
Managing Software Projects

Frank Tsui

JONES AND BARTLETT PUBLISHERS

Managing
Software Projects

Frank Tsui
Southern Polytechnic State University

World Headquarters

Jones and Bartlett Publishers

40 Tall Pine Drive

Sudbury, MA 01776

978-443-5000

info@jbpub.com

www.jbpub.com

Jones and Bartlett Publishers Canada

2406 Nikanna Road

Mississauga, ON L5C 2W6

CANADA

Jones and Bartlett Publishers International

Barb House, Barb Mews

London W6 7PA

UK

Copyright  2004 by Jones and Bartlett Publishers, Inc.

Cover image Cats in Paris © 1993 Sandy Skoglund

Library of Congress Cataloging-in-Publication Data

Tsui, Frank F.

Managing software projects / Frank Tsui.— 1st ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-7637-2546-3

1. Computer software—Development—Management. I. Title.

QA76.76.D47T78 2004

005.1’068—dc22

2003021739 8983

All rights reserved. No part of the material protected by this copyright notice may be reproduced or

utilized in any form, electronic or mechanical, including photocopying, recording, or any information

storage or retrieval system, without written permission from the copyright owner.

Production Credits

Acquisitions Editor: Stephen Solomon

Production Manager: Amy Rose

Marketing Manager: Matthew Bennett

Editorial Assistant: Caroline Senay

Cover Design: Kristin E. Ohlin

Manufacturing Buyer: Therese Bräuer

Composition and Art: Dartmouth Publishing, Inc.

Printing and Binding: Malloy, Inc.

Cover Printing: Malloy, Inc.

Printed in the United States of America

08 07 06 05 04 10 9 8 7 6 5 4 3 2 1

www.jbpub.com

This book is dedicated to
Teresa, Colleen, and Nick

This page intentionally left blank

A simple, short, well-defined, one-person software project usually requires

the services of one competent and disciplined software engineer. In such sit-

uations, there is little need for sophisticated project management. Today,

however, the number of software projects that are large, complex, and ill-

defined is on the rise. Accordingly, the importance and necessity of applying

project management skills to software projects are also growing. Managing

Software Projects is geared toward those individuals who are charged with

overseeing such complicated projects.

I have both participated in and managed a variety of business applications

and systems software projects. These projects required the efforts of teams

that ranged from a few to hundreds of members, with life spans lasting from

months to years. Through my experience with these software development

and support projects, it became clear that software project management is not

the same as software engineering. Software engineering is concerned with

internal and external characteristics of software and the techniques used to

attain those attributes. In contrast, software project management is concerned

with the activities that must be planned and performed to achieve the previ-

ously established goals of a software project. Of course, it is an advantage for

software project managers to have software engineering and direct program-

ming experience.

The general concepts of software engineering and software project man-

agement—and the differences between them—are explored in more detail in

the Introduction to this text.

This book focuses on the management aspects of software projects and is

heavily influenced by my own experiences with managing large, complex

software projects at IBM, MARCAM, Metamor/PSINet, and RiverLogic. My early

experiences with software development and support at RCA and BlueCross

BlueShield also helped shape my thinking as a project manager.

Preface

v

Organization of the Book

In this text, the discussion of project management flow follows a project

through four management phases: planning, organizing, monitoring, and

adjusting (POMA). This four-phase process is adapted specifically to software

projects—that is, the discussions and applications all center on software proj-

ects and the software industry. For example, in the discussions of personnel,

recruiting, and organization structures, the book focuses on software devel-

opers, recruiting problems associated with the software industry, and software

development and support organizations.

Part One looks at software project planning (the “P” in POMA). Chapter 1

examines the project content and deliverables, highlighting the requirements

the development process used to define the desired end result of the software

project. Chapter 2 discusses software project task planning using a technique

called the Work Breakdown Structure (WBS). The establishment of meaningful

goals and measurements for software projects is outlined in Chapter 3. Chap-

ter 4 explores the planning required for the software project resources, which

include people, processes, and tools. Every project has some risks; the identi-

fication, prioritization, and mitigation of those risks related to software projects

are presented in Chapter 5.

Part Two reflects on the approved project plan and focuses on organizing

(the “O” in POMA) the software project. The three chapters in this part all

relate to preparing and organizing the different resources needed for the

project. Chapter 6 covers the recruiting of human resources and highlights

several software organizational structures that are applicable to different

types of tasks. Chapter 7 discusses the timing and introduction of software

processes, techniques, and tools. Implementation of planned measurements

and the corresponding setup effort are explained in Chapter 8.

Part Three covers the monitoring aspects (the “M” in POMA) of a software

project once the project is organized and set into motion. The mechanisms

and methodologies of collecting project status information are discussed in

Chapter 9. Chapter 10 introduces several data analysis and evaluation tech-

niques, such as those for correlating information, analyzing the distribution

of data, and normalizing data. The gathered and evaluated information must

be presented in a meaningful way to ensure effective project monitoring,

and Chapter 11 highlights a variety of information representation and com-

munication techniques, including Pareto, pie, and control charts.

Part Four emphasizes the need for adjustments (the “A” in POMA) to a

software project; such adjustments are always necessary because of the

impossibility of developing a perfect project plan and performing project

vi

PREFACE

preparation and organization flawlessly. The specific action taken will, of

course, depend on the monitored project status information. Chapter 12 pro-

poses changes in schedule, functionality, and resources as the three main

adjustments to a software project. The Release Management Council, a

mechanism to assist management in project control and implementation of

project adjustments, is described in Chapter 13.

The final part, Part Five, examines several skills that can enhance one’s

performance in conducting the four POMA phases. Chapter 14 considers the

most important factor in any software project: the people who make up the

software project team, and their transformation from a group of individuals

into a cohesive unit working toward a common goal. Chapter 15 addresses

the problem of software project scope expansion, or scope creep, and considers

how it may be controlled and managed. Chapter 16 offers a detailed discussion

of task scheduling. These scheduling techniques are applicable to the WBS;

thus this chapter is a good complement to Chapter 2. Chapter 17 covers soft-

ware project estimation, which is a cornerstone of setting realistic cost and

schedule goals.

A recurring theme throughout the book is the importance of measurement.

Without collection and analysis of data gleaned through measurements, it is

very difficult to manage large, complex projects. The software industry has

been slow to adopt this philosophy, but needs to before it can improve the

odds in completing software projects and meeting the goals of schedule,

budget, quality, functionality, performance, and customer delight.

Intended Audience and Suggested Teaching Plan

The book is written for several audiences:

• Software engineers and technical leaders who are contemplating, or

who are in the process of, making career changes to software project

management

• Mature undergraduate and first-year graduate students in information

technology (IT) and software project management

• Non-IT management personnel who are considering a career redirection

to IT and software project management

In the past, I have used draft versions of this book for a first-year graduate

course in software project management. Parts One through Four and selected

chapters from Part Five were used as a one-semester course. Depending on

the interests and backgrounds of the students, either the set of Chapters 14

and 15 or the set of Chapters 16 and 17 was included.

vii

PREFACE

Each chapter includes several exercises for students to stimulate their

thinking, as well as a Suggested Reading list. More advanced students should

be encouraged to consult the resources on the reading list and explore topics

that pique their interest. If term papers are assigned as part of the course

requirements, the Suggested Reading lists should serve as good starting

points in finding reference materials.

Acknowledgments

In putting together this book, I received direct and indirect help from numerous

individuals. As a result of their generosity, many mistakes were corrected

and parts of the book were greatly improved. Any remaining errors are

solely my own.

The comments from my students at Southern Polytechnic State University

(SPSU) were greatly appreciated. I would especially like to thank Mike Murphy,

the Dean of the School of Computing and Software Engineering at SPSU,

for providing such a supportive environment, which allowed me to carry out

my writing.

I am grateful for the candid comments made by the reviewers of this

book; their input improved the book in many ways:

Bruce M. Logan

Lesley University

Ayad Boudiab

Georgia Perimeter College

Jeffery H. Peden

Longwood University

Robin Snyder

Savannah State University

I would also like to thank Amy Rose from Jones and Bartlett Publishers,

Inc. I am indebted to Jill Hobbs, who provided extremely competent editing

and many insightful suggestions. For that, I owe her heartfelt gratitude.

Lastly, it was my wife, Teresa, who suggested that I should write down the

lessons learned from my 30-plus years of experience in software development

and project management. I would like to thank Teresa, my daughter Colleen,

and my son Nicholas for their constant and unwavering encouragement.

Frank Tsui

PREFACE

viii

Contents

INTRODUCTION: WHAT IS SOFTWARE PROJECT MANAGEMENT? 1
Software Project 2

Software Artifacts 2

Code Versus Noncode Software Artifacts 3

Software Engineering 5

Software Process and Methodology 6

Components of Software Engineering 7

Software Product Life Cycle 8

The Software Project Management Process 9

POMA: The Phases of Software Project Management 10

Planning 11

Organizing 12

Monitoring 12

Adjusting 13

POMA at All Management Levels 13

Key Concepts 14

Exercises 14

Suggested Reading 15

PART ONE: SOFTWARE PROJECT PLANNING (POMA) 17
A Team Effort 17

Plan Content 18

Levels of Planning 19

Quick Estimate 19

Comprehensive Plan 20

ix

Chapter 1 Project Content and Deliverables
Gathering and Analyzing Project Requirements 21

Potential Pitfalls 22

Completing the Requirements Specification as a Separate

Project 23

General Requirements Management Activities 24

Types of Requirements 26

Project Deliverables 26

Project Needs and Their Characterization 27

Review and Approval of Requirements 28

Internal Requirements Generation and Prioritization 29

The Prioritization Process 29

Role of the Software Product Management Board 30

Quick Estimates and High-Level Requirements 33

Key Concepts 34

Exercises 35

Suggested Reading 36

Chapter 2 Task Analysis 37
Work Breakdown Structure 37

Steps in the WBS 38

WBS in Practice: Introduction to and Example 39

Deliverable 1: Executable Code 40

Deliverable 2: Help Text, Usage, and Reference

Information 40

WBS Task Refinement 41

Activities and Subdeliverables for Deliverable 1

Task Sequencing and Sequence Diagram 42

WBS Time and Resource Assignments 44

Units of Task Measurement 45

Task Estimates and Task Assignments 47

Milestones 49

WBS Iteration and Acceptance 50

Key Concepts 51

Exercises 51

Suggested Reading 52

Chapter 3 Goals and Measurements 53
Project Attributes 53

CONTENTS

x

Preliminary Goals 53

Measurable, Trackable, Validatable, and Verifiable

Goals 54

Metrics and Measurements: An Overview 56

Deliverable-Related Metrics and Measurements 58

Metrics and Measurements Example I: The Quality

Attribute 59

Complex Attributes 64

Project- and Process-Related Metrics and Measurements 66

Metrics and Measurements Example II: The Schedule

Integrity Attribute 67

Interrelated Attributes 74

Influencing Downstream Phases 76

Key Concepts 77

Exercises 77

Suggested Reading 78

Chapter 4 Project Resource Planning 79
Planning for the Three Types of Resources 79

Human Resources 80

Skills Matrix 80

Hiring Plan 84

People Hiring Matrix and the Recruiting Plan 85

People as Human Capital 87

Processes and Methodologies 89

Software Project Phases 90

Requirements Process Planning 91

Design Process Planning 92

Implementation and Programming Process Planning 93

Test Process Planning 95

Product Release Process Planning 96

Other Process Planning Considerations 96

Tools and Equipment 99

Combining the Resources 100

Outsourcing Versus Insourcing 102

Key Concepts 104

Exercises 105

Suggested Reading 106

CONTENTS

xi

Chapter 5 Risk Analysis and Planning 107
Risk Definition 107

Risk Identification 108

Identifying and Listing the Anticipatable Risks 109

Risk Prioritization 111

Prioritization by Recovery Cost 112

Types of Recovery Cost Prioritization 114

Prioritization by Risk Value 114

Risk Mitigation 116

Cost-Based Mitigation 116

Cost of Mitigation 116

Probability of Success 117

Mitigation Value Cost 117

Fixed Budget for Risk Mitigation 118

Risk Removal and the Risk Plan 120

Key Concepts 121

Exercises 122

Suggested Reading 122

PART TWO: ORGANIZING AND PREPARING (POMA) 123
Organizing 123

Human Resources 124

Processes, Methodologies, and Tools 124

Goals and Measurements 125

Chapter 6 Human Resources 127
Software Project Organization: An Overview 127

Software Development Structures 128

General Organizational Structure 128

Refining the General Organizational Structure I:

Matrix Versus Hierarchical Orientation 130

Refining the General Organizational Structure II:

Functional Orientation 132

Refining the General Organizational Structure III:

A Highly Specialized Organization 133

Software Support Structures 134

Recruiting and Hiring Software Personnel 136

Recruiting 136

CONTENTS

xii

Hiring 138

Bringing People on Board 140

Key Concepts 141

Exercises 141

Suggested Reading 142

Chapter 7 Processes, Methodologies, and Tools 143
Processes 143

Process Map 145

Process Flow 147

Configuration Management 149

Processes and Subprocesses 150

Process Introduction and Education 151

Methodologies 53

Methodology Definition 154

Methodology Preparation 156

Tools 157

Tool Identification and Preparation 158

Tool Selection 159

Tool Usage and Preparation 160

Key Concepts 161

Exercises 162

Suggested Reading 162

Chapter 8 Goals and Measurements: Preparations and
Costs 165

Transforming Goals and Measurements 165

Clarifying Definitions of Goals and Measurements 166

Decomposing the Ease-of-Use Example 166

Potentially Misleading Measurements 167

Building a Measurement Operational Plan 169

Embracing the Measurement Scheme 171

Participating in Goal and Measurement Preparations 171

Goal Attainability 172

Measurement Costs 174

Key Concepts 175

Exercises 176

Suggested Reading 176

CONTENTS

xiii

PART THREE: SOFTWARE PROJECT MONITORING (POMA) 179
The Role of Monitoring in Software Project Management 179

Monitoring: A Three-Part Operation 180

Chapter 9 Collecting Project Information 183
Formal Data Gathering and Monitoring 184

Activity-Based Monitoring 185

Attribute-Based Monitoring 186

Macro and Micro Levels of Monitoring 186

Monitoring Completeness of Function 187

Monitoring Quality 189

Monitoring the Budget 191

Data Collection Schedule 195

Formal Project Status Meetings 195

Informal Data Gathering and Monitoring 198

Physically Collocated Environment 199

Physically Remote Environment 199

Establishing Trust 200

Key Concepts 201

Exercises 201

Suggested Reading 202

Chapter 10 Analysis and Evaluation of Information 203
Reliable, Accurate, and Valid Data 203

Distribution of Data 205

Example I: Skew of the Distribution 205

Example II: Range of Data Values 206

Example III: Data Trends 207

Centrality and Dispersion 208

Average Value 208

Median Value 209

Standard Deviation and Control Charts 210

Data Smoothing: Moving Averages 214

Data Correlation 216

Normalization of Data 219

Key Concepts 221

Exercises 221

Suggested Reading 222

CONTENTS

xiv

Chapter 11 Presenting and Communicating Data 223
Sharing Information 223

Communicating Time-Related Status 224

Tabular Formats 224

Bar-Chart Formats 226

Communicating Control-Related Status 227

Other Common Data Representation Formats 228

Pie Charts 228

Histograms 229

Selecting a Data Representation Format 230

Key Concepts 231

Exercises 231

Suggested Reading 232

PART FOUR: ADJUSTMENTS AND ACTIONS (POMA) 233

Chapter 12 Planned and Unplanned Adjustments and
Actions 237

Taking Actions with Urgency 237

Steps in Taking Urgent Action 238

Change Management 239

Planned Adjustments 241

The Planned Adjustment Decision-Making Process and

Targets 241

Making Planned Adjustments to Functionality, Resources,

and Schedule 243

Unplanned Adjustments 245

Functionality Changes 245

Resource Changes 247

Schedule Changes 248

Key Concepts 250

Exercises 251

Suggested Reading 251

Chapter 13 Release Management Council 253
The Team Management Approach 253

Formulating a Release Management Council 254

The Release Management Mode of Operation 257

CONTENTS

xv

Conducting the Release Management Council

Meetings 257

Making Decisions about Product Release 259

Key Concepts 260

Exercises 261

Suggested Reading 261

PART FIVE: ADDITIONAL SKILLS 263

Chapter 14 The Project Team 265
Project Team Life Cycle 265

Team Formation 266

Technical Software Skills 267

Soft Skills and Personal Traits 268

Team Development 269

Team Maintenance 273

Rewarding Team Members 273

Punishing Team Members 273

Handling Team Attrition 274

Team Member Growth 275

Key Concepts 275

Exercises 276

Suggested Reading 276

Chapter 15 Change Control 279
An Example Change Request Process 280

Change Impact Analysis 281

Change Request Denial or Acceptance 283

Cumulative Effects of Changes 284

Key Concepts 286

Exercises 286

Suggested Reading 287

Chapter 16 Task Scheduling 289
Task Sequence and Effort Representation 289

Critical Versus Noncritical Paths 291

Forward- and Backward-Pass Scheduling of Tasks 293

CONTENTS

xvi

Slack Times 294

Total Slack Time 294

Free Slack Time 295

Improving Estimations: The Program Evaluation and Review

Technique 298

Reducing Schedules: The Critical Path Method 300

Creating a Calendar Schedule 302

Key Concepts 303

Exercises 304

Suggested Reading 305

Chapter 17 Effort Estimation 307
Informal Effort Estimation 307

General Estimation Model 309

The Size Factor 310

Other Factors Affecting Project Effort 313

The COCOMO Effort Estimation Model 315

Identify the Nominal Mode of Development 315

Estimate the Size of the Project 317

Review and Assign Values to the Cost Drivers 318

Calculate the Effort Estimate 320

The Continuing Evolution of COCOMO 321

Key Concepts 322

Exercises 322

Suggested Reading 323

Index 325

CONTENTS

xvii

This page intentionally left blank

1

What Is Software
Project Management?

According to the Standish Group’s report Chaos, $250 billion is spent

each year on approximately 175,000 information technology (IT) applica-

tion projects in the United States. Their estimates show that approxi-

mately 31% of all such projects will fail and that approximately 53% of

the projects will overrun the original cost estimates. This translates to

approximately $81 billion wasted on canceled projects! (See Suggested

Reading: Standish Group.)

We hear all kinds of horror stories about software projects fraught with

cost overruns and schedule delays. Examples range from the disastrous

London Ambulance Service project, which was scrapped after six years and

millions of pounds spent (at the time of writing, the conversion rate is

approximately UK£1 to US$1.6) to the infamous baggage handling software

project that delayed the opening of the new Denver airport by more than a

year at a cost of about $1 million per day. What is a software project, and is

there something unique about software projects that differentiate them from

hardware projects or construction projects? To answer these questions, we

must explore some fundamental concepts related to the following terms:

• Software project

• Software engineering

• The software project management process

Introduction

Introduction—What Is Software Project Management?.

2

SOFTWARE PROJECT

A software project may not be clearly defined, in that there is no accepted

“standard” set of deliverables to be produced at the end of a software project.

Rather, software, in its barest form, is just code that is a set of instructions to

a device, possibly a computing device, to perform a desired set of functions.

These instructions may take the form of a source program or executable

code. In this book, we will use the terms “code” and “program” interchange-

ably. All other components of a software project are designed to ensure that

the code meets three criteria:

1. It executes properly as measured against the users’ requirements and the

developers’ design.

2. It is maintainable and extensible.

3. It is easily installable and usable.

Code A set of instructions to a device, possibly a computing device, to

perform a desired set of functions.

For a long time, many people considered only the code part of a soft-

ware project to be important. That is, the main focus of many projects was

the actual code produced; engineers were primarily interested in how

quickly they could develop code and did not concern themselves with sup-

porting the code over the longer term. Then as support activities started to

become a problem, software developers began to focus on improving pro-

grams by creating software that is easily readable, understandable, and

changeable. With the explosive growth of affordable PCs and other

devices, it became critical that the user interface portion of the code be

easily comprehensible by many different people, including those with very

little technical training.

Today, the most important task of a software project is still considered

to be the development of the programming aspect. Indeed, programming is

typically the first course that a software engineering or computer science

student takes in school.

Software Artifacts

There is, however, a growing appreciation of the need to include require-

ments specifications, design documents, test cases, reference manuals, and

other materials created to support the code—collectively known as software

.Software Project

3

artifacts—as part of a broader definition of software. As the definition of

software broadens, so does the interest in activities that produce these

extended artifacts. Nevertheless, with the exception of requirements specifi-

cation documents or user manuals, most software organizations rarely

deliver elements independent of the actual code.

In this book, we will define a software artifact as the computer pro-

gram itself, in source or executable form, or any entity that is produced

to aid in the development of, installation of, demonstration of, training

of, or maintenance of that program. Thus requirements documents,

design documents, project plans, test scenarios, user guides or manuals,

reference manuals, online help materials, educational and marketing

materials, initialization data, and other materials developed along with

the code are all considered software artifacts. Some software artifacts are

developed as deliverables to the customers and end users. Others are

developed only to satisfy internal needs and may never be delivered to

end users.

Software artifact A unit of material, in the form of a document, pres-

entation, or code, that is developed as a part of, or as a contribution to,

the final solution to the users.

Code Versus Noncode Software Artifacts

Software artifacts may or may not be associated with a specific set of code.

A key point is that these noncode artifacts are considered to be software

only if a specific set of code directly related to that artifact is eventually

developed.

Software A set of software artifacts that includes code.

Requirements specifications for a system are sometimes presented as the

sole software deliverable. A requirements specifications document outlines

the needs of the users and details the desired functional behavior of the sys-

tem solution that is to satisfy the users’ needs. A requirements document is

often used as the sole software deliverable when a project group is preparing

to solicit others for proposals of potential solutions. For example, a govern-

ment organization might ask a group of “experts” to develop a set of require-

ments for a specific system and then use that requirements document to seek

solutions from commercial vendors. Similarly, a large commercial enterprise

might ask a consulting firm to develop a requirements document for a needed

system, and the document would be used to solicit proposals. In both of these

cases, the initial deliverable is a document that does not include code. Many

people, however, still consider the requirements document to be software.

Others argue that the requirements document is really part of the broader set

of software deliverables and should not be considered software itself.

Should a document that only describes the requirements of a system be

considered software? Does the software solution have to include code? For

the purpose of the discussion here, we will consider a requirements docu-

ment to be software only if it describes a system that includes code as a part

of the final set of deliverables. Thus, a requirements document for a soccer

field will not be considered software, but a requirements document for a soc-

cer scoring system, which includes programs, will be considered software.

This distinction allows us to narrow our domain of coverage and continue to

look at the unique qualities of software.

If the plan to develop the code is later eliminated for some reason, then

the requirements document by itself is not considered software. For example,

if a person writes a book on the generic requirements or generic design of a

payroll system, then that book is not considered software. The requirements

document for a specific, running payroll system, however, is considered soft-

ware. Similarly, a paper describing a B-tree algorithm is not considered soft-

ware unless it describes the algorithm used by and accompanying a specific

code implementation.

As noted above, an independent requirements document that describes

the characteristics of a system that includes code is itself considered software.

Is there anything unique about this type of requirements document? The

answer is yes, in that this document must depict the desired characteristics

and behavior of a nonphysical entity—the code or programs. Such a descrip-

tion is inherently more difficult to develop than something that describes a

physical entity, which can be seen, touched, or felt and thus is more easily

measured. The requirements document attempts to portray something that is

abstract and logical and thus very difficult to measure. When asked about the

size of a program (a nonphysical entity), the conventional response is to ask

whether one wants that information in the form of lines of code, in function

points, or in some other metric—there is no industry standard for this meas-

urement. When one asks about the size of a soccer field (a physical entity),

however, the answer is readily given in units of square feet or square yards,

which everyone understands. This characteristic is an extremely important

distinction between that which deals with code versus that which deals with

physical entities that have standard metrics and are easily measurable. The

significant difference is that software addresses logical entities.

Introduction—What Is Software Project Management?.

4

SOFTWARE ENGINEERING

Software engineering includes a set of general knowledge and specific skills

that are applied to the activities that are used to develop, produce, and sup-

port all types of software artifacts—not just code artifacts. Software engi-

neers also study properties of the internal structure of software and the

resulting effects of structural changes to the external attributes of the soft-

ware. The knowledge and skills applied to a specific activity are known as a

method of developing that artifact. In this case, a method is a formal proce-

dure for producing a specific software artifact.

Software engineering The art of applying a body of knowledge and

methods to the creation and support of software artifacts that will sat-

isfy the requirements of the users. Besides functional requirements, these

user and customer requirements may also include constraints such as

cost, schedule, and usability.

Several different methods may be utilized to develop a particular soft-

ware artifact. For example, there are many ways to design a software system.

In designing a system, one may use some combination of decomposition,

synthesis, and abstraction, each of which is a design method:

• Decomposition is the breaking down of a complex problem into smaller

pieces that can be better understood and solved.

• Synthesis is the creation of a component from smaller pieces.

• Abstraction is the hiding and postponing of the details to focus on the

essentials.

Similarly, there are many ways to describe the design of a system. A

method that is used to design a system, such as decomposition, may not be

the same method that one would use to describe that design, such as the

Unified Modeling Language (UML). UML is a modeling language for software

that was put forward by James Rumbaugh, Ivar Jacobson, and Grady Booch

of Rational Software, which was recently acquired by IBM.

Unified Modeling Language (UML) A graphical language used to

model a system; it provides a set of notations for depicting the objects,

relationships, and rules of a system.

In some instances, the designing method and the describing method

may be the same and are both part of a larger family of methods. A family

.Software Engineering

5

of methods, such as the object-oriented (OO) methodology, may be quite

complex and require multiple submethods. These complex methods may

take years to master. Sometimes a method or a portion of a method may

be borrowed from some other discipline. In generating a test scenario

matrix, for example, we often utilize Boolean algebra to logically combine

certain test cases with the Boolean OR or AND operators. Similarly, in

designing user interfaces, we often seek guidance from psychology and

cognitive science. For example, the flow of the application, as represented

by the depth and number of screens, often reflects considerations related

to the end user’s productivity. In addition, certain icons are easily recog-

nizable, whereas others are more cryptic. Thus, software engineering is a

multidisciplinary field that borrows many methods from other established

disciplines.

Software Process and Methodology

The sequencing and ordering of the activities that are used to develop spe-

cific software artifacts are another important aspect of software engineering.

The definition of the sequence or order of the activities, along with the

entrance and the exit criteria of these activities, is considered the software

development process.

Several well-known software development processes exist, such as the

waterfall process and the spiral process. The waterfall process was first

depicted by Winston Royce in 1970. It models a set of software development

activities in the form of a cascading waterfall, where the first activity, such

as the requirements-gathering activity, is at the top. When this activity is

completed, the next activity is started. Each activity is performed sequen-

tially until the last activity is completed. Barry Boehm introduced the spiral

process in 1988 with the intention of reducing project risks. The spiral

process takes every activity through four phases: planning, setting goals and

alternatives, evaluation of alternatives, and developing activities. For exam-

ple, a requirements specification activity will go through all four phases,

starting with planning for the requirements specification. The descriptions of

such processes are often at such a generic or high a level as to make them

broadly—but not easily—applicable.

Software engineering as a discipline is still relatively young compared to

other engineering disciplines. Both the process descriptions and the descrip-

tions of the specific methods utilized in the activities of producing the soft-

ware artifacts are still being developed. In fact, the software engineering

Introduction—What Is Software Project Management?.

6

process has not reached a level of maturity that is comparable to the matu-

rity of processes in other engineering disciplines, such as chemical engineer-

ing. In a chemical engineering process, every ingredient is well defined;

every procedural step is well defined in terms of temperature, action, and

length of time; and every outcome is well defined.

Besides the purely technical aspects of process and methods, many other

environmental and human parameters go into a process. A key factor in the

success of a software process, for example, is the person who is conducting

the activities within the process. Software projects are heavily dependent on

people. A well-trained and motivated person can bring a very different result

than an ill-trained and unhappy person. These environmental and organiza-

tional parameters vary widely among software projects.

A software development or support process is often treated as a guide-

line; often the organization can modify and adapt it as needed. The specific

adaptations made by different organizations have been quite mixed and can

be unpredictable. Because of this unpredictability, many organizations

choose not to adopt any process. Instead, they practice and concentrate on

the limited set of methods related to low-level design, coding, and debug-

ging activities. For small projects that require only two or three people for

six months or less, developing software under the guidance of a heroic

leader without a well-defined process may sometimes work. For any large,

complex project, however, experience shows that some form of process

must be defined, related, and practiced by the complete organization. Also,

if the organization is focusing on certain design attributes and properties,

such as ease of use, then specific methods such as the user interface (UI)

design method must be rigorously defined to satisfy the ease of use attrib-

ute. We not only need to have well-defined methods and processes, but

these defined methods and processes must also be enforced by the organiza-

tion. What we do not yet have is a set of “prescriptive” processes for devel-

oping different types of software.

Components of Software Engineering

Figure I.1 is a software engineering diagram that depicts three interrelated

subjects:

• Process and methodologies

• Desired internal product structure and properties

• Desired external product properties

.Software Engineering

7

Introduction—What Is Software Project Management?.

8

In software engineering we are interested not only in studying the vari-

ous methodologies and processes, but also in applying them to produce the

desired product internal structure and properties, which in turn will provide

the required external product properties. The software engineering diagram

in Figure I.1 does not enforce any particular sequence; instead, it simply

shows the interrelationships among the components.

Software Product Life Cycle

Software engineering also encompasses the notion of a software product life

cycle, which is closely related to the idea of a software process. Software is

viewed as a logical entity that evolves through various stages, taking on dif-

ferent artifact forms.

Initially, software is just a concept stated in the form of customer

needs and desires. This “wish list” evolves into a requirements specifica-

tions document as the project moves through the requirements solicitation

and analysis phase of the process. Next, the software is transformed into

different levels of design, depending on the amount of design activities.

The design is eventually turned into an executable solution, which

includes code, documentation, database setups, and operating environ-

ment setups. Simultaneously, the software artifacts are “tested” and modi-

fied through a series of mini-transformations and corrections. The

software is then installed at the customers’ and users’ environments as

Release 1. This set of activities and transformations represents the soft-

ware development life cycle.

��������
	�
��
�

����
���� ���
	�
�������

	�

����� ���
����
�
�
����

��������
	�
��
�

	�
�������

���� ��

��� ��� ����
�
�
��

�� �� ������ ��� ��� �
 �����
�
��� �������� ����
���� ��� ��
��������

���� ����
���� ��� ���� ��
���
��� ��
��
� ���� �
 ������ ��� �������
�������� ��
��������

���� ��

����� ��� ����
�
�
����
���� �� ��������
� ���
� ���

��
��
� ��
��������

Figure I.1 Software engineering

Software development life cycle A set of transformations, starting

with requirements, that converts each incoming software artifact into an

artifact closer to the final result, until the final set of artifacts that sat-

isfy the requirements are met.

Next, the software product moves through a support phase featuring

further corrections, adjustments, and enhancements. Each subsequent release

may move through another software development life cycle. Eventually, the

software will enter a sunset phase and be removed from the user and support

environment. The complete cycle—starting with software development, going

through n releases of the software product, and continuing until the product

is ultimately withdrawn—is called the software product life cycle. The prod-

uct life may encompass one or more iterations of the software development

life cycle in the form of multiple releases.

Software product life cycle A period during which a software artifact

is initially developed, supported, revised through multiple development

life cycles, and finally unsupported and/or taken out of the market.

THE SOFTWARE PROJECT MANAGEMENT
PROCESS

Software project management involves the application of good management

practices to the development and support of software. By necessity, it is a

multidisciplinary subject.

.Software Engineering

9

����������	

���
���
�	���

��
��� ���
�	����
����	���
������
� ��

���
�	����
����	���
������
� n�

����

�����

���	���� ����������	 ����
�
�� ����
	���

��
��	��� ���
�	

Figure I.2 The software product life cycle

Figure I.2 shows a time line of the software product life cycle.

Introduction—What Is Software Project Management?.

10

In terms of Figure I.1, software project management is concerned with

ensuring that, for a software project, the most appropriate process and

methodologies are chosen, the desired internal product structure is attained,

and the external product properties are achieved. In addition, the project

management constraints of schedule and resources must be met.

In terms of Figure I.2, software project management may be viewed as

applying sufficient resources to ensure that the software artifacts evolve in a

manner such that:

• They meet all the product functional and other requirements.

• They are developed within the cost constraints.

• They are developed within the allotted schedule.

Satisfying the product requirements, budgetary, and schedule constraints

is the essence of project management. Because software projects heavily

depend on the availability of human resources, software project management

also requires people management.

POMA:

THE PHASES OF SOFTWARE PROJECT MANAGEMENT

Software project management, much like other project management, has

four major phases, called POMA:

Planning

Organizing

Monitoring

Adjusting

The POMA management process, as shown in Figure I.3, starts with the

planning of tasks and moves through the remaining categories of project

management activities. Unlike software engineering, which begins with a

development and support process and then applies management to that

process, POMA starts with management and applies software engineering’s

domain-specific knowledge, such as a requirements solicitation method or

software measurement method, at various stages along the way. POMA mod-

els the software management life cycle much as a waterfall software process

models the software development life cycle.

Note that the activities in the four process categories of POMA are not

necessarily sequential. Some activities within each category may overlap,

and the categories themselves may overlap. For example, the monitoring and

adjustment categories are likely to iterate. In this iteration between monitor-

ing and adjustment, the project manager may adjust the original plan, the

original organization, or both.

Planning

Software project planning consists of a set of activities that will develop a

plan of attack for the project. The project plan contains the following items:

• The description of the software product in the form of software artifact

contents and deliverables

• The software product attributes

• The schedule required to complete the project

• The types of and amount of resources needed to meet the project schedule

• The relevant measurements that would be used to gauge the status of the

software project and to assess the final project “success”

• The risks associated with the project

Project planning includes a time-consuming and very important set of

tasks that is, unfortunately, often rushed. It is much wiser to spend the

appropriate time needed to develop a good plan initially than to have to

make multiple and costly adjustments later. Even with a well-conceived

plan, it is unusual not to encounter some conditions that require unexpected

changes during the project. However, having a well-thought-out plan facili-

tates making project adjustments even at a much later phase. The earlier-

mentioned London Ambulance Systems project failure is a perfect example

of an ill-planned project in which the initial requirements were incompletely

defined and the software vendor’s proposed solutions were not completely

studied and checked. As a result, both the estimated effort and the schedule

were totally unrealistic.

.The Software Project Management Process

11

Planning
Activities

Organizing
Activities

Monitoring
Activities

Adjustment
Activities

Figure I.3 The POMA management process

Introduction—What Is Software Project Management?.

12

Organizing

Software project organization seeks to construct a software development,

support, and service organization based on the project plan. To build and

implement the software project organization, several activities are under-

taken: acquiring the various skilled individuals needed for the project, defin-

ing a process and a set of methodologies that will be utilized for the software

project, obtaining a set of tools that will support the process and the

methodologies, and creating a well-defined set of metrics that will be used to

track and gauge the project.

A significant portion of the task of organizing activities is ensuring that

all personnel brought on board are properly equipped to perform their des-

ignated tasks. This equipping of personnel includes obtaining needed tools

and preparing facilities for initiation of the project, and it also includes

educating the personnel in using those tools, the methodology selected, and

the metrics chosen.

In addition, as part of the organizing activities, project managers need to

ensure that adequate financial funding has been set aside and will be made

available in a timely manner. Thus, the software project management team

must either include financial management and personnel management mem-

bers or have well-defined interfaces with these other organizations. Just like

any organizational interface, the software project organization relies on

human relationships that need to be established, nurtured, and maintained.

The “people management” aspect of organizing is critically important; man-

agers should always be cognizant of the fact that the morale of the organiza-

tion affects its productivity.

Monitoring

Software project monitoring focuses on the following activities:

• Consistently and regularly collecting measurements

• Analyzing the data

• Representing and presenting the data for a defined set of reports

• Making projections and making recommendations based on the analysis

of the data

Software project management, like any other project management situa-

tion, involves a heavy dosage of “people” management. Therefore, the proj-

ect monitoring component must include the soft art of both physically and

virtually “walking around the hallway” and tapping into day-to-day issues,

concerns, and morale.

Adjusting

Adjustments and changes are a very important set of activities for software

project managers. It is a rare situation in which we can develop a perfect

plan and put together a perfect organization. Most of the time, we will need

to make mid-course adjustments, sometimes several times. The monitoring

of projects ensures that the correct adjustments can be made at a relatively

early stage in the development process. In a situation that is often encoun-

tered, the design of a software artifact is found to have a high number of

errors that are attributable to unclear requirements. In this situation, the

software project managers might need to commission a rework on the

requirements and ask for adjustments in the project schedule, resources, or

content. For a software project manager to make adjustments, he or she

must first recognize the need for making a change—and the risks of not

doing so. Then a potential set of adjustments must be available, along with

some prioritization scheme.

Unfortunately, many adjustments might be needed, for example,

because of the loss of a skilled team member or the discovery of an unfeasi-

ble design. Adjustments and changes are often made under pressure and in

uncomfortable conditions. Nevertheless, project managers must have the

courage to stand up and take action. Sometimes even changes to the origi-

nal plan or organizational structure are required. Later, the software project

managers must continue to monitor the project after the appropriate adjust-

ments are made. If the information from the monitoring activities dictates

that further adjustments and modifications are needed, then the software

project management must make these additional changes. This potentially

extensive, iterative process continues until the project is completed.

POMA at All Management Levels

All managers at different levels are involved in the four major activity cate-

gories of POMA. The difference is merely the degree to which they are involved.

Higher-level managers, including executives, tend to be more intimately

involved in establishing the general plans and overall organization of the

project. As a consequence, they tend to focus more on the planning and the

organizing portions of POMA.

.The Software Project Management Process

13

Middle managers are involved in building more specific project plans

and specific organizations. They also participate in monitoring project status

and help in making adjustments. These managers are the management “work

horses” in that they are involved equally heavily in all four categories of

project management.

Lower-level managers and project leaders perform daily project monitor-

ing and devise instant adjustments, if they become necessary. Although

these first-line managers and project leaders play important roles in higher-

level planning and organizing, most of the time they focus more intently on

planning and organizing just their portion of the project responsibilities. The

lower-level managers therefore tend to concentrate on the monitoring and

adjustment categories of POMA.

In tackling the four categories of POMA, software project managers uti-

lize various techniques. The description and application of these manage-

ment techniques, as they apply to software development and support for the

different stages of POMA, form the heart of this book.

■ KEY CONCEPTS

This overview discussed three interrelated concepts: software projects, soft-

ware engineering, and software project management. Following are some of

the key concepts introduced:

• Software project

• Software artifacts

• Software engineering

• Software process

• Software development and software product life cycles

• Software project management

• POMA and management hierarchy

The remainder of the book will focus on the four phases of POMA—plan-

ning, organizing, monitoring, and adjusting—along with the techniques and

methods needed for each phase.

■ EXERCISES

1. Define software in your own words.

2. Describe a computer program that will allow two players to play the

game of tic-tac-toe without ever mentioning the word “tic-tac-toe.”

Introduction—What Is Software Project Management?.

14

3. Describe the attributes that the tic-tac-toe program described in Exer-

cise 2 should have.

4. What is a software development life cycle and how does that differ

from a software product life cycle?

5. Compare and contrast the concepts of software engineering and soft-

ware project management.

6. Which level of management tends to focus more on the monitoring

and adjustment phases of a software project and why?

7. Describe two situations that you believe would cause adjustments to a

software project.

8. Assume that you are a software project manager and are approached

by a potential customer who wants you to build a tic-tac-toe software

program. Explain the planning, organizing, monitoring, and adjusting

activities that you may have to go through.

■ SUGGESTED READING

P. F. Drucker, “They’re Not Employees,” Harvard Business Review, February

2002, 70–77.

R. S. Pressman, Software Engineering: A Practitioner’s Approach, McGraw-

Hill, 1997.

W. Royce, Software Project Management: A Unified Framework, Addison

Wesley Longman, 1998.

I. Sommerville, Software Engineering, Addison-Wesley, 2001.

The Standish Group, Chaos, 1995.

H. Weihrich, “Management: Science, Theory, and Practice,” Software Engi-

neering Project Management, 2nd ed., edited by Richard H. Thayer, IEEE

Computer Society, 1997, 4–13.

E. Yourdon, Death March: The Complete Software Developer’s Guide to Sur-

viving “Mission Impossible” Projects, Prentice Hall, 1999.

.Suggested Reading

15

This page intentionally left blank

Software project planning consists of a set of activities that set the tone

for the rest of the project. If time is not taken up front and the planning of

the software project is sloppy, then the software project will likely fail. Hav-

ing a great plan does not ensure that no problems will arise during the

course of the project, but the chance of solving the problems or recovering

from damage is much better.

A TEAM EFFORT

The software project manager should not perform the software project plan-

ning tasks in isolation. Rather, the software project plan should be formu-

lated with the cooperation of as many of the stakeholders as possible. The

plan must also be reviewed by all stakeholders, understood by all stakehold-

ers, and agreed to by all stakeholders.

The software project manager should be aware of—and sometimes

even participate in the formulation of—the “justification” of the project,

but at times the project manager may just be “told” of the justification.

These justifications—such as improving customer satisfaction, improving

Part One

Software Project Planning

(POMA)

17

business performance, and reducing complexity—are all very important to

know and should be part of the goals and objectives as the software proj-

ect plan is formulated. But there is a reason for caution here: The infor-

mation technology (IT) world is full of new technology, advancements in

process, and attractive concept justifications that may not be thoroughly

understood. Thus, software project managers in the IT industry can easily

become caught up in the emotion of the moment and embark on question-

able projects.

The software project managers are responsible for thoroughly under-

standing the project justifications, translating them into measurable goals,

and articulating them clearly in the project plan. It is only when the project

managers openly include the justifications as part of the plan will then these

justifications be properly converted into achievable goals. The word “openly”

is chosen deliberately to further emphasize the danger of having “hidden” or

“obscure” justifications.

PLAN CONTENT

The content and the depth of a software project plan may differ depending

on the type of the software project. Ultimately, all project plans must address

a set of common issues:

• What is the nature of the software project and what software artifacts

are the desired deliverables?

• What is the overall schedule and the associated major project mile-

stones?

• What are the required resources and their associated financial costs?

• What are the known risks and the areas that are still unknown?

For each of these issues, many subcategories may exist. The level of

depth within each subcategory may also vary within the plan. For example,

for a software development organization that is in the business of outsourc-

ing other organizations’ software development, it may be important to delve

more deeply while planning for well-organized processes, well-defined

methodologies, and well-trained software engineers as part of the required

resources section of the plan. At the same time, issues related to costs and

schedules for a software outsourcing project may receive the same amount

of emphasis as they do in other types of software projects.

Part One Software Project Planning

18

.Plan Content

19

In addition, the number of subcategories and the level of depth may

depend on the type of plan that is required. Many times, software engineers

are asked to develop an initial, quick plan solely for the purpose of develop-

ing early estimates of the project’s size and scope. This plan may need to be

available within days. In other situations, software engineers may be asked

to develop a complex and thorough plan in response to a well-defined set of

requirements set forth in a formal request for proposal (RFP). Such a plan

may require weeks, and possibly months, to prepare.

One critical issue in all software projects is the management of quality.

To handle this issue properly, the attribute of quality must first be clearly

defined. Chapter 3 includes an extensive discussion of this attribute. The

project plan must state the metrics to be used and the measurement method-

ologies to be employed to collect and analyze those software quality metrics.

These and other important attributes and items need to be analyzed and

stated in the form of the project’s “goals.” Each goal must be quantifiable or

it will be difficult to track and manage. For this reason, the software project

plan may need to include a section that clearly articulates the key goals of

the project along with a metric for each of these goals.

LEVELS OF PLANNING

Even though there may be several levels of planning for any given project,

essentially two levels of planning exist for all projects: the quick estimate

and the comprehensive plan. Both of these planning tasks require some

experience, and it is difficult for a new project manager to perform all the

tasks by himself or herself. For example, just coming up with a reasonable

list of software project risks requires some past experience.

Quick Estimate

A quick estimate often includes just the following items:

• A brief description of the problem and the project

• The deliverables needed to satisfy the project

• A high-level schedule that contains only a few major milestone dates

with the associated deliverables

• A single, rolled-up cost estimate

• A summary of risks and assumptions

Comprehensive Plan

A more comprehensive plan would not only expand on the items listed in

the quick estimate, but also broaden the list itself as follows:

• Problem and Requirements: a discussion of the customer and user prob-

lems, needs, and wishes along with characterizations of the different users.

• Product/Project Description: the complete scope of the project, which

includes all project deliverables, a functional list, and a description of

each deliverable.

• Product/Project Attributes: a description of the various attributes of the

deliverables and the nondeliverables as they pertain to the goals of the

project; these attributes must be measurable and will be used in the

designing of metrics.

• Schedule: the sequence of tasks required to produce deliverables, along

with the resources required and the relevant milestone dates.

• Costs: cost details given in terms of some unit, such as person-days, for

each deliverable. The costs must include all other expenditures—such as

those for tools, travel, training, and communications—attributed to the

project.

• Resources: a detailed list of the people needed and the special skills that

they must possess, a complete set of needed tools, any special training

and ongoing information updates, and all hardware and software sys-

tems required to support the project.

• Process and Methods: a description of the overall process and each

method to be used to accomplish the various tasks within each phase of

the process. A description of the level of competency, in terms of train-

ing or years of experience, for each of the methods should be stated.

• Risks: a list of potential problems, with weights assigned to them based

on their assessed impact and probability of occurrence. The plan should

also detail actions that might help keep the risk from turning into a real

problem.

Part One Software Project Planning.

20

21

1
Project Content and
Deliverables

Chapter Objectives

This chapter discusses the following concepts:

• Why requirements elicitation, analysis, specification, and agreement

should be completed prior to planning

• Why software project managers must ensure that project requirements—in

the form of (1) the deliverables and (2) the characterization of the needs to

be satisfied by those deliverables—are available and properly prioritized

• Why software project managers should focus their energy on require-

ments management and let the software engineers and analysts perform

the requirements development

GATHERING AND ANALYZING
PROJECT REQUIREMENTS

Before any software project can be initiated, software engineers need to

identify the requirements of the project, interfaces to the project, and any

other related systems or subsystems. Software requirements are the needs

and the wishes of the users and the customers that may be delivered as solu-

tions in the form of software. Gathering the requirements for a software

project is one of the most difficult tasks in software engineering. In this

chapter, we will not delve into the methodology used to complete individual

Chapter

Chapter 1 Project Content and Deliverables.

22

subtasks within a set of requirements management activities, but rather will

discuss strategies for managing the requirements of a project from the proj-

ect management perspective.

Software requirements The needs and the wishes of the users and the

customers that may be delivered as solutions in the form of software.

The software project manager needs to provide an environment con-

ducive to proper requirements gathering and analysis. There must be

ample time and suitably skilled people available to perform these tasks.

The actual performance and completion of the subtasks, the mode and

effectiveness of operation, and the resulting specification of the require-

ments are the concerns of the software project managers. This responsibil-

ity should be shared with the software engineers and analysts who are

assigned to perform those tasks, though the software engineers and man-

agers perform different roles.

Potential Pitfalls

Surprisingly, a large number of software projects are commissioned without

the client or project manager fully understanding the requirements. Of

course, many of them pay a high price for this neglect later. The require-

ments specifications are critical for the success of a project. The first step in

software project management is to recognize that the requirements must be

understood and agreed upon by all parties. This seemingly very simple prin-

ciple is often not applied in software projects. Many requirements are gener-

ated by the software engineers during development without consulting

anyone. This phenomenon of increasing requirements is known as “scope

creep” in the IT industry. Because these implemented requirements are not

familiar to anyone else, the testers will not know that these features exist

and should be tested, and customers may be surprised by them. Due to the

lack of testing, quality issues may arise concerning the code that has been

developed for the unknown and non-agreed-upon requirements. There are

many causes of this unfortunate situation, and they can be attributed to both

the requirements providers and the solution providers.

The following list describes some reasons why the providers (the users

and the customers) of a software project fail to make clear their requirements

for a given project:

• The customers and users are not fully knowledgeable about their com-

plete needs.

.Chapter Title

23

.Gathering and Analyzing Project Requirements

• The customers and users do not know how to express all of their

requirements, especially when some aspects of software project require-

ments are highly abstract.

• The customers and users do not remember to include everything in their

set of requirements.

• The customers and users are not consistent in their presentation of the

requirements.

• The customers and users take the activity for granted and therefore do

not interpret it as essential.

The solution providers (the requirements receivers, such as the software

engineers and project leaders) may also be at fault, for the following reasons:

• The software solution providers misinterpret the requirements stated by

the customers and users.

• The software solution providers do not understand the requirements

because the particular subject and terminology used are new to them.

(Unfortunately, some software solution providers think that they are

knowledgeable about every field and every discipline.)

• The software solution providers are under pressure to “make the sale” and

to seize the project even without fully understanding the requirements.

• The software solution providers believe that they have a generic solution

that can fit most problems within a certain category and insist that they do

not need to fully analyze the requirements of the particular case at hand.

There are many more ways in which the requirements might not be fully

understood, fully documented, or fully analyzed. It is the software project

managers’ responsibility to recognize both the potential for problems and the

implications of experiencing these problems. Software project management

needs to establish a process and obtain the associated resources to ensure

that the project requirements gathering, analysis, and documentation activi-

ties are satisfactorily completed. This process and the arrival at a complete

and mutual agreement of the requirements must be part of the project plan.

Completing the Requirements Specification as a

Separate Project

Sometimes, the initial software project plan focuses on the project require-

ments as the sole deliverable. Indeed, the completeness, accuracy, and clarity

of the requirements specification are now recognized as such significant

Chapter 1 Project Content and Deliverables.

24

attributes that many software projects consider the requirements gathering,

analysis, and documentation activities to constitute a separate project. This

set of activities is planned and managed as a separate (and often separately

priced) mini-project to be completed before the main project begins.

If the requirements development activities do constitute a separate

project, then the project manager must ensure that this set of activities is

planned, organized, monitored, adjusted, and brought to a successful

completion. Clearly, the planning of this mini-project will not be as com-

plex as that of the complete software project, but it is no less important.

The planning steps for a set of requirements gathering and analysis activi-

ties (discussed later in this chapter) can be scaled down, but the planning

for a mini-project, which is just a subset of the entire project, and the

planning for the total project are not dramatically different. In other

words, it is still necessary to state the requirements for the requirements-

gathering project, albeit not to the same degree as for the complete soft-

ware project.

GENERAL REQUIREMENTS
MANAGEMENT ACTIVITIES

Consider Figure 1.1, which depicts the requirements gathering, analysis, and

documentation activities. Only the areas that relate to managing this process

will be discussed here. An in-depth discussion of the requirements process

and the details of how each task is performed may be found in the software

engineering books listed at the end of this chapter. Note that prototypes are

sometimes constructed to better understand the requirements. Prototyping to

clarify the requirements and to explore the technical feasibility of a project

is itself a project that must be properly managed or it can turn into a never-

ending activity. Managing prototyping will be discussed later in this section.

Software prototype A software model created to represent a user

interface or a function for the purpose of better understanding the

requirements and the feasibility of the proposed solution.

One key problem that often hampers requirements gathering is a shortage of

(or unavailability of) knowledgeable people. Oftentimes the key users and

customers are the very same people who have the least amount of time to

discuss requirements with the solution providers. For this reason, a project

manager should participate in several steps depicted in Figure 1.1 to ensure

that these activities are completed successfully. Occasionally, project man-

agers may need to directly intervene or even ask for upper-management

assistance in order to meet the following goals:

• The initial agreement on requirements processing and the assignment of

the qualified people to participate in the activities should be completed

on a timely basis.

• The review of the requirements and the prototype should be conducted

with a clear “end” in mind. All parties must initially agree on clear exit

criteria as well.

• The final “sign-off” should be completed by all stakeholders.

Although the software project managers may sometimes need to inter-

vene, they should allow the software engineers to actually perform the tasks

depicted in Figure 1.1. The entrance and exit of each task are the points on

which the project managers should focus their attention. As mentioned ear-

lier, the reviewing of requirements statements and the prototyping efforts

may potentially create a situation of never-ending modifications, extensions,

and new additions to the requirements. In some cases, for example, in the

absence of a clearly specified schedule, customers have asked for repeated

viewing and reviewing of the user screen prototypes. Even though each

review with different users may have improved the interfaces, the expended

effort can greatly exceed the marginal gains made in the prototype.

To avoid this problem, clear exit criteria and the mode of operation for

all activities must be defined and accepted by everyone right from the start.

25

Agreeing on
and Initiating
Requirements

Requirements
Elicitation

Requirements
Analysis

and
Prototyping

Requirements
Review

Requirements
Specification

(as needed)

Agreeing and
“Signing Off”

Figure 1.1 General requirements management activities

.General Requirements Management Activities

In the case of prototyping, entrance criteria to that activity should also be

carefully specified and fully enforced. The entrance criteria should include at

least the following items:

• The availability of skilled resources

• The time frame and process for reviewing the prototype

• The overall prototype schedule

• The scope of the prototyping activity (e.g., just screens instead of fully

operational programs)

The software project manager will often be asked to comment on his or

her preference on the kind of prototype provided. There are two main types:

• A rapid prototype of the requirements that will eventually be thrown away

• Iterative prototypes of the requirements that may be kept as the early

versions of the final product

For many managers, the notion of throwing away code seems so waste-

ful that it is extremely tempting to choose the iterative prototype approach.

Nevertheless, one must remember that keeping the prototype carries a price.

That is, the prototype code must be designed, documented, tested, controlled,

and so on, just as the final code is. Thus the desired speed one can achieve in

rapid prototyping is not available with iterative prototyping.

Only after the requirements are understood and analyzed can a descrip-

tion of the needs of the entire project be created. A list of the deliverables

and a description of each deliverable are prerequisites to developing the

remaining part of the software project plan. The requirements, once elicited

and gathered, must be further analyzed for completeness, consistency, prior-

ity, and understandability.

TYPES OF REQUIREMENTS

The software project manager should recognize the two major types of require-

ments: the project deliverables and the needs satisfied by those deliverables.

Project Deliverables

The first set of requirements deals with the deliverables, the items provided

to the client at the end of the project. What the project deliverables include

must be clearly defined and agreed upon from the beginning. They can

Chapter 1 Project Content and Deliverables.

26

.Types of Requirements

27

range from all the artifacts produced in the development of the software to

only the executable object code. The following is a list of example artifacts

that a software project might be asked to deliver:

• Requirements document

• Design document

• Source code

• Source message file

• Executable code

• Test scenarios

• Test cases with test data

• User guide

• Product reference manual

• Test results and quality-related data

• Process specifications

• Project plan

Each of these items must be defined in terms of its content, form, and

format. For example, the requirements document could be as simple as a

Microsoft Word file that is placed on a disk, while the user guide might con-

sist of online HTML files that are titled separately by functional topic and

made accessible through a Help icon on the toolbar. All of the artifacts must

be prioritized, and a schedule for each one must be established. Resources

must be assigned to develop each deliverable, and each artifact must be

managed to its completion.

Note that some software enterprises, as part of their business practices,

will not include certain deliverables. Source code is a primary example that

many software enterprises do not deliver. There are many reasons for not

wanting to deliver source code. An obvious one is related to the issue of

intellectual property and the potential for the copying of the proprietary

source code by others. Another source of angst is the possibility of uncon-

trolled, multiple modifications and extensions to the original source code

made by others, which can turn the support effort into an expensive night-

mare for the developer of the original deliverable.

Project Needs and Their Characterization

The second type of project requirements identifies the needs, characteristics,

and constraints for which the software project must provide the solutions.

This is the area on which most software engineers, rather than the project

managers, would focus their energy. Clearly, the following items should be

identified:

• The functions that the software must provide

• The performance and other nonfunctional constraints that the software

must meet

• The business process into which the software must fit

• The interfaces that the software needs, to interact with its users, and the

appearance of those interfaces

• The interfaces that the software needs, to interact with other systems

• Characteristics of the data that the software solution must handle

All six of these categories describe “what” is needed. Although func-

tional needs are commonly mentioned first in requirements gathering, the

sequence in which they appear does not reflect any particular hierarchy.

Indeed, their prioritization will differ by project.

An important question the software project managers will face is the

decision of how to specify the requirements and how formally they should

be specified. Here, we are not focusing on the technical merits of different

requirements specification languages. Rather, the issue is quite nontechnical:

Should the requirements be documented in the form of pseudo-English or

something more formal, such as UML? This decision should normally be

described and specified in the software development organization’s require-

ments process. Because of the nature of the customers, however, a software

development organization may sometimes have to revisit the decision stated

in its process. Some customers are not sophisticated or trained in reading

formal documents. The software project managers, in conjunction with the

lead software engineers, may have to adjust the process as required.

Review and Approval of Requirements

The project manager needs to ensure that the first set of requirements (the

deliverables) is clearly defined, understood, prioritized, and agreed upon by

both the customer and the solution provider. To avoid potential problems

and subsequent major disagreement, it is wise to have all parties formally

“sign off” on the deliverables.

The same may be said about the second set of requirements (the needs

and constraints). However, because the second set characterizes the details of

various aspects of the project, it needs more than just a sign-off. It is strongly

advisable to include a final review of the requirements specifications by the

Chapter 1 Project Content and Deliverables.

28

.Internal Requirements Generation and Prioritization

29

stakeholders prior to the sign-off. This requirements specifications review, if

conducted, may range from somewhat formal to very formal. The software

project management must determine the form of this review based on how

some of the other activities in the requirements management process have

fared so far. If defects were found in earlier, smaller-scale reviews or if a

number of changes were made to the specifications during prototyping, then

those data should be analyzed and considered in deciding how formal this

final specification review should be.

INTERNAL REQUIREMENTS GENERATION
AND PRIORITIZATION

Project requirements are sometimes initiated by solution providers internally.

These are some of the most difficult requirements to evaluate. Oftentimes the

key designer or the key marketer of an ongoing software product will make

recommendations to be included for a subsequent release of software. The

chief designer or architect will list a very impressive set of technical items

that “must be” either modified or added. Similarly, the sales force and the

marketing personnel will cite all missing functions that led to “lost sales.” In

the case of a multiple-release product, the customers and the support organi-

zations will also have requirements for improvements and suggested fixes.

If there is no established procedure to help the decision-making process,

a horrendous amount of energy and goodwill may be expended and perhaps

wasted in the requirements development phase. It is the software project

manager’s responsibility to ensure that such a frustrating and languishing

environment does not persist for too long.

The Prioritization Process

One potential remedy is to establish a process to handle the situation. A gen-

eral prioritization procedure for both internal and external requirements is

depicted in the requirements prioritization diagram shown in Figure 1.2.

The inputs from the various requirements’ sources are constantly coming

in to the software organization and being captured, possibly with an auto-

mated data management system or a requirements management tool such as

Rational’s RequisitePro or Borland’s Caliber RM. The project management of

the software organization must be ready to accept and respond to these

requests. There needs to be both recognition of and an assignment of

resources to the capturing of these inputs. Furthermore, resources must be

set aside for the following activities:

• Regular review of these inputs

• Analysis of the valid inputs

• Prioritization of these inputs

• Response to both the accepted ideas and the rejected ones

• Formulation of the accepted requirements subset into actual requirements

for the product plan

Table 1.1 shows an example of how such a list might be organized.

Role of the Software Product Management Board

In Figure 1.2, the Software Product Management Board includes managers

and leaders from various parts of the organization. This group is responsible

for deciding which requirements will be included, delayed, and excluded for

Chapter 1 Project Content and Deliverables.

30

Requirements Sources

Development

Support

Customer

Consultant

Requirements
Repository

Requirements
Prioritization

Software
Product

Management
Board

List of
Requirements

Input to the
Product Plan

• • •

Figure 1.2 Requirements prioritization

.Internal Requirements Generation and Prioritization

31

each software project. A set of candidate requirements might come from the

following sources:

• Application domain area experts (such as analysts or consultants)

• The lead developer or lead architect

• User customer support personnel

• Users or customers

• Sales or marketing representatives

• Product or project managers who have authority over resources

• Strategic business planning personnel

• Trainers

Software Product Management Board A group of people chosen to

assist in the determination of priorities of requirements and the group-

ing of requirements for product releases.

The composition and the size of this group will vary depending on the

type of the software project. For a software product with a limited number of

customers, the Software Product Management Board might include only two

or three people. In contrast, for a complex product targeted toward millions

of customers, the board might expand to 10 to 12 people. The number of peo-

ple required and the length of time needed also depend on whether the soft-

ware is being developed as a first release or has gone through multiple

releases. For a popular, multiple-release software product such as an operat-

ing system, the organization might need to keep two or three people on the

board permanently, for the purpose of managing the stream of continuous

requirements.

The software project manager may pick the group members based on the

potential contribution that each individual will make in the various areas

Table 1.1

Requirements Prioritization List

Item# Item description Source Priority Status

Item number
used to
identify the
item

Brief description
of the item, point-
ing to a detailed
document if
necessary

Source of the
request, such as
the customer,
internal support
organization, or
internal sales
organization

Assigned priority of
1 through 4, where
1 is highest

Description:

Accepted and
included in the
current product
release plan,
accepted for a
later product
release plan,
or rejected

that will help in the requirements prioritization decision process. Areas of

interest might include some of the following:

• The project’s sales, marketing, and business implications

• Its technical and architectural implications

• Its financial and resource implications

• Its implications for customer and user satisfaction, needs, and wishes

• The project’s industry- and domain-specific implications

Chapter 13, which covers the Release Management Council, will also

touch upon this subject, although the actual composition of a Release Man-

agement Council may be a little different than that described here. The Soft-

ware Product Management Board differs from the Release Management

Council in that the former is mostly concerned with product requirements

and prioritization of requirements, while the latter focuses on issues related

to the product release decision.

Release Management Council A group of people chosen to assist in

managing the entire software project from goal setting to the final prod-

uct release decision.

The managing of requirements often encountered at the review of a new

software product line is similar, but slightly more complex. In this case, the

sources of requirements may include a large and diverse group of people.

Many times a special customer council is formulated by the software com-

pany for the purpose of gathering a basic set of requirements pertaining to

solving both the fundamental problems of the represented industry and also

some of the specific problems identified by the members of the customer

council. In preparation for this effort, the customer council must take into

account the opinions of the marketing and sales people of the organization.

The software project managers must attain the necessary financial and

people resources before establishing such a council. The IT industry is full of

situations in which the customer councils were abused and used as a reward

for people’s past good performance. In one customer council established by

the author, the group initially worked very diligently. Unfortunately, as the

participants became more familiar with and comfortable with one another,

more socialization than real work began to take place at these meetings.

Therefore, software project managers must always ensure that the partici-

pants are prepared to really work on requirements.

Once the customer council is established, the general set of requirements

management activities mentioned earlier still applies. The output of the cus-

tomer council becomes the input for the Software Product Management Board.

Chapter 1 Project Content and Deliverables.

32

.Quick Estimates and High-Level Requirements

33

QUICK ESTIMATES AND HIGH-LEVEL
REQUIREMENTS

Once the deliverables and their contents are defined and understood, the proj-

ect manager and his or her team can then start on other aspects of planning

activities. Sometimes project managers are pushed by the client to provide a

“quick estimate” of the project’s cost and schedule. In such cases, the under-

standing and the subsequent documentation of the deliverables may be at a

high level. The question that the software project managers must ask, however,

is whether this “high-level” understanding and description of the deliverables

is enough to allow a rough estimation of the project’s costs and schedule. Esti-

mating the rough cost and the rough schedule carries a degree of risk. That is,

the preliminary cost estimate and schedule have a high probability of chang-

ing, as does the high-level description of the deliverables. Two approaches are

available to the software project managers to deal with this situation.

The first approach to handling quick estimates is to put “buffers” in the

wording of the deliverables, along with buffers in the cost estimates and in

the putative schedule. Buffers consist of extra time, money, other resources,

or explanations provided to reduce potential project risks. In addition to the

buffers, there must be a defined change management process that allows for

changes in the deliverables and the associated changes in the project’s cost

and schedule. This change management process must be understood, con-

curred with, and accepted by all parties. It is the responsibility of the soft-

ware project managers to ensure that change management is properly

implemented throughout the life cycle of the software project. The details of

the change process are discussed in Chapter 15, on change control, and in

the sections on establishment of an organization and processes for the soft-

ware project in Chapters 7 and 8.

A second approach to handling quick estimates is to have the project

manager try to convince the potential customer to turn the requirements

management phase into a separate project and provide a quick estimate for

only that phase. This approach will bound some of the risks of the quick

estimate to just one phase of the software project, albeit a very important

one. A separate plan for the rest of the project phases can then be estab-

lished following the conclusion of the requirements management phase.

This evolutionary approach to project planning and project manage-

ment, where requirements management is separated out as a different proj-

ect, may be preferable for software projects in which the deliverables are

nontangible information and complex (even though the media on which the

deliverables reside may be physically tangible). Many experienced software

project managers in software development and service organizations use this

evolutionary approach of separating out the requirements phase as their

standard business procedure.

Software project managers constantly wrestle with the dilemma of

whether the deliverables are sufficiently understood and defined well enough

for the rest of the planning activities to begin. One frequently used method

to aid in this decision-making process is the review activity depicted in Fig-

ure 1.1. If the requirements are reviewed and all corrections are made, then

they can be deemed “well-defined” and well-understood requirements. Fur-

thermore, the signed-off requirements are not only well defined and under-

stood, but also accepted as the baseline for the requirements.

It will be unusual if the baseline requirements specification is never modi-

fied. At this early stage the software project manager must often select a

requirements management tool (such as one of the tools mentioned earlier) or

a software configuration management tool (such as PVCS) to help in the con-

trol of and tracking of requirements changes. The project managers must be

sure to consider more than just requirements management and include change

management when choosing such a tool. (See Chapter 15 on change control.)

■ KEY CONCEPTS

Prior to actually working on the project, the project requirements need to be

• Gathered

• Analyzed

• Documented

• Reviewed

• Accepted with a sign-off

Software project managers should focus on providing the necessary

resources and creating an environment that enhances the requirements

development process. There are two major types of requirements:

• The list and the description of the deliverables

• The characterization of the needs and of the problem

In characterizing the needs of the problem, six areas should be covered:

• The functional needs

• The nonfunctional needs

• The business process

• The data and information structure

Chapter 1 Project Content and Deliverables.

