recognized separately and provide rewards for a
wider group of employees. If it turns out that the same person, even

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 81

with a stellar performance, earns the reward on every occasion, the
system demotivates the rest of the employees. The system ought to
give hope to all employees so that they aspire to receive the reward
and work for it without having to compete with the “heavyweight
champion.”

� It must recognize an adequate number of employees on every re-
wards occasion. If only one employee out of a thousand is recognized
once a year, the other employees will have no hope of receiving a
reward in their career with the organization. The material value of
the reward can be reduced and the number of reward-earners in-
creased so that a larger number of employees can have hope that they
will achieve the coveted recognition. Hope drives people to scale
higher peaks in performance. It is the recognition that matters, not
the material value.

The human resources department and industrial engineers are usually able to
assist an organization in designing the right system of rewards and recognition.

In recognizing quality achievements, two parameters should be taken into
account: productivity and quality. I suggest using a defect injection rate as a mea-
sure of quality. How to compute a defect injection rate is discussed in Appendix
G of this book. While it is important to reduce the defect injection rate, achieve-
ment of the organizational productivity baseline is equally important.

Achievement of the lowest defect injection rate and the highest productivity
should be the deciding factor for recognizing and rewarding employees for
quality achievement. Sometimes an organization employs individuals who achieve
a zero or near-zero defect injection rate for a considerably long duration but
who may not rate high on productivity. Such persons should be rewarded if they
meet the organizational productivity norm, even if they do not exceed it. Often,
there is a champion in the organization who always scores high on both pro-
ductivity and quality. I suggest the champion be promoted to a higher-level
position so as to better utilize his or her talents. Not promoting a champion and
only offering the person a reward every year has a two-pronged negative effect.
The first is that the champion will likely become demotivated, believing that his
or her talent is worth a reward but not promotion. The second is that it dis-
courages others from even trying for the reward. While it is not my intention
to define the entire scheme of recognizing quality achievements and giving
rewards, I only offer some suggestions here to make the scheme effective.

All in all, it is necessary to define a scheme that truly recognizes achievements
in the domain of quality and to reward achievement fairly and regularly. It does

J. Ross Publishing; All Rights Reserved

82 Mastering Software Quality Assurance

not augur well at all if the recognition and rewards for efforts in product quality
improvement are given only sporadically or only when outstanding efforts are
noticed.

COMMITMENT AND INVOLVEMENT OF
SENIOR MANAGEMENT IN FOSTERING
A CULTURE OF QUALITY IN THE ORGANIZATION

Although this aspect appears at the end of this chapter, it holds first place in
importance. Without senior management support, quality efforts are a non-
starter in any organization. Quality is a journey, never a destination. With so
much competition and innovation in the market, it is natural that as soon as
something great is achieved, somebody else will achieve something even greater.
Therefore, an organization must constantly move forward, improving its per-
formance in all four dimensions of quality (specifications, design, development,
and conformance). To do this, senior management support is essential.

Quality initiatives consume monetary resources but do not generate any
direct and tangible revenues. True, quality generates savings, but it is not easy
to quantify and measure the savings. Whereas revenues are real, savings are, to
a large extent, intangible.* There will always be pressure to cut costs incurred
to maintain or improve quality in order to increase profits. This can tempt
management to reduce staff in the QA department and embed QA activities
within the delivery activities. It is senior management that bears the pressure of
demands from top management (the board of directors) to cut costs. Without
the support of senior management, the cost-cutting axe always falls on the
quality initiatives.

There are many times in a software development organization when conflict
arises between the delivery department and the QA department, especially when
an organization is under delivery pressure. If the QA department is placed under
the delivery function or if the delivery department does not support recommen-
dations made by the QA department, it is the QA department that will be short-
circuited. The most common argument for this is: “There are already some
residual defects. What difference would one more make?” Not much, true, but

* An anecdote illustrates this point. A husband comes home from the office gasping and tells
his wife, “I ran behind the bus today and saved 50 cents!” He hands the money to his wife,
who sneers and replies, “You should have run behind a taxi. Then you would have saved
a full dollar.”

J. Ross Publishing; All Rights Reserved

Organizational Environment that Fosters a Quality Culture 83

the objective of the QA department is to uncover and eliminate as many defects
as possible and to prevent them from reaching the customer. In such situations,
the counsel of senior management is essential. If the QA department is being
unreasonable, it must be counseled, and if the issue is as serious as the QA
department makes it out to be, then the delivery department should be coun-
seled. Most importantly, however, senior management has to be impartial.

Since a QA department is a cost center, obtaining required resources is
always an uphill struggle. This is especially so in the software industry, as it
places less emphasis on QA, and no industry norms are available which require
that a QA person is needed for every 50 developers, for example. Many orga-
nizations resort to having a QA department in name only. The head of the QA
department is more often than not placed in a junior position in both rank and
salary compared to the delivery head. This is a very counterproductive situation,
as the QA head can never stand up to the delivery head in such an arrangement,
even on important matters.

Another obstacle a QA department often experiences is not having adequate
and qualified individuals to staff QA positions. Without proper staff, QA work
cannot be accomplished competently. I know of an organization with a QA
department certified at level 4 in CMM® (the predecessor of CMMI®) that is
staffed with a journalism graduate, a biology graduate, and a mechanical engi-
neering graduate out of a total staff of five. The person leading the QA depart-
ment was designated “quality coordinator.” How QA activities can be carried
out effectively in such an organization, and how a qualified CMM® lead ap-
praiser can rate it as having a maturity level of 4 is beyond my comprehension.
Support from senior management is vital for QA efforts to be serious and to
produce results.

Senior management support is essential for providing funding and resources
for QA initiatives, for impartially judging conflict scenarios, and for instituting
an effective, competent, and fully staffed QA CMM® in an organization.

FINAL WORDS

To achieve excellence in the quality of deliverables, organizations need to de-
velop a culture that fosters quality. An organization’s quality of deliverables is
always commensurate with the culture prevalent in the organization. An orga-
nization that has developed a culture that fosters quality in its deliverables has
senior management commitment to foster quality and provide the necessary
resources to carry out QA activities, including a full-fledged QA department
fully staffed with qualified and competent individuals; a well-defined and insti-

J. Ross Publishing; All Rights Reserved

84 Mastering Software Quality Assurance

tutionalized software development process with standards and guidelines; a well-
defined process for process improvement; and an effective system of recognition
and rewards for quality achievement.

However, once such a culture is developed, entropy tends to set in—even
in high-competence organizations—unless explicit efforts and mechanisms are
in place to continually drive the improvement effort. Therefore, it is essential
to carry out periodic appraisals and to initiate corrective actions in order to
maintain an organizational environment that is conducive to achieving high
levels of quality. Another way to maintain an organizational culture that fosters
quality is to benchmark the organization’s achievements in quality against those
of similar organizations, in order to know where the organization stands in
comparison. This facilitates improvement and allows the organizational envi-
ronment to gear up for even better achievements and, ultimately, to become a
leader in the industry.

J. Ross Publishing; All Rights Reserved

85

5
SOFTWARE VERIFICATION

CHAPTER OVERVIEW

� The meaning of verification
� Types of walkthroughs (peer reviews)
� Types of inspections
� Types of audits
� Best practices for walkthroughs, inspections, and audits
� The verification process

VERIFICATION

Verification is an activity that is carried out
to confirm that something conforms to its
documented specifications, standards, regu-
lations, etc. It is confirmation that “the right
thing is done” and that all the required com-
ponents are present in the right quantity.
Verification does not involve confirming
functionality by testing the artifact. Verifi-
cation is carried out by visual means and, at
the most, by touch and feel, not by running
or powering up the artifact.

Standard 610 of the Institute of Electri-
cal and Electronics Engineers standard glossary of software engineering termi-
nology defines the term “verification” as “the process of evaluating a system or

J. Ross Publishing; All Rights Reserved

86 Mastering Software Quality Assurance

component to determine whether the products of a given development phase
satisfy the conditions imposed at the start of that phase” and also as “formal
proof of program correctness.”

The Capability Maturity Model Integration (CMMI®) model document for
development (version 1.2, August 2006) defines the term “verification” in its
glossary section as “confirmation that work products properly reflect the re-
quirements specified for them. In other words, verification ensures that ‘you
built it right.’”

Walkthroughs (reviews), inspections, and audits are the tools commonly
used for verification. Verification plays an important role in most forms of
human endeavor for quality control. Most of the quality assurance (QA) activity
in the manufacturing and construction industries involves verification. Testing
has limited applicability in these industries, especially in heavy manufacturing
such as large turbine, shipbuilding, aircraft, etc. In the service industries, veri-
fication plays a larger role and testing a lesser one. For instance, in a catering
service, it is a costly waste of time to prepare a food item and then test it to find
out how it tastes. If it tastes bad, the dish would have to be thrown out and a
new dish cooked. In this example, testing is cursory to see if the taste of the dish
is acceptable. Inspection before cooking to ensure that all the ingredients in the
recipe are in the right quantity and in the right proportion is vital to the quality
of the dish. In construction, it is not practical to test the strength of a structure,
as it might lead to the destruction of the structure itself. Inspection to ensure
that the right materials are being used in the right proportion and that the
structure is being built in the right manner is the only way to ensure the quality
of the structure. Verification is a vital tool for QA in all industries, including
the software development industry.

However, testing in the software industry is nondestructive, and fixing de-
fects does not necessitate physically breaking and remaking the product. There-
fore, testing is the preferred QA activity in the software development industry
today. Because of this, though, many companies neglect verification activity, and
such neglect is risky because it is well recognized that 100% testing is not prac-
tical. Software verification has an important place in software development, and
neglecting it is detrimental to the quality of deliverables.

For certain software artifacts, verification is the only possible QA activity.
For example, the requirements documents, design documents, and various plans
can only be subject to verification or review. With the exception of source code
(which can be tested), there is no way these documents can be “tested.” Some
software developers (especially those who detest documentation) argue that
verification of code is a waste of time, as it is the testing that can reveal any
defects, and testing is always carried out even if rigorous verification is carried

J. Ross Publishing; All Rights Reserved

Software Verification 87

out as well. What is the point of performing both activities? Consider the fol-
lowing cases where testing would not be able to detect any defects:

� Unnecessary declaration of variables and constants, which are not
used in the code, may be harmless, but it ties up RAM and has the
potential to slow down the system, especially in Web applications.

� Inclusion of unwanted libraries not used by the application also may
be harmless, but it increases the size of the setup file. It also occupies
unnecessary disk space at the target location.

� There are always multiple algorithms for achieving a given function-
ality. Whether the algorithm used is efficient cannot be detected by
normal testing.

� There are multiple control structures (go to, if, while, do while, case,
etc.) available in programming languages, and each has its own ef-
ficiency. With the possibility of any one control structure being used
in place of any other, programmers tend to use the control structure
they are most comfortable with rather than the right one. Normal
testing cannot determine if the right control structure was used.

� Testing can ensure that the product performs stated actions, but if
some unstated and undesirable actions are built into the product,
even negative testing might not be able to detect them. This is called
malicious code, which includes “time bombs” (their activation is
based on a date or a clock hour), “event bombs” (their activation
is based on a specific and rare event trigger), “random bombs”
(their activation is based on a random number generation tech-
nique), etc. Needless to say, malicious code performs undesirable
actions that are detrimental to the safe usage of a product and can
even cause damage. Verification of source code is the only way to
detect malicious code, which justifies the activity if for no other
reason than this one.

� It is normal for programmers to insert statements to debug logical
errors, self-directed comment statements, unnecessary documenta-
tion statements, superseded code that is commented in the source
code, etc. This is called trash code, and it does not have any function;
its insertion is purely temporary. Programmers often neglect or for-
get to delete trash code before bringing the artifact into configura-
tion control. Testing cannot detect trash code. Trash code might be
harmless, but it could cause issues during software maintenance.

Therefore, software source code verification should not be skipped.

J. Ross Publishing; All Rights Reserved

88 Mastering Software Quality Assurance

The objectives of verification are primarily to ensure that the right thing is
built, and the following specific confirmations are sought from verification:

1. Achievement of the core functionality set for the artifact—This
ensures that the artifact contains all product-related functionality
that it is supposed to and that no specified functionality has been
left out.

2. Comprehensiveness and completeness of the artifact—This en-
sures that any aspect that is required in the artifact is not left out.
All sections are filled in. All explanations are given. All aspects of
the artifact are self-contained and all references are correctly given
to external artifacts. There is traceability for all aspects to the up-
stream artifacts and downstream artifacts.

3. Conformance to standards and guidelines defined for the type of
artifact in the project plans—There are standards and guidelines
for documentation, coding, naming conventions, etc. for all soft-
ware artifacts. These standards and guidelines ensure uniformity in
interpretation, completeness of artifacts, and maintainability. This
aspect ensures that the artifact conforms to these standards and
guidelines.

4. Efficiency and effectiveness of the solution presented by the arti-
fact—The efficiency aspect ensures that the solution alternative
selected is best suited to the situation in terms of ability to imple-
ment, maintainability, accuracy, and response times. The effective-
ness aspect ensures that the solution alternative selected delivers the
results expected of it.

5. Clarity and correctness of the artifact—This aspect ensures that
the artifact is easily understandable by other people, as it might need
maintenance later on. That is, the artifact is not open to multiple
interpretations. It also ensures that what is contained in the artifact
is correct and that no mistakes have crept in.

6. Achievement of all ancillary functionality that is expected of the
artifact—The artifact is likely to contain ancillary functionality that
is required for defect prevention, protection against misuse or
unintended use, security functions for restricting access rights, etc.
Reviewers confirm that all ancillary functionality is properly built
into the artifact.

7. No unnecessary functionality is present in the artifact—Reviewers
also need to confirm that the artifact contains only the necessary
functionality and no other functionality, whether harmless or not.

J. Ross Publishing; All Rights Reserved

Software Verification 89

8. No malicious functionality is contained in the artifact—This is,
again, unnecessary functionality, but functionality that could be
malicious with the potential to cause damage. Reviewers need to
exercise extra care to ensure that no malicious functionality has
crept into the artifact.

9. The format of the artifact adheres to organizational standards or
customer specifications—Sometimes customers specify the format,
especially for information artifacts such as design documents. When
no such customer specification is mandated, organizational stan-
dards become operative. Proper formatting assists in maintenance.
Therefore, reviewers need to ensure that the artifact is formatted
properly. Often, the code formatting is neglected in code artifacts,
which causes issues during software maintenance. Reviewers need to
ensure that the formatting is properly done and that it conforms to
specified standards.

10. Fulfillment of the requirements of downstream functions of the
artifact when it is to be used downstream—This is especially im-
portant for information artifacts such as requirements documents,
design documents, test case documents, etc. that are to be used by
other people downstream to carry out subsequent work. Such ar-
tifacts need to be verified to ensure others can understand them in
the proper context without misinterpretation and can carry out
their work effectively and efficiently.

The tools and techniques for verification adopted in software development
organizations include the following:

1. Walkthroughs (also referred to as peer reviews)
2. Inspections
3. Audits

Each of these verification methods is discussed in greater detail in the following
sections.

WALKTHROUGHS (PEER REVIEWS)

A walkthroughs is an activity in which people other than the author walk
through every sentence of the software information artifacts (mainly docu-
ments) and every line of code for the software code artifacts (source code, table
scripts, stored procedures, interface routines, etc.). The CMMI® model docu-

J. Ross Publishing; All Rights Reserved

90 Mastering Software Quality Assurance

ment for development (version 1.2, August 2006) defines peer review in its
glossary section as “the review of work products performed by peers during
development of the work products to identify defects for removal. The term
‘peer review’ is used in the CMMI® Product Suite instead of the term ‘work
product inspection.’”

The people (peers) conducting a walkthrough normally have experience and
expertise similar to that of the author. They deliver a report at the end of the
walkthrough, known as a review report. A review report contains the following
information:

1. The defects uncovered during the walkthrough, which include logical
errors, any trash code and malicious code, unused but declared vari-
ables and constants, the presence of hard coding, nonconformance to
standards and guidelines, etc.

2. Opportunities for improvement, if any, uncovered during the
walkthrough, such as better constructs, syntax improvements, etc.

3. Suggestions for improvements that might result in greater clarity or
robustness or better efficiency of execution, using reusable compo-
nents, eliminating redundancy of code in the artifact or the end product
of the artifact, etc.

4. Other information, such as the name of the artifact reviewed, date of
the review, names of the author and the reviewer, information per-
taining to closure of defects, and a place to provide answers to op-
portunities for improvement as well as suggestions for improvements

Figure 5.1 offers a suggested format for a review report.
There are five types of walkthroughs:

1. Independent walkthroughs
2. Guided walkthroughs
3. Group walkthroughs
4. Expert reviews
5. Managerial reviews

Each of these is discussed in greater detail in the following sections.

Independent Walkthroughs

This type of verification is also sometimes referred to as a postal review. It is
carried out in the following manner:

J. Ross Publishing; All Rights Reserved

Software Verification 91

Figure 5.1. Review report format (page 1 of 2)

Review Report

Project name:

Name of the artifact being reviewed, with version number:

Name(s) of the reviewer(s):

Name of the author of the artifact:

Date(s) on which the review is conducted:

Type of review: � Independent/guided

� Individual/group

� Postal/meeting

Defects uncovered during the audit (use an additional sheet if necessary)

Reference Status
Defect Defect to process Defect Closed (open or

ID description for the defect origin on closed)

Signature of lead reviewer:

Date of signature:

J. Ross Publishing; All Rights Reserved

92 Mastering Software Quality Assurance

Closure Action by the Author

Corrective actions implemented

Corrective action Defect IDs covered by
implemented this corrective action Comments

Preventive action implemented

Preventive action Defect IDs covered by
implemented this corrective action Comments

Signature of author:

Date of signature:

Defect closure actions (to be filled in by the lead reviewer)
I have verified and found that all the defects described above are closed satisfac-
torily, except the following defects, which are retracted or pending:

1.

2.

3.

Signature of lead reviewer:

Date of signature:

Figure 5.1. Review report format (page 2 of 2)

J. Ross Publishing; All Rights Reserved

Software Verification 93

1. The author of the artifact completes the work and informs the project
leader (PL) or software project manager (SPM), who arranges for
the review.

2. The PL or SPM brings the artifact into configuration control.
3. The PL or SPM allocates the work of reviewing the artifact to a peer

of the author of the artifact.
4. The artifact to be reviewed is made available to the reviewer. This

can be done by pointing out the location of the artifact to the re-
viewer or by physically transferring the artifact to the reviewer. When
the location is pointed out, the access rights are limited to “read
only.”

5. The reviewer reviews the artifact, prepares the review report, and
hands the review report over to the PL or SPM.

6. The PL or SPM scrutinizes the review report and arranges for the
defects pointed out in the report to be fixed.

7. The PL or SPM requests that the reviewer verify the efficacy of the
defects fixed.

8. The reviewer verifies the rectifications.
9. If all the defects are closed, the reviewer records the details in the

review report and closes the report.
10. If defects remain in the artifact, steps 6, 7, and 8 are iterated until

all defects are fixed.
11. When all defects are closed, the review activity for the artifact is

completed.

The process of an independent walkthrough is depicted in Figure 5.2.
The notable aspect of this review is that the author of the artifact need not

be present while the review is being conducted. If the reviewer needs any clari-
fication, he or she contacts the author to obtain the required clarifications. This
way, the author is free to devote time to another activity while the artifact is
being reviewed. However, if the artifact is poorly developed or if it uses complex
algorithms, the reviewer might not understand and might not be able to unearth
all defects effectively.

Guided Walkthroughs

A guided walkthrough is conducted in the presence of the author of the artifact
being reviewed. In this method, the author of the artifact guides the reviewer
through the artifact.

J. Ross Publishing; All Rights Reserved

94 Mastering Software Quality Assurance

Figure 5.2. Independent walkthrough process

No

No

Yes

Yes

Artifact ready
for walkthrough

Artifact placed
in configuration

control

Identify person
to walk through

the artifact

Conduct
walkthrough

Review report

Any defects
uncovered?

Fix defects

Place review
report in

project records

Walkthrough
completed

Are the
defects fixed?

J. Ross Publishing; All Rights Reserved

Software Verification 95

A guided walkthrough is conducted in the following manner:

1. The author of the artifact completes the work and informs the PL
or SPM, who arranges for the review.

2. The PL or SPM allocates the work of reviewing the artifact to a peer
of the author of the artifact.

3. The author interacts with the reviewer and they agree on a time slot
for the review.

4. The author then walks the reviewer through the artifact, explaining
the contents of it.

5. The reviewer seeks additional explanation wherever necessary.
6. Wherever the reviewer finds an opportunity for improvement, the

author and the reviewer discuss the opportunity, and if consensus
is reached, the author makes a note of the correction to be carried
out.

7. By the end of the walkthrough, the author will have noted all op-
portunities for improvement and accepted the manner in which
improvements are to be carried out.

8. Optionally, the author can implement the corrections at the time of
the review, closing each defect as it is uncovered.

9. The author implements the accepted corrections and closes the defects
in concurrence with the reviewer.

10. The reviewer informs the PL or SPM that the artifact has passed the
review.

11. The PL or SPM brings the artifact under configuration control.
12. Optionally, the reviewer might prepare a formal review report.

The advantage of this method is that the duration of the review is much
shorter compared to an independent walkthrough. The total turnaround time
for completion of the review is also shorter. One disadvantage, however, is that
there is a possibility that the author and the reviewer may disagree about an
opportunity for improvement, which can end up in an argument that requires
resolution from a higher level of authority. Another disadvantage is that the
author might convince the reviewer that a defect is in fact not a defect!

Group Walkthroughs (Group Reviews)

A group walkthrough (also referred to as a group review) is used when it is
determined that the knowledge of more than one person is necessary to review
the artifact. This type of walkthrough is used in particular for strategic artifacts,

J. Ross Publishing; All Rights Reserved

96 Mastering Software Quality Assurance

such as product specification documents, software architecture design docu-
ments, and test strategy plans.

A group walkthrough is conducted in one of the following three modes:

� Postal review—In this method, the PL or SPM takes responsibility
for coordinating the review. The advantage of this type of review is
that the reviewers can conduct it at their convenience and location
rather than try to find a time when the reviewers can meet, which
could delay the review. In addition, with each member of the review
group focusing on the artifact, knowledge from different areas can
shed more light on possible improvements, which might not be
possible when just one person reviews the artifact. The disadvantage,
however, is that the review might take longer, because the process
cannot be completed until the slowest member finishes. The follow-
ing steps are carried out in this type of review:

1. When an artifact is constructed and ready for review, the PL or
SPM selects a review team consisting of members slightly more
experienced than the author(s).

2. A review coordinator is nominated either by the review team
itself or by the PL or SPM. Sometimes the PL or SPM acts as the
review coordinator.

3. The artifact is handed over to each member of the review team.
4. The review team walks though the artifact, and each member

hands over his or her individual review report to the review
coordinator.

5. The review coordinator consolidates the review reports by elimi-
nating duplicates and prepares a final review report.

6. Alternatively, the review coordinator might organize a meeting
to collate the review findings and prepare the final review report.

7. The final review report is handed over to the author(s) of the
artifact.

8. The author interfaces with the review coordinator, obtains clari-
fications where required, and implements corrections based on
all the review report findings.

9. The author interfaces with the review coordinator and closes all
the review report findings.

10. The review is completed and the artifact is promoted to the next
stage in configuration management.

The postal review process is depicted in Figure 5.3.

J. Ross Publishing; All Rights Reserved

Software Verification 97

Figure 5.3. Postal review process

Defects not
resolved

Defects are
resolved

Artifact ready
for review

Nominate review
coordinator

SPM identifies
review team

E-mail artifact to
review team members

Review team
members prepare
review comments

Review team
meeting organized by

review coordinator

Review meeting
is conducted

Review coordinator
collates review

comments

Review report handed
over to SPM

Review comments
are resolved

Review team
members released

Review completed

Review
coordinator
checks the
resolution

Place the
review report

in project records

J. Ross Publishing; All Rights Reserved

98 Mastering Software Quality Assurance

� Meeting review—A meeting review is used to reduce the review turn-
around time. One disadvantage, however, is that, except for the re-
view coordinator, some review group members might not focus ad-
equate attention on the artifact, thereby not contributing fully to its
improvement. The following steps are carried out in this type of
review:

1. When an artifact is constructed and ready for review, the PL or
SPM selects a review team consisting of members slightly more
experienced than the author(s).

2. A review coordinator is nominated by either the PL or SPM.
3. The artifact is handed over to each member of the review team

in advance of the meeting.
4. The review coordinator arranges for the review meeting in con-

sultation with all review team members.
5. All review team members come to the meeting prepared with

their review comments.
6. The review coordinator collates the review comments from all

the group members, and they are discussed in the meeting.
7. The review report is finalized in the meeting.
8. Review team members are released, and the review coordinator

continues the subsequent steps in the process.
9. The review coordinator submits the report to the PL or SPM,

who has the author(s) of the artifact rectify the defects.
10. The author interfaces with the review coordinator until all de-

fects are fixed and closed by the review coordinator.
11. The artifact is moved to configuration control.

� Guided meeting review—This type of review is conducted in the
same manner as the meeting review, except team members do not
have to come to the meeting prepared with comments. The artifact
is presented by its author, and the review team members discuss each
topic and offer their comments. The review coordinator collates the
comments and prepares the review report. The advantages of this
method are that the turnaround time is reduced to the shortest possible
amount of time and the review team members do not have to spend
time reading the artifact and forming their comments before coming
to the meeting. One disadvantage, however, is that the review team
members might not focus adequate attention to add value to the
artifact.

J. Ross Publishing; All Rights Reserved

Software Verification 99

Expert Reviews

Sometimes there is no one on the project team or in the organization who is
knowledgeable in and has experience in the domain or technology in which the
artifact was constructed. This is especially true when the artifact involves a new
technology. The artifact could be a program developed in a new language (or
one that is new to the organization) which only the author has learned and
mastered, or the organization might be working with a domain for the first time.
There is always a first time for working with every technology or domain for
an organization.

In some projects, it might become necessary to include complex mathemati-
cal algorithms in some of the artifacts. In this case, only the complex algorithms
might need an expert mathematician. The rest can be reviewed within the project
team.

In large projects, the software architecture plays a vital role in the robustness
of the product. Once built with a specific architecture, it is impossible to correct
a product without major overhaul. This fact becomes all the more crucial when
developing a commercial off-the-shelf product, as inefficient software architec-
ture can spell doom for the success of the product. In such cases, it is advan-
tageous to have the software architecture (or the high-level design) reviewed by
experts external to the project.

When such a situation occurs, the review becomes critical to ensure com-
pleteness and effectiveness of the artifact. In order to ensure that the artifact is
reviewed effectively, an expert from either within the organization or outside the
organization is identified to conduct the review. Some organizations (especially
large ones) have centers of excellence or pools of experts from which resources

J. Ross Publishing; All Rights Reserved

100 Mastering Software Quality Assurance

are drawn to assist project teams in times of project difficulty. If no internal
expert is available, an external expert, possibly from an academic institution, can
be engaged to conduct the review.

Organizations use experts to develop applications as well as to verify them.
Experts can be any of the following types:

1. Domain experts—People who have many years of experience in a
field and who have seen all possible situations.

2. Subject matter experts—People who are experts in a specific subject,
such as mathematics, and who normally come from academia. These
experts might not be experienced in the field, but they are well versed
in the theory and can aid in the development or review of algorithms.

3. Technology experts—People who are highly skilled in the develop-
ment platform. They may have many years of experience in the pro-
gramming language, database, or target platform on which the prod-
uct functions.

4. Social experts—People who have expertise in the areas of social be-
haviors, market forces, and anthropology. They help organizations in
product acceptance by the target market as well as in product usabil-
ity aspects and its possible social impact. These experts can assist with
such products as games and multimedia applications.

Expert reviews are costly, as the expert is external to the project and is paid
for his or her expertise. Expert reviews should be scheduled carefully so as to
utilize the expert’s time effectively and fully. If a postal review (independent
review) is used, the expert might need more time to understand the artifact and
will charge for that time. Still, the expert might need clarification from the
author, and therefore interaction between author and expert reviewer is inevi-
table. For this reason, a guided walkthrough is the usual mode of review for
conducting expert reviews.

Expert reviews can involve a single expert or a team of experts, depending
on the artifact being reviewed. Especially in the case of product specifications
or software architecture documents in new domains or new technologies, it is
normal to use multiple experts. In other cases, a single expert will suffice.

Normally, expert reviews are conducted to supplement peer reviews. A detailed
peer review can be conducted in addition to an expert review to ensure that all
defects lurking are unearthed and fixed. The methodology of an expert review
is similar to that of an independent walkthrough and a guided walkthrough,
except that the reviewer is the selected expert. All other aspects are the same.

J. Ross Publishing; All Rights Reserved

Software Verification 101

Managerial Reviews

A managerial review is performed by the person who directly supervises the
author of the artifact. This review is the final step before promoting the artifact
to the next level in configuration management. A managerial review is a cursory
review, and it does not delve into the details of the artifact.

The objectives of a managerial review include the following:

1. It gleans over the artifact to ensure that the right product is built.
2. Using the well-developed hunches of the supervisor, it specifically

looks at possible problem areas and ensures that everything is alright.
3. It ensures that no required information is missing from the artifact.
4. It ensures that all the essential preceding activities have been per-

formed before according approval to the artifact or promoting the
artifact to the next level in configuration management.

5. It ensures consistency with other artifacts in the project as well as in
the organization.

6. It also ensures traceability with both upstream and downstream ar-
tifacts, where applicable.

There is no hard-and-fast rule that prohibits supervisors from delving into
the details of an artifact, and sometimes they do just that, especially when the
individual conducting the peer review is slightly inexperienced in the review
process.

A managerial review starts once the peer review has been conducted and all
defects are fixed and closed. A managerial review can take the form of either an
independent walkthrough or a guided walkthrough, depending on the size and
type of the artifact.

Normally, a managerial review does not generate a review report. If defects are
unearthed during a managerial review, the work is reassigned either to the same
person (or team) who conducted the peer review or to another person to redo the
peer review. The managerial review is not expected to uncover any defects, but if
defects are found, then another round of peer reviews is conducted.

Best Practices in Walkthroughs

The first and most common pitfall I have seen many organizations fall prey to
is treating walkthroughs as a mere formality to create a review record rather
than using them to improve product quality. Such organizations mostly use

J. Ross Publishing; All Rights Reserved

102 Mastering Software Quality Assurance

independent or guided walkthroughs conducted by a peer. Group walkthroughs
and expert reviews are rarely, if ever, performed. A best practice is to treat
walkthroughs as an effective tool for uncovering as many defects as possible and
to give the activity the importance and seriousness it deserves in the organiza-
tion. In addition, where necessary, group walkthroughs and expert walkthroughs
should be used in an organization.

The second pitfall I have seen is the omission of group walkthroughs for even
the most important artifacts, such as requirements documents and software
design documents. A best practice is to subject important artifacts to both group
walkthroughs and expert reviews.

Another pitfall I have observed is not conducting both a peer review and a
managerial review. Organizations either subject an artifact to a peer review
followed by a cursory managerial review, if there is one at all, or completely skip
the peer review and conduct a thorough managerial review. Each of these re-
views has its own objectives. While a peer review focuses only on the artifact,
a managerial review treats the artifact as a part of a whole series of artifacts and
links the information contained in the artifact being reviewed with the infor-
mation contained in other artifacts. Whereas a peer review focuses on details,
a managerial review focuses on the big picture. Therefore, a best practice is to
skip neither the peer review nor the managerial review.

In most organizations today, defect reporting is automated through a defect
resolution software tool. Some organizations use this mechanism only to report
defects uncovered during walkthroughs, and they omit the review report alto-
gether. This is another pitfall. Even if defects are reported using a defect manager
software tool, a review report still needs to be prepared and delivered. A review
report contains information in addition to identifying defects, such as oppor-
tunities and suggestions for improvement. If only a defect manager tool is used,
reviewers are discouraged from making observations about possible improve-
ments. Therefore, a best practice is to prepare a review report for each walkthrough
conducted in the organization, whether or not a defect manager software tool
is used to track and close all defects.

INSPECTIONS

Inspections play an important part in software QA. They ensure that all required
components are ready for the next stage. The output of an inspection activity
is an inspection report which specifies whether the system passed or failed.
Figure 5.4 offers a suggested format for an inspection report. If the report

J. Ross Publishing; All Rights Reserved

Software Verification 103

Figure 5.4. Inspection report format (page 1 of 2)

Inspection Report

Project ID:

Type of inspection carried out: � Readiness for system testing
� Acceptance testing
� Delivery

Name of inspector:

Date of inspection:

List of components inspected

Name of Nature of Type of inspection
component component carried out

Database server Hardware Visual and power-on inspection

RDBMS Checked for existence of data-
base and tables

Master data Checked for existence of data

Software components Software Tallied with configuration register

Verified all QA records and
ensured that all planned QA
activities are performed and all
defects uncovered are closed

Web server Hardware Visual and power-on inspection

Web server Checked for existence of Web
software server software as well as the

Web site

User documentation Documentation Verified review records and
approvals

J. Ross Publishing; All Rights Reserved

104 Mastering Software Quality Assurance

Figure 5.4. Inspection report format (page 2 of 2)

Defects uncovered

Defect Location Corrective Defect
description of defect action closed on

Inspection result: � Pass
� Fail
� Needs rectification and reinspection

Signature of inspector:

Date of signature:

Defect closure action (to be filled in by the inspector)
I have verified all closed defects and approve the closure action.

Signature of inspector:

Date of signature:

J. Ross Publishing; All Rights Reserved

Software Verification 105

indicates the system passed the inspection, it means that the system can proceed
to the next step. If the inspection report indicates that the system failed, it means
that some rectification needs to be carried out on the system under inspection.
After rectification, the system is resubmitted for inspection. To be able to pro-
ceed to the next step, it is essential that the inspection report indicate that the
system passed inspection. Figure 5.5 depicts the inspection process.

The scenarios in which inspections are to be carried out are discussed in the
following sections.

System Testing Readiness Inspection

System testing readiness ensures that all required components are in place for
conducting the system testing. Especially in Web-based applications, many
configurations are needed for a thorough system testing. If any of the required
components are missing, the testing process will be stalled and the defect must
be fixed immediately. A delay in fixing a defect leaves testers idle and waiting.

System testing readiness inspection ensures that the server is equipped with
the following:

1. Hardware (the Web server, database server, app server), which has
adequate RAM, hard disk capacity, and networking hardware

2. System software, including the operating system and other software,
which is loaded and in working order

3. Security software, such as antivirus, antispyware, firewalls, etc., which
is loaded and in working order

4. Connectivity and bandwidth, meaning the servers are connected
together and are connected to client machines through the Internet
or an intranet

5. Master data, meaning the tables that store master data are filled in
with appropriate data and have been subjected to the necessary QA
activities to ensure data integrity and accuracy

6. Software product, meaning the software product being tested has
undergone all the planned software QA activities, with all defects
uncovered fixed and all items reported as nonconformances closed

7. All the client machines, which are in place with the specified configu-
ration and are connected to the servers through the Internet or an
intranet

In addition, system testing readiness inspection ensures that the following
conditions are met:

J. Ross Publishing; All Rights Reserved

106 Mastering Software Quality Assurance

1. The test plans and test cases are in place, and they have been sub-
jected to QA activities as planned. All defects are fixed and all
nonconformances are closed.

2. All testers have been briefed on the testing to be carried out.
3. The criteria for closing the testing activity are approved and are known

by the individuals concerned.

Figure 5.5. Inspection process

No

Start

Submit for
inspection

Pass?

Inspection
completed

Give clearance
for next step

Yes

Rectify defects

Conduct
inspection

J. Ross Publishing; All Rights Reserved

Software Verification 107

This inspection should be carried out by QA department personnel. Alter-
natively, an SPM or a PL from another project in the organization can carry out
this inspection. A system testing readiness inspection report is prepared and
handed over to the project SPM or PL; the report lists defects uncovered, if any.
The SPM or PL rectifies the defects and closes the inspection report, in order
to move forward with carrying out the system testing.

Acceptance Testing Readiness Inspection

Acceptance testing is conducted as a prerequisite for obtaining the customer’s
acceptance of product delivery and, thus, for receiving payment. This is a very
crucial stage, as any defect uncovered here reflects poorly on organizational
quality and delays dispatch, consequently delaying receipt of payment. There-
fore, inspection carried out at this stage ensures that everything is right and
ready for acceptance testing.

The following aspects are ensured during an acceptance testing readiness
inspection:

1. The software is complete in all respects.
2. All the planned QA activities, including other inspections, reviews,

and tests, are exhaustively conducted, and all nonconformances re-
ported have been rectified and closed satisfactorily.

3. The test data has been created and inspected for its suitability and
is found to be accurate.

4. The approved acceptance plan is in place.
5. Approved acceptance test cases are ready for use.
6. All the requisite hardware, with the right configuration as specified

in the acceptance test plan, is in place.
7. All system software and middleware as well as the database are

properly loaded on the hardware and are functioning as they should
be.

8. Test data is loaded and ready.
9. The customer’s confirmation to conduct acceptance testing on the

scheduled dates is received.
10. All concerned organizational entities are informed of the acceptance

testing schedule, and all necessary support is in place.
11. Fallback plans are in place for fixing any bugs that are uncovered

during acceptance testing as well as for addressing failure of any
hardware.

J. Ross Publishing; All Rights Reserved

108 Mastering Software Quality Assurance

Acceptance testing readiness inspection normally is carried out by the QA
department. In the absence of a QA department, a peer SPM or PL from another
project can carry out this inspection. An acceptance testing readiness inspection
report is prepared by the inspector and is handed over to the project SPM or
PL; the report lists defects uncovered, if any. The SPM or PL arranges for
rectification of any defects uncovered and closes the inspection report. Then the
acceptance testing is carried out as planned.

Delivery Readiness Inspection

The purpose of delivery readiness inspection is to ensure that the delivery pack-
age has all the components and that the right versions are included in it. Delivery
for a project can be carried out in one of three modes: (1) single-shot delivery,
meaning all components are delivered at one time; (2) interim delivery, meaning
one of multiple deliveries; or (3) final delivery, meaning the last of a series of
deliveries.

The following aspects are covered in delivery readiness inspection:

1. The project configuration register is used as the reference.
2. The executable code, if part of the delivery, is inspected for the date

and time of build and to ensure that it agrees with the configuration
register. If there happens to be a “build routine” that is used to
prepare the executable build, it is inspected to ensure that the right
versions of source code and libraries are used in preparing the build.

3. In an interim delivery, inspection ensures that all components men-
tioned in the software delivery note are in fact included in the delivery
set.

4. All planned QA activities are performed on all components of the
delivery set, and all defects uncovered are closed.

5. The version numbers of each of the components of the delivery set
are checked against the software delivery note and the configuration
register.

6. In a final delivery, inspection ensures that all components men-
tioned in the customer purchase order have been included in earlier
deliveries or are included in the current delivery and that there are
no components left pending delivery to customer after the current
delivery. This is in addition to ensuring the aspects previously
mentioned.

J. Ross Publishing; All Rights Reserved

Software Verification 109

7. In a single-shot delivery, both the customer purchase order and the
configuration register are used as references. Inspection ensures that
all components mentioned in the customer order are included in
the current delivery set and that no further deliveries are needed.
This is in addition to ensuring the correct version numbers and the
veracity of the build routine, if any.

8. The medium of delivery is as specified in the customer’s purchase
order, and the right number of copies is included in the delivery set.

9. All necessary approvals to effect delivery are in place.
10. The delivery is being effected to the right persons, as specified in the

customer’s purchase order.

Delivery readiness inspection normally is carried out by the QA department.
Sometimes marketing department personnel also take part in this type of inspec-
tion. In the absence of a QA department, a peer SPM or PL can carry out this
inspection. Upon completion of a delivery readiness inspection, a delivery readi-
ness inspection report is prepared and handed over to the project SPM or PL;
the report lists defects, if any. The SPM or PL arranges for rectification of any
defects and closes the report. Delivery is then effected to the customer.

Inspections at other points in the software development phases can be car-
ried out as necessary depending on the nature of the project and the need for
inspection. These inspections are determined by the SPM during the project
planning stage, and the details are recorded in the project software QA plan.

Best Practices in Inspections

Most software organizations use inspections, as they are an effective tool for
ensuring that a major activity is conducted smoothly. Some organizations argue
that inspections are superfluous, as the same objective is achieved through phase-
end audits. This is somewhat true, but audits are mainly document verification
systems. Inspections not only look at documents, but also examine physical
entities to ensure their correctness and readiness. For example, a system testing
readiness inspection looks at the configuration register, work register, review
reports, and test logs, to ensure that all components are built and all QA activi-
ties have been performed completely. It also looks at the systems to ensure that
all necessary system software is loaded and that all master data is ready, along
with the state of the current software product on the system. These functions
combined make inspections indispensable. A common pitfall in many organi-

J. Ross Publishing; All Rights Reserved

110 Mastering Software Quality Assurance

zations is exclusion of inspections altogether, using the argument that phase-end
audits achieve similar objectives.

Best practices for inspections of any type include:

1. Conducting inspections at least before system testing and acceptance
testing and before delivering the software product to the customer.

2. Staffing the QA department with specialist inspectors to carry out
inspections. This is more effective than having a software developer
from within the project or from another project conduct inspections.
Having a software developer carry out an inspection often ends up
being an exercise in filling out forms rather than a serious inspection
aimed at uncovering deficiencies.

AUDITS

Audits are used mainly in organizations that have a defined software develop-
ment process that has been implemented in their projects. Audits are document
verification systems in which project documents and records are compared with
the organization’s standards or defined processes. They generally are short in
duration, with about one to two hours spent on auditing a project or a function.
Audits are used as a QA tool mainly to ensure conformance of project execution
to the organization’s defined software development processes. They ensure that
a project is being executed in conformance with the organization’s defined
processes and that it is ready for the next phase of execution.

Audits are conducted for the purpose of uncovering nonconformances (NCs),
if any, in a project. If project documents or records show deviations from the
process described in the organization’s defined processes, these deviations are
treated as NCs and project execution is considered as not conforming to the
organization’s defined processes. The output of an audit is a nonconformance
report (NCR). An NCR lists all NCs uncovered during an audit. Figure 5.6
shows a sample NCR.

Audits consist of auditors (the people who conduct the audit) and auditees
(the people whose project is being audited). Auditors should have specialized
training in conducting audits. Auditors who conduct audits within an organi-
zation must receive internal audit training, whereas auditors who conduct cer-
tification audits or surveillance audits for other organizations must be trained
and certified to do so.

The usual duration of a project audit is one to two hours. During this time,
the auditor verifies all the project documents and notes any NCs found in order

J. Ross Publishing; All Rights Reserved

Software Verification 111

Figure 5.6. Nonconformance report (page 1 of 2)

Nonconformance Report

Project name:

Name(s) of the auditor(s):

Name of the auditee:

Date on which the audit is conducted: _________________

From (time) _______________ to (time) _______________

Type of audit: � Periodic/phase end � Vertical/horizontal

Nonconformances uncovered during the audit (use an additional sheet if
necessary)

Reference Status
NC NC to process Closed (open or
no. description for the NC on closed)

Opportunities for improvement observed, if any

Reference to section
Description of Artifact of the artifact for

improvement opportunity reference improvement opportunity

J. Ross Publishing; All Rights Reserved

112 Mastering Software Quality Assurance

Figure 5.6. Nonconformance report (page 2 of 2)

Suggestions for improvement

Description of Reference to artifact or area
the suggestion for the suggested improvement

Signature of auditor: Date of signature:

Closure Action by the Auditee

Corrective actions implemented

Corrective action NC numbers covered
implemented by this corrective action Comments

Preventive action implemented

Preventive action NC numbers covered
implemented by this corrective action Comments

Signature of auditee: Date of signature:

Nonconformance closure actions (to be filled in by the auditor)
I have verified and found that all the nonconformances described above are closed
satisfactorily, except the following, which are retracted/pending:

1.

2.

3.

Signature of auditor: Date of signature:

J. Ross Publishing; All Rights Reserved

Software Verification 113

to prepare an NCR later. The completed NCR is handed over to the auditee. The
auditee then must take the necessary action specified in the NCR to address the
NCs and have them closed by the auditor within the time allowed. Necessary
action as specified in an NCR involves the following:

1. Taking corrective action so that the NC is resolved
2. Putting in place preventive action so that the NC is not repeated in

the project later

Figure 5.7 depicts the audit process.
Audits can be classified in a variety of ways, as discussed in the sections that

follow.

Conformance Audits versus Investigative Audits

Conformance audits focus on the efficacy of implementation of organizational
processes during project execution. They are conducted to compare and con-
trast the project documents with the organizational processes, uncover NCs,
prepare an NCR, and track the NCR to its resolution.

Investigative audits usually focus on finding the causes for a failure, but
sometimes focus on finding the causes for an extraordinary success. The project
execution documents are carefully verified and in-depth interviews are held with
the project personnel to uncover the specific reasons that caused a failure or
grand success. They are used in special scenarios only.

Vertical Audits versus Horizontal Audits

Vertical audits are conformance audits conducted across the organization on
either a few selected projects or on all projects; they focus on all aspects of the
project(s).

Horizontal audits are also conformance audits conducted across the orga-
nization on either a few selected projects or on all projects, but they focus on
only one aspect of the project(s). Configuration management audits are a good
example of this kind of audit, which are conducted in most organizations.
Horizontal audits focus on the efficacy of implementation of one crucial aspect
of project execution in the organization.

Periodic Audits versus Phase-End Audits

Periodic audits are conformance audits that are conducted at the organization
level based on calendar duration. Normally, ISO-certified organizations conductJ. Ross Publishing; All Rights Reserved

114 Mastering Software Quality Assurance

Figure 5.7. The audit process

No

Yes

Audit report
placed in

project records

Auditor verifies
actions and closes

nonconformance report

Auditee takes
actions

Auditor gives
nonconformance

report

Audit closed

Any
nonconformances?

Auditor
prepares
for the
audit

Auditee
prepares
for the
audit

Conduct audit

Start

J. Ross Publishing; All Rights Reserved

Software Verification 115

these audits once every two or three calendar months. Each audit covers a few
of the organization’s current projects, and all projects under execution (not
closed projects) in the organization are covered within a one-year period. At the
end of every cycle of audits, the audit findings are consolidated and presented
to management and to the auditees.

The process for periodic audits is as follows:

1. Periodic audits normally are coordinated at the organization level
by the QA department.

2. At the beginning of every year, an audit plan is prepared and ap-
proved by the appropriate authorities. This plan includes details
such as probable dates for the audits, probable projects to be in-
cluded in each round of audits, probable auditors, etc.

3. At the beginning of each audit, an audit opening meeting that in-
cludes all the auditors, auditees, and management representatives is
held. The QA department representative explains the auditing pro-
cess in general, the objectives of the audit, the NCR resolution process
and timelines for closing NCs, etc. QA clarifies any issues raised by
the auditors or the auditees. Optionally, the management represen-
tative also explains management’s viewpoint on these audits.

4. Auditors conduct the audits, in conformance with the organiza-
tional audit process and audit guidelines, and record NCs found, if
any. The NCs are explained to the auditee and the NCR is handed
over to the auditee. The QA department also receives a copy for
follow-up.

5. The QA department consolidates all the NCRs and carries out analysis
of the NCs uncovered in the audits. The QA department conducts
an audit closure meeting with the same attendees who were in the
audit opening meeting and presents the audit findings as well as the
analysis of NCs. The efficacy of process implementation in the
organization is discussed, and opportunities for improvement in
process definition or implementation are agreed upon. The QA
department notes the decisions made during the meeting, if any,
and tracks them to resolution.

6. Auditees resolve any NCs by taking corrective action and also put
in place preventive action so that they do not recur in the project.

7. Auditees approach the auditors to close the NCRs and show audi-
tors the resolution of all NCs raised on the project.

8. The auditor verifies the resolutions, closes the NCR, and hands over
the closed NCR to the QA department.

J. Ross Publishing; All Rights Reserved

116 Mastering Software Quality Assurance

9. The QA department consolidates all NCRs and carries out an analy-
sis of NC resolution. This analysis is then presented to management
at a suitable opportunity.

10. The periodic audit is then complete.

Figure 5.8 shows a consolidated audit report that would be prepared at the
end of a cycle of periodic audits. Figure 5.9 depicts the periodic audit process.

Phase-end audits are triggered by project events. The SPM arranges for these
audits in coordination with the QA department when a project execution phase
is completed. Typically, these audits are conducted after the following phases:

� Project initiation—This audit is conducted soon after the project
initiation activities are completed. It ensures that the project is ini-
tiated in adherence with the organizational process for project ini-
tiation, which ensures that the subsequent phases of software devel-
opment move forward without any issues. A project initiation audit
is conducted for all projects.

� Software requirements analysis—This audit is conducted on projects
that have a significant requirements analysis, but would be skipped
for smaller or short-duration projects. It ensures that the process of
gathering and analyzing project requirements was carried out in
conformance with the organizational process for software require-
ments analysis, that required QA activities were performed, and that
NCs, if any, are properly resolved. A software requirements analysis
audit ensures that the next phases of software development are issue-
free.

� Software design—This audit is conducted on projects that have sig-
nificant software design activity, but would be skipped for short-
duration projects or those projects that do not have a significant
software design component. The audit ensures that the software de-
sign was carried out in adherence with the organization’s software
design process, that required QA activities were performed, and that
NCs, if any, are properly resolved. A software design audit ensures
that the next phases face no issues.

� Software construction—This audit is conducted once the software
construction is completed, which means that software development,
independent review, and unit testing of the developed code are com-
pleted. The audit ensures that the software construction was carried
out in conformance with the organizational processes for software
construction and that integration, peer review, and unit testing were

J. Ross Publishing; All Rights Reserved

Software Verification 117

Figure 5.8. Consolidated audit report (page 1 of 2)

Audit Report

Audit cycle reference (month and year):

Type of audit: Vertical/horizontal

Dates on which the audit is conducted: From: __________ To: ____________

Executive highlights of the audits:

1.

2.

3.

Projects covered during the audit (use an additional sheet if necessary)

Project Names of Names of Conducted No. of
ID auditors auditees on NCs

J. Ross Publishing; All Rights Reserved

118 Mastering Software Quality Assurance

Types of nonconformances uncovered

No. of
Process area NCs Comments*

* Describe if the nonconformances are due to drawbacks in the process, training,
negligence, etc.

Proposed improvement actions

Proposed improvement action Timeline

Any other significant points:

1.

2.

3.

Signature of QA head:

Date of signature:

Figure 5.8. Consolidated audit report (page 2 of 2)

J. Ross Publishing; All Rights Reserved

Software Verification 119

Figure 5.9. Periodic audit process

Conduct audits and
give nonconformance

reports

Any
nonconformances?

No

Yes

No

Yes

Prepare yearly
audit plan for

the organization

Conduct audit
opening meeting

Auditors close
nonconformances

Nonconformance
resolution is presented

to management

Audit completed

Quality assurance
department analyzes
the nonconformance

resolution

Auditees resolve
nonconformances

Quality assurance
department consolidates

nonconformances
and analyzes them

Conduct audit
closure meeting

Implement process
for process definition/

implementation
improvement

Any
opportunities for
improvement?

J. Ross Publishing; All Rights Reserved

120 Mastering Software Quality Assurance

carried out in conformance with the organizational processes for
peer review and unit testing. A software construction audit is con-
ducted for all software development projects and ensures the soft-
ware product’s readiness for system testing.

� System testing—This audit is conducted after system testing is com-
pleted. It may be skipped on projects that are small and that do not
have a significant component of system testing, especially when the
software product is expected to function on one platform only. The
audit ensures that the system testing was successfully completed and
that all defects uncovered were satisfactorily resolved in conform-
ance with the organizational system testing process. A system testing
audit ensures the software product’s readiness for acceptance testing
by the customer.

� Project closure—This audit is conducted for all projects, just before
a project is formally closed. It ensures that all project closure activi-
ties, such as documenting the best and worst practices of the project,
archiving the artifacts, identifying the reusable components and
handing them over to the appropriate organizational entity, and
knowledge sharing, were carried out in conformance with the orga-
nizational process for project closure. A project closure audit ensures
that the project experience is shared with the other SPMs and that
it is documented properly to be part of the organizational knowledge
repository for future reference.

The steps for carrying out a phase-end audit are as follows:

1. When a project phase is completed, the SPM coordinates with the QA
department to conduct the appropriate phase-end audit.

2. The QA department identifies an auditor, assigns the audit to the
selected auditor, and schedules the audit in consultation with the
SPM.

3. The auditor conducts the audit on schedule, records any NCs, pre-
pares the NCR, and hands the NCR over to the SPM.

4. The SPM resolves the NCs and, in coordination with the auditor,
closes the NCR. The auditor gives clearance to move the project
forward to the next phase.

5. The SPM adds the closed NCR to the project records, concluding the
phase-end audit.

Figure 5.10 depicts the phase-end audit process.

J. Ross Publishing; All Rights Reserved

Software Verification 121

Figure 5.10. Phase-end audit process

No

Yes

Software project manager
requests phase-end audit by

the quality assurance department

Project phase is completed

Quality assurance identifies
auditor and schedules the audit

Auditor conducts the audit
on schedule

Auditor prepares
nonconformance report

Software project manager
resolves all nonconformances

Auditor verifies and closes
the nonconformance report

Closed nonconformance
report part of project records,
project moves to next phase

Any
nonconformances?

J. Ross Publishing; All Rights Reserved

122 Mastering Software Quality Assurance

Internal Audits versus External Audits
Internal audits can be conformance audits, investigative audits, periodic audits,
or phase-end audits, but they are conducted by people internal to the organi-
zation. However, the internal auditors are independent of the project being
audited, meaning they can be from either the QA department or from other
projects. Internal audits are conducted to either ensure conformance or inves-
tigate the occurrence of a special event. The audit process is similar to the
processes previously described.

External audits are conducted by an external agency that specializes in the
audit process. Organizations that seek certification for compliance with the ISO
9000 series of standards or any other similar standards use external auditors.
Individuals who are certified as lead auditors can conduct audits for certification
or to ensure continued compliance with ISO standards. Optionally, an organi-
zation can engage external consultants to conduct audits in order to obtain an
unbiased opinion about its process and its implementation in the organization.
Sometimes external audits are conducted to ascertain the readiness of the or-
ganization for a certification audit. External audits consist of the same process
as internal audits, and the NCR is the vehicle for recording and reporting NCs
uncovered during the audits as well as for closing the NCs.

External audits are classified as follows:

� Precertification audits—These audits are conducted as a prelude to
certification audits. When an organization has multiple projects run-
ning concurrently, an external consultant is engaged to ascertain its
readiness for a certification audit. The precertification audit serves
as a rehearsal for the organization so that it can pass the certification
audit. It also allows the organization to smooth out any uncovered
rough edges in preparation for a certification audit.

