


Practical Software Project 
Estimation: A Toolkit 

for Estimating Software 
Development Effort & Duration

International Software Benchmarking Standards Group  
Compiled and edited by Peter R. Hill  

New York   Chicago   San Francisco 
Lisbon   London   Madrid   Mexico City 

Milan   New Delhi   San Juan 
Seoul   Singapore   Sydney   Toronto



Copyright © 2011 by International Software Benchmarking Standards Group (ISBSG). All rights reserved. 
Except as permitted under the United States Copyright Act of 1976, no part of this publication may be re-
produced or distributed in any form or by any means, or stored in a database or retrieval system, without the 
prior written permission of the publisher.

ISBN: 978-0-07-171792-2

MHID: 0-07-171792-7

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-171791-5,    
MHID: 0-07-171791-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every 
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefi t of the trade-
mark owner, with no intention of infringement of the trademark. Where such designations appear in this 
book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or 
for use in corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-
hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of 
the possibility of human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not 
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors 
or omissions or the results obtained from the use of such information.

The purpose of this document is to provide information and ideas about estimating software development 
projects. The onus is on the users of the document to assess the suitability of this information for their own 
purposes and to interpret this information accordingly. While every effort has been made to ensure that the 
information in the document is complete and correct, neither the International Software Benchmarking Stan-
dards Group Limited, nor its Members or Directors, accept any liability for any errors or omissions, nor for 
the results of any actions taken or not taken on the basis of the information in this document.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors re-
serve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the 
Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, 
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, 
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You 
may use the work for your own noncommercial and personal use; any other use of the work is strictly pro-
hibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARAN-
TEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RE-
SULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT 
CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESS-
LY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 
McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will 
meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its 
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in 
the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any 
information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be 
liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the 
use of or inability to use the work, even if any of them has been advised of the possibility of such damages. 
This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises 
in contract, tort or otherwise.



www.isbsg.org/subscribe
www.isbsg.org


To Terry Wright, whose foresight  
and enterprise created the ISBSG



About the Editor
Peter Hill is the chief executive officer and a director of the 
International Software Benchmarking Standards Group (ISBSG). He 
has been in the information services industry for more than 40 years, 
with broad experience covering a number of industries working in 
both Australia and New Zealand.

For 12 years from 1982, Peter was the executive director and a 
major shareholder of an Australian software company.

Since selling his interest in the software company, Peter has 
headed up the ISBSG, a not-for-profit organization with a 
membership of 13 countries. Peter has been a speaker at conferences 
in Australia, Asia, Europe, and the USA. He has a number of 
published articles covering key aspects of the information services 
industry. He is a member of the China Software Process Improvement 
Network International Advisory Committee and was a past 
chairman, secretary, and fellow of the Australian Computer Society.

Peter has compiled and edited five books for the International 
Software Benchmarking Standards Group: Software Project Estimation, 
The Benchmark Release 6, The Benchmark Release 8, Practical Project 
Estimation (three editions), and The Software Metrics Compendium.

About the Technical Editor
David Cleary (david.cleary@charismatek.com) is a senior consultant 
with Charismatek Software Metrics in Melbourne, Australia. During 
his 20 years in the IT industry, he has worked in the areas of software 
development, software tool research, tertiary education, and 
software metrics and measurement.

At Charismatek, David provides consultancy and training 
services in Function Point Analysis, software project estimation, and 
benchmarking. He has major interests in the application of 
measurement to new and evolving software delivery technologies 
and in the effective use of software tools for software project 
estimation. He is also actively involved in the ongoing research into 
and development of Charismatek’s Function Point WORKBENCH™ 
software tool.

Over many years David has been involved in the International 
Software Benchmarking Standards Group (ISBSG) as a member of 
its Technical and Product Advisory Committee. He has contributed 
to publications and to tool development including the Practical 
Project Estimation book editions and the Comparative Estimating Tool.

v



Contents at a Glance

	 1	 Project Estimation: Background,  
		    Concepts, and Approaches  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 1

	 2	 Factors That Influence Productivity  . .  .  .  .  .  .  .  .  .  .  .  .  . 	 13

	 3	 Software Estimates: How Accurate Are They?  . .  .  . 	 25

	 4	 Sizing Software and Size-Approximation  
		    Accuracy  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 37

	 5	 Some Practical Software Size  
		    Approximation Techniques  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 47

	 6	 The Problem of Missing Functionality   . .  .  .  .  .  .  .  .  . 	 61

	 7	 Estimating Using Equations  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 65

	 8	 Estimating Using Comparison  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 71

	 9	 Estimating Using Analogy  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 75

	 10	 Estimating Using Work Breakdown Structure  . .  .  . 	 81

	 11	 How Do I Estimate a Project Comprising  
		    Varying Components?  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 87

	 12	 Using Project History Databases  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 89

	 13	 Project Estimation Using the  
		    ISBSG Repository  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 95

	 14	 Estimating for Agile Software Development  . . . . . 	 113

	 15	 A Guide to Estimating Project Cost Using  
		    ISBSG Data  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 127

	 16	 Creating a Software Project Estimation  
		    Framework Using the ISBSG Repository  . .  .  .  .  .  . 	 135

	 17	 Functional Size Measurement Methods  
		    in Use Today  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 145

	 18	 A Brief Tutorial on Functional Size  
		    Measurement (FSM)  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 151

	 19	 An IFPUG Function Point Case Study  . .  .  .  .  .  .  .  .  .  . 	 163

	 20	 The COSMIC Functional Size  
		    Measurement Method  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 171

	 21	 A COSMIC Function Point Case Study  . .  .  .  .  .  .  .  .  . 	 177

	 22	 A FiSMA Function Point Case Study  . .  .  .  .  .  .  .  .  .  .  . 	 181

v



	 vi	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

	 A	 What Is in the ISBSG Repository?  . .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 189

	 B	 Project Delivery Rates by Category  . .  .  .  .  .  .  .  .  .  .  .  .  . 	 217

	 C	 Estimation Equations  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 243

	 D	 Project Sample Demographics  
		    Used in Chapter 3  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 253

	 E	 The Benefits of Submitting Projects  
		    to the ISBSG Repository  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 257

	 F	 ISBSG Member Organizations  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 261

		  Glossary  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 265

		  References  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 279

		  Index  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 283

vii



Contents
Foreword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 xv
Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 xvii
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  	 xix

	 1	 Project Estimation: Background,  
		    Concepts, and Approaches  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 1

Types of Project Requirements  . . . . . . . . . . . . . . . . . . .                  	 1
Functional Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 3
Software Estimation Approaches  . . . . . . . . . . . . . . . . .                	 4
Other Techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 7
Estimate Ranges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 7
Timing of Estimates  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 7
Producing a Detailed Estimate  . . . . . . . . . . . . . . . . . . .                  	 8
Use of Function Point Sizing (Functional Size 

Measurement) in Effort Estimation  . . . . . . . . . . . . .            	 10
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 11

	 2	 Factors That Influence Productivity  . .  .  .  .  .  .  .  .  .  .  .  .  . 	 13
Project Attributes That Influence Project  

Delivery Rate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 14
Are Some Languages Better  

Than Others?  . . . . . . . . . . . . . . . . . . . . . . . . .                        	 14
What Is the Impact of Team Size?  . . . . . . . . . .         	 17

What Other Project Attributes Are Interesting?  . . . . .    	 18
Does the Platform Make a Difference?  . . . . . .     	 18
Development Type  . . . . . . . . . . . . . . . . . . . . . . .                      	 19
Language Type  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 19
Application Type  . . . . . . . . . . . . . . . . . . . . . . . .                       	 19
Application Architecture  . . . . . . . . . . . . . . . . . .                 	 20

Other Project-Specific Characteristics Known  
to Influence PDR  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 20

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 23

	 3	 Software Estimates: How Accurate Are They?  . .  .  . 	 25
What Does “Accurate” Mean?  . . . . . . . . . . . . . . . . . . .                  	 26
The Project Details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 26
A General Picture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 26
Estimation Techniques  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 28
Individual Estimates  . . . . . . . . . . . . . . . . . . . . . . . . . . .                          	 29

vii



	 viii	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

Effort Estimates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 29
Effort Estimation Techniques  . . . . . . . . . . . . . .             	 30

Delivery Date (Project Duration)  . . . . . . . . . . . . . . . . .                	 31
Duration Estimation Techniques  . . . . . . . . . . .          	 32

Cost Estimates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                	 33
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 34

	 4	 Sizing Software and Size-Approximation  
		    Accuracy  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 37

Sizing Accuracy Levels  . . . . . . . . . . . . . . . . . . . . . . . . .                        	 38
Level 6: Size Approximation  . . . . . . . . . . . . . . .              	 39
Level 5: Rough Size Measure  . . . . . . . . . . . . . .             	 39
Level 4: Default Complexity Measure  . . . . . . .      	 39
Level 3: Detailed Measure  . . . . . . . . . . . . . . . . .                	 40
Level 2: Detailed Linked Measure  . . . . . . . . . .         	 40
Level 1: Detailed Linked and  

Labelled Measure  . . . . . . . . . . . . . . . . . . . . . .                     	 40
Classifying Size Approximation Techniques  . . . . . . .      	 43
Size Approximation Accuracy  . . . . . . . . . . . . . . . . . . .                  	 43
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 45

	 5	 Some Practical Software Size Approximation  
		    Techniques  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 47

Direct Size Approximation  . . . . . . . . . . . . . . . . . . . . . .                     	 48
Derived Size Approximation  . . . . . . . . . . . . . . . . . . . .                   	 48

Early Approximation of Functional Size  
Using ISBSG Data  . . . . . . . . . . . . . . . . . . . . .                    	 49

KISS Quick Software Size Estimation Technique  . . . .   	 51
Moving from Basic KISS Quick Approach  

to Other Accuracy Levels  . . . . . . . . . . . . . . .              	 54
Early & Quick Software Size  

Estimation Technique  . . . . . . . . . . . . . . . . . . . . . . . .                       	 55
Early & Quick for COSMIC Function  

Point Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 56
Some Other Examples of Extrapolative  

Approaches to Size Approximation  . . . . . . . . . . . .           	 58
Using Functional Size to Estimate Project  

Effort and Duration  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 58
The Need for Caution  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 59
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 59

	 6	 The Problem of Missing Functionality   . .  .  .  .  .  .  .  .  . 	 61
Identifying Missing Functionality  . . . . . . . . . . . . . . . .               	 61
Managing Changes and Additions  

to Functionality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 63
Scope Management  . . . . . . . . . . . . . . . . . . . . . .                     	 63

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 63



	 C o n t e n t s 	 ix

	 7	 Estimating Using Equations  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 65
ISBSG Regression Equation Tables  . . . . . . . . . . . . . . .              	 65
Using the ISBSG Regression Equations  . . . . . . . . . . . .           	 66
Creating Graphs from the Equations  . . . . . . . . . . . . . .             	 67

Example Effort Estimate Using  
the Equations  . . . . . . . . . . . . . . . . . . . . . . . . .                        	 68

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 69

	 8	 Estimating Using Comparison  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 71
Using the Comparison Technique  . . . . . . . . . . . . . . . .               	 71
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 74

	 9	 Estimating Using Analogy  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 75
Background: Reasoning by Analogy  . . . . . . . . . . . . . .             	 76
Estimating by Analogy  . . . . . . . . . . . . . . . . . . . . . . . . .                        	 76
Advantages of Estimating by Analogy  . . . . . . . . . . . .           	 77
The Drawbacks of Estimating by Analogy  . . . . . . . . .        	 79
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 79

	 10	 Estimating Using Work Breakdown Structure  . .  .  . 	 81
Work Breakdown Structure: Introduction  . . . . . . . . .        	 81
Using Process Models for Micro-Estimation  . . . . . . .      	 83
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 85

	 11	 How Do I Estimate a Project Comprising  
		    Varying Components?  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 87

Subsets Implemented Utilizing Different  
Technologies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 87

Code and Reference Tables  . . . . . . . . . . . . . . . . . . . . . .                     	 87
Subsets Characterized by Technical or  

Other Complexities  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 88
Reused Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 	 88
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 88

	 12	 Using Project History Databases  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 89
Use of an Organization’s Own Experience Data  . . . .   	 89
Use of the ISBSG Data  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 90

The ISBSG Repository  . . . . . . . . . . . . . . . . . . . .                   	 90
Guidelines for Use of the ISBSG Data  . . . . . . . . . . . . .            	 91
Presentation of Statistics  . . . . . . . . . . . . . . . . . . . . . . . .                       	 93

Using Several Estimation Approaches  . . . . . .     	 93
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 93

	 13	 Project Estimation Using the ISBSG  
		    Repository  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 95

Case Study: A Student and Staff Records  
Management System (SSRM)  . . . . . . . . . . . . . . . . . .                 	 95



	 x	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 95
Functional Size Measurement  . . . . . . . . . . . . . .             	 96
Project Work Effort and Duration  

Estimates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 97
Example 1: Estimating Using Regression  

Equations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 	 98
Using Regression Equations to  

Generate Estimates for SSRM  . . . . . . . . . . .          	 98
Regression Equations: Functional Size  . . . . . .     	 98
Regression Equations: Functional  

Size and Maximum Team Size  . . . . . . . . . . .          	 100
Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 102

Example 2: Estimating Using Comparison  . . . . . . . . .        	 102
The Estimating by Comparison  

Technique  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 103
Using Estimating by Comparison  

to Generate Estimates for SSRM  . . . . . . . . .        	 104
Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 106

Example 3: Estimating Using Analogy  . . . . . . . . . . . .           	 107
The Estimating by Analogy Technique  . . . . . .     	 108
Using Estimating by Analogy to  

Generate Estimates for SSRM  . . . . . . . . . . .          	 109
Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 111

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 112

	 14	 Estimating for Agile Software Development  . . . . . 	 113
Estimating an Agile Project  . . . . . . . . . . . . . . . . . . . . . .                     	 114
Story Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  	 115

The Story Point Scale  . . . . . . . . . . . . . . . . . . . . .                    	 115
Calibrating the Story Point Scale Using  

Past Projects  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 116
Development Team Velocity  . . . . . . . . . . . . . . .              	 117
Allocating Story Points to Stories  . . . . . . . . . . .          	 118
Estimating Total Project Schedule and  

Cost at Project Initiation  . . . . . . . . . . . . . . . .               	 121
Allocating Stories to Individual  

Project Iterations  . . . . . . . . . . . . . . . . . . . . . .                     	 122
Reviewing the Process at  

Project Completion  . . . . . . . . . . . . . . . . . . . .                   	 123
Benefits of Agile Software Estimation Using  

Story Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                	 123
Comparing Story Points and  

Function Points  . . . . . . . . . . . . . . . . . . . . . . .                      	 124
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 125



	 C o n t e n t s 	 xi

	 15	 A Guide to Estimating Project Cost Using  
		    ISBSG Data  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 127

Hourly Charge-Out Rate  . . . . . . . . . . . . . . . . . . . . . . . .                       	 128
Internal Project: Building Software for  

Your Own Organization  . . . . . . . . . . . . . . . .               	 128
External Project: Building Software for  

an External Organization  . . . . . . . . . . . . . . .              	 128
Refining Hourly Charge-Out Rate for Project  

Team Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 129
Indexing the Charge-Out Rate for Inflation  

and Currency Movements  . . . . . . . . . . . . . . . . . . . .                   	 130
Additional Cost Considerations  . . . . . . . . . . . . . . . . . .                 	 130

Costing Activities Outside Project  
Development Tasks  . . . . . . . . . . . . . . . . . . . .                   	 130

Costing Effort Contributed by Personnel  
Not Included in the PDR  . . . . . . . . . . . . . . .              	 132

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 132
Additional Steps to Calculate  

Non-PDR-Related Project Costs  . . . . . . . . .        	 133

	 16	 Creating a Software Project Estimation  
		    Framework Using the ISBSG Repository  . .  .  .  .  .  . 	 135

Using the ISBSG PDR Tables to Create Tables  
for Your Estimating Framework  . . . . . . . . . . . . . . .              	 136

Step 1. Identify the Development  
Platforms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 137

Step 2. Extract PDR Distributions  
Based on Development Languages  . . . . . . .      	 137

Step 3. Adjust the Extracted PDR  
Distributions According to Team Size  . . . .   	 138

Step 4. Benchmarking Your  
Projects’ PDR  . . . . . . . . . . . . . . . . . . . . . . . . .                        	 139

Step 5. Construct the Estimation  
Framework  . . . . . . . . . . . . . . . . . . . . . . . . . . .                          	 140

Estimates Are Targets, Not Predictions  . . . . . . . . . . . .           	 141
Calculating a Benchmark Estimate for  

a Planned Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 141
Step 1. Adjust PDR for Team Size  . . . . . . . . . .         	 142
Step 2. Adjust PDR for Project Size  . . . . . . . . .        	 142
Step 3. Adjust PDR for Development  

Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 143
Step 4. Calculate Effort Estimate  

and Consider the Range of  
Probable Values  . . . . . . . . . . . . . . . . . . . . . . .                      	 143

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 144



	 xii	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

	 17	 Functional Size Measurement Methods  
		    in Use Today  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 145

How Many FSM Methods Are There?  . . . . . . . . . . . . .            	 145
Which FSM Method Should I Choose?  . . . . . . . . . . . .           	 148
How Hard Is It to Measure Functional Size?  . . . . . . .      	 148
What Sort of Accuracy Can I Expect from  

an FSM Measurement?  . . . . . . . . . . . . . . . . . . . . . . .                      	 149
The Value of FSM as a Size Measurement  . . . . . . . . .        	 149
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 149

	 18	 A Brief Tutorial on Functional Size  
		    Measurement (FSM)  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 151

ISO/IEC Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 151
What Is Functional Size?  . . . . . . . . . . . . . . . . . . . . . . . .                       	 153

Analogies to Illustrate Functional Sizing  . . . .   	 153
The Key to Functional Size Measurement  

Is to “Think Logical”  . . . . . . . . . . . . . . . . . . . . . . . . .                        	 153
Counting in FSM: An Example Using  

IFPUG Function Points  . . . . . . . . . . . . . . . . . . . . . . .                      	 155
IFPUG Function Point Components  . . . . . . . .       	 155

What Is Involved in IFPUG Function  
Point Counting?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 157

The Logical Boundary  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 159
Where Does Functional Size Fit in with the  

ISBSG and Software Project Estimating?  . . . . . . . .       	 160
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 161

	 19	 An IFPUG Function Point Case Study  . .  .  .  .  .  .  .  .  .  . 	 163
New Development Case Study  . . . . . . . . . . . . . . . . . .                 	 163

Sample Set of User Requirements  . . . . . . . . . .         	 164
Functional User Requirements  . . . . . . . . . . . . .            	 164
Functional Size Measurement Using  

ISO/IEC 20926: 2009 – IFPUG 4.3  . . . . . . . .       	 165
Determining the Functional Size  . . . . . . . . . . .          	 165

Enhancement Case Study  . . . . . . . . . . . . . . . . . . . . . . .                      	 167
Sample Set of User Requirements  . . . . . . . . . .         	 167
Functional User Requirements  . . . . . . . . . . . . .            	 167
Types of Functional Size  . . . . . . . . . . . . . . . . . .                 	 169

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 170

	 20	 The COSMIC Functional Size  
		    Measurement Method  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 171

Overview of the COSMIC Functional  
Size Measurement Method  . . . . . . . . . . . . . . . . . . . .                   	 172

Applicability of the Method  . . . . . . . . . . . . . . . . . . . . .                    	 172



	 C o n t e n t s 	 xiii

The Principles for Measuring the COSMIC  
Functional Size of a Piece of Software  . . . . . . . . . .         	 172

The Process for Measuring the Cosmic  
Functional Size of a Piece of Software  . . . . . . . . . .         	 174

COSMIC Method Documentation  . . . . . . . . . . . . . . . .               	 175
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 176

	 21	 A COSMIC Function Point Case Study  . .  .  .  .  .  .  .  .  . 	 177
Analysis of the Size of the New Software to  

Be Developed  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 177
Analysis of the Size of the Enhancement  

to the Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 179
Overall Size of the Software After  

the Enhancement  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 180
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 180

	 22	 A FiSMA Function Point Case Study  . .  .  .  .  .  .  .  .  .  .  . 	 181
Size Measurement of the New Software to  

Be Developed  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 183
Size Measurement of the Enhancement to  

the Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 185
Overall Size of the Software After  

the Enhancement  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 187
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 187

	 A	 What Is in the ISBSG Repository?  . .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 189
Data Availability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 189
Data Quality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 	 190
What the ISBSG Data Can Be Used For  . . . . . . . . . . . .           	 190

Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 190
ISBSG Project Data Positioning  . . . . . . . . . . . .           	 191
Comparing Apples with Apples  . . . . . . . . . . .          	 191
Selecting a Suitable Data Subset  . . . . . . . . . . . .           	 191

What You Can Find in the ISBSG Repository  . . . . . . .      	 194
Project Origin  . . . . . . . . . . . . . . . . . . . . . . . . . . .                          	 196
Project Context  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 198
Type of Project  . . . . . . . . . . . . . . . . . . . . . . . . . . .                          	 200
Type of Product  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 202
Development Environment  . . . . . . . . . . . . . . . .               	 209
Methods and Tools  . . . . . . . . . . . . . . . . . . . . . . .                      	 213

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 215
Additional Documentation  . . . . . . . . . . . . . . . . . . . . . .                     	 215

	 B	 Project Delivery Rates by Category  . .  .  .  .  .  .  .  .  .  .  .  .  . 	 217
Presentation of Statistics  . . . . . . . . . . . . . . . . . . . . . . . .                       	 218

Explanation of Tables  . . . . . . . . . . . . . . . . . . . . .                    	 218
Use of the Statistics  . . . . . . . . . . . . . . . . . . . . . . .                      	 219



	 xiv	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

Project Delivery Rates  . . . . . . . . . . . . . . . . . . . . . . . . . .                         	 219
Project Delivery Rate by Use of  

CASE Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . .                          	 232
Project Delivery Rate by Use  

of Methodology  . . . . . . . . . . . . . . . . . . . . . . .                      	 233
Project Delivery Rate by Relationship  

Between Customer, Developers, Users  . . . .   	 233
Project Delivery Rate by Project Size  . . . . . . . .       	 234
Project Delivery Rate by Maximum  

Team Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 237
The Impact of Maximum Team Size and  

Project Size on Project Delivery Rate  . . . . .    	 239

	 C	 Estimation Equations  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 243
What Are These Estimates Based On?  . . . . . . . . . . . . .            	 243
Which Equation(s) Should You Use?  . . . . . . . . . . . . . .             	 244
Do These Equations Apply to My Project?  . . . . . . . . .        	 244
What Do the Statistics Mean?  . . . . . . . . . . . . . . . . . . . .                   	 245

	 D	 Project Sample Demographics  
		    Used in Chapter 3  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 253

	 E	 The Benefits of Submitting Projects  
		    to the ISBSG Repository  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 257

How to Submit a Project  . . . . . . . . . . . . . . . . . . . . . . . .                       	 257
A Description of the Project  

Benchmark Report  . . . . . . . . . . . . . . . . . . . . .                    	 258

	 F	 ISBSG Member Organizations  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 261

		  Glossary  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 265
Terms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       	 265
Metrics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      	 277

		  References  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 279

		  Index  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 	 283

xv



Foreword

The 1982 initial estimate for the Central Artery/Tunnel project 
in Boston, MA, was $2.2 billion. Congress approved funding in 
1987 and construction began in 1991. Aptly nicknamed the 

“Big Dig,” the project was plagued with serious miscalculations and 
the budget and time schedule escalated considerably. By 1994, the 
project estimate inflated to almost $10 billion, according to financial 
reports released by the Commonwealth of Massachusetts assessors 
and the Federal General Accounting Office. By early 2000, it became 
publicly known that the project would be well over and above the  
$10 billion limit. While there was much political upheaval and firings, 
the project went on. In the end, the original estimate of $2.2 billion 
ballooned to a final cost exceeding $22 billion, the project lasted  
13 years, and the finished product was characterized by fewer features 
than had been planned, of poorer quality, and at the cost of a life.

In 1996, soon after the first CHAOS University event, we decided to 
run three special focus groups in Boston, Chicago, and San Francisco. In 
these groups, we invited four Fortune 500–type organizations. Each 
organization brought a team of senior IT, financial, and software 
development executives. We asked each team to choose a project and to 
write down on a card their resolution using our triple constraint standard. 
Then we polled each team in turn. One of the team answers was most 
memorable. In this team, the project manager’s card read “successful,” 
the CIO’s card read, “challenged,” and the CFO’s card read, “failed.”

In a follow-up round, we asked the PM why he thought the 
project was successful. He replied that although the project was a 
little late, over budget, and missing some functions, “We got it done.” 
The now visibly irritated CIO said, “I don’t think a million dollars 
over budget and a year late is little.” The CFO replied, “Yes, it cost 
twice as much and took twice as long, but none of that really matters; 
we are just not using the product.” We then went around the table to 
the other organizations to talk about their projects.

In the next round of questions, we came back to the PM to ask if 
he had changed his mind. He had; he considered what the CFO said 
and now felt it was a failed project because it did not deliver a useful 
product. The CFO then said she thought that the PM and the 

xv



	 xvi	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

development organization did their jobs but that it was a failure of 
the organization, so she would now call the project a success because 
it had been completed. The CIO was looking very perplexed and 
bewildered. Shaking his head he said, “I just don’t know, it is not a 
success, but is it a failure? I just don’t know! I am undecided.”

Here we had one project, three people, and six different answers. 
We went through two more rounds of projects, for a total of 36 projects 
in the three focus group sessions. Everyone struggled with defining 
their results. Of the 36 projects tested, there were several that all three 
agreed on, but only one project that all three people said was a success.

Having an accurate project budget is a key component of measuring 
success. You might consider accurate estimates an oxymoron, like jumbo 
shrimp or military intelligence, because the definition of each component 
contradicts the other. Accuracy means conforming closely to some 
standard. It is being precise or having just a very small error of any kind. 
An estimate is calculating approximately the amount, extent, magnitude, 
position, or value of a project. It is an opinion or a rough guess about the 
cost, time, and scope of a project. Therefore, an accurate estimate means 
to have a close guess. With project estimates, as in the game of horseshoes, 
closeness counts. And also like horseshoes, accurate estimates require 
skill, experience, information, and luck for a good outcome.

Yogi Berra once said, “It’s tough to make predictions, especially 
about the future.” Let’s face it, creating accurate predictions for a 
software project is hard. The delta between expectations and reality is 
often disappointment. In developing a more systematic approach 
toward project estimating, you need to face a bit of realism. Truly 
reliable estimates are rare. Profiling one project against others to 
isolate costs is tricky and difficult at best, but this approach is much 
better than many of the alternatives. Having multiple estimation 
techniques is even better. Accurate estimates require good tools, lots 
of historical data, experienced people, and a good to very good 
understanding of the scope of the project.

The Standish Group research shows that only 4 percent of IT 
executives believe their organization is highly skilled at estimating 
software projects. Another 28 percent think they are at least skilled, but 
over two thirds believe this is an area of much needed improvement. In 
this regard, most IT executives believe that there has only been slight or 
no improvement in skills for accurately estimating software projects over 
the last few years. Therefore, our conclusion is that not only are we bad at 
estimating project costs and schedules, we are not getting any better.

We often joke that there are two types of estimates, lucky and 
lousy. Fortunately, this book, Practical Software Project Estimation, can 
help you and your organization improve your software estimates 
and thereby improve your project delivery. Having this great source 
of project cost data provides additional luck, and using this resource 
can make your estimates less lousy.

Jim Johnson, Chairman
The Standish Group

xvii



Acknowledgments

A special thanks to the following companies and individuals 
who contributed to the production of this book:

•	 David Cleary of Charismatek Software Metrics, who was the 
technical editor for the content and was responsible for 
Chapter 13 with the excellent estimating examples and case 
studies and for Chapter 14. David also provided all manner 
of support during compilation and editing.

•	 Pam Morris of Total Metrics for content in Chapters 5 and 6, 
for Chapter 15 on estimating cost, and for reviewing other 
chapters.

•	 Pekka Forselius of 4SUM Partners, Finland, who acted as a 
content planner and reviewer as well as providing valuable 
content, particularly for the chapter on software size 
estimation.

•	 Charles Symons for the COSMIC FSM content and for 
providing a host of valuable suggestions.

•	 Carol Dekkers of Quality Plus Technologies Inc., who 
provided valuable input with content for Chapter 1 plus the 
complete Chapters 18 and 19.

•	 Dr. Chris Lokan of the University of NSW—Australian 
Defence Force Academy (and the principal ISBSG analyst) for 
the estimation analysis, project delivery rate tables, and 
content of Chapter 3.

•	 Luca Santillo of Agile Metrics and Luigi Buglione of the 
Italian Software Metrics Association (ISMA-GUFPI) for 
content for Chapters 5, 10, and 12.

•	 Michael Stringer for his revision work on Chapters 11  
and 16.

•	 Rob Thomsett of The Thomsett Company for allowing the 
use of material from his book Third Wave Project Management.

xvii



	 xviii	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

•	 George Ansell, the ISBSG Repository Manager, for his reviews, 
input, and advice.

The following organizations are sponsors of the ISBSG:

•	 Software Productivity Research

•	 Agile Metrics

•	 Charismatek Software Metrics

•	 Quality Plus Technologies

•	 Total Metrics

•	 4SUM Partners

•	 The Victorian State Government—Australia

ISBSG Member contact details can be found in Appendix F.

xix



Introduction

The Problem
The results reported in the Standish Group’s report “CHAOS 
Summary 2009” showed a marked decrease in project success rates, 
with only 32 percent of projects succeeding; that is, they are delivered 
on time, on budget, with required features and functionality. Forty-
four percent were “challenged,” meaning they were late, over budget, 
and/or had less than the required features and functionality. Twenty-
four percent failed; that is, they were canceled prior to completion, or 
delivered and never used.

This report showed a decrease in the success rates from the 
previous study, as well as a significant increase in the number of 
failures. They were the worst in the last five study periods, with the 
highest failure rate in over a decade.

The Standish reports have identified formal parametric-based 
estimating as one of the key requirements for project success. Capers 
Jones1 reported similar results, identifying formal cost-estimating as 
the leading factor preventing project failures; those projects estimated 
using formal tools and methodologies were twice as likely to succeed 
compared with the projects estimated using informal methods.

Note  Projects estimated using formal tools and methodologies are twice as 
likely to succeed compared with projects estimated using informal methods.

Software development is a risky, complex, and costly process. 
The complexity of the task means that it is difficult to predict 
development effort and schedules.

Where a fee is being charged for the development of software, the 
impact on the business of poor estimates of software development 
effort, schedules, and associated costs is easy to appreciate. Depending 
upon the method of charging, either the IT service provider or the client 
will experience direct, unscheduled, and unexpected financial losses.

1	Capers Jones, Chief Scientist Emeritus SPR, www.SPR.com.

xix

www.SPR.com


	 xx	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

Less obvious is the impact in organizations where no “real” 
money is paid for IT services. However, even in these organizations, 
poor prediction of software costs and other project outcomes will 
impact the business bottom line in a number of ways:

•	 Missed delivery dates can mean lost business.

•	 Resources allocated to a “failing” project can mean lost 
opportunity to progress with other projects.

•	 A canceled project usually means money spent for no 
delivered business value.

•	 Cost overruns, whether against budget or expectations, can 
mean that the business case for IT investment in the project is 
no longer valid.

Consequently, it is important to any business to ensure that 
software development estimates are as accurate as they can be, using 
the information available at the time of estimation. Estimates need to 
be preceded by a thorough risk analysis and then be based on 
measured or quantified experience. The method of derivation should 
be verifiable and defensible. It is also critical—both for the 
organization and the project team—that the effort estimates and 
associated scheduled delivery dates for the software project are 
achievable.

The Solution
Software project estimation is not a black art. There are well-defined 
estimating techniques, project history repositories, and reliable 
estimating equations available. In this book our intention is to provide 
information and practical estimating techniques—primarily based on 
the International Software Benchmarking Standards Group (ISBSG) 
software project history data—that will assist project managers with 
the task of estimating the three key variables that follow the 
establishment of software project requirements, namely: Size, Effort, 
and Duration.

A large part of the content of this book is based on the utilization of 
the project data collected by the ISBSG to produce accurate software 
estimates. At the time of writing, the Development & Enhancement 
Repository contains data from more than 5,000 completed projects 
from around the world.

The complete ISBSG data set is available on the “Estimating, 
Benchmarking & Research Suite,” which can be licensed from www 
.isbsg.org.

This book has been developed for those professionals who 
recognize the need for sound project estimates but who need the 
information and tools to achieve that objective.

www.isbsg.org
www.isbsg.org


	 I n t r o d u c t i o n 	 xxi

Readers are not expected to be knowledgeable of, or proficient in, 
the use of functional size measurement. For those who are interested, 
chapters provide simple explanations and examples of how to use a 
functional size measure. It is important to reference the Glossary to gain a 
clear understanding of the key terms used in this book, for example, 
“project delivery rate,” “speed of delivery,” “functional size,” and so on.

All project managers, professional system developers, and lecturers 
in information technology should find a wealth of useful information 
in this book.

A Map of This Book
The following table helps to quickly identify which chapters to focus 
on to obtain answers to a number of commonly asked questions about 
project estimation, listed in the first column. The second column 
indicates the first chapter to focus upon to obtain answers to the 
question in the first column. The third column indicates any chapters 
that further expand upon the issues described in the chapter referenced 
in the second column.

Question Chapter For Additional Information

How accurate have 
estimates been for 
completed projects?

Chapter 3 Appendix D

How can I get an early 
estimate of software size?

Chapter 5 Chapters 17 to 22

Are there multiple ways of 
estimating? What are they?

Chapter 1 Chapters 6, 7, 8, 9,  
and 10

I know the effort required, 
but can I meet the deadline?

Chapter 7 Appendix C

What if my project contains 
quite different components?

Chapter 11

How can I standardize and 
formalize my estimating?

Chapter 16 Appendix B

Are there existing formulas 
that I can use for my 
estimates?

Appendix C Chapter 7

Are Agile projects different? Chapter 14

Is there a way that I can 
check the completeness of 
requirements?

Chapter 6

What is in the ISBSG 
Repository of project data?

Appendix A Glossary



	 xxii	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

Whether you are looking for a quick indicative estimate for a 
feasibility report; a detailed estimate for a quotation or capital 
expenditure request; or a way to standardize and formalize your 
quoting, this book provides what you need.

This publication has been developed for those professionals who 
face the day-to-day challenge of coming up with credible estimates for 
effort and duration of software projects. Readers are not expected to be 
knowledgeable of, or proficient in the use of, functional size 
measurement. For those who are interested, there are chapters that 
provide simple explanations and examples of how to measure software 
size using a functional size measure.

As well as the professionals who produce estimates, other system 
developers, project managers, students, and lecturers should find a 
wealth of useful information here.



Chapter 1
Project Estimation: 

Background, 
Concepts, and 

Approaches

In this chapter we explain the typical and distinct types of require-
ments that make up a software development or enhancement  
project; the various effort estimation approaches that are covered 

in this book; what is involved in producing a detailed estimate; and 
the use of functional size1 measurement in effort estimation.

Throughout this book we concentrate on estimating the effort 
and duration involved in a software project. Effort and duration 
estimation normally leads to the estimation of cost, so we have 
provided an introduction to cost estimation in Chapter 15.

Types of Project Requirements
Before we delve into the different estimation approaches, it is 
important to understand the different types of requirements that 
make up a project and to be aware of what is, and is not, included in 
the estimation approaches in this book.

The project estimation approaches explained in this book rely on 
the functional size of the software as a key input variable and are 

1 Functional size is the size of the software to be developed. It is expressed in units 
such as function points. The units may vary depending on the chosen functional 
size measurement method (FSMM). Functional size measurement can be 
compared to the measurement of a building being expressed in square meters 
or square feet.

1



	 2	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 :  P  r o j e c t  E s t i m a t i o n 	 3

applicable to projects where software is developed or enhanced.  
This will be explained further after the discussion on types of 
requirements, since not every project that involves software or systems 
is suitable for functional size measurement. Functional size measurement 
pertains specifically to projects where software is developed, modified, 
or enhanced.

To make sense of functional size measurement and where it fits 
with estimating, it is useful to discuss the three types of software 
project requirements. Figure 1-1 shows the different types of software 
project requirements. Elsewhere in this book we will discuss a number 
of ways to establish the functional size of a piece of software without 
needing detailed knowledge of functional sizing.

Note  The word “user” in the context of functional size measurement 
means any person or thing that interacts with the software at any time 
(such as other pieces of software, hardware, end users, and administrators) 
that has a requirement for data or services supported by the software 
being developed.2 This is an important concept because functional size 
measurement can be used to size software that has no human users. For 
example, the software interacts with other software or hardware. It may 
be useful to think of a “user” as analogous to an actor in the Use Case 
methodology. (For other definitions, refer to the Glossary.)

As depicted in Figure 1-1, project requirements can be categorized 
into three distinct types (this breakdown also increases understanding 

2 For a definition of “user” in the context of functional size, refer to ISO/IEC 14143-
1:2007 as (ISO, 2007) standard.

Figure 1-1  Types of software development project requirements

Developer/
Construction
Requirements

1. Functional (User)
Requirements

2. Nonfunctional (User)
Requirements

3. Technical (Build)
Requirements

Software Project
Requirements

User-Driven
Requirements



	 C h a p t e r  1 :  P  r o j e c t  E s t i m a t i o n 	 3

between the users and the project team). The three types of requirements 
are as follows:

•	 Functional requirements  These represent WHAT functions 
will be included in the software. Functional requirements are 
the business processes performed by or supported by the 
software (for example, record and store ambient temperature) 
and include the functions that the software must perform. The 
size of functional requirements is expressed in function points.

•	 Nonfunctional requirements  This is the second type of 
software requirement and represents HOW the software must 
perform. Nonfunctional requirements describe how the 
software must operate and are not included in functional size. 
Sometimes known as “quality requirements,” the nonfunctional 
requirements include suitability, accuracy, interoperability, 
compliance, security, reliability, efficiency, maintainability, portability, 
and quality in use, as described by the ISO (International 
Organization for Standardization) standard ISO/IEC 
(International Electrotechnical Commission) 9126 series, plus a 
range of performance requirements. While these requirements 
should also be defined by the system’s users/customers, they 
are often not articulated separately (or at all), but rather are 
sprinkled throughout requirements documents.

	 The nonfunctional requirements are the contracted 
specifications for the software and include requirements for 
security (for example, data encryption), performance (for 
example, response time and reliability), accuracy (for example, 
governmental approvals required), and other specifications of 
how the software must perform.

•	 Technical (build) requirements  These requirements address 
how the software will be developed or “built” and include 
tools, methods, type of project, resource skill levels, and so on. 
These requirements are where architectural design, configura-
tion management methods, development methodology, use of 
packages, and use of CASE (Computer Aided Software Engi-
neering) tools, for example, come into play. The technical  
requirements include hardware and software requirements,  
infrastructure requirements, database type, and so on.

All three types of project requirements are necessary to produce a 
realistic estimate of the total software project effort.

Functional Size
Knowing the functional size of the software to be developed is 
essential for macro estimation. Chapter 18 provides an introduction 
to functional sizing.



	 4	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 :  P  r o j e c t  E s t i m a t i o n 	 5

Functional size represents the size of the functional requirements. 
Functional size is an important input in software estimation, but it is 
only one of a number of required variables. For a new development 
project, functional size is the size of all of the delivered or installed 
functionality (analogous to a building’s floor plan). For an 
enhancement project, functional size is the total size of all functional 
requirements that are new, renovated (changed), or removed (deleted) 
from the software.

Nonfunctional requirements fall outside functional size. The value 
adjustment factor (VAF)—which is an optional step in the IFPUG 
(International Function Point Users Group) function point method—is 
intended to address a portion of nonfunctional requirements.3 
According to industry experts including Barry Boehm (COCOMO II), 
Watts Humphrey (Software Engineering Institute), and Bill Perry 
(Quality Assurance Institute), the impact of nonfunctional requirements 
can double the effort required to develop software depending on the 
exact constraints involved.

Note  Functional size measurement pertains only to the size of the software’s 
functional user requirements.

Software Estimation Approaches
There are two major software estimation approaches: macro (for 
example, top-down; parametric) and micro (for example, bottom-up; 
task based), although some estimation approaches combine typical 
aspects of both macro and micro techniques. Within each approach 
are several estimating techniques, as shown in Table 1-1.

Note that the estimating techniques listed in Table 1-1 are the 
techniques presented in this book, not a definitive or exhaustive list 
of estimating techniques. Any of the techniques could be used at any 
point in the life cycle. However, the more accurate our estimate of the 
project’s size, the more precise our effort and duration estimates can 
be. The relative precision of our resultant estimates will match the 
precision of our inputs.

Table 1-2 outlines some of the strengths and weaknesses of each 
estimation technique.

Note that all the macro techniques have problems with small 
projects as a result of the greater variation in the ratios of size to effort 
and duration typically seen in smaller projects.

3 Note that the VAF may be phased out in the future and replaced by an alternative 
option.



	 C h a p t e r  1 :  P  r o j e c t  E s t i m a t i o n 	 5

Approach Estimation Technique When Applicable

Macro-
Estimation

Equation Use  In this method, 
the size of the project is applied 
to an appropriate equation 
that has been derived from 
project data. The result is a 
useful indicative, or “ballpark” 
estimate of effort and duration. 
Includes Program Evaluation 
and Review Technique (PERT) 
equations.

Useful when little 
information is known or 
when requirements are 
incomplete. High-level 
estimate.

Comparison  Essentially, this 
involves finding a group of 
completed projects with project 
attributes similar to those of 
the proposed project, and using 
the data from those projects to 
provide a guide for the estimate 
of the effort and duration for 
your new project.

Useful when enough 
project attributes and a 
range for the functional 
size are known. This 
allows the estimator to 
adequately gauge that 
the comparison projects 
are similar.

Analogy  This method is 
based on being able to find a 
completed project that is a very 
good match to your proposed 
project based on its major 
attributes. The project delivery 
rate and speed of delivery 
from the analog are then used 
to guide the estimate of the 
effort and duration for your new 
project.

Useful when even more 
information is known 
about the project 
being estimated. Best 
accomplished after 
requirements are 
complete.

Micro-
Estimation

Work Breakdown  In this 
method, the effort and 
duration associated with each 
component or activity of the 
software project is separately 
estimated and the results 
aggregated to produce an 
estimate of the whole job. This 
is a bottom-up technique.

Useful when the project 
scope is well defined 
and an accurate work 
breakdown structure can 
be defined. Typically, 
experienced project team 
members estimate their 
project tasks based on 
historical completed 
similar tasks, and the 
overall estimate is the 
aggregated sum of all 
work breakdown structure 
task estimates.

Table 1-1  Estimation Approaches and Techniques



	 6	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 :  P  r o j e c t  E s t i m a t i o n 	 7

Technique Strengths Weaknesses

Equation 
Use

Based on a depth of 
historical data.

Ideal for an indicative 
estimate early in the life 
of a project.

Too imprecise for accurate 
estimation.

You need to be confident that 
the equation being used is 
relevant to your project.

The equation always 
provides an estimate, even 
if your project is unusual or 
exceptional.

Not very useful for small project 
estimation.4

Comparison Based on representative 
experience.

Objective, repeatable, 
verifiable, defensible.

Efficient and if used 
correctly, provides a 
good guide to the likely 
effort your project will 
consume.

Based on representative past 
experience that may no longer 
be relevant.

For best results, the technique 
needs to be aligned to your 
environment/organization.

Cannot be used when no past 
experience is available.

Analogy Based on representative 
experience.

Objective, repeatable, 
verifiable, defensible.

Based on a past experience 
that may no longer be relevant.

Difficult to find suitable analog 
projects.

For best results, needs to 
be closely aligned to your 
environment or organization.

Work 
Breakdown

Detailed and specific to 
this project.

Subjective, can be optimistic.

Requires detailed knowledge 
of the proposed project’s 
structure and individual 
components.

Requires extensive knowledge 
of the organization and 
development environment.

May overlook items or 
activities.

Table 1-2  Estimation Techniques Strengths and Weaknesses

4

4 Although there is no specified size as to what constitutes a small project, for a project 
measured in function points, most software metrics consultants agree on a lower 
limit of around 30 function points.



	 C h a p t e r  1 :  P  r o j e c t  E s t i m a t i o n 	 7

Other Techniques
Techniques from artificial intelligence research have also been applied 
to develop software effort estimation models. For example, artificial 
neural networks and decision trees have been used to estimate effort. 
These methods do not require the user to propose an explicit functional 
form for the model, only the input and output metrics. These 
techniques are beyond the scope of this book.

Estimate Ranges
Remember that the earlier an estimate (or if there is little known data, 
a “guesstimate”) is performed, the less accurate it will be. For this 
reason, when relaying an estimate to your customer, you should 
always provide a plus/minus range to accompany the estimate to 
indicate the degree of confidence in the estimate. Your original 
estimate is the most likely estimate, while upper and lower figures 
are generally the optimistic and pessimistic estimates. The Project 
Management Institute’s Project Management Body of Knowledge 
(PMBOK® version 4) provides useful guidance on estimate ranges.

A number of equation approaches can be used to present a 
weighted average of the estimate (examples include PERT, CPM, 
Monte Carlo). The following example uses the Program Evaluation 
and Review Technique (PERT) approach to estimate likely effort for 
individual project activities:

Te = To + 4 Tm + Tp 
              6

where
Te = expected effort
To = most optimistic estimate
Tm = most likely estimate
Tp = most pessimistic estimate

Rather than giving the customer a fixed, single number of effort 
hours, it is far more helpful to state: “Our estimate is 250 hours, plus 
or minus 50 hours, based on what we know about the project at this 
stage.”

Timing of Estimates
Figure 1-2 shows you the impact that your increasing knowledge of 
the system requirements will have on the accuracy of your estimates.

Figure 1-35 is provided to assist you in deciding when particular 
estimating methods are most appropriate in the life cycle of your 
project.

5 Figure 1-3 is supplied by Charles Symons of Software Measurement Services Ltd.



	 8	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 :  P  r o j e c t  E s t i m a t i o n 	 9

All of the macro-estimation techniques presented in this book can 
be applied with both approximate and detailed functional sizing. 
However, as the graph shows, the precision of the resultant estimates 
will improve as the precision of the functional sizing improves.

Producing a Detailed Estimate
To produce a detailed estimate—as opposed to an initial ballpark or 
indicative estimate for feasibility consideration—typically a micro-
estimating technique (for example, work breakdown) will be used to 
develop the effort estimate. A macro-estimating technique can then 
be used to validate the micro-estimate.

Note  Where the macro- and micro-estimates vary by more than 10 to 15 
percent, you should identify why and rework your estimates.

Figure 1-2  The cone of uncertainty

Approx. Functional Sizing
+ Traditional Task-Based
    Estimating

Build

Estimating
Uncertainty

Test Implement
Design

Requirements

Feasibility

Detailed Functional Sizing

Figure 1-3  Estimating methods in the project life cycle

1

2

3

Earliest reasonable
application of an

FS-based
estimating method

(in approximate mode) First fully
informed use of

an FS-based
estimating

method

First fully
informed use of

task-by-task
estimating

Feasibility Requirements Design Build & Unit Test System
Test

Implement

Whole-of-Project Estimating
Methods 

Top-Down

1. Typical FS estimating method
    (when well calibrated)
2. Estimating by analogy

Bottom-Up

3. Task-by-task estimating 

Indicative
uncertainty
(+/–) in whole
project effort
estimate

50%

25%



	 C h a p t e r  1 :  P  r o j e c t  E s t i m a t i o n 	 9

Estimates are best derived from an organization’s own experience 
database. You can build your own experience database by entering 
your project data in the ISBSG Repository.6

If you have not yet established your own “experience” database, you 
can use the ISBSG Repository as your source for macro-estimations.

Note  If you have entered data from your projects into the ISBSG Repository, 
you have the best of both worlds. You can extract your projects to derive 
the project delivery rate (expressed in hours per function point) to be 
used. Then you can extract similar projects from other organizations for 
comparison. The project data from other organizations will be particularly 
useful where you are estimating a project that includes a variable that 
you have no previous experience of, for example: a platform or language 
that you have not used previously.

Functional size7 is only one of the many variables known to 
influence effort, but it is recognized as a key driver. As the functional 
size increases, so does associated effort.

In its simplest form, this relationship is expressed as:

Effort = Size * Project Delivery Rate

where Project Delivery Rate is expressed as Hours per Functional Point 
and hours are effort hours.

If you are using comparison or analog macro-estimation methods,8 
the information shown in Table 1-3 should be included in your set of 
attributes for selecting similar projects.

Use your common sense when matching projects and/or adjusting 
project delivery rates. For example:

•	 If the only similar project identified was negatively impacted 
by the learning associated with the introduction of a new 
technology, but the skills acquired will be utilized by this 
project, then the project delivery rate (PDR) can be expected to 
be better (that is, have a lower PDR) than the similar project.

•	 If this project is similar to a previous project, with the 
exception that you have to provide additional deliverables 
(for example, a user manual), then the project delivery rate 
can be expected to be less productive (that is, higher).

6 Refer to the appendixes for a detailed description of the data in the ISBSG  
Repository. Go to www.isbsg.org for information on how to submit projects for 
inclusion in the Repository.

7 For the estimating examples in this book, the functional size measure used is units 
of function points according to the IFPUG method (FP). Note that all of the IFPUG 
releases use the same units of measure: IFPUG function points. At this printing, 
the most recent IFPUG release is IFPUG 4.3 (published in September 2009). For 
further information visit www.ifpug.org.

8 Both these approaches are covered in detail in Chapter 13 in this book.

www.isbsg.org
www.ifpug.org


	 10	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 :  P  r o j e c t  E s t i m a t i o n 	 11

A commercial estimating tool can be used for estimating using 
industry data or your organization’s experience or knowledge 
database. Be aware that you need to know the basics of software 
project estimating and how your organization supports estimation 
before shopping for an estimating tool.

Use of Function Point Sizing (Functional Size 
Measurement) in Effort Estimation
Functional requirements are sized in function points and are measured 
using a functional size measurement method such as COSMIC 
(Common Software Measurement International Consortium), FiSMA 
(Finnish Software Measurement Association), IFPUG, or NESMA 
(Netherlands Software Metrics Association). Each of these ISO/IEC 
standardized functional size measurement methods has its own units of 
measure and approach to determining functional size. A tutorial on 
functional size measurement can be found in Chapter 18. Simple case 
studies that illustrate the counting of function points are also provided.

Functional size has a role to play in both the macro- and micro-
estimating approaches, as shown in Table 1-4.

Project type Development, Enhancement, or Redevelopment 
(on a new platform).

Size Functional size measurement.

Project goals In terms of quality, cost, schedule, and constraints 
(that is, priority of each). Note that cost, scope 
(functionality and quality), and time (effort) are the 
famous “triple constraint” of project management.

Development platform Mainframe, midrange, PC, or multiplatform.

Language Programming language or language level.

Task selection Similar project profile in terms of activities and 
deliverables from those activities. (Phases and 
work activities included.)

Table 1-3  Attributes for Estimation by Comparison and Analogy

Table 1-4  Use of Functional Size Approximation in Estimation Approaches

Approach Use of Functional Sizing

Macro-estimating Functional size is a key input to most estimating 
equations and project comparisons.

Micro-estimating The functional size allows you to calculate the 
“expected” project delivery rate for comparison 
with past projects.



	 C h a p t e r  1 :  P  r o j e c t  E s t i m a t i o n 	 11

Summary
In this book we explain the three macro-estimation techniques in 
detail and define the data and tools that you need to appropriately 
use these techniques. We also provide an overview of micro-
estimation.

Any technique is only as good as the data and information on 
which it is based. You cannot expect any technique to compensate for 
lack of definition, understanding, or agreement on the scope of the 
software job to be done. Just as a chain is only as strong as its weakest 
link, estimates of effort are only as reliable as the least reliable input 
variable.

And finally: Never rely on a single estimation method for a project. 
The more cross-checks and sanity checks you can employ, the better.



This page intentionally left blank 



Chapter 2
Factors That 

Influence 
Productivity

Throughout this book we talk about project delivery rate (PDR) 
and refer to project attributes or characteristics that might 
influence the PDR that you use for your estimate. (PDR is the 

expression in hours per function point of how long it takes to deliver/
develop functionality.) For the purposes of this book, two groups of 
project attributes will influence your estimates:

•	 Those that the ISBSG has identified and analyzed from its 
project repository data

•	 Those project-specific characteristics that are not recorded in 
a metrics repository

The first group impacts the various estimation techniques covered 
in this book; the latter group—project-specific characteristics—
impacts the adjustment of the estimate you obtain from using the 
techniques in this book, to allow for the peculiarities of your 
organization, environment, and project.

This book does not cover risk analysis, but a detailed risk analysis 
should be undertaken prior to any project estimation. The risk 
analysis may highlight the factors that will influence the adjustment 
that you make to your estimates and the factors that might negatively 
impact the chances of project success.

Note  Formal risk assessment is an essential prerequisite for project 
estimation.

13



	 14	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  2 :   F a c t o r s  T h a t  I n f l u e n c e  P r o d u c t i v i t y 	 15

Project Attributes That Influence Project Delivery Rate
The ISBSG has performed a detailed statistical analysis of the project 
data contained in its repository to identify the project attributes that 
influence productivity, and hence, estimates of effort and duration.

So what are the main factors that can have an impact on PDR? 
Only a few attributes seem to be consistently related to PDR.

Language and team size have been shown to impact PDR.  
Readers will be interested in platform (which reflects the development 
environment) and in the rates achieved by the different  organization 
types and the business areas within organizations. These have been 
analyzed and a summary of the findings follows.

Note  Low project delivery rate means better productivity, fewer hours per 
function point.

Are Some Languages Better Than Others?
A valuable breakdown considers project delivery rate for individual 
languages. The choice of languages tends to be governed by the 
choice of platform (PC, midrange, mainframe, or multiplatform). 
Detailed analysis showed that most languages are concentrated on a 
single type of platform; Java is the only language that is well 
represented on all platforms.

Note  ISBSG research has shown that the primary programming language 
is one of the two factors that have the greatest ability to explain variations 
in project delivery rate (team size1 is the other).

The observations in Tables 2-1 to 2-4 are based on an analysis of 
1,681 projects from the repository (details on how these projects were 
selected are presented in Appendix B).

The project groups analyzed for midrange computers are 
generally smaller, so take care before you jump to a conclusion. The 
main 3GLs are COBOL, C, and Java.

PC projects now include quite a wide range of 3GLs and 4GLs.
For those languages that appear on more than one platform, some 

clear trends can be seen. Mainframe PDR values tend to be 15 hours 
or more per function point. On other platforms, PDR tends to be 8 to 
12 hours per function point. PDR in multiplatform environments is 
generally close to PDR in PC environments, except with traditional 
3GLs such as COBOL and PL/I. These observations probably reflect 
the better tools and interactive development environments available 
on non-mainframe platforms, especially for newer languages.

1	The ISBSG collects data on and reports on Maximum Team Size (refer to the 
Glossary).



	 C h a p t e r  2 :   F a c t o r s  T h a t  I n f l u e n c e  P r o d u c t i v i t y 	 15

Language Findings

Visual Basic Visual Basic projects are spread across a wide range of 
project delivery rates. There are two main groups: about a 
quarter fall into the range from 1 to 5 hours per function 
point, and half into the range from 25 to 32 hours per 
function point. The mean is 25 and the median is 27 hours 
per function point.

Java Java projects range evenly from 3 to 30 hours per function 
point, with half in the range from 11 to 27 hours per function 
point. The median and mean are both about 18 hours per 
function point.

COBOL COBOL projects display a very wide distribution of PDR 
values: the full range from 1 to 80 hours per function point 
is represented. The distribution is skewed, though, with 
smaller values more common. The median is 17 hours 
per function point, and the mean is 23 hours per function 
point.

C/C++ Half of the C projects have PDR values between 8 and  
16 hours per function point. A smaller group ranges from  
22 to 30 hours per function point, and a few are over  
50 hours per function point. The median is 16, and the 
mean is 22 hours per function point. C++ appears worse, 
with no clear pattern and “averages” over 30 hours per 
function point (median 32, mean 34).

Oracle Oracle projects have quite a broad spread, but most PDR 
values are small. Over half are below 7 hours per function 
point; smaller groups are at around 20 and 30 hours per 
function point. The median is 7 hours per function point, 
and the mean is 12 hours per function point.

PL/I Like COBOL projects, PL/I projects have a skewed 
distribution of PDR values, with smaller values more 
common. Almost half lie in the range from 1 to 10 hours 
per function point. Over one-third lie in the range from 
13 to 25 hours per function point. The rest are scattered 
between 25 and 55 hours per function point. Mean and 
median project delivery rates are both about 14 hours per 
function point, but few projects are actually close to that 
value.

Scripting 
languages

Most projects that use scripting languages have PDR 
values below 15 hours per function point, but a few have 
much higher values. The median is 13 hours per function 
point, and the mean is 18 hours per function point.

Table 2-1  Languages – Mainframe Development Environments



	 16	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  2 :   F a c t o r s  T h a t  I n f l u e n c e  P r o d u c t i v i t y 	 17

Table 2-2  Languages – Midrange Development Environments

Language Findings

C/C++ Midrange C projects are similar to C projects on mainframe  
projects, with slightly better PDR in general. The median is 15 hours  
per function point, and the mean is 18 hours per function point. 
Unlike mainframe projects, on this platform C++ is better than 
C, with half in the range from 5 to 9 hours per function point and 
few above 20 hours per function point; the median is 8 hours per 
function point.

Java Though the full range is from 4 to over 70 hours per function 
point, most Java projects lie in the range from 4 to 9 hours per 
function point; 9 hours is the median. 

Oracle Oracle projects range from 2 to 29 hours per function point. Most 
lie between 2 and 10 hours per function point, with median 9 and 
mean 11 hours per function point.

SQL SQL projects vary greatly in range from 4 to 54 hours per function 
point, but most are below 20 hours per function point. The 
median is 13 hours per function point.

Table 2-3  Languages – PC Development Environments

Language Findings

ASP ASP projects range from 2 to 14 hours per function point. Median 
and mean are both 6 hours per function point.

Oracle Oracle projects are spread fairly evenly from 1 to 33 hours per 
function point. The median is 9 and the mean is 10 hours per 
function point. 

SQL SQL ranges from 3 to 12 hours per function point, with an 
average of 5 hours per function point and a median of 4.

C/C++ Again, C projects appear to have better PDR rates than C++ 
projects, but the sample of C projects is small, so this conclusion 
is risky. Treating them as a single combined group, nearly all are 
between 3 and 15 hours per function point. The median is 10 
hours per function point, and the mean is 14 hours per function 
point.