34

• The user interface

• The system interface

The establishment of the appropriate process and methodologies for

requirements management and prioritization is the main function of the

software project manager, but direct participation or even intervention by

the project manager is sometimes required.

Software project managers must exercise care when responding to a

request for a quick plan if the gathering or analysis of the requirements is

not complete.

■ EXERCISES

1. Imagine that your software engineers arrive at the customer site and

find that the “promised” users, who were key to the requirements gath-

ering activity, are all in an emergency meeting that will last for at least

one whole day. What are some of the things you, as the project man-

ager, should do?

2. Why must there be clear entrance and exit criteria for requirements-

processing activities?

3. List three reasons why software project requirements are sometimes not

well-defined and understood.

4. After organizing and setting up a requirements prioritization process,

your executive management (e.g., CEO or CFO) keeps submitting an

“important client” request or “one more last” request. How should you,

as a software project manager, handle the situation?

5. List two entrance criteria for prototyping.

6. If you choose to use iterative prototyping, what are some “costs” of

which you need to be aware?

7. What are some activities in the requirements management phase that

would benefit from automation and tools?

8. Discuss what you believe are the software artifacts that should be con-

sidered as the main software deliverables and explain the reasons for

your choices.

9. List the six areas that the software requirements should address.

10. What is a Software Product Management Board and how necessary is it?

11. Define software requirements and discuss what more may be in a cus-

tomer requirement list (see the software engineering definition in the

Introduction).

.Exercises

35

Chapter 1 Project Content and Deliverables.

36

■ SUGGESTED READING

M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard Object

Modeling Language, Addison-Wesley, 2000.

M. Jackson, Software Requirements and Specifications, Addison-Wesley,

1995.

D. Leffingwell and D. Widrig, Managing Software Requirements: A Unified

Approach, Addison-Wesley, 2000.

B. Ramesh and M. Jake, “Towards Reference Model for Requirements Trace-

ability,” IEEE Transactions on Software Engineering, January 2002,

58–93.

K. Ryan and J. Karlson, “Prioritizing Software Requirements in an Industrial

Setting,” Proceedings of the 19th International Conference on Software

Engineering, 1997, 564–565.

I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice

Guide, John Wiley and Sons, 1997.

37

2
Task Analysis

Chapter Objectives

This chapter discusses the following concepts:

• How the Work Breakdown Structure (WBS) is used to analyze the tasks

that are needed to develop the deliverables specified in the requirements

• How effort, in the form of time and resources, should be assigned to the

tasks shown in the WBS

• Why the preliminary schedule, with milestones, developed from the WBS

is a key part of planning

WORK BREAKDOWN STRUCTURE

Once the requirements specification is understood and completed, the soft-

ware project management team is ready to start on the Work Breakdown

Structure (WBS) activity. Note that we used the term “software project man-

agement team” rather than “project manager” in describing who participates

in the WBS activity. Even at this early stage of planning, the knowledge and

experience of the technical software engineers may be required.

Work Breakdown Structure (WBS) A depiction of the project in terms

of the discrete pieces of work needed to complete the project and the

ordering of those pieces of work.

The WBS first looks at the macro requirements of what needs to be

delivered. In other words, the WBS considers the “big picture” and evaluates

Chapter

Chapter 2 Task Analysis

38

what needs to be accomplished from a high level, rather than focusing on

the details. From the list of the artifacts that are required to be completed

and delivered, a high-level set of tasks or work that will produce the artifacts

is identified. The sequencing or the ordering of these tasks is also important

and will be defined as part of the WBS.

In this early stage of planning, the software management team might

have only a global understanding of the software development and support

process, with details of the needed process not yet being fully defined and

refined. Later, each task or work unit should be further refined into smaller

units of subtasks or work units by the management team until each subtask

can be performed by a single individual. At the completion of the WBS

activity, the management team will have a defined set of ordered tasks for

each of the deliverables. They can then use the details of the ordered tasks to

formulate the initial project schedules, milestone dates, and cost estimates.

A variety of graphical tools can be used in the WBS activity, ranging

from Microsoft’s Visio to Smartdraw.com’s Smartdraw. There are also a

plethora of tools available for representing and keeping track of the sched-

ule—for example, Primavera’s TeamPlay, MinuteMan System’s MinuteMan

Project Management, and Microsoft’s popular Project tool. Indeed, the IT

industry is rife with such tools that can be used as aids in the WBS activity.

But a word of caution is in order: Even though these tools are wonderful for

improving management productivity, project managers should focus their

attention on the information that is stored and represented by these tools,

rather than “falling in love” with the tools themselves.

Steps in the WBS

The following is a list of activities that need to be performed as part of the

WBS activity:

1. Examine the set of required external deliverables.

2. Identify and list the steps and tasks needed to produce the required

deliverables, including any tasks for additional intermediate deliver-

ables needed to complete the final deliverable.

3. Sequence the identified tasks required to produce the deliverable.

4. Estimate the effort required to perform each task.

5. Estimate the productivity of the resources that will be applied to the tasks.

6. Compute the time needed for each task by dividing the task effort esti-

mates by the resource productivity estimates.

7. Lay out the time needed for each task and “label” each task with its

task name and the assigned resources; this layout of sequences of tasks

with their associated time and resources essentially forms the initial

schedule.

Figure 2.1 graphically depicts the flow of activities involved in the WBS,

ending with the formation of an initial schedule. To perform these steps, we

make several key assumptions. For example, we assume that information

such as process, task effort, and people productivity data are available. The

management team must make estimates for each of these components using

their respective techniques, some of which we will discuss in later chapters.

For now, keeping in mind that we’ll be making assumptions, we will demon-

strate, via a software project example, how WBS is conducted.

WBS IN PRACTICE: INTRODUCTION
TO AN EXAMPLE

Assume that from the requirements specifications we have determined that

the scope of the project is of a “small scale” and that only two software

deliverables are needed:

• Deliverable 1: Executable code that is installable from a CD

WBS In Practice: Introduction to an Example

39

Identify and
list all

deliverables

For each task:

Compute the timeline
required by dividing
effort by productivity

For each task:

Estimate the
productivity of the
assigned resource

For each deliverable:

Identify and list the
necessary tasks for
completing the task

For each task:

Estimate the
effort needed

Perform
the tasks

After the timelines
for all tasks for all
deliverables are
computed

Sequence the tasks

Lay out the timeline for all
the ordered tasks needed for

each deliverable

Figure 2.1 Flow of WBS to schedule

• Deliverable 2: Help text, usage, and reference information that is instal-

lable from a CD

From this macro description of the deliverables, we can start planning the

activities in the form of a WBS. This seemingly simple list of artifacts actually

requires more planning than one might first expect. The set of activities

needed for each artifact appears below. Recall that we have already com-

pleted the requirements gathering and analysis phase and, therefore, have a

good idea of the software’s functional and nonfunctional requirements.

Deliverable 1: Executable Code

• The activities needed to develop the executable code include require-

ments specification and analysis (which are already completed), design,

coding, and testing.

• The activities required to make the executable code installable include—

although in a simpler version—requirements specification (already com-

pleted), design, coding, and testing.

Deliverable 2: Help Text, Usage, and Reference

Information

• Creating help text involves requirements specification and analysis

(which is already completed), design, writing, “tucking in,” and testing.

• Developing usage and reference information involves requirements

specification and analysis (already completed), design, writing, “tucking

in,” and testing.

The choice of the set of activities and their sequencing depend on two

parameters: (1) the size and complexity of both the problem and the solu-

tion, and (2) the process and methodology that the software organization has

already defined, trained its people to follow, and agreed with its client to

use. The existence of the client agreement is a key assumption. Sequencing

the activities needed for the development of the artifacts can be a large

problem for new software organizations that have neither the experience nor

any of the processes defined. The front-end cost, in terms of both effort and

money, of preparing an organization for any process is extensive and some-

times hard to overcome. For now, let’s assume that the process is already

Chapter 2 Task Analysis

40

defined and understood by most of the people in the organization. We will

revisit this topic later.

WBS TASK REFINEMENT

An expansion of the WBS for the executable code deliverable, not including

its installability, of this “small” project example is shown below.

Activities and Subdeliverables for Deliverable 1

We first present a list of activities, but they are not yet necessarily in the

correct order:

Activity A: Designing and documenting the design using an agreed-

upon notation

Activity B: Coding (in a language that is already agreed upon)

Activity C: Defining test cases and generating test scripts

Activity D: Executing test scripts

Activity E: Correcting and fixing problems found during testing

Activity F: Collecting the tested executables modules and handing

them to the packaging group

Note that this expanded list includes more intermediate subdeliverables,

such as the design document. The subdeliverables may be for internal con-

sumption only and may not be delivered to the customer or the users. We

include them here because these intermediate deliverables still require effort

and thus need to be part of the plan.

Further refinement of just the design activity, Activity A, may result in a

table such as Table 2.1.

To refine Activity A into these subtasks, the software project manage-

ment team most likely had to spend some time analyzing and contemplat-

ing what design activities are needed for the given requirements of this

“small” project (unless they had prior experience with similar projects).

Once again, the software project management team might need the techni-

cal expertise and experience of the software designers if they do not possess

such technical skills themselves. This refinement of tasks continues until

each task can be assigned to a responsible person. For instance, Task A-1

might be further broken down into development of the application architec-

ture, UI architecture, and message architecture if the software project were a

larger one.

WBS Task Refinement

41

Task Sequencing and Sequence Diagram

Next, we need to examine whether any sequencing relationship exists among

the subtasks. In this example, Task A-1 needs to be completed before Tasks A-

3, A-4, and A-5 commence. Task A-2 may, however, be started before Task A-

1 is completed because the database design does not depend on the completion

of the message architecture. Depending on the tools and the methods used in

the software project, the UI architecture part of Task A-1 may or may not need

to be completed before Task A-2 starts. The amount of overlap between Tasks

A-1 and A-2 depends on several parameters, ranging from purely technical

ones to personnel availability. For initial planning purposes, we will first keep

the WBS simple and force the sequencing of tasks without overlap.

Figure 2.2 graphically represents the sequence relationship for our

example in a sequence diagram. The sequence diagram depicts the start-stop

relationships among the various subtasks of Activity A. It may be further

refined for detailed planning if any of the subtasks is too large or cannot be

assigned to one responsible person.

Sequence diagram A diagram that shows all the tasks required to com-

plete an activity and the order in which those tasks must be performed,

including the depiction of the tasks that may be performed in parallel.

Figure 2.2 shows that Tasks A-3, A-4, and A-5 may be performed in

parallel because no ordering relationships among them are specified. Note

also that there is no indication of how any task may overlap with another

task. For parallel tasks, there may be total overlap, assuming that no other

constraint applies. In the case of sequential tasks, neither a sequence dia-

gram nor a WBS provides a view of any potential for overlapping the tasks.

This limitation can be overcome by adding the task overlapping explanation

at the corner of the diagram. The only problem is that the explanation may

require more space than what is available.

Chapter 2 Task Analysis

42

Table 2.1

Subtasks within the Design Activity

Tasks Description

Task A-1 Overall application, user interface (UI), and message
architecture

Task A-2 Database and relational tables design

Task A-3 Application function 1 design

Task A-4 Application function 2 design

Task A-5 Application function 3 design

We will need to construct a sequence diagram for each of the remaining

activities B through F that are required in developing the executable code

deliverable. Similarly, for the other deliverable, Deliverable 2, we will need

to create a list of activities that may then be further refined into subtasks.

The sequence relationship among the subtasks needs to be established and

depicted, possibly with a sequence diagram. A software management team

typically uses this organization because it is an excellent way to represent

the WBS.

The construction of a sequence diagram for a software project follows

these steps, which are—and should be—similar to the earlier discussed con-

struction of the WBS:

1. List the deliverables.

2. For each deliverable, list the activities that are required.

3. For each activity, list the set of subtasks that are required.

4. Further refine any of the subtasks by creating the next level of sub-

tasks, if necessary.

5. Construct the sequence relationship of the subtasks.

6. Depict the sequence relationship with a sequence diagram.

WBS Task Refinement

43

Task
A-1

Task
A-2

Task
A-3

Task
A-4

Task
A-5

Figure 2.2 Sequence diagram (Sequence relationship of activity A subtasks)

A Word of Caution

Earlier we mentioned that there are at least two levels of any given

plan: a high-level, big-picture perspective and a low-level, detailed

view. Even for a high-level plan, the software project managers need

to quickly put together a WBS for the deliverables. To do so, they must

have some knowledge of the software development process and

WBS TIME AND RESOURCE ASSIGNMENTS

Once we have refined the WBS to a satisfactory level, we can proceed to the

next phase of task analysis. A reasonable question to ask at this point is,

What would a “satisfied” level of refinement be? Unfortunately, there is no

fixed answer because all projects, and the people involved in those projects,

are different. However, a useful guideline is that the WBS refinement should

be carried to the level where:

• Each task may be assigned to one person.

• The estimate of the task cost, stated not in terms of money but rather in

terms of time required to complete it, does not extend beyond more than

two or three project status meetings.

The first guideline is fairly intuitive in that having more than one person

“own” a task often results in no ownership at all. Ensuring single-person

accountability makes the management and tracking of the task much easier.

Sometimes, however, a task is initially assigned to a team. For example, ini-

tially the requirements solicitation task may be assigned to a team of two or

three requirements analysts. As the planning proceeds, each of the require-

ments analysts may be assigned a specific task of gathering requirements

from a different user department. Thus such a task will eventually be refined

into subtasks that are assignable to individual team members.

The second guideline is stated in a looser manner—it is relative to how

often status meetings are conducted. Here, we assume that the project status

meetings are conducted very often, possibly every day if the total software

project is very small (in the range of weeks) or at weekly intervals if the total

Chapter 2 Task Analysis

44

support activities. This software process knowledge is especially critical

when it comes to the “sequencing tasks” part of the WBS. Also, the

project managers need to be aware of the nonsoftware aspects of the

project—in particular, hiring and team-forming tasks must precede the

tasks related to the actual construction of the deliverables. These tasks

that are not related to software construction must be included in the

WBS, even for high-level planning. Many project planners have put

themselves into a tenuous situation on day 1 because the WBS omitted

a set of important tasks. These indirect tasks, which had nothing to do

with the direct requirements of the deliverables, are often forgotten

and never folded into the plan.

software project is large (in the range of months but less than a year). The

reason for refining a task down to a level in which it will not cross more than

two or three project status meetings is so that if a particular task falls behind

schedule, the problem can be caught relatively early. This prevents software

project managers from maintaining a wait-and-see attitude for too long.

Units of Task Measurement

Before a time estimate can be assigned to a task, the project management

team must decide on the unit of measurement. If the smallest individual task

can be completed in less than one working day, meaning approximately six

working hours, then the task time estimates should be stated in one-hour

units. If the smallest individual task requires more than a working day but

less than five working days, then the unit should be half-days. For all other

tasks, the unit of measurement should be days. Normally, the advice is not to

extend the basic unit to a week, because the software industry has a ten-

dency to include weekend days as part of the week. This practice of includ-

ing extended work weeks as a normal week has created an assortment of

problems when it is utilized for too long a period. For example, if an organi-

zation estimates that a project will take 50 weeks, a five-day work week

makes for 250 days, while a seven-day work week would have 350 working

days—a 100-day difference! The definition of a working day may also differ

from organization to organization.

Software project managers must recognize that a software project

includes the participation of all team members in many non-direct-task-

related activities such as departmental meetings, telephone interruptions, or

answering e-mails. This is part of the reason that the software project man-

agement team should count on only six hours of direct software project-

related work per day. If the unit of measurement is a half-day, then only

three hours of direct work should be expected per half-day. Clearly, some

software project managers would like to lengthen the work day such that

there are eight hours of direct work, with the indirect work hours being

absorbed into the “extended” work-day hours of the software engineers. This

practice is a dangerous one when employed for a long period of time.

There are many ways to address the issue of how to estimate the time

required to complete each of the tasks required for a project. A favorite

approach of software project managers is to ask the experienced software

development team members who will be tagged to perform each task to esti-

mate the time required to complete their own tasks. This approach is used for

several reasons. If the person has past experience performing similar tasks,

WBS Time and Resource Assignments

45

then the data from that past experience can provide a relatively good gauging

factor. Also, if the people who will be responsible for the completion of the

task are asked, they are more likely to take responsibility for the estimate. The

term for this approach in many software projects is “bottom-up” estimating.

Another popular approach to determining how much time is required for

each part of a project is to assemble a team of technical experts and have

them estimate each task in terms of some common work volume unit, such

as lines of code or function points for design, coding, and testing. For devel-

oping help text or message text tasks, for example, we could use a work vol-

ume stated in terms of “number of sentences.” For UI-related tasks, we could

use “number of fields” to assess the volume of work. Once the volume of

work is estimated, an organizational productivity figure such as lines of code

per hour or per day can be used to compute the estimate for the needed task

completion time. This approach assumes that organizational productivity

figures by type of task exist from history or from the software management

team’s experience. Table 2.2 is an example of possible historical information

that may exist from similar, past projects in an organization.

For example, a particular task, x, may involve the design, implementa-

tion, and testing of 15 UI input fields. Suppose the organizational productiv-

ity of developing UI input fields from the past is z fields per hour. Then for

this task x, the estimated time would be 15/z hours.

Estimating techniques, software methods, and the software development

process will be covered in more detail later in this book. For our purposes

here, we will simply assume that the task completion time has been esti-

mated. Figure 2.3 shows the estimated times for the subtasks of Activity A in

our ongoing example.

In Figure 2.3, there are three possible paths to the “end” state of Activity

A. The longest path includes Tasks A-1, A-2, and A-3. Software project

Chapter 2 Task Analysis

46

Table 2.2

Example of Historical Information

Tasks Possible rates

Requirements 2 interviews/person-day
solicitation

Message design 15 error messages/person-day

Code implementation 2 function points/person-day; 40 lines of Java/person-day

Test generation 5 test scenarios/person-day

managers should be aware that any slippage along this path would cause the

total Activity A to miss its end date. For this reason, this longest path is

known as the “critical path” for Activity A (Chapter 16 defines and explains

critical paths). The other two paths, however, allow for a little slippage.

Because Task A-4 takes five days less to complete than does Task A-3, it

may be started later than Task A-3 or take a little longer than the estimated

time. A similar case can be made for Task A-5. A more comprehensive dis-

cussion of this topic can be found in Chapter 16 on task scheduling.

Task Estimates and Task Assignments

According to the guideline given earlier, each of the subtasks should be rep-

resented in half-day units, since the smallest task takes less than five days.

In this example, we happen to have each subtask end on a day boundary, so,

for simplicity, it is shown here in days.

The next step is to apply the appropriate people resources to each of the

tasks in this time-estimated WBS:

1. Project management teams must first consider what skills are required

to perform the subtasks. Once the skills are determined, they must seek

people capable of performing these tasks.

2. The team must consider the availability of the identified skilled people.

3. The team must consider the timing of and the requirement of the iden-

tified person for another aspect of the project or another project.

WBS Time and Resource Assignments

47

Task
A-1

Task
A-2

Task
A-4

Task
A-3

Task
A-5

End
5 days

3 days
7 days

5 days
3 days

3 days 2 days

Figure 2.3 Subtasks with estimated times

These considerations must be made in conjunction with the schedule in

the time-estimated WBS for the subtasks in the estimated time diagram (Fig-

ure 2.3). A few items stand out in Figure 2.3. None of the Tasks A-3, A-4, or

A-5 can be started until both Tasks A-1 and A-2 are completed. Therefore, it

would make sense to apply the appropriate resources to Tasks A-1 and A-2

without delay. Let us assume that Task A-1 will require a person with archi-

tectural and high-level design skills, and Task A-2 will require a person who

has database skills. Most likely these individuals will be different people.

After the resources for Tasks A-1 and A-2 are accounted for, appropriate

resources may be applied to Tasks A-3, A-4, and A-5. Several alternatives

are possible here. If skill is not a problem, a management team may assign

the same person to perform Tasks A-4 and A-5 without compromising the

schedule because the estimated completion time for Task A-3 is equal to the

total estimated completion time for Tasks A-4 and A-5. We may also assign

the same person for Task A-1 and any of the subsequent subtasks to Task A-

1. The actual assignment of the individuals will depend on the considera-

tions listed earlier. The assignment of people may be represented via a graph

or in a tabular form with bars, as shown in Table 2.3.

For this example, we chose to assign different people for each subtask.

As stated earlier, Tasks A-1 and A-3 could be performed by the same person,

so long as that individual possesses the appropriate skills. With today’s proj-

ect scheduling tools, a table like that shown in Table 2.3 can be placed into a

form where the sequenced time-estimate portion can be represented in a real

calendar. The schedule would then reflect a more realistic timetable, with

weekends and holidays being embedded in it. A further refinement would be

to consider the potential of “some” overlapping of tasks that are represented

as sequential tasks, such as Tasks A-1 and A-2.

Chapter 2 Task Analysis

48

Table 2.3

Subtasks with Time Estimates and People Assignment

Subtask Person Sequenced time-estimate

A-1 P1

A-2 P2

A-3 P3

A-4 P4

A-5 P5 5 days

2 days

7 days

3 days

5 days

Milestones

We have taken Deliverable 1, the application’s executable code, through the

WBS refinement process to the point that we now have a schedule of Activ-

ity A complete with estimated time units and people assignments. At the

completion of these steps for Deliverable 1, management should sponsor an

activity that recognizes its team’s accomplishment. The software project

management needs to identify this achievement as a milestone. In general, a

milestone is defined as a significant event that occurs in a project at a cer-

tain point in time.

Project milestone A significant event in a project that occurs at a spe-

cific point in time.

The labeling of a milestone gives a certain amount of priority and signifi-

cance to the event. For example, management might want to label the com-

pletion of Task A-1—the application, UI, and message architecture—as a minor

milestone within Activity A. Such a labeling will give a higher priority to

Task A-1, relative to the other subtasks in Activity A, in the assignment of

personnel resources and in the selection of a highly skilled and very depend-

able person. There will be more emphasis applied to milestone tasks, ensuring

that the needed tools and other facilities are provided for that activity. This

labeling also places more management attention on that subtask.

The completion of the Activity A, as a set of subtasks, may be labeled as

a milestone as well. This is a little different than identifying the completion

of a single unit of activity such as Task A-1 as a minor milestone, where a

special emphasis is placed on that subtask. The labeling of Activity A com-

pletion as a milestone is intended to recognize its achievement. It does not

necessarily identify Activity A as a higher priority than, say, Activity B or C.

Indeed, software project management may utilize the term “milestone” for

the purpose of emphasizing a particular activity, as well as for the purpose

of recognizing the attainment of a significant task.

The table is now further enhanced to indicate the milestones, as shown

in Table 2.4

Depending on the size of the software project, it is conceivable that one

might develop a schedule depicting only the milestones. Such a schedule

may be used by higher-level management, who may need to understand and

track only the more significant events.

As software project management involves a heavy dosage of people

management, the milestone events should not pass without some type of

WBS Time and Resource Assignments

49

celebration. The celebration may be anything from an informal “thank you”

and a good handshake to a formal ceremony with recognition and mone-

tary rewards for achieving a major milestone. The important thing for the

software managers to remember is that the accomplishments of milestones

need to be publicly recognized.

The opposite situation, where a designated milestone is “missed,” also

requires the software project managers’ attention. Ideally, the responsible

software manager will already be well aware of the high risk before a nega-

tive incident occurs and will have put an action plan in place. Nevertheless,

the software manager must share the negative news, as well as the positive

news, openly and candidly with his or her team. The topic of people and

morale management will be discussed more in Chapter 14.

WBS ITERATION AND ACCEPTANCE

The first iteration of the WBS, the schedule, and the milestones will most

likely not be the final one. This part of the plan needs to be reviewed by all

stakeholders (i.e., the people who have to perform the tasks—the project

team, rather than the Software Product Management Board). The problem is

that, at this stage of the project, not all stakeholders may be available or on

board. Nevertheless, the WBS must be reviewed, and a general agreement

needs to be reached by those leaders who are already on board. Some soft-

ware projects may be open enough so that customers and users are included

in the review of the plan at this early stage.

In the review process, the management team should be prepared to

change and adjust the plan. These reviews may be somewhat time consuming,

but they achieve two important goals:

Chapter 2 Task Analysis

50

Table 2.4

Subtasks with Milestones

Subtask Person Sequenced time-estimate

A-1 P1

A-2 P2

A-3 P3

A-4 P4

A-5 P5

Minor Milestone Milestone

5 days

2 days

7 days

3 days

5 days

• The information in the plan is open and communicated to relevant parties.

• There is understanding and a degree of commitment to the plan.

Once there is general consensus about the WBS, the management team

needs to document the date, participants, and any assumptions or circum-

stantial information related to the project. This provides the team with a

baseline for the WBS tasks and the schedule. Modifications may be needed

later, and any future changes should always be recorded and evolve from

this baseline. Change control over the baseline may then be applied as dis-

cussed in Chapter 15. All plans are subject to necessary changes, but the

changes need to be tracked. Again, any change needs to be managed openly.

■ KEY CONCEPTS

The Work Breakdown Structure (WBS) is a valuable tool for the software

project managers. The process starts with the enumeration of all required

deliverables and the listing of activities or tasks required to produce each of

those deliverables. A sequence diagram is developed to place the tasks in

some order. The sequence diagram is then enhanced to include the amount

of effort and the type of resources needed, thereby converting the sequence

diagram into a table that resembles a preliminary schedule.

Including milestones on the preliminary schedule is a software project

management technique that will further enhance the visibility of the key

tasks for the software team. These milestones may be used as a control

mechanism for the overall project. Project managers must emphasize both

the success of and the failure to meet these milestones.

■ EXERCISES

1. Create a WBS for the following:

a. Putting together your favorite dinner dish

b. Building a wooden picture frame

c. Creating software that computes the average of a set of numbers and

then displays the result

2. Discuss which of the three WBSs in Exercise 1 was the most challeng-

ing for you and why.

3. To what level should one refine the WBS?

WBS Iteration and Acceptance

51

4. When provided with a schedule of activities and the respective person-

nel assignments, what should concern you even if you know that the

WBS portion is correct?

5. Why should the WBS be reviewed by others?

6. What is a project milestone, and why should it be identified?

7. Create a WBS for a software project that includes three deliverables:

design document, code, and test cases. Assume that the required effort

for design is 5 person-days, for coding is 15 person-days, and for test

case development and testing is 7 person-days. You may make

assumptions about the order and the overlapping of the activities. You

may make assumptions on productivity and number of people to

assign to each task. Evolve your WBS and show the project task sched-

ule with people assignments (see Table 2.3).

■ SUGGESTED READING

C. F. Gray and E. W. Larson, Project Management, Irwin McGraw-Hill, 2000.

J. M. Nicholas, Project Management for Business and Technology: Principles

and Practice, Prentice Hall, 2001.

S. L. Pfleeger, Software Engineering: Theory and Practice, Prentice Hall, 1998.

Chapter 2 Task Analysis

52

53

3
Goals and Measurements

Chapter Objectives

This chapter discusses the following concepts:

• Why project and product goals should be specified during the planning

phase

• Why goals should be expressed in the form of measurable attributes that

have specific metrics

• How most project and product attributes require extensive analysis

before an appropriate metric and corresponding measurement step can

be defined

PROJECT ATTRIBUTES

After analyzing and scheduling the tasks required to develop and produce a

software project’s deliverables, a management team must specify the charac-

teristics of these deliverables. This work constitutes an important component

of the planning phase of project management, the first stage in the POMA

process.

Preliminary Goals

It is during the planning phase that the goals for, and the measurements of,

the key attributes of the product and service are determined. The management

Chapter

Chapter 3 Goals and Measurements

54

team does not start from scratch; a large portion of the product and project

characterization has already been provided through the customer require-

ments. These functional and nonfunctional requirements are translated into

preliminary goals such as the following:

• A secure system

• A fully functional system

• A high-quality system

• A user-friendly and attractive system

• A cost-efficient project

• A project that meets the schedule

The preliminary goals, as stated in these terms, are extremely difficult to

achieve. Because they are not measurable, it is difficult to determine whether

they have actually been reached. The planning phase is the time to recast

these preliminary goals as more precise attributes, with metrics, so that the

attributes are measurable, trackable, validatable, and verifiable. (These terms

are defined later in this section.)

Without this recasting of the goals, one would face the issues of “what

to monitor” and “how to monitor the project status” during the monitoring

phase of POMA. Defining the goals in terms of attributes and pertinent met-

rics during the monitoring phase would be too late. As a result of not plan-

ning ahead and properly identifying the attributes and defining the metrics

for those attributes, many software project managers monitor only a few

obvious goals, such as the schedule. Unfortunately, more difficult-to-assess

product attributes—such as ease of use, quality, and scalability—continue to

receive lip service but are often not well defined and thus not actively

tracked. Similarly, the project attributes dealing with efficiency, productivity,

and other issues are often an after-thought for many projects, and they

receive attention at a post-project analysis rather than during the project

planning phase.

Measurable, Trackable, Validatable, and Verifiable Goals

It is important in the planning phase to first express the goals of the soft-

ware project. This insistence on setting the goals during the planning phase

for a software project is derived from the principles underlying the G/Q/M

paradigm proposed by V. Basili and others. G/Q/M is a “systematic approach

for setting project goals (tailored to specific needs) and defining them in an

operational and traceable way.”

G/Q/M (Goal/Question/Metric) A software metric paradigm based on

identifying the goals, formulating questions about the goals in quantifiable

terms, and establishing the metrics to answer the formulated questions.

A successful management team expresses project goals (G), which are

characterizations of the attributes of the deliverables and of the processes, in

the form of questions (Q) that are quantifiable. Then, from the specified

attributes, the management team can outline and accept a set of metrics and

measurements (M). An attribute must be measurable and trackable before it

can be considered a meaningful attribute for a goal.

Measurable attribute An attribute for which there is a well-defined

metric and a methodology for its measurement.

Tracking Keeping a record of the measurements taken on an attribute.

The notion of “measurable” is further explained later in this chapter in

the section “Metrics and Measurement: An Overview.” Clearly, an attribute

cannot be considered trackable if it is not measurable.

Furthermore, the measurement of that attribute must be able to be vali-

dated and must be verifiable. Project goals and their measurements should

be validated because the process of validation confirms that the customer

requirement has been satisfied. An example would be the case in which the

user’s requirement asks for a response time for queries to be no more than 2

seconds. Thus the goal for the attribute called “query response time” would

be set at less than 2 seconds. Certainly, one can, with some thought, con-

struct a set of queries and then measure the response times for them. If none

of the response times exceeds 2 seconds, then the customer’s requirement is

satisfied. Note that the goal may be validated regardless of whether the goal

is actually satisfied.

Validation of goal Comparing a stated goal for an attribute with the

actual measurement taken for that attribute.

The goal for an attribute and its associated measurement must be vali-

datable. One must be able to show that the measured result matches that

specified by the customer as the goal.

At the same time, the management team must verify all measurements.

This effort confirms that the measurements are properly acquired and that

any transformation of the raw measurements for that attribute has been

performed correctly. The actual act of measurement and any computation

that is performed must be traceable and demonstrable. In the preceding

Project Attributes

55

example of the response time attribute, the verification of the measurement

for that attribute would involve ensuring that the set of activities—which

includes the construction of the test cases, the running of the test cases, and

the reading and recording of the clock time for each query test case—is per-

formed properly.

Verification of measurement Ensuring that the measurement of an

attribute is properly taken and recorded through repetition, tracing, or

some other means.

Once the goals for the project are defined in terms of attributes that are

measurable, trackable, verifiable, and validatable, it is possible to monitor

the project status. The status of the project is reflected in the measurements

taken on the attributes.

METRICS AND MEASUREMENTS:
AN OVERVIEW

We will now take a small digression to discuss the concepts of metric and

measurement. A metric is the unit that we use to characterize the attribute. A

measurement is the actual act of counting, using that metric. For example,

we use “hour” as a metric for the attribute “time,” and we use a clock as the

tool to perform the actual measurement. The reading of the clock is the

measurement. In the case of measurement, the characterization of an attrib-

ute, for the purpose of project management, should be such that it ultimately

results in numerically counting the metric of the attribute.

Metric The unit used to characterize an attribute.

Measurement The act of characterizing an attribute, which may involve

multiple steps, utilizing the agreed-upon metric for that attribute.

It is possible to include several activities in the measurement. Suppose

“elapsed time” is the attribute of interest. Then “hour” may still be the metric.

To determine elapsed time, however, one would need an initial reading of the

clock, a final reading of the clock, and the difference between the two read-

ings in order to obtain the elapsed time. Thus the measurement of elapsed

time as the attribute is a little more complex than the simple time attribute. In

both cases, the metric remains “hour.”

Chapter 3 Goals and Measurements

56

Aside from specifying the metrics for the deliverables, the planning team

may need to define metrics for other software project-related attributes—such

as productivity, team morale, tool effectiveness, and user satisfaction—that

are indirectly related to the actual deliverables. These may be categorized as

process attributes or as project attributes. The difference between process and

project attributes is subtle and minor, and some thought is required to define

them. For example, productivity may be a process attribute. We are generally

interested in software development processes that offer high productivity

without sacrificing product quality. At the same time, the productivity

attribute of a specific project utilizing a “highly productive” process is of

direct and immediate interest to that project manager. For software project

managers, setting goals for these process and project attributes is as impor-

tant as setting goals for the deliverables.

The schedule, the most obvious attribute for all projects, is a defined set

of time goals agreed to by everyone involved; staying on schedule is an

important goal that people readily understand. Both the metric and the

measurement for schedules are defined in the calendar. Thus everyone

appreciates the goal of meeting the project milestone dates.

The cost of the project, as an attribute, is also easy to measure because it

is something that is well understood. Likewise, the cost given in terms of

some currency is already a well-defined metric. The goal of meeting the esti-

mated cost is easy to comprehend and track.

Unfortunately, aside from these two popular project attributes, most

attributes and their respective goals—for example, quality, completeness of

functions, and ease of use—are generally difficult to measure because we

typically do not understand them well enough to define quantifiable metrics

easily. Furthermore, once a numerical metric is set, the measurement process

that uses that metric must be developed. Software engineers and software

project managers are still working diligently to improve the measurement of

software. Without a better system for metrics and measurements, activities

such as tracking, verification, and validation of software attributes will con-

tinue to be more of an art than a science, and will be based on the personal

experience of the various project managers.

For example, for an inexperienced organization, the project schedule is

often tracked by asking for each individual’s measurement. The answers

from the individuals may come in a form such as “90% completed.” Unfortu-

nately, this metric of “percent completion” is not defined, nor is the meas-

urement of how one defined and arrived at 90% completion. An

inexperienced manager may interpret 90% completion as a good status and

Metrics and Measurements: An Overview

57

not realize that it may not mean what he or she thinks it means. For exam-

ple, “90% code completion” may mean “I have coded 90% of the functions;”

“I have coded 90% of the functions and these functions have passed my per-

sonal unit testing;” “I have coded 90% of the functions and these functions

have gone through the formal functional test cases conducted by the test

department;” or “ I have coded 90% percent of the functions, these functions

have gone through all the formal functional tests, and all the problems

found have been corrected and retested.” An experienced manager, by con-

trast, might first define the metric for the percent completion attribute for

different tasks and then ask each individual to measure his or her schedule

status by using the same metric definition and then validating his or her sta-

tus against the scheduled milestone.

This type of difference in sophistication levels among organizations and

managers does affect the project’s end result. The Software Engineering Insti-

tute has studied the maturity levels of many software organizations and offers

its Capability Maturity Model (CMM) as a guideline for assessing software

maturity levels. Interested parties should consult the article by W. S. Humphrey

listed in the “Suggested Reading” section at the end of this chapter.

Capability Maturity Model for Software (CMM for SW) A model,

defined by the Software Engineering Institute, that defines five possible

levels of maturity for a software organization. The five levels are Initial,

Repeatable, Defined, Managed, and Optimizing.

DELIVERABLE-RELATED METRICS
AND MEASUREMENTS

The software project managers and the customer both need to participate in set-

ting the goals for the deliverables. As stated earlier, much of the goal setting

should have been accomplished during the requirements specification process.

However, broad-statement goals such as “good-quality,” “user-friendly,” or

“reliable” software are not sufficient; goals stated in this form cannot be meas-

ured and are difficult to validate. If the goals are immeasurable, we can never

show ourselves—or our users and customers—that the goals have been met.

Let’s explore some deliverable attributes that are interesting to users,

customers, software developers, and software project managers alike. The

following is a list of software deliverable attributes or characteristics that are

often cited as important:

Chapter 3 Goals and Measurements

58

• Quality

• Usability

• Functional completeness

• Maintainability

• Modifiability

• Reliability

• Installability

Each of these characteristics requires some in-depth understanding and

effort before a reasonable goal and metric can be designed and put into the

plan. We will not cover each of these attributes here, but rather will select

one to demonstrate the level of preparation and work required before a

meaningful goal, metric, and measurement for that attribute can be stated.

The software project managers should know the amount of effort that should

be anticipated if a particular attribute is not well defined for the project and

will need refining at a later stage. In general, the broader the attribute, the

more time is required to break down the attribute into clear subattributes.

We will demonstrate this statement by examining an example using one

popular attribute, quality.

Metrics and Measurements Example I:

The Quality Attribute

Quality is an attribute of the software deliverable that all software projects

embrace, but it is often ill defined. Software quality may, for example,

describe the amount of errors in the software. Alternatively, it may describe

how well the delivered software meets all the stated application functional

requirements, even if it contains errors in a nonfunctional area such as the

setup function. Sometimes the quality attribute includes a performance

attribute, such as response time.

For each of these alternative definitions of the quality attribute, a differ-

ent metric must be defined. For example, the number of errors found would

be used as a metric for one definition of quality, whereas the percentage of

desired functions delivered might be a metric for a different definition of

quality. One can see that it is important to clearly state and define both this

attribute and its metric and then set the appropriate goal for that attribute in

terms of that metric.

Assume, for the moment, that the attribute “quality” is defined and

agreed upon as “the amount of known problems in the software.” In this case,

Deliverable-Related Metrics and Measurements

59

the metric for the attribute is the number of known problems. This assump-

tion is nontrivial in that many discussions and arguments could have been

expended to arrive at this common ground. With this definition, high quality

would imply a low number of known problems, as shown in Figure 3.1

The quality goal, therefore, would be expressed in terms of a specific

number of known problems in the deliverable. Further, assume that a prob-

lem is defined to include any mistake made by the developer, regardless of

whether it manifests itself as a defect during execution after delivery to the

customer. This seemingly simple concept of the software quality attribute

will actually require substantial planning; the number of problems can be

very difficult to track and validate.

Errors Versus Defects Here we are using the terms “error” and “defect”

differently than we have before, so the definitions of these terms need

refinement:

• A software error is a mistake made by the software supplier (or developer).

• A software defect is the manifestation of an error during the execution

of the software.

In its characterization of software quality, the management team first

must choose one of these definitions to establish whether a problem refers

to an error or a defect. Defining software quality as “a lack of known soft-

ware errors” leads to one set of considerations. Alternatively, defining

software quality as “a lack of known software defects” leads to a different

set of considerations. For example, setting the goal for quality at “zero

Chapter 3 Goals and Measurements

60

Quality

Problems found

Figure 3.1 Inverse relationship of problems found versus quality

known software errors” makes the task of proving the attainment of such

a goal almost impossible. We can never show that a deliverable has zero

errors. Setting a goal of “zero known software defects” is a better alterna-

tive, but not by much, since the attainment of such a goal is also very dif-

ficult to show.

Note that both goals include the term “known” to qualify the types of

errors and defects. For our metric and measurements, known errors and

known defects are considered at specific time frames, such as at the end of

testing or at the moment just prior to product release. Theoretically, more

errors or defects may exist in the product, but at the specific time the prod-

uct is evaluated, the product reveals only a certain number of problems. It is

assumed that some set of testing methodology and process has been selected

and agreed upon ahead of time, and that the attribute of quality is repre-

sented via the results of these planned testing activities. In practice, the type

of testing and the use of those testing results as quality indicators are closely

intertwined. The choosing and setting of methods and processes for a soft-

ware project is discussed in Chapters 4 and 7.

For now, let us proceed through a series of planning steps. These steps

are required when the number of software defects found through testing is

used to determine the quality attribute.

Incremental Goals As much as you may desire to attain the goal of zero-

defect software, it may not be a prudent goal in a large, commercial product

environment, for several reasons. First, the customer and the user may not

necessarily need such a lofty goal. Second, the effort to attain zero-defect

software may not be worth the cost; from a price-performance perspective, it

may not be a good choice. Third, the actual measurement and analysis, or

validation and verification, required to demonstrate the attainment of such a

goal would likely be quite complex and costly.

Instead, the software project manager should opt for a software quality

goal that is expressed in an incremental form, such as subgoals for each of

the categories of software quality. The following is an example using prob-

lem severity levels. One can first identify a number of levels of defects by

severity:

• High-severity defect: a defect that will stop the total software system and

all work related to the system

• Medium-severity defect: a defect that will cause the loss of a function of

the system, thereby preventing the user from completing his or her work

as planned

Deliverable-Related Metrics and Measurements

61

• Low-severity defect: a defect that will cause some inconvenience and

possibly require the user to perform a “workaround” to complete his or

her task

• Minor-severity defect: a defect that will cause some misunderstanding of

terminology or require a minor adjustment in the usage interpretation

Other project management teams might devise a defect categorization

scheme with a different number of severity levels and different defini-

tions of severity levels. Severity Level 2 in the previous list can be fur-

ther refined into different types of noncatastrophic problems and thus

expands the severity categorization to 5 or 6 levels. There clearly are

other ways that defects can be broken down into categories that have

associated subgoals. For instance, one less popular categorization of

problems is based on the place at which the defects manifest themselves.

With this approach, problems are categorized as either major or minor.

Major problems appear on the main path of the software; the main path

of the software is defined as functional options that exist only on the

first screen and its immediate successor screens. All other problems are

classified as minor problems.

Quantitative Subgoals Once a defect severity categorization is established,

then the quality subgoals may be expressed in terms of these categories. The

quality goal may be expressed in a quantitative form as follows:

• The software deliverables will contain zero known high-severity defects

and zero known medium-severity defects at the time of the software

release.

• The software deliverables may contain some known low-severity defects

at release time, but they will all be fixed by the next maintenance

update release, which will be in three to six months. (The term “some”

may be changed to a more precise term such as “no more than ten.”)

• The software deliverable may contain known minor-severity defects at

release time, and these defects may be fixed at the convenience of the

solution provider. (Again, no specific number is provided, but the team

may choose to give a specific number.)

Metric Definition Given this set of subgoals, the metric for the software

quality attribute would be defined for each defect type:

The number of unresolved or “open” defects by defect severity level

Chapter 3 Goals and Measurements

62

The Measurement Process The measurement process may be a set of

weekly—or some other regular interval—tasks, including the counting, collec-

tion, and analysis of the test results. As part of the measurement process, the

management team should receive regular updates on the number of defects,

according to severity levels.

Reporting Format The software project management team must have a

clear understanding of what needs to be tracked, in terms of defined attrib-

utes and metrics, and how these data will be presented. Table 3.1 shows an

example of how the “High-severity” defects portion of a software quality

evaluation would appear in a weekly quality report.

Let’s take a closer look at a field-by-field description of the heading and

the sample “High severity” row.

The Date field indicates the currency of the information. The Defect-

type column indicates the level of severity represented by each row. The

Problems-found column shows the number of defects found for that cate-

gory during this reporting period, which may be by the week or by some

other time interval. The Problems-closed column shows the number of

problems found during this reporting period that have been fixed and

retested for each of the categories during the reporting period. The Prob-

lems-still-open column gives the number of problems that have not been

fixed and retested for each category during this reporting period. Thus

Problems still open is calculated as Problems found minus Problems closed

for that reporting period. The Accumulative-problems-still-open column

shows the number of unresolved problems in each category; it includes all

Deliverable-Related Metrics and Measurements

63

Table 3.1 Weekly Quality Report

Date: (week-ending date if a weekly report)

Defect type Problems Problems Problems Accumulative Quality goal
(by severity) found closed still open problems still number

open

High 12 9 3 5 0 open at
severity release

Medium
severity

Low
severity

Minor
severity

unresolved problems from earlier periods and the Still-open-problems from

the current period. In this example, there were two unresolved problems

left from the previous periods and three from this period, giving a total of

five Accumulative-problems-still-open. Finally, the Quality-goal-number

of zero shows the target for the high-severity defect level. How well the

goal for the software quality attribute is attained may be validated quite

easily through this kind of reporting.

The actual format of the report needs to be clear and consistent because

resources will be expended in collecting and presenting the information. By

forcing precision in the reporting format, the project manager ensures that

the metric of the attribute of interest is defined, and that a measurement

process for that attribute is in place. In the example described here, the num-

ber of defects for each severity level can be counted and collected through

the various testing activities associated with the development of the software

deliverable. This information can be tracked as long as the team keeps good

records of the various defects found and resolved. The reports can be main-

tained in a database for future analysis and verification.

The information presented in the report is verifiable: We can check

whether we have made the correct computations as we progress from raw

numbers, such as “defects found” and “defects resolved,” to derived numbers,

such as “open defects” at release time. The attribute of quality can also be

validated because the number of open defects can be compared with the goal

number of “allowable” open defects at release time. The quality attribute of

the software deliverable, through this type of planning, is formulated to be

measurable, trackable, verifiable, and validatable.

As the software project progresses, the management team will need to

regularly monitor the number of unresolved defects and compare it with the

target goal. For any of the attributes of the software deliverable, the level of

thought and planning required is similar to that required for the quality attrib-

ute. In order for the organizing, monitoring, and adjusting (OMA) phases of

POMA project management to operate smoothly, the goals of the project, and

the measurement process of those goals, have to be considered and defined at

the planning stage.

Complex Attributes

A complex attribute is an attribute whose metric definition requires a set of,

or combination of, statements and definitions. In the preceding example, a

set of severity levels was first defined and then metrics were defined for each

Chapter 3 Goals and Measurements

64

severity level; from that example one can conclude that quality is a complex

attribute. Usually, a complex attribute should be decomposed into several

simple attributes (i.e., attributes whose metrics may be stated with a single

definition) and expressed in terms of those subattributes.

Complex attribute An attribute whose metric definition requires a set

of, or combination of, statements and definitions.

Simple attribute An attribute whose metric may be stated with a single

definition.

Attributes of every product or project must be defined in such a manner

that the metric is a specific number that may be compared and operated on

arithmetically. This is a much more difficult task than it might seem at first

glance. For example, the metric and measurement process for popular prod-

uct attributes other than quality, such as usability and maintainability, have

been carefully studied and analyzed. Nevertheless, these complex attributes

still do not have standard goals, metrics, or measurements on which the soft-

ware industry consistently agrees.

Consider one well-known goal for software design: “loose” coupling

among software components. “Coupling” between two software components

describes the dependence of the components. Without a numerical metric

for coupling, we can use only an imprecise term such as “loose.” The metric

for the goal of loose coupling has yet to be agreed upon, even though the

attribute has been under study for nearly a quarter of a century.

Software project managers must study the work and experiences of

other software projects before settling on a goal, a metric, and a measure-

ment process for the attributes of interest in their own project. The concrete

set of tasks that the project manager must perform to formulate a goal, a

metric, and a measurement for an attribute that is not yet defined will

depend on the specific attribute of interest. In other words, the “how” part of

goal, metric, and measurement setting is determined by the particular attrib-

ute that is under evaluation. Nevertheless, the key for successful project

management is to have at least the following items in the plan:

• The list of software deliverable attributes that will be measured for the

project

• For each attribute, the definition of the attribute metric, stated in quan-

titative form

• The definition of the goal for that attribute stated in terms of that metric

Deliverable-Related Metrics and Measurements

65

• The measurement process to attain and communicate the data, stated in

terms of the metric

• The exact reporting format for the information

It is also possible that multiple metrics and measurements might be

needed for one complex attribute. For instance, the quality attribute that we

discussed can have another metric associated with it, besides the number of

problems. It would, for example, be meaningful to include a test coverage

metric along with the known-defects metric. The goals for software code

deliverable quality could then be stated in the following manner:

• Ninety-five percent of the executable code will be covered and executed

with the planned test cases.

• The product will not contain any known high-severity defects at release

time.

Complex deliverable attributes may require multiple metrics and multi-

ple measurement methodologies. Thus, for a product attribute that is very

broad, such as quality or usability, the project management team should

strongly consider decomposing the attribute into a set of simpler subattrib-

utes, with metrics and goals associated with each subattribute.

PROJECT- AND PROCESS-RELATED
METRICS AND MEASUREMENTS

Aside from the direct product deliverable attributes, project managers must

address many project-related characteristics. We mentioned schedule and

cost earlier as two primary areas that require attention. Of the two, software

project managers tend to focus more attention on the schedule. Each project

requires a unique set of product goals and metrics, but software project man-

agers are often asked to describe the nature of their projects in terms of only

the nondeliverable, project- and process-related attributes. The following is a

list of common, nondeliverable project-related attributes:

• Schedule integrity

• Cost minimization

• Productivity

• Efficiency

• Cost-effectiveness

• Employee morale

Chapter 3 Goals and Measurements

66

Practically all projects must deal with the issues of schedule and cost,

and it is important to clearly grasp these two attributes. The schedule

integrity attribute will be discussed in some detail here.

Metrics and Measurements Example II:

The Schedule Integrity Attribute

Most software project managers automatically assume that schedules must

be met. Schedule integrity, however, is not merely “delivering the product

on the release date.” Just as managing the quality attribute requires sub-

stantial planning, so maintaining schedule integrity demands considerable

work in terms of setting the definition, reaching general consensus, and

attaining broad adoption. We do not offer a single definition for schedule

integrity for the same reason that we do not offer a single definition for

quality: For each project, the software project manager has the opportu-

nity to think through and define it differently. Schedule integrity does

have a commonly utilized metric, that which we use to measure time.

Even so, the project manager must clearly define each of the events and

the deliverables associated with every time slot in a schedule. The comple-

tion times associated with special events or deliveries are called mile-

stones. There are major milestones and minor milestones depending on

the type of event or deliverable.

The actual time metric may be specified in one of several ways. The sim-

plest is to state one specific figure in a specific format, such as month/day/year.

Another way is to provide a loosely specified time such as “end of month x,”

“middle of the month,” or “end of day z.” A third approach is to provide an

interval such as “the last week of the month” or “the month of April.” Some

project managers use quarters as the unit, such as “the second quarter of year

x.” In all of these loosely defined intervals, it is almost inevitable that the last

day of the week, of the month, or of the quarter becomes the de facto mile-

stone date.

Once the deliverables are defined and the time schedules are specified

for the milestones, the schedule integrity goal needs to be specified. For a

relatively simple project whose total duration may be only one-half year, the

schedule goals for the project may be stated as follows:

• The final project milestone must be met.

• All intermediate milestones must be met within two days of the sched-

uled time.

Project- and Process-Related Metrics and Measurements

67

Such a set of schedule goals will allow the software project managers to

conduct the organization, monitoring, and adjustment phases of the project.

The intermediate milestones provide the software project managers with a

simple monitoring mechanism that will alert them to any impending prob-

lem before the final schedule becomes hopelessly unachievable.

For an experienced company that has developed many software solu-

tions and is managing many software projects, the goals at the organiza-

tional level for the set of projects may be stated slightly differently:

• Ninety-seven percent of projects meet the final milestone schedules.

• Ninety percent of projects meet all intermediate milestone schedules.

For a customer who is interested in only one specific project, having the

schedule integrity goals stated at the organizational level, rather than at the

project level, is certainly less attractive and less useful. The software project

managers, therefore, may choose to have both types of goals: one for the

individual project and one for the organization’s long-term needs. The orga-

nizational-level goals and metric are usually more meaningful for upper and

executive management.

Schedule Attribute Metric and Reporting Format The metric for the

schedule is the same as that for time. The actual process of measuring time,

however, needs to be further defined. For each milestone, the project man-

ager must compare the scheduled event or deliverable time against the actual

time when the event occurs or the deliverable is completed. This information

must be recorded and maintained for future reference. Table 3.2 shows one

possible format for a weekly schedule report.

The actual measurement is taken based on the project team’s frequency

of project status meetings. For a project that conducts daily status meetings,

the measurements are taken daily. Likewise, projects that conduct status

meetings on a monthly basis will usually take measurements on a monthly

basis. Clearly, for projects that last only several weeks, the measurement

Chapter 3 Goals and Measurements

68

Table 3.2 Weekly Schedule Report

Milestone Description of Scheduled Actual Difference/Explanation
type and number the event or time (goal) time

deliverable

Major milestone 1 Requirements Mid-March 3/16/2003 Goal met; 3/16/2003
prototype 2003 was a Monday
delivered

must occur more frequently than on a monthly basis, and status meetings

should also be conducted more frequently.

The chart in Table 3.2 reveals whether the project milestones have been

met and, if necessary, why a milestone has not been achieved. This chart,

however, does not alert project managers to potential problems. For a meas-

urement scheme that will inform the project management team about major

milestones, the metric and the measurement scheme must be tied to multiple

minor milestones that lead up to each major milestone. Therefore, the sched-

ule must include an ample number of minor milestones.

Let’s look at an example to illustrate the interrelationship of minor

and major milestones. Let’s consider a software project that has gone

through the Work Breakdown Structure activity (WBS; see Chapter 2) and

has all of its deliverables attached to milestone dates. Furthermore, all of

its events, such as getting approval for requirements or attaining concur-

rency on the software design, are pegged to milestone dates. The prelimi-

nary WBS and established milestone dates are absolutely essential to the

management of a schedule. If the whole project duration is defined in

months, then the schedule metric should be in days, and the milestones,

along with the goals, should be expressed in terms of specific dates. The

metric may be scaled up to weeks if the total project duration is more

than a year.

Here we assume that the example software project has a total duration

of only a few months and that the WBS and the major events of this project

have been worked out and set up. To keep the example simple, we will focus

on only the requirements phase of this small project:

Task 1.1: Obtain customer concurrence on requirements-gathering

process.

Task 1.2: Gather and document requirements.

Task 1.3: Deliver requirements prototype.

Task 1.4: Deliver requirements specification document to customer.

Task 1.5: Review and rework requirements.

Table 3.3 shows each of these tasks, the assignment of a responsible per-

son, and the number of units it would take for the task to be completed. The

basic metric is a person-day. Every estimate that appears in Table 3.3 should

be rounded upward to the next higher person-day if it is fractional. In this

case, the responsible person also performs the task. In more complex situa-

tions, the responsible person may lead a team of others; the WBS would then

need to be further expanded so that each task could be assigned to an indi-

vidual task-performing person.

Project- and Process-Related Metrics and Measurements

69

Table 3.3 Task Breakdown for Schedule Attribute Example

Task Responsible Estimated person-days
person

1.1 P1 1 day

1.2 P2 8 days

1.3 P3 5 days

1.4 P2 4 days

1.5 P1 3 days

The project manager, together with the responsible people (P1, P2, and

P3), must consider several items:

• How these tasks can be laid out in a calendar schedule form, depicting

potential task overlaps

• How much buffer should be put into the estimated person-days and used

to establish the milestone dates

• What the project goals should be and how they relate to the milestone

dates

The planning activities described here are starting to overlap with the

organizing phase of project management. Even though we may get some

idea of the type of people and the talent required during the planning phase,

we may not yet have a particular individual assigned to each task. In fact,

the organization and assignment of specific personnel to the tasks may not

be completed until the organizing phase of POMA. Thus talking to the soft-

ware engineers and estimating buffers require some forward guessing about

the project’s organization and the slotting of specific names to positions.

Sometimes it is necessary to delve into the next phase to back up and better

plan the current phase.

For each of the planning activities, the project manager needs to involve

the other participants and consult data from past experiences with similar

projects. Past experience does not always predict the future, but many past

project data, such as those dealing with the adequacy of the buffers used in

past projects, can prove helpful in planning the buffer allocation in the cur-

rent project’s schedule.

Task Overlap To assess whether any of the requirement tasks overlap, the

project management team needs to look at which tasks are prerequisites of

Chapter 3 Goals and Measurements

70

other tasks. The tasks that have a linear relationship must be carefully

planned so that, if they must overlap, managing the overlap is not merely

wishful thinking but is truly doable. For this example, let’s assume that 20%

of Task 1.3 may be started before Task 1.2 is complete, that 25% of Task 1.4

may overlap with the end of Task 1.3, and that all other tasks must not start

until the previous task is completed.

When working with a visually-oriented plan and focusing on just the

diagram, project managers sometimes make a mistake and overlap activities

that cannot actually be conducted in parallel. The managers may not realize

that they have devised a schedule that is too short, but formulating such a

plan will put the project in a precarious position from the start. Managers

may utilize tools that will graphically portray partial ordering. But, again,

the key decision is which activities are partially ordered and which activities

are totally ordered.

Buffer Size The amount of buffer to place on the initial estimate from the

WBS is a project management call. Although there have been projects with

more than 100% expansion of schedule, traditionally the project manage-

ment team adds a 10% to 15% time buffer. The final decision depends on

several criteria.

One important consideration is how adverse the customer is to schedule

slippage. If the customer emphasized deadlines to the extent that he or she

included a penalty clause in the contract to account for schedule integrity,

then the software project manager may consider placing an extra buffer in

the schedule estimates.

The project management team, together with the business development

team or the sales team, also has to take the price-competitiveness aspect of

the project into account in their planning. Adding a lot of buffer time to a

schedule lowers the risk of missing milestone dates. However, adding too

much buffer will inflate the cost, increasing the price of the project beyond

that charged by competitors for similar projects. Price-competitiveness con-

siderations must always be part of the planning.

Another consideration is how much buffering is added as each higher

level of management reviews the estimate. As mentioned earlier, placing

extra buffers at each level may price the project out of competitiveness.

In this example, assume that only one level of project management

decides the amount of buffering—15%. The 15% buffer for this example

would be equal to 21 days � 0.15 days buffer, which is 3.15 days total

buffer. The 21 days is the assumed number of working days per month. We

Project- and Process-Related Metrics and Measurements

71

round up to the next person-day, so the buffer days will also be rounded up

to four person-days. The actual schedule may show the buffer as a lump-

sum number to be added to the last task of the schedule, or it may distribute

the buffer across all the tasks and thus show it as part of each task. In our

example, the buffer will appear as a lump-sum number added on to the last

task of the schedule, Task 1.5.

Schedule Integrity Goal The schedule integrity goal of the project can now

be established, given the amount of task overlap and buffer size. Within the

schedule, the major milestone is the completion of the requirements review

and rework—that is, the successful completion of Task 1.5. Thus a goal

would be to meet this major milestone on time.

There are many ways to set subgoals for the minor milestones. The

minor milestone goals should be set in such a way that if any is missed, the

schedule includes enough flexibility so that the team can recover without the

next minor milestone being compromised. We will call this the “immediate-

recoverable” subgoal-setting method.

Immediate-recoverable goal setting Setting a goal and its associated

metric and measurements in such a way that if the goal is missed, there

is an immediate way to recover without expending a large amount of

extra resources and potentially causing other goals to be missed.

Project management teams who are particularly adverse to risky sched-

ules often practice this approach. The project subgoal for this example,

where the smallest task requires one calendar day, is set such that “at the

end of any day, no task is more than one day behind.” The minor milestones

of completing Tasks 1.1, 1.2, 1.3, and 1.4 are further broken down into daily

subgoals. The rationale behind the immediate-recoverable subgoal-setting

method is that without adding resources, if every task is kept within one day

of the schedule time, the task slippage may be made up over the weekend.

The weekend is assumed to be two days.

Of course, this methodology may fail if the initial effort estimation is dra-

matically understated. It also assumes that the project will not require weekend

work for a lengthy period of time. Past experience has shown that extended

overtime wears people down, lowers morale, and increases the number and

frequency of errors, which in turn causes more rework and additional slippage

of schedule. The project manager needs to consider the disposition of the proj-

ect team members and set a limit to the number of overtime weekend work

hours allowed. Based on various project experiences, the author suggests this

limit be no more than four consecutive weekends. In our example, the limit of

Chapter 3 Goals and Measurements

72

four weekends allowed for working overtime will not be a problem because

the whole requirements phase spans four work weeks. Furthermore, there is a

15% buffer at the end that may be used instead of overtime.

Now let’s look at the schedule for this example and the related goals,

shown in Figure 3.2.

The rough schedule shown in Figure 3.2 allows us to compare, on a

daily basis, the schedule goals with the schedule status. A four person-day

buffer appears at the end of the planned Task 1.5. The goals are to attain the

major milestone—namely, completing Task 1.5 on or before Wednesday of

the fifth week—and to attain all other minor task milestones within one day

of the schedule, assuming the project starts on a Monday. For any week, no

slippage is allowed to exceed one person-day of work within that week so

that the two weekend days may be used as the immediate-recoverable time.

Even if part of every weekend is used for immediate-recoverable purposes,

the schedule includes only four weekends so that the chance of exhausting

the team is not high.

The four person-day buffer is available for the team as well, but the

project management team may decide to hold the buffer days and not use

them for the immediate-recoverable weekend work. Instead, the buffer days

may be saved to offset other problems, such as sickness, accidents, or family

emergencies, that are not directly related to the performance of the project

activities. Some management teams may choose to use part of or all of the

buffer days instead of the weekend days. How a team utilizes the buffer

depends on the project managers’ style. More risk-adverse managers tend to

save the buffer days. Some project managers are so date-driven that they not

only try to save the buffer days but also attempt to squeeze in weekend days

so as to beat the schedule goal, rather than use the buffer days for immedi-

ate-recovery purposes. Although it is fine to squeeze the project and try to

beat the schedule, that approach should not become a standard practice.

Schedule integrity addresses the issue of meeting the date attribute. Missing

it by finishing either too late or too early is not considered good practice.

Project- and Process-Related Metrics and Measurements

73

Figure 3.2 Example schedule

Task

Buffer

1.1
1.2
1.3
1.4
1.5

P1
P2
P3
P4
P5

X
X X X X X X X X

X X X X X
X X X

X X X X
Y Y Y Y

M MW F Sat SunTh W F Sat SunThTu Tu M W F Sat SunThTu M WTuM W F Sat SunThTuPerson
Week 1 Week 2 Week 3 Week 4 Week 5

Overly ambitious managers need to remember that a project completed much

earlier than the expected date suggests poor planning and inadequate under-

standing of the capabilities of the resources.

Interrelated Attributes

Many process- and project-related attributes are intertwined. It is the rela-

tionship of these attributes that makes project management such an inter-

esting—and potentially difficult—challenge. For example, the schedule and

cost attributes are interrelated in that schedule can sometimes be signifi-

cantly improved by applying more resources, which usually translates to

higher costs. Conversely, cutting the budget for the project may negatively

influence the schedule. It has also been the experience in the software

industry that not all project schedules can be improved with more

resources. Indeed, many software project schedules have been extended by

the introduction of more people on the team at the wrong time, as Fred

Brooks, who was the executive responsible for the IBM 360 operating sys-

tem and is currently associated with the Computer Science department at

the University of North Carolina, noted in his book The Mythical Man-

Month. Brooks also stated that:

When a task cannot be partitioned because of sequential constraints, the

application of more effort has no effect on the schedule.... The bearing of

a child takes nine months, no matter how many women are assigned.

Many software tasks have this characteristic of sequential nature....

Adding more people when a software project is already experiencing prob-

lems will often exacerbate a schedule problem because the most knowledgeable

members’ focus will be diverted to teaching, coaching, and helping the new

members who just came on board rather than tackling the underlying problems.

The question of when to best introduce the resources, a question that

affects cost, may be further complicated by other criteria that have to be sat-

isfied. From a software project activities perspective, resources need to be

provided prior to the scheduled performance of the activities because there is

usually a need for a short preparation time just before the actual perform-

ance begins. However, from a financial perspective, sometimes the resources

must be held back until the beginning of the following month after the

scheduled time. This tactic is employed so that the total monthly expense

target, a potential financial goal, can be satisfied. Software project managers

often need to work with the financial managers to ensure that both the

resource needs and the monthly expense targets are satisfied.

Chapter 3 Goals and Measurements

74

A less discussed project attribute is employee morale. The productivity of

the employees serving on the project is often closely tied to their morale, as

well as their competency and other factors. A demoralized team, regardless of

the reason for their low morale, will not perform as effectively as a satisfied

team. The schedules, which are based on some productivity assumptions, will

clearly be affected. Despite this factor’s direct influence on the project’s suc-

cess, the job of setting the measurements for employee morale and gathering

that information usually falls on the shoulders of the personnel department

rather than software project managers. The software project managers, on the

other hand, are responsible for setting productivity goals and measuring pro-

ductivity. Tying the employee morale goal and measurements to the project

productivity goal and measurements requires the coordinated efforts of both

personnel and software project management members.

One example from the author’s own management experience involved a

situation in which a new configuration management process and tool were

introduced to the software team. Initially, these changes met with a lot of

resistance. Employee morale dipped, and the changes were cited as one of

the causes of workers’ dissatisfaction on the annual employee opinion sur-

vey. The expected productivity gains from the new configuration manage-

ment process and tool did not materialize immediately, because more time

was needed for the people to become educated in the new process/tool, make

novice mistakes, and learn from these experiences. Over time, however, the

organization’s productivity shot up, people felt encouraged, and the opinion

survey results became much more favorable. Missing some of the goals on

employee morale provided a forum for a candid discussion of what was

needed to achieve the productivity goal.

Trying to balance multiple attributes and multiple project goals can be a

daunting task for software project managers, particularly those with less

experience. During the monitoring phase, many attributes may show con-

flicting status relative to the goals. In the preceding example, bringing in a

new process and tool led to declines in productivity and morale in the begin-

ning; eventually, however, both productivity and employee morale goals

were exceeded. Thus just setting the goals is not enough; the multiple goals

must be prioritized. The priority of the goals may then be used to guide

adjustment activities, if they later become necessary.