� Certification and recertification audits—These audits culminate in
either awarding or denying the coveted certificate to the organiza-
tion. A certification audit is conducted only once, unless it results in
denial of the certificate to the organization. Most quality certification
models mandate periodic recertification, such as once every three
years. A certification audit is conducted for an organization that has
never been certified. A recertification audit is exactly the same as a
certification audit, except that it is conducted for an organization
that has already been certified.

� Surveillance audits—ISO 9000 certification mandates a surveillance
audit once every six months to ensure that process implementation

J. Ross Publishing; All Rights Reserved

Software Verification 123

is at the same level it was at the time of the certification audit. The
same external agency that originally awarded the certificate conducts
these surveillance audits. They are scaled down slightly from the
certification audits, and a smaller sample of projects is audited.

Audits are very useful tools for effective implementation of organizational
processes, and they are used in most software development organizations.

Best Practices in Audits

In many organizations that conduct periodic audits, the exercise becomes more
of a ritual than an earnest attempt to assess the level and seriousness of process
implementation and conformance across projects in the organization. Since in
most companies peers conduct the audits, the audits becomes quid pro quo (you
scratch my back, and I’ll scratch yours!) among peers in that not all the NCs
uncovered during an audit are reflected in the NCR. Each auditor typically lists
two or three NCs so that the audit appears authentic, but most NCs uncovered
are informally pointed out to the auditee and not recorded. When all NCs are
not recorded, the post-audit analysis does not reflect the true picture of process
implementation and compliance. This is a most common pitfall I have observed
in organizations that conduct periodic audits.

This problem can be addressed in a couple of ways. First, include in the audit
team specialist auditors who are not software developers. These auditors can
come from either the QA department or from outside the organization. They
will make known all NCs, as they are not subject to the quid pro quo that exists
among peers. When specialist auditors are rotated among projects, inevitably all
project NCs are uncovered and recorded. Using the findings of these specialist
auditors, the peer auditors can be counseled on the necessity to record all NCs.
Another way to address the problem is to randomly subject the NCRs submitted
by peer auditors to a verification audit by a specialist auditor. The fact that an
NCR might be selected for random verification will compel peer auditors to
diligently record all NCs. This second solution is a best practice.

Another pitfall is that the people in charge of overseeing process implemen-
tation consider these audits a necessary nuisance that must be endured rather
than a tool for assessing process implementation and compliance. In one ISO
9000–certified company, the technical head (who is usually in charge of effecting
software deliveries to the customer and who oversees all software developers in
the organization) had not even read the organizational processes! If the most
senior person does not believe in process implementation and compliance, the

J. Ross Publishing; All Rights Reserved

124 Mastering Software Quality Assurance

result can only be audits that are performed as a ritual for record-creation
purposes.

A best practice is to have senior people in place who believe in quality and
process implementation and compliance. If those in senior posts do not believe
in process-driven software development, it might be better not to conduct audits
at all.

A common pitfall in phase-end audits is assigning them to a peer from
within the project itself. This also leads to audits deteriorating into record-
creation exercises. A best practice is to engage a specialist auditor to conduct
phase-end audits.

Two arguments in favor of using peer auditors are (1) the auditor has the
opportunity to learn best practices and pitfalls from other projects and (2) a peer
better understands process implementation than a specialist auditor does. Both
arguments are valid if and only if the peer auditors exercise complete profes-
sionalism and do not resort to a quid pro quo approach. Peers learn from other
projects during the audit closure meeting, where the audit findings are shared
with all persons concerned. A best practice is to have at least some specialist
auditors on the audit team.

Yet another common pitfall is the organization blaming the SPM if the
project receives a large number of NCs or the SPM having the impression that
management blames him or her for the NCs. Counseling SPMs whose projects
are found to have a large number of NCs must be handled very carefully. Senior
management needs to ascertain whether the number of NCs is unduly large in
the first place, because absolute numbers do not tell the whole story. Expecting
the number of NCs for a large project to be on a par with a small project is
unrealistic. Senior management also needs to ascertain whether the NCs are
chance errors and oversights or if negligence is involved. Counseling needs to
be given only in the case of negligence, as chance errors uncovered by audits are
automatically corrected—after all, the purpose of audits is to uncover such
chance errors and oversights.

VERIFICATION PROCESS

Verification is a very important QA activity in software development organiza-
tions, and it therefore should not be carried out with an informal or ad hoc
approach. A professional software development organization should have a well-
defined process for driving verification activity in the organization. A separate
process is needed for each of the following verification activities:

J. Ross Publishing; All Rights Reserved

Software Verification 125

1. Walkthroughs
2. Software inspections
3. Audits

Walkthrough Process

The walkthrough process describes the types of walkthroughs an organization
conducts, the roles and responsibilities in arranging for and conducting the
walkthroughs, and the analyses to be carried out on the defects uncovered in
the walkthroughs. The walkthrough process also includes a procedure for each
type of walkthrough:

1. Independent walkthrough
2. Guided walkthrough
3. Group walkthrough

� Postal review
� Meeting review
� Guided meeting review

4. Expert reviews

The walkthrough process also includes guidelines for selecting the type of
review to be conducted for an artifact, the recommended reviewers for each
walkthrough method, meeting guidelines, defect-reporting guidelines, etc. In
addition, the walkthrough process offers various checklists for each walkthrough
method, as well as formats for review reports, defect collation formats for group
reviews, and any other formats specific to the organization.

Software Inspection Process

The software inspection process describes the types of software inspections to
be carried out in the organization, the roles and responsibilities in arranging for
and conducting the inspections, defect-reporting guidelines, analyses to be car-
ried out on the defects uncovered during the inspections, etc. The software
inspection process also offers a procedure for conducting each of the following
types of software inspections:

1. System testing readiness inspection
2. Acceptance testing readiness inspection
3. Delivery readiness inspection
4. Any other organization-specific inspections

J. Ross Publishing; All Rights Reserved

126 Mastering Software Quality Assurance

It also indicates the format for the inspection report and guidelines for reporting
defects uncovered during inspections.

Audit Process

The audit process describes the types of audits to be conducted in the organi-
zation as well as the roles and responsibilities in requesting and conducting
audits. It offers a procedure for conducting each of the following types of audits:

1. Periodic audits
2. Phase-end audits
3. Investigative audits
4. Any other organizational audits

The audit process also offers guidelines and checklists for conducting each
of the following phase-end audits:

1. Project initiation
2. Software requirements analysis
3. Software design
4. Software construction
5. Project closure
6. Any other organization-specific phase-end audits

In addition, the audit process includes a training course outline and a train-
ing procedure for instructing internal auditors. It also includes guidelines for
various audits to be conducted in the organization, as well as formats for NCRs
and audit reports to be used for periodic audits. A sample audit process and
audit guidelines are given in Appendix A.

IMPLEMENTATION OF VERIFICATION ACTIVITIES
IN PROJECTS

While it is possible to implement verification activities in projects using an ad
hoc approach—and some organizations do so, it is not advisable. When using
an ad hoc approach, verification activities are not explicitly planned and the
SPM will implement the verification activities that are convenient for the exi-
gencies of the project execution.

J. Ross Publishing; All Rights Reserved

Software Verification 127

A better approach is the planned approach. When using this approach, veri-
fication activities for a project are planned by the SPM during the project plan-
ning stage, and they are recorded in the software QA plan. The software QA
plan, also referred to as a software verification and validation plan, is described
in greater detail in Appendix K. It records the following details of verification
activities to be implemented in the project being planned:

1. A list of all verification activities planned for implementation in the
project

2. A list of project execution phases, after which phase-end audits are
to be conducted

3. A list of stages at which software inspections are to be carried out
4. Artifacts that are to be subjected to peer reviews, along with probable

individuals who will conduct the reviews and the type of peer review
that will be utilized

5. Metrics and measurements that are to be carried out to ensure the
efficacy of verification activities

The verification activities planned for a project need to conform to the
organizational verification process. The peer review of the software QA plan
ensures that the planned verification activities do in fact comply with the or-
ganizational verification process. All these activities must be implemented dur-
ing project execution in conformance with the software QA plan. Verification
activities also must comply with various procedures, guidelines, formats, and
templates defined for each of the planned verification activities in the organi-
zational verification process. The progress and status of implementation of
verification activities in the project must be monitored along with other project
activities, using the project status report as the mechanism. These activities are
subject to the usual progress-monitoring meetings held by senior management.

In addition to the verification activities planned in the software QA plan for
a project, other verification activities planned at the organizational level also
must be carried out for the project. Such verification activities include periodic
audits, external audits for certification or surveillance, horizontal audits such as
the configuration management audit, etc. These verification activities might also
uncover NCs, and the SPM should arrange for necessary corrective and preven-
tive actions in order to close the NCs.

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

129

6
VALIDATION

CHAPTER OVERVIEW

� The meaning of the term “validation”
� Validation of designs and specifications
� Validation of a software product
� The definition of testing and various types of tests that can be con-

ducted on software products
� Testing basics, testing techniques, and approaches to testing
� Test strategy and design of test cases
� Testing different types of software applications
� Best practices and pitfalls in software testing

Undetectable errors are infinite in variety in contrast to detectable er-
rors, which by definition are limited.

—Gilb’s third law of uncertainty

DEFINITION OF VALIDATION

Validation indicates confirmation or corroboration of a claim. In the context
of software development, validation refers to the activities performed on a
software product to confirm that all the designed (or required) functionalities
are indeed built and are working in adherence with the original specifications
(intended use), along with other implicit functions for ensuring safety, security,
and usability.

J. Ross Publishing; All Rights Reserved

130 Mastering Software Quality Assurance

Standard 610 from the Institute of Electrical and Electronics Engineers stan-
dard glossary of software engineering terminology defines the term validation
as “the process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements.”

The Capability Maturity Model Integration (CMMI®) model document for
development (version 1.2, August 2006) defines validation as “confirmation that
the product, as provided (or as it will be provided), will fulfill its intended use.
In other words, validation ensures that ‘you built the right thing.’” It also states
that “the purpose of validation is to demonstrate that a product or product
component fulfills its intended use when placed in its intended environment.”

Synonyms for the word validate include authenticate, certify, corroborate,
confirm, endorse, bear out, substantiate, and support, among others. One defi-
nition of validation is the act of ensuring that something is valid .

To understand the term “validation” correctly, consider the following sce-
narios that involve validation:

� You are entering into a contract with someone. Before you sign the
contract, you show it to a lawyer for validation (not verification).
Only after the lawyer certifies that it is valid (that is, legally valid and
that it would be valid in a court of law) do you sign it.

� You are affirming something in writing. You have a notary authen-
ticate your affirmation. Once authenticated, your affirmation be-
comes an affidavit and is legally valid.

� You are taking a trip to the North Pole. After studying the literature
on the subject, you make a plan. You take your plan to an expert on
the North Pole and ask the expert to “confirm” that your plan is
sound. Once the expert confirms that your plan is workable, you set
out on your adventure.

� You have authored a spy-thriller novel. Before you publish it, you
have a real-life spy read it. After the spy approves it, you go ahead
with publishing the book.

� An automobile manufacturer claims that its new model car is ca-
pable of achieving a fuel consumption rate of 230 miles per gallon.
The marketing department demonstrates this claim in front of a
select set of journalists, and the journalists substantiate it.

Therefore, under this definition, validation is a precaution normally taken be-
fore taking a risk—especially a strategic risk. The above scenarios share the
following characteristics:

J. Ross Publishing; All Rights Reserved

Validation 131

� There is a claim that needs validation.
� The originator of the claim arranges for validation.
� The validation is not made against the specifications of the originator

of the claim. It is made against the specifications that might have
been formulated by an external agency:
� In the first scenario, the contract is validated against the law of

the land.
� In the second scenario, the affirmation is validated by an inde-

pendent, government-authorized individual.
� In the third scenario, the plan is validated against the expert’s

firsthand experience.
� In the fourth scenario, the novel is authenticated based on the

spy’s firsthand experience.
� In the fifth scenario, the claims are certified through the jour-

nalists’ firsthand observation.
� There is a risk involved that necessitates the act of validation.

Validation gives outsiders the confidence to be able to say “this is indeed true”
or “it really works.”

Validation performed in a software development scenario carries out the
same functions listed above. The software development team or organization
makes the claim that its software product works without defects. That claim is
then substantiated by validation of the software product.

To achieve the full worth of validation, the following three factors must be
applicable:

1. Validation is performed by independent persons who are not the
same persons as those making the claim.

2. Validation is performed not just against the specifications of the claim-
ant, but also against external specifications.

3. Validation is a planned and coordinated effort performed for the
purpose of substantiating a claim and instilling confidence in stake-
holders; it is not performed for self-assurance.

During software development, validation of important software artifacts is
carried out. Normally, software designs and software products are validated in
a contract development scenario. In a commercial off-the-shelf product sce-
nario, product specifications are validated in addition to the software design and
the software product itself.

J. Ross Publishing; All Rights Reserved

132 Mastering Software Quality Assurance

VALIDATION OF SOFTWARE DESIGNS

Similar to the adage “the proof of the pudding is in the eating,” the proof that
the design is robust is in the building of the product and then the testing of the
product. How do other industries validate their designs? In cases where the
design is used to produce a large quantity of products, a prototype (one sample
unit of the product) is built and subjected to all necessary tests, and the design
is improved based on the results of those tests. This method is often used in the
automobile and electronics industries, among others. But what about such in-
dustries as shipbuilding and aircraft manufacture? They cannot afford to build
a wrong product, even for testing. In such industries, they make a scale-model
prototype and subject the model to tests. Before building a large ship, for ex-
ample, a shipbuilding company makes a much smaller model of the ship it plans
to build and tests the prototype in a scaled-down environment. The results of
the test are to validate the design of the proposed ship. Before making a new
model of a large aircraft, an aircraft manufacturer builds a smaller, scaled-down
prototype and subjects it to tests in a wind tunnel. Based on the results, the
design is improved and the product built.

Today, computer models allow testing of designs through computer simu-
lation, and improvements in designs are made based on those simulations. Yet
software vendors that provide simulation software to test rockets, ships, and
aircraft, for example, do not provide simulation software that validates software
designs!

A development methodology that uses prototyping exists in software devel-
opment too. This methodology uses two types of prototypes: build-and-improve
prototypes and use-and-discard prototypes. In build-and-improve prototypes,
skeletons of the software product, such as screen layouts, report layouts, and
simple navigation, are built on the actual development platform. Software de-
velopers continue to improve the design based on the results of validation of the
prototype. In use-and-discard prototypes, a prototype is built on a mockup using
drafting tools. The requirements are validated, and then the actual software
product is built on the real development platform.

Although the software industry is presently using a prototyping methodol-
ogy for eliciting user requirements, it is not using one for validating designs.
Software designs are validated through group reviews by peers or experts. Only
if the members of the review team are carefully selected does this method be-
come effective for validating software designs. It makes sense to have the review
team made up of more external (outside of the project team) experts, as they
would validate the product not just against internal standards but also against
field requirements and field usage. It also makes sense for domain experts who

J. Ross Publishing; All Rights Reserved

Validation 133

are users of the software product to be included as members of the review team
instead of the team being made up solely of software designers.

The results of validation would be much more insightful if both prototyping
methods mentioned here and group reviews using domain experts were used for
validating software designs. This is, in fact, a best practice.

VALIDATING THE PRODUCT SPECIFICATIONS

Product specifications, especially for a software product built to meet the de-
mands of more than one customer, are very important, as all other software
development activities are downstream to product specifications. Improper
definition of specifications has serious repercussions. Product specifications are
the precursor to the software design on which product construction depends.
When the specifications are not right, obviously the right product cannot be
built. Since defining product specifications is the first step in software develop-
ment, product specifications need to be validated.

As with software design, validation of product specifications also often is
achieved through group reviews that include domain experts. Postal reviews and
meeting reviews can be used as well. The advantage of using a postal review is
that geographically dispersed experts can be included, although it might take
longer to obtain feedback from them and to finalize the product specifications.
The advantage of meeting reviews is that finalization of product specifications
can be cut to a shorter time, but the drawback is that all the geographically
dispersed experts have to be transported to the organization at the organization’s
expense. The alternative is to use only local experts.

Brainstorming is yet another technique used to validate product specifica-
tions. In brainstorming, concerned experts gather in an informal meeting and
deliberate to validate the artifact at hand. Brainstorming is used when the ac-
tivity is performed for the first time and in research and development type of
activities.

VALIDATING THE SOFTWARE PRODUCT

Software testing is the main tool for validating the final software product. In the
British Standards Institution’s Standard BS7925-1, testing is defined as “the
process of exercising software to verify that it satisfies specified requirements
and to detect faults.” Software testing is defined as “the process of executing a
software item to detect the differences, if any, between its behavior and the
desired behavior.”

J. Ross Publishing; All Rights Reserved

134 Mastering Software Quality Assurance

Testing is carried out using a set of chosen inputs for which the expected
result or output is known. It is performed primarily to unearth any and all
defects present in the system and to prevent a defective product from reaching
the customer. Testing also is carried out to assure the customer that the product
conforms to the specifications and functionality initially agreed upon. Testing
is used to confirm quality rather than achieve it. It can detect errors, but it
cannot confirm that there are no other defects lurking in the software product.

Exhaustive testing means trying out all possible combinations of inputs and
outputs, and ensuring that the results are correct. Figure 6.1 depicts software
testing pictorially.

Software development is one domain where the flexibility for testing is
unparalleled. To test a car’s behavior in a crash, a perfectly running car is
destroyed when it is crashed into something during the test, resulting in the loss

Figure 6.1. Software testing

Software product
being tested

Testing environment
(computer, operating

system, database, etc.)

User inputs Results

Test data and master data

J. Ross Publishing; All Rights Reserved

Validation 135

of the car; retesting requires that another car be built and tested. Testing the
behavior of a building in a tornado is impossible because a limited tornado
cannot be created. Testing the ability of a building to withstand such circum-
stances must be done either through computer simulation or with models in
labs. In the software domain, however, software can be subjected to any type
of testing without the fear of damaging the product or database or injuring the
testers. This flexibility allows extensive use of software testing as the main tool
for quality assurance in the software development domain.

Software also happens to have a large array of functionality, as it sometimes
covers an entire business process, such as finance, materials management, or
marketing management. The number of functions that need to be tested is
perhaps the highest compared to other domains, such as manufacturing or
construction. This flexibility for exhaustive testing coupled with a wide range
of functionality makes testing a costly activity, and sometimes the cost of testing
equals or even surpasses the cost of development itself.

Software testing is recognized as an essential activity in software develop-
ment. Lately, the importance of independent testing (testing by persons not
involved in the development of software) has been gaining wider acceptance, so
much so that software companies specializing in software testing have been
established and are quite successful. The increasing complexity and size of soft-
ware have resulted in more complex testing as well as more types of testing.

TESTING DIFFERENT TYPES OF SOFTWARE PRODUCTS

Software testing appears deceptively easy, but it is actually a complex activity
because it covers a wide array of software products, and the software that needs
to be tested is multifaceted. The following sections describe the different types
of software, all of which require testing.

Batch Processing Systems

Batch processing software systems receive inputs from stored data and process
them with minimal intervention from the user to produce results. Examples
include weekend processing systems, monthly processing systems, yearly pro-
cessing systems, etc. These systems are found in such mundane applications as
Microsoft Office’s print functionality (converting text into a format the printer
understands, sending line feeds and page feeds, checking printer status and
paper outages, etc.) and in such advanced applications as payment processing
on the Internet (authorization, debiting the account, crediting the account,

J. Ross Publishing; All Rights Reserved

136 Mastering Software Quality Assurance

funds transfer, etc.), electronic billing (authorization, communicating billing
details, receiving acknowledgment, receiving payment, etc.), sending and receiv-
ing e-mails, etc.

The main attribute of batch processing systems is that the data is entered
offline. When the data is submitted to the software, it is expected to have been
validated, is certified to be accurate, and is in the right format. Therefore, batch
processing systems do not provide for extensive data validation and error han-
dling routines. If an error is encountered, a batch processing system fails. There-
fore, the main precaution that needs to be taken in testing batch processing
systems is preparation of accurate data in the right format expected by the
software.

Black box testing (explained later in this chapter) is the main testing tech-
nique for this type of software. To carry out structural testing using the black
box testing technique, test data that forces the software to traverse each path in
the code must be created. As stated earlier, the key aspect in testing these systems
is preparing the “right” test data for carrying out exhaustive testing and for
uncovering all possible errors. The testing steps are identical in all test cases; the
one differentiator between test cases is the test data. Test data preparation is the
main task in testing batch processing systems.

In this type of software, unit testing is the type of test normally carried out.
Batch processing systems can be integrated into other software products, and in
such cases, integration testing is carried out on the software product. However,
a set of batch processing programs can be run in a stream, one after the other.
Each program is tested in unit testing, and the set is tested in “stream testing,”
which means all programs are run in a stream. The final results are verified for
any differences from the desired or expected results.

Online Systems

Online systems also are referred to as event-triggered systems. All online appli-
cations, wherein the user interacts directly with the computer through a graphi-
cal user interface (GUI) screen to enter or retrieve data, are online systems. The
user can follow any sequence to enter data. When a user clicks the mouse
interface to set focus to a control on the screen, an event is triggered and a
response is generated by the software. Examples of this type of system include
online reservation systems, online purchase systems, and all online business
applications.

Online systems are expected to be replete with data validation and error
handling routines, especially in the inputs. To test online systems, test cases are

J. Ross Publishing; All Rights Reserved

Validation 137

prepared that send positive inputs which prove that the software does what it
is supposed to do and that send negative inputs which show that the software
has all the data validation and error handling routines to prevent wrong data
from entering or failing the system. This type of system necessitates extensive
testing, including all the types of tests mentioned subsequently in this chapter.

In testing online systems, the key aspect is the design of the test cases. The
test cases are numerous and consume a significant amount of time to design and
document. Some of the testing is carried out intuitively using such testing
guidelines as GUI testing guidelines, negative testing guidelines, and report testing
guidelines. These tests are described later in this chapter.

Real-Time Systems

Real-time systems interact with machines and control them to perform the
desired functions. They are used for process control applications in process flow
manufacturing industries, aircraft, weapon systems, and in computer numerical
controlled machines (CNC machines).

Since real-time systems interface with hardware, it is sometimes not possible
to use the hardware in testing because a wrong signal from the software might
damage the machine or its surroundings if the machine malfunctions. There-
fore, machine responses have to be simulated during testing, and a test bed that
simulates responses from the machine must be created. The significant aspect
here is the creation of the test bed, which sometimes is a software product that
receives the hardware interrupts placed by the main software and responds to
those interrupts exactly as the machine does. Thus, to test the software, another
software product needs to be developed.

Scientific Applications

Scientific application systems are built around complex mathematical equations
that process large algorithms with a few inputs. They are processing intensive
rather than data or transaction intensive. They are found in such applications
as weather forecasting and image processing.

The major work in testing these systems is preparing the expected results by
hand. For a software product that is capable of carrying out linear programming
and matrix algebra that involves a thousand rows and a thousand columns,
working out a solution by hand is extremely tedious, and without an expected
result against which to compare, it can never be known if the actual result is
accurate. Data with a solution that is known and that has been worked out on

J. Ross Publishing; All Rights Reserved

138 Mastering Software Quality Assurance

a reliable existing system can be used in testing this type of software system. For
a computer-based system being developed for the first time, it is imperative that
the solution is manually worked out to ensure that the actual results of the test
are accurate. Precision becomes an issue when using numbers that consist of 16
significant digits or more.

Mobile Applications

Mobile applications are message-processing systems used predominantly in
mobile communications. Mobile software needs to be cryptic and brief, due to
the small amount of memory available in mobile phones. Again, to test this type
of software, either an interface to the hardware is needed or test software that
simulates the hardware responses has to be developed. When system testing is
carried out, the developed software product must be interfaced with the actual
hardware that facilitates mobile communications.

Software Simulators

These systems are yet another type of mathematical processing system that,
using special hardware, simulates a real-life scenario. A flight simulator is a
popular type of simulation software, but there are many practical applications
for simulation in various industries. Simulator software offers both graphics and
animation.

Simulators also interface with the input hardware of the actual hardware
systems. To test this software, either the actual hardware has to be brought in
or a test bed that generates signals identical to those generated by the actual
hardware must be prepared. Once this test bed is prepared, the test cases can
be executed, and the expected results are those of the actual system. The signifi-
cant aspect in testing this type of software is the preparation of the test bed.

Testing with Special Hardware

Testing the types of applications discussed above differs based on which of the
following classes an application falls into: (1) software that can be tested without
special hardware and (2) software that requires special hardware for testing.
Business applications, whether batch systems or online systems, can be tested
without special hardware. Real-time software, scientific applications (which some-
times might not need special hardware), mobile applications, and simulators all
require special hardware. Special hardware in this context means hardware other
than the normal computer system and networking hardware.

J. Ross Publishing; All Rights Reserved

Validation 139

TESTING BASICS

There are six principles pertaining to software testing that guide organizations:

1. Customer requirements should be the basis for all testing.
2. Software testing should be planned prior to the start of testing.
3. Software testing is subject to the Pareto principle or the “significant

few and insignificant many.” That is, a few (about 20%) units or
modules contain most (about 80%) of the errors.

4. Software testing should start with the smallest unit of software and
progress gradually toward the entire system.

5. Exhaustive (100%) testing—that is, testing all possible cases—is not
practical.

6. To be effective, software testing should be conducted by independent
testers who are not involved in the development.

There are two types of testing techniques: black box testing and white box
testing, as discussed in the following sections.

Black Box Testing

In black box testing, the software is treated as a “black box,” and its internal logic
for processing the data is not considered. A set of inputs is fed to the software,
and the outputs delivered by the software are compared with the expected
outputs. To use this technique, the tester considers the functionality of the
software and administers the test. Black box testing is depicted in Figure 6.2.

Figure 6.2. Black box testing

Software

Test data

Results
of

testing

J. Ross Publishing; All Rights Reserved

140 Mastering Software Quality Assurance

Black box testing normally is conducted from the user interface or command
line. The program is invoked, and necessary inputs are given to the software so
that it processes the test data and user inputs to generate outputs that can be
compared with the expected outputs. This determines whether the software
functioned correctly. The efficacy of black box testing depends on the care with
which the test cases and test data are designed. If test cases were exhaustive, the
testing is exhaustive and has a better chance of detecting anomalies in the soft-
ware. Test case design is dealt with in greater detail in subsequent sections of
this chapter.

The following are the steps for conducting black box testing:

1. Prepare the software unit for testing by creating the executable file
or by receiving the executable file from the development team, and
install it on the test system.

2. Prepare the master data that is required to run the test. This data
can be copied from the development environment or the necessary
master data can be entered into the master data files and tables.

3. Study the test plan and note the test objectives.
4. Study the test cases designed for the test.
5. Run the program from either the command line or the user interface.
6. Execute test cases in the sequence specified. At the end of every test

case, log the actual results and determine whether test execution
failed or passed the test. Record the result.

7. When in doubt about the results of a test case execution, restore the
test data to the pretest image and re-execute the test.

8. After all test cases are executed and actual results logged, along with
the pass or fail decision, arrange for a managerial review of the test
results and submit the report to the originator of the test request.

9. Provide clarification to the originator of the test request, and help
the individuals involved in defect resolution to properly understand
the defects uncovered during the testing.

10. As required, carry out regression testing to ensure that the defects
are resolved satisfactorily. When they have been resolved, clear the
software unit for the next stage.

11. If regression testing uncovers fresh defects or old defects that are not
resolved satisfactorily, iterate steps 7 to 9 until all defects are satis-
factorily resolved.

One precaution that should be taken in black box testing is to preserve the
pretest image of the master data and test data, as both are likely to be altered

J. Ross Publishing; All Rights Reserved

Validation 141

during the course of testing. Whenever a retest is required, the master data and
test data need to be set to the pretest image.

White Box Testing

White box testing considers the internal logic and program statements of the
software. It involves stepping through every line of code and every branch in the
code. To use this technique, the tester should be knowledgeable in the software
programming language and should understand the structure of the program.
White box testing ensures that all program statements and all control structures
are tested at least once. White box testing, depicted in Figure 6.3, also is referred
to as glass box testing.

White box testing can be conducted from the command line, the user in-
terface, or from within the program. If testing is conducted from the command
line or user interface, the exhaustiveness of testing depends on the test cases to
traverse through every path in the software. The other way is to conduct white
box testing using the interactive development environment (IDE) or a language-
specific debugger. These tools have facilities to perform the following:

Figure 6.3. White box testing

Software

Test data

Results

Begin
 …
 …
 …
 …
 …
 Else
 …
 …
 …
End

J. Ross Publishing; All Rights Reserved

142 Mastering Software Quality Assurance

� Step through every line of code
� Set break points in the code where the execution waits for the tester

to resume execution
� Set the initial value or change the value of variables or constants,

without the need to change the program
� Traverse through every path for control structures by dynamically

setting control variable values
� Stop execution at any point in the program and resume testing from

the beginning or anywhere in the program
� Move the execution from any point to any other point in the program

Using these facilities, white box testing is easy to conduct. In fact, the IDEs or
debuggers make it possible to thoroughly test software at the unit testing level.

When white box testing is conducted from the IDE or the debugger, the
following steps are involved:

1. Prepare the master data and load it into master data files or tables.
2. Study the test plan and note the objectives.
3. Study applicable testing guidelines, if any.
4. Obtain applicable checklists and keep them handy.
5. Study the test cases and be ready to execute them.
6. Receive the software unit to be tested from the development team,

and load it onto test system.
7. Launch the IDE or debugger, and open the software unit to be tested

in the IDE or debugger.
8. Set break points where a pause in program execution is desired.
9. Run the test cases in the specified sequence and log the actual

results.
10. Determine the pass or fail result for each test case by comparing

actual results with the desired results, and log the pass or fail result.
11. Run all tests as suggested in the applicable testing guidelines and

checklists, if any, and log the results.
12. Arrange for a managerial review of the test results, and submit the

test report to the originator of the request.
13. Assist the defect resolution team in properly understanding the defect

report.
14. When requested, conduct regression testing to ensure satisfactory

resolution of all defects.

J. Ross Publishing; All Rights Reserved

Validation 143

15. If the regression testing uncovers fresh defects or original defects
that are not resolved satisfactorily, iterate steps 12 to 14.

Sometimes an IDE or a debugger might not be available to carry out white
box testing. In such cases, test software that will test the software unit under
consideration needs to be developed. Such test software performs the following
functions:

� It calls the software unit under consideration and passes the required
parameters to it.

� It receives the final values produced by the software unit under
consideration and presents them to the tester for evaluation of their
efficacy.

� It allows interaction, if required, with the software unit under con-
sideration during execution.

When the IDE or debugger cannot be used to display intermediate values
or to suspend and resume execution, temporary statements might have to be
inserted into the software unit under consideration. In such cases, the tester also
needs to be a programmer, and the test is to be conducted on a copy of the
program, not the original program.

APPROACHES TO TESTING

There are two basic approaches to software testing:

1. Intuitive testing
2. Process-driven testing

Intuitive Testing

Intuitive testing is carried out by an experienced tester who uses his or her
common sense. A general description of the functionality and suggestions or
guidelines for intuitive testing that explain how to go about unearthing defects
might be available. Testing is carried out using the experience and intuition of
the tester. A certain amount of creativity or common sense is expected from the
tester. For example, while testing an input screen, the tester enters values based
on the labels provided for the input boxes. It is easy to decipher what to enter:

J. Ross Publishing; All Rights Reserved

144 Mastering Software Quality Assurance

� If the label indicates dates, enter a date appropriate to the screen. For
example, labels such as date of birth, date of application, date of
marriage, etc. are easy to recognize, which makes it easy to determine
the right and wrong data inputs.

� If the label indicates numeric data such as salary, price, cost, length,
height, weight, zip code, etc., it is easy determine the right and wrong
data inputs.

� If the label indicates reference to alphanumeric data, such as the
name of a person, the person’s address, title, e-mail ID, city, etc.,
again, it is easy to determine the right and wrong data inputs.

� If the label indicates making a choice using radio buttons or check
boxes, it is easy to determine the right and wrong inputs.

� The tester can ensure that when wrong data input is given, the soft-
ware rejects it.

� The tester verifies if the data entered is properly stored and retrieved.

If testing a report, the tester generates a report that contains the desired data
and ensures the following:

� The columns are properly aligned.
� No data is clipped or truncated.
� All totals are accurate.
� The report headings, page headings, page numbers, and report dates

are properly and fully displayed, without any spelling errors.

If testing an inquiry screen, the tester generates a few inquiries and ensures
that the required information is retrieved and displayed properly.

The tester, using common sense, determines the error conditions, generates
the test log, gives the test log to the author of the code artifact, and arranges
for resolution of defects.

The advantage of this approach to testing is that much of the time usually
spent on test planning and test case design is saved. The disadvantages of this
approach to testing include the following:

� It requires an experienced tester to conduct the tests and uncover all
defects lurking.

� It is almost impossible to test all functionalities without a test plan.
� It is almost impossible to conduct thorough testing, even for critical

functions.

J. Ross Publishing; All Rights Reserved

Validation 145

Some organizations still use this approach to testing. I have seen it used in
an organization that conducts independent validation for products produced by
other companies, and the organization certifies them quite successfully.

Process-Driven Testing
In this approach, software testing is conducted in adherence with a defined
validation process using a test plan and a set of test cases. For each project, a
software test strategy is decided upon during the project planning stage, and it
is recorded in the test plan or software quality assurance plan. Test strategy is
explained below.

Test Strategy
Test strategy is concerned with uncovering as many defects as possible within
the allocated time and cost budgets and with maximizing the impact of such
testing. The test strategy for a project generally is included in the test plan for
the project.

The first step in finalizing the test strategy is to set testing objectives, such
as the following:

1. Quality objectives—These relate to the level of unearthing defects:
� Uncover all defects, irrespective of time or cost
� Uncover almost all possible defects within the time available, with

cost and time being the main criteria
� Uncover all possible defects within the time available, with time

being the main criterion
2. Customer acceptance objectives—The main objective of testing is to

convince the customer that the product is built in accordance with
the customer’s requirements and that all functionalities are working
without any defects and to obtain customer sign-off and be paid by
the customer for the product.

3. Product certification objectives—The tests are carried out as speci-
fied by the customer, and the product is certified as requested by the
customer. A product can be certified in any of the following areas:
� Virus- and spyware-free
� Functionality
� Usability
� Comparison and relative position
� Product rating

J. Ross Publishing; All Rights Reserved

146 Mastering Software Quality Assurance

In addition to objectives, the following also are part of test strategy:

� Types of tests to be included in testing—Determine which tests
need to be conducted on the software product to achieve the project
quality objectives.

� How to test—Determine the testing methodology, such as:
� Test-plan- and test-case-based testing or intuitive testing
� White box or black box testing
� Manual testing or tool-based testing

� Regression testing—Determine the number of iterations for regres-
sion testing (only once or iterated until all defects are fixed).

� Criteria for successful completion of testing—Define the criteria in
order for testing to be declared successful. Sometimes the elapsed
time is the criterion for completion of testing. That is, as much
testing as possible is conducted until the deadline is reached. An-
other criterion is testing be conducted until a preset budget is spent.
Another is testing is conducted until no more defects are uncovered.
Still another is all the defined test cases are executed. Such criteria
would be defined and recorded in the test plan or software quality
assurance plan.

� Mechanisms for defect closure and escalation, when necessary—
Mechanisms include who will close defects, how to close defects, who
will escalate, when and to whom to escalate, how to escalate, etc.

� Progress reporting—To be performed during project execution.
� Defect analysis—Determine whether such analyses as ABC analysis,

category analysis, defect criticality analysis, etc. are required.

Test strategy for a project is documented in the test plan for the project.
Figure 6.4 shows a sample test plan format.

TEST CASE DESIGN

After the test strategy and plan for the project are defined and recorded in the
software quality assurance plan, for every intended test there should be a set of
test cases against which testing is carried out.

The Institute of Electrical and Electronics Engineers Standard 610 defines a
test case as “a set of test inputs, execution conditions, and expected results
developed for a particular objective, such as to exercise a particular program
path or to verify compliance with a specific requirement, and as documentation

J. Ross Publishing; All Rights Reserved

Validation 147

Figure 6.4. Test plan format for a project (page 1 of 4)

Test Plan for a Project

Project ID:

Revision history of the test plan

Version Description of release Prepared Approved Date of
no. and modifications by by approval

Reference documents: Enumerate all the documents that were used as reference
for preparing this plan. The documents may include project plans, requirements
documents, design documents, customer specifications for software testing, etc.

Software test environment: Describe the configuration of hardware, servers, client
machines, network connectivity and system software, and other software such as
database management system, Web server, app server, etc.

Objectives for software testing: Enumerate all the objectives, including quality
objectives, customer acceptance objectives, certification objectives, and time and
expenditure budgets, that are applicable to the present testing.

Test case preparation

Person
responsible Schedule of

for preparing Probable preparation
Test the test cases reviewer (specify dates)

Unit tests for Program author Project leader After the unit is coded
software units or software

project manager

Integration tests Project leader Software project At the beginning of
for each module manager module integration

System tests Software Quality assur- After software design
designer ance department is approved but before

the product is built

Acceptance Software project Quality assur- After user require-
testing manager ance department ments are finalized but

and customer before system testing
is completed

J. Ross Publishing; All Rights Reserved

148 Mastering Software Quality Assurance

Tests to be conducted for the project

Probable Test Criteria for
Test testers objectives How to test completion

Unit Independent Ensure that the Based on test All defects
testing peers from code is defect- cases and white uncovered

the project free box testing using are closed
team IDE

Integration Project Ensure that the Every time a All defects
testing leader interfaces are unit is integrated uncovered

working without with the module are closed
defects using black box

testing and test
cases

System Project leader Ensure that the Using system All defects
testing and software product works testing test uncovered

project on Windows cases are closed
manager for 2000, XP, and
the project Vista, using

Explorer,
Firefox, and
Chrome

Regression testing strategy: Specify whether regression testing, whenever re-
quired, is to be conducted until all defects uncovered, whether in the main test or
in the regression test, are closed or if regression testing is to be conducted only
once after all defects are closed. If regression testing is conducted only once,
specify the strategy to handle residual defects uncovered in regression testing.

Escalation mechanisms: Describe the criteria for escalation of unresolved issues
in testing or defect closure. Include situations where the author disputes the defect,
defect closure is not satisfactory, the defect classification is disputed, etc. Specify
the executives, both in the delivery department and the quality assurance depart-
ment, to whom issues can be escalated and the mechanism for communicating the
escalation, such as e-mail, phone call, progress-monitoring meeting, etc. Also
specify the timeline allowed for resolution of an escalation.

Progress reporting: Specify the timeline for reporting progress and status of
testing (such as weekly or daily), to whom the progress report is to be commu-
nicated, responsibility for preparing the report, and so on.

Figure 6.4. Test plan format for a project (page 2 of 4)

J. Ross Publishing; All Rights Reserved

Validation 149

Risks identified: Enumerate all the risks identified, along with their mitigation plan
activities

Risk Probability of
Risk ID description occurrence Mitigation plan

Tools to aid in testing

Reference to tool
Name of tool Purpose Administrator documentation

PMPal Defect reporting, Software Project information
resolution, and project manager folder
defect metrics

IDE for programming Unit testing Program Available with the
languages author(s) IDE itself

Microsoft Office Prepare test Concerned Available inside
Suite cases, test logs, persons the suite itself

and reports and
carry out
analyses

Doors Load testing Software Available in the
project manager tool itself

Proposed analyses for the project

Person responsible for Schedule for carrying
Analysis carrying out the analysis out the analysis

Defect injection rate Quality assurance Once every calendar month
for programmers department on the last working day

Rework effort for Quality assurance Once every calendar month
defect resolution department on the last working day

Defect category Quality assurance Once every calendar month
analysis department on the last working day

Defect by origin Project leader or Once every calendar month
analysis software project manager on the last working day

Figure 6.4. Test plan format for a project (page 3 of 4)

J. Ross Publishing; All Rights Reserved

150 Mastering Software Quality Assurance

List of waivers: Enumerate all the waivers from implementation of organizational
process, if any, obtained.

1.

2.

3.

Any other information relevant to conducting software testing of the project:
Record any other information not covered in any of the above sections but that is
relevant to the project testing.

Figure 6.4. Test plan format for a project (page 4 of 4)

specifying inputs, predicted results, and a set of execution conditions for a test
item.” From this definition, the following can be deduced about test cases:

� Test cases are used for executing a test on a software product.
� Test cases are comprised of user inputs that are provided to the

application and the procedure for executing the test case during the
test.

� Test cases detail the expected outputs from the software when the
test is executed with the specified user inputs.

� Test cases are specific to a software code artifact or a class of software
code artifacts.

� Test cases facilitate and ensure compliance of the software code artifact
with a specific requirement.

� Test cases are documented.

The usual practice is to document the test cases in a spreadsheet such as
Microsoft Excel or in a tool such as TestPal. (This tool is available as a free
download from the Web Added Value Download Resource Center at
www.jrosspub.com.) The general practice is to document the test cases for one
software component (software code artifact) in one document. Figure 6.5 shows
a sample test case definition format.

J. Ross Publishing; All Rights Reserved

Validation 151

Figure 6.5. Test case definition format

List of Test Cases

Project ID:

Module name:

Component to be tested:

Type of component: � Screen � Report � Stored procedure
Describe if other:

Test case Description Expected Actual Pass
ID of test case results results or fail

A condition table is another way to describe test cases. A condition table
describes the behavior of the system for different combinations of inputs. For
example, in a log-in screen, the user enters a user ID and a password and clicks
on either the OK button or the Cancel button. When the Cancel button is
clicked, the log-in action needs to be canceled, but when the user clicks the OK
button, the system behaves as described in Table 6.1.

Test case design is extremely important in software testing. Properly de-
signed test cases can uncover all defects, and poorly designed test cases leave
residual defects in the software product. The objective of test case design is to
uncover all defects lurking in the software and to test the entire software com-
pletely, with the constraint being minimization of effort and time.

Test cases should be derived from the software information artifacts. Table
6.2 lists the artifacts that assist in deriving a test case.

J. Ross Publishing; All Rights Reserved

152 Mastering Software Quality Assurance

The number of test cases to be designed and documented is quite large.
Consider the following implications in designing test cases:

� For every numeric data input (including date-type data), five test
cases, using the partitioning and boundary value analysis techniques
explained later in this section, are needed.

Table 6.2. Software information artifacts that assist in deriving test cases

Type of test Information artifacts Remarks

User acceptance User requirements documents User acceptance testing needs
testing to prove that all user require-

ments are met by the software

System testing Software design description— Target system specification
high-level design (software portion of design documents
requirements specification) gives this specification

Integration Software design description— Interface description portion of
testing high-level design (software design documents gives this

requirements specification) specification

Unit testing Software design description— Specification for the unit in the
low-level design or detailed design gives this specification
design

Table 6.1. Condition table for a log-in screen

User enters user ID and password
Condition and clicks OK button

Valid user ID and valid password Accept

Valid user ID and invalid password Reject and prompt for valid password

Invalid user ID and valid password Reject and prompt for valid user ID

Invalid user ID and invalid password Reject and prompt for valid user ID and
password

Empty user ID and valid password Reject and prompt for user ID

Valid user ID and empty password Reject and prompt for password

Empty user ID and empty password Reject and prompt for user ID and
password

J. Ross Publishing; All Rights Reserved

Validation 153

� Size checks must be performed for all nonnumeric data, one per data
item.

� All nonnumeric data must be checked to ensure it has been entered
and that the entry area is not left blank.

� Logical testing is needed to check for the presence of invalid data,
such as two decimal points in numeric data, numeric and special
characters in name data fields, etc.

Therefore, the test case set for even a moderately complex unit is huge.
Modern projects are large in size, and the effort required to prepare exhaus-

tive test case sets is extensive. For this reason, it is common to prepare test cases
where it is expected that the tester cannot intuitively figure out the test cases on
his or her own. Guideline-based testing is commonly used for the following
types of software testing:

� GUI testing
� Navigation testing
� Negative testing
� Load testing
� Stress testing
� Parallel and concurrent testing

Organizations use these guidelines to avoid having to prepare exhaustive test
cases. Integration testing, system testing, and acceptance testing normally are
carried out against test cases.

Some of the techniques for test case design which help to ensure that test
cases are comprehensive are discussed in the following sections.

Equivalence Partitioning

In equivalence partitioning, the input space is partitioned into valid inputs and
invalid inputs. The following example illustrates this technique. In a human
resources application, employee age can be a minimum of 16 (minimum em-
ployable age) and a maximum of 65 (retirement age). The partition of valid
values is between 16 and 65. There are two partitions of invalid values: one
below 16 and the other above 65. Therefore, there are three partitions for this
case—one valid and two invalid. One test case can be designed for each parti-
tion, resulting in three test cases. The possible outcomes are as follows:

J. Ross Publishing; All Rights Reserved

154 Mastering Software Quality Assurance

� If the input conditions specify a range of values (such as 16 to 65),
there are three partitions, as stated above.

� If the input conditions specify a single value (such as 16), there will
be three partitions: one valid partition, one invalid partition above
the valid value, and one invalid partition below the valid value.

� If the input conditions specify a Boolean value (true or false), there
will be two partitions: one valid partition and one invalid partition.

� If the input conditions specify a set of valid values, there will be one
partition for each of the valid values and one invalid partition for an
invalid value.

Figure 6.6 depicts equivalence partitioning.

Boundary Value Analysis

“Bugs lurk in corners and congregate at boundaries,” a wise statement attributed
to Boris Beizer, is the basis for this technique. Again using the equivalence
partitioning example, there are two boundaries: the minimum employable age
and the maximum employable age (retirement age). These two boundaries—16
and 65—must be accepted, and all values below 16 and above 65 must be
rejected. Therefore, test cases are designed that combine the techniques of
equivalence partitioning and boundary value analysis. In this example, there are
five test cases:

1. One value between 16 and 65—valid value
2. One value at the lower boundary of 16—valid value

Figure 6.6. Equivalence partitioning

Not employable

Age less than 16

Not employableEmployable

Age between 16 and 65 Age more than 65

Partition 3Partition 2Partition 1

J. Ross Publishing; All Rights Reserved

Validation 155

3. One value just below the lower boundary (that is, less than 16)—
invalid value (normally this value would be given as 1 day less than
16)

4. One value at the upper boundary of 65—valid value
5. One value just above the upper boundary (that is, greater than 65)—

invalid value (normally this value would be given as 65 years and 1
day)

Figure 6.7 depicts boundary values.

Error Guessing

As it is generally accepted that exhaustive testing of all possible scenarios is not
practical, organizations try to ensure defect-free product by designing test cases
for such instances where defects are possible. Generally, a guideline for error
guessing is developed. In this technique, the test case designer uses experience,
intuition, and common sense to design test cases that are likely to detect errors.
As the name itself suggests, there is some amount of guessing involved, which
means software engineers are likely to commit errors. Using this technique
certainly requires many years of experience in developing and testing software.

Examples of areas in a date field where errors are likely to occur include an
invalid date such as February 30 entered, a month set to 13, or a wrong year
such as 9999 entered. An example in a human resources application is entering

Figure 6.7. Boundary values

Not employable

Age less than 16

Not employableEmployable

Age between 16 and 65 Age more than 65

Lo
w

er
 b

ou
nd

ar
y

U
pp

er
 b

ou
nd

ar
y

J. Ross Publishing; All Rights Reserved

156 Mastering Software Quality Assurance

an invalid age for employment. Chronology is another area where errors are
likely crop up. For example, when material receipt should precede material issue
and the date of issue is prior to the date of receipt, the transaction should be
rejected by the system. Another example is negative numbers entered where only
positive numbers are expected.

Software developers design test cases to detect errors in software using highly
developed hunches and intuition based on many years of software development
experience. Organizations record all possible error areas and prepare error-
guessing guidelines and checklists for use in designing test cases.

Logic Coverage

In this method, the logic of the software design is used to derive test cases that
evaluate the software to ensure that the logic is producing the desired results.
The test cases designed either prove or disprove the logic built into the software
design.

Consistency Checking

Consistency checking involves designing test cases that check for consistency of
processing from different points in the software. For example, in a warehouse
information management software application, the stock balance for an item
can be obtained from any of the following:

1. Stock inquiry for an item
2. Monthly stock report
3. Priced stores ledger
4. Material issues
5. Material shortages report

Although each of these processes could be governed by a different unit of soft-
ware, each provides the stock balance information, and the stock balance for an
item must be the same, irrespective of the process from which it is obtained.
Consistency of information from these different units is checked. If there is a
difference in the values produced, it is a clear indication of an error in those
software units.

Therefore, test cases are designed to ensure consistency of values. They are
applicable wherever there is a requirement to display the same information
through different functionalities of the software.

J. Ross Publishing; All Rights Reserved

Validation 157

Requirements Tracing

Requirements tracing is the most common method for designing test cases. The
requirements, from the user requirements specification to the software detailed
design, are traced, and the test cases to test the software product are designed
to confirm that the software does in fact meet and fulfill the user requirements.

The following example of a log-in screen component illustrates how test
cases are derived from software requirements by tracing them through high-
level design, low-level design, and finally design test cases. Table 6.3 shows how
these requirements transform in various artifacts.

Test cases are needed to test the log-in screen to ensure it is working to fulfill
the requirement of the user and as designed. Here the user requirement is
divided into three screens in the high-level design:

� One screen ensures that the selected password is strong and captures
questions and answers to be used to retrieve a forgotten password.

� The second screen ensures that only authorized users access the
application.

Table 6.3. Transformation of requirement for log-in screen

Artifact Description

User requirement

High-level design
(software
requirements
specification)

Access to the product functionality is to be restricted by a user
ID and password system. It should be secure enough to prevent
unauthorized users from accessing the system. It also should
restrict intruders from hacking the security through trial-and-error
entry of user ID and password combinations. At the same time,
authorized users must be assisted in a convenient manner to
retrieve a forgotten user ID or password.

Definition of the user details screen achieves password security
by ensuring that the password is a combination of letters and
digits and is not a dictionary word. The screen captures questions
and answers for retrieving the user ID and password. The “Re-
trieve user ID/password” screen assists the user in retrieving a
forgotten user ID or password. The log-in screen achieves the
functionality of allowing or restricting access to the user. This
screen has the facility to enter a user ID and a password. It should
have two buttons: one to submit entries to the system and one
to cancel entries. There should be a link to retrieve the user ID
or password. Only three attempts from the screen should be
allowed for invalid entries of user ID and password.

J. Ross Publishing; All Rights Reserved

158 Mastering Software Quality Assurance

Software design
description (low-
level design or
detailed design)
for log-in screen
component

Table 6.3. Transformation of requirement for log-in screen (continued)

Artifact Description

Screen layout (not presented here)
Program specs:
1. Display screen and set focus to the user ID box.
2. Set number of attempts to zero.
3. If the OK button is clicked, then perform steps 4 to 10 below.
4. Increase number of attempts incrementally by one.
5. If number of attempts is greater than three, then display the

message “Reached maximum number of attempts. Please
contact your administrator.” Disable entry fields.

6. Verify if the user ID is blank. If so, set focus to the user ID
box and display the message “User ID is blank.”

7. Verify if the password is blank. If so, set focus to the pass-
word box and display the message “Password is blank.”

8. Open the users table and verify if the user ID exists in the
table. If the user ID is not found, set focus to the user ID box
and display the message “Wrong user ID. Please try again.”

9. If the user ID is found in the users table, verify if the password
supplied by the user is the same as the one in the table. If
the passwords do not match, set focus to the password box
and display the message “Wrong password. Try again.”

10. If the password supplied by the user matches the one in the
table, close the log-in screen and display the next screen.

11. If the “Forgot user ID or password” link is clicked, close the
log-in screen and display the “Retrieve user ID or password”
screen.

� The third screen facilitates retrieving a forgotten password and user
ID for legitimate users.

The user requirements for this log-in screen component are as follows:

� When the user ID and password combination is entered correctly,
access to the system is allowed.

� Intruders are prevented from gaining access through trial-and-error
entry of user ID and password combinations.

� The user is able to retrieve a forgotten user ID or password.

For each of these requirements, at least one test case needs to be written, but
more are required to ensure that the requirements are fully met by the software.

J. Ross Publishing; All Rights Reserved

Validation 159

Testing is easy for the first requirement. The correct combination of user ID
and password is entered, and the expected result is access to the system. This
is one test case. For the second requirement, all possible wrong combinations
need to be entered, and the expected result is denial of access to the system. This
means a number of test cases must be designed, one per each wrong combina-
tion. For the third requirement, the expected result is navigation to another
screen. This is another test case.

Test cases can be designed using the format in Figure 6.5. The test cases for
the log-in screen example are given in Table 6.4. Successful execution of the test
cases represents confirmation that the user requirements are fully met by the
log-in screen component of the software product. If the actual result is not the
same as the expected result, the actual result is recorded in the “actual results”
column. If the actual result is the same as the expected result, “pass” or a similar
notation is recorded in the “actual results” column to indicate that the expected
and actual results are identical.

This is how test cases are designed by analyzing the user requirements and
the software design documents. As you can see, the purpose of testing is to
ensure that user requirements are met. Design documents assist us in designing

Table 6.4. Test cases for a log-in screen

List of test cases:

Project ID: Sample project

Module name: Security module

Component to be tested: Log-in screen

Type of component: ⌧ Screen � Report � Stored procedure
Describe if other:

Test
case Expected Actual Pass

ID Description of test case results results or fail

SL01 Enter the correct combina-
tion of user ID and pass-
word, and click OK button

SL02 Restart the application and
click “Forgot user ID/pass-
word” link

Log-in screen is closed and
the next screen is displayed

Log-in screen is closed and
the “Retrieve user ID/pass-
word” screen is displayed

J. Ross Publishing; All Rights Reserved

160 Mastering Software Quality Assurance

SL03 Restart the application,
leave the user ID box blank,
enter some characters in the
password box, and click OK
button

SL04 Enter some characters in the
user ID box, leave the pass-
word box blank, and click
OK button

SL05 Enter some characters in
the user ID and password
boxes, and click OK button

SL06 Enter the correct user ID
and some characters in the
password box, and click OK
button

SL07 Try to restart the application

SL08 Contact the administrator
and reset the computer to
facilitate restart

SL09 Enter the correct user ID and
some characters in the pass-
word box, and click OK
button

test cases with which we can ensure that user requirements are indeed met. The
above example illustrates this aspect.