COBOL COBOL ranges widely, from 3 to over 30 hours per function point. 
Almost half are below 6 hours per function point. The rest are 
scattered from 9 to 35 hours per function point. The median is  
10 hours per function point, and the mean is 13 hours per 
function point. 

Visual 
Basic

Visual Basic projects range from 1 to 24 hours per function point, 
but nearly all are below 12 hours per function point. The mean 
and median are both 7 hours per function point.

Java Nearly all Java projects are between 2 and 12 hours per function 
point. The median is 8 hours per function point, and the mean is 
9 hours per function point.



	 C h a p t e r  2 :   F a c t o r s  T h a t  I n f l u e n c e  P r o d u c t i v i t y 	 17

Language Findings

ABAP ABAP projects have a spike (i.e., a most common value) at about 
8 hours per function point; three-quarters are below 15 hours per 
function point. The median is 10 and the mean is 12 hours per 
function point.

C/C++ Most projects lie in the range from 2 to 13 hours per function 
point. The median is 5, and the mean is 10 hours per function 
point. In this environment, C and C++ projects appear 
indistinguishable in terms of PDR (though it must be noted that 
the sample sizes are small).

C# PDR is notably poorer than for C or C++, in this data set. The 
range is 2 to 49 hours per function point, with most projects 
falling between 6 and 26 hours per function point. The mean is 
17 and the median is 14 hours per function point.

COBOL COBOL projects on multiplatforms resemble PC and midrange 
COBOL projects in their spread of PDR values, which is 3 to 
30 hours per function point. This time, though, the values tend 
much more toward the higher end of the range. In terms of PDR, 
multiplatform COBOL projects most closely resemble mainframe 
COBOL projects. The mean is 23 and the median is 20 hours per 
function point.

Java Nearly all Java projects fall between 4 and 10 hours per function 
point. The mean is 7 and the median is 6 hours per function point. 
This is similar to Java projects on midrange and PC platforms.

Lotus Notes These projects are spread from 2 to 12 hours per function point, 
with most at 5 hours or fewer per function point. The median is 4 
and the mean is 5 hours per function point.

PL/I The range of project delivery rates is wide, from 8 to 62 hours per 
function point. Most are between 10 and 25 hours per function 
point; the median is 21 and the mean is 25 hours per function 
point. 

Visual Basic The range of project delivery rates is wide, from 1 to 61 hours per 
function point. Most are between 3 and 15 hours per function point; 
the median is 8 and the mean is 14 hours per function point.

Table 2-4  Languages – Multiplatform Development Environments

What Is the Impact of Team Size?
Maximum team size is known to be one of the most important factors 
that affects PDR. The ISBSG collects data on maximum team size. In 
Appendix B we provide a table that can be used to adjust PDR to 
allow for team size.

Once a team size exceeds five people, productivity decreases. 
Projects with maximum team sizes of five or more have significantly 
higher (worse) project delivery rates than projects with smaller teams. 
If the team size on your project will exceed five, allow for a greater 
range of error in the estimate.



	 18	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  2 :   F a c t o r s  T h a t  I n f l u e n c e  P r o d u c t i v i t y 	 19

What Other Project Attributes Are Interesting?
In addition to the two project attributes that have the most significant 
impact on PDR, some others are worth considering. Project attributes 
like business area, development platform, and so on, have been 
analyzed to see whether they appear to be associated with variations in 
project delivery rate. The analysis was done for each attribute separately. 
They all indicate factors that might be relevant in understanding 
delivery rates. You can do further analysis by using the ISBSG 
“Estimating, Benchmarking & Research Suite” to identify other factors 
that might be relevant to your organization and project.

Does the Platform Make a Difference?
To date, development platform has been the best indicator of the 
environment in which the project is being developed. So the term more 
correctly refers to the whole environment/process, not specifically to 
the hardware platform.

Note  Development platform actually indicates development process 
and environment.

We split platforms into four types: PC, midrange, mainframe, and 
multiplatform. Mainframes have a broad range of project delivery 
rates. PCs show a narrower range of project delivery rate values, 
which reflects good predictability. PC-based projects also show a 
generally lower project delivery rate (that is, fewer hours per function 
point, which should reduce cost and project length). Coincidentally, 
midrange platforms are also midrange in their PDRs, not as good as 
PCs, but better and more predictable than mainframes.

There are two likely reasons for the major differences in produc-
tivity between PC, midrange, and mainframe development projects:

•	 The differences in the development process, such as how the 
software was specified, designed, tested, and documented

•	 The differences in the business environment, such as the 
number of business stakeholders and number of users

The ISBSG performed a detailed analysis of the differences 
between the PC, midrange, and mainframe projects. This analysis 
showed, as one might expect, that mainframe projects had more 
business units involved, and supported a larger numbers of concurrent 
users. Such factors would result in poorer (higher) hours per function 
point values, because of the additional effort required to communicate 
with and obtain input from a larger number of people.

Methodologies
The ISBSG’s analysis revealed that mainframe projects make more 
frequent use of methodologies. The methodologies used on mainframe  



	 C h a p t e r  2 :   F a c t o r s  T h a t  I n f l u e n c e  P r o d u c t i v i t y 	 19

projects are likely to be purchased but then applied with some 
customization. In contrast, PC projects make infrequent use of 
methodologies, and the methodologies that are used on PC projects 
are likely to be written in-house.

Purchased methodologies are almost always comprehensive and 
detailed. Projects that follow them tend to produce a wide range of 
documents, such as specifications, designs, plans, change and issue 
lists, and test cases. In contrast, in-house methodologies tend to focus 
only on key parts of a software project’s life cycle. Projects that follow 
in-house methodologies, or no methodology at all, tend to produce 
fewer documents. A software project that produces fewer documents 
is likely to have a better (lower) hours per function point value than 
a project that produces many documents.

Of course, software projects produce documents in order to 
communicate with multiple business units and to avoid the cost of 
rework resulting from poor specification, design, and planning. So 
there is likely to be a trade-off between project delivery rate and 
defects delivered.2

Development Platform Summary
The PC environment shows the best (that is, lowest) project delivery 
rates of the three platforms. Mainframe environments have the 
highest project delivery rates. Multiplatform environments have 
similar project delivery rates to PCs. If you use the regression 
equations provided in the appendixes, ensure that you choose the 
equations appropriate for the platform/environment that you are 
developing on.

Development Type
Project delivery rates for new developments are significantly differ-
ent from those for enhancements. New developments average 8 to  
12 hours per function point, and enhancements average 12 to 16 hours 
per function point. The difference is probably due to factors other 
than the development type; for example, a much greater proportion 
of enhancements were mainframe projects, whereas new develop-
ments include more PC projects.

Language Type
4GLs as a whole have significantly better (lower) project delivery 
rates than 3GLs.

Application Type
Management information systems (MISs) show better (that is, lower) 
project development rates than do transaction/production systems.

2	Refer to the ISBSG Special Report: Techniques and Tools – Special Report II.



	 20	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  2 :   F a c t o r s  T h a t  I n f l u e n c e  P r o d u c t i v i t y 	 21

Application Architecture
PDR tends to be best for multitier systems and worst for client-server 
systems, with stand-alone systems falling somewhere in between. 
The difference is probably due to factors other than the architecture; 
in particular, in the projects studied here the maximum team size 
happens to be greatest for client-server projects and smallest for 
multitier systems.

Other Project-Specific Characteristics  
Known to Influence PDR
The list of project-specific characteristics known to influence software 
development productivity (and hence total effort) that have not been 
the subject of the ISBSG statistical analysis includes

•	 Intrinsic team skills

•	 Staff experience levels with the technology

•	 Level of technical innovation

•	 Use of contractors/part-time resources

•	 Product performance

•	 Quality attributes required

•	 Budget constraints

•	 Developers’ environment

•	 Stability of requirements

These are some of the project-specific characteristics not included 
directly in the common estimation techniques, but which you must 
take into account when calculating the final total project effort or cost 
estimate.

Several different estimation methods are available that include 
these project-specific characteristics:

•	 COCOMO II: 23 productivity factors

•	 IFPUG value adjusted factor (VAF): 14 factors3

•	 FiSMA ND21 situation analysis for new development: 21 factors

All these methods ask the user to select from a list of the project-
specific characteristics applicable to their project. Based on the 
selected values, the method gives a coefficient figure, which is a 
multiplier for the preliminary effort estimate counted from the 
software size and delivery rate. Table 2-5 shows the lists of productivity 

3	Note that the VAF is likely to be phased out in the future.



	
C

hapter 2: 
Factors That Influence P

roductivity	
21

COCOMO II VAF FiSMA ND21

Project scale factor attributes:
    1. Precedentedness
    2. Development flexibility
    3. Architecture/risk resolution
    4. Team cohesion
    5. Process maturity
    6. Required software reliability
    7. Database size
    8. Product complexity
    9. Develop for reuse
10. Documentation match to life-cycle needs
11. Execution time constraint
12. Main storage constraint
13. Platform volatility
14. Analysis personnel capability
15. Programmer personnel capability
16. Personnel continuity
17. Applications experience
18. Personnel platform experience
19. Language and tool experience
20. Use of software tools
21. Multisite development
22. Required development schedule
23. Other

General system characteristics:
    1. Data communications
    2. Distributed data processing
    3. Performance
    4. Heavily used configuration
    5. Transaction rate
    6. Online data entry
    7. End-user efficiency
    8. Online update
    9. Complex processing
10. Reusability
11. Installation ease
12. Operational ease
13. Multiple sites
14. Facilitate change

Project organizational factors:
    1. Involvement of the customer representatives
    2. �Performance and availability of the 

development environment
    3. Availability of IT staff
    4. Number of stakeholders
    5. Pressure on schedule
Process factors:
    6. Impact of standards
    7. Impact of methods
    8. Impact of tools
    9. Level of change management
10. Maturity of software development process
Product quality factors:
11. Functionality requirements
12. Reliability requirements
13. Usability requirements
14. Efficiency requirements
15. Maintainability requirements
16. Portability requirements
People factors:
17. Analysis skills of staff
18. Application knowledge of staff
19. Tool skills of staff
20. Experience of project management
21. Team skills of the project team

Table 2-5  Comparison of Popular Productivity Analysis Methods (continued)



	
22 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
C

hapter 2: 
Factors That Influence P

roductivity	
23

COCOMO II VAF FiSMA ND21

Ratings: VL/L/N/H/VH/XH
The meaning of each choice per factor is 
explained in Barry Boehm’s book.4

Ratings: 
0 = Not present, or no influence
1 = Incidental influence
2 = Moderate influence
3 = Average influence
4 = Significant influence
5 = Strong influence throughout
The guidelines on how to determine 
degree of influence are explained 
in the IFPUG “Counting Practices” 
manuals.5

Ratings: 
- - = Circumstances much worse than in average
– = Worse than in average
+/– = Normal situation
+ = Circumstances better than in average
++ = Much better than in average
The meaning of each choice per factor is 
explained in the FiSMA method definition 
document.6

Coefficient: The exact value of each choice 
per factor shall be calibrated by the user. 
The variance of coefficient depends on the 
calibration.

Coefficient: 0.65–1.35 Coefficient: 0.5–2.5 in practice, but theoretically 
between 0.1 and 15. Exact values of each choice 
per factor vary between 0.88 and 1.14, based on 
experience database.

Table 2-5  Comparison of Popular Productivity Analysis Methods

 4 5 6 

4	Software Cost Estimation with COCOMO II, Barry Boehm et al (Prentice Hall).
5	ISO/IEC 20926: Information Technology – Function Point Counting Practices Manual, ISO/IEC, 2003.
6	Finnish Software Measurement Association, FiSMA ry, FiSMA Specification for ND21 available at:  

www.fisma.fi/in-english/methods.

www.fisma.fi/in-english/methods


	 C h a p t e r  2 :   F a c t o r s  T h a t  I n f l u e n c e  P r o d u c t i v i t y 	 23

factors for three commonly used methods. Note that COCOMO II is 
an effort/duration estimation technique where size along with many 
other factors is a key input, whereas IFPUG and FiSMA are sizing 
techniques that provide methods that adjust the counted size, not the 
likely productivity.

Some of the methods that analyze project-specific productivity 
factors cover the impact of code reuse with a single question. If the 
impact of reuse is a key issue for your projects, then you should 
evaluate which methods best address the inclusion of reuse.

Summary
Two project characteristics have the most impact on PDR: program-
ming language and team size. Other project characteristics that can 
have an impact include development platform/environment, devel-
opment type, application type, and application architecture. Having 
established a PDR for your estimate using the ISBSG data, you should 
then adjust it to reflect your specific environment.



This page intentionally left blank 



Chapter 3
Software Estimates: 

How Accurate  
Are They?

Using the data from completed projects1, this chapter will 
provide you with an idea of how people have gone about 
estimating their projects and how well they did it. Use the 

findings of this analysis to guide your approach to estimating and the 
allowances that you make to your estimate for the factors specific to 
your project. Use both macro- and micro-estimating techniques to 
obtain the most reliable estimate.

Submitters of project data to the ISBSG provide details of the 
estimation techniques they use in their projects, as well as both 
estimated and actual project statistics. Values for the four key project 
attributes are sought: project effort, duration, cost, and size.

The ISBSG Data Repository now has over 850 projects for which 
estimation data is available. Of those, 691 provide estimated and 
actual project statistics for one or more of the attributes of effort, cost, 
duration, and size; 661 provide data about estimation techniques 
used; and 632 projects provide data about statistics and methods.

This chapter presents an analysis of those projects. It summarizes 
the estimation techniques used, the accuracy of the estimates, and the 
relationships between estimates.

In most respects these projects are typical of the full set of projects 
in the ISBSG Data Repository. So the value of the findings presented 
here is the same as the value of the ISBSG Data Repository as a whole. 
The ISBSG believes that the repository represents the best part of the 
software industry. This is because projects in the repository are 
complete (and therefore more successful than many projects) and 

1	Refer to Appendix D for details of the project demographics of the data used for 
the analysis in this chapter.

25



	 26	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  3 :   S o f t w a r e  E s t i m a t e s :  H o w  A c c u r a t e  A r e  T h e y ?  	 27

come from organizations with sufficient process maturity to include 
a software metrics program.

Note  When using the ISBSG equations and data, be aware that they 
probably reflect the best 25 percent of the industry.

The findings presented here pertain to this particular collection of 
projects. It is possible that some findings are not generally applicable. 
Nevertheless, most observations are in accordance with intuition. 
This analysis provides a picture of the state of estimation in good 
software projects.

What Does “Accurate” Mean?
Whether an estimate is judged to be “accurate” or not depends on 
how much variation is acceptable between the estimated and actual 
value.

Two different thresholds are used in this analysis: 10 percent  
(that is, an estimate is considered to be accurate if the actual value is 
between 90 percent and 110 percent of the estimated value) and  
20 percent (that is, an estimate is considered to be accurate if the actual 
value is between 80 percent and 120 percent of the estimated value). 
For effort, which is both the most important measure and the one with 
the greatest variation in accuracy, a threshold of 50 percent is also 
considered (that is, an estimate is considered to be accurate if the actual 
value is between 50 percent and 150 percent of the estimated value).

The choice of threshold clearly influences the percentages of 
estimates that are considered to be accurate. Readers should bear this 
in mind when quoting percentages from this chapter.

The Project Details
Release 11 of the ISBSG Repository has 861 projects for which some 
form of data about estimation is available. These projects represent a 
broad cross-section of the software industry.

The profile of these projects is similar to the total collection of 
projects in the ISBSG Data Repository. This is important, because it 
means you can expect that the results from this chapter apply just as 
well to the whole repository.

A General Picture
Effort is the worst estimated of the four key project attributes (effort, 
cost, duration, and size). For the other three, at least half of the projects 
are estimated accurately. For effort only, about one-third of projects 
are estimated accurately.



	 C h a p t e r  3 :   S o f t w a r e  E s t i m a t e s :  H o w  A c c u r a t e  A r e  T h e y ?  	 27

The two most important estimates are project effort and duration 
(cost is dominated by effort, and size is mainly relevant as an input to 
the other estimates).

From the 449 projects for which we know both the estimated and 
actual effort plus estimated and actual project delivery date, we can 
make the following observations:

With a threshold of 10 percent for accuracy:

•	 25 percent met both estimates to within 10 percent.

•	 23 percent underestimated effort and were delivered late.

•	 22 percent underestimated effort, but estimated the delivery 
date accurately.

•	 13 percent overestimated effort, but estimated the delivery 
date accurately.

•	 8 percent estimated effort accurately, but were delivered late.

•	 Only 1 percent of projects came in more than 10 percent below 
the estimate for both effort and delivery date (that is, 
overestimated).

•	 The remaining combinations only account for 1 or 2 percent 
each.

With a threshold of 20 percent for accuracy:

•	 44 percent met both estimates to within 20 percent.

•	 15 percent underestimated effort and were delivered late.

•	 19 percent underestimated effort, but estimated the delivery 
date accurately.

•	 9 percent overestimated effort, but estimated the delivery 
date accurately.

•	 8 percent estimated effort accurately, but were delivered late.

•	 Only one project came in more than 20 percent below the 
estimate for both effort and delivery date (that is, 
overestimated).

•	 The remaining combinations only account for 1 or 2 percent 
each.

Errors in estimating effort correspond closely to errors in 
estimating cost, in both the size of the error and whether it is an 
overestimate or underestimate. It is clear that cost and effort are 
strongly related. This supports the intuition that cost is determined 
mainly by effort, since the major resource consumed by a software 
project is human effort.

Errors in size estimates also correspond to errors in effort 
estimates, although the association is not as strong as that between 



	 28	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  3 :   S o f t w a r e  E s t i m a t e s :  H o w  A c c u r a t e  A r e  T h e y ?  	 29

effort and cost. If size is estimated accurately, effort is usually 
estimated accurately (about half of projects) or is underestimated 
(about one-third of projects). If size is underestimated, effort usually 
is, too (about 60 percent of projects).

•	 With a 10 percent threshold and size estimated accurately: 
effort is accurate in 44 percent of cases and underestimated in 
39 percent.

•	 With a 20 percent threshold and size estimated accurately: 
effort is accurate in 59 percent of cases and underestimated in 
28 percent.

•	 With a 10 percent threshold and size underestimated: effort is 
underestimated in 62 percent.

•	 With a 20 percent threshold and size underestimated: effort is 
underestimated in 57 percent.

Interestingly, no relationship exists at all between actual project 
delivery rate and the accuracy of the estimates. You might expect that 
projects delivered ahead of schedule, or with less effort than estimated, 
would have low (that is, good) PDR, but there is no indication of this. 
Projects delivered in line with their estimates had a wide range of PDRs.

Note  There is no relationship between actual project delivery rate 
(productivity) and the accuracy of the estimate.

Estimation Techniques
Size estimates are usually based on a data model, often involving a 
CASE tool, a functional specification, analogy with a previous project, 
or on a Use Case model.

For delivery date, effort, and cost:

•	 About one-third of the projects use only work breakdown 
estimation.

•	 10 to 15 percent of the projects base the estimate only on a 
functional specification.

•	 15 to 30 percent of the projects use both.

•	 18 percent of the projects use neither; instead they use life-
cycle models or tools.

•	 “Fixed cost” determines the cost estimate in 15 percent of the 
projects.

•	 The delivery date is imposed externally in 30 percent of projects 
(“Management directive,” 22 percent; “legal requirement,”  
6 percent; and “End user business goals” or similar, 2 percent).



	 C h a p t e r  3 :   S o f t w a r e  E s t i m a t e s :  H o w  A c c u r a t e  A r e  T h e y ?  	 29

•	 If a size estimate is available, it is usually used to help estimate 
delivery date, effort, and/or cost. If no size estimate is available, 
work breakdown estimation or management directive generally 
determines the estimate delivery date, effort, and cost.

There is no association between other project attributes (organi-
zation type, development type, and so on) and the estimation tech-
niques used.

In most cases, there is little relationship between which estimat-
ing techniques are used and how accurate the estimates are. What 
evidence there is suggests that estimates based on a functional speci-
fication slightly outperform work breakdown techniques.

Note  “Management directive” predetermines the delivery date in 22 percent 
of the projects.

Individual Estimates
In this section, we analyze each of the four types of estimate: how 
often projects are underestimated and overestimated, what overruns 
or underruns are typical, what types of projects are likely to be 
overestimated or underestimated, and so on.

The samples analyzed here are smaller than the full set of 850 projects. 
Some projects contained information on the estimation techniques used, 
but did not give the estimates themselves. Of the remaining projects that 
provide at least one estimate, few give all four estimates.

Effort Estimates
Data is available for 581 projects. Effort is usually underestimated:

•	 19 percent overestimated effort by at least 10 percent; 11 per-
cent overestimated effort by at least 20 percent; 3 percent 
overestimated effort by at least 50 percent.

•	 36 percent estimated effort to within 10 percent of the actual 
value; 56 percent estimated effort to within 20 percent of the 
actual value; 78 percent estimated effort to within 50 percent 
of the actual value.

•	 45 percent underestimated effort by at least 10 percent 
(median error is 40 percent); 33 percent underestimated effort 
by at least 20 percent (median error is 67 percent); 19 percent 
underestimated effort by at least 50 percent (median error is 
98 percent).

Across the whole 581 projects, the mean error is an underestimate 
of 50 percent. The median is an underestimate of 6 percent. The largest 
error saw effort underestimated by a factor of over 80 times.



	 30	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  3 :   S o f t w a r e  E s t i m a t e s :  H o w  A c c u r a t e  A r e  T h e y ?  	 31

Note  Forty-five percent of the projects underestimated effort by at least  
10 percent.

The overestimates occurred in small projects, only about half the 
size of the repository average. Actual effort for these projects averaged 
70 percent of estimated effort.

Underestimates occurred in a wide range of projects. There is a 
weak trend toward larger projects, with larger development teams 
and longer durations, being more often underestimated. There are no 
other patterns in terms of which types of projects are estimated better 
or worse than other types.

For the projects with effort underestimated, on average the actual 
error is 67 to 100 percent; in other words, the actual effort approaches 
double the estimate.

Note  For the projects with effort underestimated, on average the actual 
effort approaches double the estimate.

For the most part, large errors in estimated effort are accompanied 
by similarly large errors in estimated cost.

Effort Estimation Techniques
The two main techniques for estimating effort are task-based work-
breakdown methods, and estimation based on an estimate of 
functional size. Task-based methods are more common (63 percent of 
projects compared to 31 percent, including 20 percent of projects that 
used both techniques).

Task-based methods are more likely to underestimate effort. 
Using a 10 percent margin for accuracy, task-based methods estimate 
effort accurately (to within 10 percent) in 32 percent of projects, and 
underestimate effort by at least 10 percent in 49 percent of projects. 
For function point–based methods the corresponding percentages 
are 40 percent accurate and 35 percent underestimated. Using a  
20 percent tolerance for accuracy, the gap is smaller: 54 percent 
accurate and 35 percent underestimated with task-based methods, 
53 percent accurate and 29 percent underestimated with function 
point–based methods.

On the other hand, median errors are smaller with task-based 
methods. The median underestimate with task-based methods is  
41 percent using a 10 percent threshold for accuracy, and 66 percent 
using a 20 percent threshold for accuracy. With function point–based 
methods the corresponding median underestimates are 72 percent 
and 86 percent respectively.

It appears that task-based estimates of effort are more likely to be 
wrong, but less likely to be badly wrong, than estimates based on 
functional size.



	 C h a p t e r  3 :   S o f t w a r e  E s t i m a t e s :  H o w  A c c u r a t e  A r e  T h e y ?  	 31

Delivery Date (Project Duration)
Estimated and actual delivery date and project duration are known 
for 538 projects.

Across the whole data set the mean actual duration is 9.8 months, 
and the median is 7.6 months. The mean estimated duration is  
8 months and the median is 6.6 months.

Delivery date is estimated relatively well. Around 70 percent of 
the projects were delivered early or on time, including 37.5 percent 
that were delivered as scheduled:

•	 5 percent of projects were delivered more than 10 percent 
ahead of schedule (that is, actual duration was less than  
90 percent of the estimated duration), including 3 percent 
delivered more than 20 percent ahead of schedule.

•	 60 percent of projects were delivered with an actual duration 
within 10 percent of their estimated duration, and 70 percent 
were delivered with an actual duration within 20 percent of 
their estimated duration. These numbers include 37.5 percent 
of projects that were delivered as scheduled.

•	 35 percent of projects were delivered more than 10 percent late, 
including 27 percent delivered more than 20 percent late.

The projects delivered early are below average in actual duration 
(mean and median both around 7.5 months) and above average in 
estimated duration (mean and median both around 12 months). 
Lower durations and higher estimates could both contribute to the 
estimates of duration being too low in these projects. The median 
error was an underrun of 22 percent.

The projects delivered on time showed a wide spread of durations, 
sizes, and other project characteristics. No patterns can be seen.

Of the projects delivered more than 10 percent late, 19 percent 
were up to 1 month late, 25 percent were 1 to 2 months late, 22 percent 
were 2 to 3 months late, 17 percent were 3 to 6 months late, and  
15 percent were more than 6 months late. Three percent were a year 
or more late, with the worst overrun being 33 months. Late projects 
averaged 98 percent mean overrun and 40 percent median overrun in 
duration.

Note  Late projects have a median overrun of 40 percent in duration.

The accuracy of the estimates varies according to how long the 
project was estimated to take in the first place.

•	 Projects that were estimated to take a year or more were 
generally delivered on time. For 65 percent of projects the 
actual duration was within 10 percent of the estimate, and  



	 32	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  3 :   S o f t w a r e  E s t i m a t e s :  H o w  A c c u r a t e  A r e  T h e y ?  	 33

20 percent underestimated duration by at least 10 percent. 
Only 5 percent were late by more than 3 months. The median 
overrun was 13 percent, or about 2 months.

•	 Projects that were estimated to take 6 to 12 months did less 
well. The actual duration was within 10 percent of the estimate 
in 61 percent of them. Thirty-five percent of the projects 
underestimated duration by over 10 percent. Thirteen percent 
were late by more than 3 months. The median overrun was 
2.5 months, or 30 percent.

•	 Estimates were about as accurate for projects that were esti-
mated to take 3 to 6 months as for projects estimated to take  
6 to 12 months. However, the worst underestimates came from 
this group (five of the six projects delivered more than a year 
late were in this group). Again, 61 percent of the projects esti-
mated duration to within 10 percent of the actual duration, 
and 36 percent underestimated duration by more than 10 per-
cent. Eleven percent underestimated duration by more than  
3 months. The median overrun was 2.1 months, or 45 percent. 
(The percentage is bigger, even though the number of months 
is smaller, because the average duration is shorter.)

•	 Projects that were estimated to take up to 3 months have the 
biggest errors in percentage terms (because the planned du-
ration is shortest—for example, a project that was planned to 
take 1 month and was delivered 3 months late has a 300 per-
cent error), but the actual values are not so bad. Forty-five 
percent of the projects estimated duration to within 10 per-
cent of the actual duration, and 42 percent underestimated 
duration by over 10 percent. Fifteen percent underestimated 
duration by more than 3 months. The median overrun was 
2.3 months, or 127 percent.

When expressed as percentages, the errors are smaller for projects 
with large estimated durations and larger for projects with small 
estimated durations. This is just a consequence of dividing by small 
or large numbers when calculating percentage errors. It is more 
relevant to note that across all ranges of estimated duration, if 
duration was underestimated, the delay was about 2 months; delays 
of more than 3 months are more common in shorter projects than in 
projects that were estimated to take a year or more.

Duration Estimation Techniques
If a size estimate is available, it is generally used as an input for 
estimating duration, either directly, or as an input to an estimating 
tool. If no size estimate is available, duration is normally determined 
by management directive or by work breakdown techniques.



	 C h a p t e r  3 :   S o f t w a r e  E s t i m a t e s :  H o w  A c c u r a t e  A r e  T h e y ?  	 33

The estimating techniques have some impact on the accuracy of 
the estimated duration. Work breakdown techniques are accurate  
24 percent of the time; the mean error is a 32 percent underestimate, 
and the median error is a 4 percent underestimate. FP-based estimates 
are either very good or very bad: just under half are accurate, but  
21 percent are wrong by 50 percent or more; the mean error is a  
30 percent underestimate, and the median is a 10 percent underesti-
mate. In projects whose delivery date was determined by manage-
ment directive, most were delivered on time or 1 month late; only  
10 percent were delivered more than 2 months late. Projects whose 
delivery date is determined by legal requirements or client directive 
do best, with an average error of only about 10 percent.

In summary, duration tends to be estimated fairly well, particu-
larly for projects planned to take 12 months or more. If duration is 
overestimated, it is probably by about 20 percent. If duration is un-
derestimated, the average overrun is about 2 to 3 months.

Cost Estimates
Cost tends to be estimated more accurately than effort. Although un-
derestimates are again more common and larger than overestimates, 
really bad errors are rare, and most errors are smaller than is seen 
with effort.

Estimated and actual costs can be analyzed for 117 projects:

•	 21 percent overestimated cost by at least 10 percent (median 
overestimate is 28 percent). Eleven percent overestimated  
cost by at least 20 percent (median overestimate is 46 percent).

•	 44 percent estimated cost accurately to within 10 percent, and 
64 percent estimated cost accurately to within 20 percent.

•	 35 percent underestimated cost by at least 10 percent (median 
underestimate is 44 percent). Twenty-five percent of projects 
underestimated cost by at least 20 percent (median underesti-
mate is 67 percent).

The proportional size of these groups is about 1 (overestimate) to 
6 (accurate) to 2 (underestimate) for accuracy within 20 percent, and 
2 (overestimate) to 4 (accurate) to 3 (underestimate) for accuracy 
within 10 percent.

These statistics should be treated with some caution. Ten percent 
of projects report their actual cost as being exactly the same as the 
estimated cost. Considering that some of these involve six-figure 
costs that are quoted to the nearest $10, this seems unrealistic.

Most of the projects in which cost is overestimated are small, of 
fewer than 200 FP; the median is 125 FP. Not surprisingly at this size 
range, enhancement projects dominate. No other patterns are evident.



	 34	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  3 :   S o f t w a r e  E s t i m a t e s :  H o w  A c c u r a t e  A r e  T h e y ?  	 35

When cost is underestimated, for six projects the errors are huge 
(300 percent to 900 percent), another five exceed 100 percent, and a 
further seven exceed 50 percent. When the six huge errors are 
excluded, the mean error is an underestimate of 46 percent; the overall 
median error is an underestimate of 44 percent.

Note  For projects with cost underestimated, the median error is an 
underestimate of about 45 percent.

A clear trend can be seen when estimation techniques are 
considered: FP-based techniques are more accurate more of the time. 
For projects using just work breakdown techniques, 42 percent are 
accurate to within 10 percent; a further 12 percent are accurate to 
within 20 percent; nearly half misestimate cost by 20 percent or more; 
underestimates are twice as common as overestimates, and tend to be 
worse; and the median underestimate is around 50 percent. For 
projects using functional size–based techniques, 61 percent are 
accurate to within 10 percent; a further 30 percent are accurate to 
within 20 percent; and only 9 percent misestimate cost by 20 percent 
or more; the median underestimate is 14 percent.

Note  When functional size–based techniques are used for a cost estimate, 
the estimate is within 20 percent of the actual cost 90 percent of the 
time.

The overestimated projects are all small; the largest is 286 FP, the 
median size is 127 FP, and the mean size is 145 FP. No other patterns 
can be seen between project characteristics and the accuracy of cost 
estimates.

When both cost and effort are known, the association between 
them is strong. If the projects are ranked in order of effort error 
(biggest underestimate down to the biggest overestimate) and then 
ranked in order of cost error, the correlation between the ranks is very 
high at 0.79. Big errors in estimating effort go with big errors in 
estimating cost.

In summary, for around half of the projects the cost estimate is 
accurate. Of the rest, underestimates are about twice as likely to occur 
as overestimates, and the error is likely to be greater. Estimates 
produced using functional size–based techniques are more accurate 
than estimates produced from a task breakdown and are within  
20 percent of the actual cost 90 percent of the time.

Summary
A collection of over 850 projects has been analyzed to see how, and 
how well, people estimated their software projects.



	 C h a p t e r  3 :   S o f t w a r e  E s t i m a t e s :  H o w  A c c u r a t e  A r e  T h e y ?  	 35

Although the findings summarized below pertain to this 
particular collection of projects, the ISBSG believes that they provide 
a good picture of the state of estimates in good software projects.

Size approximation techniques:

•	 When a size approximation is available, it is usually used to 
help estimate delivery date, effort, and/or cost. If a size 
approximation is not available, work breakdown techniques 
are used. Functional size–based techniques generally produce 
slightly more accurate estimates.

Accuracy of different types of estimate:

•	 Delivery date is often estimated well. Over half of the projects 
were delivered early or on time, and 70 percent were delivered 
no later than 1 month late. Once a project is more than a 
month late, the median error is about 2.5 months overrun. 
Projects planned to run for a year or more are delivered on 
time; the worst errors occur in projects planned to run for 
about 4 to 6 months.

•	 Effort is estimated worst. Over half of projects underestimate 
effort by at least 10 percent. Some enormous errors occur, 
with actual effort up to 80 times the estimate. On average, 
effort is underestimated by about 50 percent. There are no 
patterns to explain which types of projects are estimated 
better or worse than other types.

•	 Errors in cost estimates are closely related to errors in effort 
estimates, supporting the intuition that effort largely deter-
mines cost. But cost estimates are not generally as inaccurate as 
effort estimates. This may be because extra effort recorded 
against a project is unpaid.

•	 There is no relationship between project delivery rate and the 
accuracy of estimates.

•	 For everything except effort, half or more of the projects are 
estimated accurately; for effort, that drops to a third of the 
projects.

Overestimates and underestimates:

•	 A late project averages an overrun of 2 to 3 months.

•	 If effort is underestimated, the average overrun is 67 to 
100 percent. The average across all projects is to underesti-
mate effort by 50 percent.

•	 If cost is underestimated, the average overrun is 25 to 30 percent.

•	 Overestimates are rare, usually small, and occur in small 
projects. When anything is overestimated, it is probably by 
about 20 percent.



	 36	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

Factors influencing accuracy:

•	 As a general guide, smaller projects are more likely to be esti-
mated accurately or overestimated. Larger and, more partic-
ularly, longer projects are more likely to be underestimated.

•	 Estimates appear to be less accurate for projects involving 
newer technologies, and for those with a large and varied 
user base.

Use the information provided in this chapter to guide both your 
approach to preparing estimates for a project, and the allowances that 
you make to your estimate for factors specific to your project. Use 
both macro- and micro-estimating techniques to obtain the most 
reliable estimate.



Chapter 4
Sizing Software and 
Size-Approximation 

Accuracy

This chapter introduces the concept that functional size measure-
ment of software can be performed at different levels of accuracy 
to suit different purposes. It will introduce the concept of ap-

proximating size rather than measuring it. Approximating size techniques 
can be used when there is insufficient opportunity, time, or perhaps 
information to perform a detailed size measurement.

Functional size measurement (FSM)1 is the most accepted approach 
to measuring the size of a software project. Standard functional size 
measurement methods2 are often unsuitable to be used early in the 
life of a project3 because they require some kind of structured analysis 
before identifying and classifying functions, counting elementary 
components, and performing numerical transformations, in line with 
their specific counting rules.

Although simple in concept, functional size measurement is not a 
trivial task. However, there are several simple but effective ways of 
roughly determining the functional size of a project without doing a 
detailed functional size measurement. The resulting “approximated” 
size is much less accurate than the measured size, but the error range 

1	ISO/IEC 14143-1:2007 – Software Engineering –  Software measurement –  
Functional size measurement – Definition of concepts.

2	ISO14143-6 – Information technology – Software measurement – Functional size 
measurement – Part 6: Guide for use of ISO/IEC 14143 series and related interna-
tional standards.

3	This chapter assumes the functional size of the software system being developed 
as the main cost driver of the project. Physical dimensions (for example, LOC) 
are excluded as estimating factors, due to the higher difficulty in estimating those 
dimensions in the initial phases of the project when nothing has been produced 
or even designed.

37



	 38	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  4 :   S i z i n g  S o f t w a r e  a n d  S i z e - A p p r o x i m a t i o n  A c c u r a c y 	 39

may be acceptable for the purpose for which the size will be used, 
that is, early project estimation.

Size approximation techniques can also be used by those 
practitioners who do not currently measure functional size but need 
a method of mapping the lessons of this book back to their 
environment.

Sizing Accuracy Levels
The advantages of approximating size are offset by the unavoidable 
lack of precision of the results. It is important to distinguish each 
measure as either an exact measure (that is, performing a functional 
size measurement as per the ISO standard guidelines) or an 
approximation.

A measurement can be conducted at a number of accuracy levels4, 
based on the

•	 Purpose of the measurement

•	 Quality of documentation/information available

•	 Amount of time available to complete the measurement

The different levels of sizing accuracy range from Level 1 to Level 6, 
from the most accurate to least accurate.

Level 1 is the most accurate size measurement, follows formal 
measurement guidelines, and involves detailed cataloging, classi- 
fying, weighting, and cross-referencing of each of the functional 
components.

In contrast, at the other end of the accuracy scale, Level 6 func-
tional size is not a measurement as such, but an approximation of the 
size. Rather than identifying, classifying, and sizing each functional 
component, Level 6 predicts the size based on a number of easily 
identified attributes of the software. It provides a “ballpark” size for 
the project.

Each level of sizing is classified based on the listed tasks being 
performed.

Measuring as per the following guidelines, the precision exp- 
erienced for each level is

•	 Level 6 = +20% to +200%

•	 Level 5 = +15% to +20%

•	 Level 4 = +15%

•	 Levels 3 to 1 = +10%

4	“Levels of Function Point Counting,” by Pam Morris (Total Metrics) – Version 1.3 
2004 (www.Totalmetrics.com).

www.Totalmetrics.com


	 C h a p t e r  4 :   S i z i n g  S o f t w a r e  a n d  S i z e - A p p r o x i m a t i o n  A c c u r a c y 	 39

Level 6: Size Approximation
Functional size is approximated without identifying exact functions. 
It is based on project characteristics that have historically shown 
some correlation to the total size (for example, number of reports, 
number of third normal form tables, and so on). The “most likely” 
size of the project is then derived by statistically evaluating the  
results predicted by the various project characteristics. Typically,  
between 10 and 40 characteristics are assessed. Assumptions should 
be documented and the size should always be notated, highlighting 
that it is an approximation, not a measured size.

The accuracy range of Level 6 approximations depends on such 
things as the algorithms used, the functional fit of the project to that of 
the history data from which the algorithms were derived, the number 
of characteristics used for the calculation, and the accuracy of the 
measurement of the characteristics.

Level 5: Rough Size Measure
•	 Software is functionally decomposed, but only to functional 

areas or functional groups, not to Base Functional Component5 
(BFC) level (that is, not to elementary process level).

•	 For each functional area, the number of Base Functional 
Components is roughly tallied using information from 
menus, file lists, screen lists, and report lists.

•	 Weightings for the groups of BFCs are assigned using industry 
defaults.

•	 Diagrams and system interface documentation is used.

Level 4: Default Complexity Measure
•	 Software to be built by the project is functionally decomposed 

to BFC level (processes and data groups are individually 
identified).

•	 All BFCs are uniquely identified and classified according to 
type.

•	 Default weightings for size are assigned to the individual 
BFC based on either industry default complexity ratings (for 
example, IFPUG files: Low and IFPUG Processes = Average) 
or defaults derived locally within the organization for 
software of this type.

5	Base Functional Component (BFC) is an elementary unit of Functional User 
Requirements defined by and used by an FSM method for measurement purposes 
(ISO/IEC 14143-1 :2006). For example, BFCs correspond to an elementary process 
or a logical file in the IFPUG FSM method and a functional process in the COSMIC 
method.



	 40	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  4 :   S i z i n g  S o f t w a r e  a n d  S i z e - A p p r o x i m a t i o n  A c c u r a c y 	 41

Level 3: Detailed Measure
•	 As for Level 4, except complexity is individually assessed, 

and weightings are assigned to each BFC (for example, for 
IFPUG FSM, DETs and FTRs are identified using the IFPUG 
complexity matrices where possible).

•	 Explanatory notes are attached to BFCs where necessary.

Level 2: Detailed Linked Measure
•	 As for Level 3, except all relationships between BFCs are 

formally documented (that is, relationships between processes 
and the data they access are individually identified and 
documented. This is often referred to as linking processes and 
data.)

•	 Exact numbers of subcomponents of BFCs are identified; for 
example, in IFPUG FSM, that is the number of DETs and 
FTRs; for COSMIC FSM, that is the uniquely named 
subprocesses identified.

Level 1: Detailed Linked and Labelled Measure
•	 As for Level 2, but more comprehensive supporting docu-

mentation for the sizing. For example:

•	 Cross-referencing between physical and logical artifacts of 
the software. For example, between physical files and 
logical data groups and between specified use cases and 
logical processes.

•	 Keywords (also referred to as labels or attributes) are 
attached to relevant BFCs (for selective reporting).

Note  Choose the level of sizing based on the documentation and time 
available plus the use of the resultant size.

Table 4-1 lists the basic attributes of each of the sizing levels to 
help you choose the one most suited to your need.

If the size has been measured using Level 5 or 4 guidelines, then to 
have more confidence in the number, the size measurement should 
be revisited and performed more accurately as more information 
becomes available.

If the size has been approximated using Level 6 methods, then it is 
recommended that this size be recalculated during the development 
as more information is collected for the project.6 Ideally, once the 
project is approved, a more detailed measurement should be 

6	Refer to Figures 1-2 and 1-3.



	
C

hapter 4: 
Sizing Softw

are and Size-A
pproxim

ation A
ccuracy	

41

Table 4-1  Basic Attributes of Sizing Levels (continued)

Level Size Measure Best Suited For Issues Prerequisites

1 Very detailed

Easily auditable

Accurate

Very well documented

Easily maintained

Benchmarking projects

Detailed estimates

Project tracking

Detailed baseline model

Metrics reporting for strategic level

Very time intensive

Requires very skilled 
counters

Expensive for large 
systems

High-quality 
documentation

Data model

Full access to system 
experts

2 Very detailed

Easily auditable

Accurate

Very well documented

Easily maintained

Benchmarking projects

Detailed estimates

Project tracking

Detailed baseline model

Time intensive

Expensive for large 
systems

Good/high quality 
documentation

Data model

Full access to system 
experts

3 Detailed

Auditable

Accurate

Well documented

Very maintainable

Benchmarking projects

Detailed estimates

Baseline application measurement 
for portfolio sizing

Detailed baseline model

Time intensive

Reasonably cost-
effective for large 
systems

Good quality 
documentation

Data model 
(if available)

Access to system experts



	
42 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
C

hapter 4: 
Sizing Softw

are and Size-A
pproxim

ation A
ccuracy	

43
Level Size Measure Best Suited For Issues Prerequisites

4 Less detailed

Auditable

Reasonably accurate

Documented

Maintainable

Portfolio baseline assessment

Benchmarking development or 
support ratios

Quality metrics

High-level estimates

Baseline model

Efficient

Cost-effective for 
large systems

Average quality 
documentation

Data model 
(if possible)

Access to system experts

5 Low detail

Less accurate

Documented (issues and 
assumptions)

“Skeleton” (base for more 
refined measurement)

Portfolio baseline assessment

Benchmarking support ratios

Baseline model

Very efficient

Cost-effective for 
large systems with 
little enhancement

Summarized system 
documentation

Access to system experts 
(for the duration of 
measurement)

6 Very little detail—size 
results only

Accuracy historically has 
been demonstrated to be 
within +/– 20%

Not documented

Not maintainable

Portfolio baseline assessment

Software asset valuation

Project scoping

Estimating count durations

Benchmarking support ratios

Very efficient

Very cost-effective 
for large systems 
with very little 
enhancement

Accurate completion of a 
questionnaire

Access to system experts 
(short interview)

Table 4-1  Basic Attributes of Sizing Levels



	 C h a p t e r  4 :   S i z i n g  S o f t w a r e  a n d  S i z e - A p p r o x i m a t i o n  A c c u r a c y 	 43

performed and the size updated as functionality changes, particularly 
if the size values are used to:

•	 Adjust the effort, cost, and time estimates

•	 Control the scope creep and record change requests

Note  As the project progresses, the size estimate should be validated and 
refined (eventually moving from low-accuracy to high-accuracy 
techniques).

It is recommended that every size approximation should be 
expressed as three values: minimum, most likely, and maximum 
estimated size, where the most likely is not necessarily the average 
between the extreme values. Alternatively, the size approximation 
should express a confidence interval, or accuracy percentage, to help 
understand how close the estimate is likely to be to the actual size of 
the software being analyzed. It is up to the person using the result to 
decide whether to use each value, or to use only one of the values in 
the approximation interval, as a basis for further estimations of effort, 
cost, or duration.

Classifying Size Approximation Techniques
Basically, any approximation technique comprises some input, 
calculation, and output, where the input variables are some kind of 
information about the software project being sized, and the basic 
output is the approximated size. Size approximations may use a direct 
or derived approach:

•	 Direct size approximation (“expert opinion”) predicts the 
size based on analogical reasoning and intuition, typically 
using past experience; the size result is achieved directly 
without a formal step-by-step, structured process. Direct 
estimation may be improved by means of Delphi iterations7 
or some kind of analogy with known projects.

•	 Derived size approximation (“algorithmic method”) involves 
a defined algorithmic or structured approach, based on 
theoretical or statistical models.

Size Approximation Accuracy
Here we look at the accuracy of the sizing approximations provided 
in the projects submitted to the ISBSG repository when compared 
with the counted size of the software delivered.

7	Refer to Chapter 10.



	 44	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  4 :   S i z i n g  S o f t w a r e  a n d  S i z e - A p p r o x i m a t i o n  A c c u r a c y 	 45

In Chapter 3 we saw that 30 to 40 percent of projects used 
functional size techniques as part of estimating duration, effort, or 
cost. They may have used an approximation of size, or a size value 
counted carefully from the project specification; the latter is perhaps 
most likely.

This section considers a different question: if size in function 
points was approximated early in a project, how does the 
approximation compare with the final “properly counted” size?

Errors can arise from several sources: inaccuracies that are inevi-
table when an approximation is produced from incomplete informa-
tion; inaccuracies that might be caused by using a poor technique to 
do the approximation; and scope creep, when the final system contains 
functionality that was not part of the initial specification.

Three main techniques are used for approximating size:

•	 40 percent approximate size from a data model.

•	 20 percent approximate size from the functional specification 
or use case model.

•	 16 percent approximate size by analogy with previous 
projects.

Generally, size is approximated well. Perhaps this is to be expected 
in a database of projects primarily submitted by organizations that 
establish size by some form of functional sizing method.

Size approximations are provided for 322 projects:

•	 12 percent over-approximated size by at least 10 percent;  
8 percent over-approximated size by at least 20 percent.

•	 53 percent were approximated accurately to within 10 percent 
(16 percent were exact); 65 percent were estimated accurately 
to within 20 percent.

•	 35 percent under-approximated size by at least 10 percent;  
27 percent underestimated size by at least 20 percent.

The proportional size of these groups is about 1 (over-approximate) 
to 6 (accurate) to 3 (under-approximate). There is a slight indication 
that errors are larger when approximation is based on a data model 
rather than on the functional specification or use case model, but 
really the pattern varies little whichever methods are used.

When size is over-approximated, the average error is about  
30 percent. When it is under-approximated by 10 percent or more, the 
median under-approximation is 30 percent; among projects where 
the under-approximation is 20 percent or more, the median under-
approximation is 60 percent. The largest error is nearly 400 percent, 
meaning the actual size was almost five times the approximation.



	 C h a p t e r  4 :   S i z i n g  S o f t w a r e  a n d  S i z e - A p p r o x i m a t i o n  A c c u r a c y 	 45

In summary, for over half of the projects the size approximation is 
accurate. Of the rest, under-approximations are about three times as 
likely to occur as over-approximations, and the error is likely to be 
two or more times as bad. Approximations produced from the 
functional specification are slightly more likely to be more accurate 
than those produced from a data model.

Summary
In this chapter we have introduced the concept that functional size 
measurement of software can be performed at different levels of 
accuracy to suit different purposes, and we have provided a six-level 
accuracy hierarchy. We have also introduced the concept of 
“approximating” size rather than measuring size and have looked at 
the accuracy of the approximations submitted to the ISBSG 
Repository.



This page intentionally left blank 



Chapter 5
Some Practical 

Software Size 
Approximation 

Techniques

In the startup phase of a software development project, the project 
sponsor (that is, the customer) wants to know how much the 
software will cost and how long it will take to develop. The 

developer (in-house or external) needs to establish the approximate 
size of the software to be developed in order to estimate the effort, 
cost, and time for planning purposes. To satisfy these needs, the size 
of the software needs to be established, but as it is early in the life 
cycle of the proposed project, a full function point count is not 
practical or economically sensible.

In this chapter we will provide examples of quick sizing tech-
niques for each of the three functional size measurement (FSM)  
methods most represented in the ISBSG Repository, namely: IFPUG, 
FiSMA, and COSMIC. These are simple but effective ways of roughly 
determining the functional size of a project.

Note  In this chapter you will find some simple but effective ways of 
roughly determining the functional size of a project even when a function 
point count has not been completed.

Many software size approximation techniques are available in the 
literature and industry practice. The following are just a few examples. 
A number of commercial software metrics consulting companies also 
provide products and services to assist in size approximation, and 
some useful sizing tools are now available.

47



	 48	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 49

Direct Size Approximation
This method uses statistical distribution of total functional size, both 
for new development and for enhancement projects.

An analysis of size distribution of the ISBSG database leads to the 
size classes reported in Table 5-1 for development (“DEV”) and for 
enhancement (“ENH”) projects.

Example: Direct Size Approximation

Consider the analogy between your team’s last five development 
projects and the planned development project:

•	 Projects 1 and 2 fell into size class DEVS (Small), that is, 
between 150 and 300 FP.

•	 Projects 3 and 4 fell into size class DEVM (Medium), that is, 
300 to 600 FP.

•	 Project 5 fell into size class DEVL (Large), or 600 to 1,200 FP.

Interview the project sponsor and analysts from the planned and 
past projects, and then compare the projects for relative functionality 
delivered. If it is decided that the planned project will have about the 
same amount of required functionality of projects 3 and 4 (that is, “much 
more than projects 1 and 2” and “no more than half of project 5”),  
then the most likely size range of the new project will be in the range 
of projects 3 and 4 (Medium), that is, 300 to 600 FP.

This analogy-based approach provides only a ballpark project 
size.

Derived Size Approximation
There are a number of ways of deriving an approximate size for a 
proposed piece of software. Here we provide details on three 
techniques to derive IFPUG, COSMIC and FiSMA sizes. We also 
provide some examples of extrapolative approaches.

Table 5-1  Direct Size Approximation

ID Size Class Range (FP) ID Size Class Range (FP)

DEV
XS

Very Small 0–150 ENH
XS

Very Small 0–60

DEV
S

Small 150–300 ENH
S

Small 60–120

DEV
M

Medium 300–600 ENH
M

Medium 120–240

DEV
L

Large 600–1,200 ENH
L

Large 240–480

DEV
XL

Very Large 1,200–5,000 ENH
XL

Very Large 480–2,000

DEV
XXL

Extremely Large >5,000 ENH
XXL

Extremely Large >2,000



	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 49

Early Approximation of Functional Size Using ISBSG Data
In the example that follows, we use the known ratios of the IFPUG 
functional size components from the ISBSG repository data.1 It is 
possible to derive similar functional type relationship patterns for all 
five FSM methods.

Note  Function point internal logical files closely resemble a count of 
logical entities.     

Often the functional component that you will have the most 
knowledge of is the internal logical files (ILFs). These closely resemble 
a count of the entities in a logical data model, modeled to second 
normal form. If a high-level data model has been developed as part of 
the requirements analysis, this can be used to approximate the 
number of internal logical files.

An IFPUG function point count identifies all occurrences of the 
following five base functional component types, (BFC types):

•	 Internal logical files (ILF)  Data maintained by processes 
within the software

•	 External interface files (EIF)  Data referenced by processes 
within the software

•	 External inputs (EI)  Processes that enter data to be stored 
within the software

•	 External outputs (EO)  Processes that extract derived data 
to be provided to the user

•	 External queries (EQ)  Processes that retrieve stored data to 
be provided to the user

From the ISBSG analysis of its history data, it has been observed 
that the relationships between these five component types remains 
relatively constant for new development projects and for complete 
applications; that is, each component type contributes a consistent 
percentage of function points to the overall total size of the 
application.

Investigation into the rationale for the relationships shows good 
reasons why this consistency exists. For any complete application 
that operates as a software system, the data entered would be expected 
to be processed and stored for later retrieval. It therefore follows that 
we would expect a strong relationship between input functions (data 

1 Note that this method relies on a single algorithm (most of the commercial prod-
ucts that approximate size rely on between 10 and 40 algorithms). The more rela-
tionships that can be analyzed and that can contribute to an approximated size, 
the more accurate the size estimate will be.



	 50	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 51

entered) and the logical files (internal data storage) and the output and 
query functions that retrieve data stored from the internal stores and 
the external stores, interface files.

Note that these relationships have only been found to be relevant 
to software that operates as a self-contained system, that is, a cohesive 
set of functionality that is loosely coupled with other applications. 
Therefore, it may not be advisable to use approximation-sizing 
techniques to predict the size of any enhancement project that has a 
mix of added, changed, and deleted functionality scattered over 
several functional areas within an application.

Figure 5-1 shows the relationships between the five components 
of the IFPUG functional size method from new development project 
data in the ISBSG Repository. These relationships can be used to 
estimate the size of a project. For projects sized by the IFPUG 
functional sizing method, versions 4.x, and with an ISBSG quality 
rating of “A” or “B,” the relative contribution of each component type 
to the total count is depicted in Figure 5-1.

Use these relationships to approximate the size of a software 
development project:

Example 1: Internal Logical Files
If the high-level logical data model had 40 logical tables, it may be 
reasonably assumed that these relate to approximately 40 internal 
logical files. Analysis of the ISBSG Repository also shows that most 
internal logical files in applications are rated as being low to medium 
in complexity. The mean score attributed to them across all projects is 
8.6 function points.

Based upon the preceding, it can be assumed that the total score for 
the internal logical files component of the function point count will be

40 (ILFs) × 8.6 (mean score for internal logical files) = 344 FPs

Figure 5-1  Function point mix – new developments (Source: Estimating, 
Benchmarking & Research Suite Release 11)

External
Interface
Files 8%

External
Outputs

23% External
Inputs

27%

External
Queries

17%

Internal
Logical Files

25%



	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 51

From the preceding pie chart it can be seen that the internal logical 
files component of the function point count is typically around  
25 percent. Based on this, the total functional size of the required 
application is predicted to be around:

344 FPs × 100/25 = 1,376 FPs

It would be sensible to notify the customer that the size is ≈1,400 FP 
(with an allowance of plus or minus 25 percent).

Example 2: External Outputs
In a situation where the planned project is a redevelopment of an 
existing application, the number of unique reports and extract files 
output from the existing application can be assumed to be equivalent 
to the external output components in the new project.

Analysis of the ISBSG Repository shows that most external outputs 
are rated as being medium in complexity. The mean score attributed 
to them across all projects in the repository is 5.4 function points. If 
the existing application has 47 different reports and 3 different extract 
files, then the total number of external outputs can be assumed to be 50.  
(Note: ensure that you exclude any obsolete, unused reports from 
your calculations.)

Based upon the preceding, it can be assumed that the total score for 
the external outputs component of the functional size measure will be

50 (EOs) × 5.4 (mean score for external outputs) = 270 FPs

From the pie chart in Figure 5-1, it can be seen that the external outputs 
component of the functional size measure is typically around  
23 percent. On this basis the total functional size for the required 
application is predicted to be around:

270 FPs × 100/23 = 1,174 FPs

It would be sensible to notify the customer that the size is ≈1,200 FP 
(with an allowance of plus or minus 25 percent).

KISS Quick Software Size Estimation Technique
KISS (Keep It Simple Stupid) Quick is a size estimation approach that 
was developed together with the FiSMA functional size measurement 
method. It is most accurate with FiSMA function points, but can be 
used also with IFPUG and NESMA function points.

The KISS Quick approach starts with a questionnaire consisting 
of 28 questions. For each question, the answer is the number of 
occurrences of the particular functional component type. Each type 
has a specific multiplier for each measurement method (only IFPUG 
& FiSMA are shown in Table 5-2; values of the multipliers are derived 
from history data, and they equal zero where the method does not 



	 52	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 53

Number of Navigation and Query 
Functions (No Update)

Number  
(e.g.)

IFPUG 
Multipl.

FiSMA 
Multipl.

  1 Number of starting icons? 0 1.0

  2 Number of login and logout screens? (1) 3 1.8

  3 Number of different menus? 0 1.8

  4 Number of parameter selection lists 
(drop-down lists)?

3 1.0

  5 Number of inquiry screens (db 
retrieving, on screen)?

(3) 4 3.4

  6 Number of browsing list screens 
(occurrences of same type data)?

4 2.3

  7 Number of screens for starting report 
generation?

3 3.4

User Input Functions (Update)

  8 Number of 3-functional (create, update, 
and delete) user input screens?

21 16.8

  9 Number of 2-functional (create and/or 
update and/or delete) screens?

(2) 15 11.2

10 Number of 1-functional (create or 
update or delete) screens?

9 5.6

Noninteractive User Output Functions

11 Number of output forms (fixed layout)? 5 4.9

12 Number of reports? 7 6.5

13 Number of text messages or e-mails? 4 3.0

14 Number of monitor screen outputs? 7 6.5

Interface Services Between This and 
Other Applications

15 Number of messages sent to other 
applications?

(6) 5 3.6

16 Number of messages received from 
other applications?

(6) 5 5.5

17 Number of signals sent to a device? 5 1.4

18 Number of signals received from a 
device?

5 2.0

19 Number of batch records sent to 
another application?

5 3.6

20 Number of batch records received from 
other applications?

5 5.5

Table 5-2  KISS Quick Estimation Multiplier Table (continued)



	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 53

count that functionality type). The number of occurrences is then 
multiplied with the multipliers, and next the total sum of function 
points is calculated. This estimation method is rated as a “rough size 
measure.”

Example: Basic KISS Quick Approach
Let’s assume that you are developing a user interface application, 
which will be part of a three-tier information system. You know that 
there will be one login screen, three different inquiry screens, and two 
different two-function input screens. These are the services that the 
user can easily identify. Because of the three-tier system architecture, 
you know that your user interface application must communicate 
with the business logic application. The logical requirement is to send 
six different messages (one for each screen; the data elements on each 
screen are different) and also to receive six different messages. You 
also know that there will be no local data storage or customer-
specified algorithmic services in the user interface application.