In software project management, as in other project management, there

are many interrelationships among the product and project attributes. The

following three possible attribute combinations are represented with the �

symbol, which signifies that the attributes are “cross-attributes”:

• Product attribute � project attribute—for example, product quality and

product functionality

Project- and Process-Related Metrics and Measurements

75

• Product attribute � project attribute—for example, product functionality

and project cost

• Project attribute � project attribute—for example, project schedule and

project cost

Setting goals and measurements for both the product and the project

requires in-depth knowledge of the various attributes and their interrelation-

ships. During this software project planning phase, the software project

managers will often need help from both peer-management and upper-

management teams, as well as from technical leaders.

Because software projects are heavily people-oriented, the software proj-

ect managers must pay special attention to those attributes that touch on

personnel issues and study the consequences of personnel attributes as they

are related to other project attributes. These “interattribute relationships”

must be recognized, considered, and managed throughout all POMA phases

and, indeed, throughout the entire project life cycle. Each component of

software project management should not be viewed as an island unto itself.

The various goals set by different people contributing to the project must not

conflict with each other. For example, the goals set by the group interested

in quality and the groups interested in costs or schedules or functions must

all be taken into consideration when planning for the project. These interre-

lationships are becoming increasingly complex and are directing software

project management toward a more coordinated, team-oriented management

model. Note that the notions of software project teams and software man-

agement teams are similar but not necessarily the same; this topic will be

discussed in more detail in Part Two of this book.

INFLUENCING DOWNSTREAM PHASES

The selection of product and project attributes that require goal setting, the

definition of the metrics and measurements associated with those attributes,

and the establishment of the goals for those chosen attributes form a set of

activities that will dictate the tone of the later phases of the software project

life cycle. The chosen attributes, goals, and measurements will be used to

monitor the project and to make adjustments based on the monitored infor-

mation. These goals will also influence the processes that one chooses for the

project, a topic covered in Chapter 4. Similarly, the discussion of risks, cov-

ered in Chapter 5, is influenced by these goals. The risks are, in fact, related

to the likelihood of not achieving the goals.

Chapter 3 Goals and Measurements

76

■ KEY CONCEPTS

The goals for a project should be defined and set during the planning phase

of software project management. Many of these goals have their origins in

the requirements statements. The goals must be defined in terms of either

product or project attributes that have a clear metric and a measurement

process. Each attribute should be defined in such a manner that it is measur-

able, trackable, verifiable, and validatable. Product goals may be related to

the following attributes:

• Quality

• Usability

• Functional completeness

• Maintainability

• Reliability

• Modifiability

• Installability

Project goals may be related to some of the following attributes:

• Schedule integrity

• Cost-effectiveness

• Productivity

• Cost minimization

• Efficiency

• Employee morale

Complex multiple attributes and their interrelationships must also be

considered by the project managers. These multiple goals must be prioritized

during the planning phase to avoid the problem of conflicting status later in

the monitoring and adjustment phases.

■ EXERCISES

1. What is the difference between a metric and a measurement?

2. What is a simple attribute, and what is a complex attribute?

3. Discuss the relationship of goal setting, product or project attributes,

and measurement.

4. Define a goal for software product maintainability and an associated

metric for that attribute.

Exercises

77

5. Compare and contrast goal validation and measurement verification.

6. Define a goal for a software project attribute such as productivity.

Explain how you could show that the goal is validatable and verifiable.

7. In this chapter we gave an example of goal setting for the quality

attribute with different levels of defect severity. Would it be beneficial

to relate these severity levels to fix-priorities? If so, discuss the implica-

tions of quality goals to setting up goals for software support goals.

8. Describe the difference between an error and a defect. Discuss how the

different terms may affect the goal setting for quality.

9. Create a list of software product attributes and a list for software proj-

ect attributes. Rank these in the order of how difficult you consider

them to be measured; discuss the reasons for your choices.

■ SUGGESTED READING

V. R. Basili and D. M. Weiss, “A Methodology of Collecting Valid Software

Engineering Data,” IEEE Transactions on Software Engineering, SE 10,

1984, 728–738.

L. C. Briand, S. Morasca, and V. R. Basili, “An Operational Process for Goal-

Driven Definition of Measures,” IEEE Transactions on Software Engi-

neering, December 2002, 1106–1125.

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1975.

M. K. Daskalantonakis, “A Practical View of Software Measurement and

Implementation Experience Within Motorola,” IEEE Transactions on

Software Engineering, November 1992, 998–1010.

W. S. Humphrey, “Characterizing the Software Process: A Maturity Frame-

work,” IEEE Software, March 1998, 73–79.

M. Shepperd and D. Ince, Derivation and Validation of Software Metrics,

Clarendon Press, Oxford, 1993.

F. Tsui and L. Brooks, “Release Management of Non-zero Defect Software,”

Proceedings of the 10th International Conference on Practical Software

Quality Techniques South, March 2002.

Chapter 3 Goals and Measurements

78

79

4
Project Resource Planning

Chapter Objectives

This chapter discusses the following concepts:

• How planning proceeds for the three main targets of software project

resources planning—human resources, processes and methodologies, and

tools and equipment

• How the three separate plans are pulled together into a single combined

resources plan

• How human resources may be outsourced and thus require the project

manager to plan the processes, tools, and equipment resources accord-

ingly

PLANNING FOR THE THREE
TYPES OF RESOURCES

Once the project deliverables, WBS, tasks, initial schedule, and goals are

understood, the resources required to complete the project must be planned.

The key resource for most software projects is people. Aside from personnel

resources, both hardware and software packages and tools are needed. On an

organizational level, processes, policies, and specific methodologies need to

be available to ensure the successful completion of a software project.

These three types of resources should be considered and planned for in

concert with one another. For example, the use of certain tools may potentially

Chapter

Chapter 4 Project Resource Planning

80

reduce the amount of human resources required. At the same time, there must

be skilled people available to properly utilize and take advantage of that tool.

Furthermore, the cost of the various resources is always a factor in the deci-

sion-making process. After the initial round of resources planning, additional

iterations of planning may be necessary to adjust the resources requested based

on earlier defined goals.

HUMAN RESOURCES

The number of people, the type of people with different skills, and the point at

which these people need to begin working on a project all depend on the tasks

that need to be performed and the goals, such as schedule, of the project.

Human resources management is concerned with the recruiting, hiring,

retaining, growing, coaching, and firing of people, but software project man-

agers will focus mostly on the recruiting effort and the timing of hiring the

appropriate people during the planning stage. Recruitment and hiring pro-

ceed in two stages:

1. Based on the various tasks involved in the software project, a skills

matrix is built. The number of people required for each skill category is

identified, along with information on which persons, by name, are

already on board.

2. Using the skills matrix, a hiring plan is developed.

Skills Matrix

Suppose that the skilled personnel listed in Table 4.1 are needed after the

project software managers review the product requirements and the task

analysis. For the purposes of this example, we assume that the organization

is already established and has the needed processes and methodologies in

place. Table 4.1 describes only the needed skills and the estimated number of

those skilled resources; it does not lay out the timing at which the resources

are acquired or used.

Two types of personnel are needed for any business operation: those

involved in direct activities and those involved in indirect activities. Direct

activities for the software project include those associated with requirements

specification, design, coding, manual-writing, testing, integration, and pack-

aging tasks that lead to a customer deliverable. Indirect activities include

those related to planning, status monitoring, staff education, and other tasks

that do not lead to a customer deliverable.

Direct project activities Activities that lead to a customer deliverable.

Human resources for these activities must be assigned or the customer

deliverables cannot be delivered.

Indirect project activities Activities that are related to the planning,

controlling, and reporting of the direct project activities. People assigned

to these activities do not directly work on the customer deliverables and

thus can become marginalized.

For this example, we assume that the indirect personnel are already in

place and do not need to be acquired anew for this software project. Instead,

the direct software development personnel planning is considered here. Note,

however, that real-world software project managers must consider both sets of

people, even though their primary focus may be on the people who engage in

direct activities. There will also be some preliminary thinking in terms of iden-

tifying some of the “direct” people who may remain after the project comple-

tion to perform customer support and maintenance. Mostly direct people are

Human Resources

81

Table 4.1 Skills Description of Personnel Required

for the Example Software Project

Job title Number needed Experience/Skills

Project leader 1 Three or more years’ experience in leading
software project teams consisting of approxi-
mately 10 people and in successfully com-
pleting projects with a duration of approxi-
mately one year

Requirements analyst 1 Five or more years’ experience in the
application domain area

Designer 2 Three to five years’ experience in the
application domain area, two to three years’
experience in the system operating environ-
ment, and two to three years’ experience
with the chosen application development
language, database, design methodology,
and design tool

Programmer 8 Two to three years’ experience with the
chosen application development language
and development tools

Test analyst 3 Three to five years’ experience in the
application domain area, two to three years’
testing experience, and two to three years’
usage experience with the chosen test tools

Table 4.2 Initial Skills Matrix

considered at this phase because they are engaged in the production of the

customer deliverables, which require support and maintenance.

We also assume that the initial project schedule has already been estab-

lished, and that the cost for each of these skilled people has been estimated.

Then the human resources plan matrix for the software project must indicate

the availability of the needed skills at the appropriate time, with the proper

training and preparation, to perform the designated tasks. An initial skills

matrix provides an early view of the number of required human resources by

skill set and by time. It serves as an input to the hiring plan discussed in the

next section. Table 4.2 shows an initial skills matrix for this example.

Several items stand out in this matrix. There is a fairly long period of

project personnel ramp-up time before the total peak size of 12 people is

reached during the eighth month. This gradual hiring pattern is quite realis-

tic and occurs for several reasons:

• It is highly unlikely that the organization will be able to find so many

good, skilled people all at once.

• New members must become acquainted with the project, and the tiered

approach greatly facilitates that assimilation and education process.

• Not all tasks can be—or need to be—performed in parallel, so there is no

need to ramp up fully on day 1. Having extra people on board too early

is not only costly but may also cause a morale problem.

To elaborate on the final point, in times of a “super-hot” economy or a

shortage of specific skills, software project managers may be forced to

recruit people earlier than they are actually needed just so that these

Chapter 4 Project Resource Planning

82

Months

Skilled
personnel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

Requirements 1 1 1
analyst

Designers 1 2 2 1

Programmers 4 7 8 8 8 8 4 2

Testers 1 1 1 2 3 3 3 3 3

Project leader 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Customer 1 2 3 3 3
support

Total personnel 2 2 3 4 8 10 11 12 12 12 9 8 4 4 4

resources will be available when the project finally begins. This was the case

for personnel skilled in using the enterprise resources planning software

package SAP from 1994 through 1996.1 After new employees acquaint

themselves with the corporate process, the software project process, and the

tools, they may get bored with “education” and want to start performing

using what they have just learned. If they are relegated to still more educa-

tion activities, even greater boredom may set in; nonproject-related, disrup-

tive socialization may increase; and some of the new hires may even depart

the organization.

The author personally faced this situation twice at IBM and had to

“invent” mini-projects just to keep the bored minds occupied. Clearly, such

projects must not be just “make-work.” Instead, some tasks that were not

scheduled until later or do not exactly fit the team members’ expertise can

be moved forward. In the author’s particular situation, the search for and

analysis of a better test tool was used as the invented work. Even though the

team ultimately did not switch tools, the employees appreciated the assign-

ment because it enhanced their knowledge base.

Another human resources challenge that one might observe from the

plan in Table 4.2 is the short peak period and the fairly rapid pace at which

people leave the project. Unless the organization has many other projects

that the people might join immediately after participating in this one, the

project management team may face a people placement dilemma after this

software project ends. Therefore, this project may be a candidate for utilizing

temporary personnel, to ensure that the fast, but planned, ramp-down will

not cause needless anxiety among the project team members.

An initial skills matrix such as the one in Table 4.2 does not show what

happens to people such as the designers after they have completed their tasks.

Perhaps Designer 1 will roll over to become a programmer when the design

resources are reduced from month 5 to month 6. Perhaps Designer 2 will join

the testing effort in month 7 after completing his or her design tasks in

month 6. The names of the people joining and leaving the team, the transi-

tioning from one role to another, and the final transitioning to the support

team should be articulated in the resources plan along with the skills matrix.

Also, this kind of people movement can be captured in the skills matrix if the

matrix is expanded to show not just the number of each type of skilled per-

son, but each individual, by name or by some other identifier, within that

type as shown in the people hiring matrix (see Table 4.3 later in this chapter).

Human Resources

83

1. Interestingly, the shortage of SAP skills during the mid-1990s boosted the growth of

outsourcing of enterprise resources planning activities.

Of course, not everyone will roll over to a new task within the same

project after completing his or her assigned duties. As a consequence, there

needs to be a separate plan for those individuals who will move off this proj-

ect, even if some of these people are temporary employees.

Hiring Plan

Although creation of the skills matrix ought to follow development of the

project task and schedule plan, project managers often need to revisit the

task and schedule plan after studying the resources plan. The lead time

needed for recruiting, training, and team assimilation may force them to go

back and add some time to the schedule for these types of tasks, which may

not have been considered during the first pass at planning and the WBS.

Also, it is possible that a person with some special skill, in spite of planned

recruiting lead-time, may not be found in time. In that situation, the project

manager may need to revisit the project plan and get some relief in terms of

schedule, functional content, or staged releases.

For estimating lead time, it would be appropriate to add an extra month

(or some other appropriate period) for each person who needs to be recruited

and brought on board. If three people need to be brought on board, however,

that does not mean adding three months of lead time—it is still one month of

lead time. The estimate of one month of lead time would depend on several

factors, such as the economic environment, the company’s geographical

location, the type of project, and the compensation package offered to the

prospective employee. During the peak of the “dot-com” boom, for example,

smaller companies in the Boston and Silicon Valley areas faced the prospect

of long recruiting times. At technology consulting companies such as Meta-

mor, which at one time had a substantial presence on both U.S. coasts but

did not have a broadly recognized high-tech reputation, the time required

for recruiting knowledgeable technical people easily exceeded one month,

even with offers of generous hiring bonuses. That situation changed as the

dot-com era came to an end, however. Recruiters began calling Metamor in

an effort to place some of the very experienced technical resources who were

once nearly impossible to hire. Certainly, during economic downturns, the

recruiting period may be as short as a few days.

In addition, if the project managers decide to hire temporary personnel

to fill out the team, the recruiting effort may be somewhat different. In par-

ticular, more emphasis may be placed on the employee’s immediate technical

skills and less emphasis may be placed on longer-term considerations related

to employee retention and career development.

Chapter 4 Project Resource Planning

84

Table 4.3 People Hiring Matrix

X = Lead time for recruiting a person from outside the project.

D1, D2 = Movement of a designer to a new role.

P1 = Movement of a programmer to a new role.

People Hiring Matrix and the Recruiting Plan

A people hiring matrix may be derived from the skills matrix as shown in

Table 4.3, where X represents the “recruiting and adjustment” time. D1 rep-

resents Designer 1’s preparation for moving to his or her new programming

role; similarly, P1 indicates Programmer 1’s preparation for moving to a cus-

tomer support role.

Human Resources

85

Months
Skilled
personnel 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

Project leader X 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Requirements
analyst X 1 1 1

Designer 1 X 1 1 1

Designer 2 X 1 1 1

Programmer 1 X 1 1 1 1 1 1

Programmer 2 X 1 1 1 1 1 1 1

Programmer 3 X 1 1 1 1 1 1

Programmer 4 X 1 1 1 1 1 1

Programmer 5 D1 1 1 1 1 1 1

Programmer 6 X 1 1 1 1 1

Programmer 7 X 1 1 1 1 1 1 1

Programmer 8 X 1 1 1 1 1 1

Tester 1 X 1 1 1 1 1 1 1 1 1

Tester 2 D2 1 1 1 1 1 1

Tester 3 X 1 1 1 1 1

Customer
support 1 X 1 1 1 1

Customer
support 2 P1 1 1 1

Customer
support 3 X 1 1

People hiring matrix A project hiring plan shown in the form of a

matrix or bar chart that indicates each specific human resource and the

time period for which that person is associated with the project, includ-

ing his or her recruiting and assimilation time.

Ideally, one would like to retain and move a designer and two program-

mers into the third customer-support role. That transition would most likely

not work, however, because designers and programmers might not mind per-

forming customer support for a very short time but probably would not tol-

erate it for a lengthy period. Also, the cost of customer support needs to be

kept low, and it would usually be cost-prohibitive to place a higher-paid

designer or programmer in this position for the long term. After these con-

siderations are taken into account, the plan in Table 4.3 moves one program-

mer into the customer support role. Even then the plan should address the

eventual (probably within six months) movement of this programmer out of

the support role.

The people hiring plan matrix for this simple project, shown in Table 4.3,

can be turned over to the company’s human resources department or to a

recruiting company as soon as it is established. The matrix should be accompa-

nied by a skills description such as the one shown in Table 4.1, thereby ensur-

ing that the right people will be brought on board. From the people hiring

matrix and the skills description, a more comprehensive recruiting plan may be

created. A recruiting plan will focus on the following items: job descriptions,

job titles, number of openings to be filled, priorities in hiring, compensation

and benefits packages, interviewing process and interviewing managers, inter-

nal and external avenues to solicit candidates, amount of internal hiring

bonuses, range of acceptable recruiter fees, and hiring timing. The recruiting

plan is described in another matrix that includes all the mentioned items listed

by each open position; it should be developed by the personnel department and

reviewed with the project management team. In fact, the software project man-

agers may view personnel hiring as a mini-project within the larger project.

Later, the people hiring matrix may be used as a mechanism to monitor

the hiring status; the planned recruiting and assimilation time of each per-

son in this matrix can be compared with the actual hiring status during the

downstream organizing and monitoring phases (the “O” and “M” in POMA).

In other words, each X in the people hiring matrix in Table 4.3 will serve as

a trigger for comparing the matrix entry against the actual hiring status.

Consider the situation in which the project leader is directly involved in

the hiring of the people for the example project, including the hiring of post-

development customer support personnel. Table 4.4 shows how much time

the project leader may devote to recruiting.

Chapter 4 Project Resource Planning

86

Even though the recruiters and other human resources personnel will

initially review and sort the applicants into different categories of candi-

dates, the software project managers and project leaders still need to review

the qualifications of especially attractive candidates. The software project

managers and leaders will conduct the interviews and provide post-interview

evaluations of these individuals. They must decide to whom to extend actual

employment offers and the exact contents of the offer packages.

Sometimes, the project managers and leaders are even involved in the

development and wording of recruiting brochures for some special positions.

An example of a special position would be a project staff position that has

responsibility for a cross-functional characteristic such as user satisfaction.

This position requires a person who can interact with users and customers

gregariously. At the same time, this individual must possess in-depth knowl-

edge about opinion survey techniques, statistical analysis, the software sup-

port process, and the product so as to properly gauge customer satisfaction.

The precise description of such a position will vary depending on what

exactly needs to be emphasized.

As shown in Table 4.3, the project leader himself or herself is brought on

board during month 0 along with the requirements analyst, but the project

leader may still be involved in the recruiting of the requirements analyst.

Many people will be surprised at the amount of the project leader’s time

that can be consumed by the recruiting effort, as shown in Table 4.4. In that

table, the number of Xs represents the number of people with whom the

software manager is involved in recruiting during that month. The project

leader spends time on recruiting during 9 of the 13 months shown, with the

bulk of the effort coming during months 3, 4, and 5. This table should also

alert project managers that they should plan for a moderate number of

other activities for the project leader during months 3, 4, and 5—especially

month 4.

People As Human Capital

The preceding discussion made some major assumptions to clarify the

issues: The software project planning was simplified and the availability of

Human Resources

87

Table 4.4 Direct Management Involvement in Recruiting

Months involved in recruiting

0 1 2 3 4 5 6 7 8 9 10 11 12

Project leader X X 2X 4X 2X X X X X

many support personnel was assumed. In reality, in many large projects or

projects that are starting from scratch, the human resources required for

the project will include a broad set of people such as technical writers,

administrative support personnel, software and hardware systems support

personnel, tools support personnel, and managers. These skilled people are

all needed, even in our simplified example. Furthermore, the addition of 12

people to an organization, such as in the preceding example, will most

likely require an increase in staffing in administrative support personnel

and software-hardware desktop support personnel. Thus the human

resources plan presented in the skills and people hiring matrices can serve

as input not only to the project managers during their recruitment efforts,

but also to the personnel responsible for planning other resources needed

for the project (e.g., office space, desktop computing facilities, and commu-

nications facilities).

Unfortunately, the needed increase in human resources support in areas

indirectly related to the software project is all too often forgotten. Unless all

of the needed human resources are planned for, some problems may arise in

absorbing the additional workload generated from the software project. The

specific project management and other support management departments,

such as the internal desktop support group and the administrative support

group, will need to work together closely as one team in the planning of

these indirect human resources.

After all the effort and costs that are expended in their hiring, these

skilled people should be viewed as “human capital.” For this reason, it

makes sense for the software project managers to ensure that their workers’

morale remains high and that the new employees are protected from being

stolen away by other companies. Employee morale is a project attribute that

should be tracked and monitored throughout the monitoring phase (the “M”

in POMA). To protect against key employees leaving, companies must con-

sider many issues ranging from basic compensation to opportunities for

growth within the organization. During the planning and recruiting period,

the initial offer package should be designed so as to be competitive in the

marketplace, yet should be positioned in such a manner that the compensa-

tion can increase as the employee grows in experience after having been

hired. Many companies establish salary and compensation ranges for each

position. The best advice is to not bring people in at the top of the range;

this approach ensures that the person does not have to receive a promotion

to get the next raise. It is much easier to move a person up within the posi-

tion ranges if that individual is brought in at the lower end of the compen-

sation range for each position.

Chapter 4 Project Resource Planning

88

PROCESSES AND METHODOLOGIES

It may seem strange to some that processes and methodologies are viewed as

resources. Unless the particular software project team does not need any

standards and guidance on how to perform their tasks, how to coordinate

activities, how to evaluate results, and so on, software processes and

methodologies constitute a vital component of the resources needed for the

successful completion of a software project.

In fact, the project management team already had to address the issue of

processes to some degree when it formulated the list of project tasks.

Depending on the assumption of which processes will be followed, the type

and amount of internal artifacts that need to be developed may differ from

the original assessment of processes and thus require a different set of tasks.

For example, one process might include test case reviews. If so, then the

project task list must include test case reviews, and the project schedule must

in turn reflect the time and people required for a process that includes test

case reviews. Here the term “process” means any ordered set of well-defined

activities undertaken to accomplish a particular goal.

There is no single process for software development. Instead, in addition

to the ordered set of defined activities that describe the defining of require-

ments, designing, coding, and release for a software artifact, there are

processes that apply to software maintenance and to support after develop-

ment and release of the product. Thus a process may be applied to the entire

software project life cycle or just to a specific component of the life cycle,

such as the design phase of the project. The number of tasks involved,

depending on the chosen process, may differ dramatically.

Software development process An ordered set of defined activities

that describe the defining of requirements, designing, coding, and

release for a software artifact. A process may contain some sub-

processes, such as the design subprocess within the software develop-

ment process.

In contrast, a “methodology” is a set of rules and principles defined to

accomplish a specific task. In software projects, a methodology may define a

specific task such as requirements specification. A requirements specification

methodology, for example, might be the specification of user scenarios uti-

lizing the popular Use Case Diagram from the Unified Modeling Language

(UML). (For more information on UML, consult the material listed in the

“Suggested Reading” section at the end of this chapter.)

Processes and Methodologies

89

Software methodology A set of rules and principles defined to

achieve a specific goal and to accomplish a specific task in the develop-

ment or support of software.

In the project planning stage, the software project managers need to

identify which processes and methodologies will be used. If they fail to do

so, confusion may arise at later stages of the software project if the team

members have to quickly create, find and borrow, or do without the guid-

ance of processes and methodologies. Even worse is the situation that arises

when team members disagree over which of several processes or methodolo-

gies they will use. The software project managers should ensure that the dif-

ferent views are heard and that some form of consensus is reached during

the planning phase. They should also make sure that “methodology wars”

are kept to a minimum. Many project failures have occurred when the con-

fusion created by a lack of well-understood processes and methodologies

resulted in missing schedules, poor product quality, demoralized teams, and

possibly total abandonment of the project.

For example, when object-oriented methodologies were first introduced

in the late 1980s and early 1990s, many projects suffered schedule delays

due to a paradigm shift from the more traditional structured, waterfall

process. Similar problems were observed when the inspection methodology

was introduced into the software development process in the early 1970s.

(Inspection methodology is the formal review step that Mike Fagan at IBM

introduced into the software development process; variations of it have been

in use in the IT industry for nearly 30 years.)

There are many ways for a software project to fail. The key to avoiding

this fate is to ensure that a process or a methodology is well defined and

understood prior to its deployment so that the chance of success is increased.

This step starts with the planning phase (the “P” in POMA).

Software Project Phases

The project management team has many choices in terms of determining the

overall process. In general, all software project cycles include some form of

all or parts of the following phases:

• Requirements processing

• Design

• Implementation and programming

• Testing

• Product release

Chapter 4 Project Resource Planning

90

A software project plan must describe which of and how much of these

activities are part of the specific project. Depending on the nature of the

software project and the goals of the project, the processes and methodolo-

gies chosen and emphasized may differ significantly. Let’s consider each of

the software project phases in turn.

Requirements Process Planning

Requirements processing includes a large set of activities. To avoid subsequent

confusion, a complex and large software project requires a well-defined set of

requirements. It also needs a set of requirements processing activities, such as

the one described in the general requirements management activities diagram

in Chapter 1 (see Figure 1.1). In large, complex projects, there will most likely

be modifications and changes to the established base along the way. Thus the

requirements management process described in Chapter 1 needs to be

expanded to include management of changes and modifications. The software

project planners and managers should consider the following issues:

• Is this project already well defined or does it need extensive require-

ments definition?

• If there is a need for extensive requirements definition, what set of

activities should be included as part of the requirements process?

• Is there a high probability of changes and modifications and, therefore,

a need for a change management process?

• Is the methodology for each of the tasks or activities within the require-

ments process well defined and understood?

If the software project is already well defined and the requirements

specifications are clearly documented, reviewed, and signed off by all par-

ties, then no requirements process may be necessary. If not, there is a need

to define how the requirements for the project will be gathered, docu-

mented, reviewed, and agreed to by all parties. If such a process already

exists within the organization, then the project management team must

ensure that the requirements analysts either are already experienced in

using that process or can be educated in the process and its associated

methodologies. In the latter case, the plan should include requirements

process education as a task in the schedule. In the event that no such

process or methodologies are defined within the organization but a require-

ments process and methodologies are needed, then the plan should account

for the acquisition or creation of the process and the methodologies. The

Processes and Methodologies

91

project team must then be educated on the newly defined or acquired

process and methodologies.

The following guidelines might apply to a planning situation in which

the requirements process and methodologies need to be either acquired or

generated:

1. Determine whether there is a need for a requirements process. If there is

a need, continue to Step 2. Otherwise, consider the next type of process

planning, which is design process planning.

2. Plan for the tasks or activities to be included and defined as part of the

requirements process, outlining the order and the sequencing of the

activities:

• Requirements solicitation

• Requirements analysis

• Requirements prototyping

• Requirements documentation

• Requirements review

• Requirements sign-off

• Requirements change and impact management

3. For each of the chosen activities, ensure that either a methodology

already exists or the plan includes the definition of methodologies.

4. Include education on the process and the methodology, if necessary, as

part of the plan.

In deciding which activities to include as part of the requirements

process, the software project management must take into account several

parameters, such as the type of the software project, the goal of the project,

and the measurements needed.

Design Process Planning

Like the requirements process, the design phase may consist of several activ-

ities. Thus it may be viewed as a phase that also requires a process. The fol-

lowing activities may be considered as candidates for the design process:

• Architectural design

• Application-specific high-level design

• Application-specific low-level design

• Design analysis

• Design review

• Design change and impact management

Chapter 4 Project Resource Planning

92

Once again, the project management team needs to decide which of these

activities should be included in the design process. The architectural design

differs from the application-specific high-level design in that the former

design focuses on the overall system, including all external subsystems with

which the software project must interact, whereas the latter design focuses on

the components within the project application itself. For example, an architec-

tural design for enterprise resources planning software will include the decom-

position of enterprise resource management into its major components, such

as planning, production, inventory, and financial activities; the architectural

design also includes the interfaces that depict how these components interact

with one another as well as how these components utilize a common technol-

ogy such as the Internet, which is external to the components. However, the

application-specific high-level design will focus on the functions and charac-

teristics related to a specific area, such as how accounts payable information is

stored, queried, and reported within the financial application component.

For each of the chosen activities, the plan should include the definition

of the specific methodology to be used and the education plan for that

methodology, if one is necessary. As noted earlier, these design methodolo-

gies fall within the domain of software engineering rather than software

project management. For more details, readers should consult the widely

available material on software engineering (see the “Suggested Reading” sec-

tions at the end of this chapter and previous chapters).

Implementation and Programming Process Planning

The implementation and programming phase is most likely the best-under-

stood phase. In addition to code development, it should include document

and publication development activities. To streamline this phase, many soft-

ware project managers are acquiring existing software code and using it “as

is” or with some modifications rather than implementing the complete proj-

ect from scratch.

Focusing on Reuse Goals

There are multiple technical issues related to reuse of code or designing

for reuse with which software engineers should be concerned. For soft-

ware project managers, however, the key is to understand and decide

what the organization’s real goal is. If one of its goals is to reduce

expenses, then reuse should be viewed from that perspective, and well-

Processes and Methodologies

93

defined measurements must be taken to determine whether that goal

can be achieved. If reducing risk is one of the organization’s goals,

then reuse should be measured from that perspective. Software project

managers should not allow themselves to be dragged into lengthy dis-

cussions on the technical merits of reuse, but rather should focus on

the goals of reuse and on monitoring the status to see whether those

goals will, in fact, be reached. Similarly, as the project managers con-

sider outsourcing their documentation and publications efforts, their

major focus should be on defining the goals for the outsourcing effort,

on defining the process or methodology to use for outsourcing the

documents and publication efforts that will achieve those goals, and on

monitoring the status of the outsourcing process.

The following list of activities may be considered for the implementation

and programming phase:

• Programming standards definition

• User documentation, help text, and other information standards definition

• Software code acquisition and reuse management

• Program documentation

• Program and information review

• Program unit testing

The programming standards definitions to be included depend on the

nature of the project and must be included in planning. Otherwise, imple-

mentation and programming might become a task in which each member

of the project team codes using his or her own style, which could poten-

tially turn future code changes and support by others into an extremely

difficult task.

As an example of how things can go wrong, consider the situation in

which a support technician—let’s say maintenance programmer A—needs to

correct a program that was written by another programmer B, who used her

own unique convention for naming variables. Now suppose that support pro-

grammer A discovers that another program written by a third programmer C

needs to be modified as part of the correction. If programmer C also utilized

his own unique set of naming conventions for the same variables, then one

can imagine the potential confusion inherent in learning yet another set of

variables and making changes to the code that affect the same variables ref-

erenced with different names. A problem fix that spans four or five programs

written by different programmers who did not follow a common standard can

Chapter 4 Project Resource Planning

94

quickly turn into a massive bookkeeping nightmare, thereby increasing costs

and the potential for introducing a new error as part of the putative fix.

In the case of acquiring and reusing code, the documentation and program-

ming standards of the acquired material should match that of the project’s own

code implementation. If the acquired code will be integrated with the code writ-

ten by the implementation team and will be supported by only one support

team, then the problem scenario discussed above might reappear if two different

standards are used. Integration of acquired software is both a management and a

technical problem. It is a management issue in that software project managers

must recognize that software artifacts do not naturally merge together effort-

lessly; the integration must be thoroughly planned. To ensure that this integra-

tion is achieved with minimal problems, knowledgeable resources must be

specified during the planning phase. Furthermore, software code acquisition and

reuse methodology (a technical methodology for defining, constructing, and

policing the interfaces between the old and the new code) must be put in place

to address the issues that pertain to software reuse and integration.

Test Process Planning

The testing phase of a software project may be quite complex and may

include an assortment of activities:

• Test planning

• Test scenario development

• Test case and test script development

• Test scenario and test case review

• Test result tracking and analysis

• Test execution, problem reporting, resolution, and fix-integration man-

agement

Test scenario A description of a set of interactions between the system

and an external agent, which may be a user or another system, to

accomplish a desired user task or goal. These scenarios are often directly

derived from the requirements specification document.

Test case A description of a specific interaction between the system and

an external agent; the interaction has defined inputs and defined expected

outputs or results. Test cases are usually developed from a test scenario.

Test script A test case written in a language that may be used directly

by some test tool to conduct the actual test.

Processes and Methodologies

95

The test planning activities include the definition of the types of testing

that will be conducted for the project, such as unit testing, functional test-

ing, component testing, system testing, performance testing, and regression

testing. Test process planning might not define the exact methodology to be

used, but must include the overall test process, tools utilized, skills required,

and schedule. The description of the overall test plan includes a listing of

which type of testing (e.g., unit test, functional test) will be conducted, by

whom, and in what order. The application of tools to the different types of

testing is specified during test process planning. The skills needed to run the

tools and to conduct the different types of testing are also included in the

test process planning. The definitions of the specific methodologies to be

used may be included in the definitions of the various test activities, which

constitute the test process. Test case development activity, for example, will

be defined separately.

Product Release Process Planning

The release phase of a software project is the final phase during which the

software project is coming to a conclusion and the various components of

the software product are integrated, packaged, install-tested, and sent out to

the customer. Several activities are involved, some of which (e.g., the ship-

ping and distribution of software or other relatively easy-to-describe tasks)

may be outsourced. In particular, the following activities are part of the soft-

ware release phase:

• Integration, packaging, and installation

• Product order, release, and shipment management

If the product installation mechanism was not described as part of the

requirements, then the project management team must clearly state it before

an integration and packaging methodology can be described. Testing the

installation mechanism must be part of the integration, packaging, and

installation activity as well as part of the product release phase planning.

Other Process Planning Considerations

Cross-Functional Process Planning In addition to the activities related to

the major phases of a software project, some activities cross boundaries or

are independent of any specific project phase. These activities also must be

defined and understood by the software project team before they can be car-

Chapter 4 Project Resource Planning

96

ried out properly. Thus the processes and the methodologies associated with

these cross-functional activities are process resources that should be

included as part of the project plan. Some of the major cross-functional

activities are listed here:

• Configuration management

• Outsourcing management

• Quality assurance

• Project change management

• Project reporting and escalation process

The cross-functional nature of some of these activities may not be obvi-

ous to new software project managers. We will describe two of them in more

detail here.

Configuration management is often associated with a tool that controls the

changes to code made by multiple programmers. This description is an

extremely limited view of configuration management; in fact, it describes code

control only. The broader issue of configuration management is the manage-

ment of the various versions of all the software artifacts developed as part of

the project. Such a broad view of configuration management includes the nam-

ing and describing of all the pieces of the software artifacts. Configuration

management also encompasses how these artifacts are controlled as the project

moves from the requirements phase to the software release phase.

Consider the situation in which a test scenario is associated with a

requirement scenario. If we want to ensure that all requirements scenarios

have been covered by test scenarios and, therefore, that the system has been

adequately tested, then a configuration management scheme that defines all

parts of the requirements and the test scenarios must first exist. Furthermore,

an automated tool will most likely be needed to keep track of and control all

of these parts, as well as to match up the parts. This example of configura-

tion management illustrates how a cross-functional activity permeates soft-

ware development activities ranging from requirements specification to

testing and how it affects multiple artifacts. One can also readily see how

configuration management might be helpful in the product support environ-

ment: A software engineer, for example, might want to trace through the

original requirement, design, code, and test case for a reported software

problem before actually changing the software.

Another example of a cross-functional activity is project change manage-

ment. When taken by itself, a legitimate change request may or may not be

implemented. Conversely, an illegitimate change that was conjectured by some

programmer might slip into the software without anyone else’s knowledge.

Processes and Methodologies

97

Later on, because no one ever tested for the unplanned modification, such an

uncontrolled change could turn into a serious problem. Software project man-

agers need to recognize and plan for all potential change activities. Thus a

project change management process—definition, education, promotion, and

policing—must be considered during planning.

Process as Intellectual Capital Other cross-functional processes and

methodologies may need to be defined as well. The important thing to

remember is that the processes and methodologies are not obvious and free

resources. Rather, they must be planned for and included as resources that

will be made available to the project team—just as people, hardware, or soft-

ware tools are resources to be made available to the project team.

The timing at which these processes and methodologies enter the picture

is also important. Early on, the overall project process must be defined and

agreed to by the team. As new team members are brought on board, it is

vital that they receive education on the same process. As the software proj-

ect moves through its various phases, the specific methodologies to be used

within each phase must be introduced to the team members. Where knowl-

edge of those methodologies is lacking, team members should complete their

education while they are working on the methodology.

All of the process and methodology definitions, education material, and

documentation should be viewed as the “intellectual capital” of the software

project. These process materials are valued resources that should be safe-

guarded. Many software and consulting companies today conduct their busi-

nesses based on these processes; some provide processes at prices that

exceed tens of thousands of dollars. Examples of commercially available

processes and methods include Express Delivery from Computer Associates,

Navigator from Ernest and Young, and Team Fusion Object Oriented from

Hewlett-Packard. (Method/1 from Anderson Consulting was also gaining a

great deal of momentum prior to the demise of Anderson.)

Intellectual capital Knowledge that is considered an asset and ulti-

mately has financial value.

As mentioned in Chapter 3, the Software Engineering Institute (SEI), a

U.S. government-supported organization on the campus of Carnegie Mellon

University, has been studying and promoting various process models. The

SEI also educates organizations on process models for a fee. The institute’s

Capability Maturity Model for Software (CMM for SW), with its five levels of

process maturity, has been utilized by many software project managers in

planning and assessing their organizations. (See Chapter 3 for a definition of

Chapter 4 Project Resource Planning

98

CMM.) One perhaps unexpected place where the CMM has taken hold is

India. Many Indian IT outsourcing companies—including TaTa, Satyam, and

Info Sys—have achieved the highest level (level 5, Optimizing) of the CMM

assessment. These companies are able to enhance their stature with potential

customers by providing evidence of their software development maturity.

TOOLS AND EQUIPMENT

Many of the processes and methodologies discussed in the previous section

may be totally or partially automated and have some tools associated with

them. Indeed, unless the complete software project is outsourced and the

project manager is just acting as the facilitator between the customer and the

provider, there usually is a need for some type of equipment and tools. These

tools and equipment must also be planned for as resources for the project.

The most obvious type of hardware needed is the desktop computer. If

the project is large enough to require the services of several people to thou-

sands of people, then these desktops will need the help of servers, which act

as coordinating and communication machines. Some details concerned with

hardware are as follows:

• Desktop computers: Specify capabilities in terms of CPU speed, main mem-

ory size, disk storage size, number of ports (for printers, communications,

and connection to other peripherals); specify number of desktop computers

• Server computers: Specify capabilities in terms of CPU speed, main mem-

ory and auxiliary cache memory sizes, disk storage size, number of ports;

specify number of server computers

• Printers: desktop versus shared; specify number of each kind of printer

• Network equipment: controllers, lines, modems; specify number of each

Along with hardware requirements, the software systems requirements

must be identified. In particular, the operating systems, database systems,

and communications software need to be specified:

• Operating system: specify the number of copies required for the desktop

and server computers

• Database system: specify the number of user seats required

• Middleware system: specify the type of communications middleware or

transactions-processing middleware, set to the needed number of users

or to some number of transactions

• Browser: specify the number of copies needed for the client desktop

computers

Tools and Equipment

99

Once the basic hardware and software operating environment resources

are identified, the software project managers must consider which tools are

needed. These tools may be classified into the following categories:

• Development and implementation tools: libraries of executable code,

editors, compilers, and debugging aids; specify the number of copies or

number of user seats for each

• Requirements management tools: specify the number of user seats

• Design tools: specify the number of user seats

• Documentation tools: specify the number of user seats or number of

copies

• Test tools: keystroke capture tools, test execution monitoring tools, per-

formance measurement tools, code coverage analysis tools; specify the

number of copies or number of user seats

• Support tools: customer call management, release management; specify

the number of copies

• Management and general-use tools: library systems, configuration man-

agement, diagramming and flowcharting tools, word processors, spread-

sheets, project schedulers, statistical function packages; specify the

number of copies or number of user seats for each type

Development and implementation tools are some of the most fundamen-

tal tools and are used in practically all software projects. Most of today’s

software project managers also realize the importance of keeping the various

software artifacts properly versioned and locked. As such, library and con-

figuration management tools, as described in the previous section, are

becoming as vital a resource as compilers and debugging aids. The choice of

tools and aids for the particular software project depends on the processes

and methodologies chosen, the type of personnel recruited, the management

style, and the funds available.

COMBINING THE RESOURCES

Resources planning is a lengthy but a very important project manage-

ment activity. Ultimately, the more time and attention that are spent on

this type of planning, the more likely that the rest of the project will flow

smoothly. The resources required to satisfy the software project depend

on the deliverables, tasks, schedule, and project goals. These resources

themselves are interrelated and may be identified in a comprehensive

resources plan.

Chapter 4 Project Resource Planning

100

Table 4.5 presents one such simplified summary. In this example, all of

the main software development phases will be utilized, and the process will

be close to a waterfall (nearly sequential) process. Clearly, a separate docu-

ment describing the overall process in more detail is needed for the software

project organization. The project managers should ensure, during the plan-

ning phase, that such a document exists and that the team members will be

educated to perform according to the overall project process. Not all the

details are specified in Table 4.5—for instance, the operating system and hard-

ware are merely listed, not described in detail. Each software project team will

have to create its own summary table, reflecting its unique needs. Of course,

the more detailed and accurate the summary, the more complete the plan.

Combining the Resources

101

Table 4.5 Combined Resource Matrix

Project Requirements Design Implementation Testing Product Support
phases processing release

Methodologies Requirements Class Java and Black-box Installation Customer
solicitation design JavaScript testing method call

coding management
Requirements Sequence White-box Packaging
prototyping and testing

interaction
design System and

performance
User testing
interface
design

Specific tools Requirements UML Visual Java Test CD Service
and equipment management tool development management read/write tool

tool workbench tool tool
Visual
Java Performance

testing tool

Specific
human 2 3 8 4 1 3
resources

General Project management
methodology Quality assurance

Change management

General tools Project schedule
Document library and configuration management

General 1 Project manager
support 1 Quality assurance statistician
human 1 Configuration management administrator
resources 1 Database administrator

Hardware and 20 Desktop PCs (256 MB memory and 3 GB hard drives) with Microsoft Windows NT
operating and Internet Explorer
environment 1 Development tool server (1 Hz, 512 MB memory, 50 GB hard drive)

1 Network controller
1 Relational database

Table 4.5 addresses only the planning for the types and amounts of

resources needed for the example software project. The timing of the resources’

availability is also important, however, and should be specified in the plan. In

addition to the questions of what, how many, and when, the software project

managers may face the problem of how to provide these resources. This con-

sideration leads to the next topic in this chapter: deciding whether to out-

source activities or to develop the necessary resources in-house.

OUTSOURCING VERSUS INSOURCING

Some or all of the resources needed for the project may come from external

and remote sites. This possibility must be addressed as part of the project

planning. If any resources will be acquired from outside (outsourcing) as

opposed to relocated and transferred within an organization (insourcing),

that fact must be noted in the plan. The primary consideration in making

this decision is often the cost involved.

Outsourcing Physically moving work to external sources.

Insourcing Physically bringing in external human resources to perform

work. These external resources may be from different organizations

within the same company.

One possibility in human resources planning is not hiring any additional

employees for the particular project. Instead, the team may be cobbled

together by “borrowing” personnel from other organizations within the com-

pany. If this approach is preferred due to cost or workload imbalance issues,

then some of the personnel might operate out of remote locations and need

to be “tied” together as a team. The project plan needs to identify how this

linkage will be accomplished by answering the following questions:

• Who are the remotely located human resources?

• What additional resources are required to manage remote sites?

• What modifications are needed to the process and methodologies to

account for the remote resources?

If the project management decides to outsource all of the human

resources needed so as to realize an immediate cost savings, to pursue a

long-term strategy, or for some other reason, then the project plan would

Chapter 4 Project Resource Planning

102

have to focus on a “remote management” plan, identifying the resources

needed for managing an outsourced group.

Many successful outsourcing examples can be cited. For example, a

large company, Eastman Kodak, chose to outsource its entire data center to

IBM, and a relatively small firm, Mapics, chose to outsource its software pro-

gramming to an Indian company. Each remote management plan will

inevitably differ in content, based on a variety of factors such as the size

and type of the project, the risks, and the distance. Although each remote

outsourcing experience is different, some common resources should be iden-

tified in every remote management plan. Such resources might include the

following items:

• Extra network and communications equipment

• Additional methodologies and processes to ensure that reports on project

status and problem escalation are not delayed

• A project leader with special skills or experience in remote management

• Travel and meeting policies

Of special significance is the project leader’s experience and skill in

remote coordination and management. The remote workers may be located

in different countries. To counteract potential problems, the project man-

ager must make an extra effort to bring the differing cultural experiences

and expectations of these team members out into the open. Including extra

time in the project schedule for harmonizing the group is critical. In some

cases, the initial task schedule might need to be subsequently revisited and

modified. Additional time and effort to understand any concerns that arise

due to cultural differences might have to be included in the plan, for example

by undertaking informal meetings. Extra traveling budgets also need to be

included in the plan. Furthermore, if the remote sites are in different coun-

tries, international laws and tax regulations must be considered during the

planning phase.

Outsourcing Versus Insourcing

103

IBM’s Rejuvenation Through IT Services

In the past decade, IBM has gone through an amazing turnaround—

from almost going bankrupt in the early 1990s to reassuming its role

of an industry-leading company in the early 2000s. At the heart of

that turnaround is IBM’s global service business, which provides IT

services to its customers—that is, IT outsourcing.

If there is a need to move and relocate equipment or office space for

this project, as opposed to acquiring new equipment and allocating per-

manent new space, then use of these temporary resources must be prop-

erly planned. Many times, leasing equipment is preferred due to cost

issues or rapid technology changes. This choice must be stated explicitly

in the plan, and some type of leasing policy must be established. The plan

should also address the length of the leasing period and the desired terms

and conditions.

The final plan will identify the what, who, and when of the resources

that need to be outsourced or leased. The challenges in organizing and

preparing software projects that have outsourced and leased components are

discussed in Part Two of this book.

■ KEY CONCEPTS

The human team members are the most important resource in any software

project. Planning for human resources focuses on the types and number of

skilled people who will be directly applied to the development and support

of the deliverables. At the same time, indirect human resources (such as

administrative support personnel) must be included in the overall project

resources planning. Because significant effort is expended in the recruiting

and hiring of these human resources, skilled people should be viewed as the

project’s “human capital.”

Chapter 4 Project Resource Planning

104

The company’s rebirth has its roots in 1989, when IBM and Eastman

Kodak entered into an agreement under which IBM designed, built,

and managed a new data center for Kodak in Rochester, New York. By

1993, IBM had won a 10-year, $650 million contract to provide data

center management and other services to Equifax. In that same year,

IBM entered into another 10-year, $415 million contract with South-

ern Pacific to handle the company’s information technology functions.

These contracts and many other follow-on outsourcing contracts had a

dramatic impact on IBM’s fortunes and contributed directly to the

company’s renaissance.

For all of these services, the planning effort was meticulous. The num-

ber of items considered and planned for each of these outsourcing

engagements could easily take several volumes to list and to describe.

Processes and methodologies are a second resource; they play a key part

in the success or failure of all software projects. As such, their specification,

education, and documentation must be viewed as significant “intellectual

capital” and should be protected accordingly. Each software development

phase may be viewed as a separate process, and the methodologies applied

and utilized within that phase must be defined, agreed to, documented, and

disseminated.

Hardware and software tools and equipment constitute the third type of

resources that are required for a project. The project plan must not only

specify the tools, but also relate those tools to other resources, such as

through a description of who is to use each tool and what preparation is

needed for its use. The availability of the tools must also be specified and

folded into the project schedule.

All three types of resources should be merged into a single combined

resources plan that may be viewed as a template for resources acquisition.

Resources may be either obtained through outsourcing or developed (or bor-

rowed) in-house. If human resources will be outsourced, especially from

other countries, then the plan must take into account the unique demands

related to remote management of people and other resources.

■ EXERCISES

1. Investigate the SEI’s Capability Maturity Model (CMM) and discuss

how you might use it for project planning.

2. Discuss the difference between direct and indirect resources.

3. List the activities that a software project manager may be involved in

during the personnel recruiting period and discuss how that may affect

the availability of the manager for other activities.

4. Compare and contrast the concepts of human capital and intellectual

capital.

5. If human resources are partially outsourced, what are some concerns

that arise? How might you prioritize these concerns?

6. Compare and contrast insourcing and outsourcing.

7. This chapter discussed how to plan for what type and how many

resources are needed. How could you extend the planning to cover

when the resources need to be available for the software project, espe-

cially if the resources will be obtained through different avenues?

8. Discuss the difference between process and methodology.

Exercises

105

9. List some of the functions that a configuration management tool

should have.

10. Discuss the notion of cross-functional process and use the quality

assurance process as an example in that discussion.

■ SUGGESTED READING

C. A. Bartlett and S. Ghoshal, “Building Competitive Advantage Through

People,” MIT Sloan Management Review, Winter 2002, 34–41.

Carnegie Mellon University/SEI, The Capability Maturity Model: Guidelines

for Improving the Software Process, Addison Wesley Longman, 1995.

M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard Object

Modeling Language, Addison-Wesley, 2000.

W. Humphrey, Managing the Software Process, Addison Wesley, 1989.

I. Jacobson, et al., Object-Oriented Software Engineering, A Use Case Driven

Approach, Addison-Wesley, 1992.

P. E. McMahon, Virtual Project Management, CRC Press, 2001.

R. Murch, Project Management Best Practices for IT Professionals, Prentice

Hall, 2000.

J. R. Persse, Implementing the Capability Maturity Model, John Wiley and

Sons, 2001.

D. Phillips, Software Project Manager’s Handbook: Principles That Work at

Work, IEEE Computer Society, 2000.

Chapter 4 Project Resource Planning

106

107

5
Risk Analysis and Planning

Chapter Objectives

This chapter discusses the following concepts:

• What the concept of risk is—namely, an anticipatable uncertainty that

may be identified and analyzed during the project planning phase

• How risk items can be identified from previously planned areas, such as

project deliverables, tasks, schedules, goals, and resources

• What is involved in planning for risk: identification of risk items, priori-

tization of risk items, and analysis of risk mitigation alternatives

RISK DEFINITION

It is a rare situation in which a software project carries no risk. There always

seems to be something that is not well described, not well communicated,

not well understood, not well documented, or not well thought-out that

somehow causes a problem at the most inopportune time. The planning

activities described so far in this book have focused on identifying and

understanding deliverables, task analysis and scheduling, goal setting, skills

and people identification, process and methodology identification, and tools

selection. It is very difficult to identify and fully plan for all of these items at

the outset of the project. As a consequence, this long and complex list of

planning activities, by itself, carries risks. Typically, some parts of the plan

must be modified as the project moves on.

Chapter

Chapter 5 Risk and Analysis Planning

108

A risk is often viewed as a problem that may occur. The probability of it

materializing is greater than zero but not 100%. If the probability of its

occurrence is 100%, then it is a problem. If the chance of it occurring is zero,

then it will never occur and thus is not a risk. A problem is something that

has a negative value associated with it. For example, a miscommunication

about a staff meeting time may not cause any harm in that a missed meeting

or a part of a meeting may lead to only a small loss of information that can

be easily recovered. In contrast, a miscommunication about a sales presenta-

tion time may lead to the loss of a sale, which is associated with a large loss

of revenue and may not be easily recoverable. We will usually attach a neg-

ative value in some normalized form such as cost in dollars. Thus a risk is

defined as an uncertainty that has a negative value associated with it.

Risk A problem that has a greater than 0% but less than 100% probabil-

ity of occurrence.

Problem An event that has a negative value associated with it.

Unforeseen uncertainties, such as losing a critical resource or using an

unreliable new technology in a software project, are examples of risks that

bring the possibility of potentially worse risks, such as schedule slippage or

cost overruns. All of these outcomes may lead to customer dissatisfaction and

possibly legal action. It might sound contradictory to discuss and plan for

these “unknowns.” But at the planning phase of project management, the risks

represent the foreseen uncertainties. They can be listed, categorized, and

potentially managed. The earlier these risks are handled, the better the chance

of project success. It is critical that any anticipatable risks be addressed as

early as possible during the project planning phase. Later, the unforeseen

unknowns will actually be captured during the project monitoring phase, and

management adjustments to them at that point must be made quickly in real

time.

RISK IDENTIFICATION

In software projects, just as in projects in other disciplines, some risks are

indigenous to the specific discipline. Those that occur more often in software

sometimes result from the misconception that software is difficult to define

but easy to create and modify. Schedule overrun is one of the most often

mentioned risks. Another well-known risk in software development is qual-

ity. The following list identifies some of the major sources of risks in soft-

ware projects:

• Overly optimistic assumptions about the availability of some technology

• Misunderstanding of the real impact of some new methodology

• Miscalculation of the robustness (e.g., extensibility) or constraints of

software design

• Misunderstanding of customer requirements

• Uncontrolled continuous changes of customer requirements

• Unrealistic promises to customers made by overzealous salespeople or

company executives

• Inadequate due diligence while choosing external sourcing

• Incompetence of key project personnel

• Miscalculation of teamwork and group effectiveness

• Unrealistic expectations about the availability or productivity of special

skilled human resources

These causes may themselves be viewed as risks, though they usually

lead to other, potentially more dangerous risks. For example, uncontrolled

continuous change is a major cause of a risk item known as “scope creep”

(i.e., work expansion), which in turn causes schedule elongation. In this case,

uncontrolled continuous change itself is a risk because it is a problem that

has a greater than zero but less than 100% probability of occurrence. It may

also trigger a chain of more risks.

Identifying and Listing the Anticipatable Risks

Each project manager should perform a risk identification activity, in which

he or she lists the anticipatable risks associated with the project. This list

may be updated as the project progresses. A frequently asked question is,

How does one start such a list? Recall that project management is managing

the product, the process, and the resources to achieve a set of goals. Conse-

quently, the software project managers may begin by covering each of these

areas. Essentially, they revisit the items that went into the previously com-

pleted planning activities.

First, list those characteristics of the product that may not be well

defined. Examining these characteristics requires reviewing the specified

requirements and thinking about what is still unclear. Create a list of those

“unclear” items for each deliverable. These items form the initial list of

potential product-related risks.

Second, list all unresolved issues for the tasks that will be performed in

conjunction with the software project. Start by asking whether any process is

defined, documented, and practiced in the organization. If not, then any

process that has yet to be specified for the project would represent an

Risk Identification

109

untested entity for the team. As such, the process may be a risk. In addition,

the methodologies associated with the tasks and the processes may be risks if

they are not clearly defined, thoroughly documented, and well understood

by the team. Processes and methodologies are especially fraught with risk

when the project deals with new enabling technologies that are as yet

unproven but labeled as the next panacea for software projects. Identify all

of these items to create the list of risks associated with the software project’s

tasks, processes, and methodologies.

Third, identify risks associated with the management of resources. Do

the project managers understand which resources are required and how

much of each kind is needed? The risks related to resources will differ

depending on the type of resource.

For known hardware and software systems required for the project, the

associated risk may simply be the capacity or amount of these resources. For

example, we may underestimate the number of simultaneous users of a soft-

ware package and purchase fewer licenses than are really needed.

In terms of tools, the risk may be related to the underlying technology

or the quality of the acquired tool. For example, one may acquire a require-

ments management tool, but that tool might be built upon a specific require-

ments management model that conflicts with the requirements management

process of the project at hand.

Sometimes this risk may be the timeliness of the availability of the tool

for the project. If several different tools are involved, there may also be the

risk of the tools working when utilized individually, but not as a set. Consider

the situation in which requirements have been solicited and a requirements

management tool has been purchased, but the education of the users is not

scheduled until the requirements are already gathered. Instead of waiting for

the delayed education, the original requirements might be captured via a

generic tool such as Microsoft Word and then later transferred to the require-

ments management tool. Even though most requirements management tools

support data importation from Word, the integration of information may not

be accomplished automatically. That is, the imported information might need

to be further manipulated within the requirements management tool to truly

take advantage of the tool’s functions such as requirements categorization,

prioritization, and tracing. The risk here is that many of the activities that fol-

low the data importing operation may not take place, and the requirements

may not be properly prioritized or categorized, even though an expensive

requirements management tool was purchased and is available.

As noted in Chapter 4, human resources represent an especially impor-

tant type of resource for software projects. Here risks may arise at all phases

Chapter 5 Risk and Analysis Planning

110

of the project, from the initial recruitment effort to the final separation of

the people. Obtaining the needed skilled people in a timely manner is always

a problem, and it is further intensified when the field experiences a technol-

ogy boom or a shortage of some special skill. After the team is assembled,

the team may not fully cooperate or the members may even sabotage one

another’s work. Keeping the people focused and productive is also a very

difficult challenge that may affect general productivity, which may in turn

affect the project as a whole. (Refer to Chapter 14 for more information

about the formation and development of project teams.)

All of these potential risk areas can result in failure to meet the sched-

ule, poor product quality, functionally incomplete deliverables, dissatisfied

users and customers, or a demoralized project team. Such a negative result is

not a risk as we have defined it, in that something else caused the poor out-

come; that something else is the uncertainty that we want to identify as

early as possible.

To do so, the software project managers’ first task is to identify risks in

areas in which one can foresee uncertainties. For software project planning,

that initial identification of risks may cover the major planning categories:

• Deliverables and product specifications

• Tasks and initial schedule

• Goals, metrics, and measurements

• Human resources

• Processes and methodologies

• Tools and equipment

While creating the initial risk list, the software project managers should

encourage the participation of as many people as possible, including peer

groups and executives. The more problems that can be anticipated during the

planning phase, the better the chance of project success. Items on this list

will also be used as monitoring targets as the project progresses.

After the risks are identified and an initial list created, additional analy-

sis of these risks is needed. The next step is to prioritize the risks so as to

better avoid them.

RISK PRIORITIZATION

All risks are uncertainties that may lead to negative outcomes, but not all

risks are likely to carry the same level of importance. Also, there may be too

many risk items to consider each one in depth. For these reasons, risks need

Risk Prioritization

111

to be prioritized. As stated in the previous section, a risk is a problem that

has a greater than zero probability of occurring. One should consider the

consequence of the problem should it occur or the severity of the associated

negative outcome.

Risk prioritization The activity of ordering risks based on some crite-

rion or set of criteria.

A negative consequence resulting from erroneously designing a func-

tion due to a lack of understanding or a misinterpretation of the require-

ment may range from being extremely drastic to being quite tolerable. For

example, the geographical misplacement of an input field on the screen

may be due to a misunderstanding, but it will merely create an easily cor-

rectable inconvenience. On the other hand, the requirements for an input

data check function, that differentiates valid inputs from invalid inputs

must be clearly defined and recorded. If they are not, the input of invalid

data into the system can create system problems that are extremely difficult

to detect, especially if the requirements related to distinguishing valid

inputs from invalid ones are misinterpreted. Imagine the extreme situation

in which an analyst misinterpreted a corporation’s valid retirement age of

62 as 60. Although the age field may be properly checked for numerical

data, the invalid value (60) will cause many people’s retirement compensa-

tion to be dramatically miscalculated.

Similarly, the unavailability of a key resource may create a problem of

dramatic significance or little significance. For example, most software

development managers are quite familiar with the outcome of failing to have

a key designer be available at the right time. A slippage of one day in an

interface design, which happens to interact with 10 or more components,

will force the slippage of all the affected components’ designs. The slippage

of all the components during the design phase will affect the programming

schedule of all the delayed designs. This will, in turn, affect the schedule of

downstream testing of the delayed code. Often, a one-day delay in the early

phases of the software development cycle can produce a dramatic cascading

effect across the entire schedule.

Prioritization by Recovery Cost

To prioritize these different types of risks, the problems—or the negative val-

ues—must be measured with a normalized metric that can be ordered. One

approach is to devise some scheme whereby the risks can be assigned to

Chapter 5 Risk and Analysis Planning

112

ordered categories. For example, one might divide the categories based on the

perceived cost of fixing the problem should it occur—that is, the recovery cost.

Recovery cost The cost in terms of effort or financial expense to solve

a problem should a risk materialize.

The costs assigned may not be exact but rather identified as merely

high, medium, and low. Thus risk items may be categorized as high,

medium, or low based on the perceived level of recovery cost, as shown in

Table 5.1. What is viewed as a high, medium, or low risk depends on each

organization. For example, $100,000 or 20 person-days may be viewed as

a high cost or as a medium cost depending on the organization. Thus risk

prioritization is subject to a different interpretation by each organization.

Because of such potential differences in interpretation, this method is

most applicable within an organization (rather than across organizations)

and should be used with care when applied to interorganizational risk pri-

oritization.

Risk prioritization by recovery cost is a very simple, easy-to-apply

scheme. A major drawback, however, is the perceived cost. The perceived

cost itself may be a risk if it is not gauged accurately. Unfortunately, sub-

stantial inconsistencies may arise when different people are asked to provide

the recovery cost assessment. In particular, an inexperienced management

team should employ this scheme with care. At a minimum, the recovery cost

assessment should be reviewed by others. One can not overstate the value of

an experienced manager in risk management activities. For an organization

that has kept historical data on projects, one may review the past problem

recovery costs and create categories for the project at hand using the desired

interval of cost for each category. Note that a prioritization scheme using

just high, medium, and low categories is not very descriptive; one cannot

say precisely how much worse a high-risk item is than a low-risk item, for

example.

Risk Prioritization

113

Table 5.1 Risk Prioritization by Recovery Cost

Risk item Problem recovery cost Risk priority

Item 1 High High

Item 2 Medium Medium

Item 3 High High

Item 4 Low Low

Types of Recovery Cost Prioritization

Many types of risk prioritization schemes based on recovery cost are possi-

ble. One alternative is to increase the number of recovery cost categories,

thereby increasing the number of priority categories. This strategy may be

viewed as a refinement of the fundamental risk prioritization scheme.

Another variation is to use numerical categories, still based on the recovery

cost, such as 1, 2, ..., 10; here, either 1 or 10 is the highest priority. These

numerical categories may be designed in such a manner that the recovery cost

is divided into 10 equal increments. Such a scheme is actually an improvement,

in that it provides more than just simple ordering. It allows us to quantify risk

to some extent, by saying that a risk in the priority 7 category is two units

higher in priority than a risk in the priority 5 category (assuming that 10 is the

highest priority level). We may also think of a risk item with priority 6 as being

twice as important as a risk item with priority 3, because the recovery cost of

the risk priority 6 problem is twice as much as that of a risk priority 3 problem.

There are several ways to divide the recovery cost into equal increments.

One easy method is to examine the risk list and to pick the item with the

largest recovery cost and the item with the smallest recovery cost. Divide the

difference between the two into equal increments. If L is the largest recovery

cost and S is the smallest recovery cost, then

Each increment = (L - S)/Z

where Z is the desired number of priority levels.

For the most part, this scheme would work fairly well. In some situa-

tions, however, updating the risk list may cause the L and S values to

change. If the priority increment values change, that may, in turn, require a

reevaluation of all risk items.

Prioritization by Risk Value

Further sophistication may be introduced in the prioritization of the risk

items. Since each risk is an uncertainty that has a nonzero probability of

occurrence, the probability of occurrence may be included in the prioritiza-

tion scheme.

It makes sense to view risks with a low chance of occurring as requiring

less attention. In other words, a risk with a high recovery cost but a very low

probability of occurring should not command the same amount of attention

as a risk item with a high recovery cost and a high probability of occurring.

Let’s define the risk value of risk item j, RV(j), as follows:

Chapter 5 Risk and Analysis Planning

114

RV(j) = P(j) ✕ RC(j)

Here P (j) is the probability of risk item j becoming a real problem, and

RC(j) is the recovery cost for risk item j when it turns into a problem. The risk

value, RV, may be used as the scheme for prioritization because it is also ordered.

Risk value A recovery cost that is influenced and modified by another

criterion or set of criteria. The probability of the risk turning into a

problem is such an influencing factor, and when such a factor is taken

into account in modifying the recovery cost, the result is the risk value.

Table 5.2 shows five risk items with different probabilities of occurrence

and different recovery costs. These five risk items may be prioritized based

on the computed risk values, RVs. In this case, the risk items will be priori-

tized in the following order:

1. Item 3

2. Item 4

3. Item 2

4. Item 1

5. Item 5

That is, item 3 has the highest risk value and item 5 has the lowest risk value.

This scheme is more sophisticated than the one that considers only the

recovery cost, but it has the disadvantage that it adds more variables and

hence more complexity. The probability of problem occurrence must be esti-

mated, and in addition the estimate of the recovery cost must be made. As

always, these estimations may be wrong and thus may pose their own risks.

Risk prioritization is a task that definitely requires experience. The technique

can be used more effectively if historical project data can be used as guidance.

Once the risk items are prioritized, the software project managers may

decide to consider all of them or just to focus attention on some of the risk

Risk Prioritization

115

Table 5.2 Risk Prioritization by Risk Value

Risk Item Probability of occurrence Recovery cost Risk value (RV)

Item 1 0.4 $600 240

Item 2 0.7 $400 280

Item 3 0.3 $3000 900

Item 4 0.6 $1200 720

Item 5 0.3 $700 210

items, such as the top 30%. Alternatively, such decisions may be postponed

until the managers have had a chance to examine the possibilities of miti-

gating the risks.

RISK MITIGATION

Once the foreseeable risk items are identified and prioritized, the next step is

to plan how to mitigate those risks. For many of the risk items, several ways

to mitigate the risk might be available; for other risks, no mitigation options

may exist.

Risk mitigation An activity that may reduce, minimize, or totally avoid

a risk.

First, list all the potential ways to mitigate a risk item. For example, if

there is a risk of not being able to complete a system integration task with a

specific tool because only one person possesses that special skill, there are

several possible ways to mitigate that risk:

1. Hire an extra person with the needed skill as a backup helper.

2. Provide extra incentives to persuade the current employee to stay.

3. Use an alternative system integration method that does not require this

specific tool.

Software project managers may employ any one of these options, or

even a combination of them, to improve the odds of mitigating the risk.

Cost-Based Mitigation

Which mitigation alternative should be chosen when several choices are

available? And which criteria should be used in the decision-making

process? One may use any of several parameters as the basis for decision

making, including the ease of mitigation, probability of success of mitigation,

and the cost of mitigation.