Response Time Checking

Response times are extremely important in real-time software systems that control
such machines as aircraft, ships, and rockets, as well as robots and automated
machines. Response times also have become very important for Internet-based

Focus is set to the user ID
box and the message “User
ID is blank” is displayed

Focus is set to the password
box and the message “Pass-
word is blank” is displayed

Focus is set to the user
ID box and the message
“Wrong user ID” is displayed

Since this is the fourth at-
tempt, the entry boxes must
be disabled and the mes-
sage “Too many attempts.
Contact your administrator.”
should be displayed

The application should not
restart

The application should restart

Focus should be set to the
password box and the mes-
sage “Wrong password”
should be displayed

Table 6.4. Test cases for a log-in screen (continued)

Test
case Expected Actual Pass

ID Description of test case results results or fail

J. Ross Publishing; All Rights Reserved

Validation 161

businesses that offer such online features as booking reservations, purchasing,
payment processing, etc. Take, for example, entering a credit card number to
make a payment; a long response time may causes the user to wonder:

� Has the payment been made and my credit card charged?
� If I click twice, will my credit card be charged again for the same

purchase?
� Did the system hang?
� Is it possible my credit card has been charged but payment has not

been received?
� Will I get what I paid for?

In an online shopping operation, if the system takes a long time to display,
the customer might close the Web site and move to another merchant site or
might altogether abandon the idea of online shopping. Therefore, in addition
to real-time systems, response time has become crucial for online business systems.
Test cases are designed to test the response time of a software product to ensure
it is within acceptable limits.

Response time is understood as the elapsed time between when the customer
gives a command (clicks the OK or Submit button or hits the Enter button) and
the software begins to display a response. The rule of thumb in online business
systems is that the maximum allowable response time should be between 15 and
30 seconds. The response time is checked either by using a stopwatch that shows
seconds in one-hundredths of a second or by inserting statements in the pro-
gram to display the time from as soon as the request is sent to as soon as the
response is completed. The software’s response time is arrived at by subtracting
the final time from the initial time. Starting and stopping a stopwatch must be
done quickly when using this method to check response time. In the system
display method, the software needs to be altered to display the time of the system
clock as soon as a command is given and just after the software responds, so
that the time it takes the system to generate the response can be worked out.

TEST ENVIRONMENT

The software development environment is set up during the project initiation
stage and typically includes the following items:

1. Servers for the database, Web server, and middle tiers
2. Client machines, one for each developer

J. Ross Publishing; All Rights Reserved

162 Mastering Software Quality Assurance

3. Networking for all the machines
4. A software development tool kit for developing the software

The following steps are then performed:

1. Load all software information artifacts, such as requirements docu-
ments, design documents, standards and guidelines, etc., into a com-
mon area accessible to all team members.

2. Set up configuration management procedures to deal with change
control and code promotion to the next stages. Typically, the code
will move from the development state to the unit testing state, then
to the product integration state, the integration testing state, the system
testing state, the acceptance testing state, and finally to the delivery
state. (The subject of configuration management is beyond the scope
of this book.)

3. Set up the test environments necessary to conduct a minimum set of
tests, specifically unit testing, integration testing, system testing, and
acceptance testing. If other types of tests are planned, the test envi-
ronments need to be set up for those additional tests as well.

4. Set up mechanisms for allocating work to team members and track-
ing the work allocated to completion.

5. Set up communication mechanisms for work allocation and comple-
tion, issue reporting and resolution, issue escalation, etc.

Development work is set to begin once the development environment is
created, but what is of concern here is the test environment. The test environ-
ment should be a replica of the development environment, albeit at a scaled-
down level. It needs a server that has all the necessary software for the database,
Web server, and middle tiers, as well as a few client machines to conduct the
testing. These client machines should have the same software development tool
kit as the development client machines have. The server should have test data
with an online backup facility so that it can be reset to the pretest image before
conducting a test that would alter the test data.

Whenever a component of software needs to be tested, a copy of it is moved
into this test environment. The component is then tested. After it passes in all
test cases, it is removed from this environment, and the test data is reset to the
pretest image. For testing client-server applications, the server should have the
databases, and the software should be loaded onto the client machines. The
testers then conduct the testing from the client software and data from the

J. Ross Publishing; All Rights Reserved

Validation 163

server. For testing Web applications, both the software and the database should
reside on the server machines, and the tester should access the software using
the designated Web browser to test the application. For mainframe applications,
the front-end machines should use terminal emulation software, access the
software and data from the server, and test the software.

The actual test environment is described in the test plan for the project. It
is not uncommon to use the development environment itself as the test envi-
ronment. However, this is not a best practice. The development environment
would have other software to assist in debugging as well as other software that
is not present on the customer’s machines. The test environment should re-
semble as closely as possible the target environment at the customer’s site.
Therefore, a best practice is to have a separate set of machines for the test
environment.

TESTING SCENARIOS
Independent software testing is carried out in two scenarios:

1. Project testing or embedded testing—Carried out as part of a soft-
ware development project to ensure that the development work is
defect-free. It is concurrent with software development.

2. Product testing—Carried out on a commercial off-the-shelf software
product to ensure that the product works without any defects in a
variety of customer scenarios. At the special request of the customer,
this also can be implemented in contract development. This testing
is conducted after software development is completed.

PROJECT TESTING OR EMBEDDED TESTING
When software is developed as a product either to be delivered to a single client
or intended for use at a single location, testing of that product starts shortly after
the start of its development. That is, a software unit is developed, and then that
unit is subjected to the specified testing. As more and more units complete
development work, those units undergo testing. As development work progresses,
the testing work also progresses, albeit with a time lag between software devel-
opment and testing. As development work is completed, the testing work is
completed soon after. That is, the testing activity is embedded in the develop-
ment activity itself. In the sections that follow, testing types normally conducted
in embedded testing, in addition to software verification, are discussed.

J. Ross Publishing; All Rights Reserved

164 Mastering Software Quality Assurance

Unit Testing

Unit testing is always carried out by the person who wrote the code and addi-
tionally by an independent peer, using the white box testing technique. The
following steps are performed in unit testing:

1. The programmer constructs a component in adherence with the design
document for the component, allocated to him or her by the project
leader or the software project manager. The programmer reviews and
tests the component to ensure that it performs the designed func-
tions. The programmer informs the project leader or software project
manager that the component is ready for unit testing.

2. The project leader or software project manager identifies a peer to
carry out the unit testing, allocates the work of conducting the unit
testing to the person identified, and provides that person with the
test cases, guidelines, and checklists, if any, for conducting the unit
testing.

3. A copy of the code is made available to the tester.
4. The tester loads the code for the component in the testing environment.
5. The tester executes all the test cases and logs the actual results for each

test case, indicating a pass or fail result.
6. The tester hands over the test log to the project leader or software

project manager, who arranges for rectification of any defects uncov-
ered during the testing and requests that the tester conduct regression
testing and close the defects.

7. The tester conducts the regression testing and closes the rectified
defects and then hands over the test log to the project leader or
software project manager for inclusion in the project records.

8. If regression testing reveals new defects or nonresolution of earlier defects,
steps 6 and 7 are iterated until all defects are closed satisfactorily.

Certain development platforms, especially in Web application development,
do not allow stepping through every line of code using an IDE or a debugger.
White box testing in such cases has to be achieved by accessing the application
from a browser and designing test cases in such as manner that all paths in the
code are tested comprehensively.

Another distinct characteristic of Web applications is that their unit testing
stage also should be used for system testing. Whenever a component in a Web
application is constructed, the component has to be tested not only for func-
tionality and structure but also from all target Web browsers and target client

J. Ross Publishing; All Rights Reserved

Validation 165

machines. If a Web application is tested on only one browser at the unit testing
stage, the amount of functionality that needs to be tested at the system testing
stage would be huge; it would be practically impossible to execute all test cases
to ensure that the application works without defects on all target client machines
and Web browsers.

Integration Testing
Integration testing is carried out either as a one-off (when all integration is
completed) or incrementally (whenever one unit of software is integrated, its
integration is tested until all units are integrated and tested). Black box testing
is used for one-off integration testing, and white box testing is used for incre-
mental integration testing. Integration testing should adopt the same approach
used to achieve product integration testing by the development team. This should
be documented in the project plan documents for the project.

There are two approaches to product integration: the top-down approach
and the bottom-up approach. The top-down approach to product integration
proceeds as follows:

1. The top-level component from where the product functionality would
begin is developed first.

2. The top-level components for the modules of the product are devel-
oped next, and these are integrated with the top-level component of
the product.

3. If there are any submodules, the top-level components for each
submodule are developed and integrated with the top-level compo-
nents of their respective modules.

4. Each component is developed and integrated with the top-level com-
ponents of its respective submodule or module.

5. This process continues until all components are developed and inte-
grated with the product.

In the top-down approach to integration testing, two aspects of integration
would be tested:

1. The interface code for integrating a module with the product, a
submodule with a module, or a component with a submodule or
module is tested using the white box testing technique.

2. Functional testing and navigation checking are always carried out
from the top-level component of the product toward the bottom of
the product using the black box testing technique.

J. Ross Publishing; All Rights Reserved

166 Mastering Software Quality Assurance

The bottom-up approach to product integration proceeds as follows:

1. Each component at the lowest level is constructed and tested first.
2. When all the components of a submodule are completely constructed

and tested, the top-level component of the submodule is constructed,
and all its components are integrated with it. Then the submodule is
tested for integration efficacy.

3. When all submodules (or components) of a module are completely
constructed, the top-level component of the module is constructed,
and those submodules (or components) are integrated with the top-
level component of the module. Then integration testing for the
module is conducted.

4. When all modules are completely constructed, the top-level component
of the product is constructed, and all modules are integrated with the
product. Then integration testing for the product is conducted.

In the bottom-up approach to integration testing, testing is carried out as
follows:

1. Integration testing is conducted whenever all components of a
submodule or module are completely constructed and integrated.

2. The interface code for integrating components with a submodule or
module is tested using the white box testing technique.

3. Functional testing and navigation checking are always carried out for
each submodule or module using the black box testing technique, as
and when all components are completely constructed and integrated
with a module.

4. Functional testing and navigation checking are always carried out for
each module using the black box testing technique, as and when all
submodules (components) are completely constructed and integrated
with a module.

5. Functional testing and navigation checking are always carried out for
the product using the black box testing technique, when all its mod-
ules are completely constructed and integrated with it.

Integration testing is conducted as follows:

1. When an integration (either in the top-down or bottom-up approach)
is completed, the project leader or software project manager arranges

J. Ross Publishing; All Rights Reserved

Validation 167

for a peer review and then arranges for resolution and closure of the
defects uncovered.

2. A copy of the code for the integrated submodule, module, or product
is moved to the test environment by the project leader or software
project manager.

3. The project leader or software project manager identifies a tester to
conduct the necessary integration testing and provides the tester with
test cases and any guidelines and checklists.

4. The tester conducts the testing in adherence with the test cases and
any guidelines and checklists.

5. The tester logs the actual results and determines a pass or fail result
for each test case, which also is logged.

6. The tester hands over the test log to the project leader or software project
manager, who arranges for resolution of the defects uncovered.

7. The project leader or software project manager ensures that all defects
are satisfactorily resolved and arranges for the tester to conduct re-
gression testing and close the defects.

8. The tester conducts the regression testing and closes the defects. The
test log is handed over to the project leader or software project manager
for inclusion in the project records.

9. If the regression testing uncovers fresh defects or if previous defects
were not resolved satisfactorily, steps 6 to 8 are iterated until all
defects are resolved satisfactorily.

System Testing

System testing is carried out to ensure that the software works on all intended
target systems. In mainframe applications, development usually takes place in
a simulated environment on low-cost personal computers. Once development
is completed, the software is loaded onto the mainframe computer and tested
in the actual environment.

In client-server applications, system testing is carried out on all intended
operating system versions, such as Windows 98, Windows 2000, Windows XP,
and Windows Vista. It also is carried out on all applicable versions of the da-
tabase, such as SQL Server 7, SQL Server 2000, SQL Server 2005, etc.

In Web applications, system testing includes testing on various client sys-
tems, such as Windows-based machines, UNIX- or Linux-based machines, and
Macs. The applications also are tested on all popular Web browsers, such as
Internet Explorer, Firefox, Google Chrome, etc. In addition, the different ver-

J. Ross Publishing; All Rights Reserved

168 Mastering Software Quality Assurance

sions of these browsers also need to be used in the system testing. The combi-
nations for system testing of Web applications are immense. In Web applica-
tions, most of the system testing is carried out during the unit testing stage.
System testing of Web application software takes a significant amount of time
to perform.

User Acceptance Testing

User acceptance testing (UAT) is carried out to obtain customer sign-off, so that
the software can be delivered and payment received. This testing is unique to
contract development. UAT normally is conducted using the black box testing
technique. It is based on test cases designed to prove that the software performs
all the functions specified in the user requirements document provided by or
approved by the customer. It is positive testing.

The steps for conducting UAT are as follows:

1. Test plan and test cases are designed based on the user requirements
document.

2. Sometimes the customer provides the test plan and test cases for
UAT. In other cases, the customer approves the test plan and test
cases provided by the vendor.

3. UAT is planned and scheduled during the project planning stage with
the approval of the customer.

4. Normally, UAT is conducted at the vendor’s premises and by the
vendor’s engineers. The customer representative is present during the
UAT and ensures that the test environment and testing are as speci-
fied in the test plan and test cases designed for UAT.

5. Test results are logged, and any defects uncovered are resolved by the
vendor’s engineers.

6. Final clearance that the software product passed the UAT is obtained
from the customer’s representative. Usually, sign-off is in the form
of an acceptance letter.

Optionally, many other tests can be conducted at the request of the cus-
tomer. In Web applications, it is normal to conduct load testing, negative test-
ing, and concurrent testing in addition to the four tests described in this section
in contract software development. These additional tests are discussed in sub-
sequent sections of this chapter.

J. Ross Publishing; All Rights Reserved

Validation 169

PRODUCT TESTING

A software product in the context of this section is a product developed against
specifications defined in-house rather than the specifications of a single cus-
tomer. The product is to be marketed to multiple customers and delivered with
or without customization. When a product is sold without customer-specific
customization, it is referred to as a commercial off-the-shelf (COTS) product.
There are many COTS products in the market alongside products that are
subjected to customer-specific and site-specific customization. Since a COTS
product is likely to function in disparate environments with differing system
software (that is, different operating systems, browsers, networks, and servers),
it requires more rigorous testing to ensure defect-free functioning on all target
platforms.

A product is developed as a project first and undergoes all the tests that a
project normally undergoes: unit, integration, and system testing. System testing
is carried out more rigorously than unit testing and integration testing are and
usually on multiple systems. In product testing, other more rigorous tests are
carried out in addition to the usual testing. These tests normally are conducted
using the black box testing technique. In the sections that follow, these addi-
tional tests are discussed in greater detail.

Load Testing

In Web and multiuser applications, large numbers of users are logged in and
use the software in a random manner. The objective of load testing is to find
out how the software manages multiple requests and whether it either serves up
accurate results or mixes the results up. Load testing unearths issues connected
with bandwidth, the database, RAM, hard disk space, etc.

Two methods are used for conducting load testing: manual testing and tool-
based testing. In manual load testing, a large number of client machines are set
up with the necessary software. A user is allocated to each machine and is asked
to execute the test cases and then log the results at the workstation.

In tool-based load testing, the test tool is programmed with the necessary
test cases and the tool simulates a large number of users by running the test
cases on the software and logging the results. Load testing can reveal not only
software defects but also hardware defects and limitations in supporting a large
number of simultaneous users. Based on the test results, any defects uncovered
are resolved.

J. Ross Publishing; All Rights Reserved

170 Mastering Software Quality Assurance

Volume Testing

Volume testing subjects the software to a high volume of data to see if perfor-
mance degrades as the amount of data increases. Normally during development
and the usual testing, a small amount of test data is used mainly to prove the
functionality is working as it should or to uncover defects in the software. In
reality, however, the data continues to build up with actual usage of the software
and can grow to huge levels. The performance of the software often degrades
in such cases, especially when data-intensive reports are generated or when
master data files and tables are maintained. Therefore, in addition to the usual
tests conducted with a small volume of data, volume testing is conducted using
a large volume of data.

In volume testing, functions that are likely to use large volumes of data are
tested. Test cases are drawn from the software design documents. A large vol-
ume of test data is generated through a test data generator software product. A
test data generator software product generates a large volume of test data by
manipulating key values, but leaves the remaining data virtually similar in every
record. The objective of test data is not to ensure logical results but rather to
assess performance when a large volume of data is used. Using this test data,
volume testing is conducted and the results are logged and tracked to satisfac-
tory resolution. Volume test tools also are available in the market. These tools
have to be programmed to generate a large volume of test data as well as to test
the software and log the results.

Functional Testing

Functional testing tests the software to ensure that all its functions are working
correctly. There are two types of functions: main functions and ancillary func-
tions. Main functions fulfill product and customer needs as well as perform
business processes. Ancillary functions ensure security, protection against in-
tended or unintended misuse, maintenance of data integrity, etc. Functional
testing ensures that all these functions are working when used as intended.
Functional testing is positive testing.

End-to-End Testing

In end-to-end testing, one entity in the application is tracked from birth to
death. In many applications, it takes many years for all functions to be per-
formed on an entity. In a life insurance application, for example, when a policy
is issued, it remains in force for a number of years. Some people diligently pay

J. Ross Publishing; All Rights Reserved

Validation 171

their premium and collect the benefit at the end of the policy period. Other
people might borrow money against the policy, repay the money or not, stop
paying the premium altogether, and so on. To ensure that all functions are
working properly, this type of testing is conducted for one entity. For example,
in a payroll application, an employee joins the system and may be promoted,
demoted, or transferred; salary increases and decreases are effected or kept in
abeyance; and the employee then either retires, dies, quits, or is terminated.
End-to-end testing can have multiple paths from the birth to death of an entity,
and all such paths are tested in this type of testing. End-to-end testing ensures
that the state transitions designed for the entities in an applications happen as
desired.

Parallel Testing

In parallel testing, a number of users access the same function and are either
inputting or requesting the same data. Parallel testing assesses the ability of the
system to handle requests made at the same time and to preserve the data
integrity.

Two methods are used for conducting parallel testing: manual testing and
tool-based testing. In manual parallel testing, a number of client machines are
set up with the necessary software and the same set of test cases. Users are
allocated to the machines and are asked to execute the test cases and log the
results. In tool-based load testing, the test tool is programmed with the necessary
test cases and the tool simulates a number of users by running the test cases on
the software and logging the results.

Parallel testing can reveal the ability or inability of a software product to
handle a number of requests for the same service or functionality. Based on the
test results, any defects uncovered are resolved.

Concurrent Testing

Because of the emergence of Internet-based systems and the many functions
being made available to different users, which they can access from the comfort
of their home computer screens, the need for concurrency control has signifi-
cantly increased. Concurrent testing ensures that the software product has
adequate concurrency controls built in. This type of testing confirms that the
software provides for concurrency control and that it does not malfunction with
concurrent usage by multiple users. Concurrent testing is carried out to unearth
any issues that occur when two or more users access the same functionality and
update or modify the same data with different values at the same time.

J. Ross Publishing; All Rights Reserved

172 Mastering Software Quality Assurance

Take, for example, a ticket reservation system. Suppose there is only one seat
left on a flight and it is shown to two people as available. When both potential
buyers of the seat confirm its purchase at the same time, the system should
accept only one request and reject the other one. The system should not collect
payment from both parties and reserve only one seat, because the credit card
transaction of the rejected party will have to be reversed. Scenarios like this are
tested with concurrent testing.

Another common scenario occurs when generating complex reports. When
producing a report requires a number of tables (more than three) based on
complex conditions, a report table is normally populated to be used by report
generators to produce the required report. Consider the following example of
generating a priced stores ledger in an online (not a batch system) warehouse
management system. Normally, a priced stores ledger is generated for a period
of time, such as a calendar month. It consists of the opening balance for each
item (quantity and value), receipts during the period for each item (quantity and
value), issues effected during the period for each item (quantity and value), and
finally the closing balance for each item (quantity and value). The report is
produced as follows:

1. Gather the information needed from the following sources:
a. Material master, to ensure that every item in the warehouse is

included in the report.
b. Receipts information, for all receipts during the period for which

the ledger is to be produced. This information normally is con-
tained in two tables: the receipts master table (each receipt con-
tains multiple items) and the receipt items table.

c. Issues information, for all issues effected during the period for
which the ledger is produced. This information normally is con-
tained in two tables: the material issue requisitions table (each
requisition contains multiple items) and the issue items table (each
record contains issue information for one item).

d. Material returns information, for items returned to the warehouse
during the period. This information normally is contained in two
tables: the material returns note table (each note contains mul-
tiple items) and the return items table (each record contains re-
turn information for one item).

e. Purchase orders table, for pricing information to compute values
of receipts, returns, and issues. This information normally is con-
tained in two tables: the purchase order master table (each pur-
chase order contains multiple items) and the purchase order items
table.J. Ross Publishing; All Rights Reserved

Validation 173

2. Compute the opening balances and then include receipts, issues, and
returns. Compute closing balances and then, finally, compute the
totals for each page, the overall report, and the control statistics.

3. Consolidate information from each process using a report table.
Common practice is to empty the report table when beginning to
process the report request and fill the report table as the process
executes. Then the report generator produces the report.

Suppose one person initiates a request for the system to produce the report,
and while the process is in progress another person requests the same report
from another computer. What happens then is that the second request deletes
all the records included by the first process, and then both processes continue
to fill the table with information. If this is not controlled properly, the result
would be a mess. There are many methods to control this type of scenario, and
these methods are called concurrency control methods. One concurrency con-
trol method prevents anyone else from generating a report when a request for
the same report is already being processed; it keeps the second request on hold
until the first one is completed.

Such reports once were produced in batch processing but now are made
available to users online, to be produced at will. Many scenarios like the one
described here occur in software development. Whenever required, it must be
ensured through concurrent testing that adequate concurrency controls are in
place in the software. Test cases for concurrent testing should be derived by
analyzing the requirements and software design both at the high level as well as
at the low level. Then those test cases have to be executed to ensure that the
software has adequate concurrency control routines.

Stress Testing

Stress testing stresses the software by making expected resources unavailable,
causing deadlock scenarios, not releasing resources, disconnecting the network,
etc., to ensure that routines are built into the software to handle such stress.
Stress testing assesses the response of the software to events such as machine
reset, Internet disconnection, server time-outs, etc.

In Web applications, this type of testing becomes very important, as the user
sitting in front of his or her system at a location remote from the Web site does
not have any idea what is happening when an expected response is not forth-
coming. This test helps to locate any deficiencies in the software that do not
allow a smooth transition from an error condition caused by unavailability of
expected resources.

J. Ross Publishing; All Rights Reserved

174 Mastering Software Quality Assurance

Stress testing usually is conducted manually and involves disconnecting the
resources in the middle of executing the test cases. It normally is conducted
using a set of organizational guidelines and product-specific test cases. Appendix
E offers such a set of guidelines for conducting stress testing.

Positive Testing
Positive testing tests the software as specified and does not try any actions that
are not expected from a sincere user, to ensure that all defined functions are
performing as expected. It is not designed to uncover defects in the software.
Positive testing is performed mostly during customer and end-user acceptance
testing, functional testing, and end-to-end testing. It is conducted based on test
cases designed to prove that the software product is working as designed. This
type of testing is used just before delivery of a product to customers, to ensure
that the product is working.

Negative Testing
Negative testing involves using the software in a manner in which it is not
expected to be used, thereby revealing all other hidden defects not related di-
rectly to the defined functionality in the software. This is to ensure that even
malicious usage will not affect the software or data integrity.

With the advent of event-triggered software systems, negative testing has
become very important. Each control on the screen, such as a text box, combo
box, list box, etc., has a large number of events associated with it. For example,
click, double-click, change, mouse up, mouse down, got focus, lost focus, key
press, key down, key up, etc. are associated with a combo box. It takes great care
to code the control so that the user action of triggering an event is validated by
some code segment and failures are prevented.

Normally, negative testing is conducted using a set of guidelines, and Ap-
pendix F offers such a set of guidelines. Negative testing unearths deficiencies
in the software focused on error handling and facilitates improvement of soft-
ware so that unexpected failures do not occur at customer sites. I recommend
carrying out this testing on all software products, be they in the project scenario
or product scenario.

User Manual Testing
User manual testing involves using the software in conformance with the user
manual to ensure that the manual and the software are in sync with each other.

J. Ross Publishing; All Rights Reserved

Validation 175

It evaluates and validates the user documentation. The user manual is used as
the test plan, and test cases and the software are used strictly as specified in the
user manual. Any deviations found are logged. Using this test log, the user
documentation is updated to reflect the functioning of the software. When the
user manual is correct and the software is not functioning as designed, the
software must be rectified.

Deployment Testing

Deployment testing simulates the target environment and deploys the software
to ensure that the deployment specified is appropriate. It is conducted especially
on large COTS products which have multiple software components that might
have to be installed on separate machines to ensure that the product works
without issue on all target platforms. This type of testing uses the final build file
(or setup file) or the deployment CD of the product. The purpose of deployment
testing is to find out if there are any defects in the build file or the deployment
CD of the product. Web applications in particular require this type of testing,
as there are many combinations of target platforms in terms of different versions
of operating systems, databases, and Web servers. Each possible configuration
of the target platforms is set up in a simulated manner, and the product is
deployed. In deployment testing, only failures in deployment are considered.
After deploying the software components on different machines, deployment
testing ensures that the entire system is working satisfactorily.

Sanity Testing

This cursory testing ensures that the components of the software package are
complete and the versions appropriate. Sanity testing is carried out before ac-
ceptance testing by the customer, before delivery to the customer, or before
making a software build. However, this type of testing can be used in many other
situations, such as before giving demos of the product to prospective customers.
In sanity testing, the application is run and a few critical functions are randomly
checked to ensure that the product is functioning as it should.

Regression Testing

Regression testing is carried out after defects uncovered by earlier testing have
been fixed. In this test, only the defects recorded in the defect report are tested.
The previous test is not repeated in its entirety.

J. Ross Publishing; All Rights Reserved

176 Mastering Software Quality Assurance

Retesting

Retesting is conducting an entire test again. When testing is carried out and
defects uncovered during the test have been resolved, retesting is conducted to
ensure the process of fixing defects has not introduced any fresh errors in the
software. Repeating the entire test consumes significant resources. Therefore,
retesting is easy and practical only if a testing tool is used.

Security Testing

Security testing gauges vulnerability against the threat of viruses and spyware.
This type of testing is performed on such software products as firewalls, antivirus
software, antispyware software, e-mail software, etc. Security testing should be
conducted using separate hardware because viruses and spyware are introduced
into the system to see if the software is affected.

Performance Testing

Performance testing evaluates the overall performance of the system. Perfor-
mance includes response times, report generation, turnaround times, etc. Per-
formance testing is carried out on large-volume data processing, transaction
processing, and Web applications. In this type of testing, test data is crucial for
successful testing. Test cases are designed to test the system throughput based
only on the software design.

Usability Testing

Usability testing involves testing the software for different types of usage to
ensure that it satisfactorily fulfills the requirements of specified functional areas.
Usability testing is performed especially if the software is expected to be used
by persons with certain disabilities. This type of testing is carried out by testers
who have the disabilities for which the software is targeted.

Install-Uninstall Testing

Install-uninstall testing tests the software on all target platforms to ensure that
install and uninstall operations are satisfactorily performed. It is carried out for
a single software component that is expected to be installed on a single machine.
Install-uninstall testing differs from deployment testing in that deployment testing

J. Ross Publishing; All Rights Reserved

Validation 177

tests an entire software product that has multiple software components to be
deployed on multiple machines. Install-uninstall testing ensures that the soft-
ware components are properly loaded onto the intended directories during the
install and all components are deleted from the system after uninstall. The install
operation should not overwrite and render nonfunctional any files or dynami-
cally linked libraries used by other applications resident on the computer, and
the uninstall operation should not remove any shared files or dynamically linked
libraries that might be required by other applications resident on the computer
or render any applications nonfunctional.

Comparison Testing

Comparison testing involves testing the product with competing products to
identify differences and to determine the relative position of the product vis-à-
vis competing products. This type of testing normally is entrusted to indepen-
dent verification and validation agencies, which determine the relative position
of the product and certify the product’s relative ranking. Comparison testing
also is referred to as benchmark testing or simply benchmarking.

Regulation Conformance Testing

Regulation conformance testing ensures that the product conforms to all gov-
ernment regulations pertaining to minimum standards, such as Sarbanes-Oxley
regulations for accounting and other regulations for safety, use by persons with
disabilities, compatibility with earlier versions, etc.

Alpha Testing

Alpha testing is carried out after the product is ready for release. Actual pro-
spective users of the software product conduct the testing at the facility where
the software was developed.

Beta Testing

Beta testing also is carried out after the product is ready for release. Like alpha
testing, actual prospective users of the software product conduct the testing, but
at their respective locations, outside the organization that developed the soft-
ware product.

J. Ross Publishing; All Rights Reserved

178 Mastering Software Quality Assurance

Product Testing Summary

It is rare for all the tests described here to be carried out on every project
executed/project produced in an organization, but it is common for product
testing to include many of them. Every organization conducts some combina-
tion of the test types described here, but all organizations carry out at least the
following four types of testing:

1. Functional testing—To ensure that all functionalities allocated to the
software are working and that, when used properly, there are no
inaccuracies

2. Integration testing—To ensure that the coupling between various
software modules is in order

3. Positive testing and acceptance testing—For client acceptance of the
software

4. Load testing—To ensure that the system does not crash when heavy
loads are placed on it

Sometimes organizations carry out the other types of testing discussed in this
section, but only if time and budget are available or if mandated.

BEST PRACTICES IN TESTING

It is not easy to define what the best practices are in testing, as they are relative
to the situation and the objectives of the testing. The first overall best practice
is to conduct independent testing, and the tests should be conducted in accor-
dance with the following best practices:

1. White box testing should be performed at the unit testing stage,
using either IDEs or debuggers or well-designed test cases, without
exception.

2. Independent testers should conduct the unit testing.
3. White box testing should be used for testing of code that couples

software units to modules and modules to the product.
4. A separate testing team in the organization, rather than developers,

should conduct integration testing, system testing, and other se-
lected types of testing. Developers should be limited to conducting
independent unit testing only.

J. Ross Publishing; All Rights Reserved

Validation 179

5. A well-defined testing process for conducting software testing in the
organization should be established. The process should include
process, procedures, guidelines, checklists, formats, and templates
that will ensure testing is carried out thoroughly.

6. Negative testing should be made mandatory. This would ensure that
the product will not fail unexpectedly in the field.

7. Testing should be conducted based on well-designed test cases. How-
ever, to reduce the effort spent on designing exhaustive sets of test
cases, standards and guidelines should be defined to reduce the need
for designing test cases.

8. Test cases should undergo thorough verification.
9. Test logs should be subjected to verification to ensure that the in-

ferences of the results produced by testing have been accurately
drawn and that the testing covered the entire spectrum of the prod-
uct as designed by the test cases and organizational guidelines.

10. The organization should standardize a minimum set of tests to be
carried out on software it develops. These tests should at least in-
clude independent unit testing, integration testing, system testing,
and negative testing.

Additional best practices as well as pitfalls are discussed in the sections that
follow.

Best Practices in Unit Testing

Unit testing conducted by an independent tester is itself a best practice. Use of
an IDE or a debugger to step through every line of code is another best practice.
If it is not possible to use an IDE or a debugger to conduct unit testing, a best
practice is to ensure that the test cases used are designed in such a way that all
paths in the software unit are tested at least once during the testing. Ensuring
that every line of code and every path in the software unit is tested is referred
to as the “100% coverage standard.” This is a best practice. As the testing adage
goes, “If you do not test it, you cannot find its defects.”

If thorough unit testing is not carried out, defects not uncovered will surely
surface during the next round of testing or, worse, at the customer location.

Not having an independent tester conduct the unit testing and relying on
the testing conducted by the developer is a major pitfall. Quite a few organiza-
tions fall into this trap, and defects surface later on, resulting in extra effort to
fix them as well as avoid embarrassment.

J. Ross Publishing; All Rights Reserved

180 Mastering Software Quality Assurance

Not stepping through every line of code and not traversing every path in the
software unit is another pitfall during unit testing. If a path is not tested, it very
likely is left with defects that will continue to lurk in the software until that path
is traversed in the field.

Best Practices in Integration Testing

Integration testing conducted by a specialist testing team is a best practice.
Normally, in quite a few organizations, integration testing is conducted by project
senior programmers or the project leader. These people are involved in the
project and are emotionally attached to the product; therefore, they are likely
to skip over minor aspects, and more often than not it is the minor aspects that
cause major problems.

Another best practice to use both white box testing and black box testing in
integration testing. The code that is developed to couple units with modules or
modules with the product should be tested using white box testing, stepping
through every line of code. Black box testing can be used for coupling and
cohesion in integration.

Another best practice is to use incremental integration and incremental in-
tegration testing rather than doing all the integration in one shot (that is, as a
“big bang”) and conducting all the integration testing in one iteration. Conduct-
ing integration testing for all the integration in one iteration would require
significantly more time. Such testing normally is conducted near the end of
development work, and consequently, there is pressure to complete it quickly.
This could mean not having enough time to finish the testing, resulting in not
being able to uncover all the defects. A best practice is to carry out integration
incrementally and align the corresponding integration testing with incremental
integration.

Common pitfalls in integration testing include the project team conducting
it, only black box testing used for it, and conducting it in one iteration as a “big
bang.”

Best Practices in System Testing

In Web applications in particular, putting off system testing until the entire
product is ready results in inadequate testing. The combinations of target plat-
forms are enormous, and testing all functionality for all target platforms at the
system testing stage becomes impractical. In Web applications, system testing
needs to be combined with unit testing. A best practice in system testing of Web
applications is to combine system testing with unit testing and carry out a

J. Ross Publishing; All Rights Reserved

Validation 181

cursory system testing at the system testing stage. In other applications, system
testing can be carried out after the entire product is constructed and integrated.

A best practice is to conduct system testing on all target platforms. Another
best practice is to use a specialist testing team rather than the development team
to conduct system testing.

A common pitfall in system testing is to conduct the testing on one repre-
sentative target platform and assume that the product will work as well on other
versions of the platform. For example, conducting system testing on Internet
Explorer version 6 and assuming that it will work on versions 7 and 8 as well
can cause defects to surface when the later versions are used. Another common
pitfall is to entrust the system testing work to the development team rather than
using a specialist testing team.

Best Practices in Regression Testing

Two aspects are involved in regression testing. The first is how many times a
regression test should be run. One practice is to conduct a regression test only
once and expect that no further defects will be unearthed; if any are uncovered,
they can be left to the developers to fix. Another practice is to conduct regression
testing as many times as required, until all defects uncovered are resolved sat-
isfactorily. A best practice is to carry out regression testing until all defects are
satisfactorily resolved.

The second aspect pertains to the limits of regression testing and whether
to test only for the defects reported or to retest the entire software. Retesting
is preferable, but repeating the entire test would take as much time as the first
test took. If regression testing is conducted multiple times, then retesting every
time would skyrocket the costs of testing. If testing tools are used for the first
testing, the answer is clear: retest every time regression testing is needed. If no
testing tools are being used and the regression testing has to be carried out
manually, retesting is not practicable. However, a better practice is to extend the
regression testing beyond testing only the defects and to include some sort of
cursory testing in the final round of integration testing to ensure no fresh defects
are introduced while resolving the defects reported.

Another best practice is to conduct regression testing after every round of
defect resolution and change implementation. Many organizations totally do
away with regression testing, and this is a major pitfall. They claim that their
programmers are mature and can resolve defects completely without introduc-
ing fresh ones. Any exceptions are explained away as random aberrations rather
than the result of human error. These organizations also argue that it is cheaper
and quicker to fix a defect found at a later date than to conduct regression

J. Ross Publishing; All Rights Reserved

182 Mastering Software Quality Assurance

testing. They are focused more on making money than on providing products
of excellent quality. I have seen many organizations fall into this major pitfall.

Minimum Set of Tests for a Software Product

It is essential to define a minimum set of tests to be conducted on a software
product developed in the organization. These tests normally include indepen-
dent unit testing, integration testing, and system testing. Negative testing and
consequent defect resolution would add robustness and fault tolerance capabili-
ties to the software. Similarly, end-to-end testing would ensure that state tran-
sition of data processing on entities is happening as designed. Load testing and
volume testing also prevent unforeseen failures at the customer location. There-
fore, it is a best practice to include negative testing, end-to-end testing, load
testing, and volume testing in the minimum set of tests. Not having a defined
set of minimum tests is a major pitfall.

Independent Testing Team

Should this be mentioned as a best practice at all? In manufacturing and other
sectors, testers are always independent from the production team Testing is
recognized as a specialty in itself. In the software development industry, how-
ever, many organizations do not have separate testing teams. They use devel-
opers to conduct all the testing. In fact, the testers are drawn from the devel-
opment team that developed the software. These organizations argue that it is
cheaper to use the development team, because its members are already knowl-
edgeable about the product functionalities and can very quickly complete the
testing. What they have missed with this argument is that the objective of testing
is not to complete it quickly but rather to uncover all or as many lurking defects
as possible. These organizations are the ones that receive midnight calls for
customer support. They spend much more money on attending to defects un-
covered in the field than on uncovering them in-house and preventing them
from reaching the customer.

When separate testing teams are used, they grow into testing specialists and
focus on uncovering defects, increasing their testing productivity. In fact, spe-
cialist testers have higher testing productivity than developers have. Another
argument in favor of using specialist testers is that they conduct more thorough
testing than developers would.

Having a specialist testing team would save an organization a significant
amount of money—money that otherwise likely would be spent on attending

J. Ross Publishing; All Rights Reserved

Validation 183

to urgent calls for support from customers. It is a best practice to institute a
specialist testing team in software development organizations.

However, before putting the testing group to work, developers have to ensure
that their software works. I know of instances where developers have requested
testing of the software as soon as it is compiled without errors, not after they
have tested it themselves to ensure that it is fully functional and defect-free. This
is misuse of independent testing. Software should be entrusted to the indepen-
dent testing team only after the developers are reasonably confident that it is in
working condition and without defects. The purpose of testing by the author
is to ensure the functionality, and the purpose of independent testing is to
uncover defects. Having an independent testing team test the software does not
mean the developer is not responsible for testing his or her own code. Indepen-
dent testing is meant to be supplementary to the developer’s testing to confirm
that the software does not have any defects. It is not intended to supplant the
testing carried out by the developer. This is a common pitfall I have seen in
organizations that have an independent testing team.

Best Practices in Beta Testing

Beta testing is very important in COTS products that are expected to sell a large
volume. A best practice is to use a significantly large number of testers so that
testing is as thorough as possible. About 1 to 3% of the sales volume can be used
for testers to conduct beta testing.

One thing to keep in mind is that beta testing is not an alternative to thor-
ough in-house testing. Beta testing is performed to uncover defects for which
an in-house testing team might not be able to design test cases or when such
a data combination cannot be generated in-house. A bonus of beta testing is
suggestions for better usability of the software.

Therefore, best practices in beta testing are to entrust it to an adequate
number of testers and to use it in addition to in-house testing. A major pitfall
is the use of beta testing as an alternative to thorough in-house testing.

AUTOMATION OF TESTING AND USE OF
TESTING TOOLS

Testing tools have entered the market in a big way. Even so, there is a miscon-
ception in the software development industry—especially among senior man-
agement—that a tool automatically does what is expected of it. There are a few

J. Ross Publishing; All Rights Reserved

184 Mastering Software Quality Assurance

facts to note here. The same misconception was prevalent when computers hit
the market years ago; it was believed that by pressing a few buttons, the com-
puter would accomplish every task the user wanted it to. It slowly dawned on
users that quite a few buttons have to be pressed before the computer can
accomplish in minutes what would take days to accomplish using manual
methods. The same is true in the case of testing tools.

A tool helps a technician accomplish a quality job with much better produc-
tivity. A tool does not supplant the technician; it only assists the technician. For
example, a plumber cannot do plumbing work without a pipe wrench. But
having a pipe wrench alone doesn’t make someone a plumber! Similarly, testing
tools do not supplant the tester; they help the tester do a better job of testing.
With this in mind, the following are prerequisites of testing tools:

1. Test cases have to be designed and test data, procedures to execute
these test cases, and expected results have to be defined, and all this
information has to be fed into the testing tool before it can execute
test cases automatically. This is accomplished through a process re-
ferred to as test scripting.

2. Testing tools have to be programmed. Test scripts are essential if a
tool is to be used for conducting testing in the organization. True, it
is believed that writing test scripts is not as rigorous as programming
is. There are many terms in use today, such as programming, defining
macros, writing scripts, etc., which are all basically synonyms for
programming. These terms denote defining a procedure that can be
understood and executed by a computer. As in any programming, it
takes time to script the tools. The simpler the testing, the simpler the
scripting; the more elaborate the testing, the more elaborate the script-
ing that is required for the testing tool to do an effective job.

3. Just as good programming can be achieved with requirements analy-
sis and software design, testing requirements have to be analyzed and
test cases designed so that efficient and effective test scripts can be
written.

4. If a test is conducted only once, then manual testing takes less effort
and time than using a testing tool would, due to the effort required
to prepare the tool to conduct the test. However, if it is necessary to
conduct the same test a number of times, testing tools start to show
benefits from the second iteration onward.

5. Most testing tools provide a “record and playback” (capture and
replay) facility. That is, the test is conducted manually with the testing
tool in capture mode, and the tool captures and stores every key-

J. Ross Publishing; All Rights Reserved

Validation 185

stroke. When the testing tool is set to playback mode, it will execute
the test automatically. In other words, the testing tool automatically
generates the test script when a test case is executed when the tool is
in capture mode. However, as with any automatic code generation
tool, the script generated is difficult to maintain. When the testing
requirements change, modifications have to be made in the test script.

6. Software engineers have to develop the test scripts for testing tools,
and these engineers need training in writing efficient test scripts. Test
scripts also tend to have bugs and require quality assurance to ensure
they are defect-free.

Once it is understood that test scripting is required prior to using testing tools
and organizations are ready to spend the effort and time necessary to accomplish
that activity, the benefits of testing tools can be derived.

The benefits of using testing tools are as follows:

� From the second iteration of testing onward, test execution shows a
drastic improvement in terms of time and effort. That is, it takes
much less time and effort to test.

� Testing tools make retesting possible in every iteration of regression
testing—something not possible in manual testing due to the amount
of effort and time required for each iteration of retesting. This is a
great benefit, as it ensures that the resolution of defects does not
inject fresh defects, which unfortunately happens often enough.

� Tools make it possible to conduct load testing, stress testing, parallel
testing, concurrent testing, and others types of tests not possible or
very difficult to achieve manually.

� Testing tools are of great value during the software maintenance
phase, because for every defect fixed or modification made, the effort
and time needed for each regression testing are drastically reduced,
and retesting can replace regression testing.

Testing tools provide benefits even with the concomitant effort spent on
preparing the test scripts. In a contracted development project, wherein software
for a single client is developed, it would be very costly to use testing tools.
However, the customer might pay extra to have test scripts developed and
delivered along with the software, so that they can be used with great benefit
during the software maintenance phase. For in-house software development, use
of testing tools is highly recommended, as the scripts can very profitably be used
during the software maintenance phase.

J. Ross Publishing; All Rights Reserved

186 Mastering Software Quality Assurance

I have one recommendation regarding testing tools: use less and less of the
“record and playback” feature to generate test scripts; prepare test scripts only
when a software product is developed, and subject them to all the quality as-
surance activities used in normal software development.

FINAL WORDS ABOUT SOFTWARE TESTING

Because no “break and make” is involved in testing software and test data can
easily be set to the pretest image, there is practically no limit for software testing.
With Web applications, an organization has no control over the environment
in which end users utilize software. This makes it imperative to conduct exhaus-
tive software testing; the alternative is unforeseen software failures and a result-
ant loss of reputation and possibly loss of business too. There is no other field
in which such exhaustive testing is conducted or is feasible. The number of tests
that can be executed in software testing is unheard of in other fields. This makes
it a vast subject, and perhaps large volumes will be written about software testing
alone in the near future. The purpose of this chapter is to provide as much
information as possible on essentials of software testing as part of the overall
subject of software quality assurance.

J. Ross Publishing; All Rights Reserved

187

7
SOFTWARE PRODUCT
QUALITY: RELIABILITY

CHAPTER OVERVIEW

� Software as the cause of disasters
� Reliability of software products
� Measures for software reliability
� Causes of software failures
� Prediction of software reliability
� Software reliability improvement

SOFTWARE DISASTERS

Increasingly, more and more systems are being controlled by software. The
pervasion of software in our lives is so extensive it might not be an exaggeration
to say that there is no hardware that does not have software today. Such com-
mon items as televisions, washing machines, watches, clocks, security systems,
etc. in our homes are software controlled. Airports, aircraft, rockets, weapon
systems, factory machines, shopping malls—you name it, they are all controlled
by software. We have labeled, whether rightly or wrongly, software development
as “high tech,” and therefore, we assume that it is flawless, because anything that
is high tech must be flawless. Many of us either do not understand or do not
try to understand the intricacies of software development; we place it on a
pedestal. But the reality is that software is as prone to errors, defects, and failure
as any of the hardware on which it resides.

J. Ross Publishing; All Rights Reserved

188 Mastering Software Quality Assurance

It has been well proven in the manufacturing sector that human beings are
the reason behind most failures, and machines are much better suited to achieve
quality. The human element is crucial in software development, and it is not an
overstatement to say that the highest cost in software development is expended
on human beings. Therefore, it is clear that, due to its dependency on human
beings, high-tech software is much more prone to errors than any hardware ever
could be.

The Internet is replete with incidents of disaster whose origins can be traced
to software flaws. This fact was glaringly depicted in the movie Jurassic Park.
Consider the following incidents cited on Wikipedia:

� Lufthansa flight number 2904 (http://en.wikipedia.org/wiki/
Lufthansa_Flight_2904) landed at a speed of 170 knots (195 miles
per hour)—20 knots (23 miles per hour) faster than the standard
speed. The pilot had to steer the plane off the runway as it was
reaching the end. The left wing hit an embankment and a fire broke
out, spreading to the passenger compartment. As a result, the copilot
and one passenger died. One of the reasons was a software flaw.

� Patriot missiles in the Gulf War’s Operation Desert Storm (http://
en.wikipedia.org/wiki/MIM-104_Patriot) caused an accident. The
battery from which the missiles were fired was in operation for 100
hours, during which time the system’s internal clock drifted by one-
third of a second. This resulted in a missile missing its target by a
distance of 600 meters. Because of this, a scud missile was not in-
tercepted and hit the U.S. Army barracks, killing 28 soldiers. The
cause was traced to a software flaw.

� In 1999, the mission to launch the Polar Lander to Mars failed, as
the software misidentified vibrations in the vehicle’s legs during
touchdown and shut off the engines 40 meters (about 135 feet) from
the surface. As a result, the Polar Lander was lost.

� Y2K, as the approach of the year 2000 was labeled, was a widespread
concern in the 1990s. This was because in the earlier days of com-
puting, to save disk space and memory during execution, years were
entered into systems using two digits only, with the understanding
that any four-digit year began with “19.” With the coming of the year
2000, all these programs had to be corrected—at an estimated cost
of $500 billion. Some resolved the Y2K problem by assuming any
year entered as “50” and above to be in the 20th century (1950 to
1999) and any year entered as “49” and below to be in the 21st
century (2000 to 2049). The problem is, these programs are still

J. Ross Publishing; All Rights Reserved

Software Product Quality: Reliability 189

running, and if they are not upgraded to another technology and
rewritten, a similar type of problem will occur in 2049. All indica-
tions are that these programs will still be running in 2049.

� The year 2038 problem pertains to computer systems using UNIX
operating systems. UNIX stores system time as number of seconds
from January 1, 1970 as a signed 32-bit integer. The number will
reach its maximum on January 19, 2038. On that day, if this issue
has not been corrected, the clock will be reset and the year will be
treated as part of 20th century. This problem must be fixed in the
near future.

The Web site The Daily WTF (http://thedailywtf.com), which records software
disasters, offers many more examples of this nature.

These incidents are only a sample of the many problems (and disasters)
caused by flawed software. Software issues in business are not that widely re-
ported, as they do not cause loss of life or massive economic losses. I have
witnessed a few incidents in business caused by problems with software:

� A stock exchange computerized its operations. It took a little time
to find out that some of the “sell” orders were resulting in “buy”
orders. The stock exchange shut down the computer system and
rectified the error before switching on computer-based operations
once again. The loss of revenue was not clearly stated.

� In a 1,400-bed hospital, the billing module was not including all
services rendered to patients at the time of receiving payment. The
hospital lost substantial revenue in six months before this anomaly
was discovered and corrected. It took an investigative audit to dis-
cover this defect.

Both of these situations were traced back to software errors. Most people have
had similarly frustrating experiences with their own PCs. The sudden hanging
or crashing of a computer for no apparent reason often is caused by software
problems. Software, even though it does not deteriorate with age or wear out
with usage, still has reliability problems.

SOFTWARE RELIABILITY

The attribute a product must have in order to claim a quality tag, in addition
to defect-free functioning, is reliability. That is, the product performs the de-

J. Ross Publishing; All Rights Reserved

190 Mastering Software Quality Assurance

signed functions diligently over the duration of its life. If a car is supposed to
have a useful life of up to 100,000 miles, the car is said to be reliable if it
continues to transport five people for 100,000 miles without requiring a major
overhaul. The life of software depends on the life of the hardware that runs it.
These days, hardware becomes obsolete within three years (the exception being
high-cost mainframes), and maintenance is possible for perhaps another five
years. During the eight- to ten-year life of hardware, many patches to the system
software, such as the operating system, database management system, antivirus
software, etc., may be required. These patches could cause the software to fail.
Thus, the reliability of a software product depends on the reliability or stability
of the system configuration on which it functions.

Software reliability is defined as the probability that the software will func-
tion without failure and defects, for a specified period in a specified environ-
ment. Reliability means delivery of the same level of defect-free performance
during the life of the product.

A software product does have a finite life—which means the duration the
product is likely to be used before it needs to be replaced. During the life of a
product, software maintenance might be necessary for the following reasons: (1)
to fix any defects unearthed during its usage or that arise as the result of system
configuration changes such as updates to the operating system and other utili-
ties, (2) to enhance the functionality necessitated by a changing business envi-
ronment, or (3) to modify functionality to cater to business or environmental
changes. Product replacement might be necessary when a product requires a
massive change in functionality or when there is a paradigm shift in the envi-
ronment, such as the explosion of Internet. These kinds of conditions are rare
events, and therefore it can be expected that a product will be under software
maintenance for a long time.

Software maintenance due to functional modification or enhancement does
not render a product unreliable. However, any software maintenance carried out
to fix defects that are unearthed while the software is in production does warrant
a product unreliable. But if all quality assurance (QA) activities have been car-
ried out, how can defects still remain inside a software product? Defects lurk in
a product for various reasons, such as the following:

� There could have been shortfalls in the specifications defined for the
product.

� The software design itself could be defective, or some of the design
assumptions could have defects.

� The construction of the software product could have been defective.

J. Ross Publishing; All Rights Reserved

Software Product Quality: Reliability 191

� All QA activities may not have been carried out, or they could have
been carried out without the necessary diligence.

� As stated earlier in this book, it is a commonly accepted fact that
100% testing and uncovering 100% of defects are not practical. Some
defects do still remain.

� All software products are developed using a development platform,
and that platform might harbor some defects which surface only
when a specific set of conditions arises.

� Changes in system configuration often bring about unforeseen con-
ditions that cause the product to malfunction.

� Updates and patches to system software such as the operating system
and other utilities can cause the product to malfunction.

Reliability is achieved by building a software product so that it is not depen-
dent (or is dependent to the minimum extent) on an operating system’s shared
libraries, which are likely to be changed or updated over a period of time.
Minimizing the use of third-party tools or code libraries is another practice that
helps to instill reliability in a product. Performing all QA activities on a product
during its development stage is a must for producing a reliable software product.
The reliability of a software product is confirmed through extensive software
testing, which is described in greater detail in Chapter 6. When a software
product is in production, it should be monitored for reliability using the fol-
lowing data:

� Failure rate—Specified as the number of failures during a given time
period, such as failures per calendar month or failures per quarter-
year.

� Downtime due to software failure—Expressed as the number of
clock-hours the product is unusable. More often than not, software
failure does not cause the product to be shut down. Sometimes the
failure might cause a specific functionality to become unavailable.
The downtime needs to be counted even if only one function is
unavailable.

� Expenditure incurred for repair—It is normal to dedicate a few
personnel for maintenance work, irrespective of the occurrence of
failures. This is a fixed cost, constant throughout the life of the
product. Additional resources might be needed to fix defects and to
attend to system breakdowns when the dedicated resources are
unavailable or insufficient to carry out the needed maintenance.

J. Ross Publishing; All Rights Reserved

192 Mastering Software Quality Assurance

Therefore, all costs expended toward software maintenance need to
be taken into consideration. Cost per defect (the total software
maintenance expenditure to fix defects divided by the number of
defects fixed) is normally computed, and this value is monitored.

The values for all this data are monitored using moving averages and trend
analysis to determine failure rate analysis.

CAUSES OF SOFTWARE FAILURES

Software failures can be caused by defects inherent in the software, such as
errors, ambiguities, oversights, wrong assumptions, misinterpretation of re-
quirements or specifications, malfunctioning of third-party tools, inadequate
verification and validation, and incorrect or unexpected usage. Different types
of software faults can cause reliability problems, as discussed in the following
sections.

Software Design Faults

� Architecture deficiencies
� Exception handling issues
� Traceability issues of specifications or requirements
� Misinterpretation of specifications or requirements
� Use of third-party tools without adequately testing them
� Wrong assumptions regarding the end users or the target platform
� Inadequate verification and validation of designs
� Inadequate field size, such as the Y2K issue
� Environmental changes, such as euro conversion

The best way to prevent software design faults is to implement verification and
validation activities diligently for software design. These are discussed in detail
in Chapters 5 and 6.

Coding or Construction Faults

� Oversight
� Missed steps
� Errors of omission and commission
� Inefficient code

J. Ross Publishing; All Rights Reserved

Software Product Quality: Reliability 193

� Ambiguous code
� Improper interpretation of comparisons due to wrong algorithms

for data comparisons
� Numeric precision issues

Prevention of software construction faults can be achieved through well-defined
coding guidelines, followed by software verification and rigorous testing.

Quality Assurance Problems

� Inadequate software verification
� Inadequate software validation
� Not using specialist software testers
� Not verifying the test results
� Not measuring the quality of the software product
� Not having a QA department

It is true that QA activities cannot build quality into a product directly, but they
certainly provide an environment that is conducive to producing high-quality
software that is free of defects. The QA activities that are critical, in addition to
verification and validation, are software process definition and improvement,
software quality measurement, analysis and improvement, and definition of
standards and guidelines for software engineering activities and their regular
improvement.

