Managing Software Projects

Frank Tsui

JONES AND BARTLETT PUBLISHERS

Managing

Software Projects

Frank Tsui

Southern Polytechnic State University

JONES AND BARTLETT PUBLISHERS
Sudbury, Massachusetts
BOSTON TORONTO LONDON SINGAPORE

World Headquarters

Jones and Bartlett Publishers
40 Tall Pine Drive

Sudbury, MA 01776
978-443-5000
info@jbpub.com
www.jbpub.com

Jones and Bartlett Publishers Canada
2406 Nikanna Road

Mississauga, ON L5C 2W6
CANADA

Jones and Bartlett Publishers International
Barb House, Barb Mews

London W6 7PA

UK

Copyright © 2004 by Jones and Bartlett Publishers, Inc.

Cover image Cats in Paris © 1993 Sandy Skoglund

Library of Congress Cataloging-in-Publication Data

Tsui, Frank F.
Managing software projects / Frank Tsui.— 1st ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-7637-2546-3
1. Computer software—Development—Management. I. Title.
QA76.76.D47T78 2004
005.1°068—dc22
2003021739 8983

All rights reserved. No part of the material protected by this copyright notice may be reproduced or
utilized in any form, electronic or mechanical, including photocopying, recording, or any information
storage or retrieval system, without written permission from the copyright owner.

Production Credits

Acquisitions Editor: Stephen Solomon
Production Manager: Amy Rose

Marketing Manager: Matthew Bennett

Editorial Assistant: Caroline Senay

Cover Design: Kristin E. Ohlin

Manufacturing Buyer: Therese Brauer
Composition and Art: Dartmouth Publishing, Inc.
Printing and Binding: Malloy, Inc.

Cover Printing: Malloy, Inc.

Printed in the United States of America
08 07 06 05 04 10987654321

www.jbpub.com

This book is dedicated to
Teresa, Colleen, and Nick

This page intentionally left blank

Preface

A simple, short, well-defined, one-person software project usually requires
the services of one competent and disciplined software engineer. In such sit-
uations, there is little need for sophisticated project management. Today,
however, the number of software projects that are large, complex, and ill-
defined is on the rise. Accordingly, the importance and necessity of applying
project management skills to software projects are also growing. Managing
Software Projects is geared toward those individuals who are charged with
overseeing such complicated projects.

I have both participated in and managed a variety of business applications
and systems software projects. These projects required the efforts of teams
that ranged from a few to hundreds of members, with life spans lasting from
months to years. Through my experience with these software development
and support projects, it became clear that software project management is not
the same as software engineering. Software engineering is concerned with
internal and external characteristics of software and the techniques used to
attain those attributes. In contrast, software project management is concerned
with the activities that must be planned and performed to achieve the previ-
ously established goals of a software project. Of course, it is an advantage for
software project managers to have software engineering and direct program-
ming experience.

The general concepts of software engineering and software project man-
agement—and the differences between them—are explored in more detail in
the Introduction to this text.

This book focuses on the management aspects of software projects and is
heavily influenced by my own experiences with managing large, complex
software projects at IBM, MARCAM, Metamor/PSINet, and RiverLogic. My early
experiences with software development and support at RCA and BlueCross
BlueShield also helped shape my thinking as a project manager.

PREFACE

Organization of the Book

In this text, the discussion of project management flow follows a project
through four management phases: planning, organizing, monitoring, and
adjusting (POMA). This four-phase process is adapted specifically to software
projects—that is, the discussions and applications all center on software proj-
ects and the software industry. For example, in the discussions of personnel,
recruiting, and organization structures, the book focuses on software devel-
opers, recruiting problems associated with the software industry, and software
development and support organizations.

Part One looks at software project planning (the “P” in POMA). Chapter 1
examines the project content and deliverables, highlighting the requirements
the development process used to define the desired end result of the software
project. Chapter 2 discusses software project task planning using a technique
called the Work Breakdown Structure (WBS). The establishment of meaningful
goals and measurements for software projects is outlined in Chapter 3. Chap-
ter 4 explores the planning required for the software project resources, which
include people, processes, and tools. Every project has some risks; the identi-
fication, prioritization, and mitigation of those risks related to software projects
are presented in Chapter 5.

Part Two reflects on the approved project plan and focuses on organizing
(the “0O” in POMA) the software project. The three chapters in this part all
relate to preparing and organizing the different resources needed for the
project. Chapter 6 covers the recruiting of human resources and highlights
several software organizational structures that are applicable to different
types of tasks. Chapter 7 discusses the timing and introduction of software
processes, techniques, and tools. Implementation of planned measurements
and the corresponding setup effort are explained in Chapter 8.

Part Three covers the monitoring aspects (the “M” in POMA) of a software
project once the project is organized and set into motion. The mechanisms
and methodologies of collecting project status information are discussed in
Chapter 9. Chapter 10 introduces several data analysis and evaluation tech-
niques, such as those for correlating information, analyzing the distribution
of data, and normalizing data. The gathered and evaluated information must
be presented in a meaningful way to ensure effective project monitoring,
and Chapter 11 highlights a variety of information representation and com-
munication techniques, including Pareto, pie, and control charts.

Part Four emphasizes the need for adjustments (the “A” in POMA) to a
software project; such adjustments are always necessary because of the
impossibility of developing a perfect project plan and performing project

PREFACE

preparation and organization flawlessly. The specific action taken will, of
course, depend on the monitored project status information. Chapter 12 pro-
poses changes in schedule, functionality, and resources as the three main
adjustments to a software project. The Release Management Council, a
mechanism to assist management in project control and implementation of
project adjustments, is described in Chapter 13.

The final part, Part Five, examines several skills that can enhance one’s
performance in conducting the four POMA phases. Chapter 14 considers the
most important factor in any software project: the people who make up the
software project team, and their transformation from a group of individuals
into a cohesive unit working toward a common goal. Chapter 15 addresses
the problem of software project scope expansion, or scope creep, and considers
how it may be controlled and managed. Chapter 16 offers a detailed discussion
of task scheduling. These scheduling techniques are applicable to the WBS;
thus this chapter is a good complement to Chapter 2. Chapter 17 covers soft-
ware project estimation, which is a cornerstone of setting realistic cost and
schedule goals.

A recurring theme throughout the book is the importance of measurement.
Without collection and analysis of data gleaned through measurements, it is
very difficult to manage large, complex projects. The software industry has
been slow to adopt this philosophy, but needs to before it can improve the
odds in completing software projects and meeting the goals of schedule,
budget, quality, functionality, performance, and customer delight.

Intended Audience and Suggested Teaching Plan

The book is written for several audiences:

e Software engineers and technical leaders who are contemplating, or
who are in the process of, making career changes to software project
management

e Mature undergraduate and first-year graduate students in information
technology (IT) and software project management

e Non-IT management personnel who are considering a career redirection
to IT and software project management

In the past, I have used draft versions of this book for a first-year graduate

course in software project management. Parts One through Four and selected
chapters from Part Five were used as a one-semester course. Depending on
the interests and backgrounds of the students, either the set of Chapters 14
and 15 or the set of Chapters 16 and 17 was included.

PREFACE

Each chapter includes several exercises for students to stimulate their
thinking, as well as a Suggested Reading list. More advanced students should
be encouraged to consult the resources on the reading list and explore topics
that pique their interest. If term papers are assigned as part of the course
requirements, the Suggested Reading lists should serve as good starting
points in finding reference materials.

Acknowledgments

In putting together this book, I received direct and indirect help from numerous
individuals. As a result of their generosity, many mistakes were corrected
and parts of the book were greatly improved. Any remaining errors are
solely my own.

The comments from my students at Southern Polytechnic State University
(SPSU) were greatly appreciated. I would especially like to thank Mike Murphy,
the Dean of the School of Computing and Software Engineering at SPSU,
for providing such a supportive environment, which allowed me to carry out
my writing.

I am grateful for the candid comments made by the reviewers of this
book; their input improved the book in many ways:

Bruce M. Logan
Lesley University

Ayad Boudiab
Georgia Perimeter College

Jeffery H. Peden
Longwood University

Robin Snyder
Savannah State University

I would also like to thank Amy Rose from Jones and Bartlett Publishers,
Inc. I am indebted to Jill Hobbs, who provided extremely competent editing
and many insightful suggestions. For that, I owe her heartfelt gratitude.

Lastly, it was my wife, Teresa, who suggested that I should write down the
lessons learned from my 30-plus years of experience in software development
and project management. I would like to thank Teresa, my daughter Colleen,
and my son Nicholas for their constant and unwavering encouragement.

Frank Tsui

Contents

INTRODUCTION: WHAT IS SOFTWARE PROJECT MANAGEMENT? 1
Software Project 2
Software Artifacts 2
Code Versus Noncode Software Artifacts 3
Software Engineering 5
Software Process and Methodology 6
Components of Software Engineering 7
Software Product Life Cycle 8
The Software Project Management Process 9
POMA: The Phases of Software Project Management 10
Planning 11
Organizing 12
Monitoring 12
Adjusting 13
POMA at All Management Levels 13
Key Concepts 14
Exercises 14
Suggested Reading 15

PART ONE: SOFTWARE PROJECT PLANNING (POMA) 17
A Team Effort 17
Plan Content 18
Levels of Planning 19
Quick Estimate 19
Comprehensive Plan 20

CONTENTS

Chapter 1 Project Content and Deliverables
Gathering and Analyzing Project Requirements 21
Potential Pitfalls 22
Completing the Requirements Specification as a Separate
Project 23
General Requirements Management Activities 24
Types of Requirements 26
Project Deliverables 26
Project Needs and Their Characterization 27
Review and Approval of Requirements 28
Internal Requirements Generation and Prioritization 29
The Prioritization Process 29
Role of the Software Product Management Board 30
Quick Estimates and High-Level Requirements 33
Key Concepts 34
Exercises 35
Suggested Reading 36

Chapter 2 Task Analysis 37

Work Breakdown Structure 37
Steps in the WBS 38

WABS in Practice: Introduction to and Example 39
Deliverable 1: Executable Code 40
Deliverable 2: Help Text, Usage, and Reference

Information 40

WBS Task Refinement 41
Activities and Subdeliverables for Deliverable 1
Task Sequencing and Sequence Diagram 42

WBS Time and Resource Assignments 44
Units of Task Measurement 45
Task Estimates and Task Assignments 47
Milestones 49

WABS Iteration and Acceptance 50

Key Concepts 51

Exercises 51

Suggested Reading 52

Chapter 3 Goals and Measurements 53
Project Attributes 53

CONTENTS

Chapter 4

Preliminary Goals 53
Measurable, Trackable, Validatable, and Verifiable
Goals 54
Metrics and Measurements: An Overview 56
Deliverable-Related Metrics and Measurements 58
Metrics and Measurements Example I: The Quality
Attribute 59
Complex Attributes 64
Project- and Process-Related Metrics and Measurements 66
Metrics and Measurements Example II: The Schedule
Integrity Attribute 67
Interrelated Attributes 74
Influencing Downstream Phases 76
Key Concepts 77
Exercises 77
Suggested Reading 78

Project Resource Planning 79
Planning for the Three Types of Resources 79
Human Resources 80
Skills Matrix 80
Hiring Plan 84
People Hiring Matrix and the Recruiting Plan 85
People as Human Capital 87
Processes and Methodologies 89
Software Project Phases 90
Requirements Process Planning 91
Design Process Planning 92
Implementation and Programming Process Planning 93
Test Process Planning 95
Product Release Process Planning 96
Other Process Planning Considerations 96
Tools and Equipment 99
Combining the Resources 100
Outsourcing Versus Insourcing 102
Key Concepts 104
Exercises 105
Suggested Reading 106

CONTENTS

Chapter 5

Risk Analysis and Planning 107
Risk Definition 107
Risk Identification 108

Identifying and Listing the Anticipatable Risks 109
Risk Prioritization 111
Prioritization by Recovery Cost 112
Types of Recovery Cost Prioritization 114
Prioritization by Risk Value 114
Risk Mitigation 116
Cost-Based Mitigation 116
Cost of Mitigation 116
Probability of Success 117
Mitigation Value Cost 117
Fixed Budget for Risk Mitigation 118
Risk Removal and the Risk Plan 120
Key Concepts 121
Exercises 122
Suggested Reading 122
PART TWO: ORGANIZING AND PREPARING (POMA) 123

Chapter 6

Organizing 123

Human Resources 124

Processes, Methodologies, and Tools 124
Goals and Measurements 125

Human Resources 127
Software Project Organization: An Overview 127
Software Development Structures 128
General Organizational Structure 128
Refining the General Organizational Structure I:
Matrix Versus Hierarchical Orientation 130
Refining the General Organizational Structure II:
Functional Orientation 132

Refining the General Organizational Structure III:

A Highly Specialized Organization 133
Software Support Structures 134
Recruiting and Hiring Software Personnel 136
Recruiting 136

CONTENTS

Chapter 7

Chapter 8

Hiring 138

Bringing People on Board 140
Key Concepts 141
Exercises 141
Suggested Reading 142

Processes, Methodologies, and Tools 143
Processes 143
Process Map 145
Process Flow 147
Configuration Management 149
Processes and Subprocesses 150
Process Introduction and Education 151
Methodologies 53
Methodology Definition 154
Methodology Preparation 156
Tools 157
Tool Identification and Preparation 158
Tool Selection 159
Tool Usage and Preparation 160
Key Concepts 161
Exercises 162
Suggested Reading 162

Goals and Measurements: Preparations and
Costs 165

Transforming Goals and Measurements 165

Clarifying Definitions of Goals and Measurements 166
Decomposing the Ease-of-Use Example 166
Potentially Misleading Measurements 167
Building a Measurement Operational Plan 169

Embracing the Measurement Scheme 171
Participating in Goal and Measurement Preparations 171
Goal Attainability 172

Measurement Costs 174

Key Concepts 175

Exercises 176

Suggested Reading 176

CONTENTS

PART THREE: SOFTWARE PROJECT MONITORING (POMA)

The Role of Monitoring in Software Project Management

Chapter 9

Chapter 10

Monitoring: A Three-Part Operation 180

Collecting Project Information 183

Formal Data Gathering and Monitoring 184
Activity-Based Monitoring 185
Attribute-Based Monitoring 186

Macro and Micro Levels of Monitoring 186
Monitoring Completeness of Function 187
Monitoring Quality 189

Monitoring the Budget 191

Data Collection Schedule 195

Formal Project Status Meetings 195

Informal Data Gathering and Monitoring 198

Physically Collocated Environment 199

Physically Remote Environment 199

Establishing Trust 200

Key Concepts 201

Exercises 201

Suggested Reading 202

Analysis and Evaluation of Information
Reliable, Accurate, and Valid Data 203
Distribution of Data 205
Example I: Skew of the Distribution 205
Example II: Range of Data Values 206
Example III: Data Trends 207
Centrality and Dispersion 208
Average Value 208
Median Value 209
Standard Deviation and Control Charts 210
Data Smoothing: Moving Averages 214
Data Correlation 216
Normalization of Data 219
Key Concepts 221
Exercises 221
Suggested Reading 222

203

179
179

CONTENTS

Chapter 11

Presenting and Communicating Data 223
Sharing Information 223
Communicating Time-Related Status 224
Tabular Formats 224
Bar-Chart Formats 226
Communicating Control-Related Status 227
Other Common Data Representation Formats 228
Pie Charts 228
Histograms 229
Selecting a Data Representation Format 230
Key Concepts 231
Exercises 231
Suggested Reading 232

PART FOUR: ADJUSTMENTS AND ACTIONS (POMA) 233

Chapter 12

Chapter 13

Planned and Unplanned Adjustments and
Actions 237
Taking Actions with Urgency 237
Steps in Taking Urgent Action 238
Change Management 239
Planned Adjustments 241
The Planned Adjustment Decision-Making Process and
Targets 241
Making Planned Adjustments to Functionality, Resources,
and Schedule 243
Unplanned Adjustments 245
Functionality Changes 245
Resource Changes 247
Schedule Changes 248
Key Concepts 250
Exercises 251
Suggested Reading 251

Release Management Council 253

The Team Management Approach 253
Formulating a Release Management Council 254
The Release Management Mode of Operation 257

CONTENTS

Conducting the Release Management Council
Meetings 257
Making Decisions about Product Release 259
Key Concepts 260
Exercises 261
Suggested Reading 261

PART FIVE: ADDITIONAL SKILLS 263

Chapter 14

Chapter 15

Chapter 16

The Project Team 265
Project Team Life Cycle 265
Team Formation 266
Technical Software Skills 267
Soft Skills and Personal Traits 268
Team Development 269
Team Maintenance 273
Rewarding Team Members 273
Punishing Team Members 273
Handling Team Attrition 274
Team Member Growth 275
Key Concepts 275
Exercises 276
Suggested Reading 276

Change Control 279

An Example Change Request Process 280
Change Impact Analysis 281

Change Request Denial or Acceptance 283
Cumulative Effects of Changes 284

Key Concepts 286

Exercises 286

Suggested Reading 287

Task Scheduling 289

Task Sequence and Effort Representation 289
Critical Versus Noncritical Paths 291

Forward- and Backward-Pass Scheduling of Tasks

293

CONTENTS

Chapter 17

Index 325

Slack Times 294

Total Slack Time 294

Free Slack Time 295
Improving Estimations: The Program Evaluation and Review

Technique 298

Reducing Schedules: The Critical Path Method 300
Creating a Calendar Schedule 302
Key Concepts 303
Exercises 304
Suggested Reading 305

Effort Estimation 307
Informal Effort Estimation 307
General Estimation Model 309
The Size Factor 310
Other Factors Affecting Project Effort 313
The COCOMO Effort Estimation Model 315
Identify the Nominal Mode of Development 315
Estimate the Size of the Project 317
Review and Assign Values to the Cost Drivers 318
Calculate the Effort Estimate 320
The Continuing Evolution of COCOMO 321
Key Concepts 322
Exercises 322
Suggested Reading 323

This page intentionally left blank

Introduction

What Is Software
Project Management?

According to the Standish Group’s report Chaos, $250 billion is spent
each year on approximately 175,000 information technology (IT) applica-
tion projects in the United States. Their estimates show that approxi-
mately 31% of all such projects will fail and that approximately 53% of
the projects will overrun the original cost estimates. This translates to
approximately $81 billion wasted on canceled projects! (See Suggested
Reading: Standish Group.)

We hear all kinds of horror stories about software projects fraught with
cost overruns and schedule delays. Examples range from the disastrous
London Ambulance Service project, which was scrapped after six years and
millions of pounds spent (at the time of writing, the conversion rate is
approximately UKE1 to US$1.6) to the infamous baggage handling software
project that delayed the opening of the new Denver airport by more than a
year at a cost of about $1 million per day. What is a software project, and is
there something unique about software projects that differentiate them from
hardware projects or construction projects? To answer these questions, we
must explore some fundamental concepts related to the following terms:

e Software project
e Software engineering
¢ The software project management process

Introduction What Is Software Project Management?

% SOFTWARE PROJECT

A software project may not be clearly defined, in that there is no accepted
“standard” set of deliverables to be produced at the end of a software project.
Rather, software, in its barest form, is just code that is a set of instructions to
a device, possibly a computing device, to perform a desired set of functions.
These instructions may take the form of a source program or executable
code. In this book, we will use the terms “code” and “program” interchange-
ably. All other components of a software project are designed to ensure that
the code meets three criteria:

1. It executes properly as measured against the users’ requirements and the
developers’ design.

2. It is maintainable and extensible.

3. It is easily installable and usable.

Code A set of instructions to a device, possibly a computing device, to
perform a desired set of functions.

For a long time, many people considered only the code part of a soft-
ware project to be important. That is, the main focus of many projects was
the actual code produced; engineers were primarily interested in how
quickly they could develop code and did not concern themselves with sup-
porting the code over the longer term. Then as support activities started to
become a problem, software developers began to focus on improving pro-
grams by creating software that is easily readable, understandable, and
changeable. With the explosive growth of affordable PCs and other
devices, it became critical that the user interface portion of the code be
easily comprehensible by many different people, including those with very
little technical training.

Today, the most important task of a software project is still considered
to be the development of the programming aspect. Indeed, programming is
typically the first course that a software engineering or computer science
student takes in school.

Software Artifacts

There is, however, a growing appreciation of the need to include require-
ments specifications, design documents, test cases, reference manuals, and
other materials created to support the code—collectively known as software

Software Project

artifacts—as part of a broader definition of software. As the definition of
software broadens, so does the interest in activities that produce these
extended artifacts. Nevertheless, with the exception of requirements specifi-
cation documents or user manuals, most software organizations rarely
deliver elements independent of the actual code.

In this book, we will define a software artifact as the computer pro-
gram itself, in source or executable form, or any entity that is produced
to aid in the development of, installation of, demonstration of, training
of, or maintenance of that program. Thus requirements documents,
design documents, project plans, test scenarios, user guides or manuals,
reference manuals, online help materials, educational and marketing
materials, initialization data, and other materials developed along with
the code are all considered software artifacts. Some software artifacts are
developed as deliverables to the customers and end users. Others are
developed only to satisfy internal needs and may never be delivered to
end users.

Software artifact A unit of material, in the form of a document, pres-
entation, or code, that is developed as a part of, or as a contribution to,
the final solution to the users.

Code Versus Noncode Software Artifacts

Software artifacts may or may not be associated with a specific set of code.
A key point is that these noncode artifacts are considered to be software
only if a specific set of code directly related to that artifact is eventually
developed.

Software A set of software artifacts that includes code.

Requirements specifications for a system are sometimes presented as the
sole software deliverable. A requirements specifications document outlines
the needs of the users and details the desired functional behavior of the sys-
tem solution that is to satisfy the users’ needs. A requirements document is
often used as the sole software deliverable when a project group is preparing
to solicit others for proposals of potential solutions. For example, a govern-
ment organization might ask a group of “experts” to develop a set of require-
ments for a specific system and then use that requirements document to seek
solutions from commercial vendors. Similarly, a large commercial enterprise
might ask a consulting firm to develop a requirements document for a needed
system, and the document would be used to solicit proposals. In both of these

Introduction What Is Software Project Management?

cases, the initial deliverable is a document that does not include code. Many
people, however, still consider the requirements document to be software.
Others argue that the requirements document is really part of the broader set
of software deliverables and should not be considered software itself.

Should a document that only describes the requirements of a system be
considered software? Does the software solution have to include code? For
the purpose of the discussion here, we will consider a requirements docu-
ment to be software only if it describes a system that includes code as a part
of the final set of deliverables. Thus, a requirements document for a soccer
field will not be considered software, but a requirements document for a soc-
cer scoring system, which includes programs, will be considered software.
This distinction allows us to narrow our domain of coverage and continue to
look at the unique qualities of software.

If the plan to develop the code is later eliminated for some reason, then
the requirements document by itself is not considered software. For example,
if a person writes a book on the generic requirements or generic design of a
payroll system, then that book is not considered software. The requirements
document for a specific, running payroll system, however, is considered soft-
ware. Similarly, a paper describing a B-tree algorithm is not considered soft-
ware unless it describes the algorithm used by and accompanying a specific
code implementation.

As noted above, an independent requirements document that describes
the characteristics of a system that includes code is itself considered software.
Is there anything unique about this type of requirements document? The
answer is yes, in that this document must depict the desired characteristics
and behavior of a nonphysical entity—the code or programs. Such a descrip-
tion is inherently more difficult to develop than something that describes a
physical entity, which can be seen, touched, or felt and thus is more easily
measured. The requirements document attempts to portray something that is
abstract and logical and thus very difficult to measure. When asked about the
size of a program (a nonphysical entity), the conventional response is to ask
whether one wants that information in the form of lines of code, in function
points, or in some other metric—there is no industry standard for this meas-
urement. When one asks about the size of a soccer field (a physical entity),
however, the answer is readily given in units of square feet or square yards,
which everyone understands. This characteristic is an extremely important
distinction between that which deals with code versus that which deals with
physical entities that have standard metrics and are easily measurable. The
significant difference is that software addresses logical entities.

Software Engineering

@ SOFTWARE ENGINEERING

\910’

Software engineering includes a set of general knowledge and specific skills
that are applied to the activities that are used to develop, produce, and sup-
port all types of software artifacts—not just code artifacts. Software engi-
neers also study properties of the internal structure of software and the
resulting effects of structural changes to the external attributes of the soft-
ware. The knowledge and skills applied to a specific activity are known as a
method of developing that artifact. In this case, a method is a formal proce-
dure for producing a specific software artifact.

Software engineering The art of applying a body of knowledge and
methods to the creation and support of software artifacts that will sat-
isfy the requirements of the users. Besides functional requirements, these
user and customer requirements may also include constraints such as
cost, schedule, and usability.

Several different methods may be utilized to develop a particular soft-
ware artifact. For example, there are many ways to design a software system.
In designing a system, one may use some combination of decomposition,
synthesis, and abstraction, each of which is a design method:

e Decomposition is the breaking down of a complex problem into smaller
pieces that can be better understood and solved.

e Synthesis is the creation of a component from smaller pieces.

e Abstraction is the hiding and postponing of the details to focus on the
essentials.

Similarly, there are many ways to describe the design of a system. A
method that is used to design a system, such as decomposition, may not be
the same method that one would use to describe that design, such as the
Unified Modeling Language (UML). UML is a modeling language for software
that was put forward by James Rumbaugh, Ivar Jacobson, and Grady Booch
of Rational Software, which was recently acquired by IBM.

Unified Modeling Language (UML) A graphical language used to
model a system; it provides a set of notations for depicting the objects,
relationships, and rules of a system.

In some instances, the designing method and the describing method
may be the same and are both part of a larger family of methods. A family

Introduction What Is Software Project Management?

of methods, such as the object-oriented (00) methodology, may be quite
complex and require multiple submethods. These complex methods may
take years to master. Sometimes a method or a portion of a method may
be borrowed from some other discipline. In generating a test scenario
matrix, for example, we often utilize Boolean algebra to logically combine
certain test cases with the Boolean OR or AND operators. Similarly, in
designing user interfaces, we often seek guidance from psychology and
cognitive science. For example, the flow of the application, as represented
by the depth and number of screens, often reflects considerations related
to the end user’s productivity. In addition, certain icons are easily recog-
nizable, whereas others are more cryptic. Thus, software engineering is a
multidisciplinary field that borrows many methods from other established
disciplines.

Software Process and Methodology

The sequencing and ordering of the activities that are used to develop spe-
cific software artifacts are another important aspect of software engineering.
The definition of the sequence or order of the activities, along with the
entrance and the exit criteria of these activities, is considered the software
development process.

Several well-known software development processes exist, such as the
waterfall process and the spiral process. The waterfall process was first
depicted by Winston Royce in 1970. It models a set of software development
activities in the form of a cascading waterfall, where the first activity, such
as the requirements-gathering activity, is at the top. When this activity is
completed, the next activity is started. Each activity is performed sequen-
tially until the last activity is completed. Barry Boehm introduced the spiral
process in 1988 with the intention of reducing project risks. The spiral
process takes every activity through four phases: planning, setting goals and
alternatives, evaluation of alternatives, and developing activities. For exam-
ple, a requirements specification activity will go through all four phases,
starting with planning for the requirements specification. The descriptions of
such processes are often at such a generic or high a level as to make them
broadly—but not easily—applicable.

Software engineering as a discipline is still relatively young compared to
other engineering disciplines. Both the process descriptions and the descrip-
tions of the specific methods utilized in the activities of producing the soft-
ware artifacts are still being developed. In fact, the software engineering

Software Engineering

process has not reached a level of maturity that is comparable to the matu-
rity of processes in other engineering disciplines, such as chemical engineer-
ing. In a chemical engineering process, every ingredient is well defined;
every procedural step is well defined in terms of temperature, action, and
length of time; and every outcome is well defined.

Besides the purely technical aspects of process and methods, many other
environmental and human parameters go into a process. A key factor in the
success of a software process, for example, is the person who is conducting
the activities within the process. Software projects are heavily dependent on
people. A well-trained and motivated person can bring a very different result
than an ill-trained and unhappy person. These environmental and organiza-
tional parameters vary widely among software projects.

A software development or support process is often treated as a guide-
line; often the organization can modify and adapt it as needed. The specific
adaptations made by different organizations have been quite mixed and can
be unpredictable. Because of this unpredictability, many organizations
choose not to adopt any process. Instead, they practice and concentrate on
the limited set of methods related to low-level design, coding, and debug-
ging activities. For small projects that require only two or three people for
six months or less, developing software under the guidance of a heroic
leader without a well-defined process may sometimes work. For any large,
complex project, however, experience shows that some form of process
must be defined, related, and practiced by the complete organization. Also,
if the organization is focusing on certain design attributes and properties,
such as ease of use, then specific methods such as the user interface (Ul)
design method must be rigorously defined to satisfy the ease of use attrib-
ute. We not only need to have well-defined methods and processes, but
these defined methods and processes must also be enforced by the organiza-
tion. What we do not yet have is a set of “prescriptive” processes for devel-
oping different types of software.

Components of Software Engineering

Figure 1.1 is a software engineering diagram that depicts three interrelated
subjects:

e Process and methodologies
e Desired internal product structure and properties
e Desired external product properties

Introduction What Is Software Project Management?

Internal
Product
Structure and
Properties

What process and methodology What structure and size should
can we devise and use to develop the product have to attain the desired
the internal structure and properties? external properties?

What processes and methodologies
«— will be required for which set of
product properties?

External
Product
Properties

Processes and
Methodologies

Figure 1.1 Software engineering

In software engineering we are interested not only in studying the vari-
ous methodologies and processes, but also in applying them to produce the
desired product internal structure and properties, which in turn will provide
the required external product properties. The software engineering diagram
in Figure 1.1 does not enforce any particular sequence; instead, it simply
shows the interrelationships among the components.

Software Product Life Cycle

Software engineering also encompasses the notion of a software product life
cycle, which is closely related to the idea of a software process. Software is
viewed as a logical entity that evolves through various stages, taking on dif-
ferent artifact forms.

Initially, software is just a concept stated in the form of customer
needs and desires. This “wish list” evolves into a requirements specifica-
tions document as the project moves through the requirements solicitation
and analysis phase of the process. Next, the software is transformed into
different levels of design, depending on the amount of design activities.
The design is eventually turned into an executable solution, which
includes code, documentation, database setups, and operating environ-
ment setups. Simultaneously, the software artifacts are “tested” and modi-
fied through a series of mini-transformations and corrections. The
software is then installed at the customers’ and users’ environments as
Release 1. This set of activities and transformations represents the soft-
ware development life cycle.

Software Engineering

>

Inception Sunset

Software development life cycle direction

Y

Requirements | | Design Executable
User Specifications Solution = |=—————= 1
Needs (Release 1) :
1
Executable
Solution
(Release n)

Figure 1.2 The software product life cycle

Figure 1.2 shows a time line of the software product life cycle.

Software development life cycle A set of transformations, starting
with requirements, that converts each incoming software artifact into an
artifact closer to the final result, until the final set of artifacts that sat-
isfy the requirements are met.

Next, the software product moves through a support phase featuring
further corrections, adjustments, and enhancements. Each subsequent release
may move through another software development life cycle. Eventually, the
software will enter a sunset phase and be removed from the user and support
environment. The complete cycle—starting with software development, going
through n releases of the software product, and continuing until the product
is ultimately withdrawn—is called the software product life cycle. The prod-
uct life may encompass one or more iterations of the software development
life cycle in the form of multiple releases.

Software product life cycle A period during which a software artifact
is initially developed, supported, revised through multiple development
life cycles, and finally unsupported and/or taken out of the market.

% THE SOFTWARE PROJECT MANAGEMENT
PROCESS

Software project management involves the application of good management
practices to the development and support of software. By necessity, it is a
multidisciplinary subject.

Introduction What Is Software Project Management?

In terms of Figure I.1, software project management is concerned with
ensuring that, for a software project, the most appropriate process and
methodologies are chosen, the desired internal product structure is attained,
and the external product properties are achieved. In addition, the project
management constraints of schedule and resources must be met.

In terms of Figure 1.2, software project management may be viewed as
applying sufficient resources to ensure that the software artifacts evolve in a
manner such that:

e They meet all the product functional and other requirements.
e They are developed within the cost constraints.
e They are developed within the allotted schedule.

Satisfying the product requirements, budgetary, and schedule constraints
is the essence of project management. Because software projects heavily
depend on the availability of human resources, software project management
also requires people management.

POMA:
THE PHASES OF SOFTWARE PROJECT MANAGEMENT

Software project management, much like other project management, has
four major phases, called POMA:

Planning

Organizing

Monitoring

Adjusting

The POMA management process, as shown in Figure 1.3, starts with the
planning of tasks and moves through the remaining categories of project
management activities. Unlike software engineering, which begins with a
development and support process and then applies management to that
process, POMA starts with management and applies software engineering’s
domain-specific knowledge, such as a requirements solicitation method or
software measurement method, at various stages along the way. POMA mod-
els the software management life cycle much as a waterfall software process
models the software development life cycle.

Note that the activities in the four process categories of POMA are not
necessarily sequential. Some activities within each category may overlap,
and the categories themselves may overlap. For example, the monitoring and
adjustment categories are likely to iterate. In this iteration between monitor-
ing and adjustment, the project manager may adjust the original plan, the
original organization, or both.

The Software Project Management Process

Planning
Activities

Organizing
Activities

Monitoring
Activities

Adjustment
Activities

Figure 1.3 The POMA management process

Planning

Software project planning consists of a set of activities that will develop a
plan of attack for the project. The project plan contains the following items:

e The description of the software product in the form of software artifact
contents and deliverables

e The software product attributes

e The schedule required to complete the project

e The types of and amount of resources needed to meet the project schedule

e The relevant measurements that would be used to gauge the status of the
software project and to assess the final project “success”

e The risks associated with the project

Project planning includes a time-consuming and very important set of
tasks that is, unfortunately, often rushed. It is much wiser to spend the
appropriate time needed to develop a good plan initially than to have to
make multiple and costly adjustments later. Even with a well-conceived
plan, it is unusual not to encounter some conditions that require unexpected
changes during the project. However, having a well-thought-out plan facili-
tates making project adjustments even at a much later phase. The earlier-
mentioned London Ambulance Systems project failure is a perfect example
of an ill-planned project in which the initial requirements were incompletely
defined and the software vendor’s proposed solutions were not completely
studied and checked. As a result, both the estimated effort and the schedule
were totally unrealistic.

Introduction What Is Software Project Management?

Organizing

Software project organization seeks to construct a software development,
support, and service organization based on the project plan. To build and
implement the software project organization, several activities are under-
taken: acquiring the various skilled individuals needed for the project, defin-
ing a process and a set of methodologies that will be utilized for the software
project, obtaining a set of tools that will support the process and the
methodologies, and creating a well-defined set of metrics that will be used to
track and gauge the project.

A significant portion of the task of organizing activities is ensuring that
all personnel brought on board are properly equipped to perform their des-
ignated tasks. This equipping of personnel includes obtaining needed tools
and preparing facilities for initiation of the project, and it also includes
educating the personnel in using those tools, the methodology selected, and
the metrics chosen.

In addition, as part of the organizing activities, project managers need to
ensure that adequate financial funding has been set aside and will be made
available in a timely manner. Thus, the software project management team
must either include financial management and personnel management mem-
bers or have well-defined interfaces with these other organizations. Just like
any organizational interface, the software project organization relies on
human relationships that need to be established, nurtured, and maintained.
The “people management” aspect of organizing is critically important; man-
agers should always be cognizant of the fact that the morale of the organiza-
tion affects its productivity.

Monitoring
Software project monitoring focuses on the following activities:

¢ Consistently and regularly collecting measurements

e Analyzing the data

e Representing and presenting the data for a defined set of reports

e Making projections and making recommendations based on the analysis
of the data

Software project management, like any other project management situa-
tion, involves a heavy dosage of “people” management. Therefore, the proj-
ect monitoring component must include the soft art of both physically and

The Software Project Management Process

virtually “walking around the hallway” and tapping into day-to-day issues,
concerns, and morale.

Adjusting

Adjustments and changes are a very important set of activities for software
project managers. It is a rare situation in which we can develop a perfect
plan and put together a perfect organization. Most of the time, we will need
to make mid-course adjustments, sometimes several times. The monitoring
of projects ensures that the correct adjustments can be made at a relatively
early stage in the development process. In a situation that is often encoun-
tered, the design of a software artifact is found to have a high number of
errors that are attributable to unclear requirements. In this situation, the
software project managers might need to commission a rework on the
requirements and ask for adjustments in the project schedule, resources, or
content. For a software project manager to make adjustments, he or she
must first recognize the need for making a change—and the risks of not
doing so. Then a potential set of adjustments must be available, along with
some prioritization scheme.

Unfortunately, many adjustments might be needed, for example,
because of the loss of a skilled team member or the discovery of an unfeasi-
ble design. Adjustments and changes are often made under pressure and in
uncomfortable conditions. Nevertheless, project managers must have the
courage to stand up and take action. Sometimes even changes to the origi-
nal plan or organizational structure are required. Later, the software project
managers must continue to monitor the project after the appropriate adjust-
ments are made. If the information from the monitoring activities dictates
that further adjustments and modifications are needed, then the software
project management must make these additional changes. This potentially
extensive, iterative process continues until the project is completed.

POMA at All Management Levels

All managers at different levels are involved in the four major activity cate-
gories of POMA. The difference is merely the degree to which they are involved.

Higher-level managers, including executives, tend to be more intimately
involved in establishing the general plans and overall organization of the
project. As a consequence, they tend to focus more on the planning and the
organizing portions of POMA.

Introduction What Is Software Project Management?

Middle managers are involved in building more specific project plans
and specific organizations. They also participate in monitoring project status
and help in making adjustments. These managers are the management “work
horses” in that they are involved equally heavily in all four categories of
project management.

Lower-level managers and project leaders perform daily project monitor-
ing and devise instant adjustments, if they become necessary. Although
these first-line managers and project leaders play important roles in higher-
level planning and organizing, most of the time they focus more intently on
planning and organizing just their portion of the project responsibilities. The
lower-level managers therefore tend to concentrate on the monitoring and
adjustment categories of POMA.

In tackling the four categories of POMA, software project managers uti-
lize various techniques. The description and application of these manage-
ment techniques, as they apply to software development and support for the
different stages of POMA, form the heart of this book.

M KEY CONCEPTS

This overview discussed three interrelated concepts: software projects, soft-
ware engineering, and software project management. Following are some of
the key concepts introduced:

e Software project

e Software artifacts

e Software engineering

e Software process

Software development and software product life cycles
Software project management

POMA and management hierarchy

The remainder of the book will focus on the four phases of POMA—plan-
ning, organizing, monitoring, and adjusting—along with the techniques and
methods needed for each phase.

M EXERCISES

1. Define software in your own words.
2. Describe a computer program that will allow two players to play the
game of tic-tac-toe without ever mentioning the word “tic-tac-toe.”

Suggested Reading

3. Describe the attributes that the tic-tac-toe program described in Exer-
cise 2 should have.

4. What is a software development life cycle and how does that differ
from a software product life cycle?

5. Compare and contrast the concepts of software engineering and soft-
ware project management.

6. Which level of management tends to focus more on the monitoring
and adjustment phases of a software project and why?

7. Describe two situations that you believe would cause adjustments to a
software project.

8. Assume that you are a software project manager and are approached
by a potential customer who wants you to build a tic-tac-toe software
program. Explain the planning, organizing, monitoring, and adjusting
activities that you may have to go through.

M SUGGESTED READING

P. F. Drucker, “They’re Not Employees,” Harvard Business Review, February
2002, 70-717.

R.S. Pressman, Software Engineering: A Practitioner’s Approach, McGraw-
Hill, 1997.

W. Royce, Software Project Management: A Unified Framework, Addison
Wesley Longman, 1998.

I. Sommerville, Software Engineering, Addison-Wesley, 2001.

The Standish Group, Chaos, 1995.

H. Weihrich, “Management: Science, Theory, and Practice,” Software Engi-
neering Project Management, 2nd ed., edited by Richard H. Thayer, IEEE
Computer Society, 1997, 4-13.

E. Yourdon, Death March: The Complete Software Developer’s Guide to Sur-
viving “Mission Impossible” Projects, Prentice Hall, 1999.

This page intentionally left blank

Part One

Software Project Planning
(dOMA)

S oftware project planning consists of a set of activities that set the tone
for the rest of the project. If time is not taken up front and the planning of
the software project is sloppy, then the software project will likely fail. Hav-
ing a great plan does not ensure that no problems will arise during the
course of the project, but the chance of solving the problems or recovering
from damage is much better.

ﬁ A TEAM EFFORT

The software project manager should not perform the software project plan-
ning tasks in isolation. Rather, the software project plan should be formu-
lated with the cooperation of as many of the stakeholders as possible. The
plan must also be reviewed by all stakeholders, understood by all stakehold-
ers, and agreed to by all stakeholders.

The software project manager should be aware of—and sometimes
even participate in the formulation of—the “justification” of the project,
but at times the project manager may just be “told” of the justification.
These justifications—such as improving customer satisfaction, improving

Part One Software Project Planning

business performance, and reducing complexity—are all very important to
know and should be part of the goals and objectives as the software proj-
ect plan is formulated. But there is a reason for caution here: The infor-
mation technology (IT) world is full of new technology, advancements in
process, and attractive concept justifications that may not be thoroughly
understood. Thus, software project managers in the IT industry can easily
become caught up in the emotion of the moment and embark on question-
able projects.

The software project managers are responsible for thoroughly under-
standing the project justifications, translating them into measurable goals,
and articulating them clearly in the project plan. It is only when the project
managers openly include the justifications as part of the plan will then these
justifications be properly converted into achievable goals. The word “openly”
is chosen deliberately to further emphasize the danger of having “hidden” or
“obscure” justifications.

ﬁ PLAN CONTENT

The content and the depth of a software project plan may differ depending
on the type of the software project. Ultimately, all project plans must address
a set of common issues:

e What is the nature of the software project and what software artifacts
are the desired deliverables?

e What is the overall schedule and the associated major project mile-
stones?

e What are the required resources and their associated financial costs?

e What are the known risks and the areas that are still unknown?

For each of these issues, many subcategories may exist. The level of
depth within each subcategory may also vary within the plan. For example,
for a software development organization that is in the business of outsourc-
ing other organizations’ software development, it may be important to delve
more deeply while planning for well-organized processes, well-defined
methodologies, and well-trained software engineers as part of the required
resources section of the plan. At the same time, issues related to costs and
schedules for a software outsourcing project may receive the same amount
of emphasis as they do in other types of software projects.

Plan Content

In addition, the number of subcategories and the level of depth may
depend on the type of plan that is required. Many times, software engineers
are asked to develop an initial, quick plan solely for the purpose of develop-
ing early estimates of the project’s size and scope. This plan may need to be
available within days. In other situations, software engineers may be asked
to develop a complex and thorough plan in response to a well-defined set of
requirements set forth in a formal request for proposal (RFP). Such a plan
may require weeks, and possibly months, to prepare.

One critical issue in all software projects is the management of quality.
To handle this issue properly, the attribute of quality must first be clearly
defined. Chapter 3 includes an extensive discussion of this attribute. The
project plan must state the metrics to be used and the measurement method-
ologies to be employed to collect and analyze those software quality metrics.
These and other important attributes and items need to be analyzed and
stated in the form of the project’s “goals.” Each goal must be quantifiable or
it will be difficult to track and manage. For this reason, the software project
plan may need to include a section that clearly articulates the key goals of
the project along with a metric for each of these goals.

@ LEVELS OF PLANNING

Even though there may be several levels of planning for any given project,
essentially two levels of planning exist for all projects: the quick estimate
and the comprehensive plan. Both of these planning tasks require some
experience, and it is difficult for a new project manager to perform all the
tasks by himself or herself. For example, just coming up with a reasonable
list of software project risks requires some past experience.

Quick Estimate
A quick estimate often includes just the following items:

e A brief description of the problem and the project

e The deliverables needed to satisfy the project

e A high-level schedule that contains only a few major milestone dates
with the associated deliverables

e A single, rolled-up cost estimate

e A summary of risks and assumptions

Part One Software Project Planning

Comprehensive Plan

A more comprehensive plan would not only expand on the items listed in
the quick estimate, but also broaden the list itself as follows:

e Problem and Requirements: a discussion of the customer and user prob-
lems, needs, and wishes along with characterizations of the different users.

e Product/Project Description: the complete scope of the project, which
includes all project deliverables, a functional list, and a description of
each deliverable.

e Product/Project Attributes: a description of the various attributes of the
deliverables and the nondeliverables as they pertain to the goals of the
project; these attributes must be measurable and will be used in the
designing of metrics.

e Schedule: the sequence of tasks required to produce deliverables, along
with the resources required and the relevant milestone dates.

e (osts: cost details given in terms of some unit, such as person-days, for
each deliverable. The costs must include all other expenditures—such as
those for tools, travel, training, and communications—attributed to the
project.

e Resources: a detailed list of the people needed and the special skills that
they must possess, a complete set of needed tools, any special training
and ongoing information updates, and all hardware and software sys-
tems required to support the project.

® Process and Methods: a description of the overall process and each
method to be used to accomplish the various tasks within each phase of
the process. A description of the level of competency, in terms of train-
ing or years of experience, for each of the methods should be stated.

e Risks: a list of potential problems, with weights assigned to them based
on their assessed impact and probability of occurrence. The plan should
also detail actions that might help keep the risk from turning into a real
problem.

Chapter

Project Content and
Deliverables

Chapter Objectives
This chapter discusses the following concepts:

e Why requirements elicitation, analysis, specification, and agreement
should be completed prior to planning

e Why software project managers must ensure that project requirements—in
the form of (1) the deliverables and (2) the characterization of the needs to
be satisfied by those deliverables—are available and properly prioritized

e Why software project managers should focus their energy on require-
ments management and let the software engineers and analysts perform
the requirements development

GATHERING AND ANALYZING
" PROJECT REQUIREMENTS

Before any software project can be initiated, software engineers need to
identify the requirements of the project, interfaces to the project, and any
other related systems or subsystems. Software requirements are the needs
and the wishes of the users and the customers that may be delivered as solu-
tions in the form of software. Gathering the requirements for a software
project is one of the most difficult tasks in software engineering. In this
chapter, we will not delve into the methodology used to complete individual

Chapter 1 Project Content and Deliverables

subtasks within a set of requirements management activities, but rather will
discuss strategies for managing the requirements of a project from the proj-
ect management perspective.

Software requirements The needs and the wishes of the users and the
customers that may be delivered as solutions in the form of software.

The software project manager needs to provide an environment con-
ducive to proper requirements gathering and analysis. There must be
ample time and suitably skilled people available to perform these tasks.
The actual performance and completion of the subtasks, the mode and
effectiveness of operation, and the resulting specification of the require-
ments are the concerns of the software project managers. This responsibil-
ity should be shared with the software engineers and analysts who are
assigned to perform those tasks, though the software engineers and man-
agers perform different roles.

Potential Pitfalls

Surprisingly, a large number of software projects are commissioned without
the client or project manager fully understanding the requirements. Of
course, many of them pay a high price for this neglect later. The require-
ments specifications are critical for the success of a project. The first step in
software project management is to recognize that the requirements must be
understood and agreed upon by all parties. This seemingly very simple prin-
ciple is often not applied in software projects. Many requirements are gener-
ated by the software engineers during development without consulting
anyone. This phenomenon of increasing requirements is known as “scope
creep” in the IT industry. Because these implemented requirements are not
familiar to anyone else, the testers will not know that these features exist
and should be tested, and customers may be surprised by them. Due to the
lack of testing, quality issues may arise concerning the code that has been
developed for the unknown and non-agreed-upon requirements. There are
many causes of this unfortunate situation, and they can be attributed to both
the requirements providers and the solution providers.

The following list describes some reasons why the providers (the users
and the customers) of a software project fail to make clear their requirements
for a given project:

e The customers and users are not fully knowledgeable about their com-
plete needs.

Gathering and Analyzing Project Requirements

e The customers and users do not know how to express all of their
requirements, especially when some aspects of software project require-
ments are highly abstract.

e The customers and users do not remember to include everything in their
set of requirements.

e The customers and users are not consistent in their presentation of the
requirements.

e The customers and users take the activity for granted and therefore do
not interpret it as essential.

The solution providers (the requirements receivers, such as the software
engineers and project leaders) may also be at fault, for the following reasons:

e The software solution providers misinterpret the requirements stated by
the customers and users.

e The software solution providers do not understand the requirements
because the particular subject and terminology used are new to them.
(Unfortunately, some software solution providers think that they are
knowledgeable about every field and every discipline.)

e The software solution providers are under pressure to “make the sale” and
to seize the project even without fully understanding the requirements.

e The software solution providers believe that they have a generic solution
that can fit most problems within a certain category and insist that they do
not need to fully analyze the requirements of the particular case at hand.

There are many more ways in which the requirements might not be fully
understood, fully documented, or fully analyzed. It is the software project
managers’ responsibility to recognize both the potential for problems and the
implications of experiencing these problems. Software project management
needs to establish a process and obtain the associated resources to ensure
that the project requirements gathering, analysis, and documentation activi-
ties are satisfactorily completed. This process and the arrival at a complete
and mutual agreement of the requirements must be part of the project plan.

Completing the Requirements Specification as a
Separate Project
Sometimes, the initial software project plan focuses on the project require-

ments as the sole deliverable. Indeed, the completeness, accuracy, and clarity
of the requirements specification are now recognized as such significant

Chapter 1 Project Content and Deliverables

attributes that many software projects consider the requirements gathering,
analysis, and documentation activities to constitute a separate project. This
set of activities is planned and managed as a separate (and often separately
priced) mini-project to be completed before the main project begins.

If the requirements development activities do constitute a separate
project, then the project manager must ensure that this set of activities is
planned, organized, monitored, adjusted, and brought to a successful
completion. Clearly, the planning of this mini-project will not be as com-
plex as that of the complete software project, but it is no less important.
The planning steps for a set of requirements gathering and analysis activi-
ties (discussed later in this chapter) can be scaled down, but the planning
for a mini-project, which is just a subset of the entire project, and the
planning for the total project are not dramatically different. In other
words, it is still necessary to state the requirements for the requirements-
gathering project, albeit not to the same degree as for the complete soft-
ware project.

GENERAL REQUIREMENTS
% MANAGEMENT ACTIVITIES

Consider Figure 1.1, which depicts the requirements gathering, analysis, and
documentation activities. Only the areas that relate to managing this process
will be discussed here. An in-depth discussion of the requirements process
and the details of how each task is performed may be found in the software
engineering books listed at the end of this chapter. Note that prototypes are
sometimes constructed to better understand the requirements. Prototyping to
clarify the requirements and to explore the technical feasibility of a project
is itself a project that must be properly managed or it can turn into a never-
ending activity. Managing prototyping will be discussed later in this section.

Software prototype A software model created to represent a user
interface or a function for the purpose of better understanding the
requirements and the feasibility of the proposed solution.

One key problem that often hampers requirements gathering is a shortage of
(or unavailability of) knowledgeable people. Oftentimes the key users and
customers are the very same people who have the least amount of time to
discuss requirements with the solution providers. For this reason, a project
manager should participate in several steps depicted in Figure 1.1 to ensure
that these activities are completed successfully. Occasionally, project man-

General Requirements Management Activities

Agreeing on . Requirem_ents

and Initiating |- —— | R€Quirements »| Analysis

Requirements Elicitation and .
Prototyping

Y

(as needed)

Requirements Requirements
Review Specification

Y

Agreeing and
“Signing Off”

Figure 1.1 General requirements management activities

agers may need to directly intervene or even ask for upper-management
assistance in order to meet the following goals:

e The initial agreement on requirements processing and the assignment of
the qualified people to participate in the activities should be completed
on a timely basis.

e The review of the requirements and the prototype should be conducted
with a clear “end” in mind. All parties must initially agree on clear exit
criteria as well.

e The final “sign-off” should be completed by all stakeholders.

Although the software project managers may sometimes need to inter-
vene, they should allow the software engineers to actually perform the tasks
depicted in Figure 1.1. The entrance and exit of each task are the points on
which the project managers should focus their attention. As mentioned ear-
lier, the reviewing of requirements statements and the prototyping efforts
may potentially create a situation of never-ending modifications, extensions,
and new additions to the requirements. In some cases, for example, in the
absence of a clearly specified schedule, customers have asked for repeated
viewing and reviewing of the user screen prototypes. Even though each
review with different users may have improved the interfaces, the expended
effort can greatly exceed the marginal gains made in the prototype.

To avoid this problem, clear exit criteria and the mode of operation for
all activities must be defined and accepted by everyone right from the start.

Chapter 1 Project Content and Deliverables

In the case of prototyping, entrance criteria to that activity should also be
carefully specified and fully enforced. The entrance criteria should include at
least the following items:

e The availability of skilled resources

e The time frame and process for reviewing the prototype

e The overall prototype schedule

e The scope of the prototyping activity (e.g., just screens instead of fully
operational programs)

The software project manager will often be asked to comment on his or
her preference on the kind of prototype provided. There are two main types:

e A rapid prototype of the requirements that will eventually be thrown away
e Jterative prototypes of the requirements that may be kept as the early
versions of the final product

For many managers, the notion of throwing away code seems so waste-
ful that it is extremely tempting to choose the iterative prototype approach.
Nevertheless, one must remember that keeping the prototype carries a price.
That is, the prototype code must be designed, documented, tested, controlled,
and so on, just as the final code is. Thus the desired speed one can achieve in
rapid prototyping is not available with iterative prototyping.

Only after the requirements are understood and analyzed can a descrip-
tion of the needs of the entire project be created. A list of the deliverables
and a description of each deliverable are prerequisites to developing the
remaining part of the software project plan. The requirements, once elicited
and gathered, must be further analyzed for completeness, consistency, prior-
ity, and understandability.

% TYPES OF REQUIREMENTS

1010

The software project manager should recognize the two major types of require-
ments: the project deliverables and the needs satisfied by those deliverables.

Project Deliverables

The first set of requirements deals with the deliverables, the items provided
to the client at the end of the project. What the project deliverables include
must be clearly defined and agreed upon from the beginning. They can

Types of Requirements

range from all the artifacts produced in the development of the software to
only the executable object code. The following is a list of example artifacts
that a software project might be asked to deliver:

e Requirements document
e Design document

e Source code

e Source message file

e Executable code

e Test scenarios

e Test cases with test data
e User guide

e Product reference manual
e Test results and quality-related data
® Process specifications

e Project plan

Each of these items must be defined in terms of its content, form, and
format. For example, the requirements document could be as simple as a
Microsoft Word file that is placed on a disk, while the user guide might con-
sist of online HTML files that are titled separately by functional topic and
made accessible through a Help icon on the toolbar. All of the artifacts must
be prioritized, and a schedule for each one must be established. Resources
must be assigned to develop each deliverable, and each artifact must be
managed to its completion.

Note that some software enterprises, as part of their business practices,
will not include certain deliverables. Source code is a primary example that
many software enterprises do not deliver. There are many reasons for not
wanting to deliver source code. An obvious one is related to the issue of
intellectual property and the potential for the copying of the proprietary
source code by others. Another source of angst is the possibility of uncon-
trolled, multiple modifications and extensions to the original source code
made by others, which can turn the support effort into an expensive night-
mare for the developer of the original deliverable.

Project Needs and Their Characterization

The second type of project requirements identifies the needs, characteristics,
and constraints for which the software project must provide the solutions.
This is the area on which most software engineers, rather than the project

Chapter 1 Project Content and Deliverables

managers, would focus their energy. Clearly, the following items should be
identified:

e The functions that the software must provide

e The performance and other nonfunctional constraints that the software
must meet

e The business process into which the software must fit

e The interfaces that the software needs, to interact with its users, and the
appearance of those interfaces

e The interfaces that the software needs, to interact with other systems

e Characteristics of the data that the software solution must handle

All six of these categories describe “what” is needed. Although func-
tional needs are commonly mentioned first in requirements gathering, the
sequence in which they appear does not reflect any particular hierarchy.
Indeed, their prioritization will differ by project.

An important question the software project managers will face is the
decision of how to specify the requirements and how formally they should
be specified. Here, we are not focusing on the technical merits of different
requirements specification languages. Rather, the issue is quite nontechnical:
Should the requirements be documented in the form of pseudo-English or
something more formal, such as UML? This decision should normally be
described and specified in the software development organization’s require-
ments process. Because of the nature of the customers, however, a software
development organization may sometimes have to revisit the decision stated
in its process. Some customers are not sophisticated or trained in reading
formal documents. The software project managers, in conjunction with the
lead software engineers, may have to adjust the process as required.

Review and Approval of Requirements

The project manager needs to ensure that the first set of requirements (the
deliverables) is clearly defined, understood, prioritized, and agreed upon by
both the customer and the solution provider. To avoid potential problems
and subsequent major disagreement, it is wise to have all parties formally
“sign off” on the deliverables.