Cost of Mitigation

Let’s examine first the last of these—the cost-of-mitigation approach. Each

mitigation alternative for a risk item has some cost associated with it. Sup-

pose there are several mitigation alternatives; a mitigation cost value must

then be estimated for each alternative. Next, choose the one with the lowest

Chapter 5 Risk and Analysis Planning

116

cost. For a particular risk item j, Table 5.3 shows the estimated costs of the

mitigation alternatives.

The cost of each mitigation alternative is just an estimate, and it carries a

certain amount of risk, too. For the alternatives shown in Table 5.3, alternative

2 would be the preferred option because it has the lowest estimated cost.

Probability of Success

Each of the mitigation alternatives likely has a different potential for success.

For example, while alternative 2 in Table 5.3 may be the lowest-cost option,

it may also have a low chance of success. It might be better to choose alter-

native 1 if it has a better chance of success. The chance of success reflects

the probability that the mitigation alternative can actually bring the risk

close to zero. Although it is possible that one might not be able to carry out

the mitigation alternative, we will assume here that the option can be per-

formed successfully. For the example in Table 5.3, alternative 1—hiring an

extra person who has the special skill at a cost of $65,000—will bring (with

close to 100% assurance) the risk to zero. In reality, the chance of success is

probably less than 100%. Also, there is no guarantee that such a person can

be hired in time, though our example makes that assumption.

Mitigation Value Cost

If the probability of success is taken into account, a new cost value is

defined. The mitigation value cost for each alternative is defined as follows:

MVC(k) = P(k) ✕ MC(k)

where MVC(k) is the mitigation value cost of alternative k. The probability

of mitigation alternative k’s success in bringing the risk to zero will be

viewed in a reverse manner here; that is, this factor will be represented by the

probability of failure, P(k). The original raw cost of mitigation for alternative

k is MC(k). Table 5.4 shows the same three alternatives, with their probability

of failure, and their respective mitigation value costs.

Risk Mitigation

117

Table 5.3 Estimated Mitigation Costs for Risk Item J

Mitigation Cost of
alternative mitigation

Alternative 1 $65,000

Alternative 2 $50,000

Alternative 3 $120,000

Mitigation value cost The cost of risk mitigation after taking into

account another criterion or a set of criteria, such as the probability of

mitigation success.

Alternative 2, which has the lowest raw mitigation cost, does not look

very good after we discover that the chance of failure is 0.6. That is, even if

we give the $50,000 bonus to the employee with the special skill, there is a

60% chance that the system integration task will not be accomplished. After

all, a bonus may excite the person only temporarily, so the mitigation value

cost is relatively high. Conversely, the more expensive mitigation alternative

of using a different technical solution has a much higher chance of success,

so it carries a lower mitigation value cost. In this case, we would be wise to

choose the alternative with the lowest mitigation value cost, alternative 3.

Note that if we changed P(k), the probability of failure, to become the

probability of success, then the alternative with the highest mitigation value

cost would be the proper choice. We used the failure probability in this exam-

ple because it is counterintuitive to choose the most expensive alternative.

Fixed Budget for Risk Mitigation

Sometimes software project managers face the prospect of planning with a

fixed budget for risk mitigation. First, they rank the risk items. Then they

explore the risk mitigation alternatives. Next, they choose a mitigation alter-

native for each risk, using one of the previously discussed methods. Starting

with the top risk item, the managers subtract the cost of the chosen corre-

sponding risk mitigation alternative from the budget and then they examine

the budget to see whether it is still adequate. If more funds remain available,

they then continue sequentially on to the next risk item until the budget

runs out. Table 5.5 shows an example of this kind of sequential application

of a fixed budget for risk mitigation.

This technique offers a simple and straightforward way to plan for risk

mitigation. In the example in Table 5.5, we start with a budget of $500,000,

Chapter 5 Risk and Analysis Planning

118

Table 5.4 Mitigation Value Cost

Mitigation Raw risk Probability of Mitigation
alternative mitigation cost failure value cost

Alternative 1 $65,000 0.1 $6500

Alternative 2 $50,000 0.6 $30,000

Alternative 3 $120,000 0.05 $6000

and the risk mitigation budget is allocated to the top four risk items. That

leaves only $50,000, which is not enough to cover risk item 5. Even though

not all risk items are covered, this approach has indeed lowered the risks of

the overall project.

Other budget-based approaches are also possible. One that may deserve

some attention is the tactic of looking at a number of top-priority risk items

and attempting to allocate the budget in such a manner that the total risk

value, RV, is maximized. Consider the same set of risk items as in Table 5.5,

except that now the risk values are also shown (see Table 5.6). Each risk item

has an associated risk value, which is chosen based on the minimal mitiga-

tion value cost. The raw mitigation cost in Table 5.6 is the same as that

shown in Table 5.5. Note that this approach may potentially give a different

answer than planning purely by sequential priority order.

Table 5.6 shows that risk item 4 may be skipped, but two more risk items

may be picked up while still staying within the budget. In this example, the

total risk value is 3290. In the previous scheme, in which the budget was

Risk Mitigation

119

Table 5.5 Sequential Application of a Fixed Budget for Risk Mitigation

Risk Item Raw risk Available
mitigation cost budget ($500,000)

Item 1 $185,000 $315,000

Item 2 $105,000 $210,000

Item 3 $95,000 $115,000

Item 4 $65,000 $50,000

Item 5 $60,000 Not enough funds left

Table 5.6 Allocating a Fixed Risk Mitigation Budget by

Maximizing Risk Value

Risk Risk Raw risk Available budget
item value mitigation cost ($500,000)

Item 1 950 $185,000 $315,000

Item 2 700 $105,000 $210,000

Item 3 680 $95,000 $115,000

Item 4 620 $65,000 Omit this item

Item 5 560 $60,000 $55,000

Item 6 400 $50,000 $5000

allocated sequentially, only four risk items were covered and the total risk

value was only 2950. Maximizing risk value would allow the application of

risk mitigation to risk items 1, 2, 3, 5, and 6—that is, it enables coverage of

one more risk item.

A scheme that considers the total risk value may sometimes be prefer-

able. For example, by not choosing the highest-priority item, a higher total

risk value and more risk items might be covered with a fixed budget. How-

ever, since these risk values and mitigation costs are generally estimates, we

would still need management’s subjective experience to double-check and

agree with the plan.

At the end of risk planning, the plan should include the following items:

• A list of identified risk items

• Prioritization of the list according to some defined scheme

• A mitigation alternative for each of the prioritized risk items

RISK REMOVAL AND THE RISK PLAN

A risk plan would be of only limited utility if it did not include target dates

by which the risks were supposed to be eliminated. A risk item may be

removed from the list after the successful application of the risk mitigation

alternative or a change in some other dependency factor. As an example,

Table 5.7 shows a prioritized risk item table in a risk plan.

The risk removal plan table consists of the prioritized risk items, the

expected date or time frame by which the risk items will be removed from

the list, and the events that will trigger the removal of the risk items from

Chapter 5 Risk and Analysis Planning

120

Table 5.7 Risk Removal Plan

Prioritized Expected removal Removal
risk items date dependency

Item 1 06/30/2003 Risk mitigation completed

Item 2 07/15/2003 Task 3 completed on schedule

Item 3 01/30/2004 Task 8 target met and risk
mitigation completed

. . .

. . .

. . .

the list. This table is one of the many entities that are tracked in the moni-

toring and adjusting phases of a POMA-compliant project.

As risk items are mostly born out of uncertainties that can be antici-

pated to some extent, there is a high chance that the risk item list itself will

be incomplete or even erroneous. Risk analysis and planning may be revis-

ited frequently over the course of the software project, and the risk plan may

be revised several times. The project managers should continuously be on

the lookout for the previously unforeseen uncertainties and check for any

sign of new risks.

■ KEY CONCEPTS

A risk is defined as a problem that has greater than 0% but less than 100%

probability of occurrence. A problem has a negative value associated with it.

Only the foreseeable risks may be planned for. Three main risk analysis and

planning activities are pursued as part of POMA: risk identification, risk pri-

oritization, and risk mitigation.

The first activity, identifying risks, seeks to establish a list of risk items.

Many anticipatable risks may be identified from the descriptions of project

and product deliverables, from the task definitions and initial schedule, from

the goals and metrics definitions, and from the project resources plan.

The second activity, determining the priority of the risk items, can fol-

low any of several approaches. One possible approach is to use the estimated

recovery cost of each risk item as the prioritization criteria. A more sophisti-

cated approach is to compute the risk value, which takes into account the

estimated probability of risk occurrence, and then ranks the risks by these

risk values.

The third activity, mitigating risks, focuses on the analysis of risk miti-

gation alternatives. The various mitigation options are listed, and their

respective cost values are estimated. The optimal alternative may be chosen

because it has the smallest mitigation cost. A mitigation value cost (MVC) is

defined so as to include both the estimated probability of the mitigation

alternative succeeding and the actual dollar cost of the option. Using the

MVC value in the decision-making process is a more intricate approach to

determining the optimal risk mitigation.

The final risk plan should also include a set of dates indicating when

the prioritized risks may be removed from the risk list. The status of these

risks and their projected removal dates should be monitored throughout

the project.

Key Concepts

121

■ EXERCISES

1. Define risk, and discuss how unforeseeable risks may be handled.

2. Discuss some of the sources of risks in software projects.

3. Describe one way to prioritize the risks.

4. What are the three major categories of risk management?

5. Why might software reuse be attractive to many software project man-

agers, from a risk management perspective?

6. Why is it important to include risk removal in the risk plan?

7. What are the criteria for risk removal?

8. How can software project managers identify the mitigation alternatives

for each potential risk?

■ SUGGESTED READING

Barry W. Boehm, “Software Risk Management: Principles and Practices,”

IEEE Software, January 1991, 32–41.

Richard Fairley, “Risk Management for Software Projects,” IEEE Software,

May 1994, 57–67.

Elaine M. Hall, Risk Management Methods for Software Systems Develop-

ment, Addison-Wesley, 1998.

A. D. Meyer, C. H. Loch, and M. T. Pich, “Managing Project Uncertainty:

From Variation to Chaos,” MIT Sloan Management Review, Winter 2002,

60–67.

Marian Myerson, Risk Management Processes for Software Engineering Mod-

els, Artech House, 1996.

J. Ropponen and K. Lyytinen, “Components of Software Development Risk:

How to Address Them? A Project Manager Survey,” IEEE Transactions

on Software Engineering, February 2000, 98–111.

Chapter 5 Risk and Analysis Planning

122

ORGANIZING

After the initial planning phase is complete, the software project team now

has documented descriptions of the following:

• Project deliverables and product attributes

• A task list and initial schedule

• Project goals, metrics, and measurements

• Resources

• Risks

Now it is time to organize and to put the project in action. The planning

and organizing phases may overlap. That is, some organizing activities, such

as human resources recruiting and organizational structure design, may be

initiated and performed simultaneously with resource planning activities.

This phase of the software project management is especially dynamic,

because the project managers are starting to act on their share of the project

plan. At the same time, the nonmanagement-related activities of the software

project, such as early requirements solicitation and feasibility analysis of

technical risks, should be in full motion.

Part Two

Organizing and Preparing

(POMA)

123

As with planning, the organization and preparation of a project is not just

one task but rather a group of diverse tasks. From the project management per-

spective, this “O” (organizing and preparing) phase marks the start of the exe-

cution of the project plan. Ideally, the software project plan has been approved

before the project team engages in activities related to the organizing and prepa-

ration phase, because a fairly large sum of money will be expended once acqui-

sition of resources begins. Each type of resource mentioned in the plan requires

a different approach to attain, organize, and prepare it. For example, goals and

measurements must be set up so that they may be communicated, reviewed,

understood, and accepted by the team members. Risk items and their respective

mitigation alternatives need to be set up for tracking and continuous evaluation.

HUMAN RESOURCES

As noted in Part One, human resources are the most important resources for any

software project. The acquisition of human resources often requires much more

effort than acquiring a software tool, methodology, or hardware. Recruitment of

people may be necessary, but it is merely a first step. People need to be placed

in an organization and given clearly designated responsibilities so that the

planned tasks can be accomplished within the target schedule and cost. Unlike

tools and process resources, human resources have emotions. Thus a different set

of preparations—and one that is exceedingly more complex than equipment

maintenance—must be established for the retention and growth of the person-

nel. In addition, because all projects must eventually end, there needs to be prop-

er preparation of the team members for the close of the project.

PROCESSES, METHODOLOGIES, AND TOOLS

Other resources that must be prepared and made available along with human

resources are those related to the immediate needs of the project team members:

• Work space for the individual offices and team meetings

• Communication facilities, such as phones, wall boards, and video con-

ferencing mechanisms

• Computational facilities, such as desktop computers, laptop computers,

computer networks, and access to servers and services

Broader project resources are needed as well, such as software develop-

ment or support processes, specific methodologies for some activities, and

Part Two Organizing and Preparing

124

hardware and software tools to support the project as a whole. It is essen-

tial to verify that these resource components, as addressed in the plan, will

be available at the required time and can be acquired at the expected

prices. As part of the preparation, the project managers need to ensure that

the purchase orders are completed and that the budget allows for the

release of the needed funds. If training and education for the tools or

methodologies are required, then reservations for educational facilities and

instructional engagements must also be made during the organizing and

preparation phase.

If an outsourcing plan calls for forging an external partnership, then

appropriate partners must be found, evaluated, and selected. The project man-

agement must ensure that the legal and contract group is included in, pre-

pared for, and ready with the drafting of contracts. Sometimes, the software

project managers will directly participate in negotiating these contracts.

Direct participation of project managers in contract negotiation is often a

preferred approach in that such participation allows both sides to work much

more closely later in the monitoring and adjustment phases.

GOALS AND MEASUREMENTS

The preparation for the downstream phase of monitoring occurs at this stage

of the project as well. The software project managers must define the types of

data needed to measure and track the project. These data are used to assess

the attainment of the expressed goals and the status of the risk items identi-

fied during the planning phase. The management reporting structure needs to

identify the following items:

• Who should receive the project status reports

• When, where, and how long should the project status meetings be

• What format the reports and presentations should take

• How the organization as a whole can prepare for the effort required to

collect and analyze the data

During the organizing phase, the software project managers may discov-

er shortcomings flowing from the planning phase. For example, the planned

resources may be inadequate. The software project managers should not hes-

itate to adjust the plan and seek both agreement to and approval of any nec-

essary adjustments.

Goals and Measurements

125

This page intentionally left blank

127

6
Human Resources

Chapter Objectives
This chapter discusses the following concepts:

• What software organizational structures are possible, including those for

both software development and software support organizations

• What preparations are needed to acquire human resources—recruiting,

hiring, and bringing new people on board

SOFTWARE PROJECT ORGANIZATION:
AN OVERVIEW

For software project management, human resources are often viewed as the

most vital resource. How many times have we heard industry leaders claim

that they can give up their buildings, their equipment, their processes, and

their money, but not their people? This declaration is especially applicable to

the software industry.

In the early days of the computing industry, software development

focused mostly on programming. Programmers’ activities and teams have

been discussed extensively by authors such as Weinberg and Kraft (see the

“Suggested Reading” section at the end of this chapter). In particular, various

ways to organize these programming teams have been examined thoroughly.

Centralized team control exercised through a chief programmer, as suggested

Chapter

Chapter 6 Human Resources

128

by Fred Brooks in his book The Mythical Man-Month, has yielded mixed

results. Other centralized and decentralized team structures have been sug-

gested and tried. In addition to organizational and team structures, different

leadership styles have been tested. Today, many software projects require a

large number of people who possess a wide variety of skills. Multiple teams

featuring specialized skills beyond just programming skills, such as system

testing and database administration, are used extensively in many software

projects. To deal with these unique situations, software organizational struc-

tures have necessarily become much more complex.

While the software organizational structure is being prepared, personnel

recruitment activities may be initiated in parallel. Using the software project plan

as a guide, the project management team must now hire the needed people, bring

them on board smoothly, and assign them to the appropriate organization. As the

project progresses, the project team members may need some special training and

growth. Finally, these individuals must be reassigned as the project winds down.

Organizing the software groups effectively and defining specific posi-

tions require some understanding of the functions that the groups will per-

form. This understanding is achieved by breaking down the tasks, the planned

processes and methodologies, the goals and measurements, and other items

outlined in the software project plan. The organizational structure may be

improved if the software project managers take into account some items that

may not be clearly identified in the plan, such as the communications chan-

nels available, the team members’ personalities, and so on.

Let’s look first at several potential software project organizational struc-

tures, beginning with software development structures and then continuing

with software support structures.

SOFTWARE DEVELOPMENT STRUCTURES

During the creation of the Work Breakdown Structure (WBS) and the plan-

ning activities, tasks were broken down and assigned to people with different

skills. Although one can start the hiring activity by using this list of needed

team members, it is better to spend a little time and put together an organi-

zational chart first.

General Organizational Structure

Figure 6.1 shows an organizational chart for a general software development

and service project organization. The general organizational structure reflects

the major tasks that a software development and service organization must

perform. The particular organization required for the project at hand may be

developed based on this structure.

General software development organization An implementation-

independent general organization that includes all the major activities

required to develop software artifacts, from inception to release. The spe-

cific implementation details such as relationships among the activities,

expected sourcing of the people, or the deployed organizational structure

are added onto the general organization.

In the process of putting together an organization, project managers may

discover the need for some additional, but indirect positions. A person who

is assigned to an indirect position usually performs some support task that is

not directly related to the completion of the project’s deliverables. For exam-

ple, a project administrator might coordinate the various activities and ensure

that communication flows properly. The position of project manager—anoth-

er indirect position—might not be needed until the number of people on the

project reaches a certain size. Conversely, if the project is small enough that

multiple tasks are assigned to the same people, the number of indirect posi-

tions required may be minimal. Such trade-offs may not have been fully ana-

lyzed during the planning phase.

Software Development Structures

129

Figure 6.1 General software project organization

Process and Measurement

Tools Support

Build/Packaging

Applications Testing

Applications Development

Applications Design

Project Management

Requirements Analysis

Systems Testing

Publication and Information
Design

Publication and Information
Development

System Design

User Interface Design

Database Management

Refining the General Organizational Structure I:

Matrix Versus Hierarchical Orientation

The final organization selected may to some extent depend on the company’s

project management philosophy or the corporate culture within which the

software project will be conducted. Although most organizations are hierar-

chical in nature, some adopt a flatter, matrix type of orientation.

Hierarchical organization An organizational structure in which all the

people associated with a project are grouped into functional departments

that report directly within the vertical line of command of the organization.

Matrix organization An organizational structure in which people are

grouped based on the functions they perform. These people may not

report directly within the vertical line of command of the organization.

In a matrix organization, not all the functions have to be performed

by the people who are part of the official project organization. For exam-

ple, a “central” test department might specialize in all sorts of testing. This

group might provide services to, and be shared by, all of the software

project organizations within the company. Similarly, a common software

tools support organization might be shared by the various project organ-

izations.

One advantage offered by a matrix-type organization is that there is less

likelihood of duplication and better focus on specialized skills compared to a

hierarchical organization. The potential downside is that there may not be as

much “team loyalty” toward any one project. In addition, there is the poten-

tial for confusion in the matrix organization due to the dual-boss situation.

By comparison, within a hierarchical organization, team loyalty and team

security can be cultivated much more readily.

Many hybrid organizations utilize a combination of hierarchical and

matrix structures. One such hybrid is the “functional team” concept, in which

members from different departments are temporarily brought together to per-

form a project while still formally reporting to their own departments. The

members of this temporary team take directions from the project manager

during the lifetime of the project. At the conclusion of the project, all of them

return to their original departments.

With the current trend toward cost cutting and organizational flattening,

many structures may be forced into a temporary, functional-team construct

in which all the people report permanently to a professional human resources

manager. With this approach, every software project is performed by a tem-

Chapter 6 Human Resources

130

porary functional team. In such a flattened structure, the project manager

directs all project-related tasks and is responsible for the outcome of the

deliverables. The project managers themselves may be chosen from a pool of

software project managers, all of whom report to a human resources manag-

er. The human resources manager handles the personnel-related subjects,

such as career development issues.

Furthermore, with the trend toward globalization and away from exten-

sive travel, along with much improved communications capability, many

organizations no longer require co-location of their employees. Instead, they

prefer to form virtual organizations.

Virtual organization An organizational structure in which many of the

project personnel are located physically apart and are bought together as

a temporary functional team.

Figure 6.2 shows how the organization depicted in Figure 6.1 may be

modified so as to set up a hybrid matrix organization that features separate

programming and information development centers. Any of the functional

groups in such a matrix organization may be virtual, in that they may be

located physically apart from the rest of the project team.

Software Development Structures

131

Figure 6.2 Modified general software project organization

Process and Measurement

Tools Support

Build/Packaging

Applications Testing

Applications Development

Applications Design

Project Management

Requirements Analysis

Systems Testing

Publication and Information
Design

Publication and Information
Development

System Design

User Interface Design

Database Management

Outsourced
Located in a
Programming
Center

Co-located at
Customer Site

Refining the General Organizational Structure II:

Functional Orientation

This general organizational structure may be further refined to show a more

precise structure. It is important that the organization be defined down to a

level where each individual can see his or her name. Figure 6.3 shows a dia-

gram of a software organization with a functional orientation.

The software project organization illustrated in Figure 6.3 is quite small:

a total of six people directly report to a project manager. Several assumptions

underlie such an organization:

• Managers have a duty to “take care of their people” and will spend a

considerable amount of time guiding the professionals’ careers, but not

directly doing their work.

• A smaller organizational size is conducive to faster team bonding.

• Many members of the group have worked well with one another in the past.

• The “yet to be hired” positions represent 33% of the overall team, but the

actual raw number of new employees is only two; the project manager

will be able to find the right people without having to compromise much.

• Each position has a specific title, including titles for the open slots,

allowing for easier requisitions for hire.

• The requirements and design activities are viewed as front-end activities

that set the tone for the project, so it is more important to have direct

control over them.

• The implementation activities are sourced from a different group, such as

a centralized programming and development implementation center.

• The information and publication activities are also sourced from a dif-

ferent group, possibly from the same programming and development

implementation center or perhaps from an external source.

Chapter 6 Human Resources

132

Figure 6.3 Refined software organization: Functional orientation

Requirements Analyst
(Tom Shaker)

Applications Designer
(John Chang)

Project Interface to
Programming Center and
Information Development

(Mary Burke)

Project Interface to
Process, Measurement,

and Tools
(to be hired)

Applications Designer
(Kim O’Conner)

User Interface Desinger
(to be hired)

Project Manager
(Sally Thomas)

• The infrastructure activities, such as those focusing on processes, meas-

urements, and tools, are also sourced from other specialized groups.

• One person serves as the designated liaison to the outsourced activities.

• The group does not have to be co-located; instead, members of this

small group may reside in different locations and yet communicate

effectively with the available technical tools, such as e-mail, cell phones,

and servers that provide Web access to a common set of central files.

Many software projects rely on this type of organization, in which the

activities are dispersed but all of the responsibilities are still put into the hands

of a small group of people. This is quite different from a strictly hierarchical

organizational structure in which everyone involved must report directly to

one responsible project manager. Such an all-encompassing organization, as

mentioned before, tends to have more overhead, including several people

engaged in activities indirect to the immediate project. This organization

requires a manager to spend more time conscientiously promoting rapid and

effective communications. Members cannot conveniently stick their heads into

others’ offices and strike up a quick discussion pertaining to the project.

Refining the General Organizational Structure III:

A Highly Specialized Organization

Let’s look at a small section—just the software development group—of a large

organization; see Figure 6.4.

This organization is a bit more specialized in that it reflects a group that is

responsible for only the development of software, but not the information devel-

opment and publication tasks. This group does not perform any of the require-

ments gathering and specification activities, nor does it handle any independent

testing. Likewise, no project service activities, such as those dealing with

processes, methodologies, measurements, configuration management, and tools,

are the responsibility of this group. The group members may depend on and use

many of the services provided by other groups. Let’s assume that this software

development group is part of a larger software project organization, where many

of the required services are available. The development manager in this group

still needs to ensure that the interfaces to the other departments within the same

organization are well defined and operational. This group also faces a big

recruiting challenge because it has many unfilled positions.

One advantage that this type of group offers by reporting within a large

project organization is the flexibility it brings to the large organization. If this

group was part of a separate central design and programming department,

Software Development Structures

133

every change and modification might have to be “officially” negotiated and

approved. The flexibility is especially valuable in large projects, which are

more complex and much more prone to changes.

SOFTWARE SUPPORT STRUCTURES

After it is released to the customers, the software still needs to be supported

by the software development company. A software support and service

organization may share many characteristics of the general software project

organization.

Software support and service Post-software-release activities related to

clarifying user questions and fixing software problems encountered by users.

Software support and service has one especially important component,

however: customer management. Customer management requires the software

project managers to organize and set up an extensive customer interface group,

such as the customer call service department that handles the following duties:

Chapter 6 Human Resources

134

Figure 6.4 Refined software project organization:

Software development specialization

Applications Analyst
(Tom Snyder)

Software Development Manager
(Joseph Akoff)

Applications Design
(to be hired)

Applications Design
(Allen Metz)

User Interface Design
(Kenny Lee)

Systems and Database
Architect

(to be hired)

Senior Applications
Software Engineer

(Ellen Kim)

Senior Applications
Software Engineer

(to be hired)

Applications Software
Engineer

(to be hired)

Applications Software
Engineer

(to be hired)

Applications Software
Engineer

(Laura Tang)

Applications Software
Engineer

(to be hired)

Junior Applications
Software Engineer

(Len Burns)

Junior Applications
Software Engineer

(to be hired)

Junior Applications
Software Engineer

(to be hired)

Junior Applications
Software Engineer

(to be hired)

Junior Applications
Software Engineer

(to be hired)

Junior Applications
Software Engineer

(to be hired)

• Answer calls

• Analyze each problem

• Respond to the customer if a possible solution exists

• Generate a problem report when an immediate solution does not exist

• Track the problem resolution activities

• Report and deliver solutions to the customers

• Close problems

Customer management The set of activities related to ensuring that

the customers’ needs are properly served.

A different set of skills and tools may be needed for a software support

organization as opposed to the software development organization. A soft-

ware support organization might take the form shown in Figure 6.5.

Note that the support groups in Figure 6.5 are divided into “levels,” a

term often applied to the types of software support. The support levels are

described below.

The Level 1 support service provides customer call services where prob-

lems are reported via the phone or on-line. If the problem is a minor one, for

which a simple answer can be delivered immediately on the phone or on-line,

then it is resolved quickly and the problem report is opened and closed with-

in that call service cycle. If more extensive research is needed or a software

Software Support Structures

135

Figure 6.5 Software support organization

Software Support Manager

Customer Level 1
Support Leader

Customer Call
Support Analyst

Customer Call
Support Analyst

Customer Call
Support Analyst

Customer Call
Support Analyst

Customer Call
Support Analyst

Customer Level 2
Support Leader

Customer Level 3
Support Leader

Software Support
Engineer

Software Support
Engineer

Software Support
Engineer

Software Support
Engineer

Software Packaging
Engineer

Problem Resolution
Analyst

Problem Resolution
Analyst

Problem Resolution
Analyst

change or fix might be necessary, however, then a problem report is opened

and sent to the Level 2 service group.

The Level 2 service group examines the problem description in the

opened report, analyzes the problem, and searches—possibly using a solution

database—for an existing solution that will avoid modifying the software. If

a solution that does not require a code change exists or can be devised, then

the customer is provided with that solution and the problem is closed.

Otherwise, the problem is passed to the Level 3 service group, whose mem-

bers will develop the necessary fix.

The Level 3 service group resembles the development organization. It will

make the necessary design, code, information, and publications changes, test

those changes, package them, and deliver the changes to customers. If the

severity of the problem is high, then the fix may be delivered to the customers

immediately. Fixes for lower-severity problems may be aggregated and deliv-

ered to the customers at regular intervals, such as monthly or quarterly.

RECRUITING AND HIRING
SOFTWARE PERSONNEL

Once the organizational positions are outlined, the software project manage-

ment needs to fill the open slots. The actual hiring of the employees starts with

having a clear definition of the open positions in terms of the skills, training,

and character of the candidates required for each position. Not all of this

detailed information may appear in the software project plan, however.

Recruiting

In the project plan, the type of software-related skills needed may be classi-

fied differently by different search and professional recruiting organizations.

For this reason, simply providing a general position title to the human

resources recruiters may not suffice. The following are examples of some of

the common software positions and related skills descriptions:

1. Database design and administration: Technical skills include setting up

a relational database, designing queries and reports to access informa-

tion in the database, and administering backup and recovery processes

for the database, which may require direct working experience with a

specific database from the database vendor. Formal education includes

a bachelor’s degree in computer science or information technology.

Chapter 6 Human Resources

136

Professional training includes a certification in the particular database

and two or more years of work experience with that database. The can-

didate must possess good communication skills and enjoy detail-ori-

ented work.

2. Applications designer: Technical skills include translating requirements

in the industry for which the application is designed into systems solu-

tions and expressing those solutions in the selected design language by

utilizing the specified methodology. Formal education includes a bach-

elor’s degree in computer science or information technology.

Professional training includes the completion of training in the vendor’s

design tool, more than three years of experience in software implemen-

tation in the industry targeted by the application, and familiarity with

the designated software packages used in that industry. The candidate

must possess good communication skills and be highly organized.

3. Application testing: Technical skills include reading and analyzing

designs expressed in the chosen design language, analyzing program

listings in the specified programming language, and designing test sce-

narios and test cases. Formal education includes a bachelor’s degree in

computer science or software engineering. Professional training

includes the completion of training on the selected test tool and two

years of experience in generating and executing test scripts with the

script language associated with the tool. The candidate must be detail-

oriented and have a positive, upbeat attitude.

4. Applications developer: Technical skills include reading and analyzing

designs expressed in the chosen design language and converting those

designs into programs written in the selected programming language.

Formal education includes a bachelor’s degree in computer science,

software engineering, or information technology. Professional training

includes a certificate in the programming language and five years of

programming experience, preferably in the industry targeted by the

application, with progressively sophisticated usage of the programming

language and debugging with the chosen tool. The candidate must be

detail-oriented and work well under constant schedule pressure.

Each position should have a description, whether it is open or not. Each

skill area may also be divided into levels characterized by different expecta-

tions and different degrees of reward and compensation. Furthermore, there

should be descriptions of the career paths, including the progression through

the levels, for the various technical and supporting roles. Employees are inter-

ested in their immediate responsibilities, but they naturally want to know

Recruiting and Hiring Software Personnel

137

about their longer-term prospects as well. As part of the recruiting effort, the

project managers should be able to clearly define each position, lay out their

expectations, and articulate the potential for growth in that position. The

software project managers should therefore prepare their recruiting strategy

in concert with the broader corporate human resources strategy, especially

when it comes to short-term positions versus long-term retention policies.

The initial screening of the applicants may be performed by professional

recruiters or by the personnel department. If recruiters are being used it is

beneficial for the project manager to actually sit down and go over each open

position with them, explaining the specific needs of that position. Spending

this extra time up-front will help in filtering out and qualifying the candi-

dates. In this way, preparation of the recruiters can save a lot of otherwise

wasted interviews and frustrations.

Hiring

The actual interview of a candidate may be conducted in several stages. The

initial conversation may take place via telephone or via video conferencing.

This first interview is a two-sided information exchange intended to deter-

mine whether a mutual fit and interest exist. A common mistake made by

many new managers is to spend too much time describing or “selling” the

position and the project. It is important to also listen to the candidate and

assess that person’s qualifications, specific skills, and personal traits.

Sometimes the project manager may include some other members of the proj-

ect team in the interview to help ascertain the level of some special skill or

to assess potential team chemistry. If the open position has any special

requirements, then those needs must be brought out. Similarly, the project

managers must ask the candidate about any special constraints that the per-

son might have, related to issues such as the amount of travel required or the

amount of potential overtime.

Many project managers find it beneficial to use an interview prompter

sheet to ensure that each topic is covered. Such a prompter sheet may include

questions about the following topics:

• General technical skills

• Specific technical skills

• General educational background

• Years and types of experiences

• The best and worst moments of past projects

• Tasks that the person wants to do the most and the least, and why

Chapter 6 Human Resources

138

• The person’s career goals

• Any constraints, including absolute minimum salary

• Why the person is leaving his or her current position

• When the person is available

• Description of the project

• Description of the position

• Description of the team

• Description of the company business and company culture

• Description of the company benefits

• Description of the compensation system

The interview does not necessarily follow the topics in this order. Instead,

most interviews will start with the project manager giving a brief description

of the project and the open position. Then the conversation will flow natu-

rally from topic to topic. It is important to keep track of the topics, and the

interviewing project manager is responsible for ensuring that all relevant

subjects are covered within the interview time slot.

The question on minimum salary is important to ask, especially if the proj-

ect has a very tight budget. Many candidates will not give a straight answer

when asked; however, if the issue of budget is explained, then they will under-

stand that the project manager may not be able to recruit him or her without

some rough estimate of the salary. Sometimes the candidates will provide a

range rather than a specific compensation figure. In today’s volatile high-tech-

nology and software sector, the mode of compensation has moved from offer-

ing a large amount of company stock to a modest amount of stock but more

rewards related to job satisfaction, educational opportunity, or health benefits.

The project manager must be knowledgeable about the latest trends and must

be able to describe how the organization’s total benefits package matches up.

After a successful first round of interviews, the candidate may be brought

in for a face-to-face follow-up interview. If the project manager chooses to

conduct a second interview, then the candidate should be someone whom the

project manager is already willing to hire. The second interview may include

the candidate talking to other members of the team, other project managers,

and the interviewing manager’s immediate manager. This meeting will also

allow the candidate to assess the environment in which he or she will be

working. Sometimes, a skills test in some programming language or tool may

be administered at this point. For positions that require high coordination and

communications skills, character tests may also be given.

If both sides remain interested after the follow-up interview is complet-

ed, the project manager should provide the candidate with a target date for a

Recruiting and Hiring Software Personnel

139

formal decision and an offer. If the decision is already made, then the offer

may be extended at the end of the second interview. This immediate offer is

often made verbally for those companies that require drug or other substance

clearances before final hiring.

The offer letter should clearly define the position and provide a brief

description of the tasks. The total compensation package should be spelled

out, including reference to any documents that explain the details; these

should also be enclosed with the offer letter. The name of the new employ-

ee’s immediate manager, the new hire’s starting date and time, and any doc-

uments that must be brought in on the first day should all be specified. Such

a letter may be written and sent out by the human resources group, rather

than the software project management.

Bringing People on Board

Once the candidate accepts the offer, the project manager needs to prepare for

that person to be brought on board to the project as smoothly as possible.

This seamless transition is important for several reasons. First, it gives an ini-

tial—ideally positive—impression to the new employee. Also, many hours may

be wasted if the new employee just sits at his or her desk with nothing to do

or no capability to do anything.

The following list identifies some of the items that must be prepared by the

project manager or a project administrator prior to the new employee’s arrival:

• Physical space and physical facilities, such as a desk and chair

• Office supplies

• Computing equipment

• Communication facilities, such as telephone numbers, user IDs, and pass-

words

• Special software tools

• Scheduling of special project education, if necessary

• Printed or electronic documents on project processes, policies, method-

ologies, and other items relevant to the project

Most project managers will be too busy “running” the project to take the

time for these activities. Other project managers may postpone these tasks to

a later time—perhaps too late. Although the actual tasks of preparation may

be delegated to someone else, the project manager must ensure that the

preparation does, in fact, take place and that the appropriate requisitions for

the new employee are all signed, approved, and sent out in time.

Chapter 6 Human Resources

140

Finally, the project manager should prepare the other project team mem-

bers for the arrival of the new employee. Giving the existing members infor-

mation about the new member can promote positive project chemistry. In

particular, the project manager should explain the role and relationship of the

new member to the rest of the team.

■ KEY CONCEPTS

This chapter introduced two general software organizational structures: the

software development structure and the software support structure. Working

from the general software development structure, organizations may adapt it

as necessary to fit their unique set of needs. Similarly, the general software

support structure, with its three levels of support reflecting increasingly more

complex problems and solutions, may be altered to better fit the needs of dif-

ferent organizations. These structural differences mostly arise from differ-

ences in parameters such as size, location, skill groups, finance, efficiency,

management, and corporate culture.

After the organizational structure is built, then all the open slots need to

be filled with people. Recruiting and hiring of human resources is an impor-

tant process because people—unlike pieces of equipment—cannot be

“returned” easily. After a candidate is hired, the new employee must be

brought on board as smoothly as possible to ensure that the software project

team will continue to work effectively.

■ EXERCISES

1. In extreme programming, it is often mentioned that two software pro-

grammers should share the ownership of a module and that two people

should actually code the same module together. Investigate the topic of

extreme programming (see the “Suggested Reading” list) and discuss

any concerns you may have about filling a software development posi-

tion that will be “occupied” by two people.

2. Construct a series of descriptions that outline software designer posi-

tions ranging from the entry level to the senior level.

3. Compare and contrast the applicability of hierarchical and matrix orga-

nizational structures to a software support and service organization.

4. Discuss which organizational structure will minimize the usage of indi-

rect personnel and under what conditions?

Exercises

141

5. What is a virtual organization, and what are some of the reasons to

consider such an organization?

6. What are some of the reasons that an employment candidate may be:

(a) initially screened out, and (b) later screened out?

7. What is required to successfully bring on board a new employee?

■ SUGGESTED READING

R. Agarwal and T. W. Feratt, “Crafting an HR Strategy to Meet the Need for

IT Workers,” Communications of the ACM, July 2001, 59–64.

K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley,

1999.

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1975.

L. Constantine, “Working Organization: Paradigms for Project Management

and Organization,” Communications of the ACM, October 1993, 34–43.

M. Goold and A. Campbell, “Do You Have a Well-Designed Organization?,”

Harvard Business Review, March 2002, 117–124.

W. Humphrey, Managing Technical People, Addison-Wesley, 1999.

P. Kraft, Programmers and Managers, Springer-Verlag, 1977.

H. J. Leavitt, “Why Hierarchies Thrive,” Harvard Business Review, March

2003, 96–102.

M. Mantei, “The Effect of Programming Team Structures on Programming

Tasks,” Communications of the ACM, March 1981, 106–113.

R. S. Pressman, Software Engineering: A Practitioner’s Approach, 4th ed.,

McGraw-Hill Companies, 1997.

L. D. Schaeffer, “The Leadership Journey,” Harvard Business Review, October

2002, 42–47.

L. A. Slade, T. O. Davenport, D. R. Roberts, and S. Shah, “How Microsoft

Optimized Its Investment in People after the Dot-Com Era,” Journal of

Organizational Excellence, Winter 2002, 43–52.

C. Stevenson, Software Engineering Productivity: A Practical Guide,

Chapman & Hall, 1995.

S. D. Teasley et al., “Rapid Software Development Through Team

Collocation,” IEEE Transactions on Software Engineering, July 2002,

671–683.

G. M. Weinberg, The Psychology of Computer Programming, Van Nostrand

Reinhold, 1971.

Chapter 6 Human Resources

142

143

7
Processes, Methodologies,
and Tools

Chapter Objectives

This chapter discusses the following concepts:

• Why a process may have been chosen for the project during planning,

but must be revisited, properly positioned, and controlled for the project

team during the organizing and preparing phase

• How the details concerning methodologies, which are typically not

included in a project plan, are defined, specified, and introduced to

the team

• Why the tools, which accompany the processes and methodologies, are

an important productivity aid for the project team

PROCESSES

Besides organizing and preparing for the use and introduction of new

human resources, the other resources necessary for a software project must

be considered, acquired, established, and installed during the organizing and

preparing phase of POMA. One of the first steps in process preparation is to

clarify what the plan states about the process that is to be used. No single

process is applicable to all software projects. Even if the plan calls for a

generic type of software development or support process, each software

project must have its process further tailored depending on some of the

following factors:

Chapter

Chapter 7 Processes, Methodologies, and Tools

144

• The size and complexity of the project based on the deliverables

• The maturity of the organization

• The history of the working relationship of the people

• The size of the organization

• The goals of the software project

Many software project managers will refer to the definitions and guide-

lines from ISO 9000, Software Process Improvement and Capability dEtermi-

nation (SPICE), or the Software Engineering Institute’s CMM and CMMI

bodies of knowledge in preparing for his or her software project’s specific

tailoring needs. These standards and assessment models provide guidance as

to what the “experts” around the world believe are good practices for soft-

ware development, support, and maintenance. For example, if a software

project manager contemplates outsourcing a part of the activity, he or she

could consult the Subcontract Model described in CMM for Software instead

of inventing a methodology within a process from scratch.

Setting Software Standards: ISO, SPICE, and SEI

The International Organization for Standardization (ISO) includes dele-

gates from 146 countries and is headquartered in Geneva, Switzerland.

Its mission is to promote the widespread adoption of international

standards, most of which are highly specific to particular products. ISO

9000 is probably its most widely recognized and successful family of

standards, having become an international reference for quality man-

agement. ISO 9001 specifically addresses the development, supply,

installation, and maintenance of computer software. ISO 9000-3

specifies quality management and quality assurance issues and

describes how these quality aspects apply to ISO 9001 for software.

Software Process Improvement and Capability dEtermination

(SPICE) is an initiative to support the development of international

standards for software process assessment. SPICE has three specific

goals: (1) to develop a working draft for a standard for software

process assessment; (2) to conduct industry trials of emerging stan-

dards; and (3) to promote technology transfer of software process

assessment into the worldwide software industry. The working draft for

an international standard for software process assessment was com-

pleted in 1995, and the follow-on standards development is now con-

trolled by the ISO/IEC JTC1/SC7/WG10, the Process Assessment

Working Group of ISO. SPICE relies on five technical centers around

the world, including one in the United States at the Software Engineer-

ing Institute.

The Software Engineering Institute (SEI) initially created the

Capability Maturity Model (CMM) to promote the assessment of an

organization’s software process maturity. While CMM is now widely

recognized in the software industry, it did not address the complete

software product cycle—specifically, issues related to software support,

service, and maintenance. To fill this gap, the SEI developed a new

model, Capability Maturity Model Integration (CMMI), which is built

on and extends the best practices from three other models: Capability

Maturity Model for Software (CMM-SW), Systems Engineering Capa-

bility Model (SECM), and Integrated Product Development Capability

Maturity Model (IPD-CMM). CMMI for Software Engineering (CMMI-

SW) is a version of CMMI without the System Engineering (e.g., SECM)

portion. The CMMI-SW document is available through SEI at Carnegie

Mellon University in Pittsburgh.

Whatever software process is chosen, it must be communicated to the

entire project organization, and the project team must be properly disposed

to follow the process. In addition, the project management needs to ensure

that the various methodologies, which are to be used under the process, are

established, communicated, and implemented. Implementation of the

methodologies includes educating the people and providing the necessary

tools to support the automation of the methodologies (see the “Methodolo-

gies” section later in this chapter).

Process Map

Even though the type of process to be employed was deliberated, debated

over, and decided on during the planning stage, there is still a need to map

the overall process, to clearly list the activities carried out within each step,

and to explain any relationships among the steps. To see how this mapping

works, let’s consider an example.

Suppose an organization is interested in putting together a waterfall-like

development process that covers the production of major artifacts, ranging

from requirements specification and code, to test scenarios and reference

manuals. The planned process also includes defect prevention and defect

removal activities.

Figure 7.1 illustrates how this map may be structured based on the sum-

mary table of a resource plan from Chapter 4 (see Table 4.5). Table 4.5 shows

Processes

145

which activities are desired and a rough sequence of the development activi-

ties. The process map in Figure 7.1 portrays not only the sequence but also

the interrelationships among the activities. In this first example, many of the

details within a process step, such as those relating to design or information

development, are left out. Otherwise, a single diagram will be too confusing

to read. This level of the process map is meant simply to communicate the

general flow and relationships among the parts.

In particular, note that the project management activities are included in

the overall process map; they span the complete project cycle. This choice is

made deliberately, to ensure that the team will not develop an “us” against

“management” mentality. Once such an attitude takes hold, it becomes very

difficult to build a cooperative team in which the project management and

the professionals work together as trusting partners. When the project man-

agement activities are viewed as an integral part of the overall project

process, then implementing measurements and collecting data become less

threatening, and the introduction of any change or improvement based on

the collected status information will be more readily accepted.

Another step shown in Figure 7.1 is an activity that is rarely included as

part of software project management but is absolutely crucial to the success of

an organization. This activity, which is labeled “Initial Requirements and Busi-

ness Case,” appears in front of all process activities. Too many software proj-

ects have been initiated without taking a moment to assess their business

Chapter 7 Processes, Methodologies, and Tools

146

Initial
Requirements

and
Business

Case

Requirements
Gathering

and
Specification

Product
Design

Project Management

Configuration Management

Coding
and Unit
Testing

System
and

Release
Tests

Test
Scenario and

Test Script
Development

Information and
Publications

Material
Development

Functional
and

Component
Tests

System
Packaging

and
Release

Information
Printing or
Loading

and
Release

Figure 7.1 Overall project process map

viability. As a result, unrealistic constraints on resources or time may be

placed on the project. The project management team is somehow expected to

figure out the solution even when there may be no better answer than turning

down the opportunity. Thus analyzing the business case for the project should

be the first step. The software project managers should be “looking out” for the

incoming business and seek to participate in its analysis as early as possible.

Process Flow

The arrows in the overall process diagram in Figure 7.1 show the flow of activ-

ities. The first three major sets of activities are fairly sequential. Before the set

of design subactivities is completed, the coding, test scenario development, and

information development activities may all start and overlap with the design

step. The actual testing, however, cannot proceed unless the particular function

is coded, functional test scenarios and scripts are written, and the functional

help text and usage guide are developed. The testing for a component follows

the same logic, in that all the functions within a component must first be

tested, and then the system and release testing follows. Upon completion of the

system and release tests, the code portion of the product—which may include

source code, executable objects, and test scripts—is packaged and set for

release. Similarly, the information portion of the product—which may include

user manuals and design documents—is set for printing and set for release. If

the information product is to be provided through an on-line mechanism, then

it must be released to that on-line mechanism.

Figure 7.1 includes some dotted lines with reverse arrows to indicate the

potential for backward flow of activities. Although changes and modifica-

tions to the artifact developed in a previous step may be needed for every

activity, testing as a set of activities will uncover problems and cause more

rework to the artifacts in the form of fixes. In Figure 7.1, the dotted line

from “Functional and Component Tests” points to “Coding and Unit Testing,”

“Test Scenario and Test Script Development,” and “Information and Publica-

tions Material Development.” But in fact, depending on the problem discov-

ered, sometimes the team may need to modify the design or even change the

requirements specifications. In such a case, the reverse arrows may go back

to more previous activities than just the ones shown in Figure 7.1.

A reverse sequence may be initiated when a problem is found during

testing. It kicks off a fix cycle that touches upon programming and informa-

tion development, which in turn may necessitate changes to the project’s

design. Thus, if we were to modify this general process map, more reverse

arrows might be drawn from coding and information development to design

Processes

147

and requirements. Also, problems may be discovered during design that may in

turn result in some modifications in requirements. Lastly, inspections or reviews

within each of the major steps may uncover problems introduced by the previ-

ous major step and necessitate changes to the artifacts produced in that earlier

step. Some process charts separate out the review and inspection activities. In

our example, we will not show all of these reviews and potential reverse flows

of activities with dotted lines to avoid cluttering the general process map.

The arrows in the process map may also represent the “successful” com-

pletion of events prior to starting the successor activities. The conditions for

successful completion or the exit criteria of a step, which allow the work

flow to continue to the next step, need to be provided as a companion to the

process map. In Figure 7.1, the arrows from the design activities to the three

subsequent activities require a bit more discussion. After the high-level and

architectural design is completed and as each component and functional

area is designed, the corresponding component and functional area may be

converted to code. The test scenario and test scripts for those completed

component and functional areas may also be developed. Similarly, the infor-

mation write-ups for help text and manuals for those already-designed areas

may be created. Thus the arrows from the design activity to its subsequent

activities carry a little more semantics than meeting the usual exit criteria

and flow to the next activity.

A typical set of exit criteria from the design process may include the fol-

lowing conditions:

• All the functional and nonfunctional requirements are designed includ-

ing the following:

• The user interfaces and workflow

• The systems and communications interfaces

• Database and file structure

• Special constraints: performance, security, back-up/recovery, etc.

• All of the design is documented and represented in the previously speci-

fied format and language.

• The design document is stored in a configuration management tool.

• The design document is reviewed and all errors found have been fixed

and captured in the updated design document.

The defined exit criteria for the process steps provide a management and

a team approach to controlling the flow of the activities. The following illus-

tration shows the criticality of exit criteria to management and to team

process control.

Chapter 7 Processes, Methodologies, and Tools

148

Consider the downstream activities following design (e.g., coding, test

case development, and reference manual development) and the listed design

exit criteria. If there were no such list, then the question of when the down-

stream activities should start might be answered only when the design was

“complete.” Unfortunately, design completion may be interpreted capri-

ciously by different groups. Some groups, facing heavy schedule pressure,

might start before the entire design is documented. For example, program-

mers might code the application functions prior to the “completion” of the

nonfunctional parts of the design, such as those related to performance. This

rush into coding may lead to later rework, and it may actually elongate the

schedule instead of shortening it.

The existence of exit criteria does not necessarily prevent all down-

stream activities from starting prematurely. For example, one might choose

to initiate a downstream activity while one or two exit criteria items remain

incomplete. Exit criteria, however, bring out awareness and force conscious

decision making in controlling the process. For this reason, all exit criteria

should be defined for the various activities shown in the process map. The

definitions may be written as a companion document to the process diagram.

Configuration Management

Another activity that is included in the process map in Figure 7.1 is configu-

ration management. Configuration management is made up of a complex set

of activities that relate to management of the artifacts generated through

the project (see Chapter 4 for more on this topic). It includes the following

key activities:

Part I

Configuration management activities: (Definition & Setup)

• Defining and listing the artifacts that need to be managed

• Defining the granularity of managing the artifacts and designing the

directory scheme to accommodate that level of granularity

• Defining the rules for accessing the artifacts

Part 2

Configuration management activities: (Control & Track)

• Defining the security and controls needed to manage the artifacts

Processes

149

• Storing, retrieving, locking, and unlocking artifacts based on the prede-

fined set of rules

• Maintaining all of the tools employed to help in configuration management

Configuration management A set of procedures that define, track,

and control the artifacts produced during the development, support, and

maintenance of software.

Since project artifacts are generated across the entire project life cycle,

the set of configuration management activities is also a natural part of the

project and these need to be executed through the complete project. It is thus

a central concern in managing both the artifacts and the project as a whole.

Configuration management will be discussed in more detail in the “Method-

ologies” section later in this chapter.

Processes and Subprocesses

Within each of the major steps in the general process map, there may be sev-

eral further expansions that resemble subprocesses within a process. If an

expanded subprocess such as the general requirements management activi-

ties discussed in Chapter 1 is needed, then that subprocess description must

accompany the overall project process. Many of the variations in process

models are studied in software engineering, and historical information per-

taining to the success and failure of the different process models is discussed

in a variety of software engineering books and reports (see the “Suggested

Reading” list at the end of this chapter for some sources). For example, Barry

Boehm has stated that only 15% of the software development effort is typi-

cally devoted to programming and that reviews catch 60% of all errors.

Armed with this type of information, quality-conscious software project

managers may insist on including software reviews in requirements specifi-

cation and design activities, but not necessarily in coding, as an integral part

of the software development process. The project management would be wise

to consult such sources before putting the organization’s process into play.

All of the materials related to the general project process must be

reviewed and agreed to by the project team management and the technical

leaders of the project. It is the project management’s responsibility to trans-

form a high-level process plan into a specific project process model. The

transformation may involve an emphasis on quality and the inclusion of

reviews in requirements and design activities but not in the programming

activity. For very small software projects, configuration management may be

Chapter 7 Processes, Methodologies, and Tools

150

reduced to only code control. The actual work may be delegated to a process

“expert,” if the team includes such a person. The transformation from high-

level process plan to project-specific model includes the following tasks:

• Identifying and organizing the major components or steps of the process

• Providing the details of subprocesses, if necessary

• Explaining the relationships among the components

• Showing the flow from one component to another

• Identifying the exit criteria from one component to another that facili-

tates the flow

Process Introduction and Education

Once they have a defined general project process with all the accompanying

materials, the software project managers must communicate this information

to the rest of the team. Members of a project team may come from a variety

of backgrounds, all of which use some form of a process. Some may come

from chaotic organizations in which the process is formulated as the project

progresses. Others may come from organizations with well-established

processes, although different from the one that will be used on the current

project. If the team members come in with relatively open minds, then the

establishment of a common process for the project may not be very difficult.

If they are resistant, it may take some major effort to transform the team so

that it will embrace a “new” project process.

In either case, there is a need to provide a period of time for the assimi-

lation of the process. During this time, a combination of education on and

communication regarding the process must take place. It would be a horrible

mistake for the project managers to assume that much of the education and

communication may be accomplished by producing a “comprehensive”

process document and then leave it to the team members to read it at their

leisure. Likewise, education about and communication of the project process

should not be done in one fell swoop. That approach would not be much

better than handing the team members a thick process document and then

expecting them to absorb and accept all the information. Instead, the educa-

tion and communication should come in stages.

There are many ways to parcel out the education and communication

activities. One possible approach is as follows:

Processes

151

Stage 1: Process Introduction

• Provide the introduction and education, if necessary, to the general

project process chosen for the project.

• Provide the rationale behind the specific process.

• Point out both the positives and the negatives as well as any portion of

the process that is still untested.

• Point out any past history, if available.

Stage 2: Feedback and Modifications

• Allow team members to debate and study the process on their own.

• Ask for written feedback.

• Collect and analyze the responses.

• Make appropriate modifications and prepare for responses to those changes.

• Bring the team together, providing the team members with feedback on

which suggested modifications were accepted and explaining what was

done with both the accepted and the rejected suggestions.

Stage 3: Acceptance

• Ask whether any further education is needed and provide it as appropriate.

• Ask for concurrence and acceptance of the process.

Stage 4: Reinforcement

• Quickly review the process and ask for any further input prior to its

implementation.

• Make any adjustments and update the process as needed.

The effort required to organize, communicate, educate, and gain accept-

ance of the process may be longer than many people would like. Indeed, the

length of time expended in organizing and setting up the project process

might surprise even the best of software project managers. The reinforcement

activities (Stage 4) may be performed repeatedly as needed, but not exces-

sively. As new employees come on board, they must also be introduced to the

project process. The right balance of process reinforcement versus process

bureaucracy must always be maintained. The management of that balance

will be discussed later as part of the monitoring and adjustment phases of

project management (see Parts Three and Four of this book). At this phase of

the project, however, the software project management simply needs to

ensure that the team is clear about, and ready to follow, the process map.

Chapter 7 Processes, Methodologies, and Tools

152

METHODOLOGIES

A methodology is a prescribed set of steps to accomplish a task. As such, it

may be viewed as a further drill-down on the definition of the activities

within a process. The process provides the macro steps, whereas the method-

ologies provide the micro steps that sometimes may transcend the macro

steps. For example, setting up a naming convention for files as part of con-

figuration management is a micro step, but it transcends the macro steps in

that it affects requirements documents, design documents, test cases, code

versions, and multiple releases. Thus the difference between a methodology

and a process is a matter of degree.

Software project managers have traditionally loved to be involved in

lengthy discussions of methodologies. One reason for this fascination is that

software engineering is a relatively new discipline. As a result, new method-

ologies are constantly being invented and frequent changes in methodolo-

gies come about because of the accelerated pace of technology. Another

reason for the high interest in methodologies is that many software project

managers were promoted into their positions because they were the “best”

performers in some aspect of the software project development using a par-

ticular technology and methodology. Clearly, it is to the software project

managers’ advantage to be familiar with that methodology. However, their

ultimate responsibility is to ensure that the most appropriate methodology is

selected and that the chosen methodology is properly implemented. They do

not have to be methodology experts themselves.

During the planning stage, software project managers became involved

in putting the plan together by choosing the main methodologies. Sometimes

the rationale behind the specific choice of methodology needs to be reviewed

one more time during the organizing and preparing phase to ensure that

nothing major has changed since the plan was developed. As the software

industry is such a fast-paced environment, the software project managers

may have to alter some part of the plan prior to implementing it.

There are different ways to describe and prepare a project team for using

a particular methodology. For example, the methodology may be described

at two levels: The higher level is a more process-oriented way, in that the

major substeps to be employed are listed and their relationships are shown;

the deeper level takes each substep and describes the specific method

involved in performing it. In other situations, the methodology may include

several steps in a process. In the object-oriented methodology, for example,

Methodologies

153

the methodology may cover several major process steps from requirements

to programming.

The preparation for introducing such a methodology would be relatively

complex. Let’s look at how the software project management can organize

and prepare the project team to deploy the chosen methodologies by exam-

ining first the definition of “methodology” and then by looking at methodol-

ogy preparation.

Methodology Definition

Let’s look at a first example in which the methodology may be described in

two levels. Let’s consider the functional testing activity from the software

development process. The general methodology may be described in a high-

level fashion as follows:

• Review the requirements specification for the description of the desired

functionality.

• Review the design document for the design of the solution to provide

that functionality.

• Review the code, if necessary.

• Develop the usage scenario and break down the usage scenario into test

cases for that functionality.

• Execute the test cases and record the result.

• Report any problems found.

• Incorporate the fixes and retest to ensure that the fixes are correct.

• Promote all of the correctly tested functional code to a library.

Within this general methodology, very different, specific methods may

be employed to accomplish any of the particular substeps. To see how, con-

sider the substep that addresses the generation of test cases. It may be fur-

ther expanded into a white-box test case generation method, in which the

internal workings of the design and code are reviewed to determine how

many predicates (i.e., decisions such as in an “if” statement) exist. (The alter-

native to white-box testing is black-box testing, in which the development

of test cases is based on requirements or design documents but not on a

review of the actual code.)

Predicate A relation (e.g., x = y) that has a value of either true or false.

In programming constructs, an “if” statement is often used to evaluate

the truth or falsity of a relation.

Chapter 7 Processes, Methodologies, and Tools

154

White-box testing A testing methodology in which the actual code is

reviewed during the development of test cases. With this strategy, predi-

cate constructs such as “if” or “case” statements in the code can be counted.

Black-box testing A testing methodology in which the development of

test cases is based on requirements or design documents but not on a

review of the actual code. With this strategy, the code is viewed as a

“black box.”

From those predicates, the combinations for a test data set may be pre-

pared to ensure that all paths of the program associated with a particular

function are executed. Then specific test scripts need to be developed for

each test case. The generation of an actual test script will depend on the par-

ticular tool utilized, but generic test scripts may be developed first.

Another specific method may address how to report the discovery of any

problems during this white-box testing. In this case, the actual reporting

simply involves filling out a problem reporting form on paper or electroni-

cally. But after the form is completed, where does it go and who takes

responsibility for this reported problem? Thus, in setting up a simple step

within the functional testing methodology, one may discover the need for

two more items:

• A problem reporting form must exist or be designed.

• A subprocess that defines the flow of the problem reporting form, from

the opening of a problem report to the closure of that problem, must

exist or be designed.

If both the problem reporting form and the problem opening-to-closure

process need further work, then the preparation for the “reporting problem

found” step may be quite time-consuming. Although it is not difficult to

design a simple form to record the opening of a problem, a major piece of

preparation work is required to design an information-gathering form that

will allow the tracking of the problem from beginning to closure. The prob-

lem opening-to-closure subprocess may also need to be defined, reviewed,

and communicated as part of the methodology.

Software project managers should not be surprised to find such holes as

they prepare to introduce the methodologies to the project team. Could some

of these issues have been addressed at planning time? Yes, but it is not likely

that they would have been identified at that time. Besides, the details of

process and methodology implementation rightly belong to the organization

Methodologies

155

and preparation phase of project management. Furthermore, no plan is per-

fect, and the discovery of holes in the process and methodology plan is a

very common occurrence.

Methodology Preparation

If the plan includes a complete methodology that crosses several steps, such

as the object-oriented programming methodology or Ken Beck’s extreme

programming methodology, then the preparation for it may be quite difficult

for project management. This was especially the case when object-oriented

methodology was first introduced more than a decade ago. Even though

both object-oriented programming and extreme programming utilize the

term “programming,” each covers more than just programming activities. By

now almost everyone is familiar with object-oriented methodologies, but

some may not be familiar with extreme programming. As this book is not

meant to be a treatise on software engineering, interested parties are directed

to Ken Beck’s Extreme Programming Explained: Embrace Change for more

details on this approach to programming (see the “Suggested Reading” list at

the end of this chapter).

It is extremely difficult for project managers to stay out of the detailed

technical discussions of a methodology, especially if it is an up-and-coming

one such as aspect-oriented programming (AOP), which is viewed as a

potential post–object-oriented programming era methodology. The lengthy

debates and discussions over a new methodology form a trap into which

many technical managers fall. As a result, a large amount of good technical

exploration is done, but no plan or preparation for that methodology is made.

Aspect-oriented programming (AOP) A new software development

methodology that emphasizes cross-functional features or concerns that

may arise in the requirements, design, or implementation steps. Exam-

ples of aspects include design constraints, system properties, and system

behaviors.

The software project managers do need to facilitate the debate over a

new or complex methodology, so that all fears and apprehensions about it

may be exposed and resolved before the next stage of preparation. During

this debate, the project managers must stay objective and ensure that accu-

rate information is provided during the discussion stage and that the discus-

sion is geared toward making a decision. Thus the parameters for decision

making and embracing of a methodology need to be spelled out. From a

156

Chapter 7 Processes, Methodologies, and Tools

Tools

157

software-project point of view, a methodology should be judged by the fol-

lowing criteria:

• Whether it will accomplish the task

• Whether it will accomplish the task in some advantageous way that

improves productivity, reduces complexity, and enhances quality

• Whether the actual project cost will be reduced and the schedule

improved

This is a tall order. Nevertheless, the software project managers must be

prepared to answer these questions as part of the organization and prepara-

tion of the methodologies.

If the methodology is new to the team, there is also a front-end cost in

terms of the potentially steep learning curve and extra time required to mas-

ter the methodology. Once the debates are over and the team is mentally

prepared to embrace the methodology, then team education is needed to

ensure that everyone will practice this complex or new methodology in the

same way. The project managers should insist that all members participate in

the education process so that the entire team will be on the same page.

Sometimes the team may already include a few experts who do not need

the technical education. If so, then the project managers should take advan-

tage of the situation and have those people mentor and help the rest of the

team get up to speed on the methodology. It is very tempting to try to utilize

these experts and get an early start on the project. However, it is much more

valuable to have the software project team work harmoniously on a complex

methodology. Thus preparing the team as a group is important. Just as in

process preparation, the team receives the same experience as they go

through the first three stages of preparation:

1. Introduction

2. Feedback and modification

3. Acceptance

In addition, a reinforcement stage (Step 4) may be needed from time to time.

TOOLS

One of the main reasons for using tools is to reduce work effort and, thereby,

to increase productivity and efficiency. Tools represent a significant set of

resources for software projects. They range from compilers and databases to

requirements modelers and configuration managers. Tools, like other tech-

nologies and methodologies, are often presented as a panacea for all ills

afflicting a software project. At times, high improvement numbers, such as

50% to 200% gains in productivity, have been thrown around as evidence of

a particular tools’ effectiveness. Such grandiose claims should raise a red

flag for software project managers. Unfortunately, many software technical

leaders and project managers have embraced those highly optimistic num-

bers and organized their projects around a tool, rather than the other way

around. In the early days of computer-aided software engineering (CASE)

tools and again in the early days of object-oriented methodology, for exam-

ple, several tools were thought to provide very aggressive savings of effort

and schedule, but many of the expected gains did not materialize.

As part of the preparation and facilitation of tools for the software proj-

ect, the project managers need to first take a realistic account of what should

be expected and what effort will be required to achieve those expectations.

In the general process map shown in Figure 7.1, the configuration manage-

ment activities are portrayed as a subprocess that must be carried out

throughout the complete software project. Several tools are available to help

in many of the substeps within that subprocess. The question is which one to

bring in and what preparation is needed for its use.

Tool Identification and Preparation

During the planning phase, it may have been recognized and determined

that a configuration management tool is needed. Thus the plan may have

listed it as a necessary tool and resources may have been set aside to acquire

it. Now the software project management is responsible for “making it hap-

pen.” The following are some of the major activities that the software project

managers should carry out to prepare for acquisition and use of the tool:

• Identify the specific steps and activities that the tool is expected to auto-

mate or improve.

• Explore realistic expectations for the tool, stated in terms of productivity

gain or efficiency gain that the automation of these steps will bring.

• Review the various tools available that will meet these expectations.

• Review the training needed to attain the level of competency for the

expected gains.

• Choose the specific tool to be acquired, working out the needed terms

and conditions.

158

Chapter 7 Processes, Methodologies, and Tools

• Announce the decision.

• Set and communicate the realistic expectations in terms of productivity

gains that the team should be experiencing.

• Schedule and facilitate the necessary training.

• Acquire and set up the chosen tool.

• Ensure that proper and continuous support of the tool is in place.

• Communicate the project policy for usage of this tool.

• Set up the mechanism to enforce the usage policy.

This extensive list of activities is not only applicable for introducing a

sophisticated tool for configuration management, but should also be con-

sulted as a prompter for introducing less complex tools.

The first step in the list is an especially important one. Even though the

project team may have already recognized the need for a tool to carry out

some of the activities during the planning phase of the project’s manage-

ment, the software team members and the project managers should under-

stand and agree on exactly which steps the tool will try to automate and

improve. This clear identification will allow the project managers to address

and calculate the potential productivity and efficiency gains in a realistic

manner. Using this information, they can set achievable goals related to pro-

ductivity and efficiency gains. Identifying the specific activities to be sup-

ported by the tool will also help in setting the tool usage policy.