Many organizations look at the QA department as a cost center and do not
provide the funding, resources, and tools necessary for it to function effectively.
Apart from this, senior management also does not allocate adequate time for QA
activities. It is the norm for senior management to side with the development
team in any conflict between the QA department and the development depart-
ment. How to maintain an organization that is conducive to excellence in quality
is discussed in detail in Chapter 4.

Data Failures

� Master data errors
� Ambiguous master data
� Data precision problems
� Data corruption
� Data integrity and consistency problems

J. Ross Publishing; All Rights Reserved

194 Mastering Software Quality Assurance

Bad or wrong data is one of the major causes of software failure, and the
probability of software failure is very high, especially when data is entered offline,
unless the data is thoroughly validated and cleansed of all bad data. Master data
that contains reference data for making decisions is crucial for error-free opera-
tion of software. It was reported that a battleship was sunk because its radar
software identified an incoming missile as a friendly object! Obviously, the
software matched the attributes of the incoming object with the friendly objects
contained in its master data files and determined the missile was a friendly
object.

Another frequent problem in data quality is importing data from another
application. When data is imported directly from one database to another, the
programmatic controls are not operative to validate input data and ensure its
quality. When importing data, it is important to diligently ensure that the data
is clean and accurate. Otherwise, this is one way to inject bad data into the
system.

PREDICTION OF SOFTWARE RELIABILITY

There are many reliability measurements and prediction metrics and models in
the software literature. Standard 982 of the Institute of Electrical and Electronics
Engineers IEEE Standard Dictionary of Measures to Produce Reliable Software
provides a comprehensive set of such measures. In my opinion, however, most
of them are too theoretical and complex to understand and implement, or they
require an enormous amount of time to compute. Some measures which I
believe are easy to derive and monitor include the following:

1. Product metrics—Such as the following:
� Size of the software—The larger the size, the less reliable the

software and the more likely it is to contain errors.
� Program complexity using the cyclomatic complexity of McCabe’s

and Halstead’s metrics.
� Test coverage metric—Computing the amount of software code

covered by testing. Ideally it ought to be 100%, but in practice,
it is less than that.

2. Project management—The diligence with which project manage-
ment activities are performed. As it is possible to cut corners during
project execution, it is possible that the software will retain residual
faults. The following are the critical aspects of project management
that can influence the quality and reliability of a software product:

J. Ross Publishing; All Rights Reserved

Software Product Quality: Reliability 195

� Quality management
� Configuration management
� Project management
� Team morale

3. Software development process metrics—The quality of a software
product depends on the software development process adopted in the
organization. The stringency of the standards, guidelines, and QA
activities has a direct bearing on the quality of the product. The
following are the critical aspects of the software development process
that can influence the quality and reliability of a software product:
� Depth of the process
� Stringency of standards and guidelines
� Diligence of process implementation
� Failure metrics
� Number of failures in a time period, such as a quarter-year
� Mean time between failures
� Mean time to repair

The composite product quality rating (CPQR), detailed in Chapter 3, is a
method to compute a software product quality metric. It is an excellent predic-
tor of software reliability. As the CPQR moves downward from a value of 5, the
reliability of the software product also slides downward. As the CPQR edges up
toward 5, so does the reliability of the software product—it improves. I suggest
using the CPQR to predict software product reliability.

SOFTWARE RELIABILITY IMPROVEMENT

Obviously, the reliability of a software product depends on all four dimensions
of software quality detailed in Chapter 2. It is essential that software product
specifications, software design, construction, and conformance of quality are all
undertaken with equal diligence and are subjected to appropriate QA to ensure
that quality is built into a product at every stage of its development. No one
dimension can be given any greater or less importance than the others.

There are no silver bullets for achieving software reliability, but there are a
few techniques that can help achieve a desired level of software reliability. In fact,
all QA activities are designed to improve software reliability, and none of them
can be ignored. Quality software product specifications ensure that a product
is built with comprehensive and complete functionality, including both main
functionality and ancillary functionality. Software design quality ensures that

J. Ross Publishing; All Rights Reserved

196 Mastering Software Quality Assurance

specifications are implemented in a robust manner, with built-in fault tolerance
and protection from misuse. Software construction quality ensures that the
software design is implemented and that the product is developed in full adher-
ence with its design. Conformance of quality ensures that the other three dimen-
sions of quality indeed conform to the best of the standards and practices avail-
able for the product. That is the reason why the chapter on the four dimensions
of quality appears as Chapter 2, second only to the definition of quality and the
explanation of the basics of quality.

J. Ross Publishing; All Rights Reserved

197

8
PROCESS QUALITY

CHAPTER OVERVIEW

� Evolution of the process quality concept
� Process and process quality
� Process definition approaches and steps in process definition
� How to align the process with a selected certification model
� Process improvement and stabilization
� Components of a software development process
� Process certification

PROCESS QUALITY EVOLUTION

The maturity of an organization in terms of quality is reflected in its products.
Since customers focus on the end product or service for which they pay money,
it is natural that providers focus on the quality of their product or service. They
try to get it done “somehow,” ensure that the end product is of acceptable
quality, and deliver it. Although to a large extent customers are not aware of the
processes by which products or services are prepared and delivered, these pro-
cesses do in fact impact customers. For instance, if proper hygiene standards are
not adhered to in a restaurant during the preparation of food, the food could
become contaminated and the health of the people who dine in that restaurant
could be affected. When food products are prepared and packaged in factories,
food hygiene practices play a vital role in keeping consumers safe from illness.

J. Ross Publishing; All Rights Reserved

198 Mastering Software Quality Assurance

This example clearly illustrates the importance of process quality. For certain
products, however, it is not possible to test them to ensure that quality is built
in. Take, for example, a lightbulb: it just is not possible to check the vacuum
or determine the amount of inert gas inside the glass casing without breaking
the glass and, therefore, the lightbulb itself. The shaft in an automobile, which
is forged and annealed for strength, cannot be tested conclusively for proper
annealing.

Recognition that the process by which a product is made is as important as
the product itself gave rise to the adage “quality cannot be added; it has to be
built in.” It is this recognition that caused concepts of quality to evolve away
from quality control to the more comprehensive quality assurance activities of
today, with organizations developing processes and procedures that facilitate
higher quality of product specifications and design. In time, the concept of total
quality management emphasized the process aspect of quality assurance, shifting
the focus from quality control of product quality to making quality products.

Software development introduced yet another dimension. Products in other
industries either do or do not do what they are expected to; they never do what
they are not expected to do. They either function or do not function. For ex-
ample, a car either runs or it does not run—it does not fly! Software products,
however, in addition to functioning or not functioning, can perform malicious
operations they are neither expected nor intended to perform. An example of
this is a download acceleration tool. You expect the tool to speed up the rate
of downloading, but sometimes it collects your Internet usage information and
sends it to the tool developer.

For this reason, quality assurance gained so much attention for its emphasis
on process quality that the International Organization for Standardization (ISO)
released its ISO 9000 series of standards in 1994, focusing on this process aspect.
The software development industry embraced the standards enthusiastically.
The release of the ISO standards was followed by the Software Engineering
Institute of Carnegie Mellon University’s Capability Maturity Model (CMM®)
in 1998. CMM® focused purely on software development aspects, whereas ISO
focused on process quality in general. The software development industry readily
adopted CMM® and later Capability Maturity Model Integration (CMMI®).
Both ISO 9000 and CMM® were centered on process quality, but they differed
in their approach to assessing an organization’s process compliance. While ISO
certified an organization as compliant with its ISO 9000 series of standards,
CMM® and CMMI® appraised an organization and rated its capability at one
of five maturity levels. However, both encouraged a process-driven approach to
organizational functioning.

J. Ross Publishing; All Rights Reserved

Process Quality 199

PROCESS

Before discussing process quality, process itself has to be understood. When we
attempt to make something, we follow a series of steps in order to produce the
final product. Every activity in life follows a process, even if that process is not
explicitly defined or documented. For some activities, the process must be strictly
adhered to. For example, when using a recipe to cook a dish, the process is
precise, and any liberty taken with the process is likely to result in either a poor-
tasting dish or over- or undercooked food. For other activities, if a few steps are
skipped or poorly performed, the result can still be acceptable, at least tempo-
rarily. For example, if a surface is not properly prepared before being painted,
the paint might look alright once freshly applied, but it likely will peel off later
on.

When it comes to organizational processes, the importance of process defi-
nition and process adherence was first recognized in such flow process industries
as chemical manufacturing (the makers of fertilizers, drugs, petroleum products,
plastics, etc.). Flow process manufacturing used machines to produce products,
and workers would ensure that the process was being adhered to and effect
necessary corrections when any deviation to process compliance was noticed.
Any departure from the process, either above or below permissible limits, re-
sulted in the disastrous consequence of unusable products being produced.

No significant importance was given to process compliance in the domain
of discrete manufacturing, except in areas such as heat treatment, vacuum filling
(in lightbulbs, for example), semiconductor components, etc. Process definition
and its compliance became important only when correction of a product was
not possible, as is the case in process industries. Where rectification of a defec-
tive product was possible, as is the case in discrete manufacturing, process
compliance did not gain that much significance.

Nonetheless, it was found that process definition and documentation offered
several benefits to an organization, such as the following:

� They gave senior executives insight into how work was carried out
on the shop floor.

� They assisted analysis by experts in the field, and in doing so, this
analysis helped to plug loopholes in the process as well as improve
quality and productivity.

� They facilitated tighter planning and scheduling of work.
� They helped to uncover opportunities for automation and improve-

ment of the manufacturing process itself.

J. Ross Publishing; All Rights Reserved

200 Mastering Software Quality Assurance

� They facilitated development of standards for methods of working
as well as for components.

Recognizing the benefits that process definition and documentation offered,
the discrete manufacturing industry began to use defined processes. This coin-
cided with the development of the branch of industrial engineering that uses
work study principles and techniques, and so it came to be accepted that defi-
nition and documentation of process improve quality and productivity. This
process orientation was first referred to as good manufacturing practices , a term
that is still used today.

Software development was considered to be creative work and was therefore
viewed as not needing a framework of rigid standards and processes. Initially,
no quality control activities were performed on developed software. The Insti-
tute of Electrical and Electronics Engineers software engineering standards were
released only in the late 1980s, even though software development had existed
for many years—which goes to show how prevalent the belief was that software
was creative work.

The ISO 9000 series of process standards provided the software development
industry with the much-needed push to embrace process-oriented working,
which was already a norm in the manufacturing industry.

PROCESS QUALITY

Once process definition and documentation began to provide insight into how
work was carried out on the shop floor, they were used as tools to improve
quality and productivity. It was realized that most quality problems could be
resolved by improving the process itself. Defect analysis was used to isolate
frequently occurring defects and to trace their origins in the process. The area
of the process where the same defects repeatedly occurred was changed (im-
proved) to eliminate those defects. This was and still is achieved by improving
methods, using better tools, or training personnel. Conformance to process was
ensured through in-process inspections in flow process production, batch pro-
duction, and mass manufacturing and through stage inspections in discrete
manufacturing.

Today, instead of permitting defects to occur and using inspections and
testing to uncover them after the fact, processes are developed to produce defect-
free products so that defects are not injected into the product to begin with. The
following are the three steps to achieve process quality:

J. Ross Publishing; All Rights Reserved

Process Quality 201

1. Process definition
2. Process improvement
3. Process stabilization

PROCESS DEFINITION

The first step in process definition is to assign to an entity in the organization
responsibility for championing process definition and improvement. Some
organizations assign this responsibility to the quality assurance department;
others assign it to a specialist process group. Whoever is entrusted with this
responsibility to ensure process-driven working in the organization begins by
carrying out process definition. Later on, the department responsible gathers
suggestions for improvement, evaluates the benefits and costs of each one, and
implements into the processes the suggestions deemed qualified. The actual
definition of each process is carried out by the practitioners in the organization
(specialists who have many years of experience in the area for which the process
is being defined), with facilitation (tools, documentation guidance, coordination
of quality assurance activities, etc.) provided by the process group.

There are two approaches to defining a process:

1. Top-down approach—This is suitable when the organization is new
and the processes are being set up.

2. Bottom-up approach—This is suitable when the organization has
been in existence and operations have been performed for some time.

Top-Down Approach to Process Definition

The top-down approach to process definition consists of the following steps:

1. Break down the organizational operations by function. The first level
consists of the major activities of organizational operations. That is,
software development is broken down into requirements analysis,
software design, construction, testing, etc. at the first level. Then each
major activity at the first level is further broken down to its next
levels. For example, software design is broken down into architecture
design, data modeling, database design, user interface design, report
design, etc. Continue breaking down activities until it is decided that
further breakdown does not add any additional value.

2. Define a process for each activity in the first level of breakdown.

J. Ross Publishing; All Rights Reserved

202 Mastering Software Quality Assurance

3. Define a subprocess for the next level if it consists of sublevels.
4. Define a procedure for an activity that is not broken down into further

levels.
5. Wherever possible, define standards and guidelines to aid practitio-

ners in adhering to the procedures.
6. Define formats and templates to record and present information and

to achieve uniformity among different practitioners in capturing,
recording, and presenting information.

7. Define checklists to aid practitioners in adhering to the procedures
and performing the activities comprehensively and exhaustively.

8. Define measurements and analyze the results of the defined process
in order to evaluate the efficacy of it.

9. Arrange for review of the defined process by practitioners in the
organization to ensure that it reflects reality and is accurately defined.

These steps are depicted in Figure 8.1.

Bottom-Up Approach to Process Definition

The bottom-up approach to process definition consists of the following steps:

1. Study how the practitioners are performing their tasks, and docu-
ment this information. Obviously, there will be differences among
practitioners in the way activities are performed. Therefore, include
in the process document the most common practices and the prac-
tices of the people known to produce the best-quality deliverables.

2. Capture the formats and templates used by the practitioners. Study
them and develop new formats and templates that include the best
features of each format and template being used in the organization.

3. Capture the process details from project managers and senior man-
agers, and document them, culling the best practices.

4. Organize the material into processes, procedures, formats, checklists,
and standards and guidelines.

5. Release a draft version of the organizational process, and invite com-
ments on it from all concerned persons in the organization.

6. Analyze the feedback received that serves to either enhance quality or
productivity or simplify the work. After implementing the short-listed
feedback, release the process for implementation in the organization.

These steps are depicted in Figure 8.2.

J. Ross Publishing; All Rights Reserved

Process Quality 203

Figure 8.1. Top-down approach to process definition

Begin

Break down organizational
processes by one level

Define processes
for each activity

Define procedure
for each practice

Define standards and guidelines,
formats, templates, and checklists

Define measures
and metrics

Arrange for review of
the documentation

Implement feedback

Break down into
next level

Define subprocesses

No

Yes Possible to break
down further?

Processes are ready

J. Ross Publishing; All Rights Reserved

204 Mastering Software Quality Assurance

Figure 8.2. Bottom-up approach to process definition

Document the best
of practices, formats,

and templates

Implement appropriate
feedback

Release draft version
for comments and

feedback

Organize into processes, procedures,
formats, templates, checklists,
and standards and guidelines

Document the best
of management

practices

Capture formats
and templates

Begin process
definition

Study management
practices

Study task
performance practices

Processes are ready

J. Ross Publishing; All Rights Reserved

Process Quality 205

Building Quality into the Defined Process

Once a process document is prepared, it should be subjected to scrutiny by
experts in the field, either internal or external to the organization, before releas-
ing it for implementation. These experts will evaluate each step and procedure
of the process and compare it with the best practices in the industry. This
evaluation and comparison produces a gap analysis document. The organization’s
in-house process group has to analyze each of the gaps uncovered for its fea-
sibility to be bridged in the organizational process and practice. This in-house
analysis might necessitate additional investment in tools, training for personnel,
a change in methods of working, etc. Sometimes it might be possible to imple-
ment a best practice fully; other times it might need to be modified to suit the
organizational environment. In some cases, the organization might need to
completely reject a best practice if it does not suit its environment. In line with
the decision on implementing the suggested best practices, the process docu-
ments should be updated and finalized. The inclusion of best practices in pro-
cess documentation first and dovetailing them into practice second ensures that
quality is built into the process.

The necessary quality assurance activities are then included in the process
documents to ensure that the defined process is subjected to quality assurance
during practice. These activities can include reviews, tests, inspections, and audits.
Also included are the measures and metrics necessary to assess performance of
the process. These activities build quality into the process.

ALIGNING THE PROCESS WITH A PROCESS MODEL

Aligning organizational processes with a process model such as ISO 9000 or
CMMI® is becoming essential, as more and more customers are insisting on a
certificate of compliance or a maturity rating as a prerequisite for participating
in the bidding process for outsourced contracts. However, an organizational
process that is defined comprehensively and includes industry best practices is
adequate to meet the requirements of any model, as the main goal of all models
is to ensure that an organization utilizes industry best practices in its functioning
and in producing quality deliverables. Once it is ensured that the organizational
process utilizes industry best practices, all that needs to be done is to confirm
that the selected model and the organizational process are in sync with each
other and that the organization’s process meets or exceeds the requirements of
the model’s goals.

The following steps are required to align an organizational process with such
a model:

J. Ross Publishing; All Rights Reserved

206 Mastering Software Quality Assurance

1. Study the model requirements, especially the goals that need to be
fulfilled by the organizational process and practice.

2. Carry out a gap analysis between the model requirements and the or-
ganizational process. Gaps can be positive, meaning the organization’s
practice exceeds the model’s requirements, or shortfalls, meaning the
organization’s process does not meet the model’s requirements.

3. Enumerate all shortfall gaps (the instances in the organization’s pro-
cess that do not fulfill the model’s goals) in a gap analysis document.

4. Conduct a series of consultations with the organizational practitio-
ners and management about the gaps and ways to bridge them.

5. Select the most suitable alternative solutions to bridge the gaps and
implement them in the process.

6. Try out the improved processes on a pilot basis during the execution
of a few projects.

7. Implement the feedback from pilot implementation into the processes.
8. Arrange for review by practitioners in the organization.
9. Release the new set of processes for implementation in the organization.

These steps, depicted in Figure 8.3, ensure alignment of organizational processes
and practices with those of the selected process model.

PROCESS IMPROVEMENT

Once the organization has defined a set of processes, and if the organization has
achieved alignment with a process model such as ISO 9000 or CMMI®, perfor-
mance of the processes must be monitored continually in terms of actual per-
formance vis-à-vis desired performance. Monitoring is important because an
organization’s climate can change frequently. Some of the reasons for this change
include:

� Changes in technology, which result in new paradigms for software
development

� Use of better tools and techniques by competitors to deliver higher
quality software at a cheaper price

� Government regulations for safety, usability, reliability, etc., which
might make it imperative to deliver better quality

� Availability of new development tools, which might save money or
improve quality

� Availability of new products for the back end, middle tiers, develop-
ment platforms, etc.

J. Ross Publishing; All Rights Reserved

Process Quality 207

Figure 8.3. Aligning organizational processes with a selected model

Select process
model to align with

Conduct gap analysis

Consult and
shortlist solutions

Identify shortfall gaps

Improve process

Pilot improved
processes

Implement pilot
feedback

Review improved
processes

Release aligned
processes

J. Ross Publishing; All Rights Reserved

208 Mastering Software Quality Assurance

These are but a few reasons why organizations are driven to upgrade their
processes to meet the changing environment and be competitive in the market.
Therefore, improvement of organizational processes has to be approached in a
disciplined manner—that is, by a process-driven approach.

A process for improving organizational processes must be defined, just like
other organizational processes are. A process for process improvement should
cover the following areas:

1. Triggers for process improvement—Triggers are either event based
or duration based. An event-based trigger can be an audit report by
an external auditor or external appraiser or a report from an orga-
nization-wide internal audit or appraisal. It also may be a new tool
that has an impact on the process, or it might be the release of a new
standard or a new version of the organization’s adopted process model
that impacts organizational operations.

Duration-based triggers occur once every quarter, six months, or year
or at the beginning of a new fiscal year, for example. These triggers are
used to carry out an exercise to consolidate all process improvement
opportunities, analyze them, and effect process improvement.

2. Sources of opportunities for process improvement—Various sources
of information for process improvement are identified. These sources
of information can include internal sources, such as suggestions from
development team members, managers, and senior management, or
external sources, such as suggestions from an external auditor or
appraiser or a standards body or process model owner.

3. Procedures for placing process improvement requests—These pro-
cedures cover how to place a process improvement request, what the
proper format or template is, what information needs to be included
in the request, what approvals are required, etc.

4. Authorized persons who can place process improvement requests—
This is a list that indicates the types of requests that can be placed by
various persons in the organization. For example, the software pro-
grammer can place a process improvement request regarding coding
guidelines or a testing practice. It is not appropriate for a program-
mer to raise a request to improve a defect analysis procedure, for
example. That is, a person is best suited to raise an improvement
request in the area in which he or she works. These criteria are enu-
merated in this section.

5. Procedure for analyzing and accepting process improvement re-
quests—This section describes the type of analysis that can be con-

J. Ross Publishing; All Rights Reserved

Process Quality 209

ducted on process improvement requests received by the process
improvement group. The agency authorized to approve or reject
process improvement requests analyzes a request and either accepts
or rejects it. If the request is rejected, the originator of the request is
informed of the rejection and the reasons why. If the request is ac-
cepted, the improvement is implemented in the normal manner.

6. Procedure for implementing process improvements—This section
describes how to select people to implement suggested improvements
in the process documents, the versioning norms for process docu-
ments, the reviews to be conducted for the improved process docu-
ments, and approval authorizations.

7. Procedure for pilot implementation to obtain field feedback—Once
the process documents are improved and approved, they are imple-
mented on a few projects to obtain feedback from the field. This
section describes such a procedure, including how to select candidate
projects, grant waivers necessary for deviating from the currently
approved processes, obtain feedback from pilot implementations, col-
late and analyze the field feedback, etc.

8. Implementing feedback from the field and releasing the process—
Once feedback from the field is obtained, it has to be implemented
in the process. This section describes how to implement field feed-
back, organize the review, obtain necessary approvals, and release the
improved process for implementation. It is normal practice to effect
only a few releases per period, such as every quarter, six months, or
year.

PROCESS STABILIZATION

Process stabilization is necessary for an organization to produce predictable
results. That does not mean, however, that process improvement is not neces-
sary. It only means that a process should be, by and large, stable. Improvements
are effected based on a trigger, and they are implemented to either improve
quality or productivity or to simplify work. Process stabilization becomes pos-
sible only after a process is defined.

An organization typically goes through the following stages before achieving
a stabilized process:

1. Initial stage—This is when the organization is new and is just starting
its operations. It is trying to establish commercial viability. Opera-

J. Ross Publishing; All Rights Reserved

210 Mastering Software Quality Assurance

tions are performed based on the personal direction of the owners,
chief executive, and senior management.

2. Defining the process—Once the organization has achieved commer-
cial viability, it defines its processes for conducting operations using
a process-driven approach.

3. Implementing the process—The defined process is implemented in
the organization. All operations are run based on the defined process,
and the process is institutionalized in the organization.

4. Maintaining the process—Once the process is implemented, it is
monitored and improved as required, based on event or duration
triggers, using the following steps:
a. Analyze results of the operations for any variances—Variances

can be beneficial if, for example, they result in higher quality or
productivity. Undesirable variances result in more defects or di-
minished productivity, for example.

b. Conduct root cause analysis for variances—When undesirable
variances are discovered, root cause analysis is conducted. Some
of these variances can be due purely to chance errors. Even in the
most tightly controlled and machine-based processes, random vari-
ances do occur, with some due to assignable causes. Root cause
analysis separates undesirable variances into chance errors and
assignable causes and then uncovers the actual cause behind each
variance.

Undesirable variances due to assignable causes are analyzed to
determine if they were due to process defects or other defects. If
due to process defects, then improvement must be effected in the
defined process. For undesirable variances due to assignable causes
attributable to a defective process, improvement must be effected
to plug the loopholes in the process so that those variances do not
recur.

c. Pilot improved process—The improved process is implemented
in a few projects to observe the efficacy of the improvements. If
the results do not produce the desired improvements, steps b and
c are iterated until the desired improvements are achieved based
on the pilot implementation.

d. Implement improved process—Once the pilot implementation
of the improved process shows the desired level of improvement,
the process goes through the normal procedure for implementing
a process in the organization.

J. Ross Publishing; All Rights Reserved

Process Quality 211

5. Stable process—When most or all variances are due to random causes
(chance errors), then the process is considered stable.

Figure 8.4 depicts process stabilization. Once a process is stable, statistical
quality control techniques such as control charts can be used to monitor it.

SOFTWARE DEVELOPMENT PROCESS

As discussed in Chapter 4, a well-defined and institutionalized process is a
prerequisite for fostering a quality culture in an organization. Such an organi-
zational process is made up of four basic types of processes:

1. Software engineering processes—These processes define how the de-
liverable is built. They typically are comprised of processes for require-
ments management, software design, construction, and deployment.

2. Quality assurance processes—These processes define how quality is
built into deliverables and also ensure that it is in fact built in. They
typically are comprised of verification, validation, inspections, mea-
surement and analysis, and audits.

3. Management processes—These processes define how all the other
processes are managed. They typically contain the project manage-
ment process, including project acquisition, project initiation, soft-
ware estimation, planning, configuration management, quality man-
agement, work management, resource management, stakeholder
expectation management, and project closure.

4. Support processes—These processes define how the other processes
are supported by the organization. They are comprised of the net-
work and systems administration process, human resources process,
subcontractor management process, facilities management process,
etc.

COMPONENTS OF A PROCESS

A process is an overall definition of a major organizational activity. It is an
interrelated network of procedures for performing an activity and a top-level
document under which other documents provide the details of the activity.

A process is an assemblage of the following components:

J. Ross Publishing; All Rights Reserved

212 Mastering Software Quality Assurance

Figure 8.4. Process stabilization

No

Yes

Implement
process

Analyze results

Root cause analysis
for variances

Random
causes?

Stabilized process

Maintain process

Initial stage

Stable state

Define process

Improve process

Pilot improved
process

J. Ross Publishing; All Rights Reserved

Process Quality 213

1. Procedures—Procedures are step-by-step instructions for perform-
ing a subactivity of a process. Examples of procedures include the
project planning procedure, software estimation procedure, phase-
end audit procedure, progress-reporting procedure, etc.

2. Standards and guidelines—These define a common way of construct-
ing the artifacts in the organization so that the output is uniform
throughout the organization. Whereas procedures bring uniformity
in performing an activity, standards and guidelines bring uniformity
in the deliverables. Examples of standards and guidelines are screen
design guidelines, database design guidelines, naming standards, coding
guidelines, defect analysis standards, etc.

3. Formats and templates—These facilitate a uniform way of capturing,
recording, and presenting information. Examples of formats and
templates include estimation presentation templates, nonconformance
report forms, review defect forms, estimation request notes, project
management plan templates, etc.

4. Checklists—These assist the person performing an activity to carry
out the task fully and help the reviewer to ensure comprehensiveness
of the review. A checklist contains a number of items, with a space
beside each to indicate “yes,” “no,” or “not applicable” as each point
is completed or reviewed. When an activity is completed, this list
should be referred to in order to ensure that all points have been
addressed.

The hierarchy of the process documentation set is depicted in Figure 8.5.

PROCESS CERTIFICATION

Today, obtaining certification or a rating from a standards body or process
model owner has assumed great importance, as many organizations that outsource
high-value software development work use such certifications and ratings to
short-list their prospective vendors. Therefore, a book on software quality as-
surance cannot be complete without touching upon this subject. Currently,
there are two popular models: ISO 9000 and CMMI®.

A certificate of compliance with the ISO 9000 series of standards is awarded by
an authorized lead auditor, who conducts an audit on a sample of projects, assessing
project management and software engineering process compliance, and audits all
other support groups. The auditor indicates a nonconformance wherever a practice
does not conform to the applicable ISO 9000 standard. The authorized lead auditor

J. Ross Publishing; All Rights Reserved

214 Mastering Software Quality Assurance

Figure 8.5. Process hierarchy

Organizational Process
Organizational

policy
statements

Checklists

Configuration
audit

checklist

Phase-end
audit

checklist

Periodic
audit

checklist

Formats and Templates Standards and Guidelines

Audit report
form

Phase-end
audit

guidelines

Periodic
audit

guidelines

Configuration
audits

Phase-end
audit

procedure

Periodic
audits

Subprocess

Verification Validation Audits Inspections

First-Level Processes

Software
engineering
processes

Quality
assurance
processes

Management
processes

Support
processes

Procedures

Nonconformance
report form

J. Ross Publishing; All Rights Reserved

Process Quality 215

grants a certificate of compliance if there are no nonconformances or if
nonconformances are not significant. If nonconformances are significant, the au-
ditor either refuses to grant a certificate or withholds the certificate until the
nonconformances are satisfactorily resolved by the organization.

The ISO 9000 series of standards have undergone one revision since their
original release in 1994. A copy of the standards is available for purchase from
ISO.

A CMMI® capability maturity rating is awarded by the Software Engineering
Institute (SEI) of Carnegie Mellon University upon receiving a recommendation
from an authorized lead appraiser. SEI revised the methodology for the maturity
rating once, and the present methodology is called the Standard CMMI Ap-
praisal Method for Process Improvement (SCAMPI®).

An authorized lead appraiser conducts the SCAMPI® appraisal with a team
of people who are qualified based on SCAMPI® norms and trained by an au-
thorized lead appraiser. The appraiser points out to the organization opportu-
nities for improvement if any are uncovered during the appraisal. The appraisal
team, working under the guidance and direction of the authorized lead ap-
praiser, gathers evidence from a sample of selected project documents and then
corroborates that evidence by interviewing organizational personnel involved in
process implementation. If, in the opinion of the appraisal team and the autho-
rized lead appraiser, process implementation is found to indicate that the CMMI®
model is largely implemented, the appraiser and the appraisal team submit a
recommendation to SEI to grant a maturity rating to the organization. SEI then
reviews the assessment conducted and grants the maturity rating recommended
by the appraisal team and the appraiser.

The CMMI® model document has been revised twice since its original re-
lease. The latest versions of the CMMI® model definition document and the
appraisal methodology document are available free of charge to those interested
in learning about the model and the appraisal process in detail.

Both methodologies are based on an organization’s process-driven manner
of working. Although the appraisal method and the final award differ, the steps
followed to attain the award are similar:

1. Define the process.
2. Implement the process.
3. Improve the process based on feedback obtained from the field about

the process implementation.
4. Stabilize the process, which includes internalization and institution-

alization of process-driven working.

J. Ross Publishing; All Rights Reserved

216 Mastering Software Quality Assurance

ISO grants a certificate of compliance and performs a surveillance audit once
every six months to ensure continued compliance.

SEI grants a capability maturity rating; level 2 is the minimum rating awarded
and level 5 the maximum. In CMMI® adaptation, an organization starts out at
level 2 and graduates to level 5 over a period of time and successive appraisals.
A maturity rating is valid for a period of three years.

For software development organizations, CMMI® is required more often in
the United States and the ISO 9000 certificate is accepted in most other parts
of the world.

Books have been written on these two models; covering the subject thor-
oughly is beyond the scope of this book. To learn more about them, obtain their
documentation for study or contact an ISO 9000 or CMMI® process consultant
for more information.

J. Ross Publishing; All Rights Reserved

217

9
NEW PARADIGM FOR
SOFTWARE QUALITY

CHAPTER OVERVIEW

� The present state of certification paradigms
� The fallacy of certifications
� Criticisms of certification models
� A proposed new paradigm for quality

CURRENT CERTIFICATION PARADIGMS

Whenever there is leeway for providers to take shortcuts, governments step in
to formulate regulations and checks and balances to protect potential victims
if professional associations or industry bodies fail to do so. For example, if you
want to start a company, the company has to be registered with a government
agency, and you must submit periodic reports. If your company borrows money,
then you have to periodically submit reports on its financial position to the
government as well as to lenders. If your company raises money through a
public offering, there are a host of agencies that will be regulating it. A public
company needs internal departments just to comply with those regulations.
Why? Because a company that accepts money from the public is answerable to
the public through the good offices of the government.

A public company must be audited by an accredited auditing firm to certify
that its accounts are in order even though the company has a qualified internal
officer who prepares the accounts and an equally competent internal auditor

J. Ross Publishing; All Rights Reserved

218 Mastering Software Quality Assurance

who audits those accounts. This process is much the same as periodically having
your car certified as roadworthy by an accredited agency, even if you are an
automotive engineer and know that your car is fit to drive. An external auditor
first examines the existence and diligence of the internal controls in a company
and then audits a random sample of financial artifacts. If the external auditor
finds that the internal controls are unsatisfactory, the audit is stopped and the
auditor reports the company to the appropriate government authorities. These
activities are carried out without fail, because how a company uses its money
(and the public’s money) affects the public, and governments try to protect the
public from potentially being swindled.

The quality of products also affects the public. Consumer associations, re-
dress forums, criminal codes, etc. exist to protect the public from poor-quality
products. When a building is constructed, it has to be certified as safe before
people can occupy it. The construction industry is regulated by inspections and
certifications. The certifying agencies inspect the construction records as well as
the actual structure to ensure that the right quality of materials and the right
methods are being used. Once the certifying agency is satisfied with its findings,
the building is certified as fit to be occupied.

In the past, manufacturers developed internal controls for quality through
a quality assurance (QA) department. The manufacturing industry formed as-
sociations, such as the National Electrical Manufacturers Association, the Inter-
national Telecommunications Union, the Solar Energy Industries Association,
the Biotechnology Industry Organization, etc., to develop a host of standards for
quality and good manufacturing practices to ensure quality in products. Orga-
nizations in the services sector also formed associations to define their own
quality standards (the Hotels Associations and the Association of Travel Agents,
for example) and to ensure compliance with those standards. Even the media
have their own council to oversee the conduct of their members.

In short, there was voluntary recognition in the manufacturing, services, and
construction sectors that quality is an important aspect of any product, and
efforts were readily made to continually improve product or service quality by
setting up internal controls. It is not an exaggeration to say that a reputable
manufacturing or service organization that does not have a quality department
is rare.

In 1994, the International Organization for Standardization (ISO) released
its ISO 9000 series of standards, which deal with process quality. There are many
areas of manufacturing and construction where process is of paramount impor-
tance, such as pouring concrete and forging and heat treatment of metals. Take,
for example, manufacturing a lightbulb: the internal vacuum cannot be tested
after a bulb is sealed. Many processes such as this cannot be inspected or tested

J. Ross Publishing; All Rights Reserved

New Paradigm for Software Quality 219

without destroying the component. Still, no standards body developed process
quality standards until software began to play an increasing role in our lives.
Only then did it become obvious that software quality left much to be desired,
and the need for process quality standards was recognized.

It is not common for software development companies to have a quality
department, and for this reason, internal controls for ensuring quality of
deliverables are, more often than not, absent. The importance of this fact is
highlighted by the vital role software now plays in our lives. Software controls
most, if not all, communication, travel, weapons, power distribution, and home
equipment. It is disturbing to realize that quality takes a back seat in the orga-
nizations that develop software. Yet, to the best of my knowledge, no consumer
has sued for losses caused by software and been awarded compensation for
damages.

There are no government regulations or agencies to play the role of watch-
dog over the quality delivered by software development organizations. They
submit no reports regarding quality to anyone. The dictum “let the buyer be-
ware” is most apt for software products, as a buyer cannot test a software
product comprehensively prior to purchasing it. In contrast, for example, when
you buy a car, you can test drive it, and you can bring the car back to the dealer
and demand repair if it malfunctions during the warranty period or take it to
a service station after the warranty period has expired. But can you bring a
software product back to the company that developed it and demand repair? Is
there such a thing as a software service station? A driver can drive a car—which
costs much more than most software—for 15 minutes and know whether or not
it is a quality vehicle. Can a user test a computer operating system and really
know in a couple of hours if there are any defects? Can a consumer truly
understand the differences between a Windows-based computer, a Linux-based
computer, and a Mac and decide which best suits his or her needs?

Software organizations aim to earn either a certificate from a lead auditor
to show they are compliant with the ISO 9000 series of standards or to earn a
level 2, 3, 4, or 5 capability maturity rating from a Capability Maturity Model
Integration (CMMI®) lead appraiser. But such attainments are no guarantee of
software quality, as detailed in the next section.

THE FALLACY OF CERTIFICATIONS

The state of standardization in the software development industry is not up to
the level in manufacturing. True, the Institute of Electrical and Electronics En-
gineers (IEEE) released software engineering standards, but these standards are

J. Ross Publishing; All Rights Reserved

220 Mastering Software Quality Assurance

not software quality standards. Rather, they are more guidelines than standards
in the strict sense of the word and are therefore open to interpretation and
adaptation. The concept of total quality management suggests that adhering to
a defined process will ensure software quality, and the ISO 9000 series of stan-
dards and the Software Engineering Institute’s (SEI) Capability Maturity Model
(CMM®) and CMMI® are frequently used by software development organiza-
tions to instill quality in their products. However, these standards, guidelines,
and models all have their limitations and flaws. Definitive standards developed
by industry associations, similar to the level of those that exist in the manufac-
turing, construction, and services industries, do not exist in the software devel-
opment industry.

With the release of the above standards and guidelines, many organizations
looking to outsource their development work began to insist that software
development organizations be certified, especially for CMMI® (though certifi-
cation is actually a capability maturity rating). Holding a certificate opened the
doors for bidding, and lack of a certificate closed those doors. Software devel-
opment organizations began to actively seek certification just to retain their
market share. Not surprisingly, certification organizations began to sprout up
like mushrooms. Plenty of software development organizations received the
coveted ISO 9000 certification and in many cases both ISO and CMMI®.

Software development organizations also can obtain a maturity rating from
other maturity models, such as the Testing Maturity Model, People Capability
Maturity Model, Software Engineering Capability Maturity Model, IT Service
Capability Maturity Model, etc. Lee Copeland lists 34 maturity models in his
article “The Maturity Maturity Model™ (M3)” on the StickyMinds Web site
(www.Stickyminds.com).

The original focus of the ISO 9000 series of standards was on quality, with
the “Quality Management System” as its main document and “Quality Policy”
the backbone for organizational processes. Industry, however, diluted these pro-
cesses to mean only organizational operations processes, thus reducing the
emphasis on quality and shifting the focus from organizational quality policy to
organizational vision and from quality goals to organizational goals. CMMI®
goes one step further by stating that the purpose of a process should be to
achieve organizational goals. The quality of deliverables has clearly taken a back
seat.

I have been associated with certified organizations in the past, either as a
consultant, a member of an audit team, or an employee. A significant number
of these organizations do not adhere to their own defined processes. I was
horrified to find that the management representative (the person responsible for
driving the quality initiative in the organization) in one ISO 9000–certified

J. Ross Publishing; All Rights Reserved

New Paradigm for Software Quality 221

organization did not read the process documentation. The quality head of a
CMM® level 5 organization did not know how to open the URL for the orga-
nizational process on the intranet. A CMM® level 4–certified organization did
not collect or maintain any metrics. I heard the CEO of an organization certified
for ISO 9000 and aiming for CMMI® level 3 state that he did not want any
managers in his organization; I was left wondering who would manage the
company’s software projects if everyone was a coder. This organization also did
not have a quality department. In the words of that CEO, the organization is
truly “lean and mean.” That organization was ultimately granted a level 3 ma-
turity rating by the SEI.

Today, the disconcerting reality of certified software development organiza-
tions often follows this pattern: organizations unearth loopholes in the models,
consultants advise how to “cook the books” to get certified, and appraisers who
certify for a fee are available. I once posed the following question to the CMMI®
discussion group (which has about 4,000 members) on Yahoo!: Had anyone ever
heard of an appraiser refusing to grant a certificate or a maturity rating to a
software development organization? Only one or two members replied affirma-
tively; the rest maintained a dignified silence.

CRITICISMS OF MATURITY MODELS

One of the main criticisms of the maturity models mentioned in this chapter
is that they all emphasize the organizational business objectives, not the quality
of the product (or deliverable)! The confidence that a process-driven organiza-
tion delivers quality is misplaced. Consider these factual issues: (1) the process
itself might be flawed, (2) each process has loopholes, (3) developers are focused
more on conforming to the process than achieving excellence in quality, and (4)
management focuses more on delivering and selling than on quality.

The job of the unfortunate quality head, if there is one, is only to coordinate
with certifying agencies, as he or she has no control over product quality. In
many organizations, the person who holds the title “quality head” (often under
other designations, such as software engineering process group head, quality
coordinator, quality manager, director of quality, etc.) is either not really quali-
fied or experienced enough to hold this post or does not possess enough knowl-
edge about quality concepts and tools.

Maturity models focus less on the development of software and ensuring that
quality is built into it and more on support processes. CMMI® for development
(version 1.2) has more process areas for project management (project planning,
integrated project management, risk management, configuration management,

J. Ross Publishing; All Rights Reserved

222 Mastering Software Quality Assurance

project monitoring and control, quantitative project management, supplier
agreement management, and requirements management—eight in total) than
it has process areas for quality (process and product QA, validation, and veri-
fication—three in total). It has only three process areas (product integration,
requirements development, and technical solution) for software development.
It has only two process areas (organizational process focus and organizational
process development) for organizational process definition and only four pro-
cess areas (causal analysis and resolution, decision analysis and resolution,
measurement and analysis, and organizational process performance) for mea-
surement and analysis. The remaining two process areas are organizational
innovation and deployment and organizational training. Thus, the focus on
quality is diluted, as it is part of only 3 of the 22 process areas a software
development organization needs to receive a rating.

Furthermore, maturity models do not insist that the model be completely
implemented. They accept “largely implemented” as adequate for granting a
certificate or rating. The models themselves are not tightly defined and are made
so flexible that the required practices are open to interpretation. Some allow
“alternative practices” in place of the practices defined in the model. This degree
of flexibility allows organizations to do what they want and still be certified as
conforming to the model.

A second criticism of current maturity models is that they do not define any
quality thresholds for achieving certification. Conformance to self-defined pro-
cess is adequate. For example, suppose the standard for an electrical appliance
defines the insulation resistance in quantitative terms (say one megaohm) so
that people do not get an electric shock when handling the appliance. Yet no
software engineering standard defines what the defect density, for example,
should be for a financial application.

Another criticism of process models or maturity models is that they do not
specify the number of years an organization must be in operation before it can
be mature enough for certification. Therefore, even a one-year-old organization
can obtain certification. In fact, single-person organizations can be certified.

Still another criticism of maturity models, as noted earlier, is that they do
not specify any quality objectives that must be achieved in order to obtain
certification. Mere conformance or showing evidence of conformance in just six
projects or less is enough for an organization to be certified, with no need to
demonstrate it has achieved the required state of quality.

The owners of maturity models do not monitor the actual performance of
organizations once they are certified. ISO performs cursory half-yearly surveil-
lance audits, but CMMI® requires an organization to be reappraised every three
years. Maturity model owners do not know whether the quality of an

J. Ross Publishing; All Rights Reserved

New Paradigm for Software Quality 223

organization’s processes has improved or whether the number of customer
complaints has decreased because they do not keep track.

Some of the more key issues regarding these certifications are discussed in
the following sections.

Financial Considerations

Certification agencies charge a high fee ($200 per hour is an average rate, with
an appraisal period ranging from two days to three weeks). Suppose an auditor
or an appraiser rejects certification of one of his or her clients. What do you
think the chances are that this auditor or appraiser will receive many calls from
other organizations in the future? Slim to none. Therefore, the best an appraiser
can do to keep his or her appraisal business from closing is to cancel an assign-
ment with an organization if he or she is dissatisfied with its preparation. In
other words, an auditor or appraiser is not likely to risk being branded as too
strict. The auditor or appraiser that offers certification with a minimum of fuss
is the one that is most sought after.

The certificate accorded to auditors and appraisers that allows them to issue
certificates to organizations is handed out too easily. The norms are not very
rigorous, and they do not mandate software development experience at all.
Without software development experience, how can an auditor or appraiser
knowledgably assess the capability of a software development organization?

Certifying organizations, like most organizations, are for-profit businesses
that have expenses to meet, targets to reach, and growth to be achieved. These
organizations make their money by issuing certificates, and that is one reason
why so many certificates are being issued and are issued rather easily.

Method of Appraisal

Criticisms can easily be made of the appraisal process itself. Appraisers evaluate
the evidence presented to them, which makes the method of appraisal more of
a conformance audit rather than an investigative audit. What guarantee is there
that the data is not biased to suit the requirements of the appraiser? If the
accounting books (which are subject to statutory independent audits) can be
“cooked,” why not the data that will be presented for certification? I once was
asked to adjust data for a certification audit. The head of the organization told
me—with a straight face—that the certification agency knew the information
would be false and that it was a willing partner in the sham. Of course, I told
the organization to find somebody else to alter the data. In many cases, the
appraiser organization also becomes the process consultant for an organization.

J. Ross Publishing; All Rights Reserved

224 Mastering Software Quality Assurance

Surprisingly, neither the model definitions nor the appraisers acknowledge any
conflict of interest in such an engagement, as long as the individual performing
the appraisal and the consultant are two different people.

Appraisal is invariably performed by sampling. However, a sample offers an
accurate picture of the universe only when the following aspects are inherent in
the whole:

� The universe is homogeneous.
� The sample is selected randomly.
� The sampling method is appropriate for the purpose.

The appraiser does not ensure that any of these prerequisites are met before
beginning an appraisal, and none of these prerequisites exist in software devel-
opment organizations. The population is not homogeneous because:

� All projects are perhaps similar, but not identical.
� All project managers are not uniformly qualified or trained, nor do

they have similar experience.
� The candidate projects are hand-picked by the organization being

appraised.

When the universe is not homogeneous, more rigorous sampling methods, such
as stratified sampling or cluster sampling, offer better results. However, these
methods are not usually used when selecting candidate projects for audits or
appraisals.

There is no guideline that specifies when 100% project appraisal (that is, all
projects) becomes mandatory. In none of the appraisals I have witnessed, whether
I was personally involved or not, was a random sampling technique used to
select candidate projects. The appraisers simply accepted the projects offered by
the organizations. The norms followed by most organizations are two projects
for ISO and six projects for CMMI® for one location. In fact, software devel-
opment organizations internally refer to projects as “CMMI® projects” and
“non-CMMI® projects” (or alternatively, “ISO projects” and “non-ISO projects”).
The appraiser assumes that all the organization’s other projects are identical to
the projects presented and accords the organization a certificate or a rating,
which the organization then flaunts to attract customers.

Another criticism of these appraisal methods is that the final result is too
vague. In some cases, the outcome is the granting of a certificate of compliance
which states that the organization presented adequate evidence that compliance

J. Ross Publishing; All Rights Reserved

New Paradigm for Software Quality 225

to the selected model is satisfactory. In other cases, the outcome is the according
of a capability rating. In either case, the quality capability is not expressed in
numbers so that prospective customers can draw their own independent infer-
ences as to the quality level of an organization. There are now virtually thou-
sands of software development organizations that are certified for compliance
with the ISO 9000 series of standards. Would it be accurate to say that the
quality level of all these organizations is identical, within a small margin of
variance? Similarly, there are many organizations that have been given a CMMI®
level 3 maturity rating. Again, is the quality level of all such organizations iden-
tical, within a small margin of variance?

Even if the quality level cannot be inferred from these certifications or rat-
ings, can it indicate the magnitude of software development projects these or-
ganizations are capable of executing? Suppose an organization is certified as
compliant with the ISO 9000 series of standards. Can a prospective customer
infer that the organization would be able to execute a software development
project of any size? Similarly, can a prospective customer infer from a CMMI®
rating the size of projects an organization can execute? For example, does a level
2 CMMI® rating mean an organization can execute a project size of 5,000
function points, a level 3 up to 10,000 function points, a level 4 up to 20,000
function points, and a level 5 any size? Obtaining a certificate or an appraisal
rating does not allow any of these inferences to be drawn about an organization’s
capability to successfully execute software development projects, nor does it
indicate the quality level of the organization.

Liability of Appraisers

Suppose a company outsources its software development to an organization
based on that organization being certified or having a certain maturity level
rating. If, after some time and expenditure, the company realizes that the or-
ganization does not deserve the certificate or rating, is there any way for the
company to claim consequential liability from the auditor or appraiser because
it had been led to believe in the capability of the subcontracted organization
based on its certificate or rating?

I am afraid the answer is no. An auditor or appraiser does not have the
liability an external financial auditor has.

A plumber is liable. An electrician is liable. A doctor is liable. A lawyer is
liable. But a process auditor or appraiser who provides a certificate or rating
to an organization is not liable for any consequential damages. It does not
matter that the organization has flaunted its certificate or rating as proof of its

J. Ross Publishing; All Rights Reserved

226 Mastering Software Quality Assurance

capability or has used it for marketing and sales purposes. An auditor’s or
appraiser’s license is not revoked; he or she can continue to provide certificates
or ratings.

Redress Mechanisms

Customers have no place to go if they wish to lodge a complaint or if they have
something to report about a certified organization. The e-mail IDs of the offi-
cials responsible for looking into complaints about certified organizations that
use their certificates to obtain business are not publicly available. Nor do those
officials take action on their own against errant organizations. For example,
CMM® was retired more than two years ago, and its rating should no longer
be used. Yet many organizations still tout their CMM® level on their Web sites,
and no official has corrected them.

Postcertification Reporting Requirements

Certified organizations are not required to submit compliance reports to any-
one. In contrast, a company is mandated to submit financial reports every
quarter to the stock exchange and to the Securities and Exchange Commission
just for the privilege of allowing its shares to be traded on a stock exchange. ISO
mandates surveillance audits twice a year, and the nonconformance reports
raised by the auditors can be cleared by the next surveillance audit. In the
meantime, the certificate is not suspended. Very few certificates, if any, are ever
revoked. More doctors are stripped of their licenses to practice medicine than
software organizations are stripped of their certificates.

CMMI® requires reappraisal once every three years, which means an orga-
nization can exploit its maturity rating for three full years. Public companies
(that is, companies certified by a registrar of companies or by an equivalent
authority that issues certificates of incorporation) are mandated to publicize
their financial achievements, which are audited by an independent auditor once
every quarter in addition to yearly publication.

Shouldn’t certifying models for software development mandate the same
requirement as for public companies? None of the models require a certified
organization to make its quality data (such as its sigma level, defect density,
nonconformance reports raised by auditors, or “opportunities for improve-
ment” pointed out by appraisers) or quality performance public on either its
own Web site or that of the model owner.

J. Ross Publishing; All Rights Reserved

New Paradigm for Software Quality 227

Any Revocations So Far?

I have searched the Web sites of SEI and ISO to locate a list of organizations
for which they have rejected, revoked, or canceled a certificate or rating. I could
find none; nor could I locate a link to such information through Google’s search
engine. This can mean one of two things: they have not rejected, revoked, or
canceled a single certificate, or they keep this list confidential. Public display of
such a list would go a long way toward improving the credibility of certification.

Auditing the Auditors

The way in which certifying agencies themselves are audited leaves much to be
desired. Model owners periodically audit certifying agencies, but this is merely
a conformance audit, not an investigative audit. Thus, surveillance of the cer-
tifiers is lax.

Final Words about Criticisms of Maturity Models

Based on the criticisms of maturity models discussed so far, it becomes evident
that the objectives of a model definition and certification are not to ensure
quality and that possession of a certificate by an organization does not guarantee
the quality of its deliverables. Consider the following incidents:

� Satyam Computers of India has all the certificates from all types of
certifying agencies. Still, those certificates did not prevent the chair-
man from committing massive fraud (he publicly confessed in early
2009). If the certification processes were working properly, how could
this have happened?

� The World Bank banned several organizations that possessed the
highest levels of certification from carrying out any work for it. If
these organizations delivered quality so inadequate to an institution
like the World Bank, then what level of quality are these organiza-
tions delivering to customers that do not have the same clout as the
World Bank?

Do these incidents tell us something about the credibility of certificates?
Clearly, certification has failed. I know I will be ridiculed for this, but some-

one has to shout “the Emperor is naked!” The time has come to develop a
different paradigm for quality for software development organizations—a para-

J. Ross Publishing; All Rights Reserved

228 Mastering Software Quality Assurance

digm that is focused more on the quality of the deliverable than on the achieve-
ment of organizational goals. The following section proposes such a paradigm.

A NEW PARADIGM FOR SOFTWARE QUALITY
ASSURANCE

Why is a new paradigm needed? As detailed earlier in this chapter, the present
certification and maturity rating models do not provide objective data on an
organization’s quality level. Yet the companies outsourcing their software devel-
opment work depend on these certifications and ratings to select a vendor. The
volume of outsourcing in software development is at an all-time high, running
into billions of dollars worldwide, and there simply are too many instances of
organizations not delivering adequate quality. No objective quality data is dis-
closed to the public, and no one accepts liability. These are the reasons why a
new paradigm for software quality is urgently needed.

The Proposed Paradigm

I propose a paradigm modeled after the paradigm for QA in financial matters.
The salient points in the financial assurance paradigm for public corporations
(those that raise money from public) are as follows:

1. There must be internal controls.
2. There must be one external auditor who is qualified to audit the

accounting books of corporations.
3. The external auditor conducts five audits per year (one every quarter

and one at the end of the fiscal year).
4. Financial statements are not accepted as authentic by any statutory

agency unless authenticated by the external auditor.
5. Each quarterly audit takes a minimum of two weeks to complete, and

a yearly audit takes anywhere between two and six weeks to complete.
6. Corporations are mandated to make their financial results public and

to make them available to the public on demand.

Software development needs a similar paradigm, albeit not as rigorous, for
software QA. The new paradigm would be applicable to the following types of
software development organizations:

J. Ross Publishing; All Rights Reserved

New Paradigm for Software Quality 229

1. Organizations that develop and maintain software predominantly for
others

2. Organizations that develop and maintain a software product that is
sold to the public as a commercial off-the-shelf product or on request

3. Organizations that develop and maintain a software product that is
sold to other organizations

4. Organizations that develop and maintain a commercial off-the-shelf
software product that is sold along with computer hardware to the
public or other organizations

The new paradigm would shift the focus away from the certificate of com-
pliance (or capability rating) to certification and disclosure of past performance.
Just as a financial audit demands, this new paradigm would require organiza-
tions to disclose their quality metrics. Based on these metrics, prospective cus-
tomers can draw their own inferences as to the quality of the organization’s
deliverables.

Organizations that develop and maintain a software product purely for their
internal use need not adopt this new paradigm.

Salient Features of the Proposed Paradigm

The salient features of the new paradigm for software QA are as follows:

1. The software development organization would make its objective
quality data public as well as make it available to concerned persons
on demand. The data would include sigma level, residual defect
density, defect injection rate, productivity, customer feedback in-
cluding complaints and commendations, details of its quality model,
success rate of projects, project sizes (minimum and maximum)
handled, and any other data relevant to software quality.

2. The software development organization would select and define a
quality model which would ensure that its quality level is a mini-
mum of 4-sigma level on 6-sigma philosophy, meaning 3 defects in
10,000 opportunities.

