A Toolkit for Estimating
Software Development Effort & Duration

7
1R
v

Practical Software Project
Estimation: A Toolkit

for Estimating Software
Development Effort & Duration

International Software Benchmarking Standards Group
Compiled and edited by Peter R. Hill

T

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

The McGraw-Hill Companies

Copyright © 2011 by International Software Benchmarking Standards Group (ISBSG). All rights reserved.
Except as permitted under the United States Copyright Act of 1976, no part of this publication may be re-
produced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-171792-2
MHID: 0-07-171792-7

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-171791-5,
MHID: 0-07-171791-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trade-
mark owner, with no intention of infringement of the trademark. Where such designations appear in this
book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or
for use in corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-
hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of
the possibility of human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors
or omissions or the results obtained from the use of such information.

The purpose of this document is to provide information and ideas about estimating software development
projects. The onus is on the users of the document to assess the suitability of this information for their own
purposes and to interpret this information accordingly. While every effort has been made to ensure that the
information in the document is complete and correct, neither the International Software Benchmarking Stan-
dards Group Limited, nor its Members or Directors, accept any liability for any errors or omissions, nor for
the results of any actions taken or not taken on the basis of the information in this document.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors re-
serve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the
Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile,
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You
may use the work for your own noncommercial and personal use; any other use of the work is strictly pro-
hibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARAN-
TEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RE-
SULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT
CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESS-
LY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will
meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in
the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any
information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be
liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the
use of or inability to use the work, even if any of them has been advised of the possibility of such damages.
This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises
in contract, tort or otherwise.

Looking for ways to
improve your estimation
and management of new
development and
enhancements?

An ISBSG Subscription can help you by providing insight and
analysis gained from industry data collected from thousands of
development and enhancement projects around the world.

When you become an ISBSG Subscriber you gain unlimited access
to a stream of new and updated information including all ISBSG
analysis reports, project management charts and tables, and
effective estimation tools.

Take advantage of learnings from other projects like yours.

Improve your success rate.

www.isbsg.org ‘ ’ ISBSG

Delivering IT Confidence

www.isbsg.org/subscribe
www.isbsg.org

To Terry Wright, whose foresight
and enterprise created the ISBSG

About the Editor

Peter Hill is the chief executive officer and a director of the
International Software Benchmarking Standards Group (ISBSG). He
has been in the information services industry for more than 40 years,
with broad experience covering a number of industries working in
both Australia and New Zealand.

For 12 years from 1982, Peter was the executive director and a
major shareholder of an Australian software company.

Since selling his interest in the software company, Peter has
headed up the ISBSG, a not-for-profit organization with a
membership of 13 countries. Peter has been a speaker at conferences
in Australia, Asia, Europe, and the USA. He has a number of
published articles covering key aspects of the information services
industry. Heis amember of the China Software Process Improvement
Network International Advisory Committee and was a past
chairman, secretary, and fellow of the Australian Computer Society.

Peter has compiled and edited five books for the International
Software Benchmarking Standards Group: Software Project Estimation,
The Benchmark Release 6, The Benchmark Release 8, Practical Project
Estimation (three editions), and The Software Metrics Compendium.

About the Technical Editor

David Cleary (david.cleary@charismatek.com) is a senior consultant
with Charismatek Software Metrics in Melbourne, Australia. During
his 20 years in the IT industry, he has worked in the areas of software
development, software tool research, tertiary education, and
software metrics and measurement.

At Charismatek, David provides consultancy and training
services in Function Point Analysis, software project estimation, and
benchmarking. He has major interests in the application of
measurement to new and evolving software delivery technologies
and in the effective use of software tools for software project
estimation. He is also actively involved in the ongoing research into
and development of Charismatek’s Function Point WORKBENCH™
software tool.

Over many years David has been involved in the International
Software Benchmarking Standards Group (ISBSG) as a member of
its Technical and Product Advisory Committee. He has contributed
to publications and to tool development including the Practical
Project Estimation book editions and the Comparative Estimating Tool.

O© 0 3 o

10
11

12
13

14
15

16

17

18

19
20

21
22

Contents at a Glance

Project Estimation: Background,
Concepts, and Approaches 1

Factors That Influence Productivity 13
Software Estimates: How Accurate Are They? ... 25
Sizing Software and Size-Approximation

Accuracy ...t i 37
Some Practical Software Size

Approximation Techniques 47
The Problem of Missing Functionality 61
Estimating Using Equations 65
Estimating Using Comparison 71
Estimating Using Analogy 75
Estimating Using Work Breakdown Structure ... 81
How Do I Estimate a Project Comprising

Varying Components?ccvueeen 87
Using Project History Databases 89
Project Estimation Using the

ISBSG Repositoryovviiiiiiiiinne, 95
Estimating for Agile Software Development 113
A Guide to Estimating Project Cost Using

ISBSGDataccoiiiiiiiiiiiii., 127
Creating a Software Project Estimation

Framework Using the ISBSG Repository 135
Functional Size Measurement Methods

inUseTodayccoiiiiiiiiiiine.. 145
A Brief Tutorial on Functional Size

Measurement (FSM) 151
An IFPUG Function Point Case Study 163
The COSMIC Functional Size

Measurement Method 171
A COSMIC Function Point Case Study 177
A FiSMA Function Point Case Study 181

Vi Practical Software Project Estimation

A WhatIs in the ISBSG Repository? 189
B Project Delivery Rates by Category 217
C Estimation Equations 243
D Project Sample Demographics
Usedin Chapter3cciiiiiniiiinnnn, 253
E The Benefits of Submitting Projects
to the ISBSG Repository 257
F ISBSG Member Organizations 261
Glossarycoiiiiiiiiiiiiii i 265
Referencescciiiiiiiiiiiiii., 279

Contents

Foreword
Acknowledgments
Introduction

Project Estimation: Background,

Concepts, and Approaches
Types of Project Requirements
Functional Size
Software Estimation Approaches
Other Techniques
Estimate Ranges
Timing of Estimates
Producing a Detailed Estimate

Use of Function Point Sizing (Functional Size

Measurement) in Effort Estimation
Summary ...

Factors That Influence Productivity

Project Attributes That Influence Project

Delivery Rate

Are Some Languages Better

Than Others?
What Is the Impact of Team Size?

What Other Project Attributes Are Interesting?
Does the Platform Make a Difference?

Development Type
Language Type
Application Type
Application Architecture

Other Project-Specific Characteristics Known

to Influence PDR
Summary ...

Software Estimates: How Accurate Are They?

What Does “Accurate” Mean?
The Project Details
A General Picture
Estimation Techniques
Individual Estimates

vii Practical Software Project Estimation

Effort Estimates 29
Effort Estimation Techniques 30
Delivery Date (Project Duration) 31
Duration Estimation Techniques 32
Cost Estimates 33
Summary ... 34

4 Sizing Software and Size-Approximation

AcCUuracy ..ooiiiiiiiii i i 37
Sizing Accuracy Levels 38
Level 6: Size Approximation 39
Level 5: Rough Size Measure 39
Level 4: Default Complexity Measure 39
Level 3: Detailed Measure 40
Level 2: Detailed Linked Measure 40

Level 1: Detailed Linked and
Labelled Measure 40
Classifying Size Approximation Techniques 43
Size Approximation Accuracy 43
Summary ... 45

5 Some Practical Software Size Approximation

Techniqueso, 47
Direct Size Approximation 48
Derived Size Approximation —................... 48

Early Approximation of Functional Size
Using ISBSG Data 49
KISS Quick Software Size Estimation Technique ... 51
Moving from Basic KISS Quick Approach
to Other Accuracy Levels 54
Early & Quick Software Size
Estimation Technique 55
Early & Quick for COSMIC Function
PointSizeol 56
Some Other Examples of Extrapolative

Approaches to Size Approximation 58
Using Functional Size to Estimate Project

Effort and Duration 58
The Need for Caution 59
Summary ... 59

6 The Problem of Missing Functionality 61
Identifying Missing Functionality —............... 61
Managing Changes and Additions

to Functionality —............ 63

Scope Management 63

Summary ... 63

10

11

12

13

Contents
Estimating Using Equations 65
ISBSG Regression Equation Tables 65
Using the ISBSG Regression Equations 66
Creating Graphs from the Equations 67
Example Effort Estimate Using
the Equations 68
Summary ...l 69
Estimating Using Comparison 71
Using the Comparison Technique 71
Summary ... 74
Estimating Using Analogy 75
Background: Reasoning by Analogy 76
Estimating by Analogy —........................ 76
Advantages of Estimating by Analogy 77
The Drawbacks of Estimating by Analogy 79
Summary ... 79
Estimating Using Work Breakdown Structure 81
Work Breakdown Structure: Introduction 81
Using Process Models for Micro-Estimation 83
Summary ... 85
How Do I Estimate a Project Comprising
Varying Components? 87
Subsets Implemented Utilizing Different
Technologies 87
Code and Reference Tables 87
Subsets Characterized by Technical or
Other Complexities 88
ReusedCode 88
Summary ... 88
Using Project History Databases 89
Use of an Organization’s Own Experience Data ... 89
Useof the ISBSGData 90
The ISBSG Repository —................... 90
Guidelines for Use of the ISBSG Data 91
Presentation of Statistics 93
Using Several Estimation Approaches 93
Summary ... 93
Project Estimation Using the ISBSG
Repositorycooiiiiiiiiiiiiiiiiiiit, 95
Case Study: A Student and Staff Records
Management System (SSRM) 95

iX

Practical Software Project Estimation

Overview o il
Functional Size Measurement
Project Work Effort and Duration
Estimates
Example 1: Estimating Using Regression
Equations ool
Using Regression Equations to
Generate Estimates for SSRM
Regression Equations: Functional Size
Regression Equations: Functional
Size and Maximum Team Size
Discussiono oL
Example 2: Estimating Using Comparison
The Estimating by Comparison
Technique
Using Estimating by Comparison
to Generate Estimates for SSRM
Discussiono oL
Example 3: Estimating Using Analogy
The Estimating by Analogy Technique
Using Estimating by Analogy to
Generate Estimates for SSRM
Discussiono oL
Summary ...

14 Estimating for Agile Software Development
Estimating an Agile Project
Story Points ool

The Story Point Scale
Calibrating the Story Point Scale Using
Past Projects
Development Team Velocity
Allocating Story Points to Stories
Estimating Total Project Schedule and
Cost at Project Initiation
Allocating Stories to Individual
Project Iterations
Reviewing the Process at
Project Completion
Benefits of Agile Software Estimation Using
StoryPoints o il
Comparing Story Points and
Function Points
Summary ...

Contents
15 A Guide to Estimating Project Cost Using
ISBSGDataciiiiiiiiiiiii.. 127
Hourly Charge-OutRate 128
Internal Project: Building Software for
Your Own Organization 128
External Project: Building Software for
an External Organization 128
Refining Hourly Charge-Out Rate for Project
Team Structure 129
Indexing the Charge-Out Rate for Inflation
and Currency Movements 130
Additional Cost Considerations 130
Costing Activities Outside Project
Development Tasks 130
Costing Effort Contributed by Personnel
Not Included inthe PDR 132
Summary ...l 132
Additional Steps to Calculate
Non-PDR-Related Project Costs 133
16 Creating a Software Project Estimation
Framework Using the ISBSG Repository 135
Using the ISBSG PDR Tables to Create Tables
for Your Estimating Framework 136
Step 1. Identify the Development
Platforms 137
Step 2. Extract PDR Distributions
Based on Development Languages 137
Step 3. Adjust the Extracted PDR
Distributions According to Team Size 138
Step 4. Benchmarking Your
Projects’ PDR 139
Step 5. Construct the Estimation
Framework 140
Estimates Are Targets, Not Predictions 141
Calculating a Benchmark Estimate for
a Planned Project 141
Step 1. Adjust PDR for Team Size 142
Step 2. Adjust PDR for Project Size 142
Step 3. Adjust PDR for Development
Language 143
Step 4. Calculate Effort Estimate
and Consider the Range of
Probable Values 143
Summary ... 144

Xi

Practical Software Project Estimation

17 Functional Size Measurement Methods

inUseTodaycccovviiiiiiiiinnennnn,
How Many FSM Methods Are There?
Which FSM Method Should I Choose?
How Hard Is It to Measure Functional Size?
What Sort of Accuracy Can I Expect from

an FSM Measurement?
The Value of FSM as a Size Measurement
Summary ...

18 A Brief Tutorial on Functional Size
Measurement (FSM)cciiiiuiennn..
ISO/IEC Definitions
What Is Functional Size?
Analogies to Illustrate Functional Sizing
The Key to Functional Size Measurement
Is to “Think Logical”
Counting in FSM: An Example Using
IFPUG Function Points
IFPUG Function Point Components
What Is Involved in IFPUG Function
Point Counting?
The Logical Boundary
Where Does Functional Size Fit in with the
ISBSG and Software Project Estimating?
Summary ...

19 An IFPUG Function Point Case Study
New Development Case Study —.................
Sample Set of User Requirements
Functional User Requirements
Functional Size Measurement Using
ISO/IEC 20926: 2009 - IFPUG 4.3
Determining the Functional Size
Enhancement Case Study
Sample Set of User Requirements
Functional User Requirements
Types of Functional Size
Summary ...

20 The COSMIC Functional Size
Measurement Method
Overview of the COSMIC Functional
Size Measurement Method
Applicability of the Method

21

22

Contents
The Principles for Measuring the COSMIC
Functional Size of a Piece of Software 172
The Process for Measuring the COSMIC
Functional Size of a Piece of Software 174
COSMIC Method Documentation 175
Summary ... 176
A COSMIC Function Point Case Study 177
Analysis of the Size of the New Software to
BeDevelopedl 177
Analysis of the Size of the Enhancement
tothe Software Ll 179
Overall Size of the Software After
the Enhancement 180
Summary ... 180
A FiSMA Function Point Case Study 181
Size Measurement of the New Software to
Be Developed 183
Size Measurement of the Enhancement to
the Software 185
Overall Size of the Software After
the Enhancement 187
Summary ... 187
What Is in the ISBSG Repository? 189
Data Availability 189
Data Quality 190
What the ISBSG Data Can Be Used For 190
Considerations 190
ISBSG Project Data Positioning 191
Comparing Apples with Apples 191
Selecting a Suitable Data Subset 191
What You Can Find in the ISBSG Repository 194
Project Origin 196
Project Context 198
Type of Project 200
Type of Product 202
Development Environment 209
Methodsand Tools 213
Summary ... 215
Additional Documentation 215
Project Delivery Rates by Category 217
Presentation of Statistics 218
Explanation of Tables 218

Use of the Statistics 219

Xiii

Practical Software Project Estimation

Project Delivery Rates

Project Delivery Rate by Use of

CASEToolsccoooiiiiin..
Project Delivery Rate by Use

of Methodology
Project Delivery Rate by Relationship

Between Customer, Developers, Users ..
Project Delivery Rate by Project Size
Project Delivery Rate by Maximum

Team Size
The Impact of Maximum Team Size and

Project Size on Project Delivery Rate

C Estimation Equations00t
What Are These Estimates Based On?
Which Equation(s) Should You Use?
Do These Equations Apply to My Project?
What Do the Statistics Mean?

D Project Sample Demographics
Used in Chapter3

E The Benefits of Submitting Projects
to the ISBSG Repository
How to Submit a Project
A Description of the Project
Benchmark Report

F ISBSG Member Organizations

Glossaryeiiiiiiiiiii i i
Terms ...

Index ..ot i i it

Foreword

in Boston, MA, was $2.2 billion. Congress approved funding in

1987 and construction began in 1991. Aptly nicknamed the
“Big Dig,” the project was plagued with serious miscalculations and
the budget and time schedule escalated considerably. By 1994, the
project estimate inflated to almost $10 billion, according to financial
reports released by the Commonwealth of Massachusetts assessors
and the Federal General Accounting Office. By early 2000, it became
publicly known that the project would be well over and above the
$10 billion limit. While there was much political upheaval and firings,
the project went on. In the end, the original estimate of $2.2 billion
ballooned to a final cost exceeding $22 billion, the project lasted
13 years, and the finished product was characterized by fewer features
than had been planned, of poorer quality, and at the cost of a life.

In 1996, soon after the first CHAOS University event, we decided to
run three special focus groups in Boston, Chicago, and San Francisco. In
these groups, we invited four Fortune 500-type organizations. Each
organization brought a team of senior IT, financial, and software
development executives. We asked each team to choose a project and to
write down on a card their resolution using our triple constraint standard.
Then we polled each team in turn. One of the team answers was most
memorable. In this team, the project manager’s card read “successful,”
the CIO’s card read, “challenged,” and the CFO's card read, “failed.”

In a follow-up round, we asked the PM why he thought the
project was successful. He replied that although the project was a
little late, over budget, and missing some functions, “We got it done.”
The now visibly irritated CIO said, “I don’t think a million dollars
over budget and a year late is little.” The CFO replied, “Yes, it cost
twice as much and took twice as long, but none of that really matters;
we are just not using the product.” We then went around the table to
the other organizations to talk about their projects.

In the next round of questions, we came back to the PM to ask if
he had changed his mind. He had; he considered what the CFO said
and now felt it was a failed project because it did not deliver a useful
product. The CFO then said she thought that the PM and the

T I The 1982 initial estimate for the Central Artery/Tunnel project

XV

Xvi

Practical Software Project Estimation

development organization did their jobs but that it was a failure of
the organization, so she would now call the project a success because
it had been completed. The CIO was looking very perplexed and
bewildered. Shaking his head he said, “I just don’t know, it is not a
success, but is it a failure? I just don’t know! I am undecided.”

Here we had one project, three people, and six different answers.
We went through two more rounds of projects, for a total of 36 projects
in the three focus group sessions. Everyone struggled with defining
their results. Of the 36 projects tested, there were several that all three
agreed on, but only one project that all three people said was a success.

Having an accurate project budget is a key component of measuring
success. You might consider accurate estimates an oxymoron, like jumbo
shrimp or military intelligence, because the definition of each component
contradicts the other. Accuracy means conforming closely to some
standard. It is being precise or having just a very small error of any kind.
An estimate is calculating approximately the amount, extent, magnitude,
position, or value of a project. It is an opinion or a rough guess about the
cost, time, and scope of a project. Therefore, an accurate estimate means
tohaveaclose guess. With project estimates, as in the game of horseshoes,
closeness counts. And also like horseshoes, accurate estimates require
skill, experience, information, and luck for a good outcome.

Yogi Berra once said, “It’s tough to make predictions, especially
about the future.” Let’s face it, creating accurate predictions for a
software project is hard. The delta between expectations and reality is
often disappointment. In developing a more systematic approach
toward project estimating, you need to face a bit of realism. Truly
reliable estimates are rare. Profiling one project against others to
isolate costs is tricky and difficult at best, but this approach is much
better than many of the alternatives. Having multiple estimation
techniques is even better. Accurate estimates require good tools, lots
of historical data, experienced people, and a good to very good
understanding of the scope of the project.

The Standish Group research shows that only 4 percent of IT
executives believe their organization is highly skilled at estimating
software projects. Another 28 percent think they are at least skilled, but
over two thirds believe this is an area of much needed improvement. In
this regard, most IT executives believe that there has only been slight or
no improvement in skills for accurately estimating software projects over
the last few years. Therefore, our conclusion is that not only are we bad at
estimating project costs and schedules, we are not getting any better.

We often joke that there are two types of estimates, lucky and
lousy. Fortunately, this book, Practical Software Project Estimation, can
help you and your organization improve your software estimates
and thereby improve your project delivery. Having this great source
of project cost data provides additional luck, and using this resource
can make your estimates less lousy.

Jim Johnson, Chairman
The Standish Group

Acknowledgments

who contributed to the production of this book:

ﬁ special thanks to the following companies and individuals

David Cleary of Charismatek Software Metrics, who was the
technical editor for the content and was responsible for
Chapter 13 with the excellent estimating examples and case
studies and for Chapter 14. David also provided all manner
of support during compilation and editing.

Pam Morris of Total Metrics for content in Chapters 5 and 6,
for Chapter 15 on estimating cost, and for reviewing other
chapters.

Pekka Forselius of 4SUM Partners, Finland, who acted as a
content planner and reviewer as well as providing valuable
content, particularly for the chapter on software size
estimation.

Charles Symons for the COSMIC FSM content and for
providing a host of valuable suggestions.

Carol Dekkers of Quality Plus Technologies Inc., who
provided valuable input with content for Chapter 1 plus the
complete Chapters 18 and 19.

Dr. Chris Lokan of the University of NSW—Australian
Defence Force Academy (and the principal ISBSG analyst) for
the estimation analysis, project delivery rate tables, and
content of Chapter 3.

Luca Santillo of Agile Metrics and Luigi Buglione of the
Italian Software Metrics Association (ISMA-GUFPI) for
content for Chapters 5, 10, and 12.

Michael Stringer for his revision work on Chapters 11
and 16.

Rob Thomsett of The Thomsett Company for allowing the
use of material from his book Third Wave Project Management.

Xvii

Xviii Practical Software Project Estimation

* George Ansell, the ISBSG Repository Manager, for his reviews,
input, and advice.

The following organizations are sponsors of the ISBSG:

¢ Software Productivity Research
¢ Agile Metrics

¢ Charismatek Software Metrics
¢ Quality Plus Technologies

¢ Total Metrics

® 4SUM Partners

¢ The Victorian State Government—Australia

ISBSG Member contact details can be found in Appendix F.

Introduction

The Problem

The results reported in the Standish Group’s report “CHAQOS
Summary 2009” showed a marked decrease in project success rates,
with only 32 percent of projects succeeding; that is, they are delivered
on time, on budget, with required features and functionality. Forty-
four percent were “challenged,” meaning they were late, over budget,
and/or had less than the required features and functionality. Twenty-
four percent failed; that is, they were canceled prior to completion, or
delivered and never used.

This report showed a decrease in the success rates from the
previous study, as well as a significant increase in the number of
failures. They were the worst in the last five study periods, with the
highest failure rate in over a decade.

The Standish reports have identified formal parametric-based
estimating as one of the key requirements for project success. Capers
Jones! reported similar results, identifying formal cost-estimating as
the leading factor preventing project failures; those projects estimated
using formal tools and methodologies were twice as likely to succeed
compared with the projects estimated using informal methods.

NOTE Projects estimated using formal tools and methodologies are twice as
likely to succeed compared with projects estimated using informal methods.

Software development is a risky, complex, and costly process.
The complexity of the task means that it is difficult to predict
development effort and schedules.

Where a fee is being charged for the development of software, the
impact on the business of poor estimates of software development
effort, schedules, and associated costs is easy to appreciate. Depending
upon the method of charging, either the IT service provider or the client
will experience direct, unscheduled, and unexpected financial losses.

! Capers Jones, Chief Scientist Emeritus SPR, www.SPR.com.

Xix

www.SPR.com

XX

Practical Software Project Estimation

Less obvious is the impact in organizations where no “real”
money is paid for IT services. However, even in these organizations,
poor prediction of software costs and other project outcomes will
impact the business bottom line in a number of ways:

* Missed delivery dates can mean lost business.

* Resources allocated to a “failing” project can mean lost
opportunity to progress with other projects.

e A canceled project usually means money spent for no
delivered business value.

e Cost overruns, whether against budget or expectations, can
mean that the business case for IT investment in the project is
no longer valid.

Consequently, it is important to any business to ensure that
software development estimates are as accurate as they can be, using
the information available at the time of estimation. Estimates need to
be preceded by a thorough risk analysis and then be based on
measured or quantified experience. The method of derivation should
be verifiable and defensible. It is also critical—both for the
organization and the project team—that the effort estimates and
associated scheduled delivery dates for the software project are
achievable.

The Solution

Software project estimation is not a black art. There are well-defined
estimating techniques, project history repositories, and reliable
estimating equations available. In this book our intention is to provide
information and practical estimating techniques—primarily based on
the International Software Benchmarking Standards Group (ISBSG)
software project history data—that will assist project managers with
the task of estimating the three key variables that follow the
establishment of software project requirements, namely: Size, Effort,
and Duration.

Alarge part of the content of this book is based on the utilization of
the project data collected by the ISBSG to produce accurate software
estimates. At the time of writing, the Development & Enhancement
Repository contains data from more than 5,000 completed projects
from around the world.

The complete ISBSG data set is available on the “Estimating,
Benchmarking & Research Suite,” which can be licensed from www
.isbsg.org.

This book has been developed for those professionals who
recognize the need for sound project estimates but who need the
information and tools to achieve that objective.

www.isbsg.org
www.isbsg.org

Introduction

Readers are not expected to be knowledgeable of, or proficient in,
the use of functional size measurement. For those who are interested,
chapters provide simple explanations and examples of how to use a
functional size measure. It is important to reference the Glossary to gain a
clear understanding of the key terms used in this book, for example,
“project delivery rate,” “speed of delivery,” “functional size,” and so on.

All project managers, professional system developers, and lecturers
in information technology should find a wealth of useful information
in this book.

A Map of This Book

The following table helps to quickly identify which chapters to focus
on to obtain answers to a number of commonly asked questions about
project estimation, listed in the first column. The second column
indicates the first chapter to focus upon to obtain answers to the
question in the first column. The third column indicates any chapters
that further expand upon the issues described in the chapter referenced

in the second column.

Question Chapter For Additional Information
How accurate have Chapter 3 Appendix D
estimates been for

completed projects?

How can | get an early Chapter 5 Chapters 17 to 22
estimate of software size?

Are there multiple ways of Chapter 1 Chapters 6, 7, 8, 9,
estimating? What are they? and 10

| know the effort required, Chapter 7 Appendix C

but can | meet the deadline?

What if my project contains Chapter 11

quite different components?

How can | standardize and Chapter 16 Appendix B
formalize my estimating?

Are there existing formulas Appendix C Chapter 7

that | can use for my

estimates?

Are Agile projects different? Chapter 14

Is there a way that | can Chapter 6

check the completeness of

requirements?

What is in the ISBSG Appendix A Glossary
Repository of project data?

XXi

XXii

Practical Software Project Estimation

Whether you are looking for a quick indicative estimate for a
feasibility report; a detailed estimate for a quotation or capital
expenditure request; or a way to standardize and formalize your
quoting, this book provides what you need.

This publication has been developed for those professionals who
face the day-to-day challenge of coming up with credible estimates for
effort and duration of software projects. Readers are not expected to be
knowledgeable of, or proficient in the use of, functional size
measurement. For those who are interested, there are chapters that
provide simple explanations and examples of how to measure software
size using a functional size measure.

As well as the professionals who produce estimates, other system
developers, project managers, students, and lecturers should find a
wealth of useful information here.

CHAPTER 1

Project Estimation:
Background,
Concepts, and
Approaches

n this chapter we explain the typical and distinct types of require-

ments that make up a software development or enhancement

project; the various effort estimation approaches that are covered
in this book; what is involved in producing a detailed estimate; and
the use of functional size! measurement in effort estimation.

Throughout this book we concentrate on estimating the effort
and duration involved in a software project. Effort and duration
estimation normally leads to the estimation of cost, so we have
provided an introduction to cost estimation in Chapter 15.

Types of Project Requirements

Before we delve into the different estimation approaches, it is
important to understand the different types of requirements that
make up a project and to be aware of what is, and is not, included in
the estimation approaches in this book.

The project estimation approaches explained in this book rely on
the functional size of the software as a key input variable and are

! Functional size is the size of the software to be developed. It is expressed in units
such as function points. The units may vary depending on the chosen functional
size measurement method (FSMM). Functional size measurement can be
compared to the measurement of a building being expressed in square meters
or square feet.

2 Practical Software Project Estimation

________________ User-Driven

L4 N .
, . Requirements

1. Functional (User)
Requirements

2. Nonfunctional (User) Software Project

Requirements Requirements
\\ s , ’
3. Technical (Build)
Requirements Developer/
Construction
Requirements

Ficure 1-1 Types of software development project requirements

applicable to projects where software is developed or enhanced.
This will be explained further after the discussion on types of
requirements, since not every project that involves software or systems
issuitable for functional size measurement. Functional size measurement
pertains specifically to projects where software is developed, modified,
or enhanced.

To make sense of functional size measurement and where it fits
with estimating, it is useful to discuss the three types of software
project requirements. Figure 1-1 shows the different types of software
project requirements. Elsewhere in this book we will discuss a number
of ways to establish the functional size of a piece of software without
needing detailed knowledge of functional sizing.

NOTE The word “user” in the context of functional size measurement
means any person or thing that interacts with the software at any time
(suchas other pieces of software, hardware, end users, and administrators)
that has a requirement for data or services supported by the software
being developed.> This is an important concept because functional size
measurement can be used to size software that has no human users. For
example, the software interacts with other software or hardware. It may
be useful to think of a “user” as analogous to an actor in the Use Case
methodology. (For other definitions, refer to the Glossary.)

As depicted in Figure 1-1, project requirements can be categorized
into three distinct types (this breakdown also increases understanding

2 For a definition of “user” in the context of functional size, refer to ISO/IEC 14143-
1:2007 as (ISO, 2007) standard.

Chapter 1: Project Estimation

between the usersand the project team). The three types of requirements
are as follows:

e Functional requirements These represent WHAT functions
will be included in the software. Functional requirements are
the business processes performed by or supported by the
software (for example, record and store ambient temperature)
and include the functions that the software must perform. The
size of functional requirements is expressed in function points.

e Nonfunctional requirements This is the second type of
software requirement and represents HOW the software must
perform. Nonfunctional requirements describe how the
software must operate and are not included in functional size.
Sometimes known as “quality requirements,” the nonfunctional
requirements include suitability, accuracy, interoperability,
compliance, security, reliability, efficiency, maintainability, portability,
and quality in use, as described by the ISO (International
Organization for Standardization) standard ISO/IEC
(International Electrotechnical Commission) 9126 series, plus a
range of performance requirements. While these requirements
should also be defined by the system’s users/customers, they
are often not articulated separately (or at all), but rather are
sprinkled throughout requirements documents.

The nonfunctional requirements are the contracted
specifications for the software and include requirements for
security (for example, data encryption), performance (for
example, response time and reliability), accuracy (for example,
governmental approvals required), and other specifications of
how the software must perform.

e Technical (build) requirements These requirements address
how the software will be developed or “built” and include
tools, methods, type of project, resource skill levels, and so on.
These requirements are where architectural design, configura-
tion management methods, development methodology, use of
packages, and use of CASE (Computer Aided Software Engi-
neering) tools, for example, come into play. The technical
requirements include hardware and software requirements,
infrastructure requirements, database type, and so on.

All three types of project requirements are necessary to produce a
realistic estimate of the total software project effort.

Functional Size
Knowing the functional size of the software to be developed is
essential for macro estimation. Chapter 18 provides an introduction
to functional sizing.

i| Practical Software Project Estimation

Functional size represents the size of the functional requirements.
Functional size is an important input in software estimation, but it is
only one of a number of required variables. For a new development
project, functional size is the size of all of the delivered or installed
functionality (analogous to a building’s floor plan). For an
enhancement project, functional size is the total size of all functional
requirements that are new, renovated (changed), or removed (deleted)
from the software.

Nonfunctional requirements fall outside functional size. The value
adjustment factor (VAF)—which is an optional step in the IFPUG
(International Function Point Users Group) function point method—is
intended to address a portion of nonfunctional requirements.
According to industry experts including Barry Boehm (COCOMO II),
Watts Humphrey (Software Engineering Institute), and Bill Perry
(Quality Assurance Institute), the impact of nonfunctional requirements
can double the effort required to develop software depending on the
exact constraints involved.

NOTE Functional size measurement pertains only to the size of the software’s
functional user requirements.

Software Estimation Approaches

There are two major software estimation approaches: macro (for
example, top-down; parametric) and micro (for example, bottom-up;
task based), although some estimation approaches combine typical
aspects of both macro and micro techniques. Within each approach
are several estimating techniques, as shown in Table 1-1.

Note that the estimating techniques listed in Table 1-1 are the
techniques presented in this book, not a definitive or exhaustive list
of estimating techniques. Any of the techniques could be used at any
point in the life cycle. However, the more accurate our estimate of the
project’s size, the more precise our effort and duration estimates can
be. The relative precision of our resultant estimates will match the
precision of our inputs.

Table 1-2 outlines some of the strengths and weaknesses of each
estimation technique.

Note that all the macro techniques have problems with small
projects as a result of the greater variation in the ratios of size to effort
and duration typically seen in smaller projects.

3 Note that the VAF may be phased out in the future and replaced by an alternative
option.

Chapter 1: Project Estimation
Approach Estimation Technique When Applicable
Macro- Equation Use In this method, Useful when little
Estimation | the size of the project is applied information is known or
to an appropriate equation when requirements are
that has been derived from incomplete. High-level
project data. The result is a estimate.
useful indicative, or “ballpark”
estimate of effort and duration.
Includes Program Evaluation
and Review Technique (PERT)
equations.
Comparison Essentially, this Useful when enough
involves finding a group of project attributes and a
completed projects with project range for the functional
attributes similar to those of size are known. This
the proposed project, and using allows the estimator to
the data from those projects to adequately gauge that
provide a guide for the estimate the comparison projects
of the effort and duration for are similar.
your new project.
Analogy This method is Useful when even more
based on being able to find a information is known
completed project that is a very about the project
good match to your proposed being estimated. Best
project based on its major accomplished after
attributes. The project delivery requirements are
rate and speed of delivery complete.
from the analog are then used
to guide the estimate of the
effort and duration for your new
project.
Micro- Work Breakdown In this Useful when the project
Estimation | method, the effort and scope is well defined
duration associated with each and an accurate work
component or activity of the breakdown structure can
software project is separately be defined. Typically,
estimated and the results experienced project team
aggregated to produce an members estimate their
estimate of the whole job. This project tasks based on
is a bottom-up technique. historical completed
similar tasks, and the
overall estimate is the
aggregated sum of all
work breakdown structure
task estimates.

TaeLe 1-1 Estimation Approaches and Techniques

5

6 Practical Software Project Estimation

Technique Strengths Weaknesses
Equation Based on a depth of Too imprecise for accurate
Use historical data. estimation.
Ideal for an indicative You need to be confident that
estimate early in the life the equation being used is
of a project. relevant to your project.
The equation always
provides an estimate, even
if your project is unusual or
exceptional.
Not very useful for small project
estimation.*
Comparison Based on representative Based on representative past
experience. experience that may no longer
Objective, repeatable, be relevant.
verifiable, defensible. For best results, the technique
Efficient and if used needs to be aligned to your
correctly, provides a environment/organization.
good guide to the likely Cannot be used when no past
effort your project will experience is available.
consume.
Analogy Based on representative Based on a past experience
experience. that may no longer be relevant.
Objective, repeatable, Difficult to find suitable analog
verifiable, defensible. projects.
For best results, needs to
be closely aligned to your
environment or organization.
Work Detailed and specific to Subjective, can be optimistic.
Breakdown this project. Requires detailed knowledge
of the proposed project’s
structure and individual
components.
Requires extensive knowledge
of the organization and
development environment.
May overlook items or
activities.

TaBLE 1-2 Estimation Techniques Strengths and Weaknesses

4 Although there is no specified size as to what constitutes a small project, for a project
measured in function points, most software metrics consultants agree on a lower
limit of around 30 function points.

Chapter 1: Project Estimation

Other Techniques

Techniques from artificial intelligence research have also been applied
to develop software effort estimation models. For example, artificial
neural networks and decision trees have been used to estimate effort.
These methods donotrequire the user to propose an explicit functional
form for the model, only the input and output metrics. These
techniques are beyond the scope of this book.

Estimate Ranges

Remember that the earlier an estimate (or if there is little known data,
a “guesstimate”) is performed, the less accurate it will be. For this
reason, when relaying an estimate to your customer, you should
always provide a plus/minus range to accompany the estimate to
indicate the degree of confidence in the estimate. Your original
estimate is the most likely estimate, while upper and lower figures
are generally the optimistic and pessimistic estimates. The Project
Management Institute’s Project Management Body of Knowledge
(PMBOK® version 4) provides useful guidance on estimate ranges.

A number of equation approaches can be used to present a
weighted average of the estimate (examples include PERT, CPM,
Monte Carlo). The following example uses the Program Evaluation
and Review Technique (PERT) approach to estimate likely effort for
individual project activities:

Te=To+4Tm+Tp
6

where
Te = expected effort
To = most optimistic estimate
Tm = most likely estimate
Tp = most pessimistic estimate

Rather than giving the customer a fixed, single number of effort
hours, it is far more helpful to state: “Our estimate is 250 hours, plus
or minus 50 hours, based on what we know about the project at this
stage.”

Timing of Estimates

Figure 1-2 shows you the impact that your increasing knowledge of
the system requirements will have on the accuracy of your estimates.

Figure 1-3° is provided to assist you in deciding when particular
estimating methods are most appropriate in the life cycle of your
project.

3 Figure 1-3 is supplied by Charles Symons of Software Measurement Services Ltd.

8

Practical Software Project Estimation

A Approx. Functional Sizing
N > + Traditional Task-Based
Detailed Functional Sizing [Estimating

Estimating
Uncertainty T ! H T] i
| — : Build Test Inlnplenlient
. 1 Desigi™ ! : ;
R:equiren/m/nts E E E E
Feasibilit
easjbility

Ficure 1-2 The cone of uncertainty

50%

Indicative
. 2
uncertainty
(+/-) in whole 25% 1
project effort
estimate
Feasibility {Requirements! Design i Build & Unit Test | System :Implement
: : | Test
_T t) Whole-of-Project Estimating
Earliest reasonable First fully Methods
application of an informed use of Ton-D
FS-based task-by-task op-bown
estimating method estimating 1. Typical FS estimating method
(in approximate mode) First fully (when well calibrated)
informed use of 2. Estimating by analogy
an ITS-ba.sed Bottom-Up
estimating
method 3. Task-by-task estimating

Ficure 1-3 Estimating methods in the project life cycle

All of the macro-estimation techniques presented in this book can
be applied with both approximate and detailed functional sizing.
However, as the graph shows, the precision of the resultant estimates

will improve as the precision of the functional sizing improves.

Producing a Detailed Estimate

To produce a detailed estimate—as opposed to an initial ballpark or
indicative estimate for feasibility consideration—typically a micro-
estimating technique (for example, work breakdown) will be used to
develop the effort estimate. A macro-estimating technique can then

be used to validate the micro-estimate.

NOTE Where the macro- and micro-estimates vary by more than 10 to 15

percent, you should identify why and rework your estimates.

Chapter 1: Project Estimation

Estimates are best derived from an organization’s own experience
database. You can build your own experience database by entering
your project data in the ISBSG Repository.®

If you have not yet established your own “experience” database, you
can use the ISBSG Repository as your source for macro-estimations.

NOoTE Ifyou have entered data from your projects into the ISBSG Repository,
you have the best of both worlds. You can extract your projects to derive
the project delivery rate (expressed in hours per function point) to be
used. Then you can extract similar projects from other organizations for
comparison. The project data from other organizations will be particularly
useful where you are estimating a project that includes a variable that
you have no previous experience of, for example: a platform or language
that you have not used previously.

Functional size” is only one of the many variables known to
influence effort, but it is recognized as a key driver. As the functional
size increases, so does associated effort.

In its simplest form, this relationship is expressed as:

Effort = Size * Project Delivery Rate

where Project Delivery Rate is expressed as Hours per Functional Point
and hours are effort hours.

If you are using comparison or analog macro-estimation methods,?
the information shown in Table 1-3 should be included in your set of
attributes for selecting similar projects.

Use your common sense when matching projects and / or adjusting
project delivery rates. For example:

e If the only similar project identified was negatively impacted
by the learning associated with the introduction of a new
technology, but the skills acquired will be utilized by this
project, then the project delivery rate (PDR) can be expected to
be better (that is, have a lower PDR) than the similar project.

o If this project is similar to a previous project, with the
exception that you have to provide additional deliverables
(for example, a user manual), then the project delivery rate
can be expected to be less productive (that is, higher).

6 Refer to the appendixes for a detailed description of the data in the ISBSG
Repository. Go to www.isbsg.org for information on how to submit projects for
inclusion in the Repository.

7 For the estimating examples in this book, the functional size measure used is units
of function points according to the IFPUG method (FP). Note that all of the IFPUG
releases use the same units of measure: IFPUG function points. At this printing,
the most recent IFPUG release is IFPUG 4.3 (published in September 2009). For
further information visit www.ifpug.org.

8 Both these approaches are covered in detail in Chapter 13 in this book.

9

www.isbsg.org
www.ifpug.org

10

Practical Software Project Estimation

Project type Development, Enhancement, or Redevelopment

(on a new platform).

Size

Functional size measurement.

Project goals In terms of quality, cost, schedule, and constraints

(that is, priority of each). Note that cost, scope
(functionality and quality), and time (effort) are the
famous “triple constraint” of project management.

Development platform Mainframe, midrange, PC, or multiplatform.

Language Programming language or language level.

Task selection Similar project profile in terms of activities and

deliverables from those activities. (Phases and
work activities included.)

TaBLe 1-3 Attributes for Estimation by Comparison and Analogy

A commercial estimating tool can be used for estimating using
industry data or your organization’s experience or knowledge
database. Be aware that you need to know the basics of software
project estimating and how your organization supports estimation
before shopping for an estimating tool.

Use of Function Point Sizing (Functional Size

Measurement) in Effort Estimation

Functional requirements are sized in function points and are measured
using a functional size measurement method such as COSMIC
(Common Software Measurement International Consortium), FiSMA
(Finnish Software Measurement Association), IFPUG, or NESMA
(Netherlands Software Metrics Association). Each of these ISO/IEC
standardized functional size measurement methods has its own units of
measure and approach to determining functional size. A tutorial on
functional size measurement can be found in Chapter 18. Simple case
studies that illustrate the counting of function points are also provided.

Functional size has a role to play in both the macro- and micro-
estimating approaches, as shown in Table 1-4.

Approach Use of Functional Sizing

Macro-estimating Functional size is a key input to most estimating

equations and project comparisons.

Micro-estimating The functional size allows you to calculate the

“expected” project delivery rate for comparison
with past projects.

TaeLe 1-4 Use of Functional Size Approximation in Estimation Approaches

Chapter 1: Project Estimation 1

Summary

In this book we explain the three macro-estimation techniques in
detail and define the data and tools that you need to appropriately
use these techniques. We also provide an overview of micro-
estimation.

Any technique is only as good as the data and information on
which it is based. You cannot expect any technique to compensate for
lack of definition, understanding, or agreement on the scope of the
software job to be done. Just as a chain is only as strong as its weakest
link, estimates of effort are only as reliable as the least reliable input
variable.

And finally: Never rely on a single estimation method for a project.
The more cross-checks and sanity checks you can employ, the better.

This page intentionally left blank

CHAPTER 2

Factors That
Influence
Productivity

and refer to project attributes or characteristics that might

influence the PDR that you use for your estimate. (PDR is the
expression in hours per function point of how long it takes to deliver/
develop functionality.) For the purposes of this book, two groups of
project attributes will influence your estimates:

I I Throughout this book we talk about project delivery rate (PDR)

e Those that the ISBSG has identified and analyzed from its
project repository data

e Those project-specific characteristics that are not recorded in
a metrics repository

The first group impacts the various estimation techniques covered
in this book; the latter group—project-specific characteristics—
impacts the adjustment of the estimate you obtain from using the
techniques in this book, to allow for the peculiarities of your
organization, environment, and project.

This book does not cover risk analysis, but a detailed risk analysis
should be undertaken prior to any project estimation. The risk
analysis may highlight the factors that will influence the adjustment
that you make to your estimates and the factors that might negatively
impact the chances of project success.

NOTE Formal risk assessment is an essential prerequisite for project
estimation.

13

14 Practical Software Project Estimation

Project Attributes That Influence Project Delivery Rate

The ISBSG has performed a detailed statistical analysis of the project

data contained in its repository to identify the project attributes that

influence productivity, and hence, estimates of effort and duration.
So what are the main factors that can have an impact on PDR?

Only a few attributes seem to be consistently related to PDR.

Language and team size have been shown to impact PDR.
Readers will be interested in platform (which reflects the development
environment) and in the rates achieved by the different organization
types and the business areas within organizations. These have been

analyzed and a summary of the findings follows.

NOTE Low project delivery rate means better productivity, fewer hours per

function point.

Are Some Languages Better Than Others?

A valuable breakdown considers project delivery rate for individual
languages. The choice of languages tends to be governed by the
choice of platform (PC, midrange, mainframe, or multiplatform).
Detailed analysis showed that most languages are concentrated on a
single type of platform; Java is the only language that is well

represented on all platforms.

NoOTE ISBSG research has shown that the primary programming language
is one of the two factors that have the greatest ability to explain variations

in project delivery rate (team size' is the other).

The observations in Tables 2-1 to 2-4 are based on an analysis of
1,681 projects from the repository (details on how these projects were

selected are presented in Appendix B).

The project groups analyzed for midrange computers are
generally smaller, so take care before you jump to a conclusion. The

main 3GLs are COBOL, C, and Java.

PC projects now include quite a wide range of 3GLs and 4GLs.

For those languages that appear on more than one platform, some
clear trends can be seen. Mainframe PDR values tend to be 15 hours
or more per function point. On other platforms, PDR tends to be 8 to
12 hours per function point. PDR in multiplatform environments is
generally close to PDR in PC environments, except with traditional
3GLs such as COBOL and PL/I. These observations probably reflect
the better tools and interactive development environments available

on non-mainframe platforms, especially for newer languages.

! The ISBSG collects data on and reports on Maximum Team Size (refer to the

Glossary).

Chapter 2: Factors That Influence Productivity

Language

Findings

Visual Basic

Visual Basic projects are spread across a wide range of
project delivery rates. There are two main groups: about a
quarter fall into the range from 1 to 5 hours per function
point, and half into the range from 25 to 32 hours per
function point. The mean is 25 and the median is 27 hours
per function point.

Java

Java projects range evenly from 3 to 30 hours per function
point, with half in the range from 11 to 27 hours per function
point. The median and mean are both about 18 hours per
function point.

COBOL

COBOL projects display a very wide distribution of PDR
values: the full range from 1 to 80 hours per function point
is represented. The distribution is skewed, though, with
smaller values more common. The median is 17 hours

per function point, and the mean is 23 hours per function
point.

C/C++

Half of the C projects have PDR values between 8 and
16 hours per function point. A smaller group ranges from
22 to 30 hours per function point, and a few are over

50 hours per function point. The median is 16, and the
mean is 22 hours per function point. C++ appears worse,
with no clear pattern and “averages” over 30 hours per
function point (median 32, mean 34).

Oracle

Oracle projects have quite a broad spread, but most PDR
values are small. Over half are below 7 hours per function
point; smaller groups are at around 20 and 30 hours per
function point. The median is 7 hours per function point,
and the mean is 12 hours per function point.

PL/I

Like COBOL projects, PL/I projects have a skewed
distribution of PDR values, with smaller values more
common. Almost half lie in the range from 1 to 10 hours
per function point. Over one-third lie in the range from

13 to 25 hours per function point. The rest are scattered
between 25 and 55 hours per function point. Mean and
median project delivery rates are both about 14 hours per
function point, but few projects are actually close to that
value.

Scripting
languages

Most projects that use scripting languages have PDR
values below 15 hours per function point, but a few have
much higher values. The median is 13 hours per function
point, and the mean is 18 hours per function point.

TaBLe 2-1 Languages — Mainframe Development Environments

15

16 Practical Software Project Estimation

Language

Findings

C/C++

Midrange C projects are similar to C projects on mainframe
projects, with slightly better PDR in general. The median is 15 hours
per function point, and the mean is 18 hours per function point.
Unlike mainframe projects, on this platform C++ is better than

C, with half in the range from 5 to 9 hours per function point and
few above 20 hours per function point; the median is 8 hours per
function point.

Java

Though the full range is from 4 to over 70 hours per function
point, most Java projects lie in the range from 4 to 9 hours per
function point; 9 hours is the median.

Oracle

Oracle projects range from 2 to 29 hours per function point. Most
lie between 2 and 10 hours per function point, with median 9 and
mean 11 hours per function point.

sQL

SQL projects vary greatly in range from 4 to 54 hours per function
point, but most are below 20 hours per function point. The
median is 13 hours per function point.

TaBLE 2-2 Languages — Midrange Development Environments

Language

Findings

ASP

ASP projects range from 2 to 14 hours per function point. Median
and mean are both 6 hours per function point.

Oracle

Oracle projects are spread fairly evenly from 1 to 33 hours per
function point. The median is 9 and the mean is 10 hours per
function point.

SoL

SQL ranges from 3 to 12 hours per function point, with an
average of 5 hours per function point and a median of 4.

C/C++

Again, C projects appear to have better PDR rates than C++
projects, but the sample of C projects is small, so this conclusion
is risky. Treating them as a single combined group, nearly all are
between 3 and 15 hours per function point. The median is 10
hours per function point, and the mean is 14 hours per function
point.

COoBOL

COBOL ranges widely, from 3 to over 30 hours per function point.
Almost half are below 6 hours per function point. The rest are
scattered from 9 to 35 hours per function point. The median is
10 hours per function point, and the mean is 13 hours per
function point.

Visual
Basic

Visual Basic projects range from 1 to 24 hours per function point,
but nearly all are below 12 hours per function point. The mean
and median are both 7 hours per function point.

Java

Nearly all Java projects are between 2 and 12 hours per function
point. The median is 8 hours per function point, and the mean is
9 hours per function point.

TaBLE 2-3 Languages — PC Development Environments

Chapter 2: Factors That Influence Productivity

Language

Findings

ABAP

ABAP projects have a spike (i.e., a most common value) at about
8 hours per function point; three-quarters are below 15 hours per
function point. The median is 10 and the mean is 12 hours per
function point.

C/C++

Most projects lie in the range from 2 to 13 hours per function
point. The median is 5, and the mean is 10 hours per function
point. In this environment, C and C++ projects appear
indistinguishable in terms of PDR (though it must be noted that
the sample sizes are small).

C#

PDR is notably poorer than for C or C++, in this data set. The
range is 2 to 49 hours per function point, with most projects
falling between 6 and 26 hours per function point. The mean is
17 and the median is 14 hours per function point.

COBOL

COBOL projects on multiplatforms resemble PC and midrange
COBOL projects in their spread of PDR values, which is 3 to

30 hours per function point. This time, though, the values tend
much more toward the higher end of the range. In terms of PDR,
multiplatform COBOL projects most closely resemble mainframe
COBOL projects. The mean is 23 and the median is 20 hours per
function point.

Java

Nearly all Java projects fall between 4 and 10 hours per function
point. The mean is 7 and the median is 6 hours per function point.
This is similar to Java projects on midrange and PC platforms.

Lotus Notes

These projects are spread from 2 to 12 hours per function point,
with most at 5 hours or fewer per function point. The median is 4
and the mean is 5 hours per function point.

PL/I The range of project delivery rates is wide, from 8 to 62 hours per
function point. Most are between 10 and 25 hours per function
point; the median is 21 and the mean is 25 hours per function
point.

Visual Basic | The range of project delivery rates is wide, from 1 to 61 hours per

function point. Most are between 3 and 15 hours per function point;
the median is 8 and the mean is 14 hours per function point.

TaBLE 2-4 Languages — Multiplatform Development Environments

What Is the Impact of Team Size?

Maximum team size is known to be one of the most important factors
that affects PDR. The ISBSG collects data on maximum team size. In
Appendix B we provide a table that can be used to adjust PDR to
allow for team size.

Once a team size exceeds five people, productivity decreases.
Projects with maximum team sizes of five or more have significantly
higher (worse) project delivery rates than projects with smaller teams.
If the team size on your project will exceed five, allow for a greater
range of error in the estimate.

17

18

Practical Software Project Estimation

What Other Project Attributes Are Interesting?

In addition to the two project attributes that have the most significant
impact on PDR, some others are worth considering. Project attributes
like business area, development platform, and so on, have been
analyzed to see whether they appear to be associated with variations in
projectdelivery rate. The analysis was done for each attribute separately.
They all indicate factors that might be relevant in understanding
delivery rates. You can do further analysis by using the ISBSG
“Estimating, Benchmarking & Research Suite” to identify other factors
that might be relevant to your organization and project.

Does the Platform Make a Difference?

To date, development platform has been the best indicator of the
environment in which the project is being developed. So the term more
correctly refers to the whole environment/process, not specifically to
the hardware platform.

NortE Development platform actually indicates development process
and environment.

We split platforms into four types: PC, midrange, mainframe, and
multiplatform. Mainframes have a broad range of project delivery
rates. PCs show a narrower range of project delivery rate values,
which reflects good predictability. PC-based projects also show a
generally lower project delivery rate (that is, fewer hours per function
point, which should reduce cost and project length). Coincidentally,
midrange platforms are also midrange in their PDRs, not as good as
PCs, but better and more predictable than mainframes.

There are two likely reasons for the major differences in produc-
tivity between PC, midrange, and mainframe development projects:

e The differences in the development process, such as how the
software was specified, designed, tested, and documented

e The differences in the business environment, such as the
number of business stakeholders and number of users

The ISBSG performed a detailed analysis of the differences
between the PC, midrange, and mainframe projects. This analysis
showed, as one might expect, that mainframe projects had more
business units involved, and supported a larger numbers of concurrent
users. Such factors would result in poorer (higher) hours per function
point values, because of the additional effort required to communicate
with and obtain input from a larger number of people.

Methodologies
The ISBSG’s analysis revealed that mainframe projects make more
frequent use of methodologies. The methodologies used on mainframe

Chapter 2: Factors That Influence Productivity

projects are likely to be purchased but then applied with some
customization. In contrast, PC projects make infrequent use of
methodologies, and the methodologies that are used on PC projects
are likely to be written in-house.

Purchased methodologies are almost always comprehensive and
detailed. Projects that follow them tend to produce a wide range of
documents, such as specifications, designs, plans, change and issue
lists, and test cases. In contrast, in-house methodologies tend to focus
only on key parts of a software project’s life cycle. Projects that follow
in-house methodologies, or no methodology at all, tend to produce
fewer documents. A software project that produces fewer documents
is likely to have a better (lower) hours per function point value than
a project that produces many documents.

Of course, software projects produce documents in order to
communicate with multiple business units and to avoid the cost of
rework resulting from poor specification, design, and planning. So
there is likely to be a trade-off between project delivery rate and
defects delivered.?

Development Platform Summary

The PC environment shows the best (that is, lowest) project delivery
rates of the three platforms. Mainframe environments have the
highest project delivery rates. Multiplatform environments have
similar project delivery rates to PCs. If you use the regression
equations provided in the appendixes, ensure that you choose the
equations appropriate for the platform/environment that you are
developing on.