•	 If you want to know the application size in IFPUG function 
points, you use the multipliers from the IFPUG column and 
get the size estimate:

1 × 3 + 3 × 4 + 2 × 15 + 6 × 5 + 6 × 5 = 105 FP

Table 5-2  KISS Quick Estimation Multiplier Table

Number of Navigation and Query 
Functions (No Update)

Number  
(e.g.)

IFPUG 
Multipl.

FiSMA 
Multipl.

Persistent Data Storage Functions

21 Number of entity types? 7 3.9

22 Number of other logical record types? 7 3.9

Independent Algorithmic Functions

23 Number of independent calculation 
routines?

0 5.1

24 Number of independent simulation 
routines?

0 5.1

25 Number of independent formatting 
routines?

0 5.1

26 Number of independent database 
cleaning routines?

0 5.1

27 Number of independent security 
routines?

0 5.1

28 Number of other independent 
algorithmic routines?

0 5.1



	 54	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 55

•	 If you want to know the application size in FiSMA function 
points, you use the multipliers from the FiSMA column and 
get the size estimate:

1 × 1.8 + 3 × 3.4 + 2 × 11.2 + 6 × 3.6 + 6 × 5.5 = 89 FP

As we see from the example, the size of the user interface 
application will be approximately 100 function points with each of 
these measurement methods.

Moving from Basic KISS Quick Approach  
to Other Accuracy Levels
As mentioned earlier, the basic KISS Quick approach is rated as a 
“rough size measurement” method. When using FiSMA function 
points, the approach and measurement can be easily modified to gain 
more accuracy. If we need a ballpark estimate of the size in a very 
early phase of the development life cycle, we can use Table 5-3.

The basic KISS Quick approach just mentioned would give us a 
ballpark size estimate of 2 × 12 + 4 × 6 + 6 × 5 + 6 × 5 = 108 FiSMA function 
points. It is slightly larger than the outcome from the basic KISS Quick, 
but still roughly 100 FP, providing a reasonably accurate size estimate.

With the basic KISS Quick questionnaire, you have found the 
numbers of occurrences of each functional type (28 FiSMA Base 
Functional Component [BFC] types). You can reach the next accuracy 
level by giving names to all those occurrences. For example, when 
you answered that you will have three different inquiry screens, each 
representing 3.4 function points, your estimate can be upgraded to 
the “default complexity measure” level by naming the screens but 
keeping the size default values. Moving to higher levels of accuracy 
requires additional information (for example, related numbers of 
data elements and reading references).

Table 5-3  KISS Quick Estimation for FiSMA

Questions Number Multipl. FP

How many input screens? (2) × 12 =

How many other screens? (4) × 6 =

How many report and output form types? × 6 =

How many interface record types to other 
systems?

(6) × 5 =

How many interface record types from other 
systems?

(6) × 5 =

How many entity types? × 4 =

How many algorithmic business rules? × 5 =



	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 55

Early & Quick Software Size Estimation Technique
The Early & Quick (E&Q) technique2 combines different approaches 
in order to provide better size estimates. It uses both analogical and 
analytical classification of functional components at different levels 
of detail for different branches of the system (aggregations and 
multilevel approach). The overall uncertainty level in the estimate 
(expressed as a range of minimum, likely, and maximum values) is the 
weighted sum of the individual components’ uncertainty levels. This 
technique provides a table of statistically validated values, derived 
from the ISBSG and other sources. Due to its multilevel/mixed 
approach, the sizing level for E&Q depends on how many details the 
measurer has and can explore:

•	 Level 5  For higher hierarchical components (macro pro-
cesses, general processes, and multiple and generic logical 
data groups)

•	 Level 4  For lower hierarchical components (typical process-
es and base functional processes, and internal and external 
logical data groups with generic complexity)

•	 Level 3  For functions where the low/average/high complex-
ity is determined

The starting point of this technique is the product breakdown 
structure of the system being studied, the basic elements of which are 
the following software objects:

•	 Logical data groups (files)

•	 Elementary (functional) processes

Further aggregations are provided:

•	 Logical data groups (files) can be grouped in multiple data 
groups.

•	 Elementary (functional) processes can be grouped in small, 
medium, or large “typical” and “general” software processes.

•	 General processes can be grouped in small, medium, or large 
“macro” software processes.

Table 5-4 shows the descriptions for all the software objects and 
their aggregates.

The following section provides Early & Quick hints, levels, and 
ranges for COSMIC FSM methods. The Early & Quick technique can 
also be used for IFPUG. This technique provides results within ±25 
percent of the actual size of the project or application being 
approximated.

2	Refer to References.



	 56	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 57

Name Description Brief Definition

LDG Logical data 
group

A group of logical attributes—a conceptual entity 
that is functionally significant as a whole for the 
user. An internal logical file or external interface 
file (ILF, EIF in IFPUG), or permanent objects of 
interest (OOI in COSMIC).

MDG Multiple data 
group

A set of two or more logical data groups. Its size 
is evaluated based on the (estimated) amount of 
included logical data groups.

BFP Base 
functional 
process

The smallest software process with autonomy 
and significant characteristics, allowing the 
user to achieve a unitary business objective. It 
corresponds to an external input, external output, 
or external query (IFPUG), or to any functional 
process (COSMIC).

TFP Typical 
functional 
process

A particular case of a general process: a set 
of most frequent transactions on a logical data 
group (or a small set of LDGs). Usually denoted 
as “Management of [LDG/OOI].” It can be of three 
“flavors”: CRUD (create, retrieve, update, and delete), 
CRUDL (CRUD + elementary list), or CRUDL + Report 
(totals or other derived data).

GFP General 
functional 
process

A set of two or more average FPs. It can be likened 
to an operational subsystem, which provides an 
organized whole response to a specific application 
goal. Its size is evaluated based on the (estimated) 
quantity of included FPs.

MFP Macro 
functional 
process

A set of two or more average general processes. 
It can be likened to a relevant subsystem, or even 
to a bounded application, of an overall information 
system. Its size is evaluated based on the 
(estimated) quantity of included general processes.

Table 5-4  Early & Quick Software Objects

Early & Quick for COSMIC Function Point Size
In the COSMIC method3, objects of interest are identified, but not 
assigned any numerical values.

COSMIC Transactional Functions
Base functional processes correspond to the functional processes of 
the standard COSMIC method. Typical functional processes and 

3	Refer to Chapter 20.



	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 57

higher-level aggregations (general and macro functional processes) 
are also defined.

COSMIC Ranges and Numerical Assignments
Each E&QC FFP (full function point) element is assigned three 
estimated values, that is, minimum, likely, and maximum COSMIC 
function points. Tables 5-5 and 5-6 show component ranges and 
numerical assignments for the “business application software” case 
(for example, MIS [management information system]) and the real-
time case.

Table 5-5  Early & Quick COSMIC Ranges for Business Application Software

Type Level/Complexity E
min

E
likely

E
max

BFP Low (2–5 DM)    2.0      3.6      5.0

Average (5–8 DM)    5.0      6.3      8.0

High (8–14 DM)    8.0   10.5   14.0

Very High (14+ DM) 14.0   18.0   25.0

TFP Low CRUD/L 14.4   18.0   25.2

Average CRUD/L 25.2   30.0   42.0

High CRUD/L 42.0   50.0   65.0

GFP Low (6–10 BFPs) 20.0   50.0 100.0

Average (10–15 BFPs) 40.0   80.0 160.0

High (15–20 BFPs) 55.0 110.0 210.0

Table 5-6  Early & Quick COSMIC Ranges for Real-Time Software

Type Level / Complexity E
min

E
likely

E
max

BFP Low (2–3 DM)   2.0   2.5     3.0

Average (3–5 DM)   3.0   4.0     5.0

High (5–10 DM)   5.0   7.5   10.0

Very High (10+ DM) 10.0 15.0   20.0

GFP Low (6–10 BFPs) 15.0 32.0   75.0

Average (10–15 BFPs) 25.0 38.0 110.0

High (15–20 BFPs) 38.0 70.0 150.0



	 58	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 59

Some Other Examples of Extrapolative Approaches  
to Size Approximation
Other examples of extrapolative approaches to size approximation 
are

•	 FP Prognosis  FP = 7.3 × #Inputs + Outputs + 56

•	 NESMA Indicative FP  FP = 35 × ILFs + 15 × EIFs

•	 Lite or Quick & Early FP  FP = 4 × EIs + 5 × EOs + 4 × EQs + 
10 × ILFs + 7 × EIFs

•	 Weighted Averages  FP = 4.3 × EIs + 5.4 × EOs + 3.8 × EQs + 
7.4 × ILFs + 5.5 × EIFs

•	 Thirties Rule of Thumb  One logical file equals “thirty 
something” unadjusted FPs. So for an application that has 
about 40 logical files, a very rough size can be obtained as 
follows: 40 × 35 = 1,400 FP. This sort of rough estimate should 
have an allowance of plus or minus 30 percent or more.

Using Functional Size to Estimate Project Effort  
and Duration
If functional size is being used to estimate the effort and duration of 
a development or enhancement project, try and get the most accurate 
size that you can within the limitations of information and resources 
available. Use several size approximation techniques to refine the 
result before using its values in the project estimation exercise, since 
an error in the size compounds the errors in the estimates of effort 
and duration.

Note  When using approximated sizes for project estimation purposes, be 
aware of the need to validate, refine, and eventually translate your size 
estimates into exact measures, in order to avoid spreading uncertainty 
from the size approximation to the effort and duration estimates.

Once you have established your project’s software functional size 
expressed as a number of functional size measurement method units 
(for example, function points) you can use the ISBSG data to estimate 
the likely project effort and duration. The following chapters present 
estimating techniques that allow you to do this.

Note  Remember that approximating (or measuring) functional size only 
results in an approximate (or measured) software size. This is a measure 
of the amount of software product to be delivered; it is not an estimate of 
project effort, duration, or cost.



	 C h a p t e r  5 :  P  r a c t i c a l  S o f t w a r e  S i z e  A p p r o x i m a t i o n  T e c h n i q u e s 	 59

The Need for Caution
Whether size is approximated or measured for use as an early cost 
indicator for the project, a contingency of 20 percent to 30 percent 
should be added to allow for functionality not apparent early in the 
life cycle. Historical data indicates that this scope creep typically 
occurs as a result of additional functionality being identified as user 
requirements evolve in subsequent development phases.

The approximation techniques discussed earlier are only valid if 
your application or development project is loosely coupled with other 
applications and generically fits the profile of projects currently in the 
ISBSG Repository.

Summary
In this chapter we provided examples of just some of the approximat-
ing size techniques that can be used when there is insufficient oppor-
tunity, time, or perhaps information to perform a detailed size  
measurement.



This page intentionally left blank 



Chapter 6
The Problem 

of Missing 
Functionality 

One of the major factors contributing to “blowouts” in software 
project costs and schedules is scope creep. Scope creep is the 
introduction of additional functionality that either was not 

specifically defined or was not identified at the time of estimation. 
Undefined functionality will be missing from the functional size; 
consequently, the project will be underestimated.

Identifying Missing Functionality
By comparing the different types of functionality delivered by com-
pleted software projects, you can gain an insight into what may be 
missing from your project’s early specifications. Functional sizing of 
the requirements of an application quantifies the different types of 
functionality to be delivered by the application. As detailed in the 
previous chapter, industry figures available from the ISBSG Reposi-
tory for projects—measured with IFPUG function points—indicate 
that complete applications tend to have consistent and predictable 
ratios of function points contributed by each of the function types. 
This profile of functionality delivered by each of the function types 
for your planned application can be compared with that of the profile 
of typical completed and implemented applications. Such a compari-
son will highlight potential areas where the project specifications are 
incomplete or where there are anomalies.

Note that that this approach for identifying missing functionality is 
unlikely to work for enhancement projects, simply because a particular 
enhancement can be focused upon for only certain types of functionality, 
for example, reporting. In such a case its function type profile will reflect 
that focus, and it will not align with the overall application profile.  

61



	 62	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  6 :  T  h e  P r o b l e m  o f  M i s s i n g  F u n c t i o n a l i t y  	 63

In addition to considering the average profile determined from the ISB-
SG data, it is important to consider the nature of the application in ques-
tion. For example, if the application were for end-of-month reporting, 
you would expect it to have a quite different function type profile than if 
it were an online contact management system. You would expect the 
end-of-month reporting application to have a higher percentage of its 
functionality associated with external outputs and external queries than 
the online contact management system.

Figure 6-1 illustrates a case where the project manager for a new 
development of a financial application performs a detailed function 
point count of the planned project and then compares the percentage 
contribution of each type of functionality against the ISBSG Repository 
values. The inner chart in Figure 6-1 represents ISBSG Development 
Project Data, where n = 798. The outer chart shows the example financial 
application. This quantitative comparison shows the disparity between 
the planned project and the typical ISBSG profile. (A comparison with 
the ISBSG typical profile is appropriate here because the financial 
application being developed is expected to have a function type profile 
that would align with the profile for an average application.)

The project manager noted that the reporting requirements 
(“External Outputs” function points) had the largest percentage 
discrepancy, being much lower than expected (10 percent compared 
against the expected 22 percent of the total function points). The user 
subsequently confirmed that the first release of the software was 
expected to deliver all reporting requirements but that not all reports 
had been specified. As a result, the project manager increased the 
original functional size to allow for the extra percent of reports 

Figure 6-1  Checking the completeness of project requirements using ISBSG 
Release 11 industry data

10%

22%

30%30%
24%

16%

14%

42%

4%

8%
External Inputs

External Outputs

External Queries

Internal Logical Files

External Interface Files



	 C h a p t e r  6 :  T  h e  P r o b l e m  o f  M i s s i n g  F u n c t i o n a l i t y  	 63

predicted by the ISBSG figures. The project manager calculated the 
early project estimates using this higher functional size figure, which 
was more likely to reflect the finished product. The ISBSG comparison 
enabled the project manager to quantify the functionality that was 
potentially missing and to justify the higher estimate.

Managing Changes and Additions to Functionality
The method just offered is useful for projects that attempt to define all 
functional requirements before moving to the build stage of the project 
(this also suggests a waterfall approach to the development). Many 
projects adopt an approach that does not demand that all the functional 
requirements are known prior to programming work commencing. A 
number of techniques that include significant user involvement during 
the life cycle of the project, and that allow for incremental development, 
have been identified as offering significant improvements in project 
delivery rate, speed of delivery, and quality (a lower number of defects 
delivered). These are reported in the ISBSG’s “Techniques & Tools –
Special Report II,” which covers techniques like Prototyping, JAD, and 
Agile.

Scope Management
The scope management approach has also been employed in Europe, 
Japan, and Australia to manage changes and additions to functionality. 
Two approaches are used: southernSCOPE (Victorian Government, 
Australia) or northernSCOPE™ (FiSMA, Finland). Both techniques 
use the ISBSG history data to help verify quotations provided by 
software vendors. Both are based on three major principles:

•	 Use of functional size measurement

•	 Use of unit pricing $/FP

•	 Use of an independent scope manager

As with the incremental techniques, both these approaches are 
designed to achieve improved communication between the developers 
and their customers and users. More information about these concepts 
is available at the web sites of the owner organizations.

Summary
The typical ISBSG profile of new development projects can be used to 
compare against the profile of a proposed project as a check that all 
the requirements are likely to have been included in the functional 
specification and the functional size.



This page intentionally left blank 



Chapter 7
Estimating Using 

Equations

One technique for software project estimation involves the use 
of regression equations. These equations allow you to 
calculate an estimate for a particular project metric, such as 

effort and duration, by simply inserting the calculated size1 of your 
project into the appropriate equation. This estimation technique is 
commonly used to produce indicative or ballpark project estimates 
early in the life of a project. The method is not sufficiently accurate to 
produce an estimate that could be relied on for quoting or business 
case requirements, but is useful for an early indication of whether a 
project idea is feasible, or when you are short of time and information. 
In these situations the equation technique can meet your needs.

Note  The equation technique for estimation is commonly used to produce 
an initial, indicative project estimate.

ISBSG Regression Equation Tables
A set of regression equations has been produced from the data in the 
ISBSG Repository. These equations are available in the tables in 
Appendix C. You can use these equations to calculate the following 
project metrics:

•	 Project delivery rates (productivity, expressed as hours per 
function point2)

1	Historically, regression equations used KLOC (thousands of lines of code) as their 
units of measure for software size; however, all regression equations in this book 
use IFPUG 4.x function points to measure functional size.

2	“Function point” means unadjusted function point (UFP).

65



	 66	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  7 :  E  s t i m a t i n g  U s i n g  E q u a t i o n s 	 67

•	 Effort (person hours—for the development team only)

•	 Duration (elapsed months)

•	 Speed of delivery (function points delivered per elapsed 
month) for the project as a whole

•	 Speed of delivery per person (function points delivered per 
elapsed month per development team member)

Two groups of equations are provided with the following 
independent variables:

•	 Equations that utilize size (in unadjusted function points) 
and maximum team size

•	 Equations that utilize size only

Within these groups, equations are provided by:

•	 Platform (mainframe, midrange, PC, and multiplatform)

•	 Language type (3GL, 4GL, and application generator)

•	 Development type (enhancement and new development)

•	 Combinations of platforms, language type, and development 
type

You must have an estimate or calculation of project size for these 
estimates. If team size is known or estimated as well, so much the 
better, but it makes no sense to attempt to produce estimates based on 
team size alone without knowing the project size.

An example of how to use the basic equations to produce a 
ballpark estimate based on language level is provided at the end of 
this chapter.

Using the ISBSG Regression Equations
Use of the ISBSG equations is straightforward. Having selected the 
appropriate equation from the tables provided, to produce your 
estimate, you insert the calculated functional size of your project and 
(if available) the maximum team size.

For example, suppose you want to produce estimates for an 
enhancement project that is being developed for a multiplatform3 
environment, and the project has a functional size of 260 function 
points, with a planned maximum team size of 4. Using Tables C-1.0, 

3	Refer to Appendix C for the equation tables.



	 C h a p t e r  7 :  E  s t i m a t i n g  U s i n g  E q u a t i o n s 	 67

C-1.1, C-1.3, and C-1.4 from Appendix C, you would come up with 
the following estimates:

Project Delivery 
Rate

PDR
RE

 = 38.97 ×  
Size–0.566 × 
TeamSize0.951

= 38.97 ×  
260–0.566 × 40.951

≈ 6.3 hours per 
function point

Project Work 
Effort

PWE
RE

 = 38.97 ×  
Size0.434 × 
TeamSize0.951

= 38.97 ×  
2600.434 × 40.951

≈ 1,627 hours

Speed of 
Delivery (whole 
project)

SD
RE

 = 0.44 ×  
Size0.852 × 
TeamSize–0.228

= 0.44 ×  
2600.852 × 4–0.228

≈ 37 function 
points per month

Speed of 
Delivery (per 
developer)

SD
RE

 = 0.44 ×  
Size0.852 × 
TeamSize–1.228

= 0.44 ×  
2600.852 × 4–1.228

≈ 9.2 function 
points per month 
per developer

The following is an example of how to perform these equations 
using an MS Excel formula:

=(38.97*(260^–0.566)*(4^0.951))

(For ^ press shift-6.)
Duration cannot be estimated directly from size and team size (no 

useful equations can be presented in Table C-1.2). Using the third row 
of Table C-2.2 leads to an estimated duration of 5.3 months. The 
general equation relating effort to duration (see item 2.b after Table 
C-2.2) gives an estimate of 4.2 months. Dividing 260 FP by 37 FP per 
month (from the table immediately preceding this text) gives an 
estimate of 7.1 months.

So the estimates for this project indicate that it will consume 
around 1,600 hours of effort and have an elapsed time of approxi-
mately 5 to 7 calendar months.

Note  It is very important to treat estimates obtained from the regression 
equations as ballpark figures only.

Creating Graphs from the Equations
You can use the equations in Appendix C to create estimation charts 
for your environment. For example, using the equation in Table C-2.1, 
“Project Work Effort, estimated from software size only,” for midrange 
platform & 4GL, you can create a simple MS Excel table, as shown 
next, for 50 through 1,000 function points, and then create a useful 
graph, as shown in Figure 7-1.



	 68	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  7 :  E  s t i m a t i n g  U s i n g  E q u a t i o n s 	 69

Class C E N R2 (Adj) Median MRE

MF & 3GL 51.34 0.730 365 0.37 0.56

MF & 4GL 18.39 0.838   41 0.44 0.51

MR & 3GL 43.17 0.742   71 0.53 0.45

MR & 4GL 29.07 0.830   47 0.65 0.40

PC & 3GL 13.83 0.889 140 0.56 0.51

PC & 4GL 31.05 0.710   50 0.36 0.57

Note  Effort includes project management, administration, and the 
software team.

Example Effort Estimate Using the Equations
Using Table C-2.1 in Appendix C, the effort equations derived from 
the ISBSG’s data for the different combinations of platform and 
development show the following ballpark effort estimates for a 
project of 500 function points:

Platform and 
Language Effort Equation

Estimated Effort for 
500 FP Project

MF & 3GL Effort = 51.34*FPSize0.730 4,794 person hours

MF & 4GL Effort = 18.39*FPSize0.838 3,360 person hours

MR & 3GL Effort = 43.17*FPSize0.742 4,343 person hours

MR & 4GL Effort = 29.07*FPSize0.830 5,053 person hours

PC & 3GL Effort = 13.83*FPSize0.889 3,469 person hours

PC & 4GL Effort = 31.05*FPSize0.710 2,561 person hours

Multi & 3GL Effort = 23.96*FPSize0.831 4,191 person hours

Multi & 4GL Effort = 15.86*FPSize0.867 3,470 person hours

Figure 7-1  Example Effort Estimation Chart, MR & 4GL

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

E
ff

or
t (

H
ou

rs
)

0
0 100 200 300 400 500

Size (IFPUG Function Points)
600 700 800 900 1,000



	 C h a p t e r  7 :  E  s t i m a t i n g  U s i n g  E q u a t i o n s 	 69

Note  The effort predicted by the ISBSG equations includes all effort across 
all phases of the life cycle from project initiation to project completion for 
software developers, project managers, and project administration.

The following results using the equations that utilize software 
size and maximum team size offer an interesting comparison. Because 
only those equations are presented in which size and team size both 
have a significant impact, the set of platform and language 
combinations excludes some that occurred in the equivalent set based 
upon software size alone, in the previous example.

Platform and 
Language

Effort Equation Utilizing Software 
Size and Maximum Team Size

Estimated Effort for 
500 FP Project with  
a Max Team Size of 5

MR & 3GL Effort = 42.94*FPSize0.395*MxTeam0.994 2,475 person hours

MR & 4GL Effort = 56.86*FPSize0.336*MxTeam0.967 2,175 person hours

PC & 3GL Effort = 28.66*FPSize0.501*MxTeam0.780 2,263 person hours

Multi & 3GL Effort = 36.44*FPSize0.509*MxTeam0.833 3,293 person hours

Multi & 4GL Effort = 9.35*FPSize0.718*MxTeam0.801 2,941 person hours

Of course, these estimates are just indicative and need to be 
adjusted to allow for other factors that impact productivity and are 
specific to your project and environment. You should present any 
estimates as a range, or plus/minus ≈30 percent.

The obvious limitation of this equation-based technique for 
project estimation is that the equations cannot address the specific 
attributes of a particular project. The equations model an average 
project derived from the ISBSG Repository.

It is very important to treat estimates obtained from the regression 
equations as ballpark figures only. More accurate estimates will be 
obtained by using an estimation technique that considers the 
particular attributes of a planned project.

Summary
The use of the regression equation estimation technique is useful to 
produce indicative or ballpark project estimates early in the life of a 
project.



This page intentionally left blank 



Chapter 8
Estimating Using 

Comparison

In the previous chapter, we described the use of the ISBSG 
regression equations to produce indicative project estimates. The 
limitations of this equation-based technique are detailed in that 

chapter. To achieve more detailed estimates—aligned more specifically 
to the attributes of the project being planned, rather than being based 
on those of the average project in the ISBSG Repository—we need to 
use another estimation technique.

In this chapter we describe an estimation technique based on 
comparison of the target project with a number of projects in the 
ISBSG Repository that have similar attributes to the target project.

Comparison-based estimation differs from the analogy-based 
estimation (which is covered in the next chapter) in that comparison-
based estimation uses the median values for effort, duration, and so 
on, from a group of projects that are similar to the target project. 
Analogy operates with one or perhaps two past projects selected on 
the basis of their close similarity to the target project.

Note  Comparison-based estimation involves selecting a group of completed 
projects that share the characteristics of your target project, then using 
the average of the median effort and duration values.

Using the Comparison Technique
The comparison technique uses the attributes of the target project and 
compares them with projects in the ISBSG Repository, to produce an 
estimate of project delivery rate and speed of delivery, and hence 
project effort and duration.

71



	 72	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  8 :  E  s t i m a t i n g  U s i n g  C o m p a r i s o n 	 73

The steps are as follows:

	 1.	 Establish the size of the software to be delivered by the target 
project.

	 2.	 Determine the development type and platform applicable to 
the target project.

	 3.	 Select the appropriate subset1 of ISBSG Repository2 data.

	 4.	 Define the other attributes of the target project (for example, 
Programming Language, Application Type, Maximum Team 
Size, Tools, and so on). You should define attributes that are 
likely to influence the target project’s project delivery rate or 
speed of delivery.

	 5.	 Search the selected subset of ISBSG data for projects with the 
same values for the defined attributes as the target project.

	 6.	 For all the matching projects found by your search, for each 
of the defined attributes, calculate the median3 project 
delivery rate and speed of delivery.

	 7.	 Determine the average of the medians of the project delivery 
rates and speeds of delivery, and use those averages in 
conjunction with the software’s functional size to calculate 
the target project effort and duration estimates.

Because the resulting values determined by this technique are 
aligned to the specific attributes and values of the target project, they 
should be better estimates of that project’s project delivery rate and 
speed of delivery—and hence effort and duration—than the values 
obtained from the equations that reflected the average project in the 
repository.

The following is an example of using comparison-based estimation 
against the ISBSG Repository to determine effort and duration 
estimates for a planned small-sized, that is, 250 FP, new development 
project being undertaken on a PC platform. Table 8-1 shows project 
selection attributes and values, and Table 8-2 displays project 
estimation attributes and values. Only those projects matching these 
attribute values will be used in the estimation calculation.

1	Because the performance achieved on projects of different sizes and development 
types and using different development platforms varies significantly, it is 
recommended that you select only projects of a similar size and having the same 
development type and platform as the target project.

2	The complete ISBSG project data is available on the “ISBSG Estimating, 
Benchmarking & Research Suite” that can be licensed from www.isbsg.org or 
from ISBSG member organizations.

3	The median is used instead of the mean to determine average project delivery rate 
and speed of delivery, so as to reduce the effect of outlying data points.

www.isbsg.org


	 C h a p t e r  8 :  E  s t i m a t i n g  U s i n g  C o m p a r i s o n 	 73

First, determine the project delivery rate (PDRAC) and speed of 
delivery (SDAC) estimates.

Next, use the project delivery rate and speed of delivery estimates 
in conjunction with the project’s functional size to calculate the project 
work effort (PWEAC) and project duration (PDAC) estimates, as shown 
in Table 8-3.

In this example, comparison-based estimation indicates that 
completing the target project to deliver the new software will require 
around 1,850 hours of work and take 6.3 months. These are likely 
estimates and should be presented as part of a range also showing 
conservative and optimistic estimates. The ISBSG Comparative 
Estimation Tool4 provides such a range.

4	ISBSG provides a “Comparative Estimating Tool” that can be licensed from www 
.isbsg.org or from ISBSG member organizations.

Attribute Value

Size Range 0 to 500 function points

Development Type New Development

Development Platform PC

Table 8-1  Project Selection Attributes and Values

Table 8-2  Project Estimation Attributes and Values

Attribute
Target Project 
Value

ISBSG Median 
Project Delivery 
Rate 
(hours per 
function point)

ISBSG Median 
Speed of Delivery 
(function points 
per month)

Primary 
Programming 
Language

Visual Basic 6.5 51.0

Organization Type Banking 5.3 44.4

Application Type Management 
Information 
System

9.1 31.3

Maximum Team Size 3 to 4 9.0 33.4

Used JAD Yes 8.9 27.0

Web Development Yes 5.9 52.2

Average: PDRAC = 7.4 SDAC = 39.9

www.isbsg.org
www.isbsg.org


	 74	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

Note  You must always make allowances and adjustments for factors 
peculiar to your project.    

Summary
Comparison-based estimation is useful and is likely to produce a 
more accurate estimate than one based on the regression equations. 
By introducing a direct comparison of attribute values that are specific 
to the target project with projects in the ISBSG Repository, the resulting 
estimates should prove to be more reliable. You must, of course, 
always make further allowances and adjustments for factors that you 
perceive to be peculiar to your project.

Table 8-3  Project Work Effort and Duration Estimates

Software Size Size = functional size 
of delivered project

= 250 function 
points

Project Delivery 
Rate

PDR
AC

 = average of 
category median 
project delivery rates

= 7.4 hours 
per function 
point

Project Work 
Effort

PWE
AC

 = PDR
AC

 × 
Functional Size

= 7.4 × 250 = 1,850 hours

Speed of Delivery SD
AC

 = average of 
category median 
speeds of delivery

= 39.9 
function points 
per month

Project Duration PD
AC

 = Size/SD
AC

= 250/39.9 = 6.3 months



Chapter 9
Estimating Using 

Analogy

Analogy-based estimation is another technique for early life-
cycle macro-estimation. Analogy-based estimation involves 
selecting one or two completed projects that closely match 

the characteristics of the target project. The chosen project(s), or 
analog(s), are then used as the base for your new estimate. Tools are 
available to search your chosen project history database for a suitable 
analog.1

Note  Analogy-based estimation involves selecting one or two completed 
projects that closely match the characteristics of the target project.

Analogy-based estimation differs from the comparison-based 
estimation covered in the previous chapter, in that comparison-based 
estimation uses the averages and medians from a group of similar 
projects. Analogy operates with one, or perhaps two, past projects, 
selected on the basis of their close similarity to the target project. 
Comparing a target project to a past project is commonly used in an 
informal way when “guesstimating”; consequently, it is a familiar 
technique to the practitioner.

In this chapter we describe the formal analogical estimation 
technique, its implementation, and its advantages and drawbacks. In 
Chapter 13 you will find an example of how to do an estimate using 
the analogical technique with the ISBSG data.

1	For example, “Angel” (ANaloGy softwarE tooL). Refer to http://dec.bournemouth 
.ac.uk/ESERG/ANGEL/ESCOM96.html.

75

http://dec.bournemouth.ac.uk/ESERG/ANGEL/ESCOM96.html
http://dec.bournemouth.ac.uk/ESERG/ANGEL/ESCOM96.html


	 76	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  9 :  E  s t i m a t i n g  U s i n g  A n a l o g y 	 77

Background: Reasoning by Analogy
An analogy expresses the similarity of different things. The word 
“analogy” is derived from the Greek words expressing geometric 
proportions or symmetries, ana logos, which can be translated as 
“according to a ratio.” An analogy between different things depends 
on the presence of the same or similar attributes in the things being 
compared. 

When we reason by analogy, we compare two things: a “target” 
and a “source” analog. The target analog is the thing about which we 
wish to make a conclusion or a prediction. The source analog is the 
thing whose similar attributes are used to make the conclusion or 
prediction. For example, we might predict the likely duration of a 
journey based on a past journey that has very similar characteristics 
to the one being planned.

Estimating by Analogy
Estimating software project effort by analogy simply involves finding 
one or two past projects that have similar significant attributes to the 
target project that you wish to estimate. An estimate of the effort to 
complete a new software project is made by comparison with one or 
more previously completed projects.

Estimating software project effort by analogy usually involves a 
number of steps:

	 1.	 Establishing the attributes of the target project, and then 
measuring or estimating the values of those project attributes. 
Analysis of the ISBSG data has revealed attributes that have 
an impact on project delivery rate. Table 9-1 is a guide to the 
attributes that you should consider.2

	 2.	 Searching a repository of completed projects for a project that 
closely matches the target project as a source analog to 
compare against.

	 3.	 Using the known effort that was used in developing the 
source analog as an initial estimate for the target project.

	 4.	 Comparing the chosen attributes (for example, size, platform, 
and so on) for the target and source projects.

	 5.	 Establishing or adjusting the initial effort estimate in light of 
the differences between the target and source projects.

2	This list of attributes reflects those that the ISBSG data has revealed have a 
significant impact on project delivery rate. If, however, you think that other 
attributes included in the ISBSG Repository, or in another repository that you 
are using, are relevant for your own project, then you should also consider those 
additional attributes in your estimation analysis.



	 C h a p t e r  9 :  E  s t i m a t i n g  U s i n g  A n a l o g y 	 77

It is very important that you use your judgment to exclude 
inappropriate analogs and not be tempted to adopt a “likely” analog 
without due care

It is not clear how best to judge the appropriateness of a potential 
analog for a target project. Analogical tools can assist in the selection 
process by ranking past projects according to how well they match 
the target. Once an analog has been selected, you are faced with the 
question of how best to use it to derive an estimate for the target 
project. It is probable that the analog differs from the target project in 
some respects that influence effort. You need to think about what 
adjustments should be made to the effort value of the analog to reflect 
these differences.

Note  It is very important that you use your judgment to exclude 
inappropriate analogs and not be tempted to adopt a “likely” analog 
without due care. 

Advantages of Estimating by Analogy
The accuracy of estimates from experiments with analogy tools 
demonstrates that software effort estimation by analogy is a viable 
estimation method. Analogy-based estimation also offers some 
advantages:

•	 It is easy to understand the basis for an estimate. Analogy-based 
estimation is quite different from the input-output models, as 
estimates are based on concrete past examples. People are used 
to seeking out an analogy to help them estimate everyday tasks. 
(We regularly estimate the likely duration of a planned journey 
based on previous experiences.) This familiarity may explain 
why people are comfortable estimating in this manner.

•	 It is useful where the domain is difficult to model. We know that 
many factors influence the effort needed to complete a software 
project. We know less about how these factors interact with each  
other, or how best to model the range of factors via software 

Table 9-1  Attributes That Impact Project Delivery

Software Size Application Type

Development Platform Maximum Team Size

Development Type Use of Prototyping

Primary Programming Language Use of JAD

Organization Type Web Development



	 78	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  9 :  E  s t i m a t i n g  U s i n g  A n a l o g y 	 79

metrics. Estimation by analogy can be used successfully without 
having a clear model of how effort is related to other project 
factors. It relies primarily on selecting a past project that is a 
close match to the target project, rather than assuming a general 
relationship between effort and other project characteristics 
that applies to all projects.

•	 It can be used with partial knowledge of the target project. Analogy-
based estimation allows people to use whatever information 
they have available to search for and select an analog, rather 
than prescribing particular inputs.

•	 It can avoid the inaccuracies of equation-based model use. Analogy-
based estimation has the potential to provide accurate 
estimates even using another organization’s data, provided 
an appropriate analog for the target project is found within 
the data set used for estimation. An analog is appropriate if 
effort and associated factors are related in a similar way for 
both the target project and analog.

•	 It has the potential to mitigate problems with outliers.3 Analogy-
based estimation does not rely on calibrating a single model 
to suit all projects. If the target project is typical of a data set, 
it is likely that one or more appropriate analog projects will 
be found to base the estimate on. Outliers in the data set have 
no influence on the estimate at all. If the target project is itself 
an outlier, at least the lack of a similar project to compare 
against may make this apparent to the estimator. When using 
an equation-based model, an estimator may be lulled into a 
false sense of security because the model will generate an 
estimate even for the outlier.

Note  If the target project is unusual, at least the lack of a similar project 
to compare against may highlight this to the estimator.

•	 It offers the chance to learn from past experience. When estimating 
by analogy, it is convenient to select a potential comparable 
project via scrutiny of available metric values, because this 
information is concise and easily compared. Ideally, analogy-
based estimation would be applied within an organization 
with access to other information associated with past 
projects, not just project metrics. Information such as project 
debriefing reports could help managers identify risks that 
the new project faces and avoid mistakes that have been 
made in the past.

3	An outlier in this context is a project with metrics that differ markedly from the 
sample group.



	 C h a p t e r  9 :  E  s t i m a t i n g  U s i n g  A n a l o g y 	 79

The Drawbacks of Estimating by Analogy
Naturally, some difficulties with analogy-based estimation offset its 
advantages. Its accuracy relies on three factors:

•	 The availability of an appropriate analog

•	 The soundness of the strategy for selecting the analog

•	 The manner in which differences between the analog and 
target are allowed for when deriving an estimate

There may be no appropriate analog project within an available 
data set for the project that you want to estimate. One danger is that 
an analog may be selected and used regardless of its appropriateness. 
An old project could be selected as an analog because it appears 
similar to the target project, even though factors affecting effort have 
changed over time.

Summary
Analogical estimation offers another macro-estimating alternative. It 
relies heavily on the availability of an appropriate analog. This in 
turn relies on your ability to define the attributes of the target project 
to a level of granularity that will result in any identified analog being 
a true match with the proposed project. That said, if a suitable analog 
is available, this method of estimation offers another viable estimating 
option.

In Chapter 13 you will find an example of how to perform an 
estimate using the analogical technique utilizing the ISBSG data.



This page intentionally left blank 



Chapter 10
Estimating Using 
Work Breakdown 

Structure

Throughout this book we have stressed the importance of not 
relying on one method of estimation. We advise you to use 
different techniques to provide “sanity checks” for your 

preferred estimation approach. While the emphasis in this book has 
been on techniques for macro-estimation, particularly utilizing the 
project history available in the ISBSG Repository, it is important to at 
least make reference to the essential micro-estimation technique, 
commonly known as a work breakdown structure (WBS). As there 
are many publications available that provide detailed material on 
work breakdown structures, this chapter provides only a basic 
introduction.

Work Breakdown Structure: Introduction
For work breakdown estimates, the main development phases are 
broken down into tasks and then into subtasks. PMBOK refers to this 
as “bottom-up estimates.” To reduce the possibility of failing to 
include all the tasks, the project team members and stakeholders 
should be involved in the process of task identification and recording. 
This process then provides a base for a bottom-up estimate.

The team-based technique of Wide-Band Delphi estimation 
(developed by the Rand Corporation in 1948) is now widely used for 
software project WBS-based estimates. The technique is also taught in 
many universities and software organizations. After researching 
estimation techniques used by software organizations, the University 
of West Florida discovered that a number of software organizations 
utilize the technique, without referring to it by its name. So, even 

81



	 82	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 0 :  E  s t i m a t i n g  U s i n g  W o r k  B r e a k d o w n  S t r u c t u r e 	 83

though few organizations claim to use the Delphi technique by name, 
the methodology is widely used.

Note  Formal risk assessment is an essential project estimation 
prerequisite.

The following approach to work breakdown software estimation—
based on the Delphi technique—can be used:

	 1.	 Provide team members with the relevant information 
regarding the project (business case, quality requirements, 
and so on).

	 2.	 Conduct a formal risk assessment.

	 3.	 Develop task lists.

	 4.	 Each person in the development team individually estimates 
each task using sensitivity analysis1 to provide a best case, 
likely, and worst case estimate.

	 5.	 All estimates are then written on a white board, grouped in 
the three ranges.

	 6.	 Each person discusses the various assumptions and issues 
they considered when developing their estimates.

	 7.	 If appropriate, the various estimates are adjusted based on 
the team discussion.

	 8.	 Each range is averaged with outliers being discarded.

	 9.	 The resultant ranges are used as the basis for the effort and 
duration estimates.

The team discussions incorporated into this technique are very 
important because they allow the team members and stakeholders to 
learn about the various assumptions that were made during the 
estimation process.

Note  ISBSG research indicates that better project estimates are obtained 
by using a combination of work breakdown and macro-estimating 
techniques.

As micro-estimation is a vital part of any project estimation effort, 
we recommend that you acquaint yourself with the work breakdown 
estimation technique and use it in addition to macro-estimation 
techniques.

1	This technique involves making estimates ranged into three figures: optimistic, 
realistic (most likely), and pessimistic.



	 C h a p t e r  1 0 :  E  s t i m a t i n g  U s i n g  W o r k  B r e a k d o w n  S t r u c t u r e 	 83

Using Process Models for Micro-Estimation
Another alternative for the breakdown of macro-activities into 
operational tasks is to use software life-cycle macro-phases2 and to 
map these with the process model adopted in your own quality 
management system, or to use an external standard process model 
such as CMMI-DEV, SPICE (ISO/IEC 15504-5), or ISO/IEC 12207. Use 
of one of these will provide a framework to ensure that all standard 
and repeated activities are included. As your projects will then share 
the same definitions, ambiguities will be minimized, and this will also 
allow the comparison of projects. The result will be a three-tier WBS:

•	 Macro-Software Life-Cycle Phase (for example, “Design”)

•	 Process (according to the chosen process model, for example, 
“Architectural Design”)

•	 Task (according to the chosen process model, for example, 
“Review Architectural Design Specification”)

Depending upon the process model chosen, it is possible to have 
a different number of process groups (or categories, depending upon 
the terminology used). For instance:

•	 CMMI-DEV has distributed its 22 process areas into four 
process categories (Project Management, Process Management, 
Support, and Engineering).

•	 ISO/IEC 15504-5 distributed its 48 processes into three main 
blocks of processes (Primary, Organizational, Support) for a 
total of nine process groups (Primary: Acquisition, Supply, 
Engineering, Operation; Organizational: Management, Process 
Improvement, Resource and Infrastructure, Reuse; Support: 
Support).

Figure 10-1 compares the two models’ contents against those 
categories.

Two main questions arise from such classification into process 
categories:

•	 What is the impact of the number of process categories on the WBS? 
From a practical viewpoint, some useful information can be 
gained from a Gantt chart structured using these classifi- 
cations. For instance, it would allow the following:

•	 Easier matching of activity types to the related personnel 
skills required. This would provide a more granular 
classification of a generic “analysis” process, which would 
lead to different allocations (and related costs) for 
functional/business analysts and for technical analysts.

2	Refer to “Project effort breakdown” in the Glossary.



	 84	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 0 :  E  s t i m a t i n g  U s i n g  W o r k  B r e a k d o w n  S t r u c t u r e 	 85

•	 Knowledge of the balance between categories and their 
alignment to expected thresholds for a certain kind/group 
of projects. This will allow you to more accurately assess 
the effort breakdown for the various project tasks (for 
example, business analysis).

•	 More accurate estimation and planning through an 
appropriate balance of activities in the project.

•	 Why choose one reference model over another?                     3

•	 Business viewpoint: this could be a case of requiring 
compliance with a model because it is a de facto standard  
and will allow for benchmarking (for example, CMMI-DEV).

•	 Technical viewpoint—two alternatives:

•	 Choose a single model. Usually, the larger the number of 
process groups, the broader the coverage of possible 
processes and related tasks performed in an 
organization. The choice of a specific model (and 
related number of process categories and processes) 
should be done in line with the organization’s Quality 
Management Standard purpose and scope.

•	 Combine models. Another option is to merge two 
models, integrating their best aspects into a single, 
customized model. For instance, CMMI-DEV has a 
reduced presence of processes related to reuse practices, 
while ISO 15504 has a devoted process. Or if you 
require more detail for testing or measurement, you 
could use specific “vertical” maturity models from 
those domains.

3	The aim of this figure is to provide a snapshot of comparable groups by processes 
and related activities, marked with shades. Please note that categories that cannot 
be mapped (for example, Reuse) are shown with a white background.

Figure 10-1  Process categories in CMMI and ISO 155043

CMMI ISO 15504

Acquisition (ACQ)

Reuse (REU)

Process Improvement
(PIM)

Resource &
Infrastructure (RIN)

Support (SUP)

Supply (SUP)

Operation (OPE)

Engineering (ENG)

Project Management

Process Management

Support

Engineering

Management (MAN)



	 C h a p t e r  1 0 :  E  s t i m a t i n g  U s i n g  W o r k  B r e a k d o w n  S t r u c t u r e 	 85

Summary
Work breakdown structures are an important tool in software project 
estimation. They provide a micro-approach to estimating, thereby 
allowing a cross-check between the results achieved from micro and 
macro techniques. A sound approach to estimating a software 
development project is to use both a macro-estimation technique and 
a work breakdown micro-estimate.



This page intentionally left blank 



Chapter 11
How Do I Estimate a 
Project Comprising 

Varying Components?

Some projects are characterized by subsets of functionality where 
different project delivery rates apply. For these projects it may 
be useful to apply macro-estimating methods to each subset 

and to aggregate the results. This chapter provides some examples of 
situations where you may wish to estimate project subsets.

Subsets Implemented Utilizing Different Technologies
It is common for systems to use mixed technologies in the software 
solution. For example, a 4GL or a report generator may be used to 
build reports, while the rest of the system may be developed in a 
lower-level language. Each technology subset should be indepen-
dently sized, and then its effort should be estimated.

Code and Reference Tables
Many information systems are characterized by code and reference 
tables used to ensure the validity, consistency, and integrity of other 
data and to enable data selection. In data warehousing systems, the 
contribution of code and reference tables to the functional size has 
been observed to be as high as 60 percent, but in normal MIS systems 
is often around 30 to 40 percent.

The method used for building maintenance functionality for these 
tables varies among organizations and among technologies used. But 
as a general observation, where the data element format for each table 
is the same or similar (for example, a code, name, and maybe a short 
description), a generic technique for the software construction is 
common. This approach develops a generalized set of maintenance 

87



	 88	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

functions for code and reference tables. Indeed, some technology 
platforms will readily generate this functionality. A faster project 
delivery rate can be expected for this approach.

Subsets Characterized by Technical or Other Complexities
Many software development projects have functionality subsets that 
will be challenging to design and/or build because of technical or 
other complexities. The project delivery rate (hours per function 
point) you might expect to achieve in these areas may be significantly 
worse than for other functionality in the project.

Reused Code
Not all software will be built from scratch. Some of the software 
solution functionality may be acquired from systems previously built, 
or may be bought.

Some common examples of this type of functionality are the 
following:

•	 Security

•	 Utility software for backup/recovery/retrieval

•	 Utility software for searching, for example, by wildcard or 
phonetic matches

•	 Drawing tools

•	 Event/audit log browsing and searching

The project delivery rate you choose when you are reusing code 
will depend upon the amount of customization or modification 
needed, but normally you can expect to achieve a rate better than 
would be achieved if you had to write the code from scratch.

Summary
A software project can be made up of components that can be expected 
to have significantly different project delivery rates. You need to be 
aware of this, identify the components of your proposed project, 
estimate each component based on its individual characteristics, and 
then sum the totals to achieve a realistic estimate for the total software 
component of your project.



Chapter 12
Using Project 

History Databases

Software project history data can come from two sources: from 
an organization’s own history of completed projects, and from 
databases of industry software project history.

Use of an Organization’s Own Experience Data
The project delivery rate used for estimation (expressed in hours per 
function point) is best derived from an organization’s own “experience” 
database. This experience database holds information about the 
organization’s internal project history. Different organizations have 
their own characteristics that influence their processes and their 
productivity. Many of these characteristics are difficult to identify, let 
alone quantify. They will include variables like the impact of the 
working environment, staff mindset and staff morale, work mix 
(development/support), management, organization structure, and 
the relationship with clients/users.

When data is collected on in-house projects, the impact of these 
types of variables is embedded in the data. The biggest difficulty 
when building your in-house experience database is deciding what 
to collect. One of the prime goals of the ISBSG initiative is to provide 
a common language that can be used by IT practitioners in measuring 
their productivity and comparing themselves. You can build your 
own experience database by entering your project data in the ISBSG 
Repository.1 From the project identification codes supplied to you 
when you submit data on projects, you will be able to extract your 
organization’s projects from the ISBSG Data Release.

1	Refer to Appendix E on the benefits of submitting projects to the ISBSG Repository. 
Also refer to http://www.isbsg.org/submitdata, Project data | Submit a project.

89

http://www.isbsg.org/submitdata


	 90	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 2 :   U s i n g  P r o j e c t  H i s t o r y  D a t a b a s e s 	 91

If you do enter your project data into the ISBSG Repository, you 
have the best of both worlds. You can extract your projects to derive 
the project delivery rates you have achieved, and you can extract 
similar projects from other organizations for comparison.

Use of the ISBSG Data
Industry data such as the ISBSG data is useful in estimating, in 
particular when you have no relevant experience data from your own 
organization to draw upon, or when you are planning a project that 
has characteristics unlike any of your previous projects. At the very 
least, industry data will give you some indication of the reasonableness 
of your own figures.

The ISBSG Repository
The data in the ISBSG Repository is not random project data, but is 
more likely to be representative of projects with higher than average 
productivity.

The key reason for higher than average productivity being 
represented lies in the method of ISBSG Repository collection. Many 
corporate repositories have been compiled by consultancy companies 
that were invited into organizations to benchmark them against the 
industry. This is often the result of serious concerns about the 
efficiency of the IT division. As such, these corporate repositories 
tend to reflect a random sample of industry projects. The source of 
the ISBSG Repository has been different in that the project data has 
been submitted voluntarily, by software practitioners who have a 
genuine interest in maximizing their productivity. These practitioners 
could reasonably be regarded as “mature” in their measurement 
philosophy and practices, and have proactively sought to benchmark 
their projects against the world. Other significant differentiating 
attributes of the ISBSG data include:

•	 Some organizations simply cannot contribute to the reposi-
tory. The criteria for including a project in the repository gen-
erally exclude organizations that do not use functional size 
measurement.2 They also exclude projects for which work  
effort (in person-hours) is not available.

•	 Only organizations that collect the necessary metrics can 
contribute to the repository. Organizations with software 
metrics programs are likely to be among the more mature 
software development organizations.

2	Although the repository does accept projects that have been sized using methods 
other than functional units (for example, LOC and use case points), the ISBSG does 
not perform validation on these size measures; it simply records them for general 
information.



	 C h a p t e r  1 2 :   U s i n g  P r o j e c t  H i s t o r y  D a t a b a s e s 	 91

•	 Organizations also choose which of their projects they submit. 
They might choose typical projects, but they might choose 
only their best projects.

•	 The majority of the projects in the repository are less than 500 
function points in size. There are few really big projects.

In determining which data to collect, the ISBSG philosophy has 
been that a minimum set of data will be collected that is meaningful, 
readily available, and objective. As such, much of the “soft” (subjective) 
data, which is important to estimating, is not collected. ISBSG does 
collect some data on “people factors” and “product and process 
quality,” but not currently in areas like the general novelty of the 
project (has this type of system been built before?), the complexity of 
the problem being addressed, the stability of user requirements, and 
project constraints.

These considerations do not lessen the value of the data in the 
repository. The focus of the repository is as much on understanding 
best practice in the IT industry as on overall averages. However, the 
key metrics have been studied and tested. The results of this work 
demonstrate that the sample represented by the repository is self-
contained, internally consistent, and contains no apparent anomalies. 
The repository is therefore a very valuable collection of data for 
estimation.

Guidelines for Use of the ISBSG Data
As the ISBSG project history data is readily available to IT practitioners 
and researchers, it is important that its users have a sound knowledge 
of the data—are aware of its strengths, limitations, and positioning—
prior to analyzing or using it. It is important to give careful thought 
to the project data that you will include in any data set that you plan 
to use. You need to think about the meaning of the data, and not just 
treat it as numbers to be used without selectivity. What project types 
can be legitimately compared or analyzed together?

Here are some examples:

•	 Project Rating  The ISBSG considers that projects with a 
data quality rating of A or B are suitable for statistical analysis. 
Projects rated C or D may still provide valuable data, but 
uncertainty about some of their size or effort values means 
that it is best not to include them in your estimation data 
sets.

•	 Normalized Effort3  For effort, consider what risk and gain 
is involved in using normalized effort. The Summary Work 

3	Refer to Appendix A.



	 92	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 2 :   U s i n g  P r o j e c t  H i s t o r y  D a t a b a s e s 	 93

Effort shown in the data is the total effort for the project. What 
is counted within that total varies, because different projects 
record effort at different levels of detail (see the Resource Level 
and Recording Method fields).

	 A resource level of 1 means that only the effort of the devel-
opment team is recorded; 2 means that support team effort is 
also recorded; 3 adds computer operations; and 4 adds effort 
expended by the end user or client.

	 You can do two things to make sure you compare effort 
appropriately:

•	 It is best to select only those projects that record the same 
effort detail as you do.

•	 You don’t have to ignore every other project—you can use 
rules of thumb to translate approximately between 
different levels of effort.

Previous analysis of projects in the ISBSG Repository shows that 
level 2 effort is about 10–12 percent more than level 1, level 3 adds 
about another 1 or 2 percent, and level 4 is about 20–25 percent more 
than level 1.

Note  If you use approximations like this, you add uncertainty to your 
data and add risk to any conclusions that you draw.

•	 Functional Size Measurement Methods (FSMM)  It will be 
optimal for size comparisons if all the selected projects have 
been measured using the same (or compatible) FSMM and 
version. If you mix methods, you need to know their 
characteristics. For example, you shouldn’t mix projects sized 
using pre-IFPUG 4 with those sized using IFPUG 4.x4 (the 
sizing changed with that release). New development projects 
sized using the NESMA standard can be included with IFPUG 
4.x projects. Use the Count Approach field in the data (and 
perhaps also the FP Standards and Reference Table Approach 
fields), to select projects that use the same sizing method that 
you use.

•	 Other Criteria  Other criteria that may be important are 
organization type, business area type, application type, user 
base, and development techniques.

	 You will want to select projects that are similar to yours in 
important project attributes.

4	“IFPUG 4.x” refers to the IFPUG 4 series of releases (4, 4.1, 4.2, and so on).



	 C h a p t e r  1 2 :   U s i n g  P r o j e c t  H i s t o r y  D a t a b a s e s 	 93

	 The ISBSG suggests that the most important criteria for 
selecting projects are as follows:

•	 Size (if yours is a really large project, there is not much 
value to you in studying small ones, and vice versa)

•	 Development type (new development, enhancement, or 
redevelopment)

•	 Primary programming language or language type (for example, 
3GL, 4GL)

•	 Development platform (mainframe, midrange, or PC)

Bear in mind that as you add more selection criteria, the number 
of projects selected inevitably gets smaller. You can end up with small 
groups of projects, or perhaps even no projects that satisfy all criteria. 
How important the group size is will depend on what you want to do 
with the data.

In summary it is important that any data subset that you use has 
integrity. The key points are to choose only appropriately rated data, 
to ensure that measurements are defined the same way (that is, FSM 
releases are compatible and effort measures are consistent), and that 
the measurements apply to the same thing (that is, effort normalization 
and effort levels).

Presentation of Statistics
Appendix B provides an explanation of the ISBSG’s presentation of 
statistics and a brief guide to using the statistics and the various tables 
provided in the appendixes.

Using Several Estimation Approaches
Means, medians, and regression lines should be used with caution, 
especially where sample sizes are small, and variances or standard 
deviations are high. You should not rely on a single estimation 
method, especially since the macro-estimation methods described in 
this book are based on broad averages.

We suggest that you derive your estimates from a relevant subset 
of the projects in the ISBSG data set, and that you use your traditional 
estimating methods as a reasonableness check.

Summary
The ISBSG project history data is a very valuable resource for 
estimation, but it must be used carefully and with an understanding 
of what it does and does not represent.



This page intentionally left blank 



Chapter 13
Project Estimation 

Using the ISBSG 
Repository

This chapter provides a practical introduction to using the 
macro-estimating techniques described in this book.  
We present a software development case study and then 

describe three different macro-estimating techniques that utilize data 
from the ISBSG Repository to estimate project work effort and 
duration for the target project outlined in the case study. The macro-
estimating techniques described are the following:

•	 Estimating using regression equations

•	 Estimating using comparison

•	 Estimating using analogy

Step-by-step examples of how each of these estimating techniques 
can be applied to the case study project are presented, and the benefits 
and limitations of each technique are discussed.

The examples utilize project data taken from the “ISBSG Estimating, 
Benchmarking & Research Suite Release 11” (ISBSG Repository).1

Case Study: A Student and Staff Records  
Management System (SSRM)

Overview
The Supersoft software company will soon begin developing a 
student and staff records management system to be called SSRM.

1	The “ISBSG Estimating, Benchmarking & Research Suite Release 11” contains 
data on over 5,000 projects. It can be licensed from www.isbsg.org or from ISBSG 
member organizations.

95

www.isbsg.org


	 96	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 97

SSRM is a management information system to be developed for a 
local college. SSRM will allow college administrators to enter, 
maintain, and report on a range of information including:

•	 Students’ personal, course, and results information

•	 Staff members’ personal, course, and employment history 
information

SSRM will also allow individual students and staff members to 
obtain summaries of their own information. To facilitate ease of use, 
SSRM must allow access from any location via a standard web 
browser interface.

SSRM will be developed to operate on a midrange UNIX platform. 
Users will be able to remotely access SSRM via any standard web 
browser, but all the system’s processing will be performed on the 
UNIX platform.

Even though SSRM will replace several existing systems, its 
requirements are sufficiently different from those systems that it is 
considered a new development, not as a redevelopment of the existing 
systems.

Functional Size Measurement
An initial requirements specification for SSRM has been completed, 
and a functional size measure of the system has been carried out 
based on that specification. The function point sizing serves a number 
of purposes:

•	 Performing function point analysis helps to identify any 
missing, incorrect, or unnecessary requirements.

•	 The completed function point size and accompanying 
functional model will aid in scope management throughout 
the project by serving as a baseline against which any scope 
changes can be tracked and controlled.

•	 The function point size provides an objective measure of the 
system’s size that can be obtained very early in the project life 
cycle and from which, with the addition of information from 
sources such as the ISBSG Repository, estimates of the project 
work effort and duration can be obtained.

The functional size of SSRM is determined to be 480 function 
points. From past experience, Supersoft knows that requirements 
scope creep likely will increase the size of the system by around 12 
percent from the initial function point count to the final delivered size. 
An additional 60 function points are therefore added to the functional 
size for use in estimating, to account for the likely scope creep.



	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 97

Functional size from initial requirements 
specification:

480 function points

Likely functional size increase due to 
scope creep:

12% × 480 = 57.6 ≈ 60 
function points

Functional size used in estimating: 480 + 60 = 540 function points

Project Work Effort and Duration Estimates
Supersoft has appointed Jenny to be the project manager for the 
development of SSRM. Jenny is an experienced software project 
manager and has managed the development of several similar 
systems in the past. Most members of Jenny’s development team are 
also experienced in this type of software development.

One of Jenny’s first tasks is to generate project work effort and 
duration estimates for the SSRM project. These will be used in the 
development of the project’s schedule and budget.