The same may be said about the second set of requirements (the needs
and constraints). However, because the second set characterizes the details of
various aspects of the project, it needs more than just a sign-off. It is strongly
advisable to include a final review of the requirements specifications by the

Internal Requirements Generation and Prioritization

stakeholders prior to the sign-off. This requirements specifications review, if
conducted, may range from somewhat formal to very formal. The software
project management must determine the form of this review based on how
some of the other activities in the requirements management process have
fared so far. If defects were found in earlier, smaller-scale reviews or if a
number of changes were made to the specifications during prototyping, then
those data should be analyzed and considered in deciding how formal this
final specification review should be.

INTERNAL REQUIREMENTS GENERATION
%" AND PRIORITIZATION

Project requirements are sometimes initiated by solution providers internally.
These are some of the most difficult requirements to evaluate. Oftentimes the
key designer or the key marketer of an ongoing software product will make
recommendations to be included for a subsequent release of software. The
chief designer or architect will list a very impressive set of technical items
that “must be” either modified or added. Similarly, the sales force and the
marketing personnel will cite all missing functions that led to “lost sales.” In
the case of a multiple-release product, the customers and the support organi-
zations will also have requirements for improvements and suggested fixes.

If there is no established procedure to help the decision-making process,
a horrendous amount of energy and goodwill may be expended and perhaps
wasted in the requirements development phase. It is the software project
manager’s responsibility to ensure that such a frustrating and languishing
environment does not persist for too long.

The Prioritization Process

One potential remedy is to establish a process to handle the situation. A gen-
eral prioritization procedure for both internal and external requirements is
depicted in the requirements prioritization diagram shown in Figure 1.2.

The inputs from the various requirements’ sources are constantly coming
in to the software organization and being captured, possibly with an auto-
mated data management system or a requirements management tool such as
Rational’s RequisitePro or Borland’s Caliber RM. The project management of
the software organization must be ready to accept and respond to these
requests. There needs to be both recognition of and an assignment of

Chapter 1 Project Content and Deliverables

Requirements Sources

Development

Requirements
Prioritization

’

Software
Product List of
Requirements Management Requirements
Repository Board Input to the

Product Plan

WY

Figure 1.2 Requirements prioritization

resources to the capturing of these inputs. Furthermore, resources must be
set aside for the following activities:

e Regular review of these inputs

e Analysis of the valid inputs

e Prioritization of these inputs

e Response to both the accepted ideas and the rejected ones

e Formulation of the accepted requirements subset into actual requirements
for the product plan

Table 1.1 shows an example of how such a list might be organized.

Role of the Software Product Management Board

In Figure 1.2, the Software Product Management Board includes managers
and leaders from various parts of the organization. This group is responsible
for deciding which requirements will be included, delayed, and excluded for

Internal Requirements Generation and Prioritization

Table 1.1
Requirements Prioritization List
ltem# Item description | Source Priority Status
Item number | Brief description | Source of the Assigned priority of | Description:
used to of the item, point- | request, such as | 1through 4, where | Accepted and
identify the | ing to a detailed | the customer, 1 is highest included in the
item document if internal support current product
necessary organization, or release plan
internal sales accepted for a
organization later product
release plan,
or rejected

each software project. A set of candidate requirements might come from the
following sources:

e Application domain area experts (such as analysts or consultants)
e The lead developer or lead architect

e User customer support personnel

e Users or customers

e Sales or marketing representatives

e Product or project managers who have authority over resources

e Strategic business planning personnel

e Trainers

Software Product Management Board A group of people chosen to
assist in the determination of priorities of requirements and the group-
ing of requirements for product releases.

The composition and the size of this group will vary depending on the
type of the software project. For a software product with a limited number of
customers, the Software Product Management Board might include only two
or three people. In contrast, for a complex product targeted toward millions
of customers, the board might expand to 10 to 12 people. The number of peo-
ple required and the length of time needed also depend on whether the soft-
ware is being developed as a first release or has gone through multiple
releases. For a popular, multiple-release software product such as an operat-
ing system, the organization might need to keep two or three people on the
board permanently, for the purpose of managing the stream of continuous
requirements.

The software project manager may pick the group members based on the
potential contribution that each individual will make in the various areas

Chapter 1 Project Content and Deliverables

that will help in the requirements prioritization decision process. Areas of
interest might include some of the following:

e The project’s sales, marketing, and business implications

e [ts technical and architectural implications

e [ts financial and resource implications

e [ts implications for customer and user satisfaction, needs, and wishes
e The project’s industry- and domain-specific implications

Chapter 13, which covers the Release Management Council, will also
touch upon this subject, although the actual composition of a Release Man-
agement Council may be a little different than that described here. The Soft-
ware Product Management Board differs from the Release Management
Council in that the former is mostly concerned with product requirements
and prioritization of requirements, while the latter focuses on issues related
to the product release decision.

Release Management Council A group of people chosen to assist in
managing the entire software project from goal setting to the final prod-
uct release decision.

The managing of requirements often encountered at the review of a new
software product line is similar, but slightly more complex. In this case, the
sources of requirements may include a large and diverse group of people.
Many times a special customer council is formulated by the software com-
pany for the purpose of gathering a basic set of requirements pertaining to
solving both the fundamental problems of the represented industry and also
some of the specific problems identified by the members of the customer
council. In preparation for this effort, the customer council must take into
account the opinions of the marketing and sales people of the organization.

The software project managers must attain the necessary financial and
people resources before establishing such a council. The IT industry is full of
situations in which the customer councils were abused and used as a reward
for people’s past good performance. In one customer council established by
the author, the group initially worked very diligently. Unfortunately, as the
participants became more familiar with and comfortable with one another,
more socialization than real work began to take place at these meetings.
Therefore, software project managers must always ensure that the partici-
pants are prepared to really work on requirements.

Once the customer council is established, the general set of requirements
management activities mentioned earlier still applies. The output of the cus-
tomer council becomes the input for the Software Product Management Board.

Quick Estimates and High-Level Requirements

QUICK ESTIMATES AND HIGH-LEVEL
%" REQUIREMENTS

Once the deliverables and their contents are defined and understood, the proj-
ect manager and his or her team can then start on other aspects of planning
activities. Sometimes project managers are pushed by the client to provide a
“quick estimate” of the project’s cost and schedule. In such cases, the under-
standing and the subsequent documentation of the deliverables may be at a
high level. The question that the software project managers must ask, however,
is whether this “high-level” understanding and description of the deliverables
is enough to allow a rough estimation of the project’s costs and schedule. Esti-
mating the rough cost and the rough schedule carries a degree of risk. That is,
the preliminary cost estimate and schedule have a high probability of chang-
ing, as does the high-level description of the deliverables. Two approaches are
available to the software project managers to deal with this situation.

The first approach to handling quick estimates is to put “buffers” in the
wording of the deliverables, along with buffers in the cost estimates and in
the putative schedule. Buffers consist of extra time, money, other resources,
or explanations provided to reduce potential project risks. In addition to the
buffers, there must be a defined change management process that allows for
changes in the deliverables and the associated changes in the project’s cost
and schedule. This change management process must be understood, con-
curred with, and accepted by all parties. It is the responsibility of the soft-
ware project managers to ensure that change management is properly
implemented throughout the life cycle of the software project. The details of
the change process are discussed in Chapter 15, on change control, and in
the sections on establishment of an organization and processes for the soft-
ware project in Chapters 7 and 8.

A second approach to handling quick estimates is to have the project
manager try to convince the potential customer to turn the requirements
management phase into a separate project and provide a quick estimate for
only that phase. This approach will bound some of the risks of the quick
estimate to just one phase of the software project, albeit a very important
one. A separate plan for the rest of the project phases can then be estab-
lished following the conclusion of the requirements management phase.

This evolutionary approach to project planning and project manage-
ment, where requirements management is separated out as a different proj-
ect, may be preferable for software projects in which the deliverables are
nontangible information and complex (even though the media on which the
deliverables reside may be physically tangible). Many experienced software

Chapter 1 Project Content and Deliverables

project managers in software development and service organizations use this
evolutionary approach of separating out the requirements phase as their
standard business procedure.

Software project managers constantly wrestle with the dilemma of
whether the deliverables are sufficiently understood and defined well enough
for the rest of the planning activities to begin. One frequently used method
to aid in this decision-making process is the review activity depicted in Fig-
ure 1.1. If the requirements are reviewed and all corrections are made, then
they can be deemed “well-defined” and well-understood requirements. Fur-
thermore, the signed-off requirements are not only well defined and under-
stood, but also accepted as the baseline for the requirements.

It will be unusual if the baseline requirements specification is never modi-
fied. At this early stage the software project manager must often select a
requirements management tool (such as one of the tools mentioned earlier) or
a software configuration management tool (such as PVCS) to help in the con-
trol of and tracking of requirements changes. The project managers must be
sure to consider more than just requirements management and include change
management when choosing such a tool. (See Chapter 15 on change control.)

M KEY CONCEPTS

Prior to actually working on the project, the project requirements need to be

e Gathered

e Analyzed

e Documented

e Reviewed

e Accepted with a sign-off

Software project managers should focus on providing the necessary
resources and creating an environment that enhances the requirements
development process. There are two major types of requirements:

e The list and the description of the deliverables
e The characterization of the needs and of the problem

In characterizing the needs of the problem, six areas should be covered:

e The functional needs

¢ The nonfunctional needs

e The business process

e The data and information structure

Exercises

e The user interface
e The system interface

The establishment of the appropriate process and methodologies for
requirements management and prioritization is the main function of the
software project manager, but direct participation or even intervention by
the project manager is sometimes required.

Software project managers must exercise care when responding to a

request for a quick plan if the gathering or analysis of the requirements is
not complete.

M EXERCISES

1.

9.
10.
11.

Imagine that your software engineers arrive at the customer site and
find that the “promised” users, who were key to the requirements gath-
ering activity, are all in an emergency meeting that will last for at least
one whole day. What are some of the things you, as the project man-
ager, should do?

Why must there be clear entrance and exit criteria for requirements-
processing activities?

List three reasons why software project requirements are sometimes not
well-defined and understood.

After organizing and setting up a requirements prioritization process,
your executive management (e.g., CEO or CFO) keeps submitting an
“important client” request or “one more last” request. How should you,
as a software project manager, handle the situation?

List two entrance criteria for prototyping.

If you choose to use iterative prototyping, what are some “costs” of
which you need to be aware?

What are some activities in the requirements management phase that
would benefit from automation and tools?

Discuss what you believe are the software artifacts that should be con-
sidered as the main software deliverables and explain the reasons for
your choices.

List the six areas that the software requirements should address.

What is a Software Product Management Board and how necessary is it?
Define software requirements and discuss what more may be in a cus-
tomer requirement list (see the software engineering definition in the
Introduction).

Chapter 1 Project Content and Deliverables

M SUGGESTED READING

M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, Addison-Wesley, 2000.

M. Jackson, Software Requirements and Specifications, Addison-Wesley,
1995.

D. Leffingwell and D. Widrig, Managing Software Requirements: A Unified
Approach, Addison-Wesley, 2000.

B. Ramesh and M. Jake, “Towards Reference Model for Requirements Trace-
ability,” IEEE Transactions on Software Engineering, January 2002,
58-93.

K. Ryan and J. Karlson, “Prioritizing Software Requirements in an Industrial
Setting,” Proceedings of the 19th International Conference on Software
Engineering, 1997, 564-565.

I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice
Guide, John Wiley and Sons, 1997.

Chapter

Task Analysis

Chapter Objectives
This chapter discusses the following concepts:

e How the Work Breakdown Structure (WBS) is used to analyze the tasks
that are needed to develop the deliverables specified in the requirements

e How effort, in the form of time and resources, should be assigned to the
tasks shown in the WBS

e Why the preliminary schedule, with milestones, developed from the WBS
is a key part of planning

@ WORK BREAKDOWN STRUCTURE

Once the requirements specification is understood and completed, the soft-
ware project management team is ready to start on the Work Breakdown
Structure (WBS) activity. Note that we used the term “software project man-
agement team” rather than “project manager” in describing who participates
in the WBS activity. Even at this early stage of planning, the knowledge and
experience of the technical software engineers may be required.

Work Breakdown Structure (WBS) A depiction of the project in terms
of the discrete pieces of work needed to complete the project and the
ordering of those pieces of work.

The WBS first looks at the macro requirements of what needs to be
delivered. In other words, the WBS considers the “big picture” and evaluates

Chapter 2 Task Analysis

what needs to be accomplished from a high level, rather than focusing on
the details. From the list of the artifacts that are required to be completed
and delivered, a high-level set of tasks or work that will produce the artifacts
is identified. The sequencing or the ordering of these tasks is also important
and will be defined as part of the WBS.

In this early stage of planning, the software management team might
have only a global understanding of the software development and support
process, with details of the needed process not yet being fully defined and
refined. Later, each task or work unit should be further refined into smaller
units of subtasks or work units by the management team until each subtask
can be performed by a single individual. At the completion of the WBS
activity, the management team will have a defined set of ordered tasks for
each of the deliverables. They can then use the details of the ordered tasks to
formulate the initial project schedules, milestone dates, and cost estimates.

A variety of graphical tools can be used in the WBS activity, ranging
from Microsoft’s Visio to Smartdraw.com’s Smartdraw. There are also a
plethora of tools available for representing and keeping track of the sched-
ule—for example, Primavera’s TeamPlay, MinuteMan System’s MinuteMan
Project Management, and Microsoft’s popular Project tool. Indeed, the IT
industry is rife with such tools that can be used as aids in the WBS activity.
But a word of caution is in order: Even though these tools are wonderful for
improving management productivity, project managers should focus their
attention on the information that is stored and represented by these tools,
rather than “falling in love” with the tools themselves.

Steps in the WBS

The following is a list of activities that need to be performed as part of the
WBS activity:

1. Examine the set of required external deliverables.

2. Identify and list the steps and tasks needed to produce the required

deliverables, including any tasks for additional intermediate deliver-

ables needed to complete the final deliverable.

Sequence the identified tasks required to produce the deliverable.

Estimate the effort required to perform each task.

Estimate the productivity of the resources that will be applied to the tasks.

Compute the time needed for each task by dividing the task effort esti-

mates by the resource productivity estimates.

7. Lay out the time needed for each task and “label” each task with its
task name and the assigned resources; this layout of sequences of tasks

AN

WBS In Practice: Introduction to an Example

with their associated time and resources essentially forms the initial
schedule.

Figure 2.1 graphically depicts the flow of activities involved in the WBS,
ending with the formation of an initial schedule. To perform these steps, we
make several key assumptions. For example, we assume that information
such as process, task effort, and people productivity data are available. The
management team must make estimates for each of these components using
their respective techniques, some of which we will discuss in later chapters.
For now, keeping in mind that we’ll be making assumptions, we will demon-
strate, via a software project example, how WBS is conducted.

WBS IN PRACTICE: INTRODUCTION
% TO AN EXAMPLE

Assume that from the requirements specifications we have determined that
the scope of the project is of a “small scale” and that only two software
deliverables are needed:

e Deliverable 1: Executable code that is installable from a CD

Identify and
list all
deliverables

For each deliverable:
Identify and list the
necessary tasks for
completing the task

———>»{ Sequence the tasks

» T
Perform g :
the tasks .~ !
- v
. For each task:
. For fa::hh tti_isk-l _ Estimate the For each task:
ompute the timeline _ — :
required by dividing < productivity of the [o e o
effort by productivity assigned resource effort needed

After the timelines
for all tasks for all

deliverables are
computed

Lay out the timeline for all
the ordered tasks needed for
each deliverable

Figure 2.1 Flow of WBS to schedule

Chapter 2 Task Analysis

e Deliverable 2: Help text, usage, and reference information that is instal-
lable from a CD

From this macro description of the deliverables, we can start planning the
activities in the form of a WBS. This seemingly simple list of artifacts actually
requires more planning than one might first expect. The set of activities
needed for each artifact appears below. Recall that we have already com-
pleted the requirements gathering and analysis phase and, therefore, have a
good idea of the software’s functional and nonfunctional requirements.

Deliverable 1: Executable Code

e The activities needed to develop the executable code include require-
ments specification and analysis (which are already completed), design,
coding, and testing.

e The activities required to make the executable code installable include—
although in a simpler version—requirements specification (already com-
pleted), design, coding, and testing.

Deliverable 2: Help Text, Usage, and Reference
Information

e Creating help text involves requirements specification and analysis
(which is already completed), design, writing, “tucking in,” and testing.

e Developing usage and reference information involves requirements
specification and analysis (already completed), design, writing, “tucking
in,” and testing.

The choice of the set of activities and their sequencing depend on two
parameters: (1) the size and complexity of both the problem and the solu-
tion, and (2) the process and methodology that the software organization has
already defined, trained its people to follow, and agreed with its client to
use. The existence of the client agreement is a key assumption. Sequencing
the activities needed for the development of the artifacts can be a large
problem for new software organizations that have neither the experience nor
any of the processes defined. The front-end cost, in terms of both effort and
money, of preparing an organization for any process is extensive and some-
times hard to overcome. For now, let’s assume that the process is already

WBS Task Refinement

defined and understood by most of the people in the organization. We will
revisit this topic later.

@ WBS TASK REFINEMENT

An expansion of the WBS for the executable code deliverable, not including
its installability, of this “small” project example is shown below.

Activities and Subdeliverables for Deliverable 1

We first present a list of activities, but they are not yet necessarily in the
correct order:

Activity A: Designing and documenting the design using an agreed-
upon notation

Activity B: Coding (in a language that is already agreed upon)

Activity C: Defining test cases and generating test scripts

Activity D: Executing test scripts

Activity E: Correcting and fixing problems found during testing

Activity F: Collecting the tested executables modules and handing
them to the packaging group

Note that this expanded list includes more intermediate subdeliverables,
such as the design document. The subdeliverables may be for internal con-
sumption only and may not be delivered to the customer or the users. We
include them here because these intermediate deliverables still require effort
and thus need to be part of the plan.

Further refinement of just the design activity, Activity A, may result in a
table such as Table 2.1.

To refine Activity A into these subtasks, the software project manage-
ment team most likely had to spend some time analyzing and contemplat-
ing what design activities are needed for the given requirements of this
“small” project (unless they had prior experience with similar projects).
Once again, the software project management team might need the techni-
cal expertise and experience of the software designers if they do not possess
such technical skills themselves. This refinement of tasks continues until
each task can be assigned to a responsible person. For instance, Task A-1
might be further broken down into development of the application architec-
ture, Ul architecture, and message architecture if the software project were a
larger one.

Chapter 2 Task Analysis

Table 2.1

Subtasks within the Design Activity
Tasks Description
Task A-1 Overall application, user interface (Ul), and message

architecture

Task A-2 Database and relational tables design
Task A-3 Application function 1 design
Task A-4 Application function 2 design
Task A-5 Application function 3 design

Task Sequencing and Sequence Diagram

Next, we need to examine whether any sequencing relationship exists among
the subtasks. In this example, Task A-1 needs to be completed before Tasks A-
3, A-4, and A-5 commence. Task A-2 may, however, be started before Task A-
1 is completed because the database design does not depend on the completion
of the message architecture. Depending on the tools and the methods used in
the software project, the UI architecture part of Task A-1 may or may not need
to be completed before Task A-2 starts. The amount of overlap between Tasks
A-1 and A-2 depends on several parameters, ranging from purely technical
ones to personnel availability. For initial planning purposes, we will first keep
the WBS simple and force the sequencing of tasks without overlap.

Figure 2.2 graphically represents the sequence relationship for our
example in a sequence diagram. The sequence diagram depicts the start-stop
relationships among the various subtasks of Activity A. It may be further
refined for detailed planning if any of the subtasks is too large or cannot be
assigned to one responsible person.

Sequence diagram A diagram that shows all the tasks required to com-
plete an activity and the order in which those tasks must be performed,
including the depiction of the tasks that may be performed in parallel.

Figure 2.2 shows that Tasks A-3, A-4, and A-5 may be performed in
parallel because no ordering relationships among them are specified. Note
also that there is no indication of how any task may overlap with another
task. For parallel tasks, there may be total overlap, assuming that no other
constraint applies. In the case of sequential tasks, neither a sequence dia-
gram nor a WBS provides a view of any potential for overlapping the tasks.
This limitation can be overcome by adding the task overlapping explanation
at the corner of the diagram. The only problem is that the explanation may
require more space than what is available.

WBS Task Refinement

Figure 2.2 Sequence diagram (Sequence relationship of activity A subtasks)

We will need to construct a sequence diagram for each of the remaining
activities B through F that are required in developing the executable code
deliverable. Similarly, for the other deliverable, Deliverable 2, we will need
to create a list of activities that may then be further refined into subtasks.
The sequence relationship among the subtasks needs to be established and
depicted, possibly with a sequence diagram. A software management team
typically uses this organization because it is an excellent way to represent
the WBS.

The construction of a sequence diagram for a software project follows
these steps, which are—and should be—similar to the earlier discussed con-
struction of the WBS:

List the deliverables.

For each deliverable, list the activities that are required.

For each activity, list the set of subtasks that are required.

Further refine any of the subtasks by creating the next level of sub-
tasks, if necessary.

Construct the sequence relationship of the subtasks.

Depict the sequence relationship with a sequence diagram.

AW N =

oV

A Word of Caution

Earlier we mentioned that there are at least two levels of any given
plan: a high-level, big-picture perspective and a low-level, detailed
view. Even for a high-level plan, the software project managers need
to quickly put together a WBS for the deliverables. To do so, they must
have some knowledge of the software development process and

Chapter 2 Task Analysis

support activities. This software process knowledge is especially critical
when it comes to the “sequencing tasks” part of the WBS. Also, the
project managers need to be aware of the nonsoftware aspects of the
project—in particular, hiring and team-forming tasks must precede the
tasks related to the actual construction of the deliverables. These tasks
that are not related to software construction must be included in the
WBS, even for high-level planning. Many project planners have put
themselves into a tenuous situation on day 1 because the WBS omitted
a set of important tasks. These indirect tasks, which had nothing to do
with the direct requirements of the deliverables, are often forgotten
and never folded into the plan.

ﬁ WBS TIME AND RESOURCE ASSIGNMENTS

Once we have refined the WBS to a satisfactory level, we can proceed to the
next phase of task analysis. A reasonable question to ask at this point is,
What would a “satisfied” level of refinement be? Unfortunately, there is no
fixed answer because all projects, and the people involved in those projects,
are different. However, a useful guideline is that the WBS refinement should
be carried to the level where:

e Each task may be assigned to one person.

e The estimate of the task cost, stated not in terms of money but rather in
terms of time required to complete it, does not extend beyond more than
two or three project status meetings.

The first guideline is fairly intuitive in that having more than one person
“own” a task often results in no ownership at all. Ensuring single-person
accountability makes the management and tracking of the task much easier.
Sometimes, however, a task is initially assigned to a team. For example, ini-
tially the requirements solicitation task may be assigned to a team of two or
three requirements analysts. As the planning proceeds, each of the require-
ments analysts may be assigned a specific task of gathering requirements
from a different user department. Thus such a task will eventually be refined
into subtasks that are assignable to individual team members.

The second guideline is stated in a looser manner—it is relative to how
often status meetings are conducted. Here, we assume that the project status
meetings are conducted very often, possibly every day if the total software
project is very small (in the range of weeks) or at weekly intervals if the total

WBS Time and Resource Assignments

software project is large (in the range of months but less than a year). The
reason for refining a task down to a level in which it will not cross more than
two or three project status meetings is so that if a particular task falls behind
schedule, the problem can be caught relatively early. This prevents software
project managers from maintaining a wait-and-see attitude for too long.

Units of Task Measurement

Before a time estimate can be assigned to a task, the project management
team must decide on the unit of measurement. If the smallest individual task
can be completed in less than one working day, meaning approximately six
working hours, then the task time estimates should be stated in one-hour
units. If the smallest individual task requires more than a working day but
less than five working days, then the unit should be half-days. For all other
tasks, the unit of measurement should be days. Normally, the advice is not to
extend the basic unit to a week, because the software industry has a ten-
dency to include weekend days as part of the week. This practice of includ-
ing extended work weeks as a normal week has created an assortment of
problems when it is utilized for too long a period. For example, if an organi-
zation estimates that a project will take 50 weeks, a five-day work week
makes for 250 days, while a seven-day work week would have 350 working
days—a 100-day difference! The definition of a working day may also differ
from organization to organization.

Software project managers must recognize that a software project
includes the participation of all team members in many non-direct-task-
related activities such as departmental meetings, telephone interruptions, or
answering e-mails. This is part of the reason that the software project man-
agement team should count on only six hours of direct software project-
related work per day. If the unit of measurement is a half-day, then only
three hours of direct work should be expected per half-day. Clearly, some
software project managers would like to lengthen the work day such that
there are eight hours of direct work, with the indirect work hours being
absorbed into the “extended” work-day hours of the software engineers. This
practice is a dangerous one when employed for a long period of time.

There are many ways to address the issue of how to estimate the time
required to complete each of the tasks required for a project. A favorite
approach of software project managers is to ask the experienced software
development team members who will be tagged to perform each task to esti-
mate the time required to complete their own tasks. This approach is used for
several reasons. If the person has past experience performing similar tasks,

Chapter 2 Task Analysis

then the data from that past experience can provide a relatively good gauging
factor. Also, if the people who will be responsible for the completion of the
task are asked, they are more likely to take responsibility for the estimate. The
term for this approach in many software projects is “bottom-up” estimating.

Another popular approach to determining how much time is required for
each part of a project is to assemble a team of technical experts and have
them estimate each task in terms of some common work volume unit, such
as lines of code or function points for design, coding, and testing. For devel-
oping help text or message text tasks, for example, we could use a work vol-
ume stated in terms of “number of sentences.” For Ul-related tasks, we could
use “number of fields” to assess the volume of work. Once the volume of
work is estimated, an organizational productivity figure such as lines of code
per hour or per day can be used to compute the estimate for the needed task
completion time. This approach assumes that organizational productivity
figures by type of task exist from history or from the software management
team’s experience. Table 2.2 is an example of possible historical information
that may exist from similar, past projects in an organization.

For example, a particular task, x, may involve the design, implementa-
tion, and testing of 15 UI input fields. Suppose the organizational productiv-
ity of developing Ul input fields from the past is z fields per hour. Then for
this task x, the estimated time would be 15/z hours.

Estimating techniques, software methods, and the software development
process will be covered in more detail later in this book. For our purposes
here, we will simply assume that the task completion time has been esti-
mated. Figure 2.3 shows the estimated times for the subtasks of Activity A in
our ongoing example.

In Figure 2.3, there are three possible paths to the “end” state of Activity
A. The longest path includes Tasks A-1, A-2, and A-3. Software project

Table 2.2
Example of Historical Information

Tasks Possible rates

Requirements 2 interviews/person-day

solicitation

Message design 15 error messages/person-day

Code implementation 2 function points/person-day; 40 lines of Java/person-day

Test generation 5 test scenarios/person-day

WBS Time and Resource Assignments

Figure 2.3 Subtasks with estimated times

managers should be aware that any slippage along this path would cause the
total Activity A to miss its end date. For this reason, this longest path is
known as the “critical path” for Activity A (Chapter 16 defines and explains
critical paths). The other two paths, however, allow for a little slippage.
Because Task A-4 takes five days less to complete than does Task A-3, it
may be started later than Task A-3 or take a little longer than the estimated
time. A similar case can be made for Task A-5. A more comprehensive dis-
cussion of this topic can be found in Chapter 16 on task scheduling.

Task Estimates and Task Assignments

According to the guideline given earlier, each of the subtasks should be rep-
resented in half-day units, since the smallest task takes less than five days.
In this example, we happen to have each subtask end on a day boundary, so,
for simplicity, it is shown here in days.

The next step is to apply the appropriate people resources to each of the
tasks in this time-estimated WBS:

1. Project management teams must first consider what skills are required
to perform the subtasks. Once the skills are determined, they must seek
people capable of performing these tasks.

2. The team must consider the availability of the identified skilled people.

3. The team must consider the timing of and the requirement of the iden-
tified person for another aspect of the project or another project.

Chapter 2 Task Analysis

These considerations must be made in conjunction with the schedule in
the time-estimated WBS for the subtasks in the estimated time diagram (Fig-
ure 2.3). A few items stand out in Figure 2.3. None of the Tasks A-3, A-4, or
A-5 can be started until both Tasks A-1 and A-2 are completed. Therefore, it
would make sense to apply the appropriate resources to Tasks A-1 and A-2
without delay. Let us assume that Task A-1 will require a person with archi-
tectural and high-level design skills, and Task A-2 will require a person who
has database skills. Most likely these individuals will be different people.

After the resources for Tasks A-1 and A-2 are accounted for, appropriate
resources may be applied to Tasks A-3, A-4, and A-5. Several alternatives
are possible here. If skill is not a problem, a management team may assign
the same person to perform Tasks A-4 and A-5 without compromising the
schedule because the estimated completion time for Task A-3 is equal to the
total estimated completion time for Tasks A-4 and A-5. We may also assign
the same person for Task A-1 and any of the subsequent subtasks to Task A-
1. The actual assignment of the individuals will depend on the considera-
tions listed earlier. The assignment of people may be represented via a graph
or in a tabular form with bars, as shown in Table 2.3.

For this example, we chose to assign different people for each subtask.
As stated earlier, Tasks A-1 and A-3 could be performed by the same person,
so long as that individual possesses the appropriate skills. With today’s proj-
ect scheduling tools, a table like that shown in Table 2.3 can be placed into a
form where the sequenced time-estimate portion can be represented in a real
calendar. The schedule would then reflect a more realistic timetable, with
weekends and holidays being embedded in it. A further refinement would be
to consider the potential of “some” overlapping of tasks that are represented
as sequential tasks, such as Tasks A-1 and A-2.

Table 2.3
Subtasks with Time Estimates and People Assignment
Subtask Person Sequenced time-estimate
A-1 P1
A-2 P2
A-3 P3
A-4 P4

A-5 P5

WBS Time and Resource Assignments

Milestones

We have taken Deliverable 1, the application’s executable code, through the
WBS refinement process to the point that we now have a schedule of Activ-
ity A complete with estimated time units and people assignments. At the
completion of these steps for Deliverable 1, management should sponsor an
activity that recognizes its team’s accomplishment. The software project
management needs to identify this achievement as a milestone. In general, a
milestone is defined as a significant event that occurs in a project at a cer-
tain point in time.

Project milestone A significant event in a project that occurs at a spe-
cific point in time.

The labeling of a milestone gives a certain amount of priority and signifi-
cance to the event. For example, management might want to label the com-
pletion of Task A-1—the application, Ul, and message architecture—as a minor
milestone within Activity A. Such a labeling will give a higher priority to
Task A-1, relative to the other subtasks in Activity A, in the assignment of
personnel resources and in the selection of a highly skilled and very depend-
able person. There will be more emphasis applied to milestone tasks, ensuring
that the needed tools and other facilities are provided for that activity. This
labeling also places more management attention on that subtask.

The completion of the Activity A, as a set of subtasks, may be labeled as
a milestone as well. This is a little different than identifying the completion
of a single unit of activity such as Task A-1 as a minor milestone, where a
special emphasis is placed on that subtask. The labeling of Activity A com-
pletion as a milestone is intended to recognize its achievement. It does not
necessarily identify Activity A as a higher priority than, say, Activity B or C.
Indeed, software project management may utilize the term “milestone” for
the purpose of emphasizing a particular activity, as well as for the purpose
of recognizing the attainment of a significant task.

The table is now further enhanced to indicate the milestones, as shown
in Table 2.4

Depending on the size of the software project, it is conceivable that one
might develop a schedule depicting only the milestones. Such a schedule
may be used by higher-level management, who may need to understand and
track only the more significant events.

As software project management involves a heavy dosage of people
management, the milestone events should not pass without some type of

Chapter 2 Task Analysis

Table 2.4
Subtasks with Milestones
Subtask Person Sequenced time-estimate
A-1 P1
A-2 P2
A-3 P3
A-4 P4
A-5 P5

Minor Milestone Milestone

celebration. The celebration may be anything from an informal “thank you”
and a good handshake to a formal ceremony with recognition and mone-
tary rewards for achieving a major milestone. The important thing for the
software managers to remember is that the accomplishments of milestones
need to be publicly recognized.

The opposite situation, where a designated milestone is “missed,” also
requires the software project managers’ attention. Ideally, the responsible
software manager will already be well aware of the high risk before a nega-
tive incident occurs and will have put an action plan in place. Nevertheless,
the software manager must share the negative news, as well as the positive
news, openly and candidly with his or her team. The topic of people and
morale management will be discussed more in Chapter 14.

@ WBS ITERATION AND ACCEPTANCE

The first iteration of the WBS, the schedule, and the milestones will most
likely not be the final one. This part of the plan needs to be reviewed by all
stakeholders (i.e., the people who have to perform the tasks—the project
team, rather than the Software Product Management Board). The problem is
that, at this stage of the project, not all stakeholders may be available or on
board. Nevertheless, the WBS must be reviewed, and a general agreement
needs to be reached by those leaders who are already on board. Some soft-
ware projects may be open enough so that customers and users are included
in the review of the plan at this early stage.

In the review process, the management team should be prepared to
change and adjust the plan. These reviews may be somewhat time consuming,
but they achieve two important goals:

WBS lteration and Acceptance

e The information in the plan is open and communicated to relevant parties.
e There is understanding and a degree of commitment to the plan.

Once there is general consensus about the WBS, the management team
needs to document the date, participants, and any assumptions or circum-
stantial information related to the project. This provides the team with a
baseline for the WBS tasks and the schedule. Modifications may be needed
later, and any future changes should always be recorded and evolve from
this baseline. Change control over the baseline may then be applied as dis-
cussed in Chapter 15. All plans are subject to necessary changes, but the
changes need to be tracked. Again, any change needs to be managed openly.

M KEY CONCEPTS

The Work Breakdown Structure (WBS) is a valuable tool for the software
project managers. The process starts with the enumeration of all required
deliverables and the listing of activities or tasks required to produce each of
those deliverables. A sequence diagram is developed to place the tasks in
some order. The sequence diagram is then enhanced to include the amount
of effort and the type of resources needed, thereby converting the sequence
diagram into a table that resembles a preliminary schedule.

Including milestones on the preliminary schedule is a software project
management technique that will further enhance the visibility of the key
tasks for the software team. These milestones may be used as a control
mechanism for the overall project. Project managers must emphasize both
the success of and the failure to meet these milestones.

M EXERCISES

1. Create a WBS for the following:
a. Putting together your favorite dinner dish
b. Building a wooden picture frame
c. Creating software that computes the average of a set of numbers and
then displays the result
2. Discuss which of the three WBSs in Exercise 1 was the most challeng-
ing for you and why.
3. To what level should one refine the WBS?

Chapter 2 Task Analysis

4,

o

When provided with a schedule of activities and the respective person-
nel assignments, what should concern you even if you know that the
WABS portion is correct?

Why should the WBS be reviewed by others?

What is a project milestone, and why should it be identified?

Create a WBS for a software project that includes three deliverables:
design document, code, and test cases. Assume that the required effort
for design is 5 person-days, for coding is 15 person-days, and for test
case development and testing is 7 person-days. You may make
assumptions about the order and the overlapping of the activities. You
may make assumptions on productivity and number of people to
assign to each task. Evolve your WBS and show the project task sched-
ule with people assignments (see Table 2.3).

M SUGGESTED READING

C.F

Gray and E. W. Larson, Project Management, Irwin McGraw-Hill, 2000.

J. M. Nicholas, Project Management for Business and Technology: Principles

S. L.

and Practice, Prentice Hall, 2001.
Pfleeger, Software Engineering: Theory and Practice, Prentice Hall, 1998.

Chapter

Goals and Measurements

Chapter Objectives
This chapter discusses the following concepts:

e Why project and product goals should be specified during the planning
phase

e Why goals should be expressed in the form of measurable attributes that
have specific metrics

e How most project and product attributes require extensive analysis
before an appropriate metric and corresponding measurement step can
be defined

@ PROJECT ATTRIBUTES

After analyzing and scheduling the tasks required to develop and produce a
software project’s deliverables, a management team must specify the charac-
teristics of these deliverables. This work constitutes an important component
of the planning phase of project management, the first stage in the POMA
process.

Preliminary Goals

It is during the planning phase that the goals for, and the measurements of,
the key attributes of the product and service are determined. The management

Chapter 3 Goals and Measurements

team does not start from scratch; a large portion of the product and project
characterization has already been provided through the customer require-
ments. These functional and nonfunctional requirements are translated into
preliminary goals such as the following:

e A secure system

e A fully functional system

¢ A high-quality system

e A user-friendly and attractive system
e A cost-efficient project

e A project that meets the schedule

The preliminary goals, as stated in these terms, are extremely difficult to
achieve. Because they are not measurable, it is difficult to determine whether
they have actually been reached. The planning phase is the time to recast
these preliminary goals as more precise attributes, with metrics, so that the
attributes are measurable, trackable, validatable, and verifiable. (These terms
are defined later in this section.)

Without this recasting of the goals, one would face the issues of “what
to monitor” and “how to monitor the project status” during the monitoring
phase of POMA. Defining the goals in terms of attributes and pertinent met-
rics during the monitoring phase would be too late. As a result of not plan-
ning ahead and properly identifying the attributes and defining the metrics
for those attributes, many software project managers monitor only a few
obvious goals, such as the schedule. Unfortunately, more difficult-to-assess
product attributes—such as ease of use, quality, and scalability—continue to
receive lip service but are often not well defined and thus not actively
tracked. Similarly, the project attributes dealing with efficiency, productivity,
and other issues are often an after-thought for many projects, and they
receive attention at a post-project analysis rather than during the project
planning phase.

Measurable, Trackable, Validatable, and Verifiable Goals

It is important in the planning phase to first express the goals of the soft-
ware project. This insistence on setting the goals during the planning phase
for a software project is derived from the principles underlying the G/Q/M
paradigm proposed by V. Basili and others. G/Q/M is a “systematic approach
for setting project goals (tailored to specific needs) and defining them in an
operational and traceable way.”

Project Attributes

G/Q/M (Goal/Question/Metric) A software metric paradigm based on
identifying the goals, formulating questions about the goals in quantifiable
terms, and establishing the metrics to answer the formulated questions.

A successful management team expresses project goals (G), which are
characterizations of the attributes of the deliverables and of the processes, in
the form of questions (Q) that are quantifiable. Then, from the specified
attributes, the management team can outline and accept a set of metrics and
measurements (M). An attribute must be measurable and trackable before it
can be considered a meaningful attribute for a goal.

Measurable attribute An attribute for which there is a well-defined
metric and a methodology for its measurement.

Tracking Keeping a record of the measurements taken on an attribute.

The notion of “measurable” is further explained later in this chapter in
the section “Metrics and Measurement: An Overview.” Clearly, an attribute
cannot be considered trackable if it is not measurable.

Furthermore, the measurement of that attribute must be able to be vali-
dated and must be verifiable. Project goals and their measurements should
be validated because the process of validation confirms that the customer
requirement has been satisfied. An example would be the case in which the
user’s requirement asks for a response time for queries to be no more than 2
seconds. Thus the goal for the attribute called “query response time” would
be set at less than 2 seconds. Certainly, one can, with some thought, con-
struct a set of queries and then measure the response times for them. If none
of the response times exceeds 2 seconds, then the customer’s requirement is
satisfied. Note that the goal may be validated regardless of whether the goal
is actually satisfied.

Validation of goal Comparing a stated goal for an attribute with the
actual measurement taken for that attribute.

The goal for an attribute and its associated measurement must be vali-
datable. One must be able to show that the measured result matches that
specified by the customer as the goal.

At the same time, the management team must verify all measurements.
This effort confirms that the measurements are properly acquired and that
any transformation of the raw measurements for that attribute has been
performed correctly. The actual act of measurement and any computation
that is performed must be traceable and demonstrable. In the preceding

Chapter 3 Goals and Measurements

example of the response time attribute, the verification of the measurement
for that attribute would involve ensuring that the set of activities—which
includes the construction of the test cases, the running of the test cases, and
the reading and recording of the clock time for each query test case—is per-
formed properly.

Verification of measurement Ensuring that the measurement of an
attribute is properly taken and recorded through repetition, tracing, or
some other means.

Once the goals for the project are defined in terms of attributes that are
measurable, trackable, verifiable, and validatable, it is possible to monitor
the project status. The status of the project is reflected in the measurements
taken on the attributes.

METRICS AND MEASUREMENTS:
"% AN OVERVIEW

We will now take a small digression to discuss the concepts of metric and
measurement. A metric is the unit that we use to characterize the attribute. A
measurement is the actual act of counting, using that metric. For example,
we use “hour” as a metric for the attribute “time,” and we use a clock as the
tool to perform the actual measurement. The reading of the clock is the
measurement. In the case of measurement, the characterization of an attrib-
ute, for the purpose of project management, should be such that it ultimately
results in numerically counting the metric of the attribute.

Metric The unit used to characterize an attribute.

Measurement The act of characterizing an attribute, which may involve
multiple steps, utilizing the agreed-upon metric for that attribute.

It is possible to include several activities in the measurement. Suppose
“elapsed time” is the attribute of interest. Then “hour” may still be the metric.
To determine elapsed time, however, one would need an initial reading of the
clock, a final reading of the clock, and the difference between the two read-
ings in order to obtain the elapsed time. Thus the measurement of elapsed
time as the attribute is a little more complex than the simple time attribute. In
both cases, the metric remains “hour.”

Metrics and Measurements: An Overview

Aside from specifying the metrics for the deliverables, the planning team
may need to define metrics for other software project-related attributes—such
as productivity, team morale, tool effectiveness, and user satisfaction—that
are indirectly related to the actual deliverables. These may be categorized as
process attributes or as project attributes. The difference between process and
project attributes is subtle and minor, and some thought is required to define
them. For example, productivity may be a process attribute. We are generally
interested in software development processes that offer high productivity
without sacrificing product quality. At the same time, the productivity
attribute of a specific project utilizing a “highly productive” process is of
direct and immediate interest to that project manager. For software project
managers, setting goals for these process and project attributes is as impor-
tant as setting goals for the deliverables.

The schedule, the most obvious attribute for all projects, is a defined set
of time goals agreed to by everyone involved; staying on schedule is an
important goal that people readily understand. Both the metric and the
measurement for schedules are defined in the calendar. Thus everyone
appreciates the goal of meeting the project milestone dates.

The cost of the project, as an attribute, is also easy to measure because it
is something that is well understood. Likewise, the cost given in terms of
some currency is already a well-defined metric. The goal of meeting the esti-
mated cost is easy to comprehend and track.

Unfortunately, aside from these two popular project attributes, most
attributes and their respective goals—for example, quality, completeness of
functions, and ease of use—are generally difficult to measure because we
typically do not understand them well enough to define quantifiable metrics
easily. Furthermore, once a numerical metric is set, the measurement process
that uses that metric must be developed. Software engineers and software
project managers are still working diligently to improve the measurement of
software. Without a better system for metrics and measurements, activities
such as tracking, verification, and validation of software attributes will con-
tinue to be more of an art than a science, and will be based on the personal
experience of the various project managers.

For example, for an inexperienced organization, the project schedule is
often tracked by asking for each individual’'s measurement. The answers
from the individuals may come in a form such as “90% completed.” Unfortu-
nately, this metric of “percent completion” is not defined, nor is the meas-
urement of how one defined and arrived at 90% completion. An
inexperienced manager may interpret 90% completion as a good status and

Chapter 3 Goals and Measurements

not realize that it may not mean what he or she thinks it means. For exam-
ple, “90% code completion” may mean “I have coded 90% of the functions;”
“I have coded 90% of the functions and these functions have passed my per-
sonal unit testing;” “I have coded 90% of the functions and these functions
have gone through the formal functional test cases conducted by the test
department;” or “ I have coded 90% percent of the functions, these functions
have gone through all the formal functional tests, and all the problems
found have been corrected and retested.” An experienced manager, by con-
trast, might first define the metric for the percent completion attribute for
different tasks and then ask each individual to measure his or her schedule
status by using the same metric definition and then validating his or her sta-
tus against the scheduled milestone.

This type of difference in sophistication levels among organizations and
managers does affect the project’s end result. The Software Engineering Insti-
tute has studied the maturity levels of many software organizations and offers
its Capability Maturity Model (CMM) as a guideline for assessing software
maturity levels. Interested parties should consult the article by W. S. Humphrey
listed in the “Suggested Reading” section at the end of this chapter.

Capability Maturity Model for Software (CMM for SW) A model,
defined by the Software Engineering Institute, that defines five possible
levels of maturity for a software organization. The five levels are Initial,
Repeatable, Defined, Managed, and Optimizing.

DELIVERABLE-RELATED METRICS
"% AND MEASUREMENTS

The software project managers and the customer both need to participate in set-
ting the goals for the deliverables. As stated earlier, much of the goal setting
should have been accomplished during the requirements specification process.
However, broad-statement goals such as “good-quality,” “user-friendly,” or
“reliable” software are not sufficient; goals stated in this form cannot be meas-
ured and are difficult to validate. If the goals are immeasurable, we can never
show ourselves—or our users and customers—that the goals have been met.

Let’s explore some deliverable attributes that are interesting to users,
customers, software developers, and software project managers alike. The
following is a list of software deliverable attributes or characteristics that are
often cited as important:

Deliverable-Related Metrics and Measurements

e Quality

e Usability

e Functional completeness
e Maintainability

e Modifiability

e Reliability

e Installability

Each of these characteristics requires some in-depth understanding and
effort before a reasonable goal and metric can be designed and put into the
plan. We will not cover each of these attributes here, but rather will select
one to demonstrate the level of preparation and work required before a
meaningful goal, metric, and measurement for that attribute can be stated.
The software project managers should know the amount of effort that should
be anticipated if a particular attribute is not well defined for the project and
will need refining at a later stage. In general, the broader the attribute, the
more time is required to break down the attribute into clear subattributes.
We will demonstrate this statement by examining an example using one
popular attribute, quality.

Metrics and Measurements Example I:
The Quality Attribute

Quality is an attribute of the software deliverable that all software projects
embrace, but it is often ill defined. Software quality may, for example,
describe the amount of errors in the software. Alternatively, it may describe
how well the delivered software meets all the stated application functional
requirements, even if it contains errors in a nonfunctional area such as the
setup function. Sometimes the quality attribute includes a performance
attribute, such as response time.

For each of these alternative definitions of the quality attribute, a differ-
ent metric must be defined. For example, the number of errors found would
be used as a metric for one definition of quality, whereas the percentage of
desired functions delivered might be a metric for a different definition of
quality. One can see that it is important to clearly state and define both this
attribute and its metric and then set the appropriate goal for that attribute in
terms of that metric.

Assume, for the moment, that the attribute “quality” is defined and
agreed upon as “the amount of known problems in the software.” In this case,

Chapter 3 Goals and Measurements

the metric for the attribute is the number of known problems. This assump-
tion is nontrivial in that many discussions and arguments could have been
expended to arrive at this common ground. With this definition, high quality
would imply a low number of known problems, as shown in Figure 3.1

The quality goal, therefore, would be expressed in terms of a specific
number of known problems in the deliverable. Further, assume that a prob-
lem is defined to include any mistake made by the developer, regardless of
whether it manifests itself as a defect during execution after delivery to the
customer. This seemingly simple concept of the software quality attribute
will actually require substantial planning; the number of problems can be
very difficult to track and validate.

Errors Versus Defects Here we are using the terms “error” and “defect”
differently than we have before, so the definitions of these terms need
refinement:

e A software error is a mistake made by the software supplier (or developer).
e A software defect is the manifestation of an error during the execution
of the software.

In its characterization of software quality, the management team first
must choose one of these definitions to establish whether a problem refers
to an error or a defect. Defining software quality as “a lack of known soft-
ware errors” leads to one set of considerations. Alternatively, defining
software quality as “a lack of known software defects” leads to a different
set of considerations. For example, setting the goal for quality at “zero

Quality

Problems found

Figure 3.1 Inverse relationship of problems found versus quality

Deliverable-Related Metrics and Measurements

known software errors” makes the task of proving the attainment of such
a goal almost impossible. We can never show that a deliverable has zero
errors. Setting a goal of “zero known software defects” is a better alterna-
tive, but not by much, since the attainment of such a goal is also very dif-
ficult to show.

Note that both goals include the term “known” to qualify the types of
errors and defects. For our metric and measurements, known errors and
known defects are considered at specific time frames, such as at the end of
testing or at the moment just prior to product release. Theoretically, more
errors or defects may exist in the product, but at the specific time the prod-
uct is evaluated, the product reveals only a certain number of problems. It is
assumed that some set of testing methodology and process has been selected
and agreed upon ahead of time, and that the attribute of quality is repre-
sented via the results of these planned testing activities. In practice, the type
of testing and the use of those testing results as quality indicators are closely
intertwined. The choosing and setting of methods and processes for a soft-
ware project is discussed in Chapters 4 and 7.

For now, let us proceed through a series of planning steps. These steps
are required when the number of software defects found through testing is
used to determine the quality attribute.

Incremental Goals As much as you may desire to attain the goal of zero-
defect software, it may not be a prudent goal in a large, commercial product
environment, for several reasons. First, the customer and the user may not
necessarily need such a lofty goal. Second, the effort to attain zero-defect
software may not be worth the cost; from a price-performance perspective, it
may not be a good choice. Third, the actual measurement and analysis, or
validation and verification, required to demonstrate the attainment of such a
goal would likely be quite complex and costly.

Instead, the software project manager should opt for a software quality
goal that is expressed in an incremental form, such as subgoals for each of
the categories of software quality. The following is an example using prob-
lem severity levels. One can first identify a number of levels of defects by
severity:

e High-severity defect: a defect that will stop the total software system and
all work related to the system

e Medium-severity defect: a defect that will cause the loss of a function of
the system, thereby preventing the user from completing his or her work
as planned

Chapter 3 Goals and Measurements

e Low-severity defect: a defect that will cause some inconvenience and
possibly require the user to perform a “workaround” to complete his or
her task

e Minor-severity defect: a defect that will cause some misunderstanding of
terminology or require a minor adjustment in the usage interpretation

Other project management teams might devise a defect categorization
scheme with a different number of severity levels and different defini-
tions of severity levels. Severity Level 2 in the previous list can be fur-
ther refined into different types of noncatastrophic problems and thus
expands the severity categorization to 5 or 6 levels. There clearly are
other ways that defects can be broken down into categories that have
associated subgoals. For instance, one less popular categorization of
problems is based on the place at which the defects manifest themselves.
With this approach, problems are categorized as either major or minor.
Major problems appear on the main path of the software; the main path
of the software is defined as functional options that exist only on the
first screen and its immediate successor screens. All other problems are
classified as minor problems.

Quantitative Subgoals Once a defect severity categorization is established,
then the quality subgoals may be expressed in terms of these categories. The
quality goal may be expressed in a quantitative form as follows:

e The software deliverables will contain zero known high-severity defects
and zero known medium-severity defects at the time of the software
release.

e The software deliverables may contain some known low-severity defects
at release time, but they will all be fixed by the next maintenance
update release, which will be in three to six months. (The term “some”
may be changed to a more precise term such as “no more than ten.”)

e The software deliverable may contain known minor-severity defects at
release time, and these defects may be fixed at the convenience of the
solution provider. (Again, no specific number is provided, but the team
may choose to give a specific number.)

Metric Definition Given this set of subgoals, the metric for the software
quality attribute would be defined for each defect type:

The number of unresolved or “open” defects by defect severity level

Deliverable-Related Metrics and Measurements

The Measurement Process The measurement process may be a set of
weekly—or some other regular interval—tasks, including the counting, collec-
tion, and analysis of the test results. As part of the measurement process, the
management team should receive regular updates on the number of defects,
according to severity levels.

Reporting Format The software project management team must have a
clear understanding of what needs to be tracked, in terms of defined attrib-
utes and metrics, and how these data will be presented. Table 3.1 shows an
example of how the “High-severity” defects portion of a software quality
evaluation would appear in a weekly quality report.

Let’s take a closer look at a field-by-field description of the heading and
the sample “High severity” row.

The Date field indicates the currency of the information. The Defect-
type column indicates the level of severity represented by each row. The
Problems-found column shows the number of defects found for that cate-
gory during this reporting period, which may be by the week or by some
other time interval. The Problems-closed column shows the number of
problems found during this reporting period that have been fixed and
retested for each of the categories during the reporting period. The Prob-
lems-still-open column gives the number of problems that have not been
fixed and retested for each category during this reporting period. Thus
Problems still open is calculated as Problems found minus Problems closed
for that reporting period. The Accumulative-problems-still-open column
shows the number of unresolved problems in each category; it includes all

Table 3.1 Weekly Quality Report

Date: (week-ending date if a weekly report)

Defect type Problems Problems Problems Accumulative Quality goal
(by severity) found closed still open problems still number
open

High 12 9 3 5 0 open at
severity release

Medium
severity

Low
severity

Minor
severity

Chapter 3 Goals and Measurements

unresolved problems from earlier periods and the Still-open-problems from
the current period. In this example, there were two unresolved problems
left from the previous periods and three from this period, giving a total of
five Accumulative-problems-still-open. Finally, the Quality-goal-number
of zero shows the target for the high-severity defect level. How well the
goal for the software quality attribute is attained may be validated quite
easily through this kind of reporting.

The actual format of the report needs to be clear and consistent because
resources will be expended in collecting and presenting the information. By
forcing precision in the reporting format, the project manager ensures that
the metric of the attribute of interest is defined, and that a measurement
process for that attribute is in place. In the example described here, the num-
ber of defects for each severity level can be counted and collected through
the various testing activities associated with the development of the software
deliverable. This information can be tracked as long as the team keeps good
records of the various defects found and resolved. The reports can be main-
tained in a database for future analysis and verification.

The information presented in the report is verifiable: We can check
whether we have made the correct computations as we progress from raw
numbers, such as “defects found” and “defects resolved,” to derived numbers,
such as “open defects” at release time. The attribute of quality can also be
validated because the number of open defects can be compared with the goal
number of “allowable” open defects at release time. The quality attribute of
the software deliverable, through this type of planning, is formulated to be
measurable, trackable, verifiable, and validatable.

As the software project progresses, the management team will need to
regularly monitor the number of unresolved defects and compare it with the
target goal. For any of the attributes of the software deliverable, the level of
thought and planning required is similar to that required for the quality attrib-
ute. In order for the organizing, monitoring, and adjusting (OMA) phases of
POMA project management to operate smoothly, the goals of the project, and
the measurement process of those goals, have to be considered and defined at
the planning stage.

Complex Attributes

A complex attribute is an attribute whose metric definition requires a set of,
or combination of, statements and definitions. In the preceding example, a
set of severity levels was first defined and then metrics were defined for each

Deliverable-Related Metrics and Measurements

severity level; from that example one can conclude that quality is a complex
attribute. Usually, a complex attribute should be decomposed into several
simple attributes (i.e., attributes whose metrics may be stated with a single
definition) and expressed in terms of those subattributes.

Complex attribute An attribute whose metric definition requires a set
of, or combination of, statements and definitions.

Simple attribute An attribute whose metric may be stated with a single
definition.

Attributes of every product or project must be defined in such a manner
that the metric is a specific number that may be compared and operated on
arithmetically. This is a much more difficult task than it might seem at first
glance. For example, the metric and measurement process for popular prod-
uct attributes other than quality, such as usability and maintainability, have
been carefully studied and analyzed. Nevertheless, these complex attributes
still do not have standard goals, metrics, or measurements on which the soft-
ware industry consistently agrees.

Consider one well-known goal for software design: “loose” coupling
among software components. “Coupling” between two software components
describes the dependence of the components. Without a numerical metric
for coupling, we can use only an imprecise term such as “loose.” The metric
for the goal of loose coupling has yet to be agreed upon, even though the
attribute has been under study for nearly a quarter of a century.

Software project managers must study the work and experiences of
other software projects before settling on a goal, a metric, and a measure-
ment process for the attributes of interest in their own project. The concrete
set of tasks that the project manager must perform to formulate a goal, a
metric, and a measurement for an attribute that is not yet defined will
depend on the specific attribute of interest. In other words, the “how” part of
goal, metric, and measurement setting is determined by the particular attrib-
ute that is under evaluation. Nevertheless, the key for successful project
management is to have at least the following items in the plan:

e The list of software deliverable attributes that will be measured for the
project

e For each attribute, the definition of the attribute metric, stated in quan-
titative form

e The definition of the goal for that attribute stated in terms of that metric

Chapter 3 Goals and Measurements

e The measurement process to attain and communicate the data, stated in
terms of the metric
e The exact reporting format for the information

It is also possible that multiple metrics and measurements might be
needed for one complex attribute. For instance, the quality attribute that we
discussed can have another metric associated with it, besides the number of
problems. It would, for example, be meaningful to include a test coverage
metric along with the known-defects metric. The goals for software code
deliverable quality could then be stated in the following manner:

e Ninety-five percent of the executable code will be covered and executed
with the planned test cases.

e The product will not contain any known high-severity defects at release
time.