Tool Selection

Another key step is the actual selection of the particular vendor and the ven-

dor’s tool. This step may be extremely time-consuming and perhaps charged

with strong emotions. To avoid problems, the software project managers

must establish an objective set of criteria for tool selection. These criteria

will draw upon the information gained from reviewing and studying the var-

ious vendors and their offerings. In particular, the criteria should take into

account an analysis of the following information:

• The functions that the tool performs and automates

• The expected gains in productivity and efficiency from the tool’s functions

• The number of users who may simultaneously access the tool

• The tool’s performance capacity and reliability

• The vendor’s expertise in the tool

• The vendor’s past history in supporting the tool

• The amount of training needed to use the tool

Tools

159

• The effort required to maintain and support the tool

• Contractual terms and conditions for the tool—especially the financial terms

Some “scoring” mechanism must be established for each criterion. For

example, a range of weights (e.g., 1, 3, 5) may be assigned to each criterion,

and the sum of the weights calculated for each tool. With this scheme, in the

actual assignments of weights, one must be careful about the semantics of

each criterion. Assigning a value of 5 to the “vendor expertise in the tool”

criterion highlights vendors’ richness in expertise, whereas assigning a value

of 5 to the “amount of training needed to use the tool” represents the need

for little training on the tool. The choice of the tool is then made based on

the scores, which are the different sums for the contending tools. The scoring

mechanism may be modified to accommodate the particular class of tools,

but something similar to this approach is needed so that the project team

will accept the decision and embrace the chosen tool.

Tool Usage Preparation

Bringing in a tool is one thing; using it properly is another. To ensure that

the expectations will come to fruition, the project team must be trained how

to use the tool correctly. The software project managers should realize that

even with the team’s formal training in the use of the tool there is an early

period of time, when the usage of the tool is still new, during which the team

may lose some productivity. The team will inevitably go through a start-up

period marked by exploration, some frustration, and further learning. The

software project managers must account for this early experimentation

phase while setting expectations for the tool and sending a message about it

to the team.

Even with all the software project manager’s good intentions, prepara-

tion, and facilitation, some team members may still find reasons not to use

the tool. In the author’s own experiences, there have been several occasions

in which people did not want to use a certain tool simply because they did

not want to attend the necessary education. Their egos prevented them from

going to a class! In the situation where the tool is targeted at helping

improve only the individual’s productivity, a few team members’ refusal to

work with the tool may not lead to too much of a loss in team productivity.

Nevertheless, this “revolt” may still create a negative team morale. In the sit-

uation where the tool is targeted at helping the team as a whole and its

effectiveness depends on everyone’s participation, then even a few “rene-

Chapter 7 Processes, Methodologies, and Tools

160

gades” must not be tolerated. It takes only one recalcitrant worker to thwart

the effort to use such team-oriented tools and achieve the desired benefits.

And the problem may be bigger than just the missed realization of expected

productivity gains—total project chaos can ensue. Such would be the case

with failure to use library control or configuration management tools, for

example. For all these reasons, the tool usage policy must be clearly commu-

nicated and enforced. In devising a policy, software project managers must

put thought into devising the enforcement mechanism of the policy as well.

This last point on policy development and enforcement also applies to

processes and methodologies. For the process and methodology to really

work, they must be adhered to and properly utilized by all team members.

Thus the software project managers must set the tone for the project by

establishing a usage policy, which in turn must be supported by an effective

enforcement mechanism.

■ KEY CONCEPTS

Plans to adopt and deploy certain processes, methodologies, and tools need a

substantial amount of software project managers’ preparation efforts before

the plans can be transformed into real practice. The organization and facili-

tation of this transformation is a vital project management task. One may

view these activities as “getting the resources ready” for the software project

monitoring phase.

To demonstrate how a software project team may tailor a process for its

particular situation, this chapter considered a generic waterfall process. Its

process map included some extra activities, such as the initial requirements

and business case establishment, project management, and configuration

management. The exit criteria for each activity in the process map controlled

the process flow, whether forward or reverse.

Defining and specifying the details of a process must be accompanied by

proper preparation of the team members. The communication and education

of the team should proceed through four stages: (1) introduction of the

process; (2) feedback and modification; (3) acceptance; and (4) reinforcement.

Methodologies may be viewed as a drill-down on the process defini-

tions. For each activity in the process, a methodology provides a set of steps

to accomplish that task. Software project managers should avoid spending

too much time themselves in debating the various methodologies. Rather,

they must work to facilitate the discussion in such a manner that the

Key Concepts

161

Chapter 7 Processes, Methodologies, and Tools

162

methodologies are chosen, defined, and introduced to the team by following

the same four stages as found in process communication.

The tools that are needed and desired for the software project must be

determined up-front. The selection of a particular tool from a specific vendor

is a time-consuming activity that must be performed during the organizing

and preparing phase. The software project managers should understand and

establish the expected degree of productivity and efficiency gains from

these tools. In addition, they should identify how these tools will be utilized

and supported.

Clear usage and enforcement policies must be established for all

processes, methodologies, and tools selected for the software project.

■ EXERCISES

1. Choose an iterative process and tailor it to an organization that has

fewer than 20 people who take on projects that are normally not com-

plex and typically last less than one year. Show and explain the

process map and the process flow.

2. Discuss the advantages and disadvantages of including management

activities into the general process flow.

3. Discuss the merits of having exit criteria. Are there any drawbacks?

4. Discuss how you, as the software project manager, might commission

the selection of test tools for your project. What selection criteria

would you recommend?

5. Discuss some of the reasons why a software process might fail.

6. Review the steps involved in introducing a process, and discuss how

you may or may not modify the approach in introducing a new, but

untested methodology.

7. Devise a tool usage policy, taking into account the tool types (e.g.,

team or individual). Should you include reward and punishment in

managing tool usage?

■ SUGGESTED READING

P. G. Armour, “The Laws of Software Process,” Communications of the ACM,

January 2001, 15–17.

K. Auer, R. Miller, and W. Cunningham, Extreme Programming Applied:

Playing to Win, Addison-Wesley, 2001.

Suggested Reading

163

K. Beck, Extreme Programming Explained: Embrace Change, Addison-

Wesley, 1999.

B. Boehm, “Industrial Software Metrics Top 10 List,” IEEE Software, Vol. 4,

No. 5, September 1987, 84–85.

T. Elrad, R. Filman, and A. Bader, “Aspect-Oriented Programming,” Commu-

nications of the ACM, October 2001, 29–32.

K. E. Emam and A. Birk, “Validating ISO/IEC 15504 Measure of Software

Requirements Analysis Process Capability,” IEEE Transactions on Soft-

ware Engineering, June 2000, 541–566.

K. E. Emam, J. N. Drouin, and W. Melo, SPICE: The Theory and Practice of

Software Process Improvement and Capability Determination, IEEE Com-

puter Society Press, 1998.

G. C. Murphy, R. J. Walker, and E. L. A. Baniassad, “Evaluating Emerging

Software Development Technologies: Lessons Learned from Assessing

Aspect Oriented Programming,” IEEE Transactions on Software Engi-

neering, July/August 1999, 438–455.

J. Raynus, Software Process Improvement with CMM, Artech House, 1999.

C. H. Schmauch, ISO 9000 for Software Developers, ASQC Quality Press,

1994.

I. Sommerville, P. Sawyer, and S. Viller, “Managing Process Inconsistency

Using Viewpoints,” IEEE Transactions on Software Engineering, Novem-

ber/December 1999, 784–799.

I. Vessey and A. P. Sravanapudi, “CASE Tools as Collaborative Support Tech-

nologies,” Communications of the ACM, January 1995, 83–95.

B. E. Wampler, The Essence of Object Oriented Programming with Java and

UML, Addison-Wesley, 2002.

This page intentionally left blank

165

8
Goals and Measurements:
Preparations and Costs

Chapter Objectives

This chapter discusses the following concepts:

• How the goals specified during the planning phase can be reexamined to

ensure that proper metrics and measurement schemes are defined and

implemented

• How the software project team should be prepared so that it will accept

the measurement scheme

TRANSFORMING GOALS AND MEASUREMENTS

As part of the planning activities, a number of goals and measurements to

gauge and validate the attainment of goals were considered and identified.

The project team, as a whole, still needs to be organized and motivated to

both understand and accept these goals and measurements. Just as with

other parts of the software project plan, the software project managers are

responsible for transforming the plan items into executable items during the

organizing phase of POMA.

During the planning stage, various product and process attributes were

considered. For those attributes considered especially important, goals were

set. In setting the goals, the metrics and the measurement scheme for those

goals had to be conceived. During the organizing phase, several other impor-

tant notions need to be weighed by the software project managers:

Chapter

Chapter 8 Goals and Measurements: Preparations and Costs

166

• Are the goals and their associated measurement schemes clearly defined?

• Has the organization embraced the measuring scheme?

• Has the cost of measuring been taken into account?

Software project managers should be prepared to face relatively more

challenges from the project team and the rest of the organization than their

peer project managers in other disciplines would encounter. This greater

resistance reflects the young state of the software field, where no traditional

measurement schemes have emerged as standards.

CLARIFYING DEFINITIONS OF GOALS AND
MEASUREMENTS

Even though the importance of different product and process attributes was

considered in the planning phase, oftentimes the goals for those attributes

deemed important may not have been set clearly. As a result, the actual

measurement scheme may be confusing to team members. To alleviate this

possibility, the software project managers should do the following:

• Review the goals set for the product and project attributes

• Review the measurement scheme and modify it if necessary

• Build an “operational” plan for the measurement schemes

The goals set for each attribute should be clear. By “clear,” we mean that

there is a way to determine whether a goal has been met. In software proj-

ects, many desirable goals are stated in a qualitative way. A prime example

is a requirement statement such as “The product should be easy to use.” All

software project managers realize that “ease of use” is a characteristic that

the ideal product will have. Thus, during the project planning phase, this

requirement is transformed into some type of a product goal. Is the goal set

for this important product attribute still desired at the organizing phase? If

so, then the question of whether it is well understood, specified, accepted,

and verifiable during the project monitoring phase needs to be answered

before going forward.

Decomposing the Ease-of-Use Example

Let’s analyze the ease-of-use example further to demonstrate how goals and

measurements are clarified. One popular way to clarify a statement is to

decompose it into several substatements. Suppose the initial requirement

statement “The product should be easy to use” is decomposed and trans-

formed into the following subgoal statement: “Every function in the product

can be completed by a user without any other human intervention.” This

transformation into something more specific may be reasonable, but it may

need further clarification. Is this subgoal more specific than the original

ease-of-use statement? How would we gauge this transformed attribute? Is

there a need for a specific activity that will allow us to gauge its attainment?

The clarification needed, in this case, relates to the measurement

scheme. A possible answer may involve setting up a usability test within the

testing activities as part of the process. The precise metric and measurement

methodology should be defined in terms of this usability test. The following

steps might be used:

1. A test case is designed for each function in the product.

2. A numerical count is kept of the number of test cases that are success-

fully executed by a test subject without any external intervention.

3. This test is repeated with a predetermined number of test subjects to

ensure the results’ statistical relevancy.

4. All of the unsuccessful test cases are summed.

The goal for the product is to have zero unsuccessful tests—which is

probably impossible. A more reasonable goal may be 5% unsuccessful or

95% successful test cases.

Upon further consideration, both the goal statement and the measure-

ment scheme need a little more clarification. More specifically, how many

test subjects should be included in the usability test for it to be considered

statistically relevant? Would we classify a function as one that was not

“completed” if 99 out of 100 test subjects could complete it? How many peo-

ple must not complete the function before it is labeled as “noncompleted”?

One can see the potential areas of contention arising from this example, if

the measuring and classification scheme for this goal is not further clarified.

Potentially Misleading Measurements

It is worthwhile to spend a little time discussing the notion of measurement

and classification. As in the preceding example, you may want to classify

“completed” in a graduated way with a categorization scheme such as the

following:

• Totally completable means all participants complete all functions.

Clarifying Definitions of Goals and Measurements

167

• Mostly completable means 75% or more of the participants complete all

functions, but not 100% of the participants complete all functions.

• Partially completable means 75% or more of the participants complete at

least 75% of the functions, but not 100% of the functions.

• Not completable means 25% or more of the participants complete less

than 75% of the functions.

The key point to remember when creating categories is that the cate-

gories as a whole should exhaustively cover the range of metrics and that

each category should be mutually exclusive of any other category. Creating

a categorization with the preceding definition of “completable” is just the

beginning. The measurement scheme may be further defined by taking each

component of the application and applying the categorization scheme to it.

You can then tabulate how many components fall into each category.

Once the number of components by categories is known, it is very

tempting to perform additional arithmetic operations on those data, such as

computing the average. Consider the following scenario, where the cate-

gories are assigned a numeric value as follows:

• Totally completable is assigned a value of 8.

• Mostly completable is assigned a value of 4.

• Partially completable is assigned a value of 2.

• Not completable is assigned a value of 0.

Let’s further assume that there are 24 components in a software product

and that the numbers of components classified into the four categories are

as follows:

Totally completable: 6

Mostly completable: 7

Partially completable: 3

Not completable: 8

Utilizing the 8, 4, 2, 0 value system of the categories and considering the

number of components in each category, one might be led to compute the

average and assert that the average value is (82 � 24) = 3.42. The number

3.42 could then be matched to the closest category, which is 4 (mostly com-

pletable). The software project management team would be happy to declare

that the product is mostly completable, especially if the goal were to attain a

“mostly completable” state.

Chapter 8 Goals and Measurements: Preparations and Costs

168

Table 8.1 Effect of Varying Assigned Values

Value Totally Mostly Partially Not
assignments completable completable completable completable Sum Average

8, 4, 2, 0 48 28 6 0 82 3.42

10, 7, 3, 1 60 49 9 8 126 5.25

3, 2, 1, 0 18 14 3 0 35 1.46

5, 4, 3, 2 30 28 9 16 83 3.46

This sequence of assigning values to the categories and computing val-

ues based on the assigned values and the numbers falling in each category

may be very misleading, however. Table 8.1 demonstrates that different

results may be derived by altering the values assigned to the various cate-

gories. In each case, the distribution of components in each category remains

the same: 6, 7, 3, 8.

As Table 8.1 shows, if the category value system is changed to 3, 2, 1, 0,

then the average is 1.46. This is closest to 1, which is considered “partially

completable.” Thus picking a different value system yields a different result

for the categorization! Clearly, one should be very cautious in assigning val-

ues and performing calculations with those assigned values. The scale of

measurement can make a huge difference and thus distort the measurement,

possibly allowing one to arrive at a different conclusion during the monitor-

ing phase of the software project life cycle.

Sometimes there is a need to decompose and translate the goal state-

ment into a more specific measurement through a more comprehensive

activity such as the usability testing mentioned earlier. The parameters that

are measured and the classification of the results may then have to be ana-

lyzed in more depth. As the preceding example demonstrates, very different

conclusions may be reached if one does not take the time to analyze and

properly prepare the measurement scheme.

Building a Measurement Operational Plan

Finally, the project team may need to build an “operational” plan for the

measurement. Each item in a general plan may require a slightly different

operational plan, but there are some common items that need to be consid-

Clarifying Definitions of Goals and Measurements

169

ered in any operational plan. Each of the following categories, however,

needs to be further expanded by including the following refinement steps:

• Steps to ensure that the process and methodology are modified to

include the details needed to implement each plan item

• Steps to ensure that proper resources are made available in a timely manner

• Steps to ensure that necessary metric and measurement schemes are

defined for each plan item

• Steps to ensure that goals are defined for the implementation and that

the achievement of the goals is validated

Operational plan A plan that contains all the details of how to imple-

ment what is contained in a general project plan.

An operational plan for usability testing might include the following

sequence of refinement steps:

• The “general” software process must include the additional usability

testing step.

• Expertise in terms of conducting usability tests must be brought on board.

• Any physical equipment needed for monitoring the test must be

made available.

• The measurement methodology and classification scheme must be defined.

• The criteria for gauging the attainment of the goal must be predefined.

This particular measurement operational plan contains many items and

extends the initial plan consisting of goal statements. This level of prepara-

tion is needed for successful measurements to take place later during the

monitoring phase. Note that the operational plan for each goal and measure-

ment scheme will be different. Also note that it is not possible to fully pre-

plan each goal and its measurement scheme during the planning phase of

POMA because, just as the ease-of-use example showed, the definition of the

original goal may need to be decomposed and restated in a different form.

This deeper level of understanding of a project sometimes does not occur

until more analysis is performed during the organizing phase of POMA.

More complex measurement schemes will require deeper-level organizing

and preparation.

The following items are among those that need to be considered for

goals and measurements during this organizing and preparing phase of the

POMA life cycle:

• Any additional goal clarification and decomposition

• Well-defined goal validation

Chapter 8 Goals and Measurements: Preparations and Costs

170

• Specific measurement techniques and schemes

• Any process extensions and modifications needed to accommodate

measurements

• Additional software/hardware tools needed for measurement activities

EMBRACING THE MEASUREMENT SCHEME

It is one thing to put a plan forward to the software project team. It is

another thing to gain the team’s acceptance of that plan. Before using the

goals and the measurements associated with those goals to track the project

status, both have to be explained to the team. As noted earlier, sometimes

the measurement scheme may take on quite a bit of complexity. For this rea-

son, further analysis of the planned goals and measurements is required.

Participating in Goal and Measurement Preparations

It is highly recommended that software project managers do not perform all

of the analysis and justification studies by themselves. Having various proj-

ect members and technical leaders participate in the analysis would be much

more advantageous, for the following reasons:

• More team members would understand the goals and measurements.

• More nonmanagement team members would feel committed to the goals

and measurements.

• Some team members may be counted on to “spread the message” and

educate other team members.

• Sharing the burden would lessen the workload of the software project

managers.

• Distributing the knowledge would lessen the general fear of being measured.

• Team ownership of the goals would be more likely to be achieved.

Of course, there are also some drawbacks to having the team members

participate in the analysis and in the setting of the measurement details. One

obvious disadvantage is that the new duties may affect each person’s cur-

rently assigned workload. That means that the software project managers

must monitor the amount of effort the nonmanagement members are being

asked to put into these activities, which do not directly affect the product.

Many people cannot balance such extra demands effectively or explain to

their managers how the extra work placed on their plates will affect the

Embracing the Measurement Scheme

171

schedule. In addition, some technical people are averse to doing manage-

ment-related activities, believing that such tasks are not their responsibility.

Thus software project managers should be careful in picking the nonman-

agement participants in goal and measurement preparations.

Ideally, goal-setting and measurement procedures will be decentralized

and lead the team to “own” them. This should neutralize some of the poten-

tial resistance to measurement. Minimizing the resistence is especially valu-

able if the goals set during the planning phase were forged mainly by

management personnel. Eliciting positive and cooperative participation at

the organizing and preparing stage is crucial.

Goal Attainability

It is extremely important to take the time and effort to ensure that the proj-

ect team understands and responds favorably to the measurements process.

Sometimes, measurements are put into the project to collect information that

will benefit future projects, and their immediate value to the current project

is not evident to the team. Such measurements may be difficult for some

team members to accept, and it requires extra care to explain their benefits.

Most people tend to accept that which they understand and to reject that

which they do not comprehend. Team members cannot perform their assign-

ments with conviction if they do not understand or believe that the goals are

achievable. If the project team starts believing that the goals and the meas-

urements are nonrealistic, team morale will suffer tremendously. As team

morale drops, so will team productivity, which may eventually lead to the

demise of the entire project.

An example of this situation is one in which an experienced group of

software engineers is asked to complete a project in half the time spent on

any previous projects of a similar type. An inexperienced project manager

may offer justifications for the accelerated schedule such as better tools and

methodology when, in fact, introduction of new tools and methodology

often takes more time. The experienced software engineers will initially

attempt to convince the project manager to alter the schedule goal. If their

request is met with unreasonable, stiff resistance, then these experienced

software engineers may become demoralized and “let” the project fail just to

prove a point.

A less extreme situation occurs when the software development group is

asked to keep track of the volume of work and the time expended on it. The

software engineers’ immediate reaction to such a request is often negative.

Chapter 8 Goals and Measurements: Preparations and Costs

172

The goal here may simply be data collection to use as a baseline for future

projects. Achieving acceptance for the data collection requires software proj-

ect managers to take the time to explain the rationale behind it, especially if

the data collected will be used as part of the basis for future productivity

estimates and not for modifying the current productivity goal.

Clearly, it is important that team members view the goals and measure-

ments, as planned and established by the project management, as a natural

and integral part of the project. These cannot be perceived as management

goals for the team or merely bureaucratic goals. Instead, the team members

must embrace them as their own goals and measurements. For these reasons,

the software project managers, during the organization and preparation

phase, should actively and positively communicate the goals, measurements,

and measurement scheme. E-mail may be used for this purpose, but one

should not approach the communication effort as an electronic broadcast.

The message must be sent out with an invitation for all recipients to com-

ment on these items. All team members should be copied on the responses to

these comments (both positive and negative), and all concerns must be

resolved. The communication must be inclusive, in that no one team member

can be left out. In fact, the preferred approach would be face-to-face meet-

ings with the whole team.

To win general acceptance and positive reception of the goals and meas-

urements, the software project management must ensure that the following

elements are in place:

• A well-defined goal and measurement scheme

• Attainable goals

• The team’s participation in the setting of the goals

• The team’s understanding and belief in the goals and measurements

• The commitment of qualified resources for measurement

Measurement Resources: How Do You Find an Expert?

A metrics and measurement “expert” is often a person with special

skills in statistics and a thorough understanding of software engineer-

ing. This person will be schooled in data collection, analysis, and pro-

jection. He or she will also be familiar with tools such as the data

management and statistical analysis package from SAS. Such a person

may be a member of the process group or quality assurance group if

the software organization has strong process and quality assurance

Embracing the Measurement Scheme

173

departments. The metrics and measurement expert may serve on multi-

ple projects. In smaller enterprises, such a person may come from the

testing department because many of the popular product goals deal

with product quality or usability. In rare situations, the software proj-

ect manager may assume this role on a temporary basis.

MEASUREMENT COSTS

One often-asked question is why, if setting goals and measurements is so

important, so few software projects do it. Some reasons put forth to explain

this contradiction are as follows:

• Software project “success” is often gauged by only a single goal, such as

a deliverable’s due date.

• The organization may not see the value of setting goals and measure-

ments or may fear the process.

• Management has the misguided view that only “direct” project activities

are important and, consequently, fail to fund indirect activities involv-

ing measuring the project.

• The team members may not have accepted the goals and, therefore, do

not want to be tracked or measured by them.

• Some goals are difficult to define and measure.

• The organization may not have allocated any resources or funding for

measurement activities.

All activities within a project must be accounted for—and funded. Set-

ting goals and taking clear measurements are no different in this respect. It

is crucial that software project managers take the time during the organizing

and preparing phase to explain to the executive and financial managers the

project goals, the measurement schemes for gauging the attainment of those

goals, and the costs to implement the chosen measurement scheme. One

commonly utilized justification for the cost of measurement is comparing

the cost of having to rescue a disastrous quality, morale, schedule, or cus-

tomer satisfaction incident against the cost of measurement and fixing the

potential problem prior to it turning into a disaster. This type of argument is

especially effective if there is a history of such misfortunes. Having the

backing of executive stakeholders will make the goals and the measurements

visible. When goals and measurement have a high profile they will, in turn,

facilitate requesting the proper funding and resources.

Chapter 8 Goals and Measurements: Preparations and Costs

174

If tools are needed, then the total cost must include the resources needed

to maintain each tool. There is a cost related to measurements, which

includes the tools, the people, and the procedures. Although project meas-

urement costs are often rolled into a general project management “cost

bucket” during project resource planning, they actually need to be delineated

separately. Only then will the real cost of measurements be tracked and the

value of having the measurements be appreciated.

Consider a relatively simple situation of measuring design review

results. The following is a sample breakdown of the effort required. Each has

potential costs.

• The effort made to determine and define the data (related to design

review) that should be collected

• The effort related to educating the designers and reviewers on the defi-

nition of data that will need to be recorded from the design review

• The effort made to acquire a tool for recording and analyzing the

design review data (including the tool’s purchase price), if a tool is

deemed necessary

• The effort made to record or input data into the tool and to analyze the

captured data

• The effort required to reorganize and present the analyzed data

As yet, software project managers do not have much hard information

on the actual costs of performing software measurements. Not surprisingly,

it is difficult to assess the incremental benefits of having goals and measure-

ments without information on the cost side of the equation. Nevertheless, it

is clear that without goals and measurements, the project cannot be tracked

and monitored.

■ KEY CONCEPTS

During the planning and organizing phase of POMA, the goals from the

planning phase are revisited and refined as necessary to transform them into

measurable entities. Sometimes, what appeared to be a well-defined goal in

the heat of planning may turn out to require extensive decomposition and

transformation if there is to be any reasonable way to gauge and validate it.

The defined metric and measurement scheme must be clear and

embraced by both the project team and the project stakeholders. Taking a

decentralized approach to setting the goals and the measurement scheme

will improve the chance of achieving team ownership. Involving the team

Key Concepts

175

members in the refinement of goals and asking them to help in communicat-

ing the goals will certainly ease the resistance factor. Likewise, drawing the

nonmanagement team members into many of the measurement-related tasks

will lessen many of the team members’ initial fear of measurement.

There is a cost to measurement. The resources needed to support meas-

urement activities must be allocated and tracked, so as to ensure that the

current project’s goals are actually met and to guide future projects.

■ EXERCISES

1. Pick a goal for a software project such as “high productivity.” Define it

and discuss the metrics and measurement process that need to be put

in place so as to achieve this goal.

2. What does it mean to say that a goal has to be “clear”?

3. What is an operational plan, and what are the categories of items needed

to be considered to transform a general plan into an operational plan?

4. Why might a team resist having goals and measurements?

5. What must a software project manager ensure and put in place in order

to gain general acceptance of the goals and measurements?

6. Discuss the potential perils that may result from assigning values to a

categorization scheme of an attribute.

7. List some of the costs related to establishing goals and measurement.

8. In terms of team organization and project structure, where would you

place those people involved with measurements, and why?

9. Search for various software measurement tools for quality and produc-

tivity attributes and categorize them by characteristics such as data

collection, data analysis, or data representation ability.

10. Conduct a mini-research project as follows. Study the three articles

related to the CK design metrics (by Chidamber and Kemerer; Chi-

damber, Darcy and Kemerer; and Subramanyam and Krishnan) in the

“Suggested Reading” list and report on the metrics and its applicability

to software project management. Also provide your own views on this

set of metrics.

■ SUGGESTED READING

S. R. Chidamber and C. F. Kemerer, “A Metric Suite for Object Oriented Design,”

IEEE Transactions on Software Engineering, June 1994, 476–493.

Chapter 8 Goals and Measurements: Preparations and Costs

176

S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, “Managerial Use of Metrics

for Object-Oriented Software: An Exploratory Analysis,” IEEE Transac-

tions on Software Engineering, August 1998, 629–639.

M. K. Daskalantonakis, “A Practical View of Software Measurement and

Implementation Experiences Within Motorola,” IEEE Transactions on

Software Engineering, November 1992, 998–1010.

A. Glushkovsky, “An Analytical Approach to Software Metrics Manage-

ment,” Software Quality Professional, Vol. 4, No. 3, 2002, 34–45.

R. B. Grady, Practical Software Metrics for Project Management and Process

Improvement, Prentice Hall, 1992.

R. B. Grady, “Successfully Applying Software Metrics,” IEEE Computer, Sep-

tember 1994, 18–25.

S. H. Kan, Metrics and Models in Software Quality Engineering,” 2nd Edi-

tion, Addison-Wesley, 2003.

R. Subramanyam and M. S. Krishnan, “Empirical Analysis of CK Metrics for

Object-Oriented Design Complexity: Implications for Software Defects,”

IEEE Transactions on Software Engineering, April 2003, 297–310.

C. Weber and B. Layman, “Measurement Maturity and the CMM: How Mea-

surement Practices Evolve as Processes Mature,” Software Quality Pro-

fessional, Vol. 4, No. 3, 2002, 6–20.

Suggested Reading

177

This page intentionally left blank

THE ROLE OF MONITORING IN SOFTWARE
PROJECT MANAGEMENT

In the eyes of many nonmanagers, regular monitoring of the project and daily

fire fighting constitute the majority of the software project management

work. For many team members, the previous two phases (of project planning

and of project organization) were not visible to them. After planning for the

project and having the plan approved, the project managers had to organize

and prepare for the beginning of the project. Once the project is started, how-

ever, the software project team cannot just be left alone to follow the plan

and the course for which it was prepared. As a matter of fact, the plan, the

organization, and the preparation work are never perfect. Inevitably, what

was planned and prepared for in terms of goals, measurements, and infor-

mation gathering will go through modifications and conversions during the

next phase, the project monitoring phase (the “M” in POMA).

Some mechanism must be put in place to constantly gauge whether the

project is progressing on course. That mechanism must collect information

about the project, ensure that what is observed is valid and reliable, and ana-

lyze the information and report it as necessary. Clearly, the software project

Part Three

Software Project Monitoring

(POMA)

179

team must then make decisions if the data indicate that some aspects of the

project need to be altered.

The monitoring activity for software projects is no different from the

monitoring tasks performed in other, nonsoftware projects. What is different

is that the list of items to be observed for software projects contains only

domain-specific items, which are software-related and were planned earlier.

In general, the goal is to determine whether the project—no matter what its

type—is tracking to plan.

Many times, software projects fail due to the sloppy jobs that the soft-

ware project managers do during the monitoring phase. Having a wonderful

plan is merely the first step. In the previous POMA phase, that plan was trans-

formed into an executable, operational plan with all resources assigned,

organized, and prepared. Now that the project resources are assigned and pre-

pared to execute, the project team is ready to start performing. Project man-

agers must continually evaluate this performance by the project team to see

whether the way it is carried out would indeed achieve the various stated

goals of the project. Here, the project team includes both the technical mem-

bers and the management personnel. The information representing the status

and the results of the project team’s activities are used as the basis for this

ongoing evaluation.

In software projects, one of the more menacing situations encountered

is the scenario in which frequent and large numbers of changes are made to

the requirements and design. Thus, besides monitoring the predetermined set

of measurable characteristics of the project, the software project managers

need to be constantly on the lookout for potential changes to the planned

project or unexpected changes to resources, such as the sudden loss of an

employee. The ongoing review of the risk items list is also included as part of

the monitoring activities.

MONITORING: A THREE-PART OPERATION

Part Three of this book discusses the following three topics related to software

project monitoring:

• The regular collection of project information that is considered relevant

to the measurement of goal attainment

• The analysis and evaluation of the collected information

• The presentation and communication of the information related to proj-

ect status to the project team members, upper management, and, poten-

tially, customers

Part Three Software Project Monitoring

180

To collect any information, the first issue is what data should be collect-

ed. Next, we must determine how that information will be collected. These

two questions should have been addressed during the planning and organiz-

ing phases. In addition, we must decide how often the information should be

collected. Data collection and status monitoring are conducted in two differ-

ent ways: through formal status reviews and during informal “conscientious

socializing.” The important thing is to make sure that software project man-

agers handle these duties as a natural part of the regular project monitoring

set of tasks.

Even though the data collection process is assumed to be valid, relevant,

reliable, and accurate, sometimes the information gathered is not and, there-

fore, needs to be “cleaned.” Data cleaning, for example, might involve recog-

nizing extreme data points or inconsistent situations and excluding those

data. Only after cleaning can the information be analyzed. Following that

step, the cleaned information can be evaluated and compared against the

planned goal.

The analyzed information and the result of the evaluations must be com-

municated to all affected parties. This communication is critical: The manner

in which the information is represented and shared sets the tone for the entire

phase of project monitoring. The communication of project status and

changes must be disciplined, and the information transmitted must have

value to the recipients. Undisciplined project status meetings are a waste of

time and will eventually render these meetings useless. The key stakeholders

will stop attending, status information will not flow, dependencies will not be

understood and fulfilled, and the project will slowly but surely slip into chaos.

The remedy is status meetings that are disciplined and to the point. These are

the responsibility of the software project managers.

Monitoring: A Three-Part Operation

181

This page intentionally left blank

183

9
Collecting Project
Information

Chapter Objectives

This chapter discusses the following concepts:

• How to perform formal and regular data gathering and monitoring

• How to hold formal and regular status meetings

• How to perform informal and nonregular data gathering and monitoring

In many ways, software project management, like other types of project

management, is highly dependent on the information it collects. What infor-

mation should be collected and how should one go about collecting it con-

stitute the first set of questions that the software project managers should be

prepared to answer. The data that need to be collected are first dictated by

what was planned and prepared until now. Of course, no plan or preparation

is perfect. Consequently, the metrics and measurements established during the

planning phase or the organization and preparation phase of software proj-

ect management may go through further changes as the project proceeds. It

is not uncommon to alter the focus on some details of a specific area when

some evidence indicates that the area has changed. For example, even if

employee retention had never been a problem, the heated-up economy of the

late 1990s forced many software project managers to focus on a new per-

sonnel metric, employee retention. Conversely, with today’s cooled economy,

a hitherto important metric on employee retention might be dropped. In turn,

a change in the measurement scheme is required.

Chapter

Chapter 9 Collecting Project Information

184

Most of the information collected during the monitoring phase of the

POMA process is gathered in some formal manner through regular status

meetings. At the same time, unplanned information may be collected infor-

mally through project managers’ conscientious socialization. Conscientious

socializing is the purposeful but informal socializing that managers conduct,

such as conversations at the water cooler, to get a better understanding of the

project status. Electronic conscientious socializing would involve “chatting”

or “instant messaging” with the team members. The amount of unplanned

and informal information that the software project managers can gather is

directly related to how well the managers listen to the team members as they

socialize with them at a business level.

Both formally collected data and informally collected information gath-

ered during the monitoring phase need to be analyzed before appropriate

decisions can be made to take action or to stand pat. In any event, software

project managers should restrain themselves from reacting impulsively fol-

lowing receipt of the information.

FORMAL DATA GATHERING AND MONITORING

The formal gathering of project information is usually performed at regular

intervals such as daily, weekly, or monthly, depending on the type of activi-

ty and the stage of the software project. For example, the formal gathering of

information on project status may be conducted on a weekly basis during the

requirements gathering and analysis phase. During the functional testing

phase, however, test results data may be gathered upon completion of each

test and aggregated on a daily basis. Clearly, the needs of information col-

lection must be balanced against the resource requirements and the impacts

to the on-going project. These impact issues and considerations were

addressed in the transformation of the project plan to an operational plan.

The frequency of data gathering may also depend on the urgency of the

activity. In some situations, time is of the essence, as when responding to a

high-severity customer problem. Under normal circumstances, the support

manager might collect customer problem reporting and resolution data at the

end of each day; however, a high-priority customer problem may temporari-

ly warrant changing the collection status to an hourly basis until resolution

of that problem is achieved.

The data collection may be based on project activities or on some proj-

ect attribute. Some of these criteria may not have been planned and set up in

their entirety in the previous planning and organizing phases.

Let’s consider an example in which the goal is to see how the project is

tracking in terms of schedule integrity. In this case, the manner in which the

data are collected depends on the type of activity. Both activity-based and

attribute-based methods may be employed for measuring the schedule goal.

Activity-Based Monitoring

In the requirements gathering and analysis phase, assume that information is

gathered on a weekly basis. During this phase, the data collected may differ

depending on the specific task. During the early stages, for example, the data

collected may focus on the team’s attempts to meet a set of minor milestones,

such as completion of requirements interviews, completion of requirements

documentation, or completion of requirements classification. The data desired

in this case are non-numeric—that is, the data collected are binary logical val-

ues of yes or no, depending on whether the minor milestone is or is not met.

The actual representation of the data collected, in a date format, contains

more information than simply whether a milestone has been achieved. Thus

data collection may consist of filling in a table on a weekly basis. Consider

Table 9.1, where the expected completion date and the observed actual com-

pletion date fields are both used to indirectly indicate whether a milestone has

been met. This measurement is needed to gauge whether the goal of schedule

integrity will be satisfied.

This type of data collection is activity-based in that the team is collect-

ing attribute information—namely, completion dates—about the activities.

Note also that with this type of information collection, which goes beyond

purely logical values, one can perform arithmetic manipulation and obtain

“derived” information. In this case, the derived information is the difference

between the expected and actual completion dates (delta, ∆). The Delta col-

umn in the table provides a quick overview of the completion status of the

various activities.

Formal Data Gathering and Monitoring

185

Table 9.1 Activity Completion Status

Expected Actual
Milestone activities completion completion Delta

Requirements interviews 07/05/2003 07/10/2003 +5 days

Requirements documentation 07/25/2003 07/25/2003 0 days

Requirements classification 08/20/2003

Attribute-Based Monitoring

Now consider the screen requirements prototyping tasks within the require-

ments processing activity. In measurements taken so as to assess schedule

integrity, it is not enough to be just interested in the simple answer of whether

prototyping is complete, because the activity may stretch over several

weeks. In this case, the data collected are based on an attribute. As shown

in Table 9.2, the actual data are numerical figures representing the number

of user panels that have been developed, shown to the users, and approved

by the users.

This type of data collection is attribute-based in that the team picked an

attribute—the weekly time interval—to assess the result of an activity. The

result, or the metric, is the number of completed items given in terms of pan-

els reviewed and approved. The attribute in this case is a date, so this is a

date-based collection mechanism. The data collected are numerical, so the

normal arithmetic operations may be applied to them. The delta values are,

once again, derived information.

Note that Table 9.2 does not explain what happened to the two panels that

were not reviewed and approved on April 12. The Delta column shows the –2,

but no +2 has appeared in the table yet. Thus the derived information column

can provide an additional view to help in tracking the status. In this case,

based on the date attribute, the project seems to be two screens behind the

number expected to have been completed at this point. If the project is to

maintain schedule integrity, the sum of the numbers in the Delta column needs

to be zero on the last day of the screen requirements prototyping activity.

MACRO AND MICRO LEVELS OF MONITORING

Generally, activity-based data collection would apply better at a “macro”

level, in that we list only those activities that are considered to be at least

Chapter 9 Collecting Project Information

186

Table 9.2 Date Attribute-Based Status

Expected number of panels Actual number of panels
Date reviewed and approved reviewed and approved – Delta

04/05/2003 12 12 – 0

04/12/2003 15 13 – 2

04/19/2003 20 20 – 0

04/26/2003 15

05/02/2003 10

minor milestones. Attribute-based data collection would be a better fit for a

“micro” level of data collection, in that we will collect the smallest unit of the

attribute. As the preceding example shows, we would record a number as

small as 1 panel reviewed in Table 9.2. Of course, both types of data collec-

tion may be applied at either level.

The data that are collected for measurement purposes may be traced back

to the planned goal and the preparation work that went into designing the

metric and measurement. Every project—software or otherwise—is concerned

about schedule integrity. The other major goals and measurements for soft-

ware projects include the following and will be illustrated later in this chapter:

• Completeness of function

• Quality

• Budget

These considerations are not necessarily listed in any priority order.

Because satisfying all of these attributes is important, software project man-

agers need to monitor all of these characteristics.

In the following sections, examples from attribute-based monitoring

and activity-based monitoring are used to demonstrate both the micro and

macro levels of project status collection. The completeness-of-function

goal, the quality goal, and the budget goal measurement and monitoring

are explored.

Monitoring Completeness of Function

Attribute-Based Monitoring
Completeness of function is an attribute of the end product, so it seems log-

ical to consider attribute-based data collection methods first. A table may be

built listing all the required functions and the number of features within each

function that have been completed (see Table 9.3). This presumes that the

requirements document is complete and sufficiently detailed. Here the metric

is the number of completed features, which is a countable figure.

Completeness of function An attribute of a software product that

describes the number of features implemented versus the number

required for that software product.

In Table 9.3, the attributes, as expressed in terms of number of features in a

function, are shown in the form of columns. The attribute of completeness

may be viewed in a more detailed form by further subdividing each feature

Macro and Micro Levels of Monitoring

187

into three subcategories, such as basic, intermediate, and advanced. Using

such a table allows the software project team to collect and record informa-

tion indicating how much of each feature is completed for each of the func-

tional requirements. Along the way, this functional attribute-based data col-

lection mechanism facilitates the detailed counting of the features, so it

serves the software project managers well at the micro level.

Again, the derived information in the Delta column needs to eventually

be zero for each row of the table. A positive delta value would indicate that

the function contains more features than required. This inclusion of “extras”

may not necessarily be a good sign: Having more than the expected number

of features may indicate uncontrolled scope creep.

Activity-Based Monitoring
At a macro level, the software project managers may want to collect infor-

mation on project activities completed using an activity-based method. The

activities, in this case, would be the software process tasks that contribute to

the production of the desired software functions. Table 9.4 shows an exam-

ple of data collection based on functional completeness within each activity.

In such a table, the activities displayed will depend on the specific process.

The level of detail that is chosen to be portrayed will dictate the amount of

data collection required. Table 9.4 uses a macro level, presenting the activi-

ties in a simple sequential order.

The activity-based data collection method indicates where each function

is in terms of the activities that must be performed. In Table 9.4, F1, F2, and

so on are the functions. Y (yes) indicates the completion of the activity for

that function, and N (no) indicates a status of incomplete. The direct data col-

lected give the team a global picture of the status at the different activity levels.

Clearly, the desired end is to have all activities completed for every function.

Chapter 9 Collecting Project Information

188

Table 9.3 Function Attribute Completeness Monitoring

Expected number Completed number
Functions of features of features – Delta

Function X 13 9 – 4

Function Y 7 7 – 0

Function Z 9 8 – 1

. . . .

. . . .

The Total column provides a numerical representation of the status of

each activity in terms of the number of functions completed. Each activity’s

Total column entry should match the number of total functions before the

software project manager can consider the activity to be completed. What

would be viewed as completed functions are all those functions that have

been integrated (i.e., those in the Function integrated row). Thus, if there are

n number of functions, then the Total column entry for the Function inte-

grated row should also be n.

Table 9.4 illustrates a much higher-level status than the attribute-based

data collection example discussed earlier, in which the team simply tracked

the number of features within each function. Once again, it is apparent that

activity-based data collection is well suited for handling the macro level of data.

Monitoring Quality

An important goal for software projects, as discussed extensively in previous

chapters, is quality. Software projects have suffered from the image of poor

quality for so long that some software project managers have unfortunately

become very cynical about controlling quality. The goals and measurements

of product quality must nevertheless be defined and prepared prior to the

monitoring phase.

Software quality An attribute of a software product that describes how

well the product satisfies and serves the needs of the users. It offers a

broader view of quality than the attribute that addresses only the defects

in the product.

Attribute-Based Monitoring
As an example, let’s consider one possible goal of quality: to achieve the level

where there is no known severity level 1 problem in the product prior to its

Macro and Micro Levels of Monitoring

189

Table 9.4 Software Process Activity-Based Monitoring

Activities F1 F2 F3 ... Total

Requirements defined Y Y Y 20

Function designed Y Y N 15

Code implemented Y Y N 12

Function tested Y N N 10

Function integrated Y N N 8

release. Assume that the different severity levels have already been defined.

Then attribute-based data collection for product quality purposes may be

expressed as shown in Table 9.5, with data being gathered just prior to the

product’s release. Note that the metric for the quality goal is the number of

severity level 1 problems.

In this case, the teams collect data based on the quality attribute of each

functional area at release time. All entries in the Delta column must reach

zero before the product may be viewed as reaching its quality goal. As long

as the Delta column includes one nonzero figure, we cannot proclaim that

this goal has been attained.

Again, the attribute of quality may be viewed in more detail by includ-

ing problems found and resolved not only for severity level 1, but for all the

severity levels. In this way, the project team can take this micro level of mon-

itoring to an even lower micro level.

Activity-Based Monitoring
The data collection mechanism for the quality goal may also be activity-

based. The results will look much like the activity-based data collection for

completed functions.

Suppose the activities list is based on the sequence of defect detection

and removal activities that will be performed as part of the software project.

In this case, the activities list clearly depends heavily on the software process.

The defect identification and removal activities listed in Table 9.6 are a sim-

ple example. In reality, the defect detection and removal activities may be

much more expansive. Also, remember that to simplify the discussion, this

example focuses on only severity level 1 problems, because the goal was

expressed in terms of severity level 1 problems. In most large software proj-

ects, all levels of problems found and fixed are collected and tracked.

Chapter 9 Collecting Project Information

190

Table 9.5 Functional Attribute-Based Quality Monitoring

Severity level 1 Severity level 1
Functional area problems found problems resolved – Delta

Function X 20 20 – 0

Function Y 12 10 – 2

. . . .

. . . .

The pairs of numbers in Table 9.6 are the entries for each function (F1,

F2, and so on). The first number in each pair is the number of defects detect-

ed during that activity. The second number represents the number of defects

resolved and removed as a result of that activity. The metric is a pair of

countable numbers.

Table 9.6 provides a global view of each functional area as different qual-

ity-related activities are applied to it. The Total column indicates the number

of severity level 1 problems that are as yet unresolved from applying the spe-

cific quality activity. The goal is that all entries in the Total column be zero;

in other words, there should be no unresolved severity level 1 problems

remaining from any of the defect prevention and detection activities carried

out prior to the product release.

In the case of quality, the attribute-based and activity-based data collec-

tion mechanisms are very similar. Both provide a global view of the quality

status of all the functions. However, the attribute-based data collection mech-

anism may be easily expanded to include lower severity levels, and it can

achieve a more detailed view of quality by functional area.

Monitoring the Budget

Meeting and not exceeding the budget of a software project, while sometimes

less emphasized by the technical community, is actually one of the most

important goals. It must be met if the organization is to continue in existence.

Software budget An attribute of a software project that describes the

financial resources allocated and expected to be followed, by some time

period such as monthly or quarterly and by areas such as tools, people,

travel, or education, for that project.

Macro and Micro Levels of Monitoring

191

Table 9.6 Defect Removal Activity-Based Quality Monitoring

Activities F1 F2 F3 ... Total

Requirements review (5,5) (6,5) (4,4) 1

Design review (6,6) (7,6) (9,9) 1

Functional testing (3,3) (2,2) (5,5) 0

Component testing (2,1) (2,2) (4,4) 1

Systems testing (0,0) (1,1) (0,0) 0

In software projects, this particular attribute is often managed at a some-

what higher level than the traditional, first-line project managers’ level.

Indeed, sometimes it is managed by the financial community, and the soft-

ware project managers are not directly involved in managing monetary con-

siderations except to treat the budget as a process where funds are requested

and granted. Until the software project managers understand and begin man-

aging the financial aspects of the project (at least the budget), however, they

will remain naïve and nonappreciative of the key role that finance plays in

most projects.

If the software project has gone through business case analysis, then the

organization has likely determined that the project is worth pursuing with the

planned budget. For most software project managers, the revenue portion of

the financial goal is not a concern, because they most likely will not manage

that aspect of the goal. Nevertheless, they need to recognize that what they

produce will greatly affect the income side of the financial picture. Today’s

more aggressive organizations are including the software project managers in

the discussion of the budget, recognizing that the sales and marketing orga-

nization’s commitment to revenue projections usually depends on how the

project team reacts to their requests for features and functions. These requests

for features and functions must be weighed against the estimated expenses

for those features and functions as well as the feasibility assessments provid-

ed by the software project managers.

For all these reasons, the software project managers should participate in

the organization’s discussions of its financial goals. They should also include

revenue status as a focus of their project monitoring.

Attribute-Based Monitoring
Budget-related data may be collected with the attribute-based methodology

as well as with the activity-based method. Table 9.7 illustrates one possible

attribute-based data collection method. Although not all software projects

can break down product revenues based on functional areas, Table 9.7

assumes that such data collection is possible. A Revenue column is included

in this example, even though most software project managers are not respon-

sible for that parameter. Nevertheless, its inclusion will give the software

project managers something to contemplate as they monitor the expense side

of the product equation. Expense data are collected on every function at some

regular interval, most likely monthly. The example in Table 9.7 uses thou-

sands of dollars as the metric for the entries.

Chapter 9 Collecting Project Information

192

The data collected in Table 9.7 show both the expected budget (Expected

column) and the actual expense (Actual column) by month as the software

project progresses. The table also includes some derived data, in the form of

cumulative expected and actual expenses. The revenue portion of the table

(Revenue column) shows the up-to-date expected and cumulative actual rev-

enue information.

Clearly, this effort involves monitoring the expense side of the budget at

a monthly level. If the project budget attribute needs to be managed tightly,

the software project managers may change the monitoring interval to semi-

monthly or weekly.

The items that go into each table entry must have been planned and pre-

pared during the planning and organizing/preparing phases. Most of the time,

the expense entry for each (nonacquired) software function includes costs for

all of the following resources:

• People (compensation in salary, bonus, and so on)

• Tools

• Travel

• Special education

• General overhead (office space, phone service, desktop computer, and so on)

If a particular function is an acquired function, then the expense for it

may be spread out in an even fashion over the time interval. The important

thing to remember is that the data may be collected on a weekly or monthly

basis, but some of the budget may be expended in a lump-sum form, such as

paying up-front for an enterprise license for a software tool before all the

team members have come on board. These lump-sum expenses incurred at the

Macro and Micro Levels of Monitoring

193

Table 9.7 Functional Attribute-Based Expense and Revenue Monitoring

Functional Month 1 Month 2 ... Accumulative Data

Expected Actual Expected Actual Expected Actual Revenue

Function X 4 3.5 5 5 9 8.5 54 0

Function Y 2 2.5 4 5 6 7.5 60 0

Function Z 7 6 9 10 16 16 350 2

.

.

.

Area

beginning of a project may cause the project to temporarily show an

expense overflow.

Activity-Based Monitoring
The budget attribute may also be monitored via an activity-based data col-

lection method. As before, the specific activity list may differ based on the

software project and the process chosen for that project. For the purposes of

this example, the software project activity list is greatly simplified. The met-

ric for the entries in Table 9.8 is thousands of dollars; the accuracy of the data

is 0.5 of $1000 (that is, $500).

Table 9.8 Software Process Activity-Based Expense and Revenue Modeling

Activities F1 F2 ... Accumulative Data

Expected Actual Expected Actual Expected Actual

Requirements
gathering 0.5 1 1 0.5 15 15

Prototyping 1 1.5 2 1 18 25

Joint customer
design 1 0.5 25

Detailed
design 1.5 1 22

Design
inspection 0.5 0.5 5

.

.

This activity-based data collection mechanism provides a global view of

the expenses of all functions as each function goes through each of the activ-

ities. Again, the actual entry is an accumulation of several resources that

went into it. Note that there may be an honorarium paid to each customer

who participates in the joint customer design activity; the table may need to

include this expenditure. For each activity, the preparation for the measure-

ment must be established by working with the financial organization.

For the budget attribute, data collection should be performed in concert

with the financial organization. Thus, to monitor the financial goals, the soft-

ware project managers must collaborate with the financial organization dur-

ing the planning phase as well as the organization and preparation phase.

Chapter 9 Collecting Project Information

194

There may even be a need to reserve the services of and financially account

for a person in the financial department who will spend at least some of his

or her time on data collection duties. As a consequence, the data collection

expense for the project may need to be charged back to the specific software

project, and the data collection activity itself may appear on the activity list

for activity-based data collection for monitoring the budget attribute. The

actual recording of data will most likely be carried out by the financial organ-

ization and the results given to the software project management team.

DATA COLLECTION SCHEDULE

The formal collection of data for the purpose of project monitoring should be

performed on a regular basis with the schedule chosen to match the needs of

the software project. For longer projects, the interval of data collection for

monitoring may be monthly, to match the monitoring time cycle. For small-

er and shorter projects, the data collection and monitoring intervals may also

be shorter. The data collected at these regular time intervals should be main-

tained throughout the project and kept for historical purposes. The historical

data will be needed for statistical estimation activities in the future. Each

batch of data represents a snapshot of the project status at that point in time.

Of course, the project team must balance its need for data with the effort

required to collect and monitor that information for the particular software

project. Most of this decision making occurs during the earlier organization

and preparation phase, but these decisions should be reviewed and perhaps

modified as the software project managers start the monitoring phase of proj-

ect management.

With the sophistication of today’s spreadsheet products, much of the data

collected in tabular form for smaller projects may be easily placed in these

spreadsheet files. If more sophisticated capabilities are needed, then any of

the database products may be used along with some of the currently avail-

able data drill-down products, such as Oracle’s Business Intelligence tool or

SAS Institute’s SAS tools.

FORMAL PROJECT STATUS MEETINGS

The formally collected data should be brought forward and presented by the

project team members to their colleagues at regular project status meetings.

The project status meeting serves two purposes: It is a means to collect the

Formal Project Status Meetings

195

data, and it is a way to communicate those data. If the status meeting is used

as a means to collect the project status data, then the project managers must

constantly think of ways to minimize the amount of data collection time

needed. After all, time spent in meetings and data collection is indeed time

taken away from direct project development. Automation and tools may be

one answer.

Data Collection Automation/Tools

Information from the various stages of software development may be

collected as more automation is introduced. For example, one might use

a tool such as Borland’s Togethersoft to develop a design and code for

the project. The same tool can provide information on how many

objects, modules, or lines of code have been developed. Thus, instead of

manually counting and reporting on this information, the team can use

the tool to automatically provide the count on a weekly or daily basis.

Another tool from Borland, called CaliberRM, may be used for require-

ments management. This tool can trace changes made to requirements,

thereby providing information on the volume of changes to requirements.

The formal project status meetings should not be so lengthy that most of

the people there are “waiting” for their turn to present. Given that key per-

sonnel (i.e., managers and project leaders) are likely to attend these meetings,

one should definitely not keep them for too long. If once-weekly meetings are

held, a three-hour status meeting would consume roughly 8% (3 hours ÷ 40

hours = 7.5%) of a normal working week for the attendees. If the status meet-

ings begin to consume more than 10% of the normal work week, then the

project managers should immediately reassess the meeting schedule and

agenda. One possible solution is to cut the discussion to only the high-risk

items, with normal status information just being provided in a written form

that the participants may choose to read at their convenience.

In addition, if any unexpected information or negative data require

further discussion or analysis, a separate meeting should be scheduled to

focus on that specific topic. Unexpected negative status information is one

item to watch out for, because it is so natural to become drawn into a lengthy

discussion of a “surprise” item. The risk items list is the source of many

such surprises—for example, when a low-risk item suddenly turns into a high-

risk item. The software project managers must be disciplined enough to

Chapter 9 Collecting Project Information

196

log the surprise item on the list of high-risk items and immediately schedule

a separate session attended by just the affected parties. One question

that often arises is, What information should be brought to these special

meetings? Unfortunately, there is no standard answer because the “surprise”

may be anything.

To ensure full and effective status monitoring, the key attendees must not

be allowed to send substitutes to these regular meetings except for special

reasons such as planned vacations or family emergencies. The software proj-

ect managers also must not send any substitutes.

These meetings are usually well attended at the beginning of a new soft-

ware project. The attendance problem tends to appear later in a project, if it

happens at all. There are many reasons for poor attendance. For example, if

the status meetings are not managed well and are constantly postponed or

running over time, then the key participants will start to disappear. However,

if the meetings are running smoothly but turning into a “rubber stamping” of

data, then the key participants will also abandon them. In particular, the dan-

gerous sign of unrealistic smoothness must be recognized by the software

project managers.

The key to effective formal status meetings is to create an agenda and

stay within its bounds, scheduling any subsequent and additional meetings if

necessary to cover off-agenda items. The agenda should be circulated prior to

the meeting so that all attendees are aware of the topics to be covered and

the time allotted for each topic. Each time slot should include a small buffer

to allow for a certain amount of discussion and communication on that topic.

What’s on the Agenda?

A formal project status meeting should follow a predefined agenda. The

agenda items need to correlate with the project goals, because it is the

progress made toward attaining those goals that is mainly under review

at the meeting. A sample software project status meeting may have the

following parts:

1. Review of the project and product progress metrics: schedule, items

completed, cost, defects discovered and corrected, and so on

2. Review of personnel and resources: problems, rewards, and so on

3. Review of risk items: number, status, and so on

4. Review of any other items: customer status, industry status, and so on

Formal Project Status Meetings

197

Software project managers must keep in mind that while project moni-

toring may be the most important item for the managers, the other team

members are equally driven to complete their tasks, and these tasks do not

deal with project management per se. Some nonmanagers will view these

meetings as bureaucratic and a waste of their time. From their perspective,

this perception may be accurate. Therefore, any additional meetings sched-

uled to tackle specific topics should also require the minimum amount of time

for the attendees. For each meeting, time must be set aside for discussions

beyond just the presentation of data and information. Managers must also

learn to moderate the meetings, keeping attendees focused on the scheduled

topic so that the discussion does not turn into a random wandering of con-

versation that leads to no conclusion.

Sources of Meeting-Related Information

Project managers who need to enhance their meeting management

skills or conflict resolution skills may consult books such as The Art and

Science of Negotiation by Harvard Business School professor Howard

Raiffa or attend seminars on these topics. The Project Management

Institute, a nonprofit professional association that is headquartered out-

side of Philadelphia, also conducts seminars on these topics. Interested

parties may consult the institute’s Web site for more information:

www.pmi.org.

INFORMAL DATA GATHERING AND
MONITORING

Software projects, more than most other projects, depend heavily on the per-

formance of people. Although formal data collection and monitoring are

essential, assessment of human performance is often based on some very

hard-to-collect information that requires informal data gathering. Consider

the following situations:

• A false rumor about any part of the project may cause workers to

engage in lengthy discussions and extensive information seeking rather

than focusing on the work at hand.

• A particular tool that is not working well may cause delays and loss of

efficiency.

Chapter 9 Collecting Project Information

198

www.pmi.org

• A process that is viewed as bureaucratic may cause people to find ways

to circumvent it rather than fix it.

• A key employee may be seeking new opportunities and getting ready to

resign from the project.

Formal data collection efforts may not be able to recognize any of these

situations. Instead, the software project managers must realize that a number

of factors that contribute to the success or failure of the project may not be

apparent from formal data and will not be discussed and disclosed during for-

mal status meetings.

Physically Collocated Environment

As part of their informal data gathering, software project managers need to

perform conscientious socializing. Different from formal information meet-

ings, these informal meetings or encounters should encourage a certain

amount of wandering among topics. Often, it is through serendipity that cer-

tain vital information pertaining to the software project comes to light. To

help such communication take place, the software project managers should

pursue the following activities, among others:

• Keep the management offices “open” and accessible to everyone.

• Make daily walks and visits to the team members’ offices.

• Invite team members to the project manager’s office to chat about the

project (Formally schedule these “informal” meetings if necessary at the

beginning of a new project.)

• Have scheduled “lunches” with different, small groups of team members.

Note that almost all of these activities require some kind of physical

“contact” with the team members.

Physically Remote Environment

Many managers choose—or are forced—to have virtual meetings instead of

person-to-person contact, including meetings held via the Internet. For the

formal, regular meetings, virtual meetings held through phone, video confer-

encing, or bulletin boards may substitute for some part of the physical meet-

ing. However, for the informal, conscientious socialization, the rule is this:

The less virtual, the more effective the socialization.

With project team members who work at remote sites, the software proj-

ect managers need to make an extra effort to meet them in person when they

Informal Data Gathering and Monitoring

199

first come on board. The software project managers also need to ensure that

ongoing communications occur via telephone or e-mail with team members

at remote sites; that is, they need to “just chat.” The volume of electronic

communications that would be considered normal depends on the size and

type of project involved. The software project managers must take the initia-

tive to start both one-on-one and group electronic dialogues. Certainly, if

either a sudden increase or decrease in the volume of communications occurs,

it should prompt the software project managers to immediately follow up. In

addition, they must pick up on any voice and intonation changes during a

telephone conversation with a particular individual. In terms of e-mail, the

choice of words and the length of the messages can offer informal clues as to

the team member’s state of mind.

Establishing Trust

Informal data gathering requires the software project managers to understand

both the team members and those individuals’ views concerning the project

and its status at different phases of the project. This invaluable information

cannot be attained through formal project monitoring.

The underlying assumption here is that the team members have some

trust in the software management. Without this trust, people will not disclose

their true feelings. To build such a bond, the software project managers must

listen and not become defensive, no matter how negative or biased the infor-

mation communicated may appear. Trust must be earned, and it takes time to

establish. But it may be lost forever because of a single instance of broken trust.

Software project managers should also realize that trust is a mutual

activity and must be honored by both sides. Thus, before sharing any infor-

mation, each manager must know the degree of trust that has been estab-

lished between and among the team members and him or her. Clearly, some

information is not appropriate for any sharing or conscientious socializing:

• Employees’ personal information

• Confidential corporate information

• Information with a “need to know” designation

Need-to-know information is a special class of information that is

intended to be transmitted only to a small group of people who have an

absolute need to know it. An example would be the impending closing of a

large contract or the potential loss of a large contract.

Chapter 9 Collecting Project Information

200

■ KEY CONCEPTS

The monitoring of project status involves three major activities: formal and

regular data gathering and monitoring; formal and regular status meetings;

and informal and nonregular data gathering and monitoring.

Formal gathering and storing of the needed data for gauging the status

of the project may follow either of two approaches: (1) activity-based or (2)

attribute-based. The activity-based approach gathers information about an

attribute based on the activities performed to achieve the goal of that attrib-

ute, whereas the attribute-based approach gathers information about an

attribute based on a metric defined to measure the attainment of the goal for

that attribute. Some goals and measurements may be monitored utilizing both

of the methods, although one is usually more effective; the method of choice

depends on the specific target.

Project status meetings constitute a mechanism both to collect project

information from the team and to disseminate information to the team mem-

bers. To be effective, such meetings must occur regularly, be kept on sched-

ule, and follow a predetermined agenda. Software project managers should

use these formal meetings as one tool for project monitoring.

Informal status gathering and project monitoring is a powerful tool that

must be utilized in conjunction with other, more formal methods of data col-

lection. When working with physically remote personnel, software project

managers must take extra care in monitoring their electronic communications

because conscientious socializing cannot be accomplished in the same man-

ner as with physically co-located team members. In any informal communi-

cations, trust is a key ingredient.

■ EXERCISES

1. Discuss the difference between activity-based and attribute-based

information collection methods.

2. For monitoring completion of function, which of the above information

collection methods would you use and why?

3. Discuss the difference between formal and informal data gathering and

monitoring. If you can implement only one, which one would you

implement and why?

4. What is conscientious socializing?

5. Devise a software project status meeting agenda for monitoring and

gathering status information about the project schedule, key personnel,

Exercises

201

and product quality of four different software projects; include the for-

mats for presenting the status information during the meeting.

6. How does trust play a role in project monitoring?

■ SUGGESTED READING

K. Bassin, S. Biyani, and P. Santhanan, “Metrics to Evaluate Vendor-

Developed Software Based on Test Case Execution Results,” IBM Systems

Journal, Vol. 41, No. 1, 2002, 13–30.

T. Hall and N. Fenton, “Implementing Effective Software Metrics Programs,”

IEEE Software, March/April 1997, 55–65.

J. D. Herbsleb and S. Moitra, “Global Software Development,” IEEE Software,

March/April 2001, 16–20.

P. Jalote, “Use of Metrics in High Maturity Organizations,” Software Quality

Professional, Vol. 4, No. 2, 2002, 7–13.

R. Murch, Project Management Best Practices for IT Professionals, Prentice

Hall PTR, 2001.

R. J. Offen and R. Jeffrey, “Establishing Software Measurement Programs,”

IEEE Software, March/April 1997, 45–54.

H. Raiffa, The Art and Science of Negotiations, Belknap Publisher, 1985.

H. Raiffa, J. Richardson, and D. Metcalfe, Negotiation Analysis: The Science

and Art of Collaborative Decision Making, Belknap Publisher, 2003.

P. C. Tinnirello, ed., Project Management, Auerbach, 1999.

Chapter 9 Collecting Project Information

202

203

10
Analysis and Evaluation
of Information

Chapter Objectives

This chapter discusses the following concepts:

• Why numerical and formally gathered data (as opposed to data collected

through conscientious socialization) must be reliable, accurate, and valid

to make analysis and evaluation of those data possible

• What various statistical measures—distribution of data, centrality and

dispersion of data, moving averages, and data correlation—reveal about

data trends within the software project management context

• How data may be normalized to ensure that any comparisons made

are valid

RELIABLE, ACCURATE, AND VALID DATA

It is one thing to collect data, but it is another matter to make sense of what

has been collected. As part of the project monitoring, these data need to be

further analyzed. It is assumed that the collected data are reliable—that is,

that no error was committed in the actual recording and subsequent tabula-

tion of the data. The assurance of data reliability is a non-trivial task, as a

large amount of the data in software projects is still collected manually.

Reliable data Data that are collected and tabulated according to the

defined rules of measurement and metric.

Chapter

Chapter 10 Analysis and Evaluation of Information

204

It is also assumed that the data collected are accurate. The level of accu-

racy is predetermined by the unit of measurement. For example, if the budg-

eting information is collected at the $500 level, then all data will be assumed

to be properly rounded to and accurate at that level. Because most software

attributes are measured in a discrete (countable) form, the topic of signifi-

cant figures is not much of an issue in software project management, unlike

in some other disciplines (e.g., chemistry).

Accurate data Data that are collected and tabulated according to the

defined level of precision of measurement and metric.

The third consideration for data is the validity of any data collected.

Validity addresses the applicability of the data to assess the particular issue

or to measure the particular attribute.

Valid data Data that are collected, tabulated, and applied according to

the defined intention of applying the measurement.

To see how these criteria are applied, let’s consider an example. Suppose

that we want to find the average number of problems detected after a soft-

ware solution is delivered. Recall from earlier chapters that the problems

found are grouped into categories. These categories were labeled according

to severity levels 1, 2, 3, and 4 in earlier examples to represent different

degrees of failing to meet the requirement. Only these four categories exist;

there is no intermediate category such as severity level 2.4, for example.

Consider the following computed measurement of average problem level:

Average problem level =

[SUM (number of severity k problems ✕ severity k)/n]

where

n = total number of problems found

SUM = the summation function

k = a discrete value between 1 and 4

The computed average problem level is a numerical value that is some-

times—and sometimes wrongly—used to assess the quality attribute of the

product. Consider a situation where the average problem level computed in

this way is 2.7. As 2.7 is closer to severity level 3 than to severity level 2, the

average problem level may be “rounded up” and communicated as 3. Worst

yet, some may assume that this severity level 3 average is a reputable assess-

ment of the product quality. In fact, equating the average severity levels of

problems found in a product to the product quality may be a stretch and

may be invalid. In analyzing data, the validity issue is very important. Soft-

ware project managers need to be extra careful in considering the validity of

the data when those data are utilized in the analysis of some attribute. In

particular, they need to be careful when using the derived information after

applying some computation or transformation to the raw data.