3. The quality model would include the following:
a. The quality objectives for the organizational deliverables
b. The minimum set of QA activities that would be carried out in

the organization

J. Ross Publishing; All Rights Reserved

230 Mastering Software Quality Assurance

c. The measures and metrics that would be collated in the organi-
zation, which would determine its quality level

d. Agencies responsible for carrying out various QA activities
e. Alignment of organizational quality standards with the stan-

dards of a professional body such as the IEEE, an industry as-
sociation, or a government agency

4. The software development organization would maintain mandatory
internal controls. That is, the organization would have an internal
QA department, staffed with an adequate number of qualified per-
sons so that the department can ensure that all necessary QA activi-
ties are performed in the organization.

5. The QA department would be headed by a quality professional who
is equal in rank with the person responsible for delivering software
to the organization’s clients (delivery head). The head of the QA
department would report to the same person to whom the delivery
head reports.

6. The software development organization would appoint an external
QA professional or organization to audit its QA activities.

7. The external quality auditor would audit the implementation of the
organization’s QA activities in a rigorous manner, similar to a finan-
cial assurance auditor, and issue a certificate of due diligence in QA
to the organization.

8. The external quality auditor would audit the following aspects of
QA activities:
a. The adequacy of the QA model selected by the organization vis-

à-vis the software development being carried out by the organi-
zation. Any modifications to the selected model made during the
audit period also would be assessed to see if they have any nega-
tive impact on organizational quality.

b. The quality control activities carried out during the audit period
vis-à-vis the development activities carried out in the organiza-
tion, to ensure the level of quality control is adequate and is in
conformance with the organization’s selected quality model.

c. The position of the QA department in the organization, to assess
its influence on organizational activities.

d. The process of compiling and resolving customer feedback and
analysis of such feedback.

e. The data utilized to derive various quality metrics that would
determine the quality levels of the organization, to ensure that
the metrics reflect the reality in the organization.

J. Ross Publishing; All Rights Reserved

New Paradigm for Software Quality 231

9. The external auditor would provide a certificate, in the same way
an external financial auditor would. The certificate would indicate
that the organization conformed to its defined quality model and
complied with all the requirements during the audit period. This
would not be any indicator of future performance, just as it is not
in the case of financial audit certificates.

10. The external quality auditor’s certificate would indicate various quality
metrics and measures, just as a financial audit certificate would, which
would help prospective customers to draw their own independent
inferences about the quality capability of the organization.

11. The external audit would be carried out at least once a year.

Audit and Certification Agencies

All certification agencies prescribe qualifications that include attending a train-
ing program or passing an exam as the prime criterion for being eligible to
conduct audits or appraisals and to provide certificates or ratings. They do not
insist on hands-on experience. Under the proposed paradigm, the emphasis
would be on hands-on experience and professional competence. The suggested
eligibility criteria are as follows:

� A minimum of five years of experience in software development
or software QA in organizations that employ a minimum of 150
persons.

� Membership in such professional organizations as the Computer
Society of IEEE, the British Computer Society, the Australian Com-
puter Society, the Irish Computer Society, the Computer Society of
India, the American Society for Quality, or an equivalent society. The
professional organization should meet the following requirements:
� The organization should be a national-level, not-for-profit so-

ciety engaged in promoting computer science in general. Its in-
terest should not be limited to one branch of computer science.

� Membership should be granted to an individual based on his or
her qualifications and experience.

� The organization should be run on democratic principles.
� The organization should be funded either by membership fees

or government grants. It should not be funded by corporations.
� Associations of companies engaged in software development

should not be eligible to audit and certify under this quality
paradigm.

J. Ross Publishing; All Rights Reserved

232 Mastering Software Quality Assurance

� Full-level membership. That is, student, graduate, affiliate, associate,
etc. membership is not construed as membership.
� The duration of full membership should be a minimum of two

years.
� Membership should be granted on an individual basis. That is,

acting as the representative of a corporate member does not
constitute membership.

� The person should not be a full-time or part-time employee of a
software development organization. The person may be a freelance
consultant or employed by a consultancy firm that offers only soft-
ware quality consultancy.

� The same firm cannot offer both software quality consultancy and
certification of quality, even if two separate departments perform
these two activities.

� The experience and professional society membership criteria should
not be waived, even if the person is employed by a firm that offers
only software quality consultancy.

Consequential Liability

The certification process falls under the jurisdiction of consumer protection
acts, so that the individuals or organizations granting certification can be held
liable if they are found to have been negligent in ensuring the accuracy of the
quality data of an organization, just as external financial auditors are liable in
such situations. The person conducting an audit and granting a certificate must
agree to assume consequential liability in either of the following scenarios:

1. The quality auditor is found to have been negligent in ensuring the
accuracy of the quality data provided by the organization being certified.

2. The organization certified by the quality auditor turns out to be fraudu-
lent in matters of quality.

The Certificate

The quality audit certificate should be similar to the certificate provided by an
external financial auditor, and it should be signed by both the external auditor
and the head of the organization’s QA department. The certificate should con-
tain an affirmation from the auditor that he or she has examined the quality
records of the organization and is satisfied with the implementation of quality
practices that are conducive to achieving quality in the company’s deliverables.

J. Ross Publishing; All Rights Reserved

New Paradigm for Software Quality 233

It should disclose the quality data of the organization. It also should contain the
standards against which the organization is assessed and the date on which the
assessment is made, as well as the validity period of the certificate. The certificate
should become part of the organization’s annual report, just as a financial auditor’s
certificate would.

FINAL WORDS

There are plenty of models that accord a certificate or a maturity rating to
software development organizations. Although these models do not explicitly
address software quality issues, their certificates or ratings are relied upon by
many organizations—including the defense departments of the United States
and many other countries, among other important organizations—as indicators
of organizational quality when selecting a suitable organization as a source of
software development work.

As discussed in this chapter, certificates and ratings do not provide any
objective data to help a company select the right organization to which to
outsource its software development work. Clearly, the present models fall far too
short of requirements and expectations. There is an urgent need for a new
paradigm in view of the large amount of outsourcing that is taking place in the
world today. This chapter presents a new paradigm that would provide objective
data on an organization’s quality capabilities, in which the auditor would take
ownership for such data and accept liability should the data contain any errors.

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

235

APPENDIX A:
AUDIT PROCESS

PURPOSE

This document defines a sample process for conducting audits in the organiza-
tion. It covers both periodic audits and phase-end audits.

SCOPE

This process is applicable for all software projects executed in the organization.

ENTRY CRITERIA

The entry criterion for periodic audits is approval of yearly audit plans. The
entry criterion for phase-end audits is completion of a software development
phase.

EXIT CRITERIA

The audit is conducted, all nonconformance reports are closed, nonconfor-
mance reports are analyzed, findings are presented to management, and the
results of the nonconformance report analysis are tracked until improvement is
effected in the organizational process.

J. Ross Publishing; All Rights Reserved

236 Mastering Software Quality Assurance

PROCESS DESCRIPTION

The organization conducts two types of audits: periodic audits and phase-end
audits. This section describes the audit process for each type of audit.

Periodic Audits

Agency Responsible for Conducting Audits

The quality assurance (QA) department is the coordinating agency that plans
and arranges audits, and it is the repository for nonconformance reports gen-
erated during the audits, tracking them to their resolution. In addition, the QA
department consolidates audit findings at the end of every periodic audit, pre-
sents them to management, and, in coordination with the software engineering
process group, effects the necessary improvements in the organizational process.

Audit Planning

The QA department prepares the annual audit plan for periodic audits. Nor-
mally, these audits are conducted once every quarter. The plan is reviewed by
the software engineering process group and approved by the head of the QA
department before the start of the new fiscal year. In each cycle of audits, 25%
of the projects in the state of execution are covered, and all service departments
(human resources, administration, network and systems administration, tech-
nical heads, and QA) are audited. The types of audit conducted in periodic
audits are conformance audits and vertical audits. Figure A.1 depicts yearly audit
planning.

Audit Schedule for Each Audit

The actual schedule for each cycle of the audit is prepared one week in advance
of the audit cycle dates. This schedule consists of the projects to be audited,
assignment of auditors to projects and service departments, and date and time
of the audit. It is prepared as agreed to by the auditors included in the schedule
and by their supervisors, as well as by the head of the technical department. The
schedule is circulated to all auditors and auditees included in the audit schedule.

Auditors

The QA department arranges for periodic training of selected candidates in the
precepts and practices of conducting internal audits and maintains a list of

J. Ross Publishing; All Rights Reserved

Appendix A: Audit Process 237

Figure A.1. Yearly audit planning

Any
modifications?

Review of yearly audit plan
by software engineering

process group

No

Yes

Start of a new
financial year

Quality assurance
prepares yearly

audit plan

Schedule yearly
audit plan

Approval of
yearly audit plan

Baseline yearly
audit plan

Yearly audit
planning completed

Quality assurance
implements review

feedback

J. Ross Publishing; All Rights Reserved

238 Mastering Software Quality Assurance

internal auditors who can be assigned to carry out the scheduled audits. Audi-
tors are selected mainly from the technical, QA, and other service departments.
Internal audit training is conducted by a lead auditor qualified to conduct
certification audits for the ISO 9001 series of standards.

Periodic Audit Process

The scheduled audit begins with an opening meeting among the auditors, auditees,
and management representative. The head of the QA department presents the
audit objectives and schedule, resolving any issues in the schedule as well as
seeking cooperation from all involved to conclude the audit successfully.

The auditor reaches the auditee’s location five minutes in advance of the
scheduled start time. The auditee is present to receive the auditor. The auditee
submits all requested records and data to the auditor, including evidence of the
action taken on previous nonconformance reports. When asked to produce a
document, the auditee must do so in three minutes or less.

The auditor examines the records of the project or department and com-
pares them with the corresponding organizational process to uncover
nonconformances. Using a nonconformance report form, the auditor records
any nonconformances uncovered during the audit as well as observations on
any best practice or worst practice implemented in the project or department.
These nonconformances and observations are discussed with the auditee, and
the auditee’s explanations are taken into consideration before the auditor final-
izes the nonconformance report. The auditor might also record any recommen-
dations that he or she believes to be fit and proper. The nonconformances are
classified as either major or minor by the auditor. If the auditee disagrees with
the auditor about the appropriateness or classification of a nonconformance,
the matter can be escalated to the head of the QA department, whose decision
on the matter is final and binding on both parties. The auditor has the non-
conformance report reviewed by the head of the QA department and hands it
over to the auditee; the QA department also retains a copy.

The auditee resolves all nonconformances in two calendar weeks or less and
arranges for closure of the nonconformance report by the auditor. The auditor
cooperates with the auditee in closing the nonconformance report. The closed
nonconformance report is signed off by both the auditor and the auditee and
is made part of the QA department’s audit records.

The head of the QA department arranges for consolidation of the audit
findings. All auditees and auditors are informed of these findings in the audit
closure meeting that is conducted once all the scheduled audits have been con-
cluded and all nonconformance reports have been received.

J. Ross Publishing; All Rights Reserved

Appendix A: Audit Process 239

Depending on the nature of nonconformances uncovered during the audits,
the head of QA coordinates with the software engineering process group to
effect any necessary improvements in the organizational process. The periodic
audit process is depicted in Figure A.2.

Phase-End Audits

Phase-end audits are conducted for every project at the end of the project
initiation, requirements analysis, software design, construction, testing, and
project closure phases.

Audit Plans

Phase-end audits are planned on a monthly basis. By the 25th of every month,
all software project managers inform the head of the QA department of the likely
completion dates for the project phases that are scheduled to be completed in
the following month. The head of QA consolidates the requirements and pre-
pares a phase-end audit plan, which includes the projects, probable completion
dates, and the auditor assigned to each project, ensuring that dates and projects
for periodic audits and phase-end audits do not clash. The plan is circulated to
all software project managers and auditors.

Auditors

Phase-end audits are conducted by executives of the QA department. If no QA
executive is available, then a trained internal auditor conducts the audit.

Phase-End Audit Process

Software project managers inform the QA department at least one business day
in advance that a phase-end audit is needed, which allows QA to locate a suitable
auditor. The selected auditor arrives at the location of the auditee at the agreed-
upon time and conducts the audit. The auditee has all necessary artifacts ready
and provides them to the auditor as requested. The auditor conducts the audit
and records any nonconformances uncovered after considering any prior expla-
nations from the auditee. The auditor then prepares the nonconformance report
and obtains approval from the head of the QA department. The auditor submits
the nonconformance report to the software project manager for the project. The
software project manager arranges resolution of the nonconformance report
and requests the auditor to verify the resolution of nonconformances and close

J. Ross Publishing; All Rights Reserved

240 Mastering Software Quality Assurance

Any
nonconformances?

No

Yes

No

Yes

Prepare yearly
audit plan for

the organization

Conduct audit
opening meeting

Auditors close
nonconformances

Nonconformance
resolution is presented

to management

Audit completed

Quality assurance
department analyzes
the nonconformance

resolution

Auditees resolve
nonconformances

Quality assurance
department consolidates

nonconformances
and analyzes them

Conduct audit
closure meeting

Implement processes
for process definition/

implementation
improvement

Any
opportunities for
improvement?

Conduct audits and
raise nonconformance

reports

Figure A.2. Periodic audit process

J. Ross Publishing; All Rights Reserved

Appendix A: Audit Process 241

the nonconformance report. The auditor verifies the resolution and informs the
software project manager if it is not satisfactory. When all the nonconformances
are satisfactorily resolved, the auditor closes the nonconformance report and
hands it over to the software project manager for inclusion in the project records,
which concludes the requested phase-end audit. The phase-end audit process is
depicted in Figure A.3.

A checklist to ensure comprehensiveness of audits is provided in Table A.1.
The format in Table A.2 should be used for planning annual audits.

J. Ross Publishing; All Rights Reserved

242 Mastering Software Quality Assurance

Figure A.3. Phase-end audit process

No

Yes

Software project manager
requests phase-end audit by

the quality assurance department

Project phase is completed

Quality assurance identifies
auditor and schedules the audit

Auditor conducts the audit
on schedule

Auditor prepares
nonconformance report

Software project manager
resolves all nonconformances

Auditor verifies and closes
the nonconformance report

Closed nonconformance
report part of project records,
project moves to next phase

Any
nonconformances?

J. Ross Publishing; All Rights Reserved

Appendix A: Audit Process 243

Table A.1. Checklist for auditing projects

Aspect Checkpoint Yes/No

Project plans Is the project management plan available?

Is the configuration management plan available?

Is the quality management plan available?

Are review records for all project plans available?

Are all project plans duly approved?

If any changes were effected in the project plans, did
they undergo the due quality process?

Is there any mix-up between current plans and archived
plans?

Configuration Is the information management in accordance with the
management configuration management plan?

Is the code management in accordance with the configu-
ration management plan?

Is the change register being maintained properly?

Does the configuration register contain all configurable
items, and do their versions match the actual artifacts?

Is baselining of items in conformance with the configu-
ration management plan?

Is the change approval process in accordance with the
configuration management plan?

Quality Are all QA activities being conducted in accordance with
management the quality management plan?

Are review records of all artifacts available?

Are test plans and test logs available as mentioned in the
quality management plan?

Were any waivers granted for the project? Are the waiv-
ers available in the project records?

Client Is there negative feedback from the client? If so, has a
causal analysis been conducted?

Were any defects reported by the client?

Is the acceptance letter or e-mail available for deliveries
made?

Were there any client complaints? If so, were they tracked
to closure?

Were there any commendations from the client?

J. Ross Publishing; All Rights Reserved

244 Mastering Software Quality Assurance

Metrics Is the schedule variance metric beyond acceptable limits?

Is the defect injection rate above the organizational level?

Is project productivity in line with organizational norms?

Quality Is the project team’s awareness of organizational
awareness processes adequate?

Nonconformance Were all nonconformances from past audits closed?
reports from
past audits

Project tracking Are weekly status reports being prepared regularly?
and monitoring Are weekly status reports being sent to all stakeholders

regularly?

Are weekly team meetings for project progress monitor-
ing being conducted regularly?

Are progress-monitoring meetings with stakeholders be-
ing conducted regularly?

Are minutes of all progress-monitoring meetings (with the
project team as well as other stakeholders) available?

Are all action items recorded in the minutes of the meeting
tracked to closure?

Human Are all appraisals filled in as and when required?
resources Are induction training records available for each team

member?

Is any project-specific training being conducted, and if
so, are the records available?

Other project Is the project initiation note available in the project
records records?

Do actual resource allocations match the existing project
resources?

Are there any confidentiality agreements with the client?
If so, is there evidence of a breach of the confidentiality
agreements?

Table A.1. Checklist for auditing projects (continued)

Aspect Checkpoint Yes/No

J. Ross Publishing; All Rights Reserved

Appendix A: Audit Process 245

Table A.2. Annual audit plan format

Functions
Audit to be audited Scheduled
cycle (projects/support) date Auditor Auditee Remarks

1

2

3

4

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

247

APPENDIX B:
DEFECT RESOLUTION
METHODOLOGY

Quality assurance (QA) activities uncover defects in software artifacts during
project execution. These defects need to be resolved. With a properly defined
methodology, defect resolution facilitates analysis of the nature of defects, which
leads to effecting improvements that will eliminate a recurrence of defects. The
defect resolution process must facilitate not only the efficient resolution of de-
fects but also capturing data that can be subjected to analysis.

DEFECT REPORTING

Defects can be uncovered during QA activities through the various verifications
and validations carried out on the software artifacts, including information
artifacts and code artifacts. Defects generally are detailed in a report or directly
entered into a defect register software tool. It is better to maintain a single defect
resolution register for the entire project, as doing so facilitates the grouping of
data and makes the data amenable to statistical analysis. Figure B.1 depicts a
suggested defect resolution register format. The entries in the defect resolution
register are as follows:

1. Defect ID—Needed only if a manual register is maintained. The
defect ID is used to enter the effort spent from the time sheets. The
ID can be either numeric or alphanumeric, whichever the organi-
zation prefers.

J. Ross Publishing; All Rights Reserved

248 Mastering Software Quality Assurance

Project ID:

Defect ID

Defect description

Reported by

Report date

Development phase

QA activity

Component affected

Component type

Component size

Analyzed by

Analysis start date

Analysis end date

Fixed by

Fix start date

Fix end date

Reviewed by

Review start date

Review end date

Regression tested by

Regression testing start date

Regression testing end date

Status

Defect category

Defect origin

Acceptance tested on

Delivered on

Figure B.1. Defect resolution register format for a project

J. Ross Publishing; All Rights Reserved

Appendix B: Defect Resolution Methodology 249

2. Defect description—A detailed description of the defect.
3. Reported by—The name of the person who uncovered the defect.
4. Report date—The date on which the defect is reported.
5. Development phase—The phase in which the defect is uncovered.

The development phases include requirements analysis, software
design, construction, test planning, project planning, build prepa-
ration, etc. The phases standardized within the organization are the
ones used.

6. QA activity—The QA activity that uncovered the defect, which could
be a peer review, unit testing, integration testing, system testing,
positive testing, negative testing, etc.

7. Component affected—The name of the component in which the
defect is uncovered. The component can be either a document artifact
or a code artifact.

8. Component type—The type of component, which could be a screen,
a report, a requirements document, an architecture document, a
detailed design document, a stored procedure, etc.

9. Component size—The size of the component. The size of a docu-
ment can be expressed as number of pages. The size of a program
unit can be expressed as number of lines of code. The size of screens
and reports can be expressed using a software size measure such as
function points, object points, or software size units, where lines of
code would not be accurate enough to indicate the size of the com-
ponent. (Items 1 to 9 are filled in at the time of reporting the defect.)

10. Analyzed by—The name of the person who analyzed the defect.
11. Analysis start date—The date on which the defect analysis was

started.
12. Analysis end date—The date on which the defect analysis was com-

pleted.
13. Fixed by—The name of the person who fixed the defect.
14. Fix start date—The date on which fixing the defect was started.
15. Fix end date—The date on which fixing the defect was completed.
16. Reviewed by—The name of the person who carried out the peer

review. Defect fixing does not normally need to pass through a
group review. However, when it does, the names of all persons who
conducted the review are entered.

17. Review start date—The date on which the review of the fixed defect
was started.

18. Review end date—The date on which the review of the fixed defect
was completed.

J. Ross Publishing; All Rights Reserved

250 Mastering Software Quality Assurance

19. Regression tested by—The name of the person who conducted the
regression testing on the fixed defect. In some cases, there may not
be any regression testing, as in the case for defects reported on
information artifacts. In such cases, the columns that pertain to
regression testing may be left blank or may be filled in with NA (not
applicable).

20. Regression testing start date—The date on which the regression
testing of the fixed defect was started.

21. Regression testing end date—The date on which the regression
testing of the fixed defect was completed. (Items 10 to 21 are filled
in as the activities are performed.)

22. Status—The status can be “open” or “closed.” The status starts with
“open” and is closed only when the defect is fixed, reviewed, and
regression tested. Status is originally filled in at the time of reporting
the defect. It is changed to “closed” when the defect is resolved and
the rectified code is delivered back to the concerned party.

23. Defect category—The category of the defect. A suggested list of
defect categories is given in Table B.1. However, the organization’s
standard defect categories can be used. The defect category is filled
in after the defect analysis is completed.

24. Defect origin—The stage at which the defect originated, which could
be the requirements, software design, software detailed design, con-
struction, etc. stages. The defect origin is filled in after the defect
analysis is completed.

25. Acceptance tested on—The date on which the acceptance testing is
conducted with the customer. This column might not be applicable
for defects uncovered before acceptance testing.

26. Delivered on—The date on which the fixed defect is delivered to the
customer or the next software development stage.

DEFECT RESOLUTION PROCEDURE

Defect resolution consists of the following steps:

1. A defect is uncovered during a QA activity being carried out on a
software artifact.

2. The person who uncovered the defect reports it in accordance with
the organizational procedure for reporting defects. Normally, all

J. Ross Publishing; All Rights Reserved

Appendix B: Defect Resolution Methodology 251

Table B.1. Suggested defect categories

Defect category Defect origin Defect severity

Accessed or stored data incorrectly coding major
Add new capability requirements major
Ambiguous statement coding minor
Applicable standards not met design critical
Change in program requirements requirements major
Checking wrong variable coding major
Computational problem coding major
Conflicting item design major
Confusing item design minor
Data handling problem coding critical
Data problem coding minor
Data referenced out of bounds coding major
Dimensioned data incorrectly coding minor
Documentation problem coding minor
Document quality problem documentation minor
Duplicate logic coding minor
Embedded data in tables incorrect or missing coding critical
Enhancement design major
Equation insufficient or incorrect coding critical
External data incorrect or missing coding major
Extreme conditions neglected coding critical
Failure caused by a previous fix coding critical
Flag or index set incorrectly coding major
Forgotten cases or steps coding critical
Illogical item design major
Implement editorial changes documentation minor
Improve code efficiency coding major
Improve comments documentation minor
Improve usability design major
Incomplete item coding major
Incomplete statement coding critical
Inconsistencies coding critical
Inconsistent subroutine arguments coding major
Incorrect item coding critical
Incorrectly located subroutine called coding major
Initialized data incorrectly coding major
Input data incorrect or missing coding critical
Input or output timing incorrect coding critical
Interface or timing problem coding critical
Interrupts handled incorrectly coding critical
Iterating loop incorrectly coding major
Logic problem coding critical

J. Ross Publishing; All Rights Reserved

252 Mastering Software Quality Assurance

Misinterpretation coding major
Missing computation coding critical
Missing condition test coding critical
Missing item design critical
Mixed modes coding major
No identification coding minor
Nonexistent subroutine called coding critical
Nonverifiable item design major
Not a defect reporting minor
Not current coding major
Not traceable requirements critical
Operand in equation incorrect coding major
Operator data incorrect or missing coding critical
Operator in equation incorrect coding major
Other enhancement coding major
Other problem (could not classify) requirements major
Output data incorrect or missing coding critical
Packed or unpacked data incorrectly coding major
Parenthesis used incorrectly coding critical
Precision loss coding minor
Redundant item design minor
Referenced wrong data variable coding minor
Remove unnecessary capability design minor
Rounding or truncation fault coding minor
Scaling or units of data incorrect coding minor
Scope of data incorrect coding major
Sensor data incorrect or missing coding critical
Sign convention fault coding major
Software fix or a hardware problem coding major
Subroutine or module mismatch coding critical
Subscripted variable incorrectly coding minor
Timing fault causes data loss coding critical
Unachievable item design critical
Unnecessary function coding minor
Update current capability design major
Variable type incorrect coding minor
Wrong subroutine called coding major

Table B.1. Suggested defect categories (continued)

Defect category Defect origin Defect severity

J. Ross Publishing; All Rights Reserved

Appendix B: Defect Resolution Methodology 253

defects uncovered during a QA activity are consolidated and re-
ported at the end of that QA activity, either in a report or by direct
entry into the project defect resolution register.

3. The defect is allocated for analysis. Defect analysis involves the fol-
lowing steps:
a. Replicate the defect to ensure it is indeed a defect. If the defect

cannot be replicated, the analyzer contacts the person who re-
ported it to verify that the defect is in fact a true defect. If it turns
out that the reported defect is not a true defect, the defect is
closed.

b. The analyzer analyzes the defect, determines its category and
origin, and records this information in the defect resolution
register.

c. The analyzer estimates the impact of the defect on effort, sched-
ule, and cost of the project. If the defect resolution can be charged
to the customer, the analyzer obtains customer approval for the
estimates.

d. The analyzer reports the defect analysis with the estimate infor-
mation for resolution back to the software project manager.

e. Analysis completion details are recorded in the defect resolution
register.

4. The defect is then allocated for fixing, preferably to the original
author. If the original author is unavailable, fixing the defect is
assigned to another suitable person.

5. The person allocated makes the necessary correction in the artifact,
resolves the defect, and reports the completion details back to the
software project manager.

6. The defect resolution register is updated with the details of fixing
the defect, and the defect is allocated for review.

7. The person allocated conducts a peer review to ensure all standards
and guidelines are followed and that the resolution is appropriate
for the defect. If any defects are uncovered, the artifact is returned
to the person who fixed the defect for further correction.

8. Once the review is completed and defects uncovered in the review,
if any, are closed, the defect resolution register is updated. If the
component affected by the defect was an information artifact, it
would not go through testing but would be delivered for the next
stage. The defect is allocated for regression testing.

J. Ross Publishing; All Rights Reserved

254 Mastering Software Quality Assurance

9. The person allocated conducts regression testing to ensure that the
defect is properly fixed. If any defects are uncovered, the artifact is
returned to the person who fixed the defect for further correction.

10. Once regression testing is completed and any defects uncovered
during regression testing are closed, the defect resolution register is
updated with the regression testing details.

11. If the defect was uncovered during the development stage, the ar-
tifact is released for the next stage of software development.

12. If the defect was uncovered during the acceptance testing stage or
later, acceptance testing is conducted with the customer for accep-
tance of the artifact.

13. Once acceptance testing is completed and the artifact is accepted by
the customer, the artifact is delivered to the customer.

14. The defect status in the defect resolution register is then changed to
“closed.”

15. The defect resolution process is now complete.

The defect resolution process is depicted in Figure B.2. Table B.1 lists suggested
defect categories and defect severities for use in the defect analysis activity.

J. Ross Publishing; All Rights Reserved

Appendix B: Defect Resolution Methodology 255

Figure B.2. Defect resolution process

N
o

N
o

N
o

Yes

Yes

Yes

Any defects?

Record defect details in
defect resolution register

and allocate for fixing

Fix defect

Review fixed
defect

Any defects?

Any defects?

Acceptance
testing

Defect uncovered
and reported

Close defect

Regression
testing

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

257

APPENDIX C:
GUIDELINES FOR
ERROR GUESSING

Error guessing has two purposes: to ascertain the efficiency of quality assurance
(QA) activities and to try to locate as many errors as possible in a software
product.

ERROR GUESSING TO ASCERTAIN THE EFFICIENCY
OF QUALITY ASSURANCE ACTIVITIES

The efficiency of a QA activity is the ratio of the number of defects uncovered
in a software artifact during a specific QA activity to the total number of defects
present in the software artifact, expressed as a percentage. The formula is

Number of defects uncovered

Total number of defects

 × 100

The number of defects uncovered is available in the defect report for the QA
activity of the software artifact. Defects uncovered in all the QA activities pre-
ceding the present QA activity need to be considered and subtracted from the
total defects.

The total number of defects is the sum of all the defects uncovered in the
software artifact in all the QA activities performed on the artifact. The total
number of defects uncovered includes those uncovered during the following QA
activities:

J. Ross Publishing; All Rights Reserved

258 Mastering Software Quality Assurance

1. Peer review
2. Unit testing
3. Integration testing
4. System testing
5. Acceptance testing
6. Any other testing
7. Report from the field or customer site

The following examples are provided to make this computation clearer.

Example 1

A peer review of a software unit has uncovered 15 defects. This was the first QA
activity conducted on the software unit. The total number of defects that could
be lurking in the software is estimated to be 45. Therefore:

Efficiency of QA peer review = × =15

45
100 33 33. %

Example 2

Unit testing of the software unit in Example 1 was conducted after the peer
review was completed and 20 defects were uncovered. Therefore:

New total number of defects = Total defects Defects uncovered in the
preceding QA activities

−

= −

=

45 15

30

Efficiency of QA unit testing = × =20

30
100 66 66. %

Example 3

All planned QA activities for the software unit in Examples 1 and 2 have been
completed, and a total of 40 defects were uncovered in all the QA activities.
Therefore:

Efficiency of all QA activities = × =40

45
100 88 89. %

J. Ross Publishing; All Rights Reserved

Appendix C: Guidelines for Error Guessing 259

One thing that needs to be made clear here is how the total number of
defects in a software unit is estimated. After all the QA activities are completed,
only the number of uncovered defects is known. This is why the term “guessing”
is used here.

The defect injection rate is used for guessing the total number of defects.
Appendix G illustrates how to compute the defect injection rate, which is ex-
pressed as defects per unit of size. It is computed at the organizational level for
each attribute of a software artifact and is maintained in the organizational
knowledge repository or by the QA department. The appropriate defect injec-
tion rate can be obtained from this source.

Take, for example, a software artifact size of 15 function points with a cor-
responding defect injection rate of 1.25 defects per function point. The total
number of defects in this software artifact is

Total number of defects Software size Defect injection rate

 defects or 19 defects

= ×

= ×

=

15 1 25

18 75

.

.

This method can be used to estimate the total number of defects in an artifact.
Computing this figure gives the number of defects that ought to be uncov-

ered in the present QA activity in addition to the efficiency with which the
present QA activity is carried out.

ERROR GUESSING AS AN AID TO DESIGN
TEST CASES AND CONDUCT TESTING

Software development has existed for many years, and a few areas are now
recognized for the occurrence of common errors. These areas are documented
in Table C.1 for convenient reference and use in designing test cases or conduct-
ing the software testing. The table offers guidelines for error guessing so that test
cases can be designed to ensure that software is defect-free and also lists some
rules which are sometimes forgotten.

J. Ross Publishing; All Rights Reserved

260 Mastering Software Quality Assurance
T

ab
le

 C
.1

.
G

u
id

el
in

es
 f

o
r

er
ro

r
g

u
es

si
n

g

E
rr

o
r

ca
se

D
es

cr
ip

ti
o

n
 o

f
ex

am
p

le
 t

es
t

ca
se

s
R

em
ar

ks

P
ro

gr
am

m
er

 o
ve

rs
ig

ht
s,

 s
uc

h
as

 n
ot

 h
an

dl
in

g
al

l p
os

si
bl

e
da

ta
 v

al
id

a-
tio

ns
.

1.
F

or
 e

xa
m

pl
e,

 i
n

a
w

ar
eh

ou
se

 a
pp

lic
at

io
n,

 m
at

er
ia

l
sh

ou
ld

 b
e

re
-

ce
iv

ed
 b

ef
or

e
it

ca
n

be
 i

ss
ue

d.
2.

T
he

 e
m

pl
oy

ee
’s

 a
ge

 m
us

t b
e

in
 th

e
“e

m
pl

oy
ab

le
”

ra
ng

e
w

he
n

a
ne

w
hi

re
 j

oi
ns

 t
he

 o
rg

an
iz

at
io

n.
3.

In
 a

 p
ro

du
ct

io
n

m
an

ag
em

en
t

ap
pl

ic
at

io
n,

 f
ab

ric
at

io
n

m
us

t
be

 c
om

-
pl

et
ed

 b
ef

or
e

it
ca

n
be

 i
ns

pe
ct

ed
.

4.
In

 a
 t

im
e

sh
ee

t
ap

pl
ic

at
io

n,
 e

nt
er

in
g

da
ta

 f
or

 a
 f

ut
ur

e
da

te
 s

ho
ul

d
no

t
be

 a
llo

w
ed

.

1.
A

fte
r

an
 in

vo
ic

e
is

 s
ub

m
itt

ed
 to

 a
 c

us
to

m
er

, m
od

ifi
ca

tio
n

of
 it

 s
ho

ul
d

no
t

be
 a

llo
w

ed
.

2.
A

fte
r

a
pu

rc
ha

se
 o

rd
er

 h
as

 b
ee

n
is

su
ed

,
m

od
ifi

ca
tio

n
of

 i
t

sh
ou

ld
no

t
be

 a
llo

w
ed

.
3.

A
fte

r
tim

e
sh

ee
t

da
ta

 i
s

su
bm

itt
ed

 t
o

pa
yr

ol
l

or
 b

ill
ed

 t
o

th
e

cu
s-

to
m

er
,

ch
an

ge
s

to
 i

nc
lu

de
 m

or
e

da
ta

 s
ho

ul
d

no
t

be
 p

er
m

itt
ed

.
4.

A
fte

r
a

ba
la

nc
e

sh
ee

t
ha

s
be

en
 p

ro
du

ce
d,

 m
od

ifi
ca

tio
n

to
 t

he
 d

at
a

fo
r

th
at

 p
er

io
d

sh
ou

ld
 n

ot
 b

e
al

lo
w

ed
.

1.
In

 a
 ti

m
e

sh
ee

t a
pp

lic
at

io
n,

 p
ro

je
ct

 in
fo

rm
at

io
n

sh
ou

ld
 n

ot
 b

e
de

le
te

d
af

te
r

da
ta

 a
ga

in
st

 a
 p

ro
je

ct
 h

as
 b

ee
n

en
te

re
d.

2.
In

 a
 w

ar
eh

ou
se

 a
pp

lic
at

io
n,

 r
ed

uc
in

g
th

e
qu

an
tit

y
of

 r
ec

ei
pt

s
sh

ou
ld

no
t

be
 a

llo
w

ed
 a

fte
r

th
at

 q
ua

nt
ity

 h
as

 b
ee

n
is

su
ed

.
3.

In
 a

 f
in

an
ce

 a
pp

lic
at

io
n,

 a
n

ac
co

un
t

sh
ou

ld
 n

ot
 b

e
de

le
te

d
or

 m
od

i-
fie

d
af

te
r

in
co

m
e

or
 a

n
ex

pe
nd

itu
re

 h
as

 b
ee

n
bo

ok
ed

 a
ga

in
st

 i
t.

U
se

 n
eg

at
iv

e
te

st
in

g
gu

id
e-

lin
es

 t
o

de
te

ct
 t

he
se

 e
rr

or
s.

D
es

ig
n

te
st

 c
as

es
 t

o
en

su
re

th
at

 o
pe

ra
tio

ns
 a

re
 p

er
m

itt
ed

in
 t

he
 p

ro
pe

r
se

qu
en

ce
 o

nl
y.

D
es

ig
n

te
st

 c
as

es
 t

o
en

su
re

in
te

gr
ity

 o
f

da
ta

.

D
es

ig
n

te
st

 c
as

es
 t

o
en

su
re

da
ta

 c
on

si
st

en
cy

.

P
ro

gr
am

m
in

g
sh

or
tfa

lls

W
ro

ng
 s

eq
ue

nc
e

of
 o

pe
ra

tio
ns

In
te

gr
ity

 i
ss

ue
s

C
on

si
st

en
cy

is
su

es
—

ke
y

va
lu

es
 s

ho
ul

d
no

t
be

 d
el

et
ed

 a
fte

r
so

m
e

tr
an

sa
ct

io
ns

ha
ve

 t
ak

en
 p

la
ce

J. Ross Publishing; All Rights Reserved

Appendix C: Guidelines for Error Guessing 261

1.
In

 a
 w

ar
eh

ou
se

 a
pp

lic
at

io
n,

 s
to

ck
 in

fo
rm

at
io

n
fo

r
an

 it
em

 is
 o

bt
ai

ne
d

fr
om

 m
ul

tip
le

 p
la

ce
s,

 s
uc

h
as

 b
ef

or
e

is
su

e
of

 t
he

 it
em

,
in

 t
he

 s
to

ck
re

po
rt

,
in

 t
he

 s
to

ck
 i

nq
ui

ry
 b

y
th

e
pr

od
uc

tio
n

te
am

,
et

c.
,

an
d

th
e

va
lu

e
m

us
t

be
 t

he
 s

am
e

in
 a

ll
pl

ac
es

.
2.

In
 a

n
en

te
rp

ris
e

re
so

ur
ce

 p
la

nn
in

g
ap

pl
ic

at
io

n,
 t

he
 v

al
ue

 o
f

pr
od

uc
-

tio
n

fr
om

 t
he

 f
in

an
ce

,
pr

od
uc

tio
n,

 o
r

m
ar

ke
tin

g
m

od
ul

e
ca

n
be

 o
b-

ta
in

ed
,

an
d

th
e

va
lu

e
m

us
t

be
 s

am
e.

3.
In

 a
 c

us
to

m
er

 r
el

at
io

ns
hi

p
m

an
ag

em
en

t
ap

pl
ic

at
io

n,
 a

 r
eq

ue
st

 f
or

pr
op

os
al

 i
s

a
pr

er
eq

ui
si

te
 f

or
 a

 p
ro

po
sa

l
an

d
a

pr
op

os
al

 i
s

a
pr

e-
re

qu
is

ite
 f

or
 a

n
or

de
r.

4.
W

he
n

a
re

po
rt

 i
s

ge
ne

ra
te

d
af

te
r

pr
oc

es
si

ng
 a

 n
um

be
r

of
 r

ec
or

ds
,

th
e

su
m

 o
f

th
e

re
co

rd
s

in
cl

ud
ed

 in
 t

he
 r

ep
or

t
an

d
ex

cl
ud

ed
 f

ro
m

 t
he

re
po

rt
 m

us
t

eq
ua

l
th

e
nu

m
be

r
of

 r
ec

or
ds

 t
ha

t
ar

e
in

 t
he

 d
at

ab
as

e.

1.
W

he
n

m
ax

im
um

 v
al

ue
s

ar
e

in
pu

t
fo

r
pe

rf
or

m
in

g
m

ul
tip

lic
at

io
n,

 t
he

re
ce

iv
in

g
va

ria
bl

e
m

ig
ht

 n
ot

 h
av

e
ad

eq
ua

te
 s

iz
e

to
 a

cc
om

m
od

at
e

th
e

re
su

lt.
2.

W
he

n
th

e
de

no
m

in
at

or
 i

n
a

di
vi

si
on

 o
pe

ra
tio

n
be

co
m

es
 z

er
o,

 t
he

“d
iv

is
io

n
by

 z
er

o”
 e

rr
or

 o
fte

n
is

 n
ot

 h
an

dl
ed

 i
n

th
e

so
ftw

ar
e.

1.
Lo

op
s

of
te

n
go

 i
nt

o
in

fin
ite

 i
te

ra
tio

ns
.

2.
O

fte
n,

 t
he

 f
ile

 o
r

ta
bl

e
re

co
rd

 r
ea

di
ng

 i
n

a
lo

op
 m

ay
 n

ot
 r

ea
d

al
l

re
co

rd
s

un
til

 t
he

 e
nd

-o
f-

fil
e

co
nd

iti
on

 i
s

re
ac

he
d.

1.
It

is
 c

om
m

on
 t

o
fo

rg
et

 t
o

in
cl

ud
e

th
e

“e
ls

e”
 p

ar
t

of
 “

if”
 s

ta
te

m
en

ts
.

2.
It

is
 c

om
m

on
 to

 fo
rg

et
 th

e
“d

ef
au

lt”
 c

as
e

in
 “

sw
itc

h-
ca

se
”

st
at

em
en

ts
.

C
on

si
st

en
cy

 o
f

in
fo

rm
at

io
n

pr
es

en
te

d—
of

te
n

th
e

sa
m

e
in

fo
rm

at
io

n
is

re
tr

ie
ve

d
an

d
di

sp
la

ye
d

ei
th

er
on

 a
 s

cr
ee

n
or

 i
n

a
re

po
rt

;
in

 a
ll

in
st

an
ce

s,
 t

he
in

fo
rm

at
io

n
m

us
t

be
 t

he
 s

am
e

C
om

pu
ta

tio
na

l
is

su
es

Lo
op

s

C
on

tr
ol

 s
tr

uc
tu

re
s

D
es

ig
n

te
st

 c
as

es
 t

o
en

su
re

th
at

 t
he

 a
pp

lic
at

io
n

pr
es

en
ts

co
n

si
st

e
n

t
in

fo
rm

a
tio

n

ir
re

-
sp

ec
tiv

e
of

 t
he

 s
ou

rc
e

fr
om

w
hi

ch
 i

t
is

 o
bt

ai
ne

d.

D
es

ig
n

te
st

 c
as

es
 t

o
en

su
re

th
at

 r
es

ul
ts

 g
iv

en
 b

y
co

m
pu

ta
-

tio
ns

 a
re

 p
ro

pe
rly

 s
to

re
d.

D
es

ig
n

te
st

 c
as

es
 t

o
en

su
re

th
at

 l
oo

ps
 i

te
ra

te
 f

or
 a

ll
th

e
de

si
gn

ed
 i

te
ra

tio
ns

 a
nd

 t
ha

t
th

ey
 t

er
m

in
at

e.

D
es

ig
n

te
st

 c
as

es
 t

o
en

su
re

al
l p

at
hs

 o
f a

 c
on

tr
ol

 s
tr

uc
tu

re
.

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

263

APPENDIX D:
GUIDELINES FOR
GRAPHICAL USER INTERFACE
QUALITY CONFORMANCE

Conformance of quality for a graphical user interface (GUI) is very important
because of its ability to move the cursor directly to any location through use of
the mouse. In the earlier days of character user interface, the programmer could
set the order of movement and prevent the user from moving to a certain
location on a screen. The mouse interface and GUI freed the user from the
programmed restriction of movement to data items. GUI controls provide a
number of methods for programming, and the behavior of these methods is
uncertain, especially if they are left to their default behavior.

It is possible to open multiple windows in an application, and users can
easily resize or reposition a window if this option is not specifically restricted
by the programmer.

In each window and control, a large number of events are possible. Some
of these events are handled by the programmer, and the rest are handled by the
operating system or the browser. In these days of multiple browsers and multiple
versions of operating systems, how these events are handled is unpredictable,
given their random behavior.

Because of the freedom the mouse interface allows the user in terms of
movement to any control on a screen, it cannot be assumed that sequential
movement is the only manner of moving from one control to another. One of
the frequent causes of errors is the assumption that the event of “lost focus” (or

J. Ross Publishing; All Rights Reserved

264 Mastering Software Quality Assurance

“out of focus”) is activated before another control activates the event of “got
focus.” If code is written in the “lost focus” event, the event might never be
activated at all. GUI makes the sequence of events completely immaterial.

These specific capabilities of a GUI make it necessary to ensure the quality
of the GUI separately, in addition to normal review and testing. Table D.1 lists
the aspects that need to be inspected to ensure the quality of the GUI. Table D.2
lists test cases to ensure the quality of the GUI.

J. Ross Publishing; All Rights Reserved

Appendix D: Guidelines for GUI Quality Conformance 265

T
ab

le
 D

.1
.

S
u

g
g

es
te

d
 c

as
es

 f
o

r
in

sp
ec

ti
o

n
 o

f
th

e
G

U
I

A
sp

ec
t

D
es

cr
ip

ti
o

n
E

xp
ec

te
d

 r
es

u
lt

S
pe

lli
ng

 a
cc

ur
ac

y
C

he
ck

 a
ll

sp
el

lin
gs

 f
or

 a
cc

ur
ac

y
w

ith
 t

he
 s

et
 s

pe
lli

ng
.

U
se

 M
er

ria
m

-W
eb

st
er

’s
 d

ic
tio

na
ry

 a
s

th
e

se
tt

in
g

fo
r

A
m

er
ic

an
 s

pe
lli

ng
 a

nd
 t

he
 O

xf
or

d
E

ng
lis

h
D

ic
tio

na
ry

 a
s

th
e

se
tti

ng
 f

or
 B

rit
is

h
sp

el
lin

g.

S
pe

lli
ng

 a
cc

ur
ac

y
C

he
ck

 c
ap

ita
liz

at
io

n
of

 w
or

ds
 a

ga
in

st
 c

ap
ita

liz
at

io
n

gu
id

e-
lin

es
.

C
he

ck
 f

or
 c

on
si

st
en

cy
 i

n
ca

pi
ta

liz
at

io
n

of
 w

or
ds

.

La
be

l
po

si
tio

ni
ng

C
he

ck
 a

ll
la

be
ls

 f
or

 t
he

ir
pr

ox
im

ity
 t

o
th

e
co

nt
ro

ls
 f

or
w

hi
ch

 t
he

y
pr

ov
id

e
ex

pl
an

at
io

n.

La
be

l
po

si
tio

ni
ng

C
he

ck
 t

ha
t

la
be

ls
 a

re
 p

os
iti

on
ed

 e
ith

er
 o

n
th

e
le

ft
or

 a
t

th
e

to
p

of
 t

he
 c

on
tr

ol
.

F
on

t
co

lo
r

F
or

 r
ea

da
bi

lit
y,

 c
he

ck
 t

ha
t

th
e

co
nt

ra
st

 o
f

th
e

fo
nt

 c
ol

or
is

 a
pp

ro
pr

ia
te

 f
or

 t
he

 b
ac

kg
ro

un
d.

 I
ns

pe
ct

 a
ll

sc
re

en
s

to
en

su
re

 t
ha

t
al

l
ch

ar
ac

te
rs

 a
re

 c
le

ar
ly

 l
eg

ib
le

.

A
ll

sp
el

lin
gs

 a
re

 c
or

re
ct

.

C
ap

ita
liz

at
io

n
ru

le
s

fo
llo

w
 a

 s
et

 g
ui

de
lin

e,
 b

e
it

or
ga

ni
za

tio
na

l
or

 f
ro

m
 a

no
th

er
 s

ou
rc

e.

A
ll

la
be

ls
 a

re
 c

lo
se

 t
o

th
e

co
nt

ro
ls

,
w

ith
 a

un
ifo

rm
 g

ap
 b

et
w

ee
n

th
e

la
st

 c
ha

ra
ct

er
 a

nd
th

e
ed

ge
 o

f
th

e
co

nt
ro

l.

1.
A

ll
la

be
ls

 a
re

 p
os

iti
on

ed
 e

ith
er

 t
o

th
e

le
ft

or
 a

t
th

e
to

p
of

 t
he

 c
on

tr
ol

.
2.

If
th

e
la

be
l i

s
ab

ov
e

th
e

co
nt

ro
l,

it
is

 e
ith

er
al

ig
ne

d
w

ith
 t

he
 l

ef
t

co
rn

er
 o

r
ce

nt
er

ed
.

3.
If

a
la

be
l i

s
al

ig
ne

d
to

 th
e

rig
ht

 o
f t

he
 c

on
tr

ol
or

 i
s

be
lo

w
 t

he
 c

on
tr

ol
,

th
er

e
m

us
t

be
 a

va
lid

 r
ea

so
n.

A
ll

ch
ar

ac
te

rs
 o

n
al

l
sc

re
en

s
ar

e
le

gi
bl

e.

J. Ross Publishing; All Rights Reserved

266 Mastering Software Quality Assurance

F
on

t
co

lo
r

R
ed

 c
ol

or
 t

ex
t

in
di

ca
te

s
da

ng
er

 a
nd

 t
he

re
fo

re
 m

us
t

be
re

se
rv

ed
 f

or
 w

ar
ni

ng
s

an
d

er
ro

r
m

es
sa

ge
s.

 I
t

sh
ou

ld
 n

ot
be

 u
se

d
fo

r
ot

he
r

pu
rp

os
es

.
C

he
ck

 a
nd

 e
ns

ur
e

th
at

 r
ed

co
lo

r
is

 u
se

d
ap

pr
op

ria
te

ly
 o

n
th

e
sc

re
en

.

F
on

t
co

lo
r

B
lu

e
co

lo
r

te
xt

 i
s

us
ua

lly
 d

iff
ic

ul
t

to
 r

ea
d

an
d

sh
ou

ld
 b

e
av

oi
de

d.

F
on

t
co

lo
r

A
 d

ar
k-

co
lo

re
d

fo
nt

 is
 e

as
ie

r
to

 r
ea

d.
 A

 li
gh

t-
co

lo
re

d
fo

nt
on

 a
 d

ar
k-

co
lo

re
d

ba
ck

gr
ou

nd
 i

s
di

ffi
cu

lt
to

 r
ea

d.

F
on

t
ty

pe
T

he
 f

on
t

se
le

ct
ed

 m
us

t
be

 o
f

th
e

ty
pe

 t
ha

t
is

 r
ig

ht
 f

or
 t

he
sc

re
en

.
F

on
ts

 s
el

ec
te

d
al

so
 m

us
t

be
 u

ni
fo

rm
 a

cr
os

s
th

e
ap

pl
ic

at
io

n.

F
on

t
si

ze
T

he
 s

iz
e

of
 f

on
ts

 m
us

t
be

 c
on

si
st

en
t

fo
r

no
rm

al
 t

ex
t,

tit
le

s,
 h

ea
de

rs
,

w
ar

ni
ng

s,
 e

tc
.

1.
R

ed
 c

ol
or

 f
on

t
is

 n
ot

 u
se

d
fo

r
tit

le
s,

 h
ea

d-
er

s,
 o

r
no

rm
al

 t
ex

t.
2.

W
ar

ni
ng

s
an

d
er

ro
r

m
es

sa
ge

s
ar

e
in

 r
ed

co
lo

r
fo

nt
.

If
bl

ue
 c

ol
or

 te
xt

 is
 p

re
se

nt
, i

t i
s

cl
ea

rly
 le

gi
bl

e.

T
he

 f
on

t
co

lo
r

is
 a

 d
ar

ke
r

sh
ad

e
th

an
 t

he
ba

ck
gr

ou
nd

 c
ol

or
.

A
ll

ch
ar

ac
te

rs
 o

n
a

sc
re

en
 a

re
 i

n
th

e
sa

m
e

fo
nt

.
If

no
t,

th
er

e
is

 a
 v

al
id

 r
ea

so
n,

 a
nd

 t
he

di
ffe

re
nt

 fo
nt

 is
 a

pp
ro

pr
ia

te
 fo

r
th

e
sc

re
en

 a
nd

fo
r

its
 p

ur
po

se
.

1.
A

ll
tit

le
s

ar
e

in
 t

he
 s

am
e

fo
nt

 s
iz

e.
2.

A
ll

he
ad

er
s

ar
e

in
 t

he
 s

am
e

fo
nt

 s
iz

e.
3.

A
ll

no
rm

al
 t

ex
t

is
 i

n
th

e
sa

m
e

fo
nt

 s
iz

e.
4.

A
ll

w
ar

ni
ng

s
ar

e
in

 t
he

 s
am

e
fo

nt
 s

iz
e.

5.
T

he
 s

iz
es

 o
f t

itl
es

, h
ea

de
rs

, w
ar

ni
ng

s,
 a

nd
no

rm
al

 te
xt

 c
an

 d
iff

er
 fr

om
 o

ne
 a

no
th

er
, t

o
m

ak
e

ea
ch

 c
le

ar
ly

 d
is

tin
ct

 fr
om

 th
e

ot
he

rs
.

T
ab

le
 D

.1
.

S
u

g
g

es
te

d
 c

as
es

 f
o

r
in

sp
ec

ti
o

n
 o

f
th

e
G

U
I

(c
o

n
ti

n
u

ed
)

A
sp

ec
t

D
es

cr
ip

ti
o

n
E

xp
ec

te
d

 r
es

u
lt

J. Ross Publishing; All Rights Reserved

Appendix D: Guidelines for GUI Quality Conformance 267

C
ol

or
 s

ch
em

e
T

he
 c

ol
or

 s
ch

em
e

sh
ou

ld
 b

e
co

ns
is

te
nt

 t
hr

ou
gh

ou
t

th
e

ap
pl

ic
at

io
n

on
 a

ll
sc

re
en

s.
 C

on
si

st
en

cy
 m

ea
ns

 t
ha

t
th

e
ba

ck
gr

ou
nd

,
m

en
u

ite
m

s,
 f

on
ts

,
pi

ct
ur

es
,

an
d

m
es

sa
ge

s
al

l
ha

ve
 a

 c
on

si
st

en
t

co
lo

r
sc

he
m

e.

C
ol

or
 s

ch
em

e
C

o
lo

r
sc

h
e

m
e

s
m

u
st

d

iff
e

re
n

tia
te

b

e
tw

e
e

n

d
iff

e
re

n
t

cl
as

se
s

of
 i

nf
or

m
at

io
n

on
 a

 s
cr

ee
n.

 M
en

us
 s

ho
ul

d
ha

ve
a

di
ffe

re
nt

 c
ol

or
 s

ch
em

e
th

an
 n

or
m

al
 t

ex
t,

tit
le

s
an

d
he

ad
er

s
sh

ou
ld

 h
av

e
a

di
ffe

re
nt

 c
ol

or
 s

ch
em

e
th

an
 n

or
m

al
te

xt
,

et
c.

 T
hi

s
as

si
st

s
us

er
s

in
 d

iff
er

en
tia

tin
g

be
tw

ee
n

le
ve

ls
 o

f
in

fo
rm

at
io

n.

C
ol

or
 s

ch
em

e
In

fo
rm

at
io

n
su

ch
 a

s
sp

ec
ia

l o
ffe

rs
,

di
sc

ou
nt

s,
 a

nd
 w

ar
n-

in
g

no
tic

es
 (

fo
r

ex
am

pl
e,

 e
xp

ira
tio

n
of

 m
em

be
rs

hi
p)

 m
us

t
ha

ve
 a

 c
ol

or
 s

ch
em

e
th

at
 a

ttr
ac

ts
 t

he
 a

tte
nt

io
n

of
 u

se
rs

.

C
ol

or
 s

ch
em

e
D

iff
er

en
t

co
lo

rs
 c

on
no

te
 d

iff
er

en
t

m
ea

ni
ng

s
to

 p
eo

pl
e.