Complex deliverable attributes may require multiple metrics and multi-
ple measurement methodologies. Thus, for a product attribute that is very
broad, such as quality or usability, the project management team should
strongly consider decomposing the attribute into a set of simpler subattrib-
utes, with metrics and goals associated with each subattribute.

PROJECT- AND PROCESS-RELATED
%" METRICS AND MEASUREMENTS

Aside from the direct product deliverable attributes, project managers must
address many project-related characteristics. We mentioned schedule and
cost earlier as two primary areas that require attention. Of the two, software
project managers tend to focus more attention on the schedule. Each project
requires a unique set of product goals and metrics, but software project man-
agers are often asked to describe the nature of their projects in terms of only
the nondeliverable, project- and process-related attributes. The following is a
list of common, nondeliverable project-related attributes:

e Schedule integrity
e Cost minimization
e Productivity

e Efficiency

e Cost-effectiveness
e Employee morale

Project- and Process-Related Metrics and Measurements

Practically all projects must deal with the issues of schedule and cost,
and it is important to clearly grasp these two attributes. The schedule
integrity attribute will be discussed in some detail here.

Metrics and Measurements Example II:
The Schedule Integrity Attribute

Most software project managers automatically assume that schedules must
be met. Schedule integrity, however, is not merely “delivering the product
on the release date.” Just as managing the quality attribute requires sub-
stantial planning, so maintaining schedule integrity demands considerable
work in terms of setting the definition, reaching general consensus, and
attaining broad adoption. We do not offer a single definition for schedule
integrity for the same reason that we do not offer a single definition for
quality: For each project, the software project manager has the opportu-
nity to think through and define it differently. Schedule integrity does
have a commonly utilized metric, that which we use to measure time.
Even so, the project manager must clearly define each of the events and
the deliverables associated with every time slot in a schedule. The comple-
tion times associated with special events or deliveries are called mile-
stones. There are major milestones and minor milestones depending on
the type of event or deliverable.

The actual time metric may be specified in one of several ways. The sim-
plest is to state one specific figure in a specific format, such as month/day/year.
Another way is to provide a loosely specified time such as “end of month x,”
“middle of the month,” or “end of day z.” A third approach is to provide an
interval such as “the last week of the month” or “the month of April.” Some
project managers use quarters as the unit, such as “the second quarter of year
x.” In all of these loosely defined intervals, it is almost inevitable that the last
day of the week, of the month, or of the quarter becomes the de facto mile-
stone date.

Once the deliverables are defined and the time schedules are specified
for the milestones, the schedule integrity goal needs to be specified. For a
relatively simple project whose total duration may be only one-half year, the
schedule goals for the project may be stated as follows:

e The final project milestone must be met.
e All intermediate milestones must be met within two days of the sched-
uled time.

Chapter 3 Goals and Measurements

Such a set of schedule goals will allow the software project managers to
conduct the organization, monitoring, and adjustment phases of the project.
The intermediate milestones provide the software project managers with a
simple monitoring mechanism that will alert them to any impending prob-
lem before the final schedule becomes hopelessly unachievable.

For an experienced company that has developed many software solu-
tions and is managing many software projects, the goals at the organiza-
tional level for the set of projects may be stated slightly differently:

e Ninety-seven percent of projects meet the final milestone schedules.
e Ninety percent of projects meet all intermediate milestone schedules.

For a customer who is interested in only one specific project, having the
schedule integrity goals stated at the organizational level, rather than at the
project level, is certainly less attractive and less useful. The software project
managers, therefore, may choose to have both types of goals: one for the
individual project and one for the organization’s long-term needs. The orga-
nizational-level goals and metric are usually more meaningful for upper and
executive management.

Schedule Attribute Metric and Reporting Format The metric for the
schedule is the same as that for time. The actual process of measuring time,
however, needs to be further defined. For each milestone, the project man-
ager must compare the scheduled event or deliverable time against the actual
time when the event occurs or the deliverable is completed. This information
must be recorded and maintained for future reference. Table 3.2 shows one
possible format for a weekly schedule report.

The actual measurement is taken based on the project team’s frequency
of project status meetings. For a project that conducts daily status meetings,
the measurements are taken daily. Likewise, projects that conduct status
meetings on a monthly basis will usually take measurements on a monthly
basis. Clearly, for projects that last only several weeks, the measurement

Table 3.2 Weekly Schedule Report

Milestone Description of Scheduled Actual Difference/Explanation
type and number the event or time (goal) time
deliverable
Major milestone 1 Requirements Mid-March 3/16/2003 Goal met; 3/16/2003
prototype 2003 was a Monday

delivered

Project- and Process-Related Metrics and Measurements

must occur more frequently than on a monthly basis, and status meetings
should also be conducted more frequently.

The chart in Table 3.2 reveals whether the project milestones have been
met and, if necessary, why a milestone has not been achieved. This chart,
however, does not alert project managers to potential problems. For a meas-
urement scheme that will inform the project management team about major
milestones, the metric and the measurement scheme must be tied to multiple
minor milestones that lead up to each major milestone. Therefore, the sched-
ule must include an ample number of minor milestones.

Let’s look at an example to illustrate the interrelationship of minor
and major milestones. Let’s consider a software project that has gone
through the Work Breakdown Structure activity (WBS; see Chapter 2) and
has all of its deliverables attached to milestone dates. Furthermore, all of
its events, such as getting approval for requirements or attaining concur-
rency on the software design, are pegged to milestone dates. The prelimi-
nary WBS and established milestone dates are absolutely essential to the
management of a schedule. If the whole project duration is defined in
months, then the schedule metric should be in days, and the milestones,
along with the goals, should be expressed in terms of specific dates. The
metric may be scaled up to weeks if the total project duration is more
than a year.

Here we assume that the example software project has a total duration
of only a few months and that the WBS and the major events of this project
have been worked out and set up. To keep the example simple, we will focus
on only the requirements phase of this small project:

Task 1.1: Obtain customer concurrence on requirements-gathering
process.

Task 1.2: Gather and document requirements.

Task 1.3: Deliver requirements prototype.

Task 1.4: Deliver requirements specification document to customer.

Task 1.5: Review and rework requirements.

Table 3.3 shows each of these tasks, the assignment of a responsible per-
son, and the number of units it would take for the task to be completed. The
basic metric is a person-day. Every estimate that appears in Table 3.3 should
be rounded upward to the next higher person-day if it is fractional. In this
case, the responsible person also performs the task. In more complex situa-
tions, the responsible person may lead a team of others; the WBS would then
need to be further expanded so that each task could be assigned to an indi-
vidual task-performing person.

Chapter 3 Goals and Measurements

Table 3.3 Task Breakdown for Schedule Attribute Example

Task Responsible Estimated person-days
person

1.1 P1 1 day

1.2 P2 8 days

1.3 P3 5 days

1.4 P2 4 days

1.5 P1 3 days

The project manager, together with the responsible people (P1, P2, and
P3), must consider several items:

e How these tasks can be laid out in a calendar schedule form, depicting
potential task overlaps

e How much buffer should be put into the estimated person-days and used
to establish the milestone dates

e What the project goals should be and how they relate to the milestone
dates

The planning activities described here are starting to overlap with the
organizing phase of project management. Even though we may get some
idea of the type of people and the talent required during the planning phase,
we may not yet have a particular individual assigned to each task. In fact,
the organization and assignment of specific personnel to the tasks may not
be completed until the organizing phase of POMA. Thus talking to the soft-
ware engineers and estimating buffers require some forward guessing about
the project’s organization and the slotting of specific names to positions.
Sometimes it is necessary to delve into the next phase to back up and better
plan the current phase.

For each of the planning activities, the project manager needs to involve
the other participants and consult data from past experiences with similar
projects. Past experience does not always predict the future, but many past
project data, such as those dealing with the adequacy of the buffers used in
past projects, can prove helpful in planning the buffer allocation in the cur-
rent project’s schedule.

Task Overlap To assess whether any of the requirement tasks overlap, the
project management team needs to look at which tasks are prerequisites of

Project- and Process-Related Metrics and Measurements

other tasks. The tasks that have a linear relationship must be carefully
planned so that, if they must overlap, managing the overlap is not merely
wishful thinking but is truly doable. For this example, let’s assume that 20%
of Task 1.3 may be started before Task 1.2 is complete, that 25% of Task 1.4
may overlap with the end of Task 1.3, and that all other tasks must not start
until the previous task is completed.

When working with a visually-oriented plan and focusing on just the
diagram, project managers sometimes make a mistake and overlap activities
that cannot actually be conducted in parallel. The managers may not realize
that they have devised a schedule that is too short, but formulating such a
plan will put the project in a precarious position from the start. Managers
may utilize tools that will graphically portray partial ordering. But, again,
the key decision is which activities are partially ordered and which activities
are totally ordered.

Buffer Size The amount of buffer to place on the initial estimate from the
WBS is a project management call. Although there have been projects with
more than 100% expansion of schedule, traditionally the project manage-
ment team adds a 10% to 15% time buffer. The final decision depends on
several criteria.

One important consideration is how adverse the customer is to schedule
slippage. If the customer emphasized deadlines to the extent that he or she
included a penalty clause in the contract to account for schedule integrity,
then the software project manager may consider placing an extra buffer in
the schedule estimates.

The project management team, together with the business development
team or the sales team, also has to take the price-competitiveness aspect of
the project into account in their planning. Adding a lot of buffer time to a
schedule lowers the risk of missing milestone dates. However, adding too
much buffer will inflate the cost, increasing the price of the project beyond
that charged by competitors for similar projects. Price-competitiveness con-
siderations must always be part of the planning.

Another consideration is how much buffering is added as each higher
level of management reviews the estimate. As mentioned earlier, placing
extra buffers at each level may price the project out of competitiveness.

In this example, assume that only one level of project management
decides the amount of buffering—15%. The 15% buffer for this example
would be equal to 21 days X 0.15 days buffer, which is 3.15 days total
buffer. The 21 days is the assumed number of working days per month. We

Chapter 3 Goals and Measurements

round up to the next person-day, so the buffer days will also be rounded up
to four person-days. The actual schedule may show the buffer as a lump-
sum number to be added to the last task of the schedule, or it may distribute
the buffer across all the tasks and thus show it as part of each task. In our
example, the buffer will appear as a lump-sum number added on to the last
task of the schedule, Task 1.5.

Schedule Integrity Goal The schedule integrity goal of the project can now
be established, given the amount of task overlap and buffer size. Within the
schedule, the major milestone is the completion of the requirements review
and rework—that is, the successful completion of Task 1.5. Thus a goal
would be to meet this major milestone on time.

There are many ways to set subgoals for the minor milestones. The
minor milestone goals should be set in such a way that if any is missed, the
schedule includes enough flexibility so that the team can recover without the
next minor milestone being compromised. We will call this the “immediate-
recoverable” subgoal-setting method.

Immediate-recoverable goal setting Setting a goal and its associated
metric and measurements in such a way that if the goal is missed, there
is an immediate way to recover without expending a large amount of
extra resources and potentially causing other goals to be missed.

Project management teams who are particularly adverse to risky sched-
ules often practice this approach. The project subgoal for this example,
where the smallest task requires one calendar day, is set such that “at the
end of any day, no task is more than one day behind.” The minor milestones
of completing Tasks 1.1, 1.2, 1.3, and 1.4 are further broken down into daily
subgoals. The rationale behind the immediate-recoverable subgoal-setting
method is that without adding resources, if every task is kept within one day
of the schedule time, the task slippage may be made up over the weekend.
The weekend is assumed to be two days.

Of course, this methodology may fail if the initial effort estimation is dra-
matically understated. It also assumes that the project will not require weekend
work for a lengthy period of time. Past experience has shown that extended
overtime wears people down, lowers morale, and increases the number and
frequency of errors, which in turn causes more rework and additional slippage
of schedule. The project manager needs to consider the disposition of the proj-
ect team members and set a limit to the number of overtime weekend work
hours allowed. Based on various project experiences, the author suggests this
limit be no more than four consecutive weekends. In our example, the limit of

Project- and Process-Related Metrics and Measurements

Task

.._._._.
aprwd =

=
o
=

Person|M|Tu|W|Th |F|Sat{Sun|M |Tu|W|Th|F|Sat|Sun|{M|Tu|W|Th|F|Sat|Sun|M[Tu|W|Th|F|Sat|Sun|M|Tu |W

P1
P2
P3

P5

four weekends allowed for working overtime will not be a problem because
the whole requirements phase spans four work weeks. Furthermore, there is a
15% buffer at the end that may be used instead of overtime.

Now let’s look at the schedule for this example and the related goals,
shown in Figure 3.2.

The rough schedule shown in Figure 3.2 allows us to compare, on a
daily basis, the schedule goals with the schedule status. A four person-day
buffer appears at the end of the planned Task 1.5. The goals are to attain the
major milestone—namely, completing Task 1.5 on or before Wednesday of
the fifth week—and to attain all other minor task milestones within one day
of the schedule, assuming the project starts on a Monday. For any week, no
slippage is allowed to exceed one person-day of work within that week so
that the two weekend days may be used as the immediate-recoverable time.
Even if part of every weekend is used for immediate-recoverable purposes,
the schedule includes only four weekends so that the chance of exhausting
the team is not high.

The four person-day buffer is available for the team as well, but the
project management team may decide to hold the buffer days and not use
them for the immediate-recoverable weekend work. Instead, the buffer days
may be saved to offset other problems, such as sickness, accidents, or family
emergencies, that are not directly related to the performance of the project
activities. Some management teams may choose to use part of or all of the
buffer days instead of the weekend days. How a team utilizes the buffer
depends on the project managers’ style. More risk-adverse managers tend to
save the buffer days. Some project managers are so date-driven that they not
only try to save the buffer days but also attempt to squeeze in weekend days
so as to beat the schedule goal, rather than use the buffer days for immedi-
ate-recovery purposes. Although it is fine to squeeze the project and try to
beat the schedule, that approach should not become a standard practice.
Schedule integrity addresses the issue of meeting the date attribute. Missing
it by finishing either too late or too early is not considered good practice.

Week 1 Week 2 Week 3 Week 4 Week 5

Figure 3.2 Example schedule

Chapter 3 Goals and Measurements

Overly ambitious managers need to remember that a project completed much
earlier than the expected date suggests poor planning and inadequate under-
standing of the capabilities of the resources.

Interrelated Attributes

Many process- and project-related attributes are intertwined. It is the rela-
tionship of these attributes that makes project management such an inter-
esting—and potentially difficult—challenge. For example, the schedule and
cost attributes are interrelated in that schedule can sometimes be signifi-
cantly improved by applying more resources, which usually translates to
higher costs. Conversely, cutting the budget for the project may negatively
influence the schedule. It has also been the experience in the software
industry that not all project schedules can be improved with more
resources. Indeed, many software project schedules have been extended by
the introduction of more people on the team at the wrong time, as Fred
Brooks, who was the executive responsible for the IBM 360 operating sys-
tem and is currently associated with the Computer Science department at
the University of North Carolina, noted in his book The Mpythical Man-
Month. Brooks also stated that:

When a task cannot be partitioned because of sequential constraints, the
application of more effort has no effect on the schedule.... The bearing of
a child takes nine months, no matter how many women are assigned.
Many software tasks have this characteristic of sequential nature....

Adding more people when a software project is already experiencing prob-
lems will often exacerbate a schedule problem because the most knowledgeable
members’ focus will be diverted to teaching, coaching, and helping the new
members who just came on board rather than tackling the underlying problems.

The question of when to best introduce the resources, a question that
affects cost, may be further complicated by other criteria that have to be sat-
isfied. From a software project activities perspective, resources need to be
provided prior to the scheduled performance of the activities because there is
usually a need for a short preparation time just before the actual perform-
ance begins. However, from a financial perspective, sometimes the resources
must be held back until the beginning of the following month after the
scheduled time. This tactic is employed so that the total monthly expense
target, a potential financial goal, can be satisfied. Software project managers
often need to work with the financial managers to ensure that both the
resource needs and the monthly expense targets are satisfied.

Project- and Process-Related Metrics and Measurements

A less discussed project attribute is employee morale. The productivity of
the employees serving on the project is often closely tied to their morale, as
well as their competency and other factors. A demoralized team, regardless of
the reason for their low morale, will not perform as effectively as a satisfied
team. The schedules, which are based on some productivity assumptions, will
clearly be affected. Despite this factor’s direct influence on the project’s suc-
cess, the job of setting the measurements for employee morale and gathering
that information usually falls on the shoulders of the personnel department
rather than software project managers. The software project managers, on the
other hand, are responsible for setting productivity goals and measuring pro-
ductivity. Tying the employee morale goal and measurements to the project
productivity goal and measurements requires the coordinated efforts of both
personnel and software project management members.

One example from the author’s own management experience involved a
situation in which a new configuration management process and tool were
introduced to the software team. Initially, these changes met with a lot of
resistance. Employee morale dipped, and the changes were cited as one of
the causes of workers’ dissatisfaction on the annual employee opinion sur-
vey. The expected productivity gains from the new configuration manage-
ment process and tool did not materialize immediately, because more time
was needed for the people to become educated in the new process/tool, make
novice mistakes, and learn from these experiences. Over time, however, the
organization’s productivity shot up, people felt encouraged, and the opinion
survey results became much more favorable. Missing some of the goals on
employee morale provided a forum for a candid discussion of what was
needed to achieve the productivity goal.

Trying to balance multiple attributes and multiple project goals can be a
daunting task for software project managers, particularly those with less
experience. During the monitoring phase, many attributes may show con-
flicting status relative to the goals. In the preceding example, bringing in a
new process and tool led to declines in productivity and morale in the begin-
ning; eventually, however, both productivity and employee morale goals
were exceeded. Thus just setting the goals is not enough; the multiple goals
must be prioritized. The priority of the goals may then be used to guide
adjustment activities, if they later become necessary.

In software project management, as in other project management, there
are many interrelationships among the product and project attributes. The
following three possible attribute combinations are represented with the X
symbol, which signifies that the attributes are “cross-attributes”:

e Product attribute X project attribute—for example, product quality and
product functionality

Chapter 3 Goals and Measurements

e Product attribute X project attribute—for example, product functionality
and project cost

e Project attribute X project attribute—for example, project schedule and
project cost

Setting goals and measurements for both the product and the project
requires in-depth knowledge of the various attributes and their interrelation-
ships. During this software project planning phase, the software project
managers will often need help from both peer-management and upper-
management teams, as well as from technical leaders.

Because software projects are heavily people-oriented, the software proj-
ect managers must pay special attention to those attributes that touch on
personnel issues and study the consequences of personnel attributes as they
are related to other project attributes. These “interattribute relationships”
must be recognized, considered, and managed throughout all POMA phases
and, indeed, throughout the entire project life cycle. Each component of
software project management should not be viewed as an island unto itself.
The various goals set by different people contributing to the project must not
conflict with each other. For example, the goals set by the group interested
in quality and the groups interested in costs or schedules or functions must
all be taken into consideration when planning for the project. These interre-
lationships are becoming increasingly complex and are directing software
project management toward a more coordinated, team-oriented management
model. Note that the notions of software project teams and software man-
agement teams are similar but not necessarily the same; this topic will be
discussed in more detail in Part Two of this book.

@ INFLUENCING DOWNSTREAM PHASES

The selection of product and project attributes that require goal setting, the
definition of the metrics and measurements associated with those attributes,
and the establishment of the goals for those chosen attributes form a set of
activities that will dictate the tone of the later phases of the software project
life cycle. The chosen attributes, goals, and measurements will be used to
monitor the project and to make adjustments based on the monitored infor-
mation. These goals will also influence the processes that one chooses for the
project, a topic covered in Chapter 4. Similarly, the discussion of risks, cov-
ered in Chapter 5, is influenced by these goals. The risks are, in fact, related
to the likelihood of not achieving the goals.

Exercises

B KEY CONCEPTS

The goals for a project should be defined and set during the planning phase
of software project management. Many of these goals have their origins in
the requirements statements. The goals must be defined in terms of either
product or project attributes that have a clear metric and a measurement
process. Each attribute should be defined in such a manner that it is measur-
able, trackable, verifiable, and validatable. Product goals may be related to
the following attributes:

e Quality

e Usability

e Functional completeness
e Maintainability

e Reliability

e Modifiability

e Installability

Project goals may be related to some of the following attributes:

Schedule integrity
Cost-effectiveness
e Productivity

e Cost minimization
e Efficiency

e Employee morale

Complex multiple attributes and their interrelationships must also be
considered by the project managers. These multiple goals must be prioritized
during the planning phase to avoid the problem of conflicting status later in
the monitoring and adjustment phases.

M EXERCISES

1. What is the difference between a metric and a measurement?

2. What is a simple attribute, and what is a complex attribute?

3. Discuss the relationship of goal setting, product or project attributes,
and measurement.

4. Define a goal for software product maintainability and an associated
metric for that attribute.

Chapter 3 Goals and Measurements

bl

Compare and contrast goal validation and measurement verification.

6. Define a goal for a software project attribute such as productivity.
Explain how you could show that the goal is validatable and verifiable.

7. In this chapter we gave an example of goal setting for the quality
attribute with different levels of defect severity. Would it be beneficial
to relate these severity levels to fix-priorities? If so, discuss the implica-
tions of quality goals to setting up goals for software support goals.

8. Describe the difference between an error and a defect. Discuss how the
different terms may affect the goal setting for quality.

9. Create a list of software product attributes and a list for software proj-

ect attributes. Rank these in the order of how difficult you consider

them to be measured; discuss the reasons for your choices.

M SUGGESTED READING

V.R. Basili and D. M. Weiss, “A Methodology of Collecting Valid Software
Engineering Data,” IEEE Transactions on Software Engineering, SE 10,
1984, 728-738.

L. C. Briand, S. Morasca, and V. R. Basili, “An Operational Process for Goal-
Driven Definition of Measures,” IEEE Transactions on Software Engi-
neering, December 2002, 1106-1125.

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1975.

M. K. Daskalantonakis, “A Practical View of Software Measurement and
Implementation Experience Within Motorola,” IEEE Transactions on
Software Engineering, November 1992, 998-1010.

W. S. Humphrey, “Characterizing the Software Process: A Maturity Frame-
work,” IEEE Software, March 1998, 73-79.

M. Shepperd and D. Ince, Derivation and Validation of Software Metrics,
Clarendon Press, Oxford, 1993.

F. Tsui and L. Brooks, “Release Management of Non-zero Defect Software,”
Proceedings of the 10th International Conference on Practical Software
Quality Techniques South, March 2002.

Chapter

Project Resource Planning

Chapter Objectives
This chapter discusses the following concepts:

e How planning proceeds for the three main targets of software project
resources planning—human resources, processes and methodologies, and
tools and equipment

e How the three separate plans are pulled together into a single combined
resources plan

e How human resources may be outsourced and thus require the project
manager to plan the processes, tools, and equipment resources accord-

ingly

PLANNING FOR THE THREE
%" TYPES OF RESOURCES

Once the project deliverables, WBS, tasks, initial schedule, and goals are
understood, the resources required to complete the project must be planned.
The key resource for most software projects is people. Aside from personnel
resources, both hardware and software packages and tools are needed. On an
organizational level, processes, policies, and specific methodologies need to
be available to ensure the successful completion of a software project.

These three types of resources should be considered and planned for in
concert with one another. For example, the use of certain tools may potentially

Chapter 4 Project Resource Planning

reduce the amount of human resources required. At the same time, there must
be skilled people available to properly utilize and take advantage of that tool.
Furthermore, the cost of the various resources is always a factor in the deci-
sion-making process. After the initial round of resources planning, additional
iterations of planning may be necessary to adjust the resources requested based
on earlier defined goals.

@ HUMAN RESOURCES

The number of people, the type of people with different skills, and the point at
which these people need to begin working on a project all depend on the tasks
that need to be performed and the goals, such as schedule, of the project.

Human resources management is concerned with the recruiting, hiring,
retaining, growing, coaching, and firing of people, but software project man-
agers will focus mostly on the recruiting effort and the timing of hiring the
appropriate people during the planning stage. Recruitment and hiring pro-
ceed in two stages:

1. Based on the various tasks involved in the software project, a skills
matrix is built. The number of people required for each skill category is
identified, along with information on which persons, by name, are
already on board.

2. Using the skills matrix, a hiring plan is developed.

Skills Matrix

Suppose that the skilled personnel listed in Table 4.1 are needed after the
project software managers review the product requirements and the task
analysis. For the purposes of this example, we assume that the organization
is already established and has the needed processes and methodologies in
place. Table 4.1 describes only the needed skills and the estimated number of
those skilled resources; it does not lay out the timing at which the resources
are acquired or used.

Two types of personnel are needed for any business operation: those
involved in direct activities and those involved in indirect activities. Direct
activities for the software project include those associated with requirements
specification, design, coding, manual-writing, testing, integration, and pack-
aging tasks that lead to a customer deliverable. Indirect activities include

Human Resources

Table 4.1 Skills Description of Personnel Required
for the Example Software Project

Job title Number needed Experience/Skills

Project leader 1 Three or more years’ experience in leading
software project teams consisting of approxi-
mately 10 people and in successfully com-
pleting projects with a duration of approxi-
mately one year

Requirements analyst | 1 Five or more years’ experience in the
application domain area

Designer 2 Three to five years’ experience in the
application domain area, two to three years’
experience in the system operating environ-
ment, and two to three years’ experience
with the chosen application development
language, database, design methodology,
and design tool

Programmer 8 Two to three years’ experience with the
chosen application development language
and development tools

Test analyst 3 Three to five years’ experience in the
application domain area, two to three years’
testing experience, and two to three years’
usage experience with the chosen test tools

those related to planning, status monitoring, staff education, and other tasks
that do not lead to a customer deliverable.

Direct project activities Activities that lead to a customer deliverable.
Human resources for these activities must be assigned or the customer
deliverables cannot be delivered.

Indirect project activities Activities that are related to the planning,
controlling, and reporting of the direct project activities. People assigned
to these activities do not directly work on the customer deliverables and
thus can become marginalized.

For this example, we assume that the indirect personnel are already in
place and do not need to be acquired anew for this software project. Instead,
the direct software development personnel planning is considered here. Note,
however, that real-world software project managers must consider both sets of
people, even though their primary focus may be on the people who engage in
direct activities. There will also be some preliminary thinking in terms of iden-
tifying some of the “direct” people who may remain after the project comple-
tion to perform customer support and maintenance. Mostly direct people are

Chapter 4 Project Resource Planning

considered at this phase because they are engaged in the production of the
customer deliverables, which require support and maintenance.

We also assume that the initial project schedule has already been estab-
lished, and that the cost for each of these skilled people has been estimated.
Then the human resources plan matrix for the software project must indicate
the availability of the needed skills at the appropriate time, with the proper
training and preparation, to perform the designated tasks. An initial skills
matrix provides an early view of the number of required human resources by
skill set and by time. It serves as an input to the hiring plan discussed in the
next section. Table 4.2 shows an initial skills matrix for this example.

Several items stand out in this matrix. There is a fairly long period of
project personnel ramp-up time before the total peak size of 12 people is
reached during the eighth month. This gradual hiring pattern is quite realis-
tic and occurs for several reasons:

e [t is highly unlikely that the organization will be able to find so many
good, skilled people all at once.

e New members must become acquainted with the project, and the tiered
approach greatly facilitates that assimilation and education process.

e Not all tasks can be—or need to be—performed in parallel, so there is no
need to ramp up fully on day 1. Having extra people on board too early
is not only costly but may also cause a morale problem.

To elaborate on the final point, in times of a “super-hot” economy or a
shortage of specific skills, software project managers may be forced to
recruit people earlier than they are actually needed just so that these

Table 4.2 Initial Skills Matrix

Months
Skilled
personnel 1 2 3 4 5 6 7 8 9 10 | 11 [12 | 13 | 14
Requirements 1 1 1
analyst
Designers 1 2 2 1
Programmers 4 7 8 8 8 8 4 2
Testers 1 1 1 2 3 3 3 3 3
Project leader 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Customer 1 2 3 3 3
support
Total personnel | 2 2 3 4 8 |10 |11 |12 |12 |12]| 9 8 4 4 4

Human Resources

resources will be available when the project finally begins. This was the case
for personnel skilled in using the enterprise resources planning software
package SAP from 1994 through 1996.! After new employees acquaint
themselves with the corporate process, the software project process, and the
tools, they may get bored with “education” and want to start performing
using what they have just learned. If they are relegated to still more educa-
tion activities, even greater boredom may set in; nonproject-related, disrup-
tive socialization may increase; and some of the new hires may even depart
the organization.

The author personally faced this situation twice at IBM and had to
“invent” mini-projects just to keep the bored minds occupied. Clearly, such
projects must not be just “make-work.” Instead, some tasks that were not
scheduled until later or do not exactly fit the team members’ expertise can
be moved forward. In the author’s particular situation, the search for and
analysis of a better test tool was used as the invented work. Even though the
team ultimately did not switch tools, the employees appreciated the assign-
ment because it enhanced their knowledge base.

Another human resources challenge that one might observe from the
plan in Table 4.2 is the short peak period and the fairly rapid pace at which
people leave the project. Unless the organization has many other projects
that the people might join immediately after participating in this one, the
project management team may face a people placement dilemma after this
software project ends. Therefore, this project may be a candidate for utilizing
temporary personnel, to ensure that the fast, but planned, ramp-down will
not cause needless anxiety among the project team members.

An initial skills matrix such as the one in Table 4.2 does not show what
happens to people such as the designers after they have completed their tasks.
Perhaps Designer 1 will roll over to become a programmer when the design
resources are reduced from month 5 to month 6. Perhaps Designer 2 will join
the testing effort in month 7 after completing his or her design tasks in
month 6. The names of the people joining and leaving the team, the transi-
tioning from one role to another, and the final transitioning to the support
team should be articulated in the resources plan along with the skills matrix.
Also, this kind of people movement can be captured in the skills matrix if the
matrix is expanded to show not just the number of each type of skilled per-
son, but each individual, by name or by some other identifier, within that
type as shown in the people hiring matrix (see Table 4.3 later in this chapter).

1. Interestingly, the shortage of SAP skills during the mid-1990s boosted the growth of
outsourcing of enterprise resources planning activities.

Chapter 4 Project Resource Planning

Of course, not everyone will roll over to a new task within the same
project after completing his or her assigned duties. As a consequence, there
needs to be a separate plan for those individuals who will move off this proj-
ect, even if some of these people are temporary employees.

Hiring Plan

Although creation of the skills matrix ought to follow development of the
project task and schedule plan, project managers often need to revisit the
task and schedule plan after studying the resources plan. The lead time
needed for recruiting, training, and team assimilation may force them to go
back and add some time to the schedule for these types of tasks, which may
not have been considered during the first pass at planning and the WBS.
Also, it is possible that a person with some special skill, in spite of planned
recruiting lead-time, may not be found in time. In that situation, the project
manager may need to revisit the project plan and get some relief in terms of
schedule, functional content, or staged releases.

For estimating lead time, it would be appropriate to add an extra month
(or some other appropriate period) for each person who needs to be recruited
and brought on board. If three people need to be brought on board, however,
that does not mean adding three months of lead time—it is still one month of
lead time. The estimate of one month of lead time would depend on several
factors, such as the economic environment, the company’s geographical
location, the type of project, and the compensation package offered to the
prospective employee. During the peak of the “dot-com” boom, for example,
smaller companies in the Boston and Silicon Valley areas faced the prospect
of long recruiting times. At technology consulting companies such as Meta-
mor, which at one time had a substantial presence on both U.S. coasts but
did not have a broadly recognized high-tech reputation, the time required
for recruiting knowledgeable technical people easily exceeded one month,
even with offers of generous hiring bonuses. That situation changed as the
dot-com era came to an end, however. Recruiters began calling Metamor in
an effort to place some of the very experienced technical resources who were
once nearly impossible to hire. Certainly, during economic downturns, the
recruiting period may be as short as a few days.

In addition, if the project managers decide to hire temporary personnel
to fill out the team, the recruiting effort may be somewhat different. In par-
ticular, more emphasis may be placed on the employee’s immediate technical
skills and less emphasis may be placed on longer-term considerations related
to employee retention and career development.

Human Resources

Table 4.3 People Hiring Matrix

Skilled
personnel 0 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13

Project leader X 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Requirements
analyst X 1 1 1

Designer 1 X 1 1 1

Designer 2 X 1 1 1

Programmer 1

Programmer 2

Programmer 3

X [X [X | X
-
-
-
-
-
-
-

Programmer 4

Programmer 5 D1 1 1 1 1 1 1

Programmer 6 X 1 1 1 1 1

Programmer 7 X 1 1 1 1 1 1 1

Programmer 8 X 1 1 1 1 1 1

Tester 1 X 1 1 1 1 1 1 1 1 1

Tester 2 D2 | 1 1 1 1 1 1

Tester 3 X 1 1 1 1 1

Customer
support 1 X 1 1 1 1

Customer
support 2 P1 1 1 1

Customer
support 3 X 1 1

X = Lead time for recruiting a person from outside the project.
D1, D2 = Movement of a designer to a new role.
P1 = Movement of a programmer to a new role.

People Hiring Matrix and the Recruiting Plan

A people hiring matrix may be derived from the skills matrix as shown in
Table 4.3, where X represents the “recruiting and adjustment” time. D1 rep-
resents Designer 1’s preparation for moving to his or her new programming
role; similarly, P1 indicates Programmer 1’s preparation for moving to a cus-
tomer support role.

Chapter 4 Project Resource Planning

People hiring matrix A project hiring plan shown in the form of a
matrix or bar chart that indicates each specific human resource and the
time period for which that person is associated with the project, includ-
ing his or her recruiting and assimilation time.

Ideally, one would like to retain and move a designer and two program-
mers into the third customer-support role. That transition would most likely
not work, however, because designers and programmers might not mind per-
forming customer support for a very short time but probably would not tol-
erate it for a lengthy period. Also, the cost of customer support needs to be
kept low, and it would usually be cost-prohibitive to place a higher-paid
designer or programmer in this position for the long term. After these con-
siderations are taken into account, the plan in Table 4.3 moves one program-
mer into the customer support role. Even then the plan should address the
eventual (probably within six months) movement of this programmer out of
the support role.

The people hiring plan matrix for this simple project, shown in Table 4.3,
can be turned over to the company’s human resources department or to a
recruiting company as soon as it is established. The matrix should be accompa-
nied by a skills description such as the one shown in Table 4.1, thereby ensur-
ing that the right people will be brought on board. From the people hiring
matrix and the skills description, a more comprehensive recruiting plan may be
created. A recruiting plan will focus on the following items: job descriptions,
job titles, number of openings to be filled, priorities in hiring, compensation
and benefits packages, interviewing process and interviewing managers, inter-
nal and external avenues to solicit candidates, amount of internal hiring
bonuses, range of acceptable recruiter fees, and hiring timing. The recruiting
plan is described in another matrix that includes all the mentioned items listed
by each open position; it should be developed by the personnel department and
reviewed with the project management team. In fact, the software project man-
agers may view personnel hiring as a mini-project within the larger project.

Later, the people hiring matrix may be used as a mechanism to monitor
the hiring status; the planned recruiting and assimilation time of each per-
son in this matrix can be compared with the actual hiring status during the
downstream organizing and monitoring phases (the “0” and “M” in POMA).
In other words, each X in the people hiring matrix in Table 4.3 will serve as
a trigger for comparing the matrix entry against the actual hiring status.

Consider the situation in which the project leader is directly involved in
the hiring of the people for the example project, including the hiring of post-
development customer support personnel. Table 4.4 shows how much time
the project leader may devote to recruiting.

Human Resources

Table 4.4 Direct Management Involvement in Recruiting

Months involved in recruiting

0 1 2 3 4 5 6 7 8 9 [10 | 11 | 12

Project leader X X [2X|[4X | 2X | X X X X

Even though the recruiters and other human resources personnel will
initially review and sort the applicants into different categories of candi-
dates, the software project managers and project leaders still need to review
the qualifications of especially attractive candidates. The software project
managers and leaders will conduct the interviews and provide post-interview
evaluations of these individuals. They must decide to whom to extend actual
employment offers and the exact contents of the offer packages.

Sometimes, the project managers and leaders are even involved in the
development and wording of recruiting brochures for some special positions.
An example of a special position would be a project staff position that has
responsibility for a cross-functional characteristic such as user satisfaction.
This position requires a person who can interact with users and customers
gregariously. At the same time, this individual must possess in-depth knowl-
edge about opinion survey techniques, statistical analysis, the software sup-
port process, and the product so as to properly gauge customer satisfaction.
The precise description of such a position will vary depending on what
exactly needs to be emphasized.

As shown in Table 4.3, the project leader himself or herself is brought on
board during month O along with the requirements analyst, but the project
leader may still be involved in the recruiting of the requirements analyst.

Many people will be surprised at the amount of the project leader’s time
that can be consumed by the recruiting effort, as shown in Table 4.4. In that
table, the number of Xs represents the number of people with whom the
software manager is involved in recruiting during that month. The project
leader spends time on recruiting during 9 of the 13 months shown, with the
bulk of the effort coming during months 3, 4, and 5. This table should also
alert project managers that they should plan for a moderate number of
other activities for the project leader during months 3, 4, and 5—especially
month 4.

People As Human Capital

The preceding discussion made some major assumptions to clarify the
issues: The software project planning was simplified and the availability of

Chapter 4 Project Resource Planning

many support personnel was assumed. In reality, in many large projects or
projects that are starting from scratch, the human resources required for
the project will include a broad set of people such as technical writers,
administrative support personnel, software and hardware systems support
personnel, tools support personnel, and managers. These skilled people are
all needed, even in our simplified example. Furthermore, the addition of 12
people to an organization, such as in the preceding example, will most
likely require an increase in staffing in administrative support personnel
and software-hardware desktop support personnel. Thus the human
resources plan presented in the skills and people hiring matrices can serve
as input not only to the project managers during their recruitment efforts,
but also to the personnel responsible for planning other resources needed
for the project (e.g., office space, desktop computing facilities, and commu-
nications facilities).

Unfortunately, the needed increase in human resources support in areas
indirectly related to the software project is all too often forgotten. Unless all
of the needed human resources are planned for, some problems may arise in
absorbing the additional workload generated from the software project. The
specific project management and other support management departments,
such as the internal desktop support group and the administrative support
group, will need to work together closely as one team in the planning of
these indirect human resources.

After all the effort and costs that are expended in their hiring, these
skilled people should be viewed as “human capital.” For this reason, it
makes sense for the software project managers to ensure that their workers’
morale remains high and that the new employees are protected from being
stolen away by other companies. Employee morale is a project attribute that
should be tracked and monitored throughout the monitoring phase (the “M”
in POMA). To protect against key employees leaving, companies must con-
sider many issues ranging from basic compensation to opportunities for
growth within the organization. During the planning and recruiting period,
the initial offer package should be designed so as to be competitive in the
marketplace, yet should be positioned in such a manner that the compensa-
tion can increase as the employee grows in experience after having been
hired. Many companies establish salary and compensation ranges for each
position. The best advice is to not bring people in at the top of the range;
this approach ensures that the person does not have to receive a promotion
to get the next raise. It is much easier to move a person up within the posi-
tion ranges if that individual is brought in at the lower end of the compen-
sation range for each position.

Processes and Methodologies

@ PROCESSES AND METHODOLOGIES

It may seem strange to some that processes and methodologies are viewed as
resources. Unless the particular software project team does not need any
standards and guidance on how to perform their tasks, how to coordinate
activities, how to evaluate results, and so on, software processes and
methodologies constitute a vital component of the resources needed for the
successful completion of a software project.

In fact, the project management team already had to address the issue of
processes to some degree when it formulated the list of project tasks.
Depending on the assumption of which processes will be followed, the type
and amount of internal artifacts that need to be developed may differ from
the original assessment of processes and thus require a different set of tasks.
For example, one process might include test case reviews. If so, then the
project task list must include test case reviews, and the project schedule must
in turn reflect the time and people required for a process that includes test
case reviews. Here the term “process” means any ordered set of well-defined
activities undertaken to accomplish a particular goal.

There is no single process for software development. Instead, in addition
to the ordered set of defined activities that describe the defining of require-
ments, designing, coding, and release for a software artifact, there are
processes that apply to software maintenance and to support after develop-
ment and release of the product. Thus a process may be applied to the entire
software project life cycle or just to a specific component of the life cycle,
such as the design phase of the project. The number of tasks involved,
depending on the chosen process, may differ dramatically.

Software development process An ordered set of defined activities
that describe the defining of requirements, designing, coding, and
release for a software artifact. A process may contain some sub-
processes, such as the design subprocess within the software develop-
ment process.

In contrast, a “methodology” is a set of rules and principles defined to
accomplish a specific task. In software projects, a methodology may define a
specific task such as requirements specification. A requirements specification
methodology, for example, might be the specification of user scenarios uti-
lizing the popular Use Case Diagram from the Unified Modeling Language
(UML). (For more information on UML, consult the material listed in the
“Suggested Reading” section at the end of this chapter.)

Chapter 4 Project Resource Planning

Software methodology A set of rules and principles defined to
achieve a specific goal and to accomplish a specific task in the develop-
ment or support of software.

In the project planning stage, the software project managers need to
identify which processes and methodologies will be used. If they fail to do
so, confusion may arise at later stages of the software project if the team
members have to quickly create, find and borrow, or do without the guid-
ance of processes and methodologies. Even worse is the situation that arises
when team members disagree over which of several processes or methodolo-
gies they will use. The software project managers should ensure that the dif-
ferent views are heard and that some form of consensus is reached during
the planning phase. They should also make sure that “methodology wars”
are kept to a minimum. Many project failures have occurred when the con-
fusion created by a lack of well-understood processes and methodologies
resulted in missing schedules, poor product quality, demoralized teams, and
possibly total abandonment of the project.

For example, when object-oriented methodologies were first introduced
in the late 1980s and early 1990s, many projects suffered schedule delays
due to a paradigm shift from the more traditional structured, waterfall
process. Similar problems were observed when the inspection methodology
was introduced into the software development process in the early 1970s.
(Inspection methodology is the formal review step that Mike Fagan at IBM
introduced into the software development process; variations of it have been
in use in the IT industry for nearly 30 years.)

There are many ways for a software project to fail. The key to avoiding
this fate is to ensure that a process or a methodology is well defined and
understood prior to its deployment so that the chance of success is increased.
This step starts with the planning phase (the “P” in POMA).

Software Project Phases

The project management team has many choices in terms of determining the
overall process. In general, all software project cycles include some form of
all or parts of the following phases:

e Requirements processing

e Design

e Implementation and programming
e Testing

¢ Product release

Processes and Methodologies

A software project plan must describe which of and how much of these
activities are part of the specific project. Depending on the nature of the
software project and the goals of the project, the processes and methodolo-
gies chosen and emphasized may differ significantly. Let’s consider each of
the software project phases in turn.

Requirements Process Planning

Requirements processing includes a large set of activities. To avoid subsequent
confusion, a complex and large software project requires a well-defined set of
requirements. It also needs a set of requirements processing activities, such as
the one described in the general requirements management activities diagram
in Chapter 1 (see Figure 1.1). In large, complex projects, there will most likely
be modifications and changes to the established base along the way. Thus the
requirements management process described in Chapter 1 needs to be
expanded to include management of changes and modifications. The software
project planners and managers should consider the following issues:

e Is this project already well defined or does it need extensive require-
ments definition?

e If there is a need for extensive requirements definition, what set of
activities should be included as part of the requirements process?

e [s there a high probability of changes and modifications and, therefore,
a need for a change management process?

¢ |s the methodology for each of the tasks or activities within the require-
ments process well defined and understood?

If the software project is already well defined and the requirements
specifications are clearly documented, reviewed, and signed off by all par-
ties, then no requirements process may be necessary. If not, there is a need
to define how the requirements for the project will be gathered, docu-
mented, reviewed, and agreed to by all parties. If such a process already
exists within the organization, then the project management team must
ensure that the requirements analysts either are already experienced in
using that process or can be educated in the process and its associated
methodologies. In the latter case, the plan should include requirements
process education as a task in the schedule. In the event that no such
process or methodologies are defined within the organization but a require-
ments process and methodologies are needed, then the plan should account
for the acquisition or creation of the process and the methodologies. The

Chapter 4 Project Resource Planning

project team must then be educated on the newly defined or acquired
process and methodologies.

The following guidelines might apply to a planning situation in which
the requirements process and methodologies need to be either acquired or
generated:

1. Determine whether there is a need for a requirements process. If there is
a need, continue to Step 2. Otherwise, consider the next type of process
planning, which is design process planning.

2. Plan for the tasks or activities to be included and defined as part of the
requirements process, outlining the order and the sequencing of the
activities:

e Requirements solicitation

e Requirements analysis

e Requirements prototyping

e Requirements documentation

e Requirements review

e Requirements sign-off

e Requirements change and impact management

3. For each of the chosen activities, ensure that either a methodology
already exists or the plan includes the definition of methodologies.

4. Include education on the process and the methodology, if necessary, as
part of the plan.

In deciding which activities to include as part of the requirements
process, the software project management must take into account several
parameters, such as the type of the software project, the goal of the project,
and the measurements needed.

Design Process Planning

Like the requirements process, the design phase may consist of several activ-
ities. Thus it may be viewed as a phase that also requires a process. The fol-
lowing activities may be considered as candidates for the design process:

e Architectural design

e Application-specific high-level design

e Application-specific low-level design

e Design analysis

e Design review

e Design change and impact management

Processes and Methodologies

Once again, the project management team needs to decide which of these
activities should be included in the design process. The architectural design
differs from the application-specific high-level design in that the former
design focuses on the overall system, including all external subsystems with
which the software project must interact, whereas the latter design focuses on
the components within the project application itself. For example, an architec-
tural design for enterprise resources planning software will include the decom-
position of enterprise resource management into its major components, such
as planning, production, inventory, and financial activities; the architectural
design also includes the interfaces that depict how these components interact
with one another as well as how these components utilize a common technol-
ogy such as the Internet, which is external to the components. However, the
application-specific high-level design will focus on the functions and charac-
teristics related to a specific area, such as how accounts payable information is
stored, queried, and reported within the financial application component.

For each of the chosen activities, the plan should include the definition
of the specific methodology to be used and the education plan for that
methodology, if one is necessary. As noted earlier, these design methodolo-
gies fall within the domain of software engineering rather than software
project management. For more details, readers should consult the widely
available material on software engineering (see the “Suggested Reading” sec-
tions at the end of this chapter and previous chapters).

Implementation and Programming Process Planning

The implementation and programming phase is most likely the best-under-
stood phase. In addition to code development, it should include document
and publication development activities. To streamline this phase, many soft-
ware project managers are acquiring existing software code and using it “as
is” or with some modifications rather than implementing the complete proj-
ect from scratch.

Focusing on Reuse Goals

There are multiple technical issues related to reuse of code or designing
for reuse with which software engineers should be concerned. For soft-
ware project managers, however, the key is to understand and decide
what the organization’s real goal is. If one of its goals is to reduce
expenses, then reuse should be viewed from that perspective, and well-

Chapter 4 Project Resource Planning

defined measurements must be taken to determine whether that goal
can be achieved. If reducing risk is one of the organization’s goals,
then reuse should be measured from that perspective. Software project
managers should not allow themselves to be dragged into lengthy dis-
cussions on the technical merits of reuse, but rather should focus on
the goals of reuse and on monitoring the status to see whether those
goals will, in fact, be reached. Similarly, as the project managers con-
sider outsourcing their documentation and publications efforts, their
major focus should be on defining the goals for the outsourcing effort,
on defining the process or methodology to use for outsourcing the
documents and publication efforts that will achieve those goals, and on
monitoring the status of the outsourcing process.

The following list of activities may be considered for the implementation
and programming phase:

e Programming standards definition

e User documentation, help text, and other information standards definition
e Software code acquisition and reuse management

e Program documentation

e Program and information review

¢ Program unit testing

The programming standards definitions to be included depend on the
nature of the project and must be included in planning. Otherwise, imple-
mentation and programming might become a task in which each member
of the project team codes using his or her own style, which could poten-
tially turn future code changes and support by others into an extremely
difficult task.

As an example of how things can go wrong, consider the situation in
which a support technician—let’s say maintenance programmer A—needs to
correct a program that was written by another programmer B, who used her
own unique convention for naming variables. Now suppose that support pro-
grammer A discovers that another program written by a third programmer C
needs to be modified as part of the correction. If programmer C also utilized
his own unique set of naming conventions for the same variables, then one
can imagine the potential confusion inherent in learning yet another set of
variables and making changes to the code that affect the same variables ref-
erenced with different names. A problem fix that spans four or five programs
written by different programmers who did not follow a common standard can

Processes and Methodologies

quickly turn into a massive bookkeeping nightmare, thereby increasing costs
and the potential for introducing a new error as part of the putative fix.

In the case of acquiring and reusing code, the documentation and program-
ming standards of the acquired material should match that of the project’s own
code implementation. If the acquired code will be integrated with the code writ-
ten by the implementation team and will be supported by only one support
team, then the problem scenario discussed above might reappear if two different
standards are used. Integration of acquired software is both a management and a
technical problem. It is a management issue in that software project managers
must recognize that software artifacts do not naturally merge together effort-
lessly; the integration must be thoroughly planned. To ensure that this integra-
tion is achieved with minimal problems, knowledgeable resources must be
specified during the planning phase. Furthermore, software code acquisition and
reuse methodology (a technical methodology for defining, constructing, and
policing the interfaces between the old and the new code) must be put in place
to address the issues that pertain to software reuse and integration.

Test Process Planning

The testing phase of a software project may be quite complex and may
include an assortment of activities:

e Test planning

e Test scenario development

e Test case and test script development

e Test scenario and test case review

e Test result tracking and analysis

e Test execution, problem reporting, resolution, and fix-integration man-
agement

Test scenario A description of a set of interactions between the system
and an external agent, which may be a user or another system, to
accomplish a desired user task or goal. These scenarios are often directly
derived from the requirements specification document.

Test case A description of a specific interaction between the system and
an external agent; the interaction has defined inputs and defined expected
outputs or results. Test cases are usually developed from a test scenario.

Test script A test case written in a language that may be used directly
by some test tool to conduct the actual test.

Chapter 4 Project Resource Planning

The test planning activities include the definition of the types of testing
that will be conducted for the project, such as unit testing, functional test-
ing, component testing, system testing, performance testing, and regression
testing. Test process planning might not define the exact methodology to be
used, but must include the overall test process, tools utilized, skills required,
and schedule. The description of the overall test plan includes a listing of
which type of testing (e.g., unit test, functional test) will be conducted, by
whom, and in what order. The application of tools to the different types of
testing is specified during test process planning. The skills needed to run the
tools and to conduct the different types of testing are also included in the
test process planning. The definitions of the specific methodologies to be
used may be included in the definitions of the various test activities, which
constitute the test process. Test case development activity, for example, will
be defined separately.

Product Release Process Planning

The release phase of a software project is the final phase during which the
software project is coming to a conclusion and the various components of
the software product are integrated, packaged, install-tested, and sent out to
the customer. Several activities are involved, some of which (e.g., the ship-
ping and distribution of software or other relatively easy-to-describe tasks)
may be outsourced. In particular, the following activities are part of the soft-
ware release phase:

e Integration, packaging, and installation
e Product order, release, and shipment management

If the product installation mechanism was not described as part of the
requirements, then the project management team must clearly state it before
an integration and packaging methodology can be described. Testing the
installation mechanism must be part of the integration, packaging, and
installation activity as well as part of the product release phase planning.

Other Process Planning Considerations

Cross-Functional Process Planning In addition to the activities related to
the major phases of a software project, some activities cross boundaries or
are independent of any specific project phase. These activities also must be
defined and understood by the software project team before they can be car-

Processes and Methodologies

ried out properly. Thus the processes and the methodologies associated with
these cross-functional activities are process resources that should be
included as part of the project plan. Some of the major cross-functional
activities are listed here:

e Configuration management

¢ Qutsourcing management

e Quality assurance

e Project change management

e Project reporting and escalation process

The cross-functional nature of some of these activities may not be obvi-
ous to new software project managers. We will describe two of them in more
detail here.

Configuration management is often associated with a tool that controls the
changes to code made by multiple programmers. This description is an
extremely limited view of configuration management; in fact, it describes code
control only. The broader issue of configuration management is the manage-
ment of the various versions of all the software artifacts developed as part of
the project. Such a broad view of configuration management includes the nam-
ing and describing of all the pieces of the software artifacts. Configuration
management also encompasses how these artifacts are controlled as the project
moves from the requirements phase to the software release phase.

Consider the situation in which a test scenario is associated with a
requirement scenario. If we want to ensure that all requirements scenarios
have been covered by test scenarios and, therefore, that the system has been
adequately tested, then a configuration management scheme that defines all
parts of the requirements and the test scenarios must first exist. Furthermore,
an automated tool will most likely be needed to keep track of and control all
of these parts, as well as to match up the parts. This example of configura-
tion management illustrates how a cross-functional activity permeates soft-
ware development activities ranging from requirements specification to
testing and how it affects multiple artifacts. One can also readily see how
configuration management might be helpful in the product support environ-
ment: A software engineer, for example, might want to trace through the
original requirement, design, code, and test case for a reported software
problem before actually changing the software.

Another example of a cross-functional activity is project change manage-
ment. When taken by itself, a legitimate change request may or may not be
implemented. Conversely, an illegitimate change that was conjectured by some
programmer might slip into the software without anyone else’s knowledge.

Chapter 4 Project Resource Planning

Later on, because no one ever tested for the unplanned modification, such an
uncontrolled change could turn into a serious problem. Software project man-
agers need to recognize and plan for all potential change activities. Thus a
project change management process—definition, education, promotion, and
policing—must be considered during planning,.

Process as Intellectual Capital Other cross-functional processes and
methodologies may need to be defined as well. The important thing to
remember is that the processes and methodologies are not obvious and free
resources. Rather, they must be planned for and included as resources that
will be made available to the project team—just as people, hardware, or soft-
ware tools are resources to be made available to the project team.

The timing at which these processes and methodologies enter the picture
is also important. Early on, the overall project process must be defined and
agreed to by the team. As new team members are brought on board, it is
vital that they receive education on the same process. As the software proj-
ect moves through its various phases, the specific methodologies to be used
within each phase must be introduced to the team members. Where knowl-
edge of those methodologies is lacking, team members should complete their
education while they are working on the methodology.

All of the process and methodology definitions, education material, and
documentation should be viewed as the “intellectual capital” of the software
project. These process materials are valued resources that should be safe-
guarded. Many software and consulting companies today conduct their busi-
nesses based on these processes; some provide processes at prices that
exceed tens of thousands of dollars. Examples of commercially available
processes and methods include Express Delivery from Computer Associates,
Navigator from Ernest and Young, and Team Fusion Object Oriented from
Hewlett-Packard. (Method/1 from Anderson Consulting was also gaining a
great deal of momentum prior to the demise of Anderson.)

Intellectual capital Knowledge that is considered an asset and ulti-
mately has financial value.

As mentioned in Chapter 3, the Software Engineering Institute (SEI), a
U.S. government-supported organization on the campus of Carnegie Mellon
University, has been studying and promoting various process models. The
SEI also educates organizations on process models for a fee. The institute’s
Capability Maturity Model for Software (CMM for SW), with its five levels of
process maturity, has been utilized by many software project managers in
planning and assessing their organizations. (See Chapter 3 for a definition of

Tools and Equipment

CMM.) One perhaps unexpected place where the CMM has taken hold is
India. Many Indian IT outsourcing companies—including TaTa, Satyam, and
Info Sys—have achieved the highest level (level 5, Optimizing) of the CMM
assessment. These companies are able to enhance their stature with potential
customers by providing evidence of their software development maturity.

ﬁ TOOLS AND EQUIPMENT

Many of the processes and methodologies discussed in the previous section
may be totally or partially automated and have some tools associated with
them. Indeed, unless the complete software project is outsourced and the
project manager is just acting as the facilitator between the customer and the
provider, there usually is a need for some type of equipment and tools. These
tools and equipment must also be planned for as resources for the project.