Along with other members of her development team, Jenny plans 
to develop a complete work breakdown for the SSRM project and 
then to use a task-based micro-estimating technique to generate the 
estimates. From experience, however, Jenny knows that developing 
an accurate and complete work breakdown for a project such as this 
will take considerable time. Because she needs initial and indicative 
estimates more quickly than she can obtain them from the task-based 
micro-estimating technique, Jenny decides to use macro-estimating 
techniques, which do not require a complete work breakdown, to 
develop the initial estimates.

An additional benefit of using macro-estimating techniques is 
that when she comes to generate the full, task-based micro-estimates 
from the work breakdown, Jenny will be able to use the existing 
macro-estimates for validation. Any significant differences between 
the task-based micro-estimates and the macro-estimates can be 
investigated to ensure that no tasks have been inadvertently missed 
out, included without reason, or incorrectly assessed.

Ideally, Jenny would utilize historical data from completed 
Supersoft projects to generate the macro-estimates. Although 
Supersoft is an experienced software development company, it has 
only recently begun developing systems similar to SSRM and has 
therefore not yet developed a substantial repository of development 
information on such projects. Because Supersoft does not have its 
own repository, Jenny decides to utilize the ISBSG Repository as the 
source of historical data on completed projects from which to develop 
her project work effort and duration macro-estimates.

The remainder of this chapter describes how Jenny goes about 
developing the macro-estimates for the SSRM project using the ISBSG 
Repository.



	 98	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 99

By following the instructions within the text and utilizing project 
data from the ISBSG Repository, you can duplicate the steps Jenny 
carries out to generate the estimates. This will provide you with a 
practical introduction to using the macro-estimating techniques 
described in this book.

Example 1: Estimating Using Regression Equations
One of the quickest and simplest mechanisms for generating estimates 
of project work effort and duration is to utilize equations developed 
from regression analysis of completed software projects.

Linear regression equations have been developed from the data 
in the ISBSG Repository2 for the following project classes:

•	 Projects classified by development platform: mainframe, 
midrange, PC, and multiplatform

•	 Projects classified by development language type: 3GL and 4GL

•	 Projects classified by project type: new development and 
enhancement

•	 Projects classified by a combination of development platform, 
development language type, and project type

In conjunction with a project’s functional size, or a combination 
of functional size and maximum team size, the regression equations 
can be used to generate estimates for:

•	 Project delivery rate (PDRRE), expressed in hours per function 
point

•	 Project work effort (PWERE), expressed in hours

•	 Speed of delivery (SDRE), expressed in function points per 
month

•	 Project duration (PDRE), expressed in months

Using Regression Equations to Generate Estimates for SSRM
Jenny uses the ISBSG regression equations to generate her first set of 
project work effort and duration estimates for the SSRM project.

Regression Equations: Functional Size
Because the ISBSG regression equations consider the project’s 
development platform, Jenny must first decide which regression 
equations she should use to generate her estimates.

2	The complete ISBSG project data is available on the “ISBSG Estimating, Benchmarking 
& Research Suite.” The suite also includes the ISBSG Early Estimate Checker tool, 
which can be used to develop regression equation–based estimates. The suite can 
be licensed from www.isbsg.org or from ISBSG member organizations.

www.isbsg.org


	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 99

The project to develop SSRM will be a new development project. 
SSRM will be developed for a combination midrange and PC platform. 
Because all of the system’s processing will occur on the midrange 
platform, with the PC platform limited to providing the standard 
web browser interface, Jenny initially decides to use the ISBSG 
regression equations for the class of new development projects 
developed for the midrange platform.

On viewing the ISBSG regression equations for this class of project, 
however, Jenny discovers that whilst a variation in functional size 
explains a reasonable variation in the project work effort, the same is 
not true for project delivery rate, speed of delivery, or project duration, 
where the equations’ R2(Adj)3 values are less than 0.25. Jenny therefore 
decides to use the ISBSG regression equations for the class of new 
development projects developed for a multiplatform to estimate speed 
of delivery and project duration. These equations provide a reasonable 
match to her project and have substantially higher R2(Adj) values.

Jenny notes that none of the development platforms recorded in 
the ISBSG Repository can be used to generate effective project delivery 
rate estimates based upon functional size alone. In all cases they lead 
to R2(Adj) values of less than 0.25. This is not too much of a concern 
for Jenny, however, because her goal is to determine estimates for 
project work effort and project duration, both of which she can do.

Using the selected regression equations for a project with a 
functional size of 540 function points, Jenny obtains the following 
estimates:

Project Delivery 
Rate (Appendix C, 
Table C-2.0)

PDR
RE There are no suitable ISBSG 

regression equations for 
estimating project delivery rate 
from functional size alone.

Project Work Effort 
(Appendix C, Table 
C-2.1)

PWE
RE 

(New development/ 
Midrange)

= 19.08 × Size0.883 

= 19.08 × 5400.883 

= 4,934 hours

Project Duration 
(Appendix C, Table 
C-2.2)

PD
RE 

(New development/ 
Multi)

= 0.423 × Size0.440 

= 0.423 × 5400.440 

= 6.7 months

Speed of Delivery 
(Appendix C, Table 
C-2.3)

SD
RE 

(New development/ 
Multi)

= 2.367 × Size0.560 

= 2.367 × 5400.560 

= 80 function points per month

3	Adjusted Squared Multiple R = R2(Adj) is a measure of how much of the variabil-
ity between different projects is actually explained by the equation. The maximum 
value is 1.00, which would occur when every project agreed exactly with the 
equation. The closer the value is to 1.00, the better. Even low values here can be 
meaningful; something is being explained, but randomness or variation in other 
predictive factors may have diluted the predictive effect. Low values do not tell 
you much (equations with an R2(Adj) less than 0.25 are not even reported in these 
tables). High values, such as 0.80, are extremely encouraging (but are not neces-
sarily conclusive).



	 100	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 101

The regression equations based upon functional size for the 
midrange and multiplatform development platforms indicate that 
the SSRM project will require about 4,934 hours of work and take 6.7 
months to complete.

Regression Equations: Functional Size and Maximum Team Size
By combining these first estimates with her knowledge of the project’s 
size and different project maximum team sizes, Jenny is able to both 
tune her estimates and investigate the relationship between project 
effort and duration.

First, Jenny uses her existing estimates of project effort and 
duration and her experience, which tells her that one full-time 
equivalent (FTE) resource equates to approximately 130 effort hours 
per month.4 She calculates a likely figure for the SSRM project’s  
average monthly effort and hence an average team size of 
approximately 5.5 full-time equivalent resources. Jenny performs the 
following calculations:

Resource to Effort Ratio (RER) 1 FTE Resource = 130 hours per month

Average Monthly Effort (AME) PWE
RE

 / PD
RE 

=  
4,934 / 6.7 = 736 hours per month

Average Team Size (ATS) AME / RER = 
736 / 130 ≈ 5.5 FTE resources

Because Jenny knows that project resource levels are typically not 
constant for the entire project duration, but rather start at a low level, 
build up to a peak, and then decline, she also knows that the SSRM 
project’s maximum team size will be greater than the average team 
size of 5.5 that she has already calculated. Based upon this and her 
experience, Jenny therefore chooses an initial maximum team size of 
9 FTEs for the SSRM project. Using this information, Jenny obtains 
the following additional estimates:

Project Delivery Rate 
(Appendix C, Table 
C-1.0)

PDR
REMTS 

(New development/ 
midrange)

= 35.09 × Size–0.597 × 
Maximum Team Size1.080 

= 35.09 × 540–0.597 × 91.080 

= 8.8 hours per function point

Project Work Effort 
(Appendix C, Table 
C-1.1)

PWE
REMTS 

(New development/ 
midrange)

= 35.09 × Size0.403 × Maximum 
Team Size1.080 

= 35.09 × 5400.403 × 91.080 

= 4,752 hours

4	The ratio of one full-time equivalent resource equating to approximately 130 effort 
hours per month is based upon typical industry figures.



	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 101

Speed of Delivery 
(Appendix C, Table 
C-1.3)

SD
REMTS

 
(New development/ 
midrange)

There are no suitable ISBSG 
regression equations for 
estimating speed of delivery 
from functional size and 
likely maximum team size for 
midrange platform projects.

Project Duration 
(Appendix C, Table 
C-1.2)

PD
REMTS

 
(New development/ 
midrange)

There are no suitable ISBSG 
regression equations for 
estimating project duration 
from functional size and 
likely maximum team size for 
midrange platform projects.

The regression equation for project work effort based upon 
SSRM’s functional size and likely maximum team size indicates that 
the SSRM project will require around 4,752 hours of work. There are no 
suitable regression equations for estimating project duration or speed 
of delivery. Because Jenny’s new project effort estimate aligns closely 
to her initial estimate, however, she can reasonably assume that a 
new project duration estimate should align closely to her original 
project duration estimate of 6.7 months.

To investigate the relationship between project effort and duration 
further, Jenny now recalculates the project effort estimate using a 
smaller maximum team size of 6 FTEs as follows:

Project Work Effort 
(Appendix C, Table 
C-1.1)

PWE
REMTS 

(New development/ 
midrange)

= 35.09 × Size0.403 × Maximum 
Team Size1.080 

= 35.09 × 5400.403 × 61.080 

= 3,067 hours

Based upon this smaller maximum team size, the regression 
equation indicates that the SSRM project would require around 3,067 
hours of work, a savings of 35 percent over the previous estimate. Of 
course, this project effort savings must come at a cost. In this case, the 
cost is an increase in project duration. To obtain this reduction in 
project effort would require an increase in the project duration from a 
value of around 6.7 months estimated using the maximum team size 
of 9 FTEs. The ISBSG Repository contains insufficient data to 
determine the actual magnitude of the increase in project duration. 
Whether such an increase is acceptable is often driven by external 
factors such as time-to-market windows of opportunity or the 
availability of necessarily skilled development staff. If, for example, 
most members of the SSRM development team have no critical 
activities scheduled over the next 9 months, then significant effort, 
and hence cost, savings might be made through utilizing a smaller 
project team coupled with a longer project duration.



	 102	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 103

The regression equations based upon the combination of 
functional size and maximum team size allow the project estimates to 
be tuned in a manner that investigates the relationship between 
project effort and project duration. These equations are best used in 
conjunction with the regression equations based upon functional size 
alone. This is because, if used with unrealistic or unachievable 
maximum team size values, or without some knowledge of the likely 
relationship between project effort and project duration, the regression 
equations based upon the combination of values may generate 
unachievable and unacceptable project delivery rate and work effort 
estimates.

Discussion
By utilizing the regression equations, Jenny has been able to quickly 
obtain indicative project effort and duration estimates for the SSRM 
project. She might use such initial estimates to establish project 
feasibility. She could decide that she is satisfied with these estimates 
and finish the analysis at this point. Alternatively, she could decide to 
fine-tune the estimates to address additional specific project attributes 
that so far have not been explicitly considered.

Because Jenny feels that the SSRM project has some other specific 
attributes that are likely to impact the total project work and duration, 
but that have not been explicitly addressed by the regression equations, 
she decides to fine-tune her estimates based upon the ISBSG Repository 
data. The following sections outline how she does this.

Example 2: Estimating Using Comparison
The most obvious limitation of using regression equations to estimate 
project work effort and duration is that the equations fail to address 
many specific project attributes that are known to impact work effort 
and duration. Although the provision of separate sets of regression 
equations for different development platforms improves this situation, 
the project delivery rate for an application developed using Lotus Notes 
is still likely to differ significantly from one developed using Java, even 
when they are both developed for the same midrange platform.

A further limitation of the regression equations as they were 
presented in the previous section is that they only provide a single 
value for each of the project estimates when, in many cases, a range 
of values would be more useful. Having a range of estimate values 
allows the project manager to consider both optimistic and 
conservative as well as likely estimates when devising or validating 
the project schedule and budget.

The estimating by comparison technique presented here addresses 
both these limitations of regression equation–based estimating by 
considering various specific project attributes and by generating a 
range of values for each of the project estimates.



	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 103

The estimating by comparison technique begins by calculating 
optimistic, likely, and conservative project delivery rate and speed of 
delivery values for selections of projects from the ISBSG Repository 
that match the target project on a single attribute. The averages of the 
project delivery rates and speeds of delivery for all the selections are 
then calculated, and these values are combined with the target proj-
ect’s functional size to generate optimistic, likely, and conservative 
estimates for the target project’s work effort and duration.

The estimating by comparison technique is described in detail in 
the following section.

The Estimating by Comparison Technique
Estimating by comparison utilizes the following approach to estimate 
project work effort and duration using data from the ISBSG 
Repository:

	 1.	 For the target project, determine its functional size and 
identify its project type and development platform.

	 2.	 Use the target project’s functional size and development type 
and platform to select a subset of similar projects from the 
ISBSG Repository.5 Estimates generated by the estimating by 
comparison technique will only consider the selected subset 
of projects.

•	 The functional size used to select projects from the ISBSG 
Repository is expressed as a range of sizes rather than as a 
single value.

•	 The estimator may choose not to restrict the set of projects 
for consideration based upon one or a selection of 
functional size and development type and platform. The 
reason for restricting the projects for selection in this way, 
however, is that analysis of the ISBSG Repository has 
shown that each of functional size, development type, and 
development platform has significant impact upon project 
work effort and duration. Restricting the estimating by 
comparison technique to consider only those projects of a 
similar functional size, and having the same development 
type and platform as the target project, should therefore 
provide more accurate estimates than simply considering 
all the projects in the repository.

	 3.	 For each of the target project’s attributes recorded in the ISBSG 
Repository, calculate the optimistic, likely, and conservative 

5	The complete ISBSG project data is available on the “ISBSG Estimating, 
Benchmarking & Research Suite.” ISBSG also provides the ISBSG Comparative 
Estimating tool. Both these products can be licensed from www.isbsg.org or from 
ISBSG member organizations.

www.isbsg.org


	 104	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 105

project delivery rate and speed of delivery, based upon all the 
projects in the selected repository subset that exhibit that 
attribute.

•	 The median is used to calculate the likely value for project 
delivery rate and speed of delivery. The median is used 
instead of the mean to reduce the impact of outliers on the 
results.

•	 The 25th and 75th percentiles are used to calculate the 
optimistic and conservative values for project delivery 
rate and speed of delivery. Because a lower value indicates 
a better project delivery rate, the 25th percentile indicates 
the optimistic value for project delivery rate. However, 
because a lower value indicates a poorer speed of delivery, 
the 25th percentile indicates the conservative value for 
speed of delivery.

	 4.	 Estimate the project delivery rate and speed of delivery by 
calculating the averages of the project delivery rates and 
speeds of delivery for the sets of optimistic, likely, and 
conservative values.

•	 The mean is used to determine the average values for the 
sets of project delivery rates and speeds of delivery.

	 5.	 Estimate the project work effort and duration by combining 
the project delivery rate and speed of delivery estimates with 
the project’s functional size.

Note  Because estimating by comparison is an informal technique, it can 
be easily understood and applied by anyone with access to a database of 
historical project information, such as the ISBSG Repository. On the 
other hand, because estimating by comparison does not use formal 
statistical analysis, it is important that the estimator carefully assesses 
the type and number of individual projects that are contributing to an 
estimate to ensure that the basis for the estimate is valid.

Using Estimating by Comparison to Generate Estimates for SSRM
Jenny begins the estimating by comparison task by restricting the 
projects from the ISBSG Repository that will be utilized to calculate 
the estimates to those that match SSRM’s functional size, development 
platform, and project type, thereby selecting a suitable data set. She 
employs the following restrictions:

Attribute Target Project Value Matching ISBSG Projects

Functional Size 540 250–750 function points

Development Platform Midrange Midrange

Development Type New development New development



	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 105

Next, Jenny identifies the SSRM project’s values for a range of the 
project attributes included in the ISBSG Repository.

She then calculates the optimistic, likely, and conservative project 
delivery rate and speed of delivery values for the projects in the 
selected data set with matching project attribute values. If Jenny feels 
that for a particular project attribute, none of the values in the 
repository match, she simply ignores that attribute. Jenny also 
calculates the number of matches for each project attribute. These 
values will help her validate the viability of the final estimates. The 
following table displays the SSRM project attribute values and sets 
out the results of the calculations:

Attribute
Target 
Project Value

Number 
of 
Matches

Project Delivery Rate 
(hours per function point)

Speed of Delivery 
(function points per month)

O
pt

im
 

(2
5

th
%

)

Li
ke

ly
 

(m
ed

ia
n)

C
on

se
rv

 
(7

5
th

%
)

C
on

se
rv

 
(2

5
th

%
)

Li
ke

ly
 

(m
ed

ia
n)

O
pt

im
 

(7
5

th
%

)

Primary 

Programming 

Language

Java   7 5.0 9.3   9.3 100.4 111.5 197.9

Organization 

Type

Education   0

Application 

Type

Management 

Information 

System

  2 7.9 8.4   8.9   38.1   38.1   38.1

Maximum 

Team Size

5–8   1 7.6 7.6   7.6   54.0   54.0   54.0

Used 

Prototyping

Yes   3 8.2 9.2 33.4   37.7   37.8   38.0

Used JAD Yes   0

Web 

Development

Yes 12 8.0 9.3 14.8   56.7 103.8 158.2

The number of matches for the SSRM project’s attributes ranges 
from 0 for Organization Type – Education and Used JAD – Yes, up to 12 
for Web Development – Yes. Although Jenny would have preferred to 
have a larger number of matches for several of the project attributes, 
she decides that the total number of matching projects is adequate to 
provide indicative estimates. She also decides not to eliminate any 
further attributes from her analysis.

Jenny generates the SSRM project delivery rate (PDRCE) and speed 
of delivery (SDCE) estimates by calculating the averages (that is, the 
means) of the sets of project delivery rates and speeds of delivery for 
the conservative, likely, and optimistic values.

Finally, she combines the project delivery rate and speed of 
delivery estimates with SSRM’s functional size of 540 function points 



	 106	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 107

to calculate the estimates for project work effort (PWECE) and duration 
(PDCE). She obtains the following results:

Project Delivery 
Rate

PDR
CE = �mean of optimistic/likely/

conservative project delivery rates

PDR
CE optimistic = 7.3 hours per function point

PDR
CE likely = 8.7 hours per function point

PDR
CE conservative = 14.8 hours per function point

Project Work Effort PWE
CE = PDR

CE I
 × Size

PWE
CE optimistic = 3,954 hours

PWE
CE likely = 4,721 hours

PWE
CE conservative = 7,989 hours

Speed of Delivery SD
CE = �mean of optimistic/likely/

conservative speeds of delivery

SD
CE optimistic = 97.2 function points per month

SD
CE likely = 69.1 function points per month

SD
CE conservative = 57.4 function points per month

Project Duration PD
CE = Size / SD

CE i

PD
CE optimistic = 5.6 months

PD
CE likely = 7.8 months

PD
CE conservative = 9.4 months

Estimating by comparison indicates that the SSRM project will 
require:

•	 Between 3,954 and 7,989 hours of work, with a likely value of 
4,721 hours 

	 and

•	 Between 5.6 and 9.4 months, with a likely value of 7.8 months 
to complete

Discussion
Jenny has now completed the target project’s estimation using the 
comparison technique. She has optimistic, likely, and conservative 
estimates for SSRM’s project work effort and duration.

Of immediate interest is a comparison between the earlier 
regression equation estimates and the comparative estimates.

•	 The comparative estimate’s likely project work effort estimate 
of 4,721 hours aligns very closely with the regression equation 
estimate of 4,752 hours (regression equation estimate consid-
ering both functional size and maximum team size).



	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 107

•	 The comparative estimate’s likely project duration estimate 
of 7.8 months aligns reasonably closely (that is, is 16 percent 
higher) to the original regression equation estimate of  
6.7 months (regression equation estimate considering func-
tional size alone).

In other words, when several more of the SSRM’s attributes were 
explicitly considered, they were found to support the regression 
equation estimate for project work effort and to suggest a slight 
increase for project duration.

Based upon her knowledge of the many other project attributes 
that were not addressed by the estimating by comparison technique, 
but which can also impact project work effort and duration, Jenny 
could now attempt to determine what actual value from within the 
estimate ranges she should select as the SSRM project estimates. 
Doing that, however, would limit the amount of information the 
estimating by comparison process has made available to her.

Jenny therefore chooses to focus on the full estimate range:

•	 If the project goes extremely well with no major problems, 
with less than the normal amount of holdups, scope creep, 
and rework, and no personnel changes, it should be possible 
to achieve the optimistic estimates.

•	 If the project follows the normal path, the likely estimates 
should be achievable.

•	 If, on the other hand, significant but surmountable problems 
and holdups occur during the project, it may be possible to 
achieve only the conservative estimates.

Utilizing the full range of estimate values, Jenny and the other 
Supersoft personnel in charge of the SSRM project can now consider 
the impact on their budget, resources, and the company’s future of 
either a highly successful, normal, or highly unsuccessful SSRM project.

The full range of estimate values will also be more useful than a 
single estimate value to Jenny when she later uses the comparative 
estimates to help validate the task-based micro-estimates. If SSRM’s 
task-based estimates fall within the comparative estimate ranges, Jenny 
can feel more confident that the task-based estimates are consistent 
with the values typically achieved by the industry for this type of 
project. If not, this will highlight the need to investigate whether there 
are valid reasons for SSRM being expected to have significantly better 
or worse project work effort or duration than is typically achieved.

Example 3: Estimating Using Analogy
The estimating by comparison technique just described allowed the 
estimator to “tune” the estimates calculated from the ISBSG Repository 
data to reflect the explicit attributes of a particular project. In doing 



	 108	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 109

so, however, estimating by comparison still relies upon calculating 
averages from a number of projects in the repository that are somewhat 
similar to the target project. Estimating by comparison does not 
attempt to find or to give additional weight to the one or small 
number of projects in the repository that are most similar to the target 
project. Its inability to focus on these most similar projects means that 
estimating by comparison may fail to properly consider the projects 
in the repository that can provide some of the most useful 
information.

The estimating using analogy technique presented here is a 
technique that focuses upon finding the project, or projects, in the 
repository most similar to the target project and then utilizing their 
actual values of project work effort and duration as estimates for the 
target project. These matching projects are known as analogs.

The estimating using analogy process is demonstrated in detail in 
the following section.

The Estimating by Analogy Technique
Estimating using analogy utilizes the following approach to estimate 
project work effort and duration using data from the ISBSG 
Repository:

	 1.	 Determine the target project’s value for each of the project 
attributes recorded in the ISBSG Repository.6

	 2.	 Attempt to select a project analog from the ISBSG Repository 
that has the same attribute values as the target project. Ideally, 
this step will identify a single project analog. In reality, 
however, this is often not the case.

		  If there is no single project analog in the repository, then it 
will be necessary to eliminate one or more of the recorded 
project attributes from the matching set until an analog can 
be found. Careful judgment needs to be exercised to determine 
which attributes should be eliminated from the matching set 
to ensure that those that have the most impact on the project 
work effort or duration are not eliminated. Another problem 
associated with selectively eliminating project attributes is 
that different subsets of matching attributes may identify 
different project analogs. Once again, careful judgment must 
be exercised to determine which subset of attributes is the 
most significant and hence, which analog should be selected.

		  If matching all the project attributes identifies more than one 
project analog, then the estimator has the choice of either 

6	The complete ISBSG project data is available on the “ISBSG Estimating, 
Benchmarking & Research Suite” that can be licensed from www.isbsg.org or 
from ISBSG member organizations.

www.isbsg.org


	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 109

considering additional project attributes, in order to allow 
some of the first set of analogs to be eliminated, or of working 
with multiple project analogs. If the latter choice is made, the 
estimator might decide to use the averages of the analogs’ 
project work effort and duration as the estimate values. Care 
must be taken with such an approach, however. If a small 
number of analogs display a wide variation in project work 
effort or duration values, then the estimating by comparison 
technique that also works with averages but considers a 
larger number of projects when determining those averages, 
may be a preferable approach.

	 3.	 Estimate the project work effort and duration for the target 
project from the analog project’s actual values. It is often 
necessary to adjust the analog’s values to account for any 
remaining differences between the target and the analog such 
as a variation in functional size.

Because estimating using analogy bases its estimates upon one or 
a small number of project analogs, it is more susceptible to errors 
resulting from selecting invalid project data points than the other 
techniques we have discussed. With these other techniques, the 
impact of a single invalid project data point will usually be quite 
small, because that data point is not considered individually, but 
always as one of a number of project data points that contribute to an 
average value.

For this reason, estimating using analogy should probably be 
used only when the estimator is confident of the accuracy and 
completeness of all the potential project analogs. Ideally, having 
selected an initial analog, the estimator would then be able to find out 
more about that project either through speaking to the project team 
members or by accessing the project documentation. This would 
allow the estimator to validate that the analog really did match the 
target project and that there were no extraneous issues to account for 
the achieved project work effort and duration.

Because this level of validation is not possible for projects in the 
ISBSG Repository, estimators need to be very careful in using the 
repository as a source of analogs. One way of minimizing this risk is 
to always use the estimating using analogy technique as a mechanism 
for validating existing estimates, rather than as the means for 
generating the estimates in the first place.

Using Estimating by Analogy to Generate Estimates for SSRM
Having generated estimate ranges for project work effort and duration 
using estimating by comparison, Jenny decides that she will now use 
estimating by analogy to validate her existing estimates.

Jenny’s first task is to filter the ISBSG Repository to attempt to 
select a project analog that matches the target project on all of the 



	 110	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 111

recorded project attributes. The SSRM project attributes have the 
following values:

Attribute Target Project Value

Functional size 540 function points

Development platform Midrange

Project type New development

Organization type Education

Application type Management information system

Maximum team size 5 to 8

Primary programming language Java

Used prototyping Yes

Used JAD Yes

Web development Yes

From her experience using the estimation by comparison 
technique, Jenny already knows that her copy of the ISBSG Repository 
contains no new development projects of between 250 and 750 
function points, developed for a midrange platform, that match 
Organization Type – Education or Used JAD – Yes, so she decides to 
eliminate those project attributes from the matching set.

When Jenny attempts to select an analog based upon the remaining 
SSRM project attributes, however, she discovers that there is still no 
analog to her target project in the ISBSG Repository. She therefore 
decides to eliminate and generalize more of the project attributes 
from the matching set in order to try to find an analog. This leads to 
the following reduced set of project attribute values:

Attribute Target Project Value

Functional size 250–750 function points

Development platform Midrange

Project type New development

Primary programming language Java

Using this reduced set of matching project attributes, Jenny 
identifies four matching projects and potential analogs in the ISBSG 
Repository. She considers each of these potential analogs individually, 
looking at their full set of attribute values, in order to determine 
which she should ultimately choose as the actual analog.

From this process Jenny eliminates the two potential analogs with 
Organization Type – Manufacturing. Jenny thinks that manufacturing 
and education organizations have very different focuses and that this 



	 C h a p t e r  1 3 :  P  r o j e c t  E s t i m a t i o n  U s i n g  t h e  I S B S G  R e p o s i t o r y 	 111

may impact the way in which they develop and deliver software. The 
two remaining potential analogs both have Organization Type – 
Professional Services, which Jenny feels is a better fit to the SSRM 
project. These two remaining potential analogs have as their project 
activity scopes Planning, Specification, Build and Test and Planning, 
Specification, Build, Test and Implement, respectively. Because the SSRM 
project estimates must address all of the planning, specification, 
build, test, and implement phases, Jenny has no hesitation in choosing 
the latter project as her actual analog.

Jenny is now able to read values for the target project’s delivery 
rate and speed of delivery estimates directly from the analog’s own 
attributes.

Function 
Points

Project Work 
Effort 
(hours)

Project 
Delivery Rate 
(hours per 
function point)

Speed of Delivery 
(function points 
per month)

Project 
Duration 
(months)

435 4,045 9.3 111.5 3.9

Combining the analog’s project delivery rate and speed of delivery 
with SSRM’s functional size, Jenny calculates the following 
estimates:

Project Delivery Rate PDR
AE = project analog value 

= 9.3 hours per function point

Project Work Effort PWE
AE = PDR

AE
 × Size 

= 9.3 × 540 
= 5,022 hours

Speed of Delivery SD
AE = project analog value 

= 111.5 function points per month

Project Duration PD
AE = Size / SD

AE
  

= 540 / 111.5 
= 4.8 months

Estimating using analogy indicates that development of SSRM 
will require around 5,022 hours of work and will take 4.8 months to 
complete.

Discussion
Jenny has now completed the estimation by analogy process. The 
estimated value for project work effort is around 6 percent higher than 
the likely value calculated using estimating by comparison, so is well 
within the comparative estimate’s likely to pessimistic range. On the 
other hand, the estimated value for project duration is around  
38 percent lower than the likely value calculated using comparative 



	 112	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

estimating and is even around 14 percent lower than the comparative 
estimate’s optimistic value.

For project work effort, the estimation by analogy value does 
appear to support the values calculated using estimation by 
comparison. The same is not true, however, for the project duration 
estimates. Because of her lack of knowledge as to whether the selected 
project analog is truly analogous to SSRM and because she is unable 
at this stage to discover any further information that would clarify 
this issue, Jenny decides not to utilize the analogy-based estimates to 
validate the planned task-based micro-estimates. In the future, when 
Supersoft has built up its own repository of completed project data, 
Jenny will be able to use that data to perform estimating using analogy 
more effectively.

Summary
Jenny has now completed her macro-level estimating for the SSRM 
project. She will use the comparative estimates as initial and indicative 
estimates of SSRM’s required project work effort and duration to aid 
in constructing the project plan, schedule, and budget. She will also 
use the estimates to help validate the task-based micro-estimates that 
will be generated from the full work breakdown once it is completed.

When the development of SSRM is completed, Jenny submits a 
description of the project along with details of the actual project work 
effort and duration to ISBSG to be added to the ISBSG Repository. 
Each project added to the ISBSG Repository enhances its usefulness as 
an estimating tool and, hence, aids software practitioners in accurately 
determining project resource requirements and schedules and 
ensuring that they deliver their software on time and within budget.



Chapter 14
Estimating for 
Agile Software 

Development

Agile is an approach to software development and delivery 
that:

•	 Encourages a high level of customer involvement throughout 
the software process and tolerates—and even promotes—
changes to the software’s requirements during that process

•	 Delivers software via a series of short iterations—a couple of 
weeks to a couple of months—with outcomes that focus on 
the delivery of working software as opposed to descriptive 
specifications

•	 Is performed by largely self-organizing development teams 
where individual software developers take personal 
responsibility for the delivery of their components of the 
software product

The Agile approach is widely used throughout the world in a 
number of well-known and effective Agile software development 
and delivery methods and methodologies.

The way an Agile project is performed can differ markedly from 
a traditional software development or delivery project. In many cases, 
therefore, traditional software project estimation techniques are not 
the most appropriate or effective way of forecasting and managing an 
Agile project’s schedule and budget.

113



	 114	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 115

This chapter introduces an estimation approach for Agile software 
projects.1 It is important to note that while they align with the typical 
Agile approach to software development, a number of the estimation 
concepts presented here may also be applicable in other software 
projects that use more traditional development approaches.

Estimating an Agile Project
Before describing the Agile software project estimation approach, it is 
necessary to briefly outline how an Agile project is performed and to 
define a number of the key terms used.

Agile views a software application as comprising a number of 
features, and a software project as delivering a number of new or 
enhanced features into production. Estimation of an Agile project 
involves decomposing the project into the set of features to be 
delivered, as opposed to decomposing it into the set of work 
breakdown structure (WBS) tasks to be performed, as is often done in 
the traditional bottom-up approach to project estimation.

Different Agile methodologies and methods refer to project 
features by different names. Extreme Programming (XP) refers to 
features as user stories or just stories. This is the term used in this 
chapter.

An Agile project is performed by a development team as a series 
of short, fixed-length iterations. Iteration duration is typically between 
2 weeks and 2 months. Each iteration delivers a number of stories 
(features).

A key aspect of Agile project estimation is determining which and 
how many stories can be delivered by each project iteration. Estimation 
requires methods for determining:

•	 The relative size of each of the project’s stories (that is, how 
much software functionality each story delivers)

•	 The development team’s velocity (that is, how quickly the 
team delivers the project’s stories)

Various methods have been devised for measuring and expressing 
software size and velocity in general, and the size of stories and their 
delivery within Agile projects in particular. This chapter focuses on 
one of these techniques, the use of story points.

1	This chapter provides a brief summary of estimation approaches for Agile soft-
ware projects. The concepts and techniques included have been drawn from a 
number of sources. For more detailed and complete descriptions of estimation of 
Agile software projects, see the following:

	 Crystal Clear, by Alistair Cockburn (Addison-Wesley, 2005).
	 Agile Estimation and Planning, by Mike Cohn (Prentice Hall, 2004).
	 Planning Extreme Programming, by Kent Beck and Martin Fowler (Addison-Wesley, 

2001).



	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 115

This chapter also outlines how stories can be sized using Func-
tion Point Analysis (FPA) and how the data in the ISBSG Repository 
can be utilized to determine a project team’s likely velocity. The de-
composition of an Agile project into features using stories and then 
sizing those stories using story points can be viewed as similar to the 
way Function Point Analysis decomposes a software project into data 
and transactional functions and then sizes those functions using func-
tion points.2 Likewise, the Agile estimation concept of development 
team velocity, expressed in terms of story points (delivered) per iteration, 
is similar to the Function Point Analysis–based estimation concept of 
speed of delivery, often expressed in terms of function points (delivered) 
per month.

Because an Agile project consists of a number of fixed-length 
iterations, it makes sense that Agile estimation focuses first on 
determining the number of iterations required. Once that number is 
known, it is usually a straightforward procedure to calculate estimates 
for both project schedule and cost by combining the required number 
of iterations with the iteration duration and the number and cost of 
development personnel involved.

Story Points
In an Agile project the relative size of each story to be delivered is 
measured using story points.

The Story Point Scale
Estimators allocate story points to stories from a fixed set of possible 
values. A commonly used set of values is a scale that begins with six 
numbers from the Fibonacci sequence and continues with one or two 
substantially larger numbers.

Example

Story point scale: 1, 2, 3, 5, 8, 13, 20, 50
This approach allows estimators to allocate story points quickly, 

because they are working from only a small set of possible numbers, 
and confidently, because the magnitude of each number is significantly 
different from the numbers on either side of it. It is unnecessary and 
unhelpful to have a story point scale that continues with larger 
numbers than that proposed here. Any story allocated 50 or even 20 
story points is too large for effective management and control within 
a single iteration. If any such stories are identified, they should be 
decomposed into a number of smaller and more manageable stories 
that are then reassessed to determine their story point size.

2	Function Point Counting Practices Manual: Release 4.3, International Function Point 
Users Group (IFPUG), 2009.



	 116	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 117

Calibrating the Story Point Scale Using Past Projects
Story points are a relative size measure. This means that the same 
story delivered by different development teams could quite rightly 
be allocated different numbers of story points. To address the relative 
size issue, the story point scale to be used in Agile estimation must be 
calibrated to accurately reflect the size of stories typically delivered 
by the one or more development teams within an organization that 
plan to utilize that story point scale. In addition, it is necessary to 
ensure that all developers who will be involved in devising estimates 
have an effective understanding of the relative sizes within the story 
point scale.

Estimators must calibrate and understand the story point scale 
before using it to estimate a new project. Calibration begins by 
selecting one or more past projects. Selected past projects need both 
to be similar to the target projects to be estimated and to have had 
delivery that progressed at a typical rate. For the calibration projects, 
story points are retrospectively allocated to their stories based upon 
their actual delivery duration. All future estimators need to study the 
individual stories and their allocated story point values so as to gain 
a proper understanding of the relative sizes of stories associated with 
each of the values in the story point scale.

Example

Table 14-1 lists actual durations for the stories delivered for a project 
that has been completed in the past. Table 14-1 also shows the 
allocation of story points to each story based upon those actual 
durations. Future estimators would need to study these allocations 
along with the details of each story to gain an appropriate 
understanding of the relative sizes of stories associated with each of 
the values in the story point scale.

Prior to using the story point scale for estimation of new Agile 
projects, future estimators should gain expertise in the technique by 
practicing allocating story points to stories from other past projects 
where the actual story duration and, hence, likely allocated story 
point size, can be checked.

As an alternative to story points, stories can also be sized in 
function points using Function Point Analysis. This is done by 
applying the standard Function Point Analysis approach to each 
story.

An organization might choose to size its stories using function 
points for a number of reasons:

•	 The organization has substantial Function Point Analysis 
expertise.

•	 The organization wishes to utilize external sources (such as 
the ISBSG Repository) to determine likely speed of delivery 
(development team velocity).



	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 117

•	 The organization wishes to use the size results for comparative 
benchmarking against either its own history of non-Agile 
projects or against projects from other organizations. Because 
story points are a relative size measure, they cannot be easily 
compared across organizations or even across different 
development teams within the same organization.

Development Team Velocity
To create Agile project estimates, it is necessary to know in advance 
how quickly the development team can deliver project stories. This 
speed is referred to as the development team velocity, or simply the 
velocity, and is expressed as story points (delivered) per iteration.

Velocity is used in conjunction with the story point sizes of a 
project’s stories to both estimate overall project schedule and cost, 
and to allocate stories to individual project iterations.

Determining Development Team Velocity Using Past Projects
Velocity is ideally based upon past project performance from within 
the same organization and for the same development team. To 
determine the velocity achieved on a past project, determine its story 
point sizes, and calculate the average number of story points delivered 
by a project iteration.

Story

Actual 
Duration 
(days)

Allocated 
Story 
Points Story

Actual 
Duration 
(days)

Allocated 
Story 
Points

  1 1 1 12   6   3

  2 1 1 13   7   3

  3 1 1 14   7   3

  4 2 1 15   8   3

  5 3 2 16   8   3

  6 3 2 17 10   5

  7 4 2 18 11   5

  8 4 2 19 11   5

  9 4 2 20 12   8

10 4 2 21 15   8

11 4 2 22 15   8

23 17 13

24 19 13

25 19 13

Table 14-1  Investment Management System Upgrade Project: Story Durations 
and Story Points



	 118	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 119

To ensure that the determined velocity is appropriate, it may be 
necessary to consider several past projects. Once again, the past 
projects need to be both similar to the target projects to be estimated 
and to have had delivery that progressed at a typical rate. Remember, 
different types of projects are likely to have different velocities.

Example

Table 14-2 shows the stories and story points previously delivered by 
the completed Investment Management System Upgrade project 
across the project’s five iterations. Based upon this data it appears 
that this development team has a typical velocity of around 22 story 
points per iteration. Although this velocity could now be used for 
estimating future Agile projects, it would probably be wiser to 
investigate several more past projects before finalizing the velocity 
estimation figure.

For Agile projects sized using Function Point Analysis, it is pos-
sible to determine likely speeds of delivery (velocity) from external 
sources. This book includes descriptions of several different tech-
niques to aid in selecting an appropriate speed of delivery from the 
ISBSG Repository.

Allocating Story Points to Stories
The Agile approach to software development requires that individual 
developers take personal responsibility for the delivery of their 
components of the software product. In keeping with this principle, 
all developers involved in a software project—or individual project 
iteration—are encouraged to actively participate in the estimation of 
that project or iteration. This, of course, requires that all developers 
have a clear understanding of what each of the story point sizes 
means in the context of their software projects.

Table 14-2  Investment Management System Upgrade Project: Development 
Team Velocity

Iteration
Number Stories 
per Iteration

Number Story Points

per Story per Iteration

1     2 13, 13     26

2     3 13, 8, 2     23

3     6 5, 5, 5, 3, 2, 2     22

4     6 8, 3, 2, 2, 2, 2     19

5     8 8, 3, 3, 3, 1, 1, 1, 1     21

Total: 25 111

Average:    5   22.2



	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 119

Agile project estimation utilizes a modified Wide-Band Delphi 
approach for allocating story point sizes to each of the project or 
iteration’s stories. A typical Agile estimation session would progress 
as follows:

	 1.	 All the developers involved in the estimation session come 
together. An effective number of developers is between six 
and ten. One of the developers acts as a facilitator for the 
session. Business representatives may also attend the session. 
Their role is to provide explanation and clarification of the 
details of particular stories, not to participate in allocating 
story points or determining estimates.

	 2.	 The facilitator selects the next story to be estimated, and its 
requirements are discussed by the group. The discussion 
should be limited to a few minutes. If after this discussion, 
and input from the business representatives, the story’s 
requirements remain unclear, the story is put aside—to be 
clarified later—and the next story is selected.

	 3.	 All developers now produce their estimates for the current 
story using the agreed story point scale. A useful tool is for 
each developer to have a set of cards, each card showing one 
of the numbers from the story point scale. When asked to 
produce his or her estimate, each developer simply places the 
card showing the chosen story point number face up on the 
desk in front of him or her.

	 4.	 The developers’ story point estimates for the current story are 
now compared and assessed.

	 	 If all the developers’ estimates align, then the estimation 
process is completed for the current story. The number of 
story points allocated is recorded, and the next story is 
selected.

	 	 If the developers’ estimates do not align, then various tech-
niques can be used to move the group toward an agreement:

•	 If the estimates differ from each other by only one value 
on the story point scale, then one of the larger, smaller, or 
more frequently occurring values may be selected as the 
estimate. The rationale for selecting the larger value is that 
this is a safer, more conservative approach. The rationale 
for selecting the smaller value is that it encourages the 
estimators to think carefully before selecting smaller 
values, because they know that in doing so they may be 
committing themselves to the delivery of more 
functionality, and hence, more work, within an iteration. 
The rationale for choosing the more frequently occurring 
value is simply that it reflects the group’s majority view.



	 120	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 121

•	 If the estimates differ from each other by more than one 
value on the story point scale, then the estimators with the 
largest and smallest estimates may be called upon to 
explain the rationales for their estimates. After this, the 
estimators will typically produce new estimates, and the 
process will be repeated.

•	 If after three iterations of the estimation process a 
unanimous agreement cannot be reached, then a decision 
should be made. This may involve eliminating any outliers 
or having the facilitator make the decision based upon his 
or her understanding of the story involved.

An important goal of the estimation process is that it should be 
done as quickly as is practicable.

Example

Table 14-3 shows the result of the first estimate round for a group of 
six developers allocating story points to story 12 from the planned 
Back Office Billing and Inventory project. In this case, story points are 
allocated using the scale beginning with six numbers from the 
Fibonacci sequence and then continuing with two larger numbers, 
that is, 1, 2, 3, 5, 8, 13, 20, 50.

At this time, the developers’ estimates do not align. Allocated 
story points range from 3 to 8, a difference of two values on the story 
point scale. The developers who proposed the lowest and highest 
values are now called upon to explain the rationales for their choices. 
Following this discussion all the developers undertake a second 
estimate round.

The following table shows the result of the second estimate round 
for story 12.

Story Estimate Round Developer X Allocated Story Points

1 2 3 4 5 6

12 2 5 8 8 5 5 5

After this second estimate round, the developers’ estimates differ 
by only one value on the story point scale. A third estimate round 
could now be undertaken to try and obtain universal agreement. 
Instead, however, the group chooses to select the smaller estimate of 

Table 14-3  Back Office Billing and Inventory Project: Allocated Story Points

Story Estimate Round Developer X Allocated Story Points

1 2 3 4 5 6

12 1 5 3 8 3 5 8



	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 121

5 story points. This choice is based upon the previously agreed upon 
procedure to select the smaller of the two estimates if those estimates 
only differ by one value on the story point scale. Doing this helps to 
ensure that the estimation process continues to progress quickly and 
effectively.

Having successfully allocated story points for story 12, the 
developers now move onto the project’s next story.

Estimating Total Project Schedule  
and Cost at Project Initiation
Story points can be used to estimate the likely total project schedule 
and cost prior to the start of the project development iterations. Doing 
this requires that all of the project’s stories have been identified and 
sized in story points and that the likely development team velocity is 
known.

Ideally, all the project developers will have participated in allo-
cating the story points to the project’s stories. However, it is not  
uncommon for the initial order of magnitude estimates devised at 
project initiation to be determined by a smaller group of key develop-
ers and project personnel.

The project schedule estimate is determined by combining the 
project iteration duration with its story point total divided by its 
likely velocity. The project cost can then be estimated based upon the 
required number of project iterations combined with the developer 
costs associated with a single iteration.

It is important to remember that estimates determined at project 
initiation should be viewed as order of magnitude estimates only. 
The full details and complexity of all the project stories may not yet 
be known. Their story point sizes may change once that information 
is available. Additionally, in an Agile project new stories may be 
identified as the project progresses.

Example

Table 14-4 shows initial project schedule and cost estimates for the 
Back Office Billing and Inventory project based upon the project size 
of 147 story points and likely velocity of 22 story points per iteration. 
These initial estimates suggest a project duration and cost of around 
28 weeks and $262,500, respectively.

For Agile projects sized using Function Point Analysis, the initial 
project schedule and cost estimates can be determined by combining 
the project’s function point size with its likely speed of delivery and 
project delivery rate, respectively.

The project’s cost can be estimated directly from its project delivery 
rate when the project delivery rate is expressed in terms of cost per 
function point (for example, $1,500 per function point). Often, however, 
the project delivery rate is expressed in terms of effort per function 



	 122	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 123

point (for example, 9.5 hours per function point). In such cases, the project 
delivery rate must be combined with an additional project cost rate  
(for example, $125 per hour) in order to estimate the project’s cost.

Allocating Stories to Individual Project Iterations
Prior to the start of each project iteration, story points can be utilized 
to help ensure that the appropriate number and size of stories are 
allocated to the iteration. Once again, this requires that all the project’s 
stories have been identified and sized in story points and that the 
likely development team velocity is known.

To allocate stories to the next project iteration, select a group of 
stories with a total story point size approximately equal to the 
development team velocity. Of course, other constraints and 
dependencies beyond the story point size may impact which stories 
can or must be selected for inclusion within a particular iteration.

When allocating stories to a project iteration, either the developers 
can make use of the story point sizes determined at the project’s 
initiation, or they can choose to reassess each potential story to 
determine anew its story point size. By reassessing the stories, the 
developers are able to consider any new or changed information they 
have acquired since the project began that may impact that size.

Example

Table 14-5 shows the allocation of a group of five stories to iteration 4 
for the Back Office Billing and Inventory project.

Table 14-4  Back Office Billing and Inventory Project: Initial Estimates

Total Project Stories 34

Total Project Story Points (SP) 147

Development Team Velocity (V) 22 story points  
per iteration

Iteration Duration (D) 4 weeks

Developer Number (per Iteration) (DN) 5

Developer Cost (per Developer per Iteration) (DC) $7,500

Estimated Iterations (I) = SP / V 
= 147 / 22 
= 6.7 ≈ 7

Estimated Schedule = I × D 
= 7 × 4 
= 28 weeks

Estimated Cost = I × DN × DC 
= 7 × 5 × 7,500 
= $262,500



	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 123

Note that the total story point size for the five allocated stories is 
24 story points, which is two more than the likely velocity of 22 story 
points per iteration. This highlights two factors. First, the likely velocity 
should be viewed as an average value only, and second, the number 
of story points allocated to any story is not so precise that it should 
necessarily restrict the inclusion of a story into an iteration if good 
reasons exist for that inclusion.

For Agile projects sized using Function Point Analysis, the likely 
speed of delivery can be used to allocate stories to an iteration.

First, however, the speed of delivery may need to be adjusted to 
address the iteration duration. If each iteration has a duration of  
2 weeks, but the speed of delivery is expressed in function points per 
month (for example, 60 functions points month), then the number of 
function points to be delivered needs to be halved to properly address 
the iteration duration (for example, 30 function points per 2-week 
iteration).

Individual stories can then be allocated to each iteration in turn, 
up to the function point size limit for the iteration.

Reviewing the Process at Project Completion
The effectiveness of using story points for Agile project estimation 
can be continuously improved by ensuring that an estimation review 
always takes place after the project is completed.

The review should investigate the actual duration and cost 
required to deliver each story and should compare those actual values 
against the estimated values. Doing this will help the developers’ 
understanding of how to effectively allocate story points to stories 
and will also help to fine-tune the likely development team velocity.

Benefits of Agile Software Estimation Using Story Points
For developers working with an Agile software development 
approach, using story points for project estimation offers a number of 
benefits over more traditional approaches. These include

•	 Story point–based estimation has been devised in conjunction 
with, and specifically for, the Agile development approach. 
The concepts and terminology used in story point–based 

Table 14-5  Back Office Billing and Inventory Project: Allocated Stories

Iteration Number 4

Velocity 22 story points per iteration

Allocated Stories
Story Number 11 12 19 23 26 Total   5

Story Points   5   8   3   5   3 Total 24



	 124	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 125

estimation align with those used in Agile development. This 
alignment includes references to project iterations and 
stories.

•	 Story point–based estimation can be completed quickly and 
easily and does not require the developers responsible for the 
estimates to perform significant additional analysis or to have 
additional specialist skills. Estimation can be incorporated 
into the standard planning sessions prior to the start of each 
project iteration.

•	 Story point–based estimation supports the Agile principle of 
developers taking ownership and responsibility for the 
software they will deliver. Estimates are created by the 
developers themselves. Developers therefore understand 
that poorly considered estimates can have a direct impact on 
their own work situation.

•	 Story point–based estimation supports appropriate input into 
the estimation process by the different project roles. Once 
again, the developers who are required to deliver the software 
provide the development estimates. Occasional lapses of 
judgment or lack of understanding by an individual developer 
are mitigated through the use of a Wide-Band Delphi 
approach. Business representatives provide additional 
descriptions and clarifications of software requirements when 
and if needed.

Comparing Story Points and Function Points
Story point–based estimation is sometimes compared to and con-
trasted with Function Point Analysis–based estimation.

Both techniques focus on identifying, sizing, and devising size-
to-effort, size-to-cost, or size-to-schedule ratios for the features that a 
software project will deliver into production. For story point–based 
estimation these features are the collection of project stories, whereas 
for Function Point Analysis–based estimation they are the collection 
of data and transactional functions.

Where story points differ most from function points, however, is 
that while function points endeavor to be an absolute measure of fea-
ture size, story points are explicitly a relative measure. This means that 
whereas applying Function Point Analysis to a particular collection of 
software requirements should always lead to identification of the same 
number of function points, determining the number of story points 
related to a particular collection of software requirements can lead to 
completely different numbers and depends entirely upon the story 
point scale used in each situation.

For story points, one claimed major advantage of being a relative 
sizing technique is that it can be quickly learned and applied as 
needed in a particular context. Unlike with Function Point Analysis, 



	 C h a p t e r  1 4 :  E  s t i m a t i n g  f o r  A g i l e  S o f t w a r e  D e v e l o p m e n t 	 125

the use of story points does not require that estimators learn and 
understand a full set of sometimes complex and prescriptive rules 
and guidelines.

On the other hand, potential disadvantages of a relative sizing 
technique such as story points over an absolute technique such as 
Function Point Analysis are as follows:

•	 The use of story points requires recalibration within each 
organization and potential development team in which they 
are used.

•	 It is difficult to use external repositories as sources of 
information on likely development team story point velocity.

•	 Story points cannot be easily used for comparative bench-
marking across organizations.

•	 There is no authoritative source against which to assess the 
correctness and consistency of project sizing.

Summary
The Agile approach to software development differs markedly from 
traditional development approaches such as Waterfall. As such, Agile 
requires its own method of estimation. In this chapter we have 
provided a brief introduction to Agile software development 
estimation and described the sizing process using either story points 
or function points. 



This page intentionally left blank 



Chapter 15
A Guide to Estimating 

Project Cost Using 
ISBSG Data

Although the ISBSG collects the costs incurred by projects as a 
project attribute in its repository, it is very difficult to 
standardize these costs as a ratio of “dollar cost per function 

point delivered” that can be used to predict the likely cost of a newly 
planned project. Difficulties in using other projects’ total costs arise 
due to the following factors:

•	 The costs submitted to the ISBSG are provided in a wide 
range of currencies.

•	 Projects are submitted to the ISBSG over many years, and the 
currency conversion rates to a “standard” currency such as 
the euro or U.S. dollar vary significantly as economies 
strengthen and weaken relative to each other.

•	 Since the dates that the project costs were collected are not 
known, it is not possible to allow for any subsequent inflation 
that may have occurred.

It is therefore recommended that in order to estimate your 
project’s costs, you should use the predicted project effort, and convert 
the effort to cost using current relevant personnel resource costs. That 
is, use the effort predicted by the PDR combined with the hourly 
charge-out rates for the particular project team in the currency in 
which they will be paid, allowing for the inflation over the proposed 
project duration.

This chapter explains how this can be done and the types of 
considerations that need to be allowed for prior to committing a 
monetary value to a project.

127



	 128	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 5 :  E  s t i m a t i n g  P r o j e c t  C o s t  U s i n g  I S B S G  D a t a 	 129

Hourly Charge-Out Rate
The way charge-out rates are calculated varies for different countries 
and organizations. It also depends on whether the development 
organization is selling its development services or building the 
software as an internal asset for its own organization.

The next two sections describe how to calculate internal project 
and external project charge-out rates.

Internal Project: Building Software for Your Own Organization
Your internal accounts department should be able to provide the internal 
charge-out rate for each project team member. The charge-out rate is the 
direct labor cost, that is, the cost of the employee to the organization. This is 
usually calculated using the employee’s hourly pay rate plus on-costs. 
On-costs are all non-salary employee costs. Typically, these include such 
overheads as payments for sick leave, recreational leave, public holiday, 
superannuation, insurance, fringe benefits, payroll tax, and so forth. 
On-costs vary from country to country and in different employment 
situations. They may add as much as 15–40 percent to the hourly rate 
paid to the employee. On-costs plus the annual hourly rate paid for 
hours worked make up the employee’s salary package. 

For example: If the hourly pay rate is $40 an hour, then on-costs 
could vary between $6 and $15. Therefore, the internal charge-out 
rate for that employee could be from $46 to $56 an hour depending on 
the employee’s employment/contract benefits.

External Project: Building Software for an External Organization
Where an organization sells software development services, the rates 
that it charges the customer (charge-out rates) need to cover the cost of 
the employee, plus a profit margin. Charge-out rates are calculated 
taking into account:

•	 The utilization rate of the staff, that is, the number of revenue 
earning days compared to the total number of days they are 
paid.

•	 The company overheads (equipment, telephones, utilities, 
rent, office and administration costs, insurance, and so on). 
This also applies in many organizations that are not 
commercial software development companies, but where IT 
services are treated as a cost center and where internal projects 
include company overheads in the project costs.

•	 Total employee salary package costs.

•	 Profit margin required.

As a rule of thumb the external charge-out rate is 2.5 to 3 times the 
employee’s hourly pay rate, but may be up to 6 times for larger 
corporations.



	 C h a p t e r  1 5 :  E  s t i m a t i n g  P r o j e c t  C o s t  U s i n g  I S B S G  D a t a 	 129

For example: if the hourly pay rate paid to the supplier 
organization’s employee is $40 an hour, then the rate charged by the 
supplier to the client, for that employee’s time spent on the project, 
could be between $120 to $240 per hour.

Refining Hourly Charge-Out Rate for Project Team Structure
The size and structure of the project team, and the individual roles 
required for the project, will depend on many factors, including the 
size of the project, type of project, project risk factors, type of 
organization, and the maturity and rigor of the development process. 
There may be up to a fourfold difference in the rates charged for 
personnel performing the different roles, and the number of people 
performing each role will vary from project to project.

To estimate total cost for a project, you first need to determine the 
likely project team structure (number of people performing each role) 
and their respective charge-out rates. For internal projects this is 
straightforward. To determine the charge-out rate for external 
projects, you may need to reference industry sources such as job 
advertising sites on the Internet, IT industry surveys, and government 
web sites, or you can simply ask your suppliers.

Total effort hours for the project are calculated from the project 
delivery rate (PDR), therefore it is important to try to assign the 
projected effort hours across the different project roles in order to 
more accurately predict costs. Figure 15-1 shows the percentage 
breakdown of effort of the various project roles for an in-house, new 
development project. The ISBSG provides similar charts for 
enhancements and outsourced new developments in the subscriber 
section of its web site.

Use an appropriate role ratio breakdown for your particular 
software development, and then apply your charge-out rates to the 
different roles.

Software
Architect 9%

Business
Analyst 3%

Project
Manager 7%Other

15%

QA, Testers
16%

UI, Graphics
2%

Programmers
48%

Figure 15-1  New development role ratios for in-house development



	 130	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 5 :  E  s t i m a t i n g  P r o j e c t  C o s t  U s i n g  I S B S G  D a t a 	 131

Indexing the Charge-Out Rate for Inflation  
and Currency Movements
Global software development projects, the impact of financial crises 
on different economies, and development teams spread across 
continents, all make predicting costs for projects with long durations 
a more complex task.

If the project duration is estimated to be more than one year, then 
it is recommended that you factor the predicted inflation rate—for 
the country where the employees are paid—into the charge-out rates. 
Compound for each of the successive project years.

If the currency that is funding the project is different from the 
currency being used to pay the project team, then currency projections 
may also need to be taken into consideration when calculating the 
charge-out rates.

Additional Cost Considerations
So far we have concentrated on the costs that are associated directly 
with the project team that is developing the software.  There are other 
costs that lie outside the development team; these are discussed in 
the following sections.

Costing Activities Outside Project Development Tasks
When converting functional size to effort using the appropriate ISBSG 
PDR in hours per function point, it is important to understand exactly 
which project activities the effort hours correspond to in order to 
understand what proportion of the total project costs the PDR-based 
cost estimate is predicting and what has been omitted.

The hours collected by the ISBSG and used to calculate industry 
PDR values are specifically for the following activities in the software 
development life cycle, as shown in Table 15-1.

Any effort estimates—and their corresponding cost estimates 
derived from the PDR—can cover only the software development 
activities shown in Table 15-1, and consequently these exclude other 
fixed price, and time and materials costs, to purchase other project-
related items that need to be considered in the project budgets, such as:

•	 Hardware/networks

•	 Software-licensing fees/software product costs

•	 Software utilities/development tools

•	 Strategic planning

•	 Business process reengineering

•	 Data migration strategy/data conversion

•	 Planning and implementation of change management strategies



	 C h a p t e r  1 5 :  E  s t i m a t i n g  P r o j e c t  C o s t  U s i n g  I S B S G  D a t a 	 131

•	 Training requirements

•	 System deployment to multiple sites

•	 Internal client effort—for example, the execution of UAT 
(user acceptance testing)

•	 Enhancement of external systems to provide interfaces that 
are not included in this project’s functional size scope

•	 Decommissioning of existing or interim systems

Project Activity Possible Activity Components

Plan Preliminary Investigations

Overall Project Planning

Feasibility Study

Cost Benefit Study

Project Initiation Report

Terms of Reference

Specify Systems Analysis

Requirements Specification

Review & Rework Requirements Spec

Architecture Design/Specification

Review & Rework Architecture Spec

Design Functional/External Design

Create Physical/Internal Design(s)

Review and Rework Design(s)

Build Package Selection

Construct Code & Program Software

Review or Inspect & Rework Code

Package Customization/Interfaces

Unit Test

Integrate Software

Test Plan System or Performance Testing

System Testing

Performance Testing

Create & Run Automated Tests

Acceptance Testing

Implement Prepare Releases for Delivery

Install Software Releases for Users

Prepare User Documentation

Prepare & Deliver User Training

Provide User Support

Table 15-1  ISBSG Activities Where Effort Is Recorded for PDR



	 132	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 5 :  E  s t i m a t i n g  P r o j e c t  C o s t  U s i n g  I S B S G  D a t a 	 133

If your project will need to fund any of the preceding activities, 
then these will need to be costed separately and then added to the 
PDR-based cost estimates.