Nevertheless, software managers can undertake several common analy-

ses that yield beneficial evaluations of data. As this book is not intended to

accompany a course in statistics, no deep discussion of statistical principles

is included here. Instead, the goal is to apply some of the knowledge from

statistics to the analysis of data in software projects.

DISTRIBUTION OF DATA

One of the simplest forms of analysis is to look at the distribution of the col-

lected data. By viewing the “spread,” one may be able to readily detect some

problems or trends. Software project managers may improve their under-

standing of the project’s status during the monitoring phase by evaluating

the data distribution through analysis of the skew of the distribution, the

range of data values, and trends in data.

Data distribution A description of a collection of data that shows the

spread of the values and the frequency of occurrences of the values of

the data.

Example I: Skew of the Distribution

Consider the four attributes of schedule, functional completeness, quality,

and budget discussed in Chapter 9. Which attribute is more amenable to the

notion of distribution of data? Let’s consider the quality attribute first, by

studying the number of problems detected by functional component. Sup-

pose the recorded data identify the number of problems detected at each of

five severity levels:

Severity level 1: 23

Severity level 2: 46

Severity level 3: 79

Severity level 4: 95

Severity level 5: 110

These data may be viewed graphically to better discern the relative dif-

ferences; see Figure 10.1.

Distribution of Data

205

Figure 10.1 Distribution of problems found by severity level

As shown in Figure 10.1, the number of problems found in this project is

“skewed” to the higher end of the severity level, that is, the graph rises to the

right. Let’s assume that the higher severity level implies less serious prob-

lems. The distribution does not indicate whether this software artifact is a

good product; it says only that the product contains considerably more less-

severe problems than more-severe problems. That is, the severity levels of all

problems found are skewed toward the less-severe ones. Of course, this out-

come is better than the situation in which the distribution is skewed toward

the more-severe problems. To determine exactly how good or bad the situa-

tion really is, the project managers might then compare this distribution with

the distribution of problems for past projects.

Example II: Range of Data Values

Another way to examine collected data is look across functional areas at the

distribution of the problem severity levels for a product or the distribution of

the number of problems found at a specific severity level (e.g., severity level 1).

Consider the following distribution of number of severity level 1 problems

by functional area:

Functional area 1: 2

Functional area 2: 7

Functional area 3: 3

Functional area 4: 8

Functional area 5: 0

Functional area 6: 1

Functional area 7: 8

Chapter 10 Analysis and Evaluation of Information

206

Severity level

Number of
problems
found

120

100

80

60

40

20

1 2 3 4 5

This distribution reveals which functional areas have more problems. It

also shows that the number of problems found in the functional areas range

from 0 to 8. The lowest number is 0 in functional area 5, and the highest

number is 8 in functional areas 4 and 7.

As in the preceding example, the best use of this information is to com-

pare it to similar analyses of other projects. If prior history shows that the

high end of the range of severity level 1 problems has never exceeded some

value x, then the software project managers can compare the value 8 from

this example with x. This comparison would give the software project man-

agers some indication of where this project stands relative to others.

Alternatively, the software project managers might compare the ranges

themselves. The range of problems found here goes from 0 to 8. How does that

result compare with software projects that have ranges of 3 to 25 or 0 to 3?

The software project managers can see how uniform or nonuniform

these functional areas are in terms of quality by evaluating the range of

problems found in them. If the range is fairly small, such as 0–3 severity

level 1 problems, across all functional areas, one may consider such a soft-

ware project to have relative uniformity in quality.

Example III: Data Trends

Next, let’s consider the distribution of total number of problems found in a

functional area across test time periods in weeks. Suppose we identify the

following number of problems:

Week 1: 20

Week 2: 23

Week 3: 45

Week 4: 67

Week 5: 35

Week 6: 15

Week 7: 10

Just as the earlier examples, this distribution of the number of problems

found in a functional area does not indicate whether this product is good or

bad. It does tell us that fewer and fewer problems have been found as more

and more test cases have been run. Such a distribution across test weeks

reveals that the product is getting better in that problems are being squeezed

out of the product through testing.

Distribution of Data

207

This distribution through time is really a trend—here, the trend is desir-

able because ever fewer problems are detected in the same functional area as

the project progresses. Trends offer a powerful way to analyze data. In trend

analysis in software projects, managers are often looking for some form of

stabilization, whether in the schedule, the budget, or some other attribute.

CENTRALITY AND DISPERSION

Centrality analysis, another way to study a collection of data, evaluates the

central tendency of the data distribution. It provides a convenient way to

compare groups of data. Analyzing the centrality and the dispersion of data

provides software project managers with a way to characterize a set of

related data, whether those data deal with product quality, project productiv-

ity, or some other attribute.

Centrality analysis An analysis of a data set to find the typical value

of that data set.

Average Value

The most common of the centrality analysis methods is the computation of

average. The average value is computed by adding up all the observed values

of the distribution and dividing that total by the number of observations,

assuming that the observed values all have the same probability of occur-

rence. To see how it works, consider the data taken from Figure 10.1. The

average value is computed as follows:

Average severity level = [(23 ✕ 1) + (46 ✕ 2) + (79 ✕ 3) + (95 ✕ 4) +

(110 ✕ 5)]/353

= 3.6

In this case, the average value of the distribution is the severity level

3.6. Thus we can say that the severity level of the problems found in this

product tends toward 3.6.

Average value One type of centrality analysis that estimates the typical

(or middle) value of a data set by summing all the observed data values

and dividing the sum by the number of data points.

Chapter 10 Analysis and Evaluation of Information

208

Consider another distribution of problems found by severity levels.

Assume that the average value for that distribution is 3.2. Then, even if the

two distributions look alike, the project managers can still compare these

two averages and get a feeling that 3.6 is much closer to 4 than is 3.2.

Therefore, one product’s problems (the product with the average of 3.6), as

measured by average severity level, tend to be less severe than the problems

of the other product (the product with the average of 3.2).

It is well known that the average value may be influenced greatly by the

inclusion of one or two extreme data points. Consider the earlier example of the

distribution of severity level 1 problems found by functional area. The number

of severity level 1 problems found by functional area ranged from 0 to 8.

Average number of

severity level 1 problems found = (2 + 7 + 3 + 8 + 0 + 1 + 8)/7

= 4.1

Now consider another product with the same number of functional areas

but a much higher average number of severity level 1 problems found. Sup-

pose the set of data is as follows: 1, 3, 4, 37, 3, 2, 1. The average is 7.2,

which is much larger than the 4.1 average found in the preceding example.

But by looking at the actual distribution, one can easily see that one func-

tional area leads to this large average for the second distribution of data. If

the extreme value (the outlier) of 37 were dropped from the average compu-

tation of the second data set, the new average would be 2.3—much smaller

than the original average value of 7.2. Thus one may still need to look

beyond just one computed value, such as the average of the group, to see

whether the raw data contain any abnormal values.

Median Value

Another method of measuring centrality, use of a median, may provide a

different perspective on the data distribution. To find the median, all

observed data are placed in ordered sequence. The value that divides the col-

lected data into upper and lower halves (i.e., the middle value) is the median;

in other words, half of the data are larger than the median and half of the

data are smaller than the median. In the situation in which there is an odd

number of observations, identifying this value is a simple matter. When

Centrality and Dispersion

209

there is an even number of observations, the values of the middle two obser-

vations are averaged to obtain the median.

Median A value used in centrality analysis to estimate the typical (or mid-

dle) value of a data set. After the data values are organized, the median is

the data value that splits the data set into upper and lower halves.

Let’s find the median value for the earlier example, which comprises the

0–8 distribution of severity level 1 problems across seven functional areas. It

may be computed by first placing the observations in sequential order:

0, 1, 2, 3, 7, 8, 8

The median value is 3 because it divides the observed data into lower

and upper halves. This value also provides information about the group in

terms of the centrality. Recall that the average for this group of data is 4.1.

Although the average and the median values are different, they are relatively

close.

Now consider another example of severity level 1 problems across

another seven-functional-area product whose data set includes one extreme

value of 37. The observed data are placed in ordered sequence:

1, 1, 2, 2, 3, 4, 37

The median value is 2. Recall that the average value for this second data

set was 7.2. The median value method of viewing centrality for this example

certainly paints a different picture than the average value for the same

group.

If the median values were used to compare the two products, the second

product’s data would have a lower median value: 2 versus 3. The one

extreme value in the second set, 37, had much less effect on the median than

it did on the average. Note also that a comparison of the two products

couched in terms of the median values gives a different perspective than a

comparison of the average values. The second product, except for the one

functional area, has fewer severity level 1 problems. The median value por-

trays that perspective a little better than the comparison of the average val-

ues of these two products.

Standard Deviation and Control Charts

Sometimes one would like to know how the distribution of data is dispersed

from the central value of either the average or the median. The earlier exam-

Chapter 10 Analysis and Evaluation of Information

210

ple of a data set containing one extreme value demonstrated the effect that

one extreme data point can have on the group’s central value. For example,

the more widely dispersed the number of severity level 1 problems in the dif-

ferent functional areas, the more likely that the central value for the entire

group of functions will differ from the number of severity level 1 problems

in each of the functional areas. Thus, in cases of a large dispersion from the

central value, it is more difficult to utilize the central value—whether it is the

average or the mean value—to characterize the group as a whole.

Standard Deviation
A very common dispersion measurement is the standard deviation, which is

numerically defined as follows:

Standard deviation = SQRT [(SUM [(xi – xave)
2)])/(n – 1)]

where

SQRT = square root function

SUM = sum function

xi = ith observation

xave = average of xi’s

n = total number observations

Standard deviation A metric used to define and measure the disper-

sion of data from the average value in a data set.

The standard deviation from the first example, which is the group that

included the data points 2, 7, 3, 8, 0, 1, 8, would be computed as follows:

SUM [(xi – xave)
2)] = 4.41 + 8.41 + 1.21 + 15.21 + 16.81 + 9.61 + 15.21

= 70.87

SUM [(xi – xave)
2)]/(n – 1) = 70.87/6

= 11.81

Standard deviation = SQRT (11.81) = 3.43

One standard deviation is 3.43. This value gives a measure of the vari-

ability of the number of severity level 1 problems found in the functional

areas relative to the average number of such problems, which is 4.1. The

Centrality and Dispersion

211

larger the standard deviation, the greater the variability or dispersion from

the average value.

Control Charts
In quality control of nonsoftware areas, such as manufacturing, control

charts are used to assess whether the average of any particular group falls

within the range of “acceptable” limits. A control chart is used to assess and

control the variability of some process or product characteristic. Making a

control chart usually involves establishing the upper and lower limits of data

variations from the data set’s average value (the control limits). If an

observed data value falls outside the control limits, then it would trigger

evaluation of the characteristic. The usage of control charts and statistical

process control may help us improve and diminish the variations in the

implementations of a defined software process.

Control chart A chart used to assess and control the variability of some

process or product characteristic. It usually involves establishing the

upper and lower limits (the control limits) of data variations from the

data set’s average value. If an observed data value falls outside the con-

trol limits, then it would trigger evaluation of the characteristic.

The acceptable upper and lower bounds of a characteristic may be estab-

lished differently. Sometimes, they may reflect customers’ expectations. At

other times, the bounds may be based on past management experiences. The

standard deviation from the average value may also be used as these limits.

For example, if one standard deviation is used as the upper and lower limits,

then an observation that falls outside of these limits would be cause for

attention and possibly alarm.

In software project management, the notion of a control chart, along

with the use of a standard deviation as the upper and lower limits, may be

applied to tracking and observing a specific characteristic of a product or a

methodology. In the case of a product, the usability characteristic may be

observed through usability testing. The question then becomes, When should

a software manager be alarmed?

A control chart may help in this decision process. The average number

of problems found in previous usability tests may be used as the “typical”

number of problems found during a usability test. How many more problems

(or fewer problems) than the previous average number should trigger alarms?

One can establish the deviation boundaries from the previous average number

of usability problems by setting upper and lower limits of deviations. When

Chapter 10 Analysis and Evaluation of Information

212

the number of problems found in usability testing falls outside these limits,

then the project manager should be alerted. If the number of usability prob-

lems exceeds the upper limit, then the project manager must question

whether the product has a true usability problem or whether the test result is

just an anomaly. If the number of usability problems falls below the lower

limit, then the project manager might reexamine the usability testing

methodology to ensure that this round of testing was not less rigorous than

previous ones and that the product truly has fewer problems.

To see how this process works, let’s look at a specific example. Suppose

the product from the preceding example that had seven functional areas is

considered by both the managers and the customers as the representative,

good-quality product that should be used as the basis of comparison. It had,

on average, 4.1 severity level 1 problems with a standard deviation of 3.43.

The software project manager could potentially use this information to eval-

uate other products’ functional quality.

The control chart in Figure 10.2 shows the average number of severity

level 1 problems found (4.1 problems) as the basis of comparison for each

functional area of the product being scrutinized. The upper limit value, 7.5

problems, is one standard deviation from 4.1. That is, adding one standard

deviation (3.4) to the average value (4.1) results in the upper limit (7.5). The

lower limit value of 0.7 problem is derived by subtracting 3.4 from 4.1.

As another product goes through testing, its severity level 1 problems

may be plotted by functional area. As long as the number of problems found

falls within the upper and lower limits, that functional area may be consid-

ered “under control.” If the problems in any area exceed the upper limit,

however, the project managers should take a second look at that functional

Centrality and Dispersion

213

7.5 problems

0.7 problem

Average =
4.1 problems

Figure 10.2 A sample control chart

area. Similarly, if the number of problems in a functional area falls below

the lower limit, that area may be worthy of some attention. For example, the

test cases might be reviewed to make sure that they fully covered the func-

tional area. The process under which the reviews or testing for that area was

conducted might also be examined.

This application of the average value and the dispersion from the aver-

age value in control charts is quite common in general project quality man-

agement, and it is gaining momentum in software project management. The

manufacturing industry has for many years used control charts to help man-

age its production processes and product quality. Extensive statistical studies

have been done in the process control area, and readers who are interested in

this topic should consult the article by Kotz and Johnson listed in the “Sug-

gested Reading” section at the end of this chapter.

DATA SMOOTHING: MOVING AVERAGES

Data taken at a specific time provide only an instantaneous view. In many

cases, the historical trend of collected data is studied and analyzed to yield

clues about the product. For example, this approach is popular in software

projects during the testing activities. Often testing lasts for weeks or even

months, and there may be quite a variation of problems found in some

weeks. To “smooth” out these variations and prevent an alarm from being

raised by a few spikes, the data from two or three weeks are combined. The

resulting combined value is called the moving average.

Moving average A technique for expressing data by computing the

average of a fixed grouping (e.g., data for a fixed period) of data values;

it is often used to suppress the effects of one extreme data point.

Consider the following example, where the number of problems found

during a seven-week test period has been changed slightly from that in the

earlier example:

Week 1: 20

Week 2: 33 (was 23)

Week 3: 45

Week 4: 67

Week 5: 35

Week 6: 15

Week 7: 20 (was 10)

Chapter 10 Analysis and Evaluation of Information

214

The difference in value during week 2—from 23 problems found to 33

problems found—is not a problem, but the increase in value for week 7—from

10 problems found to 20 problems found—shows an actual reversal in trend.

This slight change may cause some reservations on the part of the software

project managers and prompt them to make a decision on completing the

testing activities. That is, the seventh-week reversal may be viewed as a

potential instability in testing. On the other hand, it may not mean anything.

To facilitate this type of decision-making process, data smoothing may

be helpful. Data smoothing is accomplished by combining data points and

viewing the aggregated values. Consider how the moving-average approach

can be used to smooth out data variations. In Table 10.1, both two-week and

three-week moving averages are computed. The two-week moving average is

computed by averaging the previous week’s value and the current week’s

value. The three-week moving average is computed in a similar manner. The

two-week moving average does not start until the second week; similarly,

the three-week moving average starts at the third week.

Data smoothing A technique used to decrease the effects of individual,

extreme variability in data values.

Both the two-week and three-week moving averages show a much less

erratic movement of values from the raw distribution of the data. Although

it may be meaningless to have “partial problems” found, the moving aver-

ages are left with decimal figures just to show the computational results and

to provide more precision for comparisons. Trend analysis utilizing moving

averages is a little easier, because a few, sudden changes do not affect the

Data Smoothing: Moving Averages

215

Table 10.1 Moving Averages of Problems Found

Two-week Three-week
Test week Problems found moving average moving average

1 20 - -

2 33 26.5 -

3 45 39 32.6

4 67 56 48.3

5 35 51 49

6 15 25 39

7 20 17.5 23.3

smoothed values as dramatically. In this case, the decreasing trend of the

moving averages continues smoothly without a spike.

Note that the range of values in the original data goes from a low of 15

problems discovered during week 6 to a high of 67 problems discovered dur-

ing week 4; that represents a difference of 55 problems. The two-week mov-

ing average displays a smaller variation, from 17.5 problems to 56 problems,

for a difference of 38.5 problems. The three-week moving average has an

even smaller variation, with a difference of only 25.7 problems from the

lowest to the highest. Clearly, the range of values of the moving averages is

smoother than the original data. For these reasons, project managers often

prefer to use the moving-average technique.

In a long software system test, test managers often use moving averages

because the variability in test data values may be substantial. The large vari-

ability observed in a lengthy test situation might result from the different

numbers and types of test cases run due to employee vacations or it might

result from planned slowdowns due to a large amount of retesting of previ-

ously fixed problems.

DATA CORRELATION

Correlating attributes is a very useful tool for software project managers, but

it must be used carefully. Data correlation speaks only to the potential exis-

tence of a relationship between attributes; it does not necessarily imply

cause and effect.

Data correlation A technique that analyzes the degree of relationship

between sets of data.

One sought-after relationship in software is that between some attribute

prior to product release and the same attribute after product release. The

software developer might, for example, collect data on the total number of

defects found during the three years after the release of one of its products.

It could then compare those data with the number of total defects found in

the product during testing. This analysis would focus on whether a correla-

tion exists between the number of defects found during pre-release testing

and the number of problems found during the three post-release years.

One popular way to examine data correlation is to analyze whether a

linear relationship exists. Two sets of data may be plotted and the resulting

graph reviewed to see how related they are. A more formal method, called

linear regression analysis, may also be applied.

Chapter 10 Analysis and Evaluation of Information

216

Linear regression A technique that estimates the relationship between

two sets of data by fitting a straight line to the two sets of data values.

Linear regression analysis is predicated on expressing one variable, y, as

a linear function of another variable, x, in the following form:

y = a + bx

The slope of the linear equation is the constant b. The y-intercept is rep-

resented by the constant a. The slope, b, may be calculated as follows:

b = SUM [(xi – xave) ✕ (yi – yave)] / SUM [(xi – xave)
2]

where

SUM = the sum function evaluated over all data points

xi = the i th observation of the x variable

xave = the average value of all xi’s

yi = the i th observation of the y variable

yave = the average value of all yi’s

The intercept, a, may be calculated as follows:

a = yave – (b ✕ xave)

Consider the example of a pre-release and post-release defects relation-

ship over a number of software products developed by one organization.

Table 10.2 lists the number of such problems found.

The two sets of data in Table 10.2 look directly related in that an

increase (or decrease) in the number of pre-release problems seems to be

Data Correlation

217

Table 10.2 Pre-Release and Post-Release Problems

Number of post-release
Software products Number of pre-release problems problems (3 years)

1 10 24

2 5 13

3 35 71

4 75 155

5 15 34

6 22 50

7 7 16

8 54 112

y = 3.7 + 2x

Number of
post-release
problems

Number of
pre-release
problems
found

0

100

170

10 20 30 40 50 60 70 80

accompanied by an increase (or decrease) in the number of post-release

problems found. Furthermore, the relationship looks almost linear. One may

estimate the constants, a and b, as follows.

Equating the pre-release problems with the variable x and the post-

release problems with variable y, we have

xave = 27.8

yave = 59.3

Then utilizing the previously given formulae, we compute the values

for a and b:

b = 2.0 (approximately)

a = 3.7 (approximately)

The estimated linear equation would be as follows:

y = 3.7 + 2x

Graphically, this equation gives the straight line shown in Figure 10.3,

which provides the best fit through the data points that were recorded.

Figure 10.3 Linear regression graph

Chapter 10 Analysis and Evaluation of Information

218

The equation y = 3.7 + 2x may be used to estimate the number of prob-

lems that may be found following the release of a product, given the number

of problems found during the pre-release testing of that product.

Assume that a new software product is developed by a similar software

project team using the same process as employed for those projects that con-

tributed to the graph in Figure 10.3. If the total number of problems discov-

ered in this new product through the various pre-release tests is 32, then the

estimated linear relationship may be used to project the total number of

post-release problems: 3.7 + (2 ✕ 32) = 67.7, or approximately 68 problems.

Software support managers may, in turn, use this projection of 68 problems

to estimate the cost of support services for that product.

Linear regression may be used to correlate other project or product

attributes as well. For example, a project attribute status value may be used

to project the value of a correlated attribute. Based on the projected value of

that correlated attribute, certain adjustment actions may be applied to the

ongoing project.

A word of caution is in order in using such linear relationships for pro-

jections: Interpolation of values is safe, but extrapolation of values may be

dangerous. Fitting a linear line through the data points gave a linear equa-

tion, for example, but this linear relationship is not guaranteed outside the

range of the data points. Put bluntly, extrapolation of the linear relationship

outside of the range of the data points may be erroneous.

A linear relationship is one of the most easily identifiable relationships

that may exist between two sets of data. Software project managers will find

many other relationships and ways to gauge different types of data correla-

tion in the reference books on statistics listed at the end of this chapter.

NORMALIZATION OF DATA

A pure comparison of the raw data sometimes does not provide an accurate

comparison. Consider the following situation. The detection of a large num-

ber of problems in a functional area A compared with a small number of

problems found in another functional area B may be misleading if functional

area A is much larger or much more complex than functional area B. The

size of the functional area or its complexity should be taken into account

rather than just collecting the raw number of problems found in that area.

Thus some measurement of size of the functional area or its complexity must

be used to normalize the number of problems found.

Normalization of Data

219

Normalizing data A technique used to bring data characterizations to

some common or standard level so that comparisons become more

meaningful.

Even though software engineering reports put forth many arguments

against using lines of code as the measurement of software size, it remains

one of the most popular options. This measurement will be used as a means

of demonstration here.

Consider the case where a total of 76 severity levels 1 and 2 problems

are discovered in a functional area A. In a functional area B, a total number

of 98 severity levels 1 and 2 problems are detected. Further suppose that

functional area A is composed of 3300 lines of newly developed code, and

functional area B is composed of 5400 lines of newly developed code and

another 2000 lines of integrated code. We may normalize these numbers

as follows:

Functional area A: 76/3300 = 0.023 defect per line of code

To make the normalized number easier to remember, lines of code may

be recorded in units of 1000 lines of code, or “kloc.” Using kloc as the unit,

the normalized figures would be

Functional area A: 76/3.3 = 23 defects per kloc

Functional area B: 98/5.4 = 18.1 defects per kloc

Although functional area B may have more detected errors in terms of

absolute numbers, its normalized figure—that is, the defect rate given in

terms of defects per kloc—is smaller than that of functional area A. Further-

more, if the integrated code consisting of 2000 lines is included in the nor-

malization, then the defect rate for functional area B would be 13.2 defects

per kloc. Normalizing the defect numbers and converting the metric to the

defect rate enables a more accurate comparison to be made.

Another example involves the evaluation of productivity figures. The

average productivity of a software development effort is often cited in the

form of lines of code or function points per person-month. Here the normal-

ization factor is a person-month. However, to ensure that truly comparable

normalization is possible, a person-month must be clearly defined. One per-

son-month may vary from 15 working days per month to 20 working days

Chapter 10 Analysis and Evaluation of Information

220

per month. Following this definition, there must be further clarification on

how many hours are included in one working day.

In many types of analysis, normalized data should be used. In all cases,

the normalization factors must be well understood and defined. Examples

include efficiency and productivity analysis where the development of 20

test cases should be normalized to 20 test cases per person-month, cost

analysis where $3000 of telecommunications line usage should be normal-

ized to $3000 per 1000 hours of telecommunications line usage, and quality

analysis where 15 problems discovered during code reviews should be nor-

malized to 15 code review problems per 1000 executable code statements.

■ KEY CONCEPTS

The earlier planning and organizational phases of the software project man-

agement should have properly defined and prepared the measurement

schemes for reliable, accurate, and valid data. Nevertheless, this topic should

be revisited one more time during the monitoring phase prior to the actual

evaluation of collected data.

There are many ways to analyze the data and the status of a software project:

• The distribution of a set of collected data may be analyzed for extreme

values, skew, and trends.

• Centrality and dispersion analysis of groups of data may be performed

by computing averages, median values, or standard deviations from the

central value.

• Data-smoothing techniques, involving the evaluation of trends through

moving averages, are often used to lessen the impact of exceptional data

points (outliers).

• The correlation of groups of data may be examined through many dif-

ferent methods. One very simple but popular method is linear regression.

• Normalizing the data ensures that groups of data are properly compared.

■ EXERCISES

1. Discuss the three terms, reliable data, accurate data, and valid data.

Can a valid data be inaccurate or unreliable? Give an example.

Exercises

221

2. Define the term “data distribution.” Why do we care about data distri-

bution?

3. In monitoring the trend of some project attribute, discuss the pros and

cons of using data smoothing. Does this strategy conflict with the con-

trol chart approach?

4. What are some of the ways to establish an upper and a lower limit of

the control chart?

5. Discuss centrality analysis and what a standard deviation represents.

6. Give an example of some software projects for which it may be useful

to know the average value of a set of data on some attribute, such as

quality or productivity.

7. Give an example of how a software project manager might use linear

regression to correlate project attributes.

8. Does the fact that two sets of data correlate imply that there is a cause

and affect relationship? Why?

9. Discuss how raw software cost attribute values such as $2 million or

$50,000 may be normalized to make them valid for comparison.

■ SUGGESTED READING

W. Chase and F. Brown, General Statistics, 4th ed., John Wiley and Sons,

2000.

N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical

Approach, PWS Publishing, 1997.

P. Jalote and A. Saxena, “Optimum Control Limits for Employing Statistical

Process Control in Software Processes,” IEEE Transactions on Software

Engineering, December 2002, 1126–1134.

C. Jones, Applied Software Measurements Assuring Productivity and Quality,

2nd ed., McGraw Hill, 1996.

S. H. Kan, Metrics and Models in Software Quality Engineering, Addison-

Wesley, 1995.

S. Kotz and N. L. Johnson, “Process Capability Indices—A Review, 1992–2000,”

Journal of Quality Technology, January 2002, 2–19.

D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for

Engineers, John Wiley and Sons, 2003.

J. M. Utts, Seeing Through Statistics, Duxbury Press, 1996.

E. F. Weller, “Practical Applications of Statistical Process Control,” IEEE

Software, May/June 2000, 48–55.

Chapter 10 Analysis and Evaluation of Information

222

223

11
Presenting and
Communicating Data

Chapter Objectives

This chapter discusses the following concepts:

• Why representing and communicating project status information is

important

• What forms may be used to present data, including tabular, bar chart,

control chart, pie chart, and histogram formats

SHARING INFORMATION

The project status needs to be monitored by the software project managers,

but the gathered information also needs to be shared with the rest of the

team as well. Software projects are becoming so large and complex that a

team effort is now considered essential for a project’s success. To achieve

this goal, the software project team needs to be informed of the status and

the analysis of various parts of the project because an informed team is usu-

ally much more motivated. Conversely, sharing too much information may

overload team members and defeat the purpose. Thus communication of

information, as part of the monitoring phase, needs to be balanced.

To achieve the proper balance, it is best to pick three or four measure-

ments to share with team members. The following four areas discussed ear-

lier would be a good starter set:

• Schedule status

• Functional completeness status

Chapter

Chapter 11 Presenting and Communicating Data

224

• Quality status

• Budget status

In addition, the team should be made aware of the status of the items on

the risk management list, regardless of the category. Team managers need to

pay special attention to and act on all items on this list, but sharing just the

high-risk items with nonmanagement personnel might be a wise decision.

A key question is, How should the information be portrayed? This ques-

tion may be divided into several more specific questions:

• What form should the information take?

• When should the information be communicated?

• Where should the information be displayed?

The answers to these questions very much depend on the project. One

should use a graphical form to share data if the goal is to make a single

impression because it is very difficult to convey a large amount of data in

words. Employing a visual, graphical approach would allow data to be sum-

marized and provide that single impression. Information updates should

come at short intervals if the overall project schedule is brief—perhaps only a

few months. In addition, the information should reach all intended recipi-

ents. Thus it should be posted, electronically or otherwise, where all intended

recipients can easily access and view it.

Each type of information that is monitored needs to be viewed and ana-

lyzed from a presentation and communication perspective. Some informa-

tion may be best displayed in a tabular form; other information is amenable

to sharing in bar graph or pie chart form. Besides offering a pictorial repre-

sentation of information, the software project managers may need to sum-

marize in words the key message that the recipient should come away with.

As Jean-Luc Doumont notes, sometimes “words are worth a thousand pictures.”

COMMUNICATING TIME-RELATED STATUS

When the communication is about the schedule and its status, the information

may be shown in various formats, each of which has its own pros and cons.

Tabular Formats

For monitoring and tracking a list of major events, a tabular form may be

well suited for the management team members and desktop review. Table

11.1 shows an example of this format.

Table 11.1 shows only the activity target completion dates and the

actual completion dates. The Current-status column gives a glimpse of where

the project is now. The current status of an activity must show the ratio of

subtasks completed to the total number of subtasks. In the world of software

projects, many joke about a task that stays “90% complete” forever. In real-

ity, this perpetual incompleteness is a serious matter that all software project

managers must be cognizant of; it is essential that they should ask for fur-

ther status explanation on the remaining “10%.”

The Assessment column provides this kind of information regarding the

status of each activity. For example, in Table 11.1 the lateness of the test

plan is attributed to its late start date, not to the actual performance of that

activity. Even though the test case execution activity has not started and the

Assessment column consequently shows “none,” it would be worthwhile to

ask about the likelihood of its meeting the start date or any other relevant

risk. Software project managers should use the Current-status and Assess-

ment columns aggressively in both analyzing the status of the various activ-

ities and communicating that status to others.

A few things are lacking in this representation. For example, ideally

Table 11.1 should include a target start date and an actual start date for each

activity. This information would provide further insight into the schedule

status. If projects are not started on time, the chance of completing them on

time is low. The Assessment column then must also include an assessment of

the start date integrity of an activity, such as the readiness of all prerequi-

sites for that particular activity.

The project schedule representation, utilizing a tabular form, may be

appropriate for this type of detailed monitoring and reporting on a regular

daily, weekly, or semi-monthly basis. The information may be presented on

paper or as an on-line document. If it is updated daily, then creating an on-

line document would save a lot of paper and distribution effort, and it may

be the preferred distribution method.

Communicating Time-Related Status

225

Table 11.1 Schedule Status Portrayed in Tabular Form

Activities Target date Current status Actual date Assessment

Test plan 5/20/03 Completed 5/25/03 Late start date

Test scenario 7 of 9 scenarios
design 7/30/03 completed Will be close

Test scripts 15 of 52 scripts
writing 10/15/03 completed On target

Test case
execution 1/25/04 Not started None

Note that the mere electronic posting of schedule status is not the same

as communicating. The intended receivers should be notified of the regular

updates as soon as they are posted on-line. If any item needs special atten-

tion, then the message to the recipients should highlight that point. Alterna-

tively, if all activities are moving along smoothly according to the target

schedule, then the message should give that news. This additional summary

message from the software project managers to the other key personnel

accomplishes two important goals:

• The software project managers must formulate a quick overall assess-

ment themselves so as to write the summary message.

• The recipients of the message will better understand the managers’ inter-

pretation of the data and the significance of the data reported.

In addition, the managers should solicit comments from the recipients of

the on-line reports. A minimal response of acknowledging the receipt of the

status data should be expected, even if no comment is attached. The software

project managers should establish this kind of communication “rule” with their

key project team personnel. Otherwise, the posted material may be ignored and

will simply be one of the trappings of a costly, wasteful bureaucracy.

The project managers must realize that monitoring the project status

may represent a key activity for them, but not necessarily for other team

members. Thus special effort has to be made to communicate the status

information. This communication is a prerequisite to the next POMA phase,

especially if some adjustments need to be made based on team members’

feedback. Team members should always be cognizant of the status of the

project and the possible adjustments that may be coming.

Bar-Chart Formats

For communicating time-related information to a broader audience, a

detailed tabular form may not be suitable because it sometimes requires

careful reading of the details. A more graphical representation would be

needed for a quicker communication to large audiences.

Bar chart A chart in which data values are represented with graphical bars.

For schedule and completeness of functions, a popular representation is

the type of bar chart shown in Figure 11.1.

In Figure 11.1, the dotted-line bar shows the planned units of work over

a period of time. The numerical units of work are shown inside the bar. The

Chapter 11 Presenting and Communicating Data

226

length of the bar covers the planned time, in weeks, to complete the work.

The solid line indicates the completed work.

This type of bar chart may be physically expanded to cover a wall,

enabling a large number of team members to see it on a daily basis. Such a

chart is typically updated weekly.

The bar-chart format helps to give a global view of the status of project

activities over time. It provides a natural way to represent the activity sched-

ule and partial or full functional completeness. In addition, it may be used to

show a variety of activities, such as the project’s spending status plotted

against the planned budget for particular functional areas over time.

COMMUNICATING CONTROL-RELATED STATUS

In a way, one may view monitoring the project status as relating current

information to planned information. Some status information, however, is

more amenable for viewing through a control chart (see Chapter 10). Control

charts are especially good for communicating project status to a large group

of people because of their graphical form and the ease with which one can

spot data values that fall outside the control limits.

The control-chart approach can be seen in the monitoring of quality in

terms of problems uncovered through time using a normalized moving aver-

age. An example is shown in Figure 11.2.

Communicating Control-Related Status

227

5

Activity Team Time in Weeks

Today

3

7

5

8

T1

T2

T3

T4

T5

A

B

C

D

E

Figure 11.1 Activity status presented in bar chart form

In Figure 11.2, the severity levels 1 and 2 problems of three software

components are monitored during the component-testing period over several

weeks. The control chart’s upper and lower bounds were established based

on the organization’s past experiences with similar projects. This type of

chart provides a quick view of whether the monitored status is within

expected or “planned” target numbers.

Control charts may also be used to monitor other normalized informa-

tion, such as productivity-related data. As long as each data value falls

within the limits, then the project is progressing according to plan, and the

software project team may view the project as being “under control.” Con-

versely, if a data value falls outside the limits, then some effort needs to be

spent on checking out the cause of the outlier. Depending on the reason,

adjustments may or may not be needed to bring the project under control.

OTHER COMMON DATA REPRESENTATION
FORMATS

There are many other ways to present information, including pie charts and

various types of histograms.

Pie Charts

A pie chart is often employed to show the proportion of different cate-

gories. As an example, the pie chart in Figure 11.3 shows the breakdown

Chapter 11 Presenting and Communicating Data

228

Defects
per kloc

Weeks

1 defect/kloc

4 defects/kloc

Deserves attention

Figure 11.2 Control chart for severity levels 1 and 2

(by percentage) of the four severity levels of problems found in a func-

tional area.

Pie chart A technique for graphically representing the proportions of

different categories of data values.

Histograms

A histogram is another way to show proportional information by categories. In

the histogram in Figure 11.4, the top 10 largest customers’ opinions are surveyed

on a basis of 0 to 100 index points (e.g., in the form of percent satisfaction).

Other Common Data Representation Formats

229

Severity level 1 (4%)

Severity level 4 (42%)

Severity level 2 (21%)

Severity level 3 (33%)

Figure 11.3 Pie chart

100%

75%

50%

25%

Top Ten Largest Customers

Figure 11.4 Customer satisfaction index: histogram

Histogram A technique for graphically representing frequency counts

of data values via a bar chart.

Sometimes the bars of a histogram are arranged in order from the tallest

to the shortest, or vice versa. This kind of sequenced histogram, known as a

Pareto diagram, provides a quicker view of the status.

Pareto diagram A histogram modified to show a frequency count of

data values in either ascending or descending order. It is named after the

Italian economist Vilfredo Pareto.

An additional information line, portraying the “minimal satisfactory”

index, may be included in the Pareto diagram. For example, if 75% was the

minimally acceptable customer satisfaction index, then a horizontal line

might be drawn across the diagram as shown in Figure 11.5. All customers

below this line might be considered candidates for immediate management

follow-up and additional focus. Thus the monitored status is used as input to

the project adjustment phase.

SELECTING A DATA REPRESENTATION FORMAT

Clearly, there are many different ways to present the collected and analyzed

data to both project managers and nonmanagers. For some managers, a

detailed tabular form is the easiest to use. For others, graphically represented

data are preferable. The software managers may try a few different

Chapter 11 Presenting and Communicating Data

230

100%

75%

50%

25%

Top Ten Largest Customers

Customer
Satisfaction

Figure 11.5 Customer satisfaction index: Pareto diagram

approaches, ask the other team members for their opinions, and decide on a

set to conduct project monitoring. The constant, regular representation and

communication of software project status will not only serve the project

monitoring phase well, but will prepare the team for any needed adjust-

ments.

If the managers decide to use graphical data representations, many of

them may be produced via a widely used tool such as Microsoft Excel. In

such a case, the raw data are put into the tool and the chart wizard options

of Excel are then evoked to produce graphical diagrams in the form of a bar

or pie chart. A more sophisticated tool, such as the statistical software from

MINITAB or the Chart Fx tool from Software Fx, may be used in a similar way.

■ KEY CONCEPTS

The importance of presenting and communicating the information gathered

from software projects cannot be overemphasized. The specific form of rep-

resentation and communication chosen will depend on the type of project,

the intent of the data representation, and the audience. The following forms

are especially popular among today’s software project managers:

• Tabular forms—to convey a lot of project detail

• Bar charts—to show a global view

• Control charts—to highlight trends and bounds

• Pie charts—to show relative and proportional information

• Histograms—to show relative comparisons

The type of recipients and the purpose of the communication will dictate

the frequency and medium used for sharing the information. If the informa-

tion is posted electronically, then the project managers must ensure that it is

received and reviewed by asking for some kind of acknowledgment.

■ EXERCISES

1. Consider the following pairs of numbers, where the first value repre-

sents the number of software companies in a certain city and the sec-

ond value represents the number of employees in those software

companies: (3, 5), (5, 10), (10, 14), (22, 20), (5, 45), (2, 70). Which

graphical form would you use to represent this information?

Exercises

231

2. For conveying the breakdown of problems in different severity levels

during a major testing cycle, which graphical form would you use?

3. Use the appropriate diagram and represent the following data of mod-

ule size, in lines of code, by descending order: modA-300; modB-255;

modC-70; modD-185; modE-507. How would you show the average

size of these modules in this same diagram?

4. Suppose the information in Exercise 1 includes a third attribute, the

number of software products produced, with data points that look as

follows: (3, 5, 4), (5, 10, 6), (10, 14, 9), (22, 20, 13), (5, 45, 15), (2, 70,

18). Use a three-axis graph to represent the information. How else

might you want to represent these data points?

5. Consider the following activities: initial prototyping–5 days; design–4

days; code implementation–10 days; testing–5 days; user guide–7

days. If you were asked to place this in a graphical form to represent a

schedule, what questions might you need to have answered first?

6. Although they are not discussed in this chapter, colors and shapes are

sometimes used in the graphical representations of data. Discuss possi-

ble advantages and disadvantages on the usage of colors and shapes.

Convert your discussion into a visual presentation to your class. (See

M. Y. Rabb’s book in the “Suggested Reading” list or refer to some

other similar material.)

■ SUGGESTED READING

J.-L. Doumont, “Verbal Versus Visual: A Word Is Worth a Thousand Pictures,

Too,” Technical Communications, May 2002, 219–224.

B. J. Dretzke and K. A. Heilman, Statistics with Microsoft Excel, Prentice

Hall, 1998.

G. T. Henry, Graphing Data Techniques for Display and Analysis, Sage Pub-

lications, 1995.

M. Y. Rabb, The Presentation Design Book: Projecting a Good Image with

Your Desktop Computer, Ventana Press, 1990.

E. Tufte, The Visual Display of Quantitative Information, Graphics Press,

1983.

H. Wainer, Visual Revelations, Graphical Tools of Fate and Deception from

Napoleon Bonaparte to Ross Perot, Lawrence Erlbaum Associates Pub-

lishers, 1997.

Chapter 11 Presenting and Communicating Data

232

Software projects are performed and managed by human beings. Thus, these

projects are subject to changes, imperfect planning, and necessary trade-offs.

Even the most carefully planned, best-staffed, and schedule-friendly projects

sometimes require midcourse adjustments.

The software project managers should not be afraid to take action and

make adjustments when necessary. Some staff beliefs and attitudes actually

indicate that a shifting of gears and the taking of an active stance are war-

ranted. Examples are:

• Believing or hoping that a problem will go away by itself

• Believing that the project includes some "sacred cows" that cannot be

changed

• Believing that making changes is a sign of weakness and lack of commitment

• Not realizing that changes and actions are needed

• Being afraid of changes

• Not knowing what options are available and what adjustments to make

Many of these reasons for remaining passive may seem foolish. Having

a fear of change may sound silly, for example, but it is a very real problem

for some people—and not just software project managers. Behind this fear of

change may lie a fear of the unknown, in the form of what the changes will

Part Four

Adjustments and Actions

(POMA)

233

bring. Unfortunately, if actions are not taken when needed, several unpleasant

outcomes may result:

• Projects may fail

• Projects may fail faster

• Projects may experience a slow-paced failure

• Projects may barely get completed while taking a great toll on the spon-

soring organization

Once the software project starts, project status may begin to veer from

the plan at any point—there is no single moment at which all projects falter.

The software project managers almost have to make a concerted effort to

look for those deviations that may require modifications and adjustments to

the project.

Similarly, adjustments and actions may need to be made at any time—

during the regular project status monitoring meetings, during any off-line

meetings, during any emergency or crisis, or during planned changes. There

is no simple prescribed period for adjustments and actions. Software project

managers will be making adjustments, both major and minor ones, through-

out the entire project life cycle.

Software project managers do not and should not need to make all

adjustments by themselves. That is, the project team approach should include

a certain amount of team management, wherein team members are solicited

for their opinions and suggestions about various project management deci-

sions and actions. To help team members group-manage the project, man-

agers may form a permanent "release management" team for each software

project. Release management utilizes a group of people from all areas of soft-

ware development and support, including the software project managers, to

set goals, make decisions, take actions, and generally guide the project to its

successful completion.

The traditional approach to making unplanned project adjustments in

response to problems detected via project monitoring follows a four-step approach:

1. Determine and define the problem. (Sometimes this is the most difficult

step because there is very little guideline to the problem identification

and determination process, and there are so many different problems.

One step that would help is to make sure that the problem is stated in a

written form and not just verbally. The mere writing process itself will

force some degree of exploration of the problem.)

2. Discover the root cause of the problem (perhaps utilizing a cause-and-

effect diagram as an aid).

Part Four Adjustments and Actions

234

3. Define the solution and the necessary actions.

4. Assign resources to take the needed actions.

For software projects, the three main solution areas typically involve

resources, functionality, or schedule. Thus actions taken will usually touch

upon these three main domains of software projects.

Adjustments and Actions

235

This page intentionally left blank

237

12
Planned and Unplanned
Adjustments and Actions

Chapter Objectives

This chapter discusses the following concepts:

• How to respond to the monitored status of the project

• How to take actions with a sense of urgency

• How to make planned adjustments

• How to react to unexpected situations and make adjustments

If the project proceeds as planned and the status indicates that everything

is on track, then there is nothing to adjust. Unfortunately, planning and

organizing are rarely perfect in real-world software projects. As a conse-

quence, software project managers must be prepared to take actions to rectify

problems, whether they are minor or urgent, planned or unplanned.

TAKING ACTIONS WITH URGENCY

As mentioned earlier, almost all software projects experience at least some

changes. Some of the changes are planned for deliberately; others occur in

response to an unplanned event. As managers monitor the status of the proj-

ect, there will be many occasions in which the current status does not match

their expectations or the plan. Some minor mismatches are tolerable and may

be left alone under continual monitoring for a while. An example of a "tol-

erable" case would be a situation in which a single test run results in a data

Chapter

Chapter 12 Planned and Unplanned Adjustments and Actions

238

point that exceeds the limits on a product quality control chart (see, for

example, Figure 11.2) but subsequent test results fall within the acceptable

limits; in that case, one may take a wait-and-see approach. Other discrepan-

cies might require quick response and action. If several tests result in data

points that fall outside of the planned limits, for example, then immediate

actions must be taken to investigate, analyze, resolve, and prevent potential

product quality problems.

All software projects follow some preplanned set of activities, like those

described in Chapters 6–8 of this book. That is, a process and a set of method-

ologies are planned and usually implemented. Key metrics and measurements

activities are defined as well. As the project proceeds, those measurements are

actually taken and analyzed. Whenever any emergency or "crisis" occurs, in

the form of a dramatic deviation of the monitored information from the

expected result, then the team and the management are alerted immedi-

ately. In such situations, software project managers may be forced into

taking quick actions.

In addition, deviations from the plans may be discussed at the regular,

weekly or semi-monthly project status meetings. Those discussions typically

cover a large amount of ground, mostly dealing with immediate problems. If

these immediate problems are not solved without delay, the next regular sta-

tus meeting will simply re-expose the same problem. The solution to the

problem, when addressed early, will often be much less painful than it might

otherwise be.

For example, if not resolved early, a personnel problem—such as a dis-

agreement about the design approach between two lead people—can create

two camps of people working diligently to prove the other side wrong instead

of working productively to complete the project. The effort required and time

lost in bringing two camps of warring people together may greatly exceed the

effort required to adjudicate the differences between only two people.

Steps in Taking Urgent Action

For project management in general, the urgency with which one approaches

problems and takes the necessary subsequent actions dictates the tone of the

project. Let’s take, for example, the quick adjudication of a dispute between

two people. That resolution sets the tone for the entire project team in sever-

al ways: It shows that honest technical disagreements are tolerable but hold-

ing grudges is not, that problem resolution should be approached early with

an open mind, and that team play is valued.

The software project managers must always exhibit good leadership and

set the proper tone. A recommended approach to dealing with situations

requiring urgent action is described below:

1. Clearly state the problem.

2. Communicate the problem while working on the potential solutions to it.

3. Seek out the root cause of the problem and any relevant solutions.

4. Gain the necessary agreement for the chosen solution.

5. Act on the solution.

6. Communicate on the action.

7. Report on the status of the problem’s resolution.

This set of steps, while obvious to many, is frequently not carried out on

time or in full. Each of the steps will involve several substeps. Each one is

almost a process that may require several methodologies. Step 1 is one of the

most difficult. Often, the software project managers themselves will need to

lead the questioning and thinking as the team attempts to clearly understand

and state the problem in a concise way. Many times, in this process of defin-

ing the problem, the real root cause and the choices of solutions become

apparent. After the problem is well understood, it should be communicated to

the team while the underlying causes are being analyzed and solutions are

being developed. This communication will provide constant feedback to the

team and at the same time create a channel for those team members to

suggest solutions.

Change Management

Once the solution is chosen, then the manager must ensure that all stake-

holders agree on it. Implementing a particular solution may require acquiring

more resources, changing assignments, changing direction, changing sched-

ules, or scaling back features, for example. Almost any of these alternatives

will call for the understanding and cooperation of the team members, peer

managers, or upper-level managers before the actual solution can be put in

place and acted on.

In some situations, the customers may be consulted. Consider the situa-

tion in which the software project is a customized project. Here, the sequence

of delivery of the functions may need to be modified due to a change in

demand from the customer. In this case, depending on the particular function,

the change may or may not be easily honored. The software project team

should meet with the customer and jointly work out the details of the change,

taking into account the potential adjustments to schedule and cost required.

Taking Actions with Urgency

239

One key reason for acting on a problem with urgency is to “nip it in the

bud" before major adjustments are required that might alarm customers or the

organization’s executives. If the solution necessarily involves dramatic

changes to the project’s schedule, functionality, or resources, however, then

the project managers must consult both executives and customers as early as

possible to win their support for the proposed solution.

Note that several potential solutions may be proposed before one is

deemed acceptable. The actual solution must be “worked out" with all of the

project’s stakeholders. The initial exchange of information may be done by e-

mail and other electronic means. The actual negotiation may take on differ-

ent forms, depending on the situation. In spite of the availability of advanced

electronic communications tools, some people still prefer face-to-face meet-

ings. Each situation is slightly different, so project managers need to remain

flexible and be able to adapt to each unique case.

In a sense, taking actions and making adjustments is similar to the more

general topic of change management (discussed in more detail in Chapter 15).

Change management must include the activities related to controlling

changes and associating any solution to problems, but it may or may not

include the actual solution discovery process.

Change management A set of activities directed toward controlling

changes. These activities may include identifying changes, assessing and

measuring changes, and tracking changes.

In both cases, one of the greatest obstacles to change can be the “people

factor." Consider the list of potential targets for changes:

• The product’s functional and nonfunctional attributes

• A process or methodology

• Schedule

• The customer’s expectations

• Tools

In adjusting any or all of these items, people are inevitably affected.

Small changes and adjustments are easily understood and may be imple-

mented without causing too much alarm. In contrast, large changes and

adjustments to those items may encounter a significant amount of resistance.

Thus software project managers must be acutely aware of the importance of

managing people’s reactions to adjustments and changes. One of those reac-

tions is often fear. Much of this fear of change derives from people not know-

ing what is changing. To deal with this issue, the project managers must com-

Chapter 12 Planned and Unplanned Adjustments and Actions

240

municate often and dispel the unknowns. For example, explaining the ration-

ale behind the changes and proposed adjustments, the actual adjustments,

and the details of the steps involved in the change process would alleviate the

anxiety about the changes. This is not much different from the change man-

agement process discussed in the books cited in the “Suggested Reading" list

at the end of this chapter.

The chosen solution must be immediately implemented. If the team sits on

the solution for too long, then the original problem may be further exacerbated.

Then the agreed-upon solution may need to be modified—most likely to a

more expensive option. The team should be notified of the action taken, and

the resolution should be tracked, in a similar manner in which product and

project attributes are tracked during the monitoring phase of POMA, until the

action is completed.

PLANNED ADJUSTMENTS

Any planned adjustments should be put together by all affected parties and

presented to all stakeholders of the project, including the customers. The proj-

ect should not be allowed to move forward if the agreed-upon adjustments

and actions are not taken. Otherwise, the credibility of the software managers

and other parties who recommended the adjustments will always be questioned.

The Planned Adjustment Decision-Making Process

and Targets

The software project managers should regularly plan on making adjustments

throughout the project cycle. As an example, consider the simple project process

that develops a software component through the following set of activities:

• Requirements analysis

• Design

• Implementation and coding

• Testing

• Integration

The software management team may decide to have a planned adjust-

ment at the end of each of these activities. This approach of “anticipatory

adjustment" must not come as a surprise to the project team or anyone else

Planned Adjustments

241

in the management group. The key metrics are always reviewed, and the soft-

ware team should be made aware that there will be a discussion to review

potential adjustments to the project. Inevitably, the review will center on the

following areas:

• Functionality

• Resources

• Schedule

Although the topics of review should not be limited to just these three

variables, the software managers do have a large amount of control over

these areas and can readily take actions to modify them. As part of the exit

criteria of each phase of the project, the software project managers should

assess the status of the activity and conscientiously make adjustments, if nec-

essary. For example, if attempts to meet the exit criteria for the requirements

specification phase run into a schedule obstacle, the project managers might

choose to review and modify the resources, functional content, or schedule

plans for the downstream activities. The actual changes to the plan will

depend on the reasons underlying the difficulties in meeting the exit criteria

on time.

Notice that several notable areas—especially product quality and people

productivity—were omitted from the preceding list of items to be reviewed.

Their exclusion does not mean that quality and productivity are not impor-

tant. Rather, for software project managers, the quality goal should be tracked

continually and not become relegated to an “adjustable parameter."

Productivity is something that is monitored, but it is not adjustable; one

would instead adjust resources—for example, people, education, process, or

tools—to influence the project productivity measure.

The regular review of the project status, complemented by constant small

adjustments and changes, should have given the software project managers a

good overall picture of the project. If regular, incremental adjustments to the

project has ensured that everything was tracking to plan and moving along

relatively smoothly, then the planned action would be simple: Stay the

course. Conversely, if a large number of changes and variations from the plan

resulted in a significant number of deviations during a particular project

phase, then the software project managers should review the three key proj-

ect parameters (functionality, resources, schedule). The question of how much

change and how large an accumulative quantity of changes would constitute

grounds for reexamination is a difficult one to answer. Indeed, the answer

will depend on the type of project and a variety of parameters.

Chapter 12 Planned and Unplanned Adjustments and Actions

242

Making Planned Adjustments to Functionality, Resources,

and Schedule

The decision-making process includes an assessment of whether adjustments

are needed to all or some combination of the commitments made to the three

areas of functionality, resources, and schedule. If one or more parameters

need to be modified, then the degree of adjustment required must also be

determined before the project continues on to the next phase. These three

main parameters may be viewed as three variables affecting each other on a

three-dimensional surface (see Figure 12.1). Rarely does one change without

affecting the other two.

Project cost is an important parameter that may be varied. With software

projects, the cost is folded into the resources parameter. As more resources are

applied, the cost generally increases in tandem. In any project, it is crucial to

understand the adjustment of the functionality parameter. Carefully identify-

ing and agreeing to provide less functionality is not the same as providing

less functionality by accident or providing nonperforming functionality. In

the software industry, a planned reduction in functionality, for whatever rea-

son, is usually acceptable if a follow-up release expects to restore the dropped

functions. In contrast, an unplanned reduction in functionality that is unwit-

tingly discovered by customers and users is usually met with a great amount

of hostility and mistrust. Customers and users want to know whether the

project is under control or out of control. Planned slippage, while not desir-

able, still portrays a certain degree of control. Similarly, planned delays in the

Planned Adjustments

243

Resources

Schedule

Functionality

Functionality/Resource/Schedule in
Three-Dimensional Space

Figure 12.1 Three main project parameters

schedule are very different from missing the schedule. The software project

managers should look at all elements, including high-risk items (see Chapter

5), that may influence these three main parameters and decide on whether

any preventive adjustments are warranted prior to undertaking the next

phase of the project.

Sometimes the project functionality parameter is tracking to plan, the

schedule parameter is tracking to plan, but the resources plan is failing to

meet expectations. Perhaps the customer did not ask for any change in func-

tionality or schedule, but the initial estimates of resources needed were nev-

ertheless low. This problem sometimes arises in software consulting and serv-

ice projects. In such a case, the software project managers may not be track-

ing to budget but the extra cost cannot be readily passed on to the customers.

Even if the software project pricing is based on “time and expense," the cus-

tomer should be alerted to the difference at the end of a project phase and

should be presented with data on any anticipated growth in expenses in

downstream activities.

Other projects operate on a fixed-fee basis; in theory, any extra costs

cannot be passed on to the customer. For example, during the early 1990s,

when various enterprise resource planning (ERP) software service businesses

were still establishing themselves, many offered their services under fixed-fee

terms. Even corporate giants, such as IBM, found the fixed-fee approach to

be very difficult to manage due to the lack of experienced ERP resources. The

time-and-expense approach relieved some of the cost overrun risks.

A hybrid approach of using time-and-expense billing for the require-

ments gathering and specifications phase but switching to a fixed-fee basis

for the remaining phases is a compromise approach that is well accepted by

many. Sophisticated customers and experienced project managers understand

the risks of planning and estimating for a fixed-fee project without having a

good understanding of the project requirements first. As a result, they will

typically utilize a hybrid approach.

Whatever the pricing system, the software project manager must have a

feel for what the customer is willing to pay for the consulting and services

on software. Sometimes the software project manager may decide to simply

“write off" the extra expense that he or she does not feel that the customer

will be able to or willing to bear. The project team and the manager would

then need to ensure that the remaining tasks of the project are carried out

within the budget—if this goal cannot be achieved, the project may generate

a financial loss for the organization. Perhaps the project members can be

asked to put in some extra time on their own clock, but without charging all

the extra time to the project. In that case, the project manager essentially

Chapter 12 Planned and Unplanned Adjustments and Actions

244

writes off some of the extra time, and the company’s profit margin suffers.

The team members also suffer financially because they are writing off some

of their performed work. In effect, this strategy increases the resources avail-

able to the project without paying for them. Of course, this option cannot be

exercised too many times or the software project managers will lose some of

the members of their team.

A more preferable adjustment would be finding a more efficient method-

ology or tool for the next phase of the project. These adjustments may seem

like planned adjustments, but they are really reactions to a negative set of

information that was not handled promptly or was not detected during the

regular project status meetings. If these situations persist, then they must def-

initely be acted upon at the planned end-of-a-phase review.

UNPLANNED ADJUSTMENTS

Unplanned activities usually come in response to unanticipated requests or

incidents. Most of these unplanned requests and incidents involve high-pri-

ority or crisis-level problems. Perhaps a customer suddenly requests a tighter

schedule or a key member of the project team leaves, causing direct changes

to one of the three main parameters (functionality, resources, schedule). These

changes will, in turn, affect the other two main parameters.

In software projects, the schedule is rarely allowed to expand. Rather,

most requests call for condensing the schedule. Likewise, resources are rarely

allowed to grow (at least, without some major justification). The loss of a key

resource, whether voluntary or involuntary, may create a mini-panic. Both

schedule and resource changes are relatively easy to recognize. In contrast,

functionality can be a highly complex parameter, whether the request is for

a greater number of functions, for modifications of existing features in func-

tions, or for extensions to existing features in functions.

This section on unplanned adjustments has a recurring theme: Any

change in one of the three main parameters of functionality, resources, or

schedule should evoke a corresponding adjustment in one or both of the other

two parameters. This adjustment should not be delayed, and the actions must

be taken with urgency.

Functionality Changes

Defining changes in the functionality parameter takes more effort and time

than defining changes in resources or schedule. Although each functionality

Unplanned Adjustments

245

change request may seem innocuous viewed on its own, the cumulative effect

of these simple changes can topple an entire project. These unplanned, func-

tionality-change requests must be accompanied by or result in appropriate

adjustments to the resources or schedule parameter.

Functionality status should be discussed in terms of the amount of

changes that occurred, rather than any sheer increase in the number of func-

tions provided in the software artifact. A modification to an existing feature

within a function can trigger a substantial set of activities that was not taken

into account in the original project plan. Aside from each individual change,

the cumulative effect of these changes is what the software project managers

need to recognize.

It is well understood that changes made in earlier stages of software

development require less effort and have smaller effects on the project sched-

ule and resource costs. While there is no general metric that applies to all pos-

sible situations, Barry Boehm has stated that “finding and fixing a software

problem after delivery costs 100 times more than finding and fixing the prob-

lem in early design phases" (see his article in the “Suggested Reading" list at

the end of this chapter). For example, a functional change made in the

requirements stage is not as costly as a change made during a later stage of

the project life cycle, such as testing. This discrepancy arises because a prob-

lem found during testing may require multiple changes and rework in previ-

ously completed areas such as design, code, test cases, and test analysis.

Similarly, changes made in response to some major defect found in the prod-

uct during the system testing phase can create a crisis in the entire project.

The schedule pressure on a software project is tremendous at the system test-

ing stage or as the project approaches the product release date. In addition,

the amount of wasted time from the earlier stages and repeated work is not

only costly but also demoralizing to the software project team members.

If the number of functions or the number of modifications to function-

ality increases, then the software project managers must make corresponding

adjustments to the resources, schedule, or both. Adjusting these parameters

would certainly have implications for the budget. Recall that software proj-

ects are usually undertaken in businesses, where financial considerations are

important. Too many software projects have failed due to this problem of

ever-increasing functionality, which is widely known as “scope creep."

Unfortunately, if resources and schedules are not adjustable, then quality

often becomes the unintended victim of such functionality changes. Software

project managers need to be especially sensitive to the quality issue when extra

resources or time in the schedule is needed, but not provided to the project.

Chapter 12 Planned and Unplanned Adjustments and Actions

246

Scope creep Unsuspected, gradual increase in work units. The accumu-

lated effect of these increases is often underestimated and potentially

poses a high risk to the project.

Scope creep does not always result from customers’ demands. Sometimes,

the project team members will take it upon themselves to improve or expand

the project functionality. Often these scope creep modifications are well

intentioned. For example, software engineers might be enticed by some recent

technology improvement, such as a shiny new device, and decide to include

support for it without informing anyone. Because no one is aware of this

addition, no test cases will ever be designed for it. Customers may not know

about it and will never evoke it. Unfortunately, an implementation defect

related to this kind of stealth improvement may be found by accident, usual-

ly in an untimely situation such as during a product demonstration when a

sales person may inadvertently evoke the function. Another similar situation

is one in which the well-intentioned support programmer inserts several

related “fixes" under the umbrella of one documented customer problem

report. The extra fixes sometimes are not completely tested and may cause

surprises and adverse consequences to those who are unaware of their exis-

tence. These changes are subtle, and software project managers need to be

constantly on the lookout for these internal, self-initiated scope creeps.

Asking for more resources or more time is difficult. If the functional

scope of the project has increased, however, then the software project man-

agers must ask for a corresponding increase in resources or a lengthening of

the schedule. Many software projects are asked to somehow swallow the

increases. On other occasions, the decision-making process for changing the

resources or schedule may take so long that the project will begin a down-

ward slide, sitting in an abeyance stage. The consequence—a deterioration in

team morale and the earlier-mentioned decline in software quality. It is essen-

tial to make timely unplanned adjustments if the general product quality

attribute and team morale attribute are to be maintained. In this case, the

undesirable results that follow from not completing the functionality, not cor-

recting all known functional defects, not following design or programming

standards, not updating the project documentation, and so on, may all be the

consequence of not increasing resources or expanding the schedule as needed.

Resource Changes

As you might expect, adjustments need to be made to the schedule or prod-

uct functionality if a change in resources occurs. Suppose several key design-

Unplanned Adjustments

247

ers leave the project prior to the completion of the design and implementa-

tion activities. Software project managers must understand that they need to

adjust either the functionality or the schedule unless the organization is lucky

enough to have replacement talents in waiting—a highly unlikely scenario.

Even if skilled replacements were readily available, it would take some time

for them to familiarize themselves with the specific software project. Rarely

will the software project be so standardized that a talented software engineer

can be replaced without missing a beat. A software project team is not like a

baseball, football, or soccer team, where a position player can be moved from

team to team with relative ease. That movement is possible because the game

itself does not need to be learned again when the player changes his or her

team; it is the same game. In contrast, software projects are rarely the same.

The more complex and unique the project, and the more interactions required

among the team members, the more difficult it is for the team members to be

treated as “replaceable" parts.

Besides human resources, changes to resources such as tools, processes,

or the budget will require adjustments to either schedule or functionality. For

example, a well-intentioned improvement to a tool or a process undertaken

in the middle of a project may require additional training of team personnel.

The timing of such changes may still require adjustments to the schedule of

affected tasks while not affecting the project’s final end date.

Note that the resource change is not always negative. Of course, this gen-

erosity usually comes at a price. Sometimes resources may be increased, but

then either functionality must be increased or the schedule tightened.

Increasing the amount of resources available without adjusting the other two

parameters would make one question whether the original plan were correct

or whether the increased resources will simply be squandered.

Schedule Changes

As stated earlier, the schedule of a software project is viewed as almost a

sacred cow, rarely being considered as a candidate for change. Most of the

time, the requested adjustment is to shorten the schedule for reasons such as

marketplace competition, customer needs, or budget needs. Like the other

areas typically targeted for adjustment, the schedule cannot be modified

without the software project managers making corresponding resources or

functionality adjustments.

A word of caution is in order about trying to shorten the schedule by

applying additional resources. With certain software activities, adding

resources in terms of people or tools simply will not improve the schedule.

Chapter 12 Planned and Unplanned Adjustments and Actions

248

Consider the work of design. This activity often takes special talent, so

increasing the raw amount of resources will not necessarily improve the

schedule. Running test scenarios, in contrast, may be greatly hastened by

acquiring additional resources and tools.

A schedule can be shortened if there are subactivities that can be per-

formed in parallel. However, the activities are all serially gated, then putting

in more resources will not improve the schedule. For example, programming

algorithms must be designed before any coding of them can start. Applying

additional resources (e.g., more designers and coders) usually will not

improve the schedule, and it may even slow down the design activity because

the original designer has to spend time bringing new people on board. (This phe-

nomenon was mentioned in a quotation from Fred Brooks’s book The Mythical

Man-Month in Chapter 3, in the section titled “Interrelated Attributes.")

Another factor is whether any tool or methodology is available that will

allow a specific subactivity to be completed faster than planned. If so, then

employing that new tool or methodology resource will contribute to shorten-

ing the schedule. In some cases, a tool such as a configuration manager may

even help in coordinating multiple, serialized activities and achieve some-

thing similar to parallelism.

In summary, software project managers who need to tighten a schedule

should explore two types of resource-based adjustments:

• Look for parallel subactivities for assignment of more human resources.

• Look for specific activities that a new or different methodology or tool

might help complete faster. (One must be aware of and balance the poten-

tial adverse effects of having to learn a new methodology or tool, taking

into account such factors as time needed to be trained on a new tool.)

The software project managers’ other immediate reaction to schedule

shrinkage might be to seek to cut functionality. This kind of adjustment also

needs to be made with care. Taking apart intricately designed software may

not be as easy as just not doing something; it may actually require some

redesigning to drop certain functionality that is already partially implement-

ed. In particular, dependencies across components may need to be redesigned

if one component of a multicomponent design is dropped. Suppose parame-

ters are passed between two components to support a required function

between these components. The passed parameters may have required a large

amount of setup work and computation within these two components. If the

required function is later dropped, the amount of work needed to take out the

original setup code, computational code, and parameter-passing mechanism,

along with the retesting required, can amount to as much or more work as

Unplanned Adjustments

249

needed for the initial implementation. In all cases, adjustments to function-

ality due to changes in schedule must be carefully considered.