The most obvious type of hardware needed is the desktop computer. If
the project is large enough to require the services of several people to thou-
sands of people, then these desktops will need the help of servers, which act
as coordinating and communication machines. Some details concerned with
hardware are as follows:

e Desktop computers: Specify capabilities in terms of CPU speed, main mem-
ory size, disk storage size, number of ports (for printers, communications,
and connection to other peripherals); specify number of desktop computers

e Server computers: Specify capabilities in terms of CPU speed, main mem-
ory and auxiliary cache memory sizes, disk storage size, number of ports;
specify number of server computers

e Printers: desktop versus shared; specify number of each kind of printer

e Network equipment: controllers, lines, modems; specify number of each

Along with hardware requirements, the software systems requirements
must be identified. In particular, the operating systems, database systems,
and communications software need to be specified:

e Operating system: specify the number of copies required for the desktop
and server computers

e Database system: specify the number of user seats required

e Middleware system: specify the type of communications middleware or
transactions-processing middleware, set to the needed number of users
or to some number of transactions

e Browser: specify the number of copies needed for the client desktop
computers

Chapter 4 Project Resource Planning

Once the basic hardware and software operating environment resources
are identified, the software project managers must consider which tools are
needed. These tools may be classified into the following categories:

e Development and implementation tools: libraries of executable code,
editors, compilers, and debugging aids; specify the number of copies or
number of user seats for each

e Requirements management tools: specify the number of user seats

e Design tools: specify the number of user seats

e Documentation tools: specify the number of user seats or number of
copies

e Test tools: keystroke capture tools, test execution monitoring tools, per-
formance measurement tools, code coverage analysis tools; specify the
number of copies or number of user seats

e Support tools: customer call management, release management; specify
the number of copies

e Management and general-use tools: library systems, configuration man-
agement, diagramming and flowcharting tools, word processors, spread-
sheets, project schedulers, statistical function packages; specify the
number of copies or number of user seats for each type

Development and implementation tools are some of the most fundamen-
tal tools and are used in practically all software projects. Most of today’s
software project managers also realize the importance of keeping the various
software artifacts properly versioned and locked. As such, library and con-
figuration management tools, as described in the previous section, are
becoming as vital a resource as compilers and debugging aids. The choice of
tools and aids for the particular software project depends on the processes
and methodologies chosen, the type of personnel recruited, the management
style, and the funds available.

% COMBINING THE RESOURCES

Resources planning is a lengthy but a very important project manage-
ment activity. Ultimately, the more time and attention that are spent on
this type of planning, the more likely that the rest of the project will flow
smoothly. The resources required to satisfy the software project depend
on the deliverables, tasks, schedule, and project goals. These resources
themselves are interrelated and may be identified in a comprehensive
resources plan.

Combining the Resources

Table 4.5 presents one such simplified summary. In this example, all of
the main software development phases will be utilized, and the process will
be close to a waterfall (nearly sequential) process. Clearly, a separate docu-
ment describing the overall process in more detail is needed for the software
project organization. The project managers should ensure, during the plan-
ning phase, that such a document exists and that the team members will be
educated to perform according to the overall project process. Not all the
details are specified in Table 4.5—for instance, the operating system and hard-
ware are merely listed, not described in detail. Each software project team will
have to create its own summary table, reflecting its unique needs. Of course,
the more detailed and accurate the summary, the more complete the plan.

Table 4.5 Combined Resource Matrix

Project Requirements Design Implementation Testing Product Support
phases processing release
Methodologies | Requirements | Class Java and Black-box Installation | Customer
solicitation design JavaScript testing method call
coding management
Requirements | Sequence White-box Packaging
prototyping and testing
interaction
design System and
performance
User testing
interface
design
Specific tools | Requirements | UML Visual Java Test CD Service
and equipment | management | tool development | management | read/write | tool
tool workbench tool tool
Visual
Java Performance
testing tool
Specific
human 2 3 8 4 1 3
resources
General Project management
methodology | Quality assurance
Change management
General tools | Project schedule
Document library and configuration management
General 1 Project manager
support 1 Quality assurance statistician
human 1 Configuration management administrator
resources 1 Database administrator
Hardware and | 20 Desktop PCs (256 MB memory and 3 GB hard drives) with Microsoft Windows NT
operating and Internet Explorer
environment 1 Development tool server (1 Hz, 512 MB memory, 50 GB hard drive)
1 Network controller
1 Relational database

Chapter 4 Project Resource Planning

Table 4.5 addresses only the planning for the types and amounts of
resources needed for the example software project. The timing of the resources’
availability is also important, however, and should be specified in the plan. In
addition to the questions of what, how many, and when, the software project
managers may face the problem of how to provide these resources. This con-
sideration leads to the next topic in this chapter: deciding whether to out-
source activities or to develop the necessary resources in-house.

ﬁ OUTSOURCING VERSUS INSOURCING

Some or all of the resources needed for the project may come from external
and remote sites. This possibility must be addressed as part of the project
planning. If any resources will be acquired from outside (outsourcing) as
opposed to relocated and transferred within an organization (insourcing),
that fact must be noted in the plan. The primary consideration in making
this decision is often the cost involved.

Outsourcing Physically moving work to external sources.

Insourcing Physically bringing in external human resources to perform
work. These external resources may be from different organizations
within the same company.

One possibility in human resources planning is not hiring any additional
employees for the particular project. Instead, the team may be cobbled
together by “borrowing” personnel from other organizations within the com-
pany. If this approach is preferred due to cost or workload imbalance issues,
then some of the personnel might operate out of remote locations and need
to be “tied” together as a team. The project plan needs to identify how this
linkage will be accomplished by answering the following questions:

e Who are the remotely located human resources?

e What additional resources are required to manage remote sites?

e What modifications are needed to the process and methodologies to
account for the remote resources?

If the project management decides to outsource all of the human
resources needed so as to realize an immediate cost savings, to pursue a
long-term strategy, or for some other reason, then the project plan would

Outsourcing Versus Insourcing

have to focus on a “remote management” plan, identifying the resources
needed for managing an outsourced group.

Many successful outsourcing examples can be cited. For example, a
large company, Eastman Kodak, chose to outsource its entire data center to
IBM, and a relatively small firm, Mapics, chose to outsource its software pro-
gramming to an Indian company. Each remote management plan will
inevitably differ in content, based on a variety of factors such as the size
and type of the project, the risks, and the distance. Although each remote
outsourcing experience is different, some common resources should be iden-
tified in every remote management plan. Such resources might include the
following items:

e Extra network and communications equipment

e Additional methodologies and processes to ensure that reports on project
status and problem escalation are not delayed

e A project leader with special skills or experience in remote management

e Travel and meeting policies

Of special significance is the project leader’s experience and skill in
remote coordination and management. The remote workers may be located
in different countries. To counteract potential problems, the project man-
ager must make an extra effort to bring the differing cultural experiences
and expectations of these team members out into the open. Including extra
time in the project schedule for harmonizing the group is critical. In some
cases, the initial task schedule might need to be subsequently revisited and
modified. Additional time and effort to understand any concerns that arise
due to cultural differences might have to be included in the plan, for example
by undertaking informal meetings. Extra traveling budgets also need to be
included in the plan. Furthermore, if the remote sites are in different coun-
tries, international laws and tax regulations must be considered during the
planning phase.

IBM’s Rejuvenation Through IT Services

In the past decade, IBM has gone through an amazing turnaround—
from almost going bankrupt in the early 1990s to reassuming its role
of an industry-leading company in the early 2000s. At the heart of
that turnaround is IBM’s global service business, which provides IT
services to its customers—that is, IT outsourcing.

Chapter 4 Project Resource Planning

The company’s rebirth has its roots in 1989, when IBM and Eastman
Kodak entered into an agreement under which IBM designed, built,
and managed a new data center for Kodak in Rochester, New York. By
1993, IBM had won a 10-year, $650 million contract to provide data
center management and other services to Equifax. In that same year,
IBM entered into another 10-year, $415 million contract with South-
ern Pacific to handle the company’s information technology functions.
These contracts and many other follow-on outsourcing contracts had a
dramatic impact on IBM’s fortunes and contributed directly to the
company’s renaissance.

For all of these services, the planning effort was meticulous. The num-
ber of items considered and planned for each of these outsourcing
engagements could easily take several volumes to list and to describe.

If there is a need to move and relocate equipment or office space for
this project, as opposed to acquiring new equipment and allocating per-
manent new space, then use of these temporary resources must be prop-
erly planned. Many times, leasing equipment is preferred due to cost
issues or rapid technology changes. This choice must be stated explicitly
in the plan, and some type of leasing policy must be established. The plan
should also address the length of the leasing period and the desired terms
and conditions.

The final plan will identify the what, who, and when of the resources
that need to be outsourced or leased. The challenges in organizing and
preparing software projects that have outsourced and leased components are
discussed in Part Two of this book.

M KEY CONCEPTS

The human team members are the most important resource in any software
project. Planning for human resources focuses on the types and number of
skilled people who will be directly applied to the development and support
of the deliverables. At the same time, indirect human resources (such as
administrative support personnel) must be included in the overall project
resources planning. Because significant effort is expended in the recruiting
and hiring of these human resources, skilled people should be viewed as the
project’s “human capital.”

Exercises

Processes and methodologies are a second resource; they play a key part
in the success or failure of all software projects. As such, their specification,
education, and documentation must be viewed as significant “intellectual
capital” and should be protected accordingly. Each software development
phase may be viewed as a separate process, and the methodologies applied
and utilized within that phase must be defined, agreed to, documented, and
disseminated.

Hardware and software tools and equipment constitute the third type of
resources that are required for a project. The project plan must not only
specify the tools, but also relate those tools to other resources, such as
through a description of who is to use each tool and what preparation is
needed for its use. The availability of the tools must also be specified and
folded into the project schedule.

All three types of resources should be merged into a single combined
resources plan that may be viewed as a template for resources acquisition.
Resources may be either obtained through outsourcing or developed (or bor-
rowed) in-house. If human resources will be outsourced, especially from
other countries, then the plan must take into account the unique demands
related to remote management of people and other resources.

M EXERCISES

1. Investigate the SEI's Capability Maturity Model (CMM) and discuss
how you might use it for project planning.

2. Discuss the difference between direct and indirect resources.

3. List the activities that a software project manager may be involved in
during the personnel recruiting period and discuss how that may affect
the availability of the manager for other activities.

4. Compare and contrast the concepts of human capital and intellectual
capital.

5. If human resources are partially outsourced, what are some concerns
that arise? How might you prioritize these concerns?

6. Compare and contrast insourcing and outsourcing.

7. This chapter discussed how to plan for what type and how many
resources are needed. How could you extend the planning to cover
when the resources need to be available for the software project, espe-
cially if the resources will be obtained through different avenues?

8. Discuss the difference between process and methodology.

Chapter 4 Project Resource Planning

9. List some of the functions that a configuration management tool
should have.

10. Discuss the notion of cross-functional process and use the quality
assurance process as an example in that discussion.

M SUGGESTED READING

C. A. Bartlett and S. Ghoshal, “Building Competitive Advantage Through
People,” MIT Sloan Management Review, Winter 2002, 34-41.

Carnegie Mellon University/SEI, The Capability Maturity Model: Guidelines
for Improving the Software Process, Addison Wesley Longman, 1995.

M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, Addison-Wesley, 2000.

W. Humphrey, Managing the Software Process, Addison Wesley, 1989.

L. Jacobson, et al., Object-Oriented Software Engineering, A Use Case Driven
Approach, Addison-Wesley, 1992.

P. E. McMahon, Virtual Project Management, CRC Press, 2001.

R. Murch, Project Management Best Practices for IT Professionals, Prentice
Hall, 2000.

J. R. Persse, Implementing the Capability Maturity Model, John Wiley and
Sons, 2001.

D. Phillips, Software Project Manager’s Handbook: Principles That Work at
Work, IEEE Computer Society, 2000.

Chapter

Risk Analysis and Planning

Chapter Objectives
This chapter discusses the following concepts:

e What the concept of risk is—nmamely, an anticipatable uncertainty that
may be identified and analyzed during the project planning phase

e How risk items can be identified from previously planned areas, such as
project deliverables, tasks, schedules, goals, and resources

e What is involved in planning for risk: identification of risk items, priori-
tization of risk items, and analysis of risk mitigation alternatives

@ RISK DEFINITION

1017

It is a rare situation in which a software project carries no risk. There always
seems to be something that is not well described, not well communicated,
not well understood, not well documented, or not well thought-out that
somehow causes a problem at the most inopportune time. The planning
activities described so far in this book have focused on identifying and
understanding deliverables, task analysis and scheduling, goal setting, skills
and people identification, process and methodology identification, and tools
selection. It is very difficult to identify and fully plan for all of these items at
the outset of the project. As a consequence, this long and complex list of
planning activities, by itself, carries risks. Typically, some parts of the plan
must be modified as the project moves on.

107

Chapter 5 Risk and Analysis Planning

A risk is often viewed as a problem that may occur. The probability of it
materializing is greater than zero but not 100%. If the probability of its
occurrence is 100%, then it is a problem. If the chance of it occurring is zero,
then it will never occur and thus is not a risk. A problem is something that
has a negative value associated with it. For example, a miscommunication
about a staff meeting time may not cause any harm in that a missed meeting
or a part of a meeting may lead to only a small loss of information that can
be easily recovered. In contrast, a miscommunication about a sales presenta-
tion time may lead to the loss of a sale, which is associated with a large loss
of revenue and may not be easily recoverable. We will usually attach a neg-
ative value in some normalized form such as cost in dollars. Thus a risk is
defined as an uncertainty that has a negative value associated with it.

Risk A problem that has a greater than 0% but less than 100% probabil-
ity of occurrence.

Problem An event that has a negative value associated with it.

Unforeseen uncertainties, such as losing a critical resource or using an
unreliable new technology in a software project, are examples of risks that
bring the possibility of potentially worse risks, such as schedule slippage or
cost overruns. All of these outcomes may lead to customer dissatisfaction and
possibly legal action. It might sound contradictory to discuss and plan for
these “unknowns.” But at the planning phase of project management, the risks
represent the foreseen uncertainties. They can be listed, categorized, and
potentially managed. The earlier these risks are handled, the better the chance
of project success. It is critical that any anticipatable risks be addressed as
early as possible during the project planning phase. Later, the unforeseen
unknowns will actually be captured during the project monitoring phase, and
management adjustments to them at that point must be made quickly in real
time.

ﬁ RISK IDENTIFICATION

In software projects, just as in projects in other disciplines, some risks are
indigenous to the specific discipline. Those that occur more often in software
sometimes result from the misconception that software is difficult to define
but easy to create and modify. Schedule overrun is one of the most often
mentioned risks. Another well-known risk in software development is qual-
ity. The following list identifies some of the major sources of risks in soft-
ware projects:

Risk Identification

e Overly optimistic assumptions about the availability of some technology

e Misunderstanding of the real impact of some new methodology

e Miscalculation of the robustness (e.g., extensibility) or constraints of
software design

e Misunderstanding of customer requirements

e Uncontrolled continuous changes of customer requirements

e Unrealistic promises to customers made by overzealous salespeople or
company executives

¢ Inadequate due diligence while choosing external sourcing

e Incompetence of key project personnel

e Miscalculation of teamwork and group effectiveness

e Unrealistic expectations about the availability or productivity of special
skilled human resources

These causes may themselves be viewed as risks, though they usually
lead to other, potentially more dangerous risks. For example, uncontrolled
continuous change is a major cause of a risk item known as “scope creep”
(i.e., work expansion), which in turn causes schedule elongation. In this case,
uncontrolled continuous change itself is a risk because it is a problem that
has a greater than zero but less than 100% probability of occurrence. It may
also trigger a chain of more risks.

Identifying and Listing the Anticipatable Risks

Each project manager should perform a risk identification activity, in which
he or she lists the anticipatable risks associated with the project. This list
may be updated as the project progresses. A frequently asked question is,
How does one start such a list? Recall that project management is managing
the product, the process, and the resources to achieve a set of goals. Conse-
quently, the software project managers may begin by covering each of these
areas. Essentially, they revisit the items that went into the previously com-
pleted planning activities.

First, list those characteristics of the product that may not be well
defined. Examining these characteristics requires reviewing the specified
requirements and thinking about what is still unclear. Create a list of those
“unclear” items for each deliverable. These items form the initial list of
potential product-related risks.

Second, list all unresolved issues for the tasks that will be performed in
conjunction with the software project. Start by asking whether any process is
defined, documented, and practiced in the organization. If not, then any
process that has yet to be specified for the project would represent an

Chapter 5 Risk and Analysis Planning

untested entity for the team. As such, the process may be a risk. In addition,
the methodologies associated with the tasks and the processes may be risks if
they are not clearly defined, thoroughly documented, and well understood
by the team. Processes and methodologies are especially fraught with risk
when the project deals with new enabling technologies that are as yet
unproven but labeled as the next panacea for software projects. Identify all
of these items to create the list of risks associated with the software project’s
tasks, processes, and methodologies.

Third, identify risks associated with the management of resources. Do
the project managers understand which resources are required and how
much of each kind is needed? The risks related to resources will differ
depending on the type of resource.

For known hardware and software systems required for the project, the
associated risk may simply be the capacity or amount of these resources. For
example, we may underestimate the number of simultaneous users of a soft-
ware package and purchase fewer licenses than are really needed.

In terms of tools, the risk may be related to the underlying technology
or the quality of the acquired tool. For example, one may acquire a require-
ments management tool, but that tool might be built upon a specific require-
ments management model that conflicts with the requirements management
process of the project at hand.

Sometimes this risk may be the timeliness of the availability of the tool
for the project. If several different tools are involved, there may also be the
risk of the tools working when utilized individually, but not as a set. Consider
the situation in which requirements have been solicited and a requirements
management tool has been purchased, but the education of the users is not
scheduled until the requirements are already gathered. Instead of waiting for
the delayed education, the original requirements might be captured via a
generic tool such as Microsoft Word and then later transferred to the require-
ments management tool. Even though most requirements management tools
support data importation from Word, the integration of information may not
be accomplished automatically. That is, the imported information might need
to be further manipulated within the requirements management tool to truly
take advantage of the tool’s functions such as requirements categorization,
prioritization, and tracing. The risk here is that many of the activities that fol-
low the data importing operation may not take place, and the requirements
may not be properly prioritized or categorized, even though an expensive
requirements management tool was purchased and is available.

As noted in Chapter 4, human resources represent an especially impor-
tant type of resource for software projects. Here risks may arise at all phases

Risk Prioritization

of the project, from the initial recruitment effort to the final separation of
the people. Obtaining the needed skilled people in a timely manner is always
a problem, and it is further intensified when the field experiences a technol-
ogy boom or a shortage of some special skill. After the team is assembled,
the team may not fully cooperate or the members may even sabotage one
another’s work. Keeping the people focused and productive is also a very
difficult challenge that may affect general productivity, which may in turn
affect the project as a whole. (Refer to Chapter 14 for more information
about the formation and development of project teams.)

All of these potential risk areas can result in failure to meet the sched-
ule, poor product quality, functionally incomplete deliverables, dissatisfied
users and customers, or a demoralized project team. Such a negative result is
not a risk as we have defined it, in that something else caused the poor out-
come; that something else is the uncertainty that we want to identify as
early as possible.

To do so, the software project managers’ first task is to identify risks in
areas in which one can foresee uncertainties. For software project planning,
that initial identification of risks may cover the major planning categories:

e Deliverables and product specifications
e Tasks and initial schedule

e Goals, metrics, and measurements

e Human resources

e Processes and methodologies

e Tools and equipment

While creating the initial risk list, the software project managers should
encourage the participation of as many people as possible, including peer
groups and executives. The more problems that can be anticipated during the
planning phase, the better the chance of project success. Items on this list
will also be used as monitoring targets as the project progresses.

After the risks are identified and an initial list created, additional analy-
sis of these risks is needed. The next step is to prioritize the risks so as to
better avoid them.

@ RISK PRIORITIZATION

All risks are uncertainties that may lead to negative outcomes, but not all
risks are likely to carry the same level of importance. Also, there may be too
many risk items to consider each one in depth. For these reasons, risks need

Chapter 5 Risk and Analysis Planning

to be prioritized. As stated in the previous section, a risk is a problem that
has a greater than zero probability of occurring. One should consider the
consequence of the problem should it occur or the severity of the associated
negative outcome.

Risk prioritization The activity of ordering risks based on some crite-
rion or set of criteria.

A negative consequence resulting from erroneously designing a func-
tion due to a lack of understanding or a misinterpretation of the require-
ment may range from being extremely drastic to being quite tolerable. For
example, the geographical misplacement of an input field on the screen
may be due to a misunderstanding, but it will merely create an easily cor-
rectable inconvenience. On the other hand, the requirements for an input
data check function, that differentiates valid inputs from invalid inputs
must be clearly defined and recorded. If they are not, the input of invalid
data into the system can create system problems that are extremely difficult
to detect, especially if the requirements related to distinguishing valid
inputs from invalid ones are misinterpreted. Imagine the extreme situation
in which an analyst misinterpreted a corporation’s valid retirement age of
62 as 60. Although the age field may be properly checked for numerical
data, the invalid value (60) will cause many people’s retirement compensa-
tion to be dramatically miscalculated.

Similarly, the unavailability of a key resource may create a problem of
dramatic significance or little significance. For example, most software
development managers are quite familiar with the outcome of failing to have
a key designer be available at the right time. A slippage of one day in an
interface design, which happens to interact with 10 or more components,
will force the slippage of all the affected components’ designs. The slippage
of all the components during the design phase will affect the programming
schedule of all the delayed designs. This will, in turn, affect the schedule of
downstream testing of the delayed code. Often, a one-day delay in the early
phases of the software development cycle can produce a dramatic cascading
effect across the entire schedule.

Prioritization by Recovery Cost

To prioritize these different types of risks, the problems—or the negative val-
ues—must be measured with a normalized metric that can be ordered. One
approach is to devise some scheme whereby the risks can be assigned to

Risk Prioritization

ordered categories. For example, one might divide the categories based on the
perceived cost of fixing the problem should it occur—that is, the recovery cost.

Recovery cost The cost in terms of effort or financial expense to solve
a problem should a risk materialize.

The costs assigned may not be exact but rather identified as merely
high, medium, and low. Thus risk items may be categorized as high,
medium, or low based on the perceived level of recovery cost, as shown in
Table 5.1. What is viewed as a high, medium, or low risk depends on each
organization. For example, $100,000 or 20 person-days may be viewed as
a high cost or as a medium cost depending on the organization. Thus risk
prioritization is subject to a different interpretation by each organization.
Because of such potential differences in interpretation, this method is
most applicable within an organization (rather than across organizations)
and should be used with care when applied to interorganizational risk pri-
oritization.

Risk prioritization by recovery cost is a very simple, easy-to-apply
scheme. A major drawback, however, is the perceived cost. The perceived
cost itself may be a risk if it is not gauged accurately. Unfortunately, sub-
stantial inconsistencies may arise when different people are asked to provide
the recovery cost assessment. In particular, an inexperienced management
team should employ this scheme with care. At a minimum, the recovery cost
assessment should be reviewed by others. One can not overstate the value of
an experienced manager in risk management activities. For an organization
that has kept historical data on projects, one may review the past problem
recovery costs and create categories for the project at hand using the desired
interval of cost for each category. Note that a prioritization scheme using
just high, medium, and low categories is not very descriptive; one cannot
say precisely how much worse a high-risk item is than a low-risk item, for
example.

Table 5.1 Risk Prioritization by Recovery Cost

Risk item Problem recovery cost Risk priority
Item 1 High High

ltem 2 Medium Medium
ltem 3 High High

ltem 4 Low Low

Chapter 5 Risk and Analysis Planning

Types of Recovery Cost Prioritization

Many types of risk prioritization schemes based on recovery cost are possi-
ble. One alternative is to increase the number of recovery cost categories,
thereby increasing the number of priority categories. This strategy may be
viewed as a refinement of the fundamental risk prioritization scheme.

Another variation is to use numerical categories, still based on the recovery
cost, such as 1, 2, ..., 10; here, either 1 or 10 is the highest priority. These
numerical categories may be designed in such a manner that the recovery cost
is divided into 10 equal increments. Such a scheme is actually an improvement,
in that it provides more than just simple ordering. It allows us to quantify risk
to some extent, by saying that a risk in the priority 7 category is two units
higher in priority than a risk in the priority 5 category (assuming that 10 is the
highest priority level). We may also think of a risk item with priority 6 as being
twice as important as a risk item with priority 3, because the recovery cost of
the risk priority 6 problem is twice as much as that of a risk priority 3 problem.

There are several ways to divide the recovery cost into equal increments.
One easy method is to examine the risk list and to pick the item with the
largest recovery cost and the item with the smallest recovery cost. Divide the
difference between the two into equal increments. If L is the largest recovery
cost and S is the smallest recovery cost, then

Each increment = (L - S)/Z

where Z is the desired number of priority levels.

For the most part, this scheme would work fairly well. In some situa-
tions, however, updating the risk list may cause the L and S values to
change. If the priority increment values change, that may, in turn, require a
reevaluation of all risk items.

Prioritization by Risk Value

Further sophistication may be introduced in the prioritization of the risk
items. Since each risk is an uncertainty that has a nonzero probability of
occurrence, the probability of occurrence may be included in the prioritiza-
tion scheme.

It makes sense to view risks with a low chance of occurring as requiring
less attention. In other words, a risk with a high recovery cost but a very low
probability of occurring should not command the same amount of attention
as a risk item with a high recovery cost and a high probability of occurring.

Let’s define the risk value of risk item j, RV(}), as follows:

Risk Prioritization

RV(j) = P(j) X RC(j)

Here P(j) is the probability of risk item j becoming a real problem, and
RC(j) is the recovery cost for risk item j when it turns into a problem. The risk
value, RV, may be used as the scheme for prioritization because it is also ordered.

Risk value A recovery cost that is influenced and modified by another
criterion or set of criteria. The probability of the risk turning into a
problem is such an influencing factor, and when such a factor is taken
into account in modifying the recovery cost, the result is the risk value.

Table 5.2 shows five risk items with different probabilities of occurrence
and different recovery costs. These five risk items may be prioritized based
on the computed risk values, RVs. In this case, the risk items will be priori-
tized in the following order:

Item 3
Item 4
Item 2
Item 1
Item 5

Ul W N =

That is, item 3 has the highest risk value and item 5 has the lowest risk value.

This scheme is more sophisticated than the one that considers only the
recovery cost, but it has the disadvantage that it adds more variables and
hence more complexity. The probability of problem occurrence must be esti-
mated, and in addition the estimate of the recovery cost must be made. As
always, these estimations may be wrong and thus may pose their own risks.
Risk prioritization is a task that definitely requires experience. The technique
can be used more effectively if historical project data can be used as guidance.

Once the risk items are prioritized, the software project managers may
decide to consider all of them or just to focus attention on some of the risk

Table 5.2 Risk Prioritization by Risk Value

Risk ltem Probability of occurrence Recovery cost Risk value (RV)
Item 1 0.4 $600 240
Item 2 0.7 $400 280
Item 3 0.3 $3000 900
Item 4 0.6 $1200 720
Item 5 0.3 $700 210

Chapter 5 Risk and Analysis Planning

items, such as the top 30%. Alternatively, such decisions may be postponed
until the managers have had a chance to examine the possibilities of miti-
gating the risks.

% RISK MITIGATION

Once the foreseeable risk items are identified and prioritized, the next step is
to plan how to mitigate those risks. For many of the risk items, several ways
to mitigate the risk might be available; for other risks, no mitigation options
may exist.

Risk mitigation An activity that may reduce, minimize, or totally avoid
a risk.

First, list all the potential ways to mitigate a risk item. For example, if
there is a risk of not being able to complete a system integration task with a
specific tool because only one person possesses that special skill, there are
several possible ways to mitigate that risk:

1. Hire an extra person with the needed skill as a backup helper.

2. Provide extra incentives to persuade the current employee to stay.

3. Use an alternative system integration method that does not require this
specific tool.

Software project managers may employ any one of these options, or
even a combination of them, to improve the odds of mitigating the risk.

Cost-Based Mitigation

Which mitigation alternative should be chosen when several choices are
available? And which criteria should be used in the decision-making
process? One may use any of several parameters as the basis for decision
making, including the ease of mitigation, probability of success of mitigation,
and the cost of mitigation.

Cost of Mitigation

Let’s examine first the last of these—the cost-of-mitigation approach. Each
mitigation alternative for a risk item has some cost associated with it. Sup-
pose there are several mitigation alternatives; a mitigation cost value must
then be estimated for each alternative. Next, choose the one with the lowest

Risk Mitigation

Table 5.3 Estimated Mitigation Costs for Risk Item J

Mitigation Cost of
alternative mitigation
Alternative 1 $65,000
Alternative 2 $50,000
Alternative 3 $120,000

cost. For a particular risk item j, Table 5.3 shows the estimated costs of the
mitigation alternatives.

The cost of each mitigation alternative is just an estimate, and it carries a
certain amount of risk, too. For the alternatives shown in Table 5.3, alternative
2 would be the preferred option because it has the lowest estimated cost.

Probability of Success

Each of the mitigation alternatives likely has a different potential for success.
For example, while alternative 2 in Table 5.3 may be the lowest-cost option,
it may also have a low chance of success. It might be better to choose alter-
native 1 if it has a better chance of success. The chance of success reflects
the probability that the mitigation alternative can actually bring the risk
close to zero. Although it is possible that one might not be able to carry out
the mitigation alternative, we will assume here that the option can be per-
formed successfully. For the example in Table 5.3, alternative 1—hiring an
extra person who has the special skill at a cost of $65,000—will bring (with
close to 100% assurance) the risk to zero. In reality, the chance of success is
probably less than 100%. Also, there is no guarantee that such a person can
be hired in time, though our example makes that assumption.

Mitigation Value Cost

If the probability of success is taken into account, a new cost value is
defined. The mitigation value cost for each alternative is defined as follows:

MVC(k) = P(k) X MC(k)

where MV((k) is the mitigation value cost of alternative k. The probability
of mitigation alternative k’s success in bringing the risk to zero will be
viewed in a reverse manner here; that is, this factor will be represented by the
probability of failure, P(k). The original raw cost of mitigation for alternative
k is MC(k). Table 5.4 shows the same three alternatives, with their probability
of failure, and their respective mitigation value costs.

Chapter 5 Risk and Analysis Planning

Table 5.4 Mitigation Value Cost

Mitigation Raw risk Probability of Mitigation
alternative mitigation cost failure value cost
Alternative 1 $65,000 0.1 $6500
Alternative 2 $50,000 0.6 $30,000
Alternative 3 $120,000 0.05 $6000

Mitigation value cost The cost of risk mitigation after taking into
account another criterion or a set of criteria, such as the probability of
mitigation success.

Alternative 2, which has the lowest raw mitigation cost, does not look
very good after we discover that the chance of failure is 0.6. That is, even if
we give the $50,000 bonus to the employee with the special skill, there is a
600% chance that the system integration task will not be accomplished. After
all, a bonus may excite the person only temporarily, so the mitigation value
cost is relatively high. Conversely, the more expensive mitigation alternative
of using a different technical solution has a much higher chance of success,
so it carries a lower mitigation value cost. In this case, we would be wise to
choose the alternative with the lowest mitigation value cost, alternative 3.

Note that if we changed P(k), the probability of failure, to become the
probability of success, then the alternative with the highest mitigation value
cost would be the proper choice. We used the failure probability in this exam-
ple because it is counterintuitive to choose the most expensive alternative.

Fixed Budget for Risk Mitigation

Sometimes software project managers face the prospect of planning with a
fixed budget for risk mitigation. First, they rank the risk items. Then they
explore the risk mitigation alternatives. Next, they choose a mitigation alter-
native for each risk, using one of the previously discussed methods. Starting
with the top risk item, the managers subtract the cost of the chosen corre-
sponding risk mitigation alternative from the budget and then they examine
the budget to see whether it is still adequate. If more funds remain available,
they then continue sequentially on to the next risk item until the budget
runs out. Table 5.5 shows an example of this kind of sequential application
of a fixed budget for risk mitigation.

This technique offers a simple and straightforward way to plan for risk
mitigation. In the example in Table 5.5, we start with a budget of $500,000,

Risk Mitigation

Table 5.5 Sequential Application of a Fixed Budget for Risk Mitigation

Risk ltem Raw risk Available
mitigation cost budget ($500,000)
ltem 1 $185,000 $315,000
ltem 2 $105,000 $210,000
ltem 3 $95,000 $115,000
ltem 4 $65,000 $50,000
Item 5 $60,000 Not enough funds left

and the risk mitigation budget is allocated to the top four risk items. That
leaves only $50,000, which is not enough to cover risk item 5. Even though
not all risk items are covered, this approach has indeed lowered the risks of
the overall project.

Other budget-based approaches are also possible. One that may deserve
some attention is the tactic of looking at a number of top-priority risk items
and attempting to allocate the budget in such a manner that the total risk
value, RV, is maximized. Consider the same set of risk items as in Table 5.5,
except that now the risk values are also shown (see Table 5.6). Each risk item
has an associated risk value, which is chosen based on the minimal mitiga-
tion value cost. The raw mitigation cost in Table 5.6 is the same as that
shown in Table 5.5. Note that this approach may potentially give a different
answer than planning purely by sequential priority order.

Table 5.6 shows that risk item 4 may be skipped, but two more risk items
may be picked up while still staying within the budget. In this example, the
total risk value is 3290. In the previous scheme, in which the budget was

Table 5.6 Allocating a Fixed Risk Mitigation Budget by
Maximizing Risk Value

Risk Risk Raw risk Available budget
item value mitigation cost ($500,000)

ltem 1 950 $185,000 $315,000

ltem 2 700 $105,000 $210,000

ltem 3 680 $95,000 $115,000

ltem 4 620 $65,000 Omit this item
ltem 5 560 $60,000 $55,000

ltem 6 400 $50,000 $5000

Chapter 5 Risk and Analysis Planning

allocated sequentially, only four risk items were covered and the total risk
value was only 2950. Maximizing risk value would allow the application of
risk mitigation to risk items 1, 2, 3, 5, and 6—that is, it enables coverage of
one more risk item.

A scheme that considers the total risk value may sometimes be prefer-
able. For example, by not choosing the highest-priority item, a higher total
risk value and more risk items might be covered with a fixed budget. How-
ever, since these risk values and mitigation costs are generally estimates, we
would still need management’s subjective experience to double-check and
agree with the plan.

At the end of risk planning, the plan should include the following items:

e A list of identified risk items
e Prioritization of the list according to some defined scheme
e A mitigation alternative for each of the prioritized risk items

RISK REMOVAL AND THE RISK PLAN

A risk plan would be of only limited utility if it did not include target dates
by which the risks were supposed to be eliminated. A risk item may be
removed from the list after the successful application of the risk mitigation
alternative or a change in some other dependency factor. As an example,
Table 5.7 shows a prioritized risk item table in a risk plan.

The risk removal plan table consists of the prioritized risk items, the
expected date or time frame by which the risk items will be removed from
the list, and the events that will trigger the removal of the risk items from

;
o010’

Table 5.7 Risk Removal Plan

Prioritized Expected removal Removal

risk items date dependency

Item 1 06/30/2003 Risk mitigation completed
Item 2 07/15/2003 Task 3 completed on schedule
Item 3 01/30/2004 Task 8 target met and risk

mitigation completed

Key Concepts

the list. This table is one of the many entities that are tracked in the moni-
toring and adjusting phases of a POMA-compliant project.

As risk items are mostly born out of uncertainties that can be antici-
pated to some extent, there is a high chance that the risk item list itself will
be incomplete or even erroneous. Risk analysis and planning may be revis-
ited frequently over the course of the software project, and the risk plan may
be revised several times. The project managers should continuously be on
the lookout for the previously unforeseen uncertainties and check for any
sign of new risks.

M KEY CONCEPTS

A risk is defined as a problem that has greater than 0% but less than 100%
probability of occurrence. A problem has a negative value associated with it.
Only the foreseeable risks may be planned for. Three main risk analysis and
planning activities are pursued as part of POMA: risk identification, risk pri-
oritization, and risk mitigation.

The first activity, identifying risks, seeks to establish a list of risk items.
Many anticipatable risks may be identified from the descriptions of project
and product deliverables, from the task definitions and initial schedule, from
the goals and metrics definitions, and from the project resources plan.

The second activity, determining the priority of the risk items, can fol-
low any of several approaches. One possible approach is to use the estimated
recovery cost of each risk item as the prioritization criteria. A more sophisti-
cated approach is to compute the risk value, which takes into account the
estimated probability of risk occurrence, and then ranks the risks by these
risk values.

The third activity, mitigating risks, focuses on the analysis of risk miti-
gation alternatives. The various mitigation options are listed, and their
respective cost values are estimated. The optimal alternative may be chosen
because it has the smallest mitigation cost. A mitigation value cost (MVC) is
defined so as to include both the estimated probability of the mitigation
alternative succeeding and the actual dollar cost of the option. Using the
MVC value in the decision-making process is a more intricate approach to
determining the optimal risk mitigation.

The final risk plan should also include a set of dates indicating when
the prioritized risks may be removed from the risk list. The status of these
risks and their projected removal dates should be monitored throughout
the project.

Chapter 5 Risk and Analysis Planning

M EXERCISES

Define risk, and discuss how unforeseeable risks may be handled.
Discuss some of the sources of risks in software projects.

Describe one way to prioritize the risks.

What are the three major categories of risk management?

Why might software reuse be attractive to many software project man-
agers, from a risk management perspective?

Why is it important to include risk removal in the risk plan?

What are the criteria for risk removal?

8. How can software project managers identify the mitigation alternatives
for each potential risk?

usupn =

No

M SUGGESTED READING

Barry W. Boehm, “Software Risk Management: Principles and Practices,”
IEEE Software, January 1991, 32-41.

Richard Fairley, “Risk Management for Software Projects,” IEEE Software,
May 1994, 57-67.

Elaine M. Hall, Risk Management Methods for Software Systems Develop-
ment, Addison-Wesley, 1998.

A. D. Meyer, C. H. Loch, and M. T. Pich, “Managing Project Uncertainty:
From Variation to Chaos,” MIT Sloan Management Review, Winter 2002,
60-67.

Marian Myerson, Risk Management Processes for Software Engineering Mod-
els, Artech House, 1996.

J. Ropponen and K. Lyytinen, “Components of Software Development Risk:
How to Address Them? A Project Manager Survey,” IEEE Transactions
on Software Engineering, February 2000, 98-111.

Part Two

Organizing and Preparing

(PEMA)

ﬁ ORGANIZING

After the initial planning phase is complete, the software project team now
has documented descriptions of the following:

e Project deliverables and product attributes
e A task list and initial schedule

e Project goals, metrics, and measurements
® Resources

e Risks

Now it is time to organize and to put the project in action. The planning
and organizing phases may overlap. That is, some organizing activities, such
as human resources recruiting and organizational structure design, may be
initiated and performed simultaneously with resource planning activities.
This phase of the software project management is especially dynamic,
because the project managers are starting to act on their share of the project
plan. At the same time, the nonmanagement-related activities of the software
project, such as early requirements solicitation and feasibility analysis of
technical risks, should be in full motion.

Part Two Organizing and Preparing

As with planning, the organization and preparation of a project is not just
one task but rather a group of diverse tasks. From the project management per-
spective, this “0” (organizing and preparing) phase marks the start of the exe-
cution of the project plan. Ideally, the software project plan has been approved
before the project team engages in activities related to the organizing and prepa-
ration phase, because a fairly large sum of money will be expended once acqui-
sition of resources begins. Each type of resource mentioned in the plan requires
a different approach to attain, organize, and prepare it. For example, goals and
measurements must be set up so that they may be communicated, reviewed,
understood, and accepted by the team members. Risk items and their respective
mitigation alternatives need to be set up for tracking and continuous evaluation.

@ HUMAN RESOURCES

As noted in Part One, human resources are the most important resources for any
software project. The acquisition of human resources often requires much more
effort than acquiring a software tool, methodology, or hardware. Recruitment of
people may be necessary, but it is merely a first step. People need to be placed
in an organization and given clearly designated responsibilities so that the
planned tasks can be accomplished within the target schedule and cost. Unlike
tools and process resources, human resources have emotions. Thus a different set
of preparations—and one that is exceedingly more complex than equipment
maintenance—must be established for the retention and growth of the person-
nel. In addition, because all projects must eventually end, there needs to be prop-
er preparation of the team members for the close of the project.

ﬁ PROCESSES, METHODOLOGIES, AND TOOLS

Other resources that must be prepared and made available along with human
resources are those related to the immediate needs of the project team members:

e Work space for the individual offices and team meetings

e Communication facilities, such as phones, wall boards, and video con-
ferencing mechanisms

e Computational facilities, such as desktop computers, laptop computers,
computer networks, and access to servers and services

Broader project resources are needed as well, such as software develop-
ment or support processes, specific methodologies for some activities, and

Goals and Measurements

hardware and software tools to support the project as a whole. It is essen-
tial to verify that these resource components, as addressed in the plan, will
be available at the required time and can be acquired at the expected
prices. As part of the preparation, the project managers need to ensure that
the purchase orders are completed and that the budget allows for the
release of the needed funds. If training and education for the tools or
methodologies are required, then reservations for educational facilities and
instructional engagements must also be made during the organizing and
preparation phase.

If an outsourcing plan calls for forging an external partnership, then
appropriate partners must be found, evaluated, and selected. The project man-
agement must ensure that the legal and contract group is included in, pre-
pared for, and ready with the drafting of contracts. Sometimes, the software
project managers will directly participate in negotiating these contracts.
Direct participation of project managers in contract negotiation is often a
preferred approach in that such participation allows both sides to work much
more closely later in the monitoring and adjustment phases.

ﬁ GOALS AND MEASUREMENTS

The preparation for the downstream phase of monitoring occurs at this stage
of the project as well. The software project managers must define the types of
data needed to measure and track the project. These data are used to assess
the attainment of the expressed goals and the status of the risk items identi-
fied during the planning phase. The management reporting structure needs to
identify the following items:

e Who should receive the project status reports

e When, where, and how long should the project status meetings be

e What format the reports and presentations should take

e How the organization as a whole can prepare for the effort required to
collect and analyze the data

During the organizing phase, the software project managers may discov-
er shortcomings flowing from the planning phase. For example, the planned
resources may be inadequate. The software project managers should not hes-
itate to adjust the plan and seek both agreement to and approval of any nec-
essary adjustments.

This page intentionally left blank

Chapter

Human Resources

Chapter Objectives

This chapter discusses the following concepts:

e What software organizational structures are possible, including those for
both software development and software support organizations

e What preparations are needed to acquire human resources—recruiting,
hiring, and bringing new people on board

SOFTWARE PROJECT ORGANIZATION:
% AN OVERVIEW

For software project management, human resources are often viewed as the
most vital resource. How many times have we heard industry leaders claim
that they can give up their buildings, their equipment, their processes, and
their money, but not their people? This declaration is especially applicable to
the software industry.

In the early days of the computing industry, software development
focused mostly on programming. Programmers’ activities and teams have
been discussed extensively by authors such as Weinberg and Kraft (see the
“Suggested Reading” section at the end of this chapter). In particular, various
ways to organize these programming teams have been examined thoroughly.
Centralized team control exercised through a chief programmer, as suggested

127

Chapter 6 Human Resources

by Fred Brooks in his book The Mythical Man-Month, has yielded mixed
results. Other centralized and decentralized team structures have been sug-
gested and tried. In addition to organizational and team structures, different
leadership styles have been tested. Today, many software projects require a
large number of people who possess a wide variety of skills. Multiple teams
featuring specialized skills beyond just programming skills, such as system
testing and database administration, are used extensively in many software
projects. To deal with these unique situations, software organizational struc-
tures have necessarily become much more complex.

While the software organizational structure is being prepared, personnel
recruitment activities may be initiated in parallel. Using the software project plan
as a guide, the project management team must now hire the needed people, bring
them on board smoothly, and assign them to the appropriate organization. As the
project progresses, the project team members may need some special training and
growth. Finally, these individuals must be reassigned as the project winds down.

Organizing the software groups effectively and defining specific posi-
tions require some understanding of the functions that the groups will per-
form. This understanding is achieved by breaking down the tasks, the planned
processes and methodologies, the goals and measurements, and other items
outlined in the software project plan. The organizational structure may be
improved if the software project managers take into account some items that
may not be clearly identified in the plan, such as the communications chan-
nels available, the team members’ personalities, and so on.

Let’s look first at several potential software project organizational struc-
tures, beginning with software development structures and then continuing
with software support structures.

% SOFTWARE DEVELOPMENT STRUCTURES

During the creation of the Work Breakdown Structure (WBS) and the plan-
ning activities, tasks were broken down and assigned to people with different
skills. Although one can start the hiring activity by using this list of needed
team members, it is better to spend a little time and put together an organi-
zational chart first.

General Organizational Structure

Figure 6.1 shows an organizational chart for a general software development
and service project organization. The general organizational structure reflects

Software Development Structures

Project Management

Database Management Applications Design Build/Packaging

User Interface Design Applications Development Tools Support

Requirements Analysis Applications Testing Process and Measurement
System Design Systems Testing

Publication and Information
Design

Publication and Information
Development

Figure 6.1 General software project organization

the major tasks that a software development and service organization must
perform. The particular organization required for the project at hand may be
developed based on this structure.

General software development organization An implementation-
independent general organization that includes all the major activities
required to develop software artifacts, from inception to release. The spe-
cific implementation details such as relationships among the activities,
expected sourcing of the people, or the deployed organizational structure
are added onto the general organization.

In the process of putting together an organization, project managers may
discover the need for some additional, but indirect positions. A person who
is assigned to an indirect position usually performs some support task that is
not directly related to the completion of the project’s deliverables. For exam-
ple, a project administrator might coordinate the various activities and ensure
that communication flows properly. The position of project manager—anoth-
er indirect position—might not be needed until the number of people on the
project reaches a certain size. Conversely, if the project is small enough that
multiple tasks are assigned to the same people, the number of indirect posi-
tions required may be minimal. Such trade-offs may not have been fully ana-
lyzed during the planning phase.

Chapter 6 Human Resources

Refining the General Organizational Structure I:
Matrix Versus Hierarchical Orientation

The final organization selected may to some extent depend on the company’s
project management philosophy or the corporate culture within which the
software project will be conducted. Although most organizations are hierar-
chical in nature, some adopt a flatter, matrix type of orientation.

Hierarchical organization An organizational structure in which all the
people associated with a project are grouped into functional departments
that report directly within the vertical line of command of the organization.

Matrix organization An organizational structure in which people are
grouped based on the functions they perform. These people may not
report directly within the vertical line of command of the organization.

In a matrix organization, not all the functions have to be performed
by the people who are part of the official project organization. For exam-
ple, a “central” test department might specialize in all sorts of testing. This
group might provide services to, and be shared by, all of the software
project organizations within the company. Similarly, a common software
tools support organization might be shared by the various project organ-
izations.

One advantage offered by a matrix-type organization is that there is less
likelihood of duplication and better focus on specialized skills compared to a
hierarchical organization. The potential downside is that there may not be as
much “team loyalty” toward any one project. In addition, there is the poten-
tial for confusion in the matrix organization due to the dual-boss situation.
By comparison, within a hierarchical organization, team loyalty and team
security can be cultivated much more readily.

Many hybrid organizations utilize a combination of hierarchical and
matrix structures. One such hybrid is the “functional team” concept, in which
members from different departments are temporarily brought together to per-
form a project while still formally reporting to their own departments. The
members of this temporary team take directions from the project manager
during the lifetime of the project. At the conclusion of the project, all of them
return to their original departments.

With the current trend toward cost cutting and organizational flattening,
many structures may be forced into a temporary, functional-team construct
in which all the people report permanently to a professional human resources
manager. With this approach, every software project is performed by a tem-

Software Development Structures

porary functional team. In such a flattened structure, the project manager
directs all project-related tasks and is responsible for the outcome of the
deliverables. The project managers themselves may be chosen from a pool of
software project managers, all of whom report to a human resources manag-
er. The human resources manager handles the personnel-related subjects,
such as career development issues.

Furthermore, with the trend toward globalization and away from exten-
sive travel, along with much improved communications capability, many
organizations no longer require co-location of their employees. Instead, they
prefer to form virtual organizations.

Virtual organization An organizational structure in which many of the
project personnel are located physically apart and are bought together as
a temporary functional team.

Figure 6.2 shows how the organization depicted in Figure 6.1 may be
modified so as to set up a hybrid matrix organization that features separate
programming and information development centers. Any of the functional
groups in such a matrix organization may be virtual, in that they may be
located physically apart from the rest of the project team.

| Project Management |

| Database Management | Applications Design | | Build/Packaging |

| User Interface Design | Applications Development | Tools Support |
d/Requirements Analysis\b Applications Testing | Process and Measurement |

/
|

| System Design | Systems Testing |
Publication and Information
Co-located at Design
Customer Site \€«——— Outsourced
Located in a
gl;%;armmmg Publication and Information
Development

Figure 6.2 Modified general software project organization

Chapter 6 Human Resources

Refining the General Organizational Structure II:
Functional Orientation

This general organizational structure may be further refined to show a more
precise structure. It is important that the organization be defined down to a
level where each individual can see his or her name. Figure 6.3 shows a dia-
gram of a software organization with a functional orientation.

The software project organization illustrated in Figure 6.3 is quite small:

a total of six people directly report to a project manager. Several assumptions
underlie such an organization:

Managers have a duty to “take care of their people” and will spend a
considerable amount of time guiding the professionals’ careers, but not
directly doing their work.

A smaller organizational size is conducive to faster team bonding.
Many members of the group have worked well with one another in the past.
The “yet to be hired” positions represent 33% of the overall team, but the
actual raw number of new employees is only two; the project manager
will be able to find the right people without having to compromise much.
Each position has a specific title, including titles for the open slots,
allowing for easier requisitions for hire.

The requirements and design activities are viewed as front-end activities
that set the tone for the project, so it is more important to have direct
control over them.

The implementation activities are sourced from a different group, such as
a centralized programming and development implementation center.
The information and publication activities are also sourced from a dif-
ferent group, possibly from the same programming and development
implementation center or perhaps from an external source.

Project Manager
(Sally Thomas)

Requirements Analyst | | Applications Designer Project Interface to
(Tom Shaker) (John Chang) Programming Center and
Information Development
|| Applications Designer (Mary Burke)

(Kim O’Conner)

Project Interface to

|| User Interface Desinger| L| Process, Measurement,

(to be hired) and Tools
(to be hired)

Figure 6.3 Refined software organization: Functional orientation

Software Development Structures

e The infrastructure activities, such as those focusing on processes, meas-
urements, and tools, are also sourced from other specialized groups.

e One person serves as the designated liaison to the outsourced activities.

e The group does not have to be co-located; instead, members of this
small group may reside in different locations and yet communicate
effectively with the available technical tools, such as e-mail, cell phones,
and servers that provide Web access to a common set of central files.

Many software projects rely on this type of organization, in which the
activities are dispersed but all of the responsibilities are still put into the hands
of a small group of people. This is quite different from a strictly hierarchical
organizational structure in which everyone involved must report directly to
one responsible project manager. Such an all-encompassing organization, as
mentioned before, tends to have more overhead, including several people
engaged in activities indirect to the immediate project. This organization
requires a manager to spend more time conscientiously promoting rapid and
effective communications. Members cannot conveniently stick their heads into
others’ offices and strike up a quick discussion pertaining to the project.

Refining the General Organizational Structure III:
A Highly Specialized Organization

Let’s look at a small section—just the software development group—of a large
organization; see Figure 6.4.

This organization is a bit more specialized in that it reflects a group that is
responsible for only the development of software, but not the information devel-
opment and publication tasks. This group does not perform any of the require-
ments gathering and specification activities, nor does it handle any independent
testing. Likewise, no project service activities, such as those dealing with
processes, methodologies, measurements, configuration management, and tools,
are the responsibility of this group. The group members may depend on and use
many of the services provided by other groups. Let’s assume that this software
development group is part of a larger software project organization, where many
of the required services are available. The development manager in this group
still needs to ensure that the interfaces to the other departments within the same
organization are well defined and operational. This group also faces a big
recruiting challenge because it has many unfilled positions.

One advantage that this type of group offers by reporting within a large
project organization is the flexibility it brings to the large organization. If this
group was part of a separate central design and programming department,

Chapter 6 Human Resources

Software Development Manager
(Joseph Akoff)

Applications Analyst
(Tom Snyder)

Senior Applications
Software Engineer
(Ellen Kim)

Senior Applications
Software Engineer
(to be hired)

- Architect
(to be hired)

Systems and Database

Applications Software

— Engineer

(to be hired)

Applications Software

— Engineer

(Laura Tang)

Applications Design
(to be hired)

Applications Design
(Allen Metz)

| | User Interface Design
(Kenny Lee)

Applications Software

— Engineer

(to be hired)

Applications Software

— Engineer

(to be hired)

Junior Applications

— Software Engineer

(Len Burns)

Junior Applications

— Software Engineer

(to be hired)

Junior Applications

— Software Engineer

(to be hired)

Junior Applications

—| Software Engineer

(to be hired)

Junior Applications

— Software Engineer

(to be hired)

Junior Applications

— Software Engineer

(to be hired)

Figure 6.4 Refined software project organization:
Software development specialization

every change and modification might have to be “officially” negotiated and
approved. The flexibility is especially valuable in large projects, which are
more complex and much more prone to changes.

@ SOFTWARE SUPPORT STRUCTURES

1017

After it is released to the customers, the software still needs to be supported
by the software development company. A software support and service
organization may share many characteristics of the general software project
organization.

Software support and service Post-software-release activities related to
clarifying user questions and fixing software problems encountered by users.

Software support and service has one especially important component,
however: customer management. Customer management requires the software
project managers to organize and set up an extensive customer interface group,
such as the customer call service department that handles the following duties:

Software Support Structures

e Answer calls

e Analyze each problem

e Respond to the customer if a possible solution exists

e Generate a problem report when an immediate solution does not exist
e Track the problem resolution activities

e Report and deliver solutions to the customers

e (Close problems

Customer management The set of activities related to ensuring that
the customers’ needs are properly served.

A different set of skills and tools may be needed for a software support
organization as opposed to the software development organization. A soft-
ware support organization might take the form shown in Figure 6.5.

Note that the support groups in Figure 6.5 are divided into “levels,” a
term often applied to the types of software support. The support levels are
described below.

The Level 1 support service provides customer call services where prob-
lems are reported via the phone or on-line. If the problem is a minor one, for
which a simple answer can be delivered immediately on the phone or on-line,
then it is resolved quickly and the problem report is opened and closed with-
in that call service cycle. If more extensive research is needed or a software

| Software Support Manager |

Customer Level 1
Support Leader

Customer Level 2
Support Leader

Customer Level 3
Support Leader

Customer Call __| Problem Resolution | | Software Support
Support Analyst Analyst Engineer
Customer Call __| Problem Resolution | | Software Support
Support Analyst Analyst Engineer
| | Customer Call | | Problem Resolution || Software Support
Support Analyst Analyst Engineer
| | Customer Call | | Software Support
Support Analyst Engineer
| | Customer Call | | Software Packaging
Support Analyst Engineer

Figure 6.5 Software support organization

Chapter 6 Human Resources

change or fix might be necessary, however, then a problem report is opened
and sent to the Level 2 service group.

The Level 2 service group examines the problem description in the
opened report, analyzes the problem, and searches—possibly using a solution
database—for an existing solution that will avoid modifying the software. If
a solution that does not require a code change exists or can be devised, then
the customer is provided with that solution and the problem is closed.
Otherwise, the problem is passed to the Level 3 service group, whose mem-
bers will develop the necessary fix.

The Level 3 service group resembles the development organization. It will
make the necessary design, code, information, and publications changes, test
those changes, package them, and deliver the changes to customers. If the
severity of the problem is high, then the fix may be delivered to the customers
immediately. Fixes for lower-severity problems may be aggregated and deliv-
ered to the customers at regular intervals, such as monthly or quarterly.

RECRUITING AND HIRING
%" SOFTWARE PERSONNEL

Once the organizational positions are outlined, the software project manage-
ment needs to fill the open slots. The actual hiring of the employees starts with
having a clear definition of the open positions in terms of the skills, training,
and character of the candidates required for each position. Not all of this
detailed information may appear in the software project plan, however.

Recruiting

In the project plan, the type of software-related skills needed may be classi-
fied differently by different search and professional recruiting organizations.
For this reason, simply providing a general position title to the human
resources recruiters may not suffice. The following are examples of some of
the common software positions and related skills descriptions:

1. Database design and administration: Technical skills include setting up
a relational database, designing queries and reports to access informa-
tion in the database, and administering backup and recovery processes
for the database, which may require direct working experience with a
specific database from the database vendor. Formal education includes
a bachelor’s degree in computer science or information technology.

Recruiting and Hiring Software Personnel

Professional training includes a certification in the particular database
and two or more years of work experience with that database. The can-
didate must possess good communication skills and enjoy detail-ori-
ented work.

2. Applications designer: Technical skills include translating requirements
in the industry for which the application is designed into systems solu-
tions and expressing those solutions in the selected design language by
utilizing the specified methodology. Formal education includes a bach-
elor’'s degree in computer science or information technology.
Professional training includes the completion of training in the vendor’s
design tool, more than three years of experience in software implemen-
tation in the industry targeted by the application, and familiarity with
the designated software packages used in that industry. The candidate
must possess good communication skills and be highly organized.

3. Application testing: Technical skills include reading and analyzing
designs expressed in the chosen design language, analyzing program
listings in the specified programming language, and designing test sce-
narios and test cases. Formal education includes a bachelor’s degree in
computer science or software engineering. Professional training
includes the completion of training on the selected test tool and two
years of experience in generating and executing test scripts with the
script language associated with the tool. The candidate must be detail-
oriented and have a positive, upbeat attitude.