Development Type

Project delivery rates for new developments are significantly differ-
ent from those for enhancements. New developments average 8 to
12 hours per function point, and enhancements average 12 to 16 hours
per function point. The difference is probably due to factors other
than the development type; for example, a much greater proportion
of enhancements were mainframe projects, whereas new develop-
ments include more PC projects.

Language Type
4GLs as a whole have significantly better (lower) project delivery
rates than 3GLs.

Application Type
Management information systems (MISs) show better (that is, lower)
project development rates than do transaction/production systems.

2 Refer to the ISBSG Special Report: Techniques and Tools — Special Report I1.

19

20

Practical Software Project Estimation

Application Architecture

PDR tends to be best for multitier systems and worst for client-server
systems, with stand-alone systems falling somewhere in between.
The difference is probably due to factors other than the architecture;
in particular, in the projects studied here the maximum team size
happens to be greatest for client-server projects and smallest for
multitier systems.

Other Project-Specific Characteristics

Known to Influence PDR
The list of project-specific characteristics known to influence software
development productivity (and hence total effort) that have not been
the subject of the ISBSG statistical analysis includes

¢ Intrinsic team skills

o Staff experience levels with the technology

e Level of technical innovation

e Use of contractors/part-time resources

e Product performance

* Quality attributes required

¢ Budget constraints

* Developers’ environment

 Stability of requirements

These are some of the project-specific characteristics not included
directly in the common estimation techniques, but which you must
take into account when calculating the final total project effort or cost
estimate.
Several different estimation methods are available that include

these project-specific characteristics:

e COCOMO II: 23 productivity factors

e JFPUG value adjusted factor (VAF): 14 factors®

e FiSMA ND21 situation analysis for new development: 21 factors

All these methods ask the user to select from a list of the project-
specific characteristics applicable to their project. Based on the
selected values, the method gives a coefficient figure, which is a
multiplier for the preliminary effort estimate counted from the
software size and delivery rate. Table 2-5 shows the lists of productivity

3 Note that the VAF is likely to be phased out in the future.

COCOMO II

VAF

FiSMA ND21

Project scale factor attributes:
1. Precedentedness
. Development flexibility
. Architecture/risk resolution
. Team cohesion
. Process maturity
. Required software reliability
. Database size
. Product complexity
. Develop for reuse
. Documentation match to life-cycle needs
. Execution time constraint
. Main storage constraint
. Platform volatility
. Analysis personnel capability
. Programmer personnel capability
. Personnel continuity
. Applications experience
. Personnel platform experience
. Language and tool experience
. Use of software tools
. Multisite development
. Required development schedule
. Other

© 00 ~NO Ok WwN

NNNNRPERRRERRRRRRR
WNPFPOOWWOW~NO®ONMWNEREO

General system characteristics:

1. Data communications

. Distributed data processing
. Performance

. Heavily used configuration
. Transaction rate

. Online data entry

. End-user efficiency

. Online update

. Complex processing

. Reusability

. Installation ease

. Operational ease

. Multiple sites

. Facilitate change

© 00 ~NO Ol WwN

I S S
DWNRO

Project organizational factors:

1. Involvement of the customer representatives

2. Performance and availability of the
development environment

3. Availability of IT staff

4. Number of stakeholders

5. Pressure on schedule
Process factors:

6. Impact of standards

7. Impact of methods

8. Impact of tools

9. Level of change management
10. Maturity of software development process
Product quality factors:
11. Functionality requirements
12. Reliability requirements
13. Usability requirements
14. Efficiency requirements
15. Maintainability requirements
16. Portability requirements
People factors:
17. Analysis skills of staff
18. Application knowledge of staff
19. Tool skills of staff
20. Experience of project management
21. Team skills of the project team

TaBLe 2-5 Comparison of Popular Productivity Analysis Methods (continued)

1 19ydeyy

Kyia13anpold aouanjjuy jeyy si0}oey

14

COCOMO II

VAF

FiSMA ND21

Ratings: VL/L/N/H/VH/XH

explained in Barry Boehm’s book.*

The meaning of each choice per factor is

Ratings:

0 = Not present, or no influence
1 = Incidental influence

2 = Moderate influence

3 = Average influence

4 = Significant influence

5 = Strong influence throughout

The guidelines on how to determine
degree of influence are explained

in the IFPUG “Counting Practices”
manuals.®

Ratings:

-- = Circumstances much worse than in average
— = Worse than in average

+/— = Normal situation

+ = Circumstances better than in average

++ = Much better than in average

The meaning of each choice per factor is
explained in the FISMA method definition
document.®

calibration.

Coefficient: The exact value of each choice
per factor shall be calibrated by the user.
The variance of coefficient depends on the

Coefficient: 0.65-1.35

Coefficient: 0.5-2.5 in practice, but theoretically
between 0.1 and 15. Exact values of each choice
per factor vary between 0.88 and 1.14, based on
experience database.

TaBLe 2-5 Comparison of Popular Productivity Analysis Methods

* Software Cost Estimation with COCOMO II, Barry Boehm et al (Prentice Hall).
3 ISO/IEC 20926: Information Technology — Function Point Counting Practices Manual, ISO/TEC, 2003.
® Finnish Software Measurement Association, FISMA ry, FiSMA Specification for ND21 available at:

www.fisma.fi/in-english/methods.

(44

uorjewi}sy }9afoad a1em}jog [eII}IRIg

www.fisma.fi/in-english/methods

Chapter 2: Factors That Influence Productivity 23

factors for three commonly used methods. Note that COCOMO 1I is
an effort/duration estimation technique where size along with many
other factors is a key input, whereas IFPUG and FiSMA are sizing
techniques that provide methods that adjust the counted size, not the
likely productivity.

Some of the methods that analyze project-specific productivity
factors cover the impact of code reuse with a single question. If the
impact of reuse is a key issue for your projects, then you should
evaluate which methods best address the inclusion of reuse.

Summary

Two project characteristics have the most impact on PDR: program-
ming language and team size. Other project characteristics that can
have an impact include development platform/environment, devel-
opment type, application type, and application architecture. Having
established a PDR for your estimate using the ISBSG data, you should
then adjust it to reflect your specific environment.

This page intentionally left blank

CHAPTER 3

Software Estimates:

How Accurate
Are They?

l | sing the data from completed projects', this chapter will
provide you with an idea of how people have gone about
estimating their projects and how well they did it. Use the

findings of this analysis to guide your approach to estimating and the

allowances that you make to your estimate for the factors specific to
your project. Use both macro- and micro-estimating techniques to
obtain the most reliable estimate.

Submitters of project data to the ISBSG provide details of the
estimation techniques they use in their projects, as well as both
estimated and actual project statistics. Values for the four key project
attributes are sought: project effort, duration, cost, and size.

The ISBSG Data Repository now has over 850 projects for which
estimation data is available. Of those, 691 provide estimated and
actual project statistics for one or more of the attributes of effort, cost,
duration, and size; 661 provide data about estimation techniques
used; and 632 projects provide data about statistics and methods.

This chapter presents an analysis of those projects. It summarizes
the estimation techniques used, the accuracy of the estimates, and the
relationships between estimates.

In most respects these projects are typical of the full set of projects
in the ISBSG Data Repository. So the value of the findings presented
here is the same as the value of the ISBSG Data Repository as a whole.
The ISBSG believes that the repository represents the best part of the
software industry. This is because projects in the repository are
complete (and therefore more successful than many projects) and

! Refer to Appendix D for details of the project demographics of the data used for
the analysis in this chapter.

25

26

Practical Software Project Estimation

come from organizations with sufficient process maturity to include
a software metrics program.

NOTE When using the ISBSG equations and data, be aware that they
probably reflect the best 25 percent of the industry.

The findings presented here pertain to this particular collection of
projects. It is possible that some findings are not generally applicable.
Nevertheless, most observations are in accordance with intuition.
This analysis provides a picture of the state of estimation in good
software projects.

What Does “Accurate” Mean?

Whether an estimate is judged to be “accurate” or not depends on
how much variation is acceptable between the estimated and actual
value.

Two different thresholds are used in this analysis: 10 percent
(that is, an estimate is considered to be accurate if the actual value is
between 90 percent and 110 percent of the estimated value) and
20 percent (that is, an estimate is considered to be accurate if the actual
value is between 80 percent and 120 percent of the estimated value).
For effort, which is both the most important measure and the one with
the greatest variation in accuracy, a threshold of 50 percent is also
considered (that is, an estimate is considered to be accurate if the actual
value is between 50 percent and 150 percent of the estimated value).

The choice of threshold clearly influences the percentages of
estimates that are considered to be accurate. Readers should bear this
in mind when quoting percentages from this chapter.

The Project Details

Release 11 of the ISBSG Repository has 861 projects for which some
form of data about estimation is available. These projects represent a
broad cross-section of the software industry.

The profile of these projects is similar to the total collection of
projects in the ISBSG Data Repository. This is important, because it
means you can expect that the results from this chapter apply just as
well to the whole repository.

A General Picture

Effort is the worst estimated of the four key project attributes (effort,
cost, duration, and size). For the other three, at least half of the projects
are estimated accurately. For effort only, about one-third of projects
are estimated accurately.

Chapter 3: Software Estimates: How Accurate Are They?

The two most important estimates are project effort and duration
(cost is dominated by effort, and size is mainly relevant as an input to
the other estimates).

From the 449 projects for which we know both the estimated and
actual effort plus estimated and actual project delivery date, we can
make the following observations:

With a threshold of 10 percent for accuracy:
* 25 percent met both estimates to within 10 percent.

* 23 percent underestimated effort and were delivered late.

e 22 percent underestimated effort, but estimated the delivery
date accurately.

* 13 percent overestimated effort, but estimated the delivery
date accurately.

e 8 percent estimated effort accurately, but were delivered late.

* Only 1 percent of projects came in more than 10 percent below
the estimate for both effort and delivery date (that is,
overestimated).

¢ The remaining combinations only account for 1 or 2 percent
each.

With a threshold of 20 percent for accuracy:
* 44 percent met both estimates to within 20 percent.
e 15 percent underestimated effort and were delivered late.

® 19 percent underestimated effort, but estimated the delivery
date accurately.

® 9 percent overestimated effort, but estimated the delivery
date accurately.

¢ 8 percent estimated effort accurately, but were delivered late.

® Only one project came in more than 20 percent below the
estimate for both effort and delivery date (that is,
overestimated).

¢ The remaining combinations only account for 1 or 2 percent
each.

Errors in estimating effort correspond closely to errors in
estimating cost, in both the size of the error and whether it is an
overestimate or underestimate. It is clear that cost and effort are
strongly related. This supports the intuition that cost is determined
mainly by effort, since the major resource consumed by a software
project is human effort.

Errors in size estimates also correspond to errors in effort
estimates, although the association is not as strong as that between

2

P2

Practical Software Project Estimation

effort and cost. If size is estimated accurately, effort is usually
estimated accurately (about half of projects) or is underestimated
(about one-third of projects). If size is underestimated, effort usually
is, too (about 60 percent of projects).

¢ With a 10 percent threshold and size estimated accurately:
effort is accurate in 44 percent of cases and underestimated in
39 percent.

e With a 20 percent threshold and size estimated accurately:
effort is accurate in 59 percent of cases and underestimated in
28 percent.

e With a 10 percent threshold and size underestimated: effort is
underestimated in 62 percent.

e With a 20 percent threshold and size underestimated: effort is
underestimated in 57 percent.

Interestingly, no relationship exists at all between actual project
delivery rate and the accuracy of the estimates. You might expect that
projects delivered ahead of schedule, or with less effort than estimated,
would have low (that is, good) PDR, but there is no indication of this.
Projects delivered in line with their estimates had a wide range of PDRs.

NOTE There is no relationship between actual project delivery rate
(productivity) and the accuracy of the estimate.

Estimation Techniques

Size estimates are usually based on a data model, often involving a
CASE tool, a functional specification, analogy with a previous project,
or on a Use Case model.

For delivery date, effort, and cost:

e About one-third of the projects use only work breakdown
estimation.

¢ 10 to 15 percent of the projects base the estimate only on a
functional specification.

e 15 to 30 percent of the projects use both.

* 18 percent of the projects use neither; instead they use life-
cycle models or tools.

e “Fixed cost” determines the cost estimate in 15 percent of the
projects.

¢ Thedelivery date is imposed externally in 30 percent of projects
(“Management directive,” 22 percent; “legal requirement,”
6 percent; and “End user business goals” or similar, 2 percent).

Chapter 3: Software Estimates: How Accurate Are They?

¢ If a size estimate is available, it is usually used to help estimate
delivery date, effort, and/or cost. If no size estimate is available,
work breakdown estimation or management directive generally
determines the estimate delivery date, effort, and cost.

There is no association between other project attributes (organi-
zation type, development type, and so on) and the estimation tech-
niques used.

In most cases, there is little relationship between which estimat-
ing techniques are used and how accurate the estimates are. What
evidence there is suggests that estimates based on a functional speci-
fication slightly outperform work breakdown techniques.

NoOTE “Management directive” predetermines the delivery date in 22 percent
of the projects.

Individual Estimates

In this section, we analyze each of the four types of estimate: how
often projects are underestimated and overestimated, what overruns
or underruns are typical, what types of projects are likely to be
overestimated or underestimated, and so on.

The samples analyzed here are smaller than the full set of 850 projects.
Some projects contained information on the estimation techniques used,
but did not give the estimates themselves. Of the remaining projects that
provide at least one estimate, few give all four estimates.

Effort Estimates
Data is available for 581 projects. Effort is usually underestimated:

* 19 percent overestimated effort by at least 10 percent; 11 per-
cent overestimated effort by at least 20 percent; 3 percent
overestimated effort by at least 50 percent.

® 36 percent estimated effort to within 10 percent of the actual
value; 56 percent estimated effort to within 20 percent of the
actual value; 78 percent estimated effort to within 50 percent
of the actual value.

e 45 percent underestimated effort by at least 10 percent
(median error is 40 percent); 33 percent underestimated effort
by at least 20 percent (median error is 67 percent); 19 percent
underestimated effort by at least 50 percent (median error is
98 percent).

Across the whole 581 projects, the mean error is an underestimate
of 50 percent. The median is an underestimate of 6 percent. The largest
error saw effort underestimated by a factor of over 80 times.

30

Practical Software Project Estimation

NOTE Forty-five percent of the projects underestimated effort by at least
10 percent.

The overestimates occurred in small projects, only about half the
size of the repository average. Actual effort for these projects averaged
70 percent of estimated effort.

Underestimates occurred in a wide range of projects. There is a
weak trend toward larger projects, with larger development teams
and longer durations, being more often underestimated. There are no
other patterns in terms of which types of projects are estimated better
or worse than other types.

For the projects with effort underestimated, on average the actual
error is 67 to 100 percent; in other words, the actual effort approaches
double the estimate.

NOTE For the projects with effort underestimated, on average the actual
effort approaches double the estimate.

For the most part, large errors in estimated effort are accompanied
by similarly large errors in estimated cost.

Effort Estimation Techniques

The two main techniques for estimating effort are task-based work-
breakdown methods, and estimation based on an estimate of
functional size. Task-based methods are more common (63 percent of
projects compared to 31 percent, including 20 percent of projects that
used both techniques).

Task-based methods are more likely to underestimate effort.
Using a 10 percent margin for accuracy, task-based methods estimate
effort accurately (to within 10 percent) in 32 percent of projects, and
underestimate effort by at least 10 percent in 49 percent of projects.
For function point-based methods the corresponding percentages
are 40 percent accurate and 35 percent underestimated. Using a
20 percent tolerance for accuracy, the gap is smaller: 54 percent
accurate and 35 percent underestimated with task-based methods,
53 percent accurate and 29 percent underestimated with function
point-based methods.

On the other hand, median errors are smaller with task-based
methods. The median underestimate with task-based methods is
41 percent using a 10 percent threshold for accuracy, and 66 percent
using a 20 percent threshold for accuracy. With function point-based
methods the corresponding median underestimates are 72 percent
and 86 percent respectively.

It appears that task-based estimates of effort are more likely to be
wrong, but less likely to be badly wrong, than estimates based on
functional size.

Chapter 3: Software Estimates: How Accurate Are They?

Delivery Date (Project Duration)

Estimated and actual delivery date and project duration are known
for 538 projects.

Across the whole data set the mean actual duration is 9.8 months,
and the median is 7.6 months. The mean estimated duration is
8 months and the median is 6.6 months.

Delivery date is estimated relatively well. Around 70 percent of
the projects were delivered early or on time, including 37.5 percent
that were delivered as scheduled:

e 5 percent of projects were delivered more than 10 percent
ahead of schedule (that is, actual duration was less than
90 percent of the estimated duration), including 3 percent
delivered more than 20 percent ahead of schedule.

¢ 60 percent of projects were delivered with an actual duration
within 10 percent of their estimated duration, and 70 percent
were delivered with an actual duration within 20 percent of
their estimated duration. These numbers include 37.5 percent
of projects that were delivered as scheduled.

e 35 percent of projects were delivered more than 10 percent late,
including 27 percent delivered more than 20 percent late.

The projects delivered early are below average in actual duration
(mean and median both around 7.5 months) and above average in
estimated duration (mean and median both around 12 months).
Lower durations and higher estimates could both contribute to the
estimates of duration being too low in these projects. The median
error was an underrun of 22 percent.

The projects delivered on time showed a wide spread of durations,
sizes, and other project characteristics. No patterns can be seen.

Of the projects delivered more than 10 percent late, 19 percent
were up to 1 month late, 25 percent were 1 to 2 months late, 22 percent
were 2 to 3 months late, 17 percent were 3 to 6 months late, and
15 percent were more than 6 months late. Three percent were a year
or more late, with the worst overrun being 33 months. Late projects
averaged 98 percent mean overrun and 40 percent median overrun in
duration.

NoTE Late projects have a median overrun of 40 percent in duration.

The accuracy of the estimates varies according to how long the
project was estimated to take in the first place.

* Projects that were estimated to take a year or more were
generally delivered on time. For 65 percent of projects the
actual duration was within 10 percent of the estimate, and

A

32

Practical Software Project Estimation

20 percent underestimated duration by at least 10 percent.
Only 5 percent were late by more than 3 months. The median
overrun was 13 percent, or about 2 months.

¢ Projects that were estimated to take 6 to 12 months did less
well. The actual duration was within 10 percent of the estimate
in 61 percent of them. Thirty-five percent of the projects
underestimated duration by over 10 percent. Thirteen percent
were late by more than 3 months. The median overrun was
2.5 months, or 30 percent.

¢ Estimates were about as accurate for projects that were esti-
mated to take 3 to 6 months as for projects estimated to take
6 to 12 months. However, the worst underestimates came from
this group (five of the six projects delivered more than a year
late were in this group). Again, 61 percent of the projects esti-
mated duration to within 10 percent of the actual duration,
and 36 percent underestimated duration by more than 10 per-
cent. Eleven percent underestimated duration by more than
3 months. The median overrun was 2.1 months, or 45 percent.
(The percentage is bigger, even though the number of months
is smaller, because the average duration is shorter.)

¢ Projects that were estimated to take up to 3 months have the
biggest errors in percentage terms (because the planned du-
ration is shortest—for example, a project that was planned to
take 1 month and was delivered 3 months late has a 300 per-
cent error), but the actual values are not so bad. Forty-five
percent of the projects estimated duration to within 10 per-
cent of the actual duration, and 42 percent underestimated
duration by over 10 percent. Fifteen percent underestimated
duration by more than 3 months. The median overrun was
2.3 months, or 127 percent.

When expressed as percentages, the errors are smaller for projects
with large estimated durations and larger for projects with small
estimated durations. This is just a consequence of dividing by small
or large numbers when calculating percentage errors. It is more
relevant to note that across all ranges of estimated duration, if
duration was underestimated, the delay was about 2 months; delays
of more than 3 months are more common in shorter projects than in
projects that were estimated to take a year or more.

Duration Estimation Techniques

If a size estimate is available, it is generally used as an input for
estimating duration, either directly, or as an input to an estimating
tool. If no size estimate is available, duration is normally determined
by management directive or by work breakdown techniques.

Chapter 3: Software Estimates: How Accurate Are They?

The estimating techniques have some impact on the accuracy of
the estimated duration. Work breakdown techniques are accurate
24 percent of the time; the mean error is a 32 percent underestimate,
and the median error is a 4 percent underestimate. FP-based estimates
are either very good or very bad: just under half are accurate, but
21 percent are wrong by 50 percent or more; the mean error is a
30 percent underestimate, and the median is a 10 percent underesti-
mate. In projects whose delivery date was determined by manage-
ment directive, most were delivered on time or 1 month late; only
10 percent were delivered more than 2 months late. Projects whose
delivery date is determined by legal requirements or client directive
do best, with an average error of only about 10 percent.

In summary, duration tends to be estimated fairly well, particu-
larly for projects planned to take 12 months or more. If duration is
overestimated, it is probably by about 20 percent. If duration is un-
derestimated, the average overrun is about 2 to 3 months.

Cost Estimates

Cost tends to be estimated more accurately than effort. Although un-
derestimates are again more common and larger than overestimates,
really bad errors are rare, and most errors are smaller than is seen
with effort.

Estimated and actual costs can be analyzed for 117 projects:

* 21 percent overestimated cost by at least 10 percent (median
overestimate is 28 percent). Eleven percent overestimated
cost by at least 20 percent (median overestimate is 46 percent).

* 44 percent estimated cost accurately to within 10 percent, and
64 percent estimated cost accurately to within 20 percent.

¢ 35 percent underestimated cost by at least 10 percent (median
underestimate is 44 percent). Twenty-five percent of projects
underestimated cost by at least 20 percent (median underesti-
mate is 67 percent).

The proportional size of these groups is about 1 (overestimate) to
6 (accurate) to 2 (underestimate) for accuracy within 20 percent, and
2 (overestimate) to 4 (accurate) to 3 (underestimate) for accuracy
within 10 percent.

These statistics should be treated with some caution. Ten percent
of projects report their actual cost as being exactly the same as the
estimated cost. Considering that some of these involve six-figure
costs that are quoted to the nearest $10, this seems unrealistic.

Most of the projects in which cost is overestimated are small, of
fewer than 200 FP; the median is 125 FP. Not surprisingly at this size
range, enhancement projects dominate. No other patterns are evident.

3

34

Practical Software Project Estimation

When cost is underestimated, for six projects the errors are huge
(300 percent to 900 percent), another five exceed 100 percent, and a
further seven exceed 50 percent. When the six huge errors are
excluded, the mean error is an underestimate of 46 percent; the overall
median error is an underestimate of 44 percent.

NOTE For projects with cost underestimated, the median error is an
underestimate of about 45 percent.

A clear trend can be seen when estimation techniques are
considered: FP-based techniques are more accurate more of the time.
For projects using just work breakdown techniques, 42 percent are
accurate to within 10 percent; a further 12 percent are accurate to
within 20 percent; nearly half misestimate cost by 20 percent or more;
underestimates are twice as common as overestimates, and tend to be
worse; and the median underestimate is around 50 percent. For
projects using functional size-based techniques, 61 percent are
accurate to within 10 percent; a further 30 percent are accurate to
within 20 percent; and only 9 percent misestimate cost by 20 percent
or more; the median underestimate is 14 percent.

NoOTE When functional size-based techniques are used for a cost estimate,
the estimate is within 20 percent of the actual cost 90 percent of the
time.

The overestimated projects are all small; the largest is 286 FD, the
median size is 127 FP, and the mean size is 145 FP. No other patterns
can be seen between project characteristics and the accuracy of cost
estimates.

When both cost and effort are known, the association between
them is strong. If the projects are ranked in order of effort error
(biggest underestimate down to the biggest overestimate) and then
ranked in order of cost error, the correlation between the ranks is very
high at 0.79. Big errors in estimating effort go with big errors in
estimating cost.

In summary, for around half of the projects the cost estimate is
accurate. Of the rest, underestimates are about twice as likely to occur
as overestimates, and the error is likely to be greater. Estimates
produced using functional size-based techniques are more accurate
than estimates produced from a task breakdown and are within
20 percent of the actual cost 90 percent of the time.

Summary

A collection of over 850 projects has been analyzed to see how, and
how well, people estimated their software projects.

Chapter 3: Software Estimates: How Accurate Are They?

Although the findings summarized below pertain to this
particular collection of projects, the ISBSG believes that they provide
a good picture of the state of estimates in good software projects.

Size approximation techniques:

When a size approximation is available, it is usually used to
help estimate delivery date, effort, and/or cost. If a size
approximation is not available, work breakdown techniques
are used. Functional size-based techniques generally produce
slightly more accurate estimates.

Accuracy of different types of estimate:

Delivery date is often estimated well. Over half of the projects
were delivered early or on time, and 70 percent were delivered
no later than 1 month late. Once a project is more than a
month late, the median error is about 2.5 months overrun.
Projects planned to run for a year or more are delivered on
time; the worst errors occur in projects planned to run for
about 4 to 6 months.

Effort is estimated worst. Over half of projects underestimate
effort by at least 10 percent. Some enormous errors occur,
with actual effort up to 80 times the estimate. On average,
effort is underestimated by about 50 percent. There are no
patterns to explain which types of projects are estimated
better or worse than other types.

Errors in cost estimates are closely related to errors in effort
estimates, supporting the intuition that effort largely deter-
mines cost. But cost estimates are not generally as inaccurate as
effort estimates. This may be because extra effort recorded
against a project is unpaid.

There is no relationship between project delivery rate and the
accuracy of estimates.

For everything except effort, half or more of the projects are
estimated accurately; for effort, that drops to a third of the
projects.

Overestimates and underestimates:

Alate project averages an overrun of 2 to 3 months.

If effort is underestimated, the average overrun is 67 to
100 percent. The average across all projects is to underesti-
mate effort by 50 percent.

If cost is underestimated, the average overrun is 25 to 30 percent.

Overestimates are rare, usually small, and occur in small
projects. When anything is overestimated, it is probably by
about 20 percent.

35

36

Practical Software Project Estimation

Factors influencing accuracy:

* Asa general guide, smaller projects are more likely to be esti-
mated accurately or overestimated. Larger and, more partic-
ularly, longer projects are more likely to be underestimated.

* Estimates appear to be less accurate for projects involving
newer technologies, and for those with a large and varied
user base.

Use the information provided in this chapter to guide both your
approach to preparing estimates for a project, and the allowances that
you make to your estimate for factors specific to your project. Use
both macro- and micro-estimating techniques to obtain the most
reliable estimate.

CHAPTER 4

Sizing Software and
Size-Approximation
Accuracy

his chapter introduces the concept that functional size measure-

ment of software can be performed at different levels of accuracy

to suit different purposes. It will introduce the concept of ap-
proximating size rather than measuring it. Approximating size techniques
can be used when there is insufficient opportunity, time, or perhaps
information to perform a detailed size measurement.

Functional size measurement (FSM)! is the most accepted approach
to measuring the size of a software project. Standard functional size
measurement methods? are often unsuitable to be used early in the
life of a project® because they require some kind of structured analysis
before identifying and classifying functions, counting elementary
components, and performing numerical transformations, in line with
their specific counting rules.

Although simple in concept, functional size measurement is not a
trivial task. However, there are several simple but effective ways of
roughly determining the functional size of a project without doing a
detailed functional size measurement. The resulting “approximated”
size is much less accurate than the measured size, but the error range

'ISO/IEC 14143-1:2007 - Software Engineering — Software measurement —
Functional size measurement — Definition of concepts.

21S014143-6 — Information technology — Software measurement — Functional size
measurement — Part 6: Guide for use of ISO/IEC 14143 series and related interna-
tional standards.

3 This chapter assumes the functional size of the software system being developed
as the main cost driver of the project. Physical dimensions (for example, LOC)
are excluded as estimating factors, due to the higher difficulty in estimating those
dimensions in the initial phases of the project when nothing has been produced
or even designed.

31

38

Practical Software Project Estimation

may be acceptable for the purpose for which the size will be used,
that is, early project estimation.

Size approximation techniques can also be used by those
practitioners who do not currently measure functional size but need
a method of mapping the lessons of this book back to their
environment.

Sizing Accuracy Levels

The advantages of approximating size are offset by the unavoidable
lack of precision of the results. It is important to distinguish each
measure as either an exact measure (that is, performing a functional
size measurement as per the ISO standard guidelines) or an
approximation.

A measurement can be conducted at a number of accuracy levels*,
based on the

* Purpose of the measurement
¢ Quality of documentation/information available

¢ Amount of time available to complete the measurement

The different levels of sizing accuracy range from Level 1 to Level 6,
from the most accurate to least accurate.

Level 1 is the most accurate size measurement, follows formal
measurement guidelines, and involves detailed cataloging, classi-
fying, weighting, and cross-referencing of each of the functional
components.

In contrast, at the other end of the accuracy scale, Level 6 func-
tional size is not a measurement as such, but an approximation of the
size. Rather than identifying, classifying, and sizing each functional
component, Level 6 predicts the size based on a number of easily
identified attributes of the software. It provides a “ballpark” size for
the project.

Each level of sizing is classified based on the listed tasks being
performed.

Measuring as per the following guidelines, the precision exp-
erienced for each level is

e Level 6 =420% to +200%
e Level 5=+15% to +20%

e Level 4=+15%
e Levels3to1l=+10%

4 “Levels of Function Point Counting,” by Pam Morris (Total Metrics) - Version 1.3
2004 (www.Totalmetrics.com).

www.Totalmetrics.com

Chapter 4: Sizing Software and Size-Approximation Accuracy

Level 6: Size Approximation

Functional size is approximated without identifying exact functions.
It is based on project characteristics that have historically shown
some correlation to the total size (for example, number of reports,
number of third normal form tables, and so on). The “most likely”
size of the project is then derived by statistically evaluating the
results predicted by the various project characteristics. Typically,
between 10 and 40 characteristics are assessed. Assumptions should
be documented and the size should always be notated, highlighting
that it is an approximation, not a measured size.

The accuracy range of Level 6 approximations depends on such
things as the algorithms used, the functional fit of the project to that of
the history data from which the algorithms were derived, the number
of characteristics used for the calculation, and the accuracy of the
measurement of the characteristics.

Level 5: Rough Size Measure

e Software is functionally decomposed, but only to functional
areas or functional groups, not to Base Functional Component®
(BFC) level (that is, not to elementary process level).

e For each functional area, the number of Base Functional
Components is roughly tallied using information from
menus, file lists, screen lists, and report lists.

* Weightings for the groups of BFCs are assigned using industry
defaults.

* Diagrams and system interface documentation is used.

Level 4: Default Complexity Measure

¢ Software to be built by the project is functionally decomposed
to BFC level (processes and data groups are individually
identified).

¢ All BFCs are uniquely identified and classified according to
type.

¢ Default weightings for size are assigned to the individual
BFC based on either industry default complexity ratings (for
example, IFPUG files: Low and IFPUG Processes = Average)
or defaults derived locally within the organization for
software of this type.

3 Base Functional Component (BFC) is an elementary unit of Functional User
Requirements defined by and used by an FSM method for measurement purposes
(ISO/IEC 14143-1 :2006). For example, BFCs correspond to an elementary process
or a logical file in the IFPUG FSM method and a functional process in the COSMIC
method.

39

40

Practical Software Project Estimation

Level 3: Detailed Measure

* As for Level 4, except complexity is individually assessed,
and weightings are assigned to each BFC (for example, for
IFPUG FSM, DETs and FTRs are identified using the IFPUG
complexity matrices where possible).

¢ Explanatory notes are attached to BFCs where necessary.

Level 2: Detailed Linked Measure

* As for Level 3, except all relationships between BFCs are
formally documented (thatis, relationships between processes
and the data they access are individually identified and
documented. This is often referred to as linking processes and
data.)

e Exact numbers of subcomponents of BFCs are identified; for
example, in IFPUG FSM, that is the number of DETs and
FIRs; for COSMIC FSM, that is the uniquely named
subprocesses identified.

Level 1: Detailed Linked and Labelled Measure

e As for Level 2, but more comprehensive supporting docu-
mentation for the sizing. For example:

¢ Cross-referencing between physical and logical artifacts of
the software. For example, between physical files and
logical data groups and between specified use cases and
logical processes.

* Keywords (also referred to as labels or attributes) are
attached to relevant BFCs (for selective reporting).

NOTE Choose the level of sizing based on the documentation and time
available plus the use of the resultant size.

Table 4-1 lists the basic attributes of each of the sizing levels to
help you choose the one most suited to your need.

If the size has been measured using Level 5 or 4 guidelines, then to
have more confidence in the number, the size measurement should
be revisited and performed more accurately as more information
becomes available.

If the size has been approximated using Level 6 methods, then it is
recommended that this size be recalculated during the development
as more information is collected for the project.® Ideally, once the
project is approved, a more detailed measurement should be

6 Refer to Figures 1-2 and 1-3.

Level Size Measure Best Suited For Issues Prerequisites

1 Very detailed Benchmarking projects Very time intensive High-quality
Easily auditable Detailed estimates Requires very skilled | documentation
Accurate Project tracking counters Data model
Very well documented Detailed baseline model Expensive for large Full access to system
Easily maintained Metrics reporting for strategic level | SYStems experts

2 Very detailed Benchmarking projects Time intensive Good/high quality
Easily auditable Detailed estimates Expensive for large documentation
Accurate Project tracking systems Data model
Very well documented Detailed baseline model Full access to system
Easily maintained experts

3 Detailed Benchmarking projects Time intensive Good quality
Auditable Detailed estimates Reasonably cost- documentation
Accurate Baseline application measurement effective for large Data model
Well documented for portfolio sizing systems (if available)
Very maintainable Detailed baseline model Access to system experts

TaBLE 4-1 Basic Attributes of Sizing Levels (continued)

iy 191deyy

faeandooy uorjewixosddy-azig pue atemjjog Sulzig

Tt

Level Size Measure Best Suited For Issues Prerequisites

4 Less detailed Portfolio baseline assessment Efficient Average quality
Auditable Benchmarking development or Cost-effective for documentation
Reasonably accurate support ratios large systems Data model
Documented Quality metrics (if possible)
Maintainable High-level estimates Access to system experts

Baseline model

5 Low detail Portfolio baseline assessment Very efficient Summarized system
Less accurate Benchmarking support ratios Cost-effective for documentation
Documented (issues and Baseline model large systems with Access to system experts
assumptions) little enhancement (for the duration of
“Skeleton” (base for more measurement)
refined measurement)

6 Very little detail—size Portfolio baseline assessment Very efficient Accurate completion of a
results only Software asset valuation Very cost-effective questionnaire
Accuracy historically has Project scoping for large systems Access to system experts
bgep demonstrated to be Estimating count durations with very little (short interview)
within +/- 20% : . enhancement

Benchmarking support ratios
Not documented
Not maintainable
TaBLe 4-1 Basic Attributes of Sizing Levels

4}

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Chapter 4: Sizing Software and Size-Approximation Accuracy
performed and the size updated as functionality changes, particularly
if the size values are used to:

¢ Adjust the effort, cost, and time estimates

¢ Control the scope creep and record change requests

NOTE As the project progresses, the size estimate should be validated and
refined (eventually moving from low-accuracy to high-accuracy
techniques).

It is recommended that every size approximation should be
expressed as three values: minimum, most likely, and maximum
estimated size, where the most likely is not necessarily the average
between the extreme values. Alternatively, the size approximation
should express a confidence interval, or accuracy percentage, to help
understand how close the estimate is likely to be to the actual size of
the software being analyzed. It is up to the person using the result to
decide whether to use each value, or to use only one of the values in
the approximation interval, as a basis for further estimations of effort,
cost, or duration.

Classifying Size Approximation Techniques

Basically, any approximation technique comprises some input,
calculation, and output, where the input variables are some kind of
information about the software project being sized, and the basic
output is the approximated size. Size approximations may use a direct
or derived approach:

¢ Direct size approximation (“expert opinion”) predicts the
size based on analogical reasoning and intuition, typically
using past experience; the size result is achieved directly
without a formal step-by-step, structured process. Direct
estimation may be improved by means of Delphi iterations’
or some kind of analogy with known projects.

¢ Derived size approximation (“algorithmic method”)involves
a defined algorithmic or structured approach, based on
theoretical or statistical models.

Size Approximation Accuracy
Here we look at the accuracy of the sizing approximations provided
in the projects submitted to the ISBSG repository when compared
with the counted size of the software delivered.

7 Refer to Chapter 10.

4

Practical Software Project Estimation

In Chapter 3 we saw that 30 to 40 percent of projects used
functional size techniques as part of estimating duration, effort, or
cost. They may have used an approximation of size, or a size value
counted carefully from the project specification; the latter is perhaps
most likely.

This section considers a different question: if size in function
points was approximated early in a project, how does the
approximation compare with the final “properly counted” size?

Errors can arise from several sources: inaccuracies that are inevi-
table when an approximation is produced from incomplete informa-
tion; inaccuracies that might be caused by using a poor technique to
do the approximation; and scope creep, when the final system contains
functionality that was not part of the initial specification.

Three main techniques are used for approximating size:

* 40 percent approximate size from a data model.

* 20 percent approximate size from the functional specification
or use case model.

* 16 percent approximate size by analogy with previous
projects.

Generally, size is approximated well. Perhaps this is to be expected
in a database of projects primarily submitted by organizations that
establish size by some form of functional sizing method.

Size approximations are provided for 322 projects:

® 12 percent over-approximated size by at least 10 percent;
8 percent over-approximated size by at least 20 percent.

* 53 percent were approximated accurately to within 10 percent
(16 percent were exact); 65 percent were estimated accurately
to within 20 percent.

® 35 percent under-approximated size by at least 10 percent;
27 percent underestimated size by at least 20 percent.

The proportional size of these groupsisabout 1 (over-approximate)
to 6 (accurate) to 3 (under-approximate). There is a slight indication
that errors are larger when approximation is based on a data model
rather than on the functional specification or use case model, but
really the pattern varies little whichever methods are used.

When size is over-approximated, the average error is about
30 percent. When it is under-approximated by 10 percent or more, the
median under-approximation is 30 percent; among projects where
the under-approximation is 20 percent or more, the median under-
approximation is 60 percent. The largest error is nearly 400 percent,
meaning the actual size was almost five times the approximation.

Chapter 4: Sizing Software and Size-Approximation Accuracy 45

In summary, for over half of the projects the size approximation is
accurate. Of the rest, under-approximations are about three times as
likely to occur as over-approximations, and the error is likely to be
two or more times as bad. Approximations produced from the
functional specification are slightly more likely to be more accurate
than those produced from a data model.

Summary

In this chapter we have introduced the concept that functional size
measurement of software can be performed at different levels of
accuracy to suit different purposes, and we have provided a six-level
accuracy hierarchy. We have also introduced the concept of
“approximating” size rather than measuring size and have looked at
the accuracy of the approximations submitted to the ISBSG
Repository.

This page intentionally left blank

CHAPTER 5

Some Practical
Software Size
Approximation
Techniques

sponsor (that is, the customer) wants to know how much the

software will cost and how long it will take to develop. The
developer (in-house or external) needs to establish the approximate
size of the software to be developed in order to estimate the effort,
cost, and time for planning purposes. To satisfy these needs, the size
of the software needs to be established, but as it is early in the life
cycle of the proposed project, a full function point count is not
practical or economically sensible.

In this chapter we will provide examples of quick sizing tech-
niques for each of the three functional size measurement (FSM)
methods most represented in the ISBSG Repository, namely: IFPUG,
FiSMA, and COSMIC. These are simple but effective ways of roughly
determining the functional size of a project.

In the startup phase of a software development project, the project

NOTE In this chapter you will find some simple but effective ways of
roughly determining the functional size of a project even when a function
point count has not been completed.

Many software size approximation techniques are available in the
literature and industry practice. The following arejust a few examples.
A number of commercial software metrics consulting companies also
provide products and services to assist in size approximation, and
some useful sizing tools are now available.

LY

48 Practical Software Project Estimation

ID Size Class Range (FP) ID Size Class Range (FP)
DEV,, | Very Small 0-150 ENH,, | Very Small 0-60

DEV; | Small 150-300 ENH, Small 60-120
DEV,, | Medium 300-600 ENH,, | Medium 120-240
DEV | Large 600-1,200 ENH, Large 240-480
DEV, | Very Large 1,200-5,000 ENH, | Very Large 480-2,000
DEV,, | Extremely Large | >5,000 ENH,, | Extremely Large | >2,000

TaBLE 5-1 Direct Size Approximation

Direct Size Approximation

This method uses statistical distribution of total functional size, both
for new development and for enhancement projects.

An analysis of size distribution of the ISBSG database leads to the
size classes reported in Table 5-1 for development (“DEV”) and for
enhancement (“ENH”) projects.

Example: Direct Size Approximation

Consider the analogy between your team’s last five development
projects and the planned development project:

e Projects 1 and 2 fell into size class DEV (Small), that is,
between 150 and 300 FP.

* Projects 3 and 4 fell into size class DEV,, (Medium), that is,
300 to 600 FP.

* Project 5 fell into size class DEV| (Large), or 600 to 1,200 FP.

Interview the project sponsor and analysts from the planned and
past projects, and then compare the projects for relative functionality
delivered. If it is decided that the planned project will have about the
same amount of required functionality of projects 3 and 4 (thatis, “much
more than projects 1 and 2” and “no more than half of project 5”),
then the most likely size range of the new project will be in the range
of projects 3 and 4 (Medium), that is, 300 to 600 FP.

This analogy-based approach provides only a ballpark project

size.

Derived Size Approximation

There are a number of ways of deriving an approximate size for a
proposed piece of software. Here we provide details on three
techniques to derive IFPUG, COSMIC and FiSMA sizes. We also
provide some examples of extrapolative approaches.

Chapter 5: Practical Software Size Approximation Techniques

Early Approximation of Functional Size Using ISBSG Data
In the example that follows, we use the known ratios of the IFPUG
functional size components from the ISBSG repository data.! It is

possible to derive similar functional type relationship patterns for all
five FSM methods.

NoOTE Function point internal logical files closely resemble a count of
logical entities.

Often the functional component that you will have the most
knowledge of is the internal logical files (ILFs). These closely resemble
a count of the entities in a logical data model, modeled to second
normal form. If a high-level data model has been developed as part of
the requirements analysis, this can be used to approximate the
number of internal logical files.

An IFPUG function point count identifies all occurrences of the
following five base functional component types, (BFC types):

¢ Internal logical files (ILF) Data maintained by processes
within the software

¢ External interface files (EIF) Data referenced by processes
within the software

e External inputs (EI) Processes that enter data to be stored
within the software

e External outputs (EO) Processes that extract derived data
to be provided to the user

¢ External queries (EQ) Processes that retrieve stored data to
be provided to the user

From the ISBSG analysis of its history data, it has been observed
that the relationships between these five component types remains
relatively constant for new development projects and for complete
applications; that is, each component type contributes a consistent
percentage of function points to the overall total size of the
application.

Investigation into the rationale for the relationships shows good
reasons why this consistency exists. For any complete application
that operates as a software system, the data entered would be expected
to be processed and stored for later retrieval. It therefore follows that
we would expect a strong relationship between input functions (data

! Note that this method relies on a single algorithm (most of the commercial prod-
ucts that approximate size rely on between 10 and 40 algorithms). The more rela-
tionships that can be analyzed and that can contribute to an approximated size,
the more accurate the size estimate will be.

49

30

Practical Software Project Estimation

entered) and the logical files (internal data storage) and the output and
query functions that retrieve data stored from the internal stores and
the external stores, interface files.

Note that these relationships have only been found to be relevant
to software that operates as a self-contained system, that is, a cohesive
set of functionality that is loosely coupled with other applications.
Therefore, it may not be advisable to use approximation-sizing
techniques to predict the size of any enhancement project that has a
mix of added, changed, and deleted functionality scattered over
several functional areas within an application.

Figure 5-1 shows the relationships between the five components
of the IFPUG functional size method from new development project
data in the ISBSG Repository. These relationships can be used to
estimate the size of a project. For projects sized by the IFPUG
functional sizing method, versions 4.x, and with an ISBSG quality
rating of “A” or “B,” the relative contribution of each component type
to the total count is depicted in Figure 5-1.

Use these relationships to approximate the size of a software
development project:

Example 1: Internal Logical Files
If the high-level logical data model had 40 logical tables, it may be
reasonably assumed that these relate to approximately 40 internal
logical files. Analysis of the ISBSG Repository also shows that most
internal logical files in applications are rated as being low to medium
in complexity. The mean score attributed to them across all projects is
8.6 function points.

Based upon the preceding, it can be assumed that the total score for
the internal logical files component of the function point count will be

40 (ILFs) x 8.6 (mean score for internal logical files) = 344 FPs

External
Queries
17%

Internal
Logical Files
25%

External

Outputs
239% External

Inputs

7% External

Interface
Files 8%

Ficure 5-1 Function point mix — new developments (Source: Estimating,
Benchmarking & Research Suite Release 11)

Chapter 5: Practical Software Size Approximation Techniques 51

From the preceding pie chart it can be seen that the internal logical
files component of the function point count is typically around
25 percent. Based on this, the total functional size of the required
application is predicted to be around:

344 FPs x 100/25 =1,376 FPs

It would be sensible to notify the customer that the size is =1,400 FP
(with an allowance of plus or minus 25 percent).

Example 2: External Outputs

In a situation where the planned project is a redevelopment of an
existing application, the number of unique reports and extract files
output from the existing application can be assumed to be equivalent
to the external output components in the new project.

Analysis of the ISBSG Repository shows that most external outputs
are rated as being medium in complexity. The mean score attributed
to them across all projects in the repository is 5.4 function points. If
the existing application has 47 different reports and 3 different extract
files, then the total number of external oufputs can be assumed to be 50.
(Note: ensure that you exclude any obsolete, unused reports from
your calculations.)

Based upon the preceding, it can be assumed that the total score for
the external outputs component of the functional size measure will be

50 (EOs) x 5.4 (mean score for external outputs) =270 FPs

From the pie chart in Figure 5-1, it can be seen that the external outputs
component of the functional size measure is typically around
23 percent. On this basis the total functional size for the required
application is predicted to be around:

270 FPs x 100/23 = 1,174 FPs

It would be sensible to notify the customer that the size is =1,200 FP
(with an allowance of plus or minus 25 percent).

KISS Quick Software Size Estimation Technique

KISS (Keep It Simple Stupid) Quick is a size estimation approach that
was developed together with the FiSMA functional size measurement
method. It is most accurate with FiSMA function points, but can be
used also with IFPUG and NESMA function points.

The KISS Quick approach starts with a questionnaire consisting
of 28 questions. For each question, the answer is the number of
occurrences of the particular functional component type. Each type
has a specific multiplier for each measurement method (only IFPUG
& FiSMA are shown in Table 5-2; values of the multipliers are derived
from history data, and they equal zero where the method does not

32

Practical Software Project Estimation

Number of Navigation and Query Number | IFPUG FiSMA
Functions (No Update) (e.g.) Multipl. | Multipl.
1 | Number of starting icons? 0 1.0
2 | Number of login and logout screens? (1) 3 1.8
3 | Number of different menus? 0 1.8
4 | Number of parameter selection lists 3 1.0
(drop-down lists)?
5 | Number of inquiry screens (db (3) 4 3.4
retrieving, on screen)?
6 | Number of browsing list screens 4 2.3
(occurrences of same type data)?
7 | Number of screens for starting report 3 3.4
generation?
User Input Functions (Update)
8 | Number of 3-functional (create, update, 21 16.8
and delete) user input screens?
9 | Number of 2-functional (create and/or | (2) 15 11.2
update and/or delete) screens?
10 | Number of 1-functional (create or 9 5.6
update or delete) screens?
Noninteractive User Output Functions
11 | Number of output forms (fixed layout)? 5 4.9
12 | Number of reports? 7 6.5
13 | Number of text messages or e-mails? 4 3.0
14 | Number of monitor screen outputs? 7 6.5
Interface Services Between This and
Other Applications
15 | Number of messages sent to other (6) 5 3.6
applications?
16 | Number of messages received from (6) 5 5.5
other applications?
17 | Number of signals sent to a device? 1.4
18 | Number of signals received from a 2.0
device?
19 | Number of batch records sent to 5 3.6
another application?
20 | Number of batch records received from 5 5.5
other applications?

TaBLE 5-2 KISS Quick Estimation Multiplier Table (continued)

Chapter 5: Practical Software Size Approximation Techniques

Number of Navigation and Query Number | IFPUG FiSMA
Functions (No Update) (e.g.) Multipl. | Multipl.
Persistent Data Storage Functions

21 | Number of entity types? 7 3.9

22 | Number of other logical record types? 7 3.9
Independent Algorithmic Functions

23 | Number of independent calculation 0 5.1
routines?

24 | Number of independent simulation 0 5.1
routines?

25 | Number of independent formatting 0 5.1
routines?

26 | Number of independent database 0 5.1
cleaning routines?

27 | Number of independent security 0 5.1
routines?

28 | Number of other independent 0 5.1
algorithmic routines?

TaBLE 5-2 KISS Quick Estimation Multiplier Table

count that functionality type). The number of occurrences is then
multiplied with the multipliers, and next the total sum of function
points is calculated. This estimation method is rated as a “rough size
measure.”

Example: Basic KISS Quick Approach

Let’s assume that you are developing a user interface application,
which will be part of a three-tier information system. You know that
there will be one login screen, three different inquiry screens, and two
different two-function input screens. These are the services that the
user can easily identify. Because of the three-tier system architecture,
you know that your user interface application must communicate
with the business logic application. The logical requirement is to send
six different messages (one for each screen; the data elements on each
screen are different) and also to receive six different messages. You
also know that there will be no local data storage or customer-
specified algorithmic services in the user interface application.

e If you want to know the application size in IFPUG function
points, you use the multipliers from the IFPUG column and
get the size estimate:

1x3+3x4+2x15+6x%x5+6x5=105FP

33

54

Practical Software Project Estimation

¢ If you want to know the application size in FiSMA function
points, you use the multipliers from the FiSMA column and
get the size estimate:

1x1.8+3x34+2x11.2+6%3.6+6x5.5=89FP

As we see from the example, the size of the user interface
application will be approximately 100 function points with each of
these measurement methods.

Moving from Basic KISS Quick Approach
to Other Accuracy Levels

As mentioned earlier, the basic KISS Quick approach is rated as a
“rough size measurement” method. When using FiSMA function
points, the approach and measurement can be easily modified to gain
more accuracy. If we need a ballpark estimate of the size in a very
early phase of the development life cycle, we can use Table 5-3.

The basic KISS Quick approach just mentioned would give us a
ballpark size estimate of 2x 12 +4 x 6 + 6 X5 + 6 x 5=108 FiSMA function
points. It is slightly larger than the outcome from the basic KISS Quick,
but still roughly 100 FP, providing a reasonably accurate size estimate.

With the basic KISS Quick questionnaire, you have found the
numbers of occurrences of each functional type (28 FiSMA Base
Functional Component [BFC] types). You can reach the next accuracy
level by giving names to all those occurrences. For example, when
you answered that you will have three different inquiry screens, each
representing 3.4 function points, your estimate can be upgraded to
the “default complexity measure” level by naming the screens but
keeping the size default values. Moving to higher levels of accuracy
requires additional information (for example, related numbers of
data elements and reading references).

Questions Number | Multipl. @ FP
How many input screens? (2) x 12 =

How many other screens? (4) X 6=

How many report and output form types? X6 =

How many interface record types to other (6) x5 =
systems?

How many interface record types from other (6) X 5=
systems?

How many entity types? X4 =

How many algorithmic business rules? x5 =

TaBLe 5-3 KISS Quick Estimation for FISMA

Chapter 5: Practical Software Size Approximation Techniques

Early & Quick Software Size Estimation Technique

The Early & Quick (E&Q) technique? combines different approaches
in order to provide better size estimates. It uses both analogical and
analytical classification of functional components at different levels
of detail for different branches of the system (aggregations and
multilevel approach). The overall uncertainty level in the estimate
(expressed as a range of minimum, likely, and maximum values) is the
weighted sum of the individual components” uncertainty levels. This
technique provides a table of statistically validated values, derived
from the ISBSG and other sources. Due to its multilevel/mixed
approach, the sizing level for E&Q depends on how many details the
measurer has and can explore:

® Level 5 For higher hierarchical components (macro pro-
cesses, general processes, and multiple and generic logical
data groups)

* Level4 Forlower hierarchical components (typical process-
es and base functional processes, and internal and external
logical data groups with generic complexity)

e Level 3 For functions where the low/average/high complex-
ity is determined

The starting point of this technique is the product breakdown
structure of the system being studied, the basic elements of which are
the following software objects:

* Logical data groups (files)
¢ Elementary (functional) processes
Further aggregations are provided:

¢ Logical data groups (files) can be grouped in multiple data
groups.

¢ Elementary (functional) processes can be grouped in small,
medium, or large “typical” and “general” software processes.

* General processes can be grouped in small, medium, or large
“macro” software processes.

Table 5-4 shows the descriptions for all the software objects and
their aggregates.

The following section provides Early & Quick hints, levels, and
ranges for COSMIC FSM methods. The Early & Quick technique can
also be used for IFPUG. This technique provides results within +25
percent of the actual size of the project or application being
approximated.

2 Refer to References.

B6 Practical Software Project Estimation

Name | Description Brief Definition

LDG Logical data | A group of logical attributes—a conceptual entity
group that is functionally significant as a whole for the
user. An internal logical file or external interface
file (ILF, EIF in IFPUG), or permanent objects of
interest (OO0l in COSMIC).

MDG Multiple data | A set of two or more logical data groups. Its size
group is evaluated based on the (estimated) amount of
included logical data groups.

BFP Base The smallest software process with autonomy
functional and significant characteristics, allowing the
process user to achieve a unitary business objective. It

corresponds to an external input, external output,
or external query (IFPUG), or to any functional
process (COSMIC).

TFP Typical A particular case of a general process: a set
functional of most frequent transactions on a logical data
process group (or a small set of LDGs). Usually denoted

as “Management of [LDG/OOI].” It can be of three
“flavors”: CRUD (create, retrieve, update, and delete),
CRUDL (CRUD + elementary list), or CRUDL + Report
(totals or other derived data).

GFP General A set of two or more average FPs. It can be likened
functional to an operational subsystem, which provides an
process organized whole response to a specific application

goal. Its size is evaluated based on the (estimated)
quantity of included FPs.

MFP Macro A set of two or more average general processes.
functional It can be likened to a relevant subsystem, or even
process to a bounded application, of an overall information

system. Its size is evaluated based on the
(estimated) quantity of included general processes.

TaBLE 5-4 Early & Quick Software Objects

Early & Quick for COSMIC Function Point Size
In the COSMIC method? objects of interest are identified, but not
assigned any numerical values.