T
he

se
 c

on
no

ta
tio

ns
 c

an
 d

iff
er

 f
or

 p
eo

pl
e

fr
om

 d
iff

er
en

t
co

un
tr

ie
s,

 b
ut

 c
om

m
on

 c
ol

or
 c

on
no

ta
tio

ns
 i

nc
lu

de
 t

he
fo

llo
w

in
g:

1.
R

ed
—

da
ng

er
,

st
op

,
ho

t,
fin

an
ci

al
 l

os
s

2.
G

re
en

—
ok

ay
,

go
3.

Y
el

lo
w

—
w

ar
ni

ng
,

ap
pr

oa
ch

in
g

st
op

 s
ig

n
or

 d
an

ge
r

4.
B

lu
e—

co
ol

5.
B

la
ck

—
fin

an
ci

al
 p

ro
fit

6.
G

ra
y—

du
ll

7.
O

ra
ng

e—
en

er
gy

8.
W

hi
te

—
pu

rit
y

A
ll

sc
re

en
s

us
e

a
co

ns
is

te
nt

 c
ol

or
 s

ch
em

e

T
he

 c
ol

or
 s

ch
em

e
di

ffe
rs

 f
or

 d
iff

er
en

t
cl

as
se

s
of

 i
nf

or
m

at
io

n
on

 a
 s

cr
ee

n.

A
ll

sp
ec

ia
l i

nf
or

m
at

io
n

on
 a

 s
cr

ee
n

ha
s

a
co

lo
r

sc
he

m
e

th
at

 d
iff

er
s

fr
om

 th
e

re
st

 o
f t

he
 s

cr
ee

n,
an

d
th

e
co

lo
r

sc
he

m
e

is
 a

bl
e

to
 a

ttr
ac

t i
m

m
e-

di
at

e
at

te
nt

io
n.

C
ol

or
 s

ch
em

es
 a

re
 c

on
si

st
en

t w
ith

 th
ei

r i
m

pl
ic

it
m

ea
ni

ng
s.

 P
re

fe
ra

bl
y,

 th
er

e
is

 n
o

w
ro

ng
 u

sa
ge

of
 c

ol
or

,
es

pe
ci

al
ly

 f
or

 s
pe

ci
al

 i
nf

or
m

at
io

n.

J. Ross Publishing; All Rights Reserved

268 Mastering Software Quality Assurance

G
ra

ph
ic

s
G

ra
ph

ic
s

sh
ou

ld
 s

ho
w

 a
 c

le
ar

 p
ur

po
se

. C
he

ck
 th

at
 g

ra
ph

-
ic

s
co

nv
ey

 t
he

ir
in

te
nd

ed
 m

ea
ni

ng
.

G
ra

ph
ic

s
W

eb
 s

ite
 g

ra
ph

ic
s

sh
ou

ld
 n

ot
 b

e
of

fe
ns

iv
e

to
 d

iff
er

en
t

cu
ltu

re
s.

 F
or

 e
xa

m
pl

e,
 d

is
pl

ay
in

g
a

m
id

dl
e

fin
ge

r
or

 fo
re

-
fin

ge
r

is
 o

ffe
ns

iv
e

in
 m

an
y

cu
ltu

re
s.

 E
ns

ur
e

th
at

 g
ra

ph
ic

s
do

 n
ot

 o
ffe

nd
 r

el
ig

io
us

 o
r

ot
he

r
se

nt
im

en
ts

.

G
ra

ph
ic

s
S

om
et

im
es

 g
ra

ph
ic

s
ar

e
no

t
au

to
m

at
ic

al
ly

 d
is

pl
ay

ed
.

In
su

ch
 c

as
es

,
al

te
rn

at
e

te
xt

 i
s

di
sp

la
ye

d.
 T

he
re

fo
re

,
en

-
su

re
 t

ha
t

ev
er

y
gr

ap
hi

c
ha

s
al

te
rn

at
e

te
xt

.

Ic
on

s
Ic

on
s

sh
ou

ld
 r

ef
le

ct
 t

he
ir

fu
nc

tio
na

lit
y.

 A
ls

o,
 e

ve
ry

 i
co

n
sh

ou
ld

 h
av

e
a

to
ol

 t
ip

.

Ic
on

s
E

ac
h

ic
on

 s
ho

ul
d

ha
ve

 a
 k

ey
bo

ar
d

sh
or

tc
ut

 s
o

th
at

 i
ts

fu
nc

tio
n

ca
n

be
 a

cc
es

se
d

us
in

g
th

e
ke

yb
oa

rd
.

G
ra

ph
ic

s
m

at
ch

 t
he

 p
ur

po
se

 f
or

 w
hi

ch
 t

he
y

ar
e

in
te

nd
ed

.

O
nl

y
st

an
da

rd
 o

r
cu

ltu
re

-n
eu

tr
al

 g
ra

ph
ic

s
ar

e
us

ed
.

E
ve

ry
 g

ra
ph

ic
 h

as
 a

lte
rn

at
e

te
xt

.

A
ll

ic
on

s
re

fle
ct

 t
he

ir
fu

nc
tio

na
lit

y
an

d
di

sp
la

y
to

ol
 t

ip
s

th
at

 e
xp

la
in

 t
he

ir
fu

nc
tio

ns
.

E
ac

h
cl

ic
ka

bl
e

ic
on

 c
an

 b
e

ac
ce

ss
ed

 b
y

an
al

te
rn

at
e

m
ec

ha
ni

sm
 u

si
ng

 t
he

 k
ey

bo
ar

d.

T
ab

le
 D

.1
.

S
u

g
g

es
te

d
 c

as
es

 f
o

r
in

sp
ec

ti
o

n
 o

f
th

e
G

U
I

(c
o

n
ti

n
u

ed
)

A
sp

ec
t

D
es

cr
ip

ti
o

n
E

xp
ec

te
d

 r
es

u
lt

J. Ross Publishing; All Rights Reserved

Appendix D: Guidelines for GUI Quality Conformance 269

T
ab

le
 D

.2
.

S
u

g
g

es
te

d
 t

es
t

ca
se

s
fo

r
va

lid
at

io
n

 o
f

G
U

I

A
sp

ec
t

D
es

cr
ip

ti
o

n
E

xp
ec

te
d

 r
es

u
lt

M
ul

tip
le

 i
ns

ta
nc

es
If

th
e

pr
od

uc
t

al
lo

w
s

ex
ec

ut
io

n
of

 m
ul

tip
le

 i
ns

ta
nc

es
,

th
en

 s
ta

rt
 t

w
o

or
 m

or
e

in
st

an
ce

s.

M
ul

tip
le

 i
ns

ta
nc

es
If

th
e

pr
od

uc
t

sh
ou

ld
 n

ot
 a

llo
w

 e
xe

cu
tio

n
of

 m
ul

tip
le

in
st

an
ce

s,
 t

he
n

st
ar

t
a

se
co

nd
 i

ns
ta

nc
e.

W
in

do
w

 r
es

iz
in

g
If

w
in

do
w

 re
si

zi
ng

 is
 a

llo
w

ed
 in

 th
e

pr
od

uc
t,

th
en

 re
si

ze
,

m
in

im
iz

e,
 a

nd
 m

ax
im

iz
e

th
e

w
in

do
w

s.

E
na

bl
e

an
d

di
sa

bl
e

B
ut

to
ns

 c
an

 b
e

en
ab

le
d

an
d

di
sa

bl
ed

,
de

pe
nd

in
g

on
th

e
ne

ed
 o

f
th

e
ap

pl
ic

at
io

n.
 T

he
 D

el
et

e
bu

tto
n

in
pa

rt
ic

ul
ar

 m
ig

ht
 n

ee
d

to
 b

e
di

sa
bl

ed
 w

he
n

no
th

in
g

is
se

le
ct

ed
 f

or
 d

el
et

io
n

or
 i

n
si

m
ila

r
si

tu
at

io
ns

.

E
na

bl
e

an
d

di
sa

bl
e

M
en

u
ite

m
s

sh
ou

ld
 b

e
en

ab
le

d
an

d
di

sa
bl

ed
 b

as
ed

on
 t

he
 s

ec
ur

ity
 s

et
tin

gs
 o

f
th

e
ap

pl
ic

at
io

n.
 R

un
 t

he
ap

pl
ic

at
io

n
w

ith
 d

iff
er

en
t

se
cu

rit
y

au
th

or
iz

at
io

ns
.

M
od

al
 d

ia
lo

gs
W

he
n

a
m

od
al

 d
ia

lo
g

is
 d

is
pl

ay
ed

, t
he

 p
ar

en
t w

in
do

w
or

 f
or

m
 s

ho
ul

d
no

t
be

 a
cc

es
si

bl
e.

 D
is

pl
ay

 a
 m

od
al

di
al

og
 a

nd
 s

ee
 i

f
th

e
pa

re
nt

 w
in

do
w

 i
s

ac
ce

ss
ib

le
.

M
od

el
es

s
di

al
og

s
M

od
el

es
s

di
al

og
s

sh
ou

ld
 b

e
tie

d
to

 t
he

 p
ar

en
t

w
in

-
do

w
.

D
is

pl
ay

 a
 m

od
el

es
s

di
al

og
,

an
d

th
en

 t
ry

 t
o

m
in

im
iz

e
an

d
m

ax
im

iz
e

th
e

pa
re

nt
 w

in
do

w
 o

r
fo

rm
.

D
oe

s
no

t
fa

il.

S
ec

on
d

in
st

an
ce

 is
 n

ot
 a

llo
w

ed
. T

he
 m

es
sa

ge
th

at
 a

no
th

er
 i

ns
ta

nc
e

is
 a

lre
ad

y
ru

nn
in

g
is

di
sp

la
ye

d.
 T

he
 f

irs
t

in
st

an
ce

 c
on

tin
ue

s
to

 r
un

.

T
he

 w
in

do
w

s
al

lo
w

 r
es

iz
in

g,
 m

in
im

iz
in

g,
 a

nd
m

ax
im

iz
in

g.

B
ut

to
ns

 c
an

 b
e

en
ab

le
d

an
d

di
sa

bl
ed

 a
s

ne
c-

es
sa

ry
.

M
en

u
ite

m
s

no
t

ap
pr

op
ria

te
 t

o
th

e
se

cu
rit

y
au

th
or

iz
at

io
n

ar
e

di
sa

bl
ed

,
an

d
m

en
u

ite
m

s
ap

pr
op

ria
te

 t
o

th
e

se
cu

rit
y

au
th

or
iz

at
io

n
ar

e
en

ab
le

d.

T
he

 p
ar

en
t

w
in

do
w

 i
s

no
t

ac
ce

ss
ib

le
.

T
he

 m
od

el
es

s
di

al
og

 m
in

im
iz

es
 a

nd
 m

ax
im

iz
es

al
on

g
w

ith
 t

he
 p

ar
en

t
w

in
do

w
 o

r
fo

rm
.

J. Ross Publishing; All Rights Reserved

270 Mastering Software Quality Assurance

C
ur

so
r

fo
cu

s
W

he
n

th
e

sc
re

en
 f

re
sh

ly
 l

oa
ds

,
th

e
cu

rs
or

 n
ee

ds
 t

o
be

 f
oc

us
ed

 o
n

th
e

de
fa

ul
t

fie
ld

.
S

om
et

im
es

 t
he

re
 i

s
no

 d
ef

au
lt

fie
ld

.

C
ur

so
r

fo
cu

s
W

he
n

fo
cu

s
is

 s
hi

fte
d

to
 a

 f
ie

ld
 c

on
tr

ol
 t

ha
t

co
nt

ai
ns

da
ta

,
al

l
da

ta
 m

us
t

be
 s

el
ec

te
d.

 T
hi

s
pr

ev
en

ts
 a

dd
i-

tio
ns

 t
o

th
e

da
ta

 a
lre

ad
y

pr
es

en
t

in
 t

he
 f

ie
ld

 c
on

tr
ol

.
E

nt
er

 d
at

a
in

 a
 fi

el
d

co
nt

ro
l a

nd
 s

hi
ft

fo
cu

s
to

 th
at

 fi
el

d
co

nt
ro

l.

M
es

sa
ge

s
A

fte
r

an
 e

rr
or

 m
es

sa
ge

 i
s

di
sp

la
ye

d
an

d
cl

os
ed

,
th

e
fo

cu
s

sh
ou

ld
 s

hi
ft

to
 t

he
 e

rr
or

 f
ie

ld
.

S
om

et
im

es
 t

he
cu

rs
or

 d
oe

s
no

t
fo

cu
s

on
 a

ny
 f

ie
ld

.

M
es

sa
ge

s
A

fte
r

a
m

es
sa

ge
 i

s
di

sp
la

ye
d

an
d

cl
os

ed
,

th
e

cu
rs

or
sh

ou
ld

 r
et

ur
n

th
e

fo
cu

s
to

 th
e

fie
ld

 w
he

re
 it

 w
as

 b
ef

or
e

th
e

m
es

sa
ge

 w
as

 d
is

pl
ay

ed
.

S
om

et
im

es
 t

he
 f

oc
us

 is
si

m
pl

y
no

t
se

t.

S
cr

ee
n

re
fr

es
h

It
is

 n
ec

es
sa

ry
 t

o
re

lo
ad

 t
he

 s
cr

ee
n

af
te

r
op

er
at

io
ns

lik
e

“s
av

e”
 a

nd
 “

de
le

te
.”

 W
hi

le
 th

e
sc

re
en

 is
 r

el
oa

di
ng

,
it

is
 e

ss
en

tia
l

to
 b

la
nk

 o
ut

 f
ie

ld
s

th
at

 m
ig

ht
 b

e
le

ft
bl

an
k

du
rin

g
us

ag
e.

 I
t

is
 a

ls
o

ne
ce

ss
ar

y
to

 l
oa

d
va

l-
ue

s
in

 t
he

 s
el

ec
ta

bl
e

fie
ld

s,
 s

uc
h

as
 t

he
 c

om
bo

 b
ox

,
lis

t
bo

x,
 l

is
t

vi
ew

,
et

c.
 P

er
fo

rm
 a

 “
sa

ve
”

or
 “

de
le

te
”

op
er

at
io

n,
 a

nd
 o

bs
er

ve
 t

he
 s

cr
ee

n
as

 i
t

re
fr

es
he

s.

T
he

re
 i

s
a

de
fa

ul
t

fie
ld

 f
or

 e
ve

ry
 s

cr
ee

n
an

d
th

e
cu

rs
or

 s
et

s
fo

cu
s

to
 t

ha
t

fie
ld

 w
he

n
fr

es
hl

y
lo

ad
ed

.

A
ll

da
ta

 i
s

se
le

ct
ed

.

T
he

 c
ur

so
r

fo
cu

se
s

on
 t

he
 e

rr
or

 f
ie

ld
.

T
he

 c
ur

so
r

se
ts

 t
he

 f
oc

us
 t

o
th

e
fie

ld
 w

he
re

 it
w

as
 p

rio
r

to
 t

he
 d

is
pl

ay
 o

f
th

e
m

es
sa

ge
.

T
he

 s
cr

ee
n

re
fr

es
he

s
co

rr
ec

tly
.

T
ab

le
 D

.2
.

S
u

g
g

es
te

d
 t

es
t

ca
se

s
fo

r
va

lid
at

io
n

 o
f

G
U

I
(c

o
n

ti
n

u
ed

)

A
sp

ec
t

D
es

cr
ip

ti
o

n
E

xp
ec

te
d

 r
es

u
lt

J. Ross Publishing; All Rights Reserved

Appendix D: Guidelines for GUI Quality Conformance 271

C
lic

k
ev

en
ts

A
re

as
 w

he
re

 a
 c

lic
k

is
 n

ot
 e

xp
ec

te
d

sh
ou

ld
 n

ot
 a

c-
tiv

at
e

an
 a

ct
io

n.
 F

or
 e

xa
m

pl
e,

 f
ra

m
es

,
la

be
ls

,
an

d
em

pt
y

lis
ts

 s
ho

ul
d

no
t

ac
tiv

at
e

an
y

ac
tio

n
w

he
n

cl
ic

ke
d.

 C
lic

k
an

d
do

ub
le

-c
lic

k
on

 s
uc

h
ar

ea
s

an
d

ob
se

rv
e

th
e

re
sp

on
se

.

N
av

ig
at

io
n

N
av

ig
at

io
n

us
in

g
th

e
T

ab
 k

ey
 m

us
t

be
 f

ro
m

 l
ef

t
to

rig
ht

 a
nd

 to
p

to
 b

ot
to

m
. T

ab
 fr

om
 o

ne
 c

on
tr

ol
 to

 a
no

th
er

co
nt

ro
l.

N
av

ig
at

io
n

P
er

so
na

l d
is

ab
ili

tie
s—

es
pe

ci
al

ly
 v

is
ua

l—
m

ig
ht

 n
ec

es
-

si
ta

te
 k

ey
bo

ar
d

us
e

in
 a

dd
iti

on
 t

o
m

ou
se

 u
se

.

N
av

ig
at

io
n

H
av

in
g

to
 s

cr
ol

l t
he

 s
cr

ee
n

in
 b

ot
h

th
e

ho
riz

on
ta

l a
nd

ve
rt

ic
al

 d
ire

ct
io

ns
 i

s
la

bo
rio

us
.

D
ef

au
lts

T
he

 d
ef

au
lt

bu
tto

n
sh

ou
ld

 b
e

cl
ic

ke
d

w
he

n
lo

ad
ed

 i
n

a
pa

ne
l

of
 r

ad
io

 b
ut

to
ns

.

D
ef

au
lts

T
he

 c
he

ck
 b

ox
 s

ho
ul

d
be

 c
he

ck
ed

 o
r

no
t

ch
ec

ke
d,

de
pe

nd
in

g
on

 t
he

 d
ef

au
lt

va
lu

e.

D
ef

au
lts

O
ne

 c
om

m
an

d
bu

tto
n

sh
ou

ld
 b

e
th

e
de

fa
ul

t
fo

r
th

e
sc

re
en

.

T
he

re
 i

s
no

 r
es

po
ns

e.

T
he

 f
oc

us
 s

hi
fts

 f
ro

m
 t

he
 l

ef
t

co
nt

ro
l

to
 t

he
rig

ht
 a

nd
 th

en
 to

 th
e

ne
xt

 ro
w

 o
f c

on
tr

ol
s.

 W
he

n
ta

bb
ed

 fr
om

 th
e

la
st

 c
on

tr
ol

 o
n

th
e

sc
re

en
, t

he
fo

cu
s

re
tu

rn
s

to
 t

he
 f

irs
t

co
nt

ro
l.

A
ll

fu
nc

tio
na

lit
ie

s
ar

e
ac

ce
ss

ib
le

 t
hr

ou
gh

 k
ey

-
bo

ar
d

us
ag

e.

T
he

re
 i

s
no

 n
ee

d
to

 s
cr

ol
l

th
e

sc
re

en
 i

n
bo

th
di

re
ct

io
ns

,
un

le
ss

 t
he

re
 i

s
a

va
lid

 r
ea

so
n.

O
ne

 r
ad

io
 b

ut
to

n
is

 c
lic

ke
d

w
he

n
lo

ad
ed

.

T
he

 c
he

ck
 b

ox
 i

s
ch

ec
ke

d
or

 n
ot

 c
he

ck
ed

,
de

pe
nd

in
g

on
 t

he
 d

ef
au

lt
va

lu
e

w
he

n
fr

es
hl

y
lo

ad
ed

.

1.
O

ne
 c

om
m

an
d

bu
tto

n
is

 a
ct

iv
at

ed
 b

y
de

-
fa

ul
t

w
he

n
th

e
E

nt
er

 k
ey

 i
s

hi
t.

2.
T

he
 d

ef
au

lt
co

m
m

an
d

bu
tto

n
is

 n
or

m
al

ly
th

e
po

si
tiv

e
bu

tto
n—

th
at

 i
s,

 t
he

 “
sa

ve
”

or
“O

K
”

bu
tto

n.
 N

eg
at

iv
e

bu
tto

ns
 s

uc
h

as
 “

de
-

le
te

”
or

 “
ca

nc
el

”
ar

e
no

t
de

fa
ul

t
bu

tto
ns

.
3.

T
he

re
 i

s
a

va
lid

 r
ea

so
n

if
ne

ga
tiv

e
bu

tto
ns

ar
e

de
fa

ul
t

bu
tto

ns
.

J. Ross Publishing; All Rights Reserved

272 Mastering Software Quality Assurance

A
ct

io
n

re
sp

on
se

s
T

he
 “

sa
ve

”
ac

tio
n

sh
ou

ld
 i

nd
ic

at
e

th
at

 a
 r

ec
or

d
is

sa
ve

d.

C
on

si
st

en
cy

T
he

re
 s

ho
ul

d
be

 c
on

si
st

en
cy

 b
et

w
ee

n
to

ol
ba

r
bu

tto
ns

an
d

m
en

u
lis

t i
te

m
s.

 In
iti

at
e

ac
tio

n
fo

r
ea

ch
 o

pt
io

n
fir

st
fr

om
 th

e
to

ol
ba

r
an

d
th

en
 fr

om
 th

e
m

en
u

(t
he

 r
ev

er
se

or
de

r
is

 a
ls

o
ac

ce
pt

ab
le

).

T
oo

lb
ar

E
ac

h
to

ol
ba

r b
ut

to
n

sh
ou

ld
 h

av
e

a
co

rr
es

po
nd

in
g

m
en

u
ite

m
.

T
oo

lb
ar

E
ac

h
to

ol
ba

r
bu

tto
n

sh
ou

ld
 h

av
e

a
to

ol
 t

ip
 t

ha
t

de
-

sc
rib

es
 t

he
 a

ct
io

n
th

at
 w

ill
 b

e
ac

tiv
at

ed
 b

y
th

e
bu

tto
n.

E
ns

ur
e

th
at

 e
ac

h
to

ol
ba

r
bu

tto
n

ha
s

to
ol

 t
ip

 t
ex

t
by

ho
ve

rin
g

th
e

m
ou

se
 o

ve
r

ea
ch

 b
ut

to
n.

T
ab

 o
rd

er
A

ll
in

pu
t

co
nt

ro
ls

 s
ho

ul
d

be
 a

cc
es

si
bl

e
us

in
g

th
e

T
ab

ke
y.

 T
he

ir
or

de
r

sh
ou

ld
 b

e
fr

om
 l

ef
t

to
 r

ig
ht

 a
nd

 t
op

to
 b

ot
to

m
.

C
on

fir
m

at
io

n
fo

r
th

e
“s

av
e”

 a
ct

io
n

is
 s

ho
w

n
by

a
pr

og
re

ss
 b

ar
,

a
ch

an
ge

 i
n

cu
rs

or
 s

ha
pe

,
a

co
nf

irm
at

io
n

m
es

sa
ge

,
or

 s
om

e
ot

he
r

m
ea

ns
.

T
he

 “
sa

ve
”

ac
tio

n
is

 n
ot

 l
ef

t
w

ith
ou

t
an

y
co

n-
fir

m
at

or
y

ac
tio

n.

T
he

 s
am

e
ac

tio
n

is
 a

ct
iv

at
ed

 w
he

n
in

iti
at

ed
fr

om
 t

he
 t

oo
lb

ar
 b

ut
to

n
or

 t
he

 m
en

u
lis

t
ite

m
.

E
ac

h
to

ol
ba

r b
ut

to
n

ha
s

a
co

rr
es

po
nd

in
g

m
en

u
ite

m
.

E
ac

h
bu

tto
n

on
 t

he
 t

oo
lb

ar
 h

as
 t

oo
l

tip
 t

ex
t.

T
he

 c
ur

so
r

m
ov

es
 f

ro
m

 i
np

ut
 c

on
tr

ol
 t

o
in

pu
t

co
nt

ro
l w

ith
 t

he
 T

ab
 k

ey
,

fr
om

 le
ft

to
 r

ig
ht

 a
nd

fr
om

 t
op

 t
o

bo
tto

m
.

T
ab

le
 D

.2
.

S
u

g
g

es
te

d
 t

es
t

ca
se

s
fo

r
va

lid
at

io
n

 o
f

G
U

I
(c

o
n

ti
n

u
ed

)

A
sp

ec
t

D
es

cr
ip

ti
o

n
E

xp
ec

te
d

 r
es

u
lt

J. Ross Publishing; All Rights Reserved

273

APPENDIX E:
GUIDELINES FOR
STRESS TESTING

Applications most often fail not because there is a deficiency in the program
logic but due to stress caused by the environment (system configuration) in
which an application is functioning. To ensure that an application runs properly
or to record the known defects, stress testing needs to be conducted. Stress
testing involves making the expected resources unavailable to the application.

Stress testing is a form of software testing that is conducted to determine the
reliability of a software product working under stress. The main objective of
stress testing is to subject a software product to stress by denying it the expected
resources (network connectivity, data files or tables, shared library, etc.). The
idea is to stress a system to the breaking point in order to uncover defects that
could be present in the software product. Stress testing can be carried out after
positive testing is completed and during the system testing stage.

STRESS TESTING GUIDELINES

The tables in this section specify the suggested tests to be carried out for each
type of stress to which a software product can be subjected:

Table E.1 Suggested test cases to cause printer-related stress
Table E.2 Suggested test cases to cause network-related stress
Table E.3 Suggested test cases to assess the impact of improper handling

of the keyboard

J. Ross Publishing; All Rights Reserved

274 Mastering Software Quality Assurance

Table E.4 Suggested test cases to cause power-outage-related stress
Table E.5 Suggested test cases to cause stress related to database un-

availability or data corruption
Table E.6 Suggested test cases to assess the impact of changes in the

system configuration
Table E.7 Suggested test case to cause stress related to reduced availabil-

ity of RAM
Table E.8 Suggested test case to assess the impact of reduced availability

of disk space
Table E.9 Suggested test case to assess the impact of inadequate data-

base size
Table E.10 Suggested test cases to assess the impact of antivirus software

Table E.1. Printer stress testing

Test case Expected result

Initiate printing from the applica-
tion and then turn the printer off.

Initiate printing from the applica-
tion and then switch the printer to
offline status.

Initiate printing from the applica-
tion to a printer without paper.

Initiate printing from the applica-
tion without connecting a printer
to the system.

Appropriate error message should be displayed
with a facility to retry and return to another
functionality.

Appropriate error message should be displayed
with a facility to retry and return to another
functionality.

Appropriate error message should be displayed
with a facility to retry and return to another
functionality.

Appropriate error message should be displayed
with a facility to retry and return to another
functionality.

J. Ross Publishing; All Rights Reserved

Appendix E: Guidelines for Stress Testing 275

Table E.2. Network stress testing

Test case Expected result

Unplug the network cable from the
database server while the application
is running.

Remove the network connection from
a local workstation while the applica-
tion is running.

Remove the network connection be-
tween the application server and the
client while the application is running.

Remove the network connection be-
tween the application server and the
database server while the application
is running.

Shut down one application server while
clients are running the application.

Appropriate error message should be dis-
played with a facility to retry and return to
another functionality (no data should be lost).

Appropriate error message should be dis-
played with a facility to retry and return to
another functionality.

Appropriate error message should be dis-
played with a facility to retry and return to
another functionality.

Appropriate error message should be dis-
played with a facility to retry and return to
another functionality (no data should be lost).

Appropriate error message should be dis-
played with a facility to retry and return to
another functionality.

Table E.3. Keyboard stress testing

Test case Expected result

Press all function keys one by one.

Press any key in combination with various
function keys.

Press any key in combination with the Alt key.

Press any key in combination with the Ctrl key,
especially with the characters C, Z, and D.

Press any key in combination with the Shift,
Ctrl, and Alt keys.

Press multiple keys simultaneously.

Press both palms on the keyboard.

Application should not abort, and
where designed, appropriate ac-
tion should be initiated.

Application should not abort.

Application should not abort.

Application should not abort.

Application should not abort.

Application should not abort.

Application should not abort.

J. Ross Publishing; All Rights Reserved

276 Mastering Software Quality Assurance

Table E.4. Power outage stress testing

Test case Expected result

Switch off the power to the system (server)
when the application is running.

Switch off the power at the source for the
server while the application is running.

Switch off the power at the source for a client
machine while the application is running.

Data should not be corrupted.

Data should not be corrupted.

Data should not be corrupted and
the session should end for the client.

Table E.5. Data-related stress testing

Test case Expected result

Corrupt some data in a couple of records.

Delete a table or any other database object
(such as stored procedure, trigger, view,
etc.) from the database.

Place one unexpected (undefined) param-
eter in the parameter file.

Put a huge volume of data in a file or table
that is used as input for a process when the
application expects the file to contain only
a small number of records.

Rename the database.

Appropriate error message should be
displayed.

Appropriate error message should be
displayed.

Appropriate error message should be
displayed.

Some indication that processing is
underway should be displayed, and
an appropriate error message should
be displayed.

The application should not hang, and
an appropriate error message should
be displayed.

J. Ross Publishing; All Rights Reserved

Appendix E: Guidelines for Stress Testing 277

Table E.6. System configuration change stress testing

Test case Expected result

Load the application on a differ-
ent version of the operating sys-
tem and test it.

Load a different version of the da-
tabase and test the application.

Use a different browser or a dif-
ferent version of the browser.

If it is a compatible operating system, the ap-
plication should function properly or display an
appropriate error message, and the applica-
tion should not hang.

The application should function properly or dis-
play an appropriate error message.

The application should function properly or dis-
play an appropriate error message.

Table E.7. Reduced availability of RAM stress testing

Test case Expected result

Load and run memory-resident utilities until the available
RAM is reduced to slightly below the minimum required
for the application to run, and then run the application.

The application should
run, but perhaps with a
slower response time.

Table E.8. Reduced disk space availability stress testing

Test case Expected result

Reduce the disk space on the C drive (or the volume
on which the operating system is loaded) to a barely
acceptable value by loading data or applications.

The application should run or
display an appropriate error
message.

Table E.9. Inadequate database size stress testing

Test case Expected result

Reduce the maximum size of the database to the present
size of the database, then run the application, and try to
input records; this tests the condition when the database
reaches its maximum permissible size.

An appropriate error
message should be
displayed.

J. Ross Publishing; All Rights Reserved

278 Mastering Software Quality Assurance

Table E.10. Antivirus software stress testing

Test case Expected result

Uninstall the current antivirus software,
install other antivirus software, and then
run the application.

Load more than one antivirus software
on the system and run the application.

Uninstall all antivirus software from the
system and run the application.

The application should function properly
or display an appropriate error message,
and the application should not hang.

The application should function properly
or display an appropriate error message.

The application should function properly
or display an appropriate error message.

J. Ross Publishing; All Rights Reserved

279

APPENDIX F:
GUIDELINES FOR
NEGATIVE TESTING

Negative testing is carried out with the specific intention of failing the software
or, in other words, to find out if there is any possibility that the application
could fail. Testers use their intuition to run the application in a way they expect
a person intent on proving it will fail would. They perform operations the
application is not expected to perform. The only exception in negative testing
is that the system is not subjected to physical damage.

Negative testing mostly deals with the user interface. Either wrong input or
no input is given to the system to see if the software responds appropriately. The
software should reject wrong input and display an appropriate error message.
When no input is given to the system, the software must respond with a message
that asks for input.

The tables in this section provide test cases to assist in conducting negative
testing on software:

Table F.1 Guidelines for negative testing of screens
Table F.2 Guidelines for negative testing of reports
Table F.3 Guidelines for negative testing of Web pages, in addition to

the guidelines in Table F.1

J. Ross Publishing; All Rights Reserved

280 Mastering Software Quality Assurance
T

ab
le

 F
.1

.
N

eg
at

iv
e

te
st

in
g

 g
u

id
el

in
es

 f
o

r
sc

re
en

s

T
yp

e
o

f
en

tr
y

T
es

t
ca

se
 d

es
cr

ip
ti

o
n

R
em

ar
ks

1.
S

ho
ul

d
no

t
al

lo
w

 e
nt

ry
 o

f
no

nn
um

er
ic

 c
ha

ra
ct

er
s.

2.
W

he
re

 o
nl

y
po

si
tiv

e
nu

m
be

rs
 a

re
 e

xp
ec

te
d,

 a
 m

in
us

 s
ig

n
sh

ou
ld

 n
ot

 b
e

al
lo

w
ed

.

3.
W

he
re

 d
ec

im
al

 n
um

be
rs

 a
re

 e
xp

ec
te

d,
 t

w
o

de
ci

m
al

 p
oi

nt
s

sh
ou

ld
 n

ot
 b

e
al

lo
w

ed
.

4.
W

he
re

 w
ho

le
 n

um
be

rs
 a

re
 e

xp
ec

te
d,

 d
ec

im
al

 p
oi

nt
s

an
d

fr
ac

tio
ns

 s
ho

ul
d

no
t

be
 p

er
m

itt
ed

.

5.
B

ec
au

se
 d

at
a

ty
pe

s
al

lo
w

 n
um

be
rs

 u
p

to
 t

he
ir

m
ax

im
um

ca
pa

ci
ty

,
th

e
so

ftw
ar

e
sh

ou
ld

 c
he

ck
 t

he
 s

iz
e

of
 t

he
 v

al
ue

en
te

re
d

an
d

pr
ev

en
t

a
us

er
 f

ro
m

 e
nt

er
in

g
a

nu
m

be
r

th
at

 is
la

rg
er

 t
ha

n
th

e
m

ax
im

um
 e

xp
ec

te
d.

6.
C

he
ck

 t
ha

t
w

he
n

a
fie

ld
 i

s
le

ft
bl

an
k,

 t
he

 s
of

tw
ar

e
st

or
es

ze
ro

 i
n

th
e

da
ta

ba
se

 o
r

ha
s

ro
ut

in
es

 t
o

ha
nd

le
 n

ul
l.

7.
B

ou
nd

ar
y

va
lu

es
 f

or
 r

an
ge

s
ar

e
lik

el
y

to
 b

e
in

 e
rr

or
.

8.
V

al
ue

s
ar

e
no

t
in

iti
al

iz
ed

 f
or

 t
he

 s
ec

on
d

ite
ra

tio
n

on
w

ar
d,

es
pe

ci
al

ly
 a

fte
r

“s
av

e”
 o

pe
ra

tio
ns

.
A

lw
ay

s
pe

rf
or

m
 a

 s
ec

-
on

d
ite

ra
tio

n
fo

r
“s

av
e”

 o
pe

ra
tio

ns
 w

ith
 a

 d
iff

er
en

t
se

t
of

va
lu

es
.

9.
M

os
t

co
m

m
on

 e
rr

or
s

ar
e

in
 t

he
 r

es
ul

ts
 o

f
co

m
pu

ta
tio

n
op

er
at

io
ns

.

T
ry

 t
o

en
te

r
no

nn
um

er
ic

 v
al

ue
s.

E
nt

er
 n

um
be

rs
 w

ith
 a

 m
in

us
 s

ig
n.

T
ry

 t
o

en
te

r
a

nu
m

be
r

w
ith

 t
w

o
de

ci
m

al
po

in
ts

.

E
nt

er
 f

ra
ct

io
na

l
nu

m
be

rs
 w

he
re

 i
nt

eg
er

s
ar

e
ex

pe
ct

ed
.

E
nt

er
 a

 h
ig

he
r

nu
m

be
r

of
 d

ig
its

 o
r

ve
ry

la
rg

e
nu

m
be

rs
.

Le
av

e
fie

ld
s

bl
an

k
an

d
tr

y
to

 s
av

e
th

e
da

ta
.

E
nt

er
 v

al
ue

s
ju

st
 a

bo
ve

 a
nd

 b
el

ow
 t

he
bo

un
da

rie
s.

C
he

ck
 fo

r
pr

op
er

 d
ef

au
lt

va
lu

es
 w

he
n

th
e

sc
re

en
 i

s
re

fr
es

he
d.

C
he

ck
 c

om
pu

ta
tio

n
re

su
lts

 m
an

ua
lly

.

N
um

er
ic

 v
al

ue
s

J. Ross Publishing; All Rights Reserved

Appendix F: Guidelines for Negative Testing 281

10
.

C
he

ck
 th

at
 th

e
di

vi
si

on
 o

pe
ra

tio
n

re
tu

rn
s

an
 e

rr
or

 c
on

di
tio

n
w

he
n

th
e

de
no

m
in

at
or

 b
ec

om
es

 z
er

o
or

 w
he

n
bo

th
 t

he
nu

m
er

at
or

 a
nd

 t
he

 d
en

om
in

at
or

 b
ec

om
e

ze
ro

.

1.
T

he
 s

of
tw

ar
e

sh
ou

ld
 c

he
ck

 t
he

 s
iz

e
an

d
lim

it
it

to
 a

 p
er

m
it-

te
d

va
lu

e.

2.
W

he
re

 n
am

es
 o

f p
er

so
ns

 a
re

 e
xp

ec
te

d,
 th

e
so

ftw
ar

e
sh

ou
ld

en
su

re
 t

ha
t

nu
m

er
ic

 v
al

ue
s

ar
e

no
t

en
te

re
d.

3.
T

he
se

 f
ie

ld
s

sh
ou

ld
 n

ot
 a

llo
w

 s
pe

ci
al

 c
ha

ra
ct

er
s,

 s
uc

h
as

co
m

bi
na

tio
ns

 w
ith

 t
he

 C
tr

l
or

 A
lt

ke
ys

.
C

he
ck

 i
f

th
es

e
co

m
bi

na
tio

ns
 c

au
se

 a
ny

 i
ss

ue
s.

1.
C

he
ck

 t
he

 c
on

si
st

en
cy

 b
et

w
ee

n
th

e
m

on
th

 a
nd

 t
he

 d
at

e.
F

or
 e

xa
m

pl
e,

 F
eb

ru
ar

y
ca

n
ha

ve
 e

ith
er

 2
8

or
 2

9
da

ys
,

M
ar

ch
 c

an
 h

av
e

31
 d

ay
s,

 A
pr

il
ca

n
ha

ve
 3

0
da

ys
,

et
c.

S
om

et
im

es
 p

ro
gr

am
m

er
s

do
 n

ot
 a

llo
w

 th
e

ap
pr

op
ria

te
 n

um
-

be
r

of
 d

ay
s

in
 m

on
th

s.

2.
If

m
on

th
s

ar
e

al
lo

w
ed

 to
 b

e
en

te
re

d
as

 n
um

er
al

s,
 a

 n
um

er
al

gr
ea

te
r

th
an

 1
2

as
 t

he
 m

on
th

 n
um

be
r

sh
ou

ld
 b

e
re

je
ct

ed
.

3.
If

th
er

e
is

 a
 “

fr
om

 d
at

e”
 a

nd
 a

 “
to

 d
at

e”
 o

n
a

sc
re

en
,

th
e

“t
o

da
te

”
sh

ou
ld

 b
e

la
te

r
th

an
 t

he
 “

fr
om

 d
at

e.
”

4.
C

he
ck

 t
he

 v
al

id
ity

 o
f

th
e

ye
ar

.
F

or
 e

xa
m

pl
e,

 y
ea

r
“9

99
9”

sh
ou

ld
 b

e
re

je
ct

ed
.

D
ep

en
di

ng
 o

n
th

e
ap

pl
ic

at
io

n,
 e

nt
er

so
m

e
in

va
lid

 y
ea

r
va

lu
es

 a
nd

 s
ee

 if
 t

he
 a

pp
lic

at
io

n
re

je
ct

s
th

em
.

T
ry

 t
o

m
ak

e
th

e
de

no
m

in
at

or
 z

er
o.

E
nt

er
 l

on
ge

r
da

ta
 t

ha
n

is
 p

er
m

is
si

bl
e.

E
nt

er
 s

om
e

nu
m

er
ic

 c
ha

ra
ct

er
s

in
 n

am
e

fie
ld

s.

E
nt

er
 s

om
e

sp
ec

ia
l

ch
ar

ac
te

rs
 i

n
al

ph
a-

nu
m

er
ic

 f
ie

ld
s.

E
nt

er
 i

nc
on

si
st

en
t

or
 i

nv
al

id
 d

at
es

.

E
nt

er
 i

nv
al

id
 m

on
th

 n
um

be
rs

.

E
nt

er
 h

ig
he

r
“f

ro
m

 d
at

e”
 t

ha
n

“t
o

da
te

.”

T
ry

 t
o

en
te

r
99

99
 a

s
th

e
ye

ar
 v

al
ue

.

A
lp

ha
nu

m
er

ic
va

lu
es

D
at

e
va

lu
es

J. Ross Publishing; All Rights Reserved

282 Mastering Software Quality Assurance

T
ab

le
 F

.1
.

N
eg

at
iv

e
te

st
in

g
 g

u
id

el
in

es
 f

o
r

sc
re

en
s

(c
o

n
ti

n
u

ed
)

T
yp

e
o

f
en

tr
y

T
es

t
ca

se
 d

es
cr

ip
ti

o
n

R
em

ar
ks

1.
M

os
t

of
 t

he
 t

im
e,

 e
m

pt
y

ta
bl

e
co

nd
iti

on
s

ar
e

no
t

ha
nd

le
d

by
 p

ro
gr

am
m

er
s

of
 m

as
te

r
ta

bl
e

tr
an

sa
ct

io
ns

.

2.
A

no
th

er
 e

rr
or

 c
om

m
on

ly
 c

om
m

itt
ed

 b
y

pr
og

ra
m

m
er

s
is

le
av

in
g

ta
bl

es
 o

r
fil

es
 o

pe
n.

 T
hi

s
ca

n
ca

us
e

fa
ilu

re
s

if
th

e
sa

m
e

ta
bl

e
or

 f
ile

 i
s

op
en

ed
 a

ga
in

.

S
om

et
im

es
 p

ro
gr

am
m

er
s

ch
ec

k
fo

r
da

ta
 v

al
id

at
io

n
in

 t
he

 “
lo

st
fo

cu
s”

 e
ve

nt
 o

f
th

e
co

nt
ro

ls
 s

uc
h

as
 t

he
 t

ex
t

bo
x

an
d

co
m

bo
bo

x.
 T

hi
s

ca
n

be
 c

he
ck

ed
 b

y
ke

ep
in

g
th

e
fo

cu
s

in
 t

he
 c

on
tr

ol
bu

t c
lic

ki
ng

 th
e

S
av

e
or

 S
ub

m
it

bu
tto

n
to

 v
er

ify
 if

 d
at

a
va

lid
at

io
n

ha
pp

en
s.

La
be

ls
 s

ho
ul

d
no

t
be

 c
lic

ka
bl

e
un

le
ss

 t
he

y
ar

e
lin

ks
 t

o
a

W
eb

pa
ge

.

1.
W

he
ne

ve
r

a
“d

el
et

e”
 a

ct
io

n
is

 i
ni

tia
te

d,
 t

he
 s

ys
te

m
 s

ho
ul

d
se

ek
 c

on
fir

m
at

io
n

fo
r

de
le

tio
n

by
 d

is
pl

ay
in

g
an

 a
pp

ro
pr

ia
te

m
es

sa
ge

.

2.
A

 “
de

le
te

”
ac

tio
n

sh
ou

ld
 n

ot
 b

e
al

lo
w

ed
 w

he
n

no
 i

te
m

 i
s

se
le

ct
ed

 f
or

 d
el

et
io

n.
 T

he
 s

ys
te

m
 s

ho
ul

d
ei

th
er

 d
is

pl
ay

 a
n

er
ro

r
m

es
sa

ge
 o

r
pr

ev
en

t
in

iti
at

io
n

of
 t

he
 “

de
le

te
”

ac
tio

n.

E
m

pt
y

th
e

m
as

te
r

ta
bl

e
of

 a
ll

da
ta

 a
nd

 tr
y

to
 u

se
 t

he
 a

pp
lic

at
io

n.

T
ry

 t
o

ru
n

th
e

sa
m

e
da

ta
 e

nt
ry

 s
cr

ee
n

in
se

qu
en

ce
 a

nd
 c

he
ck

 i
f

th
e

da
ta

 i
s

be
in

g
sa

ve
d

pr
op

er
ly

 a
nd

 t
ha

t
th

e
ap

pl
ic

at
io

n
do

es
 n

ot
 a

bo
rt

.

A
fte

r
en

te
rin

g
w

ro
ng

 d
at

a
in

 a
 f

ie
ld

,
cl

ic
k

th
e

S
av

e
bu

tto
n.

 T
he

 v
al

id
at

io
n

sh
ou

ld
st

ill
 b

e
ap

pl
ie

d.

C
lic

k
a

l l
la

b
e

ls
 a

n
d

 s
e

e
 i

f
a

n
y

a
ct

io
n

re
su

lts
.

T
ry

 to
 d

el
et

e
so

m
e

va
lu

es
 a

nd
 e

ns
ur

e
th

at
th

e
co

nf
irm

at
io

n
m

es
sa

ge
 i

s
di

sp
la

ye
d.

S
et

 fo
cu

s
to

 b
la

nk
 d

at
a

an
d

cl
ic

k
th

e
D

el
et

e
bu

tto
n.

F
ile

 a
nd

 t
ab

le
op

er
at

io
ns

“S
av

e”
 a

nd
“s

ub
m

it”
 e

ve
nt

s

La
be

ls

D
el

et
e

bu
tto

ns

J. Ross Publishing; All Rights Reserved

Appendix F: Guidelines for Negative Testing 283

1.
W

he
n

an
y

of
 t

he
 m

an
da

to
ry

 f
ie

ld
s

is
 b

la
nk

,
th

e
sy

st
em

sh
ou

ld
 r

et
ur

n
an

 e
rr

or
 m

es
sa

ge
.

2.
W

he
n

an
y

fie
ld

 h
as

 a
 lo

ng
er

 f
ie

ld
 w

id
th

 t
ha

n
pe

rm
itt

ed
,

th
e

sy
st

em
 s

ho
ul

d
re

tu
rn

 a
n

er
ro

r
m

es
sa

ge
.

W
he

n
a

lis
t i

s
em

pt
y,

 th
e

sy
st

em
 s

ho
ul

d
no

t r
es

po
nd

 o
r

sh
ou

ld
no

t
go

 i
nt

o
an

 e
rr

or
 c

on
di

tio
n

if
th

e
lis

t
is

 c
lic

ke
d

or
 d

ou
bl

e-
cl

ic
ke

d.

W
he

n
ar

ea
s

th
at

 a
re

 n
ot

 s
up

po
se

d
to

 b
e

cl
ic

ke
d

ar
e

cl
ic

ke
d

on
,

th
e

sy
st

em
 s

ho
ul

d
no

t
ta

ke
 a

ny
 a

ct
io

n
or

 f
ai

l.

W
he

n
ap

pl
ic

at
io

ns
 a

llo
w

 m
ul

tip
le

 s
cr

ee
ns

 t
o

be
 o

pe
ne

d,
 o

pe
n

a
fe

w
 s

cr
ee

ns
 a

nd
 c

he
ck

 i
f

it
ca

us
es

 a
 f

ai
lu

re
.

1.
P

re
ss

 k
ey

s
in

 c
om

bi
na

tio
n

w
ith

 t
he

 C
tr

l
an

d
A

lt
ke

ys
,

an
d

ch
ec

k
if

it
ca

us
es

 a
ny

 p
ro

bl
em

s.

2.
P

re
ss

 m
ul

tip
le

 k
ey

s
at

 th
e

sa
m

e
tim

e
an

d
ch

ec
k

if
it

ca
us

es
an

y
pr

ob
le

m
s.

S
av

e
an

d
S

ub
m

it
bu

tto
ns

Li
st

s

C
lic

k
or

 d
ou

bl
e-

cl
ic

k

M
ul

tip
le

 s
cr

ee
ns

W
ro

ng
 k

ey
us

ag
e

Le
av

e
so

m
e

m
an

da
to

ry
 f

ie
ld

s
bl

an
k

an
d

cl
ic

k
th

e
S

av
e

bu
tto

n.

E
nt

er
 l

on
ge

r
th

an
 p

er
m

is
si

bl
e

va
lu

es
 i

n
so

m
e

fie
ld

s
an

d
cl

ic
k

th
e

S
av

e
bu

tto
n.

C
lic

k
an

d
do

ub
le

-c
lic

k
on

 e
m

pt
y

lis
ts

.

T
ry

 t
o

cl
ic

k
ra

nd
om

ly
 o

n
ar

ea
s

of
 t

he
sc

re
en

 n
ot

 e
xp

ec
te

d
to

 b
e

cl
ic

ke
d,

 a
nd

ch
ec

k
if

an
yt

hi
ng

 h
ap

pe
ns

 o
r

if
th

e
ap

pl
i-

ca
tio

n
fa

ils
.

O
pe

n
m

ul
tip

le
 s

cr
ee

ns
 a

nd
 s

w
itc

h
be

tw
ee

n
th

em
.

P
re

ss
 C

, Z
, a

nd
 D

 in
 c

om
bi

na
tio

n
w

ith
 th

e
C

tr
l

ke
y

an
d

so
m

e
ke

ys
 w

ith
 t

he
 A

lt
ke

y.

P
re

ss
 m

ul
tip

le
 k

ey
s

at
 t

he
 s

am
e

tim
e.

J. Ross Publishing; All Rights Reserved

284 Mastering Software Quality Assurance
T

ab
le

 F
.2

.
N

eg
at

iv
e

te
st

in
g

 g
u

id
el

in
es

 f
o

r
re

p
o

rt
s

A
sp

ec
t

o
f

re
p

o
rt

T
es

t
ca

se
 d

es
cr

ip
ti

o
n

R
em

ar
ks

1.
In

 m
an

y
ca

se
s,

 g
en

er
at

io
n

of
 a

 r
ep

or
t

re
qu

ire
s

en
tr

y
of

 p
ar

am
et

er
s

su
ch

 a
s

da
te

s,
 n

am
es

,
co

de
s,

 e
tc

.
In

 c
as

es
 w

he
re

 t
he

 p
ar

am
et

er
s

ar
e

bl
an

k,
 t

he
 s

ys
te

m
 s

ho
ul

d
re

sp
on

d
w

ith
 a

n
er

ro
r

m
es

sa
ge

 o
r

pr
es

en
t

a
bl

an
k

re
po

rt
,

bu
t

sh
ou

ld
 n

ot
 f

ai
l.

2.
In

 c
as

es
 w

he
re

 p
ar

am
et

er
s

ar
e

w
ro

ng
,

th
e

sy
st

em
 s

ho
ul

d
re

sp
on

d
w

ith
 a

n
er

ro
r

m
es

sa
ge

 o
r

pr
es

en
t a

 b
la

nk
 r

ep
or

t,
bu

t s
ho

ul
d

no
t f

ai
l.

3.
In

 c
as

es
 w

he
re

 p
ar

am
et

er
s

ar
e

ill
og

ic
al

, s
uc

h
as

 a
 “

fr
om

 d
at

e”
 la

te
r

th
an

 t
he

 “
to

 d
at

e”
 o

r
a

no
ne

xi
st

en
t

va
lu

e,
 t

he
 s

ys
te

m
 s

ho
ul

d
re

-
sp

on
d

w
ith

 a
n

er
ro

r
m

es
sa

ge
,

bu
t

sh
ou

ld
 n

ot
 f

ai
l.

1.
T

he
 d

at
a

in
 t

he
 c

ol
um

ns
 a

nd
 t

he
 c

ol
um

n
he

ad
in

gs
 m

us
t

be
 a

lig
ne

d
pr

op
er

ly
.

E
ns

ur
e

th
at

 a
lp

ha
nu

m
er

ic
 i

te
m

s
ar

e
le

ft
al

ig
ne

d
an

d
nu

-
m

er
ic

 v
al

ue
s

ar
e

rig
ht

 a
lig

ne
d.

2.
H

ea
di

ng
s,

 d
at

e
of

 th
e

re
po

rt
, p

ag
e

nu
m

be
r,

 e
tc

. m
ay

 b
e

cl
ip

pe
d

du
e

to
 l

ac
k

of
 s

uf
fic

ie
nt

 s
pa

ce
 a

llo
w

ed
 f

or
 t

he
m

.

In
 l

ar
ge

-v
ol

um
e

re
po

rt
s,

 c
he

ck
 i

f
al

l
th

e
re

co
rd

s
ar

e
in

cl
ud

ed
 i

n
th

e
pr

oc
es

si
ng

.
T

he
se

 r
ep

or
ts

 n
or

m
al

ly
 g

iv
e

co
nt

ro
l s

ta
tis

tic
s

su
ch

 a
s

th
e

nu
m

be
r

of
 r

ec
or

ds
 c

on
si

de
re

d
an

d
th

e
nu

m
be

r
ac

tu
al

ly
 in

cl
ud

ed
 in

 th
e

re
po

rt
.

T
ry

 t
o

ge
ne

ra
te

 r
ep

or
ts

 w
ith

ou
t

gi
vi

ng
 t

he
 r

eq
ui

re
d

pa
ra

m
et

er
s.

T
ry

 t
o

ge
ne

ra
te

 r
ep

or
ts

 b
y

gi
vi

ng
w

ro
ng

 p
ar

am
et

er
s.

T
ry

 t
o

ge
ne

ra
te

 r
ep

or
ts

 b
y

gi
vi

ng
ill

og
ic

al
 p

ar
am

et
er

s.

C
he

ck
 c

on
si

st
en

cy
 o

f
da

ta
 a

nd
he

ad
in

gs
 f

or
 e

ve
ry

 c
ol

um
n

of
 t

he
re

po
rt

.

C
he

ck
 i

f
th

e
pa

ge
 h

ea
di

ng
s,

 r
e-

po
rt

 h
ea

di
ng

s,
 d

at
es

,
pa

ge
 n

um
-

be
rs

,
et

c.
 a

re
 c

lip
pe

d.

C
he

ck
 i

f
th

e
re

po
rt

 h
as

 c
on

tr
ol

st
at

is
tic

s.
 C

he
ck

 if
 a

ll
re

co
rd

s
ar

e
pr

oc
es

se
d

an
d

al
l r

el
ev

an
t r

ec
or

ds
ar

e
in

cl
ud

ed
 i

n
th

e
re

po
rt

.

R
ep

or
t

pa
ra

m
et

er
s

A
lig

nm
en

t

C
om

pr
eh

en
si

ve
pr

oc
es

si
ng

J. Ross Publishing; All Rights Reserved

Appendix F: Guidelines for Negative Testing 285

Table F.3. Negative testing guidelines for Web pages

Aspect Test case description Remarks

1. Click all links on the page and en-
sure that they navigate to the correct
Web pages. Also check that no links
are broken.

2. Check that links that navigate to other
Web sites open in another window.

3. Using the Back button after logging
out of a site should not allow func-
tionality to be accessible. The sys-
tem should respond with an error
message which says the user needs
to be logged in.

When wrong data is input, an appropri-
ate error message should be displayed
either immediately after input or after
the Submit button is clicked.

Navigation

Wrong data
input

Check all navigation
links.

Click on links pointing
to other Web sites.

Log out of the appli-
cation, and then click
the Back button.

Enter wrong data in
some fields to see if it
is rejected.