4. Applications developer: Technical skills include reading and analyzing
designs expressed in the chosen design language and converting those
designs into programs written in the selected programming language.
Formal education includes a bachelor’s degree in computer science,
software engineering, or information technology. Professional training
includes a certificate in the programming language and five years of
programming experience, preferably in the industry targeted by the
application, with progressively sophisticated usage of the programming
language and debugging with the chosen tool. The candidate must be
detail-oriented and work well under constant schedule pressure.

Each position should have a description, whether it is open or not. Each
skill area may also be divided into levels characterized by different expecta-
tions and different degrees of reward and compensation. Furthermore, there
should be descriptions of the career paths, including the progression through
the levels, for the various technical and supporting roles. Employees are inter-
ested in their immediate responsibilities, but they naturally want to know

137

Chapter 6 Human Resources

about their longer-term prospects as well. As part of the recruiting effort, the
project managers should be able to clearly define each position, lay out their
expectations, and articulate the potential for growth in that position. The
software project managers should therefore prepare their recruiting strategy
in concert with the broader corporate human resources strategy, especially
when it comes to short-term positions versus long-term retention policies.

The initial screening of the applicants may be performed by professional
recruiters or by the personnel department. If recruiters are being used it is
beneficial for the project manager to actually sit down and go over each open
position with them, explaining the specific needs of that position. Spending
this extra time up-front will help in filtering out and qualifying the candi-
dates. In this way, preparation of the recruiters can save a lot of otherwise
wasted interviews and frustrations.

Hiring
The actual interview of a candidate may be conducted in several stages. The
initial conversation may take place via telephone or via video conferencing,.
This first interview is a two-sided information exchange intended to deter-
mine whether a mutual fit and interest exist. A common mistake made by
many new managers is to spend too much time describing or “selling” the
position and the project. It is important to also listen to the candidate and
assess that person’s qualifications, specific skills, and personal traits.
Sometimes the project manager may include some other members of the proj-
ect team in the interview to help ascertain the level of some special skill or
to assess potential team chemistry. If the open position has any special
requirements, then those needs must be brought out. Similarly, the project
managers must ask the candidate about any special constraints that the per-
son might have, related to issues such as the amount of travel required or the
amount of potential overtime.

Many project managers find it beneficial to use an interview prompter
sheet to ensure that each topic is covered. Such a prompter sheet may include
questions about the following topics:

e General technical skills

e Specific technical skills

e General educational background

e Years and types of experiences

e The best and worst moments of past projects

e Tasks that the person wants to do the most and the least, and why

Recruiting and Hiring Software Personnel

e The person’s career goals

e Any constraints, including absolute minimum salary

e Why the person is leaving his or her current position

e When the person is available

e Description of the project

e Description of the position

e Description of the team

e Description of the company business and company culture
e Description of the company benefits

e Description of the compensation system

The interview does not necessarily follow the topics in this order. Instead,
most interviews will start with the project manager giving a brief description
of the project and the open position. Then the conversation will flow natu-
rally from topic to topic. It is important to keep track of the topics, and the
interviewing project manager is responsible for ensuring that all relevant
subjects are covered within the interview time slot.

The question on minimum salary is important to ask, especially if the proj-
ect has a very tight budget. Many candidates will not give a straight answer
when asked; however, if the issue of budget is explained, then they will under-
stand that the project manager may not be able to recruit him or her without
some rough estimate of the salary. Sometimes the candidates will provide a
range rather than a specific compensation figure. In today’s volatile high-tech-
nology and software sector, the mode of compensation has moved from offer-
ing a large amount of company stock to a modest amount of stock but more
rewards related to job satisfaction, educational opportunity, or health benefits.
The project manager must be knowledgeable about the latest trends and must
be able to describe how the organization’s total benefits package matches up.

After a successful first round of interviews, the candidate may be brought
in for a face-to-face follow-up interview. If the project manager chooses to
conduct a second interview, then the candidate should be someone whom the
project manager is already willing to hire. The second interview may include
the candidate talking to other members of the team, other project managers,
and the interviewing manager’s immediate manager. This meeting will also
allow the candidate to assess the environment in which he or she will be
working. Sometimes, a skills test in some programming language or tool may
be administered at this point. For positions that require high coordination and
communications skills, character tests may also be given.

If both sides remain interested after the follow-up interview is complet-
ed, the project manager should provide the candidate with a target date for a

Chapter 6 Human Resources

formal decision and an offer. If the decision is already made, then the offer
may be extended at the end of the second interview. This immediate offer is
often made verbally for those companies that require drug or other substance
clearances before final hiring.

The offer letter should clearly define the position and provide a brief
description of the tasks. The total compensation package should be spelled
out, including reference to any documents that explain the details; these
should also be enclosed with the offer letter. The name of the new employ-
ee’s immediate manager, the new hire’s starting date and time, and any doc-
uments that must be brought in on the first day should all be specified. Such
a letter may be written and sent out by the human resources group, rather
than the software project management.

Bringing People on Board

Once the candidate accepts the offer, the project manager needs to prepare for
that person to be brought on board to the project as smoothly as possible.
This seamless transition is important for several reasons. First, it gives an ini-
tial—ideally positive—impression to the new employee. Also, many hours may
be wasted if the new employee just sits at his or her desk with nothing to do
or no capability to do anything.

The following list identifies some of the items that must be prepared by the
project manager or a project administrator prior to the new employee’s arrival:

e Physical space and physical facilities, such as a desk and chair

e Office supplies

e Computing equipment

e Communication facilities, such as telephone numbers, user IDs, and pass-
words

e Special software tools

e Scheduling of special project education, if necessary

e Printed or electronic documents on project processes, policies, method-
ologies, and other items relevant to the project

Most project managers will be too busy “running” the project to take the
time for these activities. Other project managers may postpone these tasks to
a later time—perhaps too late. Although the actual tasks of preparation may
be delegated to someone else, the project manager must ensure that the
preparation does, in fact, take place and that the appropriate requisitions for
the new employee are all signed, approved, and sent out in time.

Exercises

Finally, the project manager should prepare the other project team mem-
bers for the arrival of the new employee. Giving the existing members infor-
mation about the new member can promote positive project chemistry. In
particular, the project manager should explain the role and relationship of the
new member to the rest of the team.

M KEY CONCEPTS

This chapter introduced two general software organizational structures: the
software development structure and the software support structure. Working
from the general software development structure, organizations may adapt it
as necessary to fit their unique set of needs. Similarly, the general software
support structure, with its three levels of support reflecting increasingly more
complex problems and solutions, may be altered to better fit the needs of dif-
ferent organizations. These structural differences mostly arise from differ-
ences in parameters such as size, location, skill groups, finance, efficiency,
management, and corporate culture.

After the organizational structure is built, then all the open slots need to
be filled with people. Recruiting and hiring of human resources is an impor-
tant process because people—unlike pieces of equipment—cannot be
“returned” easily. After a candidate is hired, the new employee must be
brought on board as smoothly as possible to ensure that the software project
team will continue to work effectively.

M EXERCISES

1. In extreme programming, it is often mentioned that two software pro-
grammers should share the ownership of a module and that two people
should actually code the same module together. Investigate the topic of
extreme programming (see the “Suggested Reading” list) and discuss
any concerns you may have about filling a software development posi-
tion that will be “occupied” by two people.

2. Construct a series of descriptions that outline software designer posi-
tions ranging from the entry level to the senior level.

3. Compare and contrast the applicability of hierarchical and matrix orga-
nizational structures to a software support and service organization.

4. Discuss which organizational structure will minimize the usage of indi-
rect personnel and under what conditions?

Chapter 6 Human Resources

5. What is a virtual organization, and what are some of the reasons to
consider such an organization?

6. What are some of the reasons that an employment candidate may be:
(a) initially screened out, and (b) later screened out?

7. What is required to successfully bring on board a new employee?

M SUGGESTED READING

R. Agarwal and T. W. Feratt, “Crafting an HR Strategy to Meet the Need for
IT Workers,” Communications of the ACM, July 2001, 59-64.

K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley,
1999.

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1975.

L. Constantine, “Working Organization: Paradigms for Project Management
and Organization,” Communications of the ACM, October 1993, 34-43.

M. Goold and A. Campbell, “Do You Have a Well-Designed Organization?,”
Harvard Business Review, March 2002, 117-124.

W. Humphrey, Managing Technical People, Addison-Wesley, 1999.

P. Kraft, Programmers and Managers, Springer-Verlag, 1977.

H. J. Leavitt, “Why Hierarchies Thrive,” Harvard Business Review, March
2003, 96-102.

M. Mantei, “The Effect of Programming Team Structures on Programming
Tasks,” Communications of the ACM, March 1981, 106-113.

R. S. Pressman, Software Engineering: A Practitioner’s Approach, 4th ed.,
McGraw-Hill Companies, 1997.

L. D. Schaeffer, “The Leadership Journey,” Harvard Business Review, October
2002, 42-47.

L. A. Slade, T. 0. Davenport, D. R. Roberts, and S. Shah, “How Microsoft
Optimized Its Investment in People after the Dot-Com Era,” Journal of
Organizational Excellence, Winter 2002, 43-52.

C. Stevenson, Software Engineering Productivity: A Practical Guide,
Chapman & Hall, 1995.

S. D. Teasley et al., “Rapid Software Development Through Team
Collocation,” IEEE Transactions on Software Engineering, July 2002,
671-683.

G. M. Weinberg, The Psychology of Computer Programming, Van Nostrand
Reinhold, 1971.

Chapter

Processes, Methodologies,
and Tools

Chapter Objectives
This chapter discusses the following concepts:

e Why a process may have been chosen for the project during planning,
but must be revisited, properly positioned, and controlled for the project
team during the organizing and preparing phase

e How the details concerning methodologies, which are typically not
included in a project plan, are defined, specified, and introduced to
the team

e Why the tools, which accompany the processes and methodologies, are
an important productivity aid for the project team

ey PROCESSES

1017

Besides organizing and preparing for the use and introduction of new
human resources, the other resources necessary for a software project must
be considered, acquired, established, and installed during the organizing and
preparing phase of POMA. One of the first steps in process preparation is to
clarify what the plan states about the process that is to be used. No single
process is applicable to all software projects. Even if the plan calls for a
generic type of software development or support process, each software
project must have its process further tailored depending on some of the
following factors:

Chapter 7 Processes, Methodologies, and Tools

e The size and complexity of the project based on the deliverables
e The maturity of the organization

e The history of the working relationship of the people

e The size of the organization

e The goals of the software project

Many software project managers will refer to the definitions and guide-
lines from ISO 9000, Software Process Improvement and Capability dEtermi-
nation (SPICE), or the Software Engineering Institute’s CMM and CMMI
bodies of knowledge in preparing for his or her software project’s specific
tailoring needs. These standards and assessment models provide guidance as
to what the “experts” around the world believe are good practices for soft-
ware development, support, and maintenance. For example, if a software
project manager contemplates outsourcing a part of the activity, he or she
could consult the Subcontract Model described in CMM for Software instead
of inventing a methodology within a process from scratch.

Setting Software Standards: 1SO, SPICE, and SEI

The International Organization for Standardization (ISO) includes dele-
gates from 146 countries and is headquartered in Geneva, Switzerland.
Its mission is to promote the widespread adoption of international
standards, most of which are highly specific to particular products. ISO
9000 is probably its most widely recognized and successful family of
standards, having become an international reference for quality man-
agement. ISO 9001 specifically addresses the development, supply,
installation, and maintenance of computer software. ISO 9000-3
specifies quality management and quality assurance issues and
describes how these quality aspects apply to ISO 9001 for software.
Software Process Improvement and Capability dEtermination
(SPICE) is an initiative to support the development of international
standards for software process assessment. SPICE has three specific
goals: (1) to develop a working draft for a standard for software
process assessment; (2) to conduct industry trials of emerging stan-
dards; and (3) to promote technology transfer of software process
assessment into the worldwide software industry. The working draft for
an international standard for software process assessment was com-
pleted in 1995, and the follow-on standards development is now con-
trolled by the ISO/IEC JTC1/SC7/WG10, the Process Assessment
Working Groupn of ISO. SPICE relies on five technical centers around

Processes

the world, including one in the United States at the Software Engineer-
ing Institute.

The Software Engineering Institute (SEI) initially created the
Capability Maturity Model (CMM) to promote the assessment of an
organization’s software process maturity. While CMM is now widely
recognized in the software industry, it did not address the complete
software product cycle—specifically, issues related to software support,
service, and maintenance. To fill this gap, the SEI developed a new
model, Capability Maturity Model Integration (CMMI), which is built
on and extends the best practices from three other models: Capability
Maturity Model for Software (CMM-SW), Systems Engineering Capa-
bility Model (SECM), and Integrated Product Development Capability
Maturity Model (IPD-CMM). CMMI for Software Engineering (CMMI-
SW) is a version of CMMI without the System Engineering (e.g., SECM)
portion. The CMMI-SW document is available through SEI at Carnegie
Mellon University in Pittsburgh.

Whatever software process is chosen, it must be communicated to the
entire project organization, and the project team must be properly disposed
to follow the process. In addition, the project management needs to ensure
that the various methodologies, which are to be used under the process, are
established, communicated, and implemented. Implementation of the
methodologies includes educating the people and providing the necessary
tools to support the automation of the methodologies (see the “Methodolo-
gies” section later in this chapter).

Process Map

Even though the type of process to be employed was deliberated, debated
over, and decided on during the planning stage, there is still a need to map
the overall process, to clearly list the activities carried out within each step,
and to explain any relationships among the steps. To see how this mapping
works, let’s consider an example.

Suppose an organization is interested in putting together a waterfall-like
development process that covers the production of major artifacts, ranging
from requirements specification and code, to test scenarios and reference
manuals. The planned process also includes defect prevention and defect
removal activities.

Figure 7.1 illustrates how this map may be structured based on the sum-
mary table of a resource plan from Chapter 4 (see Table 4.5). Table 4.5 shows

Chapter 7 Processes, Methodologies, and Tools

which activities are desired and a rough sequence of the development activi-
ties. The process map in Figure 7.1 portrays not only the sequence but also
the interrelationships among the activities. In this first example, many of the
details within a process step, such as those relating to design or information
development, are left out. Otherwise, a single diagram will be too confusing
to read. This level of the process map is meant simply to communicate the
general flow and relationships among the parts.

In particular, note that the project management activities are included in
the overall process map; they span the complete project cycle. This choice is
made deliberately, to ensure that the team will not develop an “us” against
“management” mentality. Once such an attitude takes hold, it becomes very
difficult to build a cooperative team in which the project management and
the professionals work together as trusting partners. When the project man-
agement activities are viewed as an integral part of the overall project
process, then implementing measurements and collecting data become less
threatening, and the introduction of any change or improvement based on
the collected status information will be more readily accepted.

Another step shown in Figure 7.1 is an activity that is rarely included as
part of software project management but is absolutely crucial to the success of
an organization. This activity, which is labeled “Initial Requirements and Busi-
ness Case,” appears in front of all process activities. Too many software proj-
ects have been initiated without taking a moment to assess their business

Project Management

Initial

Requirements
Requirements q

Gatherin
and plivt [¢] Product

: Design
Business Specification
Case
System
Coding Packagi
> andUnit [acesmne
Testing —¢ Release
Test Functional System
Scenario and - and and
Test Script 7| Component > Release
Development <——i Tests Tests
I & l
Information and | Igfc_:rrpation
> Publications [_1I rinting or
Material D Loading
Development and
Release

| Configuration Management

Figure 7.1 Overall project process map

Processes

viability. As a result, unrealistic constraints on resources or time may be
placed on the project. The project management team is somehow expected to
figure out the solution even when there may be no better answer than turning
down the opportunity. Thus analyzing the business case for the project should
be the first step. The software project managers should be “looking out” for the
incoming business and seek to participate in its analysis as early as possible.

Process Flow

The arrows in the overall process diagram in Figure 7.1 show the flow of activ-
ities. The first three major sets of activities are fairly sequential. Before the set
of design subactivities is completed, the coding, test scenario development, and
information development activities may all start and overlap with the design
step. The actual testing, however, cannot proceed unless the particular function
is coded, functional test scenarios and scripts are written, and the functional
help text and usage guide are developed. The testing for a component follows
the same logic, in that all the functions within a component must first be
tested, and then the system and release testing follows. Upon completion of the
system and release tests, the code portion of the product—which may include
source code, executable objects, and test scripts—is packaged and set for
release. Similarly, the information portion of the product—which may include
user manuals and design documents—is set for printing and set for release. If
the information product is to be provided through an on-line mechanism, then
it must be released to that on-line mechanism.

Figure 7.1 includes some dotted lines with reverse arrows to indicate the
potential for backward flow of activities. Although changes and modifica-
tions to the artifact developed in a previous step may be needed for every
activity, testing as a set of activities will uncover problems and cause more
rework to the artifacts in the form of fixes. In Figure 7.1, the dotted line
from “Functional and Component Tests” points to “Coding and Unit Testing,”
“Test Scenario and Test Script Development,” and “Information and Publica-
tions Material Development.” But in fact, depending on the problem discov-
ered, sometimes the team may need to modify the design or even change the
requirements specifications. In such a case, the reverse arrows may go back
to more previous activities than just the ones shown in Figure 7.1.

A reverse sequence may be initiated when a problem is found during
testing. It kicks off a fix cycle that touches upon programming and informa-
tion development, which in turn may necessitate changes to the project’s
design. Thus, if we were to modify this general process map, more reverse
arrows might be drawn from coding and information development to design

147

Chapter 7 Processes, Methodologies, and Tools

and requirements. Also, problems may be discovered during design that may in
turn result in some modifications in requirements. Lastly, inspections or reviews
within each of the major steps may uncover problems introduced by the previ-
ous major step and necessitate changes to the artifacts produced in that earlier
step. Some process charts separate out the review and inspection activities. In
our example, we will not show all of these reviews and potential reverse flows
of activities with dotted lines to avoid cluttering the general process map.

The arrows in the process map may also represent the “successful” com-
pletion of events prior to starting the successor activities. The conditions for
successful completion or the exit criteria of a step, which allow the work
flow to continue to the next step, need to be provided as a companion to the
process map. In Figure 7.1, the arrows from the design activities to the three
subsequent activities require a bit more discussion. After the high-level and
architectural design is completed and as each component and functional
area is designed, the corresponding component and functional area may be
converted to code. The test scenario and test scripts for those completed
component and functional areas may also be developed. Similarly, the infor-
mation write-ups for help text and manuals for those already-designed areas
may be created. Thus the arrows from the design activity to its subsequent
activities carry a little more semantics than meeting the usual exit criteria
and flow to the next activity.

A typical set of exit criteria from the design process may include the fol-
lowing conditions:

e All the functional and nonfunctional requirements are designed includ-
ing the following:
e The user interfaces and workflow
e The systems and communications interfaces
e Database and file structure
e Special constraints: performance, security, back-up/recovery, etc.
e All of the design is documented and represented in the previously speci-
fied format and language.
e The design document is stored in a configuration management tool.
e The design document is reviewed and all errors found have been fixed
and captured in the updated design document.

The defined exit criteria for the process steps provide a management and
a team approach to controlling the flow of the activities. The following illus-
tration shows the criticality of exit criteria to management and to team
process control.

Processes

Consider the downstream activities following design (e.g., coding, test
case development, and reference manual development) and the listed design
exit criteria. If there were no such list, then the question of when the down-
stream activities should start might be answered only when the design was
“complete.” Unfortunately, design completion may be interpreted capri-
ciously by different groups. Some groups, facing heavy schedule pressure,
might start before the entire design is documented. For example, program-
mers might code the application functions prior to the “completion” of the
nonfunctional parts of the design, such as those related to performance. This
rush into coding may lead to later rework, and it may actually elongate the
schedule instead of shortening it.

The existence of exit criteria does not necessarily prevent all down-
stream activities from starting prematurely. For example, one might choose
to initiate a downstream activity while one or two exit criteria items remain
incomplete. Exit criteria, however, bring out awareness and force conscious
decision making in controlling the process. For this reason, all exit criteria
should be defined for the various activities shown in the process map. The
definitions may be written as a companion document to the process diagram.

Configuration Management

Another activity that is included in the process map in Figure 7.1 is configu-
ration management. Configuration management is made up of a complex set
of activities that relate to management of the artifacts generated through
the project (see Chapter 4 for more on this topic). It includes the following
key activities:

Part I
Configuration management activities: (Definition €& Setup)

¢ Defining and listing the artifacts that need to be managed

¢ Defining the granularity of managing the artifacts and designing the
directory scheme to accommodate that level of granularity

e Defining the rules for accessing the artifacts

Part 2
Configuration management activities: (Control & Track)

e Defining the security and controls needed to manage the artifacts

Chapter 7 Processes, Methodologies, and Tools

e Storing, retrieving, locking, and unlocking artifacts based on the prede-
fined set of rules
e Maintaining all of the tools employed to help in configuration management

Configuration management A set of procedures that define, track,
and control the artifacts produced during the development, support, and
maintenance of software.

Since project artifacts are generated across the entire project life cycle,
the set of configuration management activities is also a natural part of the
project and these need to be executed through the complete project. It is thus
a central concern in managing both the artifacts and the project as a whole.
Configuration management will be discussed in more detail in the “Method-
ologies” section later in this chapter.

Processes and Subprocesses

Within each of the major steps in the general process map, there may be sev-
eral further expansions that resemble subprocesses within a process. If an
expanded subprocess such as the general requirements management activi-
ties discussed in Chapter 1 is needed, then that subprocess description must
accompany the overall project process. Many of the variations in process
models are studied in software engineering, and historical information per-
taining to the success and failure of the different process models is discussed
in a variety of software engineering books and reports (see the “Suggested
Reading” list at the end of this chapter for some sources). For example, Barry
Boehm has stated that only 15% of the software development effort is typi-
cally devoted to programming and that reviews catch 60% of all errors.
Armed with this type of information, quality-conscious software project
managers may insist on including software reviews in requirements specifi-
cation and design activities, but not necessarily in coding, as an integral part
of the software development process. The project management would be wise
to consult such sources before putting the organization’s process into play.
All of the materials related to the general project process must be
reviewed and agreed to by the project team management and the technical
leaders of the project. It is the project management’s responsibility to trans-
form a high-level process plan into a specific project process model. The
transformation may involve an emphasis on quality and the inclusion of
reviews in requirements and design activities but not in the programming
activity. For very small software projects, configuration management may be

Processes

reduced to only code control. The actual work may be delegated to a process
“expert,” if the team includes such a person. The transformation from high-
level process plan to project-specific model includes the following tasks:

e Identifying and organizing the major components or steps of the process

e Providing the details of subprocesses, if necessary

e Explaining the relationships among the components

e Showing the flow from one component to another

e Identifying the exit criteria from one component to another that facili-
tates the flow

Process Introduction and Education

Once they have a defined general project process with all the accompanying
materials, the software project managers must communicate this information
to the rest of the team. Members of a project team may come from a variety
of backgrounds, all of which use some form of a process. Some may come
from chaotic organizations in which the process is formulated as the project
progresses. Others may come from organizations with well-established
processes, although different from the one that will be used on the current
project. If the team members come in with relatively open minds, then the
establishment of a common process for the project may not be very difficult.
If they are resistant, it may take some major effort to transform the team so
that it will embrace a “new” project process.

In either case, there is a need to provide a period of time for the assimi-
lation of the process. During this time, a combination of education on and
communication regarding the process must take place. It would be a horrible
mistake for the project managers to assume that much of the education and
communication may be accomplished by producing a “comprehensive”
process document and then leave it to the team members to read it at their
leisure. Likewise, education about and communication of the project process
should not be done in one fell swoop. That approach would not be much
better than handing the team members a thick process document and then
expecting them to absorb and accept all the information. Instead, the educa-
tion and communication should come in stages.

There are many ways to parcel out the education and communication
activities. One possible approach is as follows:

Chapter 7 Processes, Methodologies, and Tools

Stage 1: Process Introduction

e Provide the introduction and education, if necessary, to the general
project process chosen for the project.

e Provide the rationale behind the specific process.

e Point out both the positives and the negatives as well as any portion of
the process that is still untested.

e Point out any past history, if available.

Stage 2: Feedback and Modifications

e Allow team members to debate and study the process on their own.

e Ask for written feedback.

e Collect and analyze the responses.

e Make appropriate modifications and prepare for responses to those changes.

e Bring the team together, providing the team members with feedback on
which suggested modifications were accepted and explaining what was
done with both the accepted and the rejected suggestions.

Stage 3: Acceptance

e Ask whether any further education is needed and provide it as appropriate.
e Ask for concurrence and acceptance of the process.

Stage 4: Reinforcement

e Quickly review the process and ask for any further input prior to its
implementation.
e Make any adjustments and update the process as needed.

The effort required to organize, communicate, educate, and gain accept-
ance of the process may be longer than many people would like. Indeed, the
length of time expended in organizing and setting up the project process
might surprise even the best of software project managers. The reinforcement
activities (Stage 4) may be performed repeatedly as needed, but not exces-
sively. As new employees come on board, they must also be introduced to the
project process. The right balance of process reinforcement versus process
bureaucracy must always be maintained. The management of that balance
will be discussed later as part of the monitoring and adjustment phases of
project management (see Parts Three and Four of this book). At this phase of
the project, however, the software project management simply needs to
ensure that the team is clear about, and ready to follow, the process map.

Methodologies

@ mETHODOLOGIES

A methodology is a prescribed set of steps to accomplish a task. As such, it
may be viewed as a further drill-down on the definition of the activities
within a process. The process provides the macro steps, whereas the method-
ologies provide the micro steps that sometimes may transcend the macro
steps. For example, setting up a naming convention for files as part of con-
figuration management is a micro step, but it transcends the macro steps in
that it affects requirements documents, design documents, test cases, code
versions, and multiple releases. Thus the difference between a methodology
and a process is a matter of degree.

Software project managers have traditionally loved to be involved in
lengthy discussions of methodologies. One reason for this fascination is that
software engineering is a relatively new discipline. As a result, new method-
ologies are constantly being invented and frequent changes in methodolo-
gies come about because of the accelerated pace of technology. Another
reason for the high interest in methodologies is that many software project
managers were promoted into their positions because they were the “best”
performers in some aspect of the software project development using a par-
ticular technology and methodology. Clearly, it is to the software project
managers’ advantage to be familiar with that methodology. However, their
ultimate responsibility is to ensure that the most appropriate methodology is
selected and that the chosen methodology is properly implemented. They do
not have to be methodology experts themselves.

During the planning stage, software project managers became involved
in putting the plan together by choosing the main methodologies. Sometimes
the rationale behind the specific choice of methodology needs to be reviewed
one more time during the organizing and preparing phase to ensure that
nothing major has changed since the plan was developed. As the software
industry is such a fast-paced environment, the software project managers
may have to alter some part of the plan prior to implementing it.

There are different ways to describe and prepare a project team for using
a particular methodology. For example, the methodology may be described
at two levels: The higher level is a more process-oriented way, in that the
major substeps to be employed are listed and their relationships are shown;
the deeper level takes each substep and describes the specific method
involved in performing it. In other situations, the methodology may include
several steps in a process. In the object-oriented methodology, for example,

Chapter 7 Processes, Methodologies, and Tools

the methodology may cover several major process steps from requirements
to programming.

The preparation for introducing such a methodology would be relatively
complex. Let’s look at how the software project management can organize
and prepare the project team to deploy the chosen methodologies by exam-
ining first the definition of “methodology” and then by looking at methodol-
ogy preparation.

Methodology Definition

Let’s look at a first example in which the methodology may be described in
two levels. Let’s consider the functional testing activity from the software
development process. The general methodology may be described in a high-
level fashion as follows:

e Review the requirements specification for the description of the desired
functionality.

e Review the design document for the design of the solution to provide
that functionality.

e Review the code, if necessary.

e Develop the usage scenario and break down the usage scenario into test
cases for that functionality.

e Execute the test cases and record the result.

e Report any problems found.

e [ncorporate the fixes and retest to ensure that the fixes are correct.

e Promote all of the correctly tested functional code to a library.

Within this general methodology, very different, specific methods may
be employed to accomplish any of the particular substeps. To see how, con-
sider the substep that addresses the generation of test cases. It may be fur-
ther expanded into a white-box test case generation method, in which the
internal workings of the design and code are reviewed to determine how
many predicates (i.e., decisions such as in an “if” statement) exist. (The alter-
native to white-box testing is black-box testing, in which the development
of test cases is based on requirements or design documents but not on a
review of the actual code.)

Predicate A relation (e.g., x = y) that has a value of either true or false.
In programming constructs, an “if” statement is often used to evaluate
the truth or falsity of a relation.

Methodologies

White-box testing A testing methodology in which the actual code is
reviewed during the development of test cases. With this strategy, predi-
cate constructs such as “if” or “case” statements in the code can be counted.

Black-box testing A testing methodology in which the development of
test cases is based on requirements or design documents but not on a
review of the actual code. With this strategy, the code is viewed as a
“black box.”

From those predicates, the combinations for a test data set may be pre-
pared to ensure that all paths of the program associated with a particular
function are executed. Then specific test scripts need to be developed for
each test case. The generation of an actual test script will depend on the par-
ticular tool utilized, but generic test scripts may be developed first.

Another specific method may address how to report the discovery of any
problems during this white-box testing. In this case, the actual reporting
simply involves filling out a problem reporting form on paper or electroni-
cally. But after the form is completed, where does it go and who takes
responsibility for this reported problem? Thus, in setting up a simple step
within the functional testing methodology, one may discover the need for
two more items:

e A problem reporting form must exist or be designed.

e A subprocess that defines the flow of the problem reporting form, from
the opening of a problem report to the closure of that problem, must
exist or be designed.

If both the problem reporting form and the problem opening-to-closure
process need further work, then the preparation for the “reporting problem
found” step may be quite time-consuming. Although it is not difficult to
design a simple form to record the opening of a problem, a major piece of
preparation work is required to design an information-gathering form that
will allow the tracking of the problem from beginning to closure. The prob-
lem opening-to-closure subprocess may also need to be defined, reviewed,
and communicated as part of the methodology.

Software project managers should not be surprised to find such holes as
they prepare to introduce the methodologies to the project team. Could some
of these issues have been addressed at planning time? Yes, but it is not likely
that they would have been identified at that time. Besides, the details of
process and methodology implementation rightly belong to the organization

Chapter 7 Processes, Methodologies, and Tools

and preparation phase of project management. Furthermore, no plan is per-
fect, and the discovery of holes in the process and methodology plan is a
very common occurrence.

Methodology Preparation

If the plan includes a complete methodology that crosses several steps, such
as the object-oriented programming methodology or Ken Beck’s extreme
programming methodology, then the preparation for it may be quite difficult
for project management. This was especially the case when object-oriented
methodology was first introduced more than a decade ago. Even though
both object-oriented programming and extreme programming utilize the
term “programming,” each covers more than just programming activities. By
now almost everyone is familiar with object-oriented methodologies, but
some may not be familiar with extreme programming. As this book is not
meant to be a treatise on software engineering, interested parties are directed
to Ken Beck’s Extreme Programming Explained: Embrace Change for more
details on this approach to programming (see the “Suggested Reading” list at
the end of this chapter).

It is extremely difficult for project managers to stay out of the detailed
technical discussions of a methodology, especially if it is an up-and-coming
one such as aspect-oriented programming (AOP), which is viewed as a
potential post-object-oriented programming era methodology. The lengthy
debates and discussions over a new methodology form a trap into which
many technical managers fall. As a result, a large amount of good technical
exploration is done, but no plan or preparation for that methodology is made.

Aspect-oriented programming (AOP) A new software development
methodology that emphasizes cross-functional features or concerns that
may arise in the requirements, design, or implementation steps. Exam-
ples of aspects include design constraints, system properties, and system
behaviors.

The software project managers do need to facilitate the debate over a
new or complex methodology, so that all fears and apprehensions about it
may be exposed and resolved before the next stage of preparation. During
this debate, the project managers must stay objective and ensure that accu-
rate information is provided during the discussion stage and that the discus-
sion is geared toward making a decision. Thus the parameters for decision
making and embracing of a methodology need to be spelled out. From a

Tools

software-project point of view, a methodology should be judged by the fol-
lowing criteria:

e Whether it will accomplish the task

e Whether it will accomplish the task in some advantageous way that
improves productivity, reduces complexity, and enhances quality

e Whether the actual project cost will be reduced and the schedule
improved

This is a tall order. Nevertheless, the software project managers must be
prepared to answer these questions as part of the organization and prepara-
tion of the methodologies.

If the methodology is new to the team, there is also a front-end cost in
terms of the potentially steep learning curve and extra time required to mas-
ter the methodology. Once the debates are over and the team is mentally
prepared to embrace the methodology, then team education is needed to
ensure that everyone will practice this complex or new methodology in the
same way. The project managers should insist that all members participate in
the education process so that the entire team will be on the same page.

Sometimes the team may already include a few experts who do not need
the technical education. If so, then the project managers should take advan-
tage of the situation and have those people mentor and help the rest of the
team get up to speed on the methodology. It is very tempting to try to utilize
these experts and get an early start on the project. However, it is much more
valuable to have the software project team work harmoniously on a complex
methodology. Thus preparing the team as a group is important. Just as in
process preparation, the team receives the same experience as they go
through the first three stages of preparation:

1. Introduction
2. Feedback and modification
3. Acceptance

In addition, a reinforcement stage (Step 4) may be needed from time to time.

@ TOOLS

One of the main reasons for using tools is to reduce work effort and, thereby,
to increase productivity and efficiency. Tools represent a significant set of
resources for software projects. They range from compilers and databases to

157

Chapter 7 Processes, Methodologies, and Tools

requirements modelers and configuration managers. Tools, like other tech-
nologies and methodologies, are often presented as a panacea for all ills
afflicting a software project. At times, high improvement numbers, such as
50% to 200% gains in productivity, have been thrown around as evidence of
a particular tools’ effectiveness. Such grandiose claims should raise a red
flag for software project managers. Unfortunately, many software technical
leaders and project managers have embraced those highly optimistic num-
bers and organized their projects around a tool, rather than the other way
around. In the early days of computer-aided software engineering (CASE)
tools and again in the early days of object-oriented methodology, for exam-
ple, several tools were thought to provide very aggressive savings of effort
and schedule, but many of the expected gains did not materialize.

As part of the preparation and facilitation of tools for the software proj-
ect, the project managers need to first take a realistic account of what should
be expected and what effort will be required to achieve those expectations.
In the general process map shown in Figure 7.1, the configuration manage-
ment activities are portrayed as a subprocess that must be carried out
throughout the complete software project. Several tools are available to help
in many of the substeps within that subprocess. The question is which one to
bring in and what preparation is needed for its use.

Tool Identification and Preparation

During the planning phase, it may have been recognized and determined
that a configuration management tool is needed. Thus the plan may have
listed it as a necessary tool and resources may have been set aside to acquire
it. Now the software project management is responsible for “making it hap-
pen.” The following are some of the major activities that the software project
managers should carry out to prepare for acquisition and use of the tool:

e [dentify the specific steps and activities that the tool is expected to auto-
mate or improve.

e Explore realistic expectations for the tool, stated in terms of productivity
gain or efficiency gain that the automation of these steps will bring.

e Review the various tools available that will meet these expectations.

e Review the training needed to attain the level of competency for the
expected gains.

e Choose the specific tool to be acquired, working out the needed terms
and conditions.

Tools

e Announce the decision.

e Set and communicate the realistic expectations in terms of productivity
gains that the team should be experiencing.

e Schedule and facilitate the necessary training,.

e Acquire and set up the chosen tool.

e Ensure that proper and continuous support of the tool is in place.

e Communicate the project policy for usage of this tool.

e Set up the mechanism to enforce the usage policy.

This extensive list of activities is not only applicable for introducing a
sophisticated tool for configuration management, but should also be con-
sulted as a prompter for introducing less complex tools.

The first step in the list is an especially important one. Even though the
project team may have already recognized the need for a tool to carry out
some of the activities during the planning phase of the project’s manage-
ment, the software team members and the project managers should under-
stand and agree on exactly which steps the tool will try to automate and
improve. This clear identification will allow the project managers to address
and calculate the potential productivity and efficiency gains in a realistic
manner. Using this information, they can set achievable goals related to pro-
ductivity and efficiency gains. Identifying the specific activities to be sup-
ported by the tool will also help in setting the tool usage policy.

Tool Selection

Another key step is the actual selection of the particular vendor and the ven-
dor’s tool. This step may be extremely time-consuming and perhaps charged
with strong emotions. To avoid problems, the software project managers
must establish an objective set of criteria for tool selection. These criteria
will draw upon the information gained from reviewing and studying the var-
ious vendors and their offerings. In particular, the criteria should take into
account an analysis of the following information:

e The functions that the tool performs and automates

e The expected gains in productivity and efficiency from the tool’s functions
e The number of users who may simultaneously access the tool

e The tool’s performance capacity and reliability

e The vendor’s expertise in the tool

e The vendor’s past history in supporting the tool

e The amount of training needed to use the tool

Chapter 7 Processes, Methodologies, and Tools

e The effort required to maintain and support the tool
e Contractual terms and conditions for the tool—especially the financial terms

Some “scoring” mechanism must be established for each criterion. For
example, a range of weights (e.g., 1, 3, 5) may be assigned to each criterion,
and the sum of the weights calculated for each tool. With this scheme, in the
actual assignments of weights, one must be careful about the semantics of
each criterion. Assigning a value of 5 to the “vendor expertise in the tool”
criterion highlights vendors’ richness in expertise, whereas assigning a value
of 5 to the “amount of training needed to use the tool” represents the need
for little training on the tool. The choice of the tool is then made based on
the scores, which are the different sums for the contending tools. The scoring
mechanism may be modified to accommodate the particular class of tools,
but something similar to this approach is needed so that the project team
will accept the decision and embrace the chosen tool.

Tool Usage Preparation

Bringing in a tool is one thing; using it properly is another. To ensure that
the expectations will come to fruition, the project team must be trained how
to use the tool correctly. The software project managers should realize that
even with the team’s formal training in the use of the tool there is an early
period of time, when the usage of the tool is still new, during which the team
may lose some productivity. The team will inevitably go through a start-up
period marked by exploration, some frustration, and further learning. The
software project managers must account for this early experimentation
phase while setting expectations for the tool and sending a message about it
to the team.

Even with all the software project manager’s good intentions, prepara-
tion, and facilitation, some team members may still find reasons not to use
the tool. In the author’s own experiences, there have been several occasions
in which people did not want to use a certain tool simply because they did
not want to attend the necessary education. Their egos prevented them from
going to a class! In the situation where the tool is targeted at helping
improve only the individual’s productivity, a few team members’ refusal to
work with the tool may not lead to too much of a loss in team productivity.
Nevertheless, this “revolt” may still create a negative team morale. In the sit-
uation where the tool is targeted at helping the team as a whole and its
effectiveness depends on everyone’s participation, then even a few “rene-

Key Concepts

gades” must not be tolerated. It takes only one recalcitrant worker to thwart
the effort to use such team-oriented tools and achieve the desired benefits.
And the problem may be bigger than just the missed realization of expected
productivity gains—total project chaos can ensue. Such would be the case
with failure to use library control or configuration management tools, for
example. For all these reasons, the tool usage policy must be clearly commu-
nicated and enforced. In devising a policy, software project managers must
put thought into devising the enforcement mechanism of the policy as well.

This last point on policy development and enforcement also applies to
processes and methodologies. For the process and methodology to really
work, they must be adhered to and properly utilized by all team members.
Thus the software project managers must set the tone for the project by
establishing a usage policy, which in turn must be supported by an effective
enforcement mechanism.

M KEY CONCEPTS

Plans to adopt and deploy certain processes, methodologies, and tools need a
substantial amount of software project managers’ preparation efforts before
the plans can be transformed into real practice. The organization and facili-
tation of this transformation is a vital project management task. One may
view these activities as “getting the resources ready” for the software project
monitoring phase.

To demonstrate how a software project team may tailor a process for its
particular situation, this chapter considered a generic waterfall process. Its
process map included some extra activities, such as the initial requirements
and business case establishment, project management, and configuration
management. The exit criteria for each activity in the process map controlled
the process flow, whether forward or reverse.

Defining and specifying the details of a process must be accompanied by
proper preparation of the team members. The communication and education
of the team should proceed through four stages: (1) introduction of the
process; (2) feedback and modification; (3) acceptance; and (4) reinforcement.

Methodologies may be viewed as a drill-down on the process defini-
tions. For each activity in the process, a methodology provides a set of steps
to accomplish that task. Software project managers should avoid spending
too much time themselves in debating the various methodologies. Rather,
they must work to facilitate the discussion in such a manner that the

Chapter 7 Processes, Methodologies, and Tools

methodologies are chosen, defined, and introduced to the team by following
the same four stages as found in process communication.

The tools that are needed and desired for the software project must be
determined up-front. The selection of a particular tool from a specific vendor
is a time-consuming activity that must be performed during the organizing
and preparing phase. The software project managers should understand and
establish the expected degree of productivity and efficiency gains from
these tools. In addition, they should identify how these tools will be utilized
and supported.

Clear usage and enforcement policies must be established for all
processes, methodologies, and tools selected for the software project.

M EXERCISES

1. Choose an iterative process and tailor it to an organization that has
fewer than 20 people who take on projects that are normally not com-
plex and typically last less than one year. Show and explain the
process map and the process flow.

2. Discuss the advantages and disadvantages of including management

activities into the general process flow.

Discuss the merits of having exit criteria. Are there any drawbacks?

4. Discuss how you, as the software project manager, might commission

the selection of test tools for your project. What selection criteria

would you recommend?

Discuss some of the reasons why a software process might fail.

6. Review the steps involved in introducing a process, and discuss how
you may or may not modify the approach in introducing a new, but
untested methodology.

7. Devise a tool usage policy, taking into account the tool types (e.g.,
team or individual). Should you include reward and punishment in
managing tool usage?

e

b

B SUGGESTED READING

P. G. Armour, “The Laws of Software Process,” Communications of the ACM,
January 2001, 15-17.

K. Auer, R. Miller, and W. Cunningham, Extreme Programming Applied:
Playing to Win, Addison-Wesley, 2001.

Suggested Reading

K. Beck, Extreme Programming Explained: Embrace Change, Addison-
Wesley, 1999.

B. Boehm, “Industrial Software Metrics Top 10 List,” IEEE Software, Vol. 4,
No. 5, September 1987, 84-85.

T. Elrad, R. Filman, and A. Bader, “Aspect-Oriented Programming,” Commu-
nications of the ACM, October 2001, 29-32.

K. E. Emam and A. Birk, “Validating ISO/IEC 15504 Measure of Software
Requirements Analysis Process Capability,” IEEE Transactions on Soft-
ware Engineering, June 2000, 541-566.

K. E. Emam, J. N. Drouin, and W. Melo, SPICE: The Theory and Practice of
Software Process Improvement and Capability Determination, IEEE Com-
puter Society Press, 1998.

G. C. Murphy, R. J. Walker, and E. L. A. Baniassad, “Evaluating Emerging
Software Development Technologies: Lessons Learned from Assessing
Aspect Oriented Programming,” IEEE Transactions on Software Engi-
neering, July/August 1999, 438-455.

J. Raynus, Software Process Improvement with CMM, Artech House, 1999.

C. H. Schmauch, ISO 9000 for Software Developers, ASQC Quality Press,
1994.

I. Sommerville, P. Sawyer, and S. Viller, “Managing Process Inconsistency
Using Viewpoints,” IEEE Transactions on Software Engineering, Novem-
ber/December 1999, 784-799.

L. Vessey and A. P. Sravanapudi, “CASE Tools as Collaborative Support Tech-
nologies,” Communications of the ACM, January 1995, 83-95.

B. E. Wampler, The Essence of Object Oriented Programming with Java and
UML, Addison-Wesley, 2002.

This page intentionally left blank

Chapter

Goals and Measurements:
Preparations and Costs

Chapter Objectives
This chapter discusses the following concepts:

e How the goals specified during the planning phase can be reexamined to
ensure that proper metrics and measurement schemes are defined and
implemented

e How the software project team should be prepared so that it will accept
the measurement scheme

@ TRANSFORMING GOALS AND MEASUREMENTS

As part of the planning activities, a number of goals and measurements to
gauge and validate the attainment of goals were considered and identified.
The project team, as a whole, still needs to be organized and motivated to
both understand and accept these goals and measurements. Just as with
other parts of the software project plan, the software project managers are
responsible for transforming the plan items into executable items during the
organizing phase of POMA.

During the planning stage, various product and process attributes were
considered. For those attributes considered especially important, goals were
set. In setting the goals, the metrics and the measurement scheme for those
goals had to be conceived. During the organizing phase, several other impor-
tant notions need to be weighed by the software project managers:

Chapter 8 Goals and Measurements: Preparations and Costs

e Are the goals and their associated measurement schemes clearly defined?
e Has the organization embraced the measuring scheme?
e Has the cost of measuring been taken into account?

Software project managers should be prepared to face relatively more
challenges from the project team and the rest of the organization than their
peer project managers in other disciplines would encounter. This greater
resistance reflects the young state of the software field, where no traditional
measurement schemes have emerged as standards.

CLARIFYING DEFINITIONS OF GOALS AND
% MEASUREMENTS

Even though the importance of different product and process attributes was
considered in the planning phase, oftentimes the goals for those attributes
deemed important may not have been set clearly. As a result, the actual
measurement scheme may be confusing to team members. To alleviate this
possibility, the software project managers should do the following:

e Review the goals set for the product and project attributes
e Review the measurement scheme and modify it if necessary
e Build an “operational” plan for the measurement schemes

The goals set for each attribute should be clear. By “clear,” we mean that
there is a way to determine whether a goal has been met. In software proj-
ects, many desirable goals are stated in a qualitative way. A prime example
is a requirement statement such as “The product should be easy to use.” All
software project managers realize that “ease of use” is a characteristic that
the ideal product will have. Thus, during the project planning phase, this
requirement is transformed into some type of a product goal. Is the goal set
for this important product attribute still desired at the organizing phase? If
so, then the question of whether it is well understood, specified, accepted,
and verifiable during the project monitoring phase needs to be answered
before going forward.

Decomposing the Ease-of-Use Example

Let’s analyze the ease-of-use example further to demonstrate how goals and
measurements are clarified. One popular way to clarify a statement is to

Clarifying Definitions of Goals and Measurements

decompose it into several substatements. Suppose the initial requirement
statement “The product should be easy to use” is decomposed and trans-
formed into the following subgoal statement: “Every function in the product
can be completed by a user without any other human intervention.” This
transformation into something more specific may be reasonable, but it may
need further clarification. Is this subgoal more specific than the original
ease-of-use statement? How would we gauge this transformed attribute? Is
there a need for a specific activity that will allow us to gauge its attainment?

The clarification needed, in this case, relates to the measurement
scheme. A possible answer may involve setting up a usability test within the
testing activities as part of the process. The precise metric and measurement
methodology should be defined in terms of this usability test. The following
steps might be used:

1. A test case is designed for each function in the product.

2. A numerical count is kept of the number of test cases that are success-
fully executed by a test subject without any external intervention.

3. This test is repeated with a predetermined number of test subjects to
ensure the results’ statistical relevancy.

4. All of the unsuccessful test cases are summed.

The goal for the product is to have zero unsuccessful tests—which is
probably impossible. A more reasonable goal may be 5% unsuccessful or
95% successful test cases.

Upon further consideration, both the goal statement and the measure-
ment scheme need a little more clarification. More specifically, how many
test subjects should be included in the usability test for it to be considered
statistically relevant? Would we classify a function as one that was not
“completed” if 99 out of 100 test subjects could complete it? How many peo-
ple must not complete the function before it is labeled as “noncompleted”?
One can see the potential areas of contention arising from this example, if
the measuring and classification scheme for this goal is not further clarified.

Potentially Misleading Measurements

It is worthwhile to spend a little time discussing the notion of measurement
and classification. As in the preceding example, you may want to classify
“completed” in a graduated way with a categorization scheme such as the
following:

e Totally completable means all participants complete all functions.

167

Chapter 8 Goals and Measurements: Preparations and Costs

e Mostly completable means 75% or more of the participants complete all
functions, but not 100% of the participants complete all functions.

e Partially completable means 75% or more of the participants complete at
least 75% of the functions, but not 100% of the functions.

e Not completable means 25% or more of the participants complete less
than 75% of the functions.

The key point to remember when creating categories is that the cate-
gories as a whole should exhaustively cover the range of metrics and that
each category should be mutually exclusive of any other category. Creating
a categorization with the preceding definition of “completable” is just the
beginning. The measurement scheme may be further defined by taking each
component of the application and applying the categorization scheme to it.
You can then tabulate how many components fall into each category.

Once the number of components by categories is known, it is very
tempting to perform additional arithmetic operations on those data, such as
computing the average. Consider the following scenario, where the cate-
gories are assigned a numeric value as follows:

e Totally completable is assigned a value of 8.
e Mostly completable is assigned a value of 4.
e Partially completable is assigned a value of 2.
e Not completable is assigned a value of 0.

Let’s further assume that there are 24 components in a software product
and that the numbers of components classified into the four categories are
as follows:

Totally completable: 6
Mostly completable: 7
Partially completable: 3
Not completable: 8

Utilizing the 8, 4, 2, 0 value system of the categories and considering the
number of components in each category, one might be led to compute the
average and assert that the average value is (82 + 24) = 3.42. The number
3.42 could then be matched to the closest category, which is 4 (mostly com-
pletable). The software project management team would be happy to declare
that the product is mostly completable, especially if the goal were to attain a
“mostly completable” state.

Clarifying Definitions of Goals and Measurements

Table 8.1 Effect of Varying Assigned Values

Value Totally Mostly Partially Not

assignments | completable | completable | completable | completable | Sum | Average
8,4,2,0 48 28 6 0 82 3.42
10,7, 3,1 60 49 9 8 126 5.25
3,2,1,0 18 14 3 0 35 1.46
5,4,3,2 30 28 9 16 83 3.46

This sequence of assigning values to the categories and computing val-
ues based on the assigned values and the numbers falling in each category
may be very misleading, however. Table 8.1 demonstrates that different
results may be derived by altering the values assigned to the various cate-
gories. In each case, the distribution of components in each category remains
the same: 6, 7, 3, 8.

As Table 8.1 shows, if the category value system is changed to 3, 2, 1, 0,
then the average is 1.46. This is closest to 1, which is considered “partially
completable.” Thus picking a different value system yields a different result
for the categorization! Clearly, one should be very cautious in assigning val-
ues and performing calculations with those assigned values. The scale of
measurement can make a huge difference and thus distort the measurement,
possibly allowing one to arrive at a different conclusion during the monitor-
ing phase of the software project life cycle.

Sometimes there is a need to decompose and translate the goal state-
ment into a more specific measurement through a more comprehensive
activity such as the usability testing mentioned earlier. The parameters that
are measured and the classification of the results may then have to be ana-
lyzed in more depth. As the preceding example demonstrates, very different
conclusions may be reached if one does not take the time to analyze and
properly prepare the measurement scheme.

Building a Measurement Operational Plan

Finally, the project team may need to build an “operational” plan for the
measurement. Each item in a general plan may require a slightly different
operational plan, but there are some common items that need to be consid-

Chapter 8 Goals and Measurements: Preparations and Costs

ered in any operational plan. Each of the following categories, however,
needs to be further expanded by including the following refinement steps:

e Steps to ensure that the process and methodology are modified to
include the details needed to implement each plan item

e Steps to ensure that proper resources are made available in a timely manner

e Steps to ensure that necessary metric and measurement schemes are
defined for each plan item

e Steps to ensure that goals are defined for the implementation and that
the achievement of the goals is validated

Operational plan A plan that contains all the details of how to imple-
ment what is contained in a general project plan.

An operational plan for usability testing might include the following
sequence of refinement steps:

e The “general” software process must include the additional usability
testing step.

e Expertise in terms of conducting usability tests must be brought on board.

e Any physical equipment needed for monitoring the test must be
made available.

e The measurement methodology and classification scheme must be defined.

e The criteria for gauging the attainment of the goal must be predefined.

This particular measurement operational plan contains many items and
extends the initial plan consisting of goal statements. This level of prepara-
tion is needed for successful measurements to take place later during the
monitoring phase. Note that the operational plan for each goal and measure-
ment scheme will be different. Also note that it is not possible to fully pre-
plan each goal and its measurement scheme during the planning phase of
POMA because, just as the ease-of-use example showed, the definition of the
original goal may need to be decomposed and restated in a different form.
This deeper level of understanding of a project sometimes does not occur
until more analysis is performed during the organizing phase of POMA.
More complex measurement schemes will require deeper-level organizing
and preparation.

The following items are among those that need to be considered for
goals and measurements during this organizing and preparing phase of the
POMA life cycle:

e Any additional goal clarification and decomposition
e Well-defined goal validation

170

Embracing the Measurement Scheme

e Specific measurement techniques and schemes

e Any process extensions and modifications needed to accommodate
measurements

e Additional software/hardware tools needed for measurement activities

% EMBRACING THE MEASUREMENT SCHEME

It is one thing to put a plan forward to the software project team. It is
another thing to gain the team’s acceptance of that plan. Before using the
goals and the measurements associated with those goals to track the project
status, both have to be explained to the team. As noted earlier, sometimes
the measurement scheme may take on quite a bit of complexity. For this rea-
son, further analysis of the planned goals and measurements is required.

Participating in Goal and Measurement Preparations

It is highly recommended that software project managers do not perform all
of the analysis and justification studies by themselves. Having various proj-
ect members and technical leaders participate in the analysis would be much
more advantageous, for the following reasons:

e More team members would understand the goals and measurements.

e More nonmanagement team members would feel committed to the goals
and measurements.

e Some team members may be counted on to “spread the message” and
educate other team members.

e Sharing the burden would lessen the workload of the software project
managers.

e Distributing the knowledge would lessen the general fear of being measured.

e Team ownership of the goals would be more likely to be achieved.

Of course, there are also some drawbacks to having the team members
participate in the analysis and in the setting of the measurement details. One
obvious disadvantage is that the new duties may affect each person’s cur-
rently assigned workload. That means that the software project managers
must monitor the amount of effort the nonmanagement members are being
asked to put into these activities, which do not directly affect the product.
Many people cannot balance such extra demands effectively or explain to
their managers how the extra work placed on their plates will affect the

171

Chapter 8 Goals and Measurements: Preparations and Costs

schedule. In addition, some technical people are averse to doing manage-
ment-related activities, believing that such tasks are not their responsibility.
Thus software project managers should be careful in picking the nonman-
agement participants in goal and measurement preparations.

Ideally, goal-setting and measurement procedures will be decentralized
and lead the team to “own” them. This should neutralize some of the poten-
tial resistance to measurement. Minimizing the resistence is especially valu-
able if the goals set during the planning phase were forged mainly by
management personnel. Eliciting positive and cooperative participation at
the organizing and preparing stage is crucial.

Goal Attainability

It is extremely important to take the time and effort to ensure that the proj-
ect team understands and responds favorably to the measurements process.
Sometimes, measurements are put into the project to collect information that
will benefit future projects, and their immediate value to the current project
is not evident to the team. Such measurements may be difficult for some
team members to accept, and it requires extra care to explain their benefits.
Most people tend to accept that which they understand and to reject that
which they do not comprehend. Team members cannot perform their assign-
ments with conviction if they do not understand or believe that the goals are
achievable. If the project team starts believing that the goals and the meas-
urements are nonrealistic, team morale will suffer tremendously. As team
morale drops, so will team productivity, which may eventually lead to the
demise of the entire project.

An example of this situation is one in which an experienced group of
software engineers is asked to complete a project in half the time spent on
any previous projects of a similar type. An inexperienced project manager
may offer justifications for the accelerated schedule such as better tools and
methodology when, in fact, introduction of new tools and methodology
often takes more time. The experienced software engineers will initially
attempt to convince the project manager to alter the schedule goal. If their
request is met with unreasonable, stiff resistance, then these experienced
software engineers may become demoralized and “let” the project fail just to
prove a point.

A less extreme situation occurs when the software development group is
asked to keep track of the volume of work and the time expended on it. The
software engineers’ immediate reaction to such a request is often negative.

172

Embracing the Measurement Scheme

The goal here may simply be data collection to use as a baseline for future
projects. Achieving acceptance for the data collection requires software proj-
ect managers to take the time to explain the rationale behind it, especially if
the data collected will be used as part of the basis for future productivity
estimates and not for modifying the current productivity goal.

Clearly, it is important that team members view the goals and measure-
ments, as planned and established by the project management, as a natural
and integral part of the project. These cannot be perceived as management
goals for the team or merely bureaucratic goals. Instead, the team members
must embrace them as their own goals and measurements. For these reasons,
the software project managers, during the organization and preparation
phase, should actively and positively communicate the goals, measurements,
and measurement scheme. E-mail may be used for this purpose, but one
should not approach the communication effort as an electronic broadcast.
The message must be sent out with an invitation for all recipients to com-
ment on these items. All team members should be copied on the responses to
these comments (both positive and negative), and all concerns must be
resolved. The communication must be inclusive, in that no one team member
can be left out. In fact, the preferred approach would be face-to-face meet-
ings with the whole team.