COSMIC Transactional Functions
Base functional processes correspond to the functional processes of
the standard COSMIC method. Typical functional processes and

3 Refer to Chapter 20.

Chapter 5:

higher-level aggregations (general and macro functional processes)

Practical Software Size Approximation Techniques

are also defined.

COSMIC Ranges and Numerical Assignments

Each E&QC FFP (full function point) element is assigned three
estimated values, that is, minimum, likely, and maximum COSMIC
function points. Tables 5-5 and 5-6 show component ranges and
numerical assignments for the “business application software” case
(for example, MIS [management information system]) and the real-

time case.

Type Level/Complexity E.. EM E .

BFP Low (2-5 DM) 2.0 3.6 5.0
Average (5-8 DM) 5.0 6.3 8.0
High (8-14 DM) 8.0 10.5 14.0
Very High (14+ DM) 14.0 18.0 25.0

TFP Low CRUD/L 14.4 18.0 25.2
Average CRUD/L 25.2 30.0 42.0
High CRUD/L 42.0 50.0 65.0

GFP Low (6-10 BFPs) 20.0 50.0 100.0
Average (10-15 BFPs) 40.0 80.0 160.0
High (15-20 BFPs) 55.0 110.0 210.0

TaBLE 5-5 Early & Quick COSMIC Ranges for Business Application Software

Type Level / Complexity E.. E E .

BFP Low (2-3 DM) 2.0 2.5 3.0
Average (3-5 DM) 3.0 4.0 5.0
High (5-10 DM) 5.0 7.5 10.0
Very High (10+ DM) 10.0 15.0 20.0

GFP Low (6-10 BFPs) 15.0 32.0 75.0
Average (10-15 BFPs) 25.0 38.0 110.0
High (15-20 BFPs) 38.0 70.0 150.0

TaBLe 5-6 Early & Quick COSMIC Ranges for Real-Time Software

51

38

Practical Software Project Estimation

Some Other Examples of Extrapolative Approaches

to Size Approximation

Other examples of extrapolative approaches to size approximation
are

e FP Prognosis FP =7.3 x#Inputs + Outputs + 56
¢ NESMA Indicative FP FP =35 x ILFs + 15 x EIFs

e Lite or Quick & Early FP FP =4 x EIs + 5x EOs + 4 x EQs +
10 x ILFs + 7 x EIFs

* Weighted Averages FP=4.3 xEIs +5.4xEOs + 3.8 xEQs +
7.4 x ILFs + 5.5 x EIFs

* Thirties Rule of Thumb One logical file equals “thirty
something” unadjusted FPs. So for an application that has
about 40 logical files, a very rough size can be obtained as
follows: 40 x 35 =1,400 FP. This sort of rough estimate should
have an allowance of plus or minus 30 percent or more.

Using Functional Size to Estimate Project Effort

and Duration

If functional size is being used to estimate the effort and duration of
a development or enhancement project, try and get the most accurate
size that you can within the limitations of information and resources
available. Use several size approximation techniques to refine the
result before using its values in the project estimation exercise, since
an error in the size compounds the errors in the estimates of effort
and duration.

NOTE When using approximated sizes for project estimation purposes, be
aware of the need to validate, refine, and eventually translate your size
estimates into exact measures, in order to avoid spreading uncertainty
from the size approximation to the effort and duration estimates.

Once you have established your project’s software functional size
expressed as a number of functional size measurement method units
(for example, function points) you can use the ISBSG data to estimate
the likely project effort and duration. The following chapters present
estimating techniques that allow you to do this.

NOTE Remember that approximating (or measuring) functional size only
results in an approximate (or measured) software size. This is a measure
of the amount of software product to be delivered, it is not an estimate of
project effort, duration, or cost.

Chapter 5: Practical Software Size Approximation Techniques

The Need for Caution

Whether size is approximated or measured for use as an early cost
indicator for the project, a contingency of 20 percent to 30 percent
should be added to allow for functionality not apparent early in the
life cycle. Historical data indicates that this scope creep typically
occurs as a result of additional functionality being identified as user
requirements evolve in subsequent development phases.

The approximation techniques discussed earlier are only valid if
your application or development project is loosely coupled with other
applications and generically fits the profile of projects currently in the
ISBSG Repository.

Summary

In this chapter we provided examples of just some of the approximat-
ing size techniques that can be used when there is insufficient oppor-
tunity, time, or perhaps information to perform a detailed size
measurement.

This page intentionally left blank

CHAPTER 6

The Problem
of Missing
Functionality

project costs and schedules is scope creep. Scope creep is the

introduction of additional functionality that either was not
specifically defined or was not identified at the time of estimation.
Undefined functionality will be missing from the functional size;
consequently, the project will be underestimated.

One of the major factors contributing to “blowouts” in software

Identifying Missing Functionality

By comparing the different types of functionality delivered by com-
pleted software projects, you can gain an insight into what may be
missing from your project’s early specifications. Functional sizing of
the requirements of an application quantifies the different types of
functionality to be delivered by the application. As detailed in the
previous chapter, industry figures available from the ISBSG Reposi-
tory for projects—measured with IFPUG function points—indicate
that complete applications tend to have consistent and predictable
ratios of function points contributed by each of the function types.
This profile of functionality delivered by each of the function types
for your planned application can be compared with that of the profile
of typical completed and implemented applications. Such a compari-
son will highlight potential areas where the project specifications are
incomplete or where there are anomalies.

Note that that this approach for identifying missing functionality is
unlikely to work for enhancement projects, simply because a particular
enhancement can be focused upon for only certain types of functionality,
for example, reporting. In such a case its function type profile will reflect
that focus, and it will not align with the overall application profile.

61

62

Practical Software Project Estimation

In addition to considering the average profile determined from the ISB-
SG data, it is important to consider the nature of the application in ques-
tion. For example, if the application were for end-of-month reporting,
you would expect it to have a quite different function type profile than if
it were an online contact management system. You would expect the
end-of-month reporting application to have a higher percentage of its
functionality associated with external outputs and external queries than
the online contact management system.

Figure 6-1 illustrates a case where the project manager for a new
development of a financial application performs a detailed function
point count of the planned project and then compares the percentage
contribution of each type of functionality against the ISBSG Repository
values. The inner chart in Figure 6-1 represents ISBSG Development
Project Data, where n =798. The outer chart shows the example financial
application. This quantitative comparison shows the disparity between
the planned project and the typical ISBSG profile. (A comparison with
the ISBSG typical profile is appropriate here because the financial
application being developed is expected to have a function type profile
that would align with the profile for an average application.)

The project manager noted that the reporting requirements
(“External Outputs” function points) had the largest percentage
discrepancy, being much lower than expected (10 percent compared
against the expected 22 percent of the total function points). The user
subsequently confirmed that the first release of the software was
expected to deliver all reporting requirements but that not all reports
had been specified. As a result, the project manager increased the
original functional size to allow for the extra percent of reports

M External Inputs

[l External Outputs

[External Queries

[l Internal Logical Files

[External Interface Files

Ficure 6-1 Checking the completeness of project requirements using ISBSG
Release 11 industry data

Chapter 6: The Problem of Missing Functionality

predicted by the ISBSG figures. The project manager calculated the
early project estimates using this higher functional size figure, which
was more likely to reflect the finished product. The ISBSG comparison
enabled the project manager to quantify the functionality that was
potentially missing and to justify the higher estimate.

Managing Changes and Additions to Functionality

The method just offered is useful for projects that attempt to define all
functional requirements before moving to the build stage of the project
(this also suggests a waterfall approach to the development). Many
projects adopt an approach that does not demand that all the functional
requirements are known prior to programming work commencing. A
number of techniques that include significant user involvement during
the life cycle of the project, and that allow for incremental development,
have been identified as offering significant improvements in project
delivery rate, speed of delivery, and quality (a lower number of defects
delivered). These are reported in the ISBSG’s “Techniques & Tools —
Special Report II,” which covers techniques like Prototyping, JAD, and
Agile.

Scope Management

The scope management approach has also been employed in Europe,
Japan, and Australia to manage changes and additions to functionality.
Two approaches are used: southernSCOPE (Victorian Government,
Australia) or northernSCOPE™ (FiSMA, Finland). Both techniques
use the ISBSG history data to help verify quotations provided by
software vendors. Both are based on three major principles:

¢ Use of functional size measurement
¢ Use of unit pricing $/FP

* Use of an independent scope manager

As with the incremental techniques, both these approaches are
designed toachieveimproved communicationbetween the developers
and their customers and users. More information about these concepts
is available at the web sites of the owner organizations.

Summary

The typical ISBSG profile of new development projects can be used to
compare against the profile of a proposed project as a check that all
the requirements are likely to have been included in the functional
specification and the functional size.

This page intentionally left blank

CHAPTER 7
Estimating Using
Equations

ne technique for software project estimation involves the use

of regression equations. These equations allow you to

calculate an estimate for a particular project metric, such as
effort and duration, by simply inserting the calculated size' of your
project into the appropriate equation. This estimation technique is
commonly used to produce indicative or ballpark project estimates
early in the life of a project. The method is not sufficiently accurate to
produce an estimate that could be relied on for quoting or business
case requirements, but is useful for an early indication of whether a
projectidea is feasible, or when you are short of time and information.
In these situations the equation technique can meet your needs.

NOTE The equation technique for estimation is commonly used to produce
an initial, indicative project estimate.

ISBSG Regression Equation Tables

A set of regression equations has been produced from the data in the
ISBSG Repository. These equations are available in the tables in
Appendix C. You can use these equations to calculate the following
project metrics:

* Project delivery rates (productivity, expressed as hours per
function point?)

! Historically, regression equations used KLOC (thousands of lines of code) as their
units of measure for software size; however, all regression equations in this book
use IFPUG 4.x function points to measure functional size.

2 “Function point” means unadjusted function point (UFP).

65

66

Practical Software Project Estimation

¢ Effort (person hours—for the development team only)
¢ Duration (elapsed months)

e Speed of delivery (function points delivered per elapsed
month) for the project as a whole

e Speed of delivery per person (function points delivered per
elapsed month per development team member)

Two groups of equations are provided with the following
independent variables:

¢ Equations that utilize size (in unadjusted function points)
and maximum team size

¢ Equations that utilize size only
Within these groups, equations are provided by:

¢ Platform (mainframe, midrange, PC, and multiplatform)
¢ Language type (3GL, 4GL, and application generator)
¢ Development type (enhancement and new development)

¢ Combinations of platforms, language type, and development
type

You must have an estimate or calculation of project size for these
estimates. If team size is known or estimated as well, so much the
better, but it makes no sense to attempt to produce estimates based on
team size alone without knowing the project size.

An example of how to use the basic equations to produce a
ballpark estimate based on language level is provided at the end of
this chapter.

Using the ISBSG Regression Equations

Use of the ISBSG equations is straightforward. Having selected the
appropriate equation from the tables provided, to produce your
estimate, you insert the calculated functional size of your project and
(if available) the maximum team size.

For example, suppose you want to produce estimates for an
enhancement project that is being developed for a multiplatform?
environment, and the project has a functional size of 260 function
points, with a planned maximum team size of 4. Using Tables C-1.0,

3 Refer to Appendix C for the equation tables.

Chapter 7:

Estimating Using Equations

C-1.1, C-1.3, and C-1.4 from Appendix C, you would come up with
the following estimates:

67

Project Delivery | PDR_ = 38.97 x =38.97 x ~ 6.3 hours per
Rate Size0-566 x 26070566 x 40951 | fyunction point
TeamSize®5t
Project Work PWE,_. = 38.97 x =38.97 x =~ 1,627 hours
Effort Size®*34 x 2600434 x 40951
TeamSize®-°5*
Speed of SD,, =0.44 x =0.44 x =~ 37 function
Delivery (whole | Size®82 x 2600852 x 470228 points per month
project) TeamSize 228
Speed of SD,. =0.44 x =0.44 x = 9.2 function
Delivery (per Size%852 x 2600852 x 4-1.228 points per month
developer) TeamSize 1228 per developer

The following is an example of how to perform these equations
using an MS Excel formula:

=(38.97*(260"-0.566)* (470.951))

(For ~ press sHIFT-6.)

Duration cannot be estimated directly from size and team size (no
useful equations can be presented in Table C-1.2). Using the third row
of Table C-2.2 leads to an estimated duration of 5.3 months. The
general equation relating effort to duration (see item 2.b after Table
C-2.2) gives an estimate of 4.2 months. Dividing 260 FP by 37 FP per
month (from the table immediately preceding this text) gives an
estimate of 7.1 months.

So the estimates for this project indicate that it will consume
around 1,600 hours of effort and have an elapsed time of approxi-
mately 5 to 7 calendar months.

NoTE It is very important to treat estimates obtained from the regression
equations as ballpark figures only.

Creating Graphs from the Equations

You can use the equations in Appendix C to create estimation charts
for your environment. For example, using the equation in Table C-2.1,
“Project Work Effort, estimated from software size only,” for midrange
platform & 4GL, you can create a simple MS Excel table, as shown
next, for 50 through 1,000 function points, and then create a useful
graph, as shown in Figure 7-1.

68 Practical Software Project Estimation

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

0

Effort (Hours)

0 100 200 300 400 500 600 700 800 900 1,000
Size (IFPUG Function Points)

Ficure 7-1 Example Effort Estimation Chart, MR & 4GL

Class c E N R2 (Adj) = Median MRE
MF & 3GL 51.34 | 0.730 365 0.37 0.56
MF & 4GL 18.39 | 0.838 41 0.44 0.51
MR & 3GL | 43.17 | 0.742 71 0.53 0.45
MR & 4GL | 29.07 | 0.830 47 0.65 0.40
PC & 3GL 13.83 | 0.889 140 0.56 0.51
PC & 4GL 31.05 | 0.710 50 0.36 0.57

NoTE Effort includes project management, administration, and the
software team.

Example Effort Estimate Using the Equations

Using Table C-2.1 in Appendix C, the effort equations derived from
the ISBSG’s data for the different combinations of platform and
development show the following ballpark effort estimates for a
project of 500 function points:

Platform and Estimated Effort for
Language Effort Equation 500 FP Project

MF & 3GL Effort = 51.34*FPSize®73° 4,794 person hours
MF & 4GL Effort = 18.39*FPSize®838 3,360 person hours
MR & 3GL Effort = 43.17+FPSize% 742 4,343 person hours
MR & 4GL Effort = 29.07*FPSize®83° 5,053 person hours
PC & 3GL Effort = 13.83%FPSize%8° 3,469 person hours
PC & 4GL Effort = 31.05*%FPSize®7*° 2,561 person hours
Multi & 3GL Effort = 23.96*FPSize®83! 4,191 person hours
Multi & 4GL Effort = 15.86*FPSize®857 3,470 person hours

Chapter 7: Estimating Using Equations

NOTE The effort predicted by the ISBSG equations includes all effort across
all phases of the life cycle from project initiation to project completion for
software developers, project managers, and project administration.

The following results using the equations that utilize software
size and maximum team size offer an interesting comparison. Because
only those equations are presented in which size and team size both
have a significant impact, the set of platform and language
combinations excludes some that occurred in the equivalent set based
upon software size alone, in the previous example.

Estimated Effort for
Platform and | Effort Equation Utilizing Software 500 FP Project with
Language Size and Maximum Team Size a Max Team Size of 5
MR & 3GL Effort = 42.94%FPSize®3%+MxTeam?®®°* | 2,475 person hours
MR & 4GL Effort = 56.86%FPSize®36xMxTeam®9¢” | 2,175 person hours
PC & 3GL Effort = 28.66*FPSize®*%1xMxTeam?®7%° | 2,263 person hours
Multi & 3GL | Effort = 36.44%FPSize®%%xMxTeam®83 | 3,293 person hours
Multi & 4GL | Effort = 9.35%FPSize®"*&+MxTeam©8t 2,941 person hours

Of course, these estimates are just indicative and need to be
adjusted to allow for other factors that impact productivity and are
specific to your project and environment. You should present any
estimates as a range, or plus/minus =30 percent.

The obvious limitation of this equation-based technique for
project estimation is that the equations cannot address the specific
attributes of a particular project. The equations model an average
project derived from the ISBSG Repository.

Itis very important to treat estimates obtained from the regression
equations as ballpark figures only. More accurate estimates will be
obtained by using an estimation technique that considers the
particular attributes of a planned project.

Summary

The use of the regression equation estimation technique is useful to
produce indicative or ballpark project estimates early in the life of a
project.

69

This page intentionally left blank

CHAPTER 8
Estimating Using
Comparison

regression equations to produce indicative project estimates. The

limitations of this equation-based technique are detailed in that
chapter. Toachieve more detailed estimates—aligned more specifically
to the attributes of the project being planned, rather than being based
on those of the average project in the ISBSG Repository—we need to
use another estimation technique.

In this chapter we describe an estimation technique based on
comparison of the target project with a number of projects in the
ISBSG Repository that have similar attributes to the target project.

Comparison-based estimation differs from the analogy-based
estimation (which is covered in the next chapter) in that comparison-
based estimation uses the median values for effort, duration, and so
on, from a group of projects that are similar to the target project.
Analogy operates with one or perhaps two past projects selected on
the basis of their close similarity to the target project.

In the previous chapter, we described the use of the ISBSG

NoOTE Comparison-based estimation involves selecting a group of completed
projects that share the characteristics of your target project, then using
the average of the median effort and duration values.

Using the Comparison Technique

The comparison technique uses the attributes of the target project and
compares them with projects in the ISBSG Repository, to produce an
estimate of project delivery rate and speed of delivery, and hence
project effort and duration.

12

Practical Software Project Estimation

The steps are as follows:

1. Establish the size of the software to be delivered by the target
project.

2. Determine the development type and platform applicable to
the target project.

3. Select the appropriate subset' of ISBSG Repository? data.

4. Define the other attributes of the target project (for example,
Programming Language, Application Type, Maximum Team
Size, Tools, and so on). You should define attributes that are
likely to influence the target project’s project delivery rate or
speed of delivery.

5. Search the selected subset of ISBSG data for projects with the
same values for the defined attributes as the target project.

6. For all the matching projects found by your search, for each
of the defined attributes, calculate the median® project
delivery rate and speed of delivery.

7. Determine the average of the medians of the project delivery
rates and speeds of delivery, and use those averages in
conjunction with the software’s functional size to calculate
the target project effort and duration estimates.

Because the resulting values determined by this technique are
aligned to the specific attributes and values of the target project, they
should be better estimates of that project’s project delivery rate and
speed of delivery—and hence effort and duration—than the values
obtained from the equations that reflected the average project in the
repository.

The following is an example of using comparison-based estimation
against the ISBSG Repository to determine effort and duration
estimates for a planned small-sized, that is, 250 FP, new development
project being undertaken on a PC platform. Table 8-1 shows project
selection attributes and values, and Table 8-2 displays project
estimation attributes and values. Only those projects matching these
attribute values will be used in the estimation calculation.

! Because the performance achieved on projects of different sizes and development
types and using different development platforms varies significantly, it is
recommended that you select only projects of a similar size and having the same
development type and platform as the target project.

2The complete ISBSG project data is available on the “ISBSG Estimating,
Benchmarking & Research Suite” that can be licensed from www.isbsg.org or
from ISBSG member organizations.

3 The median is used instead of the mean to determine average project delivery rate
and speed of delivery, so as to reduce the effect of outlying data points.

www.isbsg.org

Chapter 8: Estimating Using Comparison 3
Attribute Value
Size Range 0 to 500 function points

Development Type

New Development

Development Platform

pPC

TaBLE 8-1 Project Selection Attributes and Values

ISBSG Median
Project Delivery | ISBSG Median
Rate Speed of Delivery
Target Project | (hours per (function points
Attribute Value function point) per month)
Primary Visual Basic 6.5 51.0
Programming
Language
Organization Type Banking 5.3 44.4
Application Type Management 9.1 31.3
Information
System
Maximum Team Size | 3to 4 9.0 33.4
Used JAD Yes 8.9 27.0
Web Development Yes 5.9 52.2
Average: PDR,.=7.4 SD,.=39.9

TaBLE 8-2 Project Estimation Attributes and Values

First, determine the project delivery rate (PDR,.) and speed of
delivery (SD,) estimates.

Next, use the project delivery rate and speed of delivery estimates
in conjunction with the project’s functional size to calculate the project
work effort (PWE, .) and project duration (PD, .) estimates, as shown
in Table 8-3.

In this example, comparison-based estimation indicates that
completing the target project to deliver the new software will require
around 1,850 hours of work and take 6.3 months. These are likely
estimates and should be presented as part of a range also showing
conservative and optimistic estimates. The ISBSG Comparative
Estimation Tool* provides such a range.

4 ISBSG provides a “Comparative Estimating Tool” that can be licensed from www
.isbsg.org or from ISBSG member organizations.

www.isbsg.org
www.isbsg.org

74 Practical Software Project Estimation

Software Size Size = functional size = 250 function
of delivered project points

Project Delivery PDR,, = average of = 7.4 hours

Rate category median per function
project delivery rates point

Project Work PWE,. =PDR,. X =7.4x 250 = 1,850 hours

Effort Functional Size

Speed of Delivery | SD, = average of =39.9
category median function points
speeds of delivery per month

Project Duration PD,, = Size/SD,, =250/39.9 = 6.3 months

TaBLe 8-3 Project Work Effort and Duration Estimates

NotE You must always make allowances and adjustments for factors
peculiar to your project.

Summary

Comparison-based estimation is useful and is likely to produce a
more accurate estimate than one based on the regression equations.
By introducing a direct comparison of attribute values that are specific
to the target project with projects in the ISBSG Repository, the resulting
estimates should prove to be more reliable. You must, of course,
always make further allowances and adjustments for factors that you
perceive to be peculiar to your project.

CHAPTER 9
Estimating Using
Analogy

nalogy-based estimation is another technique for early life-

cycle macro-estimation. Analogy-based estimation involves

selecting one or two completed projects that closely match
the characteristics of the target project. The chosen project(s), or
analog(s), are then used as the base for your new estimate. Tools are
available to search your chosen project history database for a suitable
analog.!

NoTE Analogy-based estimation involves selecting one or two completed
projects that closely match the characteristics of the target project.

Analogy-based estimation differs from the comparison-based
estimation covered in the previous chapter, in that comparison-based
estimation uses the averages and medians from a group of similar
projects. Analogy operates with one, or perhaps two, past projects,
selected on the basis of their close similarity to the target project.
Comparing a target project to a past project is commonly used in an
informal way when “guesstimating”; consequently, it is a familiar
technique to the practitioner.

In this chapter we describe the formal analogical estimation
technique, its implementation, and its advantages and drawbacks. In
Chapter 13 you will find an example of how to do an estimate using
the analogical technique with the ISBSG data.

! For example, “Angel” (ANaloGy softwarE tooL). Refer to http://dec.bournemouth
.ac.uk/ESERG/ANGEL/ESCOM96.html.

[1]

http://dec.bournemouth.ac.uk/ESERG/ANGEL/ESCOM96.html
http://dec.bournemouth.ac.uk/ESERG/ANGEL/ESCOM96.html

16

Practical Software Project Estimation

Background: Reasoning by Analogy

An analogy expresses the similarity of different things. The word
“analogy” is derived from the Greek words expressing geometric
proportions or symmetries, ana logos, which can be translated as
“according to a ratio.” An analogy between different things depends
on the presence of the same or similar attributes in the things being
compared.

When we reason by analogy, we compare two things: a “target”
and a “source” analog. The target analog is the thing about which we
wish to make a conclusion or a prediction. The source analog is the
thing whose similar attributes are used to make the conclusion or
prediction. For example, we might predict the likely duration of a
journey based on a past journey that has very similar characteristics
to the one being planned.

Estimating by Analogy

Estimating software project effort by analogy simply involves finding
one or two past projects that have similar significant attributes to the
target project that you wish to estimate. An estimate of the effort to
complete a new software project is made by comparison with one or
more previously completed projects.

Estimating software project effort by analogy usually involves a
number of steps:

1. Establishing the attributes of the target project, and then
measuring or estimating the values of those project attributes.
Analysis of the ISBSG data has revealed attributes that have
an impact on project delivery rate. Table 9-1 is a guide to the
attributes that you should consider.”

2. Searching a repository of completed projects for a project that
closely matches the target project as a source analog to
compare against.

3. Using the known effort that was used in developing the
source analog as an initial estimate for the target project.

4. Comparing the chosen attributes (for example, size, platform,
and so on) for the target and source projects.

5. Establishing or adjusting the initial effort estimate in light of
the differences between the target and source projects.

% This list of attributes reflects those that the ISBSG data has revealed have a
significant impact on project delivery rate. If, however, you think that other
attributes included in the ISBSG Repository, or in another repository that you
are using, are relevant for your own project, then you should also consider those
additional attributes in your estimation analysis.

Chapter 9: Estimating Using Analogy 7]

Software Size Application Type
Development Platform Maximum Team Size
Development Type Use of Prototyping
Primary Programming Language Use of JAD
Organization Type Web Development

TaBLE 9-1 Attributes That Impact Project Delivery

It is very important that you use your judgment to exclude
inappropriate analogs and not be tempted to adopt a “likely” analog
without due care

It is not clear how best to judge the appropriateness of a potential
analog for a target project. Analogical tools can assist in the selection
process by ranking past projects according to how well they match
the target. Once an analog has been selected, you are faced with the
question of how best to use it to derive an estimate for the target
project. It is probable that the analog differs from the target project in
some respects that influence effort. You need to think about what
adjustments should be made to the effort value of the analog to reflect
these differences.

NOTE It is very important that you use your judgment to exclude
inappropriate analogs and not be tempted to adopt a “likely” analog
without due care.

Advantages of Estimating by Analogy

The accuracy of estimates from experiments with analogy tools
demonstrates that software effort estimation by analogy is a viable
estimation method. Analogy-based estimation also offers some
advantages:

o [t is easy to understand the basis for an estimate. Analogy-based
estimation is quite different from the input-output models, as
estimates are based on concrete past examples. People are used
to seeking out an analogy to help them estimate everyday tasks.
(We regularly estimate the likely duration of a planned journey
based on previous experiences.) This familiarity may explain
why people are comfortable estimating in this manner.

o It is useful where the domain is difficult to model. We know that
many factors influence the effort needed to complete a software
project. We know less about how these factors interact with each
other, or how best to model the range of factors via software

18

Practical Software Project Estimation

metrics. Estimation by analogy can be used successfully without
having a clear model of how effort is related to other project
factors. It relies primarily on selecting a past project that is a
close match to the target project, rather than assuming a general
relationship between effort and other project characteristics
that applies to all projects.

It can be used with partial knowledge of the target project. Analogy-
based estimation allows people to use whatever information
they have available to search for and select an analog, rather
than prescribing particular inputs.

It can avoid the inaccuracies of equation-based model use. Analogy-
based estimation has the potential to provide accurate
estimates even using another organization’s data, provided
an appropriate analog for the target project is found within
the data set used for estimation. An analog is appropriate if
effort and associated factors are related in a similar way for
both the target project and analog.

It has the potential to mitigate problems with outliers.’> Analogy-
based estimation does not rely on calibrating a single model
to suit all projects. If the target project is typical of a data set,
it is likely that one or more appropriate analog projects will
be found to base the estimate on. Outliers in the data set have
no influence on the estimate at all. If the target project is itself
an outlier, at least the lack of a similar project to compare
against may make this apparent to the estimator. When using
an equation-based model, an estimator may be lulled into a
false sense of security because the model will generate an
estimate even for the outlier.

NOTE If the target project is unusual, at least the lack of a similar project
to compare against may highlight this to the estimator.

e [toffers the chance to learn from past experience. When estimating

by analogy, it is convenient to select a potential comparable
project via scrutiny of available metric values, because this
information is concise and easily compared. Ideally, analogy-
based estimation would be applied within an organization
with access to other information associated with past
projects, not just project metrics. Information such as project
debriefing reports could help managers identify risks that
the new project faces and avoid mistakes that have been
made in the past.

* An outlier in this context is a project with metrics that differ markedly from the
sample group.

Chapter 9: Estimating Using Analogy

The Drawbacks of Estimating by Analogy

Naturally, some difficulties with analogy-based estimation offset its
advantages. Its accuracy relies on three factors:

¢ The availability of an appropriate analog
¢ The soundness of the strategy for selecting the analog

¢ The manner in which differences between the analog and
target are allowed for when deriving an estimate

There may be no appropriate analog project within an available
data set for the project that you want to estimate. One danger is that
an analog may be selected and used regardless of its appropriateness.
An old project could be selected as an analog because it appears
similar to the target project, even though factors affecting effort have
changed over time.

Summary

Analogical estimation offers another macro-estimating alternative. It
relies heavily on the availability of an appropriate analog. This in
turn relies on your ability to define the attributes of the target project
to a level of granularity that will result in any identified analog being
a true match with the proposed project. That said, if a suitable analog
is available, this method of estimation offers another viable estimating
option.

In Chapter 13 you will find an example of how to perform an
estimate using the analogical technique utilizing the ISBSG data.

This page intentionally left blank

CHAPTER 10

Estimating Using
Work Breakdown
Structure

relying on one method of estimation. We advise you to use

different techniques to provide “sanity checks” for your
preferred estimation approach. While the emphasis in this book has
been on techniques for macro-estimation, particularly utilizing the
project history available in the ISBSG Repository, it is important to at
least make reference to the essential micro-estimation technique,
commonly known as a work breakdown structure (WBS). As there
are many publications available that provide detailed material on
work breakdown structures, this chapter provides only a basic
introduction.

I I Throughout this book we have stressed the importance of not

Work Breakdown Structure: Introduction

For work breakdown estimates, the main development phases are
broken down into tasks and then into subtasks. PMBOK refers to this
as “bottom-up estimates.” To reduce the possibility of failing to
include all the tasks, the project team members and stakeholders
should be involved in the process of task identification and recording.
This process then provides a base for a bottom-up estimate.

The team-based technique of Wide-Band Delphi estimation
(developed by the Rand Corporation in 1948) is now widely used for
software project WBS-based estimates. The technique is also taught in
many universities and software organizations. After researching
estimation techniques used by software organizations, the University
of West Florida discovered that a number of software organizations
utilize the technique, without referring to it by its name. So, even

81

82

Practical Software Project Estimation

though few organizations claim to use the Delphi technique by name,
the methodology is widely used.

NOTE Formal risk assessment is an essential project estimation
prerequisite.

The following approach towork breakdown software estimation—
based on the Delphi technique—can be used:

1. Provide team members with the relevant information
regarding the project (business case, quality requirements,
and so on).

2. Conduct a formal risk assessment.
3. Develop task lists.

4. Each person in the development team individually estimates
each task using sensitivity analysis' to provide a best case,
likely, and worst case estimate.

5. All estimates are then written on a white board, grouped in
the three ranges.

6. Each person discusses the various assumptions and issues
they considered when developing their estimates.

7. If appropriate, the various estimates are adjusted based on
the team discussion.

8. Each range is averaged with outliers being discarded.

9. The resultant ranges are used as the basis for the effort and
duration estimates.

The team discussions incorporated into this technique are very
important because they allow the team members and stakeholders to
learn about the various assumptions that were made during the
estimation process.

NOTE ISBSG research indicates that better project estimates are obtained
by using a combination of work breakdown and macro-estimating
techniques.

As micro-estimation is a vital part of any project estimation effort,
we recommend that you acquaint yourself with the work breakdown
estimation technique and use it in addition to macro-estimation
techniques.

! This technique involves making estimates ranged into three figures: optimistic,
realistic (most likely), and pessimistic.

Chapter 10: Estimating Using Work Breakdown Structure

Using Process Models for Micro-Estimation

Another alternative for the breakdown of macro-activities into
operational tasks is to use software life-cycle macro-phases® and to
map these with the process model adopted in your own quality
management system, or to use an external standard process model
such as CMMI-DEYV, SPICE (ISO/IEC 15504-5), or ISO/IEC 12207. Use
of one of these will provide a framework to ensure that all standard
and repeated activities are included. As your projects will then share
the same definitions, ambiguities will be minimized, and this will also
allow the comparison of projects. The result will be a three-tier WBS:

* Macro-Software Life-Cycle Phase (for example, “Design”)

* Process (according to the chosen process model, for example,
“Architectural Design”)

e Task (according to the chosen process model, for example,
“Review Architectural Design Specification”)

Depending upon the process model chosen, it is possible to have
a different number of process groups (or categories, depending upon
the terminology used). For instance:

¢ CMMI-DEV has distributed its 22 process areas into four
process categories (Project Management, Process Management,
Support, and Engineering).

e ISO/IEC 15504-5 distributed its 48 processes into three main
blocks of processes (Primary, Organizational, Support) for a
total of nine process groups (Primary: Acquisition, Supply,
Engineering, Operation; Organizational: Management, Process
Improvement, Resource and Infrastructure, Reuse; Support:
Support).

Figure 10-1 compares the two models’ contents against those
categories.

Two main questions arise from such classification into process
categories:

e What is the impact of the number of process categories on the WBS?
From a practical viewpoint, some useful information can be
gained from a Gantt chart structured using these classifi-
cations. For instance, it would allow the following:

¢ Easier matching of activity types to the related personnel
skills required. This would provide a more granular
classification of a generic “analysis” process, which would
lead to different allocations (and related costs) for
functional/business analysts and for technical analysts.

2 Refer to “Project effort breakdown” in the Glossary.

84 Practical Software Project Estimation

CMMI 1SO 15504

Project Management

Y[supply (SUP)
|

|
|| Engineering (ENG) |
|

| -
| | Operation (OPE) | Reuse (REU) | |

|
Engineering | j [SupportSUP) | :

Ficure 10-1 Process categories in CMMI and 1SO 15504°

e Knowledge of the balance between categories and their
alignment to expected thresholds for a certain kind /group
of projects. This will allow you to more accurately assess
the effort breakdown for the various project tasks (for
example, business analysis).

* More accurate estimation and planning through an
appropriate balance of activities in the project.

o Why choose one reference model over another?

* Business viewpoint: this could be a case of requiring
compliance with a model because it is a de facto standard
and will allow for benchmarking (for example, CMMI-DEV).

¢ Technical viewpoint—two alternatives:

* Choose a single model. Usually, the larger the number of
process groups, the broader the coverage of possible
processes and related tasks performed in an
organization. The choice of a specific model (and
related number of process categories and processes)
should be done in line with the organization’s Quality
Management Standard purpose and scope.

e Combine models. Another option is to merge two
models, integrating their best aspects into a single,
customized model. For instance, CMMI-DEV has a
reduced presence of processes related to reuse practices,
while ISO 15504 has a devoted process. Or if you
require more detail for testing or measurement, you
could use specific “vertical” maturity models from
those domains.

3 The aim of this figure is to provide a snapshot of comparable groups by processes
and related activities, marked with shades. Please note that categories that cannot
be mapped (for example, Reuse) are shown with a white background.

Chapter 10: Estimating Using Work Breakdown Structure

Summary

Work breakdown structures are an important tool in software project
estimation. They provide a micro-approach to estimating, thereby
allowing a cross-check between the results achieved from micro and
macro techniques. A sound approach to estimating a software
development project is to use both a macro-estimation technique and
a work breakdown micro-estimate.

85

This page intentionally left blank

CHAPTER 11

How Do | Estimate a
Project Comprising
Varying Components?

different project delivery rates apply. For these projects it may

be useful to apply macro-estimating methods to each subset
and to aggregate the results. This chapter provides some examples of
situations where you may wish to estimate project subsets.

f ; ome projects are characterized by subsets of functionality where

Subsets Implemented Utilizing Different Technologies

It is common for systems to use mixed technologies in the software
solution. For example, a 4GL or a report generator may be used to
build reports, while the rest of the system may be developed in a
lower-level language. Each technology subset should be indepen-
dently sized, and then its effort should be estimated.

Code and Reference Tables

Many information systems are characterized by code and reference
tables used to ensure the validity, consistency, and integrity of other
data and to enable data selection. In data warehousing systems, the
contribution of code and reference tables to the functional size has
been observed to be as high as 60 percent, but in normal MIS systems
is often around 30 to 40 percent.

The method used for building maintenance functionality for these
tables varies among organizations and among technologies used. But
as a general observation, where the data element format for each table
is the same or similar (for example, a code, name, and maybe a short
description), a generic technique for the software construction is
common. This approach develops a generalized set of maintenance

81

88

Practical Software Project Estimation

functions for code and reference tables. Indeed, some technology
platforms will readily generate this functionality. A faster project
delivery rate can be expected for this approach.

Subsets Characterized by Technical or Other Complexities

Many software development projects have functionality subsets that
will be challenging to design and/or build because of technical or
other complexities. The project delivery rate (hours per function
point) you might expect to achieve in these areas may be significantly
worse than for other functionality in the project.

Reused Code

Not all software will be built from scratch. Some of the software
solution functionality may be acquired from systems previously built,
or may be bought.

Some common examples of this type of functionality are the
following:

* Security

¢ Utility software for backup/recovery/retrieval

e Utility software for searching, for example, by wildcard or
phonetic matches

* Drawing tools

¢ Event/audit log browsing and searching

The project delivery rate you choose when you are reusing code
will depend upon the amount of customization or modification
needed, but normally you can expect to achieve a rate better than
would be achieved if you had to write the code from scratch.

Summary

A software project can be made up of components that can be expected
to have significantly different project delivery rates. You need to be
aware of this, identify the components of your proposed project,
estimate each component based on its individual characteristics, and
then sum the totals to achieve a realistic estimate for the total software
component of your project.

CHAPTER 12

Using Project
History Databases

oftware project history data can come from two sources: from
an organization’s own history of completed projects, and from
databases of industry software project history.

Use of an Organization’s Own Experience Data

The project delivery rate used for estimation (expressed in hours per
function point) isbest derived from an organization’s own “experience”
database. This experience database holds information about the
organization’s internal project history. Different organizations have
their own characteristics that influence their processes and their
productivity. Many of these characteristics are difficult to identify, let
alone quantify. They will include variables like the impact of the
working environment, staff mindset and staff morale, work mix
(development/support), management, organization structure, and
the relationship with clients/users.

When data is collected on in-house projects, the impact of these
types of variables is embedded in the data. The biggest difficulty
when building your in-house experience database is deciding what
to collect. One of the prime goals of the ISBSG initiative is to provide
a common language that can be used by IT practitioners in measuring
their productivity and comparing themselves. You can build your
own experience database by entering your project data in the ISBSG
Repository.! From the project identification codes supplied to you
when you submit data on projects, you will be able to extract your
organization’s projects from the ISBSG Data Release.

! Refer to Appendix E on the benefits of submitting projects to the ISBSG Repository.
Also refer to http://www.isbsg.org/submitdata, Project data | Submit a project.

89

http://www.isbsg.org/submitdata

90

Practical Software Project Estimation

If you do enter your project data into the ISBSG Repository, you
have the best of both worlds. You can extract your projects to derive
the project delivery rates you have achieved, and you can extract
similar projects from other organizations for comparison.

Use of the ISBSG Data

Industry data such as the ISBSG data is useful in estimating, in
particular when you have no relevant experience data from your own
organization to draw upon, or when you are planning a project that
has characteristics unlike any of your previous projects. At the very
least, industry data will give you some indication of the reasonableness
of your own figures.

The ISBSG Repository

The data in the ISBSG Repository is not random project data, but is
more likely to be representative of projects with higher than average
productivity.

The key reason for higher than average productivity being
represented lies in the method of ISBSG Repository collection. Many
corporate repositories have been compiled by consultancy companies
that were invited into organizations to benchmark them against the
industry. This is often the result of serious concerns about the
efficiency of the IT division. As such, these corporate repositories
tend to reflect a random sample of industry projects. The source of
the ISBSG Repository has been different in that the project data has
been submitted voluntarily, by software practitioners who have a
genuine interest in maximizing their productivity. These practitioners
could reasonably be regarded as “mature” in their measurement
philosophy and practices, and have proactively sought to benchmark
their projects against the world. Other significant differentiating
attributes of the ISBSG data include:

* Some organizations simply cannot contribute to the reposi-
tory. The criteria for including a project in the repository gen-
erally exclude organizations that do not use functional size
measurement.” They also exclude projects for which work
effort (in person-hours) is not available.

* Only organizations that collect the necessary metrics can
contribute to the repository. Organizations with software
metrics programs are likely to be among the more mature
software development organizations.

2 Although the repository does accept projects that have been sized using methods
other than functional units (for example, LOC and use case points), the ISBSG does
not perform validation on these size measures; it simply records them for general
information.

Chapter 12: Using Project History Databases

¢ Organizations also choose which of their projects they submit.
They might choose typical projects, but they might choose
only their best projects.

* The majority of the projects in the repository are less than 500
function points in size. There are few really big projects.

In determining which data to collect, the ISBSG philosophy has
been that a minimum set of data will be collected that is meaningful,
readily available, and objective. As such, much of the “soft” (subjective)
data, which is important to estimating, is not collected. ISBSG does
collect some data on “people factors” and “product and process
quality,” but not currently in areas like the general novelty of the
project (has this type of system been built before?), the complexity of
the problem being addressed, the stability of user requirements, and
project constraints.

These considerations do not lessen the value of the data in the
repository. The focus of the repository is as much on understanding
best practice in the IT industry as on overall averages. However, the
key metrics have been studied and tested. The results of this work
demonstrate that the sample represented by the repository is self-
contained, internally consistent, and contains no apparent anomalies.
The repository is therefore a very valuable collection of data for
estimation.

Guidelines for Use of the ISBSG Data

As the ISBSG project history data is readily available to IT practitioners
and researchers, it is important that its users have a sound knowledge
of the data—are aware of its strengths, limitations, and positioning—
prior to analyzing or using it. It is important to give careful thought
to the project data that you will include in any data set that you plan
to use. You need to think about the meaning of the data, and not just
treat it as numbers to be used without selectivity. What project types
can be legitimately compared or analyzed together?
Here are some examples:

* Project Rating The ISBSG considers that projects with a
data quality rating of A or B are suitable for statistical analysis.
Projects rated C or D may still provide valuable data, but
uncertainty about some of their size or effort values means
that it is best not to include them in your estimation data
sets.

e Normalized Effort® For effort, consider what risk and gain
is involved in using normalized effort. The Summary Work

3 Refer to Appendix A.

9

92

Practical Software Project Estimation

Effort shown in the data is the total effort for the project. What
is counted within that total varies, because different projects
record effort at different levels of detail (see the Resource Level
and Recording Method fields).

A resource level of 1 means that only the effort of the devel-
opment team is recorded; 2 means that support team effort is
also recorded; 3 adds computer operations; and 4 adds effort
expended by the end user or client.

You can do two things to make sure you compare effort

appropriately:

e It is best to select only those projects that record the same
effort detail as you do.

* You don't have to ignore every other project—you can use
rules of thumb to translate approximately between
different levels of effort.

Previous analysis of projects in the ISBSG Repository shows that
level 2 effort is about 10-12 percent more than level 1, level 3 adds
about another 1 or 2 percent, and level 4 is about 20-25 percent more
than level 1.

NorTE If you use approximations like this, you add uncertainty to your
data and add risk to any conclusions that you draw.

¢ Functional Size Measurement Methods (FSMM) It will be
optimal for size comparisons if all the selected projects have
been measured using the same (or compatible) FSMM and
version. If you mix methods, you need to know their
characteristics. For example, you shouldn’t mix projects sized
using pre-IFPUG 4 with those sized using IFPUG 4.x* (the
sizing changed with that release). New development projects
sized using the NESMA standard can be included with IFPUG
4.x projects. Use the Count Approach field in the data (and
perhaps also the FP Standards and Reference Table Approach
fields), to select projects that use the same sizing method that
you use.

® Other Criteria Other criteria that may be important are
organization type, business area type, application type, user
base, and development techniques.

You will want to select projects that are similar to yours in
important project attributes.

4 “TFPUG 4.x” refers to the IFPUG 4 series of releases (4,4.1,4.2, and so on).

Chapter 12: Using Project History Databases 93

The ISBSG suggests that the most important criteria for
selecting projects are as follows:

e Size (if yours is a really large project, there is not much
value to you in studying small ones, and vice versa)

e Development type (new development, enhancement, or
redevelopment)

* Primary programming language or language type (for example,
3GL, 4GL)

® Development platform (mainframe, midrange, or PC)

Bear in mind that as you add more selection criteria, the number
of projects selected inevitably gets smaller. You can end up with small
groups of projects, or perhaps even no projects that satisty all criteria.
How important the group size is will depend on what you want to do
with the data.

In summary it is important that any data subset that you use has
integrity. The key points are to choose only appropriately rated data,
to ensure that measurements are defined the same way (that is, FSM
releases are compatible and effort measures are consistent), and that
the measurements apply to the same thing (that is, effort normalization
and effort levels).

Presentation of Statistics

Appendix B provides an explanation of the ISBSG’s presentation of
statistics and a brief guide to using the statistics and the various tables
provided in the appendixes.

Using Several Estimation Approaches
Means, medians, and regression lines should be used with caution,
especially where sample sizes are small, and variances or standard
deviations are high. You should not rely on a single estimation
method, especially since the macro-estimation methods described in
this book are based on broad averages.

We suggest that you derive your estimates from a relevant subset
of the projects in the ISBSG data set, and that you use your traditional
estimating methods as a reasonableness check.

Summary
The ISBSG project history data is a very valuable resource for
estimation, but it must be used carefully and with an understanding
of what it does and does not represent.

This page intentionally left blank

CHAPTER 13

Project Estimation
Using the ISBSG
Repository

macro-estimating techniques described in this book.

We present a software development case study and then
describe three different macro-estimating techniques that utilize data
from the ISBSG Repository to estimate project work effort and
duration for the target project outlined in the case study. The macro-
estimating techniques described are the following:

I I This chapter provides a practical introduction to using the

¢ Estimating using regression equations
¢ Estimating using comparison
¢ Estimating using analogy
Step-by-step examples of how each of these estimating techniques
can be applied to the case study project are presented, and the benefits
and limitations of each technique are discussed.

The examples utilize project data taken from the “ISBSG Estimating,
Benchmarking & Research Suite Release 11” (ISBSG Repository).!

Case Study: A Student and Staff Records
Management System (SSRM)

Overview
The Supersoft software company will soon begin developing a
student and staff records management system to be called SSRM.

! The “ISBSG Estimating, Benchmarking & Research Suite Release 11” contains
data on over 5,000 projects. It can be licensed from www.isbsg.org or from ISBSG
member organizations.

9

www.isbsg.org

96

Practical Software Project Estimation

SSRM is a management information system to be developed for a
local college. SSRM will allow college administrators to enter,
maintain, and report on a range of information including;:

e Students’ personal, course, and results information

e Staff members’ personal, course, and employment history
information

SSRM will also allow individual students and staff members to
obtain summaries of their own information. To facilitate ease of use,
SSRM must allow access from any location via a standard web
browser interface.

SSRM will be developed to operate on a midrange UNIX platform.
Users will be able to remotely access SSRM via any standard web
browser, but all the system’s processing will be performed on the
UNIX platform.

Even though SSRM will replace several existing systems, its
requirements are sufficiently different from those systems that it is
considered a new development, not as a redevelopment of the existing
systems.

Functional Size Measurement

An initial requirements specification for SSRM has been completed,
and a functional size measure of the system has been carried out
based on that specification. The function point sizing serves a number
of purposes:

¢ Performing function point analysis helps to identify any
missing, incorrect, or unnecessary requirements.

e The completed function point size and accompanying
functional model will aid in scope management throughout
the project by serving as a baseline against which any scope
changes can be tracked and controlled.

¢ The function point size provides an objective measure of the
system’s size that can be obtained very early in the project life
cycle and from which, with the addition of information from
sources such as the ISBSG Repository, estimates of the project
work effort and duration can be obtained.

The functional size of SSRM is determined to be 480 function
points. From past experience, Supersoft knows that requirements
scope creep likely will increase the size of the system by around 12
percent from the initial function point count to the final delivered size.
An additional 60 function points are therefore added to the functional
size for use in estimating, to account for the likely scope creep.

Chapter 13: Project Estimation Using the ISBSG Repository 97

Functional size from initial requirements 480 function points
specification:

Likely functional size increase due to 12% x 480 = 57.6 = 60
scope creep: function points
Functional size used in estimating: 480 + 60 = 540 function points

Project Work Effort and Duration Estimates

Supersoft has appointed Jenny to be the project manager for the
development of SSRM. Jenny is an experienced software project
manager and has managed the development of several similar
systems in the past. Most members of Jenny’s development team are
also experienced in this type of software development.

One of Jenny’s first tasks is to generate project work effort and
duration estimates for the SSRM project. These will be used in the
development of the project’s schedule and budget.

Along with other members of her development team, Jenny plans
to develop a complete work breakdown for the SSRM project and
then to use a task-based micro-estimating technique to generate the
estimates. From experience, however, Jenny knows that developing
an accurate and complete work breakdown for a project such as this
will take considerable time. Because she needs initial and indicative
estimates more quickly than she can obtain them from the task-based
micro-estimating technique, Jenny decides to use macro-estimating
techniques, which do not require a complete work breakdown, to
develop the initial estimates.

An additional benefit of using macro-estimating techniques is
that when she comes to generate the full, task-based micro-estimates
from the work breakdown, Jenny will be able to use the existing
macro-estimates for validation. Any significant differences between
the task-based micro-estimates and the macro-estimates can be
investigated to ensure that no tasks have been inadvertently missed
out, included without reason, or incorrectly assessed.

Ideally, Jenny would utilize historical data from completed
Supersoft projects to generate the macro-estimates. Although
Supersoft is an experienced software development company, it has
only recently begun developing systems similar to SSRM and has
therefore not yet developed a substantial repository of development
information on such projects. Because Supersoft does not have its
own repository, Jenny decides to utilize the ISBSG Repository as the
source of historical data on completed projects from which to develop
her project work effort and duration macro-estimates.

The remainder of this chapter describes how Jenny goes about
developing the macro-estimates for the SSRM project using the ISBSG
Repository.

98

Practical Software Project Estimation

By following the instructions within the text and utilizing project
data from the ISBSG Repository, you can duplicate the steps Jenny
carries out to generate the estimates. This will provide you with a
practical introduction to using the macro-estimating techniques
described in this book.

Example 1: Estimating Using Regression Equations

One of the quickest and simplest mechanisms for generating estimates
of project work effort and duration is to utilize equations developed
from regression analysis of completed software projects.

Linear regression equations have been developed from the data
in the ISBSG Repository? for the following project classes:

* Projects classified by development platform: mainframe,
midrange, PC, and multiplatform

* Projects classified by development language type: 3GL and 4GL

* Projects classified by project type: new development and
enhancement

e Projects classified by a combination of development platform,
development language type, and project type

In conjunction with a project’s functional size, or a combination
of functional size and maximum team size, the regression equations
can be used to generate estimates for:

* Project delivery rate (PDR_,), expressed in hours per function
point
* Project work effort (PWE,,), expressed in hours

* Speed of delivery (SD,,), expressed in function points per
month

* Project duration (PD,,), expressed in months

Using Regression Equations to Generate Estimates for SSRM

Jenny uses the ISBSG regression equations to generate her first set of
project work effort and duration estimates for the SSRM project.

Regression Equations: Functional Size

Because the ISBSG regression equations consider the project’s
development platform, Jenny must first decide which regression
equations she should use to generate her estimates.

% The complete ISBSG project data is available on the “ISBSG Estimating, Benchmarking
& Research Suite.” The suite also includes the ISBSG Early Estimate Checker tool,
which can be used to develop regression equation-based estimates. The suite can
be licensed from www.isbsg.org or from ISBSG member organizations.

www.isbsg.org

Chapter 13:

Project Estimation Using the ISBSG Repository

The project to develop SSRM will be a new development project.
SSRM will be developed for a combination midrange and PC platform.
Because all of the system’s processing will occur on the midrange
platform, with the PC platform limited to providing the standard
web browser interface, Jenny initially decides to use the ISBSG
regression equations for the class of new development projects
developed for the midrange platform.

On viewing the ISBSG regression equations for this class of project,
however, Jenny discovers that whilst a variation in functional size
explains a reasonable variation in the project work effort, the same is
not true for project delivery rate, speed of delivery, or project duration,
where the equations’ R2(Adj)* values are less than 0.25. Jenny therefore
decides to use the ISBSG regression equations for the class of new
development projects developed for a multiplatform to estimate speed
of delivery and project duration. These equations provide a reasonable
match to her project and have substantially higher R2(Adj) values.

Jenny notes that none of the development platforms recorded in
the ISBSG Repository can be used to generate effective project delivery
rate estimates based upon functional size alone. In all cases they lead
to R2(Adj) values of less than 0.25. This is not too much of a concern
for Jenny, however, because her goal is to determine estimates for
project work effort and project duration, both of which she can do.

Using the selected regression equations for a project with a
functional size of 540 function points, Jenny obtains the following
estimates:

Project Delivery PDR

Re There are no suitable ISBSG

Rate (Appendix C,
Table C-2.0)

regression equations for
estimating project delivery rate
from functional size alone.

Project Work Effort | PWE,, =19.08 x Size®®83
(Appendix C, Table | (New development/ | =19.08 x 5400883
C2.1) Midrange) = 4,934 hours

Project Duration PD =0.423 x Size®440

(Appendix C, Table
C-2.2)

RE
(New development/

Multi)

= 0.423 x 5400440
= 6.7 months

Speed of Delivery
(Appendix C, Table
C-2.3)

SD,,
(New development/
Multi)

= 2.367 x Size®5¢°
= 2.367 x 5400560
= 80 function points per month

3 Adjusted Squared Multiple R = R2(Adj) is a measure of how much of the variabil-
ity between different projects is actually explained by the equation. The maximum
value is 1.00, which would occur when every project agreed exactly with the
equation. The closer the value is to 1.00, the better. Even low values here can be
meaningful; something is being explained, but randomness or variation in other
predictive factors may have diluted the predictive effect. Low values do not tell
you much (equations with an R2(Adj) less than 0.25 are not even reported in these
tables). High values, such as 0.80, are extremely encouraging (but are not neces-
sarily conclusive).

99

100

Practical Software Project Estimation

The regression equations based upon functional size for the
midrange and multiplatform development platforms indicate that
the SSRM project will require about 4,934 hours of work and take 6.7
months to complete.

Regression Equations: Functional Size and Maximum Team Size
By combining these first estimates with her knowledge of the project’s
size and different project maximum team sizes, Jenny is able to both
tune her estimates and investigate the relationship between project
effort and duration.