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

287

APPENDIX G:
MEASUREMENT OF QUALITY

Measurement allows us to quantify something. Quantification facilitates com-
parison of that something with other things that are similar and allows us to
draw inferences as to whether the entity we measured is equal to, worse than,
or better than the entities similar to it. But can we measure quality?

Software is a special type of product in the sense that it has no moving parts,
and therefore it does not deteriorate with usage or aging, as do physical prod-
ucts, which deteriorate in the form of wear and tear over time.

In the case of physical products, it is sine qua non that a product performs its
intended functions without defects before it reaches the customer. However, it is
possible that software products with defects lurking inside could reach customers,
and it has more or less come to be accepted that the delivered software has some
defects. Physical products (except use-and-throwaway products) are expected to
undergo periodic maintenance, either to maintain their performance level (for
example, changing the oil in a car), to prevent a breakdown (for example, periodi-
cally servicing a car), or to recover from a breakdown.

The reliability of physical products is measured in mean time between fail-
ures (MTBF) and mean time to repair (MTTR). The longer the MTBF, the
better the reliability of the product. Conversely, the shorter the MTTR, the
better the quality of the product. MTBF and MTTR normally are measured in
running hours. Automakers, however, give the MTBF in miles, such as 100,000
miles of trouble-free operation, a measurement the general public understands.
Automakers and other manufacturers give an MTBF and an MTTR for their
products. These measures are not usable for software products because of the
absence of physical parts that deteriorate with use or age. Some metrics that are
useful for measurement of software quality are discussed in this appendix.

J. Ross Publishing; All Rights Reserved

288 Mastering Software Quality Assurance

SOFTWARE PRODUCT QUALITY METRIC

This metric was discussed in detail in Chapter 3 on software product quality.
However, there are two other metrics that are often mentioned in the literature
on software quality measurement:

1. McCabe’s metric or cyclomatic complexity
2. Halstead’s metric

These two metrics measure quality at the program level.

Cyclomatic Complexity

This measure is designed to limit the complexity of a module, thereby promot-
ing understandability of the module. It is the number of independent paths in
a program.

The formula for computing complexity is

C E N = − + 1

where C = complexity of the program, N = number of nodes (sequential groups
of program statements), and E = number of edges (program flows between
nodes).

For a typical program, 10 represents maximum ideal complexity. This is used
in mainframe COBOL environments even today.

Halstead’s Metric for Program Difficulty

This measure computes program difficulty by counting the “operators” and the
“operands.” The formula for program difficulty is

D
n N

n
 = 





×






1 2

22

where D = program difficulty, n1 = number of distinct operators in the pro-
gram, n2 = number of distinct operands in the program, and N2 = total number
of occurrences of operands in the program.

In this context, the “operators” are the programming language’s key words,
which operate on data used in the program to produce results. The “operands”
are the variables that are declared within the program on which the key words
operate to produce results.

J. Ross Publishing; All Rights Reserved

Appendix G: Measurement of Quality 289

McCabe’s and Halstead’s metrics measure the complexity of software at the
program level. Because today’s software products have a large number of soft-
ware units, measuring the complexity of every program is very tedious and time
consuming. These two metrics were developed during the COBOL days of
software development. COBOL programs and other third-generation program-
ming languages were amenable to measuring these metrics with the help of
software tools. However, with today’s event-oriented programming languages,
using tools to compute these metrics is not very easy.

I do not recommend using McCabe’s or Halstead’s metric in the case of
event-oriented programming languages. These two metrics are mentioned here
only to satisfy the purists who would insist that a discussion on software quality
measurement would not be complete without them.

DEFECT ANALYSIS

Defect analysis is carried out at both the project and organizational levels to
detect recurring defect patterns and eliminate them through corrective and
preventive action. Defect patterns can be eliminated through better training of
personnel and by improving the standards and guidelines of the organizational
software development processes. Suggested defect categories are listed in Table
B.1 in Appendix B, and defect origins are listed here in Table G.1.

Defect Category Analysis

In defect category analysis, all the defects uncovered in the organization are
collated into various categories to see how they are distributed among these

Table G.1. Suggested defect origins

Defect origin Remarks

Coding The defect was caused in the software construction stage.

Requirements analysis The defect cropped up due to a mistake in the requirements
analysis stage.

Software design The defect cropped up due to a mistake in the software
design stage.

Documentation The defect cropped up due to a mistake in the document
preparation.

J. Ross Publishing; All Rights Reserved

290 Mastering Software Quality Assurance

categories. If the defects are distributed equally among all categories, it can be
inferred that the errors are due to random causes. More defects found in certain
categories than in others shows that the programmers exhibit a pattern of
weakness in the areas that have more defects. This knowledge creates an oppor-
tunity to eliminate such special causes by providing better training, checklists,
or tools.

Collating defects uncovered in various quality assurance (QA) activities into
appropriate defect categories, as depicted in Table B.1, allows insight into the
pattern of defects being injected into the software. Once the patterns are known,
means to reduce these defect injections can be devised, and over a period of time
the organization can move toward the goal of right first time. Ways to reduce
the number of defects include devising a suitable training program or preparing
checklists to alert the personnel concerned to the probable error situation.

Collation of uncovered defects into various categories can be carried out
periodically. Monthly collation affords this activity a regularity and seriousness.
However, it can be carried out quarterly as well.

Defect Origin Analysis

Defect origin analysis is similar to defect category analysis except that it is at a
higher level with fewer categories. If the defects are evenly distributed, it can be
inferred that they are due to random causes. If the defects cluster around one
or two origins, then it can be concluded that the software engineers show a
weakness in those areas. This information allows remedies to be devised that will
eliminate those weaknesses and thus improve the quality of the software. Table
G.1 depicts suggested defect origins.

ABC Analysis

ABC in this context stands for “always better control.” ABC analysis is based on
the Pareto principle of “the significant few and insignificant many.” Pareto
analysis divides the data into two classes: 80% (insignificant many) and 20%
(significant few). ABC analysis divides the data into three classes. Typically,
defect analyzers try to determine if (1) 70% of the defects fall under 10% of the
categories (class A), (2) 10% of the defects fall under 70% of the categories (class
C), and (3) 20% of the defects fall under 20% of the categories (class B). This
analysis is carried out for both defect categories and defect origins. Defect analyzers
try to determine if the majority of the defects are caused by only a few reasons.
Class A defects indicate that there are weaknesses in the organization or project,

J. Ross Publishing; All Rights Reserved

Appendix G: Measurement of Quality 291

resulting in a higher number of defects. Organizations try to eliminate or mini-
mize class A defects through training or by improving standards, checklists, and
guidelines. Analysis allows an organization to identify its major weaknesses and
to improve on them.

Defect Removal Efficiency for Each Quality
Assurance Activity

Defect removal efficiency (DRE) is performed for each QA activity carried out
in a project as well as in the organization to derive the efficiency of each QA
activity. Normally, DRE is computed for the most commonly performed QA
activities (peer reviews, unit testing, integration testing, and system testing). QA
activities rarely performed in the organization are not usually included in the
computation, as calculating their efficiency and trying to improve them does not
produce cost-effective benefits.

DRE is expressed as a percentage. The formula for the DRE for a QA activity
is

DRE for a QA activity
Defects uncovered in the activity

All defects uncovered in this activity
and all subsequent activities

=

To illustrate computation of the DRE, Table G.2 shows hypothetical data for
defects uncovered in various QA activities for a software module.

Table G.2. Defect data for a software module

QA activity Number of defects uncovered

Peer review 100

Unit testing 25

Integration testing 15

System testing 5

Acceptance testing 2

Total number of defects uncovered in all QA activities 147

DRE for peer review (100/147) 68.03%

DRE for unit testing (25/47) 53.19%

DRE for integration testing (15/22) 68.18%

DRE for system testing (5/7) 71.43%

J. Ross Publishing; All Rights Reserved

292 Mastering Software Quality Assurance

DRE is computed both periodically as well as for a project. At an organiza-
tional level, DRE is computed every month or every quarter and takes into
consideration the total number of defects (total defects uncovered plus the
defects reported from client organizations or from the field) and the total number
of defects uncovered by the QA activities.

At a project level, DRE is computed at the closure phase of the project.
However, at that time, reports from the field about the residual defects uncov-
ered during the operation of the software might not yet be available. It is cus-
tomary to compute the DRE either at the completion of the warranty period or
once every six months after the project is delivered, when software maintenance
is also entrusted to the organization that developed the software.

Defect Injection Rate
Whereas defect category analysis and defect origin analysis reveal where defects
are occurring and the DRE reveals how efficient the organization’s QA activities
are, the defect injection rate (DIR) reveals the quality capability of the
organization’s working, especially the first time an activity is accomplished. If
the DIR is high, it is obvious that more time and effort are being spent on
uncovering and removing those defects. Also, if the DIR is on the high side, the
effort wasted on rework to fix those defects is also high. That means effort is
being wasted on an activity that should not have been performed at all. Rework
frustrates personnel and affects their motivation. A higher DIR also indicates
that either the software development process, including standards, guidelines,
and checklists, is not efficient enough to guide the software engineers in pro-
ducing an error-free product or that the development environment, including
training, development tools, supervision, instructions, etc., is not conducive to
producing a defect-free product. A higher DIR indicates that the organization
has weaknesses that need immediate attention if it wants to deliver quality
deliverables to its clients and earn a reputation for quality. Therefore, the DIR
is the most important measure of software quality.

The DIR is the rate at which defects are injected into a software product. It
is expressed as defects per unit size of the software. Size can be expressed in any
software size measure, such as function points (FP), software size units, object
points, use case points, or lines of code (LOC).

To compute the DIR, the defects uncovered in all the QA activities per-
formed in-house on the software must be included, as well as the defects re-
ported from the field (from customer sites). For example, assume a size of 100
FP for a software module and 147 defects uncovered in all QA activities. The
DIR is computed as follows:

J. Ross Publishing; All Rights Reserved

Appendix G: Measurement of Quality 293

DIR

 defects per FP

=

=

147

100

1 47.

It is also common to use LOC when expressing DIR. Assume the software
size is 155,000 LOC and there are 25 defects in that code. Now the DIR can be
computed as follows:

DIR

 defect for every 6,200 LOC

=

=

25

155 000

1

,

The DIR is also computed by the origin of the defect or the software engi-
neering activity that was at the root of the injected defect. Using the data in
Table G.3, the DIR for defect origin can be computed as follows:

DIR due to requirements analysis defects per FP

DIR due to software design defects per FP

DIR due to construction defects per FP

= =

= =

= =

28

100
0 28

37

100
0 37

82

100
0 82

.

.

.

These values reveal which software engineering activity is injecting the most
errors. If the same pattern emerges at the organizational level, improvements
to the specific software engineering activity can be made by either training the
resources concerned or improving the process, including its standards and
guidelines.

Table G.3. Defect data by origin of defect

Software engineering activity Number of defects

Requirements analysis 28

Software design 37

Construction 82

Total 147

J. Ross Publishing; All Rights Reserved

294 Mastering Software Quality Assurance

QA activities are designed to uncover and eliminate all defects from the
software product and to prevent defective product from reaching the customer.
Then why is the DIR important?

If the DIR is low, the amount of effort spent on QA activities can be mini-
mized. To determine if the DIR is high or low, the Six Sigma philosophy (three
defects per million opportunities) can be used.

When defects are uncovered, they need to be rectified, which means re-
work—rework to fix them, rework to review them, and rework to test them. An
injected defect causes rework, and rework means loss of productive effort that
could be profitably used for fresh development of another software artifact. In
addition, rework is tedious and demotivating for the people who have to per-
form it.

The DIR helps in analyzing the causes that lead to defects being injected into
the product and in drawing the proper conclusions; based on these conclusions,
the causes of defect injection into the product can be eliminated. When the DIR
is minimized, the effort spent on rework decreases, and consequently produc-
tivity increases. Another benefit of the DIR is that since rework is reduced, the
team’s motivation improves significantly. Proper use of the DIR promotes the
concept of right first time, perhaps even making it a reality in most cases. The
DIR reveals the capability and maturity of an organization’s developers, and it
facilitates objective performance appraisals by the human resources department.

The efficacy of QA activities is not based on uncovering defects themselves
but rather finding and eliminating causes of defect injection. The DIR helps with
precisely this, and that is the reason why the DIR is of utmost importance to
organizations.

DEFECT DENSITY

Defect density refers to the number of defects per unit of software size. Alter-
natively, it also is expressed as the amount of software per one defect. Defect
density normally is computed for delivered software products, which means
after the product is delivered to the customer and the defects are detected at the
customer location. This metric also is referred to as delivered defect density or
residual defect density.

For the following sample calculation of DIR, assume that:

Product size = 100 FP
Number of defects reported by the customer = 3

J. Ross Publishing; All Rights Reserved

Appendix G: Measurement of Quality 295

Therefore:

Defect density defects per FP = =3

100
0 03.

Alternatively:

Defect density FP per defect = =100

3
33 3.

This normally is stated as 1 defect for every 33.3 FP (or 33.3 FP per defect).
Either method of statement can be adopted.

Many practitioners measure the sigma level (from the Six Sigma philosophy)
of an organization based on this delivered defect density. However, sigma level
normally is computed using LOC as the software size measure.

For the following sample calculation of sigma level, assume that:

Product size = 10,000 LOC
Number of defects reported by the customer = 3 (that is, there are 3
defects per 10,000 opportunities for error)

Select from the following sigma levels where this information fits:

3 defects per 1,000,000 opportunities for error = 6 sigma
3 defects per 100,000 opportunities for error = 5 sigma
3 defects per 10,000 opportunities for error = 4 sigma
3 defects per 1,000 opportunities for error = 3 sigma
3 defects per 100 opportunities for error = 2 sigma

Based on the information in this example, the sigma level for the organization
is 4 sigma. Compare this level with the ideal of a 6-sigma level of quality, which
is 3 defects per 1 million opportunities for injecting errors.

INTERPRETATION OF DEFECT DENSITY AND
DEFECT INJECTION RATE TOGETHER

Management is usually interested in the delivered defect density, which means
the number of defects that reach the customer. If it is low, the organization
receives fewer complaints from the customer and enjoys a better reputation in

J. Ross Publishing; All Rights Reserved

296 Mastering Software Quality Assurance

the market. Therefore, it is imperative that both delivered defect density and
DIR be computed and their results be used in conjunction to improve organi-
zational quality and productivity. Table G.4 details the interpretation of defect
density and DIR.

EFFICIENCY OF QUALITY ASSURANCE ACTIVITIES

The efficiency of QA activities also can be computed. It is measured as the
percentage of defects that the QA activities are able to uncover and then arrange
for rectification. The formula is as follows:

Efficiency of QA activities for a project

=
+ +

A

A B C()

where A = the total number of defects uncovered within the organization up
to acceptance testing, B = the number of defects uncovered in acceptance test-
ing, and C = the number of defects reported by the customer after delivery.

Table G.4. Interpretation of defect density and defect injection rate

Defect
density DIR Inference Necessary action

High High Both software development and
QA activities are inefficient.

Low Low Both software development and
QA activities are efficient.

High Low Software development activities
are efficient. QA activities are not
as efficient as development ac-
tivities. The organization is not
spending adequate effort on QA
activities.

Low High The organization is spending
more effort on QA activities. QA
activities are more efficient than
development activities. Software
development activities are not
efficient.

Improve both QA and soft-
ware development activities.

Maintain the status quo.
This is the ideal scenario.

Improve QA activities or
processes and other rel-
evant aspects.

Improve software develop-
ment process, activities,
and other relevant aspects
to reduce the DIR.

J. Ross Publishing; All Rights Reserved

Appendix G: Measurement of Quality 297

Using the data from the previous example:

Number of defects uncovered up to acceptance testing = 145
Number of defects uncovered in acceptance testing = 2
Number of defects reported by the customer after delivery = 3

Now the efficiency of QA activities can be computed as follows:

Efficiency of QA activities

 or

=
+ +

=

145

145 2 3

0 9667 96 67

()

. . %

Only one question needs to be answered now: How long should the orga-
nization wait for the customer to report defects after delivery? One school of
thought is that the organization should take into consideration all the defects
reported up to the end of the warranty period. This way, there is a finite waiting
period before the delivered defect density and efficiency of QA activities can be
computed. However, since all defects are not included, the metrics might not
reflect reality accurately.

The other school of thought is that the organization should wait until the
completion of the warranty period before computing the delivered defect den-
sity and efficiency of QA activities initially. However, these metrics have to be
updated every time a new defect is reported by the customer. Using this method,
the organization has both the initial metrics and the final metric that reflects
reality.

AVERAGE DEFECT TARDINESS

Average defect tardiness is the length of time a defect is waiting for resolution
or the turnaround time for a defect from the time it is reported to the time it
is resolved and delivered back to the customer. This metric is usually computed
in the case of customer-reported defects, especially during the warranty period
or during software maintenance, where this metric gives maximum benefit. By
using this metric, targets can be set for reducing the turnaround time for defect
resolution. Normally, calendar days are used to indicate the amount of time a
defect is waiting for resolution, but in the case of urgent defects, clock-hours
also can be used.

Table G.5 shows an example of turnaround times for defect resolution. The
total number of defects is 5, and total turnaround time is 13 days. Therefore:

J. Ross Publishing; All Rights Reserved

298 Mastering Software Quality Assurance

Average turnaround time days = =13

5
2 6.

The statistical mode also can used for this metric. In this example, the modal
turnaround time is 3 days. This metric is also referred to as defect tardiness.

Using this metric, improvement can be effected in the turnaround time for
defect resolution by reducing the number of defects. However, some organiza-
tions exclude minor defects and the corresponding effort from this metric, as
minor defects take much less time to resolve and are low in importance and
priority.

TREND ANALYSIS

Trend analysis is carried out to monitor the efficiency and effectiveness of QA
activities in the organization. One precaution is important in carrying out trend
analysis: data needs to be depicted in its chronological sequence of occurrence.
Otherwise, results can be erroneous. The different types of trend analysis are
discussed in the following sections.

Quality Assurance Effort Analysis

This metric computes the effort spent on QA activities as a percentage of the
total effort spent on project activities. For example, assume that 25 person-hours
of effort is spent on QA activities for a project where the total effort spent is 100
person-hours. The percentage of effort spent on QA activities is computed to
be 25% of the total effort.

This metric is monitored for trends—either increasing or decreasing. An
organization should aim to reduce the percentage over a period of time. There

Table G.5. Defect resolution turnaround time

Defect ID Reported on Delivered on Number of days

Defect 1 1-Aug-10 5-Aug-10 4
Defect 2 6-Aug-10 9-Aug-10 3
Defect 3 8-Aug-10 10-Aug-10 2
Defect 4 14-Aug-10 17-Aug-10 3
Defect 5 22-Aug-10 23-Aug-10 1

J. Ross Publishing; All Rights Reserved

Appendix G: Measurement of Quality 299

is no hard-and-fast rule for how much effort can be spent on QA activities in
a project. It varies with the number of tests conducted and the number of defects
uncovered.

The data in Table G.6 can be used to carry out a trend analysis for effort
spent on QA activities. Using this data, a graph can be plotted using Microsoft
Excel or some other graphing tool. Figure G.1 represents the graph depicting
this information. As seen in the graph, the overall trend is decreasing, even
though the last project veers slightly against the trend. This indicates that project
G needs to be looked at more critically to find out what caused its reverse trend,
so that preventive action can be taken to curb the trend in future projects.

Defect-Fixing Effort Analysis

This metric computes the effort spent on fixing defects as a percentage of the
total effort spent on project activities. For example, assume that 15 person-hours
of effort is spent on fixing defects for a project where the total effort spent is

Table G.6. Effort spent on QA activities

Total effort QA effort
Project in person-hours in person-hours QA percentage

Project A 3,600 580 16.11%
Project B 3,200 525 16.41%
Project C 3,750 545 14.53%
Project D 3,325 475 14.29%
Project E 4,575 620 13.55%
Project F 4,250 445 10.47%
Project G 4,300 540 12.56%

Figure G.1. Trend graph of relative effort spent on QA activities in the organization

20.00%

15.00%

10.00%

5.00%

0.00%

Projects

A B C D E F

R
el

at
iv

e
ef

fo
rt

sp
en

t
o

n
 Q

A

G

Relative effort
spent on QA

Trend of relative
effort spent on QA

J. Ross Publishing; All Rights Reserved

300 Mastering Software Quality Assurance

Table G.7. Relative effort spent on fixing defects in the organization

Total effort QA effort Effort in Defect-fixing
in in defect-fixing effort

Project person-hours person-hours in person-hours percentage

Project A 3,600 580 132 3.67%
Project B 3,200 525 152 4.75%
Project C 3,750 545 128 3.41%
Project D 3,325 475 145 4.36%
Project E 4,575 620 138 3.02%
Project F 4,250 445 165 3.88%
Project G 4,300 540 125 2.91%
Project H 5,400 624 176 3.26%

Figure G.2. Trend graph of relative effort spent on fixing defects in the organization

5.00%

4.00%

3.00%

2.00%

1.00%

0.00%

Projects

A B C D E F

Relative effort spent
on defect fixing

Trend (relative effort
spent on defect fixing)

R
el

at
iv

e
ef

fo
rt

 s
p

en
t

o
n

 d
ef

ec
t

fi
xi

n
g

G H

100 person-hours. The percentage of effort spent on fixing defects is 15% of the
total effort.

This metric also is monitored for increasing and decreasing trends. An or-
ganization should aim to reduce the percentage over a period of time. The ideal
is to achieve 0%—meaning no defects are uncovered in the QA activities and
everything is done right the first time. Over a period of time, this metric should
tend toward zero.

Table G.7 provides project data to demonstrate this analysis and plot the
trend graph. Using this data, a graph that shows a trend line can be plotted using
Microsoft Excel or a similar graphing tool. The trend graph is shown in Figure
G.2. While the values of individual projects are moving up and down, the graph
shows a declining trend. It also shows a saw-toothed line, indicating either a lack
of control or a deficient process within the organization. This calls for critical
examination of the necessity for defect fixing.

J. Ross Publishing; All Rights Reserved

Appendix G: Measurement of Quality 301

Deject Injection Rate Trend Analysis

The importance of the DIR and how to compute it were discussed earlier. It is
also very important to carry out trend analysis for the DIR in the organization.
This analysis will reveal if the DIR is remaining constant or if it is increasing
or decreasing. Ideally, the DIR should be decreasing.

Table G.8 provides DIR data to demonstrate this analysis and plot the trend
graph. Using this data, a graph showing a trend line can be plotted using Microsoft
Excel or a similar graphing tool. The trend graph is shown in Figure G.3. As the
graph shows, there is an increasing trend in the DIR. This calls for closer ex-
amination of the defects, which can be achieved by defect analysis (defect cat-
egory analysis and defect origin analysis), so that the reasons behind the defects
can be uncovered and preventive actions taken so that the defects do not recur,
which would cause the DIR to decrease.

Table G.8. Defect injection rate data for projects

Project Size in FP Defects DIR (FP per defect)

Project A 1,250 67 18.66
Project B 1,500 76 19.74
Project C 2,200 111 19.82
Project D 3,100 156 19.87
Project E 1,100 57 19.30
Project F 4,200 211 19.91
Project G 5,200 256 20.31

Figure G.3. Trend analysis for defect injection rate

20.50%

20.00%

19.50%

19.00%

18.50%

18.00%

17.50%

Projects

A B C D E F

DIR (FP per defect)

Trend (DIR expressed
as FP per defect)

D
IR

G

J. Ross Publishing; All Rights Reserved

302 Mastering Software Quality Assurance

DATA REQUIRED FOR THESE QUALITY METRICS

The following data is necessary for computing the metrics discussed in this
appendix:

1. Defects, categorized and classified properly, are the primary data for
these metrics. The necessary data is obtained from the defect reports
generated at the conclusion of any QA activity. It is easy to collate
information from these reports. When a defect-tracking software tool
is used, these metrics are readily provided by the tool itself.

2. Defects reported from client reports need to be collated. If a collabo-
rative Web-based defect-reporting tool is being used for this purpose,
these data items can be obtained from the tool itself. Alternatively,
these data items are available in the status reports of the personnel
who attend to client requests for support. Some organizations have
a help desk to attend to customer support requests, and this data can
be obtained from that source as well.

3. An organizational guideline is needed for categorizing defects and
assigning the origin of defects. Process-driven organizations have such
guidelines, and the personnel who carry out the QA activities have the
necessary skills and training to properly categorize and assign the
origin of defects. This information also normally is part of the defect
reports.

4. Effort spent on QA activities and on fixing defects can be obtained
from a well-designed time sheet or a tool such as PMPal, which
provides this data automatically.

To carry out measurement and analysis, an organizational entity responsible
for this purpose is necessary. Normally, the QA department carries out this
activity. In the absence of a QA department, a process-driven organization has
a metrics group to carry out measurement and analysis. In some organizations,
a project management office can carry out this activity.

Clearly, extra money does not need to be spent to carry out measurement
and analysis of metrics. All that is required is the will of management to detect
the real quality level of the organization’s operations and the determination to
continually improve quality and sustain the drive toward excellence.

J. Ross Publishing; All Rights Reserved

Appendix G: Measurement of Quality 303

FINAL WORDS ON MEASUREMENT OF QUALITY

Measurement for determining quality has to be simple to implement and easy
to interpret. In addition, in these days of stiff competition and dwindling margins,
spending extra money for any activity that does not either contribute to revenue
or result in tangible and perceptible savings is difficult for any management
team to accept. There are quite a few measures in addition to the ones discussed
here, many of which are not easy to implement in terms of data collection,
computation, and interpretation, and at the end of the day, their contribution
is not very tangible or certain.

Quality measures that are easy to implement, easy to compute, and easy to
interpret are presented in this appendix; they result in tangible and perceptible
savings through measurable improvements in software product quality and the
quality of organizational deliverables. To learn about all methods of measure-
ment, I recommend that you study the Institute of Electrical and Electronics
Engineers Standard 982 titled “IEEE Standard Dictionary of Measures to Pro-
duce Reliable Software.”

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

305

APPENDIX H:
QUALITY ASSURANCE
OF DATABASES

Data is the heart of any computer-based application. In fact, a computer itself
is defined as “a data-processing tool.” In most modern applications, the data-
base management system (DBMS) is at the back end, storing data and making
it available to applications for processing. Therefore, it is imperative that the
database has quality built into it and that it is confirmed to have built-in quality.

The primary responsibility of a DBMS is to protect the integrity of the data
that it stores. The following aspects define data quality in DBMS systems:

1. Data consistency—It is possible that the same data item can be stored
in many tables. Examples are key values such as employee ID in a
payroll application, material code in a material management appli-
cation, and customer ID in a marketing application. Such values can
be found in multiple tables across the database. They should all be
defined in the same manner in all the tables, wherever they are de-
fined. This is called data consistency.

2. Data integrity—Data stored inside a DBMS must be protected against
corruption. Data corruption can introduce a wrong value into the
database. Examples include storing a nonexistent employee ID in a
human resources application, a nonexistent material code in a ma-
terial management application, and a nonexistent customer ID in a
marketing application. When such data is introduced, it either causes
the application to fail or it can present the user with wrong results
or information.

J. Ross Publishing; All Rights Reserved

306 Mastering Software Quality Assurance

3. Data redundancy—It is inevitable that some redundancy will occur
when storing data across multiple tables. What must be achieved,
however, is controlled redundancy. When too much data is repeated
in too many tables, the data can lose consistency and integrity. Re-
dundancy must be controlled so as to allow only the key values to be
repeated for the purpose of cross-linking data across tables.

The following scenarios can cause issues with data in databases:

1. Data type—A data item that is used in multiple tables must be de-
fined with the same data type. The following are some examples:
� A numeric data item that is not to be used in computations can

be defined as a numeric data type or a character data type. In
order to allow leading zeros, sometimes these values are defined
as character data types. Key values such as employee ID, material
code, and customer ID can fall under this category. If data is
defined as numeric in the main table, all other tables must follow
this definition.

� A character- (alphanumeric-) type data item also must be consis-
tently defined across all tables. It can be defined as a fixed-length
data item or a variable-length data item, but it is important to use
the same definition across all tables in the database.

� A numeric-type data item also must be defined consistently. There
are many numeric data types, such as:
� Short integer (2 bytes long)
� Long integer (4 bytes long)
� Floating point, single precision (8 bytes long)
� Floating point, double precision (16 bytes long)
� Currency (8 bytes with 2 digits after the decimal point)
� Real (allows imaginary numbers)

� There are many instances in applications where “yes” or “no” type
data is used. These are called flags (also referred to as Boolean
data). Flags can be either numeric (1 or 0) or characters (Y or N,
yes or no). They must be defined consistently across the database.

� Date-type data items can cause confusion. Dates can be used in
computations as well as in comparisons. Computations permitted
on date-type data include finding the difference between two dates
or adding a number of days to a date to arrive at a new date. If

J. Ross Publishing; All Rights Reserved

Appendix H: Quality Assurance of Databases 307

a date is defined at multiple places, it is necessary to define the
data type consistently. Dates can be defined as:
� Short date
� Long date
� Alphanumeric

� Null-type data—This is a special data type, and most databases
treat null in a special way. The records with null attributes can be
ignored during table joins. It is possible to enter null into a numeric
data type definition. Computations and comparisons throw up
errors when they encounter null values. Therefore, careful consid-
eration must be given to whether the default value in a table field
should be null, zero, or a blank character.

2. Data item size—This is one of the most common errors encountered
in software application failures. If a data item is used in multiple
tables, the size—in addition to data type—must be the same. In
numeric data items, the type defines the size, but the length of alpha-
numeric data must be consistent across all tables. For example, if
employee ID is defined as having six characters, it cannot have five
characters in one table and eight characters in another table. It must
be defined as six characters in all tables.

3. Data deletion—Data items might have to be deleted on occasion. For
example, an employee may leave the organization or a customer may
cancel an order. In such cases, deletion of the main record must be
followed by deletion of all dependent records all across the table.
Otherwise, the application might not be able to find connecting in-
formation and might throw up errors or fail.

TECHNIQUES FOR QUALITY ASSURANCE
OF DATABASES

The tools used for quality assurance of databases are the same tools used for
software development: verification and validation.

Database Verification

Definition of database schema (that is, definition of table structures, selection
of data types, respective lengths, etc.) is subject to peer review. It is better to use

J. Ross Publishing; All Rights Reserved

308 Mastering Software Quality Assurance

a group review for verification of database schema, as there are three viewpoints
from which verification is needed:

1. Domain expert point of view—The field definitions can hold the
data efficiently.

2. Database expert point of view—Data redundancy is controlled, and
the schema is optimized for effective and efficient data manipulation
(data entry and retrieval) and fosters data consistency and integrity.

3. Software development point of view—The data types defined in the
database match the data types of the programming language being
used, and that database schema is appropriate for table joins to re-
trieve data from multiple tables.

Because the database schema should be evaluated from these three viewpoints,
a group review is suggested. It also would be better to arrange for a guided group
review, as it facilitates discussion of different viewpoints, resulting in these three
types of experts coming to a common understanding.

Database design needs to be understood as a strategic activity in software
development, as the rest of software development revolves around manipula-
tion and processing of data that is stored inside the database. Therefore, veri-
fication using a guided group review that includes experts from the domain,
database, and programming fields to the assure quality of database schema is
recommended.

Database Validation

Most databases allow the writing of programs for data processing at the database
level. These programs are called by various names, such as stored procedures,
triggers, macros, etc. Database testing involves validating these programs as well
as testing the backup, recovery procedures, and database application program-
ming interfaces, if any. All software code (stored procedures, triggers, macros,
etc.) needs to be subjected to software testing. Since each of these programs is
a single unit and is accessed by the software independently, unit testing is the
right type of testing for these programs, and they should undergo testing as
detailed in Chapter 6.

J. Ross Publishing; All Rights Reserved

309

APPENDIX I:
CODING GUIDELINES

SOME QUOTABLE QUOTES ON CODING

If debugging is the process of removing the bugs, then programming must
be the process of putting them in.

—Edsger Dijkstra

Everything should be made as simple as possible, but not simpler.

—Albert Einstein

Writing compact source files that make full use of C’s shortcut operators has
been a test of manhood for many C programmers. Many C hackers and even
some authors of C books will tell you that you have to use all of C’s features
and write compact but unreadable source files. This is not true: Writing
obscure, tricky programs is good for a hacker’s ego, but unnecessary and
dangerous in serious programming projects.

—William Hunt

I like to think the whole program through at a design level before I sit down
and write any of the code.…The really great programs I’ve written have all
been the ones that I have thought about for a huge amount of time before
I ever wrote them.…Part of our strategy is getting the programmers to think
everything through before they go to the coding phase. Writing the design
document is crucial.…The worst programs are the ones where the program-
mers doing the work don’t lay a solid foundation.…I really hate it when I
watch some people program and I don’t see them thinking.

—Bill Gates

J. Ross Publishing; All Rights Reserved

310 Mastering Software Quality Assurance

A great programmer loves to look at his or her own code and go through
it.…Greatness is the notion of always wanting to simplify, always thinking
you can make it better, and really loving to look at your own code.…There
are some people who, once a thing works, won’t go back and look at it—
that’s a crummy programmer.

—Bill Gates

INTRODUCTION

It is a common occurrence for programmers to leave a project or organization
in the middle of a project; they do so for a variety of personal or professional
reasons. When operating under such conditions, it is imperative that an orga-
nization have an established set of simple coding guidelines for each program-
ming language so that the next programmer can continue the code where the
first programmer left off. Without a set of coding guidelines, an organization
would have to throw away the code written by a programmer who left the
project.

The benefits of establishing a set of coding guidelines include the following:

� It becomes feasible for a different programmer to enhance the code
developed earlier.

� The code written by programmers for one project can be reused by
other programmers in a different project.

� Software maintenance, which is inevitable, is much easier on code
that has been developed using a set of guidelines than it is on code
that was developed without adhering to any guidelines.

� An organization needs to use multiple programmers in a software
project, and coding guidelines assist the organization to achieve uni-
formity in the code produced by all its programmers.

� Code that is written in adherence with coding guidelines can be used
for training new programmers in writing maintainable and reusable
code.

� Coding guidelines ensure a minimum set of quality imperatives, in-
cluding defect prevention and efficiency of execution inside the code.

SCOPE OF THE GUIDELINES

The coding guidelines in this appendix are general in nature and can be tailored
to suit any programming language. In addition, the principles offered here are

J. Ross Publishing; All Rights Reserved

Appendix I: Coding Guidelines 311

useful for any programming language. These guidelines can be used as an overall
coding guidelines document, and all other documents on coding guidelines
would contain only the exceptions to this document specific to a programming
language. Unless stated otherwise in a specific programming guidelines docu-
ment, an organization should follow the guidelines specified in this appendix.

CODE CONSISTENCY GUIDELINES

Naming Conventions

Naming conventions enable the person reading the code to distinguish among
program-defined variables, table fields, file fields, constants, flags, counters, file
names, etc. quickly and to effect necessary enhancements or fix defects.

Currently, most modern programming languages permit long variable names
so that variables can be named meaningfully to reflect their function. However,
long variables increase the statement length and reduce programmer produc-
tivity, as it takes more time to type longer names than it does shorter names.
A balance needs to be struck between meaningfulness and brevity. The guide-
line is that a name must not be shorter than 5 characters and longer than 25
characters.

A three-character prefix is used to denote the type and origin of a name. It
is suggested that a name be preceded by two or three prefixes. These prefixes
are separated by an underscore character. If an underscore character is not
permitted by the programming language, then the first character of each name
segment should be a capital letter.

The following diagram illustrates the naming convention:

XXX_XXX_XXX_XXXXXXXXXXXXXXXXXXXXXXXXX

variable name of necessary length

3rd prefix, if necessary

2nd prefix, if necessary

1st prefix (mandatory)

�

�

�

�

J. Ross Publishing; All Rights Reserved

312 Mastering Software Quality Assurance

Table I.2. Sample of suggested name abbreviations

CUS Customer PWD Password
EMP Employee SAL Salary
ID Identification WST Workstation
LOC Location QTY Quantity
MAT Material AMT Amount
PRJ Project

Table I.3. Sample variable names

Variable name Explanation

txt_userid Text box to receive user ID
cmb_prjname Combo box to contain project names
lvw_matcodes List view to contain material codes
tbl_projects Database table containing project information
fld_prj_prjid Table field in projects table with project ID
nvr_qty_stock Numeric variable of quantity in stock
flg_arrayfull Flag to check if the array is full
ctr_items Counter to count number of items

Table I.1 lists some suggested prefixes and their meaning. These suggested
prefixes do not cover the entire spectrum, and more prefixes can be added,
depending on requirements.

It often might be necessary to abbreviate names in programs. In such cases,
it is suggested that three characters be used when abbreviating names, as shown
in Table I.2. Some examples of variable names are listed in Table I.3.

Table I.1. Sample of suggested prefixes

Code Control Code Control

AVR Alphanumeric variable FLG Flag
CHK Check box LBX List box
CLS Class module LVW List view
CMB Combo box MSG Message box/dialog box
CMD Command button MTD Method
CNS Constant NVR Numeric variable
CTR Counter RBT Radio button
CXN Connection RPT Report
DGR Data grid SBR Subroutine/subprogram
ERM Error message SCR Screen
FGR Flexi grid TBL Table
FLD Table or data file field TXT Text box

J. Ross Publishing; All Rights Reserved

Appendix I: Coding Guidelines 313

If a project needs a different set of naming conventions or if the customer
has specified a naming convention, the names should be recorded in the con-
figuration management plan for the project and then used.

Formatting Source Code

Formatting source code improves readability and ease of understanding. Guide-
lines for formatting the code are as follows.

Identify the Main Statements and the Subordinate Statements

Whenever there are nested control flows (if, while, case, for, etc.), the subor-
dinate statements are indented by moving the left margin of each subordinate
statement one tab character length. The left margin of each subordinate level is
moved to the right one tab. This is illustrated in the following example:

This is the main statement

Any main statements

This is the first level of subordinate statements
Any first-level subordinate statements

This is the second level of subordinate statements

Any second-level subordinate statements
This is the closing statement of second-level subordinate

statements

Any more first-level subordinate statements
This is the closing statement of first-level subordinate statements

Any more main statements

This is the closing of the main statement

This helps programmers to correctly understand the program logic, the order
of execution, and the control flow of the program.

Limit the Length of the Line Such That It Becomes
Easily Readable

Modern programming languages permit longer line lengths—up to 255 char-
acters per line. Similarly, modern visual display units also permit longer lines.
The length of a programming line must be limited to the length of a line per-
mitted by the screen. It should not be necessary to scroll horizontally to read
the program. If longer lines are required, they can be broken down into multiple

J. Ross Publishing; All Rights Reserved

314 Mastering Software Quality Assurance

lines using the statement continue convention permitted by the programming
language. However, the continuation lines must be treated as subordinate state-
ments, as described previously, and their left margin must be offset one tab
character length.

Separate Segments of the Code

Separating the code segments using separators makes it easy to understand the
functionality of the program. The separator should be a commented statement.
The following are some examples, using /* and */ as the beginning and ending
commenting character sets:

/* Begin the case statement to select the appropriate category of the ticket */

/* End the case statement to select the appropriate category of the ticket */

/* Begin the loop for reading all the records in the table */
/* End the loop for reading all the records in the table */

INLINE DOCUMENTATION AND COMMENTING

The logic for each code segment needs to be explained using the commenting
feature of the programming language, so that the people who will maintain the
software later do not have a problem understanding the logic of the program.
Every program should have the following inline documentation:

� Each program should have a header. The header should contain the
following:
� The name of the program
� The name of the organization that developed the program
� The date the coding began on the program
� The functionality achieved by the program
� References to calling programs and the programs called from

this program, if any
� The revision history of the program, including the following:

� The date of modification
� The name of the programmer who made the modification
� A description of the modification

� Each control statement should have an explanation of its purpose
and the expected results.

J. Ross Publishing; All Rights Reserved

Appendix I: Coding Guidelines 315

� Each loop, especially those used for reading all the records from
tables, should have an explanation at the beginning and at the end
of the loop.

� Each subroutine and subprogram should have an explanation of its
purpose and of the parameters required by it. The expected param-
eters that are to be received as well as the values returned by them,
if any, also should be explained.

Commenting Style

� As far as possible, comment and code should not be mixed in the
same line. The comment should precede the statement.

� Keep the length of the commenting line to the length permitted by
the screen. There should be no need to scroll the screen horizontally
to read the comments.

� As far as possible, do not spread the comment across multiple lines.
Each commenting line should be self-contained. If more than one
comment line is required, the # character should be used at the end
of the previous line to indicate that the comment is continued on the
next line. The following is an example of a two-line commenting
statement:

/* Copyright = Company Name # */

/* New York */

Program Header Example

/* Name of the organization */

/* Program ID/Name */
/* Original author = software development organization */

/* Original creation date */

/* Parameter list */
/* Program explanation */

/* IPR rights belong to */

Example of Revision History Documentation

/* Revision history */

/**/

J. Ross Publishing; All Rights Reserved

316 Mastering Software Quality Assurance

/* Programmer Date Description of modification */

/**/

/**/

Example of Loop Control Documentation

/* Purpose = */

/* Entry condition = */
/* Exit condition = */

Special Inline Documentation

Whenever there is complexity in the code, especially when writing long com-
putational statements or a procedure for complex decision making or math-
ematical processing, suitable inline documentation can be included.

Declaration Statements

Declaration statements are used to declare variables and other objects as nec-
essary. The following are guidelines for these types of statements:

1. Declare only one variable or object for each line.
2. Code all declaration statements at the beginning of the program.
3. It is preferable not to mix declarations. Code declarations in groups

in the following order:
a. All integer-type numeric variables
b. All single-precision floating point numeric variables
c. All double-precision floating point variables
d. All date type variables
e. All alphanumeric variables
f. All numeric arrays
g. All alphanumeric arrays
h. All database objects including connections and tables

DEFECT PREVENTION GUIDELINES

The way programs are written can leave loopholes that allow defects to creep
in. The following are some guidelines that can plug loopholes and prevent
defects from creeping in.

J. Ross Publishing; All Rights Reserved

Appendix I: Coding Guidelines 317

Control Statements

Computational statements are one source of defect injection. When control
structures are not used with diligent care, the program execution might not go
through the path the programmers assume it will, leading to erroneous results
or failures. The following guidelines help to ensure that control structures are
properly coded to prevent defects:

1. Using the right control structure will go a long way in preventing
defects. Some guidelines for selecting the right control structure are
as follows:
� Use a “case” structure when multiple courses of action are avail-

able based on the result of one condition that results in multiple
outcomes.

� Use an “if ” control statement when a set of statements has to be
executed only once, depending on one or more conditions.

� Use a “for” loop when the maximum number of iterations ex-
pected for the loop is finite.

� Use a “while” loop when the maximum number of iterations for
the loop is not known beforehand and is dependent on a condi-
tion. There are two kinds of “while” loops; one type checks the
condition at the start of the loop, and the other type checks the
condition at the end of the loop. It is preferable to use the loop
that checks the condition at the start of the loop.

� Avoid using the “goto” structure as much as possible for the
following reasons:
� It leads to free-fall execution of the program, and it is difficult

to predict the course of execution.
� If it results in the program closing, the programmer might not

be able to control the cleanup activities before smoothly clos-
ing the program.

� Ensure that a program has only one entry and one exit only. It
is preferable that the same code segment has the entry point and
exit point. The program execution control is exercised from this
segment to other segments and finally exits from this segment.

2. When using “if” statements, the following precautions are necessary:
� Always code the “else” part of the statement. We may not be able

to see the possibility of program execution traversing the “else”
part, but it can. The conditions in the field are always beyond our
comprehension, and the unthinkable can always happen. There-

J. Ross Publishing; All Rights Reserved

318 Mastering Software Quality Assurance

fore, coding the “else” part of an “if” statement helps to prevent
defects.

� It might become necessary to nest several “if” statements in the
program (that is, inserting another “if” statement within an “if”
statement). In such cases, limit the number of subordinate “if”
statements to a maximum of three levels: one main “if” statement
and two subordinate “if” statements, totaling a maximum of three
“if” statements in one nest. If it becomes necessary to have more
levels, use a “case” structure, break up the program, or look at the
program design again.

3. When using a “while” loop, ensure that the condition has a prob-
ability of becoming true (or false, as the case may be) so that there
is an exit point for the loop. It is very easy to enter an infinite loop
when using a “while” structure. This “while” loop is the one that is
used to read the records from a file or table until the end-of-file
condition is reached. It is easy to forget to move the record pointer
forward in each iteration, which leaves the loop processing only one
record infinitely.

4. When nesting the “while” loops, again limit the nesting to a maxi-
mum of three levels. It is preferable to call a subroutine for each
nesting of a “while” loop than to code all the statements together at
one place. By doing so, the code segment that contains the “while”
loops would be easier to read and maintain.

5. When using the “case” structure, always code the “default” option
(that is, when none of the values mentioned in the “case” structure
is valid). This prevents free-fall execution of the program.

Computational Statements

Computational statements are used to resolve mathematical formulas. Long
computational statements in particular are likely to inject defects in the program
execution. One of the reasons is that the order of processing the arithmetical
operators is difficult to perceive. Second, the results from the computation also
are difficult to predict.

The following guidelines will help to prevent defects that arise from im-
proper coding of computational statements:

1. One of the danger signs is if the denominator in a division operation
becomes zero. This will lead to program failure. Worse still is if both

J. Ross Publishing; All Rights Reserved

Appendix I: Coding Guidelines 319

the numerator and the denominator become zero. When there is a
division operator in an equation, check if the denominator is zero
before performing the division. It is better to perform division on a
stand-alone statement.

2. A problem with precision occurs when multiplying two or more
quantities; check that the variable receiving the result is large enough
to hold it. This issue can be prevented at the design stage by iden-
tifying the largest possible values that can be used in multiplication
and providing variables of appropriate size both in the program as
well as in the database for storage.

3. Writing long computational statements is conducive to injecting
defects in the program. Use the following guidelines:
� Limit the number of sets of parentheses to a maximum of three

(that is, three opening parentheses and three corresponding clos-
ing parentheses).

� Limit the length of each computational statement so that it is
visible without having to scroll the screen horizontally. Instead of
coding a long computational statement, break it down into mul-
tiple computational statements.

� Code “arithmetic division operations” in separate statements as
much as possible, and write a preceding statement that checks if
the denominator is zero.

4. When mixing addition, subtraction, multiplication, and division arith-
metic operators, do not assume operator precedence of the software.
Use parentheses liberally. More importantly, place the addition and
subtraction operations inside parentheses if the mixing of operators
is imperative.

5. Division and sometimes multiplication operations that use floating
point variables cause rounding problems. In such cases, two possibili-
ties exist for prevention of defects:
� Always round off to one or two more digits of precision than

required, and before either presenting the result or storing it,
round off to the required precision.

� Carry out the operation using whole numbers, and convert these
numbers to decimals by dividing by 100 (or 10, 1,000, 10,000,
etc.) for presentation or storage purposes.

6. Duplication of routines is another common cause of errors injected
into code. When the same operations are to be performed in multiple
programs, some programmers code or duplicate the routine. It is

J. Ross Publishing; All Rights Reserved

320 Mastering Software Quality Assurance

always better to code one routine and use it in all places by passing
appropriate parameters to it. This protects the integrity of processing
and prevents defects from creeping in.

7. As far as possible, do not use table or data file fields in computational
statements, especially to receive results of a computation. Always copy
the value of the table or data file field into a variable and then use
it in computations. Similarly, receive the value of the computation
into a variable and then move it to a table or data file field just before
writing it.

8. When rounding off a value, code the statement on a separate line, just
for rounding off the variable. Do not use the rounding function in
combination with a computational statement.

EFFICIENCY GUIDELINES

The following efficiency guidelines help to ensure the efficiency of execution as
well as economize use of computer resources, especially the RAM:

1. Do not declare any variables or constants that do not have a purpose.
It is common practice among programmers to declare a number of
variables, believing that they might be necessary in the program. Avoid
the temptation to declare too many variables; even though the strin-
gency on resource usage is now a thing of the past, occupying too
much RAM is likely to slow down program execution.

2. As far as possible, declare variables as local to the program and use
parameters to pass values to other programs or subprograms. When
variables are declared as local variables, their RAM is released on exit
from the routine. If variables are declared as global variables, they
would hold onto the RAM until execution of the entire set of pro-
grams is stopped.

3. Open files (or database tables) only when required (that is, just before
the file operation statements begin) and close them as soon as the file
operation statements end. Opening a file or database table occupies
a chunk of memory, and it takes the central processing unit time to
keep checking the file status and condition. It also can prevent other
users from concurrently accessing the files or tables.

4. Limit the number of objects that can be kept open concurrently, as
they use large chunks of RAM, which slows down program execution.

J. Ross Publishing; All Rights Reserved

Appendix I: Coding Guidelines 321

5. Do not pack too many controls onto one screen. Instead, divide the
screen into multiple screens. This reduces the burden on RAM usage.

6. As much as possible, do not print directly from the program. Pro-
gram-controlled printing is not very efficient. When printing directly
from the program, the printer functionality needs to be controlled to
trap errors, such as “out of paper,” “out of ink/toner,” “out of power,”
etc. Otherwise, the printer might cause program failure. Unless print-
ing a receipt or ticket that is needed immediately for a waiting cus-
tomer, create print files that can be printed using the operating system’s
print utility, which is much more efficient.

EFFECTIVENESS GUIDELINES

The following guidelines help programmers to ensure that users use the software
effectively:

1. In the case of bulk data processing applications, appropriate control
statistics (such as number of records processed, records included in
the report, control totals, etc.) should be generated on suitable media
and delivered to the user.

2. When coding screens for user input and query, the background and
foreground contrast must be significant to ensure easy readability.

3. Unless the client requests otherwise, the cursor on input screens should
not move from field to field automatically, and when the end-of-field
condition is reached, an audio signal can be generated to alert the
user to the end-of-field condition.

4. Try to use more statements rather than a fewer number of statements
so that the program is easily understood during software mainte-
nance. Whether you code a complex single line or simple multiple
lines, ultimately both will translate to machine instructions, and the
number of machine instructions in both cases will almost be the
same.

TAILORING THE GUIDELINES

These guidelines were prepared as a starting point for you to develop your own
coding guidelines best suited for your organization. You can use these guidelines

J. Ross Publishing; All Rights Reserved

322 Mastering Software Quality Assurance

as they are given here, add to them, modify them, or remove some of them as
it suits your purpose. I suggest that you have guidelines for code consistency,
defect prevention, and efficiency and effectiveness aspects of writing programs
as well as efficiency and effectiveness aspects during program execution.

J. Ross Publishing; All Rights Reserved

323

APPENDIX J:
SAMPLE REVIEW PROCESS

PURPOSE

This document defines the review process for implementation during execution
of projects.

PROCESS DESCRIPTION

The following sections describe the review process.

TYPES OF REVIEWS

Two types of reviews are conducted in the organization:

1. Managerial review
2. Peer review

Managerial Review

A managerial review is conducted by the person who directly supervises the
author of the software artifact. It is conducted prior to approving the artifact
for use in the next stage.

J. Ross Publishing; All Rights Reserved

324 Mastering Software Quality Assurance

Peer Review

A peer or a group of identified peers perform this review. The following persons
are considered to be peers in terms of reviewing each other’s work:

� Team members
� Software project manager and project leader
� Group leader and program manager

The peers may or may not be drawn from the same project team as the author
of the software artifact.

The following persons are not considered to be peers:

� Software project manager and project leader for team members
� Group leader and program managers for software project manager

and project leader
� Approving authority for any artifact
� Direct supervisor for any person

This review methodology is used to uncover the defects and shortcomings in the
software artifact.

CANDIDATES FOR REVIEW PROCESS

The possible candidates for the review process are listed in Table J.1.

MODE OF CONDUCTING A REVIEW

Two modes of conducting a review are approved for the organization: meeting
review and postal review. These are described in the following sections.

Meeting Review

A meeting review is conducted in a meeting, where all the reviewers come
together and conduct the review. The meeting is convened by the requestor of
the review. The reviewers are identified by the author of the artifact in consul-
tation with the software project manager or his or her supervisor. Selection of

J. Ross Publishing; All Rights Reserved

Appendix J: Sample Review Process 325

the reviewers is based on their suitability, availability, and convenience. This
review can be a guided review in which the author presents the artifact and the
reviewers give their feedback. Alternatively, the reviewers can discuss the artifact
and give their feedback. The software project manager, in advance of the meet-
ing, provides the identified reviewers with the following:

Table J.1. Candidates for review

Responsibility for
Software artifact Type of review arranging review

Proposal Peer review Marketing

Software estimation Peer review Marketing

Contract Peer review Marketing

User requirements Peer review Software project manager
specification

Software requirements Peer review and Software project manager
specification managerial review

Software design description Peer review and Software project manager
managerial review

Project plans Peer review Software project manager

Induction training plan Managerial review Software project manager

Source code Peer review Software project manager

Project schedule Managerial review Software project manager

Work breakdown structure Peer review Software project manager

Unit test plan Peer review Software project manager

Integration and system test Peer review and Software project manager
plan managerial review

Acceptance test plan Peer review and Software project manager
managerial review

Corporate training plan Managerial review Head of human resources
department

Standards and guidelines Peer review and Head of quality assurance
managerial review department

Client-supplied documents Managerial review Software project manager

J. Ross Publishing; All Rights Reserved

326 Mastering Software Quality Assurance

1. A copy of the software artifact so that the reviewers can come to the
review prepared

2. The date, time, and venue for the meeting
3. An agenda for the meeting

The identified reviewers meet on the appointed date and time at the selected
venue. Normally one of the reviewers is nominated to coordinate the collation
of review feedback and to close the review report. The review coordinator collates
the feedback given by the reviewers at the end of the review meeting and pro-
vides the review report to the author of the artifact. The author implements the
feedback into the artifact, presents the implementation to the review coordina-
tor, and arranges for closing the review report. The completed review report
becomes part of the project records.

Postal Review

A postal review is conducted by the reviewers at their respective locations. This
review can be conducted by one reviewer or by multiple reviewers. The author
of the software artifact provides the identified reviewer(s) with a copy of the
software artifact.

When a single reviewer is used, the reviewer provides the feedback in the
form of a review report to the author of the artifact. The author implements the
feedback and presents the artifact to the reviewer again. The reviewer verifies
the resolution of the review feedback and closes the review report.

When there are multiple reviewers, a review coordinator is nominated by the
software project manager to collate the review feedback and to close the review
report. The reviewers submit their review feedback to the review coordinator.
The review coordinator collates the feedback from the reviewers and provides
the review report to the author of the artifact. The author implements the
feedback into the artifact, presents the artifact to the review coordinator again,
and arranges for closing the review report. The completed review report be-
comes part of the project records.