To win general acceptance and positive reception of the goals and meas-
urements, the software project management must ensure that the following
elements are in place:

e A well-defined goal and measurement scheme

e Attainable goals

e The team’s participation in the setting of the goals

e The team’s understanding and belief in the goals and measurements
e The commitment of qualified resources for measurement

Measurement Resources: How Do You Find an Expert?

A metrics and measurement “expert” is often a person with special
skills in statistics and a thorough understanding of software engineer-
ing. This person will be schooled in data collection, analysis, and pro-
jection. He or she will also be familiar with tools such as the data
management and statistical analysis package from SAS. Such a person
may be a member of the process group or quality assurance group if
the software organization has strong process and quality assurance

173

Chapter 8 Goals and Measurements: Preparations and Costs

departments. The metrics and measurement expert may serve on multi-
ple projects. In smaller enterprises, such a person may come from the
testing department because many of the popular product goals deal
with product quality or usability. In rare situations, the software proj-
ect manager may assume this role on a temporary basis.

@ MEASUREMENT COSTS

One often-asked question is why, if setting goals and measurements is so
important, so few software projects do it. Some reasons put forth to explain
this contradiction are as follows:

e Software project “success” is often gauged by only a single goal, such as
a deliverable’s due date.

e The organization may not see the value of setting goals and measure-
ments or may fear the process.

e Management has the misguided view that only “direct” project activities
are important and, consequently, fail to fund indirect activities involv-
ing measuring the project.

e The team members may not have accepted the goals and, therefore, do
not want to be tracked or measured by them.

e Some goals are difficult to define and measure.

e The organization may not have allocated any resources or funding for
measurement activities.

All activities within a project must be accounted for—and funded. Set-
ting goals and taking clear measurements are no different in this respect. It
is crucial that software project managers take the time during the organizing
and preparing phase to explain to the executive and financial managers the
project goals, the measurement schemes for gauging the attainment of those
goals, and the costs to implement the chosen measurement scheme. One
commonly utilized justification for the cost of measurement is comparing
the cost of having to rescue a disastrous quality, morale, schedule, or cus-
tomer satisfaction incident against the cost of measurement and fixing the
potential problem prior to it turning into a disaster. This type of argument is
especially effective if there is a history of such misfortunes. Having the
backing of executive stakeholders will make the goals and the measurements
visible. When goals and measurement have a high profile they will, in turn,
facilitate requesting the proper funding and resources.

174

Key Concepts

If tools are needed, then the total cost must include the resources needed
to maintain each tool. There is a cost related to measurements, which
includes the tools, the people, and the procedures. Although project meas-
urement costs are often rolled into a general project management “cost
bucket” during project resource planning, they actually need to be delineated
separately. Only then will the real cost of measurements be tracked and the
value of having the measurements be appreciated.

Consider a relatively simple situation of measuring design review
results. The following is a sample breakdown of the effort required. Each has
potential costs.

e The effort made to determine and define the data (related to design
review) that should be collected

e The effort related to educating the designers and reviewers on the defi-
nition of data that will need to be recorded from the design review

e The effort made to acquire a tool for recording and analyzing the
design review data (including the tool’s purchase price), if a tool is
deemed necessary

e The effort made to record or input data into the tool and to analyze the
captured data

e The effort required to reorganize and present the analyzed data

As yet, software project managers do not have much hard information
on the actual costs of performing software measurements. Not surprisingly,
it is difficult to assess the incremental benefits of having goals and measure-
ments without information on the cost side of the equation. Nevertheless, it
is clear that without goals and measurements, the project cannot be tracked
and monitored.

M KEY CONCEPTS

During the planning and organizing phase of POMA, the goals from the
planning phase are revisited and refined as necessary to transform them into
measurable entities. Sometimes, what appeared to be a well-defined goal in
the heat of planning may turn out to require extensive decomposition and
transformation if there is to be any reasonable way to gauge and validate it.

The defined metric and measurement scheme must be clear and
embraced by both the project team and the project stakeholders. Taking a
decentralized approach to setting the goals and the measurement scheme
will improve the chance of achieving team ownership. Involving the team

175

Chapter 8 Goals and Measurements: Preparations and Costs

members in the refinement of goals and asking them to help in communicat-

ing

the goals will certainly ease the resistance factor. Likewise, drawing the

nonmanagement team members into many of the measurement-related tasks

will

lessen many of the team members’ initial fear of measurement.
There is a cost to measurement. The resources needed to support meas-

urement activities must be allocated and tracked, so as to ensure that the
current project’s goals are actually met and to guide future projects.

M EXERCISES

1.

10.

Pick a goal for a software project such as “high productivity.” Define it
and discuss the metrics and measurement process that need to be put
in place so as to achieve this goal.

What does it mean to say that a goal has to be “clear”?

. What is an operational plan, and what are the categories of items needed

to be considered to transform a general plan into an operational plan?
Why might a team resist having goals and measurements?

What must a software project manager ensure and put in place in order
to gain general acceptance of the goals and measurements?

Discuss the potential perils that may result from assigning values to a
categorization scheme of an attribute.

List some of the costs related to establishing goals and measurement.
In terms of team organization and project structure, where would you
place those people involved with measurements, and why?

Search for various software measurement tools for quality and produc-
tivity attributes and categorize them by characteristics such as data
collection, data analysis, or data representation ability.

Conduct a mini-research project as follows. Study the three articles
related to the CK design metrics (by Chidamber and Kemerer; Chi-
damber, Darcy and Kemerer; and Subramanyam and Krishnan) in the
“Suggested Reading” list and report on the metrics and its applicability
to software project management. Also provide your own views on this
set of metrics.

M SUGGESTED READING

S. R. Chidamber and C. F. Kemerer, “A Metric Suite for Object Oriented Design,”

IEEE Transactions on Software Engineering, June 1994, 476-493.

176

Suggested Reading

S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, “Managerial Use of Metrics
for Object-Oriented Software: An Exploratory Analysis,” IEEE Transac-
tions on Software Engineering, August 1998, 629-639.

M. K. Daskalantonakis, “A Practical View of Software Measurement and
Implementation Experiences Within Motorola,” IEEE Transactions on
Software Engineering, November 1992, 998-1010.

A. Glushkovsky, “An Analytical Approach to Software Metrics Manage-
ment,” Software Quality Professional, Vol. 4, No. 3, 2002, 34-45.

R. B. Grady, Practical Software Metrics for Project Management and Process
Improvement, Prentice Hall, 1992.

R. B. Grady, “Successfully Applying Software Metrics,” IEEE Computer, Sep-
tember 1994, 18-25.

S. H. Kan, Metrics and Models in Software Quality Engineering,” 2nd Edi-
tion, Addison-Wesley, 2003.

R. Subramanyam and M. S. Krishnan, “Empirical Analysis of CK Metrics for
Object-Oriented Design Complexity: Implications for Software Defects,”
IEEE Transactions on Software Engineering, April 2003, 297-310.

C. Weber and B. Layman, “Measurement Maturity and the CMM: How Mea-
surement Practices Evolve as Processes Mature,” Software Quality Pro-
fessional, Vol. 4, No. 3, 2002, 6-20.

177

This page intentionally left blank

Part Three

Software Project Monitoring

(PO[TA)

THE ROLE OF MONITORING IN SOFTWARE
% PROJECT MANAGEMENT

In the eyes of many nonmanagers, regular monitoring of the project and daily
fire fighting constitute the majority of the software project management
work. For many team members, the previous two phases (of project planning
and of project organization) were not visible to them. After planning for the
project and having the plan approved, the project managers had to organize
and prepare for the beginning of the project. Once the project is started, how-
ever, the software project team cannot just be left alone to follow the plan
and the course for which it was prepared. As a matter of fact, the plan, the
organization, and the preparation work are never perfect. Inevitably, what
was planned and prepared for in terms of goals, measurements, and infor-
mation gathering will go through modifications and conversions during the
next phase, the project monitoring phase (the “M” in POMA).

Some mechanism must be put in place to constantly gauge whether the
project is progressing on course. That mechanism must collect information
about the project, ensure that what is observed is valid and reliable, and ana-
lyze the information and report it as necessary. Clearly, the software project

179

Part Three Software Project Monitoring

team must then make decisions if the data indicate that some aspects of the
project need to be altered.

The monitoring activity for software projects is no different from the
monitoring tasks performed in other, nonsoftware projects. What is different
is that the list of items to be observed for software projects contains only
domain-specific items, which are software-related and were planned earlier.
In general, the goal is to determine whether the project—no matter what its
type—is tracking to plan.

Many times, software projects fail due to the sloppy jobs that the soft-
ware project managers do during the monitoring phase. Having a wonderful
plan is merely the first step. In the previous POMA phase, that plan was trans-
formed into an executable, operational plan with all resources assigned,
organized, and prepared. Now that the project resources are assigned and pre-
pared to execute, the project team is ready to start performing. Project man-
agers must continually evaluate this performance by the project team to see
whether the way it is carried out would indeed achieve the various stated
goals of the project. Here, the project team includes both the technical mem-
bers and the management personnel. The information representing the status
and the results of the project team’s activities are used as the basis for this
ongoing evaluation.

In software projects, one of the more menacing situations encountered
is the scenario in which frequent and large numbers of changes are made to
the requirements and design. Thus, besides monitoring the predetermined set
of measurable characteristics of the project, the software project managers
need to be constantly on the lookout for potential changes to the planned
project or unexpected changes to resources, such as the sudden loss of an
employee. The ongoing review of the risk items list is also included as part of
the monitoring activities.

@ MONITORING: A THREE-PART OPERATION

1010

Part Three of this book discusses the following three topics related to software
project monitoring:

e The regular collection of project information that is considered relevant
to the measurement of goal attainment

e The analysis and evaluation of the collected information

e The presentation and communication of the information related to proj-
ect status to the project team members, upper management, and, poten-
tially, customers

Monitoring: A Three-Part Operation

To collect any information, the first issue is what data should be collect-
ed. Next, we must determine how that information will be collected. These
two questions should have been addressed during the planning and organiz-
ing phases. In addition, we must decide how often the information should be
collected. Data collection and status monitoring are conducted in two differ-
ent ways: through formal status reviews and during informal “conscientious
socializing.” The important thing is to make sure that software project man-
agers handle these duties as a natural part of the regular project monitoring
set of tasks.

Even though the data collection process is assumed to be valid, relevant,
reliable, and accurate, sometimes the information gathered is not and, there-
fore, needs to be “cleaned.” Data cleaning, for example, might involve recog-
nizing extreme data points or inconsistent situations and excluding those
data. Only after cleaning can the information be analyzed. Following that
step, the cleaned information can be evaluated and compared against the
planned goal.

The analyzed information and the result of the evaluations must be com-
municated to all affected parties. This communication is critical: The manner
in which the information is represented and shared sets the tone for the entire
phase of project monitoring. The communication of project status and
changes must be disciplined, and the information transmitted must have
value to the recipients. Undisciplined project status meetings are a waste of
time and will eventually render these meetings useless. The key stakeholders
will stop attending, status information will not flow, dependencies will not be
understood and fulfilled, and the project will slowly but surely slip into chaos.
The remedy is status meetings that are disciplined and to the point. These are
the responsibility of the software project managers.

This page intentionally left blank

Chapter

Collecting Project
Information

Chapter Objectives
This chapter discusses the following concepts:

e How to perform formal and regular data gathering and monitoring
e How to hold formal and regular status meetings
e How to perform informal and nonregular data gathering and monitoring

In many ways, software project management, like other types of project
management, is highly dependent on the information it collects. What infor-
mation should be collected and how should one go about collecting it con-
stitute the first set of questions that the software project managers should be
prepared to answer. The data that need to be collected are first dictated by
what was planned and prepared until now. Of course, no plan or preparation
is perfect. Consequently, the metrics and measurements established during the
planning phase or the organization and preparation phase of software proj-
ect management may go through further changes as the project proceeds. It
is not uncommon to alter the focus on some details of a specific area when
some evidence indicates that the area has changed. For example, even if
employee retention had never been a problem, the heated-up economy of the
late 1990s forced many software project managers to focus on a new per-
sonnel metric, employee retention. Conversely, with today’s cooled economy,
a hitherto important metric on employee retention might be dropped. In turn,
a change in the measurement scheme is required.

Chapter 9 Collecting Project Information

Most of the information collected during the monitoring phase of the
POMA process is gathered in some formal manner through regular status
meetings. At the same time, unplanned information may be collected infor-
mally through project managers’ conscientious socialization. Conscientious
socializing is the purposeful but informal socializing that managers conduct,
such as conversations at the water cooler, to get a better understanding of the
project status. Electronic conscientious socializing would involve “chatting”
or “instant messaging” with the team members. The amount of unplanned
and informal information that the software project managers can gather is
directly related to how well the managers listen to the team members as they
socialize with them at a business level.

Both formally collected data and informally collected information gath-
ered during the monitoring phase need to be analyzed before appropriate
decisions can be made to take action or to stand pat. In any event, software
project managers should restrain themselves from reacting impulsively fol-
lowing receipt of the information.

@ FORMAL DATA GATHERING AND MONITORING

1010

The formal gathering of project information is usually performed at regular
intervals such as daily, weekly, or monthly, depending on the type of activi-
ty and the stage of the software project. For example, the formal gathering of
information on project status may be conducted on a weekly basis during the
requirements gathering and analysis phase. During the functional testing
phase, however, test results data may be gathered upon completion of each
test and aggregated on a daily basis. Clearly, the needs of information col-
lection must be balanced against the resource requirements and the impacts
to the on-going project. These impact issues and considerations were
addressed in the transformation of the project plan to an operational plan.

The frequency of data gathering may also depend on the urgency of the
activity. In some situations, time is of the essence, as when responding to a
high-severity customer problem. Under normal circumstances, the support
manager might collect customer problem reporting and resolution data at the
end of each day; however, a high-priority customer problem may temporari-
ly warrant changing the collection status to an hourly basis until resolution
of that problem is achieved.

The data collection may be based on project activities or on some proj-
ect attribute. Some of these criteria may not have been planned and set up in
their entirety in the previous planning and organizing phases.

Formal Data Gathering and Monitoring

Let’s consider an example in which the goal is to see how the project is
tracking in terms of schedule integrity. In this case, the manner in which the
data are collected depends on the type of activity. Both activity-based and
attribute-based methods may be employed for measuring the schedule goal.

Activity-Based Monitoring

In the requirements gathering and analysis phase, assume that information is
gathered on a weekly basis. During this phase, the data collected may differ
depending on the specific task. During the early stages, for example, the data
collected may focus on the team’s attempts to meet a set of minor milestones,
such as completion of requirements interviews, completion of requirements
documentation, or completion of requirements classification. The data desired
in this case are non-numeric—that is, the data collected are binary logical val-
ues of yes or no, depending on whether the minor milestone is or is not met.

The actual representation of the data collected, in a date format, contains
more information than simply whether a milestone has been achieved. Thus
data collection may consist of filling in a table on a weekly basis. Consider
Table 9.1, where the expected completion date and the observed actual com-
pletion date fields are both used to indirectly indicate whether a milestone has
been met. This measurement is needed to gauge whether the goal of schedule
integrity will be satisfied.

This type of data collection is activity-based in that the team is collect-
ing attribute information—namely, completion dates—about the activities.
Note also that with this type of information collection, which goes beyond
purely logical values, one can perform arithmetic manipulation and obtain
“derived” information. In this case, the derived information is the difference
between the expected and actual completion dates (delta, A). The Delta col-
umn in the table provides a quick overview of the completion status of the
various activities.

Table 9.1 Activity Completion Status

Expected Actual
Milestone activities completion completion Delta
Requirements interviews 07/05/2003 07/10/2003 +5 days
Requirements documentation 07/25/2003 07/25/2003 0 days
Requirements classification 08/20/2003

Chapter 9 Collecting Project Information

Table 9.2 Date Attribute-Based Status

Expected number of panels Actual number of panels
Date reviewed and approved reviewed and approved Delta
04/05/2003 12 12 0
04/12/2003 15 13 -2
04/19/2003 20 20 0
04/26/2003 15
05/02/2003 10

Attribute-Based Monitoring

Now consider the screen requirements prototyping tasks within the require-
ments processing activity. In measurements taken so as to assess schedule
integrity, it is not enough to be just interested in the simple answer of whether
prototyping is complete, because the activity may stretch over several
weeks. In this case, the data collected are based on an attribute. As shown
in Table 9.2, the actual data are numerical figures representing the number
of user panels that have been developed, shown to the users, and approved
by the users.

This type of data collection is attribute-based in that the team picked an
attribute—the weekly time interval—to assess the result of an activity. The
result, or the metric, is the number of completed items given in terms of pan-
els reviewed and approved. The attribute in this case is a date, so this is a
date-based collection mechanism. The data collected are numerical, so the
normal arithmetic operations may be applied to them. The delta values are,
once again, derived information.

Note that Table 9.2 does not explain what happened to the two panels that
were not reviewed and approved on April 12. The Delta column shows the -2,
but no +2 has appeared in the table yet. Thus the derived information column
can provide an additional view to help in tracking the status. In this case,
based on the date attribute, the project seems to be two screens behind the
number expected to have been completed at this point. If the project is to
maintain schedule integrity, the sum of the numbers in the Delta column needs
to be zero on the last day of the screen requirements prototyping activity.

@ MACRO AND MICRO LEVELS OF MONITORING

Generally, activity-based data collection would apply better at a “macro”
level, in that we list only those activities that are considered to be at least

Macro and Micro Levels of Monitoring

minor milestones. Attribute-based data collection would be a better fit for a
“micro” level of data collection, in that we will collect the smallest unit of the
attribute. As the preceding example shows, we would record a number as
small as 1 panel reviewed in Table 9.2. Of course, both types of data collec-
tion may be applied at either level.

The data that are collected for measurement purposes may be traced back
to the planned goal and the preparation work that went into designing the
metric and measurement. Every project—software or otherwise—is concerned
about schedule integrity. The other major goals and measurements for soft-
ware projects include the following and will be illustrated later in this chapter:

e Completeness of function
e Quality
e Budget

These considerations are not necessarily listed in any priority order.
Because satisfying all of these attributes is important, software project man-
agers need to monitor all of these characteristics.

In the following sections, examples from attribute-based monitoring
and activity-based monitoring are used to demonstrate both the micro and
macro levels of project status collection. The completeness-of-function
goal, the quality goal, and the budget goal measurement and monitoring
are explored.

Monitoring Completeness of Function

Attribute-Based Monitoring

Completeness of function is an attribute of the end product, so it seems log-
ical to consider attribute-based data collection methods first. A table may be
built listing all the required functions and the number of features within each
function that have been completed (see Table 9.3). This presumes that the
requirements document is complete and sufficiently detailed. Here the metric
is the number of completed features, which is a countable figure.

Completeness of function An attribute of a software product that
describes the number of features implemented versus the number
required for that software product.

In Table 9.3, the attributes, as expressed in terms of number of features in a
function, are shown in the form of columns. The attribute of completeness
may be viewed in a more detailed form by further subdividing each feature

187

Chapter 9 Collecting Project Information

Table 9.3 Function Attribute Completeness Monitoring

Expected number Completed number
Functions of features of features Delta
Function X 13 9 -4
Function Y 7 7 0
Function Z 9 8 -1

into three subcategories, such as basic, intermediate, and advanced. Using
such a table allows the software project team to collect and record informa-
tion indicating how much of each feature is completed for each of the func-
tional requirements. Along the way, this functional attribute-based data col-
lection mechanism facilitates the detailed counting of the features, so it
serves the software project managers well at the micro level.

Again, the derived information in the Delta column needs to eventually
be zero for each row of the table. A positive delta value would indicate that
the function contains more features than required. This inclusion of “extras”
may not necessarily be a good sign: Having more than the expected number
of features may indicate uncontrolled scope creep.

Activity-Based Monitoring

At a macro level, the software project managers may want to collect infor-
mation on project activities completed using an activity-based method. The
activities, in this case, would be the software process tasks that contribute to
the production of the desired software functions. Table 9.4 shows an exam-
ple of data collection based on functional completeness within each activity.
In such a table, the activities displayed will depend on the specific process.
The level of detail that is chosen to be portrayed will dictate the amount of
data collection required. Table 9.4 uses a macro level, presenting the activi-
ties in a simple sequential order.

The activity-based data collection method indicates where each function
is in terms of the activities that must be performed. In Table 9.4, F1, F2, and
so on are the functions. Y (yes) indicates the completion of the activity for
that function, and N (no) indicates a status of incomplete. The direct data col-
lected give the team a global picture of the status at the different activity levels.
Clearly, the desired end is to have all activities completed for every function.

188

Macro and Micro Levels of Monitoring

Table 9.4 Software Process Activity-Based Monitoring

Activities F1 F2 F3 Total
Requirements defined Y Y Y 20
Function designed Y Y N 15
Code implemented Y Y N 12
Function tested Y N N 10
Function integrated Y N N 8

The Total column provides a numerical representation of the status of
each activity in terms of the number of functions completed. Each activity’s
Total column entry should match the number of total functions before the
software project manager can consider the activity to be completed. What
would be viewed as completed functions are all those functions that have
been integrated (i.e., those in the Function integrated row). Thus, if there are
n number of functions, then the Total column entry for the Function inte-
grated row should also be n.

Table 9.4 illustrates a much higher-level status than the attribute-based
data collection example discussed earlier, in which the team simply tracked
the number of features within each function. Once again, it is apparent that
activity-based data collection is well suited for handling the macro level of data.

Monitoring Quality

An important goal for software projects, as discussed extensively in previous
chapters, is quality. Software projects have suffered from the image of poor
quality for so long that some software project managers have unfortunately
become very cynical about controlling quality. The goals and measurements
of product quality must nevertheless be defined and prepared prior to the
monitoring phase.

Software quality An attribute of a software product that describes how
well the product satisfies and serves the needs of the users. It offers a
broader view of quality than the attribute that addresses only the defects
in the product.

Attribute-Based Monitoring
As an example, let’s consider one possible goal of quality: to achieve the level
where there is no known severity level 1 problem in the product prior to its

Chapter 9 Collecting Project Information

release. Assume that the different severity levels have already been defined.
Then attribute-based data collection for product quality purposes may be
expressed as shown in Table 9.5, with data being gathered just prior to the
product’s release. Note that the metric for the quality goal is the number of
severity level 1 problems.

In this case, the teams collect data based on the quality attribute of each
functional area at release time. All entries in the Delta column must reach
zero before the product may be viewed as reaching its quality goal. As long
as the Delta column includes one nonzero figure, we cannot proclaim that
this goal has been attained.

Again, the attribute of quality may be viewed in more detail by includ-
ing problems found and resolved not only for severity level 1, but for all the
severity levels. In this way, the project team can take this micro level of mon-
itoring to an even lower micro level.

Activity-Based Monitoring

The data collection mechanism for the quality goal may also be activity-
based. The results will look much like the activity-based data collection for
completed functions.

Suppose the activities list is based on the sequence of defect detection
and removal activities that will be performed as part of the software project.
In this case, the activities list clearly depends heavily on the software process.
The defect identification and removal activities listed in Table 9.6 are a sim-
ple example. In reality, the defect detection and removal activities may be
much more expansive. Also, remember that to simplify the discussion, this
example focuses on only severity level 1 problems, because the goal was
expressed in terms of severity level 1 problems. In most large software proj-
ects, all levels of problems found and fixed are collected and tracked.

Table 9.5 Functional Attribute-Based Quality Monitoring

Severity level 1 Severity level 1
Functional area problems found problems resolved Delta
Function X 20 20 0

Function Y 12 10 -2

Macro and Micro Levels of Monitoring

The pairs of numbers in Table 9.6 are the entries for each function (F1,
F2, and so on). The first number in each pair is the number of defects detect-
ed during that activity. The second number represents the number of defects
resolved and removed as a result of that activity. The metric is a pair of
countable numbers.

Table 9.6 provides a global view of each functional area as different qual-
ity-related activities are applied to it. The Total column indicates the number
of severity level 1 problems that are as yet unresolved from applying the spe-
cific quality activity. The goal is that all entries in the Total column be zero;
in other words, there should be no unresolved severity level 1 problems
remaining from any of the defect prevention and detection activities carried
out prior to the product release.

In the case of quality, the attribute-based and activity-based data collec-
tion mechanisms are very similar. Both provide a global view of the quality
status of all the functions. However, the attribute-based data collection mech-
anism may be easily expanded to include lower severity levels, and it can
achieve a more detailed view of quality by functional area.

Monitoring the Budget

Meeting and not exceeding the budget of a software project, while sometimes
less emphasized by the technical community, is actually one of the most
important goals. It must be met if the organization is to continue in existence.

Software budget An attribute of a software project that describes the
financial resources allocated and expected to be followed, by some time
period such as monthly or quarterly and by areas such as tools, people,
travel, or education, for that project.

Table 9.6 Defect Removal Activity-Based Quality Monitoring

Activities F1 F2 F3 Total
Requirements review (5,5) (6,5) (4,4) 1
Design review (6,6) (7,6) (9,9) 1
Functional testing (3,3) (2,2) (5,5) 0
Component testing (2,1) (2,2) (4,4) 1
Systems testing (0,0) (1,1) (0,0) 0

Chapter 9 Collecting Project Information

In software projects, this particular attribute is often managed at a some-
what higher level than the traditional, first-line project managers’ level.
Indeed, sometimes it is managed by the financial community, and the soft-
ware project managers are not directly involved in managing monetary con-
siderations except to treat the budget as a process where funds are requested
and granted. Until the software project managers understand and begin man-
aging the financial aspects of the project (at least the budget), however, they
will remain naive and nonappreciative of the key role that finance plays in
most projects.

If the software project has gone through business case analysis, then the
organization has likely determined that the project is worth pursuing with the
planned budget. For most software project managers, the revenue portion of
the financial goal is not a concern, because they most likely will not manage
that aspect of the goal. Nevertheless, they need to recognize that what they
produce will greatly affect the income side of the financial picture. Today’s
more aggressive organizations are including the software project managers in
the discussion of the budget, recognizing that the sales and marketing orga-
nization’s commitment to revenue projections usually depends on how the
project team reacts to their requests for features and functions. These requests
for features and functions must be weighed against the estimated expenses
for those features and functions as well as the feasibility assessments provid-
ed by the software project managers.

For all these reasons, the software project managers should participate in
the organization’s discussions of its financial goals. They should also include
revenue status as a focus of their project monitoring.

Attribute-Based Monitoring

Budget-related data may be collected with the attribute-based methodology
as well as with the activity-based method. Table 9.7 illustrates one possible
attribute-based data collection method. Although not all software projects
can break down product revenues based on functional areas, Table 9.7
assumes that such data collection is possible. A Revenue column is included
in this example, even though most software project managers are not respon-
sible for that parameter. Nevertheless, its inclusion will give the software
project managers something to contemplate as they monitor the expense side
of the product equation. Expense data are collected on every function at some
regular interval, most likely monthly. The example in Table 9.7 uses thou-
sands of dollars as the metric for the entries.

Macro and Micro Levels of Monitoring

Table 9.7 Functional Attribute-Based Expense and Revenue Monitoring

Functional Month 1 Month 2 Accumulative Data
Area Expected | Actual | Expected | Actual Expected | Actual | Revenue
Function X 4 3.5 5 5 9 85 | 54| 0
Function Y 2 25 4 5 6 75 | 60| 0O
Function Z 7 6 9 10 16 16 | 350| 2

The data collected in Table 9.7 show both the expected budget (Expected
column) and the actual expense (Actual column) by month as the software
project progresses. The table also includes some derived data, in the form of
cumulative expected and actual expenses. The revenue portion of the table
(Revenue column) shows the up-to-date expected and cumulative actual rev-
enue information.

Clearly, this effort involves monitoring the expense side of the budget at
a monthly level. If the project budget attribute needs to be managed tightly,
the software project managers may change the monitoring interval to semi-
monthly or weekly.

The items that go into each table entry must have been planned and pre-
pared during the planning and organizing/preparing phases. Most of the time,
the expense entry for each (nonacquired) software function includes costs for
all of the following resources:

e People (compensation in salary, bonus, and so on)

e Tools

e Travel

e Special education

¢ General overhead (office space, phone service, desktop computer, and so on)

If a particular function is an acquired function, then the expense for it
may be spread out in an even fashion over the time interval. The important
thing to remember is that the data may be collected on a weekly or monthly
basis, but some of the budget may be expended in a lump-sum form, such as
paying up-front for an enterprise license for a software tool before all the
team members have come on board. These lump-sum expenses incurred at the

Chapter 9 Collecting Project Information

beginning of a project may cause the project to temporarily show an
expense overflow.

Activity-Based Monitoring

The budget attribute may also be monitored via an activity-based data col-
lection method. As before, the specific activity list may differ based on the
software project and the process chosen for that project. For the purposes of
this example, the software project activity list is greatly simplified. The met-
ric for the entries in Table 9.8 is thousands of dollars; the accuracy of the data
is 0.5 of $1000 (that is, $500).

Table 9.8 Software Process Activity-Based Expense and Revenue Modeling

Activities F1 F2 Accumulative Data
Expected Actual | Expected Actual Expected | Actual

Requirements

gathering 0.5 1 1 0.5 15 15

Prototyping 1 15 2 1 18 25

Joint customer

design 1 0.5 25

Detailed

design 15 1 22

Design

inspection 0.5 0.5 5

This activity-based data collection mechanism provides a global view of
the expenses of all functions as each function goes through each of the activ-
ities. Again, the actual entry is an accumulation of several resources that
went into it. Note that there may be an honorarium paid to each customer
who participates in the joint customer design activity; the table may need to
include this expenditure. For each activity, the preparation for the measure-
ment must be established by working with the financial organization.

For the budget attribute, data collection should be performed in concert
with the financial organization. Thus, to monitor the financial goals, the soft-
ware project managers must collaborate with the financial organization dur-
ing the planning phase as well as the organization and preparation phase.

Formal Project Status Meetings

There may even be a need to reserve the services of and financially account
for a person in the financial department who will spend at least some of his
or her time on data collection duties. As a consequence, the data collection
expense for the project may need to be charged back to the specific software
project, and the data collection activity itself may appear on the activity list
for activity-based data collection for monitoring the budget attribute. The
actual recording of data will most likely be carried out by the financial organ-
ization and the results given to the software project management team.

@ DATA COLLECTION SCHEDULE

The formal collection of data for the purpose of project monitoring should be
performed on a regular basis with the schedule chosen to match the needs of
the software project. For longer projects, the interval of data collection for
monitoring may be monthly, to match the monitoring time cycle. For small-
er and shorter projects, the data collection and monitoring intervals may also
be shorter. The data collected at these regular time intervals should be main-
tained throughout the project and kept for historical purposes. The historical
data will be needed for statistical estimation activities in the future. Each
batch of data represents a snapshot of the project status at that point in time.

Of course, the project team must balance its need for data with the effort
required to collect and monitor that information for the particular software
project. Most of this decision making occurs during the earlier organization
and preparation phase, but these decisions should be reviewed and perhaps
modified as the software project managers start the monitoring phase of proj-
ect management.

With the sophistication of today’s spreadsheet products, much of the data
collected in tabular form for smaller projects may be easily placed in these
spreadsheet files. If more sophisticated capabilities are needed, then any of
the database products may be used along with some of the currently avail-
able data drill-down products, such as Oracle’s Business Intelligence tool or
SAS Institute’s SAS tools.

@ FORMAL PROJECT STATUS MEETINGS

The formally collected data should be brought forward and presented by the
project team members to their colleagues at regular project status meetings.
The project status meeting serves two purposes: It is a means to collect the

Chapter 9 Collecting Project Information

data, and it is a way to communicate those data. If the status meeting is used
as a means to collect the project status data, then the project managers must
constantly think of ways to minimize the amount of data collection time
needed. After all, time spent in meetings and data collection is indeed time
taken away from direct project development. Automation and tools may be
one answer.

Data Collection Automation/Tools

Information from the various stages of software development may be
collected as more automation is introduced. For example, one might use
a tool such as Borland’s Togethersoft to develop a design and code for
the project. The same tool can provide information on how many
objects, modules, or lines of code have been developed. Thus, instead of
manually counting and reporting on this information, the team can use
the tool to automatically provide the count on a weekly or daily basis.

Another tool from Borland, called CaliberRM, may be used for require-
ments management. This tool can trace changes made to requirements,
thereby providing information on the volume of changes to requirements.

The formal project status meetings should not be so lengthy that most of
the people there are “waiting” for their turn to present. Given that key per-
sonnel (i.e., managers and project leaders) are likely to attend these meetings,
one should definitely not keep them for too long. If once-weekly meetings are
held, a three-hour status meeting would consume roughly 8% (3 hours + 40
hours = 7.5%) of a normal working week for the attendees. If the status meet-
ings begin to consume more than 10% of the normal work week, then the
project managers should immediately reassess the meeting schedule and
agenda. One possible solution is to cut the discussion to only the high-risk
items, with normal status information just being provided in a written form
that the participants may choose to read at their convenience.

In addition, if any unexpected information or negative data require
further discussion or analysis, a separate meeting should be scheduled to
focus on that specific topic. Unexpected negative status information is one
item to watch out for, because it is so natural to become drawn into a lengthy
discussion of a “surprise” item. The risk items list is the source of many
such surprises—for example, when a low-risk item suddenly turns into a high-
risk item. The software project managers must be disciplined enough to

Formal Project Status Meetings

log the surprise item on the list of high-risk items and immediately schedule
a separate session attended by just the affected parties. One question
that often arises is, What information should be brought to these special
meetings? Unfortunately, there is no standard answer because the “surprise”
may be anything.

To ensure full and effective status monitoring, the key attendees must not
be allowed to send substitutes to these regular meetings except for special
reasons such as planned vacations or family emergencies. The software proj-
ect managers also must not send any substitutes.

These meetings are usually well attended at the beginning of a new soft-
ware project. The attendance problem tends to appear later in a project, if it
happens at all. There are many reasons for poor attendance. For example, if
the status meetings are not managed well and are constantly postponed or
running over time, then the key participants will start to disappear. However,
if the meetings are running smoothly but turning into a “rubber stamping” of
data, then the key participants will also abandon them. In particular, the dan-
gerous sign of unrealistic smoothness must be recognized by the software
project managers.

The key to effective formal status meetings is to create an agenda and
stay within its bounds, scheduling any subsequent and additional meetings if
necessary to cover off-agenda items. The agenda should be circulated prior to
the meeting so that all attendees are aware of the topics to be covered and
the time allotted for each topic. Each time slot should include a small buffer
to allow for a certain amount of discussion and communication on that topic.

What's on the Agenda?

A formal project status meeting should follow a predefined agenda. The
agenda items need to correlate with the project goals, because it is the
progress made toward attaining those goals that is mainly under review
at the meeting. A sample software project status meeting may have the
following parts:

1. Review of the project and product progress metrics: schedule, items
completed, cost, defects discovered and corrected, and so on

2. Review of personnel and resources: problems, rewards, and so on

3. Review of risk items: number, status, and so on

4. Review of any other items: customer status, industry status, and so on

197

Chapter 9 Collecting Project Information

Software project managers must keep in mind that while project moni-
toring may be the most important item for the managers, the other team
members are equally driven to complete their tasks, and these tasks do not
deal with project management per se. Some nonmanagers will view these
meetings as bureaucratic and a waste of their time. From their perspective,
this perception may be accurate. Therefore, any additional meetings sched-
uled to tackle specific topics should also require the minimum amount of time
for the attendees. For each meeting, time must be set aside for discussions
beyond just the presentation of data and information. Managers must also
learn to moderate the meetings, keeping attendees focused on the scheduled
topic so that the discussion does not turn into a random wandering of con-
versation that leads to no conclusion.

Sources of Meeting-Related Information

Project managers who need to enhance their meeting management
skills or conflict resolution skills may consult books such as The Art and
Science of Negotiation by Harvard Business School professor Howard
Raiffa or attend seminars on these topics. The Project Management
Institute, a nonprofit professional association that is headquartered out-
side of Philadelphia, also conducts seminars on these topics. Interested
parties may consult the institute’s Web site for more information:
WWW.pmi.org.

INFORMAL DATA GATHERING AND
“ MONITORING

Software projects, more than most other projects, depend heavily on the per-
formance of people. Although formal data collection and monitoring are
essential, assessment of human performance is often based on some very
hard-to-collect information that requires informal data gathering. Consider
the following situations:

e A false rumor about any part of the project may cause workers to
engage in lengthy discussions and extensive information seeking rather
than focusing on the work at hand.

e A particular tool that is not working well may cause delays and loss of
efficiency.

www.pmi.org

Informal Data Gathering and Monitoring

e A process that is viewed as bureaucratic may cause people to find ways
to circumvent it rather than fix it.

e A key employee may be seeking new opportunities and getting ready to
resign from the project.

Formal data collection efforts may not be able to recognize any of these
situations. Instead, the software project managers must realize that a number
of factors that contribute to the success or failure of the project may not be
apparent from formal data and will not be discussed and disclosed during for-
mal status meetings.

Physically Collocated Environment

As part of their informal data gathering, software project managers need to
perform conscientious socializing. Different from formal information meet-
ings, these informal meetings or encounters should encourage a certain
amount of wandering among topics. Often, it is through serendipity that cer-
tain vital information pertaining to the software project comes to light. To
help such communication take place, the software project managers should
pursue the following activities, among others:

e Keep the management offices “open” and accessible to everyone.

e Make daily walks and visits to the team members’ offices.

¢ Invite team members to the project manager’s office to chat about the
project (Formally schedule these “informal” meetings if necessary at the
beginning of a new project.)

e Have scheduled “lunches” with different, small groups of team members.

Note that almost all of these activities require some kind of physical
“contact” with the team members.

Physically Remote Environment

Many managers choose—or are forced—to have virtual meetings instead of
person-to-person contact, including meetings held via the Internet. For the
formal, regular meetings, virtual meetings held through phone, video confer-
encing, or bulletin boards may substitute for some part of the physical meet-
ing. However, for the informal, conscientious socialization, the rule is this:
The less virtual, the more effective the socialization.

With project team members who work at remote sites, the software proj-
ect managers need to make an extra effort to meet them in person when they

Chapter 9 Collecting Project Information

first come on board. The software project managers also need to ensure that
ongoing communications occur via telephone or e-mail with team members
at remote sites; that is, they need to “just chat.” The volume of electronic
communications that would be considered normal depends on the size and
type of project involved. The software project managers must take the initia-
tive to start both one-on-one and group electronic dialogues. Certainly, if
either a sudden increase or decrease in the volume of communications occurs,
it should prompt the software project managers to immediately follow up. In
addition, they must pick up on any voice and intonation changes during a
telephone conversation with a particular individual. In terms of e-mail, the
choice of words and the length of the messages can offer informal clues as to
the team member’s state of mind.

Establishing Trust

Informal data gathering requires the software project managers to understand
both the team members and those individuals’ views concerning the project
and its status at different phases of the project. This invaluable information
cannot be attained through formal project monitoring.

The underlying assumption here is that the team members have some
trust in the software management. Without this trust, people will not disclose
their true feelings. To build such a bond, the software project managers must
listen and not become defensive, no matter how negative or biased the infor-
mation communicated may appear. Trust must be earned, and it takes time to
establish. But it may be lost forever because of a single instance of broken trust.

Software project managers should also realize that trust is a mutual
activity and must be honored by both sides. Thus, before sharing any infor-
mation, each manager must know the degree of trust that has been estab-
lished between and among the team members and him or her. Clearly, some
information is not appropriate for any sharing or conscientious socializing:

e Employees’ personal information
e Confidential corporate information
e Information with a “need to know” designation

Need-to-know information is a special class of information that is
intended to be transmitted only to a small group of people who have an
absolute need to know it. An example would be the impending closing of a
large contract or the potential loss of a large contract.

Exercises

B KEY CONCEPTS

The monitoring of project status involves three major activities: formal and
regular data gathering and monitoring; formal and regular status meetings;
and informal and nonregular data gathering and monitoring.

Formal gathering and storing of the needed data for gauging the status
of the project may follow either of two approaches: (1) activity-based or (2)
attribute-based. The activity-based approach gathers information about an
attribute based on the activities performed to achieve the goal of that attrib-
ute, whereas the attribute-based approach gathers information about an
attribute based on a metric defined to measure the attainment of the goal for
that attribute. Some goals and measurements may be monitored utilizing both
of the methods, although one is usually more effective; the method of choice
depends on the specific target.

Project status meetings constitute a mechanism both to collect project
information from the team and to disseminate information to the team mem-
bers. To be effective, such meetings must occur regularly, be kept on sched-
ule, and follow a predetermined agenda. Software project managers should
use these formal meetings as one tool for project monitoring.

Informal status gathering and project monitoring is a powerful tool that
must be utilized in conjunction with other, more formal methods of data col-
lection. When working with physically remote personnel, software project
managers must take extra care in monitoring their electronic communications
because conscientious socializing cannot be accomplished in the same man-
ner as with physically co-located team members. In any informal communi-
cations, trust is a key ingredient.

M EXERCISES

1. Discuss the difference between activity-based and attribute-based
information collection methods.

2. For monitoring completion of function, which of the above information
collection methods would you use and why?

3. Discuss the difference between formal and informal data gathering and
monitoring. If you can implement only one, which one would you
implement and why?

4. What is conscientious socializing?

5. Devise a software project status meeting agenda for monitoring and
gathering status information about the project schedule, key personnel,

Chapter 9 Collecting Project Information

and product quality of four different software projects; include the for-
mats for presenting the status information during the meeting.
6. How does trust play a role in project monitoring?

M SUGGESTED READING

K. Bassin, S. Biyani, and P. Santhanan, “Metrics to Evaluate Vendor-
Developed Software Based on Test Case Execution Results,” IBM Systems
Journal, Vol. 41, No. 1, 2002, 13-30.

T. Hall and N. Fenton, “Implementing Effective Software Metrics Programs,”
IEEE Software, March/April 1997, 55-65.

J. D. Herbsleb and S. Moitra, “Global Software Development,” IEEE Software,
March/April 2001, 16-20.

P. Jalote, “Use of Metrics in High Maturity Organizations,” Software Quality
Professional, Vol. 4, No. 2, 2002, 7-13.

R. Murch, Project Management Best Practices for IT Professionals, Prentice
Hall PTR, 2001.

R. J. Offen and R. Jeffrey, “Establishing Software Measurement Programs,”
IEEE Software, March/April 1997, 45-54.

H. Raiffa, The Art and Science of Negotiations, Belknap Publisher, 1985.

H. Raiffa, J. Richardson, and D. Metcalfe, Negotiation Analysis: The Science
and Art of Collaborative Decision Making, Belknap Publisher, 2003.

P. C. Tinnirello, ed., Project Management, Auerbach, 1999.

Chapter] O

Analysis and Evaluation
of Information

Chapter Objectives
This chapter discusses the following concepts:

e Why numerical and formally gathered data (as opposed to data collected
through conscientious socialization) must be reliable, accurate, and valid
to make analysis and evaluation of those data possible

e What various statistical measures—distribution of data, centrality and
dispersion of data, moving averages, and data correlation—reveal about
data trends within the software project management context

e How data may be normalized to ensure that any comparisons made
are valid

% RELIABLE, ACCURATE, AND VALID DATA

1017

It is one thing to collect data, but it is another matter to make sense of what
has been collected. As part of the project monitoring, these data need to be
further analyzed. It is assumed that the collected data are reliable—that is,
that no error was committed in the actual recording and subsequent tabula-
tion of the data. The assurance of data reliability is a non-trivial task, as a
large amount of the data in software projects is still collected manually.

Reliable data Data that are collected and tabulated according to the
defined rules of measurement and metric.

Chapter 10 Analysis and Evaluation of Information

It is also assumed that the data collected are accurate. The level of accu-
racy is predetermined by the unit of measurement. For example, if the budg-
eting information is collected at the $500 level, then all data will be assumed
to be properly rounded to and accurate at that level. Because most software
attributes are measured in a discrete (countable) form, the topic of signifi-
cant figures is not much of an issue in software project management, unlike
in some other disciplines (e.g., chemistry).

Accurate data Data that are collected and tabulated according to the
defined level of precision of measurement and metric.

The third consideration for data is the validity of any data collected.
Validity addresses the applicability of the data to assess the particular issue
or to measure the particular attribute.

Valid data Data that are collected, tabulated, and applied according to
the defined intention of applying the measurement.

To see how these criteria are applied, let’s consider an example. Suppose
that we want to find the average number of problems detected after a soft-
ware solution is delivered. Recall from earlier chapters that the problems
found are grouped into categories. These categories were labeled according
to severity levels 1, 2, 3, and 4 in earlier examples to represent different
degrees of failing to meet the requirement. Only these four categories exist;
there is no intermediate category such as severity level 2.4, for example.

Consider the following computed measurement of average problem level:

Average problem level =
[SUM (number of severity k problems X severity k)/n]

where
n = total number of problems found
SUM = the summation function
k = a discrete value between 1 and 4

The computed average problem level is a numerical value that is some-
times—and sometimes wrongly—used to assess the quality attribute of the
product. Consider a situation where the average problem level computed in
this way is 2.7. As 2.7 is closer to severity level 3 than to severity level 2, the
average problem level may be “rounded up” and communicated as 3. Worst
yet, some may assume that this severity level 3 average is a reputable assess-
ment of the product quality. In fact, equating the average severity levels of
problems found in a product to the product quality may be a stretch and

Distribution of Data

may be invalid. In analyzing data, the validity issue is very important. Soft-
ware project managers need to be extra careful in considering the validity of
the data when those data are utilized in the analysis of some attribute. In
particular, they need to be careful when using the derived information after
applying some computation or transformation to the raw data.

Nevertheless, software managers can undertake several common analy-
ses that yield beneficial evaluations of data. As this book is not intended to
accompany a course in statistics, no deep discussion of statistical principles
is included here. Instead, the goal is to apply some of the knowledge from
statistics to the analysis of data in software projects.

ﬁ DISTRIBUTION OF DATA

One of the simplest forms of analysis is to look at the distribution of the col-
lected data. By viewing the “spread,” one may be able to readily detect some
problems or trends. Software project managers may improve their under-
standing of the project’s status during the monitoring phase by evaluating
the data distribution through analysis of the skew of the distribution, the
range of data values, and trends in data.

Data distribution A description of a collection of data that shows the
spread of the values and the frequency of occurrences of the values of
the data.

Example I: Skew of the Distribution

Consider the four attributes of schedule, functional completeness, quality,
and budget discussed in Chapter 9. Which attribute is more amenable to the
notion of distribution of data? Let’s consider the quality attribute first, by
studying the number of problems detected by functional component. Sup-
pose the recorded data identify the number of problems detected at each of
five severity levels:

Severity level 1: 23
Severity level 2: 46
Severity level 3: 79
Severity level 4: 95
Severity level 5: 110

These data may be viewed graphically to better discern the relative dif-
ferences; see Figure 10.1.

Chapter 10 Analysis and Evaluation of Information

120 4
100 +
Number of gol- <+
problems
found 601
a0 +
20 <+
| | | | |
1 2 3 4 5

Severity level
Figure 10.1 Distribution of problems found by severity level

As shown in Figure 10.1, the number of problems found in this project is
“skewed” to the higher end of the severity level, that is, the graph rises to the
right. Let’s assume that the higher severity level implies less serious prob-
lems. The distribution does not indicate whether this software artifact is a
good product; it says only that the product contains considerably more less-
severe problems than more-severe problems. That is, the severity levels of all
problems found are skewed toward the less-severe ones. Of course, this out-
come is better than the situation in which the distribution is skewed toward
the more-severe problems. To determine exactly how good or bad the situa-
tion really is, the project managers might then compare this distribution with
the distribution of problems for past projects.

Example II: Range of Data Values

Another way to examine collected data is look across functional areas at the
distribution of the problem severity levels for a product or the distribution of
the number of problems found at a specific severity level (e.g., severity level 1).
Consider the following distribution of number of severity level 1 problems
by functional area:

Functional area 1:
Functional area 2:
Functional area 3:
Functional area 4:
Functional area 5:
Functional area 6:
Functional area 7:

R0 = O 0 W aN

Distribution of Data

This distribution reveals which functional areas have more problems. It
also shows that the number of problems found in the functional areas range
from O to 8. The lowest number is 0 in functional area 5, and the highest
number is 8 in functional areas 4 and 7.

As in the preceding example, the best use of this information is to com-
pare it to similar analyses of other projects. If prior history shows that the
high end of the range of severity level 1 problems has never exceeded some
value x, then the software project managers can compare the value 8 from
this example with x. This comparison would give the software project man-
agers some indication of where this project stands relative to others.

Alternatively, the software project managers might compare the ranges
themselves. The range of problems found here goes from 0 to 8. How does that
result compare with software projects that have ranges of 3 to 25 or O to 3?7

The software project managers can see how uniform or nonuniform
these functional areas are in terms of quality by evaluating the range of
problems found in them. If the range is fairly small, such as 0-3 severity
level 1 problems, across all functional areas, one may consider such a soft-
ware project to have relative uniformity in quality.

Example Ill: Data Trends

Next, let’s consider the distribution of total number of problems found in a
functional area across test time periods in weeks. Suppose we identify the
following number of problems:

Week 1: 20
Week 2: 23
Week 3: 45
Week 4: 67
Week 5: 35
Week 6: 15
Week 7: 10

Just as the earlier examples, this distribution of the number of problems
found in a functional area does not indicate whether this product is good or
bad. It does tell us that fewer and fewer problems have been found as more
and more test cases have been run. Such a distribution across test weeks
reveals that the product is getting better in that problems are being squeezed
out of the product through testing.

207

Chapter 10 Analysis and Evaluation of Information

This distribution through time is really a trend—here, the trend is desir-
able because ever fewer problems are detected in the same functional area as
the project progresses. Trends offer a powerful way to analyze data. In trend
analysis in software projects, managers are often looking for some form of
stabilization, whether in the schedule, the budget, or some other attribute.

@ CENTRALITY AND DISPERSION

Centrality analysis, another way to study a collection of data, evaluates the
central tendency of the data distribution. It provides a convenient way to
compare groups of data. Analyzing the centrality and the dispersion of data
provides software project managers with a way to characterize a set of
related data, whether those data deal with product quality, project productiv-
ity, or some other attribute.

Centrality analysis An analysis of a data set to find the typical value
of that data set.

Average Value

The most common of the centrality analysis methods is the computation of
average. The average value is computed by adding up all the observed values
of the distribution and dividing that total by the number of observations,
assuming that the observed values all have the same probability of occur-
rence. To see how it works, consider the data taken from Figure 10.1. The
average value is computed as follows:

Average severity level = [(23 X 1) + (46 X 2) + (79 X 3) + (95 X 4) +
(110 %X 5)]/353

=3.6

In this case, the average value of the distribution is the severity level
3.6. Thus we can say that the severity level of the problems found in this
product tends toward 3.6.

Average value One type of centrality analysis that estimates the typical
(or middle) value of a data set by summing all the observed data values
and dividing the sum by the number of data points.

Centrality and Dispersion

Consider another distribution of problems found by severity levels.
Assume that the average value for that distribution is 3.2. Then, even if the
two distributions look alike, the project managers can still compare these
two averages and get a feeling that 3.6 is much closer to 4 than is 3.2.
Therefore, one product’s problems (the product with the average of 3.6), as
measured by average severity level, tend to be less severe than the problems
of the other product (the product with the average of 3.2).

It is well known that the average value may be influenced greatly by the
inclusion of one or two extreme data points. Consider the earlier example of the
distribution of severity level 1 problems found by functional area. The number
of severity level 1 problems found by functional area ranged from 0 to 8.

Average number of
severity level 1 problems found = (2 +7 +3 +8+0+ 1+ 8)/7

=4.1

Now consider another product with the same number of functional areas
but a much higher average number of severity level 1 problems found. Sup-
pose the set of data is as follows: 1, 3, 4, 37, 3, 2, 1. The average is 7.2,
which is much larger than the 4.1 average found in the preceding example.
But by looking at the actual distribution, one can easily see that one func-
tional area leads to this large average for the second distribution of data. If
the extreme value (the outlier) of 37 were dropped from the average compu-
tation of the second data set, the new average would be 2.3—much smaller
than the original average value of 7.2. Thus one may still need to look
beyond just one computed value, such as the average of the group, to see
whether the raw data contain any abnormal values.

Median Value

Another method of measuring centrality, use of a median, may provide a
different perspective on the data distribution. To find the median, all
observed data are placed in ordered sequence. The value that divides the col-
lected data into upper and lower halves (i.e., the middle value) is the median;
in other words, half of the data are larger than the median and half of the
data are smaller than the median. In the situation in which there is an odd
number of observations, identifying this value is a simple matter. When

Chapter 10 Analysis and Evaluation of Information

there is an even number of observations, the values of the middle two obser-
vations are averaged to obtain the median.

Median A value used in centrality analysis to estimate the typical (or mid-
dle) value of a data set. After the data values are organized, the median is
the data value that splits the data set into upper and lower halves.

Let’s find the median value for the earlier example, which comprises the
0-8 distribution of severity level 1 problems across seven functional areas. It
may be computed by first placing the observations in sequential order:

0,1,23,7,8,8

The median value is 3 because it divides the observed data into lower
and upper halves. This value also provides information about the group in
terms of the centrality. Recall that the average for this group of data is 4.1.
Although the average and the median values are different, they are relatively
close.

Now consider another example of severity level 1 problems across
another seven-functional-area product whose data set includes one extreme
value of 37. The observed data are placed in ordered sequence:

1, 1, 2, 2, 3, 4, 37

The median value is 2. Recall that the average value for this second data
set was 7.2. The median value method of viewing centrality for this example
certainly paints a different picture than the average value for the same
group.

If the median values were used to compare the two products, the second
product’s data would have a lower median value: 2 versus 3. The one
extreme value in the second set, 37, had much less effect on the median than
it did on the average. Note also that a comparison of the two products
couched in terms of the median values gives a different perspective than a
comparison of the average values. The second product, except for the one
functional area, has fewer severity level 1 problems. The median value por-
trays that perspective a little better than the comparison of the average val-
ues of these two products.

Standard Deviation and Control Charts

Sometimes one would like to know how the distribution of data is dispersed
from the central value of either the average or the median. The earlier exam-

Centrality and Dispersion

ple of a data set containing one extreme value demonstrated the effect that
one extreme data point can have on the group’s central value. For example,
the more widely dispersed the number of severity level 1 problems in the dif-
ferent functional areas, the more likely that the central value for the entire
group of functions will differ from the number of severity level 1 problems
in each of the functional areas. Thus, in cases of a large dispersion from the
central value, it is more difficult to utilize the central value—whether it is the
average or the mean value—to characterize the group as a whole.

Standard Deviation
A very common dispersion measurement is the standard deviation, which is
numerically defined as follows:

Standard deviation = SQRT [(SUM [(x; - x,,)*)])/(n - 1)]
where

SQRT = square root function

SUM = sum function

x; = ith observation

X, = average of x;’s

n = total number observations

Standard deviation A metric used to define and measure the disper-
sion of data from the average value in a data set.

The standard deviation from the first example, which is the group that
included the data points 2, 7, 3, 8, 0, 1, 8, would be computed as follows:

SUM [(x; - x,,0)2)] = 4.41 + 8.41 + 1.21 + 15.21 + 16.81 + 9.61 + 15.21
= 70.87

SUM [(x; - x,,)%)])/(n - 1) = 70.87/6

11.81

Standard deviation = SQRT (11.81) = 3.43

One standard deviation is 3.43. This value gives a measure of the vari-
ability of the number of severity level 1 problems found in the functional
areas relative to the average number of such problems, which is 4.1. The

Chapter 10 Analysis and Evaluation of Information

larger the standard deviation, the greater the variability or dispersion from
the average value.

Control Charts

In quality control of nonsoftware areas, such as manufacturing, control
charts are used to assess whether the average of any particular group falls
within the range of “acceptable” limits. A control chart is used to assess and
control the variability of some process or product characteristic. Making a
control chart usually involves establishing the upper and lower limits of data
variations from the data set’s average value (the control limits). If an
observed data value falls outside the control limits, then it would trigger
evaluation of the characteristic. The usage of control charts and statistical
process control may help us improve and diminish the variations in the
implementations of a defined software process.

Control chart A chart used to assess and control the variability of some
process or product characteristic. It usually involves establishing the
upper and lower limits (the control limits) of data variations from the
data set’s average value. If an observed data value falls outside the con-
trol limits, then it would trigger evaluation of the characteristic.

The acceptable upper and lower bounds of a characteristic may be estab-
lished differently. Sometimes, they may reflect customers’ expectations. At
other times, the bounds may be based on past management experiences. The
standard deviation from the average value may also be used as these limits.
For example, if one standard deviation is used as the upper and lower limits,
then an observation that falls outside of these limits would be cause for
attention and possibly alarm.