First, Jenny uses her existing estimates of project effort and
duration and her experience, which tells her that one full-time
equivalent (FTE) resource equates to approximately 130 effort hours
per month.* She calculates a likely figure for the SSRM project’s
average monthly effort and hence an average team size of
approximately 5.5 full-time equivalent resources. Jenny performs the
following calculations:

Resource to Effort Ratio (RER)

1 FTE Resource = 130 hours per month

Average Monthly Effort (AME) PWE,, / PD, =
4,934 / 6.7 = 736 hours per month
Average Team Size (ATS) AME / RER =

736 / 130 = 5.5 FTE resources

Because Jenny knows that project resource levels are typically not
constant for the entire project duration, but rather start at a low level,
build up to a peak, and then decline, she also knows that the SSRM
project’s maximum team size will be greater than the average team
size of 5.5 that she has already calculated. Based upon this and her
experience, Jenny therefore chooses an initial maximum team size of
9 FTEs for the SSRM project. Using this information, Jenny obtains
the following additional estimates:

Project Delivery Rate | PDR,_ . = 35.09 x Size %7 x
(Appendix C, Table (New development/ Maximum Team Size'-08°
C-1.0) midrange) = 35.09 x 54070597 x 91.080
= 8.8 hours per function point
Project Work Effort | PWE__ = 35.09 x Size®4% x Maximum
(Appendix C, Table (New development/ Team Size'080
C1.1) midrange) = 35.09 x 5400403 x 91080
=4,752 hours

* The ratio of one full-time equivalent resource equating to approximately 130 effort
hours per month is based upon typical industry figures.

Chapter 13: Project Estimation Using the ISBSG Repository
Speed of Delivery SDipirs There are no suitable ISBSG
(Appendix C, Table (New development/ regression equations for
C-1.3) midrange) estimating speed of delivery
from functional size and
likely maximum team size for
midrange platform projects.
Project Duration PD, s There are no suitable ISBSG
(Appendix C, Table (New development/ regression equations for
C-1.2) midrange) estimating project duration
from functional size and
likely maximum team size for
midrange platform projects.

The regression equation for project work effort based upon
SSRM'’s functional size and likely maximum team size indicates that
the SSRM project will require around 4,752 hours of work. There are no
suitable regression equations for estimating project duration or speed
of delivery. Because Jenny’s new project effort estimate aligns closely
to her initial estimate, however, she can reasonably assume that a
new project duration estimate should align closely to her original
project duration estimate of 6.7 months.

To investigate the relationship between project effort and duration
further, Jenny now recalculates the project effort estimate using a
smaller maximum team size of 6 FTEs as follows:

Project Work Effort | PWE,,, = 35.09 x Size®*% x Maximum
(Appendix C, Table | (New development/ Team Size1-%80
C-1.1) midrange) = 35.09 x 5400403 x g1.080

= 3,067 hours

Based upon this smaller maximum team size, the regression
equation indicates that the SSRM project would require around 3,067
hours of work, a savings of 35 percent over the previous estimate. Of
course, this project effort savings must come at a cost. In this case, the
cost is an increase in project duration. To obtain this reduction in
project effort would require an increase in the project duration from a
value of around 6.7 months estimated using the maximum team size
of 9 FTEs. The ISBSG Repository contains insufficient data to
determine the actual magnitude of the increase in project duration.
Whether such an increase is acceptable is often driven by external
factors such as time-to-market windows of opportunity or the
availability of necessarily skilled development staff. If, for example,
most members of the SSRM development team have no critical
activities scheduled over the next 9 months, then significant effort,
and hence cost, savings might be made through utilizing a smaller
project team coupled with a longer project duration.

101

102

Practical Software Project Estimation

The regression equations based upon the combination of
functional size and maximum team size allow the project estimates to
be tuned in a manner that investigates the relationship between
project effort and project duration. These equations are best used in
conjunction with the regression equations based upon functional size
alone. This is because, if used with unrealistic or unachievable
maximum team size values, or without some knowledge of the likely
relationship between project effort and project duration, the regression
equations based upon the combination of values may generate
unachievable and unacceptable project delivery rate and work effort
estimates.

Discussion

By utilizing the regression equations, Jenny has been able to quickly
obtain indicative project effort and duration estimates for the SSRM
project. She might use such initial estimates to establish project
feasibility. She could decide that she is satisfied with these estimates
and finish the analysis at this point. Alternatively, she could decide to
fine-tune the estimates to address additional specific project attributes
that so far have not been explicitly considered.

Because Jenny feels that the SSRM project has some other specific
attributes that are likely to impact the total project work and duration,
but that have not been explicitly addressed by the regression equations,
she decides to fine-tune her estimates based upon the ISBSG Repository
data. The following sections outline how she does this.

Example 2: Estimating Using Comparison

The most obvious limitation of using regression equations to estimate
project work effort and duration is that the equations fail to address
many specific project attributes that are known to impact work effort
and duration. Although the provision of separate sets of regression
equations for different development platforms improves this situation,
the project delivery rate for an application developed using Lotus Notes
is still likely to differ significantly from one developed using Java, even
when they are both developed for the same midrange platform.

A further limitation of the regression equations as they were
presented in the previous section is that they only provide a single
value for each of the project estimates when, in many cases, a range
of values would be more useful. Having a range of estimate values
allows the project manager to consider both optimistic and
conservative as well as likely estimates when devising or validating
the project schedule and budget.

The estimating by comparison technique presented here addresses
both these limitations of regression equation-based estimating by
considering various specific project attributes and by generating a
range of values for each of the project estimates.

Chapter 13: Project Estimation Using the ISBSG Repository 103

The estimating by comparison technique begins by calculating
optimistic, likely, and conservative project delivery rate and speed of
delivery values for selections of projects from the ISBSG Repository
that match the target project on a single attribute. The averages of the
project delivery rates and speeds of delivery for all the selections are
then calculated, and these values are combined with the target proj-
ect’s functional size to generate optimistic, likely, and conservative
estimates for the target project’s work effort and duration.

The estimating by comparison technique is described in detail in
the following section.

The Estimating by Comparison Technique

Estimating by comparison utilizes the following approach to estimate
project work effort and duration using data from the ISBSG
Repository:

1. For the target project, determine its functional size and
identify its project type and development platform.

2. Use the target project’s functional size and development type
and platform to select a subset of similar projects from the
ISBSG Repository.® Estimates generated by the estimating by
comparison technique will only consider the selected subset
of projects.

e The functional size used to select projects from the ISBSG
Repository is expressed as a range of sizes rather than as a
single value.

¢ The estimator may choose not to restrict the set of projects
for consideration based upon one or a selection of
functional size and development type and platform. The
reason for restricting the projects for selection in this way,
however, is that analysis of the ISBSG Repository has
shown that each of functional size, development type, and
development platform has significant impact upon project
work effort and duration. Restricting the estimating by
comparison technique to consider only those projects of a
similar functional size, and having the same development
type and platform as the target project, should therefore
provide more accurate estimates than simply considering
all the projects in the repository.

3. For each of the target project’s attributes recorded in the ISBSG
Repository, calculate the optimistic, likely, and conservative

>The complete ISBSG project data is available on the “ISBSG Estimating,
Benchmarking & Research Suite.” ISBSG also provides the ISBSG Comparative
Estimating tool. Both these products can be licensed from www.isbsg.org or from
ISBSG member organizations.

www.isbsg.org

104 Practical Software Project Estimation

project delivery rate and speed of delivery, based upon all the
projects in the selected repository subset that exhibit that
attribute.

e The median is used to calculate the likely value for project
delivery rate and speed of delivery. The median is used
instead of the mean to reduce the impact of outliers on the
results.

e The 25th and 75th percentiles are used to calculate the
optimistic and conservative values for project delivery
rate and speed of delivery. Because a lower value indicates
a better project delivery rate, the 25th percentile indicates
the optimistic value for project delivery rate. However,
because a lower value indicates a poorer speed of delivery,
the 25th percentile indicates the conservative value for
speed of delivery.

4. Estimate the project delivery rate and speed of delivery by
calculating the averages of the project delivery rates and
speeds of delivery for the sets of optimistic, likely, and
conservative values.

e The mean is used to determine the average values for the
sets of project delivery rates and speeds of delivery.

5. Estimate the project work effort and duration by combining
the project delivery rate and speed of delivery estimates with
the project’s functional size.

NOTE Because estimating by comparison is an informal technique, it can
be easily understood and applied by anyone with access to a database of
historical project information, such as the ISBSG Repository. On the
other hand, because estimating by comparison does not use formal
statistical analysis, it is important that the estimator carefully assesses
the type and number of individual projects that are contributing to an
estimate to ensure that the basis for the estimate is valid.

Using Estimating by Comparison to Generate Estimates for SSRM
Jenny begins the estimating by comparison task by restricting the
projects from the ISBSG Repository that will be utilized to calculate
the estimates to those that match SSRM’s functional size, development
platform, and project type, thereby selecting a suitable data set. She
employs the following restrictions:

Attribute Target Project Value | Matching ISBSG Projects
Functional Size 540 250-750 function points
Development Platform | Midrange Midrange

Development Type New development New development

Chapter 13: Project Estimation Using the ISBSG Repository

Next, Jenny identifies the SSRM project’s values for a range of the
project attributes included in the ISBSG Repository.

She then calculates the optimistic, likely, and conservative project
delivery rate and speed of delivery values for the projects in the
selected data set with matching project attribute values. If Jenny feels
that for a particular project attribute, none of the values in the
repository match, she simply ignores that attribute. Jenny also
calculates the number of matches for each project attribute. These
values will help her validate the viability of the final estimates. The
following table displays the SSRM project attribute values and sets
out the results of the calculations:

Project Delivery Rate Speed of Delivery
(hours per function point) | (function points per month)
< T 23 | z2g T =
Number | ¢ E| 3| §E |§E| 22| &
Target of = B o o e ® e ® C o = 3
EQ =g @8R Q= E = [
Attribute Project Value Matches | © = | 5 = o [e S o =
Primary Java 7 5.0 9.3 9.3 1004 | 111.5 | 197.9
Programming
Language
Organization Education 0
Type
Application Management | 2 7.9 8.4 8.9 38.1 38.1 38.1
Type Information
System
Maximum 5-8 1 7.6 7.6 7.6 54.0 54.0 54.0
Team Size
Used Yes 3 8.2 9.2 33.4 37.7 37.8 38.0
Prototyping
Used JAD Yes 0]
Web Yes 12 8.0 9.3 14.8 56.7 | 103.8 | 158.2
Development

The number of matches for the SSRM project’s attributes ranges
from 0 for Organization Type — Education and Used JAD — Yes, up to 12
for Web Development — Yes. Although Jenny would have preferred to
have a larger number of matches for several of the project attributes,
she decides that the total number of matching projects is adequate to
provide indicative estimates. She also decides not to eliminate any
further attributes from her analysis.

Jenny generates the SSRM project delivery rate (PDR) and speed
of delivery (SD,,) estimates by calculating the averages (that is, the
means) of the sets of project delivery rates and speeds of delivery for
the conservative, likely, and optimistic values.

Finally, she combines the project delivery rate and speed of
delivery estimates with SSRM’s functional size of 540 function points

105

106

Practical Software Project Estimation

to calculate the estimates for project work effort (PWE_;) and duration
(PD,;). She obtains the following results:

Project Delivery PDR.. = mean of optimistic/likely/
Rate conservative project delivery rates
PDR . piimistic = 7.3 hours per function point
PDR.. kel = 8.7 hours per function point
PDR ¢ conservaive | = 14-8 hours per function point
Project Work Effort | PWE . =PDR., X Size
PWE,, optimistic = 3,954 hours
PWE . e =4,721 hours
PWE . conservative | = 7,989 hours
Speed of Delivery SD.. = mean of optimistic/likely/
conservative speeds of delivery
SD e primistic = 97.2 function points per month
SD,, ikely = 69.1 function points per month
SD ;. conservative = 57.4 function points per month
Project Duration PD.. = Size / SD,
PD ¢ pptimistic = 5.6 months
PD ¢ ey = 7.8 months
PD = 9.4 months

CE conservative

Estimating by comparison indicates that the SSRM project will
require:

* Between 3,954 and 7,989 hours of work, with a likely value of
4,721 hours

and

* Between 5.6 and 9.4 months, with a likely value of 7.8 months
to complete

Discussion
Jenny has now completed the target project’s estimation using the
comparison technique. She has optimistic, likely, and conservative
estimates for SSRM’s project work effort and duration.

Of immediate interest is a comparison between the earlier
regression equation estimates and the comparative estimates.

e The comparative estimate’s likely project work effort estimate
of 4,721 hours aligns very closely with the regression equation
estimate of 4,752 hours (regression equation estimate consid-
ering both functional size and maximum team size).

Chapter 13: Project Estimation Using the ISBSG Repository 107

* The comparative estimate’s likely project duration estimate
of 7.8 months aligns reasonably closely (that is, is 16 percent
higher) to the original regression equation estimate of
6.7 months (regression equation estimate considering func-
tional size alone).

In other words, when several more of the SSRM’s attributes were
explicitly considered, they were found to support the regression
equation estimate for project work effort and to suggest a slight
increase for project duration.

Based upon her knowledge of the many other project attributes
that were not addressed by the estimating by comparison technique,
but which can also impact project work effort and duration, Jenny
could now attempt to determine what actual value from within the
estimate ranges she should select as the SSRM project estimates.
Doing that, however, would limit the amount of information the
estimating by comparison process has made available to her.

Jenny therefore chooses to focus on the full estimate range:

¢ If the project goes extremely well with no major problems,
with less than the normal amount of holdups, scope creep,
and rework, and no personnel changes, it should be possible
to achieve the optimistic estimates.

e If the project follows the normal path, the likely estimates
should be achievable.

e If, on the other hand, significant but surmountable problems
and holdups occur during the project, it may be possible to
achieve only the conservative estimates.

Utilizing the full range of estimate values, Jenny and the other
Supersoft personnel in charge of the SSRM project can now consider
the impact on their budget, resources, and the company’s future of
either a highly successful, normal, or highly unsuccessful SSRM project.

The full range of estimate values will also be more useful than a
single estimate value to Jenny when she later uses the comparative
estimates to help validate the task-based micro-estimates. If SSRM’s
task-based estimates fall within the comparative estimate ranges, Jenny
can feel more confident that the task-based estimates are consistent
with the values typically achieved by the industry for this type of
project. If not, this will highlight the need to investigate whether there
are valid reasons for SSRM being expected to have significantly better
or worse project work effort or duration than is typically achieved.

Example 3: Estimating Using Analogy
The estimating by comparison technique just described allowed the
estimator to “tune” the estimates calculated from the ISBSG Repository
data to reflect the explicit attributes of a particular project. In doing

108

Practical Software Project Estimation

so, however, estimating by comparison still relies upon calculating
averages from a number of projects in the repository that are somewhat
similar to the target project. Estimating by comparison does not
attempt to find or to give additional weight to the one or small
number of projects in the repository that are most similar to the target
project. Its inability to focus on these most similar projects means that
estimating by comparison may fail to properly consider the projects
in the repository that can provide some of the most useful
information.

The estimating using analogy technique presented here is a
technique that focuses upon finding the project, or projects, in the
repository most similar to the target project and then utilizing their
actual values of project work effort and duration as estimates for the
target project. These matching projects are known as analogs.

The estimating using analogy process is demonstrated in detail in
the following section.

The Estimating by Analogy Technique

Estimating using analogy utilizes the following approach to estimate
project work effort and duration using data from the ISBSG
Repository:

1. Determine the target project’s value for each of the project
attributes recorded in the ISBSG Repository.®

2. Attempt to select a project analog from the ISBSG Repository
that has the same attribute values as the target project. Ideally,
this step will identify a single project analog. In reality,
however, this is often not the case.

If there is no single project analog in the repository, then it
will be necessary to eliminate one or more of the recorded
project attributes from the matching set until an analog can
be found. Careful judgment needs to be exercised to determine
which attributes should be eliminated from the matching set
to ensure that those that have the most impact on the project
work effort or duration are not eliminated. Another problem
associated with selectively eliminating project attributes is
that different subsets of matching attributes may identify
different project analogs. Once again, careful judgment must
be exercised to determine which subset of attributes is the
most significant and hence, which analog should be selected.

If matching all the project attributes identifies more than one
project analog, then the estimator has the choice of either

®The complete ISBSG project data is available on the “ISBSG Estimating,
Benchmarking & Research Suite” that can be licensed from www.isbsg.org or
from ISBSG member organizations.

www.isbsg.org

Chapter 13: Project Estimation Using the ISBSG Repository 109

considering additional project attributes, in order to allow
some of the first set of analogs to be eliminated, or of working
with multiple project analogs. If the latter choice is made, the
estimator might decide to use the averages of the analogs’
project work effort and duration as the estimate values. Care
must be taken with such an approach, however. If a small
number of analogs display a wide variation in project work
effort or duration values, then the estimating by comparison
technique that also works with averages but considers a
larger number of projects when determining those averages,
may be a preferable approach.

3. Estimate the project work effort and duration for the target
project from the analog project’s actual values. It is often
necessary to adjust the analog’s values to account for any
remaining differences between the target and the analog such
as a variation in functional size.

Because estimating using analogy bases its estimates upon one or
a small number of project analogs, it is more susceptible to errors
resulting from selecting invalid project data points than the other
techniques we have discussed. With these other techniques, the
impact of a single invalid project data point will usually be quite
small, because that data point is not considered individually, but
always as one of a number of project data points that contribute to an
average value.

For this reason, estimating using analogy should probably be
used only when the estimator is confident of the accuracy and
completeness of all the potential project analogs. Ideally, having
selected an initial analog, the estimator would then be able to find out
more about that project either through speaking to the project team
members or by accessing the project documentation. This would
allow the estimator to validate that the analog really did match the
target project and that there were no extraneous issues to account for
the achieved project work effort and duration.

Because this level of validation is not possible for projects in the
ISBSG Repository, estimators need to be very careful in using the
repository as a source of analogs. One way of minimizing this risk is
to always use the estimating using analogy technique as a mechanism
for validating existing estimates, rather than as the means for
generating the estimates in the first place.

Using Estimating by Analogy to Generate Estimates for SSRM
Having generated estimate ranges for project work effort and duration
using estimating by comparison, Jenny decides that she will now use
estimating by analogy to validate her existing estimates.

Jenny’s first task is to filter the ISBSG Repository to attempt to
select a project analog that matches the target project on all of the

110 Practical Software Project Estimation

recorded project attributes. The SSRM project attributes have the

following values:

Attribute

Target Project Value

Functional size

540 function points

Development platform

Midrange

Project type

New development

Organization type

Education

Application type

Management information system

Maximum team size

5to 8

Primary programming language Java
Used prototyping Yes
Used JAD Yes
Web development Yes

From her experience using the estimation by comparison
technique, Jenny already knows that her copy of the ISBSG Repository
contains no new development projects of between 250 and 750
function points, developed for a midrange platform, that match
Organization Type — Education or Used JAD — Yes, so she decides to
eliminate those project attributes from the matching set.

When Jenny attempts to select an analog based upon the remaining
SSRM project attributes, however, she discovers that there is still no
analog to her target project in the ISBSG Repository. She therefore
decides to eliminate and generalize more of the project attributes
from the matching set in order to try to find an analog. This leads to
the following reduced set of project attribute values:

Attribute

Target Project Value

Functional size

250-750 function points

Development platform

Midrange

Project type

New development

Primary programming language Java

Using this reduced set of matching project attributes, Jenny
identifies four matching projects and potential analogs in the ISBSG
Repository. She considers each of these potential analogs individually,
looking at their full set of attribute values, in order to determine
which she should ultimately choose as the actual analog.

From this process Jenny eliminates the two potential analogs with
Organization Type — Manufacturing. Jenny thinks that manufacturing
and education organizations have very different focuses and that this

Chapter 13: Project Estimation Using the ISBSG Repository

may impact the way in which they develop and deliver software. The
two remaining potential analogs both have Organization Type —
Professional Services, which Jenny feels is a better fit to the SSRM
project. These two remaining potential analogs have as their project
activity scopes Planning, Specification, Build and Test and Planning,
Specification, Build, Test and Implement, respectively. Because the SSRM
project estimates must address all of the planning, specification,
build, test, and implement phases, Jenny has no hesitation in choosing
the latter project as her actual analog.

Jenny is now able to read values for the target project’s delivery
rate and speed of delivery estimates directly from the analog’s own
attributes.

Project
Project Work | Delivery Rate Speed of Delivery | Project

Function | Effort (hours per (function points Duration
Points (hours) function point) per month) (months)
435 4,045 9.3 111.5 3.9

Combining the analog’s project delivery rate and speed of delivery
with SSRM’s functional size, Jenny calculates the following
estimates:

Project Delivery Rate PDR = project analog value

AE
= 9.3 hours per function point

Project Work Effort PWE =PDR,, X Size

AE

=9.3x 540
= 5,022 hours

Speed of Delivery SD = project analog value

AE
= 111.5 function points per month

Project Duration PD = Size / SD,,

AE

=540,/111.5
= 4.8 months

Estimating using analogy indicates that development of SSRM
will require around 5,022 hours of work and will take 4.8 months to
complete.

Discussion

Jenny has now completed the estimation by analogy process. The
estimated value for project work effort is around 6 percent higher than
the likely value calculated using estimating by comparison, so is well
within the comparative estimate’s likely to pessimistic range. On the
other hand, the estimated value for project duration is around
38 percent lower than the likely value calculated using comparative

112

Practical Software Project Estimation

estimating and is even around 14 percent lower than the comparative
estimate’s optimistic value.

For project work effort, the estimation by analogy value does
appear to support the values calculated using estimation by
comparison. The same is not true, however, for the project duration
estimates. Because of her lack of knowledge as to whether the selected
project analog is truly analogous to SSRM and because she is unable
at this stage to discover any further information that would clarify
this issue, Jenny decides not to utilize the analogy-based estimates to
validate the planned task-based micro-estimates. In the future, when
Supersoft has built up its own repository of completed project data,
Jenny will be able to use that data to perform estimating using analogy
more effectively.

Summary

Jenny has now completed her macro-level estimating for the SSRM
project. She will use the comparative estimates as initial and indicative
estimates of SSRM’s required project work effort and duration to aid
in constructing the project plan, schedule, and budget. She will also
use the estimates to help validate the task-based micro-estimates that
will be generated from the full work breakdown once it is completed.
When the development of SSRM is completed, Jenny submits a
description of the project along with details of the actual project work
effort and duration to ISBSG to be added to the ISBSG Repository.
Each project added to the ISBSG Repository enhances its usefulness as
an estimating tool and, hence, aids software practitioners in accurately
determining project resource requirements and schedules and
ensuring that they deliver their software on time and within budget.

CHAPTER 14

Estimating for
Agile Software
Development

gile is an approach to software development and delivery
A that:

* Encourages a high level of customer involvement throughout
the software process and tolerates—and even promotes—
changes to the software’s requirements during that process

¢ Delivers software via a series of short iterations—a couple of
weeks to a couple of months—with outcomes that focus on
the delivery of working software as opposed to descriptive
specifications

¢ Is performed by largely self-organizing development teams
where individual software developers take personal
responsibility for the delivery of their components of the
software product

The Agile approach is widely used throughout the world in a
number of well-known and effective Agile software development
and delivery methods and methodologies.

The way an Agile project is performed can differ markedly from
a traditional software development or delivery project. In many cases,
therefore, traditional software project estimation techniques are not
the most appropriate or effective way of forecasting and managing an
Agile project’s schedule and budget.

13

114

Practical Software Project Estimation

This chapter introduces an estimation approach for Agile software
projects.! It is important to note that while they align with the typical
Agile approach to software development, a number of the estimation
concepts presented here may also be applicable in other software
projects that use more traditional development approaches.

Estimating an Agile Project

Before describing the Agile software project estimation approach, it is
necessary to briefly outline how an Agile project is performed and to
define a number of the key terms used.

Agile views a software application as comprising a number of
features, and a software project as delivering a number of new or
enhanced features into production. Estimation of an Agile project
involves decomposing the project into the set of features to be
delivered, as opposed to decomposing it into the set of work
breakdown structure (WBS) tasks to be performed, as is often done in
the traditional bottom-up approach to project estimation.

Different Agile methodologies and methods refer to project
features by different names. Extreme Programming (XP) refers to
features as user stories or just stories. This is the term used in this
chapter.

An Agile project is performed by a development team as a series
of short, fixed-length iterations. Iteration duration is typically between
2 weeks and 2 months. Each iteration delivers a number of stories
(features).

Akey aspect of Agile project estimation is determining which and
how many stories can be delivered by each projectiteration. Estimation
requires methods for determining;:

* The relative size of each of the project’s stories (that is, how
much software functionality each story delivers)

e The development team’s velocity (that is, how quickly the
team delivers the project’s stories)

Various methods have been devised for measuring and expressing
software size and velocity in general, and the size of stories and their
delivery within Agile projects in particular. This chapter focuses on
one of these techniques, the use of story points.

! This chapter provides a brief summary of estimation approaches for Agile soft-
ware projects. The concepts and techniques included have been drawn from a
number of sources. For more detailed and complete descriptions of estimation of
Agile software projects, see the following:

Crystal Clear, by Alistair Cockburn (Addison-Wesley, 2005).

Agile Estimation and Planning, by Mike Cohn (Prentice Hall, 2004).

Planning Extreme Programming, by Kent Beck and Martin Fowler (Addison-Wesley,
2001).

Chapter 14: Estimating for Agile Software Development 115

This chapter also outlines how stories can be sized using Func-
tion Point Analysis (FPA) and how the data in the ISBSG Repository
can be utilized to determine a project team’s likely velocity. The de-
composition of an Agile project into features using stories and then
sizing those stories using story points can be viewed as similar to the
way Function Point Analysis decomposes a software project into data
and transactional functions and then sizes those functions using func-
tion points.? Likewise, the Agile estimation concept of development
team velocity, expressed in terms of story points (delivered) per iteration,
is similar to the Function Point Analysis-based estimation concept of
speed of delivery, often expressed in terms of function points (delivered)
per month.

Because an Agile project consists of a number of fixed-length
iterations, it makes sense that Agile estimation focuses first on
determining the number of iterations required. Once that number is
known, itis usually a straightforward procedure to calculate estimates
for both project schedule and cost by combining the required number
of iterations with the iteration duration and the number and cost of
development personnel involved.

Story Points

In an Agile project the relative size of each story to be delivered is
measured using story points.

The Story Point Scale

Estimators allocate story points to stories from a fixed set of possible
values. A commonly used set of values is a scale that begins with six
numbers from the Fibonacci sequence and continues with one or two
substantially larger numbers.

Example

Story point scale: 1, 2, 3, 5, 8, 13, 20, 50

This approach allows estimators to allocate story points quickly,
because they are working from only a small set of possible numbers,
and confidently, because the magnitude of eachnumber is significantly
different from the numbers on either side of it. It is unnecessary and
unhelpful to have a story point scale that continues with larger
numbers than that proposed here. Any story allocated 50 or even 20
story points is too large for effective management and control within
a single iteration. If any such stories are identified, they should be
decomposed into a number of smaller and more manageable stories
that are then reassessed to determine their story point size.

2 Function Point Counting Practices Manual: Release 4.3, International Function Point
Users Group (IFPUG), 2009.

116

Practical Software Project Estimation

Calibrating the Story Point Scale Using Past Projects

Story points are a relative size measure. This means that the same
story delivered by different development teams could quite rightly
be allocated different numbers of story points. To address the relative
size issue, the story point scale to be used in Agile estimation must be
calibrated to accurately reflect the size of stories typically delivered
by the one or more development teams within an organization that
plan to utilize that story point scale. In addition, it is necessary to
ensure that all developers who will be involved in devising estimates
have an effective understanding of the relative sizes within the story
point scale.

Estimators must calibrate and understand the story point scale
before using it to estimate a new project. Calibration begins by
selecting one or more past projects. Selected past projects need both
to be similar to the target projects to be estimated and to have had
delivery that progressed at a typical rate. For the calibration projects,
story points are retrospectively allocated to their stories based upon
their actual delivery duration. All future estimators need to study the
individual stories and their allocated story point values so as to gain
a proper understanding of the relative sizes of stories associated with
each of the values in the story point scale.

Example

Table 14-1 lists actual durations for the stories delivered for a project
that has been completed in the past. Table 14-1 also shows the
allocation of story points to each story based upon those actual
durations. Future estimators would need to study these allocations
along with the details of each story to gain an appropriate
understanding of the relative sizes of stories associated with each of
the values in the story point scale.

Prior to using the story point scale for estimation of new Agile
projects, future estimators should gain expertise in the technique by
practicing allocating story points to stories from other past projects
where the actual story duration and, hence, likely allocated story
point size, can be checked.

As an alternative to story points, stories can also be sized in
function points using Function Point Analysis. This is done by
applying the standard Function Point Analysis approach to each
story.

An organization might choose to size its stories using function
points for a number of reasons:

¢ The organization has substantial Function Point Analysis
expertise.

¢ The organization wishes to utilize external sources (such as
the ISBSG Repository) to determine likely speed of delivery
(development team velocity).

Chapter 14: Estimating for Agile Software Development

Actual Allocated Actual Allocated
Duration Story Duration | Story
Story (days) Points Story (days) Points
1 1 1 12 6 3
2 1 1 13 7
8 1 1 14 7 3
4 2 1 15 8 3
5 3 2 16 8 3
6 3 2
7 4 2
8 4 2
9 4 2
10 4 2
11 4 2

TaBLe 14-1 Investment Management System Upgrade Project: Story Durations
and Story Points

¢ Theorganization wishes to use the size results for comparative
benchmarking against either its own history of non-Agile
projects or against projects from other organizations. Because
story points are a relative size measure, they cannot be easily
compared across organizations or even across different
development teams within the same organization.

Development Team Velocity
To create Agile project estimates, it is necessary to know in advance
how quickly the development team can deliver project stories. This
speed is referred to as the development team velocity, or simply the
velocity, and is expressed as story points (delivered) per iteration.
Velocity is used in conjunction with the story point sizes of a
project’s stories to both estimate overall project schedule and cost,
and to allocate stories to individual project iterations.

Determining Development Team Velocity Using Past Projects
Velocity is ideally based upon past project performance from within
the same organization and for the same development team. To
determine the velocity achieved on a past project, determine its story
point sizes, and calculate the average number of story points delivered
by a project iteration.

17

118

Practical Software Project Estimation

To ensure that the determined velocity is appropriate, it may be
necessary to consider several past projects. Once again, the past
projects need to be both similar to the target projects to be estimated
and to have had delivery that progressed at a typical rate. Remember,
different types of projects are likely to have different velocities.

Example

Table 14-2 shows the stories and story points previously delivered by
the completed Investment Management System Upgrade project
across the project’s five iterations. Based upon this data it appears
that this development team has a typical velocity of around 22 story
points per iteration. Although this velocity could now be used for
estimating future Agile projects, it would probably be wiser to
investigate several more past projects before finalizing the velocity
estimation figure.

For Agile projects sized using Function Point Analysis, it is pos-
sible to determine likely speeds of delivery (velocity) from external
sources. This book includes descriptions of several different tech-
niques to aid in selecting an appropriate speed of delivery from the
ISBSG Repository.

Allocating Story Points to Stories

The Agile approach to software development requires that individual
developers take personal responsibility for the delivery of their
components of the software product. In keeping with this principle,
all developers involved in a software project—or individual project
iteration—are encouraged to actively participate in the estimation of
that project or iteration. This, of course, requires that all developers
have a clear understanding of what each of the story point sizes
means in the context of their software projects.

Number Stories Number Story Points
Iteration per Iteration per Story per Iteration
1 2 13,13 26
2 3 13,82 23
3 6 55,5322 22
4 6 8322272 19
5 8 83331111 21
Total: 25 111
Average: 5 22.2

TaBLE 14-2 Investment Management System Upgrade Project: Development
Team Velocity

Chapter 14: Estimating for Agile Software Development

Agile project estimation utilizes a modified Wide-Band Delphi
approach for allocating story point sizes to each of the project or
iteration’s stories. A typical Agile estimation session would progress
as follows:

1. All the developers involved in the estimation session come
together. An effective number of developers is between six
and ten. One of the developers acts as a facilitator for the
session. Business representatives may also attend the session.
Their role is to provide explanation and clarification of the
details of particular stories, not to participate in allocating
story points or determining estimates.

2. The facilitator selects the next story to be estimated, and its
requirements are discussed by the group. The discussion
should be limited to a few minutes. If after this discussion,
and input from the business representatives, the story’s
requirements remain unclear, the story is put aside—to be
clarified later—and the next story is selected.

3. All developers now produce their estimates for the current
story using the agreed story point scale. A useful tool is for
each developer to have a set of cards, each card showing one
of the numbers from the story point scale. When asked to
produce his or her estimate, each developer simply places the
card showing the chosen story point number face up on the
desk in front of him or her.

4. The developers’ story point estimates for the current story are
now compared and assessed.

If all the developers’ estimates align, then the estimation
process is completed for the current story. The number of
story points allocated is recorded, and the next story is
selected.

If the developers” estimates do not align, then various tech-
niques can be used to move the group toward an agreement:

e If the estimates differ from each other by only one value
on the story point scale, then one of the larger, smaller, or
more frequently occurring values may be selected as the
estimate. The rationale for selecting the larger value is that
this is a safer, more conservative approach. The rationale
for selecting the smaller value is that it encourages the
estimators to think carefully before selecting smaller
values, because they know that in doing so they may be
committing themselves to the delivery of more
functionality, and hence, more work, within an iteration.
The rationale for choosing the more frequently occurring
value is simply that it reflects the group’s majority view.

19

120

Practical Software Project Estimation

e If the estimates differ from each other by more than one
value on the story point scale, then the estimators with the
largest and smallest estimates may be called upon to
explain the rationales for their estimates. After this, the
estimators will typically produce new estimates, and the
process will be repeated.

e If after three iterations of the estimation process a
unanimous agreement cannot be reached, then a decision
should be made. This may involve eliminating any outliers
or having the facilitator make the decision based upon his
or her understanding of the story involved.

An important goal of the estimation process is that it should be
done as quickly as is practicable.

Example

Table 14-3 shows the result of the first estimate round for a group of
six developers allocating story points to story 12 from the planned
Back Office Billing and Inventory project. In this case, story points are
allocated using the scale beginning with six numbers from the
Fibonacci sequence and then continuing with two larger numbers,
thatis, 1, 2, 3, 5, 8, 13, 20, 50.

At this time, the developers’ estimates do not align. Allocated
story points range from 3 to 8, a difference of two values on the story
point scale. The developers who proposed the lowest and highest
values are now called upon to explain the rationales for their choices.
Following this discussion all the developers undertake a second
estimate round.

The following table shows the result of the second estimate round
for story 12.

Story Estimate Round Developer X Allocated Story Points

1 2 3 4 5

12

2 5 8 8 5 5 5

After this second estimate round, the developers’ estimates differ
by only one value on the story point scale. A third estimate round
could now be undertaken to try and obtain universal agreement.
Instead, however, the group chooses to select the smaller estimate of

Story Estimate Round | Developer X Allocated Story Points

1 2 3 4 5 6

12

1 5 3 8 3 5 8

TaBLe 14-3 Back Office Billing and Inventory Project: Allocated Story Points

Chapter 14: Estimating for Agile Software Development

5 story points. This choice is based upon the previously agreed upon
procedure to select the smaller of the two estimates if those estimates
only differ by one value on the story point scale. Doing this helps to
ensure that the estimation process continues to progress quickly and
effectively.

Having successfully allocated story points for story 12, the
developers now move onto the project’s next story.

Estimating Total Project Schedule
and Cost at Project Initiation

Story points can be used to estimate the likely total project schedule
and cost prior to the start of the project development iterations. Doing
this requires that all of the project’s stories have been identified and
sized in story points and that the likely development team velocity is
known.

Ideally, all the project developers will have participated in allo-
cating the story points to the project’s stories. However, it is not
uncommon for the initial order of magnitude estimates devised at
project initiation to be determined by a smaller group of key develop-
ers and project personnel.

The project schedule estimate is determined by combining the
project iteration duration with its story point total divided by its
likely velocity. The project cost can then be estimated based upon the
required number of project iterations combined with the developer
costs associated with a single iteration.

It is important to remember that estimates determined at project
initiation should be viewed as order of magnitude estimates only.
The full details and complexity of all the project stories may not yet
be known. Their story point sizes may change once that information
is available. Additionally, in an Agile project new stories may be
identified as the project progresses.

Example

Table 14-4 shows initial project schedule and cost estimates for the
Back Office Billing and Inventory project based upon the project size
of 147 story points and likely velocity of 22 story points per iteration.
These initial estimates suggest a project duration and cost of around
28 weeks and $262,500, respectively.

For Agile projects sized using Function Point Analysis, the initial
project schedule and cost estimates can be determined by combining
the project’s function point size with its likely speed of delivery and
project delivery rate, respectively.

The project’s cost can be estimated directly from its project delivery
rate when the project delivery rate is expressed in terms of cost per
function point (for example, $1,500 per function point). Often, however,
the project delivery rate is expressed in terms of effort per function

121

122 Practical Software Project Estimation

Total Project Stories 34
Total Project Story Points (SP) 147
Development Team Velocity (V) 22 story points
per iteration
Iteration Duration (D) 4 weeks
Developer Number (per Iteration) (DN) 5
Developer Cost (per Developer per Iteration) (DC) $7,500
Estimated Iterations (l) =SP/V
=147 /22
=\6NA="7
Estimated Schedule =IxD
=7x4
= 28 weeks
Estimated Cost =|/x DN x DC
=7x5x7,500
= $262,500

TaBLe 14-4 Back Office Billing and Inventory Project: Initial Estimates

point (for example, 9.5 hours per function point). In such cases, the project
delivery rate must be combined with an additional project cost rate
(for example, $125 per hour) in order to estimate the project’s cost.

Allocating Stories to Individual Project Iterations

Prior to the start of each project iteration, story points can be utilized
to help ensure that the appropriate number and size of stories are
allocated to the iteration. Once again, this requires that all the project’s
stories have been identified and sized in story points and that the
likely development team velocity is known.

To allocate stories to the next project iteration, select a group of
stories with a total story point size approximately equal to the
development team velocity. Of course, other constraints and
dependencies beyond the story point size may impact which stories
can or must be selected for inclusion within a particular iteration.

When allocating stories to a project iteration, either the developers
can make use of the story point sizes determined at the project’s
initiation, or they can choose to reassess each potential story to
determine anew its story point size. By reassessing the stories, the
developers are able to consider any new or changed information they
have acquired since the project began that may impact that size.

Example

Table 14-5 shows the allocation of a group of five stories to iteration 4
for the Back Office Billing and Inventory project.

Chapter 14: Estimating for Agile Software Development

Iteration Number | 4

Velocity 22 story points per iteration

Story Number | 11 | 12| 19 | 23 | 26 | Total 5
Allocated Stories

Story Points 5 8 3 5 3 | Total | 24

TaBLe 14-5 Back Office Billing and Inventory Project: Allocated Stories

Note that the total story point size for the five allocated stories is
24 story points, which is two more than the likely velocity of 22 story
points per iteration. This highlights two factors. First, the likely velocity
should be viewed as an average value only, and second, the number
of story points allocated to any story is not so precise that it should
necessarily restrict the inclusion of a story into an iteration if good
reasons exist for that inclusion.

For Agile projects sized using Function Point Analysis, the likely
speed of delivery can be used to allocate stories to an iteration.

First, however, the speed of delivery may need to be adjusted to
address the iteration duration. If each iteration has a duration of
2 weeks, but the speed of delivery is expressed in function points per
month (for example, 60 functions points month), then the number of
function points to be delivered needs to be halved to properly address
the iteration duration (for example, 30 function points per 2-week
iteration).

Individual stories can then be allocated to each iteration in turn,
up to the function point size limit for the iteration.

Reviewing the Process at Project Completion
The effectiveness of using story points for Agile project estimation
can be continuously improved by ensuring that an estimation review
always takes place after the project is completed.

The review should investigate the actual duration and cost
required to deliver each story and should compare those actual values
against the estimated values. Doing this will help the developers’
understanding of how to effectively allocate story points to stories
and will also help to fine-tune the likely development team velocity.

Benefits of Agile Software Estimation Using Story Points

For developers working with an Agile software development
approach, using story points for project estimation offers a number of
benefits over more traditional approaches. These include

e Story point-based estimation has been devised in conjunction
with, and specifically for, the Agile development approach.
The concepts and terminology used in story point-based

123

124

Practical Software Project Estimation

estimation align with those used in Agile development. This
alignment includes references to project iterations and
stories.

e Story point-based estimation can be completed quickly and
easily and does not require the developers responsible for the
estimates to perform significant additional analysis or to have
additional specialist skills. Estimation can be incorporated
into the standard planning sessions prior to the start of each
project iteration.

¢ Story point-based estimation supports the Agile principle of
developers taking ownership and responsibility for the
software they will deliver. Estimates are created by the
developers themselves. Developers therefore understand
that poorly considered estimates can have a direct impact on
their own work situation.

¢ Story point-based estimation supports appropriate input into
the estimation process by the different project roles. Once
again, the developers who are required to deliver the software
provide the development estimates. Occasional lapses of
judgment or lack of understanding by anindividual developer
are mitigated through the use of a Wide-Band Delphi
approach. Business representatives provide additional
descriptions and clarifications of software requirements when
and if needed.

Comparing Story Points and Function Points

Story point-based estimation is sometimes compared to and con-
trasted with Function Point Analysis-based estimation.

Both techniques focus on identifying, sizing, and devising size-
to-effort, size-to-cost, or size-to-schedule ratios for the features that a
software project will deliver into production. For story point-based
estimation these features are the collection of project stories, whereas
for Function Point Analysis—based estimation they are the collection
of data and transactional functions.

Where story points differ most from function points, however, is
that while function points endeavor to be an absolute measure of fea-
ture size, story points are explicitly a relative measure. This means that
whereas applying Function Point Analysis to a particular collection of
software requirements should always lead to identification of the same
number of function points, determining the number of story points
related to a particular collection of software requirements can lead to
completely different numbers and depends entirely upon the story
point scale used in each situation.

For story points, one claimed major advantage of being a relative
sizing technique is that it can be quickly learned and applied as
needed in a particular context. Unlike with Function Point Analysis,

Chapter 14: Estimating for Agile Software Development 125

the use of story points does not require that estimators learn and
understand a full set of sometimes complex and prescriptive rules
and guidelines.

On the other hand, potential disadvantages of a relative sizing
technique such as story points over an absolute technique such as
Function Point Analysis are as follows:

* The use of story points requires recalibration within each
organization and potential development team in which they
are used.

o It is difficult to use external repositories as sources of
information on likely development team story point velocity.

e Story points cannot be easily used for comparative bench-
marking across organizations.

* There is no authoritative source against which to assess the
correctness and consistency of project sizing.

Summary

The Agile approach to software development differs markedly from
traditional development approaches such as Waterfall. As such, Agile
requires its own method of estimation. In this chapter we have
provided a brief introduction to Agile software development
estimation and described the sizing process using either story points
or function points.

This page intentionally left blank

CHAPTER 15

A Guide to Estimating
Project Cost Using

ISBSG Data

project attribute in its repository, it is very difficult to

standardize these costs as a ratio of “dollar cost per function
point delivered” that can be used to predict the likely cost of a newly
planned project. Difficulties in using other projects’ total costs arise
due to the following factors:

ﬁ Ithough the ISBSG collects the costs incurred by projects as a

e The costs submitted to the ISBSG are provided in a wide
range of currencies.

* Projects are submitted to the ISBSG over many years, and the
currency conversion rates to a “standard” currency such as
the euro or US. dollar vary significantly as economies
strengthen and weaken relative to each other.

¢ Since the dates that the project costs were collected are not
known, it is not possible to allow for any subsequent inflation
that may have occurred.

It is therefore recommended that in order to estimate your
project’s costs, you should use the predicted project effort, and convert
the effort to cost using current relevant personnel resource costs. That
is, use the effort predicted by the PDR combined with the hourly
charge-out rates for the particular project team in the currency in
which they will be paid, allowing for the inflation over the proposed
project duration.

This chapter explains how this can be done and the types of
considerations that need to be allowed for prior to committing a
monetary value to a project.

121

128

Practical Software Project Estimation

Hourly Charge-Out Rate

The way charge-out rates are calculated varies for different countries
and organizations. It also depends on whether the development
organization is selling its development services or building the
software as an internal asset for its own organization.

The next two sections describe how to calculate internal project
and external project charge-out rates.

Internal Project: Building Software for Your Own Organization
Your internal accounts department should be able to provide the internal
charge-out rate for each project team member. The charge-out rate is the
direct labor cost, that is, the cost of the employee to the organization. This is
usually calculated using the employee’s hourly pay rate plus on-costs.
On-costs are all non-salary employee costs. Typically, these include such
overheads as payments for sick leave, recreational leave, public holiday,
superannuation, insurance, fringe benefits, payroll tax, and so forth.
On-costs vary from country to country and in different employment
situations. They may add as much as 1540 percent to the hourly rate
paid to the employee. On-costs plus the annual hourly rate paid for
hours worked make up the employee’s salary package.

For example: If the hourly pay rate is $40 an hour, then on-costs
could vary between $6 and $15. Therefore, the internal charge-out
rate for that employee could be from $46 to $56 an hour depending on
the employee’s employment/contract benefits.

External Project: Building Software for an External Organization

Where an organization sells software development services, the rates
that it charges the customer (charge-out rates) need to cover the cost of
the employee, plus a profit margin. Charge-out rates are calculated
taking into account:

¢ The utilization rate of the staff, that is, the number of revenue
earning days compared to the total number of days they are
paid.

* The company overheads (equipment, telephones, utilities,
rent, office and administration costs, insurance, and so on).
This also applies in many organizations that are not
commercial software development companies, but where IT
services are treated as a cost center and where internal projects
include company overheads in the project costs.

¢ Total employee salary package costs.
¢ Profit margin required.
As a rule of thumb the external charge-out rate is 2.5 to 3 times the

employee’s hourly pay rate, but may be up to 6 times for larger
corporations.

Chapter 15: Estimating Project Cost Using ISBSG Data 129

For example: if the hourly pay rate paid to the supplier
organization’s employee is $40 an hour, then the rate charged by the
supplier to the client, for that employee’s time spent on the project,
could be between $120 to $240 per hour.

Refining Hourly Charge-Out Rate for Project Team Structure

The size and structure of the project team, and the individual roles
required for the project, will depend on many factors, including the
size of the project, type of project, project risk factors, type of
organization, and the maturity and rigor of the development process.
There may be up to a fourfold difference in the rates charged for
personnel performing the different roles, and the number of people
performing each role will vary from project to project.

To estimate total cost for a project, you first need to determine the
likely project team structure (number of people performing each role)
and their respective charge-out rates. For internal projects this is
straightforward. To determine the charge-out rate for external
projects, you may need to reference industry sources such as job
advertising sites on the Internet, IT industry surveys, and government
web sites, or you can simply ask your suppliers.

Total effort hours for the project are calculated from the project
delivery rate (PDR), therefore it is important to try to assign the
projected effort hours across the different project roles in order to
more accurately predict costs. Figure 15-1 shows the percentage
breakdown of effort of the various project roles for an in-house, new
development project. The ISBSG provides similar charts for
enhancements and outsourced new developments in the subscriber
section of its web site.

Use an appropriate role ratio breakdown for your particular
software development, and then apply your charge-out rates to the
different roles.

Project
Other Manager 7%

15%

Business
Analyst 3%

Software

QA, Testers Architect 9%

16%

Ul, Graphics
2%

Programmers
48%

Fieure 15-1 New development role ratios for in-house development

130

Practical Software Project Estimation

Indexing the Charge-Out Rate for Inflation

and Currency Movements

Global software development projects, the impact of financial crises
on different economies, and development teams spread across
continents, all make predicting costs for projects with long durations
a more complex task.

If the project duration is estimated to be more than one year, then
it is recommended that you factor the predicted inflation rate—for
the country where the employees are paid—into the charge-out rates.
Compound for each of the successive project years.

If the currency that is funding the project is different from the
currency being used to pay the project team, then currency projections
may also need to be taken into consideration when calculating the
charge-out rates.

Additional Cost Considerations

So far we have concentrated on the costs that are associated directly
with the project team that is developing the software. There are other
costs that lie outside the development team; these are discussed in
the following sections.

Costing Activities Outside Project Development Tasks

When converting functional size to effort using the appropriate ISBSG
PDR in hours per function point, it is important to understand exactly
which project activities the effort hours correspond to in order to
understand what proportion of the total project costs the PDR-based
cost estimate is predicting and what has been omitted.

The hours collected by the ISBSG and used to calculate industry
PDR values are specifically for the following activities in the software
development life cycle, as shown in Table 15-1.

Any effort estimates—and their corresponding cost estimates
derived from the PDR—can cover only the software development
activities shown in Table 15-1, and consequently these exclude other
fixed price, and time and materials costs, to purchase other project-
related items that need to be considered in the project budgets, such as:

¢ Hardware/networks

¢ Software-licensing fees/software product costs
¢ Software utilities/development tools

¢ Strategic planning

¢ Business process reengineering

e Data migration strategy/data conversion

¢ Planning and implementation of change management strategies

Chapter 15: Estimating Project Cost Using ISBSG Data

Project Activity Possible Activity Components

Plan

Preliminary Investigations
Overall Project Planning
Feasibility Study

Cost Benefit Study
Project Initiation Report
Terms of Reference

Specify

Systems Analysis

Requirements Specification

Review & Rework Requirements Spec
Architecture Design/Specification
Review & Rework Architecture Spec

Design

Functional/External Design
Create Physical/Internal Design(s)
Review and Rework Design(s)

Build

Package Selection

Construct Code & Program Software
Review or Inspect & Rework Code
Package Customization/Interfaces
Unit Test

Integrate Software

Test

Plan System or Performance Testing
System Testing

Performance Testing

Create & Run Automated Tests
Acceptance Testing

Implement

Prepare Releases for Delivery
Install Software Releases for Users
Prepare User Documentation
Prepare & Deliver User Training
Provide User Support

TaBLE 15-1

ISBSG Activities Where Effort Is Recorded for PDR

¢ Training requirements
e System deployment to multiple sites

¢ Internal client effort—for example, the execution of UAT

(user acceptance testing)

e Enhancement of external systems to provide interfaces that

are not included in this project’s functional size scope

* Decommissioning of existing or interim systems

131

132

Practical Software Project Estimation

If your project will need to fund any of the preceding activities,
then these will need to be costed separately and then added to the
PDR-based cost estimates.

Costing Effort Contributed by Personnel
Not Included in the PDR

The PDRs published by the ISBSG typically only include the Level 1
Effort' of the project development team, that is, the effort hours
recorded by those people responsible for the delivery of the application
under development. The project development team includes those
individuals who specify, design, build, test, and implement the
software.

Consequently, the effort established using the PDRs typically
does not include the effort hours expended by the:

¢ IT administrative and support people who enable the project
development team to do their job; that is, it excludes the op-
erations people on hardware support, database administra-
tion staff, and so on.

e Business users or software users, that is, those individuals
responsible for defining the requirements of the applications
and sponsoring/championing the development of the
application, acceptance testing the software, and actually
using the software.

If the project budget is required to pay for the effort expended by
these non-development team members, then this will need to be
estimated and costed separately from the effort costs derived from
the PDR.

Summary

The following steps detail the procedure to calculate project cost
using the published PDRs:

1. Determine the functional size relevant to project scope
(function points measured for each project component that is
implemented using different cost drivers, for example,
different platforms, languages, and so on).

2. Determine the most likely software delivered size for each
component by predicting the percentage of likely scope creep
caused by requirements changing and/or incomplete specifi-
cations. For early estimates this may be as much as 30 percent
growth on measured size (Function Points Measured x %
growth = Project Predicted Delivered Size).

! Refer to “work effort breakdown” in the Glossary.

Chapter 15: Estimating Project Cost Using ISBSG Data

3. Determine the appropriate project delivery rate for the
software component (effort hours per function point).

4. Calculate the effort (PDR x Predicted Delivered Size = Total
Software Effort Hours).

5. Steps 1 through 4 need to be completed for each software
component to determine the Total Effort Hours.

6. Determine the project team role profile, and allocate the
percentage contributions for each role.

7. Allocate effort hours to each role using the percentage contri-
bution (Total Project Effort Hours x % Role Contribution =
Hours for Role).

8. Determine the charge-out rate for each role.

9. Calculate the cost of the effort for each role (Role Charge-Out
Rate x Effort Hours for Role) allowing for currency movements
and inflation if applicable.

10. Sum the Project Cost for each role to calculate the Total Project
Cost based on PDR.

Additional Steps to Calculate Non-PDR-Related Project Costs

11. Calculate the costs for activities not included in the ISBSG
Project Activities in Table 15-1.

12. Calculate the costs for people to be paid for by the project
budget but whose effort was not included in the PDR-derived
effort, typically Level 2 and above.

13. Total the costs for steps 10 through 12 to determine total costs
for input into the project budget.

NOTE The figure calculated in Step 13 is the most likely project cost.

Project cost estimates should not be presented as a single number
but always as a range—for example, best case, likely case, worst
case—in order to appropriately manage expectations and to obtain
approval for realistic budget allocations.

133

This page intentionally left blank

CHAPTER 16

Creating a Software
Project Estimation
Framework Using the

ISBSG Repository

is to create a software project estimation framework for your

development team. A software project estimation framework
comprises a set of templates or tables, combined with a supporting
procedure, that allow you to estimate the effort and duration of a
software project.

Once you have established an estimation framework, you can
enter measures of the scope for a new project into the framework to
obtain a project effort and duration estimate.

If you have an environment where your development team has
developed multiple projects over a few years, then the ultimate esti-
mation framework is one based on data from the team’s past projects,
in other words, your organization’s own software measurement
data.

However, few organizations have long-term development
teams—or more commonly—the necessary skills to collect and
maintain their own project history over several years. So in the
absence of an organization’s own experience data, you can use past
projects from a public project database such as the ISBSG Repository.

ﬁ key solution to the problem of poor software project estimation

NOTE A software project estimation framework comprises a set of templates
or tables, combined with a supporting procedure, that allow you to
estimate the effort and duration of a software project.

135

136 Practical Software Project Estimation

You can use a number of sources of ISBSG data for your
framework:

¢ The appendixes of this book. You will find a set of project

delivery rate tables showing PDR by category. These tables
have been derived from the ISBSG Repository.

The ISBSG Development and Enhancement Repository.
Release 11 of the ISBSG Repository contains data from over
5,000 software projects.

The ISBSG Special Report series of publications and the Web
Subscription service. These provide discussions on the factors
that have a major impact on project delivery rate, duration,
defect densities, and other topics.!