Costing Effort Contributed by Personnel  
Not Included in the PDR
The PDRs published by the ISBSG typically only include the Level 1 
Effort1 of the project development team, that is, the effort hours 
recorded by those people responsible for the delivery of the application 
under development. The project development team includes those 
individuals who specify, design, build, test, and implement the 
software.

Consequently, the effort established using the PDRs typically 
does not include the effort hours expended by the:

•	 IT administrative and support people who enable the project 
development team to do their job; that is, it excludes the op-
erations people on hardware support, database administra-
tion staff, and so on.

•	 Business users or software users, that is, those individuals 
responsible for defining the requirements of the applications 
and sponsoring/championing the development of the 
application, acceptance testing the software, and actually 
using the software.

If the project budget is required to pay for the effort expended by 
these non–development team members, then this will need to be 
estimated and costed separately from the effort costs derived from 
the PDR.

Summary
The following steps detail the procedure to calculate project cost 
using the published PDRs:

	 1.	 Determine the functional size relevant to project scope 
(function points measured for each project component that is 
implemented using different cost drivers, for example, 
different platforms, languages, and so on).

	 2.	 Determine the most likely software delivered size for each 
component by predicting the percentage of likely scope creep 
caused by requirements changing and/or incomplete specifi-
cations. For early estimates this may be as much as 30 percent 
growth on measured size (Function Points Measured × % 
growth = Project Predicted Delivered Size).

1	Refer to “work effort breakdown” in the Glossary.



	 C h a p t e r  1 5 :  E  s t i m a t i n g  P r o j e c t  C o s t  U s i n g  I S B S G  D a t a 	 133

	 3.	 Determine the appropriate project delivery rate for the 
software component (effort hours per function point).

	 4.	 Calculate the effort (PDR × Predicted Delivered Size = Total 
Software Effort Hours).

	 5.	 Steps 1 through 4 need to be completed for each software 
component to determine the Total Effort Hours.

	 6.	 Determine the project team role profile, and allocate the 
percentage contributions for each role.

	 7.	 Allocate effort hours to each role using the percentage contri-
bution (Total Project Effort Hours × % Role Contribution = 
Hours for Role).

	 8.	 Determine the charge-out rate for each role.

	 9.	 Calculate the cost of the effort for each role (Role Charge-Out 
Rate × Effort Hours for Role) allowing for currency movements 
and inflation if applicable.

	 10.	 Sum the Project Cost for each role to calculate the Total Project 
Cost based on PDR.

Additional Steps to Calculate Non-PDR-Related Project Costs
	 11.	 Calculate the costs for activities not included in the ISBSG 

Project Activities in Table 15-1.

	 12.	 Calculate the costs for people to be paid for by the project 
budget but whose effort was not included in the PDR-derived 
effort, typically Level 2 and above.

	 13.	 Total the costs for steps 10 through 12 to determine total costs 
for input into the project budget.

Note  The figure calculated in Step 13 is the most likely project cost.

Project cost estimates should not be presented as a single number 
but always as a range—for example, best case, likely case, worst 
case—in order to appropriately manage expectations and to obtain 
approval for realistic budget allocations.



This page intentionally left blank 



Chapter 16
Creating a Software 

Project Estimation 
Framework Using the 

ISBSG Repository

A key solution to the problem of poor software project estimation 
is to create a software project estimation framework for your  
  development team. A software project estimation framework 

comprises a set of templates or tables, combined with a supporting 
procedure, that allow you to estimate the effort and duration of a 
software project.

Once you have established an estimation framework, you can 
enter measures of the scope for a new project into the framework to 
obtain a project effort and duration estimate.

If you have an environment where your development team has 
developed multiple projects over a few years, then the ultimate esti-
mation framework is one based on data from the team’s past projects, 
in other words, your organization’s own software measurement 
data.

However, few organizations have long-term development 
teams—or more commonly—the necessary skills to collect and 
maintain their own project history over several years. So in the 
absence of an organization’s own experience data, you can use past 
projects from a public project database such as the ISBSG Repository.

Note  A software project estimation framework comprises a set of templates 
or tables, combined with a supporting procedure, that allow you to 
estimate the effort and duration of a software project.

135



	 136	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 6 :   S o f t w a r e  P r o j e c t  E s t i m a t i o n  F r a m e w o r k 	 137

You can use a number of sources of ISBSG data for your 
framework:

•	 The appendixes of this book. You will find a set of project 
delivery rate tables showing PDR by category. These tables 
have been derived from the ISBSG Repository.

•	 The ISBSG Development and Enhancement Repository. 
Release 11 of the ISBSG Repository contains data from over 
5,000 software projects.

•	 The ISBSG Special Report series of publications and the Web 
Subscription service. These provide discussions on the factors 
that have a major impact on project delivery rate, duration, 
defect densities, and other topics.1

Using the ISBSG PDR Tables to Create Tables  
for Your Estimating Framework
You can use the following procedure to establish an estimation 
framework using the ISBSG tables in Appendix B:

	 1.	 Identify which development platforms your software 
development group is likely to use on future projects.

	 2.	 From Appendix B extract PDR distributions for your team’s 
development languages for the relevant development 
platforms (Tables B-17, B-18, B-19, and B-20).

	 3.	 Next consider the impact of the likely project maximum team 
sizes on the PDR distributions.

	 4.	 Examining the PDR distributions extracted will reveal that 
they are too broad for practical use. Consequently, the next 
step is to refine them by benchmarking a small number (one 
to five) of your group’s typical projects against the extracted 
PDR distributions.

	 5.	 Finally, use the PDR values at the top and bottom of your 
group’s benchmark quartile from each extracted PDR 
distribution to create the PDR tables for your estimation 
framework.

To estimate a specific project using the framework, you apply the 
following equation:

Effort (in hours) = FPs × PDR

You measure FPs from whatever form of specification about project 
scope that you have available. The level of detail in this specification 

1	The ISBSG Special Reports are available to ISBSG web subscribers. Reports are 
produced regularly based on analysis of the ISBSG data.



	 C h a p t e r  1 6 :   S o f t w a r e  P r o j e c t  E s t i m a t i o n  F r a m e w o r k 	 137

influences how precise your FP measurement is and the actual steps 
necessary to obtain that measurement. You select the PDR from the 
table(s) you create by following the preceding steps.

Working through an example development team, we can construct 
appropriate estimating framework tables. Our example development 
team develops small-scale applications using Microsoft Visual Basic 
(.NET) technology. It links some of these applications to database and 
mail servers running on the Windows Server platform. It also develops 
applications using Java and JavaScript tools to run across the Internet 
in HTML browsers using a multitier architecture of Windows Server 
computers.

Step 1. Identify the Development Platforms
The ISBSG divides its project delivery rate (PDR) data into four 
platforms: mainframe, midrange, PC, and multiplatform. ISBSG 
analysis of its project data shows development language as one of the 
three factors that make the most impact on project delivery rate. (The 
other two factors are team size and, once you allow for team size 
impact, project size.)

Identifying the operating system platform for which your team is 
developing software helps improve the precision of the estimating 
framework. Consequently, before you extract PDR values for the 
development languages that your team uses, you need to identify the 
development platforms for the software.

For our example team a complete estimation framework will 
examine two PDR tables in Appendix B, Table B-20 for multiplatform 
development projects using Java and .NET tools, and Table B-19 for 
PC development projects using Microsoft Visual Basic.

Step 2. Extract PDR Distributions Based  
on Development Languages
Locate Tables B-17, B-18, B-19, and B-20 in Appendix B that present 
“Project Delivery Rate by Language” for the development platforms 
that your group uses, and extract the PDR distributions for the 
programming languages that your group is likely to use on future 
projects.

For our example team, developing PC-based systems using Visual 
Basic, we extract the highlighted PDR distribution. This gives one 
row in the team’s PDR table shown in Table 16-1.

If your team’s specific programming languages do not appear, 
then use the “3rd generation language” and “4th generation language” 
PDR distributions in Tables B-12, B-13, B-14, and B-15. Alternatively, 
use the values for those languages that are similar to the ones that 
your team uses. For example, Borland Delphi is a similar development 
tool to Microsoft Visual Basic, so its PDR distribution is likely to be 
similar to that shown for Visual Basic.



	 138	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 6 :   S o f t w a r e  P r o j e c t  E s t i m a t i o n  F r a m e w o r k 	 139

Step 3. Adjust the Extracted PDR  
Distributions According to Team Size
The total team size has the most significant impact on the productivity 
of a development project. The detrimental impact of larger teams on 
productivity is so significant that it is the main reason why projects 
delivering several thousand FPs have such poor productivity compared 
with smaller scope projects. Team-size impact overrides any productivity 
benefits from a specific development language. Consequently, any 
estimating framework must take into account the maximum team size 
the development team needs to deliver the project.

Use the appropriate median values from Table B-45, “Effect of 
Maximum Team Size and Project Size,” to refine the PDRs extracted 
from the tables showing PDR by language. This has to be done with 
some judgment when considering highly productive development 
languages such as Microsoft ASP or Visual Basic (.NET). Note too that 
you need to consider the maximum team size, which may include 
several technical specialists or QA people who have only a part-time 
role on the project. A lot of development teams bring in several people 
for small roles on a project without considering whether their impact 
on overall productivity may negate any quality benefit.

In addition, you need to consider the typical size of the projects 
developed by your team. Smaller projects tend to have lower productivity. 
If your team develops projects of significantly different sizes, then you 
may need to add this as another factor to be taken into consideration. 
However, it is probably more effective to combine the project size and 
team size factors together, as most development teams link the two when 
planning projects. Our example team does a lot of projects around  
400 FPs with small teams plus the occasional project of greater than  
1,000 FPs. They never use a team of more than eight people.

The data in Table B-45 states that using a team size of one to four 
has a median impact of reducing the development language’s PDR 
by 5.1. In other words, the one- to four-person team will expend 5.1 

Table 16-1  Project Delivery Rates by Language—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

ASP 11 2.2 2.6 2.7   5.9   7.8   9.5 14.3   6.0   3.8

C++ 15 4.0 8.6 9.3 11.4 18.5 27.8 60.1 16.5 13.9

COBOL 18 2.8 4.2 5.2 10.4 19.7 24.0 35.1 12.7   9.4

Java 26 1.9 3.0 5.7   7.7 10.9 19.0 25.3   9.3   6.1

Oracle 16 1.2 2.3 3.7   9.0 13.5 19.8 33.8 10.6   8.8

Visual 
Basic

48 1.0 1.9 3.2   7.2   9.5 13.8 24.4   7.4   5.0

Other 59 1.0 2.2 3.6   7.3 14.6 25.6 49.8 11.2 11.5



	 C h a p t e r  1 6 :   S o f t w a r e  P r o j e c t  E s t i m a t i o n  F r a m e w o r k 	 139

hours less effort per function point produced than is typical for all 
projects. However, if the example project team used only one- to four-
person teams on its Visual Basic–PC projects, adjusting the median 
PDR down by 5.1 hours per function point would result in a PDR of 
2.1 hours per function point. This is close to the productivity of the 
best VB projects in the ISBSG database, which is likely to be 
unachievable. In this situation, our example development team 
would be better off making a more conservative adjustment to the 
PDRs for smaller team sizes, such as the P75 value of –2.1.

Examining Table B-45 shows that a team of five to eight on a 
project of more than 1,000 FPs is unusual. Only 4 of the 1,681 projects 
had such a small team on a project of that scope. This is too small a 
sample to provide usable statistics. The PDR improvement values 
(that is, the negative values) in this table also show that this team size 
on large projects generally achieves high productivity. However, once 
again you need to take care in selecting the PDR adjustment value. 
For our example team, a value of –3.3 from the Max column seems 
appropriately conservative.  Using these figures will result in the 
following PDR table for the team.

Step 4. Benchmarking Your Projects’ PDR
Without benchmarking your projects, you will find it difficult to use 
these PDR ranges extracted from the ISBSG tables. The range of the 
PDRs present in Appendix B will likely be too wide for commercial 
acceptability. You will need to benchmark whatever projects exist in 
your team’s history, or to narrow the range arbitrarily.

To benchmark a few of your team’s projects, perform the following 
steps:

	 1.	 Calculate each project’s PDR, in hours per function point. 
When doing this, consider the scope of activities included in 
the PDR. The effort figure used for the calculation should 
cover the full development life cycle.

	 2.	 Decide the development language and platform for each 
project. This will determine the set of PDR distributions you 
will extract from Appendix B to use for benchmarking (Tables 
B-17, B-18, B-19, and B-20). Also identify the maximum team 
size for each project.

	 3.	 Based on a project’s language and team size, select the 
appropriate PDR distribution you have extracted from the 
ISBSG. Our example team would compare the PDR for a four-
person project that used Java with the PDR distribution on 
the first row of Table 16-2. This will place the team’s project 
within one of the quartiles of the PDR distributions. Our 
example team’s project had a PDR of 4.1 hours per FP, which 
places it in the P25-to-median quartile. 



	 140	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 6 :   S o f t w a r e  P r o j e c t  E s t i m a t i o n  F r a m e w o r k 	 141

	 4.	 Perform this comparison for each project PDR that you have 
available from the projects that your team has completed. This 
is likely to reveal that most projects sit within the same quartile 
of the relevant row in the draft PDR table. This is your team’s 
benchmark quartile, and consequently provides a narrower 
range of PDR values for use in the estimating equation.

Benchmarking your team’s projects against the ISBSG data will 
show that this data can provide only approximate PDR tables. A team’s 
own project history would produce much more accurate PDR tables.

Step 5. Construct the Estimation Framework
After benchmarking one or more of your projects against the PDR 
distributions extracted from the ISBSG tables, you can construct the 
estimation framework. Typically, you can create one PDR table that 
has Team Size across the columns and Languages down the rows. In 
each table cell are the appropriate top and bottom PDR values from 
your group’s benchmark quartile.

For our example development team, the estimating framework 
PDR table would be as shown in Table 16-3.

When using these tables, remember that projects delivering under 
400 function points typically have distinctly worse PDRs, and projects 
delivering more than 1,000 FPs typically have distinctly better PDRs. 
The cause of this impact is unclear, but it probably relates to “economies 
of scale.” Doing a larger amount of work as a coherent whole can 
typically proceed more efficiently than a smaller amount of work. 
Remember that this impact of project size occurs after taking into 
account the impact of team size. Because team size has such a large 
negative impact on productivity, it counters the beneficial impact of 

Language
Team Size 1–4  
(<400FP Project) 5–8 (>800 FP Project)

Java – Multiplatform 3.6–4.3 3.1–4.8

Visual Basic – Multiplatform 4.2–6.5 4.2–5.3

Visual Basic – PC 3.2–5.1

Table 16-3  PDRs Chosen from the ISBSG Tables for Example Development Team

Table 16-2  Project Delivery Rates by Language for 1–4 Team Size

Min P10 P25 Median P75 P90 Max

Java – Multiplatform 3.1 3.3 4.0 4.3    6.0    9.7 17.1

Visual Basic – Multiplatform 0.9 2.5 4.2 6.5 16.5 34.7 60.9

Visual Basic – PC 1.0 1.9 3.2 5.1    7.4 11.7 24.4



	 C h a p t e r  1 6 :   S o f t w a r e  P r o j e c t  E s t i m a t i o n  F r a m e w o r k 	 141

project size. Consequently, you do need to take into account the impact 
of project size on your team’s PDR if you are estimating a project with 
a size that is unusually larger, or more importantly, unusually smaller, 
than you would normally assign to a team of a given size.

The example development team can now use this PDR table in its 
estimation framework. However, while building up its project history, 
the example development team can refine this table using the history 
from each project that it completes.

To calculate an estimate, use the attributes of the planned project 
to select a pair of PDR values, and then multiply these by the measured 
FP scope for the project. This provides a “best case” and “worst case” 
estimate. Which estimate you actually use on a project depends upon 
risk and commercial factors. For example, for a project that you think 
faces several risks of high probability and impact, you may choose to 
use the worst case figure.

Estimates Are Targets, Not Predictions
Remember that project estimates represent a target for the team that is 
performing the project. They are not predictions that will come true as a 
matter of course. The key issue for estimating software projects is set-
ting realistic targets that your development team can reasonably expect 
to achieve. Estimates based purely on professional judgment are notori-
ously optimistic. Estimates also set the customer’s expectations; the first 
published estimates are usually the ones that are remembered.

Using the information in Appendix B, you can construct a useful 
estimation framework for a development team. This framework will 
produce estimates that have a higher likelihood of being achieved 
than any form of estimating based purely on professional judgment.

Calculating a Benchmark Estimate for a Planned Project
It is advisable to calculate a second estimate for a planned project. 
Ideally, the second estimate should have a high degree of independence 
from the first. The following is a simple, fast, estimating procedure 
that you can use to calculate a “benchmark” estimate for a project. 
This procedure produces a benchmark PDR and so needs a measure 
of the software size in function points.

The procedure results from an ISBSG analysis of greater than 500 
projects in the ISBSG Repository.2 These software development 

2	A four-step analysis was performed that (1) estimated PDR as the average of the 
selected data set; (2) adjusted the PDR according to the effect of the expected team 
size, by adding the tabulated value to the current estimate; (3) further adjusted the 
PDR, according to the effect due to the estimated project size (expressed in UFP), 
by adding the tabulated value to the current estimate; and (4) further adjusted the 
PDR according to the effect of the programming language, by adding the tabulated 
value to the current estimate.



	 142	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 6 :   S o f t w a r e  P r o j e c t  E s t i m a t i o n  F r a m e w o r k 	 143

projects have high quality data covering all the important factors 
impacting productivity. You start the benchmark estimate calculation 
with these two PDR values that cover all 500 projects:

10.43 hours per FP (median) and 14.92 hours per FP (mean)

Step 1. Adjust PDR for Team Size
Decide the appropriate maximum team size for the planned project, 
and select from Table 16-4 the applicable adjustment factor for the 
PDR.3

If our example project team needs to put a maximum of four 
people on a project, this adjusts the median PDR downwards to  
7.32 hours per FP. Be careful to note that this is the maximum team 
size, not the core team size—part-time people add to the team size.

Step 2. Adjust PDR for Project Size
Next, you extract the adjustment factor that applies to the size of the 
project as measured in function points (see Table 16-5). 

If our example project team has an 800 FP project, this adjusts the 
median PDR downwards further to 3.02 hours per FP. There is a 
relationship between project size and maximum team size, but other 
factors also influence the maximum team size on a project, such as 
development process and role division across the team.

3	Tables 16-4, 16-5, and 16-6 were derived from the ISBSG analysis referred to earlier.

Table 16-4  Maximum Team Size

Team Size Median Mean

1 to 4 –3.09 –4.54

5 to 8 –0.06 –1.45

9 or more   6.12   4.37

Table 16-5  PDR Adjustment Factor

Project Size Median Mean

1 to 200   2.96   3.88

201 to 400 –0.05   0.01

401 to 600 –1.95 –4.68

601 to 800 –4.3 –6.91

801 to 1,000 –5.56 –8.73

>1,000 –6.76 –9.52



	 C h a p t e r  1 6 :   S o f t w a r e  P r o j e c t  E s t i m a t i o n  F r a m e w o r k 	 143

Step 3. Adjust PDR for Development Language
For the final adjustment, you extract the factor that applies to the 
planned development language. Table 16-6 represents the most 
commonly used languages for the projects in the ISBSG Repository.

Our example project team plans to use Java for this project, which 
adjusts the median PDR downwards further to 2.49 hours per FP. 
This PDR is significantly lower than the range of 4.0 to 4.7 from the 
team’s estimating framework, and so indicates that the estimating 
framework calculates more conservative, but commercially safer, 
estimates.

Step 4. Calculate Effort Estimate and  
Consider the Range of Probable Values
Applying the estimating equation gives a median effort estimate for 
our example of 1,992 hours. A median estimate represents a 50 percent 

Language Median Mean

ABAP   0.93 –1.29

Access –3.23 –7.92

ADS –4.36 –8.80

ASP –1.81 –5.71

C   0.96   0.66

COBOL   3.67   6.17

C++ –1.26   3.63

C#   2.38   3.45

Datastage   0.51   2.10

Java –0.53 –1.33

Lotus Notes –4.00 –7.00

Natural –2.82 –4.46

Oracle –2.85 –4.92

Other 3GL –0.60 –0.26

Other 4GL   2.31   0.70

PL/I   3.03 –0.06

Powerbuilder –3.13 –4.10

Scripting   3.28   5.76

SQL   0.23 –1.42

Visual Basic –3.77 –4.89

Table 16-6  Programming Language Adjustment Factor



	 144	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

probability of the project delivering its planned scope by providing 
that much effort. There is a 71 percent confidence level to achieve the 
project within a range of 50 percent to 200 percent of this value.

In other words, the range of likely PDRs for a project of these 
characteristics and scope is 1.29 to 4.98 hours per FP. The estimating 
framework falls within this range, even though it is large, and this 
increases the confidence in the estimate values. In other words, the 
team’s estimating framework does set reasonable targets.

Summary
Creating a software project estimation framework for your 
development team will provide a tool that will allow you to more 
accurately estimate effort and duration for software projects.   The 
framework that you create will be tailored to suit your environment 
and team and will therefore provide more accurate estimates that if 
you simply used available industry data. 



Chapter 17
Functional Size 
Measurement 

Methods in Use Today

The past three decades of use of functional size measurement 
(FSM) have shown that it is currently the only proven method 
of sizing software that gives consistent and reliable results for 

project estimation and productivity comparisons. The FSM method 
for sizing is supported and continually enhanced by the international 
community and is the method of choice for major software estimation 
tools and benchmarking organizations.

How Many FSM Methods Are There?
Currently, five FSM methods are recognized by the International 
Organization for Standardization (ISO):

•	 COSMIC-FFP  ISO/IEC 19761:2003 Software engineering.  
A functional size measurement method.1

•	 FiSMA FSM 1.1 [3].  ISO/IEC 29881:2008  Information 
technology—Software and systems engineering—FiSMA 1.1 
functional size measurement method.

•	 IFPUG CPM 4.3 [11].  ISO/IEC 20926:2009  Software and 
systems engineering—Software measurement—IFPUG func-
tional size measurement method 2009.

1	A revised COSMIC standard is due for release in 2010: ISO/IEC 19761:2010 
COSMIC functional size measurement method v 3.0 [10]. Information  
technology—Software and systems engineering—COSMIC-FFP—A functional 
size measurement method.

145



	 146	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 7 :   F u n c t i o n a l  S i z e  M e a s u r e m e n t  M e t h o d s 	 147

•	 Mk II Function Point Analysis 1.3.1 Unadjusted [12].  ISO/
IEC 20968:2002  Software engineering—Mk II Function 
Point Analysis—Counting Practices Manual.

•	 NESMA FPA Method 2.1 Unadjusted [13].  ISO/IEC 
24570:2005  Software engineering—NESMA functional size 
measurement method version 2.1—Definitions and counting 
guidelines for the application of Function Point Analysis.

The major steps in the methods as per their official specifications are 
described next. Because Mk II is no longer regularly used, no description 
has been provided. For analysis purposes the ISBSG combines IFPUG 
and NESMA sized projects, because these two methods are similar.

IFPUG  From the IFPUG 4.3 Counting Practices Manual, the major 
process steps are the following:

	 1.	 Gather available documentation.

	 2.	 Determine the counting scope and (application) boundary 
and identify functional user requirements.

	 3.	 Measure (identify and size) the data functions. Data functions 
are either internal logical files (ILFs) or external interface files 
(EIFs).

	 4.	 Measure (identify and size) the transactional functions. 
Transactional functions are either external inputs, external 
outputs, or external inquiries.

	 5.	 Calculate the functional size.

The IFPUG 4.3 method can be used to determine the functional size 
of both software applications and software projects.

NESMA  From the NESMA 2.1 Guidelines, the major process steps 
are as follows:

	 1.	 Identify the transactional and data functions within the scope 
of the enhancement project and determine their functional 
size.

	 2.	 Determine which transactional and data functions are to be 
added.

	 3.	 Determine which transactional and data functions are to be 
deleted.

	 4.	 Determine which data functions are to be changed and 
determine the impact factor.

	 5.	 Determine which transactional functions are to be changed 
and determine the impact factor.

	 6.	 Calculate the number of enhancement function points.



	 C h a p t e r  1 7 :   F u n c t i o n a l  S i z e  M e a s u r e m e n t  M e t h o d s 	 147

The NESMA 2.1 method is specifically for sizing enhancement 
projects.

COSMIC  From the COSMIC 3.0.1 Measurement Manual, the major 
steps are the following:

	 1.	 Measurement Strategy Phase:

	 a.	 Define the purpose of the measurement.

	 b.	 Define the scope of the measurement.

	 c.	 Identify the functional users.

	 d.	 Identify the level of granularity.

	 2.	 Mapping Phase:

	 a.	 Identify functional processes.

	 b.	 Identify objects of interest and data groups.

	 c.	 Identify data attributes.

	 3.	 Measurement Phase:

	 a.	 Identify data movements.

	 b.	 Apply measurement function.

	 c.	 Aggregate measurement results.

The COSMIC FSM method can be used to determine the functional 
size of both software applications and software projects.

FiSMA  From the FiSMA 1.1 Functional Size Measurement Method 
document the major steps are summarized as follows:

	 1.	 Gather documentation and software development artifacts to 
describe the functional user requirements for the software (to 
be or already) developed.

	 2.	 Determine the scope of the functional size measurement.

	 3.	 Determine which are the functional user requirements to be 
measured.

	 4.	 Identify the base functional components within the functional 
user requirements in two main parts: (a) measuring the end-
user interface services, and (b) measuring indirect services.

	 5.	 Classify the base functional components into the appropriate 
base functional component type services.

	 6.	 Assign the appropriate numeric value to each base functional 
component.

	 7.	 Calculate the functional size.

	 8.	 Document the instance of the FiSMA 1.1 count details.



	 148	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 7 :   F u n c t i o n a l  S i z e  M e a s u r e m e n t  M e t h o d s 	 149

The FiSMA FSM method can be used to determine the functional size 
of both software applications and software projects.

Which FSM Method Should I Choose?
ISO has published a guide2 to choosing the method most appropriate 
for your needs. Key points to be considered:

•	 Availability of Equivalent Industry Data  If you need to 
use industry data for comparison of productivity, or as input 
into estimates, then this may be a deciding factor. The ISBSG 
Repository Release 11 contains the following breakdown of 
FSMs:

IFPUG 4+ 3,379 projects

FiSMA 478 projects

COSMIC 335 projects

NESMA 130 projects

	 Other approaches represented in the repository include Mark 
II and Feature Points, but there are few such projects.

•	 Availability of FSM Tools and Training  Most of the 
industry-leading tools have been written to measure using 
the IFPUG method, but several have a roadmap that will 
incorporate other methods.

•	 Availability of Trained Experienced Certified Metrics 
Experts  Currently, the highest number of people are trained 
and certified in the IFPUG/NESMA method, which is offered 
in most countries. COSMIC training and certification is now 
being offered in India, Japan, Europe, North America, and 
Australia.

How Hard Is It to Measure Functional Size?
Functional size measurement requires specialized training of two to  
three days. After training, it typically takes several months using the 
technique, measuring in a variety of situations, to become proficient. 
International accreditation usually requires the measurer to have at 
least two years experience with the technique. Organizations either 
train a select group of software developers for the measurement role 
or use the services of a specialist software metrics consulting company. 

2	ISO/IEC 14143-6:2006. Information technology—Software measurement— 
Functional size measurement—Part 6: Guide for use of ISO/IEC 14143 series and 
related International Standards.



	 C h a p t e r  1 7 :   F u n c t i o n a l  S i z e  M e a s u r e m e n t  M e t h o d s 	 149

Successful functional sizing is similar to other specialist activities 
such as database design in that it requires a person skilled in business 
analysis who has a high attention to detail.

What Sort of Accuracy Can I Expect  
from an FSM Measurement?
For current FSM methods two trained counters typically achieve size 
figures within +/– 10 percent of each other if the functional user 
requirements are known and well specified. This is based on tests 
performed during more than 150 software estimation training courses.3 
Other tests indicate that if ten project managers from different business 
areas try to estimate project effort without a systematic approach, such 
as an FSM method, the typical ratio between the smallest and largest 
estimate is 1 to 6, the worst as high as 1 to 12.

Accuracy and repeatability of measuring functional size has been 
shown to increase when the measurer has acquired:

•	 Formal training by an experienced certified trainer

•	 At least one year’s experience measuring at least 15,000 
function points

•	 Use of a purpose-built functional size measurement tool with 
inbuilt validation and measurement rules

•	 Several years IT experience in analysis and design of 
software

The Value of FSM as a Size Measurement
FSM is heavily used by mature software development organizations 
worldwide that are interested in producing accurate estimates, 
benchmarking, and process improvement. FSM has proven to be a 
reliable and effective method that allows organizations to estimate 
software and to compare productivity. The various bodies responsible 
for FSMs continue to work on improving and certifying FSM-related 
methods, tools, training, and standards.

Summary
Functional size measurement of software provides a reliable and 
consistent way to express how big a piece of software is, or will be.  A 
functional size can then be used in estimating, benchmarking, project 
planning, and analysis.

3	Pekka Forselius of FiSMA ran the course and the tests referred to.



This page intentionally left blank 



Chapter 18
A Brief Tutorial 

on Functional Size 
Measurement (FSM)

This chapter provides a brief introduction to the fundamental 
principles behind the concept of functional size of software. It is 
intended for anyone using the ISBSG database who needs to 

understand what functional size measurement is, the various 
standardized measurement methods and their respective units of 
measure, and how functional size fits in with project estimating. This 
chapter is not intended as a primer of the specific rules involved in 
any of the five functional size measurement (FSM) methods 
standardized by the International Organization for Standardization 
(ISO). For your reference, however, we have provided website 
addresses for each of the methods. Note that ISBSG accepts projects 
sized using all five ISO/IEC FSM methods plus a variety of other 
software-sizing methods.

ISO/IEC Definitions
The terms functional size (FS), functional size measurement (FSM), and 
functional user requirements (FUR) are defined by the ISO/IEC 14143-
1:2007 Functional Size Measurement: Part 1 Definition of Concepts: 
(ISO/IEC, 2007):

•	 Functional Size  Size of the software derived by quantifying 
the functional user requirements

•	 Functional Size Measurement (FSM)  Process of measuring 
functional size

151



	 152	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 8 :  A   B r i e f  T u t o r i a l  o n  F u n c t i o n a l  S i z e  M e a s u r e m e n t 	 153

•	 Functional User Requirements  Subset of the user require-
ments describing what the software does, in terms of tasks 
and services

	 Note that functional user requirements include but are not 
limited to:

•	 Data transfer (for example, Input customer data, Send 
control signal)

•	 Data transformation (for example, Calculate bank interest, 
Derive average temperature)

•	 Data storage (for example, Store customer order, Record 
ambient temperature over time)

•	 Data retrieval (for example, List current employees, 
Retrieve aircraft position)

	 User requirements that are not functional user requirements 
include but are not limited to:

•	 Quality constraints (for example, usability, reliability, 
efficiency, and portability)

•	 Organizational constraints (for example, locations for 
operation, target hardware, and compliance to standards)

•	 Environmental constraints (for example, interoperability, 
security, privacy, and safety)

•	 Implementation constraints (for example, development 
language, delivery schedule)

It is important to remember that functional size alone does not 
adequately reflect the size of all aspects of software requirements. 
Functional size measurement is just one software sizing tool that 
forms part of the software project management toolkit. The benefit of 
FSM in estimation comes when functional size is used along with 
other project attributes to estimate work-effort and project duration. 
See Chapter 1 for an explanation of the three levels of requirements 
that form the inputs to the project work-effort estimation (including 
functional size).

This chapter provides project managers with sufficient base 
knowledge about functional size measurement to be able to understand 
the ISBSG database variables (columns) that contain functional size 
values and the value adjustment factor (VAF)1 values. An illustration 
of how to measure functional size is provided in this chapter using the 
IFPUG Function Point method. Examples and case studies of how to 
measure functional size using each of the methods represented in the 
ISBSG Repository are provided in following chapters. ISO/IEC 

1	The value adjustment factor (VAF) can be used to reflect the user non-functional 
requirements or complexity of the developed software.



	 C h a p t e r  1 8 :  A   B r i e f  T u t o r i a l  o n  F u n c t i o n a l  S i z e  M e a s u r e m e n t 	 153

standardized functional size measurement methods each have their 
own rules and measurement units for assessing the functional user 
requirements for a piece of software to arrive at a functional size. The 
goal of all functional size measurement methods is similar: to evaluate 
the functional user requirements for a piece of software and to 
determine its functional size. Functional size is an important and 
objective measure that a project manager can use as part of estimating, 
planning, tracking, and controlling software projects.

What Is Functional Size?
Functional size represents the size of the subset of user requirements 
known as the functional user requirements (that is, the functions that 
the software must support) and excludes the other user requirements 
(often referred to as quality and technical requirements). Functional 
size measures the size of a software project’s work output or work 
product. FSM methods establish the size of the functional user 
requirements that are supported or delivered by the software. They 
do this by sizing the functional area part of the project. In simplistic 
terms, functional size is the size of what the software must do from an 
external, user perspective, independent of how the software is 
constructed or how well it must perform. This is similar to sizing a 
building based on its floor plan, expressed in units of square meters 
(or square feet). Functional size reflects the size of the software’s 
functional user requirements. Because most software (no matter how 
large or how small) is developed to address functional “user” 
requirements, all software has a functional size.

Analogies to Illustrate Functional Sizing
The relationship between functional size and software development 
can be described analogously with square meters and construction. 
Table 18-1 provides a few comparisons.

The Key to Functional Size Measurement  
Is to “Think Logical”
A fundamental principle to remember about functional sizing is that 
everything is counted from a logical user perspective, based on the 
functional user requirements.2 This can be a paradigm shift for 
software developers who are well versed in programming and 

2	In the early stages of software development, it may be necessary to estimate the 
requirements or to make assumptions about the functional user requirements, and 
to subsequently use shortcut methods based on these assumptions to arrive at an 
approximate functional size. Refer to the March 1998 issue of IT Metric Strategies 
for the article “Requirements are (the Size of) the Problem,” by Carol Dekkers, 
which further explores the topic, and The IT Measurement Compendium, by Manfred 
Bundschuh and Carol Dekkers (Springer, 2008) for further information.



	 154	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 8 :  A   B r i e f  T u t o r i a l  o n  F u n c t i o n a l  S i z e  M e a s u r e m e n t 	 155

physical configuration management, because functional size does not 
vary with the relative ease or difficulty involved in building the 
software. It is irrelevant to the functional size whether it takes a 
thousand lines of COBOL code and eight subroutine calls or a 
hundred lines of C++ code to implement a function; the functional 
size does not vary (it is the same no matter how the software is built) 
because the user functionality is the same.

Functional size, like the square meters or square feet of a building, 
is not equal to work effort. Here is the relationship:

•	 Functional Size (for example, FP) = An INDEPENDENT 
measure of the software’s LOGICAL size (based only on the 
functional user requirements).

•	 Work Effort (in Hours) = A DEPENDENT measure of how 
long the software will take to develop. It depends on many 
factors (functional size as well as, for example, project type, 
programming language, hardware platform, team skills, 
methodology, team size, risks, and many more).

•	 Productivity (for example, Hours per FP) = A DEPENDENT 
result, dependent on all of the same factors as work effort.

Table 18-1  Analogies Between Building Construction and Software Development

Metric

Construction 
Units of 
Measure

When Is It 
Important to 
Measure?

Software 
Functional 
Size Units of 
Measure

When Is It 
Important to 
Measure?

Estimated 
(functional) 
size

Square meters 
(or feet)

When floor 
plan is 
available

Function 
points

When FUR 
(functional user 
requirements) 
are known or at 
contract stage

Unit delivery 
rate (or unit 
labor cost) & 
overall effort 
(or labor) cost

Hours per 
square meter 
(or $ per 
square meter) 
& total hours 
(or total $)

When builder 
is selected or 
construction 
contract is 
negotiated

Hours per 
FP (Labor $ 
per function 
point) & total 
hours (and 
total labor $)

At contract 
signing; at 
go or no go 
development 
decision

Estimated 
work effort 
(duration)

Person-months 
and move-in 
date

Throughout 
construction 
(adjusted 
whenever 
change orders 
accepted)

Person-
months (or 
person-hours) 
and delivery 
date

Throughout 
development 
(adjusted 
whenever 
change requests 
are accepted)

Size of 
change 
orders

Square meters 
(or feet), hours 
or $ (impact)

Whenever 
change 
identified

FP, hours, or $  
(impact)

Whenever 
change identified



	 C h a p t e r  1 8 :  A   B r i e f  T u t o r i a l  o n  F u n c t i o n a l  S i z e  M e a s u r e m e n t 	 155

Note  An INDEPENDENT variable (FP) divided by a DEPENDENT 
variable (Hours) yields a DEPENDENT result.

These relationships tell us that just as factors such as the quality of 
the raw materials, the piping configuration, the configuration of the 
floors (how many stories in the building), and the overall layout all  
affect the work effort and duration of a building project, so too do the 
programming language and other physical attributes affect the soft-
ware development effort and duration. However, regardless of how 
the building is constructed, the floor plan size of the building stays the 
same. With software, the software’s functional size remains the same 
even when there is variation in the programming language, skills, 
physical configuration, and other factors used in its development.

Counting in FSM: An Example Using  
IFPUG Function Points
For illustration purposes, IFPUG (International Function Point Users 
Group) function points will be used to demonstrate one approach to 
functional size measurement. The ISBSG database has a number of 
variants of IFPUG FP units of measure, each relating to a particular 
release of the IFPUG Counting Practices Manual (CPM). Higher 
numbered releases supersede prior releases. All IFPUG FP data in the 
ISBSG database includes the specific IFPUG release number that was 
used to count a project’s functional size. At this printing, the current 
IFPUG release is 4.3, which was released in September 2009.

The process to calculate IFPUG function points is maintained by 
the International Function Point Users Group and is documented in 
the Counting Practices Manual (CPM).3

IFPUG Function Point Components
To count IFPUG function points, we evaluate five logical components 
of the software based on the functional user requirements:4

•	 Internal logical files (ILF)  Logical, persistent entities 
maintained by the software application. (Note that “code/
description” tables are considered to be implementations of 
technical user requirements rather than functional and are 
therefore excluded as countable functionality. Thus, they are 
neither ILF nor EIF.)

3	The International Function Point Users Group (IFPUG) Counting Practices Manual 
Release 4.3 contains the rules for counting function points. To obtain a copy of the 
Counting Practices Manual, contact IFPUG at www.ifpug.org.

4	The components listed are taken from the International Function Point Users 
Group (IFPUG) Counting Practices Manual 4.3 (IFPUG, 2004). The explanatory 
text is the author’s own wording to describe each component.

www.ifpug.org


	 156	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 8 :  A   B r i e f  T u t o r i a l  o n  F u n c t i o n a l  S i z e  M e a s u r e m e n t 	 157

•	 External interface files (EIF)  Logical, persistent entities 
that are referenced only by the software application, but are 
maintained by another software application.

•	 External inputs (EI)  Logical, elementary business processes 
whereby data crosses into the application boundary to main-
tain data on an internal logical file or to ensure compliance 
with user business requirements (for example, control data).

•	 External outputs (EO)  Logical, elementary business 
processes that result in data leaving the application boundary 
to meet a user requirement that involves at least one of (a) a 
calculation; (b) derivation of data; (c) update of one or more 
ILFs; (d) controlling the behavior of the software (for example, 
summarized reports, output data files with derived data, 
output tapes where an ILF was updated during the process, 
screen alerts involving calculation(s)).

•	 External queries (EQ)  Logical, elementary business processes 
that result in data leaving the application boundary to meet a 
user requirement, which involves retrieving data from at least 
one ILF or EIF, but which cannot perform any of the processing 
listed clauses a–d of an external output (for example, output 
files where no data is derived or calculated, detail reports, pure 
data extracts from ILFs/EIFs, and data browse displays).

Note that these five types of logical components are not the same 
as physical components. When we talk about “internal logical files,” 
for example, it does not necessarily mean physical files or data sets. 
“Internal logical files” refers to the logical, persistent entities 
maintained through a standardized function of the software. In other 
words, ILFs are the stand-alone, logical entities that would typically 
appear on a logical entity relationship diagram (ERD). For example, 
in a human resources application, an associate or employee entity is 
one of the typical entities that would be maintained. This entity 
would be counted as an ILF.

Another illustration of counting logical components is when we 
refer to the transactional functions of external inputs, external outputs, 
or external queries. External inputs are the logical, elementary 
business processes that maintain the data on an internal logical file or 
that control processing. The logical business process of adding an 
associate (an employee) would be one elementary user function, and 
therefore in function point counting we would count one external 
input. The size in function points for this one external input would be 
the same regardless of how we physically implemented it, because in 
every implementation it performs one logical user function. For 
example, the count for “Add employee” is the same regardless of the 
number of physical screens, keystrokes, batch programs, or pop-up 
data windows we need to complete the process.



	 C h a p t e r  1 8 :  A   B r i e f  T u t o r i a l  o n  F u n c t i o n a l  S i z e  M e a s u r e m e n t 	 157

What Is Involved in IFPUG Function Point Counting?
The basic steps5 involved in the IFPUG methodology for function 
point counting include

	 1.	 Determine type of count (can be a new development project, 
an application or base count, or an enhancement project 
count).

	 2.	 Determine the project scope and the purpose for measuring  
the functional size. This step identifies exactly what is to be 
counted. For example, if a piece of software is to be delivered 
incrementally over five releases, and we need to estimate the 
effort to deliver phase 1, then we would want to know the func-
tional size of the functional user requirements that would be 
delivered by phase 1. The remaining functional user require-
ments would be out of scope of the phase 1 functional size.

	 3.	 Identify the application boundary (that is, the functions the 
software must perform. This creates a context diagram for the 
application or project as illustrated in Figure 18-1).

	 4.	 Identify the function types and establish complexity:

	 a.	 Count the data function types (self-contained, persistent 
logical entities):

•	 Internal logical files (ILF), which are logical data 
groups maintained within the application boundary

•	 External interface files (EIF), which are used only for 
reference by the application and are maintained within 
another software’s application boundary

5	These steps are a condensed version of the full FP counting method included in 
the IFPUG Counting Practices Manual. Additionally, there are full case studies of 
FP counts done at differing phases of application development that can also be 
ordered through the IFPUG office.

Figure 18-1  Context diagram for IFPUG FP

External Output (EO)

External Input (EI)
ILF

EIF

External Query (EQ)



	 158	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 8 :  A   B r i e f  T u t o r i a l  o n  F u n c t i o n a l  S i z e  M e a s u r e m e n t 	 159

	 b.	 Count the transactional function types:

•	 External inputs (EI), which include the elementary 
processes for which data entry is their primary intent, 
as well as stand-alone controlled inputs (for example, 
add customer)

•	 External outputs (EO), for example, reports or data 
displays where calculations are involved

•	 External queries (EQ), for example, direct retrieval of 
data from one or more of the entities identified as ILFs 
or EIFs, and no additional processing as described 
earlier

	 c.	 Evaluate the “complexity” of each of the five function 
types identified earlier. IFPUG provides several simple 
matrixes to determine whether a function is Low, Average, 
or High complexity, based on data element types (user-
recognizable, nonrecursive data fields), record element 
types (subsets of user-recognizable data), and file types 
referenced (number of logical data groupings required to 
complete a process). Table 18-2 summarizes the number 
of function points assigned to each function type.

	 d.	 Following the IFPUG guidelines, count and rate all of the 
identified functions, and add the function points together. 
The resultant number is called the unadjusted FP count 
and is the functional size of the project.

	 5.	 The next step is an optional step in the IFPUG function point 
method because it goes beyond the determination of functional  
size. It attempts to quantify a portion of the non-functional 
user requirements by evaluating 14 factors of the software. 
This step determines a factor called the value adjustment fac-
tor (VAF), which reflects the user non-functional requirements or 
complexity for the developed software. The VAF is calculated 
via an equation (VAF = 0.65 + (Sum of General System Charac-
teristics × 0.01)) and involves a simple evaluation of 14 general 

Function Type Low Average High

EI ×3 ×4 ×6

EO ×4 ×5 ×7

EQ ×3 ×4 ×6

ILF ×7 ×10 ×15

EIF ×5 ×7 ×10

Table 18-2  Unadjusted FP Assigned to IFPUG Function Types



	 C h a p t e r  1 8 :  A   B r i e f  T u t o r i a l  o n  F u n c t i o n a l  S i z e  M e a s u r e m e n t 	 159

systems characteristics (GSCs). Specific evaluation guidelines 
for the following GSCs are provided in the IFPUG Counting 
Practices Manual (IFPUG, 2009):

•	 Data communication

•	 Distributed data processing

•	 Performance

•	 Heavily used configuration

•	 Transaction rate

•	 Online data entry

•	 End user efficiency

•	 Online update

•	 Complex processing

•	 Reusability

•	 Installation ease

•	 Operational ease

•	 Multiple sites

•	 Facilitate change

	 6.	 The final step is also optional in the IFPUG CPM because it too 
goes beyond what is considered functional size. It “adjusts” 
the functional size (Step 4) and the non-functional VAF (Step 5)  
together using: Adjusted FP = unadjusted FP * VAF. 

Note  The ISBSG records the functional size in units of unadjusted FP 
and records the VAF as a separate and distinct project value.

While some organizations find value in using the adjusted FP 
count in their project work, the majority of the established estimating 
toolsets, including the ISBSG, report the functional size (unadjusted 
FP) separately from the non-functional measure (VAF).6

The Logical Boundary
One of the first steps to measuring functional size using any of the 
functional size measurement methods is to identify the logical 
“boundary” around the software application. This boundary separates 
the software from the user domain (remember that users can be 
people, things, other software applications, departments, other 
organizations, and so on). As such, the software may span several 

6	At this writing, IFPUG has a working group working on a Software Non-functional 
Assessment Framework Project (SNAP) to provide a sizing method for non- 
functional requirements.



	 160	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 8 :  A   B r i e f  T u t o r i a l  o n  F u n c t i o n a l  S i z e  M e a s u r e m e n t 	 161

physical platforms and include both batch and online processes. The 
software boundary is not drawn in terms of how the physical system 
is implemented, but rather in terms of how an experienced user 
would view the software. This means that a single application 
boundary can encompass several hardware platforms (for example, 
mainframe and PC hardware used to provide an accounts receivable 
application would both be included within the single application 
boundary).

ISO and IFPUG have identical definitions for (application) 
boundary (IFPUG, 2009; ISO, 2007):

Boundary, a conceptual interface between the software under 
study and its users 
(IFPUG added the following note: “Prior versions of this 
International Standard used the term application boundary.”)

Where Does Functional Size Fit in with the ISBSG  
and Software Project Estimating?
After we have determined that the software project involves the new 
delivery or enhancement of functional user requirements (that is, 
functionality), we can measure the software’s functional size. If a 
project does not involve the delivery or enhancement of software 
functionality—for example, it simply involves maintenance/fixes of 
already delivered functionality, or upgrades the technical or non-
functional requirements, or is a pure documentation project, and so 
on—then it cannot be sized using functional size measurement and 
must be estimated using some other estimation equations based on 
other input measures.

Once we have the functional size for a project or application (in 
functional size units), we have established the “functional” size of the 
project work product. If we choose to evaluate the VAF, we then also 
have a numerical value for the influence of non-functional quality 
types of requirements for the application.

Just as the square meters (or feet) size of a house does not equal 
the speed at which a house can be built or its construction duration, 
the functional size does not equal delivery rate or work effort. 
Functional size measures the size of what the software does, rather 
than how it is developed or implemented (technical requirements) or 
how it must operate (quality requirements). This means that given a 
common set of functional user requirements, the functional size of 
the software will be the same whether it is developed using COBOL 
or Java, or using rapid application development (RAD) or waterfall 
or agile development methods.

Functional size (and even IFPUG’s optional VAF) provides us 
with objective software size measures for use in work-effort estimating 
equations (together with other factors) or to normalize productivity 



	 C h a p t e r  1 8 :  A   B r i e f  T u t o r i a l  o n  F u n c t i o n a l  S i z e  M e a s u r e m e n t 	 161

or quality ratios. The value in using functional size lies in the ratios 
and normalized comparisons between ratios. Process improvements 
can be found when normalized ratios are compared and their 
underlying project attributes assessed for their impact on the project.

Note  In 2008 IFPUG launched a project to address the measurement of 
non-functional requirements within IS projects and applications. The 
SNAP (Software Non-Functional Assessment Process) project will 
release an Assessment Practices Manual (APM) in 2010 to be reviewed 
and tested by the IFPUG membership. The APM will enable the usage 
of the SNAP sizing method. This will include the assessment itself, 
instructions on the completion of the assessment, and guidance on how 
to utilize and apply the results of the assessment. In addition, common 
terms and definitions will be provided within the APM.

Summary
Functional size measurement and functional size provide an objective, 
repeatable process for assessing the logical size of software based on 
its functional user requirements. Functional size provides us with a 
standard, normalized measurement value of the work product. 
Together with other measures, such as the value adjustment factor 
and project attributes, functional size–based software metrics can 
highlight process improvement opportunities and are a proven 
approach to increasing the accuracy of software work-effort estimating 
precision and accuracy.



This page intentionally left blank 



Chapter 19
An IFPUG Function 
Point Case Study

This chapter outlines and demonstrates how functional size 
measurement can be applied to determine:

•	 The functional size of a sample set of new development user 
requirements

•	 The functional size of a sample set of enhancement user 
requirements

Once the functional user requirements for each sample set are 
identified, functional size measurement is done using one of the ISO-
recognized functional size measurement methods. This case study 
uses the IFPUG method.1

You should read the preceding chapter, “A Brief Tutorial on Func-
tional Size Measurement (FSM),” before reading this chapter.

New Development Case Study
For the first example we will establish the functional size for the 
new development of a piece of software. We have chosen the 
planned development of an Employee Records Management system 
for our case study. This relatively straightforward system provides 
a good framework on which to display how to go about functional 
sizing.

1	See ISO/IEC 20926: 2009  Software engineering—IFPUG 4.3 Functional Size 
Measurement Method—Counting practices manual.

163



	 164	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 9 :  A  n  I F P U G  F u n c t i o n  P o i n t  C a s e  S t u d y 	 165

Sample Set of User Requirements
The following list represents a sample set of user requirements for a 
new development software project:

	 1.	 The software application must store and maintain employee 
information consisting of the following data fields: name, 
employee number, rank, street address, city, state, ZIP code, 
date of birth, phone number, office assigned, and the date the 
employee data was last maintained.

	 2.	 The software application must provide a means to add new 
employees, update employee information, terminate 
employees, and merge duplicate employee records (in cases 
where all fields other than employee number are identical).

	 3.	 The software application must provide a scheduled weekly 
report. Its header includes the Report Period and provides a 
retrieved list of all employees (Name and Employee Number) 
where information has changed within the previous 7 
calendar days (report period).

	 4.	 The application must provide a means for the end user to 
view an employee’s data.

	 5.	 User security data (user ID, password) is referenced from the 
security application for user logon security validation.

	 6.	 Complex algorithms are used to encrypt the employee date 
of birth so that it cannot be directly read from the information 
stored for an employee.

	 7.	 The software application must provide subsecond response 
time for data maintenance processes during the peak business 
hours between 8 a.m. and 5 p.m. Eastern USA Standard Time 
(GMT – 5).

	 8.	 The software application must use programming language(s) 
that are compatible with open systems design and Oracle 
databases.

Functional User Requirements
Functional size represents the size of the subset of user requirements 
known as the functional user requirements (that is, what functions 
the software must support), which excludes quality and technical 
requirements.

Of the preceding list of user requirements, 1 through 5 repre-
sent the functional user requirements, while 6 through 8 are non-
functional (quality and technical) requirements. Only requirements 
1 through 5 will be used to determine the functional size of the 
software.



	 C h a p t e r  1 9 :  A  n  I F P U G  F u n c t i o n  P o i n t  C a s e  S t u d y 	 165

Functional Size Measurement Using  
ISO/IEC 20926: 2009 – IFPUG 4.3
Functional Size Measurement Method: IFPUG 4.3 identifies the 
following five base functional components for determining functional 
size:

Note  The terms application and software application are used inter-
changeably in the following narrative.

•	 Internal logical file (ILF)  This persistent logical entity is 
maintained by a standard elementary process (function) of 
the software application.

•	 External interface file (EIF)  This persistent logical entity is 
maintained by another software application, and referenced 
only by this software application.

•	 External input (EI)  This elementary process of the 
application has the primary purpose of processing data 
entering the application boundary and either maintains the 
data contained in an ILF or controls the behavior of the 
application.

•	 External output (EO)  This elementary process of the 
application has the primary purpose to present data to a user 
(that is, data exits the application boundary to a “user”). At 
least one (or more) of the following logic steps must be part of 
the elementary process:

•	 Calculation

•	 Derivation of data

•	 Update of at least 1 ILF

•	 Control of the behavior of the application

•	 External query (EQ)  This elementary process of the 
application retrieves data from at least 1 ILF or EIF for 
presentation to a user. The elementary process cannot include 
any calculations, derived data, updating of an ILF, or control 
of the application’s behavior.

Determining the Functional Size
Without getting into the specifics of how the IFPUG 4.3 method rates 
a specific base functional component as Low, Average, or High, the 
following example illustrates the basic steps to arrive at the functional 
size (in units of function points) for the sample set of functional user 
requirements previously discussed.



	 166	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 9 :  A  n  I F P U G  F u n c t i o n  P o i n t  C a s e  S t u d y 	 167

The function point components to be counted based on the 
preceding include

•	 Internal logical file (ILF)  Count 1 ILF for the Employee data 
group because it is a persistent logical entity maintained by 
the application. Based on the function point counting rules, 
the complexity of this function would be Low (refer to ISO 
20926: 2009 for detailed counting rules):

	 1 Low ILF = 7 FP

•	 External interface file (EIF)  Count 1 EIF for the externally 
maintained Security logical entity. It is a Low complexity 
EIF:

	 1 Low EIF = 5 FP

•	 External input process(es) (EI)  Count 4 EIs: one EI each for 
the elementary processes of Add Employee, Update Employee,  
Terminate Employee, and Merge Duplicate Employee Re-
cords. Each EI accesses only one FTR (file type referenced) 
and meets the IFPUG requirements for a Low complexity EI 
function:

	 4 Low EI (of 3 FP each) = 12 FP

•	 External output process(es) (EO)  Count 1 EO for the user to 
browse an employee’s data (which includes the step of using 
an algorithm to decrypt the date of birth for display). The 
report accesses 1 FTR and has less than 19 DETs and is 
therefore a Low complexity EO:

	 1 Low EO = 4 FP

•	 External query process(es) (EQ)  Count 2 EQs: 1 for the 
Weekly Report (listing) and 1 for the User Security Logon function. 
Each of these elementary processes meets the requirements 
for an EQ. Based on the IFPUG 4.3 rules, they are classified as 
a Low EQ:

	 2 Low EQ (of 3 FP each) = 6 FP

The total functional size expressed in function points is the sum 
of the individual components:

Functional size = ILF + EIF + EI + EO + EQ 
                                   = 7 + 5 + 12 + 4 + 6 
                                   = 34 FP (IFPUG 4.3)

Figure 19-1 shows the context diagram for the functional user 
requirements included in this functional size.

The full details and FP counting procedure are contained in the 
IFPUG Function Point Counting Practices Manual 4.3, available through 
ISO (www.jtc1-sc7.org/) or from the International Function Point 
Users Group (IFPUG) at www.ifpug.org.

www.jtc1-sc7.org/
www.ifpug.org


	 C h a p t e r  1 9 :  A  n  I F P U G  F u n c t i o n  P o i n t  C a s e  S t u d y 	 167

Enhancement Case Study
For this example we will establish the functional size for the enhance-
ment of a piece of software. For this case study we have chosen the 
enhancement of the Employee Records Management system used in 
the first example.

Sample Set of User Requirements
The following list represents a sample set of user requirements for 
the enhancement of the newly developed software described 
previously:

	 1.	 The add new employee function will now include additional 
logic steps to validate fields that were not validated in the 
first release of the software.

	 2.	 The scheduled weekly report will now include a calculated 
value that sums the total number of employees listed.

	 3.	 The software application will now include a navigational 
menu for users to select the data maintenance function they 
wish to perform on the employee data.

No other changes will be made.

Functional User Requirements
Functional size represents the size of the subset of user requirements 
known as the functional user requirements (that is, what functions 
the software must support), which excludes quality and technical 
requirements.

Of the listing of user requirements, 1 and 2 represent the func-
tional user requirements, while 3 is a nonfunctional requirement to 
provide end-user friendliness (navigational aids). Therefore, only the 
first two requirements will be included in the determination of func-
tional size.

Figure 19-1  Sample new development functional user requirements using 
IFPUG 4.3 functional size measurement method

Browse Employee (EO)Add Employee (EI)

Security Login (EQ)
Employee

ILF

Security
EIF

Update Employee (EI)

Delete Employee (EI)

Merge Duplicate (EI)

Weekly Report (EQ)



	 168	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  1 9 :  A  n  I F P U G  F u n c t i o n  P o i n t  C a s e  S t u d y 	 169

Determining the Functional Size
The IFPUG 4.3 method counts an enhancement project’s functional 
size by identifying any function that is New (added), Modified 
(changed), or Removed (deleted) and including it as part of the 
functional size. Once again IFPUG 4.3 rates each specific base 
functional component impacted by the project as Low, Average, or 
High, and the following example illustrates the basic steps to arrive 
at the enhancement project’s functional size (in units of function 
points).

The function point components to be counted based on the 
functional user requirements include

•	 Internal logical file (ILF)  No ILFs are New, Modified, or 
Removed as part of the functional user requirements.

•	 External interface file (EIF)  No EIFs are New, Modified, or 
Removed as part of the functional user requirements.