In software project management, the notion of a control chart, along
with the use of a standard deviation as the upper and lower limits, may be
applied to tracking and observing a specific characteristic of a product or a
methodology. In the case of a product, the usability characteristic may be
observed through usability testing. The question then becomes, When should
a software manager be alarmed?

A control chart may help in this decision process. The average number
of problems found in previous usability tests may be used as the “typical”
number of problems found during a usability test. How many more problems
(or fewer problems) than the previous average number should trigger alarms?
One can establish the deviation boundaries from the previous average number
of usability problems by setting upper and lower limits of deviations. When

Centrality and Dispersion

the number of problems found in usability testing falls outside these limits,
then the project manager should be alerted. If the number of usability prob-
lems exceeds the upper limit, then the project manager must question
whether the product has a true usability problem or whether the test result is
just an anomaly. If the number of usability problems falls below the lower
limit, then the project manager might reexamine the usability testing
methodology to ensure that this round of testing was not less rigorous than
previous ones and that the product truly has fewer problems.

To see how this process works, let’s look at a specific example. Suppose
the product from the preceding example that had seven functional areas is
considered by both the managers and the customers as the representative,
good-quality product that should be used as the basis of comparison. It had,
on average, 4.1 severity level 1 problems with a standard deviation of 3.43.
The software project manager could potentially use this information to eval-
uate other products’ functional quality.

The control chart in Figure 10.2 shows the average number of severity
level 1 problems found (4.1 problems) as the basis of comparison for each
functional area of the product being scrutinized. The upper limit value, 7.5
problems, is one standard deviation from 4.1. That is, adding one standard
deviation (3.4) to the average value (4.1) results in the upper limit (7.5). The
lower limit value of 0.7 problem is derived by subtracting 3.4 from 4.1.

As another product goes through testing, its severity level 1 problems
may be plotted by functional area. As long as the number of problems found
falls within the upper and lower limits, that functional area may be consid-
ered “under control.” If the problems in any area exceed the upper limit,
however, the project managers should take a second look at that functional

______________________________ 7.5 problems

Average =
4.1 problems

______________________________ 0.7 problem

Figure 10.2 A sample control chart

Chapter 10 Analysis and Evaluation of Information

area. Similarly, if the number of problems in a functional area falls below
the lower limit, that area may be worthy of some attention. For example, the
test cases might be reviewed to make sure that they fully covered the func-
tional area. The process under which the reviews or testing for that area was
conducted might also be examined.

This application of the average value and the dispersion from the aver-
age value in control charts is quite common in general project quality man-
agement, and it is gaining momentum in software project management. The
manufacturing industry has for many years used control charts to help man-
age its production processes and product quality. Extensive statistical studies
have been done in the process control area, and readers who are interested in
this topic should consult the article by Kotz and Johnson listed in the “Sug-
gested Reading” section at the end of this chapter.

@ DATA SMOOTHING: MOVING AVERAGES

Data taken at a specific time provide only an instantaneous view. In many
cases, the historical trend of collected data is studied and analyzed to yield
clues about the product. For example, this approach is popular in software
projects during the testing activities. Often testing lasts for weeks or even
months, and there may be quite a variation of problems found in some
weeks. To “smooth” out these variations and prevent an alarm from being
raised by a few spikes, the data from two or three weeks are combined. The
resulting combined value is called the moving average.

Moving average A technique for expressing data by computing the
average of a fixed grouping (e.g., data for a fixed period) of data values;
it is often used to suppress the effects of one extreme data point.

Consider the following example, where the number of problems found
during a seven-week test period has been changed slightly from that in the
earlier example:

Week 1: 20
Week 2: 33 (was 23)
Week 3: 45
Week 4: 67
Week 5: 35
Week 6: 15
Week 7: 20 (was 10)

Data Smoothing: Moving Averages

The difference in value during week 2—from 23 problems found to 33
problems found—is not a problem, but the increase in value for week 7—from
10 problems found to 20 problems found—shows an actual reversal in trend.
This slight change may cause some reservations on the part of the software
project managers and prompt them to make a decision on completing the
testing activities. That is, the seventh-week reversal may be viewed as a
potential instability in testing. On the other hand, it may not mean anything.

To facilitate this type of decision-making process, data smoothing may
be helpful. Data smoothing is accomplished by combining data points and
viewing the aggregated values. Consider how the moving-average approach
can be used to smooth out data variations. In Table 10.1, both two-week and
three-week moving averages are computed. The two-week moving average is
computed by averaging the previous week’s value and the current week’s
value. The three-week moving average is computed in a similar manner. The
two-week moving average does not start until the second week; similarly,
the three-week moving average starts at the third week.

Data smoothing A technique used to decrease the effects of individual,
extreme variability in data values.

Both the two-week and three-week moving averages show a much less
erratic movement of values from the raw distribution of the data. Although
it may be meaningless to have “partial problems” found, the moving aver-
ages are left with decimal figures just to show the computational results and
to provide more precision for comparisons. Trend analysis utilizing moving
averages is a little easier, because a few, sudden changes do not affect the

Table 10.1 Moving Averages of Problems Found

Two-week Three-week
Test week Problems found moving average moving average
1 20 - -
2 33 26.5 -
3 45 39 32.6
4 67 56 48.3
5 35 51 49
6 15 25 39
7 20 17.5 23.3

Chapter 10 Analysis and Evaluation of Information

smoothed values as dramatically. In this case, the decreasing trend of the
moving averages continues smoothly without a spike.

Note that the range of values in the original data goes from a low of 15
problems discovered during week 6 to a high of 67 problems discovered dur-
ing week 4; that represents a difference of 55 problems. The two-week mov-
ing average displays a smaller variation, from 17.5 problems to 56 problems,
for a difference of 38.5 problems. The three-week moving average has an
even smaller variation, with a difference of only 25.7 problems from the
lowest to the highest. Clearly, the range of values of the moving averages is
smoother than the original data. For these reasons, project managers often
prefer to use the moving-average technique.

In a long software system test, test managers often use moving averages
because the variability in test data values may be substantial. The large vari-
ability observed in a lengthy test situation might result from the different
numbers and types of test cases run due to employee vacations or it might
result from planned slowdowns due to a large amount of retesting of previ-
ously fixed problems.

ﬁ DATA CORRELATION

Correlating attributes is a very useful tool for software project managers, but
it must be used carefully. Data correlation speaks only to the potential exis-
tence of a relationship between attributes; it does not necessarily imply
cause and effect.

Data correlation A technique that analyzes the degree of relationship
between sets of data.

One sought-after relationship in software is that between some attribute
prior to product release and the same attribute after product release. The
software developer might, for example, collect data on the total number of
defects found during the three years after the release of one of its products.
It could then compare those data with the number of total defects found in
the product during testing. This analysis would focus on whether a correla-
tion exists between the number of defects found during pre-release testing
and the number of problems found during the three post-release years.

One popular way to examine data correlation is to analyze whether a
linear relationship exists. Two sets of data may be plotted and the resulting
graph reviewed to see how related they are. A more formal method, called
linear regression analysis, may also be applied.

Data Correlation

Linear regression A technique that estimates the relationship between
two sets of data by fitting a straight line to the two sets of data values.

Linear regression analysis is predicated on expressing one variable, y, as
a linear function of another variable, x, in the following form:

y=a+ bx

The slope of the linear equation is the constant b. The y-intercept is rep-
resented by the constant a. The slope, b, may be calculated as follows:

b= SUM [(xi - xave] X (yi - yave)] / SUM [('xi - xave)Z]
where
SUM = the sum function evaluated over all data points
x; = the ith observation of the x variable
X,y = the average value of all x;’s
y; = the ith observation of the y variable
Vave = the average value of all y;’s

The intercept, a, may be calculated as follows:

4= Yave = (b x J:ave)

Consider the example of a pre-release and post-release defects relation-
ship over a number of software products developed by one organization.
Table 10.2 lists the number of such problems found.

The two sets of data in Table 10.2 look directly related in that an
increase (or decrease) in the number of pre-release problems seems to be

Table 10.2 Pre-Release and Post-Release Problems

Number of post-release
Software products | Number of pre-release problems problems (3 years)

1 10 24
2 5 13
3 35 71

4 75 155
5 15 34
6 22 50
7 7 16
8 54 112

217

Chapter 10 Analysis and Evaluation of Information

accompanied by an increase (or decrease) in the number of post-release
problems found. Furthermore, the relationship looks almost linear. One may
estimate the constants, a and b, as follows.

Equating the pre-release problems with the variable x and the post-
release problems with variable y, we have

Xave = 27.8
Vave = 59.3

Then utilizing the previously given formulae, we compute the values
for a and b:

b = 2.0 (approximately)
a = 3.7 (approximately)
The estimated linear equation would be as follows:
y=3.7+2x

Graphically, this equation gives the straight line shown in Figure 10.3,
which provides the best fit through the data points that were recorded.

Number of
post-release
problems
A
170
y=3.7+2x
100
Number of
0 > pre-rel
10 20 30 40 50 60 70 80 problems
found

Figure 10.3 Linear regression graph

Normalization of Data

The equation y = 3.7 + 2x may be used to estimate the number of prob-
lems that may be found following the release of a product, given the number
of problems found during the pre-release testing of that product.

Assume that a new software product is developed by a similar software
project team using the same process as employed for those projects that con-
tributed to the graph in Figure 10.3. If the total number of problems discov-
ered in this new product through the various pre-release tests is 32, then the
estimated linear relationship may be used to project the total number of
post-release problems: 3.7 + (2 X 32) = 67.7, or approximately 68 problems.
Software support managers may, in turn, use this projection of 68 problems
to estimate the cost of support services for that product.

Linear regression may be used to correlate other project or product
attributes as well. For example, a project attribute status value may be used
to project the value of a correlated attribute. Based on the projected value of
that correlated attribute, certain adjustment actions may be applied to the
ongoing project.

A word of caution is in order in using such linear relationships for pro-
jections: Interpolation of values is safe, but extrapolation of values may be
dangerous. Fitting a linear line through the data points gave a linear equa-
tion, for example, but this linear relationship is not guaranteed outside the
range of the data points. Put bluntly, extrapolation of the linear relationship
outside of the range of the data points may be erroneous.

A linear relationship is one of the most easily identifiable relationships
that may exist between two sets of data. Software project managers will find
many other relationships and ways to gauge different types of data correla-
tion in the reference books on statistics listed at the end of this chapter.

@ NORMALIZATION OF DATA

A pure comparison of the raw data sometimes does not provide an accurate
comparison. Consider the following situation. The detection of a large num-
ber of problems in a functional area A compared with a small number of
problems found in another functional area B may be misleading if functional
area A is much larger or much more complex than functional area B. The
size of the functional area or its complexity should be taken into account
rather than just collecting the raw number of problems found in that area.
Thus some measurement of size of the functional area or its complexity must
be used to normalize the number of problems found.

Chapter 10 Analysis and Evaluation of Information

Normalizing data A technique used to bring data characterizations to
some common or standard level so that comparisons become more
meaningful.

Even though software engineering reports put forth many arguments
against using lines of code as the measurement of software size, it remains
one of the most popular options. This measurement will be used as a means
of demonstration here.

Consider the case where a total of 76 severity levels 1 and 2 problems
are discovered in a functional area A. In a functional area B, a total number
of 98 severity levels 1 and 2 problems are detected. Further suppose that
functional area A is composed of 3300 lines of newly developed code, and
functional area B is composed of 5400 lines of newly developed code and
another 2000 lines of integrated code. We may normalize these numbers
as follows:

Functional area A: 76/3300 = 0.023 defect per line of code

To make the normalized number easier to remember, lines of code may
be recorded in units of 1000 lines of code, or “kloc.” Using kloc as the unit,
the normalized figures would be

Functional area A: 76/3.3 = 23 defects per kloc

Functional area B: 98/5.4 = 18.1 defects per kloc

Although functional area B may have more detected errors in terms of
absolute numbers, its normalized figure—that is, the defect rate given in
terms of defects per kloc—is smaller than that of functional area A. Further-
more, if the integrated code consisting of 2000 lines is included in the nor-
malization, then the defect rate for functional area B would be 13.2 defects
per kloc. Normalizing the defect numbers and converting the metric to the
defect rate enables a more accurate comparison to be made.

Another example involves the evaluation of productivity figures. The
average productivity of a software development effort is often cited in the
form of lines of code or function points per person-month. Here the normal-
ization factor is a person-month. However, to ensure that truly comparable
normalization is possible, a person-month must be clearly defined. One per-
son-month may vary from 15 working days per month to 20 working days

Exercises

per month. Following this definition, there must be further clarification on
how many hours are included in one working day.

In many types of analysis, normalized data should be used. In all cases,
the normalization factors must be well understood and defined. Examples
include efficiency and productivity analysis where the development of 20
test cases should be normalized to 20 test cases per person-month, cost
analysis where $3000 of telecommunications line usage should be normal-
ized to $3000 per 1000 hours of telecommunications line usage, and quality
analysis where 15 problems discovered during code reviews should be nor-
malized to 15 code review problems per 1000 executable code statements.

M KEY CONCEPTS

The earlier planning and organizational phases of the software project man-
agement should have properly defined and prepared the measurement
schemes for reliable, accurate, and valid data. Nevertheless, this topic should
be revisited one more time during the monitoring phase prior to the actual
evaluation of collected data.

There are many ways to analyze the data and the status of a software project:

e The distribution of a set of collected data may be analyzed for extreme
values, skew, and trends.

e Centrality and dispersion analysis of groups of data may be performed
by computing averages, median values, or standard deviations from the
central value.

e Data-smoothing techniques, involving the evaluation of trends through
moving averages, are often used to lessen the impact of exceptional data
points (outliers).

e The correlation of groups of data may be examined through many dif-
ferent methods. One very simple but popular method is linear regression.

e Normalizing the data ensures that groups of data are properly compared.

M EXERCISES

1. Discuss the three terms, reliable data, accurate data, and valid data.
Can a valid data be inaccurate or unreliable? Give an example.

Chapter 10 Analysis and Evaluation of Information

2. Define the term “data distribution.” Why do we care about data distri-
bution?

3. In monitoring the trend of some project attribute, discuss the pros and
cons of using data smoothing. Does this strategy conflict with the con-
trol chart approach?

4. What are some of the ways to establish an upper and a lower limit of

the control chart?

Discuss centrality analysis and what a standard deviation represents.

6. Give an example of some software projects for which it may be useful
to know the average value of a set of data on some attribute, such as
quality or productivity.

7. Give an example of how a software project manager might use linear
regression to correlate project attributes.

8. Does the fact that two sets of data correlate imply that there is a cause
and affect relationship? Why?

9. Discuss how raw software cost attribute values such as $2 million or
$50,000 may be normalized to make them valid for comparison.

bl

M SUGGESTED READING

W. Chase and F. Brown, General Statistics, 4th ed., John Wiley and Sons,
2000.

N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical
Approach, PWS Publishing, 1997.

P. Jalote and A. Saxena, “Optimum Control Limits for Employing Statistical
Process Control in Software Processes,” IEEE Transactions on Software
Engineering, December 2002, 1126-1134.

C. Jones, Applied Software Measurements Assuring Productivity and Quality,
2nd ed., McGraw Hill, 1996.

S. H. Kan, Metrics and Models in Software Quality Engineering, Addison-
Wesley, 1995.

S. Kotz and N. L. Johnson, “Process Capability Indices—A Review, 1992-2000,”
Journal of Quality Technology, January 2002, 2-19.

D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for
Engineers, John Wiley and Sons, 2003.

J. M. Utts, Seeing Through Statistics, Duxbury Press, 1996.

E. F. Weller, “Practical Applications of Statistical Process Control,” IEEE
Software, May/June 2000, 48-55.

Chapter]]

Presenting and
Communicating Data

Chapter Objectives
This chapter discusses the following concepts:

e Why representing and communicating project status information is
important

e What forms may be used to present data, including tabular, bar chart,
control chart, pie chart, and histogram formats

@ SHARING INFORMATION

The project status needs to be monitored by the software project managers,
but the gathered information also needs to be shared with the rest of the
team as well. Software projects are becoming so large and complex that a
team effort is now considered essential for a project’s success. To achieve
this goal, the software project team needs to be informed of the status and
the analysis of various parts of the project because an informed team is usu-
ally much more motivated. Conversely, sharing too much information may
overload team members and defeat the purpose. Thus communication of
information, as part of the monitoring phase, needs to be balanced.

To achieve the proper balance, it is best to pick three or four measure-
ments to share with team members. The following four areas discussed ear-
lier would be a good starter set:

e Schedule status
e Functional completeness status

Chapter 11 Presenting and Communicating Data

e Quality status
e Budget status

In addition, the team should be made aware of the status of the items on
the risk management list, regardless of the category. Team managers need to
pay special attention to and act on all items on this list, but sharing just the
high-risk items with nonmanagement personnel might be a wise decision.

A key question is, How should the information be portrayed? This ques-
tion may be divided into several more specific questions:

e What form should the information take?
e When should the information be communicated?
e Where should the information be displayed?

The answers to these questions very much depend on the project. One
should use a graphical form to share data if the goal is to make a single
impression because it is very difficult to convey a large amount of data in
words. Employing a visual, graphical approach would allow data to be sum-
marized and provide that single impression. Information updates should
come at short intervals if the overall project schedule is brief—perhaps only a
few months. In addition, the information should reach all intended recipi-
ents. Thus it should be posted, electronically or otherwise, where all intended
recipients can easily access and view it.

Each type of information that is monitored needs to be viewed and ana-
lyzed from a presentation and communication perspective. Some informa-
tion may be best displayed in a tabular form; other information is amenable
to sharing in bar graph or pie chart form. Besides offering a pictorial repre-
sentation of information, the software project managers may need to sum-
marize in words the key message that the recipient should come away with.
As Jean-Luc Doumont notes, sometimes “words are worth a thousand pictures.”

% COMMUNICATING TIME-RELATED STATUS

When the communication is about the schedule and its status, the information
may be shown in various formats, each of which has its own pros and cons.

Tabular Formats

For monitoring and tracking a list of major events, a tabular form may be
well suited for the management team members and desktop review. Table
11.1 shows an example of this format.

Communicating Time-Related Status

Table 11.1 Schedule Status Portrayed in Tabular Form

Activities Target date Current status Actual date Assessment
Test plan 5/20/03 Completed 5/25/03 Late start date
Test scenario 7 of 9 scenarios

design 7/30/03 completed Will be close
Test scripts 15 of 52 scripts

writing 10/15/03 completed On target
Test case

execution 1/25/04 Not started None

Table 11.1 shows only the activity target completion dates and the
actual completion dates. The Current-status column gives a glimpse of where
the project is now. The current status of an activity must show the ratio of
subtasks completed to the total number of subtasks. In the world of software
projects, many joke about a task that stays “90% complete” forever. In real-
ity, this perpetual incompleteness is a serious matter that all software project
managers must be cognizant of; it is essential that they should ask for fur-
ther status explanation on the remaining “10%.”

The Assessment column provides this kind of information regarding the
status of each activity. For example, in Table 11.1 the lateness of the test
plan is attributed to its late start date, not to the actual performance of that
activity. Even though the test case execution activity has not started and the
Assessment column consequently shows “none,” it would be worthwhile to
ask about the likelihood of its meeting the start date or any other relevant
risk. Software project managers should use the Current-status and Assess-
ment columns aggressively in both analyzing the status of the various activ-
ities and communicating that status to others.

A few things are lacking in this representation. For example, ideally
Table 11.1 should include a target start date and an actual start date for each
activity. This information would provide further insight into the schedule
status. If projects are not started on time, the chance of completing them on
time is low. The Assessment column then must also include an assessment of
the start date integrity of an activity, such as the readiness of all prerequi-
sites for that particular activity.

The project schedule representation, utilizing a tabular form, may be
appropriate for this type of detailed monitoring and reporting on a regular
daily, weekly, or semi-monthly basis. The information may be presented on
paper or as an on-line document. If it is updated daily, then creating an on-
line document would save a lot of paper and distribution effort, and it may
be the preferred distribution method.

Chapter 11 Presenting and Communicating Data

Note that the mere electronic posting of schedule status is not the same
as communicating. The intended receivers should be notified of the regular
updates as soon as they are posted on-line. If any item needs special atten-
tion, then the message to the recipients should highlight that point. Alterna-
tively, if all activities are moving along smoothly according to the target
schedule, then the message should give that news. This additional summary
message from the software project managers to the other key personnel
accomplishes two important goals:

e The software project managers must formulate a quick overall assess-
ment themselves so as to write the summary message.

e The recipients of the message will better understand the managers’ inter-
pretation of the data and the significance of the data reported.

In addition, the managers should solicit comments from the recipients of
the on-line reports. A minimal response of acknowledging the receipt of the
status data should be expected, even if no comment is attached. The software
project managers should establish this kind of communication “rule” with their
key project team personnel. Otherwise, the posted material may be ignored and
will simply be one of the trappings of a costly, wasteful bureaucracy.

The project managers must realize that monitoring the project status
may represent a key activity for them, but not necessarily for other team
members. Thus special effort has to be made to communicate the status
information. This communication is a prerequisite to the next POMA phase,
especially if some adjustments need to be made based on team members’
feedback. Team members should always be cognizant of the status of the
project and the possible adjustments that may be coming.

Bar-Chart Formats

For communicating time-related information to a broader audience, a
detailed tabular form may not be suitable because it sometimes requires
careful reading of the details. A more graphical representation would be
needed for a quicker communication to large audiences.

Bar chart A chart in which data values are represented with graphical bars.

For schedule and completeness of functions, a popular representation is
the type of bar chart shown in Figure 11.1.

In Figure 11.1, the dotted-line bar shows the planned units of work over
a period of time. The numerical units of work are shown inside the bar. The

Communicating Control-Related Status

L/Today

Activity | Team : Time in Weeks
]
l
A T 3 i
1
B T2 R ity
3.1
c 3 e
A T O B
1
D T4 1 R S
I 5[]
T
|
E T5 1 e el o b o e e e
! e [[]
T
1

Figure 11.1 Activity status presented in bar chart form

length of the bar covers the planned time, in weeks, to complete the work.
The solid line indicates the completed work.

This type of bar chart may be physically expanded to cover a wall,
enabling a large number of team members to see it on a daily basis. Such a
chart is typically updated weekly.

The bar-chart format helps to give a global view of the status of project
activities over time. It provides a natural way to represent the activity sched-
ule and partial or full functional completeness. In addition, it may be used to
show a variety of activities, such as the project’s spending status plotted
against the planned budget for particular functional areas over time.

@ COMMUNICATING CONTROL-RELATED STATUS

1017

In a way, one may view monitoring the project status as relating current
information to planned information. Some status information, however, is
more amenable for viewing through a control chart (see Chapter 10). Control
charts are especially good for communicating project status to a large group
of people because of their graphical form and the ease with which one can
spot data values that fall outside the control limits.

The control-chart approach can be seen in the monitoring of quality in
terms of problems uncovered through time using a normalized moving aver-
age. An example is shown in Figure 11.2.

227

Chapter 11 Presenting and Communicating Data

A _—Deserves attention

4 defects/kloc

Defects
per kloc

1 defect/kloc

»
>

Weeks

Figure 11.2 Control chart for severity levels 1 and 2

In Figure 11.2, the severity levels 1 and 2 problems of three software
components are monitored during the component-testing period over several
weeks. The control chart’s upper and lower bounds were established based
on the organization’s past experiences with similar projects. This type of
chart provides a quick view of whether the monitored status is within
expected or “planned” target numbers.

Control charts may also be used to monitor other normalized informa-
tion, such as productivity-related data. As long as each data value falls
within the limits, then the project is progressing according to plan, and the
software project team may view the project as being “under control.” Con-
versely, if a data value falls outside the limits, then some effort needs to be
spent on checking out the cause of the outlier. Depending on the reason,
adjustments may or may not be needed to bring the project under control.

OTHER COMMON DATA REPRESENTATION
% FORMATS

There are many other ways to present information, including pie charts and
various types of histograms.

Pie Charts

A pie chart is often employed to show the proportion of different cate-
gories. As an example, the pie chart in Figure 11.3 shows the breakdown

Other Common Data Representation Formats

Severity level 1 (4%)

Severity level 2 (21%)

/

Severity level 4 (42%) —>»|

Severity level 3 (33%)

Figure 11.3 Pie chart

(by percentage) of the four severity levels of problems found in a func-
tional area.

Pie chart A technique for graphically representing the proportions of
different categories of data values.

Histograms

A histogram is another way to show proportional information by categories. In
the histogram in Figure 11.4, the top 10 largest customers’ opinions are surveyed
on a basis of 0 to 100 index points (e.g., in the form of percent satisfaction).

100%

75% |-

50% |-

25% -

Top Ten Largest Customers

Figure 11.4 Customer satisfaction index: histogram

Chapter 11 Presenting and Communicating Data

Histogram A technique for graphically representing frequency counts
of data values via a bar chart.

Sometimes the bars of a histogram are arranged in order from the tallest
to the shortest, or vice versa. This kind of sequenced histogram, known as a
Pareto diagram, provides a quicker view of the status.

Pareto diagram A histogram modified to show a frequency count of
data values in either ascending or descending order. It is named after the
Italian economist Vilfredo Pareto.

An additional information line, portraying the “minimal satisfactory”
index, may be included in the Pareto diagram. For example, if 75% was the
minimally acceptable customer satisfaction index, then a horizontal line
might be drawn across the diagram as shown in Figure 11.5. All customers
below this line might be considered candidates for immediate management
follow-up and additional focus. Thus the monitored status is used as input to
the project adjustment phase.

sy SELECTING A DATA REPRESENTATION FORMAT

1017

Clearly, there are many different ways to present the collected and analyzed
data to both project managers and nonmanagers. For some managers, a
detailed tabular form is the easiest to use. For others, graphically represented
data are preferable. The software managers may try a few different

A
100%

75%

Customer
Satisfaction 5o,

25%

Top Ten Largest Customers

Figure 11.5 Customer satisfaction index: Pareto diagram

Exercises

approaches, ask the other team members for their opinions, and decide on a
set to conduct project monitoring. The constant, regular representation and
communication of software project status will not only serve the project
monitoring phase well, but will prepare the team for any needed adjust-
ments.

If the managers decide to use graphical data representations, many of
them may be produced via a widely used tool such as Microsoft Excel. In
such a case, the raw data are put into the tool and the chart wizard options
of Excel are then evoked to produce graphical diagrams in the form of a bar
or pie chart. A more sophisticated tool, such as the statistical software from
MINITAB or the Chart Fx tool from Software Fx, may be used in a similar way.

M KEY CONCEPTS

The importance of presenting and communicating the information gathered
from software projects cannot be overemphasized. The specific form of rep-
resentation and communication chosen will depend on the type of project,
the intent of the data representation, and the audience. The following forms
are especially popular among today’s software project managers:

e Tabular forms—to convey a lot of project detail

e Bar charts—to show a global view

e Control charts—to highlight trends and bounds

e Pie charts—to show relative and proportional information
e Histograms—to show relative comparisons

The type of recipients and the purpose of the communication will dictate
the frequency and medium used for sharing the information. If the informa-
tion is posted electronically, then the project managers must ensure that it is
received and reviewed by asking for some kind of acknowledgment.

M EXERCISES

1. Consider the following pairs of numbers, where the first value repre-
sents the number of software companies in a certain city and the sec-
ond value represents the number of employees in those software
companies: (3, 5), (5, 10), (10, 14), (22, 20), (5, 45), (2, 70). Which
graphical form would you use to represent this information?

Chapter 11 Presenting and Communicating Data

2. For conveying the breakdown of problems in different severity levels
during a major testing cycle, which graphical form would you use?

3. Use the appropriate diagram and represent the following data of mod-
ule size, in lines of code, by descending order: modA-300; modB-255;
modC-70; modD-185; modE-507. How would you show the average
size of these modules in this same diagram?

4. Suppose the information in Exercise 1 includes a third attribute, the
number of software products produced, with data points that look as
follows: (3, 5, 4), (5, 10, 6), (10, 14, 9), (22, 20, 13), (5, 45, 15), (2, 70,
18). Use a three-axis graph to represent the information. How else
might you want to represent these data points?

5. Consider the following activities: initial prototyping-5 days; design-4
days; code implementation-10 days; testing-5 days; user guide-7
days. If you were asked to place this in a graphical form to represent a
schedule, what questions might you need to have answered first?

6. Although they are not discussed in this chapter, colors and shapes are
sometimes used in the graphical representations of data. Discuss possi-
ble advantages and disadvantages on the usage of colors and shapes.
Convert your discussion into a visual presentation to your class. (See
M. Y. Rabb’s book in the “Suggested Reading” list or refer to some
other similar material.)

M SUGGESTED READING

J.-L. Doumont, “Verbal Versus Visual: A Word Is Worth a Thousand Pictures,
Too,” Technical Communications, May 2002, 219-224.

B. J. Dretzke and K. A. Heilman, Statistics with Microsoft Excel, Prentice
Hall, 1998.

G. T. Henry, Graphing Data Techniques for Display and Analysis, Sage Pub-
lications, 1995.

M. Y. Rabb, The Presentation Design Book: Projecting a Good Image with
Your Desktop Computer, Ventana Press, 1990.

E. Tufte, The Visual Display of Quantitative Information, Graphics Press,
1983.

H. Wainer, Visual Revelations, Graphical Tools of Fate and Deception from
Napoleon Bonaparte to Ross Perot, Lawrence Erlbaum Associates Pub-
lishers, 1997.

Part Four

Adjustments and Actions

(POMLY)

Software projects are performed and managed by human beings. Thus, these
projects are subject to changes, imperfect planning, and necessary trade-offs.
Even the most carefully planned, best-staffed, and schedule-friendly projects
sometimes require midcourse adjustments.

The software project managers should not be afraid to take action and
make adjustments when necessary. Some staff beliefs and attitudes actually
indicate that a shifting of gears and the taking of an active stance are war-
ranted. Examples are:

e Believing or hoping that a problem will go away by itself

e Believing that the project includes some "sacred cows” that cannot be
changed

e Believing that making changes is a sign of weakness and lack of commitment

e Not realizing that changes and actions are needed

¢ Being afraid of changes

e Not knowing what options are available and what adjustments to make

Many of these reasons for remaining passive may seem foolish. Having
a fear of change may sound silly, for example, but it is a very real problem
for some people—and not just software project managers. Behind this fear of
change may lie a fear of the unknown, in the form of what the changes will

Part Four Adjustments and Actions

bring. Unfortunately, if actions are not taken when needed, several unpleasant
outcomes may result:

e Projects may fail

e Projects may fail faster

e Projects may experience a slow-paced failure

¢ Projects may barely get completed while taking a great toll on the spon-
soring organization

Once the software project starts, project status may begin to veer from
the plan at any point—there is no single moment at which all projects falter.
The software project managers almost have to make a concerted effort to
look for those deviations that may require modifications and adjustments to
the project.

Similarly, adjustments and actions may need to be made at any time—
during the regular project status monitoring meetings, during any off-line
meetings, during any emergency or crisis, or during planned changes. There
is no simple prescribed period for adjustments and actions. Software project
managers will be making adjustments, both major and minor ones, through-
out the entire project life cycle.

Software project managers do not and should not need to make all
adjustments by themselves. That is, the project team approach should include
a certain amount of team management, wherein team members are solicited
for their opinions and suggestions about various project management deci-
sions and actions. To help team members group-manage the project, man-
agers may form a permanent "release management” team for each software
project. Release management utilizes a group of people from all areas of soft-
ware development and support, including the software project managers, to
set goals, make decisions, take actions, and generally guide the project to its
successful completion.

The traditional approach to making unplanned project adjustments in
response to problems detected via project monitoring follows a four-step approach:

1. Determine and define the problem. (Sometimes this is the most difficult
step because there is very little guideline to the problem identification
and determination process, and there are so many different problems.
One step that would help is to make sure that the problem is stated in a
written form and not just verbally. The mere writing process itself will
force some degree of exploration of the problem.)

2. Discover the root cause of the problem (perhaps utilizing a cause-and-
effect diagram as an aid).

Adjustments and Actions

3. Define the solution and the necessary actions.
4. Assign resources to take the needed actions.

For software projects, the three main solution areas typically involve
resources, functionality, or schedule. Thus actions taken will usually touch
upon these three main domains of software projects.

This page intentionally left blank

Chapter] 2

Planned and Unplanned
Adjustments and Actions

Chapter Objectives
This chapter discusses the following concepts:

e How to respond to the monitored status of the project

e How to take actions with a sense of urgency

e How to make planned adjustments

e How to react to unexpected situations and make adjustments

If the project proceeds as planned and the status indicates that everything
is on track, then there is nothing to adjust. Unfortunately, planning and
organizing are rarely perfect in real-world software projects. As a conse-
quence, software project managers must be prepared to take actions to rectify
problems, whether they are minor or urgent, planned or unplanned.

ey TAKING ACTIONS WITH URGENCY

1017

As mentioned earlier, almost all software projects experience at least some
changes. Some of the changes are planned for deliberately; others occur in
response to an unplanned event. As managers monitor the status of the proj-
ect, there will be many occasions in which the current status does not match
their expectations or the plan. Some minor mismatches are tolerable and may
be left alone under continual monitoring for a while. An example of a "tol-
erable” case would be a situation in which a single test run results in a data

237

Chapter 12 Planned and Unplanned Adjustments and Actions

point that exceeds the limits on a product quality control chart (see, for
example, Figure 11.2) but subsequent test results fall within the acceptable
limits; in that case, one may take a wait-and-see approach. Other discrepan-
cies might require quick response and action. If several tests result in data
points that fall outside of the planned limits, for example, then immediate
actions must be taken to investigate, analyze, resolve, and prevent potential
product quality problems.

All software projects follow some preplanned set of activities, like those
described in Chapters 6-8 of this book. That is, a process and a set of method-
ologies are planned and usually implemented. Key metrics and measurements
activities are defined as well. As the project proceeds, those measurements are
actually taken and analyzed. Whenever any emergency or “crisis” occurs, in
the form of a dramatic deviation of the monitored information from the
expected result, then the team and the management are alerted immedi-
ately. In such situations, software project managers may be forced into
taking quick actions.

In addition, deviations from the plans may be discussed at the regular,
weekly or semi-monthly project status meetings. Those discussions typically
cover a large amount of ground, mostly dealing with immediate problems. If
these immediate problems are not solved without delay, the next regular sta-
tus meeting will simply re-expose the same problem. The solution to the
problem, when addressed early, will often be much less painful than it might
otherwise be.

For example, if not resolved early, a personnel problem—such as a dis-
agreement about the design approach between two lead people—can create
two camps of people working diligently to prove the other side wrong instead
of working productively to complete the project. The effort required and time
lost in bringing two camps of warring people together may greatly exceed the
effort required to adjudicate the differences between only two people.

Steps in Taking Urgent Action

For project management in general, the urgency with which one approaches
problems and takes the necessary subsequent actions dictates the tone of the
project. Let’s take, for example, the quick adjudication of a dispute between
two people. That resolution sets the tone for the entire project team in sever-
al ways: It shows that honest technical disagreements are tolerable but hold-
ing grudges is not, that problem resolution should be approached early with
an open mind, and that team play is valued.

Taking Actions with Urgency

The software project managers must always exhibit good leadership and
set the proper tone. A recommended approach to dealing with situations
requiring urgent action is described below:

1. Clearly state the problem.

2. Communicate the problem while working on the potential solutions to it.
3. Seek out the root cause of the problem and any relevant solutions.
4. Gain the necessary agreement for the chosen solution.

5. Act on the solution.

6. Communicate on the action.

7. Report on the status of the problem’s resolution.

This set of steps, while obvious to many, is frequently not carried out on
time or in full. Each of the steps will involve several substeps. Each one is
almost a process that may require several methodologies. Step 1 is one of the
most difficult. Often, the software project managers themselves will need to
lead the questioning and thinking as the team attempts to clearly understand
and state the problem in a concise way. Many times, in this process of defin-
ing the problem, the real root cause and the choices of solutions become
apparent. After the problem is well understood, it should be communicated to
the team while the underlying causes are being analyzed and solutions are
being developed. This communication will provide constant feedback to the
team and at the same time create a channel for those team members to
suggest solutions.

Change Management

Once the solution is chosen, then the manager must ensure that all stake-
holders agree on it. Implementing a particular solution may require acquiring
more resources, changing assignments, changing direction, changing sched-
ules, or scaling back features, for example. Almost any of these alternatives
will call for the understanding and cooperation of the team members, peer
managers, or upper-level managers before the actual solution can be put in
place and acted on.

In some situations, the customers may be consulted. Consider the situa-
tion in which the software project is a customized project. Here, the sequence
of delivery of the functions may need to be modified due to a change in
demand from the customer. In this case, depending on the particular function,
the change may or may not be easily honored. The software project team
should meet with the customer and jointly work out the details of the change,
taking into account the potential adjustments to schedule and cost required.

Chapter 12 Planned and Unplanned Adjustments and Actions

One key reason for acting on a problem with urgency is to “nip it in the
bud” before major adjustments are required that might alarm customers or the
organization’s executives. If the solution necessarily involves dramatic
changes to the project’s schedule, functionality, or resources, however, then
the project managers must consult both executives and customers as early as
possible to win their support for the proposed solution.

Note that several potential solutions may be proposed before one is
deemed acceptable. The actual solution must be “worked out” with all of the
project’s stakeholders. The initial exchange of information may be done by e-
mail and other electronic means. The actual negotiation may take on differ-
ent forms, depending on the situation. In spite of the availability of advanced
electronic communications tools, some people still prefer face-to-face meet-
ings. Each situation is slightly different, so project managers need to remain
flexible and be able to adapt to each unique case.

In a sense, taking actions and making adjustments is similar to the more
general topic of change management (discussed in more detail in Chapter 15).
Change management must include the activities related to controlling
changes and associating any solution to problems, but it may or may not
include the actual solution discovery process.

Change management A set of activities directed toward controlling
changes. These activities may include identifying changes, assessing and
measuring changes, and tracking changes.

In both cases, one of the greatest obstacles to change can be the “people
factor.” Consider the list of potential targets for changes:

e The product’s functional and nonfunctional attributes
e A process or methodology

¢ Schedule

e The customer’s expectations

e Tools

In adjusting any or all of these items, people are inevitably affected.
Small changes and adjustments are easily understood and may be imple-
mented without causing too much alarm. In contrast, large changes and
adjustments to those items may encounter a significant amount of resistance.
Thus software project managers must be acutely aware of the importance of
managing people’s reactions to adjustments and changes. One of those reac-
tions is often fear. Much of this fear of change derives from people not know-
ing what is changing. To deal with this issue, the project managers must com-

Planned Adjustments

municate often and dispel the unknowns. For example, explaining the ration-
ale behind the changes and proposed adjustments, the actual adjustments,
and the details of the steps involved in the change process would alleviate the
anxiety about the changes. This is not much different from the change man-
agement process discussed in the books cited in the “Suggested Reading” list
at the end of this chapter.

The chosen solution must be immediately implemented. If the team sits on
the solution for too long, then the original problem may be further exacerbated.
Then the agreed-upon solution may need to be modified—most likely to a
more expensive option. The team should be notified of the action taken, and
the resolution should be tracked, in a similar manner in which product and
project attributes are tracked during the monitoring phase of POMA, until the
action is completed.

@ PLANNED ADJUSTMENTS

Any planned adjustments should be put together by all affected parties and
presented to all stakeholders of the project, including the customers. The proj-
ect should not be allowed to move forward if the agreed-upon adjustments
and actions are not taken. Otherwise, the credibility of the software managers
and other parties who recommended the adjustments will always be questioned.

The Planned Adjustment Decision-Making Process
and Targets

The software project managers should regularly plan on making adjustments
throughout the project cycle. As an example, consider the simple project process
that develops a software component through the following set of activities:

e Requirements analysis

e Design

e Implementation and coding
e Testing

¢ Integration

The software management team may decide to have a planned adjust-
ment at the end of each of these activities. This approach of “anticipatory
adjustment” must not come as a surprise to the project team or anyone else

Chapter 12 Planned and Unplanned Adjustments and Actions

in the management group. The key metrics are always reviewed, and the soft-
ware team should be made aware that there will be a discussion to review
potential adjustments to the project. Inevitably, the review will center on the
following areas:

¢ Functionality
e Resources
e Schedule

Although the topics of review should not be limited to just these three
variables, the software managers do have a large amount of control over
these areas and can readily take actions to modify them. As part of the exit
criteria of each phase of the project, the software project managers should
assess the status of the activity and conscientiously make adjustments, if nec-
essary. For example, if attempts to meet the exit criteria for the requirements
specification phase run into a schedule obstacle, the project managers might
choose to review and modify the resources, functional content, or schedule
plans for the downstream activities. The actual changes to the plan will
depend on the reasons underlying the difficulties in meeting the exit criteria
on time.

Notice that several notable areas—especially product quality and people
productivity—were omitted from the preceding list of items to be reviewed.
Their exclusion does not mean that quality and productivity are not impor-
tant. Rather, for software project managers, the quality goal should be tracked
continually and not become relegated to an “adjustable parameter.”
Productivity is something that is monitored, but it is not adjustable; one
would instead adjust resources—for example, people, education, process, or
tools—to influence the project productivity measure.

The regular review of the project status, complemented by constant small
adjustments and changes, should have given the software project managers a
good overall picture of the project. If regular, incremental adjustments to the
project has ensured that everything was tracking to plan and moving along
relatively smoothly, then the planned action would be simple: Stay the
course. Conversely, if a large number of changes and variations from the plan
resulted in a significant number of deviations during a particular project
phase, then the software project managers should review the three key proj-
ect parameters (functionality, resources, schedule). The question of how much
change and how large an accumulative quantity of changes would constitute
grounds for reexamination is a difficult one to answer. Indeed, the answer
will depend on the type of project and a variety of parameters.

Planned Adjustments

Functionality/Resource/Schedule in
Three-Dimensional Space

Resources

Schedule

» Functionality

Figure 12.1 Three main project parameters

Making Planned Adjustments to Functionality, Resources,
and Schedule

The decision-making process includes an assessment of whether adjustments
are needed to all or some combination of the commitments made to the three
areas of functionality, resources, and schedule. If one or more parameters
need to be modified, then the degree of adjustment required must also be
determined before the project continues on to the next phase. These three
main parameters may be viewed as three variables affecting each other on a
three-dimensional surface (see Figure 12.1). Rarely does one change without
affecting the other two.

Project cost is an important parameter that may be varied. With software
projects, the cost is folded into the resources parameter. As more resources are
applied, the cost generally increases in tandem. In any project, it is crucial to
understand the adjustment of the functionality parameter. Carefully identify-
ing and agreeing to provide less functionality is not the same as providing
less functionality by accident or providing nonperforming functionality. In
the software industry, a planned reduction in functionality, for whatever rea-
son, is usually acceptable if a follow-up release expects to restore the dropped
functions. In contrast, an unplanned reduction in functionality that is unwit-
tingly discovered by customers and users is usually met with a great amount
of hostility and mistrust. Customers and users want to know whether the
project is under control or out of control. Planned slippage, while not desir-
able, still portrays a certain degree of control. Similarly, planned delays in the

Chapter 12 Planned and Unplanned Adjustments and Actions

schedule are very different from missing the schedule. The software project
managers should look at all elements, including high-risk items (see Chapter
5), that may influence these three main parameters and decide on whether
any preventive adjustments are warranted prior to undertaking the next
phase of the project.

Sometimes the project functionality parameter is tracking to plan, the
schedule parameter is tracking to plan, but the resources plan is failing to
meet expectations. Perhaps the customer did not ask for any change in func-
tionality or schedule, but the initial estimates of resources needed were nev-
ertheless low. This problem sometimes arises in software consulting and serv-
ice projects. In such a case, the software project managers may not be track-
ing to budget but the extra cost cannot be readily passed on to the customers.
Even if the software project pricing is based on “time and expense,” the cus-
tomer should be alerted to the difference at the end of a project phase and
should be presented with data on any anticipated growth in expenses in
downstream activities.

Other projects operate on a fixed-fee basis; in theory, any extra costs
cannot be passed on to the customer. For example, during the early 1990s,
when various enterprise resource planning (ERP) software service businesses
were still establishing themselves, many offered their services under fixed-fee
terms. Even corporate giants, such as IBM, found the fixed-fee approach to
be very difficult to manage due to the lack of experienced ERP resources. The
time-and-expense approach relieved some of the cost overrun risks.

A hybrid approach of using time-and-expense billing for the require-
ments gathering and specifications phase but switching to a fixed-fee basis
for the remaining phases is a compromise approach that is well accepted by
many. Sophisticated customers and experienced project managers understand
the risks of planning and estimating for a fixed-fee project without having a
good understanding of the project requirements first. As a result, they will
typically utilize a hybrid approach.

Whatever the pricing system, the software project manager must have a
feel for what the customer is willing to pay for the consulting and services
on software. Sometimes the software project manager may decide to simply
“write off” the extra expense that he or she does not feel that the customer
will be able to or willing to bear. The project team and the manager would
then need to ensure that the remaining tasks of the project are carried out
within the budget—if this goal cannot be achieved, the project may generate
a financial loss for the organization. Perhaps the project members can be
asked to put in some extra time on their own clock, but without charging all
the extra time to the project. In that case, the project manager essentially

Unplanned Adjustments

writes off some of the extra time, and the company’s profit margin suffers.
The team members also suffer financially because they are writing off some
of their performed work. In effect, this strategy increases the resources avail-
able to the project without paying for them. Of course, this option cannot be
exercised too many times or the software project managers will lose some of
the members of their team.

A more preferable adjustment would be finding a more efficient method-
ology or tool for the next phase of the project. These adjustments may seem
like planned adjustments, but they are really reactions to a negative set of
information that was not handled promptly or was not detected during the
regular project status meetings. If these situations persist, then they must def-
initely be acted upon at the planned end-of-a-phase review.

@ UNPLANNED ADJUSTMENTS

Unplanned activities usually come in response to unanticipated requests or
incidents. Most of these unplanned requests and incidents involve high-pri-
ority or crisis-level problems. Perhaps a customer suddenly requests a tighter
schedule or a key member of the project team leaves, causing direct changes
to one of the three main parameters (functionality, resources, schedule). These
changes will, in turn, affect the other two main parameters.

In software projects, the schedule is rarely allowed to expand. Rather,
most requests call for condensing the schedule. Likewise, resources are rarely
allowed to grow (at least, without some major justification). The loss of a key
resource, whether voluntary or involuntary, may create a mini-panic. Both
schedule and resource changes are relatively easy to recognize. In contrast,
functionality can be a highly complex parameter, whether the request is for
a greater number of functions, for modifications of existing features in func-
tions, or for extensions to existing features in functions.

This section on unplanned adjustments has a recurring theme: Any
change in one of the three main parameters of functionality, resources, or
schedule should evoke a corresponding adjustment in one or both of the other
two parameters. This adjustment should not be delayed, and the actions must
be taken with urgency.

Functionality Changes

Defining changes in the functionality parameter takes more effort and time
than defining changes in resources or schedule. Although each functionality

Chapter 12 Planned and Unplanned Adjustments and Actions

change request may seem innocuous viewed on its own, the cumulative effect
of these simple changes can topple an entire project. These unplanned, func-
tionality-change requests must be accompanied by or result in appropriate
adjustments to the resources or schedule parameter.

Functionality status should be discussed in terms of the amount of
changes that occurred, rather than any sheer increase in the number of func-
tions provided in the software artifact. A modification to an existing feature
within a function can trigger a substantial set of activities that was not taken
into account in the original project plan. Aside from each individual change,
the cumulative effect of these changes is what the software project managers
need to recognize.

It is well understood that changes made in earlier stages of software
development require less effort and have smaller effects on the project sched-
ule and resource costs. While there is no general metric that applies to all pos-
sible situations, Barry Boehm has stated that “finding and fixing a software
problem after delivery costs 100 times more than finding and fixing the prob-
lem in early design phases” (see his article in the “Suggested Reading” list at
the end of this chapter). For example, a functional change made in the
requirements stage is not as costly as a change made during a later stage of
the project life cycle, such as testing. This discrepancy arises because a prob-
lem found during testing may require multiple changes and rework in previ-
ously completed areas such as design, code, test cases, and test analysis.
Similarly, changes made in response to some major defect found in the prod-
uct during the system testing phase can create a crisis in the entire project.
The schedule pressure on a software project is tremendous at the system test-
ing stage or as the project approaches the product release date. In addition,
the amount of wasted time from the earlier stages and repeated work is not
only costly but also demoralizing to the software project team members.

If the number of functions or the number of modifications to function-
ality increases, then the software project managers must make corresponding
adjustments to the resources, schedule, or both. Adjusting these parameters
would certainly have implications for the budget. Recall that software proj-
ects are usually undertaken in businesses, where financial considerations are
important. Too many software projects have failed due to this problem of
ever-increasing functionality, which is widely known as “scope creep.”
Unfortunately, if resources and schedules are not adjustable, then quality
often becomes the unintended victim of such functionality changes. Software
project managers need to be especially sensitive to the quality issue when extra
resources or time in the schedule is needed, but not provided to the project.

Unplanned Adjustments

Scope creep Unsuspected, gradual increase in work units. The accumu-
lated effect of these increases is often underestimated and potentially
poses a high risk to the project.

Scope creep does not always result from customers’ demands. Sometimes,
the project team members will take it upon themselves to improve or expand
the project functionality. Often these scope creep modifications are well
intentioned. For example, software engineers might be enticed by some recent
technology improvement, such as a shiny new device, and decide to include
support for it without informing anyone. Because no one is aware of this
addition, no test cases will ever be designed for it. Customers may not know
about it and will never evoke it. Unfortunately, an implementation defect
related to this kind of stealth improvement may be found by accident, usual-
ly in an untimely situation such as during a product demonstration when a
sales person may inadvertently evoke the function. Another similar situation
is one in which the well-intentioned support programmer inserts several
related “fixes” under the umbrella of one documented customer problem
report. The extra fixes sometimes are not completely tested and may cause
surprises and adverse consequences to those who are unaware of their exis-
tence. These changes are subtle, and software project managers need to be
constantly on the lookout for these internal, self-initiated scope creeps.

Asking for more resources or more time is difficult. If the functional
scope of the project has increased, however, then the software project man-
agers must ask for a corresponding increase in resources or a lengthening of
the schedule. Many software projects are asked to somehow swallow the
increases. On other occasions, the decision-making process for changing the
resources or schedule may take so long that the project will begin a down-
ward slide, sitting in an abeyance stage. The consequence—a deterioration in
team morale and the earlier-mentioned decline in software quality. It is essen-
tial to make timely unplanned adjustments if the general product quality
attribute and team morale attribute are to be maintained. In this case, the
undesirable results that follow from not completing the functionality, not cor-
recting all known functional defects, not following design or programming
standards, not updating the project documentation, and so on, may all be the
consequence of not increasing resources or expanding the schedule as needed.

Resource Changes

As you might expect, adjustments need to be made to the schedule or prod-
uct functionality if a change in resources occurs. Suppose several key design-

247

Chapter 12 Planned and Unplanned Adjustments and Actions

ers leave the project prior to the completion of the design and implementa-
tion activities. Software project managers must understand that they need to
adjust either the functionality or the schedule unless the organization is lucky
enough to have replacement talents in waiting—a highly unlikely scenario.
Even if skilled replacements were readily available, it would take some time
for them to familiarize themselves with the specific software project. Rarely
will the software project be so standardized that a talented software engineer
can be replaced without missing a beat. A software project team is not like a
baseball, football, or soccer team, where a position player can be moved from
team to team with relative ease. That movement is possible because the game
itself does not need to be learned again when the player changes his or her
team; it is the same game. In contrast, software projects are rarely the same.
The more complex and unique the project, and the more interactions required
among the team members, the more difficult it is for the team members to be
treated as “replaceable” parts.

Besides human resources, changes to resources such as tools, processes,
or the budget will require adjustments to either schedule or functionality. For
example, a well-intentioned improvement to a tool or a process undertaken
in the middle of a project may require additional training of team personnel.
The timing of such changes may still require adjustments to the schedule of
affected tasks while not affecting the project’s final end date.

Note that the resource change is not always negative. Of course, this gen-
erosity usually comes at a price. Sometimes resources may be increased, but
then either functionality must be increased or the schedule tightened.
Increasing the amount of resources available without adjusting the other two
parameters would make one question whether the original plan were correct
or whether the increased resources will simply be squandered.

Schedule Changes

As stated earlier, the schedule of a software project is viewed as almost a
sacred cow, rarely being considered as a candidate for change. Most of the
time, the requested adjustment is to shorten the schedule for reasons such as
marketplace competition, customer needs, or budget needs. Like the other
areas typically targeted for adjustment, the schedule cannot be modified
without the software project managers making corresponding resources or
functionality adjustments.

A word of caution is in order about trying to shorten the schedule by
applying additional resources. With certain software activities, adding
resources in terms of people or tools simply will not improve the schedule.

Unplanned Adjustments

Consider the work of design. This activity often takes special talent, so
increasing the raw amount of resources will not necessarily improve the
schedule. Running test scenarios, in contrast, may be greatly hastened by
acquiring additional resources and tools.

A schedule can be shortened if there are subactivities that can be per-
formed in parallel. However, the activities are all serially gated, then putting
in more resources will not improve the schedule. For example, programming
algorithms must be designed before any coding of them can start. Applying
additional resources (e.g., more designers and coders) usually will not
improve the schedule, and it may even slow down the design activity because
the original designer has to spend time bringing new people on board. (This phe-
nomenon was mentioned in a quotation from Fred Brooks’s book The Mythical
Man-Month in Chapter 3, in the section titled “Interrelated Attributes.”)

Another factor is whether any tool or methodology is available that will
allow a specific subactivity to be completed faster than planned. If so, then
employing that new tool or methodology resource will contribute to shorten-
ing the schedule. In some cases, a tool such as a configuration manager may
even help in coordinating multiple, serialized activities and achieve some-
thing similar to parallelism.

In summary, software project managers who need to tighten a schedule
should explore two types of resource-based adjustments:

e Look for parallel subactivities for assignment of more human resources.

e Look for specific activities that a new or different methodology or tool
might help complete faster. (One must be aware of and balance the poten-
tial adverse effects of having to learn a new methodology or tool, taking
into account such factors as time needed to be trained on a new tool.)

The software project managers’ other immediate reaction to schedule
shrinkage might be to seek to cut functionality. This kind of adjustment also
needs to be made with care. Taking apart intricately designed software may
not be as easy as just not doing something; it may actually require some
redesigning to drop certain functionality that is already partially implement-
ed. In particular, dependencies across components may need to be redesigned
if one component of a multicomponent design is dropped. Suppose parame-
ters are passed between two components to support a required function
between these components. The passed parameters may have required a large
amount of setup work and computation within these two components. If the
required function is later dropped, the amount of work needed to take out the
original setup code, computational code, and parameter-passing mechanism,
along with the retesting required, can amount to as much or more work as

Chapter 12 Planned and Unplanned Adjustments and Actions

needed for the initial implementation. In all cases, adjustments to function-
ality due to changes in schedule must be carefully considered.

B KEY CONCEPTS

While the project is progressing and being monitored (as discussed in Part
Three of this book), the software project managers should be prepared to
make any adjustments deemed necessary. These actions must be undertaken
with the support of a broad consensus and with a sense of urgency. If the
adjustments are made in response to some detected problem, then the project
managers need to take the following actions:

Clearly state the problem.

Communicate the problem while working on potential solutions to it.
Seek out the root cause of the problem and relevant solutions.

Gain the necessary agreement of all stakeholders on the chosen solution.
Act on the solution.

Communicate on the action.

Report on the status of the problem’s resolution.

NOURWDN=

The software project managers must also be aware of the need to imple-
ment a change management process when the adjustments needed are large.

Both planned and unplanned adjustments are possible. Planned reviews
for adjustments should be performed at the end of each software development
or service activity. Even the best-planned projects will need to make mid-
course adjustments, however. Such unplanned adjustments usually stem from
unexpected crises. Either planned or unplanned adjustments normally require
the software project managers to consider three main parameters:

¢ Functionality
® Resources
e Schedule

Any change to one of these parameters necessitates a proactive consid-
eration of the other two parameters. Usually some adjustments must be made
to one or both of the other two parameters; this “ripple effect” poses a chal-
lenge for software project managers, who must gain the support of the project’s
stakeholders on all subsequent adjustments.

Suggested Reading

M EXERCISES

1. List some of the items that you consider to be major adjustments and
actions, and discuss which ones might spur resistance from your team.

2. Why is a sense of urgency important in making adjustments, especial-
ly unplanned ones? Describe the steps a manager may put in place to
ensure that an adjustment is put in place to solve a need.

3. Why is there any such thing as a “planned adjustment”? Under what cir-
cumstances might you decide to skip any reviews for planned adjustments?