Using the ISBSG PDR Tables to Create Tables
for Your Estimating Framework

You can use the following procedure to establish an estimation
framework using the ISBSG tables in Appendix B:

1.

Identify which development platforms your software
development group is likely to use on future projects.

. From Appendix B extract PDR distributions for your team’s

development languages for the relevant development
platforms (Tables B-17, B-18, B-19, and B-20).

Next consider the impact of the likely project maximum team
sizes on the PDR distributions.

Examining the PDR distributions extracted will reveal that
they are too broad for practical use. Consequently, the next
step is to refine them by benchmarking a small number (one
to five) of your group’s typical projects against the extracted
PDR distributions.

Finally, use the PDR values at the top and bottom of your
group’s benchmark quartile from each extracted PDR
distribution to create the PDR tables for your estimation
framework.

To estimate a specific project using the framework, you apply the
following equation:

Effort (in hours) = FPs x PDR

You measure FPs from whatever form of specification about project
scope that you have available. The level of detail in this specification

! The ISBSG Special Reports are available to ISBSG web subscribers. Reports are
produced regularly based on analysis of the ISBSG data.

Chapter 16: Software Project Estimation Framework

influences how precise your FP measurement is and the actual steps
necessary to obtain that measurement. You select the PDR from the
table(s) you create by following the preceding steps.

Working through an example development team, we can construct
appropriate estimating framework tables. Our example development
team develops small-scale applications using Microsoft Visual Basic
(.NET) technology. It links some of these applications to database and
mail servers running on the Windows Server platform. Italso develops
applications using Java and JavaScript tools to run across the Internet
in HTML browsers using a multitier architecture of Windows Server
computers.

Step 1. Identify the Development Platforms

The ISBSG divides its project delivery rate (PDR) data into four
platforms: mainframe, midrange, PC, and multiplatform. ISBSG
analysis of its project data shows development language as one of the
three factors that make the most impact on project delivery rate. (The
other two factors are team size and, once you allow for team size
impact, project size.)

Identifying the operating system platform for which your team is
developing software helps improve the precision of the estimating
framework. Consequently, before you extract PDR values for the
development languages that your team uses, you need to identify the
development platforms for the software.

For our example team a complete estimation framework will
examine two PDR tables in Appendix B, Table B-20 for multiplatform
development projects using Java and .NET tools, and Table B-19 for
PC development projects using Microsoft Visual Basic.

Step 2. Extract PDR Distributions Based

on Development Languages

Locate Tables B-17, B-18, B-19, and B-20 in Appendix B that present
“Project Delivery Rate by Language” for the development platforms
that your group uses, and extract the PDR distributions for the
programming languages that your group is likely to use on future
projects.

For our example team, developing PC-based systems using Visual
Basic, we extract the highlighted PDR distribution. This gives one
row in the team’s PDR table shown in Table 16-1.

If your team’s specific programming languages do not appear,
then use the “3rd generation language” and “4th generation language”
PDR distributions in Tables B-12, B-13, B-14, and B-15. Alternatively,
use the values for those languages that are similar to the ones that
your team uses. For example, Borland Delphi is a similar development
tool to Microsoft Visual Basic, so its PDR distribution is likely to be
similar to that shown for Visual Basic.

131

138

Practical Software Project Estimation

N Min | P10 | P25 | Median | P75 | P90 | Max | Mean Std Dev

ASP

11 1 2.2 | 2.6 | 2.7 5.9 7.8 9.5 | 14.3 6.0 3.8

C++

15 | 40 86 | 9.3 | 114 18.5 | 27.8 | 60.1 | 16.5 | 13.9

CoBOL | 18 | 2.8 | 4.2 | 5.2 | 10.4 19.7 | 24.0 | 35.1 | 12.7 9.4

Java

26 | 1.9 | 3.0 |57 7.7 10.9 | 19.0 | 25.3 9.3 6.1

Oracle | 16 | 1.2 | 2.3 | 3.7 9.0 13.5 | 19.8 | 33.8 | 10.6 8.8

Visual | 48 1.0 1.9 | 3.2 7.2 9.5 | 13.8 | 24.4 7.4 5.0
Basic

Other 59 | 1.0 | 2.2 | 3.6 7.3 14.6 | 25.6 | 49.8 | 11.2 | 11.5

TaBLE 16-1 Project Delivery Rates by Language—PC Platforms

Step 3. Adjust the Extracted PDR

Distributions According to Team Size

The total team size has the most significant impact on the productivity
of a development project. The detrimental impact of larger teams on
productivity is so significant that it is the main reason why projects
delivering several thousand FPs have such poor productivity compared
withsmaller scope projects. Team-size impact overrides any productivity
benefits from a specific development language. Consequently, any
estimating framework must take into account the maximum team size
the development team needs to deliver the project.

Use the appropriate median values from Table B-45, “Effect of
Maximum Team Size and Project Size,” to refine the PDRs extracted
from the tables showing PDR by language. This has to be done with
some judgment when considering highly productive development
languages such as Microsoft ASP or Visual Basic (.NET). Note too that
you need to consider the maximum team size, which may include
several technical specialists or QA people who have only a part-time
role on the project. A lot of development teams bring in several people
for small roles on a project without considering whether their impact
on overall productivity may negate any quality benefit.

In addition, you need to consider the typical size of the projects
developed by your team. Smaller projects tend to havelower productivity.
If your team develops projects of significantly different sizes, then you
may need to add this as another factor to be taken into consideration.
However, it is probably more effective to combine the project size and
team size factors together, as most development teams link the two when
planning projects. Our example team does a lot of projects around
400 FPs with small teams plus the occasional project of greater than
1,000 FPs. They never use a team of more than eight people.

The data in Table B-45 states that using a team size of one to four
has a median impact of reducing the development language’s PDR
by 5.1. In other words, the one- to four-person team will expend 5.1

Chapter 16: Software Project Estimation Framework

hours less effort per function point produced than is typical for all
projects. However, if the example project team used only one- to four-
person teams on its Visual Basic-PC projects, adjusting the median
PDR down by 5.1 hours per function point would result in a PDR of
2.1 hours per function point. This is close to the productivity of the
best VB projects in the ISBSG database, which is likely to be
unachievable. In this situation, our example development team
would be better off making a more conservative adjustment to the
PDRs for smaller team sizes, such as the P75 value of -2.1.

Examining Table B-45 shows that a team of five to eight on a
project of more than 1,000 FPs is unusual. Only 4 of the 1,681 projects
had such a small team on a project of that scope. This is too small a
sample to provide usable statistics. The PDR improvement values
(that is, the negative values) in this table also show that this team size
on large projects generally achieves high productivity. However, once
again you need to take care in selecting the PDR adjustment value.
For our example team, a value of -3.3 from the Max column seems
appropriately conservative. Using these figures will result in the
following PDR table for the team.

Step 4. Benchmarking Your Projects’ PDR

Without benchmarking your projects, you will find it difficult to use
these PDR ranges extracted from the ISBSG tables. The range of the
PDRs present in Appendix B will likely be too wide for commercial
acceptability. You will need to benchmark whatever projects exist in
your team’s history, or to narrow the range arbitrarily.

Tobenchmark a few of your team’s projects, perform the following
steps:

1. Calculate each project’s PDR, in hours per function point.
When doing this, consider the scope of activities included in
the PDR. The effort figure used for the calculation should
cover the full development life cycle.

2. Decide the development language and platform for each
project. This will determine the set of PDR distributions you
will extract from Appendix B to use for benchmarking (Tables
B-17, B-18, B-19, and B-20). Also identify the maximum team
size for each project.

3. Based on a project’s language and team size, select the
appropriate PDR distribution you have extracted from the
ISBSG. Our example team would compare the PDR for a four-
person project that used Java with the PDR distribution on
the first row of Table 16-2. This will place the team’s project
within one of the quartiles of the PDR distributions. Our
example team’s project had a PDR of 4.1 hours per FP, which
places it in the P25-to-median quartile.

139

140

Practical Software Project Estimation

Min | P10 | P25 | Median | P75 P90 | Max

Java — Multiplatform 3.1 3.3 4.0 4.3 6.0 9.7 | 17.1
Visual Basic — Multiplatform | 0.9 2.5 4.2 6.5 16.5 | 34.7 | 60.9
Visual Basic — PC 1.0 | 1.9 3.2 5.1 7.4 | 11.7 | 244

TaBLE 16-2 Project Delivery Rates by Language for 1-4 Team Size

4. Perform this comparison for each project PDR that you have
available from the projects that your team has completed. This
is likely to reveal that most projects sit within the same quartile
of the relevant row in the draft PDR table. This is your team’s
benchmark quartile, and consequently provides a narrower
range of PDR values for use in the estimating equation.

Benchmarking your team’s projects against the ISBSG data will
show that this data can provide only approximate PDR tables. A team’s
own project history would produce much more accurate PDR tables.

Step 5. Construct the Estimation Framework

After benchmarking one or more of your projects against the PDR
distributions extracted from the ISBSG tables, you can construct the
estimation framework. Typically, you can create one PDR table that
has Team Size across the columns and Languages down the rows. In
each table cell are the appropriate top and bottom PDR values from
your group’s benchmark quartile.

For our example development team, the estimating framework
PDR table would be as shown in Table 16-3.

When using these tables, remember that projects delivering under
400 function points typically have distinctly worse PDRs, and projects
delivering more than 1,000 FPs typically have distinctly better PDRs.
The cause of this impact is unclear, but it probably relates to “economies
of scale.” Doing a larger amount of work as a coherent whole can
typically proceed more efficiently than a smaller amount of work.
Remember that this impact of project size occurs after taking into
account the impact of team size. Because team size has such a large
negative impact on productivity, it counters the beneficial impact of

Team Size 1-4
Language (<400FP Project) 5-8 (>800 FP Project)
Java — Multiplatform 3.6-4.3 3.1-4.8
Visual Basic — Multiplatform | 4.2-6.5 4.2-5.3
Visual Basic — PC 3.2-5.1

TaBLE 16-3 PDRs Chosen from the ISBSG Tables for Example Development Team

Chapter 16: Software Project Estimation Framework 141

project size. Consequently, you do need to take into account the impact
of project size on your team’s PDR if you are estimating a project with
a size that is unusually larger, or more importantly, unusually smaller,
than you would normally assign to a team of a given size.

The example development team can now use this PDR table in its
estimation framework. However, while building up its project history,
the example development team can refine this table using the history
from each project that it completes.

To calculate an estimate, use the attributes of the planned project
toselect a pair of PDR values, and then multiply these by the measured
FP scope for the project. This provides a “best case” and “worst case”
estimate. Which estimate you actually use on a project depends upon
risk and commercial factors. For example, for a project that you think
faces several risks of high probability and impact, you may choose to
use the worst case figure.

Estimates Are Targets, Not Predictions

Remember that project estimates represent a target for the team that is
performing the project. They are not predictions that will come true as a
matter of course. The key issue for estimating software projects is set-
ting realistic targets that your development team can reasonably expect
to achieve. Estimates based purely on professional judgment are notori-
ously optimistic. Estimates also set the customer’s expectations; the first
published estimates are usually the ones that are remembered.

Using the information in Appendix B, you can construct a useful
estimation framework for a development team. This framework will
produce estimates that have a higher likelihood of being achieved
than any form of estimating based purely on professional judgment.

Calculating a Benchmark Estimate for a Planned Project

It is advisable to calculate a second estimate for a planned project.
Ideally, the second estimate should have ahigh degree of independence
from the first. The following is a simple, fast, estimating procedure
that you can use to calculate a “benchmark” estimate for a project.
This procedure produces a benchmark PDR and so needs a measure
of the software size in function points.

The procedure results from an ISBSG analysis of greater than 500
projects in the ISBSG Repository.? These software development

ZA four-step analysis was performed that (1) estimated PDR as the average of the
selected data set; (2) adjusted the PDR according to the effect of the expected team
size, by adding the tabulated value to the current estimate; (3) further adjusted the
PDR, according to the effect due to the estimated project size (expressed in UFP),
by adding the tabulated value to the current estimate; and (4) further adjusted the
PDR according to the effect of the programming language, by adding the tabulated
value to the current estimate.

122

Practical Software Project Estimation

Team Size Median Mean
1to4 -3.09 -4.54
5t0 8 -0.06 -1.45
9 or more 6.12 4.37

TaBLe 16-4 Maximum Team Size

Project Size Median Mean
1 to 200 2.96 3.88
201 to 400 -0.05 0.01
401 to 600 -1.95 -4.68
601 to 800 -4.3 -6.91
801 to 1,000 -5.56 -8.73
>1,000 -6.76 -9.52

TaBLe 16-5 PDR Adjustment Factor

projects have high quality data covering all the important factors
impacting productivity. You start the benchmark estimate calculation
with these two PDR values that cover all 500 projects:

10.43 hours per FP (median) and 14.92 hours per FP (mean)

Step 1. Adjust PDR for Team Size

Decide the appropriate maximum team size for the planned project,
and select from Table 16-4 the applicable adjustment factor for the
PDR?

If our example project team needs to put a maximum of four
people on a project, this adjusts the median PDR downwards to
7.32 hours per FP. Be careful to note that this is the maximum team
size, not the core team size—part-time people add to the team size.

Step 2. Adjust PDR for Project Size

Next, you extract the adjustment factor that applies to the size of the
project as measured in function points (see Table 16-5).

If our example project team has an 800 FP project, this adjusts the
median PDR downwards further to 3.02 hours per FP. There is a
relationship between project size and maximum team size, but other
factors also influence the maximum team size on a project, such as
development process and role division across the team.

3 Tables 16-4, 16-5, and 16-6 were derived from the ISBSG analysis referred to earlier.

Chapter 16: Software Project Estimation Framework
Language Median Mean
ABAP 0.93 -1.29
Access -3.23 -7.92
ADS -4.36 -8.80
ASP -1.81 -5.71
C 0.96 0.66
COBOL 3.67 6.17
C++ -1.26 3.63
C# 2.38 3.45
Datastage 0.51 2.10
Java -0.53 -1.33
Lotus Notes -4.00 -7.00
Natural -2.82 -4.46
Oracle -2.85 -4.92
Other 3GL -0.60 -0.26
Other 4GL 2.31 0.70
PL/I 3.03 -0.06
Powerbuilder -3.13 -4.10
Scripting 3.28 5.76
SQL 0.23 -1.42
Visual Basic -3.77 -4.89

TaBLE 16-6 Programming Language Adjustment Factor

Step 3. Adjust PDR for Development Language
For the final adjustment, you extract the factor that applies to the
planned development language. Table 16-6 represents the most
commonly used languages for the projects in the ISBSG Repository.
Our example project team plans to use Java for this project, which
adjusts the median PDR downwards further to 2.49 hours per FP.
This PDR is significantly lower than the range of 4.0 to 4.7 from the
team’s estimating framework, and so indicates that the estimating
framework calculates more conservative, but commercially safer,
estimates.

Step 4. Calculate Effort Estimate and
Consider the Range of Probable Values

Applying the estimating equation gives a median effort estimate for
our example of 1,992 hours. A median estimate represents a 50 percent

143

114

Practical Software Project Estimation

probability of the project delivering its planned scope by providing
that much effort. There is a 71 percent confidence level to achieve the
project within a range of 50 percent to 200 percent of this value.

In other words, the range of likely PDRs for a project of these
characteristics and scope is 1.29 to 4.98 hours per FP. The estimating
framework falls within this range, even though it is large, and this
increases the confidence in the estimate values. In other words, the
team’s estimating framework does set reasonable targets.

Summary

Creating a software project estimation framework for your
development team will provide a tool that will allow you to more
accurately estimate effort and duration for software projects. The
framework that you create will be tailored to suit your environment
and team and will therefore provide more accurate estimates that if
you simply used available industry data.

CHAPTER 17

Functional Size
Measurement
Methods in Use Today

(FSM) have shown that it is currently the only proven method

of sizing software that gives consistent and reliable results for
project estimation and productivity comparisons. The FSM method
for sizing is supported and continually enhanced by the international
community and is the method of choice for major software estimation
tools and benchmarking organizations.

I I The past three decades of use of functional size measurement

How Many FSM Methods Are There?

Currently, five FSM methods are recognized by the International
Organization for Standardization (ISO):

e COSMIC-FFP ISO/IEC 19761:2003 Software engineering.
A functional size measurement method.

e FiSMA FSM 1.1 [3]. ISO/IEC 29881:2008 Information
technology—Software and systems engineering—FiSMA 1.1
functional size measurement method.

e IFPUG CPM 4.3 [11]. ISO/IEC 20926:2009 Software and
systems engineering—Software measurement—IFPUG func-
tional size measurement method 2009.

' A revised COSMIC standard is due for release in 2010: ISO/IEC 19761:2010
COSMIC functional size measurement method v 3.0 [10]. Information
technology—Software and systems engineering—COSMIC-FFP—A functional
size measurement method.

145

146

Practical Software Project Estimation

¢ Mk II Function Point Analysis 1.3.1 Unadjusted [12]. ISO/
IEC 20968:2002 Software engineering—Mk II Function
Point Analysis—Counting Practices Manual.

e NESMA FPA Method 2.1 Unadjusted [13]. ISO/IEC
24570:2005 Software engineering—NESMA functional size
measurement method version 2.1—Definitions and counting
guidelines for the application of Function Point Analysis.

The major steps in the methods as per their official specifications are
described next. Because Mk Ilis no longer regularly used, no description
has been provided. For analysis purposes the ISBSG combines IFPUG
and NESMA sized projects, because these two methods are similar.

IFPUG From the IFPUG 4.3 Counting Practices Manual, the major
process steps are the following:

1. Gather available documentation.

2. Determine the counting scope and (application) boundary
and identify functional user requirements.

3. Measure (identify and size) the data functions. Data functions
are either internal logical files (ILFs) or external interface files
(EIFs).

4. Measure (identify and size) the transactional functions.
Transactional functions are either external inputs, external
outputs, or external inquiries.

5. Calculate the functional size.

The IFPUG 4.3 method can be used to determine the functional size
of both software applications and software projects.

NESMA From the NESMA 2.1 Guidelines, the major process steps
are as follows:

1. Identify the transactional and data functions within the scope
of the enhancement project and determine their functional
size.

2. Determine which transactional and data functions are to be
added.

3. Determine which transactional and data functions are to be
deleted.

4. Determine which data functions are to be changed and
determine the impact factor.

5. Determine which transactional functions are to be changed
and determine the impact factor.

6. Calculate the number of enhancement function points.

Chapter 17: Functional Size Measurement Methods 147

The NESMA 2.1 method is specifically for sizing enhancement
projects.

COSMIC From the COSMIC 3.0.1 Measurement Manual, the major
steps are the following;:
1. Measurement Strategy Phase:
a. Define the purpose of the measurement.
b. Define the scope of the measurement.
c. Identify the functional users.
d. Identify the level of granularity.
2. Mapping Phase:
a. Identify functional processes.
b. Identify objects of interest and data groups.
c. Identify data attributes.
3. Measurement Phase:
a. Identify data movements.
b. Apply measurement function.
c. Aggregate measurement results.

The COSMIC FSM method can be used to determine the functional
size of both software applications and software projects.

FiSMA From the FiSMA 1.1 Functional Size Measurement Method
document the major steps are summarized as follows:

1. Gather documentation and software development artifacts to
describe the functional user requirements for the software (to
be or already) developed.

2. Determine the scope of the functional size measurement.

3. Determine which are the functional user requirements to be
measured.

4. Identify the base functional components within the functional
user requirements in two main parts: (a) measuring the end-
user interface services, and (b) measuring indirect services.

5. Classify the base functional components into the appropriate
base functional component type services.

6. Assign the appropriate numeric value to each base functional
component.

7. Calculate the functional size.

8. Document the instance of the FiSMA 1.1 count details.

148 Practical Software Project Estimation

The FiISMA FSM method can be used to determine the functional size
of both software applications and software projects.

Which FSM Method Should | Choose?

ISO has published a guide? to choosing the method most appropriate
for your needs. Key points to be considered:

* Availability of Equivalent Industry Data If you need to
use industry data for comparison of productivity, or as input
into estimates, then this may be a deciding factor. The ISBSG
Repository Release 11 contains the following breakdown of

FSMs:
IFPUG 4+ 3,379 projects
FiISMA 478 projects
COSMIC 335 projects
NESMA 130 projects

Other approaches represented in the repository include Mark
IT and Feature Points, but there are few such projects.

* Availability of FSM Tools and Training Most of the
industry-leading tools have been written to measure using
the IFPUG method, but several have a roadmap that will
incorporate other methods.

* Availability of Trained Experienced Certified Metrics
Experts Currently, the highest number of people are trained
and certified in the IFPUG/NESMA method, which is offered
in most countries. COSMIC training and certification is now
being offered in India, Japan, Europe, North America, and
Australia.

How Hard Is It to Measure Functional Size?

Functional size measurement requires specialized training of two to
three days. After training, it typically takes several months using the
technique, measuring in a variety of situations, to become proficient.
International accreditation usually requires the measurer to have at
least two years experience with the technique. Organizations either
train a select group of software developers for the measurement role
or use the services of a specialist software metrics consulting company.

2ISO/IEC 14143-6:2006. Information technology—Software measurement—
Functional size measurement—Part 6: Guide for use of ISO/IEC 14143 series and
related International Standards.

Chapter 17: Functional Size Measurement Methods 149

Successful functional sizing is similar to other specialist activities
such as database design in that it requires a person skilled in business
analysis who has a high attention to detail.

What Sort of Accuracy Can | Expect
from an FSM Measurement?

For current FSM methods two trained counters typically achieve size
figures within +/- 10 percent of each other if the functional user
requirements are known and well specified. This is based on tests
performed during more than 150 software estimation training courses.’
Other tests indicate that if ten project managers from different business
areas try to estimate project effort without a systematic approach, such
as an FSM method, the typical ratio between the smallest and largest
estimate is 1 to 6, the worst as high as 1 to 12.

Accuracy and repeatability of measuring functional size has been
shown to increase when the measurer has acquired:

e Formal training by an experienced certified trainer

* At least one year’s experience measuring at least 15,000
function points

e Use of a purpose-built functional size measurement tool with
inbuilt validation and measurement rules

* Several years IT experience in analysis and design of
software

The Value of FSM as a Size Measurement

FSM is heavily used by mature software development organizations
worldwide that are interested in producing accurate estimates,
benchmarking, and process improvement. FSM has proven to be a
reliable and effective method that allows organizations to estimate
software and to compare productivity. The various bodies responsible
for FSMs continue to work on improving and certifying FSM-related
methods, tools, training, and standards.

Summary

Functional size measurement of software provides a reliable and
consistent way to express how big a piece of software is, or will be. A
functional size can then be used in estimating, benchmarking, project
planning, and analysis.

3 Pekka Forselius of FISMA ran the course and the tests referred to.

This page intentionally left blank

CHAPTER 18

A Brief Tutorial
on Functional Size
Measurement (FSM)

principles behind the concept of functional size of software. It is

intended for anyone using the ISBSG database who needs to
understand what functional size measurement is, the various
standardized measurement methods and their respective units of
measure, and how functional size fits in with project estimating. This
chapter is not intended as a primer of the specific rules involved in
any of the five functional size measurement (FSM) methods
standardized by the International Organization for Standardization
(ISO). For your reference, however, we have provided website
addresses for each of the methods. Note that ISBSG accepts projects
sized using all five ISO/IEC FSM methods plus a variety of other
software-sizing methods.

I I This chapter provides a brief introduction to the fundamental

IS0/IEC Definitions

The terms functional size (FS), functional size measurement (FSM), and
functional user requirements (FUR) are defined by the ISO/IEC 14143-
1:2007 Functional Size Measurement: Part 1 Definition of Concepts:
(ISO/IEC, 2007):

¢ Functional Size Size of the software derived by quantifying
the functional user requirements

¢ Functional Size Measurement (FSM) Process of measuring
functional size

151

152

Practical Software Project Estimation

¢ Functional User Requirements Subset of the user require-
ments describing what the software does, in terms of tasks
and services

Note that functional user requirements include but are not
limited to:

¢ Data transfer (for example, Input customer data, Send
control signal)

¢ Data transformation (for example, Calculate bank interest,
Derive average temperature)

e Data storage (for example, Store customer order, Record
ambient temperature over time)

e Data retrieval (for example, List current employees,
Retrieve aircraft position)

User requirements that are not functional user requirements
include but are not limited to:

e Quality constraints (for example, usability, reliability,
efficiency, and portability)

* Organizational constraints (for example, locations for
operation, target hardware, and compliance to standards)

* Environmental constraints (for example, interoperability,
security, privacy, and safety)

e Implementation constraints (for example, development
language, delivery schedule)

It is important to remember that functional size alone does not
adequately reflect the size of all aspects of software requirements.
Functional size measurement is just one software sizing tool that
forms part of the software project management toolkit. The benefit of
FSM in estimation comes when functional size is used along with
other project attributes to estimate work-effort and project duration.
See Chapter 1 for an explanation of the three levels of requirements
that form the inputs to the project work-effort estimation (including
functional size).

This chapter provides project managers with sufficient base
knowledge about functional size measurement to be able to understand
the ISBSG database variables (columns) that contain functional size
values and the value adjustment factor (VAF)! values. An illustration
of how to measure functional size is provided in this chapter using the
IFPUG Function Point method. Examples and case studies of how to
measure functional size using each of the methods represented in the
ISBSG Repository are provided in following chapters. ISO/IEC

! The value adjustment factor (VAF) can be used to reflect the user non-functional
requirements or complexity of the developed software.

Chapter 18: A Brief Tutorial on Functional Size Measurement 153

standardized functional size measurement methods each have their
own rules and measurement units for assessing the functional user
requirements for a piece of software to arrive at a functional size. The
goal of all functional size measurement methods is similar: to evaluate
the functional user requirements for a piece of software and to
determine its functional size. Functional size is an important and
objective measure that a project manager can use as part of estimating,
planning, tracking, and controlling software projects.

What Is Functional Size?

Functional size represents the size of the subset of user requirements
known as the functional user requirements (that is, the functions that
the software must support) and excludes the other user requirements
(often referred to as quality and technical requirements). Functional
size measures the size of a software project’s work output or work
product. FSM methods establish the size of the functional user
requirements that are supported or delivered by the software. They
do this by sizing the functional area part of the project. In simplistic
terms, functional size is the size of what the software must do from an
external, user perspective, independent of how the software is
constructed or how well it must perform. This is similar to sizing a
building based on its floor plan, expressed in units of square meters
(or square feet). Functional size reflects the size of the software’s
functional user requirements. Because most software (no matter how
large or how small) is developed to address functional “user”
requirements, all software has a functional size.

Analogies to lllustrate Functional Sizing

The relationship between functional size and software development
can be described analogously with square meters and construction.
Table 18-1 provides a few comparisons.

The Key to Functional Size Measurement
Is to “Think Logical”

A fundamental principle to remember about functional sizing is that
everything is counted from a logical user perspective, based on the
functional user requirements.” This can be a paradigm shift for
software developers who are well versed in programming and

2 In the early stages of software development, it may be necessary to estimate the
requirements or to make assumptions about the functional user requirements, and
to subsequently use shortcut methods based on these assumptions to arrive at an
approximate functional size. Refer to the March 1998 issue of IT Metric Strategies
for the article “Requirements are (the Size of) the Problem,” by Carol Dekkers,
which further explores the topic, and The IT Measurement Compendium, by Manfred
Bundschuh and Carol Dekkers (Springer, 2008) for further information.

154

Practical Software Project Estimation

Software
Construction When Is It Functional When s It
Units of Important to Size Units of Important to
Metric Measure Measure? Measure Measure?
Estimated Square meters | When floor Function When FUR
(functional) (or feet) plan is points (functional user
size available requirements)
are known or at
contract stage
Unit delivery Hours per When builder Hours per At contract
rate (or unit square meter is selected or | FP (Labor $ signing; at
labor cost) & (or $ per construction per function g0 or no go
overall effort square meter) contract is point) & total development
(or labor) cost | & total hours negotiated hours (and decision
(or total $) total labor $)
Estimated Person-months | Throughout Person- Throughout
work effort and move-in construction months (or development
(duration) date (adjusted person-hours) | (adjusted
whenever and delivery whenever
change orders | date change requests
accepted) are accepted)
Size of Square meters | Whenever FP, hours,or$ | Whenever
change (or feet), hours | change (impact) change identified
orders or $ (impact) identified

TaBLE 18-1 Analogies Between Building Construction and Software Development

physical configuration management, because functional size does not
vary with the relative ease or difficulty involved in building the
software. It is irrelevant to the functional size whether it takes a
thousand lines of COBOL code and eight subroutine calls or a
hundred lines of C++ code to implement a function; the functional
size does not vary (it is the same no matter how the software is built)
because the user functionality is the same.

Functional size, like the square meters or square feet of a building,
is not equal to work effort. Here is the relationship:

¢ Functional Size (for example, FP) = An INDEPENDENT
measure of the software’s LOGICAL size (based only on the
functional user requirements).

e Work Effort (in Hours) = A DEPENDENT measure of how
long the software will take to develop. It depends on many
factors (functional size as well as, for example, project type,
programming language, hardware platform, team skills,
methodology, team size, risks, and many more).

¢ Productivity (for example, Hours per FP) = A DEPENDENT
result, dependent on all of the same factors as work effort.

Chapter 18: A Brief Tutorial on Functional Size Measurement 155

NoOTE An INDEPENDENT wvariable (FP) divided by a DEPENDENT
variable (Hours) yields a DEPENDENT result.

These relationships tell us that just as factors such as the quality of
the raw materials, the piping configuration, the configuration of the
floors (how many stories in the building), and the overall layout all
affect the work effort and duration of a building project, so too do the
programming language and other physical attributes affect the soft-
ware development effort and duration. However, regardless of how
the building is constructed, the floor plan size of the building stays the
same. With software, the software’s functional size remains the same
even when there is variation in the programming language, skills,
physical configuration, and other factors used in its development.

Counting in FSM: An Example Using
IFPUG Function Points

For illustration purposes, IFPUG (International Function Point Users
Group) function points will be used to demonstrate one approach to
functional size measurement. The ISBSG database has a number of
variants of IFPUG FP units of measure, each relating to a particular
release of the IFPUG Counting Practices Manual (CPM). Higher
numbered releases supersede prior releases. All IFPUG FP data in the
ISBSG database includes the specific IFPUG release number that was
used to count a project’s functional size. At this printing, the current
IFPUG release is 4.3, which was released in September 2009.

The process to calculate IFPUG function points is maintained by
the International Function Point Users Group and is documented in
the Counting Practices Manual (CPM).?

IFPUG Function Point Components

To count IFPUG function points, we evaluate five logical components
of the software based on the functional user requirements:*

¢ Internal logical files (ILF) Logical, persistent entities
maintained by the software application. (Note that “code/
description” tables are considered to be implementations of
technical user requirements rather than functional and are
therefore excluded as countable functionality. Thus, they are
neither ILF nor EIF.)

? The International Function Point Users Group (IFPUG) Counting Practices Manual
Release 4.3 contains the rules for counting function points. To obtain a copy of the
Counting Practices Manual, contact IFPUG at www.ifpug.org.

4The components listed are taken from the International Function Point Users
Group (IFPUG) Counting Practices Manual 4.3 (IFPUG, 2004). The explanatory
text is the author’s own wording to describe each component.

www.ifpug.org

156

Practical Software Project Estimation

e External interface files (EIF) Logical, persistent entities
that are referenced only by the software application, but are
maintained by another software application.

e External inputs (EI) Logical, elementary business processes
whereby data crosses into the application boundary to main-
tain data on an internal logical file or to ensure compliance
with user business requirements (for example, control data).

¢ External outputs (EO) Logical, elementary business
processes that result in data leaving the application boundary
to meet a user requirement that involves at least one of (a) a
calculation; (b) derivation of data; (c) update of one or more
ILFs; (d) controlling the behavior of the software (for example,
summarized reports, output data files with derived data,
output tapes where an ILF was updated during the process,
screen alerts involving calculation(s)).

¢ External queries (EQ) Logical, elementary business processes
that result in data leaving the application boundary to meet a
user requirement, which involves retrieving data from at least
one ILF or EIF, but which cannot perform any of the processing
listed clauses a—d of an external output (for example, output
files where no data is derived or calculated, detail reports, pure
data extracts from ILFs/EIFs, and data browse displays).

Note that these five types of logical components are not the same
as physical components. When we talk about “internal logical files,”
for example, it does not necessarily mean physical files or data sets.
“Internal logical files” refers to the logical, persistent entities
maintained through a standardized function of the software. In other
words, ILFs are the stand-alone, logical entities that would typically
appear on a logical entity relationship diagram (ERD). For example,
in a human resources application, an associate or employee entity is
one of the typical entities that would be maintained. This entity
would be counted as an ILF.

Another illustration of counting logical components is when we
refer to the transactional functions of external inputs, external outputs,
or external queries. External inputs are the logical, elementary
business processes that maintain the data on an internal logical file or
that control processing. The logical business process of adding an
associate (an employee) would be one elementary user function, and
therefore in function point counting we would count one external
input. The size in function points for this one external input would be
the same regardless of how we physically implemented it, because in
every implementation it performs one logical user function. For
example, the count for “Add employee” is the same regardless of the
number of physical screens, keystrokes, batch programs, or pop-up
data windows we need to complete the process.

Chapter 18: A Brief Tutorial on Functional Size Measurement

- External Output (EO)

External Query (EQ)

External Input (EI)

>
»

Ficure 18-1 Context diagram for IFPUG FP

What Is Involved in IFPUG Function Point Counting?

The basic steps® involved in the IFPUG methodology for function
point counting include

1. Determine type of count (can be a new development project,
an application or base count, or an enhancement project
count).

2. Determine the project scope and the purpose for measuring
the functional size. This step identifies exactly what is to be
counted. For example, if a piece of software is to be delivered
incrementally over five releases, and we need to estimate the
effort to deliver phase 1, then we would want to know the func-
tional size of the functional user requirements that would be
delivered by phase 1. The remaining functional user require-
ments would be out of scope of the phase 1 functional size.

3. Identify the application boundary (that is, the functions the
software must perform. This creates a context diagram for the
application or project as illustrated in Figure 18-1).

4. Identify the function types and establish complexity:

a. Count the data function types (self-contained, persistent
logical entities):
e Internal logical files (ILF), which are logical data
groups maintained within the application boundary

e External interface files (EIF), which are used only for
reference by the application and are maintained within
another software’s application boundary

3 These steps are a condensed version of the full FP counting method included in
the IFPUG Counting Practices Manual. Additionally, there are full case studies of
FP counts done at differing phases of application development that can also be
ordered through the IFPUG office.

157

158 Practical Software Project Estimation

b. Count the transactional function types:

e External inputs (EI), which include the elementary
processes for which data entry is their primary intent,
as well as stand-alone controlled inputs (for example,
add customer)

¢ External outputs (EO), for example, reports or data
displays where calculations are involved

¢ External queries (EQ), for example, direct retrieval of
data from one or more of the entities identified as ILFs
or EIFs, and no additional processing as described
earlier

c. Evaluate the “complexity” of each of the five function

types identified earlier. IFPUG provides several simple
matrixes to determine whether a function is Low, Average,
or High complexity, based on data element types (user-
recognizable, nonrecursive data fields), record element
types (subsets of user-recognizable data), and file types
referenced (number of logical data groupings required to
complete a process). Table 18-2 summarizes the number
of function points assigned to each function type.

Following the IFPUG guidelines, count and rate all of the
identified functions, and add the function points together.
The resultant number is called the unadjusted FP count
and is the functional size of the project.

5. The next step is an optional step in the IFPUG function point
method because it goes beyond the determination of functional
size. It attempts to quantify a portion of the non-functional
user requirements by evaluating 14 factors of the software.
This step determines a factor called the value adjustment fac-
tor (VAF), which reflects the user non-functional requirements or
complexity for the developed software. The VAF is calculated
via an equation (VAF = 0.65 + (Sum of General System Charac-
teristics x 0.01)) and involves a simple evaluation of 14 general

Function Type Low Average High
El x3 x4 X6
EO x4 x5 X7
EQ x3 x4 X6
ILF X7 x10 x15
EIF x5 X7 x10

TaBLE 18-2 Unadjusted FP Assigned to IFPUG Function Types

Chapter 18: A Brief Tutorial on Functional Size Measurement 159

systems characteristics (GSCs). Specific evaluation guidelines
for the following GSCs are provided in the IFPUG Counting
Practices Manual (IFPUG, 2009):

® Data communication

e Distributed data processing
¢ Performance

* Heavily used configuration
¢ Transaction rate

¢ Online data entry

e End user efficiency

¢ Online update

¢ Complex processing

® Reusability

¢ Installation ease

¢ Operational ease

e Multiple sites

¢ Facilitate change

6. The final step is also optional in the IFPUG CPM because it too
goes beyond what is considered functional size. It “adjusts”
the functional size (Step 4) and the non-functional VAF (Step 5)
together using: Adjusted FP = unadjusted FP * VAF.

NoOTE The ISBSG records the functional size in units of unadjusted FP
and records the VAF as a separate and distinct project value.

While some organizations find value in using the adjusted FP
count in their project work, the majority of the established estimating
toolsets, including the ISBSG, report the functional size (unadjusted
FP) separately from the non-functional measure (VAF).®

The Logical Boundary

One of the first steps to measuring functional size using any of the
functional size measurement methods is to identify the logical
“boundary” around the software application. Thisboundary separates
the software from the user domain (remember that users can be
people, things, other software applications, departments, other
organizations, and so on). As such, the software may span several

6 At this writing, IFPUG has a working group working on a Software Non-functional
Assessment Framework Project (SNAP) to provide a sizing method for non-
functional requirements.

160

Practical Software Project Estimation

physical platforms and include both batch and online processes. The
software boundary is not drawn in terms of how the physical system
is implemented, but rather in terms of how an experienced user
would view the software. This means that a single application
boundary can encompass several hardware platforms (for example,
mainframe and PC hardware used to provide an accounts receivable
application would both be included within the single application
boundary).

ISO and IFPUG have identical definitions for (application)
boundary (IFPUG, 2009; ISO, 2007):

Boundary, a conceptual interface between the software under
study and its users

(IFPUG added the following note: “Prior versions of this
International Standard used the term application boundary.”)

Where Does Functional Size Fit in with the ISBSG

and Software Project Estimating?

After we have determined that the software project involves the new
delivery or enhancement of functional user requirements (that is,
functionality), we can measure the software’s functional size. If a
project does not involve the delivery or enhancement of software
functionality—for example, it simply involves maintenance/fixes of
already delivered functionality, or upgrades the technical or non-
functional requirements, or is a pure documentation project, and so
on—then it cannot be sized using functional size measurement and
must be estimated using some other estimation equations based on
other input measures.

Once we have the functional size for a project or application (in
functional size units), we have established the “functional” size of the
project work product. If we choose to evaluate the VAF, we then also
have a numerical value for the influence of non-functional quality
types of requirements for the application.

Just as the square meters (or feet) size of a house does not equal
the speed at which a house can be built or its construction duration,
the functional size does not equal delivery rate or work effort.
Functional size measures the size of what the software does, rather
than how it is developed or implemented (technical requirements) or
how it must operate (quality requirements). This means that given a
common set of functional user requirements, the functional size of
the software will be the same whether it is developed using COBOL
or Java, or using rapid application development (RAD) or waterfall
or agile development methods.

Functional size (and even IFPUG’s optional VAF) provides us
with objective software size measures for use in work-effort estimating
equations (together with other factors) or to normalize productivity

Chapter 18: A Brief Tutorial on Functional Size Measurement 161

or quality ratios. The value in using functional size lies in the ratios
and normalized comparisons between ratios. Process improvements
can be found when normalized ratios are compared and their
underlying project attributes assessed for their impact on the project.

NoTE In 2008 IFPUG launched a project to address the measurement of
non-functional requirements within IS projects and applications. The
SNAP (Software Non-Functional Assessment Process) project will
release an Assessment Practices Manual (APM) in 2010 to be reviewed
and tested by the IFPUG membership. The APM will enable the usage
of the SNAP sizing method. This will include the assessment itself,
instructions on the completion of the assessment, and guidance on how
to utilize and apply the results of the assessment. In addition, common
terms and definitions will be provided within the APM.

Summary

Functional size measurement and functional size provide an objective,
repeatable process for assessing the logical size of software based on
its functional user requirements. Functional size provides us with a
standard, normalized measurement value of the work product.
Together with other measures, such as the value adjustment factor
and project attributes, functional size-based software metrics can
highlight process improvement opportunities and are a proven
approach toincreasing the accuracy of software work-effort estimating
precision and accuracy.

This page intentionally left blank

CHAPTER 19

An IFPUG Function
Point Case Study

his chapter outlines and demonstrates how functional size
measurement can be applied to determine:

e The functional size of a sample set of new development user
requirements

¢ The functional size of a sample set of enhancement user
requirements

Once the functional user requirements for each sample set are
identified, functional size measurement is done using one of the ISO-
recognized functional size measurement methods. This case study
uses the IFPUG method.!

You should read the preceding chapter, “A Brief Tutorial on Func-
tional Size Measurement (FSM),” before reading this chapter.

New Development Case Study

For the first example we will establish the functional size for the
new development of a piece of software. We have chosen the
planned development of an Employee Records Management system
for our case study. This relatively straightforward system provides
a good framework on which to display how to go about functional
sizing.

!'See ISO/IEC 20926: 2009 Software engineering—IFPUG 4.3 Functional Size
Measurement Method—Counting practices manual.

163

164

Practical Software Project Estimation

Sample Set of User Requirements

The following list represents a sample set of user requirements for a
new development software project:

1. The software application must store and maintain employee
information consisting of the following data fields: name,
employee number, rank, street address, city, state, ZIP code,
date of birth, phone number, office assigned, and the date the
employee data was last maintained.

2. The software application must provide a means to add new
employees, update employee information, terminate
employees, and merge duplicate employee records (in cases
where all fields other than employee number are identical).

3. The software application must provide a scheduled weekly
report. Its header includes the Report Period and provides a
retrieved list of all employees (Name and Employee Number)
where information has changed within the previous 7
calendar days (report period).

4. The application must provide a means for the end user to
view an employee’s data.

5. User security data (user ID, password) is referenced from the
security application for user logon security validation.

6. Complex algorithms are used to encrypt the employee date
of birth so that it cannot be directly read from the information
stored for an employee.

7. The software application must provide subsecond response
time for data maintenance processes during the peak business
hours between 8 a.Mm. and 5 r.M. Eastern USA Standard Time
(GMT -5).

8. The software application must use programming language(s)
that are compatible with open systems design and Oracle
databases.

Functional User Requirements

Functional size represents the size of the subset of user requirements
known as the functional user requirements (that is, what functions
the software must support), which excludes quality and technical
requirements.

Of the preceding list of user requirements, 1 through 5 repre-
sent the functional user requirements, while 6 through 8 are non-
functional (quality and technical) requirements. Only requirements
1 through 5 will be used to determine the functional size of the
software.

Chapter 19: An IFPUG Function Point Case Study

Functional Size Measurement Using
ISO/IEC 20926: 2009 - IFPUG 4.3

Functional Size Measurement Method: IFPUG 4.3 identifies the
following five base functional components for determining functional
size:

NOTE The terms application and software application are used inter-
changeably in the following narrative.

¢ Internal logical file (ILF) This persistent logical entity is
maintained by a standard elementary process (function) of
the software application.

e External interface file (EIF) This persistent logical entity is
maintained by another software application, and referenced
only by this software application.

e External input (EI) This elementary process of the
application has the primary purpose of processing data
entering the application boundary and either maintains the
data contained in an ILF or controls the behavior of the
application.

o External output (EO) This elementary process of the
application has the primary purpose to present data to a user
(that is, data exits the application boundary to a “user”). At
least one (or more) of the following logic steps must be part of
the elementary process:

¢ Calculation
¢ Derivation of data
e Update of at least 1 ILF
¢ Control of the behavior of the application

e External query (EQ) This elementary process of the
application retrieves data from at least 1 ILF or EIF for
presentation to a user. The elementary process cannot include

any calculations, derived data, updating of an ILE, or control
of the application’s behavior.

Determining the Functional Size
Without getting into the specifics of how the IFPUG 4.3 method rates
a specific base functional component as Low, Average, or High, the
following example illustrates the basic steps to arrive at the functional
size (in units of function points) for the sample set of functional user
requirements previously discussed.

165

166 Practical Software Project Estimation

The function point components to be counted based on the
preceding include

Internal logical file (ILF) Count 1 ILF for the Employee data
group because it is a persistent logical entity maintained by
the application. Based on the function point counting rules,
the complexity of this function would be Low (refer to ISO
20926: 2009 for detailed counting rules):

1 Low ILF =7 FP

External interface file (EIF) Count 1 EIF for the externally
maintained Security logical entity. It is a Low complexity
EIF:

1 Low EIF =5 FP

External input process(es) (EI) Count 4 Els: one EI each for
the elementary processes of Add Employee, Update Employee,
Terminate Employee, and Merge Duplicate Employee Re-
cords. Each EI accesses only one FTR (file type referenced)
and meets the IFPUG requirements for a Low complexity EI
function:

4 Low EI (of 3 FP each) = 12 FP

External output process(es) (EO) Count 1 EO for the user to
browse an employee’s data (which includes the step of using
an algorithm to decrypt the date of birth for display). The
report accesses 1 FIR and has less than 19 DETs and is
therefore a Low complexity EO:

1 Low EO =4 FP

External query process(es) (EQ) Count 2 EQs: 1 for the
Weekly Report (listing) and 1 for the User Security Logon function.
Each of these elementary processes meets the requirements
for an EQ. Based on the IFPUG 4.3 rules, they are classified as
a Low EQ:

2 Low EQ (of 3 FP each) = 6 FP

The total functional size expressed in function points is the sum
of the individual components:

Functional size = ILF + EIF + EI + EO + EQ

=7+5+12+4+6
=34 FP (IFPUG 4.3)

Figure 19-1 shows the context diagram for the functional user
requirements included in this functional size.

The full details and FP counting procedure are contained in the
IFPUG Function Point Counting Practices Manual 4.3, available through
ISO (www.jtcl-sc7.org/) or from the International Function Point
Users Group (IFPUG) at www.ifpug.org.

www.jtc1-sc7.org/
www.ifpug.org

Chapter 19: An IFPUG Function Point Case Study 167

Add Employee (EI) Browse Employee (EO)

Update Employee (EI) - Security Login (EQ)
Employee "

Delete Employee (EI) ILF Weekly Report (EQ)

Merge Duplicate (EI) -

Ficure 19-1 Sample new development functional user requirements using
IFPUG 4.3 functional size measurement method

Enhancement Case Study

For this example we will establish the functional size for the enhance-
ment of a piece of software. For this case study we have chosen the
enhancement of the Employee Records Management system used in
the first example.

Sample Set of User Requirements

The following list represents a sample set of user requirements for
the enhancement of the newly developed software described
previously:

1. The add new employee function will now include additional
logic steps to validate fields that were not validated in the
first release of the software.

2. The scheduled weekly report will now include a calculated
value that sums the total number of employees listed.

3. The software application will now include a navigational
menu for users to select the data maintenance function they
wish to perform on the employee data.

No other changes will be made.

Functional User Requirements

Functional size represents the size of the subset of user requirements
known as the functional user requirements (that is, what functions
the software must support), which excludes quality and technical
requirements.

Of the listing of user requirements, 1 and 2 represent the func-
tional user requirements, while 3 is a nonfunctional requirement to
provide end-user friendliness (navigational aids). Therefore, only the
first two requirements will be included in the determination of func-
tional size.

168

Practical Software Project Estimation

Determining the Functional Size
The IFPUG 4.3 method counts an enhancement project’s functional
size by identifying any function that is New (added), Modified
(changed), or Removed (deleted) and including it as part of the
functional size. Once again IFPUG 4.3 rates each specific base
functional component impacted by the project as Low, Average, or
High, and the following example illustrates the basic steps to arrive
at the enhancement project’s functional size (in units of function
points).

The function point components to be counted based on the
functional user requirements include

e Internal logical file (ILF) No ILFs are New, Modified, or
Removed as part of the functional user requirements.

e External interface file (EIF) No EIFs are New, Modified, or
Removed as part of the functional user requirements.

¢ External input process(es) (EI) Count 1 EI for the modified
Add Employee EI where the processing logic has been
enhanced. This was (and remains) a Low complexity EI
function and results in:

1 Low EI = 3 FP (modified)

e External output process(es) (EO) Count 1 EO for the modi-
fied Weekly Report function that now includes a calculation
step and a new data field. The report is a Low complexity
function and would result in:

1 Low EO = 4 FP (modified)

Note that this function existed as an EQ in the first software
release and has been modified (additional logic whereby a
calculation is now performed); therefore it is now classified
as an EO as a result of the enhancement project. It is not
counted as a removed EQ function and a new EO function—
rather it is a single modified function and counted as an EO
in the enhancement project.

e External query process(es) (EQ) No EQs are New, Modified,
or Removed as part of the functional user requirements (see
EO earlier for the treatment of the Weekly Report).

The total functional size expressed in function points is the sum
of the individual components:

Functional size = New + Modified + Removed Functions
= (3 + 4) modified
=7 FP (IFPUG 4.3)

Figure 19-2 shows the context diagram for the functional user
requirements included in this functional size.

Chapter 19: An IFPUG Function Point Case Study

Add Employee (EI?\V Browse Employee (EO)
Update Employee (EI) - Security Login (EQ)
Employee e .
Delete Employee (EI) ILF /] Weekly Report (EQ)S

Merge Duplicate EI) | | TTTTmoomootTT -

Ficure 19-2 Sample enhancement functional user requirements using
IFPUG 4.3 functional size measurement method

Types of Functional Size

It is worth noting that functional size is typically used in two major
areas. (Note that in the ISBSG software project database, only the
functional size for new development, redevelopment, or enhancement
software projects is included.)

e Application or base software functional size This measure
represents the functional size of an installed base software
application. (Think of it in terms of square meters of a
constructed building.) The base functional size is a point-in-
time snapshot of the current size of an application. This number
is useful whenever comparisons are required between different
installed applications (for example, defects/base FP).

e New development or enhancement project functional
size This measure reflects the size of the functional area
impacted by a new development or enhancement project. An
enhancement project size is the result of summing the New
functions added in the project, plus the functions Removed
from the application by a project, plus the functions Changed
(modified) by the project. (Think of this count in terms of a
renovation project where the square meter size of the project
equals the sum of the area of a New living room, a Removed
bathroom, and a Remodeled kitchen.) This measure is
useful in project-based metrics (for example, relative cost in
$/development FP).

For a new development project, all of the functional user
requirements are New—therefore, there are no removed or
changed functions to be sized, only new (added) functionality.

At the end of a new development or enhancement project, the
Application or Base FP count must be initialized for new development
or updated (if it is an enhancement project) to reflect the actual
functional size of the application at this time.

169

110

Practical Software Project Estimation

Note that in addition to adding, removing, and modifying appli-
cation functionality, new development and enhancement projects
may also include the development or delivery of conversion func-
tionality required to convert data from one application or application
version to another. Although the size of this conversion functionality
is included within the functional size of the new development or
enhancement project, it is not included in the functional size of the
impacted application for the simple reason that the conversion func-
tionality in question is not part of the application’s functionality.

Summary

This chapter has provided a practical introduction to software sizing
using functional size measurement. It has demonstrated how
functional size measurement can be applied to both new development
and enhancement projects. Readers should refer to the counting
practices manuals, or equivalent, for the particular functional sizing
methodology that they plan to use.

CHAPTER 20

The COSMIC
Functional Size

Measurement
Method

(FUR) of a piece of software in terms of its functionality as

opposed to its physical components was first put forward by
Allan Albrecht of IBM in 1979. He proposed the method called
Function Point Analysis, which has since evolved into the IFPUG
method—see Chapter 19 of this book.

Albrecht’s clever piece of lateral thinking laid the foundations for
the subject of functional size measurement (or FSM), and it is a great
tribute to his original idea that his method is still widely used today.
(And if the IFPUG method gives satisfactory results for performance
measurement and estimating, then there is little incentive to
change.)

However, the COSMIC functional sizing method was developed
by the Common Software Measurement International Consortium to
offer an alternative to IFPUG. The logic behind, and the reasons for,
the development of the COSMIC method are explained on the web
site: www.cosmicon.com.

The COSMIC method has been accepted as an international
standard (ISO/IEC 19761: 2003) and at this writing is proceeding
through the ISO process to be aligned with version 3.0 of the COSMIC
method.

The method is now used in major corporations and public sector
organizations around the world for software project performance
measurement and for estimating in all the domains for which it was
designed.

I I The idea of measuring a size of the functional user requirements

11

www.cosmicon.com

112

Practical Software Project Estimation

Overview of the COSMIC Functional Size

Measurement Method

The COSMIC method defines the principles, rules, and a process for
measuring a standard functional size of a piece of software. Func-
tional size is a measure of the amount of functionality provided by the
software, completely independent of any technical or quality consid-
erations.

Applicability of the Method

The common characteristic of the types of software for which the
COSMIC method was designed (business applications, real-time
software, infrastructure software, and hybrids of these) is that they
are dominated by functions that input data, store and retrieve data,
and output data. In common with the other FSM methods covered in
this book, the COSMIC method is not designed to size software that
is dominated by functions that manipulate data, as in typical scientific
and engineering software.

Subject to the preceding, the method may be applied to measure
the FUR of software:

e Atany level of decomposition, for example, a “whole” piece of
software or any of its components, subcomponents, and so on
¢ In any layer of a multilayer architecture

¢ Atany point in the life cycle of the piece of software

The Principles for Measuring the COSMIC Functional

Size of a Piece of Software

The COSMIC method measures a size as seen by the “functional
users” of the piece of software to be measured, that is, the senders
and/or intended recipients of the data that must enter or exit from
the software, respectively. Functional users may be humans or other
pieces of software, or may be hardware devices that interact directly
with the software being measured, as defined in the FUR. Different
sizes may result depending on the defined functional users, since the
different types can “see” different functionality.

The method uses a model of software known as the COSMIC
Generic Software Model (see Figure 20-1).

This model is based on fundamental software engineering
principles, namely:

* The FUR of a piece of software can be analyzed into unique
functional processes, which consist of subprocesses. A
subprocess may be either a data movement or a data
manipulation.

Chapter 20: The COSMIC Functional Size Measurement Method 1713

Functional User

Requirements
i Software
Functional
processes
Subprocesses
: Data movement Data manipulation

Ficure 20-1 The COSMIC Generic Software Model

* Each functional process is triggered by an Entry data
movement from a functional user that informs the functional
process that the functional user has identified an event to
which the software must respond.