MEASUREMENT OF REVIEW PROCESS
PERFORMANCE

The following measurements are carried out to assess the review process
performance:

J. Ross Publishing; All Rights Reserved

Appendix J: Sample Review Process 327

Table J.2. Guidelines for tailoring the review process

Topic Tailoring guidelines

Fast-track projects Will be executed as per the project management
process

Software development projects Nil

Software maintenance projects Nil

1. Defect removal efficiency of the review process
2. Relative effort spent on performing the review process for the project

as well as the organization as a percentage of the total effort spent on
software engineering activities

3. Cost for each defect uncovered in the review process in number of
person-hours spent per defect

TAILORING GUIDELINES

Table J.2 lists the guidelines for tailoring this procedure to projects. Other review
checklists are provided in Tables J.3 through J.7.

J. Ross Publishing; All Rights Reserved

328 Mastering Software Quality Assurance

Table J.3. Checklist for reviewing user requirements specification

Item no. Item Yes/No

1 Are the requirements in compliance with the contract?

2 Have all the requirements been listed?

3 Are there any ambiguous requirements?

4 Is each requirement described completely?

5 Have the requirements been specified consistently throughout the
document?

6 Can the requirements be verified?

7 Has any additional functionality been included beyond the scope
of the contract?

8 Are project management requirements included in the requirements?

9 Is the rationale for any derived requirements satisfactory?

10 Are the specified external interfaces compatible?

11 Are the user interface requirements complete?

12 Can the requirements be tested? Can the requirements be used
directly for validation during acceptance testing?

13 Are the performance requirements adequate and feasible?

14 Have the security requirements been determined?

15 Do any requirements conflict with or duplicate other requirements?

16 Is each requirement written in clear, concise, unambiguous
language?

17 Is each requirement free of content and grammatical errors?

18 Are the time-critical functions identified, and are the timing criteria
for them specified?

19 Have internationalization issues been adequately addressed?

20 Is the format in conformance with the format in the organizational
process?

21 Are all internal cross-references to other requirements correct?

22 Do the requirements provide an adequate basis for software re-
quirement specification?

23 Have algorithms intrinsic to the functional requirements been
defined?

24 Is each requirement in scope for the project?

25 Are all security and safety considerations properly specified?

J. Ross Publishing; All Rights Reserved

Appendix J: Sample Review Process 329

Table J.4. Checklist for reviewing software requirements specification

Item no. Item Yes/No

1 Does the software requirements specification follow the standards
and guidelines stated in the project plan?

2 Is the software architecture optimal for the platform used for
implementation?

3 In the case of products, have the following been specified:

a. System portability to other machines?

b. Interface with existing documents?

c. Interface with existing software and hardware?

4 Does the design of the file or database take into account the
following (wherever applicable):

a. Volume and organization?

b. Access methods (for flat file system)?

c. If indexed, is the index (unique/alternate/secondary)?

d. Record layouts?

e. Integrity checks?

f. Data domain (type, size, range)?

g. Security?

h. Normalization?

5 Does the document identify components such as the following:

a. Reports?

b. Screens?

c. Programs and code components?

6 Do command line procedures and job control procedures exist?

7 Does the document give a complete and accurate description of
external dependencies?

8 Has the design been made flexible to meet future requirements?

9 Is the design of the interface and coupling between modules
complete? Is the coupling data based or process based?

10 In the case of screen design, have the following been verified:

a. Are all input fields included in the screen layout?

b. Are derived data being captured on the screen?

c. Is the layout compatible with the input documents?

J. Ross Publishing; All Rights Reserved

330 Mastering Software Quality Assurance

d. Are the field attributes specified for the screen consistent with
the corresponding field type and length specified in the tables
and files?

e. Is there any usage of special features of the screen design
software?

f. Is the help facility context sensitive?

g. Does the screen design incorporate data validation for input
fields?

h. Does screen navigation follow the organizational graphical user
interface standards?

11 Have all the validations specified in the user requirements been
included?

12 Are the error messages, warnings, and information messages
adequate?

13 Does the software requirements specification include the design
selection rationale?

14 Are the standard operating environments mentioned?

15 Are the software operational procedures or references to them
included?

16 Does the software requirements specification include assump-
tions made?

17 Does software requirements specification include risks factors?

18 For reports, have the following been included:

a. Do the fields specified in the report exist in the database, or
can they be computed?

b. Is the functionality specified in the user requirements specifi-
cation covered in the report?

c. Are the report parameters specified?

d. Is the report sort order specified?

e. Are control statistics designed?

19 Does the software requirements specification include procedures
for security?

20 Does it include procedures for audit?

21 Does it include procedures for fallback?

22 Does it include procedures for backup?

Table J.4. Checklist for reviewing software requirements specification
(continued)

Item no. Item Yes/No

J. Ross Publishing; All Rights Reserved

Appendix J: Sample Review Process 331

Table J.5. Checklist for reviewing software design description

Item no. Item Yes/No

1 Do the programming specifications fulfill the program objectives?

2 Have the common and shared functions been defined?

3 Has each module of the software requirements specification been
included?

4 Have all the exception conditions been handled?

5 Does the design conform to structured methodologies?

6 Are there safeguards against data overflow?

7 Can the program specification be easily coded?

8 Have the loop termination conditions been properly taken care of?

9 Do the nesting conditions conform to standards?

10 Are the modules independent and self-sufficient?

11 Are the test plans developed?

23 Does it include procedures for data restore from backups?

24 Does it include necessary manual procedures?

25 Does it include archival policies?

26 Have periodic processing procedures (for example, daily, monthly)
been included?

27 Have all interfaces between components been identified?

28 Are the interfaces provided easy to use and consistent in format?

29 Have all external user interfaces been identified?

30 Would this document be adequate to be able to proceed with
software design description?

31 Has any additional functionality been included (exceeding the
scope of the contract)?

32 Are all requirements in the user requirements specification in-
cluded in this document?

33 Is any necessary information missing from a requirement? If so,
is it identified as TBD?

34 Is the expected behavior documented for all anticipated error
conditions?

Table J.4. Checklist for reviewing software requirements specification
(continued)

Item no. Item Yes/No

J. Ross Publishing; All Rights Reserved

332 Mastering Software Quality Assurance

12 Are the screen layouts, report layouts, and table and file usage
in the program specifications identical to those specified in the
software requirements specification?

13 Have the error messages been defined?

14 Are the program specifications consistent with the software re-
quirements specification process logic?

Database Design Review: This section provides checks for the design of the database
to ensure that the database design conforms to the standards.

15 Was each entity transformed into a table?

16 Has each attribute been mapped to a field in the database table
of the entity?

17 Has each key field been mapped to an index?

18 Have all foreign keys been specified NOT NULL (if applicable)?

19 Are there any data integrity rules that violate the referential integ-
rity rules of the relational database management system?

20 Have the triggers, events, objects such as stored procedures and
functions, and actions been defined where the relational database
management system supports them?

21 Do all the views have a valid purpose?

22 Have the views that can be updated been correctly designed?

23 Have the free space parameters been set depending on table
size and table use? Has enough free space been specified?

24 Have stored procedures been designed for frequently executed
transactions?

25 Have all the queries been analyzed to determine the most fre-
quently used columns in the DISTINCT, GROUP BY, ORDER BY,
and WHERE clauses?

26 Have all the indexes created been used?

27 Have the bottlenecks in meeting performance requirements been
identified?

28 Does the database implicitly provide for locking?

29 Have time-outs for locks and sessions been optimized?

30 Have the roles and schemas been adequately defined to address
the security issues?

31 Have privileges and authorities, data access control, etc. been
implemented?

Table J.5. Checklist for reviewing software design description (continued)

Item no. Item Yes/No

J. Ross Publishing; All Rights Reserved

Appendix J: Sample Review Process 333

Table J.6. Checklist for code review

Item no. Item Yes/No

1 Has the coding guideline specified in the project plan been ad-
hered to?

2 Is inline documentation adequate?

3 Do naming conventions conform to the configuration manage-
ment plan?

4 Has code been properly formatted?

5 Has a common set of routines been written without duplicating
these routines in different programs?

6 Is there any redundant or trash code?

7 Has any label not been referenced?

8 Have pointers been set to NULL if necessary?

9 Does pointer arithmetic result in pointing to memory that is out
of range?

10 Are all the array indices within bounds?

11 Are all the array indices correctly initialized?

12 Are all the branch conditions correct?

13 Do all loops terminate?

14 Is the condition for terminating a loop realistic?

15 Have the denominators in division operations been checked for
zero before performing the division?

16 Can any statements placed inside a loop be placed outside the
loop?

17 Are there any portions in the code that the thread of execution
never reaches?

18 Are “if” statements nested to more than three levels?

19 Do the actual and formal interface parameters match?

20 Are there any unused variables declared?

21 Has the memory been correctly initialized?

22 Has dynamic memory that has been allocated on entry been
released at all exit points?

23 Do queries on tables enforce the use of indices?

24 Is error status checked after each structured query language
statement?

J. Ross Publishing; All Rights Reserved

334 Mastering Software Quality Assurance

25 Is locking performed prior to updates where necessary?

26 Have the following conditions been checked in expressions:

a. Rounding off?

b. Possibility of division by zero?

27 Will the requirements of response time be met?

28 Is there a better alternative for improving the response times?

29 Have the following checks been performed:

a. Checks for empty table and file?

b. Checks for IO error?

30 Are the error messages clear? Are the error messages adequate?

31 Have all error conditions been trapped and handled?

32 In arithmetic expressions, have the following been addressed:

a. Is the order of processing unambiguous?

b. Is there any need for horizontal scrolling to read the entire
expression?

c. Are all parentheses properly closed? Do they ensure proper
order of processing?

d. Is rounding off performed along with the expression?

e. Is division joined with another expression?

f. Does any expression use table fields or file fields directly in
the expression?

33 In relational expressions, have the following been addressed:

a. Are comparisons between the same types of data?

b. Is it possible to have more than two outcomes for any
expression?

c. Does the expression serve the purpose for which it is used?

d. Is there any need for horizontal scrolling to read the entire
expression?

34 In logical expressions, have the following been addressed:

a. Does the logical expression serve the purpose for which it is
used?

Table J.6. Checklist for code review (continued)

Item no. Item Yes/No

J. Ross Publishing; All Rights Reserved

Appendix J: Sample Review Process 335

b. Does each relational expression used result in a true or false
outcome?

c. Is each relational expression inside a set of parentheses?

d. At any given time, are only two relational expressions compared?

e. Is there any need for horizontal scrolling to read the entire
expression?

35 In file and table operations, have the following been addressed:

a. Are any files or tables opened much sooner than they are
required?

b. Are any files or tables left open when the operations are
completed?

36 In variable declarations, have the following been addressed:

a. Do all the variables declared as global or static really need to
be global or static?

b. Are there any declarations of unnecessary variables?

c. Would any variable name conflict with the key word of the
programming language being used?

d. Is there any hard coding inside the code?

Table J.6. Checklist for code review (continued)

Item no. Item Yes/No

J. Ross Publishing; All Rights Reserved

336 Mastering Software Quality Assurance

Table J.7. Checklist for test plans and test cases

Item no. Item Yes/No

Test Plan Checklist

1 Does the plan reflect the requirements?

2 Have the acceptance criteria for acceptance test plans been
specified?

3 Is the test strategy adequate to uncover all defects?

4 Is a test description available? Does the test description include
the following:

a. Test objectives?

b. Test inputs?

c. Test outputs?

d. Test procedures?

e. Test sequence?

5 Does each test plan list all test requirements, such as test sched-
ule and resources for testing?

Test Cases

1 Does each test case specify the test condition, test procedure,
and expected results?

2 Have the results been recorded in adequate detail?

3 Do test cases for field validations, record validations, and data-
base updates include the following:

a. Valid conditions?

b. Invalid conditions?

c. Unexpected or unusual conditions?

d. Boundary conditions?

4 Do the test cases for reports include the test data along with the
expected output?

5 Have all the business functions been included?

6 Are business functions listed consistent with the description of
equivalent functions in the software requirements specification?

7 Have the criteria for each structural function been stated?

8 Are all requirements traceable to test cases?

J. Ross Publishing; All Rights Reserved

337

APPENDIX K:
SOFTWARE QUALITY
ASSURANCE PLAN

The software quality assurance plan is one of the most important plans that
should be prepared before embarking on a software development project. It is
the project’s charter for achieving quality in the project deliverables.

The following details are recorded in the software quality assurance plan:

1. Standards—Include coding guidelines, design guidelines, testing
guidelines, etc. selected for use in the project. These standards ensure
a minimum level of quality in software development as well as uni-
formity of output from the project resources.

2. Quality control activities—Proposed activities for the project include
code walkthrough, requirements and design review, and tests (unit
testing, integration testing, functional testing, negative testing, end-
to-end testing, system testing, acceptance testing, etc.). Quality con-
trol activities ensure the necessary conformance to quality require-
ments in the project, especially to the three dimensions of quality:
specifications (requirements), software design, and construction.

3. Software metrics—Metrics collected for the project define the de-
sired level of quality for the artifacts developed for the project.

4. Procedures and events that trigger causal analysis—Include fail-
ures, defects, and successes.

5. Audits—To analyze the exceptions in the project so that necessary
corrective and preventive actions are taken to ensure the exceptions
do not recur in the project.

J. Ross Publishing; All Rights Reserved

338 Mastering Software Quality Assurance

6. Institute of Electrical and Electronics Engineers Standard 730—Gives
details on how to prepare a quality assurance plan, including a sug-
gested template.

Each of these aspects is covered in greater detail below.
Details of the following standards should be included in the software quality

assurance plan to guide project personnel in carrying out their assignments
effectively and with the desired levels of productivity and quality:

� Coding standards for the programming languages used in the project
� Database design standards
� Graphical user interface design standards
� Test case design standards
� Testing standards
� Review standards
� Organizational process reference

The following specifications of quality levels (quality metrics) for the project
should be stated in the software quality assurance plan:

� Defect injection rate
� Defect density
� Defect removal efficiency for various quality assurance activities
� Productivity for various artifacts of the project
� Schedule variances

The following quality control activities proposed to be implemented in the
project should be included in the software quality assurance plan:

� Code walkthrough
� Peer review
� Formal review
� Various types of software tests that would be carried out during project

execution, which at a minimum should include the following:
� Unit testing
� Integration testing
� System testing
� Acceptance testing

J. Ross Publishing; All Rights Reserved

Appendix K: Software Quality Assurance Plan 339

The software quality assurance plan should contain measurements for the
defined quality levels, including their periodicity and trigger events. It also should
include the vehicle for conveying to the stakeholders concerned the measure-
ments taken, along with the baselines set for the project. Normally this would
be the weekly status report for the project.

The plan should include the causal analysis that will be carried out for both
positive and negative variances, as well as the schedule for the causal analysis.
The methodology for causal analysis should be described in the plan or a ref-
erence to the organizational causal analysis procedure should be included in it.

It also should contain the schedules for the following audits proposed for the
project:

� Periodic conformance audits
� Phase-end audits
� Investigative audits (and criteria)
� Delivery audits

The software quality assurance plan should state the proposed process im-
provement activities along with the trigger events or periodicity for such process
improvement activities. It also should include the procedure for progress report-
ing to all concerned parties about the status of quality assurance activities imple-
mented in the project. Figure K.1 presents a software quality assurance plan
template.

J. Ross Publishing; All Rights Reserved

340 Mastering Software Quality Assurance

Software Quality Assurance Plan
for Sample Project

Name of the Client

Revision History

Description
Version no. Date of changes Prepared by Approved by

Draft Initial draft XYZ ABC

1.0 First release XYZ ABC

Table of Contents
1. Introduction ... 2
2. References ... 2
3. Definitions and Acronyms .. 2
4. Roles and Responsibilities .. 3
5. Standards and Guidelines ... 3
6. Quality Assurance Activities .. 3
7. Metrics Proposed to Be Collected for the Project 5
8. Tools, Techniques, and Methodologies .. 5
9. Causal Analysis Proposed ... 5

10. Quality Assurance of Subcontracted/Client-Supplied Product 5
11. Training ... 5

Figure K.1. Suggested software quality assurance plan template (page 1 of 5)

J. Ross Publishing; All Rights Reserved

Appendix K: Software Quality Assurance Plan 341

1. Introduction
1.1. Scope
Briefly describe the scope of the plan, the areas of the project addressed by
the plan, etc.

1.2. Objectives
Describe the objectives of the plan.

1.3. Overview
Provide a brief overview of the project and the product.

2. References

Reference Origin Comments

Client/project team/
organizational process/
IEEE standard/etc.

3. Definitions and Acronyms
Describe any definitions and acronyms that are unique to the project.

Term/acronym Definition/full form

4. Roles and Responsibilities
Describe the roles and responsibilities of the people who will perform quality as-
surance activities for the project and indicate approval authorities.

Figure K.1. Suggested software quality assurance plan template (page 2 of 5)

J. Ross Publishing; All Rights Reserved

342 Mastering Software Quality Assurance

5. Standards and Guidelines
List all the standards and guidelines proposed to be used in the project.

Project area Reference to applicable standard or guideline

6. Quality Assurance Activities
List all the quality assurance activities proposed for the project.

6.1. Proposed Reviews for the Project
List all the reviews proposed for the project for each type of artifact.

No. and type
Project artifact Type of review of reviewers

Requirements Guided walkthrough/postal review/
documents meeting review/managerial review

Design documents

Source code

Project plans

Test plans

Test cases

Test results

Table scripts

User documentation

Operations
documentation

Other

6.2. Proposed Testing Strategy for the Project
Describe the test strategy proposed for the project. Include aspects such as se-
lection of testers, test environment, pass/fail criteria, testing completion criteria,
regression testing strategy, usage of testing tools, test case design strategy, intui-
tive testing, etc.

Figure K.1. Suggested software quality assurance plan template (page 3 of 5)

J. Ross Publishing; All Rights Reserved

Appendix K: Software Quality Assurance Plan 343

6.3. Proposed Tests for the Project
List all the proposed tests for the project for each test unit.

Type Who will
Project of tests Test conduct Pass/fail

test unit proposed environment the test criteria

Program Unit test/ Development/ Peer/project
unit integration environment/ leader/software

test/system test environ- project manager/
test/functional ment/target testing team/
test/negative environment/ client/other
test/load test/ other
stress test/
acceptance
test/other

Submodule

Module

Product

Each
customer
release

Product

7. Metrics Proposed to Be Collected for the Project
List all the metrics proposed to be collected, with norms and permitted variance.

Norm for Permitted Periodicity
Metrics the project variance of reporting

Productivity Percentage or Weekly/monthly
absolute value

Quality

Schedule variance

Effort variance

Change

Other

Figure K.1. Suggested software quality assurance plan template (page 4 of 5)

J. Ross Publishing; All Rights Reserved

344 Mastering Software Quality Assurance

8. Tools, Techniques, and Methodologies
Describe the testing tools, testing techniques, and methodologies adopted in the
project for carrying out the quality assurance activities. If automated testing tools
are to be used, then provide a reference to the user guides for the proposed tools.
Methodologies for work allocation, progress reporting, test result evaluation, and
completion of testing also can be described here.

9. Causal Analysis Proposed
Describe the causal analysis and defect analysis to be performed for defects
unearthed during quality assurance activities. Also describe the events and thresh-
old levels that trigger causal analysis.

10. Quality Assurance of Subcontracted/Client-Supplied Product
Describe the methodology to carry out quality assurance activities for the parts of
the software that are to be subcontracted, if any, including the activities and tests
to be carried out. Describe the activities to be carried out on client-supplied product,
if any.

11. Training
Describe the training necessary for carrying out the quality assurance activities
described above and the plan to carry out the quality assurance activities. If these
topics are included in the introduction training program, provide a reference to that
document.

Figure K.1. Suggested software quality assurance plan template (page 5 of 5)

J. Ross Publishing; All Rights Reserved

345

APPENDIX L:
ABBREVIATIONS

CD Compact disk
CEO Chief executive officer
CMM® Capability Maturity Model
CMMI® Capability Maturity Model Integration
CNC Computer numerical control
COTS Commercial off-the-shelf
CPQR Composite product quality rating
DBMS Database management system
DIR Defect injection rate
DRE Defect removal efficiency
EQAR Effectiveness of organizational quality assurance activities rating
ETR Exhaustiveness of testing rating
FP Function point
GUI Graphical user interface
IDE Interactive development environment
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
LOC Lines of code
MTBF Mean time between failures
MTTR Mean time to repair
NC Nonconformance
NCR Nonconformance report
OER Organizational environment rating

J. Ross Publishing; All Rights Reserved

346 Mastering Software Quality Assurance

PL Project leader
PRCR Peer review coverage rating
QA Quality assurance
RAM Random access memory
RDBMS Relational database management system
SCAMPI® Standard CMMI Appraisal Method for Process Improvement
SEI Software Engineering Institute of Carnegie Mellon University
SPM Software project manager
TBD To be determined
TPM Total productive maintenance
TQM Total quality management
UAT User acceptance testing
UTCR Unit testing coverage rating
Y2K Year 2000

J. Ross Publishing; All Rights Reserved

347

INDEX

A
Abbreviations for names, 312
ABC analysis, 290–291
Acceptance plan, 107
Acceptance testing, 72, 120, 147, 178, 291,

296–297
readiness inspection, 107–108, 125

Aesthetics guidelines, 38, 39
Algorithms, 48, 87, 137
Alphanumeric data, 306
Alpha testing, 177
Ancillary functionality, 35, 36–38, 170

verification of, 88
Antivirus software, 7, 176, 278
Appraisers, liability of, 225–226
Arithmetic statements, 48
Atarimae hinshitsu, 17
Auditors, 110, 122, 123, 236, 238

auditing, 227
Audit process, 235–245
Audit report, 116–118, 214
Audits, 18, 34, 68, 69, 70, 71, 75, 86, 89,

110–124, 214, see also specific types
best practices in, 123–124
conformance vs. investigative, 113, 126
internal vs. external, 122–123
NCR, 110–112
periodic vs. phase-end, 113, 115–121, 126
process for, 125
vertical vs. horizontal, 113

Automation, 11
of testing, 183–186

Automobile industry, 8, 287–288
Average defect tardiness, 297–298

B
Bandwidth, 105, 169
Batch manufacturing, 8
Batch processing systems, 135–136, 138
Benchmarking, 31, 33, 34, 36, 64, 177
Best testing, 177, 183
Black box testing, 72, 136, 139–141, 165,

168, 180
Bottom-up approach to process definition,

201, 202, 204
Boundary value analysis, 154–155
Brainstorming, 27, 29, 38, 133
British Standards Institution Standard

BS7925-1, 133
Browsers, 164–165, 167–168
Bug, 42
Build-and-improve prototypes, 132
Business analysts, 27

C
Capability Maturity Model (CMM®), 198,

220, 221, 226
Capability Maturity Model Integration

(CMMI®), 10, 16, 49, 70, 73, 213, 215,
216, 219, 220, 221, 222, 224, 225, 226

definition of institutionalization, 78
definition of validation, 130
definition of verification, 86
QA department and, 18–19

Capacity specification, 26, 27
Central processing unit, 40
Certificate of compliance, 205, 213, 216
Certification, 23, 70, 122, 213, 215–216

criticisms of maturity models, 221–227

J. Ross Publishing; All Rights Reserved

348 Mastering Software Quality Assurance

current paradigms, 217–219
fallacy of, 219–221
internal quality controls and, 18–19
proposed new paradigm for software

quality assurance, 228–233
testing objectives, 145

Certification agencies, 223
Certification audits, 70, 110, 122
Certification models, processes and, 77
Change management, 33
Characteristics, 3
Checklists, 32, 33, 43, 78, 213, 214

for review process, 328–336
Checks and balances, 76–77
Chief executive officer, 20, 21, 62, 63
Chronology, 156
Clarity, verification of, 88
Client machines, 105, 161
Client-server applications, 167
CMM®, see Capability Maturity Model
CMMI®, see Capability Maturity Model

Integration
COBOL, 288, 289
Code libraries, 191
Code review, 333–335
Coding faults, 192
Coding guidelines, 30, 33, 39–41, 44, 309–322

consistency, 311–314
defect prevention, 316–320
effectiveness, 321
efficiency, 320–321
formatting source code, 313–314
inline documentation and commenting,

314–316
naming conventions, 311–313

Commenting, 314–316
Commercial off-the-shelf (COTS) product,

3, 27
quality of, measurement, 48, 49
testing, 169–178, see also Product testing
validation, 131

Comparison testing, 177
Competitive edge, 38
Completeness, verification of, 88
Complex constructs, 39
Compliance, 205, 213, 216
Compliance appraisals, 68
Composite product quality rating (CPQR),

56–60, 195
Comprehensiveness, verification of, 88
Computational statements, 318–320
Conceptual design, 28, 32

Concurrent testing, 153, 171–172
Condition table, 151, 152
Configuration audits, 214
Configuration management, 33
Conformance audits, 113, 126
Conformance process, 49, 50, 51
Conformance quality, 25, 30–31, 34

ensuring, 33–34
GUI guidelines, 263–272

Connectivity, 105
Consistency checking, 156
Consistency of data, 305
Consolidated audit report, 116–118
Constants, 87, 90
Construction audit, 116, 120, 126
Construction faults, 192–193
Construction quality, 196
Consultants, 122
Continuous improvement, 34
Continuous process improvement, 17
Control charts, 9
Control statements, 317–318
Control structures, 87
Core functionality, 35–36, 39, 88
Corrective action, 42, 112, 113
Correctness, verification of, 88
Cost of quality, 15
COTS product, see Commercial off-the-shelf

product
Counters, 45
CPQR, see Composite product quality rating
Critical defects, 42, 43
Crosby, Philip Bayard, 14–16
Customer acceptance, testing objectives, 145
Customer requirements

testing and, 139
testing objectives, 145

Customer satisfaction, 16, 70
Customer sign-off, 168
Customer specifications, verification of, 88
Customer-driven project, 27
Cyclomatic complexity, 288, 289

D
Database management system (DBMS), 305
Databases, 33, 107, 161, 169

opening/closing, 45
QA of, 305–308
size, stress testing, 277

Data consistency, 305
Data deletion, 307
Data failures, 192–193

J. Ross Publishing; All Rights Reserved

Index 349

Data integrity, 305
Data item size, 307
Data redundancy, 306
Data-related stress testing, 276
Data type, 306–307
Data validation, 37, 39, 136, 137
Data volume, 36
Date-type data, 306–307
DBMS, see Database management system
Debugger, 141, 142, 143, 164, 178, 179
Debugging, 42, 47, 48
Declaration of constants, 87
Declaration of variables, 40, 46, 87
Declaration statements, 316
Defect analysis, 146, 200, 289–294, see also

specific topics
ABC analysis, 290–291
category analysis, 289–290
defect injection rate, 292–294
defect removal efficiency for each QA

activity, 291–292
origin analysis, 290

Defect categories, 251–252
analysis, 149

Defect density, 19, 30, 33, 52, 70, 294–295,
296

Defect fixing, trend analysis, 299–300
Defect injection rate (DIR), 33, 70, 81, 149,

249, 292–294, 295, 296
trend analysis, 301

Defect manager software tool, 102
Defect origin analysis, 149
Defect prevention, coding guidelines, 316–320
Defect removal efficiency (DRE), 30, 33,

291–292
Defect reporting, 102, 247–250
Defect resolution, 247–255

average defect tardiness, 297–298
Defect resolution register, 247–250
Defect tardiness, 297–298
Defects, 19, 30, 57, 58, 91, 92, 104, 143, 145

causes of, 190–191
closure/escalation, 146, 148
defined, 42
presence of, 41–44
types of, 41–44

Delivery department, 64, 73
conflict with QA department, 68
position of QA department and, 66–67

Delivery readiness inspection, 108–109, 125
Deming, William Edwards, 11–13
Deployment testing, 175

Design
ensuring quality in, 32–33
validation of, 132–133

Design audit, 116, 126
Design defects, 9, 19
Design documents, verification of, 86
Design faults, 192
Design guidelines, 9, 37, 39
Design quality, 25, 27–29, 34, 195–196

ensuring, 32–33
Design reviews, 9
Design standards, 29, 37, 39
Development quality, 25, 29–30, 34

ensuring, 33
DIR, see Defect injection rate
DIRFT, 15, 17
Discrete manufacturing, 200
Disk space, 169, 277
Documentation, 32, 33, 78, 102, 199–200

audit of, 111–113
inline, 314–316

“Do it right the first time,” 15, 17
Domain experts, 100, 132–133, 308
Doors, 149
Downstream requirements, 89
Downtime, 191
DRE, see Defect removal efficiency

E
Effectiveness

coding guidelines, 321
verification of, 88

Effectiveness of organizational quality
assurance activities, 52, 58, 59

Effectiveness of organizational quality
assurance activities rating (EQAR), 52,
56, 59

Efficiency, 40, 41
coding guidelines, 320–321
of QA activities, 296–297
verification of, 88

Effort analysis, QA, 298–299
E-mail software, 176
Embedded testing, 163–169, see also specific

types
integration testing, 165–167
system testing, 167–168
unit testing, 164–165
user acceptance testing, 168

Employee performance, 80
End-to-end testing, 72, 170–171
Engineering, 28

J. Ross Publishing; All Rights Reserved

350 Mastering Software Quality Assurance

Engineering design, 32
Entry point, 45
EQAR, see Effectiveness of organizational

quality assurance activities rating
Equivalence partitioning, 153–154
Error, 42, 47
Error guessing, 155–156, 257–261
Error handling, 46–47, 136
Esteem functionality, 38, 39
ETR, see Exhaustiveness of testing rating
Event orientation, 44
Event triggers, 69
Event-triggered systems, 136, 174
Executable code, 32
Exhaustiveness of software testing, 54–56,

58, 59
Exhaustiveness of testing rating (ETR), 55–56,

59
Exit point, 45
Expert reviews, 36, 38, 99–100, 102, 125
External audits, 77, 122–123

F
Failure, 42
Failure rate, 191
Fault, 42
Fault tolerance, 42
Fault tolerance functionality, 37, 39
Feedback, 9
Feel-good functionality, 37–38, 39
Files, opening/closing, 40, 45
Final delivery, 108
Finance department, 64
Financial goals, 20
Firewalls, 176
Fitness for use, 3, 14
Flags, 45
Flat files, 45
Flexibility, 40
Flow process manufacturing, 199
Ford Motor Company, 12
Formats, 32, 33, 78, 213, 214
FP, see Function point
Function point (FP), 292, 293, 294, 295
Functional flexibility, 36
Functional testing, 36, 39, 73, 165, 166, 179,

178
Functionality, 35–38, 165, 190

combining, 44
critical defects and, 43
specification, 26, 27
testing objectives, 145

validation of, 129
verification of, 88

G
Glass box standpoint of product quality, 38–41
Glass box testing, 141
Goals, organizational, quality and 20–21
Good manufacturing practices, 200
“Goto” control structure, 46
Graphical user interface (GUI), 136, 137,

153
quality conformance guidelines, 263–272

Group reviews, 95–98, 102, 132
Group walkthroughs, 95–98, 102, 125
GUI, see Graphical user interface
Guided meeting review, 98, 125
Guided walkthroughs, 93, 95, 125
Guidelines, 9–10, 30, 32, 33, 37–39, 75, 78,

90, 179, 213, 214
coding, see Coding, guidelines
conformance to, verification of, 88
development and improvement, 68, 70–71

H
Halstead’s metric, 194, 288–289
Hard coding, 40, 45, 90
Hard disk, 105
Hardware, 105, 107, 137, 138

configuration, 6–7
special, testing with, 138

High-level design, 32
Horizontal audits, 113
Human resources department, 64, 81
Human resources goals, 20

I
IDE, see Interactive development

environment
Implementation, 69
Imported data, 194
Improvement opportunities, 90
Incremental integration, 180
Independent testing, 135
Independent testing department, 68
Independent testing team, 71, 72, 182–183
Independent walkthroughs, 90, 93, 94, 125
India, 10
Industrial engineers, 76, 81
Industry associations, 3–4, 5, 218
Industry standards, 4
Initial life, 6
Inline documentation, 39, 314–316

J. Ross Publishing; All Rights Reserved

Index 351

Inputs, quality of, 8
Inspection, 8, 29, 68, 71, 75, 77, 86, 89,

102–110, 200, 214
acceptance testing readiness, 107–108
best practices in, 109–110
delivery readiness, 108–109
process for, 125–126
system testing readiness, 105–107

Inspection report, 102–105
Install-uninstall testing, 176–177
Institute of Electrical and Electronics

Engineers, 194, 219–220
definition of test case, 146, 150
definition of validation, 130
definition of verification, 85–86

Integration, 116, 165–166
Integration testing, 71, 136, 147, 148, 152,

165–167, 178, 291
best practices in, 180

Integrity of data, 305
Intended use specification, 27
Interactive development environment (IDE),

141, 142, 143, 149, 164, 178, 179
Interface code, 165, 166
Interim delivery, 108
Internal audits, 122
International Organization for

Standardization (ISO)
definition of quality, 2, 198, 218
definition of TQM, 16

Intuiting testing, 143–145
Investigative audits, 113, 126
ISO, see International Organization for

Standardization
ISO 9000, 70, 73, 122, 198, 200, 213, 215,

216, 218, 219, 220, 222, 225
QA department and, 19–20

J
Japan, 10–11, 12

TQM in, 16–17
Job manufacturing, 8
Juran, Joseph Moses, 3, 13–14

K
Kaizen, 17
Kansei, 17
Keyboard stress testing, 275

L
Lambretta, 9
Language-specific coding guidelines, 40

Lead auditor, 122, 124
Libraries, 7, 45, 48, 87, 191
Line length, 47, 313–314
Lines of code (LOC), 292, 293
Load testing, 72, 153, 169, 178
LOC, see Lines of code
Logic coverage, 156
Loop control, 316
Loops, 45
Low-level design, 32

M
Machine-specific constructs, 39–41
Made-to-order, 2
Main functions, 170
Maintainability, 38–39, 41
Maintenance, 6, 47, 58, 190, 191–192
Major defects, 43
Make-to-order product, quality of,

measurement, 48–49, see also
Measurement of product quality

Malicious code, 87, 90
Malicious functionality, verification of, 89
Management

commitment and involvement of, 82–83
QA department as eyes and ears of, 65

Management processes, 211, 214
Managerial guidance, 28, 39
Managerial reviews, 38, 39, 52, 101, 102,

140, 142, 323
Manpower strategy, 75, 76
Manual load testing, 169
Manual parallel testing, 171
Market survey, 27
Marketing concept, 20, 62, 63
Marketing department, 64

goals, 20
Master data, 105, 194
Mathematical processing, 137, 137
Maturity appraisals, 70
Maturity level, 198

rating, 23
Maturity models, 198, see also specific

models
criticisms of, 221–228

Maturity rating, 205, 215, 216, 220
Mayo, Elton, 80
McCabe’s metric, 194, 288, 289
Mean time between failures (MTBF), 6, 7,

287
Mean time to repair (MTTR), 6, 7, 287
Measure-analyze-improve-monitor cycle, 74

J. Ross Publishing; All Rights Reserved

352 Mastering Software Quality Assurance

Measurement and analysis, 68, 73–74, 75, 77
Measurement and metrics, 33, 127, 287–303

average defect tardiness, 297–298
defect analysis, 289–294

ABC analysis, 289–291
defect category analysis, 289–290
defect injection rate, 292–294
defect origin analysis, 290
defect removal efficiency for each QA

activity, 291–292
defect density, 294–295
efficiency of QA activities, 296–297
interpretation of defect density and defect

injection rate, 295–296
review process performance, 326–327
software product quality metric, 288–289

cyclomatic complexity, 288
Halstead’s metric for program difficulty,

288–289
trend analysis, 298–301

data required for quality metrics, 302
defect-fixing effort, 299–300
defect inject rate, 301
QA effort, 298–299

Measurement of product quality, 48–60
CPQR, 56–60
EQAR, 52
exhaustiveness of testing, 54–56
OER, 49–51
PRCR, 52–53
UTCR, 53

Meeting reviews, 98, 125, 133, 324–326
Message-processing systems, 138
Metrics, 18, 30, 31, 33, 194–195, see also

Measurement and metrics; specific
metrics

Microsoft Excel, 150, 299
Microsoft Office, 149
Middleware, 7, 107
Minor defects, 43
Miryoketuki hinshitsu, 17
Mobile applications, 138
Modularity, 40, 41
Monitoring, 206
Motivation, 64, 80
MTBF, see Mean time between failures
MTTR, see Mean time to repair
Multiuser applications, 169

N
Naming conventions, 39, 46, 311–313
Navigation checking, 165, 166

Navigation testing, 153
NCR, see Nonconformance report
NCs, see Nonconformances
Negative testing, 37, 39, 43, 72, 73, 153, 174,

179
guidelines for, 279–285

Network, 105, 162
stress testing, 275

Nonconformance report (NCR), 110–115,
119, 120, 121, 122, 123, 214

Nonconformances (NCs), 69, 110–115, 116,
118, 119, 120, 121, 122, 123, 124, 213

Normal performance, 5, 6
Null-type data, 307
Numeric data, 306

O
OER, see Organizational environment rating
One-upmanship functionality, 38, 39
Online systems, 136–137, 138
Operands, 289
Operating life, 6
Operating system, 7, 105, 167, 191
Operators, 288
Organizational environment, 49–51, 59

that fosters a quality culture, 61–84, see
also specific topics

need for an independent QA department,
62–64

organization of the QA department,
68–76

position of the QA department in the
organization, 66–68

quality and organizational environment,
61–62

rewards and recognition system, 80–82
role of the QA department, 64–66
senior management commitment and

involvement, 82–83
staffing of the QA department, 74–76, 77
well-defined and institutionalized

software development process, 76–80
Organizational environment rating (OER),

49–51, 56, 59
Organizational goals, 20–21
Organizational standards, verification of, 88
Outsourcing, 54, 220

P
Parallel testing, 153, 171
Parameter file, 45
Pareto principle, 139, 290

J. Ross Publishing; All Rights Reserved

Index 353

Peak performance, 5, 6, 80
Peer auditors, 124
Peer review coverage rating (PRCR), 52–53,

56, 59
Peer review coverage of software artifacts,

52–53, 58, 59
Peer reviews, 36, 47, 52, 89–102, 116, 127,

292, 323, 324, see also Walkthroughs
CMMI® definition of, 89–90

Peer testing, 71, 72
Performance level, 5, 6
Performance testing, 176
Period triggers, 69
Periodic audits, 113, 115–119, 123, 126, 214,

236–239, 240
Phase-end audits, 77, 116, 120–121, 124,

126, 127, 214, 239, 241–245
Piloting, 69, 210
PL, see Project leader
Plan-do-check-act cycle, 13
PMPal, 149
Portability, 39–40, 41
Positive testing, 36, 38, 39, 170, 174, 178
Postal review, 90, 93, 94, 96, 97, 125, 133,

326, see also Independent walkthrough
Postcertification reporting requirements, 226
Power outage stress testing, 276
PRCR, see Peer review coverage rating
Precertification audits, 122
Prefixes for names, 311–312
Preventive action, 112, 113
Printer stress testing, 274
Printing, 46
Procedures, 78, 213, 214
Process

components of, 211, 213
defined, 78, 199–200
hierarchy, 214
quality, see Process quality

Process adherence, 199
Process conformance, rating for, 49, 50, 51
Process definition, 34, 199, 201–205

and improvement, 77
Process documentation, 32, 33
Process-driven testing, 145
Process improvement, 69, 70, 201, 206,

208–209
coordination, 77

Process models, 70, 213, 215, see also
specific models

aligning organizational processes with,
205–206, 207

Process quality, 11, 23, 75, 197–216
aligning the process with a process model,

205–206, 207
bottom-up approach to process definition,

201, 202, 204
building quality into the defined process, 215
certification, 213, 215–216
components of a process, 211, 213, 214
evolution of, 197–198
process definition/documentation, 199–200
process improvement, 206, 208–209
process stabilization, 209–211, 212
software development process, 211
top-down approach to process definition,

201–202, 203
Process quality function, 68
Process stabilization, 201, 209–211, 212
Process variation, 16
Product design, 9
Product goals, 20, 21
Product integration, 165–166
Product life, 6
Product metrics, 194
Product quality, 23, see also Software

product quality
Product specifications, 32, see also

Specifications
validating, 133

Product test logs, 58
Product test plans, 58
Product testing, 169–178, see also specific

types
alpha testing, 177
beta testing, 177
comparison testing, 177
concurrent testing, 171–173
deployment testing, 175
end-to-end testing, 170–171
functional testing, 170
install-uninstall testing, 176–177
load testing, 169
negative testing, 174
parallel testing, 171
performance testing, 176
positive testing, 174
regression testing, 175
regulation conformance testing, 177
retesting, 176
sanity testing, 175
security testing, 176
stress testing, 173–174
usability testing, 176

J. Ross Publishing; All Rights Reserved

354 Mastering Software Quality Assurance

user manual testing, 174–175
volume testing, 170

Productivity, 47, 64, 70, 81, 200
Program

defined, 44
length, 44–45

Program difficulty, metric, 288–289
Program quality, 44–48
Programming language, 39
Progress reporting, 146, 148
Project closure, 120
Project configuration register, 108
Project initiation audit, 116, 126
Project leader (PL), 57, 147, 148, 164, 166–167,

324
role in inspection, 107–109
role in walkthrough, 93, 95, 96, 98

Project management, 194–195
Project management office, 73
Project testing, 163–169, see also Testing;

specific topics
integration testing, 165–167
system testing, 167–168
unit testing, 164–165
user acceptance testing, 168

Proposed paradigm for software quality
assurance, 228–233

Prototype, 29, 132

Q
QA, see Quality assurance
Quality, see also Software product quality;

specific topics
concepts of, evolution, 8–11
connotations of, 1–2
defined, 2–3, 4–5

from the standpoint of the provider, 4–5
department, see Quality department
four dimensions of, 25–34

conformance, 25, 26, 30–31, 33, 34
design, 25, 26, 27–29, 32–33, 34
development, 25, 26, 29–30, 33, 34
specification, 25, 26–27, 31–32, 34

gurus, 11–16
Crosby, 14–16
Deming, 11–13
Juran, 13–14

importance of in organizations, 17–20
of inputs, 8
measurement of, see Measurement and

metrics

new paradigm for, 217–233
criticisms of maturity models, 221–228
current certification paradigms, 217–219
fallacy of certifications, 219–221
proposed paradigm, 228–233

organizational environment and, 61–62,
see also Organizational environment
that fosters a quality culture

present scenario in software development
organizations, 23–24

process, see Process quality
reliability and, 5–7
testing objectives, 145

Quality assurance (QA), 9–10, see also
specific topics

of databases, 305–308
efficiency of activities, 296–297
effort trend analysis, 298–299
new paradigm for, 217–233

criticisms of maturity models, 221–228
current certification paradigms,

217–219
fallacy of certifications, 219–221
proposed paradigm, 228–233

specifications and, 31
Quality assurance department, 218, 219

importance given to in organizations,
17–20

need for, 22–23
need for an independent, 62–64
organization of, 68–76
position of in an organization, 66–68
rating for, 49, 50, 51
role of, 64–66

in audit process, 235–245
staffing of, 74–76, 77
senior management commitment and

involvement, 62
Quality assurance plan, 127, 146
Quality assurance processes, 211, 214
Quality champion, 20, 21
Quality control, 8–9, 14, 30, 86, 198
Quality control circles, 10
Quality culture, see Organizational

environment that fosters a quality
culture

Quality department, see Quality assurance
department

Quality goals, 20–21
Quality improvement, 14
Quality improvement teams, 15

J. Ross Publishing; All Rights Reserved

Index 355

Quality manager, 62
Quality metric, 49–60, see also Measurement

and metrics
CPQR, 56–60
EQAR, 52
exhaustiveness of testing, 54–56
OER, 49–51
PRCR, 52–53
UTCR, 53

Quality planning, 14
Quality standards, 17

R
Random access memory, 40, 45, 105, 169

stress testing, 277
Readability, 40–41
Real-time systems, 137, 138
Recertification audits, 122
Redress mechanisms, 226
Redundancy of data, 306
Regression testing, 140, 142, 143, 146, 148,

164, 167, 175
best practices in, 181–182

Regulation conformance testing, 177
Reliability, 5–7, 187–196

causes of software failures, 192–194
data for monitoring, 191–192
defined, 189
improvement of, 195–196
prediction of, 194–195
software disasters, 187–189

Reliability specification, 27
Reports

generation, 176
negative testing guidelines for, 284

Requirements, 2–3
Requirements analysis audit, 116, 126
Requirements documents, 102

verification of, 86
Requirements engineering, 27
Requirements tracing, 157–160
Response time, 176

checking, 160–161
Retesting, 176
Reusability, 40, 41
Reuse of code, 45
Review process, sample, 323–336

candidates for, 324–326
checklists

for code, 333–335
for software design description, 331–333

for software requirements specification,
329–331

for test plans and test cases, 336
for user requirements specification, 328

performance, measurement of, 326–327
process description, 323
purpose, 323
types of reviews, 323–324

Review report, 90, 91–92, 102
Reviews, 29, 36, 37, 39, 43, see also specific

types
Revision history, 315–316
Rewards and recognition

rating for, 49, 50, 51
system for achieving excellence in quality,

80–82
Rework, 64, 149
Right first time, 10, 64
Risk, 130, 131, 149
Robots, 11
Rollout, 69

S
Safety functionality, 36–37
Safety specification, 27
Sampling, 9
Sanity testing, 175
SCAMPI®, see Standard CMMI Appraisal

Method for Process Improvement
Schedule compliance capability, 70
Scientific applications, 137–138
Screens, negative testing guidelines for,

280–283
Security functionality, 36–37, 39
Security software, 105
Security specification, 27
Security testing, 37, 39, 176
Senior management, commitment and

involvement of, 82–83
Servers, 161
Shared libraries, 7
Sigma level, 57–58, 59, 70, 295
Sigma value, 52
Sign-off, 168
Simple constructs, 39
Simulation, 132, 138
Single-shot delivery, 108, 109
Social experts, 100
Software architecture guidelines, 37, 39
Software coding, faults, 192
Software configuration, 6–7

J. Ross Publishing; All Rights Reserved

356 Mastering Software Quality Assurance

Software construction
audit, 116, 120, 126
faults, 192–193
quality, 196, see also Development quality

Software design
audit, 116, 126
description, 331–332
documents, 102
elements of, 28–29
faults, 192
functionality and, 36, 37, 39
quality, 195–196
validation of, 132–133

Software development, elements of, 30
Software development process, 211

audit of, 110, see also Audits
definition and improvement, 68, 69–70
metrics, 195
rating for, 49, 50, 51–52
well-defined and institutionalized, 76–80

Software Engineering Institute (SEI) of
Carnegie Mellon University, 18, 19, 73,
198, 215, 216

Software engineering processes, 211, 214
Software process improvement networks

(SPINs), 73
Software product quality, 35–60, see also

specific topics
defects, presence of, 41–44
functional standpoint, 35–38, 39

ancillary, 36–38, 39
core, 35–36, 39

measurement of, 48–60, see also
Measurement and metrics

CPQR, 56–60
EQAR, 52
exhaustiveness of testing, 54–56
OER, 49–51
PRCR, 52–53
UTCR, 53

metric, 288–289, see also Measurement
and metrics

program quality, 44–48
white box (glass box) standpoint, 38–41

Software project manager (SPM), 72, 147,
148, 149, 164, 166–167, 239

role in audit, 120, 121, 124
role in inspection, 107–109
role in walkthrough, 93, 95, 96, 97, 98

Software quality assurance plan, 127, 146,
337–344

Software requirements analysis audit, 116,
126

Software requirements specification, 329–331
Software size, 194
Software verification and validation plan, 127
Source code, 32, 33, 40, 41, 86–87

guidelines for formatting, 313–314
Specialist auditors, 123, 124
Specifications, 3–4, 25, 32, 39, 195

conformance to, 14–15
design and, 28
ensuring quality in, 31–32
functionality and, 36, 37, 39
quality, 25, 26–27, 34

ensuring, 31–32
validating, 133

SPINs, see Software process improvement
networks

Spooling utilities, 46
Spyware, 7, 176
Stabilization, process, 201, 209–211, 212
Staffing of the QA department, 74–76, 77
Standard CMMI Appraisal Method for

Process Improvement (SCAMPI®), 215
Standards, 9–10, 32, 33, 37, 38, 39, 75, 78,

90, 179, 213, 214, 219–220
conformance to, verification of, 88
design, 29
development and improvement, 68, 70–71
specifications and, 27

Standards bodies, 3–4, 5, 213
Statistical quality control, 9
Strategic goals, 20
Stream testing, 136
Stress testing, 43, 72, 153, 173–174

guidelines for, 273–278
Structured programming, 44–45
Subcontracting, 8
Subject matter experts, 100
Submodules, 165, 166
Subprograms, 45
Subroutines, 45
Support processes, 211, 214
Surveillance audits, 110, 122–123
System configuration change stress testing,

277
System software, 105, 107
System-specific constructs, 48
System testing, 72, 120, 147, 148, 152, 165,

167–168, 291
best practices in, 180–181

J. Ross Publishing; All Rights Reserved

Index 357

System testing readiness inspection, 105–107,
125

Systems analysts, 27

T
Tables, opening/closing, 40, 45
Technical department, 65
Technology experts, 100
Templates, 32, 33, 78, 213, 214
Temporary hiring, 75, 77
Test bed, 137, 138
Test cases, 54, 55, 105, 107, 137, 138, 178,

179, 336
design, 146, 150–161

artifacts that assist in deriving, 152
boundary value analysis, 154–155
condition table, 152
consistency checking, 156
definition format, 150, 151
equivalence partitioning, 153–154
error guessing, 155–156
logic coverage, 156
requirements tracing, 157–160
response time checking, 160–161

for stress testing, 273–278
Test coverage metric, 194
Test data, 107, 136
Test data generator, 170
Test environment, 161–163
Test logs, 179
Test plan, 105, 145, 336,

format for, 146–150
Test plan document, 54
Test strategy, 145–150
Testability, 41
Testing, 8, 9, 29–30, 38, 39, 68, 71–73, 75,

133–186, see also specific types; specific
topics

applicability of industries, 86
automation/tools, 183–186
best practices in, 178–183
black box, 139–141
criteria for successful completion of, 146
different types of software products, 135–138
exhaustiveness of, 54–56
intuitive, 143–145
principles of, 139
process-driven, 145
scenarios, 163–168

product testing, 169–178
project/embedded testing, 163–168

test case design, 145, 150–161
test environment, 161–163
test strategy, 145–150
white box, 141–143

Testing team, 72–73
independent, 182–183

Testing tools, 183–186
TestPal, 150
Third-generation-language programming, 44
Third-party code libraries, 7
Third-party tools, 191
Time sheets, 73
Tool-based load testing, 169
Tool-based parallel testing, 171
Top-down approach to process definition,

201–202, 203
Total productive maintenance (TPM), 20, 62
Total quality management (TQM), 11, 14,

16–17, 20, 62, 63, 198
TPM, see Total productive maintenance
TQM, see Total quality management
Transaction processing, 176
Trash code, 87, 90
Trend analysis, 33, 64, 69, 298–301

defect-fixing effort, 299–300
defect injection rate, 301
QA effort, 298–299

Turnaround time, 176

U
UAT, see User acceptance testing
Unintended use, 37
Unit test logs, 58
Unit test plans, 58
Unit testing, 71, 116, 136, 147, 148, 162,

164–165, 178, 291
best practices in, 179–180

Unit testing coverage of code, 53, 59
Unit testing coverage rating (UTCR), 53, 56,

59
Usability functionality, 37, 39
Usability guidelines, 37, 39
Usability testing, 37, 39, 176
Use-and-discard prototypes, 132
User acceptance testing (UAT), 152, 168
User interface design guidelines, 37, 38, 39
User manual testing, 174–175
User requirements, 27, 31, 32, 57, 132, 157

specification, 328
UTCR, see Unit testing coverage rating
Utilities, 7, 46

J. Ross Publishing; All Rights Reserved

358 Mastering Software Quality Assurance

V
Validation, 64, 129–186, 214

database, 308
definition of, 129–132
of product specifications, 133
of software designs, 132–133
of software product, 133–135
testing, see also Testing

approaches to, 143–150
automation of/testing tools, 183–186
basics of, 139, 143
batch processing systems, 135–136
best practices in, 178–183
environment, 161–163
mobile applications, 138
online systems, 136–137
product, 169–178
project/embedded, 163–169
real-time systems, 137
scenarios, 163–169
scientific applications, 137–138
software simulators, 138
test case design, 146, 150–161
with special hardware, 138

Variables, 90, 288, 312
declaration of, 40, 46, 87

Verification, 43, 64, 85–127, 179, 214, see
also specific topics

audits, 110–124
database, 307–308
defined, 85–86
implementation of activities in projects,

126–127
inspections, 102–110
objectives of, 88–89
process for, 124–126

testing vs., 87
walkthroughs (peer reviews), 89–102

Vertical audits, 113
Vespa, 9
Virtual memory, 45
Viruses, 7, 176
Volume testing, 170

W
Walkthroughs, 86, 89–102, see also specific

types
best practices in, 101–102
expert reviews, 99–100
group, 95–99
guided, 93, 95
independent, 90, 93, 94
managerial, 101
process for, 125
review report format, 90, 91–92

Warranty period, 6, 49, 57–58
Waste, 17
“Watchdog role,” 65, 66
Web applications, 105, 164–165, 167, 169,

173, 175, 176, 180
Web browsers, 7, 164–165, 167–168
Web pages, negative testing guidelines for, 285
Web server, 161
White box standpoint of product quality,

38–41
White box testing, 72, 141–143, 164, 165,

178, 180
Workload, staffing and, 75
World Standards Day, 4

Z
Zero defects, 10, 15, 64

J. Ross Publishing; All Rights Reserved

	Table of Contents

	About the Author

	Chapter 1: Quality Assurance Basics

	Chapter 2: Four Dimensions of Quality

	Chapter 3: Software Product Quality

	Chapter 4: Organizational Environment that Fosters a Quality Culture

	Chapter 5: Software Verification

	Chapter 6: Validation

	Chapter 7: Software Product Quality: Reliability

	Chapter 8: Process Quality

	Chapter 9: New Paradigm for Software Quality

	Appendix A: Audit Process

	Appendix B: Defect Resolution Methodology

	Appendix C: Guidelines for Error Guessing

	Appendix D: Guidelines for Graphical User Interface Quality Conformance

	Appendix E: Guidelines for Stress Testing

	Appendix F: Guidelines for Negative Testing

	Appendix G: Measurement of Quality

	Appendix H: Quality Assurance of Databases

	Appendix I: Coding Guidelines

	Appendix J: Sample Review Process

	Appendix K: Software Quality Assurance Plan

	Appendix L: Abbreviations

	Index