■ KEY CONCEPTS

While the project is progressing and being monitored (as discussed in Part

Three of this book), the software project managers should be prepared to

make any adjustments deemed necessary. These actions must be undertaken

with the support of a broad consensus and with a sense of urgency. If the

adjustments are made in response to some detected problem, then the project

managers need to take the following actions:

1. Clearly state the problem.

2. Communicate the problem while working on potential solutions to it.

3. Seek out the root cause of the problem and relevant solutions.

4. Gain the necessary agreement of all stakeholders on the chosen solution.

5. Act on the solution.

6. Communicate on the action.

7. Report on the status of the problem’s resolution.

The software project managers must also be aware of the need to imple-

ment a change management process when the adjustments needed are large.

Both planned and unplanned adjustments are possible. Planned reviews

for adjustments should be performed at the end of each software development

or service activity. Even the best-planned projects will need to make mid-

course adjustments, however. Such unplanned adjustments usually stem from

unexpected crises. Either planned or unplanned adjustments normally require

the software project managers to consider three main parameters:

• Functionality

• Resources

• Schedule

Any change to one of these parameters necessitates a proactive consid-

eration of the other two parameters. Usually some adjustments must be made

to one or both of the other two parameters; this “ripple effect" poses a chal-

lenge for software project managers, who must gain the support of the project’s

stakeholders on all subsequent adjustments.

Chapter 12 Planned and Unplanned Adjustments and Actions

250

■ EXERCISES

1. List some of the items that you consider to be major adjustments and

actions, and discuss which ones might spur resistance from your team.

2. Why is a sense of urgency important in making adjustments, especial-

ly unplanned ones? Describe the steps a manager may put in place to

ensure that an adjustment is put in place to solve a need.

3. Why is there any such thing as a “planned adjustment"? Under what cir-

cumstances might you decide to skip any reviews for planned adjustments?

4. Discuss the relationship or possible association between risk items and

unplanned adjustments.

5. Describe how change management is related to making adjustments.

6. Discuss the potential impact that a schedule change may have on

resources and on functionality.

7. Consider a situation in which your team has just finished the design

phase and is about to start coding. Your key applications designer just

walked in and handed you a resignation notice. Describe what actions

you would take and in what sequence. How would your adjustment

actions differ if the person were the lead tester?

■ SUGGESTED READING

B. Boehm, “Industrial Software Metrics Top 10 List," IEEE Software,

September 1987, 84–85.

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1995.

H. E. Chambers and R. Craft, No Fear Management: Rebuilding Trust,

Performance, and Commitment in the New American Workplace, St. Lucie

Press, 1998.

W. G. Dyer, R. H. Daines, and W. C. Giauque, The Challenge of Management,

Harcourt Brace Jovanovich, 1990.

D. A. Level, Jr., and W. P. Galle, Jr., Managerial Communications, Business

Communications, 1988.

Suggested Reading

251

This page intentionally left blank

253

13
Release Management
Council

Chapter Objectives

This chapter discusses the following concepts:

• How adjustments are made and actions are taken using a team manage-

ment approach

• How a Release Management Council is established

• How a Release Management Council operates

THE TEAM MANAGEMENT APPROACH

Software projects are becoming ever larger and more complex, which has led

to a new way of developing projects: through cooperative teams. Although

some evidence indicates that collocated software development results in

higher productivity and better schedules, many times the team members are

located physically apart from one another. There is very little reason for all

aspects of software projects to be completely managed by only a single per-

son—that is, the software project manager—especially when the project is

sourced from physically distant areas. The decision-making process would be

much better, easier, and faster if the project management activities and man-

agement actions were also conducted by using a team approach, in which

the knowledge of as many of the organization members as possible can be

utilized. Even for small software projects, involving only five or six people,

the project managers should still solicit as much of the team members’

inputs as possible without imposing too much extra work on them.

Chapter

Chapter 13 Release Management Council

254

All the stakeholders of a software project need to be included in the def-

inition of the software project “team." In undertaking a team management

approach, one must also consider the software project organization as a

whole, in which people are divided into different groups by tasks and

expertise. In such an organizational structure, there are typically specialized

subgroups, such as the design or testing teams, and each of these subgroups

is headed by a team leader. These subgroup team leaders are equivalent to

the “player-coaches" on sports teams. Their knowledge, opinions, and coop-

eration should definitely be sought by the software project team.

For projects to be team-managed, a special team management group,

called a Release Management Council, needs to be created from the sponsor-

ing organization (e.g., executive management) and the project stakeholders.

The members of this group must understand two important complementary

principles: responsibility and authority. The team management approach has

very little chance of success if one person is given all the responsibility for

the software project but is given no authority to impose decisions on the rest

of the team. The reverse situation is also undesirable: A person who has all

the authority but shoulders no responsibility would most likely abuse that

power. Ideally, every member of the software project team will be given

clear responsibility and authority:

• Responsibility relates to the team members’ accountability for project

success or failure. That is, the group members must view the success of

the project as a team goal.

• Authority relates to the power to make or participate in the making of

decisions so as to achieve the team goals. These decisions must lead

to actions.

Thus, for any person to bear a certain amount of responsibility, that

individual must be given commensurate authority to take actions based on

the monitored project status. The people who are asked to participate in joint

(team) management of projects will, therefore, need both the responsibility

and the authority to make the necessary project adjustments (see Chapter 12).

FORMULATING A RELEASE MANAGEMENT
COUNCIL

Release Management Council is just a name given to a team of people,

including the software project manager, who are charged with setting goals

and policy, shepherding the project, ensuring that the best decisions are

made on a timely basis, and making appropriate adjustments as necessary.

The Release Management Council provides the project manager an explicitly

designated and recognized support mechanism. It allows the project manager

to formally practice team management.

Release Management Council A group of project-related people from

all areas of software development and support, including the software

project manager, who are given both the responsibility and the authority

to set goals, make decisions, take actions, and generally guide the proj-

ect to its successful completion and product release.

The members of the Release Management Council are picked from dif-

ferent parts of the organization that represent the major activities that need

to be coordinated through the project cycle. The Release Management Coun-

cil still needs a person who guides and leads the group, however; this person

is usually a midlevel manager or an experienced project manager. Typically,

the members of the council are team leaders who represent the following

project activity areas (see Figure 13.1):

• Customer requirements

• Design and architecture

• Implementation, coding, and information development

• Tools, techniques, and equipment support

• Testing

• Library and configuration management

• Quality assurance and measurements

• Customer support

• Finance

• Personnel

As shown by the dotted lines in Figure 13.1, the finance and human

resources representatives do not need to be full-time participants in the

Release Management Council, but they are an important part of the decision-

making group in that both finance and human resources affect the project

resources. Representatives from marketing/sales, education, and even cus-

tomers may be asked to directly participate in the council if there is some

specific topic that pertains to their areas. They are situated in the “outer

ring" in Figure 13.1.

Another exception is the representative from customer support, who

may join the council when the testing phase of the project begins. Some

Formulating a Release Management Council

255

project managers have argued that the customer support representative

should participate in the council from the project’s inception so that they

will be able to truly understand the customer requirements, the difficulties

encountered in design and programming, and the results from testing.

The other members of the council should be full-time members who par-

ticipate in the regular project status meetings. These individuals should not

carry full-time development or other assignment workloads, because their

duties on the Release Management Council will occupy a significant portion

of their time. Occasionally, some of the council members may be involved in

off-line meetings that deal with special-topic discussions and decision mak-

ing. If the project is large enough, each Release Management Council mem-

ber may be the team manager of each of the subgroups listed earlier. For

smaller projects, one member may represent two or more groups, such as the

tools support and configuration administration groups.

At the inception of a software project, if the team management concept

is adopted, then the Release Management Council concept should be intro-

duced as well. During the early stages of planning and organizing, represen-

tatives from the personnel and finance groups may play vital roles in the

council. These individuals do not necessarily need to be their respective

department managers. These departments are often organized in such a manner

Chapter 13 Release Management Council

256

Design
Requirements

Programming

Testing

Finance

Customer
Support

Customer

QA

Marketing/
Sales

Education

Tools and
Support

Project
Manager

Library/
Configuration
Administration

Human
Resources

Release Management
Council

Figure 13.1 Team management through a Release Management Council

that the same individual participates in multiple projects. The person who is

assigned to work on a particular project should also serve on the Release

Management Council for that project.

The Release Management Council would then expand in size and in

membership as the project enters the active performing phase and manage-

ment enters the monitoring phase. The members need to be chosen carefully,

and their task descriptions should be part of the members’ normal personal

performance plans. Because these individuals are asked to help in the

broader project management decision making and coordination of the project,

they must have a propensity for taking on issues beyond their own specialized

fields of expertise or narrow departmental interests. They should also possess

excellent communication and negotiation skills. If one needs help in obtaining

these skills, many local and community colleges offer short, self-improvement

courses in these topics.

THE RELEASE MANAGEMENT MODE OF
OPERATION

As noted earlier, the mode of operation of a project utilizing the release

management approach is that of a shared responsibility and shared author-

ity. As such, the Release Management Council members are also the stable

and constant attendees of the regular project status meetings. They partici-

pate in all the following activities:

• Sharing the data and information

• Analyzing and evaluating the information

• Making decisions and resolving problems

• Communicating the information

• Coordinating their own groups’ activities with other groups

Conducting the Release Management Council Meetings

For the regular project status meetings or any subsequent off-line meetings

(which involve fewer people than the regular status meetings), the ideal situ-

ations are face-to-face, in physically collocated meetings. Of course, with

today’s virtual teams and remote locations, the Release Management Council

members may very well be physically separated. If some of the council mem-

bers start communicating with some other members without being 100%

The Release Management Mode of Operation

257

inclusive of the entire group, then the software project managers need to be

alert to the danger of formation of “subgroups" and cliques, especially if the

subgroups and cliques form on the basis of physical locations. The Release

Management Council meetings should be inclusive and mandatory for all

members, with no substitutions allowed. In fact, where release management

is practiced, the regular project status meetings should be similar to the

Release Management Council meetings, according to the Release Manage-

ment Council meeting agenda we discuss later. The Release Management

Council covers more than just the status of the project, however; it is also

involved in the planning, organizing, solution, and change decisions.

Minutes for each Release Management Council meeting should be

promptly compiled and sent out to all council members. This document

should summarize the project’s current status and serve as a prompter to fol-

low up on all open issues. These notes also provide an audit trail of the proj-

ect status and the corresponding decision-making process.

The status of open issues from the past meeting should be one of the

items reviewed at the beginning of each Release Management Council meet-

ing. It is important not to let past items continue rolling unchecked. If the

software project manager sees a particular item that is discussed repeatedly

without any resolution, then it signals that the problem should be decom-

posed into smaller subproblems so that specific actions can be taken to

resolve the subproblems. If the subproblems continue to be unresolved, then

further division may be needed until resolution or progress toward resolution

appears in the monitored data.

Release Management Council meetings should follow an agenda, prefer-

ably a fixed one. If the agenda is fixed, then it probably does not need to be

circulated in advance. The agenda should include the following topics:

• The status of unresolved items

• The status of risk items

• New, but regular, tracking data collected for this period by attribute

(such as schedule, functionality, quality, resources, and cost—the partic-

ular attributes targeted are predetermined each time the council meets)

• General inputs from the specialized areas represented by the various

council members

• A short discussion and scheduling of any off-line meetings

• The generation of status and follow-up open items

If the meetings follow the same pattern (i.e., a constant agenda) each

time, then the speed with which they are conducted will pick up. The soft-

ware project manager may choose to run the Release Management Council

Chapter 13 Release Management Council

258

meetings or have a senior staff member conduct them. It is preferable to

have the software project managers themselves run the meetings, with senior

staff members performing the backup roles. That will also lend a certain

amount of weight to the Release Management Council; accordingly, the

meetings and the decisions, although jointly made, will be viewed with more

respect and gain more acceptance by the project team as a whole.

Making Decisions about Product Release

One key role that the Release Management Council performs is to decide on

the relative state of the product’s or project’s conclusion prior to the actual

release of the software artifact to customers. This decision is a simple one if

the project has been moving along and tracking close to the plan with a

negligible number of adjustments. The decision becomes more difficult, how-

ever, when the project has been showing any of the following signs:

• Constant and erratic deviations from the plan, even though each prob-

lem is resolved

• Tracking to plan but with a continuous and widening deviation from the

original plan, even though the deviation may still be within tolerable limits

• Tracking to plan all along, except for a sudden change just prior to release

The Release Management Council would have to make a final call prior

to releasing the product to the customers. If there are reasons to believe that

the product is not ready, then the council must hold the product release

back. This can be a very painful decision because of its implications for the

organization’s revenues, costs, or reputation, as well as the council members’

careers. The Release Management Council has several options that are available

to it in this difficult situation; these options vary and include the following:

• Flat-out delay of the project with no release to customers

• Release parts of the product, delaying the problem areas until the

problems are fixed

• Release the product to a small, controlled group of customers

• Release the product to everyone, but establish a superb customer

support group

A flat-out delay means that the product is not ready and more time is

needed for its development. All the negatives associated with a product

release delay, such as customer fears about the product’s quality and usability

and competitors’ innuendo about the lack of project control, should be

expected. Software project managers should be prepared to tackle both the

The Release Management Mode of Operation

259

product problems, such as completing all the functions, and the associated

problems, such as reestablishing customer support confidence in the product,

created by the release delay.

The options of releasing only a portion of the product or releasing the

product to only a controlled group of customers can lessen the brunt of the

delay. There are many situations in which customers may be willing to take

an imperfect release. Perhaps the problem areas may not be needed until

later, when the problems will ideally be fixed in the final product. Alterna-

tively, the customer may have planned an installation/training period prior

to the actual usage of the software and be willing to take the not-so-perfect

version first to get a head start. If a partial or controlled product release is

planned, then the Release Management Council should always consult the

sales and marketing groups—or even the customers directly. The council,

which includes members of the organization’s support group, must ensure

that customer service representatives are aware of the conditions under

which these customers are accepting the release, that the customer support

group is properly and fully funded, and that the support resources are

trained and on board for such situations.

Finally, some software project managers and the Release Management

Council may choose to release the product anyway to the general customer

set to establish a marketing presence for it if the problems in the product are

deemed “non-life-threatening." In such a case, the organization must take

anticipatory and preparatory actions to ensure that the customers will be

properly supported. In particular, the funding of the support group will need

to be substantial. Of course, there is always a risk of this strategy backfiring

and creating an early image of low quality.

■ KEY CONCEPTS

Most software projects of significant size and complexity require the com-

bined knowledge of the entire software project team. In those cases, team

management is very much the preferred approach. For team management to

succeed, the members of the software project team must exercise both of the

following traits:

• Obtain authority to make decisions and take actions

• Accept responsibility for the outcome of the project

A management structure often utilized in software project is the Release

Management Council. The members of this group are chosen from the vari-

ous stakeholders of the software project; customers may be represented on

Chapter 13 Release Management Council

260

the council either directly or by personnel from the organization’s require-

ments and support groups. The Release Management Council participates in

monitoring the entire project, takes part in adjusting the project, and makes

the final decision about releasing the product or project to customers. In sit-

uations where the established project goals are all met, the decision is a very

easy one. When some of the goals are not met, however, it will require a

concerted effort by the Release Management Council members to develop the

potential options, assess the risks, make the adjustment decision, and take

the necessary follow-up actions.

■ EXERCISES

1. Discuss the pros and cons of utilizing a team management approach

versus a single project manager approach in a large, ill-defined soft-

ware project versus a small, well-defined software project.

2. A Release Management Council may be formulated at various POMA

stages of a software project. When would you establish such a group

and why?

3. Imagine yourself as the leader of a Release Management Council. What

words of guidance (in terms of responsibility and authority) would you

say to the council members at the first meeting?

4. Discuss the various forms of release delays. Which one do you think is

most costly and why?

5. If you had to limit the Release Management Council to only five

members, which ones would you choose and why?

6. Consider a situation in which an irate customer calls in with a prob-

lem. Describe how software support personnel might usurp authority

without being responsible.

7. How should you, as the software project manager, react to the situation

stated in Exercise 6 above? Specifically, how would you explain the

concepts of authority and responsibility to your team?

■ SUGGESTED READING

C. A. Bartlett and S. Ghoshal, “Building Competitive Advantage Through

People," MIT Sloan Management Review, Winter 2002, 34–41.

M. E. Bays, Software Release Methodology, Prentice Hall, 1999.

Suggested Reading

261

R. Pressman, A Manager’s Guide to Software Engineering, McGraw Hill, 1993.

S. D. Teasley, L. A. Covi, M. S. Krishnan, and J. S. Olson, “Rapid Software

Development Through Team Collocation," IEEE Transactions on Soft-

ware Engineering, July 2002, 671–683.

F. Tsui and L. Brooks, “Release Management of Non-Zero Defect Software,"

Proceedings of the PSQT/PSTT South Conference, March 2002.

Chapter 13 Release Management Council

262

Part Five discusses additional skills that are needed for effective project man-

agement. Some of these skills are generally applicable to all types of project

management; others are more specific to the software industry. The topics

covered range from teamwork to early software effort estimation.

The software industry continues to be a growth industry. Part of its

expansion involves the movement from being a product-oriented industry to

being a more services-oriented industry. At the same time that this trend is

occurring, a large amount of work is being outsourced. As noted earlier, some

of this work is performed at physically remote locations—even in different

countries. All of these trends have turned the task of managing teamwork

into much more of a challenge.

Chapter 14 discusses software project teams as they pass through a three-

stage life cycle—team formation, team development, and team maintenance.

Although special software skills are undoubtedly needed in such a team, there

are also some desirable personal traits for the team members to have, depend-

ing on the role each person is expected to play. This chapter may serve as an

extension to Chapter 6 on Human Resources.

As noted throughout this book, most projects inevitably go through some

degree of change. The concept of change management in software projects is

discussed in Chapter 15. Software is particularly likely to have requests for

change because, as stated in the Introduction to this book, it is often thought

of as just code. The control of all the software artifacts related to change

requests needs to be managed successfully. Change management was briefly

Part Five

Additional Skills

263

mentioned in Chapter 12. Chapter 15 may be viewed as a companion to

Chapter 12 on Planned and Unplanned Adjustments and Actions.

Large software projects often have many complex prerequisite and coreq-

uisite relationships. The scheduling of a large number of such tasks may

require a more organized effort than simply eyeballing the tasks. As a result,

some scheduling techniques are a handy addition to the project manage-

ment’s bag of tools. Chapter 16 introduces the notion of a project’s critical

path and highlights different scheduling approaches focusing on early and

late start times. By examining the “slack times" of the tasks on the noncriti-

cal path, project managers may be able to vary the scheduling of these tasks.

Chapter 16 also provides definitions of PERT (a way to improve estimations)

and the critical path method (a way to make trade-offs in reducing the criti-

cal path length). This chapter serves as a natural extension to Chapter 2 on

Task Analysis.

The importance of understanding the requirements and implementing the

Work Breakdown Structure (WBS) concept prior to putting together a plan

and making commitments has been discussed earlier in this book. Because the

software industry is still so young, however, many customers may not be

experienced enough to appreciate the need for front-end work and, therefore,

may demand an early rough estimate of the project effort. Naturally, such an

estimate must be given with extreme care and plenty of caveats. Chapter 17

discusses ways to provide a general estimation of effort for software projects,

along with an example from Barry Boehm’s Constructive Cost Model (COCO-

MO) technique. The content of this chapter, effort estimation, may be viewed

as an additional topic associated with Part One, the planning phase of POMA.

Part Five Additional Skills

264

265

14
The Project Team

Chapter Objectives

This chapter discusses the following concepts:

• What the stages in the software project team life cycle are

• How a software project team is formed

• How a team can be developed so that it works effectively

• How a team is maintained

PROJECT TEAM LIFE CYCLE

In today’s expansive technology world, very few software projects can be

completed by individuals. This statement is especially relevant as the software

industry grows to serve and cover more diversified areas. Although the life

cycle of a team may be described in many ways, it typically goes through

three stages:

1. Team formation

2. Team development

3. Team maintenance

It is important to recognize that a group of software specialists is just a

group—not a real team. The group becomes a team through proactive efforts

made by both the group members and the software project managers. Software

Chapter

Chapter 14 The Project Team

266

project teams are not dramatically different from other project teams in that

regard; all sorts of teams need forming, developing, and maintaining.

A variety of tasks are required of software project managers to form,

develop, and maintain an effective software team. The amount of manage-

ment attention needed differs at different stages of the team life cycle, as

shown in Figure 14.1. In the initial stage, when the team is being formed, the

software project managers will expend an ever-increasing amount of effort

until the entire team is recruited.

As most of the team is brought on board, team building needs to start.

Most of the team-building activities with which the team members are asso-

ciated center on education and training in areas such as building trust,

improving negotiation skills, improving listening skills, accepting responsi-

bilities, and responding to pressure. The project managers must ensure that

there is enough time in the project schedule reserved for this type of training.

Developing a new and growing team takes a relatively larger amount of

energy and effort. Once the team is operational, effort is required for the con-

tinual nourishment and maintenance of the team until the project is com-

pleted; even a mature team requires ongoing maintenance. Thus the amount

of effort is never zero.

TEAM FORMATION

Large, complex software projects require technology specialists, application

subject area experts, customer support experts, and project management spe-

cialists, among other personnel. Obviously, one would like the software project

team to include the best people from each of these areas. In reality, having

Relative
Management
Effort Forming

Developing

Maintaining

Team Stages

Figure 14.1 Management effort needed at various project team stages

“the best" from each area does not guarantee success for the project unless

these experts work together effectively as a team.

A team is not created overnight. People cannot be just thrown together

and then expected to quickly work out their differences by themselves.

Sometimes one may get lucky and the people just fall into place and cooper-

ate. Other projects might be delayed or fail utterly due to personnel conflicts.

Each individual on the team may perform a specific software engineering task

well. Because those tasks are interrelated, however, the software engineering

specialists performing them are themselves interdependent. To work effec-

tively, they must cooperate and follow a process that results in a synchro-

nized team effort. It is the duty of the software project managers to provide

the guidance and leadership needed to ensure that the team members share a

common goal, follow an agreed-upon process, and uniformly work toward

the successful completion of the project.

As described in Chapter 6, formation of the team—the human resources—

is one of the first steps in planning and organizing a software project. The

software project managers will first review the various tasks and decide on

the skills required to complete those tasks. The candidates must initially pos-

sess these technical skills. In addition, the team members should possess sev-

eral other behavioral characteristics, or “soft skills." It is important to state,

at the outset, that no “perfect" person exists. Project managers should not be

looking or waiting for such a mythical candidate.

Technical Software Skills

Let’s look first at some of the technical skills required to carry out a soft-

ware project.

Technical skill A specialized skill in a subject that is needed to perform

the activities in that subject domain. The skill usually requires in-depth

knowledge and training in a scientific, engineering, or business discipline.

The following list identifies some general software development and sup-

port skills, one or more of which should be possessed by each of the team

members. The skill areas include:

• Database design

• Detail design, programming, and debugging

• Network and telecommunications design

• Applications high-level design and architecture

• Requirements solicitation and specification

• Test design and test script writing

Team Formation

267

• Configuration and library control design and setup

• Tools setup and support

• Industry application subject matter design

• Customer problem analysis

• Customer problem resolution and follow-up

In addition to skills in these general areas, a complementary set of spe-

cific skills and experiences related to the tools that support these areas is

needed. These particular technical skills focus on experience in vendor-spe-

cific programming-language compilers, debuggers, editors, configuration

managers, code libraries, and so on. The software project manager should be

cognizant of the value of these tool-specific skills. The learning curve for

highly complex tools may be prohibitively long for schedule-sensitive proj-

ects, so having a ready-made expert can be a major advantage.

Many times, a single person may possess several needed technical skills.

When a person is brought on board, it should be clear what that person’s role

will be and which of that individual’s skills will be primarily used in that role.

On occasion, a person is brought on board to perform a particular role, such

as that of the lead programmer, but he or she also possesses other useful

skills, such as database design experience. Ideally, that person would be con-

sidered for a dual role and be willing to play the role of database design

“backup." Unfortunately, many people with impressive skills come with

impressive egos, too. The presence of two people who are highly skilled in the

same area, such as database design, might very well turn out to be the source

of great conflict and a detriment to the team. The software project manager

must ensure that where skill overlap occurs, team members’ responsibilities

and roles are clear. He or she must continuously be on guard for any confu-

sion among the team members. If any question about a responsibility or role

crops up, it must be resolved immediately.

Soft Skills and Personal Traits

Aside from pure technical and applications skills directly related to the per-

formance of the software project’s tasks, managers should be looking for

other characteristics, many of which are “soft skills," while forming the team.

These personal traits might include the following:

• Personal ambition

• Level of commitment to the team concept and to team members

• Interpersonal communications skill

Chapter 14 The Project Team

268

• Strongly held likes and dislikes or biases

• Amount of experience and type of experiences in working with others

• Attention to details

• Sense of urgency

• Energy level

• Major nonproject-related commitments

• Flexibility and maturity

Soft skill A nontechnical skill that can be utilized on multiple occasions

and is not restricted to any specific domain. Examples of soft skills

include listening and presentation skills.

These personal traits are often subtle, yet play a vital role in determining

the success of a team. Traditionally, software project managers tended to

focus on the technical skills and associated technical experiences of non-

management personnel. As a result, these soft skills and personal character-

istics were sometimes overlooked. Many successful managers have, at times,

temporarily sacrificed team morale and put up with a team member who has

some negative personal traits. Usually, this situation cannot continue very

long without the project manager eventually taking some corrective action.

A team member who places his or her personal ambition before the team’s goal,

for example, may very well kill a project. Similarly, a person who is more com-

mitted to his or her tennis game or to some other avocation than to the proj-

ect and to his or her professional career may be a drag to the overall project.

Every team needs a mix of personalities—strong, ambitious leaders as

well as less ambitious followers—for the team as a whole to work smoothly.

This balance of skills and characters needs to be taken into account while the

team is being formed. Throughout this process, however, the software project

manager should bear in mind that the initial recruiting of the team members

is based on a best “guess" and is no guarantee of later success. Even the best-

planned team can go awry if the initial assessment of a seemingly “perfect"

candidate turns out to be wrong. Also, the new member may have had some

erroneous expectations of the organization, which can later cause disap-

pointments and degradation in performance.

TEAM DEVELOPMENT

Once a team is put together, it should not be left in isolation to grow, change,

and adapt to the changing environment in which the team must operate. The

Team Development

269

evolution of a group of people into a smoothly functioning team takes a long

time. The natural process is often characterized by trial and error, with

progress occurring in fits and starts. Such a slow process is often painful and

sometimes unsuccessful.

To smooth the way, the software project manager may need to intervene

in the team’s adjustment process. Necessary adjustments might even include

the extreme actions of dismissing some participants and changing the team

members. The following list identifies some key activities in which the proj-

ect managers should be actively involved so as to help the team evolve grace-

fully. These items will require constant management attention through both

formal and informal monitoring techniques discussed in Chapter 9. Many of

the tasks will be conducted through informal conscientious socializing. The

activities are not listed in any priority order, as they are all important.

• Ensuring that an ample amount of communication is taking place

• Ensuring that the members are treating one another with respect

• Ensuring that there is clear understanding of each person’s assignment

and role

• Ensuring that the team is not harboring a chronic laggard

• Ensuring that all team members understand and support the team and

project goals

• Ensuring that the team members are following the agreed-upon process

To promote effective team building and development, the software proj-

ect managers need to bring the members together and review these topics at

the inception of the project and as new members come on board. One of the

more popular methods that managers utilize to promote team building is to

sponsor a one- or two-day, off-site meeting. Typically, a motivational speak-

er is brought in, team games such as softball are played, individual character

tests are given to all team members, and all personnel attend lectures on

character traits. Sometimes, the team is asked to jointly perform a potential-

ly dangerous task, under the auspices of an expert, such as climbing a cliff.

The sharing of a risky experience is meant to create a strong bond through

trust, ensuring that the team members will later appreciate and understand

the need for interdependence in their software project.

In addition, team members’ behavior needs to be continuously monitored

through the project. The software project managers should perform conscien-

tious socializing with the team members and engage in informal data gath-

ering to pick up any nascent signs of team harmony or disorder (see Chapter

9). Such a sign may be as simple as a nonreturned e-mail. Disharmony in

communication usually signals that something is not working quite right.

Chapter 14 The Project Team

270

Perhaps a team member is just temporarily overwhelmed with his or her

workload—or maybe the problem is more dire.

With the advent of remote and virtual software project teams, communi-

cation is emerging as a major source of team-related problems. If the simple

courtesy of returning an e-mail or a phone call is not part of the individual’s

working etiquette, then that person may need management counseling on

“respect for the other team members," “sense of urgency," or “communica-

tions skills." This counseling of employees is a key project management task

that requires some experience on the part of the project managers. It must be

guided by a single motive: to help the individual and, thereby, create a bet-

ter-functioning team. The offending team member must always be given an

opportunity to improve and change.

Repeated emphasis of team goals, team harmony, and clarification of the

roles of the individual team members is a task that some may view as “nag-

ging." All software project managers need to understand that some aspects of

management do border on constant complaining. At the same time, this trait

of continuous and tenacious focusing on details is one of software project

managers’ major assets.

Sometimes the notion of team cohesion and spirit is stretched excessively.

Perhaps more capable members are carrying one or a small number of team

members and performing their responsibilities. Several reactions to this situ-

ation are possible:

• The team does not seem to mind carrying the laggard(s).

• The team minds the situation but does not want any change.

• The team minds the situation and is waiting for management actions to

fix it.

In all cases, the laggard needs to be counseled by the project manager.

That person should be asked to pick up his or her part of the team’s respon-

sibility. In the case in which the team does mind the situation, the project

manager must “fix" matters or risk having a demoralized team. This resolu-

tion may require further training of the team member, if a skill problem is

involved. A change of assignment may be another possibility. Ultimately, the

potential solution may include the dismissal of the offending team member if

all efforts to improve the situation fail.

The problem–action handling matrix in Figure 14.2 describes what the

project manager should consider as potential actions when faced with some

personal trait problem. Let’s look at the matrix and the associated actions,

starting with the upper-left corner and proceeding clockwise. As stated earlier,

when there is a problem and team members are concerned, the situation must

Team Development

271

not be ignored. The specific action taken by the manager depends on the prob-

lem at hand. At a minimum, the manager must investigate and understand the

problem, develop a solution for it, discuss the solution with the offender,

explain the solution to the affected team members, and implement the solution.

In the second scenario, even if the team is not concerned with the prob-

lematic situation at the present time, the project manager must consider some

future action to resolve it. Once again, the specific resolution of the problem

depends on the type of the problem. In extreme situations, it may include the

dismissal of the employee from the next phase of the project. Such problems,

if neglected for a long period, could eventually affect the morale of the other

team members.

The last two cases, in which there is no problem, just requires continuous

monitoring of different degrees. The project manager should always be per-

ceptive to changes in the team, but not turn this monitoring into an obsession.

Continuous monitoring and adjustments are necessary to mold any group

of skilled people into a smoothly functioning team. The team members them-

selves must diligently try to work out their differences. The project managers,

in turn, must give the team members a certain amount of time for them to

become acclimated with one another and with the team culture; if this step is

omitted, every little problem could escalate into a large one and eventually

wind up in the software project managers’ offices. By working out some of

the small differences by themselves, the team members will become bound

together, resulting in a much stronger team.

All teams take effort and time to formulate and develop. Some project

managers are so highly cognizant of the value of a harmonious team that

they try to recruit the same group of people whenever they move on to a new

project or to a new environment. This trend is evidenced in many corporate

cultures where new CEOs and senior managers are chosen from within the

company to preserve the existing team harmony and team culture. Of course,

a contrary school of thought advocates bringing in new blood so that the

team or the company will not become complacent and noncompetitive.

Chapter 14 The Project Team

272

Team members Team members
concerned not concerned

Existence of a Manager must take Manager must consider
personal trait problem immediate action some future action

Nonexistence of Manager must monitor Manager may monitor
personal trait problems continuously for problem intermittently

Figure 14.2 Problem–action handling matrix

TEAM MAINTENANCE

Once the team is functioning, continual nourishing of it is still required.

Effective software project managers are continuously involved in the follow-

ing team maintenance activities:

• Reward

• Punishment

• Attrition

• Growth

Rewarding Team Members

When the project is progressing well and milestones are being met, the team

members need to have positive feedback. Giving awards is one of the most

pleasant tasks for managers, yet somewhat tricky. Although the project suc-

cess is attributable to the team effort, it may also owe its success to a few

individuals’ extra effort. Recognizing those individuals is important, but the

software project managers should always acknowledge the efforts of the team

as a whole.

For example, prior to handing out any individual award, the significance

of all the players should be emphasized and the interdependence of the team

members should be brought out. The individual award should be stated as an

acknowledgment of individual effort made above and beyond the team effort.

Such a reward-giving event should be public, as any award handed out in

private will always be viewed with suspicion of favoritism.

Punishing Team Members

Although it is important to bring the entire team into the reward spotlight,

the reverse situation is a little different. When an individual’s performance or

behavior requires counseling, the software project manager should not bring

the entire team together and speak vaguely about the concern. Rather, the

project manager should bring the individual into the manager’s office, be

very clear about the problem, and offer the individual the opportunity to

change and improve. In these counseling sessions, the project manager

should stay focused on the individual’s problem and not wander into discus-

sions about the team. If multiple problems exist, it is best to address each

Team Maintenance

273

negative issue separately. However, all problems need to be resolved as soon

as possible.

For example, we often encounter problems of developers not responding

promptly to problems discovered during testing. If someone is either deliber-

ately being unresponsive or just being slow, that person needs to be brought

in for counseling quickly, before the problem queue becomes so deep that it

jeopardizes the test schedule. The resolution of the problem, depending on the

cause, may range from a private warning, to a shift in the workload, to a

change in assignment, to dismissal of the team member.

Handling Team Attrition

No matter how well a project is working and how happy an individual is,

there is always the possibility of attrition. If a person has chosen to leave the

project, for whatever reason, the project manager should offer him or her the

opportunity of an exit interview with another manager (e.g., the human

resources manager). This exit interview will allow the departing person to

express more candidly the reasons for leaving. From the exit interview feed-

back, the software project manager may be able to gather some information

relevant to improving the team. If there is truly some room for improvement

of the team, the project manager will have to take the appropriate action.

Oftentimes, the departing employee’s criticism relates to some perceived

unfairness or favoritism. This type of feedback is crucial because other team

members may feel the same way but not be willing to express their views

openly. Most people conclude that favoritism is exactly that, and cannot be

changed. The manager needs to first ascertain the truth of the “accusation."

If the allegation is true, then he or she should change the situation starting

with an apology. If it is not true, then the manager must decide how to pre-

vent others from developing the same false impression and take appropriate

preventive action.

In any event, the departure of a team member should always be shared

with the rest of the team. In addition, any planned action to replace that per-

son needs to be shared with the team. The team should never be left with a

feeling of the unknown. Such a feeling will sometimes stimulate false fear,

especially if the individual who left is a key team member. If the departure of

a person emanated from some real problem, as long as it is nonpersonal, that

problem should be shared with the team. In the same breath, the project man-

ager must offer up how he or she is planning to handle the problem.

Chapter 14 The Project Team

274

Team Member Growth

As new members are brought on board due to team growth or replacement,

the software project manager must make a special effort to explain the team

composition, the underlying dynamics, and the expected rules of behavior,

along with the formal process and procedures followed by the team. One

potential way to acclimate the new member to the team is to tag the new

member to an existing member. This mentoring arrangement often will accel-

erate the new members’ introduction to the project and to the team. For this

mentoring mechanism to work effectively, the aforementioned tagging of

each new employee to an existing team member should be done in a formal

manner. That is, the mentor needs to be trained in the skills of mentoring, the

workload of the mentor should be reduced, and the mentoring period should

be specified. The new member should also be formally informed of the role

of the mentor and the expectations for the new employee during the men-

toring period should be outlined explicitly.

As a part of efforts to grow the team, the senior members of the team

should continuously be given leadership roles such as the mentoring of new

and less experienced team members. Other methods of developing and culti-

vating the team members may include providing special assignments to help

other projects, short-term assignments as assistants to senior management,

and sabbaticals to train in new technology or new processes.

■ KEY CONCEPTS

The software project manager plays a key role in the formation, development,

and maintenance of a project team. The relative effort expended by the man-

ager is skewed toward the periods involving the formulation and the devel-

opment of a project team.

The group of individuals assigned to a project becomes a team through

proactive efforts made by both the group members and the software project

manager. In the formation phase, team members are selected on the basis of

both technical skills and behavioral qualifications (“soft skills").

Once a team is put together, it needs time to evolve into a smoothly func-

tioning unit. Along the way, the software project manager may need to inter-

vene in the team’s adjustment process and definitely needs to monitor its per-

formance. The important activities of monitoring and adjusting can be trans-

lated into a more general problem–action handling matrix, which can help

the project manager decide which actions to take.

Key Concepts

275

Maintenance of the project is essential to ensure that the team continues

to function smoothly. Team maintenance activities include those focused on

doling out rewards, meting out punishments, handling attrition, and provid-

ing for team members’ growth.

■ EXERCISES

1. From the soft skills and personal traits list, pick three traits that you

believe are especially important for teamwork and explain why you

think they are more important than the other choices. Would your list

be different if you were only concerned with individual performance?

2. Discuss how much time you, as a project manager, would be willing to

spend discussing (1) the departure of a team member and (2) the addi-

tion of a new team member. List the items that you would discuss in

each occasion.

3. Refer to the problem–action handling matrix (Figure 14.2); what are

some of the “immediate" actions that you might take if a problem aris-

es and the team members are concerned? For the case in which the team

members are not concerned, what are some future actions that you

might consider taking?

4. Briefly describe the three stages in the project team lifestyle and discuss

one item in each stage that may present difficulties to a project manager.

5. Consider the situation in which the project team is jointly performing

coding and testing. Describe a situation in which you believe an indi-

vidual member deserves an award and a situation where an individual

deserves a punishment.

6. Give an example where team members are not treating each other with

respect. What are some of the choices of action for management?

7. What is the difference between a group of professional software engi-

neers and a team of software engineers? (Review the list of actions that

managers must ensure during the team development period.)

■ SUGGESTED READING

R. Cross, W. Baker, and A. Parker, “What Creates Energy in Organizations?"

MIT Sloan Management Review, Summer 2003, 51–56.

Chapter 14 The Project Team

276

W. S. Humphrey, Introduction to the Team Software Process, Addison-Wesley,

2000.

W. Humphrey, The Team Software Process, Technical Report CMU/SEI-2000-

TR-023, November 2000.

R. B. Hyman, “Creative Chaos in High Performance Teams: An Experience

Report," Communications of the ACM, October 1993, 57–60.

D. Phillips, The Software Project Manager’s Handbook, IEEE Computer

Society, 2000.

K. A. Smith, Project Management and Teamwork, McGraw Hill, 2000.

S. D. Teasley, L. A. Covi, M. S. Krishnan, and J. S. Olson, “Rapid Software

Development Through Team Collocation," IEEE Transactions on Software

Engineering, July 2002, 671–683.

Suggested Reading

277

This page intentionally left blank

279

15
Change Control

Chapter Objectives

This chapter discusses the following concepts:

• How the changes that characterize all software processes can be managed

• What impact analysis is

• Which techniques are used to decide on change request denial or acceptance

• How the cumulative effects of changes can be handled effectively

It is well recognized that software projects are particularly prone to

changes, in large part because there is a general belief that software can be

easily modified. This maleability is in fact both a strength and a weakness:

Changes may be made in software, but must be implemented with care. The

worst situation occurs when changes are allowed without proper control. To

prevent this type of “change control chaos," the software project team

should develop and follow a change control process.

Change control process A set of information and a sequence of activi-

ties used in the tracking and managing of a change request from its

inception to its closure.

The processes, methodologies, and tools needed to manage change

requests must be designed ahead of time. The process and people resources

needed as part of the management of change requests, described in this

chapter, should also be set aside, trained, and properly included in the proj-

ect plan and budget.

Chapter

Chapter 15 Change Control

280

AN EXAMPLE CHANGE REQUEST PROCESS

Every change to the product or to the process should start with a baseline,

which represents the first, formally defined version of a product or process,

and go through a change control process. The product change control

process depicted in Figure 15.1 will be used in this chapter as the basis for

discussing the different factors that influence how changes are managed

with an organization.

The change request may come from anywhere, but it needs to be formal-

ized so that it can be traced back to its source, if that step becomes neces-

sary. A change request form, which represents a formal method for

submitting a change request, may be a paper-based form or part of an on-

line system. At a minimum, it should include the following items:

• The requester’s name

• Date of the request

• Request description

• Reason for the request

• Priority of the request

• Preferred date of completion

Store All Related
Material

Make Appropriate
Plan Changes

Complete the
Changes

Close Change Request

Accept
?

Change
Request

Review of
Change Impact

Accept (B)

Accept (A)

Request Denied

Schedule for
Follow-on
Release

Cost

Schedule

Personnel

Process and
Tools

Product

Figure 15.1 Product change control process

• Funding source for the request

• Areas known to be affected by the requested change

Once the request form is filled out, it should be submitted to a “catcher."

The catcher is a handler who may be on-line or off-line, but in any event is

someone who should be designated to formally take charge of the request.

This handler might be the software project manager, the Release Manage-

ment Council, or a special change request administrator.

Upon its submission, the change request needs to be reviewed and

assessed in terms of its implications for other parts of the software project.

The change impact analysis (discussed in detail in the next section) will list

and describe the items that are affected, including the following areas of

consideration:

• Schedule

• Cost

• Human resources

• Processes and tools

• Product content and size

• Product marketing strategy

Although Figure 15.1 does not show this particular situation, sometimes

the change control process also needs to take into account how a change

request affects the customers’ work flow and work environment. For exam-

ple, suppose a change request for a data entry screen asks for the inclusion

of a new input field. Imagine that this new input field requires the person

who keys in the data to look up some information if the default data

defined for that field do not apply. Then an additional procedure explaining

where to look up information and how to pick the information to enter

needs to be defined and made available to the users of the modified data

entry screen. Thus this change request to the software requires an associ-

ated modification in the users’ work procedure that must be defined, docu-

mented, and disseminated.

CHANGE IMPACT ANALYSIS

Software impact analysis identifies the effects of a software change request.

As noted earlier, these effects may manifest themselves in a variety of areas.

Each impact needs to be somehow quantified and prioritized. That is, a

Change Impact Analysis

281

measurement scheme must be designed such that each change request may

be gauged in relation to other change requests. Examples of quantifying

some of the impacted areas follow:

• A schedule impact may be designated with values ranging from 1 to 4,

where 1 means a schedule impact of one to two days, 2 means an

impact of one to two weeks, 3 means an impact of one to two months,

and 4 means an impact exceeding two months.

• A personnel impact may also be designated with values ranging from 1

to 4, where 1 means a slight assignment change to one person, 2 means

two to three people are involved in the change, 3 means one-fourth of

all team members are involved in the change, and 4 means half or more

of the team members are involved in the change effort.

• A cost impact is very key to the decision process and may be directly

quantified, by using the schedule impact, the personnel impact, and the

conversion of those impacts into dollars. For example, a schedule impact

of 1 and a personnel impact of 2 would convert to (2 days ✕ 3 people) =

6 people-days of impact. This value may be further converted to (6 peo-

ple-days ✕ z $/person-day) = 6z dollar of cost impact. The computation

of cost impact with a change request that has a personnel impact value

of 3 would be a little more complex in that the term “one-fourth of all

team members" needs to be converted to a numerical figure first.

In the above examples, note that the assigned numerical values all

increase as the impact to the project is perceived to increase. This uniformity

makes the computation and the decision process for acceptance a little eas-

ier. The actual measurement scheme may be designed differently, with the

particular metrics depending on the type of software project at hand. After

each impacted area is quantified, the change requests can be compared by

area and possibly ordered.

Furthermore, each impacted area may be assigned a numerical weight.

The aggregate or the weighted average of the impacted areas may serve as a

single index to represent the change request. Then a cut-off criterion needs

to be defined, and all those requests that fall within the cut-off criterion may

be accepted. The definition of a cut-off criterion may be as simple as “the

requests with the top five indices." Such a prioritization scheme makes the

decision-making process for accepting (or rejecting) a change request more

objective and organized. The actual cut-off criteria would depend on many

parameters, including the past history of the project team and the project

managers’ experiences.

Chapter 15 Change Control

282

CHANGE REQUEST DENIAL OR ACCEPTANCE

Based on the impact analysis and the review of the results, the project man-

agers must decide whether to accept the change request or to deny it. In the

event that the request is denied, that fact must be communicated back to the

requestor, along with a reason for the rejection. The denied change request

itself may or may not be stored and kept for future usage.

If the change request is accepted through the Accept (A) path shown in

Figure 15.1, then all of the affected items needed to be marked and assem-

bled. In addition, a plan for performing the change must be formulated.

The actual change activity is then scheduled, performed, and tracked to

completion. Upon completion, the change request is closed and the

requestor is notified of the new status. A typical accepted change request

that goes through this path might be a customer requirement change to an

input field size or format caused by a change in the customer’s business.

For example, in the merger of two companies, often the product codes of

the merged companies would need to be expanded. This will prompt a

change request related to the input field size or input format for the order

processing software, and this change request will have to be immediately

accepted, quickly worked on, and brought to closure. Such a change

request, which has a high business impact, will definitely be under tight

change control.

It is also possible to accept a change request, but not be able to

accommodate it within the current release date or budget. In that case, the

Accept (B) path in Figure 15.1 is taken and the change request is held for

scheduling into a future release. The requestor is informed of the decision

and given a probable timeframe for the earliest release that may contain

the requested change. An example of an accepted change request that is

held for a future release is the case in which a small number of influential

customers request an extension to an existing function. This type of

change request will usually be delayed and put into a plan for implementa-

tion with a set of change requests that affect the same software areas (e.g.,

design and code).

The complete change management may be performed via an on-line

work-flow tool—usually a proprietary system built with some collaborative

processing tool such as IBM’s Lotus Workflow—that moves the work order

from one area to another, from one status to another, and from inception to

end. If such an on-line tool does not exist, then the organization must main-

Change Request Denial or Acceptance

283

tain a “paper trail" for the change from inception to closure. This informa-

tion should be placed into a file so that it can serve as a repository for con-

sultation and analysis of future change requests. Alternatively, a

configuration management tool such as Merant’s PVCS or Atria Software’s

Clear Case may be used to help manage the changes. (Clear Case was later

acquired by Rational, which in turn was acquired by IBM.) A configuration

management process tool, as mentioned in Chapters 4 and 7, allows the

tracking and managing of all pieces of the software artifacts. As such, it can

readily be applied to change request control.

CUMULATIVE EFFECTS OF CHANGES

A small change in a software artifact can have huge ramifications for both

the end product and the work effort required to develop that product. A typi-

cal small change in a database field, for example, might generate the follow-

ing changes:

• Design and code changes to all areas that utilize that field

• Modifications to all affected help scripts and user documentation

materials

• Reviews of all changes

• Development of new test scenarios and test scripts

• Running of new test scripts and re-running the old test scripts

• Fixes for any related problems from the tests

• Updates to the library and change control tools

• Locking and promotion of the successfully changed material

• Communication of the completed change to all interested parties

Even experienced software engineers are often surprised by how much

effort is required to complete a seemingly simple change. The complications

come not necessarily from the initial change itself, but from the “ripple

effect"—the effect of related work that can dramatically affect both schedules

and costs. It has been said that a change request may lead to one line of

altered code but result in one week of effort to complete that change request.

Imagine the cost of that one line of modified code—and how incredible it

would sound to the original requestor. The software service support person-

nel and quality assurance personnel will be painfully familiar with the simi-

lar way in which costs can balloon when a small fix needs to be introduced

into the product.

Chapter 15 Change Control

284

How Hard Can It Be to Make a Simple Change?

The author’s personal experience as a manager for IBM’s JES3 product

offers a good example of how an apparently simple change can lead to

unexpected complications. JES3 was the I/O component of IBM’s MVS

operating system. A change request that required modification of about

six lines of code ended up taking approximately two months of work.

The changes spanned several modules, and they affected the interfaces

to both the database product and the network product. This multiple-

product effect necessitated performing regression tests over both the

database and the network products. The two months of work across

three product organizations meant that a change request that required

only six lines of code change cost approximately $50,000! Interest-

ingly enough, this lesson seems to get relearned with every new gener-

ation of software engineers and project managers.

Although the time and effort spent in analyzing an individual change

and its consequences may not be a problem, the cumulative effects of a con-

tinuum of change requests can be staggering, evolving into a full-time job

for a small group of people. Furthermore, to fully and accurately assess the

change request impact, the team managing the change process must have

good knowledge of the product and all items associated with it. Most soft-

ware projects are not well equipped to handle the extra workload required to

even assess these requests. The required work for change management is

similar to that involved in requirements management, another process whose

complexity is often underestimated. It takes a very disciplined software proj-

ect management team to insist on proper change management. And insist

they must.

Another important aspect of change requests that the software project

managers need to be aware of is the requests’ psychological effect on the

team. If there is a cyclical and flip-flopping chain of change requests made,

the project team may decide not to perform any changes until the requestor

can make up his or her mind. Even when the changes are not flip-flopping

but seem to be concentrated in some specific functional area, the feeling of

instability will sometimes cause the project team to feel helpless and demor-

alized. This kind of vacillation occurs often when the team is developing

software artifacts that will enter a new or unfamiliar marketplace that both

the customers and the requirements analysts are still exploring.

Cumulative Effects of Changes

285

In this type of situation, the software project manager must step outside

of the normal change management process (i.e., outside the process depicted

in Figure 15.1) and ask for a review of the reasons for such a large number

of change requests. Such a review may be undertaken by the Release Man-

agement Council (discussed in Chapter 13) or, if it is requirements-related,

by the Software Product Management Board (discussed in Chapter 2). It is

the software project manager’s responsibility to shield some of these change

request activities from the mainstream project that is under development.

This step, which is not part of the normal change control, is performed at the

project manager’s discretion.

■ KEY CONCEPTS

Software projects are particularly prone to changes, in large part because

there is a general belief that software can be easily modified. In reality,

changes may be made in software, but must be implemented with care. To

prevent change requests from wreaking havoc on the software project team,

all change requests should be managed through a change control process.

The following impacts of a change must be considered when one is

making the acceptance or rejection decision:

• Schedule

• Cost

• Human resources

• Processes and tools

• Product content and size

• Product marketing strategy

Furthermore, the project managers must consider the cumulative effects

of multiple changes that result from one change request. The complications

come not necessarily from the initial change itself, but from the “ripple

effect"—the effect of the related work that can dramatically affect both

schedules and costs.

■ EXERCISES

1. How could the product strategy and market share impact be folded into

the impact analysis of a change request? Devise a metric that could be

included in the cost.

Chapter 15 Change Control

286

2. Assess the resource implications of an organization that receives 50 to

100 change requests per month versus that of an organization that

receives 5 to 10 change requests per month. Discuss what types of

adjustments a software project manager would have to make as the

software change requests vary so dramatically.

3. Design a change request form and explain the relevance of each field

on the form.

4. Consider the change request form designed for Exercise 3 and desig-

nate those fields that represent key areas that should be included as

criteria for an acceptance or rejection decision. Discuss why you chose

those fields as part of the decision criteria.

5. Using the change request form designed for Exercise 3, trace a request

through the product change control process diagram (Figure 15.1).

Indicate how the form may be used to track the work flow through the

change control process, modifying it as necessary.

6. Consider the situation where your team has just completed the design

of a small on-line purchasing application, much like a book-ordering

application from amazon.com. The marketing organization has decided

to expand into Central and South America and is requesting that there

be a Spanish version of this software. Discuss all the items that your

team needs to consider and simulate an impact analysis for this request.

■ SUGGESTED READING

M. E. Bays, Software Release Methodology, Prentice Hall, 1999.

E. H. Bersoff, “Elements of Software Configuration Management," IEEE

Transactions on Software Engineering, January 1984, 79–87.

S. A. Bohner, “Impact Analysis in the Software Change Process: A Year

2000 Perspective," International Conference on Software Maintenance

Proceedings, IEEE Computer Society Press, 1996, 42–51.

Clear Case User Manual, Atria Software, 1992.

PVCS tool, www.merant.com.

Suggested Reading

287

www.merant.com

This page intentionally left blank

289

16
Task Scheduling

Chapter Objectives

This chapter discusses the following concepts:

• How tasks are represented in tabular and graphical formats

• What critical and noncritical paths are

• How forward- and backward-pass scheduling methods—both early

start/early finish and late start/late finish—are used

• How total slack time and free slack time are computed

• How the Program Evaluation and Review Technique (PERT) can improve

estimation

• What the critical path method (CPM) is

• How a calendar schedule for the project can be created

Chapter 16 should be viewed as introducing a set of techniques that may

be applied to and enhance task analysis, a topic that was discussed in detail

in Chapter 2.

TASK SEQUENCE AND EFFORT
REPRESENTATION

Software projects are composed of multiple, differing tasks that require dif-

ferent skills to complete. Nevertheless, all tasks share at least two basic

characteristics:

• Required effort in terms of person-days needed to complete each task

• A specified order for processing the tasks

Chapter

Chapter 16 Task Scheduling

290

Some person or a group of people must perform each task. In software

activity scheduling, the tasks should initially be broken down to a level

where each task may be assigned to one person. This strategy allows the

effort to be measured in terms of person-days or person-months. The tasks

are also ordered in that some tasks will have prerequisite tasks that must be

completed prior to their initiation. Tasks sometimes may be carried out in

parallel. In that case, the parallel tasks are independent of each other and

thus may be performed simultaneously.

The project tasks may be represented in a simple table like Table 16.1.

The project represented in Table 16.1 is composed of five tasks: A, B, C,

D, and E. There is a sequential order of tasks starting with A. Tasks B and C

may be performed in parallel after the completion of A. However, Task D

cannot start until both B and C are completed. The last task, E, cannot start

until D is completed.

The total effort required is 40 person-days. If each task is assigned to

one person and performed without any parallelism, then this project would

take a total of 40 elapsed days. In project management, of course, one is

always looking to minimize the schedule. Thus Tasks B and C may be

assigned to two different people and performed in parallel. This strategy will

shrink the total time for the project to 35 days, because Task C still takes 7

days even though it overlaps with the 5 days required for Task B.

This tabular representation of tasks may be easily converted into a

graphical task network representation. A graph is commonly defined as a set

of nodes and edges where an edge connects two nodes. Our graphical net-

work representation of tasks here may be viewed as a directed graph. For

deeper mathematical discussions on graphs, ordering, and algorithms, please

consult Donald Knuth’s book listed in the “Suggested Reading" section of

this chapter. There are really two paths if one were to represent the project in

Table 16.1 Task Sequence/Effort Table

Immediate Effort
Tasks prerequisite tasks (Person-days)

A None 9

B A 5

C A 7

D B,C 11

E D 8

a graphical task network form as in Figure 16.1. This diagram assumes that

Tasks B and C are carried out in parallel, and the task network representation

depicts the task ordering a little more clearly. The tasks are labeled inside the

nodes, and the effort required to complete each task is placed on the arrow

after that task. Thus the 9 days on the arrow leading from Task A to Task B

represents the 9 person-days effort required to complete Task A. A special

node, End, is included to accommodate the task effort arrow of Task E.

CRITICAL VERSUS NONCRITICAL PATHS

The dotted line in Figure 16.1 shows the longer of the two paths—that is, the

maximum-length path for this particular project. The maximum-length path

in a task network is also called the critical path. The critical path is defined

as the path that takes the most time units to complete.

Critical path The path that takes the most time units to complete.

As an example, consider the tasks in Figure 16.1 as program modules

that must be coded and unit-tested prior to the beginning of functional test-

ing. Although modules A, B, C, D, and E must all be completed before the

functional testing starts, the path that includes program modules A, C, D,

and E is the critical path because it is the longer of the two paths. Any delay

Critical Versus Noncritical Paths

291

Task
B

Task
C

Task
D

Task
E

Task
A

End

9
5

11 8

7
9

Figure 16.1 Graphical representation of tasks from Table 16-1

in completing module A, C, D, or E will delay the start of functional testing.

In contrast, a small delay in completing module B (not more than two units)

will not delay the start of the functional testing.

The required total elapsed time for the project may be estimated by

adding together the effort estimates of all tasks lying on the critical path.

This summation answers the question, “How long will the project take?" In

the case represented by Figure 16.1, the dotted-line path requires 35 days, so

the project will require 35 elapsed time units at minimum.

The tasks that reside on the critical path are called critical activities or

critical tasks. For the project managers to reduce the total elapsed time for

the project, at least one of the critical tasks must be completed in less time.

Similarly, any delay to or lengthening of a critical task’s time of completion

will elongate the critical path, thereby delaying the project’s completion.

Critical task (critical activity) A task that resides on the critical path.

There may be more than one path that is the longest path—that is, there

may be several "longest" paths that are equal in terms of required elapsed

time. Thus the project may have multiple critical paths. In the case of multi-

ple critical paths, a delay of a critical activity on any one of the multiple

critical paths will delay the entire project. If the elongated critical task is

unique to one of the multiple critical paths, then the result of that task elon-

gation is the creation of a new unique critical path.

A noncritical path is shorter than the critical path in that the sum of the

efforts of all activities on a noncritical path is less than the total effort for

the critical path. In Figure 16.1, the only noncritical activity is Task B,

because it is the only activity that resides on a noncritical path and does not

simultaneously reside on a critical path.

Noncritical path Any path that is not a critical path and thus takes less

effort (e.g., time) to complete than the critical path.

Noncritical task (noncritical activity) Any activity that resides on a

noncritical path, which may accept some delay in completion, but does

not also reside on a critical path. Note that a task that resides on both a

critical path and a noncritical path is a critical task.

Thus the activities residing on a noncritical path are defined as noncriti-

cal tasks. These noncritical activities may be delayed somewhat without

affecting the actual project completion time. Consider the noncritical Task B

in Figure 16.1. Its completion may be delayed up to two days without affect-

Chapter 16 Task Scheduling

292

ing the project completion time. In scheduling the complete set of project

tasks, there is usually some room for setting the start and end times of these

noncritical tasks without affecting the project as a whole.

FORWARD- AND BACKWARD-PASS
SCHEDULING OF TASKS

There are two major ways to schedule activities:

• Early start (ES) and early finish (EF)

• Late start (LS) and late finish (LF)

Consider Table 16.2, which is a continuation of the previous example.

The tasks are now shown with their earliest possible start time (ES) and cor-

responding earliest possible finish time (EF), while preserving the existing

precedence and order relationships.

In early start/early finish scheduling, a forward pass is taken through the

project tasks. All tasks are started as early as possible and thus all end as

early as possible. Table 16.2 begins by scheduling Task A, which takes 9 time

units to complete. Note that while Task B is actually completed at time unit

14 (shown with an asterisk in Table 16.2), the beginning of Task D must wait

for the completion of Task C, which is not finished until time unit 16. Thus

starting Task B later does not affect the project as a whole. Delaying Task

B’s completion by two or fewer time units will not affect this project’s

overall schedule.

The same project may be scheduled with the late start/late finish

approach, as shown in Table 16.3.

Forward- and Backward-Pass Scheduling of Tasks

293

Table 16.2 Early Start/Early Finish Scheduling

Task Task Earliest possible Earliest possible
Tasks precedence length start time (ES) finish time (EF)

A None 9 0 9

B A 5 9 14*

C A 7 9 16

D B,C 11 16 27

E D 8 27 35

The late finish and late start times are established by taking a backward

pass through the tasks of the project. From Table 16.2, it can be seen that the

last task, E, ends at time unit 35. One may also look at the critical path of

the project and determine the total project time; the total project time units

can also be used as the end time of the project. Working backward from that

end point, 35, Task E must start at time unit 27 because it takes 8 time units

to complete. Task D, which precedes E, thus must end at time unit 27 and

start at time unit 16. Tasks B and C must both end at time unit 16. Continu-

ing the backward tracing of the task network, Task B does not need to start

until time unit 11 (shown with an asterisk in Table 16.3), while Task C must

start at time unit 9. Finally, to start Task C at time unit 9, Task A must finish

at time unit 9 and start at time unit 0. Task A, for its LF time, chose the ear-

liest LS times of its successors. That is, when choosing between LS time unit

9 of Task C or LS time unit 11 of Task B, Task A should pick 9. In late

start/late finish scheduling, any task faced with multiple choices for its late

finish time should pick the earliest of the late start times of its successors.

Using late start/late finish scheduling, Task B, which is the noncritical

activity in this project, may start as late as time unit 11 and not affect the

overall project schedule. Compare the start time of Task B in this case, which

is at time unit 11, to that in Table 16.2, which is at time unit 9. There are two

units of time difference—the same two time units of delay discussed earlier.

SLACK TIMES

Total Slack Time

In our example, Task B has two time units of freedom. This period is called

its total slack time. The total slack time of an activity is defined as the differ-

Chapter 16 Task Scheduling

294

Table 16.3 Late Start/Late Finish Scheduling

Task Task Late start Late finish
Tasks precedence length time (LS) time (LF)

A None 9 0 9

B A 5 11* 16

C A 7 9 16

D B,C 11 16 27

E D 8 27 35

ence in start time between a noncritical task’s LS time and its ES time. It is

the difference between the latest time at which a noncritical task can start

and the earliest time at which it can start. Note that total slack time is only

applicable to noncritical activities, because there cannot be any difference in

start times for critical tasks.

The slack time of a task is defined as follows:

Total slack time of a task = LS – ES

or
Total slack time of a task = LF – EF

Total slack time of an activity The difference in start time between a

noncritical task’s late start time and its early start time or its late finish

time and early finish time.

Total slack time The maximum allowable delay that can occur for all

noncritical activities.

The difference between the LS and ES for a noncritical task is the same

as that between its LF and EF. In the current example, the only noncritical

activity is Task B. The total slack time of activity B is either LS – ES (11 – 9)

or LF – EF (16 –14). In either case, the difference is two time units.

In project scheduling, the total slack times of the various noncritical

tasks provide a certain degree of freedom in starting and completing those

tasks. Once its total slack time is used up, however, a noncritical activity will

turn into a critical activity.

Free Slack Time

Sometimes software project managers need to know whether a noncritical

task with a nonzero total slack time can actually be delayed without affect-

ing the start time of its immediate successors. Consider the case of a noncrit-

ical path that contains several tasks, whose individual total slack times are

all nonzero. Delaying a task that has a total slack time of x by x amount of

time may delay the start time of some immediate successor task, which may

in turn negate any total slack time that was available for that successor task.

Conversely, if using up the total slack time of a task by delaying that task,

does not affect the start times of its immediate successor activities, then that

total slack is considered free slack time.

Slack Times

295

Free slack time of an activity Amount of time that an activity can be

delayed without affecting the start times of any of its successor activities.

To see how this works, let’s return to our example. The total slack time

of Task B is two time units. Delaying Task B by two or fewer units will not

affect the early start time of any of its successors. In this example, Task D is

the only successor, and Task D’s early start time will not be affected by B’s

two-unit delay. Thus the two time units may be considered the free slack

time for Task B.

The free slack time of a task is defined as follows:

Given a noncritical task X,

Free slack time of X = ES (of the earliest successor of X) – EF of X

The definition of free slack time of a task X requires one to pick the ear-

liest ES time from the ES times of all of the immediate successors to X. If X

had only one successor activity, then the ES time of that task would be used

in the computation of free slack time.

In the task network of Figure 16.2, the critical path includes three activi-

ties: A, C, and F. Those activities require a total of 30 time units. The two

other paths, A–B–D–F and A–B–E–F, have total times of 23 time units and

25 time units, respectively. Only Tasks B, D, and E are noncritical tasks and

may have any total slack time or free slack time.

Chapter 16 Task Scheduling

296

Task A
10

Task C
15

Task E
5

Task F
5

Task B
5

Task D
3

Note: The task completion time units appear inside each circle shown in Figure 16.2.

Figure 16.2 Task network

We can convert Figure 16.2 to a tabular form to show both the ES-EF

and LS-LF data. Such a table will make the computation of total slack time

and free slack time easier to comprehend.

The three noncritical tasks of B, D, and E may all have total slack time

and free slack time. Following are the computations for each of these non-

critical tasks.

For Task B:

Total slack time = LS – ES = 15 – 10 = 5

Free slack time = earliest successor ES – EF of Task B = ES of Task D –

EF of Task B

= 15 – 15 = 0

For Task D:

Total slack time = LS – ES = 22 – 15 = 7

Free slack time = earliest successor ES – EF of Task D

= ES of Task F – EF of Task D = 25 – 18 = 7

For Task E:

Total slack time = LS – ES = 20 – 15 = 5

Free slack time = earliest successor ES – EF of Task E

= ES of Task F – EF of Task E = 25 – 20 = 5

Task B has two successor tasks, D and E. In this case, both D and E have

the same ES, which is 15. Thus either Task D or Task E may be used in the

Slack Times

297

Table 16.4

Early Start/Early Finish and Late Start/Late Finish Data

Corresponding to Figure 16.2

Task Task
Tasks precedence length ES EF LS LF

A None 10 0 10 0 10

B A 5 10 15 15 20

C A 15 10 25 10 25

D B 3 15 18 22 25

E B 5 15 20 20 25

F C, D, E 5 25 30 25 30

preceding computation of Task B’s free slack time, Task D’s ES was used. If

the ES of Task D and the ES of Task E differed, then the earlier of the two

ESs would have been chosen. For Task B, even though the total slack time is

5 time units, there is no free slack time. Delaying the completion of Task B

will affect the early start time of its earliest start successor, which, in this

case, includes both Task D and Task E. Thus delaying Task B may not be a

good idea until the effects on its successor tasks are assessed.

Consider the situation in which Task B is completing a key module,

Task D is conducting a performance test, and Task E is conducting a user

interface test. Without getting into the exact time units and scheduling,

one can see that the effect of a delay to user interface testing, Task E,

will be larger because it usually involves a longer and more complex

testing effort.

Task D has a total slack time of 7 time units and a free slack time of 7

time units. Thus delaying task D’s completion by 7 or fewer time units will

not delay any of its successors’ early start times. Similarly, Task E has a total

slack time of 5 time units and a free slack time of 5 time units. Delaying the

completion of Task E by no more than 5 time units will not delay any suc-

cessor’s early start time. When the total slack time of a noncritical task is the

same as its free slack time, that activity may be delayed by the total slack

time units without further considering the effect on its successors. In this

example, both D and E have their total slack times equal to their free slack

times, so these tasks’ completion times may be delayed by their respective

free slack times.