* A functional process is complete when it has done all that is
required to respond to the event.

¢ A data movement moves a single data group of attributes
describing a single “object of interest,” where the latter is a
“thing” of interest to a functional user.

e There are four types of data movement subprocesses. An
Entry moves a data group into the software from a functional
user, and an Exit moves a data group out. Writes and Reads
move a data group to and from persistent storage,
respectively.

As an approximation for measurement purposes (and given the
applicability of the method, described earlier), data manipulation
subprocesses are not separately measured. The method assumes that
data manipulation is accounted for by the data movement that it is
associated with.

The size of a piece of software is then defined as the total number of
data movements (entries, exits, reads, and writes) summed over all
functional processes of the piece of software. Each data movement is
counted as one COSMIC function point (CFP). The size of a functional
process, and hence the size of a piece of software, can be a minimum of
2 CFP, with no upper limit. This is a very important factor. Most
functional processes typically have a few data movements, say in the
range of 2-10 CFP. But sometimes software has some much larger (more

174

Practical Software Project Estimation

“complex”?) functional processes; examples have been measured of up
to 70 CFP in a banking business application and over 100 CFP for a
single functional process in the avionics of a military aircraft.

The size of changes or enhancements required for existing
software can also be measured. The size of a change to a piece of
software is the sum of all the data movements that must be added,
changed, or deleted, where “changed” also includes changes to the
data manipulation associated with the movement.

The Process for Measuring the COSMIC Functional

Size of a Piece of Software

The COSMIC measurement process has three phases, as shown in
Figure 20-2.

In the Measurement Strategy phase, the purpose of the measure-
ment must be defined and then, for each separate piece of software
that must be measured, the following information is needed:

¢ The layer of the architecture where it resides

e [ts scope (what functionality is included)

e [ts functional users

¢ Its level of decomposition (care must be taken in summing

sizes of pieces of software at different levels of composition)

In the Mapping Phase, the artifacts of the FUR of the software to
be developed/enhanced and measured are analyzed to determine:
¢ The separate events that trigger functional processes
¢ The functional processes

e The objects of interest to the functional users, the data groups
describing those objects of interest that will be moved, and
the data movements

Goals Purpose of the
»Measurement measurement. Scope of
Software Context —p| Strategy each piece of software
Model to be measured

Functional user requirements (FUR) in the

artifacts of the software to be measured Mapping FUR in the fOFm
Phase —» of the Generic
Generic Software Model —p| Software Model

v

Functional
Measurement L size of the
Phase software in
units of CFP
- The Measurement Process === =======-=---- >

Fieure 20-2 COSMIC measurement process phases

Chapter 20:

The COSMIC Functional Size Measurement Method

In the Measurement Phase, the functional processes are measured
by counting the data movements and summing them appropriately
to give the size of the pieces of software in units of CFP. The
measurement must be well documented for future use and
interpretation.

COSMIC Method Documentation
For the detailed measurement rules, see “The COSMIC Functional
Size Measurement Method v3.0.1: Measurement Manual, the COS-
MIC Implementation Guide for ISO/IEC 19761:2003.” Three other
important documents are in the v3.0 series:

“Method Overview - v3.0” (a more detailed overview of the
method than is given here)

“Documentation Overview and Glossary of Terms - v3.0.1”
“Advanced and Related Topics - v3.0”

Full documentation is available for free download from www
.cosmicon.com including translations in Arabic, Chinese, Dutch,
French, Turkish, and Japanese.

A wide range of supporting services and tools is available for the
COSMIC method, for example:

The International Standard ISO/IEC 19761:2003, obtainable
from www.iso.org (updated in 2009 to align with v3.0.1 of the
COSMIC method).

A “Method Overview” document aimed at those who need
an introduction to the method.

Specialist Guidelines, that supplement the Measurement
Manual with guidance and many examples for various
special types of software. Guidelines exist for sizing business
applications and data warehouses. Other guidelines are in
preparation, for example, for sizing components in an SOA
architecture.

Guidance and formulae for converting sizes from first-
generation methods.

Certification examinations.

Suppliers of consulting and training services, worldwide.
Case studies.

Estimating tools.

Benchmark data (in the ISBSG database and reports, from
www.isbsg.org).

175

www.cosmicon.com
www.cosmicon.com
www.iso.org
www.isbsg.org

1716 Practical Software Project Estimation

Summary

This chapter has provided an introduction to, and an explanation of,
the COSMIC functional sizing method. For additional information
readers should refer to “The COSMIC Functional Size Measurement
Method v3.0.1: Measurement Manual, the COSMIC Implementation
Guide for ISO/IEC 19761:2003” and associated documentation.

CHAPTER 21

A COSMIC Function
Point Case Study

function point case study), is used here, this time measured using

the COSMIC FSM method. The version of the method used is as
defined either in the ISO/IEC standard 19761:2010 or as in the
COSMIC Measurement Manual version 3.

Those unfamiliar with the COSMIC Functional Size Measurement
(FSM) method, should read Chapter 20 for an overview. More details
of the COSMIC FSM method may be obtained from the ISO standard
(ISO/IEC 19761:2010) via www.iso.org or full details can be obtained
by free download of the COSMIC Measurement Manual, v3.0.1, and
all other documentation from www.cosmicon.com.

For the functional user requirements of the case study to be
measured, please see Chapter 19.

In this chapter the same case study used in Chapter 19 (an IFPUG

Analysis of the Size of the New Software to Be Developed

The purpose of the measurement is to determine the functional size
of the stated functional user requirements 1-8 of the new development
project.

The scope of the size measurement of the new software to be
developed includes all the functional user requirements of this case
study, that is, all the specified requirements of the project, but
recognizing that the non-functional requirements (7 and 8) do not
contribute to the functional size.

For requirement 5 (which states: “User security data (user ID,
password) is referenced from the security application for user logon
security validation”) it is assumed that a new functional process must
be provided to enable a user to log on by entering his ID and password
in order to obtain authorization from the security application to
proceed.

1

www.iso.org
www.cosmicon.com

178

Practical Software Project Estimation

Requirements 1 and 6 include the “data manipulation” subpro-
cesses of validation and encryption. These operations are part of the
logical processing of their associated data movements. They are not
measured as a separate subprocess.

The last two requirements, 7 and 8, are non-functional and not
measured as part of the functional sizing.

All the software to be measured lies within one application layer.
The functional users of the software to be developed are

e A human user of the software

e The security access control application that maintains the file
of authorized users

The Maintain Employee Data application has one object of interest,
namely Employee. The security application has one object of interest,
namely Authorized User, but since the case study is only concerned
with measuring the maintain employee application, and the Autho-
rized User data is only accessible by calling on the second functional
user (the security application) to retrieve the relevant data on behalf of
the maintain employee application; no direct Read or Write data move-
ments are associated with the Authorized User object of interest.

The Employee object of interest is associated with a single Data
Group, Employee.

The functional processes for the new development are shown in
Table 21-1. Where an error message is identified and counted, this is
an assumption, since the treatment of input errors is not stated in the
requirements.

Name of
Functional Data Movement Type Total
Reqt. No. | Process (and Data Group) CFP
5 User security Entry (User ID, password)
logon Exit (request to security application to
authorize user)
Entry (receipt of authorization, or not)
Exit (authorize user, or not, and 4
inform user)
1,2 Add New Entry (Employee data)
Employee Read (Employee data)—next number
Write (Employee data) 5
Exit (Employee number)
Exit (confirmation or error message)
1,2 Update Entry (Employee data)
Employee Write (Employee data)
data* Exit (confirmation or error message) 3

TaBLe 21-1 Functional Processes—New Development

Chapter 21: A COSMIC Function Point Case Study
Name of
Functional Data Movement Type Total
Reqt. No. | Process (and Data Group) CFP
1,2 Terminate Entry (Employee number)
Employee* Write (Employee data)
Exit (confirmation or error message) 3
1,2 Merge Entry (Select to Merge)
duplicate Read (Employee data)—find duplicates
Employee Write (Employee data)—remove
records duplicate record(s)
Exit (error/confirmation message) 4
3 Scheduled Entry (end-of-week timing signal)
weekly report | Read (Employee data)
(on Employees | gyit (Report Period) 5
whose data Exit (Employee ID, name)
has changed in) ploy T
the past week) Exit _(errgr/conflrmatlon message to
application management)
4 View Employee | Entry (Employee Name/Number)
Read (Employee data)
Exit (Employee data)
Exit (error message) 4
Total size of the new software to be developed in COSMIC function 28
points = CFP

*Normally these functional processes would be preceded by a “retrieve Employee data”
functional process, to ensure that the correct employee had been selected for update or
deletion. We assume that the View Employee functional process is used for this

purpose.

TaBLe 21-1 Functional Processes—New Development (Continued)

Analysis of the Size of the Enhancement to the Software

The purpose of the measurement is to determine the functional size
of the stated functional user requirements 1-3 of the enhancement
project.
The scope of the size measurement of the software enhancement
includes all the functional user requirements included in the enhance-
ment requirements (that is, 1 and 2) of this case study. Requirement 3
concerns implementation of navigational features that are considered
non-functional with respect to the functional users of this software.

layer.

¢ All the software to be measured lies in the one application

179

180

Practical Software Project Estimation

Reqt. | Name of Functional Process Data Movement Type (and Data Total
No. That Is to Be Changed Group) That Is to Be Changed CFP
Add new Employee *Entry (Employee data) 1
2 Scheduled weekly report Exit (Report Period and Report 1
total number of Employees)
The total size of the required enhancement in COSMIC function points = 2 CFP

*It is assumed that the data validation is changed for the Entry, but although the error
message may have new values, its data manipulation logic, formatting, and presentation
are not changed.

TaBLe 21-2 Functional Processes—Enhancement

¢ The functional user of the software to be enhanced is a human
user of the software.

¢ The Maintain Employee Data application has one object of
interest, namely, Employee.

The functional processes of the enhancement are shown in
Table 21-2. Where an error message is identified and counted, this
is an assumption, since the treatment of input errors is not stated in
the requirements.

Note that the COSMIC FSM method measures the size of the
required changes to the functional user requirements (not the size of
the functional processes that are changed).

It is likely that the new validation rules would also be applied to
the Modify Employee details requirement. This needs to be verified
with the users and added to the impacted data movements if it also is
impacted by changes in the validation rules.

Overall Size of the Software After the Enhancement

The size of the Maintain Employee Data application software after
the enhancement project has finished has not changed from 28 CFP,
since only existing data movements were changed and no new data
movements were added or existing ones removed.

Summary

This chapter provides a simple example of how to size both the new
development of a piece of software and the enhancement of a piece of
software using the COSMIC FSM method. By reading Chapter 20 and
this chapter the reader will gain a sound understanding of the
COSMIC sizing method. As this chapter uses the same example set of
user requirements as those used for the IFPUG and FiSMA methods,
the reader can also make comparisons to understand the differences
in the three sizing approaches.

CHAPTER 22

A FiSMA Function
Point Case Study

IFPUG function point case study), this time measured using the

FiSMA FSM method. The version of the method used is as defined
either in the ISO/IEC standard 29881:2010 or as in the “FiSMA 1.1
Functional Size Measurement Method” document that is publicly
available on the www.fisma.fi/in-english.

In this chapter the same case study is used as in Chapter 19 (an

For those unfamiliar with the FiSMA 1.1 Functional Size
Measurement (FSM) method, we introduce the main characteristics
here:

e FiSMA 1.1 is based purely on functional user requirements.

e FiSMA 1.1 is applicable to measure all software in any
functional domain.

¢ FiSMA 1.1 identifies 28 distinct Base Functional Component
(BFC) types.

e FiSMA 1.1 identifies seven BFC classes.

¢ Each BFC class has a specific counting rule for determining
the functional size of any functional component within the
class.

¢ Parameters in FiSMA 1.1 counting rules are “number of data
elements,” “number of reading references,” “number of
writing references,” and “number of operations.” One or
more parameter types may occur in any of the BFC classes.

”oou

The seven FiSMA 1.1 BFC classes with their relevant counting
parameters (1.) and examples of BFC types (2.) are
¢ Interactive navigation and query services for end users

1. Number of data elements and number of reading
references

181

www.fisma.fi/in-english

182

Practical Software Project Estimation

2. Seven BFC types, for example, inquiry screens, menus,
browsing screens

¢ Interactive input services for end users

1. Number of data elements and numbers of writing and
reading references

2. Three BFC types: 1-functional, 2-functional, and
3-functional input screens (functionality depending on
the capability to create, update, and delete)

¢ Non-interactive output services for end users

1. Number of data elements and number of reading
references

2. Four BEC types, for example, reports, static output forms,
e-mails

e Interface services to other applications

1. Number of data elements and number of reading
references

2. Three BFC types, for example, online messages and batch
records

¢ Interface services from other applications

1. Number of data elements and numbers of writing and
reading references

2. Three BFC types, for example, online messages and batch
records

¢ Data storage services
1. Number of data elements

2. Two BFC types, entities, and other persistent data
records

e Algorithmic and manipulation services

1. Number of data elements (variables) and number of
operations

2. Six BEC types, for example, calculation routines, security
routines, formatting rules

All FiSMA 1.1 counting rules follow the same type of formula,
and its size measurement scale is continuous. This means that every
additional data element, reference, or operation increases the func-
tional size of the functional component. The common formula for the
FiSMA 1.1 counting rules is

Size = A + Number of data elements / D + Number of references
(or operation) / C

Chapter 22: A FiSMA Function Point Case Study 183

where A, D, and C are class-specific constants. For example, for the
navigation and query services, the calculation rule is

Size=02+N/7 +R/2

For example: size of an inquiry service with 21 data elements (N) on
the screen, read from 4 entities (R), would be 0.2 + 21/7 + 4/2=5.2
FFP (FiSMA function points).

Size Measurement of the New Software to Be Developed

The purpose of the measurement is to determine the functional size
of the stated user requirements of the new development project. In
the next paragraphs we go through the set of requirements from 1
to 8, collecting all base functional components and counting their
sizes based on the given information.

In all tables below the column identifiers are

* Base Functional Component type (one of 28 BEC types)

* N = number of data elements

e W = number of writing references

¢ R =number of reading references

* O =number of operations

¢ FFP = size in FiSMA Function Points

1. The software application must store and maintain employee
information consisting of the following data fields: name, employee
number, rank, street address, city, state, ZIP code, date of birth,

phone number, office assigned, and the date the employee data was
last maintained.

¢ This requirement indicates that there will be a persistent
data storage service with only one ENTITY with 11 data
elements.

Base Functional Component type: N W R 0 FFP
ENTITY 11 — — — 3.7

2. The software application must provide a means to add new
employees, update employee information, terminate employees, and
merge duplicate employee records (in cases where all fields other
than employee number are identical).

e This requirement indicates that there will be an INPUT
screen for creating, updating, and deleting employees.
There will be fields for ten employee data attributes and
some other data elements on the screen (for example,
screen title, different buttons, probable error message, and

184

Practical Software Project Estimation

so on). We think that the total number of data elements
will be 18. The result will be written into the employee
record, and the software will read system parameters
when displaying this screen.

® The requirement also reveals that the user has specified an

algorithmic RULE for comparing employee records and
merging the duplicates. Not knowing the exact rule yet,
we expect that ten different variables and three different
operations will be needed.

Base Functional Component type: N 0] FFP
3-FUNCTIONAL INPUT SCREEN 18 1 1 — | 149
DATABASE CLEANING RULE 10 — — 3 3.1

3. The software application must provide a scheduled weekly report.
Its header includes the Report Period and provides a retrieved list of
all employees (Name and Employee Number) where information
has changed within the previous 7 calendar days (report period).

¢ This requirement indicates that there will be a REPORT

with approximately five data elements. To provide this
report, the application must read employee data and
system parameters.

Base Functional Component type: N W R 0] FFP

5 — 2 — | 3.0

4. The application must provide a means for the end user to view an
employee’s data.

¢ This requirement indicates that there will be a BROWSING

SCREEN for finding and selecting the employee whose
detailed information will then be displayed on an
INQUIRY SCREEN. We expect that there will be eight
data elements on the browsing screen and ten on the
inquiry screen. Provision of both screens requires reading
the employee data and system parameters.

Base Functional Component type: N W R 0 FFP

BROWSING SCREEN 8 — 2 — 2.3

INQUIRY SCREEN 10 — 2 — 2.6

5. User security data (user 1D, password) is referenced from the
security application for user logon security validation.

e This requirement indicates that there will be a LOG-ON

screen with approximately five data elements that reads
the system parameters.

Chapter 22: A FiSMA Function Point Case Study

* Because the security data is maintained and administered
by another application, our application must send an
ONLINE MESSAGE TO the security application and then
receive the answer by an ONLINE MESSAGE FROM the
same security application. With both these messages our
application needs to refer system parameters, but no other

entities.
Base Functional Component type: N W R (0] FFP
LOG-ON 5 — 1 — 1.4
ONLINE MESSAGE TO 4 — 1 — 1.6
ONLINE MESSAGE FROM 4 1 0 — 1.7

6. Complex algorithms are used to encrypt the employee date of birth
so that it cannot be directly read from the information stored for an
employee.

¢ This requirement indicates that there will be a SECURITY
ROUTINE for encryption. Without knowing the exact

rules, we assume five variables and five different
operations needed.

Base Functional Component type: N W R 0 FFP
SECURITY ROUTINE 5 — — 5 2.8

7. The software application must provide subsecond response time for
data maintenance processes during the peak business hours between
8 Am. and 5 p.m. Eastern USA Standard Time (GMT - 5).

¢ Anon-functional user requirement that does not contribute
to the functional size.

8. The software application must use programming language(s) that
are compatible with open systems design and Oracle databases.

¢ A technical requirement that does not contribute to the
functional size.

The total functional size of this new development expressed in
FiSMA function points is the sum of the individual components:

37+149+31+30+23+26+14+1.6+17+28=371FFP

Size Measurement of the Enhancement to the Software
The purpose of the measurement is to determine the functional size of
the stated requirements of the enhancement project. In the next
paragraphs we go through the set of requirements from 1 to 3, collecting

185

186 Practical Software Project Estimation

all base functional components and counting their sizes based on the
given information. In the FiSMA 1.1 method the enhancement size is
measured using a “touch” convention. The number of data elements is
the number of added, deleted, modified, or moved data elements. The
numbers of references and operations are the numbers of those impacted
by the change, that is, all the counting parameters that are touched are
counted.

1. The add new employee function will now include additional logic
steps to validate fields that were not validated in the first release of
the software.

¢ The user will specify a new algorithmic RULE with prob-
ably five variables and five operations. This requirement
does not change the input screen.

Base Functional Component type: N W R 0 FFP
OTHER ALGORITHMIC RULE 5 — — 5 2.8

2. The scheduled weekly report will now include a calculated value
that sums the total number of employees listed.

¢ This requirement indicates adding one new data element
on the REPORT. It has no impact to the reading references
on that report.

® Calculating the sum of employees listed is a new
CALCULATING ROUTINE with about three variables
and two operations.

Base Functional Component type: N W R 0 FFP
REPORT 1 — 0 — 1.2
CALCULATING ROUTINE 3 — — 2 1.3

3. The software application will now include a navigational menu for
users to select the data maintenance function they wish to perform
on the employee data.

¢ Thisrequirementindicates that there will be a main MENU
with three possible alternatives (Update employee, Merge
duplicates, or Browse employees). The only entity
referenced will be the system parameters.

Base Functional Component type: N W R 0 FFP
MENU 3 — 1 — | 11

The total functional size of this enhancement expressed in FiSMA
function points is the sum of the individual components:

28+12+13+1.1=64FFP

Chapter 22: A FiSMA Function Point Case Study

Overall Size of the Software After the Enhancement

The size of the Maintain Employee Data application software after the
enhancement project is finished has changed from 37.1 FFP to 42.4 FFP.
All three new functions (two algorithms and one menu) increase the
size directly, but the changed functions must be re-measured based on
the current values of counting parameters. In this example case the size
of the report increases from 3.1 to 3.2 FFP.

Summary

This chapter has provided a practical example of the application of
the FISMA FSM method using the same case study that we have used
to demonstrate the use of other FSM methods. Further information is
available on the www.fisma.fi/in-english web site.

181

www.fisma.fi/in-english

This page intentionally left blank

APPENDIX A

What Is in the ISBSG
Repository?

Data Availability

ISBSG data can be licensed in two ways, via a data suite release or via
a corporate subscription:

e Data Suite Release You can license an extract of all the
projects held in the repository. This extract is called the
“Estimating, Benchmarking & Research Suite” and is issued
with a release number. New releases are made available when
the number of projects in the repository has increased
significantly. These releases can be licensed either through
your local ISBSG member or via the ISBSG web site (www
.isbsg.org). You can use the Estimating, Benchmarking &
Research Suite to help you with your own software estimation,
project planning and management, benchmarking your
projects against similar ones in the repository, or conducting
your own research.

The suite contains a data subset of more than 100 fields for all
the projects in the repository. Each release contains a detailed
description of the data that is included in the suite.

e Corporate Subscription A corporate subscription is an
extract of all the projects held in the repository at the time of
the subscription. The subscription is annual, providing
annual updates to the data and e-mail support and advice.
The data set provided via the corporate subscription is a
much larger field subset than that provided in the data suite
releases and can be tailored to suit the licensee.

189

www.isbsg.org
www.isbsg.org

190 Practical Software Project Estimation

Data Quality

Each project submitted to the ISBSG Repository is validated against
specified quality criteria and accorded a rating of “A,” “B,” “C,”
or “D”:

e Rating A The data provided was assessed as being sound
with nothing being identified that might affect its integrity.

¢ Rating B While assessed as being sound, there are some
factors that could affect the credibility of the data provided.

¢ Rating C Due to significant data not being provided, it was
not possible to assess the integrity of the data provided.

e RatingD Due to one factor or a combination of factors, little
credibility should be given to the data provided.

Other than rating submitted projects, as just described, the ISBSG
does not normally verify data that is submitted for inclusion in the
repository in any other way. This means that there may be some data
in the repository that appears to be questionable. It is important to
make your own decision about the usefulness, or otherwise, of the
data that you choose to use from the repository.

The repository data is provided in an MS Excel spreadsheet to
allow you to select cases that you consider relevant to your situation
and to do your own analysis.

What the ISBSG Data Can Be Used For

The ISBSG data can be used for more than software estimation: it can
help you with project planning and management; you can benchmark
your projects against similar ones in the repository; you can do your
own research on topics of particular interest to you; or it can be used
for academic research with the objective of improving IT practices
and performance.

You can download a presentation on the ways that the ISBSG data
can be used at www.isbsg.org/isbsg.nsf/weben/Repository%20info.

Considerations

If you intend using the ISBSG data for benchmarking or to help you
with software estimation, then you need to be aware of the likely
maturity level of the companies that submitted the project data that
you are benchmarking against.

If you are a researcher who is going to use the ISBSG data for
work that will report on the performance of the IT industry, you need
to consider whether the ISBSG data (and particularly a selected subset
of it) is representative of the industry.

www.isbsg.org/isbsg.nsf/weben/Repository%20info

Appendix A: What Is in the ISBSG Repository?

ISBSG Project Data Positioning

The ISBSG project data is not necessarily representative of the software
industry. The ISBSG believes that the projects in the repository are
representative of the more productive projects in the industry, rather
than of industry norms. There are a number of reasons for this.

Some organizations simply cannot contribute to the repository.
The criteria for including a project in the repository generally exclude
organizations that do not use functional size measurement (FSM).!
They also exclude projects for which work effort (in person-hours) is
not available.

Only organizations that collect the necessary metrics can
contribute to the repository. Organizations with software metrics
programs are likely to be among the more mature software
development organizations.

Organizations also choose which of their projects they submit.
They might choose typical projects, but they might choose only their
best projects.

It is also worth noting that the majority of the projects in the
repository are less than 2,000 function points in size. Very few are
really big projects.

These considerations do not lessen the value of the data in the
repository. The focus of the repository is as much on understanding
best practice in the IT industry as on overall averages.

However, the key metrics have been studied and tested. The results
of this work demonstrate that the sample represented by the repository
is self-contained, internally consistent, and contains no apparent
anomalies. The repository is therefore a very valuable collection of data
for a number of avenues of analysis, benchmarking, and estimation.

Comparing Apples with Apples

When performing statistical analyses, it is very important to make
sure that like is compared with like, that “apples are not compared
with oranges.” For this reason, it should be rare to find the entire
repository analyzed as a single sample. Subsets of projects should be
analyzed, so that it makes sense to compare projects within a subset.

Selecting a Suitable Data Subset

It is important to give careful thought to the project data that you will
include in any data set that you plan to use. You need to think about
the meaning of the data, not just to treat it as numbers to be used
without selectivity. What project types can be legitimately compared
or analyzed together?

! Although the repository does accept projects that have been sized using methods
other than functional units (for example, LOC and use case points), the ISBSG does
not perform validation on these size measures; it simply records them for general
information.

191

192

Practical Software Project Estimation

Here are some examples:

¢ Functional sizing methods You shouldn’t mix pre-IFPUG
V4 projects with V4 and post-V4 (the sizing changed with
that release). New development projects sized using the
NESMA standard can be included with IFPUG V4+ projects.
Use the Count Approach field in the data (and perhaps also the
FP Standards and Reference Table Approach fields), to select
projects that use the same sizing method that you use.

* Normalized Effort*> For effort, give consideration to what
risk and gain is involved in using normalized effort. The
Summary Work Effort shown in the data is the total effort for
the project. What is counted within that total varies, because
different projects record effort at different levels of detail (see
the Resource Level and Recording Method fields).

A resource level of “1” means that only the effort of the
development team is recorded; “2” means that support team effort is
also recorded; “3” adds computer operations; and “4” adds effort
expended by the end user or client.

Two things you might do to make sure you compare effort
appropriately:

¢ Select only those projects that record the same effort detail as
you do.

* You don’t have to ignore every other project—you can use
rules of thumb to translate approximately between different
levels of effort.

Previous analysis of projects in the ISBSG Repository shows that
Level 2 effort is about 10-12 percent more than Level 1, Level 3 adds
about another 1 or 2 percent, and Level 4 is about 20-25 percent more
than Level 1.

NoTE If you use approximations like this, you add uncertainty to your
data and add risk to any conclusions that you draw. However, you may
still be able to learn a lot from these projects; just be wary of placing too
much reliance on your conclusions.

* Project Rating The ISBSG considers that projects with a
data quality rating of A or B are suitable for statistical analysis.
Projects rated C or D may still provide valuable data, but
uncertainty about some of their size or effort values means
that it is best not to include them in statistical analyses.

2 Refer to “Normalized work effort” in the Glossary.

Appendix A: What Is in the ISBSG Repository?

e Linesof Code Although the ISBSG Repository does include
projects that are sized using LOC, these are not validated and
should not be used for benchmarking.

Unless your aim is to benchmark your project or organization
against the entire repository, you are probably not interested in
projects that are very different from your own.

You will want to select projects that are similar to yours in
important project attributes.

The ISBSG suggests that the most important criteria for selecting
projects are:

e Size Ifyoursisareallylarge project, there is not much value
to you in studying small ones and vice versa.

* Development type New development, enhancement, or
redevelopment.

* Primary programming language or language type For
example, 3GL, 4GL.

¢ Development platform Mainframe, midrange, or PC.

Other criteria that may be important are organization type,
business area type, application type, user base, and development
techniques.

Bear in mind that as you add more selection criteria, the number
of projects selected inevitably gets smaller. You can end up with small
groups of projects, or perhaps even no projects that satisfy all criteria.
How important the group size is will depend on what you want to do
with the data.

It is important that the data subset you use have integrity. The
key points are that you choose only appropriately rated data;
measurements are defined the same way (that is, IFPUG versions and
effort measures with different time units); and measurements apply
to the same thing (that is, effort normalization and effort levels).

Many practitioners will want to compare their IT development
performance with “relevant” projects in the data set. For many, the
analysis process will consist of selecting projects based upon multiple
criteria, followed by some form of summary analysis. Some may wish
to use regression analysis to derive the equation of the line of best fit
through the data points and to use this equation as an estimating
device.

When performing such analyses, it is worthwhile bearing in mind
that use of many selection criteria could result in a very small or even
zero sample size. A sample size of more than 20 should provide
reasonable results; however, not much can be concluded from a
sample size of 5 or fewer.

It is not uncommon for people to use a mean or median value, or
to use a regression line for estimation purposes. Bear in mind that

193

194

Practical Software Project Estimation

estimation parameters derived from a sample of the population may
not have much relevance to a particular project. It may well be that
population surveys show that x percent of males will suffer a heart
attack by the time they are 60 years of age. This percentage does not
indicate the probability that you will suffer a heart attack before you
are 60. Consequently, a regression line, even if derived from a sample
of projects with similar characteristics to your own, may not be a
good estimation tool unless you have reason to believe that your
attributes are broadly similar.

Means, medians, and regression lines should be used with great
caution, especially where sample sizes are small and variances or
standard deviations are high.

What You Can Find in the ISBSG Repository

At the time of writing, the ISBSG Repository contained data on more
than 5,500 projects. In this section we provide details of the various
project data types that are included in the ISBSG. The demographics
published here reflect the contents of the repository contained in
Release 11. You will note that the project totals shown at the bottom
of the tables rarely equal the 5,052 projects in that release. This is
because submitters do not necessarily provide project data for all the
data fields that ISBSG offers. The “Data Field Descriptions” document
available from www.isbsg.org explains the contents of the various
data fields in the data releases that can be licensed.

By studying the demographics that follow, you will be able to
establish the areas that are of specific interest to you. We recommend
that you read the “Guidelines for use of the ISBSG data” document
before you do any analysis, estimation, or benchmarking using the
data.

The projects in the repository have come from 24 countries, with
70% of the projects being less than 9 years old. This is what makes the
ISBSG Repository unique. A broad range of project types from many
industries and many business areas is available for you to use for
estimating, awareness of trends, comparison of platforms, and
languages or benchmarking.

Demographic Summary
The projects in the repository cover a broad cross-section of the
software industry. In general, they have a business focus.

Project Origin

e The projects have been submitted from 24 countries. Major
contributors are the United States (31% of all projects), Japan
(17%), Australia (16%), Finland (10%), the Netherlands (8%),
India (6%), Canada (5%), Denmark (3%), Brazil (2%), the
United Kingdom (2%), and China (1%).

www.isbsg.org

Appendix A: What Is in the ISBSG Repository? 195

* The projects were “built” in 29 different countries. Major
contributors are Finland (18% of all projects where the country
of effort is known), the Netherlands (14%), Australia (13%),
India (11%), Japan (10%), the United States (10%), Canada
(5%), Denmark (5%), the United Kingdom (4%), Brazil (3%),
China (2%), and France (2%).

Project Context

¢ Organization type: Major types are communications (22% of
all projects where the organization type is known), insurance
(17%), banking (13%), government (12%), business services
(10%), and manufacturing (8%).

* Business area: Major areas are telecommunications (25% of all
projects where the business area is known), banking (12%),
insurance (12%), finance (8%), manufacturing (8%), engineering
(5%), accounting (4%), and sales and marketing (4%).

Type of Project

¢ Development type: 59% are enhancement projects, 39% are
new developments, and 2% are redevelopments.

e Intended market: 85% of projects are developed for internal
use (that is, for the organization that contributed the project
to the repository), and 15% are developed for other
organizations. 48% are developed in-house and 52% are
outsourced. In total, 41% are developed in-house for internal
use.

e Team size: 36% of projects have up to four people in the
development team, 38% have five to nine people, and 28%
have ten or more people.

Type of Product

¢ Product size: While IFPUG projects dominate the repository,
COSMIC, NESMA, and FiSMA are all well represented.
Among the IFPUG projects, 30% of projects have fewer than
100 FP, 22% have 100-200 FP, and 13% have 200-300 FP. The
median size is slightly under 200 FP.

e Application type: 16% are information systems; 48% are
transaction-processing systems.

¢ Architecture: 51% of projects for which this information is
available have a client-server architecture, and 20% have a
multitier architecture (there is some overlap between these
groups of projects). 40% are stand-alone systems.

* Web development: 17% of the projects in the repository are
web developments.

196 Practical Software Project Estimation

Development Environment

Platform: 39% are mainframe projects, 10% midrange, and
18% PCs. 33% of projects involve multiple platforms.

Language: Over 100 programming languages are represented.

3GLs represent 64% of projects, 4GLs 33%, and application

generators 3%. Major languages are COBOL, C/C++/C#, Java/

J2EE/JavaScript, Visual Basic, PL/I, PL/SQL, Oracle, .Net,

SQL, NATURAL, Access, Powerbuilder, ASP, and Lotus Notes.

Development Method
46% of projects that say anything about techniques report using a
waterfall model or “traditional” methods, but give no further details
of techniques used.

Of the projects that report the use of particular techniques:

Classical system modeling techniques are used in 46% of
them. The most common single technique is data modeling,
used in 36% of projects.

RAD/JAD techniques are used in 18% of the projects.
Object-oriented techniques are used in 18% of the projects.
Prototyping is used in 18% of the projects.

Standards are used in 24% of the projects, with CMMI the
most common.

Testing-oriented techniques, reviews, and inspections are
used in 49% of the projects.

Project Origin

Projects have been contributed from 24 different countries.

Country of Origin

United States
Australia
Finland
Netherlands

Denmark

United Kingdom

Canada

Japan

India

Brazil

China
Other

T
0 200 400 600 800 1000 1200 1400 1600
Number of Projects

Appendix A: What Is in the ISBSG Repository?
Country of Origin Projects Percent
United States 1548 30.7%
Japan 841 16.7%
Australia 801 15.9%
Finland 515 10.2%
Netherlands 389 7.7%
India 280 5.5%
Canada 252 5.0%
Denmark 131 2.6%
Brazil 87 1.7%
United Kingdom 82 1.6%
China 65 1.3%
Other 58 1.1%
Total 5049
Country of Effort
Twenty-eight countries are represented in the repository.
Finland
Netherlands
Australia
India
Japan
United States
Canada
Denmark
United Kingdom
Brazil
China
France
Other
(I) 1(|)0 200 300 400 500 600
Number of Projects
Country of Effort Projects Percent
Finland 508 18.5%
Netherlands 381 13.9%
Australia 356 13.0%
India 291 10.6%
Japan 275 10.0%
United States 264 9.6%

197

198 Practical Software Project Estimation

Country of Effort Projects Percent
Canada 151 5.5%
Denmark 131 4.8%
United Kingdom 110 4.0%
Brazil 87 3.2%
China 65 2.4%
France 62 2.3%
Other 66 2.4%
Total 2226

Project Context

Organization Type
The organization type defines the industry, or type of organization,
for which each project has been developed.

Communication

Insurance

Banking

Government, Public Administration
Financial, Property, & Business Services
Manufacturing

Computers, Software, IT

Electricity, Gas, Water

Wholesale & Retail Trade

Transport, Storage, Logistics

Community Services, Local
Other

T T
0 200 400 600 800 1000
Number of Projects

Organization Type Projects Percent
Communication 828 21.9%
Insurance 644 17.0%
Banking 482 12.8%
Government, Public Administration 462 12.2%
Financial, Property, & Business Services 380 10.0%
Manufacturing 293 7.8%
Computers, Software, IT 72 1.9%
Electricity, Gas, Water 62 1.6%

Appendix A: What Is in the ISBSG Repository? 199
Organization Type Projects Percent
Wholesale & Retail Trade 59 1.6%

Transport, Storage, Logistics 53 1.4%
Community Services, Local 50 1.3%
Other 396 10.5%
Total 3781

Business Area

This is the business area within the organization/industry that the
project/application will be supporting.

Telecommunications
Insurance

Banking

Manufacturing

Financial (excluding Banking)
Engineering

Accounting

Sales, Marketing

Inventory

Transport, Logistics

Legal

Government, Public Administration, Regulation
Personnel

Other

0 50

T
100 150 200

Number of Projects

250

300 350

Business Area Projects | Percent
Telecommunications 303 24.6%
Insurance 153 12.4%
Banking 152 12.3%
Manufacturing 104 8.4%
Financial (excluding Banking) 103 8.4%
Engineering 60 4.9%
Accounting 54 4.4%
Sales, Marketing 44 3.6%
Inventory 27 2.2%
Transport, Logistics 26 2.1%
Legal 25 2.0%
Government, Public Administration, Regulation 25 2.0%
Personnel 23 1.9%
Other 134 10.9%
Total 1233

200

Practical Software Project Estimation

Type of Project

Development Type

A detailed explanation of the development types is given in the ISBSG

Glossary of Terms.

Enhancement

New Development

Redevelopment

0 500 1000 1500 2000 2500 3000
Number of Projects

Development Type Projects Percent
Enhancement 2969 58.9%
New Development 1971 39.1%
Redevelopment 89 1.9%
Other 8 0.2%
Total 5037

Intended Market

This defines the relationship between the customer, the project/
application developer, and the application user. If the customer and
the developer are in the same organization, it is assumed to be an in-
house development; if the customer and user are in the same
organization, it is assumed that the development is for internal use.
As can be seen from the figures that follow, most of the projects in
the repository (for which this information is available) have been
developed for an internal business unit. Outsourced developments
slightly outnumber in-house developments.

Appendix A: What Is in the ISBSG Repository? 201

Developed in-
house, for internal
business unit
Thueiness o |
internal business unit
Developed in-

house, for external -

business unit

Outsourced for
external business unit

Multi-supplier

project
(') 200 400 600 800 1000
Number of Projects
Intended Market Projects | Percent
Developed in-house for internal business unit 776 40.6%
Outsourced for internal business unit 838 43.9%
Developed in-house for external business unit 135 7.1%
Outsourced for external business unit 150 7.8%
Multi-supplier project 12 0.6%
Total 1911
Team Size

This is the maximum number of people in the development team at
any given time in the project. Teams of two through five people are
about equally common. Five is most common (by a small margin).

202

Practical Software Project Estimation

1.2
3.4
5.9

10..14

15..19
20+

(IJ 1(')0 200 300 400 500 600
Number of Projects

Team Size Projects Percent
lor2 216 14.0%
3or4d 316 20.5%
5t09 583 37.8%
10 to 14 197 12.8%
15to 19 86 5.6%
20 or more 143 9.3%
Total 1541

Type of Product

Product Size

Size is measured in function points. The four main function point-
counting approaches represented in the repository are IFPUG,
COSMIC, FiSMA, and NESMA. Other approaches represented in the
repository include Mark II and Feature Points, but there are few such
projects, and very few have been contributed to the repository in
recent years.

IFPUG projects dominate the repository. The numbers of COSMIC,
FiSMA, and NESMA projects are steadily increasing.

The following tables and histograms show the range of project
sizes for each of these four function point-counting approaches.
(Projects sized with other approaches, or that have low data quality
ratings, are not included.)

Appendix A:

IFPUG

Projects sized with outdated versions of IFPUG function points
(IFPUG 2, IFPUG 3) are excluded from the figures that follow. The
table shows the sizes (in UFPs) of projects sized with IFPUG function
points that are known or presumed to have been sized using CPM 4.0

or later.
40%

What Is in the ISBSG Repository?

35%

30%

25%

20%

15%

Percent of Projects (UFPs)

10%

5%

0%

Q9°’ Q:\qoj Q.-O)O) Q:g’o’ Q-@o‘ Qf&q Q.@q Qi\qq Qfgq Q?)qq .\@q @@X
S S S I I S SN

Size in IFPUG 4 Projects Percent Projects Percent
Function Points (UFPs) (UFPs) (AFPs) (AFPs)
0 to 99 818 30.6% 1108 32.8%
100 to 199 576 21.6% 740 21.9%
200 to 299 360 13.5% 442 13.1%
300 to 399 220 8.2% 282 8.3%
400 to 499 155 5.8% 173 5.1%
500 to 599 89 3.3% 103 3.0%
600 to 699 70 2.6% 76 2.2%
700 to 799 65 2.4% 82 2.4%
800 to 899 35 1.3% 52 1.5%
900 to 999 37 1.4% 36 1.1%
1000 to 1499 106 4.0% 123 3.6%
1500 or more 138 5.2% 162 4.8%
Total 2669 3379

203

204

Practical Software Project Estimation

Smaller projects are more common. Size ranges from 3 to 16,148

UFPs (3 to 20,000 AFPs). The median size is 186 UFPs (171 AFPs).

For enhancement projects, the range is 3 to 7,134 UFPs with a
median of 125 UFPs (3 to 20,000 AFPs with a median of 119 AFPs). For
new developments, the range is 6 to 16,148 UFPs with a median of
312 UFPs (6 to 16,148 AFPs with a median of 311 APFs).

COoSMIC
50%

45%

40%

35%

rojects

S 30%

25%
20%

Percent of P

15%

10%

5%

0%

FTIFTIF I F I A
A I S R S S ’

Size in COSMIC Functional Size Units Projects Percent
0to 99 147 43.9%
100 to 199 68 20.3%
200 to 299 41 12.2%
300 to 399 19 5.7%
400 to 499 15 4.5%
500 to 599 10 3.0%
600 to 699 7 2.1%
700 to 799 9 2.7%
800 to 899 3 0.9%
900 to 999 3 0.9%
1000 to 1499 6 1.8%
1500 or more 7 2.1%
Total 335

Appendix A: What Is in the ISBSG Repository? 205

Again, smaller projects are much more common. Size ranges from
5 to 2,090 cfsu. The median size is 122 cfsu. For enhancement projects
the range is 3 to 2,003 cfsu (median 95). For new developments the
range is 8 to 1,670 cfsu (median 181). (The 2,090 cfsu project is one of
a small number of redevelopments.)

NESMA
30%

25%

20%

15%

10%

Percent of Projects (UFPs)

5%

0%

6901 . @ . ?39 Q@q Q.@q . @q . @q . i\o,q . 330,0) Q?)o,q .@q @QQ
R RO N

Size in NESMA Projects Percent Projects Percent
Function Points (UFPs) (UFPs) (AFPs) (AFPs)
0 to 99 32 24.6% 32 24.6%
100 to 199 33 25.4% 33 25.4%
200 to 299 12 9.2% 12 9.2%
300 to 399 23 17.7% 23 17.7%
400 to 499 7 5.4% 7 5.4%
500 to 599 7 5.4% 7 5.4%
600 to 699 2 1.5% 1 0.8%
700 to 799 2 1.5% 3 2.3%
800 to 899 3 2.3% 3 2.3%
900 to 999 0 0.0% 0 0.0%
1000 to 1499 5 3.8% 5 3.8%
1500 or more 4 3.1% 4 3.1%
Total 130 130

206 Practical Software Project Estimation

Smaller projects are more common, as usual, but there appears to
be a broader spread than with the IFPUG or COSMIC approaches.
Size ranges from 14 to 1,924 UFPs (14 to 1,828 AFPs). The median size
is 206 UFPs (205 AFPs).

For enhancement projects, the range is 28 to 1,468 UFPs with a
median of 198 UFPs (28 to 1,468 AFPs with a median of 196 AFPs).
For new developments, the range is 14 to 1,924 UFPs with a median
of 230 UFPs (14 to 1,828 AFPs with a median of 230 APFs).

FiSMA
25%

20%

15%

10%

Percent of Projects (AFPs)

5%

0%

FTITIFT I TS TS
AP PSRN RN SN N \QQQ-'

Size in FiISMA Function Points Projects Percent
0 to 99 108 22.6%
100 to 199 103 21.5%
200 to 299 75 15.7%
300 to 399 55 11.5%
400 to 499 40 8.4%
500 to 599 19 4.0%
600 to 699 16 3.3%
700 to 799 9 1.9%
800 to 899 5 1.0%
900 to 999 8 1.7%
1000 to 1499 19 4.0%
1500 or more 21 4.4%
Total 478

Financial Transaction Process/Accounting

Process Control, Sensor Control, Real Time

Appendix A: What Is in the ISBSG Repository?

The FiSMA projects all report size in adjusted function points
only. As with the NESMA projects, smaller projects are more common,
but there appears at the moment to be a broader spread than with the
IFPUG or COSMIC approaches. Size ranges from 6 to 9,390 AFPs. The
median size is 235 AFPs. For enhancement projects, the range is 6 to
1,843 AFPs with a median of 142 AFPs. For new developments, the
range is 18 to 9,390 AFPs with a median of 320 AFPs.

Application Type

This defines the project/application type within the business area
and organization/industry type. For example, a project/application
could be a Decision Support system for Manufacturing within the
Automotive industry. More detailed descriptions are provided in the
ISBSG Glossary of Terms.

Transaction/Production System

Management Information System

Financial

OIS, EIS, DSS

Billing
Telecommunications
Web, E-business

Sales & Marketing
Ordering

Document Management

Electronic Data Interchange

Other

T T
0 200 400 600 800 1000 1200

Number of Projects

Application Type Projects | Percent
Financial Transaction Process/Accounting 1095 32.0%
Transaction/Production System 499 14.6%
Management Information System 432 12.6%
Process Control, Sensor Control, Real Time 176 5.1%
Financial 142 4.1%
Office information system, executive 128 3.7%
information system, decision support system

Billing 90 2.6%

207

208 Practical Software Project Estimation

Application Type Projects | Percent
Telecommunications 81 2.4%
Web, E-business 75 2.2%
Sales & Marketing 65 1.9%
Ordering 64 1.9%
Document Management 54 1.6%
Electronic Data Interchange 50 1.5%
Other 475 13.9%
Total 3426

Over 100 different application types are recorded in the repository.
Major groupings of projects are tabulated here.

Architecture

Two broad types of system architecture are represented in the
repository: client-server (of various flavors), and multitier (of various
flavors). Stand-alone systems are also recorded as a contrast to client-
server systems.

Stand-alone

Client server

Multitier
Multitier
client server

Multitier with
web interface

0 200 400 600 800 1000
Number of Projects

Architecture Projects Percent
Stand-alone 971 39.8%

Client server 972 39.9%

Multitier 108 4.4%

Multitier client server 276 11.3%

Multitier with web interface 111 4.6%

Total 2438

Appendix A: What Is in the ISBSG Repository? 209

Taken together, 20% of projects in the repository (for which this
information is known) have a multitier architecture, and 51% of
projects have a client-server architecture.

Development Environment

Development Platform

Mainframe

Midrange

I'|

PC

Multiplatform

0 200 400 600 800 1000 1200 1400 1600 1800
Number of Projects

Development Platform Projects Percent
Mainframe 1604 39.1%
Midrange 418 10.2%
Personal computer 750 18.3%
Multiplatform 1336 32.5%
Total 4108

Multiplatform developments are increasingly common and may
soon overtake mainframe developments in the repository.

Type of Programming Language

A large number of languages are recorded in the repository. This can
make it difficult to compare some projects. Consequently, languages
are classified by type, as shown next.

210 Practical Software Project Estimation

2nd-generation
language

3rd-generation
language

4th-generation
language

Application
generator

o A

500 1000 1500 2000 2500 3000 3500
Number of Projects

Type of Programming Language Projects Percent
2nd-generation language (2GL) 19 0.4%
3rd-generation language (3GL) 2893 63.5%
4th-generation language (4GL) 1507 33.1%
Application generator 136 3.0%
Total 4556

Over 100 programming languages are represented in the
repository. 3rd-generation languages dominate, but 4th-generation
languages are also very well represented.

Some languages (for example, Visual Basic, Visual C++) were
nominated sometimes as 3GLs and sometimes as 4GLs. The preceding
table tallies the language types as originally nominated. In the
following tables, each language is consolidated under a single type.

Primary Programming Languages: 3GLs
This is the programming language that has been nominated by the
project submitter as the primary programming language.

Appendix A: What Is in the ISBSG Repository? 211

COBOL
Java
Visual Basic
PL/I

C++

C

SQL

C#
Scripting
PL/SQL
Other 3GL

0 100 200 300 400 500 600 700 800 900
Number of Projects

3" Generation Languages Projects Percent
COBOL 837 28.2%
Java 652 19.8%
Visual Basic 377 11.5%
PL/I 321 9.8%
C++ 285 8.7%
C 237 7.2%
SQL 134 4.1%
C# 76 2.3%
Scripting 35 1.1%
PL/SQL 30 0.9%
Other 301 9.2%

Other 3GLs in the repository include JavaScript, Smalltalk, HTML,
Ada, Pascal, Periphonics, and FORTRAN.

212 Practical Software Project Estimation

Primary Programming Languages: 4GLs

Oracle
Net
Natural
Access
ASP
Powerbuilder
ABAP
Lotus Notes
Easytrieve
Delphi
Other 4GL
(IJ 1(IJO 2(I)0 3(I)0 4(I)0 500
Number of Projects
4t Generation Languages Projects Percent
ORACLE 172 16.0%
.Net 136 12.7%
NATURAL 86 8.0%
ACCESS 56 5.2%
ASP 51 4.7%
Powerbuilder a7 4.4%
ABAP 34 3.2%
Lotus Notes 29 2.7%
Easytrieve 15 1.4%
Delphi 15 1.4%
Other 4GL 434 40.4%

The “Other 4GL” count is high because many projects do not
specify the language, other than that it was a 4GL, and numerous
languages are represented by only a small number of projects. Other
4GLs represented in the repository include CLIPPER, ColdFusion,
Ingres, FOCUS, IDEAL, and RALLY.

Appendix A:

Application Generators

What Is in the ISBSG Repository? 213

Telon

HPS

cooL.cen [
[
—

Other
0 10 20 30 40 50 60 70 80
Number of Projects
Application Generators Projects Percent
COOL:Gen 69 50.4%
TELON 34 24.8%
HPS 14 10.2%
Other 20 14.6%

Few projects that used application generators have been
contributed to the repository in recent years.

Methods and Tools

Three fields are used to describe the various techniques that may
have been used during the execution of a project: Specification
Techniques, Design Techniques, and Development Techniques.

214 Practical Software Project Estimation

The following graph and table combine information from all three
fields.

Waterfall

“Traditional”

Data modeling

Process modeling

Business area modeling

Event modeling

Standards (ISO 9000, CMM, CMMI)
Joint Application Development
Rapid Application Development
Prototyping

Object-Oriented Analysis/Design, UML
Multifunction teams

Timeboxing, RUP, Agile

Reviews, inspections

Specific testing techniques

T
0 200 400 600 800
Number of Projects

Development Techniques Projects Percent
Waterfall 745

“Traditional” 713

Data modeling 505 36.5%
Process modeling 399 28.8%
Business area modeling 106 7.7%
Event modeling 85 6.1%
Standards (ISO 9000, CMM, CMMI) 335 24.2%
Joint Application Development 181 13.1%
Rapid Application Development 103 7.4%
Prototyping 255 18.4%
Object-Oriented Analysis/Design, UML 252 18.2%
Multifunction teams 127 9.2%
Timeboxing, RUP, Agile 89 6.4%
Reviews, inspections, walkthroughs 462 33.4%
Specific testing techniques 356 25.7%

745 projects report using a waterfall process, of which 593 give no
further information about specific techniques used. 573 further

Appendix A: What Is in the ISBSG Repository? 215

projects report using a “traditional” process, but give no further
details of specific techniques used.

There are 1,384 projects that list specific techniques. Between
them the classical techniques of data modeling, process modeling,
business area modeling, and event modeling are listed in 643 projects
(46%).

The most common single technique is data modeling, used in
36% of these projects. RAD and /or JAD techniques are used in 18% of
these projects. Object-oriented techniques are used in 18% of these
projects. Testing-oriented techniques, reviews, and inspections are
listed in 49% of these projects.

Many of the projects that have been contributed recently to the
repository make use of standards (ISO 9000 series, CMM, CMMI). Of
the 335 projects in the repository that used standards, 248 (74%) used
CMMI, 74 (22%) used CMM, and 74 (22%) used ISO 9000 series
standards. 50 projects (15%) used ISO 9000 and one or both of CMM/
CMML

Summary

The ISBSG project history data is a very valuable resource for analysis,
benchmarking, and estimation, but it must be used carefully and with
an understanding of what it does and does not represent.

Additional Documentation
The following documents are available for download from the

Downloads section of www.isbsg.org.
* Glossary of Terms
¢ Data Field Descriptions
e The ISBSG Repository Demographics
¢ The ISBSG Repository Field Descriptions

www.isbsg.org

This page intentionally left blank

APPENDIX B

Project Delivery
Rates by Category

categories. You can use these tables as a base for your estimates
and to help you build an estimation framework, as described
in this book.

The tables are based on analysis of 1,681 projects, out of the 5,052
projects in the repository. These projects all have a high data quality
rating (A or B), size measured with IFPUG or NESMA function points,
and normalized work effort at resource level 1 (development team
only). Extreme outliers are not included. Projects completed more
than ten years ago are not included.

The ranges of project characteristics are as follows:

I I This appendix summarizes project delivery rates in a number of

e All are sized with IFPUG function points, version 4 or later,
or are new developments sized using the NESMA approach.

¢ All have high data quality rating (A or B).
e 25 <= Size (UFP) <= 4,200 FP.

e 80 <= Effort <= 61,500 hours.

e Maximum team size <= 52.

e (.5 <= Duration < 34 months.

e (.65 <=PDR <= 80 Hrs/FP.

® 45 <= Speed of delivery (for the entire project team) < 520
FP/month.

* 0.7 <= Speed of delivery (per project team member) < 45 FP/
month/person.

21

218 Practical Software Project Estimation

* Project completion date is 1999 or later.

* (Normalized effort for development team / reported effort
for development team) < 1.25.

Presentation of Statistics

This section briefly describes the tables in this appendix.

Throughout the appendix, each table indicates the number of
projects represented (N). This number is important, because care
must be taken not to draw unwarranted conclusions from small
samples of projects.

In the tables that follow, no group of projects is tabulated in its
own right unless N is at least 10 (that is, at least 10 projects are
represented in every group).

The total number of projects in each table varies. This is because
the values of a number of variables are not known for projects
submitted to the repository (that is, submitters do not provide data
for every field).

Small inconsistencies between numbers of projects tabulated are
due to missing values of variables selected for tabulation; for example,
in some cases in the repository the Development Platform is given as
“Unknown.”

NOTE When you are using the tables, always check the number of projects
represented. Don't jump to conclusions based on a small number of
projects.

Explanation of Tables

In this appendix, tables are frequently used to summarize some key
statistics about the data for the topic being analyzed. The following
header is common to all of the tables presented:

| N | Min | P10 | P25 | Median | P75 | P90 | Max | Mean | Std Dev |

* N is the number of projects or data instances in the sample.
* Min is the minimum value found in the sample.

e P10 is the 10th percentile and is that value which is greater
than the values of 10 percent of the members of the sample.

e P25 (often also written as Q1) is the 25th percentile or first
quartile. It is that value which is greater than the values of
25 percent of the members of the sample or subsample.