•	 External input process(es) (EI)  Count 1 EI for the modified 
Add Employee EI where the processing logic has been 
enhanced. This was (and remains) a Low complexity EI 
function and results in:

	 1 Low EI = 3 FP (modified)

•	 External output process(es) (EO)  Count 1 EO for the modi-
fied Weekly Report function that now includes a calculation 
step and a new data field. The report is a Low complexity 
function and would result in:

	 1 Low EO = 4 FP (modified)

	 Note that this function existed as an EQ in the first software 
release and has been modified (additional logic whereby a 
calculation is now performed); therefore it is now classified 
as an EO as a result of the enhancement project. It is not 
counted as a removed EQ function and a new EO function—
rather it is a single modified function and counted as an EO 
in the enhancement project.

•	 External query process(es) (EQ)  No EQs are New, Modified, 
or Removed as part of the functional user requirements (see 
EO earlier for the treatment of the Weekly Report).

The total functional size expressed in function points is the sum 
of the individual components:

Functional size = New + Modified + Removed Functions 
                                   = (3 + 4) modified 
                                   = 7 FP (IFPUG 4.3)

Figure 19-2 shows the context diagram for the functional user 
requirements included in this functional size.



	 C h a p t e r  1 9 :  A  n  I F P U G  F u n c t i o n  P o i n t  C a s e  S t u d y 	 169

Types of Functional Size
It is worth noting that functional size is typically used in two major 
areas. (Note that in the ISBSG software project database, only the 
functional size for new development, redevelopment, or enhancement 
software projects is included.)

•	 Application or base software functional size  This measure 
represents the functional size of an installed base software 
application. (Think of it in terms of square meters of a 
constructed building.) The base functional size is a point-in-
time snapshot of the current size of an application. This number 
is useful whenever comparisons are required between different 
installed applications (for example, defects/base FP).

•	 New development or enhancement project functional 
size  This measure reflects the size of the functional area 
impacted by a new development or enhancement project. An 
enhancement project size is the result of summing the New 
functions added in the project, plus the functions Removed 
from the application by a project, plus the functions Changed 
(modified) by the project. (Think of this count in terms of a 
renovation project where the square meter size of the project 
equals the sum of the area of a New living room, a Removed 
bathroom, and a Remodeled kitchen.) This measure is  
useful in project-based metrics (for example, relative cost in  
$/development FP).

	 For a new development project, all of the functional user 
requirements are New—therefore, there are no removed or 
changed functions to be sized, only new (added) functionality.

At the end of a new development or enhancement project, the 
Application or Base FP count must be initialized for new development 
or updated (if it is an enhancement project) to reflect the actual 
functional size of the application at this time.

Figure 19-2  Sample enhancement functional user requirements using 
IFPUG 4.3 functional size measurement method

Browse Employee (EO)Add Employee (EI)

Security Login (EQ)
Employee

ILF

Security
EIF

Update Employee (EI)

Delete Employee (EI)

Merge Duplicate (EI)

Weekly Report (EQ)



	 170	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

Note that in addition to adding, removing, and modifying appli-
cation functionality, new development and enhancement projects 
may also include the development or delivery of conversion func-
tionality required to convert data from one application or application 
version to another. Although the size of this conversion functionality 
is included within the functional size of the new development or  
enhancement project, it is not included in the functional size of the 
impacted application for the simple reason that the conversion func-
tionality in question is not part of the application’s functionality.

Summary
This chapter has provided a practical introduction to software sizing 
using functional size measurement. It has demonstrated how 
functional size measurement can be applied to both new development 
and enhancement projects. Readers should refer to the counting 
practices manuals, or equivalent, for the particular functional sizing 
methodology that they plan to use.



Chapter 20
The COSMIC 

Functional Size 
Measurement 

Method

The idea of measuring a size of the functional user requirements 
(FUR) of a piece of software in terms of its functionality as 
opposed to its physical components was first put forward by 

Allan Albrecht of IBM in 1979. He proposed the method called 
Function Point Analysis, which has since evolved into the IFPUG 
method—see Chapter 19 of this book.

Albrecht’s clever piece of lateral thinking laid the foundations for 
the subject of functional size measurement (or FSM), and it is a great 
tribute to his original idea that his method is still widely used today. 
(And if the IFPUG method gives satisfactory results for performance 
measurement and estimating, then there is little incentive to 
change.)

However, the COSMIC functional sizing method was developed 
by the Common Software Measurement International Consortium to 
offer an alternative to IFPUG. The logic behind, and the reasons for, 
the development of the COSMIC method are explained on the web 
site: www.cosmicon.com.

The COSMIC method has been accepted as an international 
standard (ISO/IEC 19761: 2003) and at this writing is proceeding 
through the ISO process to be aligned with version 3.0 of the COSMIC 
method.

The method is now used in major corporations and public sector 
organizations around the world for software project performance 
measurement and for estimating in all the domains for which it was 
designed.

171

www.cosmicon.com


	 172	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  2 0 :  T  h e  C O S M I C  F u n c t i o n a l  S i z e  M e a s u r e m e n t  M e t h o d 	 173

Overview of the COSMIC Functional Size  
Measurement Method
The COSMIC method defines the principles, rules, and a process for 
measuring a standard functional size of a piece of software. Func-
tional size is a measure of the amount of functionality provided by the 
software, completely independent of any technical or quality consid-
erations.

Applicability of the Method
The common characteristic of the types of software for which the 
COSMIC method was designed (business applications, real-time 
software, infrastructure software, and hybrids of these) is that they 
are dominated by functions that input data, store and retrieve data, 
and output data. In common with the other FSM methods covered in 
this book, the COSMIC method is not designed to size software that 
is dominated by functions that manipulate data, as in typical scientific 
and engineering software.

Subject to the preceding, the method may be applied to measure 
the FUR of software:

•	 At any level of decomposition, for example, a “whole” piece of 
software or any of its components, subcomponents, and so on

•	 In any layer of a multilayer architecture

•	 At any point in the life cycle of the piece of software

The Principles for Measuring the COSMIC Functional  
Size of a Piece of Software
The COSMIC method measures a size as seen by the “functional 
users” of the piece of software to be measured, that is, the senders 
and/or intended recipients of the data that must enter or exit from 
the software, respectively. Functional users may be humans or other 
pieces of software, or may be hardware devices that interact directly 
with the software being measured, as defined in the FUR. Different 
sizes may result depending on the defined functional users, since the 
different types can “see” different functionality.

The method uses a model of software known as the COSMIC 
Generic Software Model (see Figure 20-1).

This model is based on fundamental software engineering 
principles, namely:

•	 The FUR of a piece of software can be analyzed into unique 
functional processes, which consist of subprocesses. A 
subprocess may be either a data movement or a data 
manipulation.



	 C h a p t e r  2 0 :  T  h e  C O S M I C  F u n c t i o n a l  S i z e  M e a s u r e m e n t  M e t h o d 	 173

•	 Each functional process is triggered by an Entry data 
movement from a functional user that informs the functional 
process that the functional user has identified an event to 
which the software must respond.

•	 A functional process is complete when it has done all that is 
required to respond to the event.

•	 A data movement moves a single data group of attributes 
describing a single “object of interest,” where the latter is a 
“thing” of interest to a functional user.

•	 There are four types of data movement subprocesses. An 
Entry moves a data group into the software from a functional 
user, and an Exit moves a data group out. Writes and Reads 
move a data group to and from persistent storage, 
respectively.

As an approximation for measurement purposes (and given the 
applicability of the method, described earlier), data manipulation 
subprocesses are not separately measured. The method assumes that 
data manipulation is accounted for by the data movement that it is 
associated with.

The size of a piece of software is then defined as the total number of 
data movements (entries, exits, reads, and writes) summed over all 
functional processes of the piece of software. Each data movement is 
counted as one COSMIC function point (CFP). The size of a functional 
process, and hence the size of a piece of software, can be a minimum of 
2 CFP, with no upper limit. This is a very important factor. Most 
functional processes typically have a few data movements, say in the 
range of 2–10 CFP. But sometimes software has some much larger (more 

Figure 20-1  The COSMIC Generic Software Model

Functional User
Requirements

Data movement Data manipulation

Subprocesses

Software

Functional
processes



	 174	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  2 0 :  T  h e  C O S M I C  F u n c t i o n a l  S i z e  M e a s u r e m e n t  M e t h o d 	 175

“complex”?) functional processes; examples have been measured of up 
to 70 CFP in a banking business application and over 100 CFP for a 
single functional process in the avionics of a military aircraft.

The size of changes or enhancements required for existing 
software can also be measured. The size of a change to a piece of 
software is the sum of all the data movements that must be added, 
changed, or deleted, where “changed” also includes changes to the 
data manipulation associated with the movement.

The Process for Measuring the Cosmic Functional  
Size of a Piece of Software
The COSMIC measurement process has three phases, as shown in 
Figure 20-2.

In the Measurement Strategy phase, the purpose of the measure-
ment must be defined and then, for each separate piece of software 
that must be measured, the following information is needed:

•	 The layer of the architecture where it resides

•	 Its scope (what functionality is included)

•	 Its functional users

•	 Its level of decomposition (care must be taken in summing 
sizes of pieces of software at different levels of composition)

In the Mapping Phase, the artifacts of the FUR of the software to 
be developed/enhanced and measured are analyzed to determine:

•	 The separate events that trigger functional processes

•	 The functional processes

•	 The objects of interest to the functional users, the data groups 
describing those objects of interest that will be moved, and 
the data movements

Figure 20-2  COSMIC measurement process phases

Functional user requirements (FUR) in the
artifacts of the software to be measured 

Measurement
Strategy

The Measurement Process

Generic Software Model

Mapping
Phase

Purpose of the
measurement. Scope of
each piece of software 

to be measured 

FUR in the form
of the Generic

Software Model 

Measurement
Phase

Goals

Software Context
Model

Functional
size of the
software in

units of CFP



	 C h a p t e r  2 0 :  T  h e  C O S M I C  F u n c t i o n a l  S i z e  M e a s u r e m e n t  M e t h o d 	 175

In the Measurement Phase, the functional processes are measured 
by counting the data movements and summing them appropriately 
to give the size of the pieces of software in units of CFP. The 
measurement must be well documented for future use and 
interpretation.

COSMIC Method Documentation
For the detailed measurement rules, see “The COSMIC Functional 
Size Measurement Method v3.0.1: Measurement Manual, the COS-
MIC Implementation Guide for ISO/IEC 19761:2003.” Three other 
important documents are in the v3.0 series:

•	 “Method Overview - v3.0” (a more detailed overview of the 
method than is given here)

•	 “Documentation Overview and Glossary of Terms - v3.0.1”

•	 “Advanced and Related Topics - v3.0”

Full documentation is available for free download from www 
.cosmicon.com including translations in Arabic, Chinese, Dutch, 
French, Turkish, and Japanese.

A wide range of supporting services and tools is available for the 
COSMIC method, for example:

•	 The International Standard ISO/IEC 19761:2003, obtainable 
from www.iso.org (updated in 2009 to align with v3.0.1 of the 
COSMIC method).

•	 A “Method Overview” document aimed at those who need 
an introduction to the method.

•	 Specialist Guidelines, that supplement the Measurement 
Manual with guidance and many examples for various 
special types of software. Guidelines exist for sizing business 
applications and data warehouses. Other guidelines are in 
preparation, for example, for sizing components in an SOA 
architecture.

•	 Guidance and formulae for converting sizes from first-
generation methods.

•	 Certification examinations.

•	 Suppliers of consulting and training services, worldwide.

•	 Case studies.

•	 Estimating tools.

•	 Benchmark data (in the ISBSG database and reports, from 
www.isbsg.org).

www.cosmicon.com
www.cosmicon.com
www.iso.org
www.isbsg.org


	 176	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

Summary
This chapter has provided an introduction to, and an explanation of, 
the COSMIC functional sizing method.  For additional information 
readers should refer to “The COSMIC Functional Size Measurement 
Method v3.0.1: Measurement Manual, the COSMIC Implementation 
Guide for ISO/IEC 19761:2003” and associated documentation.



Chapter 21
A COSMIC Function 

Point Case Study

In this chapter the same case study used in Chapter 19 (an IFPUG 
function point case study), is used here, this time measured using 
the COSMIC FSM method. The version of the method used is as 

defined either in the ISO/IEC standard 19761:2010 or as in the 
COSMIC Measurement Manual version 3.

Those unfamiliar with the COSMIC Functional Size Measurement 
(FSM) method, should read Chapter 20 for an overview. More details 
of the COSMIC FSM method may be obtained from the ISO standard 
(ISO/IEC 19761:2010) via www.iso.org or full details can be obtained 
by free download of the COSMIC Measurement Manual, v3.0.1, and 
all other documentation from www.cosmicon.com.

For the functional user requirements of the case study to be 
measured, please see Chapter 19.

Analysis of the Size of the New Software to Be Developed
The purpose of the measurement is to determine the functional size 
of the stated functional user requirements 1–8 of the new development 
project.

The scope of the size measurement of the new software to be 
developed includes all the functional user requirements of this case 
study, that is, all the specified requirements of the project, but 
recognizing that the non-functional requirements (7 and 8) do not 
contribute to the functional size.

For requirement 5 (which states: “User security data (user ID, 
password) is referenced from the security application for user logon 
security validation”) it is assumed that a new functional process must 
be provided to enable a user to log on by entering his ID and password 
in order to obtain authorization from the security application to 
proceed.

177

www.iso.org
www.cosmicon.com


	 178	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  2 1 :  A   C O S M I C  F u n c t i o n  P o i n t  C a s e  S t u d y 	 179

Requirements 1 and 6 include the “data manipulation” subpro-
cesses of validation and encryption. These operations are part of the 
logical processing of their associated data movements. They are not 
measured as a separate subprocess.

The last two requirements, 7 and 8, are non-functional and not 
measured as part of the functional sizing.

All the software to be measured lies within one application layer. 
The functional users of the software to be developed are

•	 A human user of the software

•	 The security access control application that maintains the file 
of authorized users

The Maintain Employee Data application has one object of interest, 
namely Employee. The security application has one object of interest, 
namely Authorized User, but since the case study is only concerned 
with measuring the maintain employee application, and the Autho-
rized User data is only accessible by calling on the second functional 
user (the security application) to retrieve the relevant data on behalf of 
the maintain employee application; no direct Read or Write data move-
ments are associated with the Authorized User object of interest.

The Employee object of interest is associated with a single Data 
Group, Employee.

The functional processes for the new development are shown in 
Table 21-1. Where an error message is identified and counted, this is 
an assumption, since the treatment of input errors is not stated in the 
requirements.

Reqt. No.

Name of 
Functional 
Process

Data Movement Type  
(and Data Group)

Total 
CFP

5 User security 
logon

Entry (User ID, password)

Exit (request to security application to 
authorize user)

Entry (receipt of authorization, or not)

Exit (authorize user, or not, and  
inform user)

4

1, 2 Add New 
Employee

Entry (Employee data)

Read (Employee data)—next number

Write (Employee data)

Exit (Employee number)

Exit (confirmation or error message)

5

1, 2 Update 
Employee  
data*

Entry (Employee data)

Write (Employee data)

Exit (confirmation or error message) 3

Table 21-1  Functional Processes—New Development



	 C h a p t e r  2 1 :  A   C O S M I C  F u n c t i o n  P o i n t  C a s e  S t u d y 	 179

Reqt. No.

Name of 
Functional 
Process

Data Movement Type  
(and Data Group)

Total 
CFP

1, 2 Terminate 
Employee*

Entry (Employee number)

Write (Employee data)

Exit (confirmation or error message) 3

1, 2 Merge 
duplicate 
Employee 
records

Entry (Select to Merge)

Read (Employee data)—find duplicates

Write (Employee data)—remove 
duplicate record(s)

Exit (error/confirmation message) 4

3 Scheduled 
weekly report 
(on Employees 
whose data 
has changed in 
the past week)

Entry (end-of-week timing signal)

Read (Employee data)

Exit (Report Period)

Exit (Employee ID, name)

Exit (error/confirmation message to 
application management)

5

4 View Employee Entry (Employee Name/Number)

Read (Employee data)

Exit (Employee data)

Exit (error message) 4

Total size of the new software to be developed in COSMIC function 
points =

28 
CFP

*	Normally these functional processes would be preceded by a “retrieve Employee data” 
functional process, to ensure that the correct employee had been selected for update or 
deletion. We assume that the View Employee functional process is used for this 
purpose.

Table 21-1  Functional Processes—New Development (Continued)

Analysis of the Size of the Enhancement to the Software
The purpose of the measurement is to determine the functional size 
of the stated functional user requirements 1–3 of the enhancement 
project.

The scope of the size measurement of the software enhancement  
includes all the functional user requirements included in the enhance-
ment requirements (that is, 1 and 2) of this case study. Requirement 3 
concerns implementation of navigational features that are considered 
non-functional with respect to the functional users of this software.

•	 All the software to be measured lies in the one application 
layer.



	 180	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

•	 The functional user of the software to be enhanced is a human 
user of the software.

•	 The Maintain Employee Data application has one object of 
interest, namely, Employee.

The functional processes of the enhancement are shown in 
Table 21-2. Where an error message is identified and counted, this 
is an assumption, since the treatment of input errors is not stated in 
the requirements.

Note that the COSMIC FSM method measures the size of the 
required changes to the functional user requirements (not the size of 
the functional processes that are changed).

It is likely that the new validation rules would also be applied to 
the Modify Employee details requirement. This needs to be verified 
with the users and added to the impacted data movements if it also is 
impacted by changes in the validation rules.

Overall Size of the Software After the Enhancement
The size of the Maintain Employee Data application software after 
the enhancement project has finished has not changed from 28 CFP, 
since only existing data movements were changed and no new data 
movements were added or existing ones removed.

Summary
This chapter provides a simple example of how to size both the new 
development of a piece of software and the enhancement of a piece of 
software using the COSMIC FSM method. By reading Chapter 20 and 
this chapter the reader will gain a sound understanding of the 
COSMIC sizing method. As this chapter uses the same example set of 
user requirements as those used for the IFPUG and FiSMA methods, 
the reader can also make comparisons to understand the differences 
in the three sizing approaches.

Table 21-2  Functional Processes—Enhancement

Reqt. 
No.

Name of Functional Process 
That Is to Be Changed

Data Movement Type (and Data 
Group) That Is to Be Changed

Total 
CFP

1 Add new Employee *Entry (Employee data) 1

2 Scheduled weekly report Exit (Report Period and Report 
total number of Employees)

1

The total size of the required enhancement in COSMIC function points = 2 CFP

*	It is assumed that the data validation is changed for the Entry, but although the error 
message may have new values, its data manipulation logic, formatting, and presentation 
are not changed.



Chapter 22
A FiSMA Function 
Point Case Study

In this chapter the same case study is used as in Chapter 19 (an 
IFPUG function point case study), this time measured using the 
FiSMA FSM method. The version of the method used is as defined 

either in the ISO/IEC standard 29881:2010 or as in the “FiSMA 1.1 
Functional Size Measurement Method” document that is publicly 
available on the www.fisma.fi/in-english.

For those unfamiliar with the FiSMA 1.1 Functional Size 
Measurement (FSM) method, we introduce the main characteristics 
here:

•	 FiSMA 1.1 is based purely on functional user requirements.

•	 FiSMA 1.1 is applicable to measure all software in any 
functional domain.

•	 FiSMA 1.1 identifies 28 distinct Base Functional Component 
(BFC) types.

•	 FiSMA 1.1 identifies seven BFC classes.

•	 Each BFC class has a specific counting rule for determining 
the functional size of any functional component within the 
class.

•	 Parameters in FiSMA 1.1 counting rules are “number of data 
elements,” “number of reading references,” “number of 
writing references,” and “number of operations.” One or 
more parameter types may occur in any of the BFC classes.

The seven FiSMA 1.1 BFC classes with their relevant counting 
parameters (1.) and examples of BFC types (2.) are

•	 Interactive navigation and query services for end users

	 1.	 Number of data elements and number of reading 
references

181

www.fisma.fi/in-english


	 182	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  2 2 :  A   F i S M A  F u n c t i o n  P o i n t  C a s e  S t u d y 	 183

	 2.	 Seven BFC types, for example, inquiry screens, menus, 
browsing screens

•	 Interactive input services for end users

	 1.	 Number of data elements and numbers of writing and 
reading references

	 2.	 Three BFC types: 1-functional, 2-functional, and 
3-functional input screens (functionality depending on 
the capability to create, update, and delete)

•	 Non-interactive output services for end users

	 1.	 Number of data elements and number of reading 
references

	 2.	 Four BFC types, for example, reports, static output forms, 
e-mails

•	 Interface services to other applications

	 1.	 Number of data elements and number of reading 
references

	 2.	 Three BFC types, for example, online messages and batch 
records

•	 Interface services from other applications

	 1.	 Number of data elements and numbers of writing and 
reading references

	 2.	 Three BFC types, for example, online messages and batch 
records

•	 Data storage services

	 1.	 Number of data elements

	 2.	 Two BFC types, entities, and other persistent data 
records

•	 Algorithmic and manipulation services

	 1.	 Number of data elements (variables) and number of 
operations

	 2.	 Six BFC types, for example, calculation routines, security 
routines, formatting rules

All FiSMA 1.1 counting rules follow the same type of formula, 
and its size measurement scale is continuous. This means that every 
additional data element, reference, or operation increases the func-
tional size of the functional component. The common formula for the 
FiSMA 1.1 counting rules is

Size = A + Number of data elements / D + Number of references 
(or operation) / C



	 C h a p t e r  2 2 :  A   F i S M A  F u n c t i o n  P o i n t  C a s e  S t u d y 	 183

where A, D, and C are class-specific constants. For example, for the 
navigation and query services, the calculation rule is

Size = 0.2 + N/7 + R/2

For example: size of an inquiry service with 21 data elements (N) on 
the screen, read from 4 entities (R), would be 0.2 + 21/7 + 4/2 = 5.2 
FFP (FiSMA function points).

Size Measurement of the New Software to Be Developed
The purpose of the measurement is to determine the functional size 
of the stated user requirements of the new development project. In 
the next paragraphs we go through the set of requirements from 1  
to 8, collecting all base functional components and counting their 
sizes based on the given information.

In all tables below the column identifiers are

•	 Base Functional Component type (one of 28 BFC types)

•	 N = number of data elements

•	 W = number of writing references

•	 R = number of reading references

•	 O = number of operations

•	 FFP = size in FiSMA Function Points

	 1.	 The software application must store and maintain employee 
information consisting of the following data fields: name, employee 
number, rank, street address, city, state, ZIP code, date of birth, 
phone number, office assigned, and the date the employee data was 
last maintained.

•	 This requirement indicates that there will be a persistent 
data storage service with only one ENTITY with 11 data 
elements.

Base Functional Component type: N W R O FFP

ENTITY 11 — — — 3.7

	 2.	 The software application must provide a means to add new 
employees, update employee information, terminate employees, and 
merge duplicate employee records (in cases where all fields other 
than employee number are identical).

•	 This requirement indicates that there will be an INPUT 
screen for creating, updating, and deleting employees. 
There will be fields for ten employee data attributes and 
some other data elements on the screen (for example, 
screen title, different buttons, probable error message, and 



	 184	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  2 2 :  A   F i S M A  F u n c t i o n  P o i n t  C a s e  S t u d y 	 185

so on). We think that the total number of data elements 
will be 18. The result will be written into the employee 
record, and the software will read system parameters 
when displaying this screen.

•	 The requirement also reveals that the user has specified an 
algorithmic RULE for comparing employee records and 
merging the duplicates. Not knowing the exact rule yet, 
we expect that ten different variables and three different 
operations will be needed.

Base Functional Component type: N W R O FFP

3-FUNCTIONAL INPUT SCREEN 18 1 1 — 14.9

DATABASE CLEANING RULE 10 — — 3 3.1

	 3.	 The software application must provide a scheduled weekly report. 
Its header includes the Report Period and provides a retrieved list of 
all employees (Name and Employee Number) where information 
has changed within the previous 7 calendar days (report period).

•	 This requirement indicates that there will be a REPORT 
with approximately five data elements. To provide this 
report, the application must read employee data and 
system parameters.

Base Functional Component type: N W R O FFP

REPORT 5 — 2 — 3.0

	 4.	 The application must provide a means for the end user to view an 
employee’s data.

•	 This requirement indicates that there will be a BROWSING 
SCREEN for finding and selecting the employee whose 
detailed information will then be displayed on an 
INQUIRY SCREEN. We expect that there will be eight 
data elements on the browsing screen and ten on the 
inquiry screen. Provision of both screens requires reading 
the employee data and system parameters. 

Base Functional Component type: N W R O FFP

BROWSING SCREEN 8 — 2 — 2.3

INQUIRY SCREEN 10 — 2 — 2.6

	 5.	 User security data (user ID, password) is referenced from the 
security application for user logon security validation.

•	 This requirement indicates that there will be a LOG-ON 
screen with approximately five data elements that reads 
the system parameters.



	 C h a p t e r  2 2 :  A   F i S M A  F u n c t i o n  P o i n t  C a s e  S t u d y 	 185

•	 Because the security data is maintained and administered 
by another application, our application must send an 
ONLINE MESSAGE TO the security application and then 
receive the answer by an ONLINE MESSAGE FROM the 
same security application. With both these messages our 
application needs to refer system parameters, but no other 
entities. 

Base Functional Component type: N W R O FFP

LOG-ON 5 — 1 — 1.4

ONLINE MESSAGE TO 4 — 1 — 1.6

ONLINE MESSAGE FROM 4 1 0 — 1.7

	 6.	 Complex algorithms are used to encrypt the employee date of birth 
so that it cannot be directly read from the information stored for an 
employee.

•	 This requirement indicates that there will be a SECURITY 
ROUTINE for encryption. Without knowing the exact 
rules, we assume five variables and five different 
operations needed.

Base Functional Component type: N W R O FFP

SECURITY ROUTINE 5 — — 5 2.8

	 7.	 The software application must provide subsecond response time for 
data maintenance processes during the peak business hours between 
8 a.m. and 5 p.m. Eastern USA Standard Time (GMT – 5).

•	 A non-functional user requirement that does not contribute 
to the functional size.

	 8.	 The software application must use programming language(s) that 
are compatible with open systems design and Oracle databases.

•	 A technical requirement that does not contribute to the 
functional size.

The total functional size of this new development expressed in 
FiSMA function points is the sum of the individual components:

3.7 + 14.9 + 3.1 + 3.0 + 2.3 + 2.6 + 1.4 + 1.6 + 1.7 + 2.8 = 37.1 FFP

Size Measurement of the Enhancement to the Software
The purpose of the measurement is to determine the functional size of 
the stated requirements of the enhancement project. In the next 
paragraphs we go through the set of requirements from 1 to 3, collecting 



	 186	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 C h a p t e r  2 2 :  A   F i S M A  F u n c t i o n  P o i n t  C a s e  S t u d y 	 187

all base functional components and counting their sizes based on the 
given information. In the FiSMA 1.1 method the enhancement size is 
measured using a “touch” convention. The number of data elements is 
the number of added, deleted, modified, or moved data elements. The 
numbers of references and operations are the numbers of those impacted 
by the change, that is, all the counting parameters that are touched are 
counted. 

	 1.	 The add new employee function will now include additional logic 
steps to validate fields that were not validated in the first release of 
the software.

•	 The user will specify a new algorithmic RULE with prob-
ably five variables and five operations. This requirement 
does not change the input screen.

Base Functional Component type: N W R O FFP

OTHER ALGORITHMIC RULE 5 — — 5 2.8

	 2.	 The scheduled weekly report will now include a calculated value 
that sums the total number of employees listed.

•	 This requirement indicates adding one new data element 
on the REPORT. It has no impact to the reading references 
on that report.

•	 Calculating the sum of employees listed is a new 
CALCULATING ROUTINE with about three variables 
and two operations.

Base Functional Component type: N W R O FFP

REPORT 1 — 0 — 1.2

CALCULATING ROUTINE 3 — — 2 1.3

	 3.	 The software application will now include a navigational menu for 
users to select the data maintenance function they wish to perform 
on the employee data.

•	 This requirement indicates that there will be a main MENU 
with three possible alternatives (Update employee, Merge 
duplicates, or Browse employees). The only entity 
referenced will be the system parameters.

Base Functional Component type: N W R O FFP

MENU 3 — 1 — 1.1

The total functional size of this enhancement expressed in FiSMA 
function points is the sum of the individual components:

2.8 + 1.2 + 1.3 + 1.1 = 6.4 FFP



	 C h a p t e r  2 2 :  A   F i S M A  F u n c t i o n  P o i n t  C a s e  S t u d y 	 187

Overall Size of the Software After the Enhancement
The size of the Maintain Employee Data application software after the 
enhancement project is finished has changed from 37.1 FFP to 42.4 FFP. 
All three new functions (two algorithms and one menu) increase the 
size directly, but the changed functions must be re-measured based on 
the current values of counting parameters. In this example case the size 
of the report increases from 3.1 to 3.2 FFP.

Summary
This chapter has provided a practical example of the application of 
the FiSMA FSM method using the same case study that we have used 
to demonstrate the use of other FSM methods. Further information is 
available on the www.fisma.fi/in-english web site.

www.fisma.fi/in-english


This page intentionally left blank 



Appendix A
What Is in the ISBSG 

Repository?

Data Availability
ISBSG data can be licensed in two ways, via a data suite release or via 
a corporate subscription:

•	 Data Suite Release  You can license an extract of all the 
projects held in the repository. This extract is called the 
“Estimating, Benchmarking & Research Suite” and is issued 
with a release number. New releases are made available when 
the number of projects in the repository has increased 
significantly. These releases can be licensed either through 
your local ISBSG member or via the ISBSG web site (www 
.isbsg.org). You can use the Estimating, Benchmarking & 
Research Suite to help you with your own software estimation, 
project planning and management, benchmarking your 
projects against similar ones in the repository, or conducting 
your own research.

	 The suite contains a data subset of more than 100 fields for all 
the projects in the repository. Each release contains a detailed 
description of the data that is included in the suite.

•	 Corporate Subscription  A corporate subscription is an 
extract of all the projects held in the repository at the time of 
the subscription. The subscription is annual, providing 
annual updates to the data and e-mail support and advice. 
The data set provided via the corporate subscription is a 
much larger field subset than that provided in the data suite 
releases and can be tailored to suit the licensee.

189

www.isbsg.org
www.isbsg.org


	 190	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 191

Data Quality
Each project submitted to the ISBSG Repository is validated against 
specified quality criteria and accorded a rating of “A,” “B,” “C,”  
or “D”:

•	 Rating A  The data provided was assessed as being sound 
with nothing being identified that might affect its integrity.

•	 Rating B  While assessed as being sound, there are some 
factors that could affect the credibility of the data provided.

•	 Rating C  Due to significant data not being provided, it was 
not possible to assess the integrity of the data provided.

•	 Rating D  Due to one factor or a combination of factors, little 
credibility should be given to the data provided.

Other than rating submitted projects, as just described, the ISBSG 
does not normally verify data that is submitted for inclusion in the 
repository in any other way. This means that there may be some data 
in the repository that appears to be questionable. It is important to 
make your own decision about the usefulness, or otherwise, of the 
data that you choose to use from the repository.

The repository data is provided in an MS Excel spreadsheet to 
allow you to select cases that you consider relevant to your situation 
and to do your own analysis.

What the ISBSG Data Can Be Used For
The ISBSG data can be used for more than software estimation: it can 
help you with project planning and management; you can benchmark 
your projects against similar ones in the repository; you can do your 
own research on topics of particular interest to you; or it can be used 
for academic research with the objective of improving IT practices 
and performance.

You can download a presentation on the ways that the ISBSG data 
can be used at www.isbsg.org/isbsg.nsf/weben/Repository%20info.

Considerations
If you intend using the ISBSG data for benchmarking or to help you 
with software estimation, then you need to be aware of the likely 
maturity level of the companies that submitted the project data that 
you are benchmarking against.

If you are a researcher who is going to use the ISBSG data for 
work that will report on the performance of the IT industry, you need 
to consider whether the ISBSG data (and particularly a selected subset 
of it) is representative of the industry.

www.isbsg.org/isbsg.nsf/weben/Repository%20info


	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 191

ISBSG Project Data Positioning
The ISBSG project data is not necessarily representative of the software 
industry. The ISBSG believes that the projects in the repository are 
representative of the more productive projects in the industry, rather 
than of industry norms. There are a number of reasons for this.

Some organizations simply cannot contribute to the repository. 
The criteria for including a project in the repository generally exclude 
organizations that do not use functional size measurement (FSM).1 
They also exclude projects for which work effort (in person-hours) is 
not available.

Only organizations that collect the necessary metrics can 
contribute to the repository. Organizations with software metrics 
programs are likely to be among the more mature software 
development organizations.

Organizations also choose which of their projects they submit. 
They might choose typical projects, but they might choose only their 
best projects.

It is also worth noting that the majority of the projects in the 
repository are less than 2,000 function points in size. Very few are 
really big projects.

These considerations do not lessen the value of the data in the 
repository. The focus of the repository is as much on understanding 
best practice in the IT industry as on overall averages.

However, the key metrics have been studied and tested. The results 
of this work demonstrate that the sample represented by the repository 
is self-contained, internally consistent, and contains no apparent 
anomalies. The repository is therefore a very valuable collection of data 
for a number of avenues of analysis, benchmarking, and estimation.

Comparing Apples with Apples
When performing statistical analyses, it is very important to make 
sure that like is compared with like, that “apples are not compared 
with oranges.” For this reason, it should be rare to find the entire 
repository analyzed as a single sample. Subsets of projects should be 
analyzed, so that it makes sense to compare projects within a subset.

Selecting a Suitable Data Subset
It is important to give careful thought to the project data that you will 
include in any data set that you plan to use. You need to think about 
the meaning of the data, not just to treat it as numbers to be used 
without selectivity. What project types can be legitimately compared 
or analyzed together?

1	Although the repository does accept projects that have been sized using methods 
other than functional units (for example, LOC and use case points), the ISBSG does 
not perform validation on these size measures; it simply records them for general 
information.  



	 192	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 193

Here are some examples:

•	 Functional sizing methods  You shouldn’t mix pre-IFPUG 
V4 projects with V4 and post-V4 (the sizing changed with 
that release). New development projects sized using the 
NESMA standard can be included with IFPUG V4+ projects. 
Use the Count Approach field in the data (and perhaps also the 
FP Standards and Reference Table Approach fields), to select 
projects that use the same sizing method that you use.

•	 Normalized Effort2  For effort, give consideration to what 
risk and gain is involved in using normalized effort. The 
Summary Work Effort shown in the data is the total effort for 
the project. What is counted within that total varies, because 
different projects record effort at different levels of detail (see 
the Resource Level and Recording Method fields).

A resource level of “1” means that only the effort of the 
development team is recorded; “2” means that support team effort is 
also recorded; “3” adds computer operations; and “4” adds effort 
expended by the end user or client.

Two things you might do to make sure you compare effort 
appropriately:

•	 Select only those projects that record the same effort detail as 
you do.

•	 You don’t have to ignore every other project—you can use 
rules of thumb to translate approximately between different 
levels of effort.

Previous analysis of projects in the ISBSG Repository shows that 
Level 2 effort is about 10–12 percent more than Level 1, Level 3 adds 
about another 1 or 2 percent, and Level 4 is about 20–25 percent more 
than Level 1.

Note  If you use approximations like this, you add uncertainty to your 
data and add risk to any conclusions that you draw. However, you may 
still be able to learn a lot from these projects; just be wary of placing too 
much reliance on your conclusions.

•	 Project Rating  The ISBSG considers that projects with a 
data quality rating of A or B are suitable for statistical analysis. 
Projects rated C or D may still provide valuable data, but 
uncertainty about some of their size or effort values means 
that it is best not to include them in statistical analyses.

2	 Refer to “Normalized work effort” in the Glossary.



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 193

•	 Lines of Code  Although the ISBSG Repository does include 
projects that are sized using LOC, these are not validated and 
should not be used for benchmarking.

Unless your aim is to benchmark your project or organization 
against the entire repository, you are probably not interested in 
projects that are very different from your own.

You will want to select projects that are similar to yours in 
important project attributes.

The ISBSG suggests that the most important criteria for selecting 
projects are:

•	 Size  If yours is a really large project, there is not much value 
to you in studying small ones and vice versa.

•	 Development type  New development, enhancement, or 
redevelopment.

•	 Primary programming language or language type  For 
example, 3GL, 4GL.

•	 Development platform  Mainframe, midrange, or PC.

Other criteria that may be important are organization type, 
business area type, application type, user base, and development 
techniques.

Bear in mind that as you add more selection criteria, the number 
of projects selected inevitably gets smaller. You can end up with small 
groups of projects, or perhaps even no projects that satisfy all criteria. 
How important the group size is will depend on what you want to do 
with the data.

It is important that the data subset you use have integrity. The 
key points are that you choose only appropriately rated data; 
measurements are defined the same way (that is, IFPUG versions and 
effort measures with different time units); and measurements apply 
to the same thing (that is, effort normalization and effort levels).

Many practitioners will want to compare their IT development 
performance with “relevant” projects in the data set. For many, the 
analysis process will consist of selecting projects based upon multiple 
criteria, followed by some form of summary analysis. Some may wish 
to use regression analysis to derive the equation of the line of best fit 
through the data points and to use this equation as an estimating 
device.

When performing such analyses, it is worthwhile bearing in mind 
that use of many selection criteria could result in a very small or even 
zero sample size. A sample size of more than 20 should provide 
reasonable results; however, not much can be concluded from a 
sample size of 5 or fewer.

It is not uncommon for people to use a mean or median value, or 
to use a regression line for estimation purposes. Bear in mind that 



	 194	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 195

estimation parameters derived from a sample of the population may 
not have much relevance to a particular project. It may well be that 
population surveys show that x percent of males will suffer a heart 
attack by the time they are 60 years of age. This percentage does not 
indicate the probability that you will suffer a heart attack before you 
are 60. Consequently, a regression line, even if derived from a sample 
of projects with similar characteristics to your own, may not be a 
good estimation tool unless you have reason to believe that your 
attributes are broadly similar.

Means, medians, and regression lines should be used with great 
caution, especially where sample sizes are small and variances or 
standard deviations are high.

What You Can Find in the ISBSG Repository
At the time of writing, the ISBSG Repository contained data on more 
than 5,500 projects. In this section we provide details of the various 
project data types that are included in the ISBSG. The demographics 
published here reflect the contents of the repository contained in 
Release 11. You will note that the project totals shown at the bottom 
of the tables rarely equal the 5,052 projects in that release. This is 
because submitters do not necessarily provide project data for all the 
data fields that ISBSG offers. The “Data Field Descriptions” document 
available from www.isbsg.org explains the contents of the various 
data fields in the data releases that can be licensed.

By studying the demographics that follow, you will be able to 
establish the areas that are of specific interest to you. We recommend 
that you read the “Guidelines for use of the ISBSG data” document 
before you do any analysis, estimation, or benchmarking using the 
data.

The projects in the repository have come from 24 countries, with 
70% of the projects being less than 9 years old. This is what makes the 
ISBSG Repository unique. A broad range of project types from many 
industries and many business areas is available for you to use for 
estimating, awareness of trends, comparison of platforms, and 
languages or benchmarking.

Demographic Summary
The projects in the repository cover a broad cross-section of the 
software industry. In general, they have a business focus.

Project Origin
•	 The projects have been submitted from 24 countries. Major 

contributors are the United States (31% of all projects), Japan 
(17%), Australia (16%), Finland (10%), the Netherlands (8%), 
India (6%), Canada (5%), Denmark (3%), Brazil (2%), the 
United Kingdom (2%), and China (1%).

www.isbsg.org


	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 195

•	 The projects were “built” in 29 different countries. Major 
contributors are Finland (18% of all projects where the country 
of effort is known), the Netherlands (14%), Australia (13%), 
India (11%), Japan (10%), the United States (10%), Canada 
(5%), Denmark (5%), the United Kingdom (4%), Brazil (3%), 
China (2%), and France (2%).

Project Context
•	 Organization type: Major types are communications (22% of 

all projects where the organization type is known), insurance 
(17%), banking (13%), government (12%), business services 
(10%), and manufacturing (8%).

•	 Business area: Major areas are telecommunications (25% of all 
projects where the business area is known), banking (12%), 
insurance (12%), finance (8%), manufacturing (8%), engineering 
(5%), accounting (4%), and sales and marketing (4%).

Type of Project
•	 Development type: 59% are enhancement projects, 39% are 

new developments, and 2% are redevelopments.

•	 Intended market: 85% of projects are developed for internal 
use (that is, for the organization that contributed the project 
to the repository), and 15% are developed for other 
organizations. 48% are developed in-house and 52% are 
outsourced. In total, 41% are developed in-house for internal 
use.

•	 Team size: 36% of projects have up to four people in the 
development team, 38% have five to nine people, and 28% 
have ten or more people.

Type of Product
•	 Product size: While IFPUG projects dominate the repository, 

COSMIC, NESMA, and FiSMA are all well represented. 
Among the IFPUG projects, 30% of projects have fewer than 
100 FP, 22% have 100–200 FP, and 13% have 200–300 FP. The 
median size is slightly under 200 FP.

•	 Application type: 16% are information systems; 48% are 
transaction-processing systems.

•	 Architecture: 51% of projects for which this information is 
available have a client-server architecture, and 20% have a 
multitier architecture (there is some overlap between these 
groups of projects). 40% are stand-alone systems.

•	 Web development: 17% of the projects in the repository are 
web developments.



	 196	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 197

Development Environment
•	 Platform: 39% are mainframe projects, 10% midrange, and 

18% PCs. 33% of projects involve multiple platforms.

•	 Language: Over 100 programming languages are represented. 
3GLs represent 64% of projects, 4GLs 33%, and application 
generators 3%. Major languages are COBOL, C/C++/C#, Java/
J2EE/JavaScript, Visual Basic, PL/I, PL/SQL, Oracle, .Net, 
SQL, NATURAL, Access, Powerbuilder, ASP, and Lotus Notes.

Development Method
46% of projects that say anything about techniques report using a 
waterfall model or “traditional” methods, but give no further details 
of techniques used. 

Of the projects that report the use of particular techniques:

•	 Classical system modeling techniques are used in 46% of 
them. The most common single technique is data modeling, 
used in 36% of projects.

•	 RAD/JAD techniques are used in 18% of the projects.

•	 Object-oriented techniques are used in 18% of the projects.

•	 Prototyping is used in 18% of the projects.

•	 Standards are used in 24% of the projects, with CMMI the 
most common.

•	 Testing-oriented techniques, reviews, and inspections are 
used in 49% of the projects.

Project Origin
Projects have been contributed from 24 different countries.

Country of Origin

United States

Japan

Australia

Finland

India

Canada

Denmark

Brazil

United Kingdom

China

Other

Netherlands

0 200 400 600 800 1000 1200 1400 1600

Number of Projects



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 197

Country of Origin Projects Percent

United States 1548 30.7%

Japan   841 16.7%

Australia   801 15.9%

Finland   515 10.2%

Netherlands   389    7.7%

India   280    5.5%

Canada   252    5.0%

Denmark   131    2.6%

Brazil     87    1.7%

United Kingdom     82    1.6%

China     65    1.3%

Other     58    1.1%

Total 5049

Country of Effort
Twenty-eight countries are represented in the repository.

Finland

Netherlands

Australia

India

United States

Canada

Denmark

United Kingdom

Brazil

China

France

Other

Japan

0 100 200 300 400 500 600

Number of Projects

Country of Effort Projects Percent

Finland   508 18.5%

Netherlands   381 13.9%

Australia   356 13.0%

India   291 10.6%

Japan   275 10.0%

United States   264    9.6%



	 198	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 199

Country of Effort Projects Percent

Canada   151    5.5%

Denmark   131    4.8%

United Kingdom   110    4.0%

Brazil   87    3.2%

China   65    2.4%

France   62    2.3%

Other   66    2.4%

Total 2226

Project Context

Organization Type
The organization type defines the industry, or type of organization, 
for which each project has been developed.

Communication

Insurance

Banking

Government, Public Administration

Manufacturing

Computers, Software, IT

Electricity, Gas, Water

Wholesale & Retail Trade

Transport, Storage, Logistics

Community Services, Local

Other

Financial, Property, & Business Services

0 200 400 600 800 1000

Number of Projects

Organization Type Projects Percent

Communication   828 21.9%

Insurance   644 17.0%

Banking   482 12.8%

Government, Public Administration   462 12.2%

Financial, Property, & Business Services   380 10.0%

Manufacturing   293   7.8%

Computers, Software, IT     72   1.9%

Electricity, Gas, Water     62   1.6%



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 199

Organization Type Projects Percent

Wholesale & Retail Trade     59   1.6%

Transport, Storage, Logistics     53   1.4%

Community Services, Local     50   1.3%

Other   396 10.5%

Total 3781

Business Area
This is the business area within the organization/industry that the 
project/application will be supporting.

Telecommunications
Insurance

Banking
Manufacturing

Engineering
Accounting

Sales, Marketing
Inventory

Transport, Logistics
Legal

Government, Public Administration, Regulation
Personnel

Other

Financial (excluding Banking)

0 50 100 150 200 250 300 350

Number of Projects

Business Area Projects Percent

Telecommunications   303 24.6%

Insurance   153 12.4%

Banking   152 12.3%

Manufacturing   104   8.4%

Financial (excluding Banking)   103   8.4%

Engineering   60   4.9%

Accounting   54   4.4%

Sales, Marketing   44   3.6%

Inventory   27   2.2%

Transport, Logistics   26   2.1%

Legal   25   2.0%

Government, Public Administration, Regulation   25   2.0%

Personnel   23   1.9%

Other   134 10.9%

Total 1233



	 200	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 201

Type of Project

Development Type
A detailed explanation of the development types is given in the ISBSG 
Glossary of Terms.

Redevelopment

New Development

Enhancement

0 500 1000 1500 2000 2500 3000
Number of Projects

Development Type Projects Percent

Enhancement 2969 58.9%

New Development 1971 39.1%

Redevelopment   89   1.9%

Other     8   0.2%

Total 5037

Intended Market
This defines the relationship between the customer, the project/
application developer, and the application user. If the customer and 
the developer are in the same organization, it is assumed to be an in-
house development; if the customer and user are in the same 
organization, it is assumed that the development is for internal use.

As can be seen from the figures that follow, most of the projects in 
the repository (for which this information is available) have been 
developed for an internal business unit. Outsourced developments 
slightly outnumber in-house developments.



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 201

Developed in-
house, for internal

business unit

Developed in-
house, for external

business unit

Outsourced for
internal business unit

Outsourced for
external business unit

Multi-supplier
project

0 200 400 600 800 1000

Number of Projects

Intended Market Projects Percent

Developed in-house for internal business unit   776 40.6%

Outsourced for internal business unit   838 43.9%

Developed in-house for external business unit   135   7.1%

Outsourced for external business unit   150   7.8%

Multi-supplier project   12   0.6%

Total 1911

Team Size
This is the maximum number of people in the development team at 
any given time in the project. Teams of two through five people are 
about equally common. Five is most common (by a small margin).



	 202	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 203

0

20+

15..19

10..14

5..9

3..4

1..2

100 200 300 400 500 600

Number of Projects

Team Size Projects Percent

1 or 2   216 14.0%

3 or 4   316 20.5%

5 to 9   583 37.8%

10 to 14   197 12.8%

15 to 19     86    5.6%

20 or more   143    9.3%

Total 1541

Type of Product

Product Size
Size is measured in function points. The four main function point–
counting approaches represented in the repository are IFPUG, 
COSMIC, FiSMA, and NESMA. Other approaches represented in the 
repository include Mark II and Feature Points, but there are few such 
projects, and very few have been contributed to the repository in 
recent years.

IFPUG projects dominate the repository. The numbers of COSMIC, 
FiSMA, and NESMA projects are steadily increasing.

The following tables and histograms show the range of project 
sizes for each of these four function point–counting approaches. 
(Projects sized with other approaches, or that have low data quality 
ratings, are not included.)



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 203

IFPUG
Projects sized with outdated versions of IFPUG function points 
(IFPUG 2, IFPUG 3) are excluded from the figures that follow. The 
table shows the sizes (in UFPs) of projects sized with IFPUG function 
points that are known or presumed to have been sized using CPM 4.0 
or later.

40%

35%

30%

25%

20%

15%

10%

5%

0%

0..
99

10
0..

19
9

20
0..

29
9

30
0..

39
9

40
0..

49
9

50
0..

59
9

60
0..

69
9

70
0..

79
9

80
0..

89
9

90
0..

99
9

10
00

..1
49

9
15

00
+

Pe
rc

en
t o

f P
ro

je
ct

s 
(U

FP
s)

Size in IFPUG 4 
Function Points

Projects 
(UFPs)

Percent 
(UFPs)

Projects 
(AFPs)

Percent 
(AFPs)

0 to 99   818 30.6% 1108 32.8%

100 to 199   576 21.6%   740 21.9%

200 to 299   360 13.5%   442 13.1%

300 to 399   220   8.2%   282   8.3%

400 to 499   155   5.8%   173   5.1%

500 to 599   89   3.3%   103   3.0%

600 to 699   70   2.6%     76   2.2%

700 to 799   65   2.4%     82   2.4%

800 to 899   35   1.3%     52   1.5%

900 to 999   37   1.4%     36   1.1%

1000 to 1499   106   4.0%   123   3.6%

1500 or more   138   5.2%   162   4.8%

Total 2669 3379



	 204	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 205

Smaller projects are more common. Size ranges from 3 to 16,148 
UFPs (3 to 20,000 AFPs). The median size is 186 UFPs (171 AFPs).

For enhancement projects, the range is 3 to 7,134 UFPs with a 
median of 125 UFPs (3 to 20,000 AFPs with a median of 119 AFPs). For 
new developments, the range is 6 to 16,148 UFPs with a median of 
312 UFPs (6 to 16,148 AFPs with a median of 311 APFs).

COSMIC
50%

40%

45%

35%

30%

25%

20%

15%

10%

5%

0%

0..
99

10
0..

19
9

20
0..

29
9

30
0..

39
9

40
0..

49
9

50
0..

59
9

60
0..

69
9

70
0..

79
9

80
0..

89
9

90
0..

99
9

10
00

..1
49

9
15

00
+

Pe
rc

en
t o

f P
ro

je
ct

s

Size in COSMIC Functional Size Units Projects Percent

0 to 99 147 43.9%

100 to 199   68 20.3%

200 to 299   41 12.2%

300 to 399   19    5.7%

400 to 499   15    4.5%

500 to 599   10    3.0%

600 to 699     7    2.1%

700 to 799     9    2.7%

800 to 899     3    0.9%

900 to 999     3    0.9%

1000 to 1499     6    1.8%

1500 or more     7    2.1%

Total 335



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 205

Again, smaller projects are much more common. Size ranges from 
5 to 2,090 cfsu. The median size is 122 cfsu. For enhancement projects 
the range is 3 to 2,003 cfsu (median 95). For new developments the 
range is 8 to 1,670 cfsu (median 181). (The 2,090 cfsu project is one of 
a small number of redevelopments.)

NESMA
30%

25%

20%

15%

10%

5%

0%

0..
99

10
0..

19
9

20
0..

29
9

30
0..

39
9

40
0..

49
9

50
0..

59
9

60
0..

69
9

70
0..

79
9

80
0..

89
9

90
0..

99
9

10
00

..1
49

9
15

00
+

Pe
rc

en
t o

f P
ro

je
ct

s 
(U

FP
s)

Size in NESMA 
Function Points

Projects 
(UFPs)

Percent 
(UFPs)

Projects 
(AFPs)

Percent 
(AFPs)

0 to 99   32 24.6%   32 24.6%

100 to 199   33 25.4%   33 25.4%

200 to 299   12 9.2%   12   9.2%

300 to 399   23 17.7%   23 17.7%

400 to 499     7   5.4%   7   5.4%

500 to 599     7   5.4%   7   5.4%

600 to 699     2   1.5%   1   0.8%

700 to 799     2   1.5%   3   2.3%

800 to 899     3   2.3%   3   2.3%

900 to 999     0   0.0%   0   0.0%

1000 to 1499     5   3.8%   5   3.8%

1500 or more     4   3.1%   4   3.1%

Total 130 130



	 206	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 207

Smaller projects are more common, as usual, but there appears to 
be a broader spread than with the IFPUG or COSMIC approaches. 
Size ranges from 14 to 1,924 UFPs (14 to 1,828 AFPs). The median size 
is 206 UFPs (205 AFPs).

For enhancement projects, the range is 28 to 1,468 UFPs with a 
median of 198 UFPs (28 to 1,468 AFPs with a median of 196 AFPs). 
For new developments, the range is 14 to 1,924 UFPs with a median 
of 230 UFPs (14 to 1,828 AFPs with a median of 230 APFs).

FiSMA

20%

25%

15%

10%

5%

0%

0..
99

10
0..

19
9

20
0..

29
9

30
0..

39
9

40
0..

49
9

50
0..

59
9

60
0..

69
9

70
0..

79
9

80
0..

89
9

90
0..

99
9

10
00

..1
49

9
15

00
+

Pe
rc

en
t o

f P
ro

je
ct

s 
(A

FP
s)

Size in FiSMA Function Points Projects Percent

0 to 99 108 22.6%

100 to 199 103 21.5%

200 to 299   75 15.7%

300 to 399   55 11.5%

400 to 499   40    8.4%

500 to 599   19    4.0%

600 to 699   16    3.3%

700 to 799     9    1.9%

800 to 899     5    1.0%

900 to 999     8    1.7%

1000 to 1499   19    4.0%

1500 or more   21    4.4%

Total 478



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 207

The FiSMA projects all report size in adjusted function points 
only. As with the NESMA projects, smaller projects are more common, 
but there appears at the moment to be a broader spread than with the 
IFPUG or COSMIC approaches. Size ranges from 6 to 9,390 AFPs. The 
median size is 235 AFPs. For enhancement projects, the range is 6 to 
1,843 AFPs with a median of 142 AFPs. For new developments, the 
range is 18 to 9,390 AFPs with a median of 320 AFPs.

Application Type
This defines the project/application type within the business area 
and organization/industry type. For example, a project/application 
could be a Decision Support system for Manufacturing within the 
Automotive industry. More detailed descriptions are provided in the 
ISBSG Glossary of Terms.

Other

Electronic Data Interchange

Document Management

Ordering

Sales & Marketing

Web, E-business

Telecommunications

Billing

OIS, EIS, DSS

Financial

Process Control, Sensor Control, Real Time

Management Information System

Transaction/Production System

Financial Transaction Process/Accounting

0 200 400 600 800 1000 1200

Number of Projects

Application Type Projects Percent

Financial Transaction Process/Accounting 1095 32.0%

Transaction/Production System   499 14.6%

Management Information System   432 12.6%

Process Control, Sensor Control, Real Time   176    5.1%

Financial   142    4.1%

Office information system, executive 
information system, decision support system

  128    3.7%

Billing     90    2.6%



	 208	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 209

Application Type Projects Percent

Telecommunications     81    2.4%

Web, E-business     75    2.2%

Sales & Marketing     65    1.9%

Ordering     64    1.9%

Document Management     54    1.6%

Electronic Data Interchange     50    1.5%

Other   475 13.9%

Total 3426

Over 100 different application types are recorded in the repository. 
Major groupings of projects are tabulated here.

Architecture
Two broad types of system architecture are represented in the 
repository: client-server (of various flavors), and multitier (of various 
flavors). Stand-alone systems are also recorded as a contrast to client-
server systems.

0

Stand-alone

Client server

Multitier

Multitier
client server

Multitier with
web interface

200 400 600 800 1000
Number of Projects

Architecture Projects Percent

Stand-alone   971 39.8%

Client server   972 39.9%

Multitier   108   4.4%

Multitier client server   276 11.3%

Multitier with web interface   111   4.6%

Total 2438



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 209

Taken together, 20% of projects in the repository (for which this 
information is known) have a multitier architecture, and 51% of 
projects have a client-server architecture.

Development Environment

Development Platform

0

Mainframe

Midrange

PC

Multiplatform

200 400 600 12001000800 1400 1600 1800
Number of Projects

Development Platform Projects Percent

Mainframe 1604 39.1%

Midrange   418 10.2%

Personal computer   750 18.3%

Multiplatform 1336 32.5%

Total 4108

Multiplatform developments are increasingly common and may 
soon overtake mainframe developments in the repository.

Type of Programming Language
A large number of languages are recorded in the repository. This can 
make it difficult to compare some projects. Consequently, languages 
are classified by type, as shown next. 



	 210	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 211

0

2nd-generation
language

3rd-generation
language

4th-generation
language

Application
generator

500 1000 250020001500 3000 3500
Number of Projects

Type of Programming Language Projects Percent

2nd-generation language (2GL)     19    0.4%

3rd-generation language (3GL) 2893 63.5%

4th-generation language (4GL) 1507 33.1%

Application generator   136    3.0%

Total 4556

Over 100 programming languages are represented in the 
repository. 3rd-generation languages dominate, but 4th-generation 
languages are also very well represented.

Some languages (for example, Visual Basic, Visual C++) were 
nominated sometimes as 3GLs and sometimes as 4GLs. The preceding 
table tallies the language types as originally nominated. In the 
following tables, each language is consolidated under a single type.

Primary Programming Languages: 3GLs
This is the programming language that has been nominated by the 
project submitter as the primary programming language.



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 211

0

COBOL

Java

Visual Basic

PL/I

C++

C

SQL

C#

Scripting

PL/SQL

Other 3GL

100 200 500400300 600 700 800 900
Number of Projects

3rd Generation Languages Projects Percent

COBOL 837 28.2%

Java 652 19.8%

Visual Basic 377 11.5%

PL/I 321    9.8%

C++ 285    8.7%

C 237    7.2%

SQL 134    4.1%

C#   76    2.3%

Scripting   35    1.1%

PL/SQL   30    0.9%

Other 301    9.2%

Other 3GLs in the repository include JavaScript, Smalltalk, HTML, 
Ada, Pascal, Periphonics, and FORTRAN.



	 212	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 213

Primary Programming Languages: 4GLs

0

Other 4GL

Delphi

Easytrieve

Lotus Notes

ABAP

Powerbuilder

ASP

Access

Natural

.Net

Oracle

100 200 500400300
Number of Projects

4th Generation Languages Projects Percent

ORACLE 172 16.0%

.Net 136 12.7%

NATURAL   86    8.0%

ACCESS   56    5.2%

ASP   51    4.7%

Powerbuilder   47    4.4%

ABAP   34    3.2%

Lotus Notes   29    2.7%

Easytrieve   15    1.4%

Delphi   15    1.4%

Other 4GL 434 40.4%

The “Other 4GL” count is high because many projects do not 
specify the language, other than that it was a 4GL, and numerous 
languages are represented by only a small number of projects. Other 
4GLs represented in the repository include CLIPPER, ColdFusion, 
Ingres, FOCUS, IDEAL, and RALLY.