IMPROVING ESTIMATIONS: THE PROGRAM
EVALUATION AND REVIEW TECHNIQUE

Each task’s estimated effort plays a crucial role in the overall task network

and scheduling. The computations of start and finish times, slack time, and

free slack time all heavily depend on the initial estimation of the effort (time

units) required to complete the tasks. The more accurate the estimation, the

more meaningful the task scheduling.

There are many ways to improve these kinds of estimates. For instance,

one can create a range of estimates for each task and then take the average

of the range estimates. This technique of averaging the ranges eliminates

some of the variability of the estimates.

Chapter 16 Task Scheduling

298

For example, our estimates for a Task X may be obtained by consulting

three experts. Suppose these experts give us the following three estimates: 6 time

units, 9 time units, and 3 time units. Which estimate should we use? We can

choose the middle one to minimize our risk. One way to choose the “middle"

one is to take the average of the three estimates: (3 + 6 + 9)/3, or 6 time units.

One specific averaging method is called the Program Evaluation and

Review Technique (PERT). PERT was developed as part of a U.S. government

program associated with the U.S. Navy’s Project Office in the 1950s. This

technique utilizes three estimates for a task: the most optimistic estimate, the

most pessimistic estimate, and the most likely estimate of the task. These

three estimates are then manipulated to provide an expected estimate of a

task as follows:

Expected estimate = [O + P + (4 ✕ A)]/6

where

O = most optimistic estimate

P = most pessimistic estimate

A = most likely to happen estimate

Program Evaluation and Review Technique (PERT) An estimating

technique that assumes each activity duration is subject to a range of

estimates and uses a weighted averaging method to arrive at a specific

duration figure.

Using the expected estimates of all critical path tasks, PERT will provide the

expected project time as the sum of the expected estimates of the critical tasks:

Expected project time = SUM (EE of critical task)

where

SUM = summation function

EE = expected estimate value of the task effort unit

Software project managers should keep in mind that all three of the esti-

mates used with the PERT methodology are just that—estimates. That is, they

are only as good as the Work Breakdown Structure activity performed dur-

ing the project planning phase. The final expected estimate is just a weighted

average of these component estimates.

Improving Estimations: The Program Review and Evaluation Technique

299

REDUCING SCHEDULES: THE CRITICAL PATH
METHOD

Once the project schedule is estimated, the software project manager may be

faced with an unacceptable project end date. Because the critical path deter-

mines the project schedule, it makes sense to review the critical tasks to

determine whether any one of them might have its required time units

reduced. With software project tasks, the most popular time reduction method

is to apply more human resources to a task to trim its schedule. It is also pos-

sible that one will not find any critical task whose task length can be reduced.

A Word of Caution

Software project managers must always heed the age-old warning: Do

not blindly increase human resources in software projects. More often

than not, the introduction of new people into an ongoing software

project will actually extend the project time. As Fred Brooks has

pointed out in his book The Mythical Man-Month, the addition of new

resources to an already-delayed software project must be undertaken

with care. New personnel will often require education and information

updates from the very people whose time is most critical to the project.

To reduce the schedule for a particular activity by applying more peo-

ple to it, that task must have independent portions that may be broken

out and assigned to multiple people. In a sense, that task must be

decomposable into several independent subtasks.

Assume that there are several critical tasks whose schedules might be

shortened without incurring many negative effects to the project as a whole.

Now the software manager faces a choice: Which one should he or she pick

as a target? One strategy is to consider the cost required to reduce the task

length. Specifically, the critical path method (CPM) reviews all critical tasks

whose schedules may be reduced by comparing the cost-to-effort ratios of

those tasks.

Critical path method (CPM) A procedure for estimating the trade-offs

between project duration or schedule and project cost.

The effort will be expressed in terms of time units here. This ratio is

expressed in the form of a cost slope, which is defined for each critical task

as follows:

Chapter 16 Task Scheduling

300

Cost slope for Task J = |CJ – CJ´| / |TJ – TJ´|

where

CJ = cost of the resource to perform Task J

CJ´ = cost of the resources to perform Task J with “improved" time

TJ = time required to complete Task J

TJ´ = “improved" time required to complete Task J

Here the absolute value is used so that the negative slopes will be con-

verted to positive values.

In Figure 16.3, a critical task J has its task time reduced from TJ to TJ´,

and there is a corresponding increase in cost from CJ to CJ´. The cost slope

for Task J is depicted by the relative increase in cost, (CJ – CJ´), divided by

the relative decrease in time or effort, (TJ – TJ´). To avoid the use of negative

numbers, one may use the absolute values.

The cost–time or cost–effort relationship for all critical tasks should be

investigated if the goal is to trim the project’s schedule. The CPM technique

assesses these critical tasks and attempts to improve the overall project

schedule by following these steps:

1. Compute the cost slope for each critical task whose time needed for

completion may be reduced.

2. Pick the critical task with the lowest cost slope, as it will be the most

cost-effective to trim, and apply the necessary resources.

3. Remove the critical task picked in Step 2 from consideration as a

future pick.

Reducing Schedules: The Critical Path Method

301

Cost

Time

(Cj′, Tj′)

Cj

Cj′

(Cj, Tj)

Tj′ Tj

Figure 16.3 Cost-time network

4. Ask whether the desired project schedule is achieved with the applica-

tion of additional resources to the just-picked critical task.

5. If the desired project schedule is achieved, then stop. Otherwise, repeat

Steps 1–4 until the desired result is reached or until all critical tasks

are exhausted.

In applying the CPM, the software project manager might potentially

find a way to break a critical task down into a series of subtasks that may be

performed by multiple personnel. This change—breaking a critical task into

multiple tasks—can, in turn, cause another path to become the critical path.

CREATING A CALENDAR SCHEDULE

The tasks and the project schedule need to be ultimately converted into a

calendar format. This calendar schedule, which will show weekends, holi-

days, and other pertinent dates, will be the preferred form from which the

software project managers will conduct their monitoring and adjustment of

the schedule. Once the tasks are laid out in calendar form, the managers may

decide to adjust the schedule even further. For example, they might decide

that implementation of some tasks may overlap. Of course, this adjustment

must be done with a careful review and understanding of the details of each

particular task.

There are many automated calendar/schedule tools—for example,

Microsoft’s MS Project, Primavera’s SureTrak Project Manager, ProChain

Solutions’ ProChain Project Scheduling, and Smartdraw’s Business and

Charting software—that software project managers may use to facilitate cre-

ation and manipulation of the schedule. Currently, MS Project is the most

popular software tool in project management.

Each manager needs to decide how much effort he or she wants to put

into choosing/using tools and how much effort he or she wants to put into

analyzing the schedule. The analysis of the schedule is a critically important

aspect of management. The actual manipulations of databases and figures in

a timeline or calendar tool may be relegated to some administrative support

personnel, however. Certainly, the schedule adjustment process is made

much easier with an automated tool. At the same time, because these

tools facilitate making changes, software project managers must be extra

careful and thoroughly think through all consequences before tweaking

the schedule.

Chapter 16 Task Scheduling

302

Table 16.5 shows an example of a calendar. It illustrates the assignments

of tasks, people to their tasks, and planned task lengths given in days.

The calendar schedule is expressed down to the specific day of the week.

Weekends are not included as work days in the schedule. Also, any known

personal vacation day, such as the second Friday for Jill in Table 16.5, is

noted in the schedule. After looking at the people assignments, the software

project managers may further adjust the initial task length estimate to better

fit the productivity rate of each person. The supposedly “final" schedule may

still need adjustments when viewed in the calendar form, so the software

project managers should demand that the tabular and network graphical rep-

resentations of the tasks schedule be converted to this form.

■ KEY CONCEPTS

The result of the Work Breakdown Structure activity is a project task net-

work, which may be depicted in either a tabular or graphical representation.

The graphical representation allows for easier viewing and spotting of differ-

ent task paths, including critical paths. The tabular representation allows for

easier representation of scheduling results.

Both forward- and backward-pass scheduling methods are employed

with software projects. Two approaches are possible, based on the task start

and end times:

• Early start and early finish

• Late start and late finish

Creating a Calendar Schedule

303

M MT F S SThW T F S SThW M T FThW

Tom

Sally

Jill

Tom

Sally

A

B

C

D

E

Activity Team
member

Days of Week

Table 16.5 A Calendar Schedule

A critical path is the path—the series of tasks—that takes the most time

units to complete. A noncritical path is necessarily shorter than the critical

path. For noncritical tasks, the possibilities of schedule delay or slippage can

be examined by computing two measurements: total slack time and free

slack time. A task that has free slack time may be delayed without causing

any delays to its successor activities.

In an attempt to improve the estimation of effort for each task, the Pro-

gram Evaluation and Review Technique (PERT) was developed in the 1950s.

With PERT, one takes a weighted average of the most optimistic estimate,

the most pessimistic estimate, and the most likely estimate to develop the

expected estimate of the effort needed to complete the project as a whole.

Another technique seeks to improve the overall schedule by assigning

more resources to shorten the time required to complete critical tasks. The

critical path method (CPM) assesses the potential cost of trimming the sched-

ules for the various critical tasks (by improving the cost slope of each critical

task), enabling software project managers pick the best option. This process

continues until the desired project schedule is reached.

The project schedule should be placed into a graphical bar chart form so

that it is easier to view and any further adjustments may be easily made.

■ EXERCISES

1. Can a noncritical path include a critical task? Show an example.

2. Can a critical path include a noncritical task? Show an example.

3. For the task network shown in the diagram below, perform the following:

a. Identify the critical path.

b. Develop a table that shows the early start, early finish, late start,

and late finish for all tasks.

Chapter 16 Task Scheduling

304

Task B
5 days

Task A
2 days

Task D
5 days

Task E
6 days

Task F
5 days

Task C
2 days

4. Using the diagram in Exercise 3, compute the total slack time and free

slack time for the following:

a. Task D

b. Task B

c. Explain your answers.

5. Explain how the PERT method reduces the risk in estimation.

6. Suppose that the cost of reducing 1 day of effort from each of the tasks

in the above diagram in Exercise 3 is represented as follows:

Task A—$1,000, Task B—$1,200, Task C—$900, Task D—$500, Task E—

$850, Task F—$1,800

Based on the CPM methodology, which task will be a candidate for

first round of schedule reduction?

7. Transform the task diagram in Exercise 3 to a calendar schedule simi-

lar to that in Table 16.5 (include week ends) based on the following

Task–People assignments:

Task A—Jill, Task B—Tom, Task C—Jill, Task D—Sam, Task E—Susan,

Task F—Ken

a. Assuming that the people can be interchanged in the performance

of tasks, do you need to employ all these people?

b. Rework the calendar schedule to use the minimum number of

employees without elongating the schedule.

c. If Task B were a special task that only Tom could perform, then

what would your calendar schedule look like?

■ SUGGESTED READING

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1975.

K. A. Cori, “Fundamentals of Master Scheduling for the Project Managers,"

in R. H. Thayer, ed., Software Engineering Project Management, 2nd ed.,

IEEE Computer Society, 1997, 171–182.

C. F. Gray and E. W. Larson, Project Management: The Management Process,

Irwin McGraw Hill, 2000.

D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental

Algorithms, 3rd edition, Addison Wesley Longman, 1997.

J. M. Nichols, Project Management for Business and Technology: Principles

and Practice, Prentice Hall, 2001.

K. A. Smith, Project Management and Teamwork, McGraw Hill, 2000.

Suggested Reading

305

This page intentionally left blank

307

17
Effort Estimation

Chapter Objectives

This chapter discusses the following concepts:

• How informal effort estimation techniques are used

• How a general estimation model works

• How the original COCOMO estimation technique fits within the context

of the general estimation model

INFORMAL EFFORT ESTIMATION

Effort estimation is an essential part of all project planning. Estimation of

any kind of work that involves some amount of design is more of an art

than a science, however, because so many parameters affect the actual esti-

mation that it is almost impossible to have considered all cases. The first

question is, “What are the relevant parameters that affect the work being

estimated?" Even if all possible parameters are considered, still more ques-

tions may remain unresolved, including the following:

• How much does each parameter contribute to the total effort estimation?

• How can the amount of each parameter’s contribution be converted into

some numerical form?

• How do the parameters affect one another?

• How would these effects be combined?

Chapter

Chapter 17 Effort Estimation

308

The software industry and software project managers face this same set

of questions, all of which point to the lack of good metric definitions related

to estimations. Historically, software project managers have based many of

their estimates on some form of “consulting the expert":

• Consult other peer managers who have past experience in the work

• Engage consultants who have experience in similar work

• Draw analogies to past projects that seem to have similar characteristics

• Break the project down into its various components and ask the compo-

nent owners to provide estimates based on their experience and knowl-

edge of their own specific work area; then combine their estimates into

an overall project estimate

For many software project managers, this practice of consulting the

experts and using past experience has worked well. These managers are for-

tunate, because in many other cases the software project lacks any clear

precedence. Also, many of the experts or people with extensive past experi-

ence are not always available to the software project managers. Experienced

managers—and especially those who are able to retain their key team players

from project to project—will continue to draw upon their past experience and

utilize this informal approach to effort estimation.

A more precarious situation arises when a particular target goal is

“handed" to the project team. This goal may come from the customers, from

the organization’s executives, or from the marketing organization. Examples

of goals include the following:

• The project must be completed by a certain date.

• The project must be completed within a certain budget.

When these types of goals are “mandated," they often do not include

much detail. For example, the goals may not necessarily allow for variations

in the expected functionality. Thus they may be distorted forms of informal

estimations of effort that are simply handed to the software project teams.

When this happens, the result is almost predictable: The project usually

misses the goal. Alternatively, the mandated goal may be met, but the prod-

uct functionality or product quality target may be missed. In addition, some

negative project attributes, such as exhausted employees and a demoralized

team, may creep in and turn into a sudden outburst of mass team resistance.

(Readers who are interested in additional examples and deeper analysis

should refer to the Standish Group report mentioned in the Introduction or

Capers Jones’s book, Patterns of Software Systems Failure and Success,

listed in the “Suggested Reading" section at the end of this chapter.)

GENERAL ESTIMATION MODEL

It is important to have as accurate an estimation of effort as possible. The

effort estimate is used as the input for estimating other key project parame-

ters, such as schedule and resources. These estimates all play a vital part in

the project planning phase of POMA.

In software estimation, several models have been developed to push and

improve the state of the art. That is, several groups of software researchers

have constructed effort and cost estimation models. To date, these models

have produced mixed results and encountered mixed receptions.

Software effort estimation model A set of information and relation-

ships organized for the purpose of estimating the effort needed to com-

plete a software project. The information and the values assigned to the

information may vary from project to project. Similarly, the relation-

ships may be organized into a mathematical equation, which may vary

from project to project.

Most of the models use the following general form, or its derivative, to

estimate effort:

Effort = (a + [b ✕ (Sizec)]) ✕ PROD(ƒ’s)

where

a, b, c = statistically derived coefficients or best approximations

Size = estimated size of the project

ƒ’s = factors that influence the project estimates

PROD(ƒ’s) = the product of arithmetically multiplying those factors

Many software engineers and researchers have studied a variety of proj-

ects from different disciplines in an attempt to find the best estimation

model. The coefficients a, b, and c were derived by fitting the best curve

against known data for the Effort and Size parameters for those projects.

Effort is usually the amount of person-months expended on a project. Size is

usually the number of lines of code created as part of the project.

General Estimation Model

309

Figure 17.1 shows two cases with the same set of data points. In one sit-

uation, the coefficient c is estimated as 1, and the estimation equation

becomes a linear one. In the second situation, c is estimated to be larger than

1, and the estimation equation becomes nonlinear.

The relationship between the Size and Effort parameters was first estab-

lished without a clear understanding of the other factors that affect the effort

required to complete a project. In the early days, experienced managers

would estimate the project size from past experiences and then do a mental

calculation of effort required, based on that particular team’s productivity

history. This “mental calculation" took into account the various factors that

affect the productivity (ƒ ’s) and the a, b, and c coefficients that determine

the shape of the curve.

The Size Factor

The estimation of project size starts the process of effort estimation. This fac-

tor provides a feel for the magnitude of the product as well as the project.

Unfortunately, the size estimate continues to be a source of contention, for

several reasons.

First, the Size metric itself is a problem. If it is measured in terms of

“lines of code,” there must be a clear definition of and agreement on what a

line of code is. This topic has generated debate within the software commu-

nity for years and certainly has introduced everyone to the variations possi-

ble in the definition of a line of code.

Chapter 17 Effort Estimation

310

Effort
(person-
months)

Size (000 lines of code)

Estimating with
nonlinear equation

Estimating with
linear equation
where c is
equal to 1

Figure 17.1 Effort estimation

How Do You Define Lines of Code?

Although “lines of code" as a metric for software size has spurred

many debates, it continues to be used by many software project man-

agers. This metric is also the one with the longest history, despite the

objections raised to it.

One objection focuses on whether a line of code should include only

executable code. If so, how do we handle comments included in the

code for clarity and documentation purposes? Certainly, some work is

required to write meaningful in-line documentation, and that effort

should be part of the effort estimation.

Another area of controversy centers on the programming language. Is

a line of code written in the assembler language the same as a line of

code written in C++ or JavaScript? The effort required to develop a

function with assembler language versus a high-level language is

surely different. How do we account for that difference in a line of

assembler language code and a line of code in high-level language? Is

there a convenient and acceptable conversion table?

A third debate considers whether a line of code is a physical line, like a

line of text in a book, or a logical line, where the end of the line is deter-

mined by the specific end-of-line delimiter defined by that language.

These debates have prompted software engineers to seek “better" met-

rics for software Size.

More recently, function points have been introduced as a possible alter-

native for the Size parameter. The reference materials listed at the end of this

chapter offer further discussions of lines of code and function points as met-

rics for software development effort.

How Do You Define a Function Point?

A “function point" is a metric for measuring the size of software, pro-

posed as an alternative to the lines-of-code metric. First proposed by

Allan Albrecht, it estimates the amount of functionality, as opposed to

the number of lines of code used, in the software.

General Estimation Model

311

Briefly, the value of a function point is estimated by following this set

of guidelines:

1. A value is assigned to each of five attributes—inputs, outputs,

inquiries, master files, and interfaces—in the software. These five

attributes represent the five functional components of a software,

and each is assigned a weight. The value assigned to each attribute

is then multiplied by the respective attribute weight. The weighted

attributes are summed to give an initial estimate of function points,

called the unadjusted function point.

2. Fourteen factors related to the software are used to adjust the initial

estimate. These factors include considerations such as portability,

reusability, performance criteria, and distributed data needs. Each

factor is assigned a value ranging from 0 to 5. The sum of the values

of these factors multiplied by 0.01 plus a constant value of 0.65 is

used to adjust the initial estimate (i.e., the unadjusted function

point). This sum, which is called the total complexity factor, may

range from 0.65 to 1.35. The lowest value, 0.65, is the result of all

14 factors taking on the value of 0: total complexity factor = 0.65 +

[0.01 ✕ (0 ✕ 14)]. The highest value, 1.35, is the result of all 14 fac-

tors taking on the value of 5: total complexity factor = 0.65 + [0.01

✕ (5 ✕ 14)].

3. The function point is computed by multiplying the unadjusted

function point and the total complexity factors. One may view the

function point estimate of a software as the unadjusted function

point estimate that has experienced a 14-factor adjustment. The

unadjusted function point may go through as much as a 35% up or

down swing as a result of multiplying it by a value between 0.65

and 1.35.

To promote and ensure that the function-point estimates, and espe-

cially the 14 factors, are performed with consistency and accuracy, a

nonprofit organization called International Function Point Users Group

(IFPUG) provides education about and certification of function-point

estimators. Consult the IFPUG Web site (www.ifpug.org) for further

information.

Chapter 17 Effort Estimation

312

www.ifpug.org

Aside from reaching agreement on how to define Size and which metric

to use, software project managers must recognize that estimating project size

is no easy task. If the project size estimation will be performed with just a

high-level set of requirements, most software project managers will utilize

the “consult the expert" approach or depend on their own past experiences.

Most of the effort estimation takes place during the planning phase, long

before any code is actually written. Sometimes code prototypes may be cre-

ated for a small portion of the project solely for the purpose of estimating

the size of the final product. Thus estimating the size of the project for the

Size parameter in the general effort estimation equation can start to look as

difficult as estimating the effort itself.

Other Factors Affecting Project Effort

In addition to the project size factor, the effort required to accomplish a

project depends on the conditions under which the project is being under-

taken. For example, many software project managers know from experience

that programmer productivity is a key factor but can be highly variable.

Thus the team’s membership is a critical criteria. The software development

and support processes will also affect the effort. For example, a process that

includes three levels of testing (e.g., functional, component, and system test-

ing) will require more work, and therefore more effort, than a process that

includes only functional and system testing. The maturity of the organiza-

tion, as measured in terms of its working with an established process, is

another important factor. The type and amount of tools used for the project

may significantly influence the team’s productivity as well. Certainly, the

attributes of the end product, besides its size, are important. For example, if

a certain new technology must be part of the end product, then much more

risk—and possibly more effort—is involved.

All of the preceding factors—the ƒ ’s in the general effort estimation

equation—affect the project, and thus they must be considered when the

software project managers are estimating the effort required to complete that

project. Having a standard list of factors to be considered for estimation

would generally help them in this endeavor for two reasons:

• A list will serve as a reminder.

• A list will bring some consistency to what the software project managers

consider.

General Estimation Model

313

Once the list of factors is established, the next issue is to assign values

to these factors. Unfortunately, a parameter that one manager considers to

be highly relevant may not be seen in the same way by another manager. A

particular tool may be viewed as extremely important by one manager, while

a second project manager may consider the key personnel issue to be more

important. Thus the team needs a methodical way to interpret each situation

and assign values to these factors in a consistent manner.

The influencing factors (ƒ ’s) may also be interrelated. The question of

how to account for the combined effects of all of these factors continues to

pose a perplexing challenge. Depending how we want to combine the effects,

we may assign values to the factors differently. In the general effort estima-

tion equation, the arithmetic multiplication operation is used as the integra-

tion mechanism to combine the relevant factors. If a factor is given a value

of 1 when it is considered to have only a nominal effect on the project,

given a value greater than 1 when it results in more effort, and given a posi-

tive fractional value when it saves effort, then “multiplying" the factor val-

ues may be the correct operation. Conversely, if one assigns the value 0 as

the nominal case, some positive value when the factor affects the project

negatively (more effort), and some negative value when the factor affects the

project positively (less effort), then “adding" the factor values may be the

better operation. If the multiplication operation was utilized for this second

case, then there is a chance of getting a result of zero for the effort when

only one factor is zero. That is, the combined effect of all the factors will be

deemed “nominal," even though that most likely is not the case. The integra-

tion operation of the multiple factors and the assignment of values to these

factors must be carefully considered for one to adopt and adapt the general

effort estimation equation for a specific project.

Most of the estimation formulas follow the general equation given ear-

lier, in which the factors are multiplied. The nominal situation where the

factor is considered to be nonessential is given the value 1. The multiplica-

tive product of all influencing factors will be greater than 1 when the cumu-

lative effects of all factors are negative (more effort). In such a case, the

estimated project effort will exceed the effort in the situation in which only

the size of the project is considered. Conversely, when these factors are a

positive influence on the project, the multiplicative product of the factors

should be less than 1. In this case, the total estimated project effort, after

multiplying by a fraction, will be less than the effort in the situation in

which only the size of the project is considered.

Chapter 17 Effort Estimation

314

THE COCOMO EFFORT ESTIMATION MODEL

One specific example of the general effort estimation equation and method-

ology is Barry Boehm’s estimation technique, called the Constructive Cost

Model (COCOMO), which Boehm developed and initially tested with more

than 60 projects at TRW. COCOMO has been used by a number of software

project managers, especially those in the aerospace industry and those work-

ing on government projects. Boehm’s first model was introduced in the early

1980s, and it has since gone through several versions. The basic concept has

not changed, however, and the variations on the original model still follow

the same general formula. In this chapter, the original model will be dis-

cussed to demonstrate how it conceptually works.

COCOMO includes three levels of models: a macro estimation model, an

intermediate-level model, and a more detailed, micro estimation model. The

intermediate-level model is used as an example here.

The general process of using COCOMO is as follows:

1. Pick an estimate of what would be considered the “nominal" develop-

ment effort of the project. The “nominal" effort may be viewed as the

“typical" mode of development. Three nominal project modes are

defined: Organic, Semidetached, and Embedded. These three project

mode names were given by Boehm and are further defined and

explained in the next section and in Table 17.1.

2. Pick an estimate of the size of the project to use for the Size parameter.

3. Review the factors that influence the project, called cost drivers, and

estimate the appropriate amount of influence that each factor will have

on the chosen “nominal" case.

4. Determine the effort for the software project by inserting the estimated

values into the Effort formula.

Identify the Nominal Mode of Development

The three nominal modes of development (Organic, Semidetached, and

Embedded) are used to initially determine the type of project that is under

consideration. The following key project characteristics are used to differen-

tiate between the modes:

A: The team’s understanding of the project objective

B: The team’s experience with similar or related projects

The COCOMO Effort Estimation Model

315

C: The project’s need to conform with the established requirements

D: The project’s need to conform with established external interfaces

E: The need to develop the project concurrently with new systems and

new operational procedures

F: The project’s need for new and innovative technology, architecture, or

other constraints

G: The project’s need to meet or beat the schedule

H: The project’s size range

One of the three modes of development is picked as the “typical" case

based on how the project matches up against this set of key characteristics.

Table 17.1 provides a guideline.

The Organic mode consists of projects that are fairly easy and familiar to

the software development team. The Semidetached mode involves projects

that are medium-sized and somewhat familiar to the software development

team. The Embedded mode consists of complex projects that may be unfa-

miliar to the project team. One must be cautious when using these summary

statements, however; they should serve as only a starting point in the deci-

sion process when choosing the most appropriate mode for the project esti-

mate. Table 17.1 provides the actual definitions for these three project

Chapter 17 Effort Estimation

316

Table 17.1

Modes of Development Used in COCOMO

Key project

characteristic Organic mode Semidetached mode Embedded mode

A Detailed degree Considerable degree Only general degree

B Extensive amount Some amount None to modest amount

C Only the basic ones Considerably more All and full conformance

than the basic ones

D Only the basic ones Considerably more All and full conformance

than the basic ones

E Little to some Moderate amount Extensive amount

F None to minimal Some Considerable

G Low Medium Must

H Less than 50,000 50,000 to 300,000 All sizes

delivered lines delivered lines

of code of code

modes, and it should be consulted so that project managers do not just

“guess" at the project modes.

An untrained software project manager might not be able to easily pick

the correct mode. Very few projects’ characteristics will all fall neatly within

any one of the mode categories. Instead, most projects will have key charac-

teristics that will fit within different columns in Table 17.1. The software

project manager would have to do his or her best in estimating the mode of

the project, possibly by picking the column that has the most number of key

project characteristics.

A software organization or a corporation would need to establish a con-

sistent methodology for choosing what it considers the typical mode of the

project. Each key project characteristic must be interpreted in a consistent

way, and what is considered to be the minimal, moderate, or extensive level

for each characteristic needs a more detailed explanation. After a certain

amount of experience in using the definitions, the organization will gener-

ally settle into a consistent usage pattern.

For each of the three modes, a different formula is used for estimating

the Effort:

Organic: Effort (in person-months) = 3.2 ✕ (Size)1.05

Semidetached: Effort = 3.0 ✕ (Size)1.12

Embedded: Effort = 2.8 ✕ (Size)1.20

where Size is expressed in lines of code (loc).

One of the three formulae will be used to perform the preliminary esti-

mate of the effort in person-months. The formula employed will depend on

which mode was chosen as the typical case for the project.

Estimate the Size of the Project

The next step is to estimate the size of the project. This size has traditionally

been expressed in the form of delivered lines of code. As discussed earlier,

the metric of “lines of code" has a long history and has inspired its share of

controversy. Nevertheless, it continues to be used by many software managers.

Other managers have adopted function points as a metric. With this

metric, the coefficients used in the formula need to be modified. There is

much less history with the coefficients in the case of function points, how-

ever, because most of the COCOMO estimates have utilized lines of code.

The COCOMO Effort Estimation Model

317

Nevertheless, an appropriate time to use function points as the size estimate

is when the project is at an early stage and estimating lines of code is much

more difficult.

One potential source of guidance for estimating with function points is

the new COCOMO II model, which is mentioned later in this chapter.

COCOMO II offers an estimation equation in the following form:

Effort = 2.45 ✕ (Size)m PROD(ƒ’s)

Here, the Size estimate may be in either function points or lines of code.

PROD(ƒ’s) is a product of several factors that influence the project, and the

exponent m varies in value depending on the project situation. If the project

is large and there is a lot of communications and integration overhead, then

m > 1. If the project has a high potential for savings due to better tools, bet-

ter processes, or better people, then m < 1. If the project has neither great

overhead nor great savings, then m = 1.

Review and Assign Values to the Cost Drivers

As mentioned earlier, in the original COCOMO model, a set of 15 factors—

known as cost drivers—influences the project. These factors are assigned a

range of values, but then each specific factor needs to be assessed and

assigned a specific value. These 15 factors are listed here by category:

Product Attributes

1. RELY: Required software reliability

2. DATA: Database size

3. CPLX: Product complexity

Computer Attributes

4. TIME: Execution time constraint

5. STOR: Main memory constraint

6. VIRT: Virtual machine complexity

7. TURN: Computer turnaround time

Personnel Attributes

8. ACAP: Analyst capability

9. AEXP: Applications experience

Chapter 17 Effort Estimation

318

10. PCAP: Programmer capability

11. VEXP: Virtual machine experience

12. LEXP: Programming language experience

Project Attributes

13. MODP: Use of modern programming practices

14. TOOL: Use of software tools

15. SCED: Required development schedule

These four categories of factors are considered to be vital factors that

influence the estimation of the efforts required to complete a project. Some

interesting factors, such as virtual machine complexity (VIRT), may have

been important when the COCOMO technique was first introduced but are

less important today.

Cost drivers A set of influential factors used in the cost estimation or

effort estimation of software projects. These factors are usually attributes

that characterize the project team’s expertise and experience; the project

environment such as the process and tools utilized in the project; and

product characteristics such as complexity.

Once the 15 factors are reviewed, there remains the task of assigning a

value to each one of them. The value assignment is based on what type of

influence and how much influence the software project estimator believes each

factor will exert in the typical project case. For example, if the factor is

believed to be neutral, the value assignment is 1. If the factor is believed to

increase the effort required, the value assignment is greater than 1. If the fac-

tor is believed to lessen the effort required, the assigned value is less than 1.

Table 17.2 shows the value assignments for the 15 factors, as made by Boehm.

The ranges of potential values are different for different factors. Like-

wise, the gradations of values are not constant from Very Low to Extra High.

Note that the Nominal column is filled with the value 1. Consider the relia-

bility factor (RELY). If the reliability requirement is Very Low, then it lessens

the effort. Thus the Very Low value for RELY is 0.75. It may be viewed as

75% of the nominal case. Conversely, if the reliability requirement were

High, then that factor would increase the needed effort, so it has a value

assignment of 1.15. This value means that the nominal-case effort would be

increased by 15%. The key point is that assignments of values to the 15 fac-

tors must be consistent within an organization.

The COCOMO Effort Estimation Model

319

Calculate the Effort Estimate

After considering all 15 factors and assigning them the appropriate values,

the factors are multiplied together and then multiplied by the initial Effort

estimate, whether it is Organic, Semidetached, or Embedded. The intermedi-

ate-level COCOMO formula is expressed as follows for the three modes,

where PROD(ƒ’s) is the product of the 15 factors:

Organic: Effort = [3.2 ✕ (Size)1.05] ✕ PROD(ƒ’s)

Semidetached: Effort = [3.0 ✕ (Size)1.12] ✕ PROD(ƒ’s)

Embedded: Effort = [2.0 ✕ (Size)1.20] ✕ PROD(ƒ’s)

After some experience with using the COCOMO formula and comparing

its results with real data, the software project managers may decide to adjust

Chapter 17 Effort Estimation

320

Table 17.2

Value Assignments for the 15 COCOMO Factors

Factor Range of values

Very low Low Nominal High Very high Extra high

RELY 0.75 0.98 1.0 1.15 1.40 —

DATA — 0.94 1.0 1.08 1.16 —

CPLX 0.70 0.85 1.0 1.15 1.30 1.65

TIME — — 1.0 1.11 1.30 1.66

STOR — — 1.0 1.06 1.21 1.56

VIRT — 0.87 1.0 1.15 1.30 —

TURN — 0.87 1.0 1.07 1.15 —

ACAP 1.46 1.19 1.0 0.86 0.71 —

AEXP 1.29 1.13 1.0 0.91 0.82 —

PCAP 1.42 1.17 1.0 0.86 0.70 —

VEXP 1.21 1.10 1.0 0.90 — —

LEXP 1.14 1.07 1.0 0.95 — —

MODP 1.24 1.10 1.0 0.91 0.82 —

TOOL 1.24 1.10 1.0 0.91 0.83 —

SCED 1.23 1.08 1.0 1.04 1.10 —

their valuation techniques to improve the accuracy of their estimates.

Experts who have used the COCOMO formulas found the effort estimates to

be less than 90% accurate at times. Project estimates that are the outcome of

the COCOMO formula should never be used without some further manage-

ment buffering, because once an estimate is given, it is difficult to change

it—especially if the change involves asking for more time or resources.

The Continuing Evolution of COCOMO

As noted earlier, COCOMO has evolved significantly since its introduction in

the early 1980s. One newer version, called COCOMO II, is targeted at the

software engineering practices of the 1990s and 2000s. During this time, the

development process moved from the traditional waterfall process to a more

iterative process, the development technology moved from structured pro-

gramming to object-oriented programming, and the user operational envi-

ronment moved from transactional to Web-based. To keep pace with these

trends, the development tools have improved to become toolkits of inte-

grated tools, which combine application programming logic, database, com-

munications middleware, and screen development.

COCOMO II recognizes that the estimation model itself should take these

factors into account. For this reason, it includes three models: one for creat-

ing early estimates during the prototyping stage, one for making estimates

during the project design stage, and one for developing post-architectural

estimates after the design is set and development has commenced. A differ-

ent set of cost drivers, or PROD(ƒ’s), is used for each model, reflecting the

new software development environment and the new software technologies.

Despite the introduction of shiny new models, the fundamental concept

underlying project effort estimation remains valid. Future software project

managers simply need to realize that change is inevitable in the software

industry and, therefore, that critical cost drivers for software projects must

be modified to respond to these changes. The value assignment process will

also change as technology continues to improve and as software engineers

gain more and broader experience with various types of projects. What was

once considered difficult may not seem very hard in the future. What was

once considered highly reliable may evolve into a standard expectation. In

the future, software project managers will be asked to be more accurate in

their planning. The effort estimation equation represents just a starting point

for achieving more accurate planning of efforts and cost.

The COCOMO Effort Estimation Model

321

■ KEY CONCEPTS

Software effort estimation has traditionally depended on the past experi-

ences of managers and team members, with planning taking advantage of

their expertise through an informal estimation strategy. Today, as part of an

attempt to both formalize and improve the effort or cost estimation for soft-

ware projects, a variety of new estimation techniques, involving several fac-

tors and drivers, have emerged. One such general formula is as follows:

Effort = (a + [b ✕ (Sizec)]) ✕ PROD(ƒ’s)

where a, b, and c are statistically derived coefficients or best approxima-

tions; Size is the estimated size of the project; ƒ’s comprise factors that influ-

ence the project estimates; and PROD(ƒ’s) is the product of arithmetically

multiplying those factors. This general equation still requires the project man-

ager to estimate the project size and the key factors influencing the project.

Barry Boehm’s COCOMO technique is one specific example of a general

effort estimation model. It involves four steps:

1. Estimate the nominal development effort of the project.

2. Estimate the size of the project.

3. Review the factors that influence the project and assign values to them.

4. Calculate the effort for the software project by inserting the estimated

values into the effort estimation formula.

Since COCOMO was introduced in the early 1980s, there have been

numerous changes to the software industry and software engineering disci-

plines. The newer COCOMO II model reflects those trends to improve the

effort estimation process.

■ EXERCISES

1. Explain the PROD function in the general effort estimation equation.

What other integration or aggregation operator may be employed

instead of PROD? Explain how.

2. We are often asked to provide a “quick" effort estimate in planning. If

we were to use any of the effort estimation formulae discussed in this

chapter, what element do we need to estimate first? How accurate is

that estimate, and how do we obtain such an estimate?

Chapter 17 Effort Estimation

322

3. Discuss the pros and cons of consulting an experienced “expert" in

estimating project efforts.

4. Are there factors that you would include today that are not among the

15 original COCOMO factors? (Note: You may want to consult the liter-

ature on COCOMO II in the “Suggested Reading" section.)

5. Take a small program that you have completed. Count the lines of

code. Generate the effort estimate by assuming the Organic mode. Use

the COCOMO estimation technique without the 15 factors and compare

this estimate with your actual effort. Include the 15 factors and recal-

culate the estimate. Compare the new estimate with your actual effort.

6. Compare and contrast lines of code and function points as metrics and

describe what attribute, you believe, they measure. What would you

use the metrics lines of code and function points for?

■ SUGGESTED READING

A. J. Albrecht and J. Gaffney, “Software Function, Source Lines of Code, and

Development Effort Prediction: A Software Science Validation," IEEE

Transactions on Software Engineering, November 1983, 639–648.

J. Baik, B. Boehm, and B. Steece, “Disaggregating and Calibrating the CASE

Tool Variable in COCOMO II," IEEE Transactions on Software Engineering,

November 2002, 1009–1022.

B. Boehm, Software Engineering Economics, Prentice Hall, 1981.

B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowits, R.

Madachy, D. Reifer, and B. Steece, Software Cost Estimation with

COCOMO II, Prentice Hall, 2000.

C. Jones, Applied Software Measurement, McGraw Hill, 1996.

C. Jones, Patterns of Software Systems Failure and Success, International

Thompson Computer Press, 1996.

C. F. Kemerer, Software Project Management Readings and Cases, Irwin

McGraw Hill, 1997.

M. Morisio, D. Romano, and I. Stamelos, “Quality, Productivity, and Learning

in Framework-Based Development: An Exploratory Case Study," IEEE

Transactions on Software Engineering, September 2002, 876–888.

C. Stevenson, Software Engineering Productivity, Chapman & Hall, 1995.

Suggested Reading

323

This page intentionally left blank

325

Index

Abstraction, 5

Accurate data, 204

Adjusting, 13

Adjustments and Actions

exercises, 251

introduction, 233–235

approach to making unplanned project

adjustments, 234–235

fear of change, 233–234

possible outcomes from lack of action, 234

key concepts, 250

planned adjustments, 241–245

decision-making process and targets,

241–242

key project parameters, 242

unadjustable parameters, 242

making adjustments to functionality,

resources, and schedule, 243–245

fixed-fee project, 244

project cost, 243–244

time and expense billing, 244

writing off the costs, 244–245

taking actions with urgency, 237–241

change management, 239–241

communicating often to dispel the

unknowns, 240–241

consulting the customer, 240–241

defined, 240

immediate implementation, 241

potential targets for change, 240

dealing with immediate problems, 238

steps in taking urgent action, 238–239

“tolerable case,” 237–238

unplanned adjustments, 245–250

functionality changes, 245–247

adjustments to other parameters, 246

cumulative effect of, 246

scope creep, 247

resource changes, 247–248

schedule changes, 248–250

Analysis and evaluation of information,

203–232

accurate data, 204

average problem level computed, 204–205

centrality and dispersion

average value, 208–209

centrality analysis defined, 208

control charts, 212–214

median value, 209–210

standard deviation, 211–212

chapter objectives, 203

data correlation, 216–219

defined, 216

linear regression, 217–219

linear relationship, 219

pre-release and post-release problems,

217–219

data smoothing: moving averages, 214–216

data smoothing defined, 215

moving average defined, 214

distribution of data

data trends, 207–208

defined, 205

range of data values, 206–207

skew of the distribution, 205–206

exercises, 221–222

key concepts, 221

normalization of data, 219–221

reliable data, 203–204

valid data, 204

Application testing, recruiting for, 137

Applications designer, recruiting for, 137

Applications developer, recruiting for, 137

Art and Science of Negotiation, 198

Artifacts, software

code vs. noncode software artifacts, 3–4

defined, 3

examples, 27

introduction to, 2–3

Atria Software, 284

Attribute

complex attribute, 64–66

defined, 65

deliverable, 58–59

project- and process related

interrelated attributes, 74–76

employee morale, 75

possible combinations, 75–76

schedule and cost, 74

nondeliverable project-related attributes,

66–67

schedule integrity attribute: example, 67–74

buffer days, 72

buffer size, 71–72

immediate-recoverable goal setting, 72

metric and reporting format, 68–70

milestones, 67–68

requirements phase, 69–70

schedule integrity goal, 72–74

task overlap, 70–71

project attributes

measurable, trackable, validatable, and

verifiable goals

G/Q/M paradigm, 54–55

measurable attribute defined, 55

tracking defined, 55

validation of goal defined, 55

verification of measurement defined,

55–56

preliminary goals, 53–54

quality attribute, 59–64

errors vs. defects, 60–61

high-severity defect defined, 61

incremental goals, 61–62

low-severity defect defined, 62

measurement process, 63

medium-severity defect defined, 61

metric definition, 62

minor-severity defect defined, 62

problems found vs. quality, 60

quantitative subgoals, 62

reporting format, 63–64

software defect defined, 60

software error defined, 60

simple attribute, defined, 65

Authority, project team, 254

Average problem level computed, 204–205

Average value, 208–209

Baggage handling software project, 1

Bar-charts, 226–227

activity status in bar chart form, 227t

Boehm, Barry, 6, 246, 315

Booch, Grady, 5

Boolean algebra, 6

Borland, 29, 196

“Bottom-up” estimating, 46

Brooks, Fred, 74, 128, 249, 300

Budget monitoring

activity-based, 194–195

INDEX

326

attribute-based, 192–194

goals, 191–192

for resources, 193

software budget defined, 191

Buffers, 33

Business Intelligence Tool, 195

CaliberRM, 29, 196

Capability Maturity Model for Software (CMM

for SW), 58, 98–99, 144–145

Centrality and dispersion

average value, 208–209

centrality analysis defined, 208

control charts, 212–214

median value, 209–210

standard deviation, 211–212

Change control, 279–287

change control process defined, 279

change impact analysis, 281–282

cost impact, 282

personnel impact, 282

schedule impact, 282

chapter objectives, 279

cumulative effects of changes, 284–286

example change request process, 279–280

areas of consideration, 280

change request form, 279–280

submit to “catcher,” 280

exercises, 286–287

key concepts, 286

psychological effects of change requests,

285–286

request denial or acceptance, 283–284

simple changes, unexpected complications, 285

Change management process, 33

Chart Fx tool, 231

Clear Case, 284

CMM for SW. See Capability Maturity Model

for Software (CMM for SW)

COCOMO. See Constructive Cost Model (COCOMO)

Code

code vs. noncode software artifacts, 3–4

defined, 2

Combined resource matrix, 101t

Communicating and presenting data, 223–232

communicating control-related status

bar-chart formats, 226–227

activity status in bar chart form, 227t

tabular formats, 224–226

assessment column, 225

response to receipt of status data, 226

schedule status, 223, 225

summary message from project

managers, 226

data representation formats

histograms, 229–230

Pareto diagram, 230

pie charts, 228–229

exercises, 231–232

key concepts, 231

selecting a format, 230–231

sharing information, 223–224

Computer Associates, 98

Constructive Cost Model (COCOMO), 315–321

calculate effort estimate, 321–322

COCOMO II, 321

continuing evolution of COCOMO, 321

estimate size of project, 317–318

general process, 315

identify the nominal mode of development

choosing the correct mode, 317

key project characteristics, 315–316

modes of development used in COCOMO,

316–317

review and assign values to cost drivers,

318–320

computer attributes, 318

cost drivers defined, 319

personnel attributes, 318–319

product attributes, 318

project attributes, 319

value assignments for COCOMO factors,

319–320

Control charts, 212–214

Costs, defined, 20

Critical path method (CPM)

INDEX

327

critical vs. noncritical paths

critical path, 291–292

critical task (critical activity), 292

noncritical path, 292–293

noncritical task (noncritical activity), 292

reducing schedules, 300–302

cost slope for each critical task, 300–301

CPM defined, 301

steps to follow, 301–302

Data collecting. See Analysis and evaluation

of information; Communicating and

presenting data; Information collecting

Data correlation

linear regression, 217–219

linear relationship, 219

pre-release and post-release problems, 217–219

Data distribution

data trends, 207–208

defined, 205

range of data values, 206–207

skew of the distribution, 205–206

Data smoothing: moving averages, 214–216

data smoothing defined, 215

moving average defined, 214

Database design and administration personnel,

recruiting, 136–137

Decomposition, 5

Defects, quality attribute

errors vs. defects, 60–61

high-severity defect defined, 61

low-severity defect defined, 62

medium-severity defect defined, 61

minor-severity defect defined, 62

software defect defined, 60

Design process planning, 92–93

Early start (ES) and early finish (EF) task

scheduling, 293

Eastman Kodak, 104

Effort estimation, 307–323

Constructive Cost Model (COCOMO), 315–321

calculate effort estimate, 321–322

continuing evolution of COCOMO, 321

estimate size of project, 317–318

general process, 315

identify the nominal mode of development

choosing the correct mode, 317

key project characteristics, 315–316

modes of development used in

COCOMO, 316–317

review and assign values to cost drivers,

318–320

computer attributes, 318

cost drivers defined, 319

personnel attributes, 318–319

product attributes, 318

project attributes, 319

value assignments for COCOMO factors,

319–320

exercises, 322–323

general estimation model, 309–314

effort estimation, 310

estimation equation, 309

other factors affecting project effort,

313–314

size factor, 310–313

function point, defining, 311–312

lines of code, defining, 311

software effort estimation model defined,

309

informal, 307–309

consulting with experts, 308

examples of “mandated” goals, 308–309

unresolved questions, 307

key concepts, 322

Employee morale, 75, 88

Equifax, 104

Equipment. See Tools and equipment

Ernest and Young, 98

Express Delivery, 98

Fagan, Mike, 90

Function point, defining, 311–312

Goals and measurements, 53–78. See also

Goals and measurements: preparations

and costs

INDEX

328

deliverable-related metrics and measurements

complex attribute, 64–66

defined, 65

deliverable attributes, 58–59

quality attribute, 59–64

errors vs. defects, 60–61

high-severity defect defined, 61

incremental goals, 61–62

low-severity defect defined, 62

measurement process, 63

medium-severity defect defined, 61

metric definition, 62

minor-severity defect defined, 62

problems found vs. quality, 60

quantitative subgoals, 62

reporting format, 63–64

software defect defined, 60

software error defined, 60

simple attribute, defined, 65

software deliverable attributes, 58–59

exercises, 76–77

influencing downstream phases, 76

key concepts, 76

metrics and measurements: overview, 56–58

Capability Maturity Model for Software

(CMM for SW), 58

measurement defined, 56

metric defined, 56

organizing and preparing, 125

process and project attributes, difference

between, 57

project- and process related, 66–76

interrelated attributes, 74–76

employee morale, 75

possible combinations, 75–76

schedule and cost, 74

nondeliverable project-related attributes,

66–67

schedule integrity attribute: example, 67–74

buffer days, 72

buffer size, 71–72

immediate-recoverable goal setting, 72

metric and reporting format, 68–70

milestones, 67–68

requirements phase, 69–70

schedule integrity goal, 72–74

task overlap, 70–71

project attributes

measurable, trackable, validatable, and

verifiable goals

G/Q/M paradigm, 54–55

measurable attribute defined, 55

tracking defined, 55

validation of goal defined, 55

verification of measurement defined,

55–56

preliminary goals, 53–54

Goals and measurements: preparations and

costs, 165–176

building a measurement operational plan,

169–171

defined, 170

items to be considered, 170–171

sequence of refinement steps, 170

clarifying definitions of goals and measure-

ments

alleviate confusion, 166

decomposing the ease-of-use example,

166–167

embracing the measurement scheme

goal attainability, 172–174

participating in goal and measurement

preparations, 171–172

exercises, 176

key concepts, 175–176

measurement costs, 174–175

measurement resources: how to find an

expert, 173–174

potentially misleading measurements, 167–169

effect of varying assigned values, 169

mostly completable, 168

not completable, 168

partially completable, 168

totally completable, 167, 168

transforming goals and measurements,

165–166

G/Q/M (goal/question/metric) paradigm, 54–55

Graphical tools, WBS, 38

INDEX

329

Hardware requirements, 99

Help text, creating, 40

Hewlett-Packard, 98

Histograms, 229–230

Human resources management

adding new resources to an ongoing project,

300

hiring plan, 84–85

initial offer package, 88

people as human capital, 87–88

people hiring matrix, 85–87

defined, 86

direct management involvement in recruit-

ing, 87

recruiting plan, 86–87

skills matrix, 80–84

description of personnel required, 81t

direct project activities, defined, 81

gradual hiring pattern, 82

indirect project activities, defined, 81

initial skills matrix, 82t, 83

when the project ends, 83–84

Human resources organization, 124

bringing people on board, 140–141

exercises, 141–142

hiring software personnel, 138–140

key concepts, 141

recruiting software personnel, 136–138

software development structures

functional orientation, 132–133

general software development organization,

128–129

hierarchical organization defined, 130

highly specialized organization, 133–134

matrix organization defined, 130

matrix vs. hierarchical orientation,

130–131

virtual organization defined, 131

software project organization, 127–128

software support structures, 134–136

customer management defined, 135

software support and service defined, 134

Humphrey, W.S., 58

IBM, 103–104, 283

IFPUG, 312

India, outsourcing companies, 99

Information collecting, 183–202. See also

Analysis and evaluation of informa-

tion; Communicating and presenting

data

chapter objectives, 183–184

data collection automation/tools, 196

data collection schedule, 195

exercises, 201–202

formal data gathering and monitoring

activity-based monitoring, 185

attribute-based monitoring, 186

frequency of, 184–185

formal project status meetings, 195–198

length of, 196

moderating the meetings, 198

poor attendance problem, 197

predefined agenda, 197

purposes of, 195–196

sources of meeting-related information, 198

unexpected information or negative data,

196–197

informal conscientious socialization data

collection, 184

informal data gathering and monitoring,

198–200

establishing trust, 200

physically co-located environment, 199

physically remote environment, 199–200

key concepts, 201

macro and micro levels of monitoring,

186–195

completeness of function

activity-based, 188–189

attribute-based, 187–188

defined, 187

quality

activity-based, 190–191

attribute-based, 189–190

software quality defined, 189

monitoring the budget

INDEX

330

activity-based, 194–195

attribute-based, 192–194

goals, 191–192

for resources, 193

software budget defined, 191

“Initial Requirements and Business Case,”

146–147

Insourcing

defined, 102

vs. outsourcing, 102–104

Intellectual capital, 98–99

International Function Point Users Group

(IFPUG), 312

International Organization for Standardization

(ISO), 144

Iteration and acceptance, WBS, 50–51

Iterative prototype, 26

Jacobson, Ivar, 5

Knuth, Donald, 290

Late start (LS) and late finish (LF) task schedul-

ing, 293–294

Lines of code, defining, 311

London Ambulance Service project, 1

Lotus Workflow, 283

Measurable attribute, defined, 55

Measurement. See Goals and measurements

Median value, 209–210

Meetings, formal project status meetings,195–198

length of, 196

moderating the meetings, 198

poor attendance problem, 197

predefined agenda, 197

purposes of, 195–196

sources of meeting-related information, 198

unexpected information or negative data,

196–197

Merant, 284

Methodologies. See also Processes and method-

ologies planning

organizing and preparing, 153–157

aspect-oriented programming (AOP), 156

definition

black-box testing, 155

high-level fashion, 154

predicate, 154

white-box testing, 155

describing a particular methodology,

153–154

exercises, 162

key concepts, 161–162

object-oriented, 153–154

planning and organizing, preparation,

156–157

Metric, defined, 56

Microsoft, 38, 302

Microsoft Excel, 231

Milestones, WBS, 49–50

project milestone, defined, 49

MinuteMan Project Management, 38

Monitoring, 12–13. See also Analysis and eval-

uation of information; Communicating

and presenting data; Information

collecting

recasting of goals and, 54

role of in software project management,

179–180

Morale, employee, 75, 88

MS Project, 38, 302

Mythical Man-Month, The, 74, 128, 249, 300

Navigator, 98

Object-oriented (00) methodology, 6

Oracle, 195

Organizing and preparing, 12, 123–125

goals and measurements, 125, 165–177

human resources, 124, 127–142

processes, methodologies, and tools,

124–125, 143–163

Outsourcing

defined, 102

vs. insourcing, 102–104

INDEX

331

Pareto, Vilfredo, 230

Pareto diagram, 230

PERT, 298–299

Pie charts, 228–229

Planning, 79–106

combined resource matrix, 101t

combining the resources, 100–102

described, 11

levels of planning

comprehensive plan, 20

quick estimate, 19

plan content, 18–19

as a team effort, 17–18

exercises, 105–106

human resources management (See Human

resources management)

insourcing defined, 102

key concepts, 104–105

outsourcing defined, 102

outsourcing vs. insourcing, 102–104

processes and methodologies

configuration management, 97

cross-functional process planning, 96–98

design process planning, 92–93

identifying which to use, 90

implementation and programming process

planning, 93–95

“methodology wars,” 90

object-oriented, 90

process as intellectual capital, 98–99

product release process planning, 96

project change management, 97–98

requirements process planning, 91–92

reuse goals, focusing on, 93–94, 95

software development process defined, 89

software methodology, defined, 89, 90

software project phases, 90–96

test process planning, 95–96

test case, 95

test scenario, 95

test script, 95

tools and equipment, organizing and prepar-

ing, 124–125

POMA management process. See also under

specific processes

at all management levels, 13–14

introduction to, 10–11

Primavera, 38, 302

Problem, defined, 20, 108

Process Assessment Working Group of ISO, 144

Processes. See also Processes and methodologies

planning

defined, 20

organizing and preparing, 143–152

configuration management, 149–150

exercises, 162

factors to consider, 144

high-level process plan to project-specific

model, 151

“Initial Requirements and Business Case,”

146–147

key concepts, 161

overall project process map, 146, 147, 148

process flow, 147–149

exit criteria, 147–148

reverse sequence, 147

process introduction and education

1. process introduction, 151–152

2. feedback and modifications, 152

3. acceptance, 152

4. reinforcement, 152

process map, 145–147

processes and subprocesses, 150–151

setting software standards: ISO, SPICE,

and SEI, 144–145

Processes and methodologies planning

configuration management, 97

cross-functional process planning, 96–98

design process planning, 92–93

identifying which to use, 90

implementation and programming process

planning, 93–95

“methodology wars,” 90

object-oriented, 90

process as intellectual capital, 98–99

product release process planning, 96

INDEX

332

project change management, 97–98

requirements process planning, 91–92

reuse goals, focusing on, 93–94, 95

software development process defined, 89

software methodology, defined, 89, 90

software project phases, 90–96

test process planning, 95–96

test case, 95

test scenario, 95

test script, 95

Prochain Project Scheduling, 302

Product/Project attribute, defined, 20

Product/Project description, defined, 20

Program evaluation and review technique

(PERT), 298–299

Project content and deliverables

exercises, 35

gathering and analyzing project requirements,

21–24

completing requirements specification as a

separate project, 23–24

potential pitfalls, 22–23

requirements providers, 22–23

software requirements, defined, 22

solution providers, 23

general requirements management activities,

24–26

entrance criteria, 26

exit criteria, 25

goals to be met, 25

knowledgeable people, shortage of, 24–25

software prototype

defined, 24

iterative, 26

rapid, 26

internal requirements generation and priori-

tization, 29–32

prioritization process, 29–30

role of the software product management

board, 30–32

composition and size of group, 31

Release Management Council, 32

key concepts, 34–35

quick estimates and high-level requirements,

33–34

types of requirements

project deliverables, 26–27

project needs and their characterization,

27–28

review and approval of requirements,

28–29

Project milestone, defined, 49

Project team, 265–277

exercises, 276

key concepts, 275–276

life cycle, 265

management effort needed at various stages,

266

team development, 269–272

continuous monitoring and adjustments,

272

key activities of project managers, 270

monitoring behavior of team members,

270–271

problem-action handling matrix, 271–272

team formation

having the “best,” 266–267

soft skills and personal traits, 268–269

technical software skills, 267–268

conflicts, 268

skill areas, 267–268

technical skill defined, 267

team maintenance

handling team attrition, 274

punishing team members, 273–274

rewarding team members, 273

team member growth, 275

Prototype, software

defined, 24

iterative, 26

rapid, 26

PVCS, 284

Raiffa, Howard, 198

Rapid prototype, 26

Rational Software, 5, 29

INDEX

333

Reference information, developing, 40

Rejuvenation Through IT Services, 103–104

Release Management Council, 32, 253–262

authority, 254

defined, 255

exercises, 261

formulating, 255–257

choosing members, 255

duties of, 254–255

full-time members, 256

introducing the concept, 256–257

part-time members, 255–256

skills needed, 257

key concepts, 260–261

mode of operation

conducting council meetings, 257–259

activities for participation in, 257

agenda, 258

minutes of the meetings, 258

status of open issues, 258

who conducts the meetings, 258–259

decisions about product release, 259–260

responsibility, 254

team management approach, 253–254

Reporting format, defined attributes and metrics,

63–64

Requirements. See Project content and deliver-

ables

RequisitePro, 29

Resources, defined, 20

Responsibility, project team, 254

Reuse goals, focusing on, 93–94, 95

Risk analysis and planning, 107–122

exercises, 122

key concepts, 121

problem, defined, 108

risk definition, 20, 107–108

risk identification, 108–109

identifying and listing anticipatable risks,

109–111

availability of tools involved, 110

hardware and software systems, 110

human resources, 110–111

major planning categories, 111

management of resources, 110

“unclear items,” 109

unresolved issues, 109–110

risk mitigation

cost of mitigation, 116–117

cost-based mitigation, 116

defined, 116

fixed budget for, 118–120

mitigation value cost, 117–118, 118

probability of success, 117

risk prioritization, 111–116

defined, 112

by recovery cost, 112–114

defined, 113

types of, 114

by risk value, 114–116

risk removal plan, 120–121

Royce, Winston, 6

Rumbaugh, James, 5

SAS tools, 195

Schedule, defined, 20

Scheduling tasks. See Task scheduling

“Scope creep” phenomenon, 22, 109, 247

SEI, 58, 98, 144–145

Sequence diagram, 42–44

Size factor, effort estimation, 310–313

function point, defining, 311–312

lines of code, defining, 311

Slack times, task scheduling

free slack time, 295–298

free slack time of an activity defined, 296

free slack time of X defined, 296

task network, 296

tabular form, 297–298

total slack time, 294–295

total slack time of an activity defined, 295

Smartdraw Business and Charting Software, 38,

302

Software development life cycle, defined, 9

Software development process, defined, 89

Software development structures

INDEX

334

functional orientation, 132–133

general software development organization,

128–129

hierarchical organization defined, 130

highly specialized organization, 133–134

matrix organization defined, 130

matrix vs. hierarchical orientation, 130–131

virtual organization defined, 131

Software effort estimation model, defined, 309

Software engineering

components, 7–8

defined, 5

introduction to, 5–9

software development life cycle, 9

software process and methodology, 6–7

spiral process, 6

user interface (UI) design method, 7

waterfall process, 6

software product life cycle, 8–9

Unified Modeling Language (UML), 5

Software Engineering Institute (SEI), 58, 98,

144–145

Software Fx, 231

Software methodology, defined, 89, 90

Software Process Improvement and Capability

determination (SPICE), 144–145

Software product life cycle, 8–9

Software Product Management Board, 30–32,286

Software project

artifacts, 2–3

code, defined, 2

code vs. noncode software artifacts, 3–4

introduction to, 2–4

software, defined, 3

Software project management

adjusting, 13

introduction to, 9–14

monitoring, 12–13

organizing, 12

planning, 11

POMA management process, 10–11

POMA management process at all manage-

ment levels, 13–14

Software project phases, 90–96

Software requirements, 99

Software support structures, 134–136

customer management defined, 135

software support and service defined, 134

Solution providers, 23

Southern Pacific, 104

Spiral process, 6

Standard deviation, 211–212

Standish Group report, 1

SureTrak Project Manager, 302

Synthesis, 5

Tabular formats, 224–226

assessment column, 225

response to receipt of status data, 226

schedule status, 223, 225

summary message from project managers,

226

Task analysis. See Work Breakdown Structure

(WBS)

Task refinement, WBS

activities and subdeliverables for deliverable

1, 41–42

task sequencing and sequence diagram,42–44

Task scheduling, 289–305

chapter objectives, 289

creating a calendar schedule, 302–303

critical vs. noncritical paths

critical path, 291–292

critical task (critical activity), 292

noncritical path, 292–293

noncritical task (noncritical activity), 292

exercises, 304–305

forward- and backward-pass scheduling

early start (ES) and early finish (EF), 293

late start (LS) and late finish (LF), 293–294

key concepts, 303–304

program evaluation and review technique

(PERT), 298–299

defined, 299

reducing schedules: critical path method

(CPM), 300–302

INDEX

335

cost slope for each critical task, 300–301

CPM defined, 301

steps to follow, 301–302

slack times

free slack time, 295–298

free slack time of an activity defined, 296

free slack time of X defined, 296

task network, 296

tabular form, 297–298

total slack time, 294–295

defined, 295

total slack time of an activity defined, 295

task sequence and effort representation,

289–291

graphical representation, 290–291

shared characteristics of all tasks, 289

tabular representation, 290

Task sequencing, 42–44

Team Fusion Object Oriented, 98

Team management approach, 253–254. See

also Project team

TeamPlay, 38

Technical software skills, 267–268

conflicts, 268

skill areas, 267–268

technical skill defined, 267

Test process planning, 95–96

test case, 95

test scenario, 95

test script, 95

Time and resource assignments, WBS

defining a “satisfied” level of refinement,

44–45

task estimates and task assignments, 47–48

units of task management, 45–47

historical information, 46

subtasks with estimated times, 46–47

Togethersoft, 196

Tools and equipment, 99–100, 124–125

data collection automation/tools, 196

organizing and preparing, 157–161

exercises, 162

false claims, 158

key concepts, 162

tool identification and preparation,

158–159

tool selection, 159–160

tool usage preparation, 160–161

Tracking, defined, 55

Trust, establishing, 200

Unified Modeling Language (UML), 5, 89

Usage information, developing, 40

Use Case Diagram, 89

User interface (UI) design method, 7

Validation of goal, defined, 55

Verification of measurement, defined, 55–56

Virtual organization, defined, 131

Visio, 38

Waterfall process, 6

Work Breakdown Structure (WBS), 37–52, 128

defined, 37

example

deliverable 1: executable code, 39, 40

deliverable 2: help text, usage, and reference

information, 40–41

exercises, 51–52

flow of WBS to schedule, 39

graphical tools, 38

iteration and acceptance, 50–51

key concepts, 51

milestones, 49–50

participants, 37

project milestone, defined, 49

steps in the WBS, 38–39

task refinement

activities and subdeliverables for deliver-

able 1, 41–42

task sequencing and sequence diagram,

42–44

INDEX

336

time and resource assignments

defining a “satisfied” level of refinement,

44–45

task estimates and task assignments, 47–48

units of task management, 45–47

historical information, 46

subtasks with estimated times, 46–47

INDEX

337

This page intentionally left blank

Computer Science Illuminated,

Second Edition

Nell Dale and John Lewis

ISBN: 0-7637-0799-6

©2004

Programming and Problem Solving

with Java

Nell Dale, Chip Weems,

and Mark R. Headington

ISBN: 0-7637-0490-3

©2003

Databases Illuminated

Catherine Ricardo

ISBN: 0-7637-3314-8

©2004

Foundations of Algorithms Using Java

Pseudocode

Richard Neapolitan

and Kumarss Naimipour

ISBN: 0-7637-2129-8

©2004

Artificial Intelligence Illuminated

Ben Coppin

ISBN: 0-7637-3230-3

©2004

The Essentials of Computer Organization

and Architecture

Linda Null and Julia Lobur

ISBN: 0-7637-0444-X

©2003

A Complete Guide to C#

David Bishop

ISBN: 0-7637-2249-9

©2004

A First Course in Complex Analysis

with Applications

Dennis G. Zill and Patrick Shanahan

ISBN: 0-7637-1437-2

©2003

Programming and Problem Solving with

C++, Fourth Edition

Nell Dale and Chip Weems

ISBN: 0-7637-0798-8

©2004

C++ Plus Data Structures, Third Edition

Nell Dale

ISBN: 0-7637-0481-4

©2003

Applied Data Structures with C++

Peter Smith

ISBN: 0-7637-2562-5

©2004

Foundations of Algorithms Using C++

Pseudocode, Third Edition

Richard Neapolitan

and Kumarss Naimipour

ISBN: 0-7637-2387-8

©2004

Managing Software Projects

Frank Tsui

ISBN: 0-7637-2546-3

©2004

Readings in CyberEthics, Second Edition

Richard Spinello and Herman Tavani

ISBN: 0-7637-2410-6

©2004

C#.NET Illuminated

Art Gittleman

ISBN: 0-7637-2593-5

©2004

Discrete Mathematics, Second Edition

James L. Hein

ISBN: 0-7637-2210-3

©2003

Outstanding New Titles:

http://www.jbpub.com/ 1.800.832.0034

http://www.jbpub.com/

Take Your Courses to the Next Level

Turn the page to preview new and

forthcoming titles in Computer Science and

Math from Jones and Bartlett…
Providing solutions for students and educators in the

following disciplines:

Please visit http://computerscience.jbpub.com/ and

http://math.jbpub.com/ to learn more about our exciting

publishing programs in these disciplines.

http://www.jbpub.com/ 1.800.832.0034

• Introductory Computer Science

• Java

• C++

• Databases

• C#

• Data Structures

• Algorithms

• Network Security

• Software Engineering

• Discrete Mathematics

• Engineering Mathematics

• Complex Analysis

http://www.jbpub.com/
http://computerscience.jbpub.com/
http://math.jbpub.com/