Appendix B: Project Delivery Rates by Category N9

e Median (sometimes written as P50) is the middle value; half
the values in the data sample or subsample are below this
value, while the other half are above it.

e P75 (often also written as Q3) is the 75th percentile or third
quartile. It is that value which is greater than the values of
75 percent of the members of the sample or subsample.

e P90 is the 90th percentile and is that value which is greater
than the values of 90 percent of the members of the sample or
subsample.

* Max is the maximum value found in the sample.
® Mean is the arithmetic mean or average.

e Std Dev is the standard deviation.

Use of the Statistics

In most cases we have focused upon the median rather than the mean.
However, the mean is always noted in addition to the median. The
median is the more useful measure when the data contains outliers or
when it is strongly skewed.

NOTE Mean is the average of all the values. The median is middle value
of all the values.

Using the mean or average can be misleading when the data is
skewed. One huge number can distort the mean, so that it is no longer
a fair representation of “average.” This is common in software
engineering data sets, so the median is usually preferred.

Standard deviation is a measure of how wide the spread of values
is. A small standard deviation means that most numbers fall into a
narrow band around the average, and a large standard deviation
means there is a wide range of values. A small standard deviation is
better for estimation than a large one.

Project Delivery Rates

Project delivery rates in the following tables are expressed in terms of
hours per function point.

Table B-1: Project Delivery Rate by Industry Sector

N Min P10 P25 Median P75 P90 Max Mean Std Dev
Banking 80 0.7 3.0 4.0 7.9 22.1 31.2 55.1 13.4 12.1
Communication 426 0.8 3.6 6.5 11.5 19.4 30.0 78.7 14.9 11.7
Construction 12 2.8 3.1 35 4.3 6.3 8.7 9.1 5.0 2.2
Electronics & Computers 18 1.1 2.5 3.5 5.1 16.2 26.1 59.3 11.9 15.0
Financial 94 1.0 3.0 5.1 9.4 14.2 22.8 75.2 11.9 11.1
Government 153 1.2 4.9 7.7 11.7 19.8 36.2 61.8 16.3 13.0
Insurance 164 1.4 5.1 8.3 16.3 28.1 43.4 74.2 20.6 15.7
Manufacturing 101 0.6 1.6 2.6 5.4 13.0 29.2 52.5 10.4 12.0
Medical and Health Care 10 1.5 2.5 2.9 4.1 7.8 9.3 13.7 5.5 3.8
Professional Services 30 1.1 3.9 5.0 9.3 11.5 19.7 36.6 10.4 7.6
Service Industry 86 0.7 2.2 4.9 8.4 14.3 23.2 42.3 10.7 8.4
Wholesale & Retail 55 2.4 6.1 12.6 22.3 29.3 54.0 60.6 24.4 16.5

1744

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Table B-2: Project Delivery Rate by Organization Type

N Min P10 P25 | Median | P75 P90 Max | Mean | Std Dev
Banking 80 0.7 3.0 4.0 7.9 22.1 31.2 55.1 13.4 12.1
Billing 17 | 14.4 | 146 | 15.6 24.0 28.8 46.2 60.6 27.2 13.7
Communication 419 0.8 3.6 6.6 11.8 19.6 30.0 78.7 15.0 11.7
Community Services 22 0.7 5.5 7.8 13.9 17.5 22.7 24.4 13.0 6.9
Construction 12 2.8 3.1 3.5 4.3 6.3 8.7 9.1 5.0 2.2
Finance / Property / Business Services 90 1.0 3.0 5.2 10.0 14.3 23.0 75.2 12.2 11.2
Government 154 1.4 5.4 7.8 11.9 20.4 37.4 61.8 16.7 13.1
Insurance 164 1.4 5.1 8.3 16.3 28.1 43.4 74.2 20.6 15.7
Local 14 8.2 89 | 114 15.5 21.6 27.6 30.2 16.8 7.4
Manufacturing 90 0.6 1.6 3.0 5.6 15.0 29.5 52.5 11.0 12.4
Medical and Health Care 10 1.5 2.5 2.9 4.1 7.8 9.3 13.7 5.5 3.8
Ordering 23 56 | 10.0 | 17.0 28.6 41.5 54.7 60.4 30.4 17.3
Professional Services 12 3.2 4.7 7.2 8.8 9.3 9.3 9.9 7.8 2.2
Public Administration 20 1.2 1.9 4.7 10.1 14.5 18.3 29.6 10.5 7.9
Recreation / Personnel Services 12 1.7 2.0 4.5 6.4 8.7 12.9 23.9 7.7 6.1
Sales, Marketing 12 1.1 2.5 4.3 5.9 14.7 22.9 36.6 11.1 10.6
Transport & Storage 21 1.4 1.8 2.5 4.4 7.0 12.9 29.4 6.4 6.4
Voice Provisioning 15 | 12.3 | 24.6 27.3 53.5 62.1 64.9 69.7 46.4 18.6
Other 84 1.0 2.5 4.3 7.1 14.7 329 70.3 12.8 14.5

:q xipuaddy

f105aje9 Kq sajey Kianijaqg y9afoay

| 744

Table B-3: Project Delivery Rate by Business Area

N Min P10 P25 Median P75 P90 Max Mean Std Dev
Financial 10 1.2 6.7 8.0 9.3 9.9 371 55.1 15.4 16.5
Insurance 26 1.2 2.6 5.3 10.9 16.7 28.3 45.2 13.1 10.4
Manufacturing 17 0.6 0.9 1.3 2.4 4.2 8.0 20.8 4.2 4.9
Telecommunications 240 1.0 3.3 6.3 10.9 18.1 31.5 78.7 15.3 13.4
Other 22 0.8 2.3 6.2 10.0 18.5 28.7 31.6 12.9 9.4

Table B-4: Project Delivery Rate by Application Type

N Min P10 P25 Median P75 P90 Max Mean Std Dev
Billing 42 0.7 3.7 8.2 17.2 25.1 31.8 60.6 18.7 13.4
Catalogue of Things or Events 34 | 35 7.4 8.6 12.4 17.7 32.2 42.3 15.8 9.9
Document Management 26 | 3.5 4.9 8.2 16.2 32.7 42.3 59.4 20.7 15.2
Electronic Data Interchange 20 1.3 6.7 9.7 15.0 22.0 45.5 75.2 19.9 17.9
Executive Information System 14 | 1.2 3.3 6.6 12.7 17.6 30.6 61.8 16.1 15.7
Financial 102 | 3.1 5.0 5.8 7.1 9.2 11.6 14.3 7.7 2.5
Financial Transaction Process Accounting | 311 | 0.7 3.0 5.4 11.2 21.8 34.6 74.2 15.5 14.0
Logistics 14 | 1.3 2.2 5.5 10.1 18.2 23.8 45.3 13.3 11.7
Management Info System 75 | 0.6 3.1 5.8 10.0 17.4 29.1 68.2 13.8 12.7
Ordering 51 | 0.8 2.4 5.3 12.6 28.1 42.0 60.4 18.3 16.8

(444

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Personnel 12 | 1.6 2.9 3.4 6.6 13.2 15.8 41.4 10.2 11.0
Real-Time System 35 1.4 3.3 5.1 10.6 17.1 29.0 70.2 14.0 13.4
Sales, Marketing 48 | 1.5 2.6 4.6 6.9 14.6 26.2 44.8 11.6 10.2
Telecommunications 26 | 0.8 3.3 5.6 9.1 15.1 23.9 52.1 12.6 11.9
Trading 22 |11 34 | 41 8.4 14.6 23.0 36.6 10.9 9.1
Transaction / Production System 169 | 1.0 3.9 6.3 12.4 22.0 35.7 78.7 16.8 14.7
Web / E-Business 23 | 1.0 2.9 3.6 6.4 11.4 18.1 48.0 9.4 9.9
Other 176 1.4 3.4 55 10.2 22.1 48.6 70.3 17.2 17.3
Table B-5: Project Delivery Rate by Development Platform
N Min P10 P25 Median P75 P90 Max Mean Std Dev
Mainframe 452 0.6 3.6 7.2 14.0 25.6 40.0 79.7 18.7 15.6
Midrange 128 1.3 4.8 7.0 11.4 19.6 30.5 74.2 15.6 13.3
PC — Microcomputer 204 1.0 2.5 4.0 8.1 13.2 22.7 60.1 10.7 10.0
Multi 480 0.8 3.6 5.6 8.8 16.2 26.1 61.8 12.6 10.7
Table B-6: Project Delivery Rate by Development Type—All Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
Enhancement 1147 0.6 3.9 6.3 12.0 21.7 35.7 79.7 16.2 14.2
New development 512 0.6 2.4 4.5 7.9 14.7 27.5 76.5 12.0 11.9
Redevelopment 22 0.8 4.6 6.0 10.1 18.9 26.8 49.8 14.5 12.1

:q xipuaddy

f105aje9 Kq sajey Kianijaqg y9afoay

€

Table B-7: Project Delivery Rate by Development Type—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
Enhancement 366 0.6 3.9 7.4 13.7 25.6 40.0 79.7 18.6 15.5
New development 83 0.6 2.9 6.5 15.9 26.0 38.9 75.2 19.0 16.1
Table B-8: Project Delivery Rate by Development Type—Midrange Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
Enhancement 79 2.0 4.9 7.3 14.6 21.1 33.9 74.2 17.4 14.7
New development 49 1.3 4.8 7.0 9.2 13.5 26.3 49.6 12.6 10.0
Table B-9: Project Delivery Rate by Development Type—PC Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
Enhancement 78 1.0 2.5 3.8 8.8 14.8 22.7 60.1 11.4 10.9
New development 117 1.0 2.5 4.0 7.5 11.8 22.2 47.0 9.9 8.6
Table B-10: Project Delivery Rate by Development Type—Multiplatforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
Enhancement 296 1.1 4.4 6.1 9.8 18.8 27.0 61.8 13.8 10.7
New development 177 0.8 2.7 4.7 7.2 12.1 23.1 60.9 10.6 10.6

| (44

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Table B-11: Project Delivery Rate by Language Type—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
2 generation language 12 3.8 4.6 8.2 15.7 23.0 34.8 45.8 17.9 13.2
3 generation language 1105 0.6 3.5 5.9 11.4 22.5 37.9 79.7 16.7 15.1
4t generation language 359 1.2 3.2 5.4 8.7 14.5 21.9 55.5 11.3 8.8
5t generation language 23 6.4 8.5 9.8 16.1 22.2 25.5 37.1 17.1 8.2
Application generator 17 4.7 5.6 8.2 10.8 16.1 26.9 48.3 14.7 11.3
Table B-12: Project Delivery Rate by Language Type—Mainframe Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
3 generation language 365 0.6 3.7 7.8 15.3 27.5 42.2 79.7 19.9 16.3
4t generation language 41 1.2 3.2 4.6 7.3 17.5 29.2 52.5 12.0 10.9
Application generator 16 4.7 5.9 8.9 11.5 17.5 27.7 48.3 15.3 11.4
Table B-13: Project Delivery Rate by Language Type—Midrange Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
3 generation language 71 1.3 4.4 7.0 10.8 20.8 33.8 74.2 16.2 15.0
4t generation language 47 2.0 5.5 7.8 13.2 19.9 28.8 55.5 16.0 11.4

:q xipuaddy

f105aje9 Kq sajey Kianijaqg y9afoay

A4

Table B-14: Project Delivery Rate by Language Type—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
3 generation language 140 1.0 2.8 4.6 8.6 12.6 22.7 60.1 10.9 10.0
4™ generation language 50 1.2 2.4 2.8 5.9 13.1 16.4 33.8 8.5 7.2
Table B-15: Project Delivery Rate by Language Type—Multiplatforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
3 generation language 335 0.8 3.6 5.6 9.1 18.0 31.1 61.8 13.7 11.9
4™ generation language 124 1.4 3.6 5.5 8.2 11.5 17.1 35.7 9.5 6.3
5™ generation language 16 6.5 8.8 11.5 17.2 22.0 25.1 31.8 17.4 7.1
Table B-16: Project Delivery Rate by Language—All Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
ABAP 23 4.2 7.0 7.9 11.3 15.6 21.4 34.3 13.0 7.5
Access 10 1.6 2.4 2.7 7.1 8.7 13.0 14.5 6.8 4.5
ASP 22 1.8 2.6 3.6 6.7 9.9 15.6 30.6 8.6 7.0
Assembler 12 3.8 4.6 8.2 15.7 23.0 34.8 45.8 17.9 13.2

9zt

uorjewi}sy }9afoad a1em}jog [eII}IRIg

C 103 1.8 3.6 8.3 13.6 24.4 41.0 76.5 18.8 16.3
C++ 80 1.0 4.9 8.2 14.8 31.3 54.2 78.7 23.1 20.0
C# 42 1.9 6.1 9.6 15.1 25.1 39.7 49.8 18.8 12.8
COBOL 199 0.8 4.2 6.7 15.3 28.1 48.6 79.7 21.1 18.4
Cool:gen 17 4.7 5.6 8.2 10.8 16.1 26.9 48.3 14.7 11.3
HTML 10 1.0 3.5 4.3 13.7 22.3 40.3 48.0 17.2 16.2
Java, J2EE 171 1.9 4.8 5.9 8.0 15.6 29.4 74.2 13.3 12.9
Lotus Notes 20 1.2 1.5 2.7 3.7 5.1 9.5 12.2 4.7 33
Natural 15 3.4 5.1 5.7 10.2 13.9 25.0 35.3 12.2 9.3
Oracle 86 1.2 3.0 4.7 8.2 15.7 23.8 33.8 11.2 8.4
PL/1 99 0.6 2.9 5.7 16.0 22.9 34.3 61.8 16.9 13.4
PL/SQL 18 0.8 1.3 1.7 4.6 9.7 26.4 42.1 9.4 12.0
Powerbuilder 19 4.2 5.0 6.4 9.3 14.1 18.6 23.6 10.9 5.6
Scripting language 26 1.4 3.7 5.1 7.6 13.2 22.5 61.8 11.7 12.4
SQL 60 2.4 3.9 6.2 11.4 16.7 27.2 55.5 13.5 10.7
Visual Basic 208 0.6 2.4 4.1 8.5 18.1 34.7 69.4 13.5 13.4
Other 3GL 95 4.0 6.7 10.2 14.2 22.5 30.1 43.1 16.8 9.1
Other 4GL 61 3.6 6.0 7.8 9.2 13.2 19.2 35.7 11.6 6.7
5GL 23 6.4 8.5 9.8 16.1 22.2 25.5 37.1 17.1 8.2
Other 125 0.7 2.5 5.3 8.6 15.0 24.1 59.3 11.6 10.2

:g xipuaddy

f105aje9 Kq sajey Kianijaqg y9afoay

Lic

Table B-17: Project Delivery Rate by Language—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
C 26 5.6 9.2 11.7 15.5 27.5 42.5 60.4 21.6 15.2
C++ 14 5.8 10.7 17.1 32.2 49.6 53.3 75.2 34.3 20.2
COBOL 128 0.8 4.2 7.5 16.8 32.3 54.6 79.7 23.0 20.0
Cool:gen 16 4.7 5.9 8.9 11.5 17.5 27.7 48.3 15.3 11.4
Java 14 3.1 5.1 11.4 18.1 27.4 29.4 31.6 18.1 9.7
Oracle 19 1.2 2.9 4.3 6.6 18.5 29.7 31.7 12.1 10.2
PL/1 77 0.6 2.3 4.2 13.2 22.2 28.5 55.1 14.9 12.2
Scripting language 13 1.4 5.7 9.1 13.2 22.1 29.5 61.8 17.5 15.4
Visual Basic 19 0.6 3.6 18.4 27.4 30.3 38.9 54.6 24.7 13.9
Other 3GL 52 4.8 7.2 10.2 13.3 19.5 31.3 43.1 16.6 9.4
Other 74 0.7 2.9 6.4 10.7 16.0 31.5 52.5 13.9 11.6

144

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Table B-18: Project Delivery Rate by Language—Midrange Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
(¢ 14 3.6 8.4 13.1 15.1 22.4 29.5 34.2 17.6 8.8
C++ 20 1.3 3.9 5.1 7.9 15.0 19.0 49.6 11.8 11.3
Java 22 4.2 4.5 7.3 9.3 20.9 60.1 74.2 19.0 21.5
Oracle 11 2.0 3.0 5.8 9.0 14.6 24.4 28.8 11.3 8.6
SQL 30 4.1 5.8 9.6 13.3 20.1 29.2 55.5 16.8 11.8
Other 31 3.5 5.3 7.1 10.5 20.8 33.8 42.1 15.1 10.9

Table B-19: Project Delivery Rate by Language—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
ASP 11 2.2 2.6 2.7 5.9 7.8 9.5 14.3 6.0 3.8
C++ 15 4.0 8.6 9.3 11.4 18.5 27.8 60.1 16.5 13.9
COBOL 18 2.8 4.2 5.2 10.4 19.7 24.0 35.1 12.7 9.4
Java 26 1.9 3.0 5.7 7.7 10.9 19.0 25.3 9.3 6.1
Oracle 16 1.2 2.3 3.7 9.0 13.5 19.8 33.8 10.6 8.8
Visual Basic 48 1.0 1.9 3.2 7.2 9.5 13.8 24.4 7.4 5.0
Other 59 1.0 2.2 3.6 7.3 14.6 25.6 49.8 11.2 11.5

:q xipuaddy

f105aje9 Kq sajey Kianijaqg y9afoay

6¢¢

Table B-20: Project Delivery Rate by Language—Multiplatforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
ABAP 18 4.2 6.5 7.8 9.6 14.6 20.3 34.3 12.1 7.3
C 11 1.8 1.9 2.2 3.9 10.1 13.0 31.3 7.7 8.9
COBOL 12 3.4 4.7 8.3 20.3 37.8 43.2 49.1 22.8 16.3
C# 34 1.9 5.7 8.0 13.7 22.8 32.2 48.8 16.7 11.1
Java 79 3.1 5.0 5.7 6.4 8.1 11.8 17.1 7.4 2.9
Lotus Notes 14 1.5 1.9 2.9 3.7 5.1 7.8 11.9 4.5 2.8
PL/1 20 8.0 12.5 15.6 20.8 26.8 46.8 61.8 24.9 15.1
PL/SQL 11 0.8 1.4 1.7 4.2 6.7 10.7 14.3 5.1 4.3
Visual Basic 115 0.9 2.5 4.2 8.6 18.6 36.8 60.9 14.1 13.9
Other 3GL 40 4.8 7.8 10.9 17.3 22.7 30.0 38.0 17.8 8.6
Other 4GL 56 3.6 6.0 7.8 8.7 12.5 19.2 35.7 11.3 6.5
5GL 16 6.5 8.8 11.5 17.2 22.0 25.1 31.8 17.4 7.4
Other 54 1.1 3.1 4.8 7.4 10.4 14.8 27.4 8.7 5.7

Table B-21: Project Delivery Rate by Architecture Type—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
Multitier 317 0.6 3.0 5.0 7.3 13.2 26.2 61.8 11.4 11.1
Client-server (not multitier) 321 1.1 4.5 7.5 12.8 20.3 30.2 75.2 15.5 11.4
Stand-alone 228 0.6 2.6 5.8 10.6 17.8 30.0 77.1 14.4 13.1

0€C

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Table B-22: Project Delivery Rate by Architecture Type—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
Multitier 20 0.6 3.4 8.0 16.3 28.5 41.9 61.8 20.3 17.6
Client-server (not multitier) 20 3.8 4.5 7.8 22.4 30.0 35.7 75.2 21.7 17.1
Stand-alone 118 0.6 4.3 7.7 12.5 19.7 31.4 77.1 16.6 14.5
Table B-23: Project Delivery Rate by Architecture Type—Midrange Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
Client-server (not multitier) 30 1.3 6.6 10.9 17.0 23.5 42.4 55.5 19.7 13.2
Stand-alone 45 2.0 5.8 7.5 11.8 19.5 29.8 70.2 15.6 12.4
Table B-24: Project Delivery Rate by Architecture Type—PC Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
Client-server (not multitier) 45 1.2 3.2 5.5 9.5 15.3 36.1 49.8 13.4 11.9
Stand-alone 62 1.0 1.4 2.9 6.5 11.9 24.1 49.1 9.7 9.5
Table B-25: Project Delivery Rate by Architecture Type—Multiplatforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
Multitier 297 0.8 3.0 5.0 7.1 12.6 23.7 60.9 10.8 10.3
Client-server (not multitier) 164 1.1 5.3 8.1 13.2 21.6 29.3 61.8 16.0 10.9

:q xipuaddy

f105aje9 Kq sajey Kianijaqg y9afoay

1€

Project Delivery Rate by Use of CASE Tools
Table B-26: Project Delivery Rate by Use of CASE Tools—All Platforms

(474

N Min P10 P25 Median P75 P90 Max Mean | Std Dev
CASE tools not used 515 0.7 2.7 5.1 9.5 21.6 35.5 77.1 15.3 14.5
CASE tools used 158 0.6 3.2 5.6 10.4 17.2 28.9 78.7 14.3 13.7

Table B-27: Project Delivery Rate by Use of CASE Tools—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
CASE tools not used 186 0.7 3.5 7.3 16.5 28.0 42.9 77.1 20.3 16.8
CASE tools used 41 0.6 3.1 4.4 10.2 17.4 29.6 44.8 13.5 11.3

Table B-28: Project Delivery Rate by Use of CASE Tools—Midrange Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
CASE tools not used 45 3.6 4.7 7.0 9.3 13.7 23.4 74.2 13.8 14.2
CASE tools used 20 4.1 6.0 7.6 17.0 25.3 46.3 70.2 21.4 17.6

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Table B-29: Project Delivery Rate by Use of CASE Tools—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev

CASE tools not used 65 1.5 2.5 3.5 7.3 11.4 22.6 49.8 10.5 10.2

CASE tools used 38 1.0 2.5 4.1 10.4 14.4 22.8 60.1 11.8 10.9

Table B-30: Project Delivery Rate by Use of CASE Tools—Multiplatforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
CASE tools not used 216 0.8 2.4 4.4 7.7 15.8 34.3 60.9 12.7 12.4
CASE tools used 17 5.5 8.4 11.0 17.1 19.4 36.8 45.3 18.7 11.3

Project Delivery Rate by Use of Methodology
Table B-31: Project Delivery Rate by Use of Methodology—All Platforms

:q xipuaddy

N Min P10 P25 Median P75 P90 Max Mean Std Dev
Methodology not used 37 1.0 3.4 5.3 9.2 15.7 28.8 36.7 12.2 9.5
Methodology used 968 0.6 4.5 7.1 12.1 21.8 35.6 78.7 16.6 14.0

Project Delivery Rate by Relationship Between Customer, Developers, Users
Table B-32: Project Delivery Rate by Inhouse/OQutsourced Development

N Min P10 P25 Median P75 P90 Max Mean Std Dev
Inhouse development 93 0.8 2.9 5.6 11.0 19.8 36.6 75.2 16.5 15.1
Outsourced development 518 1.0 4.5 7.5 12.6 20.4 30.7 78.7 15.6 11.7

Table B-33: Project Delivery Rate by User Type

N Min P10 P25 Median P75 P90 Max Mean | Std Dev
Internal users 441 0.8 4.1 7.3 12.5 20.9 31.7 78.7 15.9 12.4
External users 170 1.2 4.6 7.7 11.5 19.6 31.5 61.8 15.5 12.0

f105aje9 Kq sajey Kianijaqg y9afoay

{34

Table B-34: Project Delivery Rate by Relationship to Market

N Min P10 P25 Median P75 P90 Max Mean | Std Dev
Inhouse for internal users 71 0.8 3.3 5.6 11.3 20.4 36.7 75.2 16.4 15.1
Inhouse for external users 22 1.2 3.0 7.5 10.9 17.7 34.1 59.3 16.5 15.2
Outsourced for internal users 370 1.0 4.4 7.5 12.8 20.9 30.3 78.7 15.7 11.8
Outsourced for external users 148 1.4 4.7 7.8 11.5 19.8 30.7 61.8 15.4 11.5
Breaking down Tables B-32 to B-34 by platform type provides no useful extra information.
Project Delivery Rate by Project Size
Table B-35: Project Delivery Rate by Project Size—All Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
0 to 200 912 1.0 4.4 6.6 12.4 22.6 38.3 79.7 17.4 15.2
201 to 400 399 0.6 2.8 5.5 10.3 18.4 29.7 75.2 14.0 11.7
401 to 600 138 0.6 2.6 4.0 7.2 13.2 21.9 52.9 10.1 9.4
601 to 800 80 1.0 2.8 4.4 7.9 15.3 27.4 54.6 11.4 9.9
801 to 1,000 32 1.9 3.2 5.6 7.8 13.3 19.5 29.4 10.0 6.8
Over 1,000 120 0.7 1.5 2.8 6.3 10.4 16.4 59.8 8.4 8.1

(T4

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Table B-36: Project Delivery Rate by Project Size—Mainframe Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
0 to 200 284 1.2 5.3 8.9 15.9 28.5 45.1 79.7 20.9 16.5
201 to 400 109 0.6 2.4 5.5 13.3 22.9 31.0 75.2 16.0 13.4
401 to 600 24 0.6 2.4 3.8 7.2 15.1 16.8 52.9 10.5 10.9
601 to 800 16 2.0 2.7 7.1 13.9 28.9 34.0 54.6 19.0 15.2
801 to 1,000 6 3.1 - 5.1 11.1 18.6 - 29.4 13.1 10.2
Over 1,000 13 0.7 1.2 3.8 5.4 15.0 23.5 31.6 9.9 10.0

Table B-37: Project Delivery Rate by Project Size—Midrange Platforms

N Min P10 P25 | Median | P75 P90 Max Mean | Std Dev
0 to 200 60 3.5 5.3 8.6 16.1 27.4 35.7 74.2 20.6 16.0
201 to 400 21 1.3 3.0 7.9 10.1 17.3 28.8 49.6 14.4 121
401 to 600 19 3.6 4.4 5.4 7.6 9.3 15.2 22.2 8.7 4.8
601 to 800 10 4.3 4.9 7.3 10.0 15.0 17.6 21.6 11.1 5.7
801 to 1,000 2 7.5 - - 10.4 - - 13.2 10.4 4.0
Over 1,000 16 4.4 5.7 6.8 8.2 11.4 14.7 29.0 10.2 5.9

:q xipuaddy

f105aje9 Kq sajey Kianijaqg y9afoay

174

Table B-38: Project Delivery Rate by Project Size—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
0 to 200 79 1.0 2.9 5.1 10.1 15.6 23.6 60.1 12.5 11.0
201 to 400 51 1.0 2.6 3.3 7.2 10.6 24.4 49.8 10.4 11.3
401 to 600 28 1.2 2.7 5.3 9.0 15.3 25.4 39.9 11.9 9.7
601 to 800 14 1.0 2.5 3.8 5.0 8.8 11.3 16.3 6.4 4.2
801 to 1,000 7 4.5 - 5.7 8.2 12.1 - 13.4 8.8 3.7
Over 1,000 25 1.0 1.7 2.5 5.8 9.8 11.9 24.7 7.3 6.0

Table B-39: Project Delivery Rate by Project Size—Multiplatforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
0 to 200 222 1.7 4.7 6.0 8.9 17.0 27.3 61.8 13.2 11.1
201 to 400 138 1.4 4.4 6.8 11.9 18.4 32.6 49.1 14.8 10.9
401 to 600 42 0.8 2.3 3.5 5.6 11.0 20.2 43.4 8.8 8.3
601 to 800 28 1.9 3.7 6.0 8.4 13.1 23.4 34.2 11.1 8.5
801 to 1,000 12 1.9 2.3 6.2 8.1 11.9 21.1 26.3 10.2 7.4
Over 1,000 38 0.9 1.6 2.3 5.0 7.3 15.9 59.8 7.5 10.2

9¢c

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Project Delivery Rate by Maximum Team Size
Table B-40: Project Delivery Rate by Maximum Team Size—All Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
1to4 157 1.0 2.9 4.9 7.4 12.4 21.1 7.1 11.0 11.3
5t08 212 0.6 3.4 5.9 10.3 16.9 28.0 76.5 13.8 12.4
9 or more 215 0.6 4.2 8.8 16.5 26.9 40.0 78.7 20.0 15.2
Table B-41: Project Delivery Rate by Maximum Team Size—Mainframe Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
1to 4 41 3.8 5.3 8.0 13.8 21.0 42.0 77.1 19.2 16.9
5t0 8 43 0.6 4.0 8.2 13.6 23.3 47.8 75.2 19.4 17.5
9 or more 45 0.6 2.1 7.5 18.4 27.2 35.3 68.2 20.1 16.1
Table B-42: Project Delivery Rate by Maximum Team Size—Midrange Platforms
N Min P10 P25 Median P75 P90 Max Mean Std Dev
1to 4 6 2.0 — 5.8 6.0 7.4 — 12.4 6.7 3.4
5t0 8 25 3.0 5.1 9.0 11.6 16.8 31.1 45.3 15.3 10.6
9 or more 30 6.8 7.8 11.6 17.0 26.4 30.5 70.2 20.6 13.6

:q xipuaddy

f105aje9 Kq sajey Kianijaqg y9afoay

1€¢

Table B-43: Project Delivery Rate by Maximum Team Size—PC Platforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
1to4 19 1.0 2.8 4.0 6.4 11.2 17.9 42.3 9.7 9.7
5t08 35 1.0 1.8 3.5 8.4 11.1 16.8 39.2 9.3 8.7
9 or more 29 1.2 4.2 7.5 9.8 17.6 32.9 49.8 15.0 13.1

Table B-44: Project Delivery Rate by Maximum Team Size—Multiplatforms

N Min P10 P25 Median P75 P90 Max Mean Std Dev
1to 4 18 3.9 5.1 5.6 7.5 10.8 18.3 22.9 9.4 5.6
5t08 50 1.9 4.6 7.3 8.8 14.0 21.9 41.2 11.4 7.3
9 or more 57 1.1 4.3 10.1 16.6 25.2 38.1 61.8 20.1 13.6

8¢€C

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Appendix B: Project Delivery Rates by Category

The Impact of Maximum Team Size and
Project Size on Project Delivery Rate

The preceding tables analyze each factor individually, without taking
into account any interactions between them. Now we look at the
effect of different factors, after allowing for the effect of other factors
that have an important effect on PDR.

Platform and language are important factors for characterizing the
environment in which a project is developed, and the primary language
used to develop the project. PDR values for different combinations of
platform and language are presented in Tables B-16-20.

Team size and project size are also known to be important factors
that affect PDR (in fact, analysis of ISBSG data shows that these are
the two most important factors).

Table B-45 summarizes the residual project delivery rates for
different combinations of maximum team size and project size, after
the effect of language and platform has been taken into account. (This
table is based on analysis of 508 of the 1,681 projects analyzed in this
appendix, for which language, platform, project size, and maximum
team size are all known.)

The data analyzed here suggests that PDR gets worse as team
sizes increase, but that PDR improves as functional size increases.
While these factors are clearly not independent (larger projects tend
to have larger teams), you can study Table B-45 to gain an
understanding of each factor separately as well as together.

You can see that small teams do not develop large projects, as
expected (Table B-45 does not present statistics for samples of fewer
than five projects, because the sample is simply too small).

We can use Table B-45 to identify the average effect of maximum
team size and project size. We do this by looking at the averages: both
median and mean are worth considering.

For example, if we consider medians, Table B-45 shows that
projects with a functional size of up to 200 UFP and a maximum team
size of 1 to 4 have an average project delivery rate thatis 6.7 hours per
UFP lower than the overall average, once language and platform
have been taken into account. If we consider means, the difference is
4.1 hours per FP, instead of 6.3 hours per UFP.

In other words, suppose you start with an estimate of project
delivery rate for a given project, based on its platform and language
(see Tables B-16-20). If its size is up to 200 UFP and you expect to use
a development team of 1 to 4 people, you could lower your estimated
project delivery rate value by 4 to 6 hours per UFP. For a similar
functional size but with a team size of 9 or more, you could raise your
estimated PDR value by 11 to 15 hours per UFP. Other combinations
of functional size and team size have different effects, as shown in
Table B-45.

239

Table B-45: Effect of Maximum Team Size and Project Size

Team Size | Project Size (UFP) N Min P10 P25 Median P75 P90 Max Mean Std Dev
1to4 3 to 200 99 -196 | -141 | -111 -6.7 -1.7 7.6 55.1 -4.1 12.2
1to4 201 to 400 25 -19.8 | -14.2 | -11.7 -5.1 -2.1 3.3 14.6 -5.3 7.8
1to4 401 to 600 5 -18.8 — -10.3 9.1 -7.4 — -3.6 -9.8 5.6
1to4 601 to 800 -

1to4 801 to 1,000 2

1to4 More than 1,000 -

5t08 3to 200 91 -17.0 | -10.7 -4.7 -0.2 5.2 19.3 59.5 2.1 12.8
5t08 201 to 400 53 -14.8 | -12.0 -8.3 -5.4 0.2 6.3 54.5 -2.2 11.6
5t0 8 401 to 600 16 -15.9 | -12.9 | -121 -6.3 -3.6 -0.7 0.8 -7.3 5.3
5t08 601 to 800 14 -156 | -12.2 | -10.6 -8.1 -5.9 -4.3 -3.3 -85 -3.5
5to 8 801 to 1,000 3

5t08 More than 1,000 4

9 or more 3 to 200 44 -5.0 -1.0 2.0 11.0 22.2 44 .4 59.7 15.5 17.3
9 or more 201 to 400 67 -16.9 -9.8 -2.9 1.9 14.4 27.3 36.9 5.3 13.5
9 ormore | 401 to 600 23 -17.5 | -12.9 -8.6 0.5 5.8 20.0 | 224.0 0.5 11.6
9 or more 601 to 800 22 -20.0 -13.2 -6.4 -0.5 0.7 5.2 17.7 -2.1 8.4
9 ormore | 801 to 1,000 9 -14.0 — -6.1 -3.6 -3.2 — 9.8 -3.9 6.4
9 or more More than 1,000 31 -17.9 -14.4 -7.9 -4.8 -0.9 1.6 13.6 -4.9 6.5

0t

uorjewi}sy }9afoad a1em}jog [eII}IRIg

Appendix B: Project Delivery Rates by Category

The variation increases as team size and project size increase. For
example, for 80 percent of the projects with a functional size up to
200 UFP and a team size of 1 to 4, the residual PDR ranges from —14.1
to +7.6 hours per UFP (these are the P10 and P90 values). This is a
spread of 21.7 hours per UFP. For teams of 5 to 8 the corresponding
spread is 30.0 hours per UFP, and for teams of 9 or more the spread
increases to 45.4 hours per UFP. Similar trends can be seen for other
variations in team size and project size. The low end (the minimum
and P10 values) changes less than the high end (P75 and P90) as team
size increases, and the high end gets progressively worse as team size
increases.

Broadly, as team size increases PDR deteriorates. As functional
size increases PDR tends to improve. As both increase, individually
and together, PDR becomes more variable.

241

This page intentionally left blank

APPENDIX c

Estimation
Equations

n this appendix we provide equations that you can use to obtain
indicative or ballpark estimates for:

* Project Delivery Rates Productivity expressed as hours per
function point

e Effort Person hours for the development team only
¢ Duration Elapsed months

* Speed of Delivery Function points delivered per elapsed
month for the project as a whole

* Speed of Delivery per Person Function points delivered
per elapsed month per development team member

What Are These Estimates Based On?

Studies of the projects in the ISBSG Repository have shown that Size
and Maximum Team Size are the most important drivers of effort and
duration. Size is the most important. For this reason, two groups of
equations are provided with the following independent variables:

e Equations that utilize Size (in function points) and Maximum
Team Size

¢ Equations that utilize Size only
Within these two groups, equations are provided by:

e Platform (mainframe, midrange, PC, and multiplatform)
e Language type (3GL, 4GL)
¢ Development type (enhancement, new development)

¢ Combinations of platforms, language types, and development
types

243

M4 Practical Software Project Estimation

These are the main project characteristics that you are likely to
know at the beginning of a project that are also most useful for
ballpark estimates.

Which Equation(s) Should You Use?

You should choose the equation(s) that best suit your needs:

e If your specific combination of platform, language type, and
development type is present in the tables at the end of this
appendix, use the equation provided for that combination.
You can be assured that the equation, and all its components,
play a useful role for estimation (but pay attention to N,
R2adj, and Median MRE—explained shortly—to understand
how useful the equation is).

e If your exact combination of platform, language type, and
development type is not given in the tables at the end of this
appendix, you will have to step back to a more general
equation that matches some of your platform/language
type/development type, but not all of them.

e A particular combination might be missing because the
ISBSG does not have enough projects for a particular
combination of platform, language type, and development
type to derive a legitimate estimation equation.

* Another possibility is that sometimes the analysis shows
that a particular equation has no better than random
chance in generating an estimate, or that one or more of
theindependent variables makenosignificant contribution
to the estimate, or the equation has very little explanatory
value. In such cases the equation is simply not presented
in the table, since it has no value for you.

e Treat “re-development” as “new development” projects.

¢ Treat “Application generator” as 4GL projects.

Do These Equations Apply to My Project?

These equations have been produced from an analysis of 1,681
projects in the ISBSG Repository (Release 11).

¢ All of these projects provide data regarding Size (unadjusted
function points) and Effort (person-hours for the development
team).

e 584 provide data for Maximum Team Size, 1,311 provide
Duration, and 561 provide both.

Appendix C: Estimation Equations

The ranges of project characteristics are as follows:

All are sized with IFPUG function points, version 4 or later,
or are new developments sized using the NESMA approach.

All have high data quality rating (A or B).
25 <= Size (UFP) <= 4,200 FP.

80 <= Effort <= 61,500 hours.

Maximum team size <= 52.

0.5 <= Duration < 34 months.

0.65 <= PDR <= 80 Hrs/FP.

45 <= Speed of delivery (for the entire project team)
<520 FP/month.

0.7 <= Speed of delivery (per project team member) < 45 FP/
month/person.

Project completion date is 1999 or later.

(Normalized effort for development team / reported effort
for development team) < 1.25.

It is reasonable to apply the equations tabulated later in this
appendix if your project falls within these ranges. These equations
cannot be relied upon for projects that fall outside these ranges.

What Do the Statistics Mean?

Be aware of the N, R2(Adj), and Median MRE columns. N is the
number of projects. R2(Adj) and Median MRE have been provided to
give some indication of reliability.

N is important, because care must be taken not to draw
unwarranted conclusions from small samples of projects.

R2(Adj), or Adjusted Squared Multiple R, is a measure of how
much of the variability between different projects is actually
explained by the equation. The maximum value is 1.00, which
would occur when every project agreed exactly with the
equation. The closer the value is to 1, the better. Even low
values here can be meaningful; something is being explained,
but randomness or variation in other predictive factors may
have diluted the predictive effect. Low values do not tell you
much (equations with an R2(Adj) less than 0.25 are not even
reported in these tables). High values, such as 0.80, are
extremely encouraging (but are not necessarily conclusive).

Median MRE is an indication of how accurate the regression
equation is on average. The minimum value is 0.00, which
would occur when every project agreed exactly with the

205

M6 Practical Software Project Estimation

equation. The closer the value is to 0, the better. It shows the
halfway point for accuracy of the estimates. For example, if
Median MRE is 0.35, it means that the estimate from the
regression equation is within 35 percent of the true value for
half of the projects; for the other half the error is more than
35 percent. If Median MRE is 0.20, the estimate is within
20 percent of the true value for half of the projects.

Table C-1.0: Project Delivery Rate, estimated
from software size and maximum team size

® Dependent (Y) = PDR (Project Delivery Rate, Hours per
Function Point)

¢ Independent (X)) = Size (Software Size in Function Points)
¢ Independent (X,) = MaxTeam (Maximum Team Size)
¢ Equation: PDR = C x Size® x MaxTeam®

Class C E, E; N R2(Adj) | Median MRE
All 57.39 | -0.558 | 0.710 | 584 0.33 0.37
Enhancement 79.12 | -0.616 0.692 381 0.33 0.37
New development 37.48 | -0.496 0.759 | 203 0.32 0.37
MR 60.76 | -0.664 | 0.960 61 0.65 0.23
Multi 34.49 | -0.510 0.875 | 125 0.46 0.30
3GL 51.74 | -0.526 | 0.693 367 0.27 0.38
4GL 32.90 | -0.468 | 0.692 | 141 0.42 0.30
New & MR 35.09 | -0.597 1.080 16 0.57 0.24
New & Multi 37.41 | -0.463 | 0.736 47 0.36 0.30
Enh & MR 115.90 | -0.759 0.872 45 0.73 0.19
Enh & Multi 38.97 | -0.566 0.951 78 0.50 0.31
New & 3GL 39.40 | -0.489 | 0.762 | 127 0.33 0.38
Enh & 4GL 64.10 | -0.605 | 0.728 98 0.60 0.27
MR & 3GL 42.94 | -0.605 0.994 27 0.61 0.28
MR & 4GL 56.86 | -0.664 | 0.967 30 0.66 0.18
Multi & 3GL 36.44 | -0.491 | 0.832 91 0.43 0.30
Multi & 4GL 9.35 | -0.282 0.801 32 0.39 0.23
Enh & MR & 3GL 81.76 | -0.647 0.785 19 0.68 0.24
Enh & MR & 4GL 162.70 | -0.865 | 0.963 25 0.76 0.19
New & Multi & 3GL 72.34 | -0.530 0.666 30 0.38 0.43
New & Multi & 4GL 6.72 | -0.228 | 0.839 16 0.33 0.16
Enh & Multi & 3GL 25.63 | -0.462 | 0.909 61 0.46 0.30
Enh & Multi & 4GL 13.98 | -0.372 0.829 16 0.42 0.21

Appendix C: Estimation Equations ylivi

Table C-1.1: Project Work Effort, estimated
from software size and maximum team size

e Dependent (Y) = PWE (Normalized Project Work Effort for
development team, Hours)

* Independent (X)) = Size (Software Size in Function Points)
¢ Independent (X)) = MaxTeam (Maximum Team Size)
e Equation: PWE = C x Size®™ x MaxTeam*

Class (o E, E, N R2(Adj) | Median MRE
All 57.39 0.442 0.710 584 0.57 0.37
Enhancement 79.12 0.384 | 0.692 | 381 0.53 0.37
New development 37.48 0.504 0.759 203 0.61 0.37
MR 60.76 0.336 0.960 61 0.81 0.23
PC 23.67 0.570 | 0.678 83 0.53 0.42
Multi 34.49 0.490 0.876 125 0.67 0.30
3GL 51.74 0.474 0.693 367 0.55 0.38
4GL 32.90 0.532 | 0.692 | 141 0.73 0.30
New & MR 35.09 0.403 1.080 16 0.86 0.24
New & PC 11.06 0.723 0.634 50 0.54 0.42
New & Multi 37.41 | 0.537 | 0.736 a7 0.68 0.30
Enh & MR 115.90 0.241 0.872 45 0.76 0.19
Enh & Multi 38.97 0.434 0.951 78 0.64 0.31
New & 3GL 39.40 0.511 | 0.762 | 127 0.63 0.38
New & 4GL 6.53 0.833 0.585 43 0.70 0.37
Enh & 3GL 70.85 0.413 0.673 240 0.48 0.39
Enh & 4GL 64.10 0.395 | 0.728 98 0.78 0.27
MR & 3GL 42.94 0.395 0.994 27 0.67 0.28
MR & 4GL 56.86 0.336 0.967 30 0.87 0.18
PC & 3GL 28.66 0.501 | 0.780 65 0.56 0.42
Multi & 3GL 36.44 0.509 0.833 91 0.68 0.30
Multi & 4GL 9.35 0.718 0.801 32 0.82 0.23
Enh & MR & 3GL 81.76 0.353 | 0.786 19 0.63 0.24
New & PC & 3GL 14.24 0.656 0.724 37 0.57 0.42
New & Multi & 3GL 72.34 0.470 0.666 30 0.65 0.43
New & Multi & 4GL 6.72 0.772 | 0.839 16 0.82 0.16
Enh & Multi & 3GL 25.63 0.538 0.909 61 0.66 0.30
Enh & Multi & 4GL 13.98 0.628 0.829 16 0.81 0.21

248

Practical Software Project Estimation

Table C-1.2: Project Duration, estimated
from software size and maximum team size

Dependent (Y) = Duration (Elapsed Time — Inactive Time,
Months)

Independent (X,) = Size (Software Size in Function Points)
Independent (X,) = MaxTeam (Maximum Team Size)

Equation: Duration = C x Size® x MaxTeam®

Not one suitable equation can be used. In most cases, the reason is
that the maximum team size does not make a significant contribution
to the equation. There is only one equation in which C, E1, and E2 all
contribute significantly, and the R2(Adj) value for that equation is so
low (0.18) that the equation is not useful.

Table C-1.3: Speed of Delivery for Whole Project, estimated
from software size and maximum team size

Dependent (Y) = Speed of Delivery (Function Points per
Elapsed Month)

Independent (X,) = Size (Software Size in Function Points)
Independent (X,) = MaxTeam (Maximum Team Size)

Equation: Speed for project = C x Size™ x MaxTeam*

Class

Cc E, E, N R2(Adj) | Median MRE

Enh & Multi

0.44 | 0.852 @ -0.228 | 78 | 0.59 0.28

Table C-1.4: Speed of Delivery per Person, estimated
from software size and maximum team size

Dependent (Y) = Speed of Delivery per Person (Function
Points per Elapsed Month per Person)

Independent (X)) = Size (Software Size in Function Points)
Independent (X,) = MaxTeam (Maximum Team Size)

Equation: Speed per person = C x Size® x MaxTeam™

Class C E, E, N R2(Adj) | Median MRE
All 0.778 0.696 | -1.011 | 561 0.61 0.36
Enhancement 0.643 0.729 -1.005 | 369 0.62 0.36
New & PC 3.373 0.465 -1.007 46 0.58 0.43
Enh & Multi 0.436 0.851 -1.228 78 0.70 0.28
New & 4GL 3.677 0.393 | -0.872 42 0.44 0.39
Enh & 3GL 0.667 0.724 -1.022 | 231 0.59 0.37
Multi & 3GL 0.479 0.793 | -1.116 89 0.64 0.29
New & PC & 3GL 4.464 0.431 | -1.059 34 0.49 0.43

Appendix C: Estimation Equations

Table C-2.0: Project Delivery Rate,
estimated from software size only

* Dependent (Y) = PDR (Project Delivery Rate, Hours per
Function Point)

* Independent (X)) = Size (Software Size in Function Points)

¢ Equation: PDR = C x Size™
No equation is useful. Several are “statistically significant”—they
pick up a genuine relationship between size and PDR—but the

relationship is so weak that it never explains more than 15 percent of
the variation in PDR.

Table C-2.1: Project Work Effort,
estimated from software size only

* Dependent (Y) = PWE (Normalized Project Work Effort for
development team, Hours)

* Independent (X)) = Size (Software Size in Function Points)
e Equation: PWE = C x Size™

Class c E, N R2(Adj) | Median MRE
All 33.37 | 0.770 | 1681 0.46 0.55
Enhancement 31.16 0.793 | 1147 0.43 0.55
New development 23.25 0.814 534 0.45 0.55
MF 44.03 | 0.749 452 0.38 0.56
MR 35.43 | 0.783 128 0.60 0.43
PC 17.35 | 0.844 204 0.50 0.51
Multi 2.86 | 0.830 480 0.54 0.52
3GL 39.56 | 0.754 | 1105 0.42 0.57
4GL 20.06 | 0.832 359 0.58 0.46
New & MF 34.49 | 0.809 86 0.33 0.58
New & MR 19.08 | 0.883 49 0.59 0.42
New & PC 13.83 | 0.884 126 0.50 0.53
New & Multi 22.48 @ 0.809 184 0.50 0.45
Enh & MF 50.10 | 0.718 366 0.35 0.55
Enh & MR 45.90 0.734 79 0.52 0.44
Enh & PC 23.10 | 0.789 78 0.47 0.54
Enh & Multi 16.35 | 0.912 296 0.56 0.52
New & 3GL 29.16 | 0.790 351 0.44 0.55
New & 4GL 5.28 | 1.032 112 0.60 0.49

219

250 Practical Software Project Estimation

Class c E, N | R2(Adj) Median MRE
Enh & 3GL 37.64 | 0.774 754 | 0.39 0.57
Enh & 4GL 22.83 | 0.819 247 | 0.55 0.43
MF & 3GL 51.34 | 0.730 | 365 | 0.37 0.56
MF & 4GL 18.39 | 0.838 41 | 0.44 0.51
MR & 3GL 43.17 | 0.742 71 | 0.53 0.45
MR & 4GL 29.07 0.830 47 | 0.65 0.40
PC & 3GL 13.83 | 0.889 @ 140 @ 0.56 0.51
PC & 4GL 31.05 | 0.710 50 | 0.36 0.57
Multi & 3GL 23.96 | 0.831 335 | 0.52 0.58
Multi & 4GL 15.86 | 0.867 | 124 @ 0.63 0.34
New & MF & 3GL 34.38 | 0.823 64 | 0.33 0.58
New & MF & 4GL 18.14 | 0.846 15 | 0.37 0.50
Enh & MF & 3GL 60.52 | 0.692 @ 301 @ 0.34 0.56
Enh & MF & 4GL 22.66 | 0.787 26 | 0.27 0.51
New & MR & 3GL 42.48 | 0.744 31 | 035 0.45
Enh & MR & 3GL 42.47 | 0.747 40 | 054 0.45
Enh & MR & 4GL 62.27 | 0.685 37 | 045 0.39
New & PC & 3GL 13.57 @ 0.898 85 | 0.55 0.49
New & PC & 4GL 13.21 | 0.844 30 | 0.46 0.53
Enh & PC & 3GL 14.83 | 0.868 55 | 0.55 0.51
New & Multi & 3GL | 33.67 | 0.754 | 132 | 0.49 0.46
New & Multi & 4GL 4.06 @ 1.071 49 | 0.58 0.46
Enh & Multi & 3GL | 13.49 | 0.957 | 203 | 0.54 0.57
Enh & Multi & 4GL | 17.59 | 0.869 75 | 0.70 0.33

Note that R2(Adj) values tend to be quite a lot lower here than in
Table C-1.1, where the estimate was based on size and team size, not
just size alone; and Median MRE tends to be quite a lot higher. This
means that estimates based on both size and team size are probably
more accurate than estimates based on size alone. This is no surprise—
you would expect to get better estimates when more information is

available.

If a size estimate and the team size are both available to you, and
your particular combination of platform, language, and development
type is present in Table C-1.1, you should use Table C-1.1 instead of

Table C-2.1.

Appendix C: Estimation Equations

Table C-2.2: Project Duration, estimated from software size only

e Dependent (Y) = Duration (Elapsed Time — Inactive Time,
Months)

* Independent (X)) = Size (Software Size in Function Points)

¢ Equation: Duration = C x Size®

Class C E, N R2(Adj) Median MRE
New development 0.543 0.408 494 0.30 0.41
PC 0.507 | 0.418 191 0.33 0.39
Multi 0.589 | 0.394 394 0.28 0.44
4GL 0.507 | 0.429 304 0.36 0.37
New & PC 0.297 | 0.505 115 0.42 0.42
New & Multi 0.423 | 0.440 179 0.33 0.41
New & 3GL 0.645 | 0.378 327 0.27 0.42
New & 4GL 0.239 | 0.538 108 0.40 0.43
Enh & 4GL 0.540 | 0.428 196 0.34 0.36
PC & 3GL 0.468 | 0.436 132 0.36 0.40
Multi & 4GL 0.201 | 0.599 98 0.46 0.40
New & PC & 3GL 0.284 | 0.523 78 0.43 0.42
New & PC & 4GL 0.324 | 0.459 29 0.41 0.32
New & Multi & 3GL 0.558 | 0.392 128 0.33 0.37
New & Multi & 4GL 0.107 | 0.679 48 0.38 0.52
Enh & Multi & 4GL 0.174 | 0.656 50 0.63 0.22

These results show that it is rarely possible to estimate duration
with any confidence using a regression equation. So what can you do
if your project does not fit into any class in Table C-2.2?

1. Estimate effort, using Tables C-1.1 and C-2.1.
2. Use the effort estimate as the base for estimating duration:

a. If you know your planned team size, effort divided by
that team size gives an estimate of the number of hours
per staff member for the project. Dividing that number by
the number of hours worked by a staff member per month
gives an estimate of duration in months.

b. If you do not know your planned team size, you can use
the estimation equation (derived from the entire data set)
Months = 0.370 x Effort®*?. R2(Adj) for this equation is
0.35, and Median MRE is 0.36.

251

252 Practical Software Project Estimation

Table C-2.3: Speed of Delivery for Whole Project Team,
estimated from software size only

* Dependent (Y) = Speed of Delivery (Function Points per
Elapsed Month)

* Independent (X)) = Size (Software Size in Function Points)

e Equation: Speed for project = C x Size™

Class Cc E, N R2(Adj) Median MRE
All 1.183 0.661 1311 0.55 0.42
New development 1.842 0.592 494 0.48 0.40
PC 1.972 0.582 191 0.49 0.42
Multi 1.698 0.606 394 0.48 0.42
4GL 1.974 0.571 304 0.50 0.40
New & PC 3.370 0.495 115 0.41 0.39
New & Multi 2.367 0.560 179 0.44 0.40
Enh & Multi 1.536 0.615 215 0.46 0.44
New & 3GL 1.550 0.622 327 0.50 0.42
New & 4GL 4.181 0.462 108 0.33 0.43
Enh & 4GL 1.853 0.572 196 0.48 0.36
MR & 3GL 0.464 0.846 70 0.74 0.34
PC & 3GL 2.138 0.564 132 0.49 0.43
Multi & 4GL 4.982 0.401 98 0.27 0.42
New & PC & 3GL 3.520 0.477 78 0.39 0.42
New & PC & 4GL 3.082 0.541 29 0.49 0.32
New & Multi & 3GL | 1.792 0.608 128 0.55 0.34
Enh & Multi & 4GL | 5.744 0.343 50 0.31 0.28

Table C-2.4: Speed of Delivery per Person,
estimated from software size only

* Dependent (Y) = Speed of Delivery per Person (Function
Points per Elapsed Month per Person)

* Independent (X,) = Size (Software Size in Function Points)
e Equation: Speed per person = C x Size®

There is no useful equation. There is no evidence here that speed of
delivery per person can be estimated directly from project size.