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 213

Application Generators

100

COOL:Gen

Telon

HPS

Other

20 30 605040 70 80
Number of Projects

Application Generators Projects Percent

COOL:Gen 69 50.4%

TELON 34 24.8%

HPS 14 10.2%

Other 20 14.6%

Few projects that used application generators have been 
contributed to the repository in recent years.

Methods and Tools
Three fields are used to describe the various techniques that may 
have been used during the execution of a project: Specification 
Techniques, Design Techniques, and Development Techniques.



	 214	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 215

The following graph and table combine information from all three 
fields.

Waterfall

“Traditional”

Data modeling

Process modeling

Event modeling

Standards (ISO 9000, CMM, CMMI)

Joint Application Development

Rapid Application Development

Prototyping

Object-Oriented Analysis/Design, UML

Multifunction teams

Timeboxing, RUP, Agile

Reviews, inspections

Specific testing techniques

Business area modeling

0 200 400 600 800
Number of Projects

Development Techniques Projects Percent

Waterfall 745

“Traditional” 713

Data modeling 505 36.5%

Process modeling 399 28.8%

Business area modeling 106    7.7%

Event modeling   85    6.1%

Standards (ISO 9000, CMM, CMMI) 335 24.2%

Joint Application Development 181 13.1%

Rapid Application Development 103    7.4%

Prototyping 255 18.4%

Object-Oriented Analysis/Design, UML 252 18.2%

Multifunction teams 127    9.2%

Timeboxing, RUP, Agile   89    6.4%

Reviews, inspections, walkthroughs 462 33.4%

Specific testing techniques 356 25.7%

745 projects report using a waterfall process, of which 593 give no 
further information about specific techniques used. 573 further 



	 A p p e n d i x  A :   W h a t  I s  i n  t h e  I S B S G  R e p o s i t o r y ? 	 215

projects report using a “traditional” process, but give no further 
details of specific techniques used.

There are 1,384 projects that list specific techniques. Between 
them the classical techniques of data modeling, process modeling, 
business area modeling, and event modeling are listed in 643 projects 
(46%).

The most common single technique is data modeling, used in 
36% of these projects. RAD and/or JAD techniques are used in 18% of 
these projects. Object-oriented techniques are used in 18% of these 
projects. Testing-oriented techniques, reviews, and inspections are 
listed in 49% of these projects.

Many of the projects that have been contributed recently to the 
repository make use of standards (ISO 9000 series, CMM, CMMI). Of 
the 335 projects in the repository that used standards, 248 (74%) used 
CMMI, 74 (22%) used CMM, and 74 (22%) used ISO 9000 series 
standards. 50 projects (15%) used ISO 9000 and one or both of CMM/
CMMI.

Summary
The ISBSG project history data is a very valuable resource for analysis, 
benchmarking, and estimation, but it must be used carefully and with 
an understanding of what it does and does not represent.

Additional Documentation
The following documents are available for download from the 
Downloads section of www.isbsg.org.

•	 Glossary of Terms

•	 Data Field Descriptions

•	 The ISBSG Repository Demographics

•	 The ISBSG Repository Field Descriptions

www.isbsg.org


This page intentionally left blank 



Appendix B
Project Delivery 

Rates by Category

This appendix summarizes project delivery rates in a number of 
categories. You can use these tables as a base for your estimates 
and to help you build an estimation framework, as described 

in this book.
The tables are based on analysis of 1,681 projects, out of the 5,052 

projects in the repository. These projects all have a high data quality 
rating (A or B), size measured with IFPUG or NESMA function points, 
and normalized work effort at resource level 1 (development team 
only). Extreme outliers are not included. Projects completed more 
than ten years ago are not included.

The ranges of project characteristics are as follows:

•	 All are sized with IFPUG function points, version 4 or later, 
or are new developments sized using the NESMA approach.

•	 All have high data quality rating (A or B).

•	 25 <= Size (UFP) <= 4,200 FP.

•	 80 <= Effort <= 61,500 hours.

•	 Maximum team size <= 52.

•	 0.5 <= Duration < 34 months.

•	 0.65 <= PDR <= 80 Hrs/FP.

•	 4.5 <= Speed of delivery (for the entire project team) < 520 
FP/month.

•	 0.7 <= Speed of delivery (per project team member) < 45 FP/
month/person.

217



	 218	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  B :  P  r o j e c t  D e l i v e r y  R a t e s  b y  C a t e g o r y 	 219

•	 Project completion date is 1999 or later.

•	 (Normalized effort for development team / reported effort 
for development team) < 1.25.

Presentation of Statistics
This section briefly describes the tables in this appendix.

Throughout the appendix, each table indicates the number of 
projects represented (N). This number is important, because care 
must be taken not to draw unwarranted conclusions from small 
samples of projects.

In the tables that follow, no group of projects is tabulated in its 
own right unless N is at least 10 (that is, at least 10 projects are 
represented in every group).

The total number of projects in each table varies. This is because 
the values of a number of variables are not known for projects 
submitted to the repository (that is, submitters do not provide data 
for every field).

Small inconsistencies between numbers of projects tabulated are 
due to missing values of variables selected for tabulation; for example,  
in some cases in the repository the Development Platform is given as 
“Unknown.”

Note  When you are using the tables, always check the number of projects 
represented. Don’t jump to conclusions based on a small number of 
projects.

Explanation of Tables
In this appendix, tables are frequently used to summarize some key 
statistics about the data for the topic being analyzed. The following 
header is common to all of the tables presented:

N Min P10 P25 Median P75 P90 Max Mean Std Dev

•	 N is the number of projects or data instances in the sample.

•	 Min is the minimum value found in the sample.

•	 P10 is the 10th percentile and is that value which is greater 
than the values of 10 percent of the members of the sample.

•	 P25 (often also written as Q1) is the 25th percentile or first 
quartile. It is that value which is greater than the values of  
25 percent of the members of the sample or subsample.



	 A p p e n d i x  B :  P  r o j e c t  D e l i v e r y  R a t e s  b y  C a t e g o r y 	 219

•	 Median (sometimes written as P50) is the middle value; half 
the values in the data sample or subsample are below this 
value, while the other half are above it.

•	 P75 (often also written as Q3) is the 75th percentile or third 
quartile. It is that value which is greater than the values of  
75 percent of the members of the sample or subsample.

•	 P90 is the 90th percentile and is that value which is greater 
than the values of 90 percent of the members of the sample or 
subsample.

•	 Max is the maximum value found in the sample.

•	 Mean is the arithmetic mean or average.

•	 Std Dev is the standard deviation.

Use of the Statistics
In most cases we have focused upon the median rather than the mean. 
However, the mean is always noted in addition to the median. The 
median is the more useful measure when the data contains outliers or 
when it is strongly skewed.

Note  Mean is the average of all the values. The median is middle value 
of all the values.

Using the mean or average can be misleading when the data is 
skewed. One huge number can distort the mean, so that it is no longer 
a fair representation of “average.” This is common in software 
engineering data sets, so the median is usually preferred.

Standard deviation is a measure of how wide the spread of values 
is. A small standard deviation means that most numbers fall into a 
narrow band around the average, and a large standard deviation 
means there is a wide range of values. A small standard deviation is 
better for estimation than a large one.

Project Delivery Rates
Project delivery rates in the following tables are expressed in terms of 
hours per function point.



	
220 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
221

Table B-1: Project Delivery Rate by Industry Sector

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Banking 80 0.7 3.0 4.0 7.9 22.1 31.2 55.1 13.4 12.1

Communication 426 0.8 3.6 6.5 11.5 19.4 30.0 78.7 14.9 11.7

Construction 12 2.8 3.1 3.5 4.3 6.3 8.7 9.1 5.0 2.2

Electronics & Computers 18 1.1 2.5 3.5 5.1 16.2 26.1 59.3 11.9 15.0

Financial 94 1.0 3.0 5.1 9.4 14.2 22.8 75.2 11.9 11.1

Government 153 1.2 4.9 7.7 11.7 19.8 36.2 61.8 16.3 13.0

Insurance 164 1.4 5.1 8.3 16.3 28.1 43.4 74.2 20.6 15.7

Manufacturing 101 0.6 1.6 2.6 5.4 13.0 29.2 52.5 10.4 12.0

Medical and Health Care 10 1.5 2.5 2.9 4.1 7.8 9.3 13.7 5.5 3.8

Professional Services 30 1.1 3.9 5.0 9.3 11.5 19.7 36.6 10.4 7.6

Service Industry 86 0.7 2.2 4.9 8.4 14.3 23.2 42.3 10.7 8.4

Wholesale & Retail 55 2.4 6.1 12.6 22.3 29.3 54.0 60.6 24.4 16.5



	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
221

Table B-2: Project Delivery Rate by Organization Type

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Banking 80 0.7 3.0 4.0 7.9 22.1 31.2 55.1 13.4 12.1

Billing 17 14.4 14.6 15.6 24.0 28.8 46.2 60.6 27.2 13.7

Communication 419 0.8 3.6 6.6 11.8 19.6 30.0 78.7 15.0 11.7

Community Services 22 0.7 5.5 7.8 13.9 17.5 22.7 24.4 13.0 6.9

Construction 12 2.8 3.1 3.5 4.3 6.3 8.7 9.1 5.0 2.2

Finance / Property / Business Services 90 1.0 3.0 5.2 10.0 14.3 23.0 75.2 12.2 11.2

Government 154 1.4 5.4 7.8 11.9 20.4 37.4 61.8 16.7 13.1

Insurance 164 1.4 5.1 8.3 16.3 28.1 43.4 74.2 20.6 15.7

Local 14 8.2 8.9 11.4 15.5 21.6 27.6 30.2 16.8 7.4

Manufacturing 90 0.6 1.6 3.0 5.6 15.0 29.5 52.5 11.0 12.4

Medical and Health Care 10 1.5 2.5 2.9 4.1 7.8 9.3 13.7 5.5 3.8

Ordering 23 5.6 10.0 17.0 28.6 41.5 54.7 60.4 30.4 17.3

Professional Services 12 3.2 4.7 7.2 8.8 9.3 9.3 9.9 7.8 2.2

Public Administration 20 1.2 1.9 4.7 10.1 14.5 18.3 29.6 10.5 7.9

Recreation / Personnel Services 12 1.7 2.0 4.5 6.4 8.7 12.9 23.9 7.7 6.1

Sales, Marketing 12 1.1 2.5 4.3 5.9 14.7 22.9 36.6 11.1 10.6

Transport & Storage 21 1.4 1.8 2.5 4.4 7.0 12.9 29.4 6.4 6.4

Voice Provisioning 15 12.3 24.6 27.3 53.5 62.1 64.9 69.7 46.4 18.6

Other 84 1.0 2.5 4.3 7.1 14.7 32.9 70.3 12.8 14.5



	
222 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
223

Table B-3: Project Delivery Rate by Business Area

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Financial 10 1.2 6.7 8.0 9.3 9.9 37.1 55.1 15.4 16.5

Insurance 26 1.2 2.6 5.3 10.9 16.7 28.3 45.2 13.1 10.4

Manufacturing 17 0.6 0.9 1.3 2.4 4.2 8.0 20.8 4.2 4.9

Telecommunications 240 1.0 3.3 6.3 10.9 18.1 31.5 78.7 15.3 13.4

Other 22 0.8 2.3 6.2 10.0 18.5 28.7 31.6 12.9 9.4

Table B-4: Project Delivery Rate by Application Type

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Billing 42 0.7 3.7 8.2 17.2 25.1 31.8 60.6 18.7 13.4

Catalogue of Things or Events 34 3.5 7.4 8.6 12.4 17.7 32.2 42.3 15.8 9.9

Document Management 26 3.5 4.9 8.2 16.2 32.7 42.3 59.4 20.7 15.2

Electronic Data Interchange 20 1.3 6.7 9.7 15.0 22.0 45.5 75.2 19.9 17.9

Executive Information System 14 1.2 3.3 6.6 12.7 17.6 30.6 61.8 16.1 15.7

Financial 102 3.1 5.0 5.8 7.1 9.2 11.6 14.3 7.7 2.5

Financial Transaction Process Accounting 311 0.7 3.0 5.4 11.2 21.8 34.6 74.2 15.5 14.0

Logistics 14 1.3 2.2 5.5 10.1 18.2 23.8 45.3 13.3 11.7

Management Info System 75 0.6 3.1 5.8 10.0 17.4 29.1 68.2 13.8 12.7

Ordering 51 0.8 2.4 5.3 12.6 28.1 42.0 60.4 18.3 16.8



	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
223

Personnel 12 1.6 2.9 3.4 6.6 13.2 15.8 41.4 10.2 11.0

Real-Time System 35 1.4 3.3 5.1 10.6 17.1 29.0 70.2 14.0 13.4

Sales, Marketing 48 1.5 2.6 4.6 6.9 14.6 26.2 44.8 11.6 10.2

Telecommunications 26 0.8 3.3 5.6 9.1 15.1 23.9 52.1 12.6 11.9

Trading 22 1.1 3.4 4.1 8.4 14.6 23.0 36.6 10.9 9.1

Transaction / Production System 169 1.0 3.9 6.3 12.4 22.0 35.7 78.7 16.8 14.7

Web / E-Business 23 1.0 2.9 3.6 6.4 11.4 18.1 48.0 9.4 9.9

Other 176 1.4 3.4 5.5 10.2 22.1 48.6 70.3 17.2 17.3

Table B-5: Project Delivery Rate by Development Platform

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Mainframe 452 0.6 3.6 7.2 14.0 25.6 40.0 79.7 18.7 15.6

Midrange 128 1.3 4.8 7.0 11.4 19.6 30.5 74.2 15.6 13.3

PC – Microcomputer 204 1.0 2.5 4.0 8.1 13.2 22.7 60.1 10.7 10.0

Multi 480 0.8 3.6 5.6 8.8 16.2 26.1 61.8 12.6 10.7

Table B-6: Project Delivery Rate by Development Type—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Enhancement 1147 0.6 3.9 6.3 12.0 21.7 35.7 79.7 16.2 14.2

New development 512 0.6 2.4 4.5 7.9 14.7 27.5 76.5 12.0 11.9

Redevelopment 22 0.8 4.6 6.0 10.1 18.9 26.8 49.8 14.5 12.1



	
224 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
225

Table B-7: Project Delivery Rate by Development Type—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Enhancement 366 0.6 3.9 7.4 13.7 25.6 40.0 79.7 18.6 15.5

New development 83 0.6 2.9 6.5 15.9 26.0 38.9 75.2 19.0 16.1

Table B-8: Project Delivery Rate by Development Type—Midrange Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Enhancement 79 2.0 4.9 7.3 14.6 21.1 33.9 74.2 17.4 14.7

New development 49 1.3 4.8 7.0 9.2 13.5 26.3 49.6 12.6 10.0

Table B-9: Project Delivery Rate by Development Type—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Enhancement 78 1.0 2.5 3.8 8.8 14.8 22.7 60.1 11.4 10.9

New development 117 1.0 2.5 4.0 7.5 11.8 22.2 47.0 9.9 8.6

Table B-10: Project Delivery Rate by Development Type—Multiplatforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Enhancement 296 1.1 4.4 6.1 9.8 18.8 27.0 61.8 13.8 10.7

New development 177 0.8 2.7 4.7 7.2 12.1 23.1 60.9 10.6 10.6



	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
225

Table B-11: Project Delivery Rate by Language Type—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

2nd generation language 12 3.8 4.6 8.2 15.7 23.0 34.8 45.8 17.9 13.2

3rd generation language 1105 0.6 3.5 5.9 11.4 22.5 37.9 79.7 16.7 15.1

4th generation language 359 1.2 3.2 5.4 8.7 14.5 21.9 55.5 11.3 8.8

5th generation language 23 6.4 8.5 9.8 16.1 22.2 25.5 37.1 17.1 8.2

Application generator 17 4.7 5.6 8.2 10.8 16.1 26.9 48.3 14.7 11.3

Table B-12: Project Delivery Rate by Language Type—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

3rd generation language 365 0.6 3.7 7.8 15.3 27.5 42.2 79.7 19.9 16.3

4th generation language 41 1.2 3.2 4.6 7.3 17.5 29.2 52.5 12.0 10.9

Application generator 16 4.7 5.9 8.9 11.5 17.5 27.7 48.3 15.3 11.4

Table B-13: Project Delivery Rate by Language Type—Midrange Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

3rd generation language 71 1.3 4.4 7.0 10.8 20.8 33.8 74.2 16.2 15.0

4th generation language 47 2.0 5.5 7.8 13.2 19.9 28.8 55.5 16.0 11.4



	
226 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
227

Table B-14: Project Delivery Rate by Language Type—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

3rd generation language 140 1.0 2.8 4.6 8.6 12.6 22.7 60.1 10.9 10.0

4th generation language 50 1.2 2.4 2.8 5.9 13.1 16.4 33.8 8.5 7.2

Table B-15: Project Delivery Rate by Language Type—Multiplatforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

3rd generation language 335 0.8 3.6 5.6 9.1 18.0 31.1 61.8 13.7 11.9

4th generation language 124 1.4 3.6 5.5 8.2 11.5 17.1 35.7 9.5 6.3

5th generation language 16 6.5 8.8 11.5 17.2 22.0 25.1 31.8 17.4 7.1

Table B-16: Project Delivery Rate by Language—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

ABAP 23 4.2 7.0 7.9 11.3 15.6 21.4 34.3 13.0 7.5

Access 10 1.6 2.4 2.7 7.1 8.7 13.0 14.5 6.8 4.5

ASP 22 1.8 2.6 3.6 6.7 9.9 15.6 30.6 8.6 7.0

Assembler 12 3.8 4.6 8.2 15.7 23.0 34.8 45.8 17.9 13.2



	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
227

C 103 1.8 3.6 8.3 13.6 24.4 41.0 76.5 18.8 16.3

C++ 80 1.0 4.9 8.2 14.8 31.3 54.2 78.7 23.1 20.0

C# 42 1.9 6.1 9.6 15.1 25.1 39.7 49.8 18.8 12.8

COBOL 199 0.8 4.2 6.7 15.3 28.1 48.6 79.7 21.1 18.4

Cool:gen 17 4.7 5.6 8.2 10.8 16.1 26.9 48.3 14.7 11.3

HTML 10 1.0 3.5 4.3 13.7 22.3 40.3 48.0 17.2 16.2

Java, J2EE 171 1.9 4.8 5.9 8.0 15.6 29.4 74.2 13.3 12.9

Lotus Notes 20 1.2 1.5 2.7 3.7 5.1 9.5 12.2 4.7 3.3

Natural 15 3.4 5.1 5.7 10.2 13.9 25.0 35.3 12.2 9.3

Oracle 86 1.2 3.0 4.7 8.2 15.7 23.8 33.8 11.2 8.4

PL/1 99 0.6 2.9 5.7 16.0 22.9 34.3 61.8 16.9 13.4

PL/SQL 18 0.8 1.3 1.7 4.6 9.7 26.4 42.1 9.4 12.0

Powerbuilder 19 4.2 5.0 6.4 9.3 14.1 18.6 23.6 10.9 5.6

Scripting language 26 1.4 3.7 5.1 7.6 13.2 22.5 61.8 11.7 12.4

SQL 60 2.4 3.9 6.2 11.4 16.7 27.2 55.5 13.5 10.7

Visual Basic 208 0.6 2.4 4.1 8.5 18.1 34.7 69.4 13.5 13.4

Other 3GL 95 4.0 6.7 10.2 14.2 22.5 30.1 43.1 16.8 9.1

Other 4GL 61 3.6 6.0 7.8 9.2 13.2 19.2 35.7 11.6 6.7

5GL 23 6.4 8.5 9.8 16.1 22.2 25.5 37.1 17.1 8.2

Other 125 0.7 2.5 5.3 8.6 15.0 24.1 59.3 11.6 10.2



	
228 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
229

Table B-17: Project Delivery Rate by Language—Mainframe Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev

C 26 5.6 9.2 11.7 15.5 27.5 42.5 60.4 21.6 15.2

C++ 14 5.8 10.7 17.1 32.2 49.6 53.3 75.2 34.3 20.2

COBOL 128 0.8 4.2 7.5 16.8 32.3 54.6 79.7 23.0 20.0

Cool:gen 16 4.7 5.9 8.9 11.5 17.5 27.7 48.3 15.3 11.4

Java 14 3.1 5.1 11.4 18.1 27.4 29.4 31.6 18.1 9.7

Oracle 19 1.2 2.9 4.3 6.6 18.5 29.7 31.7 12.1 10.2

PL/1 77 0.6 2.3 4.2 13.2 22.2 28.5 55.1 14.9 12.2

Scripting language 13 1.4 5.7 9.1 13.2 22.1 29.5 61.8 17.5 15.4

Visual Basic 19 0.6 3.6 18.4 27.4 30.3 38.9 54.6 24.7 13.9

Other 3GL 52 4.8 7.2 10.2 13.3 19.5 31.3 43.1 16.6 9.4

Other 74 0.7 2.9 6.4 10.7 16.0 31.5 52.5 13.9 11.6



	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
229

Table B-18: Project Delivery Rate by Language—Midrange Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev

C 14 3.6 8.4 13.1 15.1 22.4 29.5 34.2 17.6 8.8

C++ 20 1.3 3.9 5.1 7.9 15.0 19.0 49.6 11.8 11.3

Java 22 4.2 4.5 7.3 9.3 20.9 60.1 74.2 19.0 21.5

Oracle 11 2.0 3.0 5.8 9.0 14.6 24.4 28.8 11.3 8.6

SQL 30 4.1 5.8 9.6 13.3 20.1 29.2 55.5 16.8 11.8

Other 31 3.5 5.3 7.1 10.5 20.8 33.8 42.1 15.1 10.9

Table B-19: Project Delivery Rate by Language—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

ASP 11 2.2 2.6 2.7 5.9 7.8 9.5 14.3 6.0 3.8

C++ 15 4.0 8.6 9.3 11.4 18.5 27.8 60.1 16.5 13.9

COBOL 18 2.8 4.2 5.2 10.4 19.7 24.0 35.1 12.7 9.4

Java 26 1.9 3.0 5.7 7.7 10.9 19.0 25.3 9.3 6.1

Oracle 16 1.2 2.3 3.7 9.0 13.5 19.8 33.8 10.6 8.8

Visual Basic 48 1.0 1.9 3.2 7.2 9.5 13.8 24.4 7.4 5.0

Other 59 1.0 2.2 3.6 7.3 14.6 25.6 49.8 11.2 11.5



	
230 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
231

Table B-20: Project Delivery Rate by Language—Multiplatforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

ABAP 18 4.2 6.5 7.8 9.6 14.6 20.3 34.3 12.1 7.3

C 11 1.8 1.9 2.2 3.9 10.1 13.0 31.3 7.7 8.9

COBOL 12 3.4 4.7 8.3 20.3 37.8 43.2 49.1 22.8 16.3

C# 34 1.9 5.7 8.0 13.7 22.8 32.2 48.8 16.7 11.1

Java 79 3.1 5.0 5.7 6.4 8.1 11.8 17.1 7.4 2.9

Lotus Notes 14 1.5 1.9 2.9 3.7 5.1 7.8 11.9 4.5 2.8

PL/1 20 8.0 12.5 15.6 20.8 26.8 46.8 61.8 24.9 15.1

PL/SQL 11 0.8 1.4 1.7 4.2 6.7 10.7 14.3 5.1 4.3

Visual Basic 115 0.9 2.5 4.2 8.6 18.6 36.8 60.9 14.1 13.9

Other 3GL 40 4.8 7.8 10.9 17.3 22.7 30.0 38.0 17.8 8.6

Other 4GL 56 3.6 6.0 7.8 8.7 12.5 19.2 35.7 11.3 6.5

5GL 16 6.5 8.8 11.5 17.2 22.0 25.1 31.8 17.4 7.1

Other 54 1.1 3.1 4.8 7.4 10.4 14.8 27.4 8.7 5.7

Table B-21: Project Delivery Rate by Architecture Type—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Multitier 317 0.6 3.0 5.0   7.3 13.2 26.2 61.8 11.4 11.1

Client-server (not multitier) 321 1.1 4.5 7.5 12.8 20.3 30.2 75.2 15.5 11.4

Stand-alone 228 0.6 2.6 5.8 10.6 17.8 30.0 77.1 14.4 13.1



	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
231

Table B-22: Project Delivery Rate by Architecture Type—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Multitier   20 0.6 3.4 8.0 16.3 28.5 41.9 61.8 20.3 17.6

Client-server (not multitier)   20 3.8 4.5 7.8 22.4 30.0 35.7 75.2 21.7 17.1

Stand-alone 118 0.6 4.3 7.7 12.5 19.7 31.4 77.1 16.6 14.5

Table B-23: Project Delivery Rate by Architecture Type—Midrange Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Client-server (not multitier) 30 1.3 6.6 10.9 17.0 23.5 42.4 55.5 19.7 13.2

Stand-alone 45 2.0 5.8   7.5 11.8 19.5 29.8 70.2 15.6 12.4

Table B-24: Project Delivery Rate by Architecture Type—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Client-server (not multitier) 45 1.2 3.2 5.5 9.5 15.3 36.1 49.8 13.4 11.9

Stand-alone 62 1.0 1.4 2.9 6.5 11.9 24.1 49.1    9.7    9.5

Table B-25: Project Delivery Rate by Architecture Type—Multiplatforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Multitier 297 0.8 3.0 5.0    7.1 12.6 23.7 60.9 10.8 10.3

Client-server (not multitier) 164 1.1 5.3 8.1 13.2 21.6 29.3 61.8 16.0 10.9



	
232 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
233

Project Delivery Rate by Use of CASE Tools

Table B-26: Project Delivery Rate by Use of CASE Tools—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

CASE tools not used 515 0.7 2.7 5.1    9.5 21.6 35.5 77.1 15.3 14.5

CASE tools used 158 0.6 3.2 5.6 10.4 17.2 28.9 78.7 14.3 13.7

Table B-27: Project Delivery Rate by Use of CASE Tools—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

CASE tools not used 186 0.7 3.5 7.3 16.5 28.0 42.9 77.1 20.3 16.8

CASE tools used   41 0.6 3.1 4.4 10.2 17.4 29.6 44.8 13.5 11.3

Table B-28: Project Delivery Rate by Use of CASE Tools—Midrange Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

CASE tools not used 45 3.6 4.7 7.0   9.3 13.7 23.4 74.2 13.8 14.2

CASE tools used 20 4.1 6.0 7.6 17.0 25.3 46.3 70.2 21.4 17.6

Table B-29: Project Delivery Rate by Use of CASE Tools—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

CASE tools not used 65 1.5 2.5 3.5 7.3 11.4 22.6 49.8 10.5 10.2

CASE tools used 38 1.0 2.5 4.1 10.4 14.4 22.8 60.1 11.8 10.9



	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
233

Table B-30: Project Delivery Rate by Use of CASE Tools—Multiplatforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev

CASE tools not used 216 0.8 2.4   4.4   7.7 15.8 34.3 60.9 12.7 12.4

CASE tools used   17 5.5 8.4 11.0 17.1 19.4 36.8 45.3 18.7 11.3

Project Delivery Rate by Use of Methodology

Table B-31: Project Delivery Rate by Use of Methodology—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Methodology not used   37 1.0 3.4 5.3 9.2 15.7 28.8 36.7 12.2   9.5

Methodology used 968 0.6 4.5 7.1 12.1 21.8 35.6 78.7 16.6 14.0

Project Delivery Rate by Relationship Between Customer, Developers, Users

Table B-32: Project Delivery Rate by Inhouse/Outsourced Development

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Inhouse development   93 0.8 2.9 5.6 11.0 19.8 36.6 75.2 16.5 15.1

Outsourced development 518 1.0 4.5 7.5 12.6 20.4 30.7 78.7 15.6 11.7

Table B-33: Project Delivery Rate by User Type

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Internal users 441 0.8 4.1 7.3 12.5 20.9 31.7 78.7 15.9 12.4

External users 170 1.2 4.6 7.7 11.5 19.6 31.5 61.8 15.5 12.0



	
234 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
235

Table B-34: Project Delivery Rate by Relationship to Market

N Min P10 P25 Median P75 P90 Max Mean Std Dev

Inhouse for internal users   71 0.8 3.3 5.6 11.3 20.4 36.7 75.2 16.4 15.1

Inhouse for external users   22 1.2 3.0 7.5 10.9 17.7 34.1 59.3 16.5 15.2

Outsourced for internal users 370 1.0 4.4 7.5 12.8 20.9 30.3 78.7 15.7 11.8

Outsourced for external users 148 1.4 4.7 7.8 11.5 19.8 30.7 61.8 15.4 11.5

Breaking down Tables B-32 to B-34 by platform type provides no useful extra information.

Project Delivery Rate by Project Size

Table B-35: Project Delivery Rate by Project Size—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

0 to 200 912 1.0 4.4 6.6 12.4 22.6 38.3 79.7 17.4 15.2

201 to 400 399 0.6 2.8 5.5 10.3 18.4 29.7 75.2 14.0 11.7

401 to 600 138 0.6 2.6 4.0     7.2 13.2 21.9 52.9 10.1     9.4

601 to 800 80 1.0 2.8 4.4     7.9 15.3 27.4 54.6 11.4     9.9

801 to 1,000 32 1.9 3.2 5.6     7.8 13.3 19.5 29.4 10.0     6.8

Over 1,000 120 0.7 1.5 2.8     6.3 10.4 16.4 59.8     8.4     8.1



	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
235

Table B-36: Project Delivery Rate by Project Size—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

0 to 200 284 1.2 5.3 8.9 15.9 28.5 45.1 79.7 20.9 16.5

201 to 400 109 0.6 2.4 5.5 13.3 22.9 31.0 75.2 16.0 13.4

401 to 600 24 0.6 2.4 3.8     7.2 15.1 16.8 52.9 10.5 10.9

601 to 800 16 2.0 2.7 7.1 13.9 28.9 34.0 54.6 19.0 15.2

801 to 1,000 6 3.1 – 5.1 11.1 18.6 – 29.4 13.1 10.2

Over 1,000 13 0.7 1.2 3.8 5.4 15.0 23.5 31.6 9.9 10.0

Table B-37: Project Delivery Rate by Project Size—Midrange Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

0 to 200 60 3.5 5.3 8.6 16.1 27.4 35.7 74.2 20.6 16.0

201 to 400 21 1.3 3.0 7.9 10.1 17.3 28.8 49.6 14.4 12.1

401 to 600 19 3.6 4.4 5.4     7.6     9.3 15.2 22.2     8.7     4.8

601 to 800 10 4.3 4.9 7.3 10.0 15.0 17.6 21.6 11.1     5.7

801 to 1,000   2 7.5 – – 10.4 – – 13.2 10.4     4.0

Over 1,000 16 4.4 5.7 6.8     8.2 11.4 14.7 29.0 10.2     5.9



	
236 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
237

Table B-38: Project Delivery Rate by Project Size—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

0 to 200 79 1.0 2.9 5.1 10.1 15.6 23.6 60.1 12.5 11.0

201 to 400 51 1.0 2.6 3.3     7.2 10.6 24.4 49.8 10.4 11.3

401 to 600 28 1.2 2.7 5.3     9.0 15.3 25.4 39.9 11.9     9.7

601 to 800 14 1.0 2.5 3.8     5.0     8.8 11.3 16.3     6.4     4.2

801 to 1,000    7 4.5 – 5.7     8.2 12.1 – 13.4     8.8     3.7

Over 1,000 25 1.0 1.7 2.5     5.8 9.8 11.9 24.7     7.3     6.0

Table B-39: Project Delivery Rate by Project Size—Multiplatforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

0 to 200 222 1.7 4.7 6.0     8.9 17.0 27.3 61.8 13.2 11.1

201 to 400 138 1.4 4.4 6.8 11.9 18.4 32.6 49.1 14.8 10.9

401 to 600    42 0.8 2.3 3.5     5.6 11.0 20.2 43.4     8.8     8.3

601 to 800     28 1.9 3.7 6.0     8.4 13.1 23.4 34.2 11.1     8.5

801 to 1,000     12 1.9 2.3 6.2     8.1 11.9 21.1 26.3 10.2     7.4

Over 1,000     38 0.9 1.6 2.3     5.0     7.3 15.9 59.8     7.5 10.2



	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
237

Project Delivery Rate by Maximum Team Size

Table B-40: Project Delivery Rate by Maximum Team Size—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

1 to 4 157 1.0 2.9 4.9     7.4 12.4 21.1 77.1 11.0 11.3

5 to 8 212 0.6 3.4 5.9 10.3 16.9 28.0 76.5 13.8 12.4

9 or more 215 0.6 4.2 8.8 16.5 26.9 40.0 78.7 20.0 15.2

Table B-41: Project Delivery Rate by Maximum Team Size—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

1 to 4 41 3.8 5.3 8.0 13.8 21.0 42.0 77.1 19.2 16.9

5 to 8 43 0.6 4.0 8.2 13.6 23.3 47.8 75.2 19.4 17.5

9 or more 45 0.6 2.1 7.5 18.4 27.2 35.3 68.2 20.1 16.1

Table B-42: Project Delivery Rate by Maximum Team Size—Midrange Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

1 to 4    6 2.0 —     5.8     6.0     7.4 — 12.4     6.7     3.4

5 to 8 25 3.0 5.1     9.0 11.6 16.8 31.1 45.3 15.3 10.6

9 or more 30 6.8 7.8 11.6 17.0 26.4 30.5 70.2 20.6 13.6



	
238 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
239

Table B-43: Project Delivery Rate by Maximum Team Size—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

1 to 4 19 1.0 2.8 4.0 6.4 11.2 17.9 42.3     9.7     9.7

5 to 8 35 1.0 1.8 3.5 8.4 11.1 16.8 39.2     9.3     8.7

9 or more 29 1.2 4.2 7.5 9.8 17.6 32.9 49.8 15.0 13.1

Table B-44: Project Delivery Rate by Maximum Team Size—Multiplatforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

1 to 4 18 3.9 5.1     5.6     7.5 10.8 18.3 22.9     9.4     5.6

5 to 8 50 1.9 4.6     7.3     8.8 14.0 21.9 41.2 11.4     7.3

9 or more 57 1.1 4.3 10.1 16.6 25.2 38.1 61.8 20.1 13.6



	 A p p e n d i x  B :  P  r o j e c t  D e l i v e r y  R a t e s  b y  C a t e g o r y 	 239

The Impact of Maximum Team Size and  
Project Size on Project Delivery Rate
The preceding tables analyze each factor individually, without taking 
into account any interactions between them. Now we look at the 
effect of different factors, after allowing for the effect of other factors 
that have an important effect on PDR.

Platform and language are important factors for characterizing the 
environment in which a project is developed, and the primary language 
used to develop the project. PDR values for different combinations of 
platform and language are presented in Tables B-16–20.

Team size and project size are also known to be important factors 
that affect PDR (in fact, analysis of ISBSG data shows that these are 
the two most important factors).

Table B-45 summarizes the residual project delivery rates for 
different combinations of maximum team size and project size, after 
the effect of language and platform has been taken into account. (This 
table is based on analysis of 508 of the 1,681 projects analyzed in this 
appendix, for which language, platform, project size, and maximum 
team size are all known.)

The data analyzed here suggests that PDR gets worse as team 
sizes increase, but that PDR improves as functional size increases. 
While these factors are clearly not independent (larger projects tend 
to have larger teams), you can study Table B-45 to gain an 
understanding of each factor separately as well as together.

You can see that small teams do not develop large projects, as 
expected (Table B-45 does not present statistics for samples of fewer 
than five projects, because the sample is simply too small).

We can use Table B-45 to identify the average effect of maximum 
team size and project size. We do this by looking at the averages: both 
median and mean are worth considering.

For example, if we consider medians, Table B-45 shows that 
projects with a functional size of up to 200 UFP and a maximum team 
size of 1 to 4 have an average project delivery rate that is 6.7 hours per 
UFP lower than the overall average, once language and platform 
have been taken into account. If we consider means, the difference is 
4.1 hours per FP, instead of 6.3 hours per UFP.

In other words, suppose you start with an estimate of project 
delivery rate for a given project, based on its platform and language 
(see Tables B-16–20). If its size is up to 200 UFP and you expect to use 
a development team of 1 to 4 people, you could lower your estimated 
project delivery rate value by 4 to 6 hours per UFP. For a similar 
functional size but with a team size of 9 or more, you could raise your 
estimated PDR value by 11 to 15 hours per UFP. Other combinations 
of functional size and team size have different effects, as shown in 
Table B-45.



	
240 	P


ractica

l S
o

ftw
are P

ro
ject Estim

atio
n

	
A

ppendix B
: P


roject D

elivery R
ates by C

ategory	
241

Table B-45: Effect of Maximum Team Size and Project Size

Team Size Project Size (UFP) N Min P10 P25 Median P75 P90 Max Mean Std Dev

1 to 4 3 to 200 99 –19.6 –14.1 –11.1 –6.7 –1.7 7.6 55.1 –4.1 12.2

1 to 4 201 to 400 25 –19.8 –14.2 –11.7 –5.1 –2.1 3.3 14.6 –5.3 7.8

1 to 4 401 to 600 5 –18.8 — –10.3 –9.1 –7.4 — –3.6 –9.8 5.6

1 to 4 601 to 800 –

1 to 4 801 to 1,000 2

1 to 4 More than 1,000 –

5 to 8 3 to 200 91 –17.0 –10.7 –4.7 –0.2 5.2 19.3 59.5 2.1 12.8

5 to 8 201 to 400 53 –14.8 –12.0 –8.3 –5.4 0.2 6.3 54.5 –2.2 11.6

5 to 8 401 to 600 16 –15.9 –12.9 –12.1 –6.3 –3.6 –0.7 0.8 –7.3 5.3

5 to 8 601 to 800 14 –15.6 –12.2 –10.6 –8.1 –5.9 –4.3 –3.3 –8.5 –3.5

5 to 8 801 to 1,000 3

5 to 8 More than 1,000 4

9 or more 3 to 200 44 –5.0 –1.0 2.0 11.0 22.2 44.4 59.7 15.5 17.3

9 or more 201 to 400 67 –16.9 –9.8 –2.9 1.9 14.4 27.3 36.9 5.3 13.5

9 or more 401 to 600 23 –17.5 –12.9 –8.6 0.5 5.8 20.0 224.0 0.5 11.6

9 or more 601 to 800 22 –20.0 –13.2 –6.4 –0.5 0.7 5.2 17.7 –2.1 8.4

9 or more 801 to 1,000 9 –14.0 — –6.1 –3.6 –3.2 — 9.8 –3.9 6.4

9 or more More than 1,000 31 –17.9 –14.4 –7.9 –4.8 –0.9 1.6 13.6 –4.9 6.5



	 A p p e n d i x  B :  P  r o j e c t  D e l i v e r y  R a t e s  b y  C a t e g o r y 	 241

The variation increases as team size and project size increase. For 
example, for 80 percent of the projects with a functional size up to  
200 UFP and a team size of 1 to 4, the residual PDR ranges from –14.1 
to +7.6 hours per UFP (these are the P10 and P90 values). This is a 
spread of 21.7 hours per UFP. For teams of 5 to 8 the corresponding 
spread is 30.0 hours per UFP, and for teams of 9 or more the spread 
increases to 45.4 hours per UFP. Similar trends can be seen for other 
variations in team size and project size. The low end (the minimum 
and P10 values) changes less than the high end (P75 and P90) as team 
size increases, and the high end gets progressively worse as team size 
increases.

Broadly, as team size increases PDR deteriorates. As functional 
size increases PDR tends to improve. As both increase, individually 
and together, PDR becomes more variable.



This page intentionally left blank 



Appendix C
Estimation 
Equations

In this appendix we provide equations that you can use to obtain 
indicative or ballpark estimates for:

•	 Project Delivery Rates  Productivity expressed as hours per 
function point

•	 Effort  Person hours for the development team only

•	 Duration  Elapsed months

•	 Speed of Delivery  Function points delivered per elapsed 
month for the project as a whole

•	 Speed of Delivery per Person  Function points delivered 
per elapsed month per development team member

What Are These Estimates Based On?
Studies of the projects in the ISBSG Repository have shown that Size 
and Maximum Team Size are the most important drivers of effort and 
duration. Size is the most important. For this reason, two groups of 
equations are provided with the following independent variables:

•	 Equations that utilize Size (in function points) and Maximum 
Team Size

•	 Equations that utilize Size only

Within these two groups, equations are provided by:

•	 Platform (mainframe, midrange, PC, and multiplatform)

•	 Language type (3GL, 4GL)

•	 Development type (enhancement, new development)

•	 Combinations of platforms, language types, and development 
types

243



	 244	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  C :  E  s t i m a t i o n  E q u a t i o n s 	 245

These are the main project characteristics that you are likely to 
know at the beginning of a project that are also most useful for 
ballpark estimates.

Which Equation(s) Should You Use?
You should choose the equation(s) that best suit your needs:

•	 If your specific combination of platform, language type, and 
development type is present in the tables at the end of this 
appendix, use the equation provided for that combination. 
You can be assured that the equation, and all its components, 
play a useful role for estimation (but pay attention to N, 
R2adj, and Median MRE—explained shortly—to understand 
how useful the equation is).

•	 If your exact combination of platform, language type, and 
development type is not given in the tables at the end of this 
appendix, you will have to step back to a more general 
equation that matches some of your platform/language 
type/development type, but not all of them.

•	 A particular combination might be missing because the 
ISBSG does not have enough projects for a particular 
combination of platform, language type, and development 
type to derive a legitimate estimation equation.

•	 Another possibility is that sometimes the analysis shows 
that a particular equation has no better than random 
chance in generating an estimate, or that one or more of 
the independent variables make no significant contribution 
to the estimate, or the equation has very little explanatory 
value. In such cases the equation is simply not presented 
in the table, since it has no value for you.

•	 Treat “re-development” as “new development” projects.

•	 Treat “Application generator” as 4GL projects.

Do These Equations Apply to My Project?
These equations have been produced from an analysis of 1,681 
projects in the ISBSG Repository (Release 11).

•	 All of these projects provide data regarding Size (unadjusted 
function points) and Effort (person-hours for the development 
team).

•	 584 provide data for Maximum Team Size, 1,311 provide 
Duration, and 561 provide both.



	 A p p e n d i x  C :  E  s t i m a t i o n  E q u a t i o n s 	 245

The ranges of project characteristics are as follows:

•	 All are sized with IFPUG function points, version 4 or later, 
or are new developments sized using the NESMA approach.

•	 All have high data quality rating (A or B).

•	 25 <= Size (UFP) <= 4,200 FP.

•	 80 <= Effort <= 61,500 hours.

•	 Maximum team size <= 52.

•	 0.5 <= Duration < 34 months.

•	 0.65 <= PDR <= 80 Hrs/FP.

•	 4.5 <= Speed of delivery (for the entire project team)  
< 520 FP/month.

•	 0.7 <= Speed of delivery (per project team member) < 45 FP/
month/person.

•	 Project completion date is 1999 or later.

•	 (Normalized effort for development team / reported effort 
for development team) < 1.25.

It is reasonable to apply the equations tabulated later in this 
appendix if your project falls within these ranges. These equations 
cannot be relied upon for projects that fall outside these ranges.

What Do the Statistics Mean?
Be aware of the N, R2(Adj), and Median MRE columns. N is the 
number of projects. R2(Adj) and Median MRE have been provided to 
give some indication of reliability.

•	 N is important, because care must be taken not to draw 
unwarranted conclusions from small samples of projects.

•	 R2(Adj), or Adjusted Squared Multiple R, is a measure of how 
much of the variability between different projects is actually 
explained by the equation. The maximum value is 1.00, which 
would occur when every project agreed exactly with the 
equation. The closer the value is to 1, the better. Even low 
values here can be meaningful; something is being explained, 
but randomness or variation in other predictive factors may 
have diluted the predictive effect. Low values do not tell you 
much (equations with an R2(Adj) less than 0.25 are not even 
reported in these tables). High values, such as 0.80, are 
extremely encouraging (but are not necessarily conclusive).

•	 Median MRE is an indication of how accurate the regression 
equation is on average. The minimum value is 0.00, which 
would occur when every project agreed exactly with the 



	 246	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  C :  E  s t i m a t i o n  E q u a t i o n s 	 247

equation. The closer the value is to 0, the better. It shows the 
halfway point for accuracy of the estimates. For example, if 
Median MRE is 0.35, it means that the estimate from the 
regression equation is within 35 percent of the true value for 
half of the projects; for the other half the error is more than  
35 percent. If Median MRE is 0.20, the estimate is within  
20 percent of the true value for half of the projects.

Table C-1.0: Project Delivery Rate, estimated  
from software size and maximum team size

•	 Dependent (Y) = PDR (Project Delivery Rate, Hours per 
Function Point)

•	 Independent (X1) = Size (Software Size in Function Points)

•	 Independent (X2) = MaxTeam (Maximum Team Size)

•	 Equation: PDR = C × SizeE1 × MaxTeamE2

Class C E
1

E
2

N R2(Adj) Median MRE

All 57.39 –0.558 0.710 584 0.33 0.37

Enhancement 79.12 –0.616 0.692 381 0.33 0.37

New development 37.48 –0.496 0.759 203 0.32 0.37

MR 60.76 –0.664 0.960 61 0.65 0.23

Multi 34.49 –0.510 0.875 125 0.46 0.30

3GL 51.74 –0.526 0.693 367 0.27 0.38

4GL 32.90 –0.468 0.692 141 0.42 0.30

New & MR 35.09 –0.597 1.080 16 0.57 0.24

New & Multi 37.41 –0.463 0.736 47 0.36 0.30

Enh & MR 115.90 –0.759 0.872 45 0.73 0.19

Enh & Multi 38.97 –0.566 0.951 78 0.50 0.31

New & 3GL 39.40 –0.489 0.762 127 0.33 0.38

Enh & 4GL 64.10 –0.605 0.728 98 0.60 0.27

MR & 3GL 42.94 –0.605 0.994 27 0.61 0.28

MR & 4GL 56.86 –0.664 0.967 30 0.66 0.18

Multi & 3GL 36.44 –0.491 0.832 91 0.43 0.30

Multi & 4GL 9.35 –0.282 0.801 32 0.39 0.23

Enh & MR & 3GL 81.76 –0.647 0.785 19 0.68 0.24

Enh & MR & 4GL 162.70 –0.865 0.963 25 0.76 0.19

New & Multi & 3GL 72.34 –0.530 0.666 30 0.38 0.43

New & Multi & 4GL 6.72 –0.228 0.839 16 0.33 0.16

Enh & Multi & 3GL 25.63 –0.462 0.909 61 0.46 0.30

Enh & Multi & 4GL 13.98 –0.372 0.829 16 0.42 0.21



	 A p p e n d i x  C :  E  s t i m a t i o n  E q u a t i o n s 	 247

Table C-1.1: Project Work Effort, estimated  
from software size and maximum team size

•	 Dependent (Y) = PWE (Normalized Project Work Effort for 
development team, Hours)

•	 Independent (X1) = Size (Software Size in Function Points)

•	 Independent (X2) = MaxTeam (Maximum Team Size)

•	 Equation: PWE = C × SizeE1 × MaxTeamE2

Class C E
1

E
2

N R2(Adj) Median MRE

All 57.39 0.442 0.710 584 0.57 0.37

Enhancement 79.12 0.384 0.692 381 0.53 0.37

New development 37.48 0.504 0.759 203 0.61 0.37

MR 60.76 0.336 0.960 61 0.81 0.23

PC 23.67 0.570 0.678 83 0.53 0.42

Multi 34.49 0.490 0.876 125 0.67 0.30

3GL 51.74 0.474 0.693 367 0.55 0.38

4GL 32.90 0.532 0.692 141 0.73 0.30

New & MR 35.09 0.403 1.080 16 0.86 0.24

New & PC 11.06 0.723 0.634 50 0.54 0.42

New & Multi 37.41 0.537 0.736 47 0.68 0.30

Enh & MR 115.90 0.241 0.872 45 0.76 0.19

Enh & Multi 38.97 0.434 0.951 78 0.64 0.31

New & 3GL 39.40 0.511 0.762 127 0.63 0.38

New & 4GL 6.53 0.833 0.585 43 0.70 0.37

Enh & 3GL 70.85 0.413 0.673 240 0.48 0.39

Enh & 4GL 64.10 0.395 0.728 98 0.78 0.27

MR & 3GL 42.94 0.395 0.994 27 0.67 0.28

MR & 4GL 56.86 0.336 0.967 30 0.87 0.18

PC & 3GL 28.66 0.501 0.780 65 0.56 0.42

Multi & 3GL 36.44 0.509 0.833 91 0.68 0.30

Multi & 4GL 9.35 0.718 0.801 32 0.82 0.23

Enh & MR & 3GL 81.76 0.353 0.786 19 0.63 0.24

New & PC & 3GL 14.24 0.656 0.724 37 0.57 0.42

New & Multi & 3GL 72.34 0.470 0.666 30 0.65 0.43

New & Multi & 4GL 6.72 0.772 0.839 16 0.82 0.16

Enh & Multi & 3GL 25.63 0.538 0.909 61 0.66 0.30

Enh & Multi & 4GL 13.98 0.628 0.829 16 0.81 0.21



	 248	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  C :  E  s t i m a t i o n  E q u a t i o n s 	 249

Table C-1.2: Project Duration, estimated  
from software size and maximum team size

•	 Dependent (Y) = Duration (Elapsed Time – Inactive Time, 
Months)

•	 Independent (X1) = Size (Software Size in Function Points)

•	 Independent (X2) = MaxTeam (Maximum Team Size)

•	 Equation: Duration = C × SizeE1 × MaxTeamE2

Not one suitable equation can be used. In most cases, the reason is 
that the maximum team size does not make a significant contribution 
to the equation. There is only one equation in which C, E1, and E2 all 
contribute significantly, and the R2(Adj) value for that equation is so 
low (0.18) that the equation is not useful.

Table C-1.3: Speed of Delivery for Whole Project, estimated  
from software size and maximum team size

•	 Dependent (Y) = Speed of Delivery (Function Points per 
Elapsed Month)

•	 Independent (X1) = Size (Software Size in Function Points)

•	 Independent (X2) = MaxTeam (Maximum Team Size)

•	 Equation: Speed for project = C × SizeE1 × MaxTeamE2

Class C E
1

E
2

N R2(Adj) Median MRE

Enh & Multi 0.44 0.852 –0.228 78 0.59 0.28

Table C-1.4: Speed of Delivery per Person, estimated  
from software size and maximum team size

•	 Dependent (Y) = Speed of Delivery per Person (Function 
Points per Elapsed Month per Person)

•	 Independent (X1) = Size (Software Size in Function Points)

•	 Independent (X2) = MaxTeam (Maximum Team Size)

•	 Equation: Speed per person = C × SizeE1 × MaxTeamE2

Class C E
1

E
2

N R2(Adj) Median MRE

All 0.778 0.696 –1.011 561 0.61 0.36

Enhancement 0.643 0.729 –1.005 369 0.62 0.36

New & PC 3.373 0.465 –1.007 46 0.58 0.43

Enh & Multi 0.436 0.851 –1.228 78 0.70 0.28

New & 4GL 3.677 0.393 –0.872 42 0.44 0.39

Enh & 3GL 0.667 0.724 –1.022 231 0.59 0.37

Multi & 3GL 0.479 0.793 –1.116 89 0.64 0.29

New & PC & 3GL 4.464 0.431 –1.059 34 0.49 0.43



	 A p p e n d i x  C :  E  s t i m a t i o n  E q u a t i o n s 	 249

Table C-2.0: Project Delivery Rate,  
estimated from software size only

•	 Dependent (Y) = PDR (Project Delivery Rate, Hours per 
Function Point)

•	 Independent (X1) = Size (Software Size in Function Points)

•	 Equation: PDR = C × SizeE1

No equation is useful. Several are “statistically significant”—they 
pick up a genuine relationship between size and PDR—but the 
relationship is so weak that it never explains more than 15 percent of 
the variation in PDR.

Table C-2.1: Project Work Effort,  
estimated from software size only

•	 Dependent (Y) = PWE (Normalized Project Work Effort for 
development team, Hours)

•	 Independent (X1) = Size (Software Size in Function Points)

•	 Equation: PWE = C × SizeE1

Class C E
1

N R2(Adj) Median MRE

All 33.37 0.770 1681 0.46 0.55

Enhancement 31.16 0.793 1147 0.43 0.55

New development 23.25 0.814 534 0.45 0.55

MF 44.03 0.749 452 0.38 0.56

MR 35.43 0.783 128 0.60 0.43

PC 17.35 0.844 204 0.50 0.51

Multi 2.86 0.830 480 0.54 0.52

3GL 39.56 0.754 1105 0.42 0.57

4GL 20.06 0.832 359 0.58 0.46

New & MF 34.49 0.809 86 0.33 0.58

New & MR 19.08 0.883 49 0.59 0.42

New & PC 13.83 0.884 126 0.50 0.53

New & Multi 22.48 0.809 184 0.50 0.45

Enh & MF 50.10 0.718 366 0.35 0.55

Enh & MR 45.90 0.734 79 0.52 0.44

Enh & PC 23.10 0.789 78 0.47 0.54

Enh & Multi 16.35 0.912 296 0.56 0.52

New & 3GL 29.16 0.790 351 0.44 0.55

New & 4GL 5.28 1.032 112 0.60 0.49



	 250	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  C :  E  s t i m a t i o n  E q u a t i o n s 	 251

Class C E
1

N R2(Adj) Median MRE

Enh & 3GL 37.64 0.774 754 0.39 0.57

Enh & 4GL 22.83 0.819 247 0.55 0.43

MF & 3GL 51.34 0.730 365 0.37 0.56

MF & 4GL 18.39 0.838 41 0.44 0.51

MR & 3GL 43.17 0.742 71 0.53 0.45

MR & 4GL 29.07 0.830 47 0.65 0.40

PC & 3GL 13.83 0.889 140 0.56 0.51

PC & 4GL 31.05 0.710 50 0.36 0.57

Multi & 3GL 23.96 0.831 335 0.52 0.58

Multi & 4GL 15.86 0.867 124 0.63 0.34

New & MF & 3GL 34.38 0.823 64 0.33 0.58

New & MF & 4GL 18.14 0.846 15 0.37 0.50

Enh & MF & 3GL 60.52 0.692 301 0.34 0.56

Enh & MF & 4GL 22.66 0.787 26 0.27 0.51

New & MR & 3GL 42.48 0.744 31 0.35 0.45

Enh & MR & 3GL 42.47 0.747 40 0.54 0.45

Enh & MR & 4GL 62.27 0.685 37 0.45 0.39

New & PC & 3GL 13.57 0.898 85 0.55 0.49

New & PC & 4GL 13.21 0.844 30 0.46 0.53

Enh & PC & 3GL 14.83 0.868 55 0.55 0.51

New & Multi & 3GL 33.67 0.754 132 0.49 0.46

New & Multi & 4GL 4.06 1.071 49 0.58 0.46

Enh & Multi & 3GL 13.49 0.957 203 0.54 0.57

Enh & Multi & 4GL 17.59 0.869 75 0.70 0.33

Note that R2(Adj) values tend to be quite a lot lower here than in 
Table C-1.1, where the estimate was based on size and team size, not 
just size alone; and Median MRE tends to be quite a lot higher. This 
means that estimates based on both size and team size are probably 
more accurate than estimates based on size alone. This is no surprise—
you would expect to get better estimates when more information is 
available.

If a size estimate and the team size are both available to you, and 
your particular combination of platform, language, and development 
type is present in Table C-1.1, you should use Table C-1.1 instead of 
Table C-2.1.



	 A p p e n d i x  C :  E  s t i m a t i o n  E q u a t i o n s 	 251

Table C-2.2: Project Duration, estimated from software size only
•	 Dependent (Y) = Duration (Elapsed Time – Inactive Time, 

Months)

•	 Independent (X1) = Size (Software Size in Function Points)

•	 Equation: Duration = C × SizeE1

Class C E
1

N R2(Adj) Median MRE

New development 0.543 0.408 494 0.30 0.41

PC 0.507 0.418 191 0.33 0.39

Multi 0.589 0.394 394 0.28 0.44

4GL 0.507 0.429 304 0.36 0.37

New & PC 0.297 0.505 115 0.42 0.42

New & Multi 0.423 0.440 179 0.33 0.41

New & 3GL 0.645 0.378 327 0.27 0.42

New & 4GL 0.239 0.538 108 0.40 0.43

Enh & 4GL 0.540 0.428 196 0.34 0.36

PC & 3GL 0.468 0.436 132 0.36 0.40

Multi & 4GL 0.201 0.599 98 0.46 0.40

New & PC & 3GL 0.284 0.523 78 0.43 0.42

New & PC & 4GL 0.324 0.459 29 0.41 0.32

New & Multi & 3GL 0.558 0.392 128 0.33 0.37

New & Multi & 4GL 0.107 0.679 48 0.38 0.52

Enh & Multi & 4GL 0.174 0.656 50 0.63 0.22

These results show that it is rarely possible to estimate duration 
with any confidence using a regression equation. So what can you do 
if your project does not fit into any class in Table C-2.2?

	 1.	 Estimate effort, using Tables C-1.1 and C-2.1.

	 2.	 Use the effort estimate as the base for estimating duration:

	 a.	 If you know your planned team size, effort divided by 
that team size gives an estimate of the number of hours 
per staff member for the project. Dividing that number by 
the number of hours worked by a staff member per month 
gives an estimate of duration in months.

	 b.	 If you do not know your planned team size, you can use 
the estimation equation (derived from the entire data set) 
Months = 0.370 × Effort0.328. R2(Adj) for this equation is 
0.35, and Median MRE is 0.36.



	 252	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

Table C-2.3: Speed of Delivery for Whole Project Team,  
estimated from software size only

•	 Dependent (Y) = Speed of Delivery (Function Points per 
Elapsed Month)

•	 Independent (X1) = Size (Software Size in Function Points)

•	 Equation: Speed for project = C × SizeE1

Class C E
1

N R2(Adj) Median MRE

All 1.183 0.661 1311 0.55 0.42

New development 1.842 0.592 494 0.48 0.40

PC 1.972 0.582 191 0.49 0.42

Multi 1.698 0.606 394 0.48 0.42

4GL 1.974 0.571 304 0.50 0.40

New & PC 3.370 0.495 115 0.41 0.39

New & Multi 2.367 0.560 179 0.44 0.40

Enh & Multi 1.536 0.615 215 0.46 0.44

New & 3GL 1.550 0.622 327 0.50 0.42

New & 4GL 4.181 0.462 108 0.33 0.43

Enh & 4GL 1.853 0.572 196 0.48 0.36

MR & 3GL 0.464 0.846 70 0.74 0.34

PC & 3GL 2.138 0.564 132 0.49 0.43

Multi & 4GL 4.982 0.401 98 0.27 0.42

New & PC & 3GL 3.520 0.477 78 0.39 0.42

New & PC & 4GL 3.082 0.541 29 0.49 0.32

New & Multi & 3GL 1.792 0.608 128 0.55 0.34

Enh & Multi & 4GL 5.744 0.343 50 0.31 0.28

Table C-2.4: Speed of Delivery per Person,  
estimated from software size only

•	 Dependent (Y) = Speed of Delivery per Person (Function 
Points per Elapsed Month per Person)

•	 Independent (X1) = Size (Software Size in Function Points)

•	 Equation: Speed per person = C × SizeE1

There is no useful equation. There is no evidence here that speed of 
delivery per person can be estimated directly from project size.



Appendix D
Project Sample 

Demographics Used 
in Chapter 3

Details of the group of projects used for the analysis contained 
in Chapter 3 are as follows. In each case, percentages are 
related to the number of projects for which data was provided 

for that attribute. For example, the percentages for architecture are 
based on the 651 projects for which this is known (not on the  
861 projects that form the entire data set).

•	 The projects come from 24 different countries, with the 
greatest representation from Australia, Brazil, Canada, China, 
Denmark, India, Italy, Japan, the Netherlands, the United 
Kingdom, and the United States.

•	 Over 83 percent of the projects were completed in 2000 or 
later, and 50 percent in 2004 or later.

•	 Organization type  The main types of organization 
represented are banking, communications, computers/
software/IT, insurance, government/public administration, 
insurance, and manufacturing. Each has at least 45 projects, 
and together these provide 76 percent of the projects.

•	 Application type  The projects are dominated by transaction/
production systems (41 percent), management information 
systems (16 percent), e-business/EDI (15 percent), document 
management (9 percent), real time (8 percent), and 
communications (7 percent).

•	 User base  61 percent of projects are for use by a single 
business group and/or single location; 25 percent are for six 
or more business groups and six or more locations.

253



	 254	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  D :  P  r o j e c t  S a m p l e  D e m o g r a p h i c s  U s e d  i n  C h a p t e r  3 	 255

•	 Development type  46 percent are new developments,  
49 percent are enhancements, and 5 percent are 
redevelopments.

•	 Architecture  53 percent of projects use a client/server 
architecture, 7 percent use a multitier architecture, 40 percent 
are stand-alone systems.

•	 Platform  30 percent run on mainframes, 7 percent on 
midrange computers, 41 percent on PCs, and 22 percent on 
multiple platforms.

•	 Language  74 percent use 3GLs, 21 percent use 4GLs,  
5 percent use application generators, 1 percent use 2GLs. 
ABAP, ASP, Access, C, C++, C#, COBOL, Cool:Gen, Java, 
Oracle, PL/I, SQL, and Visual Basic each have at least 18 
projects, and together they account for 85 percent of projects.

•	 CASE tools  These are used in 32 percent of projects.

•	 Software development methodologies  A methodology is 
used in 85 percent of projects. In-house methodologies 
dominate (48 percent in-house, 38 percent purchased and/or 
adapted, 15 percent no methodology).

•	 Relationship to market  47 percent of projects are developed 
internally, 53 percent are outsourced. 46 percent are developed 
for internal users, 54 percent for external users.

•	 Team size  Small teams (1 to 4 developers) account for  
19 percent of projects, 38 percent have teams of 5 to 8, and  
43 percent have teams of 9 or more developers.

Size and other key project indicators:

•	 Software size  Size ranges from 14 to 10,000 unadjusted 
function points. The median is 280 FP. If adjusted function 
points are used as the size measure, the range is from 14 to 
20,000 AFP, and the median is 335 AFP. (Note: The UFP and 
AFP maximums are for different project sets.)

•	 Effort  For just the development team, the effort ranges from 
17 to 134,000 hours; the median is about 2,640 hours. For the 
entire project effort (including support staff and user effort), 
the range is from 17 to 267,000 hours; the median is about 
3,000 hours. These numbers refer to actual reported effort. 
Normalized effort for the entire project team ranges from 26 
to 267,000 hours, with a median of 3,430 hours.

•	 Duration  Projects range from 1 to 84 months. The median is 
7 months.



	 A p p e n d i x  D :  P  r o j e c t  S a m p l e  D e m o g r a p h i c s  U s e d  i n  C h a p t e r  3 	 255

•	 Project delivery rate (normalized effort for the development 
team only, per unadjusted function point)  PDR varies 
from less than 1 to over 300 hours per function point. The 
median is about 10 hours per function point.

•	 Function points per elapsed month per team member  This 
ranges from 1 to 250; the median is 4.4 function points per 
month per team member.



This page intentionally left blank 



Appendix E
The Benefits of 

Submitting Projects 
to the ISBSG 

Repository

When you submit a project or projects for inclusion in the 
ISBSG Repository, you will receive a free Project Benchmark 
Report that will provide you with a comparison of the 

project submitted to a group of similar projects already in the 
repository.

How to Submit a Project
The ISBSG will accept data submissions a number of ways:

•	 On the Word form that can be downloaded from the ISBSG 
web site (see following)

•	 On an Excel spreadsheet (use the Word form for guidance on 
data requirements and data descriptions)

•	 Via the ISBSG XML facility

To submit a project for inclusion in the ISBSG Repository using 
the Word form:

	 1.	 Download the appropriate submission forms from the web 
site.

	 2.	 Enter all the information that you have about your project 
onto the form.

257



	 258	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  E :   S u b m i t t i n g  P r o j e c t s  t o  t h e  I S B S G  R e p o s i t o r y 	 259

	 3.	 E-mail your submission to the ISBSG Administrator (contact 
details can be found at www.isbsg.org/isbsgnew.nsf/
webpages/~GBL~Contact).

All submissions are kept strictly confidential and will remain 
anonymous. On receipt of a submission, the ISBSG administrator 
removes the identification information from the submission, replacing 
this with a unique identification code. The submission is then sent to 
the repository manager who rates it, adds it to the repository, and 
produces a benchmark report, which is returned to the administrator 
to be forwarded to you. You can use the code(s) that you have been 
issued with to identify your projects on the ISBSG Data Suite. No one 
else can identify your projects.

A Description of the Project Benchmark Report
When you submit a project to be included in the repository, a Project 
Benchmark Report will be returned by e-mail. This report can be used 
to assist in effort and cost estimation in the future. The report also 
provides valuable benchmarking of your organization’s productivity. 
It provides a graphic comparison of the submitted project against 
similar projects in the repository. You can use it as the base from 
which to launch process improvement.

For example, assuming your project has the following character-
istics:

•	 Development Platform = Midrange

•	 Methodology = Developed in-house

•	 Language Type = 4GL

•	 Maximum Team Size > 8

Your project delivery rate (PDR) was 10.0 hours per function point.
The following is a sample extract from the report you will receive 

when you submit a project. Your PDR is shown in bold type:

Influencing 
Factor N P10 % P25 % Median P75 % P90 %

Development 
Platform: 
Midrange

152 2.4 6.7 8.9 10 11.8 12.4

Language Type: 
4GL

201 2.7 5.3 7.2    9.9 10 14.3

Team Size: >8 112 4.5 7.6 9.1 10 19.3 23.4

www.isbsg.org/isbsgnew.nsf/webpages/~GBL~Contact
www.isbsg.org/isbsgnew.nsf/webpages/~GBL~Contact


	 A p p e n d i x  E :   S u b m i t t i n g  P r o j e c t s  t o  t h e  I S B S G  R e p o s i t o r y 	 259

For the two factors with the most significant impact on produc-
tivity, Development Platform and Language Type, the following sam-
ple chart shows how your project delivery rate compares to projects 
with the same Development Platform and Language Type:

Your Project 10

0.7

2.4

4.6

8.1

23

ISBSG Min

ISBSG 25%

ISBSG 75%

ISBSG Max

Median

0 5 10 15 20 25

PDR (hr/fp) Benchmark Report

Hours Per Function Point



This page intentionally left blank 



Appendix F
ISBSG Member 
Organizations

Australia
QESP (Quantitative Enterprise Software Performance) 
Julian Day or Pam Morris 
E: info@qesp.org.au or pam.morris@totalmetrics.com 
W: www.qesp.org.au

China
CESI (China Electronic Standardization Institute) 
Ms. Li Yunqin 
P: +86 10 82825888 
F: +86 10 82825777 
E: rhymelee@126.com or liyq@cesi.ac.cn 
W: www.en.cesi.cn

Finland
FiSMA (Finnish Software Measurement Association)  
Mr. Pekka Forselius 
P: +35 8505 160416 
F: +35 8934 42771 
E: pekka.forselius@4sumpartners.com  
W: www.fisma.fi

Germany
DASMA (Deutschsprachige Anwendergruppe fur Software 
Metrik and Aufwandschatzung) 
Mr. Stavros Pechlivanidis 
P: +49 172 715 4326 
F: +49 211 5426 9771 
E: isbsg@dasma.org 
W: www.dasma.de

261

www.qesp.org.au
www.en.cesi.cn
www.fisma.fi
www.dasma.de


	 262	P  r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 A p p e n d i x  F :  I  S B S G  M e m b e r  O r g a n i z a t i o n s 	 263

India
NASSCOM (National Association of Software & Service 
Companies) 
Bidhan Kankate 
P: +91 40 5536 6111, 6222  
M: +98 493 37650  
F: +91 40 5536 6333 
E: bidhan@nasscom.in 
W: www.nasscom.in

Italy
GUFPI-ISMA (Gruppo Utenti Function Point Italia—Italian 
Software Metrics Association) 
Luca Santillo 
P: +39 339 7933980 
E: luca.santillo@gmail.com 
W: www.gufpi-isma.org

Japan
JFPUG (Japan Function Point User Group)  
Shigeru Nishiyama (Adviser and technical officer for 
internationalization) 
P: +81 25 2262401 
F: +81 25 2271021 
E: s02.nishiyama@city.niigata.lg.jp  
W: www.jfpug.gr.jp 

Netherlands
NESMA (Nederlandse Software Metrieken Gebruikers Associatie) 
Ton Dekkers (Vice President) 
P: +31 30 6961464 
E: office@nesma.nl or tdekkers@galorath.com  
W: www.nesma.nl

Spain
AEMES (Asociacion Espanola de Metricas de Software) 
Jose Carrillo Verdun  
P: +34 91 3366921  
F: +34 91 3367412  
E: jcarrillo@fi.upm.es or admon@aemes.org  
W: www.aemes.org

www.nasscom.in
www.gufpi-isma.org
www.jfpug.gr.jp
www.nesma.nl
www.aemes.org


	 A p p e n d i x  F :  I  S B S G  M e m b e r  O r g a n i z a t i o n s 	 263

Switzerland
SwissICT 
Thomas Fehlmann 
P: +41 44 253 1306 
F: +41 86079 332 7056 
E: thomas.fehlmann@e-p-o.com  
W: www.swisma.ch, www.swissICT.ch

USA
SSCI (Systems and Software Consortium, Inc.)  
Cheryl Parker 
P: +1 703 742 7310 
F: +1 703 742 7350 
E: parker@systemsandsoftware.org 
W: www.systemsandsoftware.org

USA (International)
IFPUG (International Function Point Users Group)  
Dan Bradley 
IFPUG Office 
P: +1 609 799 4900 
F: +1 609 799 7032  
E: ifpug@ifpug.org 
W: www.ifpug.org

www.swisma.ch
www.swissICT.ch
www.systemsandsoftware.org
www.ifpug.org


This page intentionally left blank 



Glossary

When the International Software Benchmarking Standards 
Group (ISBSG) was formed in 1994, one of the objectives 
written into the original charter was:

“To develop the profession of software measurement by 
establishing a common vocabulary and understanding of 
terms.”

Consistent with this objective, the ISBSG has defined terms and 
metrics for the purposes of:

•	 Assisting in the collection of project data into the repository

•	 Standardizing the way the collected data is analyzed and 
reported

What follows is a consolidated list of ISBSG definitions and terms 
used. We hope this will help us to meet our charter. We would 
appreciate any comments you may have to assist us in meeting this 
objective.

This glossary is divided into two parts—Terms and Metrics—and 
provides definitions of terms used in ISBSG documents. This includes 
project data collection forms, publications, and data releases. Some of 
these terms refer to items no longer collected by the ISBSG but which 
may be found in documents or analysis of earlier data.

Where appropriate, these definitions have been adjusted to align 
with international standards.

Terms
Adjusted function points (AFPs)  A software size based on the functional 
size multiplied by the technical complexity adjustment. The resultant 
adjusted size is reported in adjusted function points (AFPs) and 
applies to IFPUG. Each of the following functional size measurement 
methods has its own mechanisms for moving from its equivalent of 
UFPs to its equivalent of AFPs, and each uses its own terminology 
(FiSMA, NESMA, and MARK II).

265



	 266	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 G l o s s a r y 	 267

Application type  How the application is meeting the business area 
requirements. Classification of an application as a type is according 
to its primary intended use. The following is a list of common 
application types:

•	 3D modeling or automation

•	 Artificial intelligence 

•	 Catalog/register of things or events

•	 Customer billing/relationship management

•	 Decision support 

•	 Device or interface driver

•	 Document management

•	 Electronic data interchange 

•	 Executive information system

•	 Fault tolerance   

•	 Financial transaction process/accounting

•	 Geographic or spatial information system

•	 Graphics and publishing tools or system

•	 Image, video, or sound processing

•	 Embedded software for machine control

•	 Job, case, incident, project management

•	 Logistic or supply planning and control

•	 Management information system (MIS) 

•	 Management or performance reporting

•	 Mathematical modeling (finance or engineering)

•	 Network management 

•	 Office information system 

•	 Online analysis and reporting

•	 Operating system or software utility

•	 Personal productivity (for example, spreadsheet)

•	 Process control 

•	 Software development tool

•	 Stock control and order processing

•	 Trading

•	 Transaction/production system 

•	 Workflow support and management



	 G l o s s a r y 	 267

Architecture  The organizational structure of a system and its 
implementation guidelines. This derived attribute for the project 
indicates if the application is stand-alone, multitier, client-server, or 
multitier with web public interface.

Business area type  The business area within the organization that 
the application will be supporting.

CASE (Computer Aided Software Engineering)  The use of computer 
software to assist in completing tasks defined within a system’s 
development life cycle methodology.

CASE may be used across the entire project life cycle or used to 
assist with specific parts of the cycle. The three categories are

•	 Upper CASE  Environment independent and generally 
used to perform analysis tasks, for example, logical data 
modeling, process modeling, data flow diagramming, and  
so on.

•	 Lower CASE  Environment dependent and generally used 
to assist in physical design and construction tasks, for 
example, physical data base design, code generation, and  
so on.

•	 Integrated CASE  Fully integrating Upper and Lower 
CASE, for example, logical models are converted to physical 
models, which in turn generate database tables and code.

Client roles  The roles performed by the computers that provide the 
interface to the software’s external users.

Client-server  Client-server computing or networking is a distributed 
application architecture that partitions tasks or workloads between 
service providers (servers) and service requesters, called “clients.”

Client-server description  A description of the architecture of the 
client/server software application or product.

Cost  The price paid (either through money, time, labor, and so on) 
to acquire, produce, accomplish, or maintain the product. The 
following methods of collecting COST are believed to be the most 
common:

•	 Cost recorded  The daily recording of all cost incurred by 
each person on project-related tasks.

•	 Cost derived  It is possible to derive the cost where it has not 
been collected on a daily basis as in cost recorded.



	 268	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 G l o s s a r y 	 269

Count approach  A description of the method used to size the project 
software. For most projects in the ISBSG Repository, this is the 
functional size measurement method (FSM method) used to measure 
the functional size (for example, IFPUG, MARK II, NESMA, COSMIC, 
and so on). For projects using other size measures (for example, LOC, 
and so on) this is a short name for that method, and in data releases 
the size data is not included with sizes measured by an FSM method 
but rather is in a section “Size Other than FSM.”

Data quality rating  This field contains an ISBSG rating code of A, B, 
C, or D applied to the project data by the ISBSG quality reviewers to 
denote the following:

	A = The data submitted was assessed as being sound with nothing 
being identified that might affect its integrity.

	B = The submission appears fundamentally sound, but there are 
some factors that could affect the integrity of the submitted 
data.

	C = Due to significant data not being provided, it was not possible 
to assess the integrity of the submitted data.

	D = Due to one factor or a combination of factors, little credibility 
should be given to the submitted data.

Defect  A problem, which if not corrected, could cause an application 
to either fail or to produce incorrect results. There can be three 
categories:

•	 Minor defect  A minor defect does not make the application 
unusable in any way (for example, a modification is required 
to a screen field or report).

•	 Major defect  A major defect causes part of the application 
to become unusable.

•	 Extreme defect  A failure of some part of an application that 
causes the application to become totally unusable.

The following information has been collected in relation to 
application defects both within the project duration (defects and 
hours per project phase) and after implementation (defects found 
within the first month of use of the software). Of the following, only 
defect found, repair hours, and rework hours per project phase are 
currently collected:

•	 Defect found  The number of defects detected in the process 
in that particular effort breakdown or found within the first 
month of use of the software after implementation.



	 G l o s s a r y 	 269

•	 Defect originating  The number of defects put into the 
process in that particular effort breakdown only.

•	 Defect removed  The number of defects removed from the 
process in that particular effort breakdown.

•	 Repair hours  The effort in hours taken to correct defects 
detected in that particular effort breakdown.

•	 Rework hours  The effort in hours taken in that particular 
effort breakdown after correction of defects, to return the 
project to the point reached before defect detection.

Degree of confidence  An expression of the confidence the organization 
has in the data provided, expressed in a range 1–4:

	1 = Not confident

	2 = Slightly confident

	3 = Confident

	4 = Very confident

Degree of customization  How much customization was involved if 
the project was based on a packaged software customization.

Development platform  Defines the primary software development 
platform (as determined by the operating system used). Each project 
is classified as PC, midrange, mainframe, or multiplatform.

Development type

•	 New development  Full analysis of the application area is 
performed, followed by the complete development life cycle 
planning/feasibility, analysis, design, construction, testing 
and implementation). Examples are

•	 A project that delivers new function to the business or client. 
The project addresses an area of business (or provides a 
new utility) that has not been addressed before.

•	 Total replacement of an existing system with inclusion of 
new functionality.

•	 Enhancement  Changes made to an existing application 
where new functionality has been added, or existing 
functionality has been changed or deleted. This would include 
adding a module to an existing application, irrespective of 
whether any of the existing functionality is changed or 
deleted.

•	 Redevelopment  The redevelopment of an existing 
application. The functional requirements of the application 
are known and will require minimum or no change. 



	 270	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 G l o s s a r y 	 271

Redevelopment may involve a change to either the hardware 
or software platform. Automated tools may be used to 
generate the application.

•	 This includes a project to restructure or reengineer an 
application to improve efficiency on the same hardware 
or software platform. For redevelopment, normally only 
technical analysis is required.

Functional size  A size of the software derived by quantifying the 
functional user requirements (that is, what functions the software 
must support). This excludes quality and technical requirements. 
This may be reported in different units depending on the functional 
size measurement method (for example, UFP for IFPUG and NESMA, 
CFP for COSMIC, and so on).

Functional size measurement (FSM)  The process of measuring 
functional size. Internationally recognized functional sizing methods 
include IFPUG, NESMA, COSMIC, FiSMA, and MARK II.

Functional size unit (FSU)  The unit of measure of size used by a 
functional size measurement method (for example, function points).

Functional sizing technique  The technology used to support the 
functional sizing process. Certain technologies used in function point 
counting can affect the count’s potential accuracy.

Implementation date  The actual date of implementation of the project 
outcome.

Intended market  Describes the relationship between the project’s 
customer, end users, and development team.

Language type  Defines the language type used for the project: for 
example, 3GL, 4GL, application generator, and so on.

Life cycle phases  Used in the context of the time at which functional 
sizing is carried out (see also “project effort breakdown”).

•	 Early life cycle  Up to the completion of the system 
requirements definition.

•	 Mid life cycle  From requirements definition to completion 
of the technical design.

•	 Late life cycle  From technical design specification until 
after implementation.

Maximum team size  The maximum number of people during each 
component of the work breakdown who are simultaneously assigned 
to work full-time on the project for at least 1 elapsed month.



	 G l o s s a r y 	 271

Methodology acquisition  Describes whether the development 
methodology (if used) was purchased or developed in-house, or a 
combination of these.

Methodology used  Whether a development methodology was used 
by the development team to build the software.

Normalized work effort  For projects covering less than a full software 
development life cycle, this value is an estimate of the full development 
life cycle effort. For projects covering the full development life cycle, 
and projects where development life cycle coverage is not known, 
this value is the same as summary work effort.

Organization type  A standard classification for the business within 
which the organization as a whole operates. The organization is that for 
which the project has been developed.

Packaged software customization  Where a decision is made to acquire 
an existing product to provide the major component of the required 
functionality. Count only the functionality required by the client.

Primary programming language  The primary language used for the 
software development: Java, C++, PL/1, Natural, COBOL, and  
so on.

Productivity  The ratio of work product to work effort. In ISBSG 
documents and products this is given by project delivery rate (see 
entry in “Metrics” section).

Project  A collection of work tasks with a time frame and a work 
product to be delivered. In ISBSG documents and products the work 
product delivered is software and its documentation.

•	 Project start  A client/management decision is made 
formally/informally to involve information technology 
personnel in the development. This point is commonly known 
as the commencement of the “survey,” “feasibility study,” or 
“project initiation phase” of the system development life 
cycle.

•	 Project end  The date when the work product is delivered 
(that is, the project software is placed in production, or the 
project deliverable is delivered).

Project activity scope  Synonymous with the project effort 
breakdown.



	 272	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 G l o s s a r y 	 273

Project effort breakdown  Project effort is subdivided in two ways: by 
project phase and by role of the groups of people involved. For the 
breakdown by person role, see “work effort breakdown.” See also “life 
cycle phases.” The following table shows the major activities making 
up each phase:

Project Phase Possible Phase Components

Plan Preliminary Investigations 
Overall Project Planning 
Feasibility Study 
Cost Benefit Study 
Project Initiation Report 
Terms of Reference

Specify Systems Analysis 
Requirements Specification 
Review & Rework Requirements Spec. 
Architecture Design/Specification 
Review & Rework Architecture Spec

Design Functional/External Design 
Create Physical/Internal Design(s) 
Review and Rework Design(s)

Build Package Selection 
Construct Code & Program Software 
Review or Inspect & Rework Code 
Package Customization/Interfaces 
Unit Test 
Integrate Software

Test Plan System or Performance Testing 
System Testing 
Performance Testing 
Create & Run Automated Tests 
Acceptance Testing

Implement Prepare Releases for Delivery 
Install Software Releases for Users 
Prepare User Documentation 
Prepare & Deliver User Training 
Provide User Support

The following table is provided as a guide for those organizations 
that use the ISO 12207 standard.



	 G l o s s a r y 	 273

ISO 12207 Project Steps 
(Steps in ISO 12207 – Software 
Engineering Lifecycle Processes) ISBSG Effort Phase

  1 Requirements Elicitation Specify

  2 System Requirements Analysis Specify

  3 System Architecture Design Specify

  4 Software Requirements Analysis Specify

  5 Software Design Design

  6 Software Construct (Code & Unit Test) Build 

  7 Software Integration Build

  8 Software Testing Test 

  9 System Integration Test

10 System Testing Test

11 Software Installation Implement

12 User Support Implement

Project elapsed time  The calendar period in months between the 
project start and end including any period of inactivity (that is, end 
date minus start date).

Project ID  A primary key for identifying projects. (These identifica-
tion numbers have been “randomized” to remove any chance of 
identifying a company.)

Project inactive time  Total time (rounded to whole months) during 
the project elapsed time, in which no project activity took place. This 
time, subtracted from project elapsed time, derives the actual time 
spent working on the project.

Project life cycle  A collection of generally sequential project phases 
whose name and number are determined by the control needs of the 
organization or organizations involved in the project. A life cycle can 
be documented with a methodology. (See also “project effort 
breakdown.”)



	 274	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 G l o s s a r y 	 275

Project work effort  All personnel effort that is directed toward the 
completion of a particular project including out-of-hours effort, 
whether paid or unpaid. It includes the effort of client representatives 
in addition to that of information technology personnel.

A good test as to whether an activity constitutes project work 
effort is to ask the question:

“Would the activity be undertaken if there was no project?”

It excludes nonproject activities such as:

	 Public holidays 
Annual leave 
Sick leave 
Training (nonproject)

It is measured in whole hours.

Rating  See entries for “data quality rating” and for “unadjusted 
function point rating.”

Server roles  The services provided by the host/server computer(s) 
to the software application or product.

Software size  In general, synonymous with functional size, but the 
units of software size can be other than that derived by a functional 
size measurement method, for example, lines of code.

Staged development  A decision was made during project planning to 
develop and implement the application as discrete functional units. 
This may apply to any development type, but must be preplanned. 
When an application is developed in total, but implemented over a 
period of time at a number of locations, it is not a staged 
development.

Note that where a stage of a staged development changes any 
functionality delivered in a previous stage, the project should be 
defined and treated as an enhancement.

•	 1st stage  The 1st stage comprises a high-level analysis of 
the overall application (hence defining the scope of each of 
the stages and possibly some overall design) and full software 
development cycle of the 1st stage.

•	 Subsequent stage  Subsequent stages of the software 
development will concentrate on detailed analysis and 
implementation of another logical part of the overall 
application.

Summary work effort  See “project work effort.”



	 G l o s s a r y 	 275

Target platform  Categorizes the implementation platform, to describe 
the target environment. Determined primarily by the device the 
software is implemented into. A project may be classified as:

•	 Device embedded (DE)

•	 PC

•	 Midrange

•	 Mainframe

•	 Multiplatform

Time recording methods  The following methods of collecting work 
effort are believed to be the most common:

•	 Staff hours (recorded)  The daily recording of all of the work 
effort expended by each person on project-related tasks. As an 
example, a person who works on a specific project from 8 a.m. 
until 5 p.m. with a 1-hour lunch break will record 8 hours of 
work effort.

•	 Staff hours (derived)  It is possible to derive the work effort 
where it has not been collected on a daily basis as in Staff 
hours (recorded) above. It may have only been recorded in 
weeks, months, or years.

•	 “Productive” time only (recorded)  The daily recording of 
only the “productive” effort (including overtime) expended 
by a person on project-related tasks. Using the same example 
as just used in staff hours (recorded), when the “nonproduc-
tive” tasks have been removed (coffee, liaise with other teams, 
administration, read magazine, and so on), only 5.5 hours 
may be recorded.

Type of server  A description of the server to the software application 
or product.

Unadjusted function point rating  This field contains an ISBSG rating 
code of A, B, C, or D applied to the functional size (unadjusted 
function point count) data by the ISBSG quality reviewers to denote 
the following:

	A = The unadjusted function point count was assessed as being 
sound with nothing being identified that might affect its 
integrity.

	B = The unadjusted function point count appears sound, but 
integrity cannot be assured as a single figure was provided.



	 276	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 G l o s s a r y 	 277

	C = Due to unadjusted function point or count breakdown data not 
being provided, it was not possible to provide the unadjusted 
function point data.

	D = Due to one factor or a combination of factors, little credibility 
should be given to the unadjusted function point data.

Unphased effort  Where phase breakdown of effort is provided, and 
the sum of that breakdown does not equal the summary work effort, 
the difference is the unphased effort. Where no phase breakdown is 
provided, this is the same value as the summary work effort.

User base  Data collected about the extent of usage of the system 
produced by the project. The following classifications are used:

•	 User base—business units  Number of business units (or 
project business stakeholders) serviced by the software 
application.

•	 User base—concurrent users  Number of users using the 
system concurrently.

•	 User base—locations  Number of physical locations being 
serviced/supported by the installed software application.

Value adjustment factor (VAF)  The adjustment to the IFPUG functional 
size, which takes into account various technical and quality 
characteristics. The VAF is calculated based on an assessment of the 
14 general systems characteristics (GSCs) for an application, and 
when multiplied by functional size gives the adjusted size.

Web development  A derived indicator of whether the project data 
includes any comment that it is a web development.

Work effort breakdown  Data collected about the people whose time is 
included in the project work effort. See also “project effort breakdown.” 
Three levels are identified in the project data collection package.1 For 
example, if Level 2 is specified, this means that the data submitted 
includes the development team and the development team support 
personnel effort. For the process of collecting and reporting project 
work effort, the following classifications are used:

•	 Level 1—Development Team  Those responsible for the  
delivery of the application under development. The team or 
organization, which specifies, designs, and/or builds the 

1	It should be noted that this Glossary reflects the data collection package introduced 
in 2002. The previous data collection package had four levels of work effort.



	 G l o s s a r y 	 277

software. It typically also performs testing and implementa-
tion activities. It comprises

	 Project Team 
Project Management 
Project Administration

	 Any member of IT Operations specifically allocated to the 
project

•	 Level 2—Development Team Support / IT Operations  Those 
who operate the IT systems that support the end users and 
are responsible for providing specialist services to the 
Development Team (but not allocated to that team). Support 
comprises

	 Database Administration 
Data Administration 
Quality Assurance 
Data Security 
Standards Support 
Audit & Control 
Technical Support 
Software Support 
Hardware Support 
Information Center Support

•	 Level 3—Customers/End Users  Those responsible for 
defining the requirements of the applications and sponsoring/
championing the development of the application. Also the 
software’s end users. The relationship between the project 
customer and the software’s end users can vary, as can their 
involvement in a software project. It comprises

	 Application Clients 
Application Users 
User Liaison 
User Training

Metrics
Defect density  Measures the quality of software in terms of defects 
delivered in unit size of software. It is defined as the number of 
defects per 1,000 functional size units of delivered software, in the 
first month of use of the software. It is expressed as Defects per 1,000 
functional size units.

Project delivery rate (PDR)  Measures the rate at which a project 
delivers software functionality to the end user as a factor of the effort 
required to do so. In ISBSG documents and products it is defined as 
project work effort (measured in hours) over functional size of the 



	 278	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

delivered software (measured in functional size units). It is expressed 
as hours per functional size unit.

Project delivery rate is used regardless of how the software is 
produced because it may:

•	 Comprise all new software

•	 Be a modification of existing software

•	 Use packaged software in part or as the total solution

Speed of delivery  Measures the speed achieved by the project team in 
delivering a quantity of software over a period of time. It is defined 
as the functional size of the delivered software (measured in functional 
size units) over the project elapsed time (measured in months) 
multiplied by the number of people in the project team. It is expressed 
as functional size units per person per elapsed month.



References

Introduction

•	 “CHAOS Summary 2009,” Standish Group, www1	
.standishgroup.com/newsroom/chaos_2009.php.

Chapter 1

•	 Dekkers, Carol. “Demystifying Function Points—Clarifying 
Common Terminology” (IT Metrics Strategies, March 2001). 
Cutter Consortium, www.cutter.com.

•	 ISO/IEC 14143-1:2007  Information technology—Software 
measurement—Functional size measurement—Part 1: 
Definition of concepts, www.jtc1-sc7.org/.

•	 IFPUG. IFPUG Function Point Counting Practices Manual 
Release 4.3, Glossary (IFPUG, September 2009), www.ifpug	
.org.

•	 Dekkers, Carol. “Navigating the Minefield: Estimating Before 
Requirements,” 2004 Proceedings of EuroSPI conference, 
November 2004, Trondheim, Norway, www.EuroSPI.net.

•	 Dekkers, Carol. “Requirements are (the Size of) the Problem” 
(IT Metrics Strategies, March 1998), www.cutter.com.

•	 Bundschuh, Manfred and Carol Dekkers. The IT Measurement 
Compendium—Estimating and Benchmarking Success with 
Functional Size Measurement (Springer, 2008).

•	 Project Management Institute. Project Management Body of 
Knowledge (PMBOK®) Version 4 (Project Management 
Institute, 2008).

Chapter 2

•	 Boehm, Barry et al. Software cost estimation with COCOMO II 
(Prentice Hall, 2000).

•	 ISO/IEC 20926  Information Technology—Function Point 
Counting Practices Manual (ISO/IEC, 2003).

279

www1.standishgroup.com/newsroom/chaos_2009.php
www1.standishgroup.com/newsroom/chaos_2009.php
www.cutter.com
www.jtc1-sc7.org/
www.ifpug.org
www.ifpug.org
www.EuroSPI.net
www.cutter.com


	 280	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 R e f e r e n c e s 	 281

•	 Finnish Software Measurement Association, FiSMA ry. 
“FiSMA Specification for ND21,” available at: www.fisma.fi/
in-english/methods.

Chapter 3
No references

Chapter 4

•	 ISO/IEC 14143-1:2007  Software engineering—Software 
measurement—Functional size measurement—Definition of 
concepts.

•	 ISO14143-6  Information technology—Software measure-
ment—Functional size measurement—Part 6: Guide for use 
of ISO/IEC 14143 series and related international standards.

•	 Morris, Pam. “Levels of Function Point Counting–Version 
1.3” (Total Metrics, 2004), www.Totalmetrics.com.

Chapter 5

•	 “Proposals for project collection and classification from the 
analysis of the ISBSG Benchmark 8,” GUFPI-ISMA SBC 
(Natale, Santillo, Della Noce, Lelli, Lombardi, Moretto, 
Ortona), in Procs. International Workshop on Software 
Measurement, Berlin, 2004.

•	 Santillo, Conte, Meli. “Early & Quick Function Point: Sizing 
More with Less,” Procs. METRICS 2005, 11th IEEE Interna-
tional Software Metrics Symposium, Como, Italy, 2005.

Chapter 6
No references

Chapter 7
No references

Chapter 8
No references

Chapter 9

•	 ESTOR (Mukhopadhyay et al., 1992) and ANGEL (Shepperd 
et al., 1996).

Chapter 10

•	 PMBOK 2008, Chapter 6.3.2 (Estimate Activity Resources: 
Tools & Techniques).

•	 Thomsett, Rob. Third Wave Project Management (Yourdon 
Press, 1989).

www.fisma.fi/in-english/methods
www.fisma.fi/in-english/methods
www.Totalmetrics.com


	 R e f e r e n c e s 	 281

•	 PMBOK 2008, Chapter 6.4.2 (Estimate Activity Durations: 
Tools & Techniques) Three-Point Estimates.

Chapter 11
No references

Chapter 12
No references

Chapter 13
No references

Chapter 14

•	 Cockburn, A. Crystal Clear (Addison-Wesley, 2005).

•	 Cohn, M. Agile Estimation and Planning (Prentice Hall, 2004).

•	 Beck, K. and M. Fowler. Planning Extreme Programming 
(Addison-Wesley, 2001).

•	 International Function Point Users Group (IFPUG). Function 
Point Counting Practices Manual: Release 4.3 (IFPUG, 2009).

Chapter 15
No references

Chapter 16
No references

Chapter 17

•	 ISO14143-6  Information technology—Software measure-
ment—Functional size measurement—Part 6: Guide for use 
of ISO/IEC 14143 series and related international standards.

Chapter 18
Software Metrics Associations Supporting Functional Size Mea-
surement Method(s):

•	 International Function Point Users Group (IFPUG): Supports 
and maintains the IFPUG method (current release 4.3): www	
.ifpug.org.

•	 UK Software Metrics Association: Supports and maintains 
the Mark II method: www.uksma.co.uk.

•	 Netherlands Software Users Metrics Association: Supports 
and maintains the NESMA method: www.nesma.nl.

•	 COSMIC Consortium: Supports and maintains the COSMIC-
FFP method: www.cosmicon.com.

•	 Finnish Software Measurement Association (FiSMA): 
Supports and maintains the FISMA method: www.fisma.fi.

www.ifpug.org
www.ifpug.org
www.uksma.co.uk
www.nesma.nl
www.cosmicon.com
www.fisma.fi


	 282	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n

•	 ISO/IEC Standardized Functional Size Measurement 
Methods (FSMM).

•	 ISO/IEC Functional Size Measurement Framework 
Standards.

All standards are accessible at www.jtc1-sc7.org/.

Chapter 19
No references

Chapter 20
No references

Chapter 21
No references

Chapter 22
No references

www.jtc1-sc7.org/


A
absolute measure, 124
accuracy

defined, 26
functional size measurement 

methods, 149
levels, 38–43
overview, 26–28
size approximation, 43–45

Agile, 113–114
benefits of using, 123–125
estimating using an Agile 

project, 114–115
story points, 115–123

Albrecht, Allan, 171
algorithmic method. See derived 

size approximation
analogy, 5, 6, 75

advantages of estimating by,  
77–78

attributes for estimation, 10
background, 76
drawbacks of estimating by, 79
estimating by, 76–77
SSRM case study, 107–112

application architecture, 20
application boundary, 159–160
application type, 19

project delivery rates by, 222–223

approximation, 38
See also size approximation

architecture type, project delivery 
rates by, 230–231

Assessment Practices Manual 
(APM), 161

B
Base Functional Component 

(BFC), 39
benchmark estimates,  

141–144
benchmarking your projects’ PDR, 

139–140
BFC. See Base Functional 

Component (BFC)
Boehm, Barry, 4
boundary, 159–160
build requirements. See technical 

requirements
business area, project delivery 

rates by, 222

C
case study: enhancement

COSMIC function point 
method, 179–180

FiSMA FSM, 185–187
IFPUG method, 167–170

Index

283



	 284	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 I n d e x 	 285

case study: new development
COSMIC function point 

method, 177–179
FiSMA FSM, 183–185
IFPUG method, 163–167

case study: student and staff 
records management  
system (SSRM)

estimating using analogy,  
107–112

estimating using comparison, 
102–107

estimating using regression 
equations, 98–102

overview, 95–98
CASE tools, project delivery rates 

by use of, 232–233
charge-out rates, 128–129

indexing for inflation and 
currency movements, 130

refining for project team 
structure, 129

COCOMO II, 20, 21–22
code and reference tables, 87–88
Common Software Measurement 

International Consortium.  
See COSMIC

comparison, 5, 6, 71–74
attributes for estimation, 10
SSRM case study, 102–107

corporate subscription, 189
COSMIC, 10, 147

applicability, 172
documentation, 175
E&Q COSMIC ranges and 

numerical assignments, 57
E&Q COSMIC transactional 

functions, 56–57
enhancement case study, 179–180
Mapping phase, 174
Measurement phase, 175
Measurement Strategy  

phase, 174
new development case study, 

177–179
overview, 171–172
principles for measuring the 

functional size of software, 
172–174

process for measuring the 
functional size of software, 
174–175

COSMIC function point (CFP), 173
COSMIC Generic Software Model, 

172–173
cost

charge-out rates, 128–130
costing activities outside project 

development tasks, 130–132
costing effort contributed by 

personnel not included in 
the PDR, 132

estimates, 33–34
estimating using ISBSG data, 

127–132
steps to calculate cost using 

published PDRs, 132–133
steps to calculate non-PDR 

related project costs, 133

D
data suite release, 189 
default complexity measure, 39
delivery date

estimates, 31–32
estimation techniques, 32–33

derived size approximation, 43, 
48–51

See also size approximation
detailed linked and labelled 

measure, 40
detailed linked measure, 40
detailed measure, 40
development platforms, 18

identifying, 137
project delivery rates by, 223

development type, 19
project delivery rates by,  

223–224
direct size approximation, 43, 48

See also size approximation
duration

estimates, 31–32
estimation techniques, 32–33
SSRM case study, 97–98
using functional size to  

estimate, 58



	 284	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 I n d e x 	 285

E
Early & Quick (E&Q), 55–57
effort, 26–27

estimates, 29–30
estimation techniques, 30
SSRM case study, 97–98
using functional size to  

estimate, 58
equation use, 5, 6
estimates

accuracy of, 26–28
producing detailed estimates, 

8–10
ranges, 7
as targets, not predictions, 141
timing of, 7–8

Estimating, Benchmarking & 
Research Suite, 189

estimation equations
applying to your project, 244–245
project delivery rate, 246, 249
project duration, 248, 251
project work effort, 247, 249–250
speed of delivery for whole 

project, 248
speed of delivery for whole 

project team, 252
speed of delivery per person, 

248, 252
what estimates are based on, 

243–244
what statistics mean, 245–252
which equations to use, 244

estimation frameworks, 135–136
constructing, 140–141
using the ISBSG PDR tables to 

create tables for, 136–141
estimation techniques, 28–29

analogy, 5, 6, 10, 75–79
comparison, 5, 6, 10, 71–74
cost, 34
delivery date (project duration), 

32–33
effort, 30
KISS Quick, 51–54
using several estimation 

approaches, 93
work breakdown, 81–84

exact measure, 38
experience databases, 89–90
expert opinion. See direct size 

approximation
external inputs (EI), 49, 156, 158, 

165, 166, 168
external inquiries. See external 

queries (EQ)
external interface files (EIF), 49, 

156, 157, 165, 166, 168
external outputs (EO), 49, 156, 158, 

165, 166, 168
external queries (EQ), 49, 156, 158, 

165, 166, 168

F
Finnish Software Measurement 

Association. See FiSMA
FiSMA, 10, 147–148
FiSMA FSM, 145

BFC classes, 181–182
counting rules, 182–183
enhancement case study, 185–187
main characteristics, 181
new development case study, 

183–185
FiSMA ND21, 20, 21–22
FP Prognosis, 58
FSMM. See functional size 

measurement methods
function points, 1

components, 155–156
vs. story points, 124–125

functional fit, 39
functional requirements, 3
functional size, 3–4, 9, 153

analogies, 153, 154
defined, 1, 151, 172
determining, 165–167, 168–169
relation to ISBSG and software 

project estimating, 160–161
types of, 169–170

functional size measurement, 1, 2, 
4, 37

counting from a logical user 
perspective, 153–155

defined, 151
difficulty of measuring, 148–149



	 286	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 I n d e x 	 287

functional size measurement (cont.)
example using IFPUG function 

points, 155–156
logical boundary, 159–160
SSRM case study, 96–97
use of in effort estimation, 10
using ISO/IEC 20926: 2009 - 

IFPUG 4.3, 165
using to estimate project effort 

and duration, 58
the value of as a size 

measurement, 149
functional size measurement 

methods, 92, 192
accuracy, 149
FiSMA FSM, 145
IFPUG CPM, 145
ISO/IEC 19761:2003, 145
Mk II Function Point Analysis, 146
NESMA FPA Method, 146
which method to use, 148

functional user requirements,  
164, 167

defined, 152

G
general systems characteristics 

(GSCs), 158–159
graphs, creating from regression 

equations, 67–69

H
hourly charge-out rates.  

See charge-out rates
Humphrey, Watts, 4

I
IFPUG, 10, 146

enhancement case study, 167–170
function point components, 

155–156
new development case study, 

163–167
steps for function point 

counting, 157–159
IFPUG CPM, 145, 155
industry sector, project delivery 

rates by, 220

inflation, indexing charge-out 
rates for, 130

inhouse/outsourced 
development, project delivery 
rates by, 233

internal logical files (ILF), 49,  
50–51, 155, 157, 165, 166, 168

International Function Point Users 
Group. See IFPUG

ISBSG
activities where effort is 

recorded for PDR, 131
member organizations, 261–263
regression equations, 65–69

ISBSG Repository, 90–91
criteria for selecting projects, 193
data availability, 189
data quality, 190
demographic summary of data, 

194–196
development environment, 196, 

209–213
development method, 196, 213–215
documentation, 215 
entering project data in, 9
estimating project cost using 

ISBSG data, 127–132
guidelines for using ISBSG data, 

91–93
lines of code, 193
project context, 195, 198–199
project data positioning, 191
project details, 26
project origin, 194–195, 196–198
ratings, 91, 190, 192
selecting a suitable data subset, 

191–194
submitting projects to, 257–259
type of product, 195, 202–209
type of project, 195, 200–202
uses for the data, 190–194

ISO/IEC 14143-1:2007, 151–153
ISO/IEC 19761:2003, 145, 175
ISO/IEC 20926:2009, 145, 165
ISO/IEC 20968:2002, 146
ISO/IEC 24570:2005, 146
ISO/IEC 29881:2008, 145
ISO/IEC definitions, 151–153
iterations, 114



	 286	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 I n d e x 	 287

K
KISS Quick, 51–54

L
language type, 19

project delivery rates by, 225–226
languages, 14

extracting PDR distributions 
based on, 137–138

mainframe development 
environments, 15

midrange development 
environments, 16

multiplatform development 
environments, 17

PC development environments, 16
project delivery rates by, 226–230

Lite or Quick & Early FP, 58
logical boundary, 159–160
logical files, 49, 50–51

M
macro-estimation, 5, 8

use of functional sizing, 10
management directives, 29
methodologies, 18–19

project delivery rates by, 233
micro-estimation, 5, 8

use of functional sizing, 10
using process models for, 83–84

missing functionality
identifying, 61–63
See also scope creep; scope 

management
Mk II Function Point Analysis, 146

N
NESMA, 10, 146–147
NESMA FPA Method, 146
NESMA Indicative FP, 58
Netherlands Software Metrics 

Association. See NESMA
nonfunctional requirements, 3, 4
normalized effort, 91–92, 192

O
organization type, project delivery 

rates by, 221

outputs, 51
See also external outputs (EO)

P
PDR. See project delivery rates
Perry, Bill, 4
platform, 18
PMBOK version 4, 7
Program Evaluation and Review 

Technique (PERT), 7
project attributes

application architecture, 20
application type, 19
development platform, 18
development type, 19
language type, 19
languages, 14–17
methodologies, 18–19
team size, 17

project benchmark report, 258–259
project delivery rates, 9, 217–219

by application type, 222–223
by architecture type—all 

platforms, 230
by architecture type—mainframe 

platforms, 231
by architecture type—midrange 

platforms, 231
by architecture type—

multiplatforms, 231
by architecture type–PC 

platforms, 231
attributes that influence PDR, 

14–17
benchmarking your projects’ 

PDR, 139–140
by business area, 222
defined, 13
by development platform, 223
by development type—all 

platforms, 223
by development type—

mainframe platforms, 224
by development type—

midrange platforms, 224
by development type—

multiplatforms, 224
by development type—PC 

platforms, 224



	 288	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 I n d e x 	 289

estimation equations, 246, 249
impact of maximum team size 

and project size on, 239–240
by industry sector, 220
by inhouse/outsourced 

development, 233
ISBSG activities where effort is 

recorded for PDR, 131
by language—all platforms, 

226–227
by language—mainframe 

platforms, 228
by language—midrange 

platforms, 229
by language—multiplatforms, 

230
by language—PC platforms, 

138, 229
by language for 1-4 team  

size, 140
by language type—all 

platforms, 225
by language type—mainframe 

platforms, 225
by language type—midrange 

platforms, 225
by language type—

multiplatforms, 226
by language type—PC 

platforms, 226
by maximum team size, 237–238
by organization type, 221
by project size, 234–236
by relationship to market, 234
by use of CASE tools, 232–233
by use of methodology, 233
by user type, 233

project duration
estimates, 31–32
estimation techniques, 32–33
SSRM case study, 97–98
using functional size to  

estimate, 58
project effort, 26–27

estimates, 29–30
estimation techniques, 30
SSRM case study, 97–98
using functional size to  

estimate, 58

project estimation frameworks. See 
estimation frameworks

project history databases
guidelines for using ISBSG data, 

91–93
ISBSG Repository, 90–91
using an organization’s own 

experience data, 89–90
project life cycle, estimating 

methods in, 8
project requirements, types of, 1–3
project sample, demographics 

used, 253–255
project size, project delivery rates 

by, 234–236
project subsets, estimating, 87–88
project-specific characteristics, 

that influence PDR, 20–23

Q
quality requirements. See 

nonfunctional requirements

R
R2(Adj), 99
ratings, ISBSG Repository, 91,  

190, 192
regression equations

creating graphs from, 67–69
SSRM case study, 98–102
tables, 65–66
using, 66–67

relationship to market, project 
delivery rates by, 234

relative measure, 124
reused code, 88
rough size measure, 39

See also KISS Quick

S
scope creep, 44, 61
scope management, 63

identifying missing 
functionality, 61–63

size approximation, 39
accuracy, 43–45
classifying size approximation 

techniques, 43



	 288	 P r a c t i c a l  S o f t w a r e  P r o j e c t  E s t i m a t i o n 	 I n d e x 	 289

derived, 43, 48–51
direct, 43, 48
extrapolative approaches, 58
need for caution, 59

size estimation
Early & Quick (E&Q), 55–57
KISS Quick, 51–54

sizing accuracy levels, 38–43
SNAP, 161
software estimation approaches, 

4–5
software estimation techniques, 7

strengths and weaknesses, 6
software project estimation 

frameworks. See estimation 
frameworks

SSRM. See student and staff records 
management system (SSRM)

statistics, presentation of, 93
stories, 114

allocating story points to, 118–121
allocating to individual project 

iterations, 122–123
story points, 114

allocating stories to individual 
project iterations, 122–123

allocating story points to stories, 
118–121

benefits of using, 123–125
calibrating the story point scale 

using past projects, 116–117
development team velocity,  

117–118
estimating total project schedule 

and cost at project initiation, 
121–122

vs. function points, 124–125
reviewing the process at project 

completion, 123
scale, 115

student and staff records 
management system (SSRM)

estimating using analogy,  
107–112

estimating using comparison, 
102–107

estimating using regression 
equations, 98–102

overview, 95–98
subsets, estimating, 87–88

T
team size

adjusting the extracted PDR 
distributions according to, 
138–139

influence of on PDR, 17
project delivery rates by, 237–238

technical requirements, 3
Thirties Rule of Thumb, 58

U
unadjusted FP count, 158
uncertainty, cone of, 8
user, defined, 2
user requirements, sample set, 

164, 167
user stories. See stories
user type, project delivery rates 

by, 233

V
VAF. See value adjustment factor
value adjustment factor, 4, 20,  

21–22, 152

W
weighted averages, 58
Wide-Band Delphi estimation,  

81–82
work breakdown, 5, 6

overview, 81–82
See also micro-estimation


	Contents
	Foreword
	Acknowledgments
	Introduction
	1 Project Estimation: Background, Concepts, and Approaches
	Types of Project Requirements
	Functional Size
	Software Estimation Approaches
	Other Techniques
	Estimate Ranges
	Timing of Estimates
	Producing a Detailed Estimate
	Use of Function Point Sizing (Functional Size Measurement) in Effort Estimation
	Summary

	2 Factors That Influence Productivity
	Project Attributes That Influence Project Delivery Rate
	Are Some Languages Better Than Others?
	What Is the Impact of Team Size?

	What Other Project Attributes Are Interesting?
	Does the Platform Make a Difference?
	Development Type
	Language Type
	Application Type
	Application Architecture

	Other Project-Specific Characteristics Known to Influence PDR
	Summary

	3 Software Estimates: How Accurate Are They?
	What Does “Accurate” Mean?
	The Project Details
	A General Picture
	Estimation Techniques
	Individual Estimates
	Effort Estimates
	Effort Estimation Techniques

	Delivery Date (Project Duration)
	Duration Estimation Techniques

	Cost Estimates
	Summary

	4 Sizing Software and Size-Approximation Accuracy
	Sizing Accuracy Levels
	Level 6: Size Approximation
	Level 5: Rough Size Measure
	Level 4: Default Complexity Measure
	Level 3: Detailed Measure
	Level 2: Detailed Linked Measure
	Level 1: Detailed Linked and Labelled Measure

	Classifying Size Approximation Techniques
	Size Approximation Accuracy
	Summary

	5 Some Practical Software Size Approximation Techniques
	Direct Size Approximation
	Derived Size Approximation
	Early Approximation of Functional Size Using ISBSG Data

	KISS Quick Software Size Estimation Technique
	Moving from Basic KISS Quick Approach to Other Accuracy Levels

	Early & Quick Software Size Estimation Technique
	Early & Quick for COSMIC Function Point Size

	Some Other Examples of Extrapolative Approaches to Size Approximation
	Using Functional Size to Estimate Project Effort and Duration
	The Need for Caution
	Summary

	6 The Problem of Missing Functionality
	Identifying Missing Functionality
	Managing Changes and Additions to Functionality
	Scope Management

	Summary

	7 Estimating Using Equations
	ISBSG Regression Equation Tables
	Using the ISBSG Regression Equations
	Creating Graphs from the Equations
	Example Effort Estimate Using the Equations

	Summary

	8 Estimating Using Comparison
	Using the Comparison Technique
	Summary

	9 Estimating Using Analogy
	Background: Reasoning by Analogy
	Estimating by Analogy
	Advantages of Estimating by Analogy
	The Drawbacks of Estimating by Analogy
	Summary

	10 Estimating Using Work Breakdown Structure
	Work Breakdown Structure: Introduction
	Using Process Models for Micro-Estimation
	Summary

	11 How Do I Estimate a Project Comprising Varying Components?
	Subsets Implemented Utilizing Different Technologies
	Code and Reference Tables
	Subsets Characterized by Technical or Other Complexities
	Reused Code
	Summary

	12 Using Project History Databases
	Use of an Organization’s Own Experience Data
	Use of the ISBSG Data
	The ISBSG Repository

	Guidelines for Use of the ISBSG Data
	Presentation of Statistics
	Using Several Estimation Approaches

	Summary

	13 Project Estimation Using the ISBSG Repository
	Case Study: A Student and Staff Records Management System (SSRM)
	Overview
	Functional Size Measurement
	Project Work Effort and Duration Estimates

	Example 1: Estimating Using Regression Equations
	Using Regression Equations to Generate Estimates for SSRM
	Regression Equations: Functional Size
	Regression Equations: Functional Size and Maximum Team Size
	Discussion

	Example 2: Estimating Using Comparison
	The Estimating by Comparison Technique
	Using Estimating by Comparison to Generate Estimates for SSRM
	Discussion

	Example 3: Estimating Using Analogy
	The Estimating by Analogy Technique
	Using Estimating by Analogy to Generate Estimates for SSRM
	Discussion

	Summary

	14 Estimating for Agile Software Development
	Estimating an Agile Project
	Story Points
	The Story Point Scale
	Calibrating the Story Point Scale Using Past Projects
	Development Team Velocity
	Allocating Story Points to Stories
	Estimating Total Project Schedule and Cost at Project Initiation
	Allocating Stories to Individual Project Iterations
	Reviewing the Process at Project Completion

	Benefits of Agile Software Estimation Using Story Points
	Comparing Story Points and Function Points

	Summary

	15 A Guide to Estimating Project Cost Using ISBSG Data
	Hourly Charge-Out Rate
	Internal Project: Building Software for Your Own Organization
	External Project: Building Software for an External Organization

	Refining Hourly Charge-Out Rate for Project Team Structure
	Indexing the Charge-Out Rate for Inflation and Currency Movements
	Additional Cost Considerations
	Costing Activities Outside Project Development Tasks
	Costing Effort Contributed by Personnel Not Included in the PDR

	Summary
	Additional Steps to Calculate Non-PDR-Related Project Costs


	16 Creating a Software Project Estimation Framework Using the ISBSG Repository
	Using the ISBSG PDR Tables to Create Tables for Your Estimating Framework
	Step 1. Identify the Development Platforms
	Step 2. Extract PDR Distributions Based on Development Languages
	Step 3. Adjust the Extracted PDR Distributions According to Team Size
	Step 4. Benchmarking Your Projects’ PDR
	Step 5. Construct the Estimation Framework

	Estimates Are Targets, Not Predictions
	Calculating a Benchmark Estimate for a Planned Project
	Step 1. Adjust PDR for Team Size
	Step 2. Adjust PDR for Project Size
	Step 3. Adjust PDR for Development Language
	Step 4. Calculate Effort Estimate and Consider the Range of Probable Values

	Summary

	17 Functional Size Measurement Methods in Use Today
	How Many FSM Methods Are There?
	Which FSM Method Should I Choose?
	How Hard Is It to Measure Functional Size?
	What Sort of Accuracy Can I Expect from an FSM Measurement?
	The Value of FSM as a Size Measurement
	Summary

	18 A Brief Tutorial on Functional Size Measurement (FSM)
	ISO/IEC Definitions
	What Is Functional Size?
	Analogies to Illustrate Functional Sizing

	The Key to Functional Size Measurement Is to “Think Logical”
	Counting in FSM: An Example Using IFPUG Function Points
	IFPUG Function Point Components

	What Is Involved in IFPUG Function Point Counting?
	The Logical Boundary
	Where Does Functional Size Fit in with the ISBSG and Software Project Estimating?
	Summary

	19 An IFPUG Function Point Case Study
	New Development Case Study
	Sample Set of User Requirements
	Functional User Requirements
	Functional Size Measurement Using ISO/IEC 20926: 2009 – IFPUG 4.3
	Determining the Functional Size

	Enhancement Case Study
	Sample Set of User Requirements
	Functional User Requirements
	Types of Functional Size

	Summary

	20 The COSMIC Functional Size Measurement Method
	Overview of the COSMIC Functional Size Measurement Method
	Applicability of the Method
	The Principles for Measuring the COSMIC Functional Size of a Piece of Software
	The Process for Measuring the COSMIC Functional Size of a Piece of Software
	COSMIC Method Documentation
	Summary

	21 A COSMIC Function Point Case Study
	Analysis of the Size of the New Software to Be Developed
	Analysis of the Size of the Enhancement to the Software
	Overall Size of the Software After the Enhancement
	Summary

	22 A FiSMA Function Point Case Study
	Size Measurement of the New Software to Be Developed
	Size Measurement of the Enhancement to the Software
	Overall Size of the Software After the Enhancement
	Summary

	A: What Is in the ISBSG Repository?
	Data Availability
	Data Quality
	What the ISBSG Data Can Be Used For
	Considerations
	ISBSG Project Data Positioning
	Comparing Apples with Apples
	Selecting a Suitable Data Subset

	What You Can Find in the ISBSG Repository
	Project Origin
	Project Context
	Type of Project
	Type of Product
	Development Environment
	Methods and Tools

	Summary
	Additional Documentation

	B: Project Delivery Rates by Category
	Presentation of Statistics
	Explanation of Tables
	Use of the Statistics

	Project Delivery Rates
	Project Delivery Rate by Use of CASE Tools
	Project Delivery Rate by Use of Methodology
	Project Delivery Rate by Relationship Between Customer, Developers, Users
	Project Delivery Rate by Project Size
	Project Delivery Rate by Maximum Team Size
	The Impact of Maximum Team Size and Project Size on Project Delivery Rate


	C: Estimation Equations
	What Are These Estimates Based On?
	Which Equation(s) Should You Use?
	Do These Equations Apply to My Project?
	What Do the Statistics Mean?

	D: Project Sample Demographics Used in Chapter 3
	E: The Benefits of Submitting Projects to the ISBSG Repository
	How to Submit a Project
	A Description of the Project Benchmark Report


	F: ISBSG Member Organizations
	Glossary
	Terms
	A
	B
	C
	D
	F
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Metrics

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