APPENDIX D

Project Sample
Demographics Used
in Chapter 3

in Chapter 3 are as follows. In each case, percentages are

Details of the group of projects used for the analysis contained

related to the number of projects for which data was provided

for that attribute. For example, the percentages for architecture are
based on the 651 projects for which this is known (not on the
861 projects that form the entire data set).

The projects come from 24 different countries, with the
greatest representation from Australia, Brazil, Canada, China,
Denmark, India, Italy, Japan, the Netherlands, the United
Kingdom, and the United States.

Over 83 percent of the projects were completed in 2000 or
later, and 50 percent in 2004 or later.

Organization type The main types of organization
represented are banking, communications, computers/
software/IT, insurance, government/public administration,
insurance, and manufacturing. Each has at least 45 projects,
and together these provide 76 percent of the projects.

Applicationtype Theprojectsaredominated by transaction/
production systems (41 percent), management information
systems (16 percent), e-business/EDI (15 percent), document
management (9 percent), real time (8 percent), and
communications (7 percent).

User base 61 percent of projects are for use by a single
business group and/or single location; 25 percent are for six
or more business groups and six or more locations.

253

254

Practical Software Project Estimation

Development type 46 percent are new developments,
49 percent are enhancements, and 5 percent are
redevelopments.

Architecture 53 percent of projects use a client/server
architecture, 7 percent use a multitier architecture, 40 percent
are stand-alone systems.

Platform 30 percent run on mainframes, 7 percent on
midrange computers, 41 percent on PCs, and 22 percent on
multiple platforms.

Language 74 percent use 3GLs, 21 percent use 4GLs,
5 percent use application generators, 1 percent use 2GLs.
ABAP, ASP, Access, C, C++, C#, COBOL, Cool:Gen, Java,
Oracle, PL/I, SQL, and Visual Basic each have at least 18
projects, and together they account for 85 percent of projects.

CASE tools These are used in 32 percent of projects.

Software development methodologies A methodology is
used in 85 percent of projects. In-house methodologies
dominate (48 percent in-house, 38 percent purchased and/or
adapted, 15 percent no methodology).

Relationship to market 47 percent of projects are developed
internally, 53 percent are outsourced. 46 percent are developed
for internal users, 54 percent for external users.

Team size Small teams (1 to 4 developers) account for
19 percent of projects, 38 percent have teams of 5 to 8, and
43 percent have teams of 9 or more developers.

Size and other key project indicators:

* Software size Size ranges from 14 to 10,000 unadjusted

function points. The median is 280 FP. If adjusted function
points are used as the size measure, the range is from 14 to
20,000 AFP, and the median is 335 AFP. (Note: The UFP and
AFP maximums are for different project sets.)

Effort For just the development team, the effort ranges from
17 to 134,000 hours; the median is about 2,640 hours. For the
entire project effort (including support staff and user effort),
the range is from 17 to 267,000 hours; the median is about
3,000 hours. These numbers refer to actual reported effort.
Normalized effort for the entire project team ranges from 26
to 267,000 hours, with a median of 3,430 hours.

Duration Projects range from 1 to 84 months. The median is
7 months.

Appendix D: Project Sample Demographics Used in Chapter 3 255

* Projectdelivery rate (normalized effort for the development
team only, per unadjusted function point) PDR varies
from less than 1 to over 300 hours per function point. The
median is about 10 hours per function point.

¢ Function points per elapsed month per team member This
ranges from 1 to 250; the median is 4.4 function points per
month per team member.

This page intentionally left blank

APPENDIX E

The Benefits of
Submitting Projects
to the ISBSG
Repository

hen you submit a project or projects for inclusion in the
ISBSG Repository, you will receive a free Project Benchmark
Report that will provide you with a comparison of the

project submitted to a group of similar projects already in the
repository.

How to Submit a Project

The ISBSG will accept data submissions a number of ways:
¢ On the Word form that can be downloaded from the ISBSG
web site (see following)

* On an Excel spreadsheet (use the Word form for guidance on
data requirements and data descriptions)

* Via the ISBSG XML facility

To submit a project for inclusion in the ISBSG Repository using
the Word form:

1. Download the appropriate submission forms from the web
site.

2. Enter all the information that you have about your project
onto the form.

251

258

Practical Software Project Estimation

3. E-mail your submission to the ISBSG Administrator (contact
details can be found at www.isbsg.org/isbsgnew.nsf/
webpages/~GBL~Contact).

All submissions are kept strictly confidential and will remain
anonymous. On receipt of a submission, the ISBSG administrator
removes the identification information from the submission, replacing
this with a unique identification code. The submission is then sent to
the repository manager who rates it, adds it to the repository, and
produces a benchmark report, which is returned to the administrator
to be forwarded to you. You can use the code(s) that you have been
issued with to identify your projects on the ISBSG Data Suite. No one
else can identify your projects.

A Description of the Project Benchmark Report
When you submit a project to be included in the repository, a Project
Benchmark Report will be returned by e-mail. This report can be used
to assist in effort and cost estimation in the future. The report also
provides valuable benchmarking of your organization’s productivity.
It provides a graphic comparison of the submitted project against
similar projects in the repository. You can use it as the base from
which to launch process improvement.
For example, assuming your project has the following character-

istics:

¢ Development Platform = Midrange

e Methodology = Developed in-house

e Language Type = 4GL

¢ Maximum Team Size > 8
Your project delivery rate (PDR) was 10.0 hours per function point.

The following is a sample extract from the report you will receive
when you submit a project. Your PDR is shown in bold type:

Influencing

Factor N | P10 % P25 % Median P75 % P90 %
Development 152 2.4 6.7 8.9 10 11.8 12.4
Platform:

Midrange

Language Type: | 201 2.7 5.3 7.2 99 10 14.3
4GL

Team Size: >8 112 4.5 7.6 9.1 10 19.3 23.4

www.isbsg.org/isbsgnew.nsf/webpages/~GBL~Contact
www.isbsg.org/isbsgnew.nsf/webpages/~GBL~Contact

Appendix E: Submitting Projects to the ISBSG Repository 259

For the two factors with the most significant impact on produc-
tivity, Development Platform and Language Type, the following sam-
ple chart shows how your project delivery rate compares to projects
with the same Development Platform and Language Type:

PDR (hr/fp) Benchmark Report

Your Project 10
ISBSG Min
ISBSG 25%
Median 4.6
ISBSG 75% 8.1

ISBSG Max 23
T T T

10 15 20 25
Hours Per Function Point

o 4
[=

This page intentionally left blank

APPENDIX F

ISBSG Member
Organizations

Australia

QESP (Quantitative Enterprise Software Performance)
Julian Day or Pam Morris

E: info@qesp.org.au or pam.morris@totalmetrics.com
W: www.qgesp.org.au

China

CESI (China Electronic Standardization Institute)
Ms. Li Yungin

P: +86 10 82825888

F: +86 10 82825777

E: rhymelee@126.com or liyq@cesi.ac.cn

W: www.en.cesi.cn

Finland

FiSMA (Finnish Software Measurement Association)
Mr. Pekka Forselius

P: +35 8505 160416

F: +35 8934 42771

E: pekka.forselius@4sumpartners.com

W: www.fisma.fi

Germany

DASMA (Deutschsprachige Anwendergruppe fur Software
Metrik and Aufwandschatzung)

Mr. Stavros Pechlivanidis

P: +49 172 715 4326

F: +49 211 5426 9771

E: isbsg@dasma.org

W: www.dasma.de

261

www.qesp.org.au
www.en.cesi.cn
www.fisma.fi
www.dasma.de

262 Practical Software Project Estimation

India

NASSCOM (National Association of Software & Service
Companies)

Bidhan Kankate

P: +91 40 5536 6111, 6222

M: +98 493 37650

F: +91 40 5536 6333

E: bidhan@nasscom.in

W: www.nasscom.in

Italy

GUFPI-ISMA (Gruppo Utenti Function Point Italia—Italian
Software Metrics Association)

Luca Santillo

P: +39 339 7933980

E: luca.santillo@gmail.com

W: www.gufpi-isma.org

Japan

JFPUG (Japan Function Point User Group)

Shigeru Nishiyama (Adviser and technical officer for
internationalization)

P: +81 25 2262401

F: +81 252271021

E: s02.nishiyama@city.niigata.lg.jp

W: www jfpug.grjp

Netherlands

NESMA (Nederlandse Software Metrieken Gebruikers Associatie)
Ton Dekkers (Vice President)

P: +31 30 6961464

E: office@nesma.nl or tdekkers@galorath.com

W: www.nesma.nl

Spain

AEMES (Asociacion Espanola de Metricas de Software)
Jose Carrillo Verdun

P: +34 91 3366921

F: +34 91 3367412

E: jcarrillo@fi.upm.es or admon@aemes.org

W: www.aemes.org

www.nasscom.in
www.gufpi-isma.org
www.jfpug.gr.jp
www.nesma.nl
www.aemes.org

Appendix F: ISBSG Member Organizations

Switzerland

SwissICT

Thomas Fehlmann

P: +41 44 253 1306

F: +41 86079 332 7056

E: thomas.fehlmann@e-p-o.com

W: www.swisma.ch, www.swissICT.ch

USA

SSCI (Systems and Software Consortium, Inc.)
Cheryl Parker

P: +1703 742 7310

F: +1 703 742 7350

E: parker@systemsandsoftware.org

W: www.systemsandsoftware.org

USA (International)

IFPUG (International Function Point Users Group)
Dan Bradley

IFPUG Office

P: +1 609 799 4900

F: +1 609 799 7032

E: ifpug@ifpug.org

W: www.ifpug.org

263

www.swisma.ch
www.swissICT.ch
www.systemsandsoftware.org
www.ifpug.org

This page intentionally left blank

Glossary

hen the International Software Benchmarking Standards
Group (ISBSG) was formed in 1994, one of the objectives
written into the original charter was:

“To develop the profession of software measurement by
establishing a common vocabulary and understanding of
terms.”

Consistent with this objective, the ISBSG has defined terms and
metrics for the purposes of:

e Assisting in the collection of project data into the repository

¢ Standardizing the way the collected data is analyzed and
reported

What follows is a consolidated list of ISBSG definitions and terms
used. We hope this will help us to meet our charter. We would
appreciate any comments you may have to assist us in meeting this
objective.

This glossary is divided into two parts—Terms and Metrics—and
provides definitions of terms used in ISBSG documents. This includes
project data collection forms, publications, and data releases. Some of
these terms refer to items no longer collected by the ISBSG but which
may be found in documents or analysis of earlier data.

Where appropriate, these definitions have been adjusted to align
with international standards.

Terms

Adjusted function points (AFPs) A software size based on the functional
size multiplied by the technical complexity adjustment. The resultant
adjusted size is reported in adjusted function points (AFPs) and
applies to IFPUG. Each of the following functional size measurement
methods has its own mechanisms for moving from its equivalent of
UFPs to its equivalent of AFPs, and each uses its own terminology
(FiSMA, NESMA, and MARK 1I).

265

266 Practical Software Project Estimation

Application type How the application is meeting the business area
requirements. Classification of an application as a type is according
to its primary intended use. The following is a list of common
application types:

¢ 3D modeling or automation

e Artificial intelligence

e Catalog/register of things or events

¢ Customer billing/relationship management

¢ Decision support

¢ Device or interface driver

¢ Document management

¢ Electronic data interchange

¢ Executive information system

¢ Fault tolerance

¢ Financial transaction process/accounting

* Geographic or spatial information system

¢ Graphics and publishing tools or system

¢ Image, video, or sound processing

¢ Embedded software for machine control

¢ Job, case, incident, project management

¢ Logistic or supply planning and control

¢ Management information system (MIS)

* Management or performance reporting

e Mathematical modeling (finance or engineering)

¢ Network management

¢ Office information system

¢ Online analysis and reporting

* Operating system or software utility

¢ Personal productivity (for example, spreadsheet)

* Process control

¢ Software development tool

¢ Stock control and order processing

¢ Trading

¢ Transaction/production system

¢ Workflow support and management

Glossary

Architecture The organizational structure of a system and its
implementation guidelines. This derived attribute for the project
indicates if the application is stand-alone, multitier, client-server, or
multitier with web public interface.

Business area type The business area within the organization that
the application will be supporting.

CASE (Computer Aided Software Engineering) The use of computer
software to assist in completing tasks defined within a system’s
development life cycle methodology.

CASE may be used across the entire project life cycle or used to
assist with specific parts of the cycle. The three categories are

e Upper CASE Environment independent and generally
used to perform analysis tasks, for example, logical data
modeling, process modeling, data flow diagramming, and
so on.

¢ Lower CASE Environment dependent and generally used
to assist in physical design and construction tasks, for
example, physical data base design, code generation, and
so on.

¢ Integrated CASE Fully integrating Upper and Lower
CAGSE, for example, logical models are converted to physical
models, which in turn generate database tables and code.

Client roles The roles performed by the computers that provide the
interface to the software’s external users.

Client-server Client-server computing or networking is a distributed
application architecture that partitions tasks or workloads between
service providers (servers) and service requesters, called “clients.”

Client-server description A description of the architecture of the
client/server software application or product.

Cost The price paid (either through money, time, labor, and so on)
to acquire, produce, accomplish, or maintain the product. The
following methods of collecting COST are believed to be the most
common:

* Cost recorded The daily recording of all cost incurred by
each person on project-related tasks.

* Costderived Itis possible to derive the cost where it has not
been collected on a daily basis as in cost recorded.

267

268

Practical Software Project Estimation

Count approach A description of the method used to size the project
software. For most projects in the ISBSG Repository, this is the
functional size measurement method (FSM method) used to measure
the functional size (for example, IFPUG, MARK II, NESMA, COSMIC,
and so on). For projects using other size measures (for example, LOC,
and so on) this is a short name for that method, and in data releases
the size data is not included with sizes measured by an FSM method
but rather is in a section “Size Other than FSM.”

Data quality rating This field contains an ISBSG rating code of A, B,
C, or D applied to the project data by the ISBSG quality reviewers to
denote the following:

A = The data submitted was assessed as being sound with nothing
being identified that might affect its integrity.

B = The submission appears fundamentally sound, but there are
some factors that could affect the integrity of the submitted
data.

C = Due to significant data not being provided, it was not possible
to assess the integrity of the submitted data.

D = Due to one factor or a combination of factors, little credibility
should be given to the submitted data.

Defect A problem, which if not corrected, could cause an application
to either fail or to produce incorrect results. There can be three
categories:

® Minor defect A minor defect does not make the application
unusable in any way (for example, a modification is required
to a screen field or report).

* Major defect A major defect causes part of the application
to become unusable.

¢ Extreme defect A failure of some part of an application that
causes the application to become totally unusable.

The following information has been collected in relation to
application defects both within the project duration (defects and
hours per project phase) and after implementation (defects found
within the first month of use of the software). Of the following, only
defect found, repair hours, and rework hours per project phase are
currently collected:

e Defect found The number of defects detected in the process
in that particular effort breakdown or found within the first
month of use of the software after implementation.

Glossary

* Defect originating The number of defects put into the
process in that particular effort breakdown only.

e Defect removed The number of defects removed from the
process in that particular effort breakdown.

e Repair hours The effort in hours taken to correct defects
detected in that particular effort breakdown.

¢ Rework hours The effort in hours taken in that particular
effort breakdown after correction of defects, to return the
project to the point reached before defect detection.

Degree of confidence An expression of the confidence the organization
has in the data provided, expressed in a range 1-4:

1 = Not confident

2 = Slightly confident
3 = Confident

4 = Very confident

Degree of customization How much customization was involved if
the project was based on a packaged software customization.

Development platform Defines the primary software development
platform (as determined by the operating system used). Each project
is classified as PC, midrange, mainframe, or multiplatform.

Development type

¢ New development Full analysis of the application area is
performed, followed by the complete development life cycle
planning/feasibility, analysis, design, construction, testing
and implementation). Examples are

¢ Aproject that delivers new function to the business or client.
The project addresses an area of business (or provides a
new utility) that has not been addressed before.

¢ Total replacement of an existing system with inclusion of
new functionality.

¢ Enhancement Changes made to an existing application
where new functionality has been added, or existing
functionality has been changed or deleted. This would include
adding a module to an existing application, irrespective of
whether any of the existing functionality is changed or
deleted.

* Redevelopment The redevelopment of an existing
application. The functional requirements of the application
are known and will require minimum or no change.

269

210

Practical Software Project Estimation

Redevelopment may involve a change to either the hardware
or software platform. Automated tools may be used to
generate the application.

e This includes a project to restructure or reengineer an
application to improve efficiency on the same hardware
or software platform. For redevelopment, normally only
technical analysis is required.

Functional size A size of the software derived by quantifying the
functional user requirements (that is, what functions the software
must support). This excludes quality and technical requirements.
This may be reported in different units depending on the functional
size measurement method (for example, UFP for IFPUG and NESMA,
CFP for COSMIC, and so on).

Functional size measurement (FSM) The process of measuring
functional size. Internationally recognized functional sizing methods
include IFPUG, NESMA, COSMIC, FiSMA, and MARK II.

Functional size unit (FSU) The unit of measure of size used by a
functional size measurement method (for example, function points).

Functional sizing technique The technology used to support the
functional sizing process. Certain technologies used in function point
counting can affect the count’s potential accuracy.

Implementation date The actual date of implementation of the project
outcome.

Intended market Describes the relationship between the project’s
customer, end users, and development team.

Language type Defines the language type used for the project: for
example, 3GL, 4GL, application generator, and so on.

Life cycle phases Used in the context of the time at which functional
sizing is carried out (see also “project effort breakdown”).

e Early life cycle Up to the completion of the system
requirements definition.

e Mid life cycle From requirements definition to completion
of the technical design.

e Late life cycle From technical design specification until
after implementation.

Maximum team size The maximum number of people during each
component of the work breakdown who are simultaneously assigned
to work full-time on the project for at least 1 elapsed month.

Glossary

Methodology acquisition Describes whether the development
methodology (if used) was purchased or developed in-house, or a
combination of these.

Methodology used Whether a development methodology was used
by the development team to build the software.

Normalized work effort For projects covering less than a full software
developmentlife cycle, this valueis an estimate of the full development
life cycle effort. For projects covering the full development life cycle,
and projects where development life cycle coverage is not known,
this value is the same as summary work effort.

Organization type A standard classification for the business within
which the organization as a whole operates. The organization is that for
which the project has been developed.

Packaged software customization Where a decision is made to acquire
an existing product to provide the major component of the required
functionality. Count only the functionality required by the client.

Primary programming language The primary language used for the
software development: Java, C++, PL/1, Natural, COBOL, and
SO on.

Productivity The ratio of work product to work effort. In ISBSG
documents and products this is given by project delivery rate (see
entry in “Metrics” section).

Project A collection of work tasks with a time frame and a work
product to be delivered. In ISBSG documents and products the work
product delivered is software and its documentation.

* Project start A client/management decision is made
formally/informally to involve information technology
personnel in the development. This point is commonly known
as the commencement of the “survey,” “feasibility study,” or
“project initiation phase” of the system development life
cycle.

¢ Project end The date when the work product is delivered

(that is, the project software is placed in production, or the
project deliverable is delivered).

Project activity scope Synonymous with the project effort
breakdown.

21

212

Practical Software Project Estimation

Project effort breakdown Project effort is subdivided in two ways: by
project phase and by role of the groups of people involved. For the
breakdown by person role, see “work effort breakdown.” See also “life
cycle phases.” The following table shows the major activities making
up each phase:

Project Phase Possible Phase Components

Plan Preliminary Investigations
Overall Project Planning
Feasibility Study

Cost Benefit Study
Project Initiation Report
Terms of Reference

Specify Systems Analysis

Requirements Specification

Review & Rework Requirements Spec.
Architecture Design/Specification
Review & Rework Architecture Spec

Design Functional/External Design
Create Physical/Internal Design(s)
Review and Rework Design(s)

Build Package Selection

Construct Code & Program Software
Review or Inspect & Rework Code
Package Customization/Interfaces
Unit Test

Integrate Software

Test Plan System or Performance Testing
System Testing

Performance Testing

Create & Run Automated Tests
Acceptance Testing

Implement Prepare Releases for Delivery
Install Software Releases for Users
Prepare User Documentation
Prepare & Deliver User Training
Provide User Support

The following table is provided as a guide for those organizations
that use the ISO 12207 standard.

Glossary
ISO 12207 Project Steps
(Steps in ISO 12207 - Software
Engineering Lifecycle Processes) ISBSG Effort Phase
1 Requirements Elicitation Specify
2 System Requirements Analysis Specify
3 System Architecture Design Specify
4 Software Requirements Analysis Specify
5 Software Design Design

6 Software Construct (Code & Unit Test) | Build

7 Software Integration Build

8 Software Testing Test

9 System Integration Test
10 System Testing Test
11 Software Installation Implement
12 User Support Implement

Project elapsed time The calendar period in months between the
project start and end including any period of inactivity (that is, end
date minus start date).

Project ID A primary key for identifying projects. (These identifica-
tion numbers have been “randomized” to remove any chance of
identifying a company.)

Project inactive time Total time (rounded to whole months) during
the project elapsed time, in which no project activity took place. This
time, subtracted from project elapsed time, derives the actual time
spent working on the project.

Project life cycle A collection of generally sequential project phases
whose name and number are determined by the control needs of the
organization or organizations involved in the project. A life cycle can
be documented with a methodology. (See also “project effort
breakdown.”)

213

214

Practical Software Project Estimation

Project work effort All personnel effort that is directed toward the
completion of a particular project including out-of-hours effort,
whether paid or unpaid. It includes the effort of client representatives
in addition to that of information technology personnel.

A good test as to whether an activity constitutes project work
effort is to ask the question:

“Would the activity be undertaken if there was no project?”

It excludes nonproject activities such as:

Public holidays
Annual leave

Sick leave

Training (nonproject)

It is measured in whole hours.

Rating See entries for “data quality rating” and for “unadjusted
function point rating.”

Server roles The services provided by the host/server computer(s)
to the software application or product.

Software size In general, synonymous with functional size, but the
units of software size can be other than that derived by a functional
size measurement method, for example, lines of code.

Staged development A decision was made during project planning to
develop and implement the application as discrete functional units.
This may apply to any development type, but must be preplanned.
When an application is developed in total, but implemented over a
period of time at a number of locations, it is not a staged
development.

Note that where a stage of a staged development changes any
functionality delivered in a previous stage, the project should be
defined and treated as an enhancement.

e 1st stage The 1st stage comprises a high-level analysis of
the overall application (hence defining the scope of each of
the stages and possibly some overall design) and full software
development cycle of the 1st stage.

* Subsequent stage Subsequent stages of the software
development will concentrate on detailed analysis and
implementation of another logical part of the overall
application.

Summary work effort See “project work effort.”

Glossary

Target platform Categorizes the implementation platform, to describe
the target environment. Determined primarily by the device the
software is implemented into. A project may be classified as:

Device embedded (DE)
PC

Midrange

Mainframe

Multiplatform

Time recording methods The following methods of collecting work
effort are believed to be the most common:

Staff hours (recorded) The daily recording of all of the work
effort expended by each person on project-related tasks. As an
example, a person who works on a specific project from 8 A.m.
until 5 p.m. with a 1-hour lunch break will record 8 hours of
work effort.

Staff hours (derived) It is possible to derive the work effort
where it has not been collected on a daily basis as in Staff
hours (recorded) above. It may have only been recorded in
weeks, months, or years.

“Productive” time only (recorded) The daily recording of
only the “productive” effort (including overtime) expended
by a person on project-related tasks. Using the same example
as just used in staff hours (recorded), when the “nonproduc-
tive” tasks have been removed (coffee, liaise with other teams,
administration, read magazine, and so on), only 5.5 hours
may be recorded.

Type of server A description of the server to the software application
or product.

Unadjusted function point rating This field contains an ISBSG rating
code of A, B, C, or D applied to the functional size (unadjusted
function point count) data by the ISBSG quality reviewers to denote
the following:

A =

B =

The unadjusted function point count was assessed as being
sound with nothing being identified that might affect its
integrity.

The unadjusted function point count appears sound, but
integrity cannot be assured as a single figure was provided.

215

216

Practical Software Project Estimation

C = Due to unadjusted function point or count breakdown data not
being provided, it was not possible to provide the unadjusted
function point data.

D = Due to one factor or a combination of factors, little credibility
should be given to the unadjusted function point data.

Unphased effort Where phase breakdown of effort is provided, and
the sum of that breakdown does not equal the summary work effort,
the difference is the unphased effort. Where no phase breakdown is
provided, this is the same value as the summary work effort.

User base Data collected about the extent of usage of the system
produced by the project. The following classifications are used:

e User base—business units Number of business units (or
project business stakeholders) serviced by the software
application.

e User base—concurrent users Number of users using the
system concurrently.

¢ User base—locations Number of physical locations being
serviced /supported by the installed software application.

Value adjustment factor (VAF) The adjustment to the IFPUG functional
size, which takes into account various technical and quality
characteristics. The VAF is calculated based on an assessment of the
14 general systems characteristics (GSCs) for an application, and
when multiplied by functional size gives the adjusted size.

Web development A derived indicator of whether the project data
includes any comment that it is a web development.

Work effort breakdown Data collected about the people whose time is
included in the project work effort. See also “project effort breakdown.”
Three levels are identified in the project data collection package.' For
example, if Level 2 is specified, this means that the data submitted
includes the development team and the development team support
personnel effort. For the process of collecting and reporting project
work effort, the following classifications are used:

* Level 1—Development Team Those responsible for the
delivery of the application under development. The team or
organization, which specifies, designs, and/or builds the

"It should be noted that this Glossary reflects the data collection package introduced
in 2002. The previous data collection package had four levels of work effort.

Metrics

Glossary

software. It typically also performs testing and implementa-
tion activities. It comprises

Project Team

Project Management

Project Administration

Any member of IT Operations specifically allocated to the
project

Level2—DevelopmentTeam Support/ITOperations Those
who operate the IT systems that support the end users and
are responsible for providing specialist services to the
Development Team (but not allocated to that team). Support
comprises

Database Administration

Data Administration

Quality Assurance

Data Security

Standards Support

Audit & Control

Technical Support

Software Support

Hardware Support

Information Center Support

Level 3—Customers/End Users Those responsible for
defining the requirements of the applications and sponsoring /
championing the development of the application. Also the
software’s end users. The relationship between the project
customer and the software’s end users can vary, as can their
involvement in a software project. It comprises

Application Clients

Application Users

User Liaison

User Training

Defect density Measures the quality of software in terms of defects
delivered in unit size of software. It is defined as the number of
defects per 1,000 functional size units of delivered software, in the
first month of use of the software. It is expressed as Defects per 1,000
functional size units.

Project delivery rate (PDR) Measures the rate at which a project
delivers software functionality to the end user as a factor of the effort
required to do so. In ISBSG documents and products it is defined as
project work effort (measured in hours) over functional size of the

2n

218

Practical Software Project Estimation

delivered software (measured in functional size units). It is expressed
as hours per functional size unit.

Project delivery rate is used regardless of how the software is
produced because it may:

¢ Comprise all new software
* Be a modification of existing software

¢ Use packaged software in part or as the total solution

Speed of delivery Measures the speed achieved by the project team in
delivering a quantity of software over a period of time. It is defined
as the functional size of the delivered software (measured in functional
size units) over the project elapsed time (measured in months)
multiplied by the number of people in the project team. It is expressed
as functional size units per person per elapsed month.

References

Introduction

“CHAOS Summary 2009,” Standish Group, wwwl
.standishgroup.com/newsroom/chaos_2009.php.

Chapter 1

Dekkers, Carol. “Demystifying Function Points—Clarifying
Common Terminology” (IT Metrics Strategies, March 2001).
Cutter Consortium, www.cutter.com.

ISO/IEC 14143-1:2007 Information technology—Software
measurement—Functional size measurement—Part 1:
Definition of concepts, www.jtcl-sc7.org/.

IFPUG. IFPUG Function Point Counting Practices Manual
Release 4.3, Glossary (IFPUG, September 2009), www.ifpug
.org.

Dekkers, Carol. “Navigating the Minefield: Estimating Before
Requirements,” 2004 Proceedings of EuroSPI conference,
November 2004, Trondheim, Norway, www.EuroSPLnet.

Dekkers, Carol. “Requirements are (the Size of) the Problem”
(IT Metrics Strategies, March 1998), www.cutter.com.

Bundschuh, Manfred and Carol Dekkers. The IT Measurement
Compendium—Estimating and Benchmarking Success with
Functional Size Measurement (Springer, 2008).

Project Management Institute. Project Management Body of
Knowledge (PMBOK®) Version 4 (Project Management
Institute, 2008).

Chapter 2

Boehm, Barry et al. Software cost estimation with COCOMO II
(Prentice Hall, 2000).

ISO/IEC 20926 Information Technology—Function Point
Counting Practices Manual (ISO/IEC, 2003).

219

www1.standishgroup.com/newsroom/chaos_2009.php
www1.standishgroup.com/newsroom/chaos_2009.php
www.cutter.com
www.jtc1-sc7.org/
www.ifpug.org
www.ifpug.org
www.EuroSPI.net
www.cutter.com

280 Practical Software Project Estimation

¢ Finnish Software Measurement Association, FiSMA ry.
“FiSMA Specification for ND21,” available at: www.fisma.fi/
in-english/methods.

Chapter 3
No references

Chapter 4

e ISO/IEC 14143-1:2007 Software engineering—Software
measurement—Functional size measurement—Definition of
concepts.

e [SO14143-6 Information technology—Software measure-
ment—Functional size measurement—Part 6: Guide for use
of ISO/IEC 14143 series and related international standards.

® Morris, Pam. “Levels of Function Point Counting—Version
1.3” (Total Metrics, 2004), www.Totalmetrics.com.

Chapter 5

e “Proposals for project collection and classification from the
analysis of the ISBSG Benchmark 8,” GUFPI-ISMA SBC
(Natale, Santillo, Della Noce, Lelli, Lombardi, Moretto,
Ortona), in Procs. International Workshop on Software
Measurement, Berlin, 2004.

e Santillo, Conte, Meli. “Early & Quick Function Point: Sizing
More with Less,” Procs. METRICS 2005, 11th IEEE Interna-
tional Software Metrics Symposium, Como, Italy, 2005.

Chapter 6
No references

Chapter 7
No references

Chapter 8
No references
Chapter 9
¢ ESTOR (Mukhopadhyay et al., 1992) and ANGEL (Shepperd
et al., 1996).
Chapter 10

e PMBOK 2008, Chapter 6.3.2 (Estimate Activity Resources:
Tools & Techniques).

e Thomsett, Rob. Third Wave Project Management (Yourdon
Press, 1989).

www.fisma.fi/in-english/methods
www.fisma.fi/in-english/methods
www.Totalmetrics.com

References

e PMBOK 2008, Chapter 6.4.2 (Estimate Activity Durations:
Tools & Techniques) Three-Point Estimates.

Chapter 11
No references

Chapter 12
No references

Chapter 13
No references

Chapter 14
e Cockburn, A. Crystal Clear (Addison-Wesley, 2005).
e Cohn, M. Agile Estimation and Planning (Prentice Hall, 2004).
e Beck, K. and M. Fowler. Planning Extreme Programming
(Addison-Wesley, 2001).

¢ International Function Point Users Group (IFPUG). Function
Point Counting Practices Manual: Release 4.3 (IFPUG, 2009).

Chapter 15
No references

Chapter 16
No references

Chapter 17

e]S014143-6 Information technology—Software measure-
ment—Functional size measurement—Part 6: Guide for use
of ISO/IEC 14143 series and related international standards.

Chapter 18
Software Metrics Associations Supporting Functional Size Mea-
surement Method(s):

¢ International Function Point Users Group (IFPUG): Supports
and maintains the IFPUG method (current release 4.3): www
.ifpug.org.

¢ UK Software Metrics Association: Supports and maintains
the Mark II method: www.uksma.co.uk.

* Netherlands Software Users Metrics Association: Supports
and maintains the NESMA method: www.nesma.nl.

e COSMIC Consortium: Supports and maintains the COSMIC-
FFP method: www.cosmicon.com.

e Finnish Software Measurement Association (FiSMA):
Supports and maintains the FISMA method: www.fisma.fi.

281

www.ifpug.org
www.ifpug.org
www.uksma.co.uk
www.nesma.nl
www.cosmicon.com
www.fisma.fi

282 Practical Software Project Estimation

e ISO/IEC Standardized Functional Size Measurement
Methods (FSMM).

e ISO/IEC Functional Size Measurement Framework
Standards.

All standards are accessible at www.jtcl-sc7.org/.

Chapter 19
No references

Chapter 20
No references

Chapter 21
No references

Chapter 22
No references

www.jtc1-sc7.org/

A

absolute measure, 124
accuracy
defined, 26
functional size measurement
methods, 149
levels, 38-43
overview, 26-28
size approximation, 43-45
Agile, 113-114
benefits of using, 123-125
estimating using an Agile
project, 114-115
story points, 115-123
Albrecht, Allan, 171
algorithmic method. See derived
size approximation
analogy, 5, 6, 75
advantages of estimating by,
77-78
attributes for estimation, 10
background, 76
drawbacks of estimating by, 79
estimating by, 76-77
SSRM case study, 107-112
application architecture, 20
application boundary, 159-160
application type, 19
project delivery rates by, 222-223

Index

approximation, 38
See also size approximation
architecture type, project delivery
rates by, 230231
Assessment Practices Manual
(APM), 161

B

Base Functional Component
(BFC), 39

benchmark estimates,
141-144

benchmarking your projects” PDR,
139-140

BFC. See Base Functional
Component (BFC)

Boehm, Barry, 4

boundary, 159-160

build requirements. See technical
requirements

business area, project delivery
rates by, 222

C
case study: enhancement
COSMIC function point
method, 179-180
FiSMA FSM, 185-187
IFPUG method, 167-170

283

284

Practical Software Project Estimation

case study: new development
COSMIC function point
method, 177-179
FiSMA FSM, 183-185
IFPUG method, 163-167
case study: student and staff
records management
system (SSRM)
estimating using analogy,
107-112
estimating using comparison,
102-107
estimating using regression
equations, 98-102
overview, 95-98
CASE tools, project delivery rates
by use of, 232-233
charge-out rates, 128-129
indexing for inflation and
currency movements, 130
refining for project team
structure, 129
COCOMOI, 20, 21-22
code and reference tables, 87-88
Common Software Measurement
International Consortium.
See COSMIC
comparison, 5, 6, 71-74
attributes for estimation, 10
SSRM case study, 102-107
corporate subscription, 189
COSMIC, 10, 147
applicability, 172
documentation, 175
E&Q COSMIC ranges and
numerical assignments, 57
E&Q COSMIC transactional
functions, 56-57
enhancement case study, 179-180
Mapping phase, 174
Measurement phase, 175
Measurement Strategy
phase, 174
new development case study,
177-179
overview, 171-172
principles for measuring the
functional size of software,
172-174

process for measuring the
functional size of software,
174-175
COSMIC function point (CFP), 173
COSMIC Generic Software Model,
172-173
cost
charge-out rates, 128-130
costing activities outside project
development tasks, 130-132
costing effort contributed by
personnel not included in
the PDR, 132
estimates, 33-34
estimating using ISBSG data,
127-132
steps to calculate cost using
published PDRs, 132-133
steps to calculate non-PDR
related project costs, 133

data suite release, 189
default complexity measure, 39
delivery date
estimates, 31-32
estimation techniques, 32-33
derived size approximation, 43,
48-51
See also size approximation
detailed linked and labelled
measure, 40
detailed linked measure, 40
detailed measure, 40
development platforms, 18
identifying, 137
project delivery rates by, 223
development type, 19
project delivery rates by,
223-224
direct size approximation, 43, 48
See also size approximation
duration
estimates, 31-32
estimation techniques, 32-33
SSRM case study, 97-98
using functional size to
estimate, 58

E
Early & Quick (E&Q), 55-57
effort, 26-27
estimates, 29-30
estimation techniques, 30
SSRM case study, 97-98
using functional size to
estimate, 58
equation use, 5, 6
estimates
accuracy of, 26-28
producing detailed estimates,
8-10
ranges, 7
as targets, not predictions, 141
timing of, 7-8
Estimating, Benchmarking &
Research Suite, 189
estimation equations
applying to your project, 244-245
project delivery rate, 246, 249
project duration, 248, 251
project work effort, 247, 249-250
speed of delivery for whole
project, 248
speed of delivery for whole
project team, 252
speed of delivery per person,
248,252
what estimates are based on,
243-244
what statistics mean, 245-252
which equations to use, 244
estimation frameworks, 135-136
constructing, 140-141
using the ISBSG PDR tables to
create tables for, 136-141
estimation techniques, 28-29
analogy, 5, 6, 10, 75-79
comparison, 5, 6, 10, 71-74
cost, 34
delivery date (project duration),
32-33
effort, 30
KISS Quick, 51-54
using several estimation
approaches, 93
work breakdown, 81-84

Index

exact measure, 38

experience databases, 89-90

expert opinion. See direct size
approximation

external inputs (EI), 49, 156, 158,
165, 166, 168

external inquiries. See external
queries (EQ)

external interface files (EIF), 49,
156, 157, 165, 166, 168

external outputs (EO), 49, 156, 158,
165, 166, 168

external queries (EQ), 49, 156, 158,
165, 166, 168

F

Finnish Software Measurement
Association. See FISMA
FiSMA, 10, 147-148
FiSMA FSM, 145
BFC classes, 181-182
counting rules, 182-183
enhancement case study, 185-187
main characteristics, 181
new development case study;,
183-185
FiSMA ND21, 20, 21-22
FP Prognosis, 58
FSMM. See functional size
measurement methods
function points, 1
components, 155-156
vs. story points, 124-125
functional fit, 39
functional requirements, 3
functional size, 34, 9, 153
analogies, 153, 154
defined, 1, 151, 172
determining, 165-167, 168-169
relation to ISBSG and software
project estimating, 160-161
types of, 169-170
functional size measurement, 1, 2,
4,37
counting from a logical user
perspective, 153-155
defined, 151
difficulty of measuring, 148-149

285

286

Practical Software Project Estimation

functional size measurement (cont.)
example using IFPUG function
points, 155-156
logical boundary, 159-160
SSRM case study, 96-97
use of in effort estimation, 10
using ISO/IEC 20926: 2009 -
IFPUG 4.3, 165
using to estimate project effort
and duration, 58
the value of as a size
measurement, 149
functional size measurement
methods, 92, 192
accuracy, 149
FiSMA FSM, 145
IFPUG CPM, 145
ISO/IEC 19761:2003, 145
Mk II Function Point Analysis, 146
NESMA FPA Method, 146
which method to use, 148
functional user requirements,
164, 167
defined, 152

G
general systems characteristics
(GSCs), 158-159
graphs, creating from regression
equations, 67-69

hourly charge-out rates.
See charge-out rates
Humphrey, Watts, 4

|
IFPUG, 10, 146
enhancement case study, 167-170
function point components,
155-156
new development case study,
163-167
steps for function point
counting, 157-159
IFPUG CPM, 145, 155
industry sector, project delivery
rates by, 220

inflation, indexing charge-out
rates for, 130
inhouse/outsourced
development, project delivery
rates by, 233
internal logical files (ILF), 49,
50-51, 155, 157, 165, 166, 168
International Function Point Users
Group. See IFPUG
ISBSG
activities where effort is
recorded for PDR, 131
member organizations, 261-263
regression equations, 6569
ISBSG Repository, 90-91
criteria for selecting projects, 193
data availability, 189
data quality, 190
demographic summary of data,
194-196
development environment, 196,
209-213
development method, 196, 213-215
documentation, 215
entering project data in, 9
estimating project cost using
ISBSG data, 127-132
guidelines for using ISBSG data,
91-93
lines of code, 193
project context, 195, 198-199
project data positioning, 191
project details, 26
project origin, 194-195, 196-198
ratings, 91, 190, 192
selecting a suitable data subset,
191-194
submitting projects to, 257-259
type of product, 195, 202-209
type of project, 195, 200-202
uses for the data, 190-194
ISO/IEC 14143-1:2007, 151-153
ISO/IEC 19761:2003, 145, 175
ISO/IEC 20926:2009, 145, 165
ISO/IEC 20968:2002, 146
ISO/IEC 24570:2005, 146
ISO/IEC 29881:2008, 145
ISO/IEC definitions, 151-153
iterations, 114

K
KISS Quick, 51-54

L

language type, 19
project delivery rates by, 225-226
languages, 14
extracting PDR distributions
based on, 137-138
mainframe development
environments, 15
midrange development
environments, 16
multiplatform development
environments, 17
PC development environments, 16
project delivery rates by, 226-230
Lite or Quick & Early FP, 58
logical boundary, 159-160
logical files, 49, 50-51

macro-estimation, 5, 8

use of functional sizing, 10
management directives, 29
methodologies, 18-19

project delivery rates by, 233
micro-estimation, 5, 8

use of functional sizing, 10

using process models for, 83-84
missing functionality

identifying, 61-63

See also scope creep; scope

management

Mk II Function Point Analysis, 146

N

NESMA, 10, 146-147
NESMA FPA Method, 146
NESMA Indicative FP, 58
Netherlands Software Metrics

Association. See NESMA
nonfunctional requirements, 3, 4
normalized effort, 91-92, 192

0

organization type, project delivery
rates by, 221

Index

outputs, 51
See also external outputs (EO)

P

PDR. See project delivery rates

Perry, Bill, 4

platform, 18

PMBOK version 4, 7

Program Evaluation and Review

Technique (PERT), 7

project attributes
application architecture, 20
application type, 19
development platform, 18
development type, 19
language type, 19
languages, 14-17
methodologies, 18-19
team size, 17

project benchmark report, 258-259

project delivery rates, 9, 217-219
by application type, 222-223
by architecture type—all

platforms, 230

by architecture type—mainframe
platforms, 231

by architecture type—midrange
platforms, 231

by architecture type—
multiplatforms, 231

by architecture type-PC
platforms, 231

attributes that influence PDR,
14-17

benchmarking your projects’
PDR, 139-140

by business area, 222

defined, 13

by development platform, 223

by development type—all
platforms, 223

by development type—
mainframe platforms, 224

by development type—
midrange platforms, 224

by development type—
multiplatforms, 224

by development type—PC
platforms, 224

281

Practical Software Project Estimation

estimation equations, 246, 249

impact of maximum team size
and project size on, 239-240

by industry sector, 220

by inhouse/outsourced
development, 233

ISBSG activities where effort is
recorded for PDR, 131

by language—all platforms,
226-227

by language—mainframe
platforms, 228

by language—midrange
platforms, 229

by language—multiplatforms,
230

by language—PC platforms,
138, 229

by language for 1-4 team
size, 140

by language type—all
platforms, 225

by language type—mainframe
platforms, 225

by language type—midrange
platforms, 225

by language type—
multiplatforms, 226

by language type—PC
platforms, 226

by maximum team size, 237-238

by organization type, 221

by project size, 234-236

by relationship to market, 234

by use of CASE tools, 232-233

by use of methodology, 233

by user type, 233

project duration

estimates, 31-32

estimation techniques, 32-33

SSRM case study, 97-98

using functional size to
estimate, 58

project effort, 26-27

estimates, 29-30

estimation techniques, 30

SSRM case study, 97-98

using functional size to
estimate, 58

project estimation frameworks. See
estimation frameworks
project history databases
guidelines for using ISBSG data,
91-93
ISBSG Repository, 90-91
using an organization’s own
experience data, 89-90
project life cycle, estimating
methods in, 8
project requirements, types of, 1-3
project sample, demographics
used, 253-255
project size, project delivery rates
by, 234-236
project subsets, estimating, 87-88
project-specific characteristics,
that influence PDR, 20-23

Q

quality requirements. See
nonfunctional requirements

R
R2(Adj), 99
ratings, ISBSG Repository, 91,
190, 192
regression equations
creating graphs from, 67-69
SSRM case study, 98-102
tables, 65-66
using, 66—67
relationship to market, project
delivery rates by, 234
relative measure, 124
reused code, 88
rough size measure, 39
See also KISS Quick

S

scope creep, 44, 61
scope management, 63
identifying missing
functionality, 61-63
size approximation, 39
accuracy, 43-45
classifying size approximation
techniques, 43

derived, 43, 48-51
direct, 43, 48
extrapolative approaches, 58
need for caution, 59
size estimation
Early & Quick (E&Q), 55-57
KISS Quick, 51-54
sizing accuracy levels, 3843
SNAP, 161
software estimation approaches,
4-5
software estimation techniques, 7
strengths and weaknesses, 6
software project estimation
frameworks. See estimation
frameworks
SSRM. See student and staff records
management system (SSRM)
statistics, presentation of, 93
stories, 114
allocating story points to, 118-121
allocating to individual project
iterations, 122-123
story points, 114
allocating stories to individual
project iterations, 122-123
allocating story points to stories,
118-121
benefits of using, 123-125
calibrating the story point scale
using past projects, 116-117
development team velocity,
117-118
estimating total project schedule
and cost at project initiation,
121-122
vs. function points, 124-125
reviewing the process at project
completion, 123
scale, 115
student and staff records
management system (SSRM)
estimating using analogy,
107-112

Index

estimating using comparison,
102-107
estimating using regression
equations, 98-102
overview, 95-98
subsets, estimating, 87-88

T
team size
adjusting the extracted PDR
distributions according to,
138-139
influence of on PDR, 17
project delivery rates by, 237-238
technical requirements, 3
Thirties Rule of Thumb, 58

U

unadjusted FP count, 158

uncertainty, cone of, 8

user, defined, 2

user requirements, sample set,
164, 167

user stories. See stories

user type, project delivery rates
by, 233

vV

VAE. See value adjustment factor
value adjustment factor, 4, 20,
21-22,152

W
weighted averages, 58
Wide-Band Delphi estimation,
81-82
work breakdown, 5, 6
overview, 81-82
See also micro-estimation

289

	Contents
	Foreword
	Acknowledgments
	Introduction
	1 Project Estimation: Background, Concepts, and Approaches
	Types of Project Requirements
	Functional Size
	Software Estimation Approaches
	Other Techniques
	Estimate Ranges
	Timing of Estimates
	Producing a Detailed Estimate
	Use of Function Point Sizing (Functional Size Measurement) in Effort Estimation
	Summary

	2 Factors That Influence Productivity
	Project Attributes That Influence Project Delivery Rate
	Are Some Languages Better Than Others?
	What Is the Impact of Team Size?

	What Other Project Attributes Are Interesting?
	Does the Platform Make a Difference?
	Development Type
	Language Type
	Application Type
	Application Architecture

	Other Project-Specific Characteristics Known to Influence PDR
	Summary

	3 Software Estimates: How Accurate Are They?
	What Does “Accurate” Mean?
	The Project Details
	A General Picture
	Estimation Techniques
	Individual Estimates
	Effort Estimates
	Effort Estimation Techniques

	Delivery Date (Project Duration)
	Duration Estimation Techniques

	Cost Estimates
	Summary

	4 Sizing Software and Size-Approximation Accuracy
	Sizing Accuracy Levels
	Level 6: Size Approximation
	Level 5: Rough Size Measure
	Level 4: Default Complexity Measure
	Level 3: Detailed Measure
	Level 2: Detailed Linked Measure
	Level 1: Detailed Linked and Labelled Measure

	Classifying Size Approximation Techniques
	Size Approximation Accuracy
	Summary

	5 Some Practical Software Size Approximation Techniques
	Direct Size Approximation
	Derived Size Approximation
	Early Approximation of Functional Size Using ISBSG Data

	KISS Quick Software Size Estimation Technique
	Moving from Basic KISS Quick Approach to Other Accuracy Levels

	Early & Quick Software Size Estimation Technique
	Early & Quick for COSMIC Function Point Size

	Some Other Examples of Extrapolative Approaches to Size Approximation
	Using Functional Size to Estimate Project Effort and Duration
	The Need for Caution
	Summary

	6 The Problem of Missing Functionality
	Identifying Missing Functionality
	Managing Changes and Additions to Functionality
	Scope Management

	Summary

	7 Estimating Using Equations
	ISBSG Regression Equation Tables
	Using the ISBSG Regression Equations
	Creating Graphs from the Equations
	Example Effort Estimate Using the Equations

	Summary

	8 Estimating Using Comparison
	Using the Comparison Technique
	Summary

	9 Estimating Using Analogy
	Background: Reasoning by Analogy
	Estimating by Analogy
	Advantages of Estimating by Analogy
	The Drawbacks of Estimating by Analogy
	Summary

	10 Estimating Using Work Breakdown Structure
	Work Breakdown Structure: Introduction
	Using Process Models for Micro-Estimation
	Summary

	11 How Do I Estimate a Project Comprising Varying Components?
	Subsets Implemented Utilizing Different Technologies
	Code and Reference Tables
	Subsets Characterized by Technical or Other Complexities
	Reused Code
	Summary

	12 Using Project History Databases
	Use of an Organization’s Own Experience Data
	Use of the ISBSG Data
	The ISBSG Repository

	Guidelines for Use of the ISBSG Data
	Presentation of Statistics
	Using Several Estimation Approaches

	Summary

	13 Project Estimation Using the ISBSG Repository
	Case Study: A Student and Staff Records Management System (SSRM)
	Overview
	Functional Size Measurement
	Project Work Effort and Duration Estimates

	Example 1: Estimating Using Regression Equations
	Using Regression Equations to Generate Estimates for SSRM
	Regression Equations: Functional Size
	Regression Equations: Functional Size and Maximum Team Size
	Discussion

	Example 2: Estimating Using Comparison
	The Estimating by Comparison Technique
	Using Estimating by Comparison to Generate Estimates for SSRM
	Discussion

	Example 3: Estimating Using Analogy
	The Estimating by Analogy Technique
	Using Estimating by Analogy to Generate Estimates for SSRM
	Discussion

	Summary

	14 Estimating for Agile Software Development
	Estimating an Agile Project
	Story Points
	The Story Point Scale
	Calibrating the Story Point Scale Using Past Projects
	Development Team Velocity
	Allocating Story Points to Stories
	Estimating Total Project Schedule and Cost at Project Initiation
	Allocating Stories to Individual Project Iterations
	Reviewing the Process at Project Completion

	Benefits of Agile Software Estimation Using Story Points
	Comparing Story Points and Function Points

	Summary

	15 A Guide to Estimating Project Cost Using ISBSG Data
	Hourly Charge-Out Rate
	Internal Project: Building Software for Your Own Organization
	External Project: Building Software for an External Organization

	Refining Hourly Charge-Out Rate for Project Team Structure
	Indexing the Charge-Out Rate for Inflation and Currency Movements
	Additional Cost Considerations
	Costing Activities Outside Project Development Tasks
	Costing Effort Contributed by Personnel Not Included in the PDR

	Summary
	Additional Steps to Calculate Non-PDR-Related Project Costs

	16 Creating a Software Project Estimation Framework Using the ISBSG Repository
	Using the ISBSG PDR Tables to Create Tables for Your Estimating Framework
	Step 1. Identify the Development Platforms
	Step 2. Extract PDR Distributions Based on Development Languages
	Step 3. Adjust the Extracted PDR Distributions According to Team Size
	Step 4. Benchmarking Your Projects’ PDR
	Step 5. Construct the Estimation Framework

	Estimates Are Targets, Not Predictions
	Calculating a Benchmark Estimate for a Planned Project
	Step 1. Adjust PDR for Team Size
	Step 2. Adjust PDR for Project Size
	Step 3. Adjust PDR for Development Language
	Step 4. Calculate Effort Estimate and Consider the Range of Probable Values

	Summary

	17 Functional Size Measurement Methods in Use Today
	How Many FSM Methods Are There?
	Which FSM Method Should I Choose?
	How Hard Is It to Measure Functional Size?
	What Sort of Accuracy Can I Expect from an FSM Measurement?
	The Value of FSM as a Size Measurement
	Summary

	18 A Brief Tutorial on Functional Size Measurement (FSM)
	ISO/IEC Definitions
	What Is Functional Size?
	Analogies to Illustrate Functional Sizing

	The Key to Functional Size Measurement Is to “Think Logical”
	Counting in FSM: An Example Using IFPUG Function Points
	IFPUG Function Point Components

	What Is Involved in IFPUG Function Point Counting?
	The Logical Boundary
	Where Does Functional Size Fit in with the ISBSG and Software Project Estimating?
	Summary

	19 An IFPUG Function Point Case Study
	New Development Case Study
	Sample Set of User Requirements
	Functional User Requirements
	Functional Size Measurement Using ISO/IEC 20926: 2009 – IFPUG 4.3
	Determining the Functional Size

	Enhancement Case Study
	Sample Set of User Requirements
	Functional User Requirements
	Types of Functional Size

	Summary

	20 The COSMIC Functional Size Measurement Method
	Overview of the COSMIC Functional Size Measurement Method
	Applicability of the Method
	The Principles for Measuring the COSMIC Functional Size of a Piece of Software
	The Process for Measuring the COSMIC Functional Size of a Piece of Software
	COSMIC Method Documentation
	Summary

	21 A COSMIC Function Point Case Study
	Analysis of the Size of the New Software to Be Developed
	Analysis of the Size of the Enhancement to the Software
	Overall Size of the Software After the Enhancement
	Summary

	22 A FiSMA Function Point Case Study
	Size Measurement of the New Software to Be Developed
	Size Measurement of the Enhancement to the Software
	Overall Size of the Software After the Enhancement
	Summary

	A: What Is in the ISBSG Repository?
	Data Availability
	Data Quality
	What the ISBSG Data Can Be Used For
	Considerations
	ISBSG Project Data Positioning
	Comparing Apples with Apples
	Selecting a Suitable Data Subset

	What You Can Find in the ISBSG Repository
	Project Origin
	Project Context
	Type of Project
	Type of Product
	Development Environment
	Methods and Tools

	Summary
	Additional Documentation

	B: Project Delivery Rates by Category
	Presentation of Statistics
	Explanation of Tables
	Use of the Statistics

	Project Delivery Rates
	Project Delivery Rate by Use of CASE Tools
	Project Delivery Rate by Use of Methodology
	Project Delivery Rate by Relationship Between Customer, Developers, Users
	Project Delivery Rate by Project Size
	Project Delivery Rate by Maximum Team Size
	The Impact of Maximum Team Size and Project Size on Project Delivery Rate

	C: Estimation Equations
	What Are These Estimates Based On?
	Which Equation(s) Should You Use?
	Do These Equations Apply to My Project?
	What Do the Statistics Mean?

	D: Project Sample Demographics Used in Chapter 3
	E: The Benefits of Submitting Projects to the ISBSG Repository
	How to Submit a Project
	A Description of the Project Benchmark Report

	F: ISBSG Member Organizations
	Glossary
	Terms
	A
	B
	C
	D
	F
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Metrics

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