4. Discuss the relationship or possible association between risk items and
unplanned adjustments.

5. Describe how change management is related to making adjustments.

6. Discuss the potential impact that a schedule change may have on
resources and on functionality.

7. Consider a situation in which your team has just finished the design
phase and is about to start coding. Your key applications designer just
walked in and handed you a resignation notice. Describe what actions
you would take and in what sequence. How would your adjustment
actions differ if the person were the lead tester?

M SUGGESTED READING

B. Boehm, “Industrial Software Metrics Top 10 List,” IEEE Software,
September 1987, 84-85.

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1995.

H. E. Chambers and R. Craft, No Fear Management: Rebuilding Trust,
Performance, and Commitment in the New American Workplace, St. Lucie
Press, 1998.

W. G. Dyer, R. H. Daines, and W. C. Giauque, The Challenge of Management,
Harcourt Brace Jovanovich, 1990.

D. A. Level, Jr., and W. P. Galle, Jr., Managerial Communications, Business
Communications, 1988.

This page intentionally left blank

Chapter] 3

Release Management
Council

Chapter Objectives
This chapter discusses the following concepts:

e How adjustments are made and actions are taken using a team manage-
ment approach

e How a Release Management Council is established

e How a Release Management Council operates

@ THE TEAM MANAGEMENT APPROACH

Software projects are becoming ever larger and more complex, which has led
to a new way of developing projects: through cooperative teams. Although
some evidence indicates that collocated software development results in
higher productivity and better schedules, many times the team members are
located physically apart from one another. There is very little reason for all
aspects of software projects to be completely managed by only a single per-
son—that is, the software project manager—especially when the project is
sourced from physically distant areas. The decision-making process would be
much better, easier, and faster if the project management activities and man-
agement actions were also conducted by using a team approach, in which
the knowledge of as many of the organization members as possible can be
utilized. Even for small software projects, involving only five or six people,
the project managers should still solicit as much of the team members’
inputs as possible without imposing too much extra work on them.

Chapter 13 Release Management Council

All the stakeholders of a software project need to be included in the def-
inition of the software project “team.” In undertaking a team management
approach, one must also consider the software project organization as a
whole, in which people are divided into different groups by tasks and
expertise. In such an organizational structure, there are typically specialized
subgroups, such as the design or testing teams, and each of these subgroups
is headed by a team leader. These subgroup team leaders are equivalent to
the “player-coaches” on sports teams. Their knowledge, opinions, and coop-
eration should definitely be sought by the software project team.

For projects to be team-managed, a special team management group,
called a Release Management Council, needs to be created from the sponsor-
ing organization (e.g., executive management) and the project stakeholders.
The members of this group must understand two important complementary
principles: responsibility and authority. The team management approach has
very little chance of success if one person is given all the responsibility for
the software project but is given no authority to impose decisions on the rest
of the team. The reverse situation is also undesirable: A person who has all
the authority but shoulders no responsibility would most likely abuse that
power. Ideally, every member of the software project team will be given
clear responsibility and authority:

e Responsibility relates to the team members’ accountability for project
success or failure. That is, the group members must view the success of
the project as a team goal.

e Authority relates to the power to make or participate in the making of
decisions so as to achieve the team goals. These decisions must lead
to actions.

Thus, for any person to bear a certain amount of responsibility, that
individual must be given commensurate authority to take actions based on
the monitored project status. The people who are asked to participate in joint
(team) management of projects will, therefore, need both the responsibility
and the authority to make the necessary project adjustments (see Chapter 12).

FORMULATING A RELEASE MANAGEMENT
%" COUNCIL

Release Management Council is just a name given to a team of people,
including the software project manager, who are charged with setting goals

Formulating a Release Management Council

and policy, shepherding the project, ensuring that the best decisions are
made on a timely basis, and making appropriate adjustments as necessary.
The Release Management Council provides the project manager an explicitly
designated and recognized support mechanism. It allows the project manager
to formally practice team management.

Release Management Council A group of project-related people from
all areas of software development and support, including the software
project manager, who are given both the responsibility and the authority
to set goals, make decisions, take actions, and generally guide the proj-
ect to its successful completion and product release.

The members of the Release Management Council are picked from dif-
ferent parts of the organization that represent the major activities that need
to be coordinated through the project cycle. The Release Management Coun-
cil still needs a person who guides and leads the group, however; this person
is usually a midlevel manager or an experienced project manager. Typically,
the members of the council are team leaders who represent the following
project activity areas (see Figure 13.1):

e Customer requirements

e Design and architecture

e Implementation, coding, and information development
e Tools, techniques, and equipment support

e Testing

e Library and configuration management

e Quality assurance and measurements

e Customer support

¢ Finance

e Personnel

As shown by the dotted lines in Figure 13.1, the finance and human
resources representatives do not need to be full-time participants in the
Release Management Council, but they are an important part of the decision-
making group in that both finance and human resources affect the project
resources. Representatives from marketing/sales, education, and even cus-
tomers may be asked to directly participate in the council if there is some
specific topic that pertains to their areas. They are situated in the “outer
ring” in Figure 13.1.

Another exception is the representative from customer support, who
may join the council when the testing phase of the project begins. Some

Chapter 13 Release Management Council

\ Reqwrements Programming
/ Human
\ Resources
—— T~

Release Management
Council

Project
Manager

Customer
Support

Library/
Configuration
Administration

Tools and
Support

e N e ~N N

, , ’ \
// \\\ // \\\ // \

. Marketin

'\ Education | '\ aSa?es 9) '\ Customer |
\ / \ / \ /
\ / \ / N /

N i e i N i

Figure 13.1 Team management through a Release Management Council

project managers have argued that the customer support representative
should participate in the council from the project’s inception so that they
will be able to truly understand the customer requirements, the difficulties
encountered in design and programming, and the results from testing.

The other members of the council should be full-time members who par-
ticipate in the regular project status meetings. These individuals should not
carry full-time development or other assignment workloads, because their
duties on the Release Management Council will occupy a significant portion
of their time. Occasionally, some of the council members may be involved in
off-line meetings that deal with special-topic discussions and decision mak-
ing. If the project is large enough, each Release Management Council mem-
ber may be the team manager of each of the subgroups listed earlier. For
smaller projects, one member may represent two or more groups, such as the
tools support and configuration administration groups.

At the inception of a software project, if the team management concept
is adopted, then the Release Management Council concept should be intro-
duced as well. During the early stages of planning and organizing, represen-
tatives from the personnel and finance groups may play vital roles in the
council. These individuals do not necessarily need to be their respective
department managers. These departments are often organized in such a manner

The Release Management Mode of Operation

that the same individual participates in multiple projects. The person who is
assigned to work on a particular project should also serve on the Release
Management Council for that project.

The Release Management Council would then expand in size and in
membership as the project enters the active performing phase and manage-
ment enters the monitoring phase. The members need to be chosen carefully,
and their task descriptions should be part of the members’ normal personal
performance plans. Because these individuals are asked to help in the
broader project management decision making and coordination of the project,
they must have a propensity for taking on issues beyond their own specialized
fields of expertise or narrow departmental interests. They should also possess
excellent communication and negotiation skills. If one needs help in obtaining
these skills, many local and community colleges offer short, self-improvement
courses in these topics.

THE RELEASE MANAGEMENT MODE OF
¥ OPERATION

As noted earlier, the mode of operation of a project utilizing the release
management approach is that of a shared responsibility and shared author-
ity. As such, the Release Management Council members are also the stable
and constant attendees of the regular project status meetings. They partici-
pate in all the following activities:

e Sharing the data and information

e Analyzing and evaluating the information

e Making decisions and resolving problems

e Communicating the information

e Coordinating their own groups’ activities with other groups

Conducting the Release Management Council Meetings

For the regular project status meetings or any subsequent off-line meetings
(which involve fewer people than the regular status meetings), the ideal situ-
ations are face-to-face, in physically collocated meetings. Of course, with
today’s virtual teams and remote locations, the Release Management Council
members may very well be physically separated. If some of the council mem-
bers start communicating with some other members without being 100%

257

Chapter 13 Release Management Council

inclusive of the entire group, then the software project managers need to be
alert to the danger of formation of “subgroups” and cliques, especially if the
subgroups and cliques form on the basis of physical locations. The Release
Management Council meetings should be inclusive and mandatory for all
members, with no substitutions allowed. In fact, where release management
is practiced, the regular project status meetings should be similar to the
Release Management Council meetings, according to the Release Manage-
ment Council meeting agenda we discuss later. The Release Management
Council covers more than just the status of the project, however; it is also
involved in the planning, organizing, solution, and change decisions.

Minutes for each Release Management Council meeting should be
promptly compiled and sent out to all council members. This document
should summarize the project’s current status and serve as a prompter to fol-
low up on all open issues. These notes also provide an audit trail of the proj-
ect status and the corresponding decision-making process.

The status of open issues from the past meeting should be one of the
items reviewed at the beginning of each Release Management Council meet-
ing. It is important not to let past items continue rolling unchecked. If the
software project manager sees a particular item that is discussed repeatedly
without any resolution, then it signals that the problem should be decom-
posed into smaller subproblems so that specific actions can be taken to
resolve the subproblems. If the subproblems continue to be unresolved, then
further division may be needed until resolution or progress toward resolution
appears in the monitored data.

Release Management Council meetings should follow an agenda, prefer-
ably a fixed one. If the agenda is fixed, then it probably does not need to be
circulated in advance. The agenda should include the following topics:

e The status of unresolved items

e The status of risk items

e New, but regular, tracking data collected for this period by attribute
(such as schedule, functionality, quality, resources, and cost—the partic-
ular attributes targeted are predetermined each time the council meets)

e General inputs from the specialized areas represented by the various
council members

e A short discussion and scheduling of any off-line meetings

e The generation of status and follow-up open items

If the meetings follow the same pattern (i.e., a constant agenda) each
time, then the speed with which they are conducted will pick up. The soft-
ware project manager may choose to run the Release Management Council

The Release Management Mode of Operation

meetings or have a senior staff member conduct them. It is preferable to
have the software project managers themselves run the meetings, with senior
staff members performing the backup roles. That will also lend a certain
amount of weight to the Release Management Council; accordingly, the
meetings and the decisions, although jointly made, will be viewed with more
respect and gain more acceptance by the project team as a whole.

Making Decisions about Product Release

One key role that the Release Management Council performs is to decide on
the relative state of the product’s or project’s conclusion prior to the actual
release of the software artifact to customers. This decision is a simple one if
the project has been moving along and tracking close to the plan with a
negligible number of adjustments. The decision becomes more difficult, how-
ever, when the project has been showing any of the following signs:

e Constant and erratic deviations from the plan, even though each prob-
lem is resolved

e Tracking to plan but with a continuous and widening deviation from the
original plan, even though the deviation may still be within tolerable limits

e Tracking to plan all along, except for a sudden change just prior to release

The Release Management Council would have to make a final call prior
to releasing the product to the customers. If there are reasons to believe that
the product is not ready, then the council must hold the product release
back. This can be a very painful decision because of its implications for the
organization’s revenues, costs, or reputation, as well as the council members’
careers. The Release Management Council has several options that are available
to it in this difficult situation; these options vary and include the following:

e Flat-out delay of the project with no release to customers

e Release parts of the product, delaying the problem areas until the
problems are fixed

e Release the product to a small, controlled group of customers

e Release the product to everyone, but establish a superb customer
support group

A flat-out delay means that the product is not ready and more time is
needed for its development. All the negatives associated with a product
release delay, such as customer fears about the product’s quality and usability
and competitors’ innuendo about the lack of project control, should be
expected. Software project managers should be prepared to tackle both the

Chapter 13 Release Management Council

product problems, such as completing all the functions, and the associated
problems, such as reestablishing customer support confidence in the product,
created by the release delay.

The options of releasing only a portion of the product or releasing the
product to only a controlled group of customers can lessen the brunt of the
delay. There are many situations in which customers may be willing to take
an imperfect release. Perhaps the problem areas may not be needed until
later, when the problems will ideally be fixed in the final product. Alterna-
tively, the customer may have planned an installation/training period prior
to the actual usage of the software and be willing to take the not-so-perfect
version first to get a head start. If a partial or controlled product release is
planned, then the Release Management Council should always consult the
sales and marketing groups—or even the customers directly. The council,
which includes members of the organization’s support group, must ensure
that customer service representatives are aware of the conditions under
which these customers are accepting the release, that the customer support
group is properly and fully funded, and that the support resources are
trained and on board for such situations.

Finally, some software project managers and the Release Management
Council may choose to release the product anyway to the general customer
set to establish a marketing presence for it if the problems in the product are
deemed “non-life-threatening.” In such a case, the organization must take
anticipatory and preparatory actions to ensure that the customers will be
properly supported. In particular, the funding of the support group will need
to be substantial. Of course, there is always a risk of this strategy backfiring
and creating an early image of low quality.

B KEY CONCEPTS

Most software projects of significant size and complexity require the com-
bined knowledge of the entire software project team. In those cases, team
management is very much the preferred approach. For team management to
succeed, the members of the software project team must exercise both of the
following traits:

e Obtain authority to make decisions and take actions
e Accept responsibility for the outcome of the project

A management structure often utilized in software project is the Release
Management Council. The members of this group are chosen from the vari-
ous stakeholders of the software project; customers may be represented on

Suggested Reading

the council either directly or by personnel from the organization’s require-
ments and support groups. The Release Management Council participates in
monitoring the entire project, takes part in adjusting the project, and makes
the final decision about releasing the product or project to customers. In sit-
uations where the established project goals are all met, the decision is a very
easy one. When some of the goals are not met, however, it will require a
concerted effort by the Release Management Council members to develop the
potential options, assess the risks, make the adjustment decision, and take
the necessary follow-up actions.

M EXERCISES

1. Discuss the pros and cons of utilizing a team management approach
versus a single project manager approach in a large, ill-defined soft-
ware project versus a small, well-defined software project.

2. A Release Management Council may be formulated at various POMA
stages of a software project. When would you establish such a group
and why?

3. Imagine yourself as the leader of a Release Management Council. What
words of guidance (in terms of responsibility and authority) would you
say to the council members at the first meeting?

4. Discuss the various forms of release delays. Which one do you think is
most costly and why?

5. If you had to limit the Release Management Council to only five
members, which ones would you choose and why?

6. Consider a situation in which an irate customer calls in with a prob-
lem. Describe how software support personnel might usurp authority
without being responsible.

7. How should you, as the software project manager, react to the situation
stated in Exercise 6 above? Specifically, how would you explain the
concepts of authority and responsibility to your team?

M SUGGESTED READING

C. A. Bartlett and S. Ghoshal, “Building Competitive Advantage Through
People,” MIT Sloan Management Review, Winter 2002, 34-41.
M. E. Bays, Software Release Methodology, Prentice Hall, 1999.

Chapter 13 Release Management Council

R. Pressman, A Manager’s Guide to Software Engineering, McGraw Hill, 1993.

S. D. Teasley, L. A. Covi, M. S. Krishnan, and J. S. Olson, “Rapid Software
Development Through Team Collocation,” IEEE Transactions on Soft-
ware Engineering, July 2002, 671-683.

F. Tsui and L. Brooks, “Release Management of Non-Zero Defect Software,”
Proceedings of the PSQT/PSTT South Conference, March 2002.

Part Five
Additional Skills

Part Five discusses additional skills that are needed for effective project man-
agement. Some of these skills are generally applicable to all types of project
management; others are more specific to the software industry. The topics
covered range from teamwork to early software effort estimation.

The software industry continues to be a growth industry. Part of its
expansion involves the movement from being a product-oriented industry to
being a more services-oriented industry. At the same time that this trend is
occurring, a large amount of work is being outsourced. As noted earlier, some
of this work is performed at physically remote locations—even in different
countries. All of these trends have turned the task of managing teamwork
into much more of a challenge.

Chapter 14 discusses software project teams as they pass through a three-
stage life cycle—team formation, team development, and team maintenance.
Although special software skills are undoubtedly needed in such a team, there
are also some desirable personal traits for the team members to have, depend-
ing on the role each person is expected to play. This chapter may serve as an
extension to Chapter 6 on Human Resources.

As noted throughout this book, most projects inevitably go through some
degree of change. The concept of change management in software projects is
discussed in Chapter 15. Software is particularly likely to have requests for
change because, as stated in the Introduction to this book, it is often thought
of as just code. The control of all the software artifacts related to change
requests needs to be managed successfully. Change management was briefly

Part Five Additional Skills

mentioned in Chapter 12. Chapter 15 may be viewed as a companion to
Chapter 12 on Planned and Unplanned Adjustments and Actions.

Large software projects often have many complex prerequisite and coreq-
uisite relationships. The scheduling of a large number of such tasks may
require a more organized effort than simply eyeballing the tasks. As a result,
some scheduling techniques are a handy addition to the project manage-
ment’s bag of tools. Chapter 16 introduces the notion of a project’s critical
path and highlights different scheduling approaches focusing on early and
late start times. By examining the “slack times” of the tasks on the noncriti-
cal path, project managers may be able to vary the scheduling of these tasks.
Chapter 16 also provides definitions of PERT (a way to improve estimations)
and the critical path method (a way to make trade-offs in reducing the criti-
cal path length). This chapter serves as a natural extension to Chapter 2 on
Task Analysis.

The importance of understanding the requirements and implementing the
Work Breakdown Structure (WBS) concept prior to putting together a plan
and making commitments has been discussed earlier in this book. Because the
software industry is still so young, however, many customers may not be
experienced enough to appreciate the need for front-end work and, therefore,
may demand an early rough estimate of the project effort. Naturally, such an
estimate must be given with extreme care and plenty of caveats. Chapter 17
discusses ways to provide a general estimation of effort for software projects,
along with an example from Barry Boehm'’s Constructive Cost Model (COCO-
MO) technique. The content of this chapter, effort estimation, may be viewed
as an additional topic associated with Part One, the planning phase of POMA.

Chapter] 4

The Project Team

Chapter Objectives
This chapter discusses the following concepts:

e What the stages in the software project team life cycle are
e How a software project team is formed

e How a team can be developed so that it works effectively
e How a team is maintained

ﬁ PROJECT TEAM LIFE CYCLE

In today’s expansive technology world, very few software projects can be
completed by individuals. This statement is especially relevant as the software
industry grows to serve and cover more diversified areas. Although the life
cycle of a team may be described in many ways, it typically goes through
three stages:

1. Team formation
2. Team development
3. Team maintenance

It is important to recognize that a group of software specialists is just a
group—not a real team. The group becomes a team through proactive efforts
made by both the group members and the software project managers. Software

Chapter 14 The Project Team

project teams are not dramatically different from other project teams in that
regard; all sorts of teams need forming, developing, and maintaining.

A variety of tasks are required of software project managers to form,
develop, and maintain an effective software team. The amount of manage-
ment attention needed differs at different stages of the team life cycle, as
shown in Figure 14.1. In the initial stage, when the team is being formed, the
software project managers will expend an ever-increasing amount of effort
until the entire team is recruited.

As most of the team is brought on board, team building needs to start.
Most of the team-building activities with which the team members are asso-
ciated center on education and training in areas such as building trust,
improving negotiation skills, improving listening skills, accepting responsi-
bilities, and responding to pressure. The project managers must ensure that
there is enough time in the project schedule reserved for this type of training.

Developing a new and growing team takes a relatively larger amount of
energy and effort. Once the team is operational, effort is required for the con-
tinual nourishment and maintenance of the team until the project is com-
pleted; even a mature team requires ongoing maintenance. Thus the amount
of effort is never zero.

@ TEAM FORMATION

Large, complex software projects require technology specialists, application
subject area experts, customer support experts, and project management spe-
cialists, among other personnel. Obviously, one would like the software project
team to include the best people from each of these areas. In reality, having

Relative
Management
Effort

Developing

Forming Maintaining

Y

Team Stages

Figure 14.1 Management effort needed at various project team stages

Team Formation

“the best” from each area does not guarantee success for the project unless
these experts work together effectively as a team.

A team is not created overnight. People cannot be just thrown together
and then expected to quickly work out their differences by themselves.
Sometimes one may get lucky and the people just fall into place and cooper-
ate. Other projects might be delayed or fail utterly due to personnel conflicts.
Each individual on the team may perform a specific software engineering task
well. Because those tasks are interrelated, however, the software engineering
specialists performing them are themselves interdependent. To work effec-
tively, they must cooperate and follow a process that results in a synchro-
nized team effort. It is the duty of the software project managers to provide
the guidance and leadership needed to ensure that the team members share a
common goal, follow an agreed-upon process, and uniformly work toward
the successful completion of the project.

As described in Chapter 6, formation of the team—the human resources—
is one of the first steps in planning and organizing a software project. The
software project managers will first review the various tasks and decide on
the skills required to complete those tasks. The candidates must initially pos-
sess these technical skills. In addition, the team members should possess sev-
eral other behavioral characteristics, or “soft skills.” It is important to state,
at the outset, that no “perfect” person exists. Project managers should not be
looking or waiting for such a mythical candidate.

Technical Software Skills

Let’s look first at some of the technical skills required to carry out a soft-
ware project.

Technical skill A specialized skill in a subject that is needed to perform
the activities in that subject domain. The skill usually requires in-depth
knowledge and training in a scientific, engineering, or business discipline.

The following list identifies some general software development and sup-
port skills, one or more of which should be possessed by each of the team
members. The skill areas include:

e Database design

e Detail design, programming, and debugging

e Network and telecommunications design

e Applications high-level design and architecture
e Requirements solicitation and specification

e Test design and test script writing

267

Chapter 14 The Project Team

e Configuration and library control design and setup
e Tools setup and support

e Industry application subject matter design

e Customer problem analysis

e Customer problem resolution and follow-up

In addition to skills in these general areas, a complementary set of spe-
cific skills and experiences related to the tools that support these areas is
needed. These particular technical skills focus on experience in vendor-spe-
cific programming-language compilers, debuggers, editors, configuration
managers, code libraries, and so on. The software project manager should be
cognizant of the value of these tool-specific skills. The learning curve for
highly complex tools may be prohibitively long for schedule-sensitive proj-
ects, so having a ready-made expert can be a major advantage.

Many times, a single person may possess several needed technical skills.
When a person is brought on board, it should be clear what that person’s role
will be and which of that individual’s skills will be primarily used in that role.
On occasion, a person is brought on board to perform a particular role, such
as that of the lead programmer, but he or she also possesses other useful
skills, such as database design experience. Ideally, that person would be con-
sidered for a dual role and be willing to play the role of database design
“backup.” Unfortunately, many people with impressive skills come with
impressive egos, too. The presence of two people who are highly skilled in the
same area, such as database design, might very well turn out to be the source
of great conflict and a detriment to the team. The software project manager
must ensure that where skill overlap occurs, team members’ responsibilities
and roles are clear. He or she must continuously be on guard for any confu-
sion among the team members. If any question about a responsibility or role
crops up, it must be resolved immediately.

Soft Skills and Personal Traits

Aside from pure technical and applications skills directly related to the per-
formance of the software project’s tasks, managers should be looking for
other characteristics, many of which are “soft skills,” while forming the team.
These personal traits might include the following:

e Personal ambition
e Level of commitment to the team concept and to team members
e Interpersonal communications skill

Team Development

e Strongly held likes and dislikes or biases

e Amount of experience and type of experiences in working with others
e Attention to details

e Sense of urgency

e Energy level

e Major nonproject-related commitments

e Flexibility and maturity

Soft skill A nontechnical skill that can be utilized on multiple occasions
and is not restricted to any specific domain. Examples of soft skills
include listening and presentation skills.

These personal traits are often subtle, yet play a vital role in determining
the success of a team. Traditionally, software project managers tended to
focus on the technical skills and associated technical experiences of non-
management personnel. As a result, these soft skills and personal character-
istics were sometimes overlooked. Many successful managers have, at times,
temporarily sacrificed team morale and put up with a team member who has
some negative personal traits. Usually, this situation cannot continue very
long without the project manager eventually taking some corrective action.
A team member who places his or her personal ambition before the team’s goal,
for example, may very well kill a project. Similarly, a person who is more com-
mitted to his or her tennis game or to some other avocation than to the proj-
ect and to his or her professional career may be a drag to the overall project.

Every team needs a mix of personalities—strong, ambitious leaders as
well as less ambitious followers—for the team as a whole to work smoothly.
This balance of skills and characters needs to be taken into account while the
team is being formed. Throughout this process, however, the software project
manager should bear in mind that the initial recruiting of the team members
is based on a best “guess” and is no guarantee of later success. Even the best-
planned team can go awry if the initial assessment of a seemingly “perfect”
candidate turns out to be wrong. Also, the new member may have had some
erroneous expectations of the organization, which can later cause disap-
pointments and degradation in performance.

@ TEAM DEVELOPMENT

1017

Once a team is put together, it should not be left in isolation to grow, change,
and adapt to the changing environment in which the team must operate. The

Chapter 14 The Project Team

evolution of a group of people into a smoothly functioning team takes a long
time. The natural process is often characterized by trial and error, with
progress occurring in fits and starts. Such a slow process is often painful and
sometimes unsuccessful.

To smooth the way, the software project manager may need to intervene
in the team’s adjustment process. Necessary adjustments might even include
the extreme actions of dismissing some participants and changing the team
members. The following list identifies some key activities in which the proj-
ect managers should be actively involved so as to help the team evolve grace-
fully. These items will require constant management attention through both
formal and informal monitoring techniques discussed in Chapter 9. Many of
the tasks will be conducted through informal conscientious socializing. The
activities are not listed in any priority order, as they are all important.

e Ensuring that an ample amount of communication is taking place

e Ensuring that the members are treating one another with respect

e Ensuring that there is clear understanding of each person’s assignment
and role

e Ensuring that the team is not harboring a chronic laggard

e Ensuring that all team members understand and support the team and
project goals

e Ensuring that the team members are following the agreed-upon process

To promote effective team building and development, the software proj-
ect managers need to bring the members together and review these topics at
the inception of the project and as new members come on board. One of the
more popular methods that managers utilize to promote team building is to
sponsor a one- or two-day, off-site meeting. Typically, a motivational speak-
er is brought in, team games such as softball are played, individual character
tests are given to all team members, and all personnel attend lectures on
character traits. Sometimes, the team is asked to jointly perform a potential-
ly dangerous task, under the auspices of an expert, such as climbing a cliff.
The sharing of a risky experience is meant to create a strong bond through
trust, ensuring that the team members will later appreciate and understand
the need for interdependence in their software project.

In addition, team members’ behavior needs to be continuously monitored
through the project. The software project managers should perform conscien-
tious socializing with the team members and engage in informal data gath-
ering to pick up any nascent signs of team harmony or disorder (see Chapter
9). Such a sign may be as simple as a nonreturned e-mail. Disharmony in
communication usually signals that something is not working quite right.

270

Team Development

Perhaps a team member is just temporarily overwhelmed with his or her
workload—or maybe the problem is more dire.

With the advent of remote and virtual software project teams, communi-
cation is emerging as a major source of team-related problems. If the simple
courtesy of returning an e-mail or a phone call is not part of the individual’s
working etiquette, then that person may need management counseling on
“respect for the other team members,” “sense of urgency,” or “communica-
tions skills.” This counseling of employees is a key project management task
that requires some experience on the part of the project managers. It must be
guided by a single motive: to help the individual and, thereby, create a bet-
ter-functioning team. The offending team member must always be given an
opportunity to improve and change.

Repeated emphasis of team goals, team harmony, and clarification of the
roles of the individual team members is a task that some may view as “nag-
ging.” All software project managers need to understand that some aspects of
management do border on constant complaining. At the same time, this trait
of continuous and tenacious focusing on details is one of software project
managers’ major assets.

Sometimes the notion of team cohesion and spirit is stretched excessively.
Perhaps more capable members are carrying one or a small number of team
members and performing their responsibilities. Several reactions to this situ-
ation are possible:

e The team does not seem to mind carrying the laggard(s).

e The team minds the situation but does not want any change.

e The team minds the situation and is waiting for management actions to
fix it.

In all cases, the laggard needs to be counseled by the project manager.
That person should be asked to pick up his or her part of the team’s respon-
sibility. In the case in which the team does mind the situation, the project
manager must “fix” matters or risk having a demoralized team. This resolu-
tion may require further training of the team member, if a skill problem is
involved. A change of assignment may be another possibility. Ultimately, the
potential solution may include the dismissal of the offending team member if
all efforts to improve the situation fail.

The problem-action handling matrix in Figure 14.2 describes what the
project manager should consider as potential actions when faced with some
personal trait problem. Let’s look at the matrix and the associated actions,
starting with the upper-left corner and proceeding clockwise. As stated earlier,
when there is a problem and team members are concerned, the situation must

271

Chapter 14 The Project Team

Team members Team members

concerned not concerned
Existence of a Manager must take Manager must consider
personal trait problem immediate action some future action
Nonexistence of Manager must monitor Manager may monitor
personal trait problems continuously for problem intermittently

Figure 14.2 Problem-action handling matrix

not be ignored. The specific action taken by the manager depends on the prob-
lem at hand. At a minimum, the manager must investigate and understand the
problem, develop a solution for it, discuss the solution with the offender,
explain the solution to the affected team members, and implement the solution.

In the second scenario, even if the team is not concerned with the prob-
lematic situation at the present time, the project manager must consider some
future action to resolve it. Once again, the specific resolution of the problem
depends on the type of the problem. In extreme situations, it may include the
dismissal of the employee from the next phase of the project. Such problems,
if neglected for a long period, could eventually affect the morale of the other
team members.

The last two cases, in which there is no problem, just requires continuous
monitoring of different degrees. The project manager should always be per-
ceptive to changes in the team, but not turn this monitoring into an obsession.

Continuous monitoring and adjustments are necessary to mold any group
of skilled people into a smoothly functioning team. The team members them-
selves must diligently try to work out their differences. The project managers,
in turn, must give the team members a certain amount of time for them to
become acclimated with one another and with the team culture; if this step is
omitted, every little problem could escalate into a large one and eventually
wind up in the software project managers’ offices. By working out some of
the small differences by themselves, the team members will become bound
together, resulting in a much stronger team.

All teams take effort and time to formulate and develop. Some project
managers are so highly cognizant of the value of a harmonious team that
they try to recruit the same group of people whenever they move on to a new
project or to a new environment. This trend is evidenced in many corporate
cultures where new CEOs and senior managers are chosen from within the
company to preserve the existing team harmony and team culture. Of course,
a contrary school of thought advocates bringing in new blood so that the
team or the company will not become complacent and noncompetitive.

272

Team Maintenance

@ TEAM MAINTENANCE

Once the team is functioning, continual nourishing of it is still required.
Effective software project managers are continuously involved in the follow-
ing team maintenance activities:

e Reward

e Punishment
e Attrition

e Growth

Rewarding Team Members

When the project is progressing well and milestones are being met, the team
members need to have positive feedback. Giving awards is one of the most
pleasant tasks for managers, yet somewhat tricky. Although the project suc-
cess is attributable to the team effort, it may also owe its success to a few
individuals’ extra effort. Recognizing those individuals is important, but the
software project managers should always acknowledge the efforts of the team
as a whole.

For example, prior to handing out any individual award, the significance
of all the players should be emphasized and the interdependence of the team
members should be brought out. The individual award should be stated as an
acknowledgment of individual effort made above and beyond the team effort.
Such a reward-giving event should be public, as any award handed out in
private will always be viewed with suspicion of favoritism.

Punishing Team Members

Although it is important to bring the entire team into the reward spotlight,
the reverse situation is a little different. When an individual’s performance or
behavior requires counseling, the software project manager should not bring
the entire team together and speak vaguely about the concern. Rather, the
project manager should bring the individual into the manager’s office, be
very clear about the problem, and offer the individual the opportunity to
change and improve. In these counseling sessions, the project manager
should stay focused on the individual’s problem and not wander into discus-
sions about the team. If multiple problems exist, it is best to address each

273

Chapter 14 The Project Team

negative issue separately. However, all problems need to be resolved as soon
as possible.

For example, we often encounter problems of developers not responding
promptly to problems discovered during testing. If someone is either deliber-
ately being unresponsive or just being slow, that person needs to be brought
in for counseling quickly, before the problem queue becomes so deep that it
jeopardizes the test schedule. The resolution of the problem, depending on the
cause, may range from a private warning, to a shift in the workload, to a
change in assignment, to dismissal of the team member.

Handling Team Attrition

No matter how well a project is working and how happy an individual is,
there is always the possibility of attrition. If a person has chosen to leave the
project, for whatever reason, the project manager should offer him or her the
opportunity of an exit interview with another manager (e.g., the human
resources manager). This exit interview will allow the departing person to
express more candidly the reasons for leaving. From the exit interview feed-
back, the software project manager may be able to gather some information
relevant to improving the team. If there is truly some room for improvement
of the team, the project manager will have to take the appropriate action.

Oftentimes, the departing employee’s criticism relates to some perceived
unfairness or favoritism. This type of feedback is crucial because other team
members may feel the same way but not be willing to express their views
openly. Most people conclude that favoritism is exactly that, and cannot be
changed. The manager needs to first ascertain the truth of the “accusation.”
If the allegation is true, then he or she should change the situation starting
with an apology. If it is not true, then the manager must decide how to pre-
vent others from developing the same false impression and take appropriate
preventive action.

In any event, the departure of a team member should always be shared
with the rest of the team. In addition, any planned action to replace that per-
son needs to be shared with the team. The team should never be left with a
feeling of the unknown. Such a feeling will sometimes stimulate false fear,
especially if the individual who left is a key team member. If the departure of
a person emanated from some real problem, as long as it is nonpersonal, that
problem should be shared with the team. In the same breath, the project man-
ager must offer up how he or she is planning to handle the problem.

274

Key Concepts

Team Member Growth

As new members are brought on board due to team growth or replacement,
the software project manager must make a special effort to explain the team
composition, the underlying dynamics, and the expected rules of behavior,
along with the formal process and procedures followed by the team. One
potential way to acclimate the new member to the team is to tag the new
member to an existing member. This mentoring arrangement often will accel-
erate the new members’ introduction to the project and to the team. For this
mentoring mechanism to work effectively, the aforementioned tagging of
each new employee to an existing team member should be done in a formal
manner. That is, the mentor needs to be trained in the skills of mentoring, the
workload of the mentor should be reduced, and the mentoring period should
be specified. The new member should also be formally informed of the role
of the mentor and the expectations for the new employee during the men-
toring period should be outlined explicitly.

As a part of efforts to grow the team, the senior members of the team
should continuously be given leadership roles such as the mentoring of new
and less experienced team members. Other methods of developing and culti-
vating the team members may include providing special assignments to help
other projects, short-term assignments as assistants to senior management,
and sabbaticals to train in new technology or new processes.

M KEY CONCEPTS

The software project manager plays a key role in the formation, development,
and maintenance of a project team. The relative effort expended by the man-
ager is skewed toward the periods involving the formulation and the devel-
opment of a project team.

The group of individuals assigned to a project becomes a team through
proactive efforts made by both the group members and the software project
manager. In the formation phase, team members are selected on the basis of
both technical skills and behavioral qualifications (“soft skills”).

Once a team is put together, it needs time to evolve into a smoothly func-
tioning unit. Along the way, the software project manager may need to inter-
vene in the team’s adjustment process and definitely needs to monitor its per-
formance. The important activities of monitoring and adjusting can be trans-
lated into a more general problem-action handling matrix, which can help
the project manager decide which actions to take.

275

Chapter 14 The Project Team

Maintenance of the project is essential to ensure that the team continues
to function smoothly. Team maintenance activities include those focused on
doling out rewards, meting out punishments, handling attrition, and provid-
ing for team members’ growth.

M EXERCISES

1. From the soft skills and personal traits list, pick three traits that you
believe are especially important for teamwork and explain why you
think they are more important than the other choices. Would your list
be different if you were only concerned with individual performance?

2. Discuss how much time you, as a project manager, would be willing to
spend discussing (1) the departure of a team member and (2) the addi-
tion of a new team member. List the items that you would discuss in
each occasion.

3. Refer to the problem-action handling matrix (Figure 14.2); what are
some of the “immediate” actions that you might take if a problem aris-
es and the team members are concerned? For the case in which the team
members are not concerned, what are some future actions that you
might consider taking?

4. Briefly describe the three stages in the project team lifestyle and discuss
one item in each stage that may present difficulties to a project manager.

5. Consider the situation in which the project team is jointly performing
coding and testing. Describe a situation in which you believe an indi-
vidual member deserves an award and a situation where an individual
deserves a punishment.

6. Give an example where team members are not treating each other with
respect. What are some of the choices of action for management?

7. What is the difference between a group of professional software engi-
neers and a team of software engineers? (Review the list of actions that
managers must ensure during the team development period.)

M SUGGESTED READING

R. Cross, W. Baker, and A. Parker, “What Creates Energy in Organizations?”
MIT Sloan Management Review, Summer 2003, 51-56.

276

Suggested Reading

W. S. Humphrey, Introduction to the Team Software Process, Addison-Wesley,
2000.

W. Humphrey, The Team Software Process, Technical Report CMU/SEI-2000-
TR-023, November 2000.

R. B. Hyman, “Creative Chaos in High Performance Teams: An Experience
Report,” Communications of the ACM, October 1993, 57-60.

D. Phillips, The Software Project Manager’s Handbook, 1EEE Computer
Society, 2000.

K. A. Smith, Project Management and Teamwork, McGraw Hill, 2000.

S. D. Teasley, L. A. Covi, M. S. Krishnan, and J. S. Olson, “Rapid Software
Development Through Team Collocation,” IEEE Transactions on Software
Engineering, July 2002, 671-683.

277

This page intentionally left blank

Chapter] 5

Change Control

Chapter Objectives
This chapter discusses the following concepts:

e How the changes that characterize all software processes can be managed
e What impact analysis is

e Which techniques are used to decide on change request denial or acceptance
e How the cumulative effects of changes can be handled effectively

It is well recognized that software projects are particularly prone to
changes, in large part because there is a general belief that software can be
easily modified. This maleability is in fact both a strength and a weakness:
Changes may be made in software, but must be implemented with care. The
worst situation occurs when changes are allowed without proper control. To
prevent this type of “change control chaos,” the software project team
should develop and follow a change control process.

Change control process A set of information and a sequence of activi-
ties used in the tracking and managing of a change request from its
inception to its closure.

The processes, methodologies, and tools needed to manage change
requests must be designed ahead of time. The process and people resources
needed as part of the management of change requests, described in this
chapter, should also be set aside, trained, and properly included in the proj-
ect plan and budget.

279

Chapter 15 Change Control

@ AN EXAMPLE CHANGE REQUEST PROCESS

1017

Every change to the product or to the process should start with a baseline,
which represents the first, formally defined version of a product or process,
and go through a change control process. The product change control
process depicted in Figure 15.1 will be used in this chapter as the basis for
discussing the different factors that influence how changes are managed
with an organization.

The change request may come from anywhere, but it needs to be formal-
ized so that it can be traced back to its source, if that step becomes neces-
sary. A change request form, which represents a formal method for
submitting a change request, may be a paper-based form or part of an on-
line system. At a minimum, it should include the following items:

e The requester’s name

e Date of the request

e Request description

e Reason for the request

e Priority of the request

e Preferred date of completion

<
<

Request Denied

Change > Review of
Request Change Impact
Y
—> Accept (B) Store All Related
Material
[Process and Schedule for *
< T Follow-on
ools
Release
Make Appropriate
<—>»| Personnel Plan Changes
<«€«—>»| Schedule *
Complete the
Close Change Request ¢

Figure 15.1 Product change control process

Change Impact Analysis

e Funding source for the request
e Areas known to be affected by the requested change

Once the request form is filled out, it should be submitted to a “catcher.”
The catcher is a handler who may be on-line or off-line, but in any event is
someone who should be designated to formally take charge of the request.
This handler might be the software project manager, the Release Manage-
ment Council, or a special change request administrator.

Upon its submission, the change request needs to be reviewed and
assessed in terms of its implications for other parts of the software project.
The change impact analysis (discussed in detail in the next section) will list
and describe the items that are affected, including the following areas of
consideration:

e Schedule

e (Cost

e Human resources

e Processes and tools

e Product content and size

e Product marketing strategy

Although Figure 15.1 does not show this particular situation, sometimes
the change control process also needs to take into account how a change
request affects the customers’ work flow and work environment. For exam-
ple, suppose a change request for a data entry screen asks for the inclusion
of a new input field. Imagine that this new input field requires the person
who keys in the data to look up some information if the default data
defined for that field do not apply. Then an additional procedure explaining
where to look up information and how to pick the information to enter
needs to be defined and made available to the users of the modified data
entry screen. Thus this change request to the software requires an associ-
ated modification in the users’ work procedure that must be defined, docu-
mented, and disseminated.

@ CHANGE IMPACT ANALYSIS

Software impact analysis identifies the effects of a software change request.
As noted earlier, these effects may manifest themselves in a variety of areas.
Each impact needs to be somehow quantified and prioritized. That is, a

Chapter 15 Change Control

measurement scheme must be designed such that each change request may
be gauged in relation to other change requests. Examples of quantifying
some of the impacted areas follow:

e A schedule impact may be designated with values ranging from 1 to 4,
where 1 means a schedule impact of one to two days, 2 means an
impact of one to two weeks, 3 means an impact of one to two months,
and 4 means an impact exceeding two months.

e A personnel impact may also be designated with values ranging from 1
to 4, where 1 means a slight assignment change to one person, 2 means
two to three people are involved in the change, 3 means one-fourth of
all team members are involved in the change, and 4 means half or more
of the team members are involved in the change effort.

e A cost impact is very key to the decision process and may be directly
quantified, by using the schedule impact, the personnel impact, and the
conversion of those impacts into dollars. For example, a schedule impact
of 1 and a personnel impact of 2 would convert to (2 days X 3 people) =
6 people-days of impact. This value may be further converted to (6 peo-
ple-days X z $/person-day) = 6z dollar of cost impact. The computation
of cost impact with a change request that has a personnel impact value
of 3 would be a little more complex in that the term “one-fourth of all
team members” needs to be converted to a numerical figure first.

In the above examples, note that the assigned numerical values all
increase as the impact to the project is perceived to increase. This uniformity
makes the computation and the decision process for acceptance a little eas-
ier. The actual measurement scheme may be designed differently, with the
particular metrics depending on the type of software project at hand. After
each impacted area is quantified, the change requests can be compared by
area and possibly ordered.

Furthermore, each impacted area may be assigned a numerical weight.
The aggregate or the weighted average of the impacted areas may serve as a
single index to represent the change request. Then a cut-off criterion needs
to be defined, and all those requests that fall within the cut-off criterion may
be accepted. The definition of a cut-off criterion may be as simple as “the
requests with the top five indices.” Such a prioritization scheme makes the
decision-making process for accepting (or rejecting) a change request more
objective and organized. The actual cut-off criteria would depend on many
parameters, including the past history of the project team and the project
managers’ experiences.

Change Request Denial or Acceptance

@ CHANGE REQUEST DENIAL OR ACCEPTANCE

Based on the impact analysis and the review of the results, the project man-
agers must decide whether to accept the change request or to deny it. In the
event that the request is denied, that fact must be communicated back to the
requestor, along with a reason for the rejection. The denied change request
itself may or may not be stored and kept for future usage.

If the change request is accepted through the Accept (A) path shown in
Figure 15.1, then all of the affected items needed to be marked and assem-
bled. In addition, a plan for performing the change must be formulated.
The actual change activity is then scheduled, performed, and tracked to
completion. Upon completion, the change request is closed and the
requestor is notified of the new status. A typical accepted change request
that goes through this path might be a customer requirement change to an
input field size or format caused by a change in the customer’s business.
For example, in the merger of two companies, often the product codes of
the merged companies would need to be expanded. This will prompt a
change request related to the input field size or input format for the order
processing software, and this change request will have to be immediately
accepted, quickly worked on, and brought to closure. Such a change
request, which has a high business impact, will definitely be under tight
change control.

It is also possible to accept a change request, but not be able to
accommodate it within the current release date or budget. In that case, the
Accept (B) path in Figure 15.1 is taken and the change request is held for
scheduling into a future release. The requestor is informed of the decision
and given a probable timeframe for the earliest release that may contain
the requested change. An example of an accepted change request that is
held for a future release is the case in which a small number of influential
customers request an extension to an existing function. This type of
change request will usually be delayed and put into a plan for implementa-
tion with a set of change requests that affect the same software areas (e.g.,
design and code).

The complete change management may be performed via an on-line
work-flow tool—usually a proprietary system built with some collaborative
processing tool such as IBM’s Lotus Workflow—that moves the work order
from one area to another, from one status to another, and from inception to
end. If such an on-line tool does not exist, then the organization must main-

Chapter 15 Change Control

tain a “paper trail” for the change from inception to closure. This informa-
tion should be placed into a file so that it can serve as a repository for con-
sultation and analysis of future change requests. Alternatively, a
configuration management tool such as Merant’s PVCS or Atria Software’s
Clear Case may be used to help manage the changes. (Clear Case was later
acquired by Rational, which in turn was acquired by IBM.) A configuration
management process tool, as mentioned in Chapters 4 and 7, allows the
tracking and managing of all pieces of the software artifacts. As such, it can
readily be applied to change request control.

% CUMULATIVE EFFECTS OF CHANGES

A small change in a software artifact can have huge ramifications for both
the end product and the work effort required to develop that product. A typi-
cal small change in a database field, for example, might generate the follow-
ing changes:

e Design and code changes to all areas that utilize that field

e Modifications to all affected help scripts and user documentation
materials

e Reviews of all changes

e Development of new test scenarios and test scripts

e Running of new test scripts and re-running the old test scripts

e Fixes for any related problems from the tests

e Updates to the library and change control tools

e Locking and promotion of the successfully changed material

e Communication of the completed change to all interested parties

Even experienced software engineers are often surprised by how much
effort is required to complete a seemingly simple change. The complications
come not necessarily from the initial change itself, but from the “ripple
effect”—the effect of related work that can dramatically affect both schedules
and costs. It has been said that a change request may lead to one line of
altered code but result in one week of effort to complete that change request.
Imagine the cost of that one line of modified code—and how incredible it
would sound to the original requestor. The software service support person-
nel and quality assurance personnel will be painfully familiar with the simi-
lar way in which costs can balloon when a small fix needs to be introduced
into the product.

Cumulative Effects of Changes

How Hard Can It Be to Make a Simple Change?

The author’s personal experience as a manager for IBM’s JES3 product
offers a good example of how an apparently simple change can lead to
unexpected complications. JES3 was the I/0 component of IBM's MVS
operating system. A change request that required modification of about
six lines of code ended up taking approximately two months of work.
The changes spanned several modules, and they affected the interfaces
to both the database product and the network product. This multiple-
product effect necessitated performing regression tests over both the
database and the network products. The two months of work across
three product organizations meant that a change request that required
only six lines of code change cost approximately $50,000! Interest-
ingly enough, this lesson seems to get relearned with every new gener-
ation of software engineers and project managers.

Although the time and effort spent in analyzing an individual change
and its consequences may not be a problem, the cumulative effects of a con-
tinuum of change requests can be staggering, evolving into a full-time job
for a small group of people. Furthermore, to fully and accurately assess the
change request impact, the team managing the change process must have
good knowledge of the product and all items associated with it. Most soft-
ware projects are not well equipped to handle the extra workload required to
even assess these requests. The required work for change management is
similar to that involved in requirements management, another process whose
complexity is often underestimated. It takes a very disciplined software proj-
ect management team to insist on proper change management. And insist
they must.

Another important aspect of change requests that the software project
managers need to be aware of is the requests’ psychological effect on the
team. If there is a cyclical and flip-flopping chain of change requests made,
the project team may decide not to perform any changes until the requestor
can make up his or her mind. Even when the changes are not flip-flopping
but seem to be concentrated in some specific functional area, the feeling of
instability will sometimes cause the project team to feel helpless and demor-
alized. This kind of vacillation occurs often when the team is developing
software artifacts that will enter a new or unfamiliar marketplace that both
the customers and the requirements analysts are still exploring.

Chapter 15 Change Control

In this type of situation, the software project manager must step outside
of the normal change management process (i.e., outside the process depicted
in Figure 15.1) and ask for a review of the reasons for such a large number
of change requests. Such a review may be undertaken by the Release Man-
agement Council (discussed in Chapter 13) or, if it is requirements-related,
by the Software Product Management Board (discussed in Chapter 2). It is
the software project manager’s responsibility to shield some of these change
request activities from the mainstream project that is under development.
This step, which is not part of the normal change control, is performed at the
project manager’s discretion.

M KEY CONCEPTS

Software projects are particularly prone to changes, in large part because
there is a general belief that software can be easily modified. In reality,
changes may be made in software, but must be implemented with care. To
prevent change requests from wreaking havoc on the software project team,
all change requests should be managed through a change control process.

The following impacts of a change must be considered when one is
making the acceptance or rejection decision:

e Schedule

e Cost

¢ Human resources

e Processes and tools

e Product content and size

¢ Product marketing strategy

Furthermore, the project managers must consider the cumulative effects
of multiple changes that result from one change request. The complications
come not necessarily from the initial change itself, but from the “ripple
effect”—the effect of the related work that can dramatically affect both
schedules and costs.

M EXERCISES

1. How could the product strategy and market share impact be folded into
the impact analysis of a change request? Devise a metric that could be
included in the cost.

Suggested Reading

2. Assess the resource implications of an organization that receives 50 to
100 change requests per month versus that of an organization that
receives 5 to 10 change requests per month. Discuss what types of
adjustments a software project manager would have to make as the
software change requests vary so dramatically.

3. Design a change request form and explain the relevance of each field
on the form.

4. Conmsider the change request form designed for Exercise 3 and desig-
nate those fields that represent key areas that should be included as
criteria for an acceptance or rejection decision. Discuss why you chose
those fields as part of the decision criteria.

5. Using the change request form designed for Exercise 3, trace a request
through the product change control process diagram (Figure 15.1).
Indicate how the form may be used to track the work flow through the
change control process, modifying it as necessary.

6. Consider the situation where your team has just completed the design
of a small on-line purchasing application, much like a book-ordering
application from amazon.com. The marketing organization has decided
to expand into Central and South America and is requesting that there
be a Spanish version of this software. Discuss all the items that your
team needs to consider and simulate an impact analysis for this request.

M SUGGESTED READING

M. E. Bays, Software Release Methodology, Prentice Hall, 1999.

E. H. Bersoff, “Elements of Software Configuration Management,” IEEE
Transactions on Software Engineering, January 1984, 79-87.

S. A. Bohner, “Impact Analysis in the Software Change Process: A Year
2000 Perspective,” International Conference on Software Maintenance
Proceedings, IEEE Computer Society Press, 1996, 42-51.

Clear Case User Manual, Atria Software, 1992.

PVCS tool, www.merant.com.

287

www.merant.com

This page intentionally left blank

Chapter] 6

Task Scheduling

Chapter Objectives
This chapter discusses the following concepts:

e How tasks are represented in tabular and graphical formats

e What critical and noncritical paths are

e How forward- and backward-pass scheduling methods—both early
start/early finish and late start/late finish—are used

e How total slack time and free slack time are computed

¢ How the Program Evaluation and Review Technique (PERT) can improve
estimation

e What the critical path method (CPM) is

e How a calendar schedule for the project can be created

Chapter 16 should be viewed as introducing a set of techniques that may
be applied to and enhance task analysis, a topic that was discussed in detail
in Chapter 2.

TASK SEQUENCE AND EFFORT
%" REPRESENTATION
Software projects are composed of multiple, differing tasks that require dif-

ferent skills to complete. Nevertheless, all tasks share at least two basic
characteristics:

e Required effort in terms of person-days needed to complete each task
e A specified order for processing the tasks

Chapter 16 Task Scheduling

Table 16.1 Task Sequence/Effort Table

Immediate Effort
Tasks prerequisite tasks (Person-days)
A None 9
B A 5
C A 7
D B,C 11
E D 8

Some person or a group of people must perform each task. In software
activity scheduling, the tasks should initially be broken down to a level
where each task may be assigned to one person. This strategy allows the
effort to be measured in terms of person-days or person-months. The tasks
are also ordered in that some tasks will have prerequisite tasks that must be
completed prior to their initiation. Tasks sometimes may be carried out in
parallel. In that case, the parallel tasks are independent of each other and
thus may be performed simultaneously.

The project tasks may be represented in a simple table like Table 16.1.

The project represented in Table 16.1 is composed of five tasks: A, B, C,
D, and E. There is a sequential order of tasks starting with A. Tasks B and C
may be performed in parallel after the completion of A. However, Task D
cannot start until both B and C are completed. The last task, E, cannot start
until D is completed.

The total effort required is 40 person-days. If each task is assigned to
one person and performed without any parallelism, then this project would
take a total of 40 elapsed days. In project management, of course, one is
always looking to minimize the schedule. Thus Tasks B and C may be
assigned to two different people and performed in parallel. This strategy will
shrink the total time for the project to 35 days, because Task C still takes 7
days even though it overlaps with the 5 days required for Task B.

This tabular representation of tasks may be easily converted into a
graphical task network representation. A graph is commonly defined as a set
of nodes and edges where an edge connects two nodes. Our graphical net-
work representation of tasks here may be viewed as a directed graph. For
deeper mathematical discussions on graphs, ordering, and algorithms, please
consult Donald Knuth’s book listed in the “Suggested Reading” section of
this chapter. There are really two paths if one were to represent the project in

Critical Versus Noncritical Paths

~
S’

Figure 16.1 Graphical representation of tasks from Table 16-1

a graphical task network form as in Figure 16.1. This diagram assumes that
Tasks B and C are carried out in parallel, and the task network representation
depicts the task ordering a little more clearly. The tasks are labeled inside the
nodes, and the effort required to complete each task is placed on the arrow
after that task. Thus the 9 days on the arrow leading from Task A to Task B
represents the 9 person-days effort required to complete Task A. A special
node, End, is included to accommodate the task effort arrow of Task E.

@ CRITICAL VERSUS NONCRITICAL PATHS

The dotted line in Figure 16.1 shows the longer of the two paths—that is, the
maximum-length path for this particular project. The maximum-length path
in a task network is also called the critical path. The critical path is defined
as the path that takes the most time units to complete.

Critical path The path that takes the most time units to complete.

As an example, consider the tasks in Figure 16.1 as program modules
that must be coded and unit-tested prior to the beginning of functional test-
ing. Although modules A, B, C, D, and E must all be completed before the
functional testing starts, the path that includes program modules A, C, D,
and E is the critical path because it is the longer of the two paths. Any delay

Chapter 16 Task Scheduling

in completing module A, C, D, or E will delay the start of functional testing.
In contrast, a small delay in completing module B (not more than two units)
will not delay the start of the functional testing.

The required total elapsed time for the project may be estimated by
adding together the effort estimates of all tasks lying on the critical path.
This summation answers the question, “How long will the project take?” In
the case represented by Figure 16.1, the dotted-line path requires 35 days, so
the project will require 35 elapsed time units at minimum.

The tasks that reside on the critical path are called critical activities or
critical tasks. For the project managers to reduce the total elapsed time for
the project, at least one of the critical tasks must be completed in less time.
Similarly, any delay to or lengthening of a critical task’s time of completion
will elongate the critical path, thereby delaying the project’s completion.

Critical task (critical activity) A task that resides on the critical path.

There may be more than one path that is the longest path—that is, there
may be several "longest” paths that are equal in terms of required elapsed
time. Thus the project may have multiple critical paths. In the case of multi-
ple critical paths, a delay of a critical activity on any one of the multiple
critical paths will delay the entire project. If the elongated critical task is
unique to one of the multiple critical paths, then the result of that task elon-
gation is the creation of a new unique critical path.

A noncritical path is shorter than the critical path in that the sum of the
efforts of all activities on a noncritical path is less than the total effort for
the critical path. In Figure 16.1, the only noncritical activity is Task B,
because it is the only activity that resides on a noncritical path and does not
simultaneously reside on a critical path.

Noncritical path Any path that is not a critical path and thus takes less
effort (e.g., time) to complete than the critical path.

Noncritical task (noncritical activity) Any activity that resides on a
noncritical path, which may accept some delay in completion, but does
not also reside on a critical path. Note that a task that resides on both a
critical path and a noncritical path is a critical task.

Thus the activities residing on a noncritical path are defined as noncriti-
cal tasks. These noncritical activities may be delayed somewhat without
affecting the actual project completion time. Consider the noncritical Task B
in Figure 16.1. Its completion may be delayed up to two days without affect-

Forward- and Backward-Pass Scheduling of Tasks

Table 16.2 Early Start/Early Finish Scheduling

Task Task Earliest possible Earliest possible
Tasks precedence length start time (ES) finish time (EF)
A None 9 0 9
B A 5 9 14*
C A 7 9 16
D B,C 11 16 27
E D 8 27 35

ing the project completion time. In scheduling the complete set of project
tasks, there is usually some room for setting the start and end times of these
noncritical tasks without affecting the project as a whole.

FORWARD- AND BACKWARD-PASS
" SCHEDULING OF TASKS

There are two major ways to schedule activities:

e Early start (ES) and early finish (EF)
e Late start (LS) and late finish (LF)

Consider Table 16.2, which is a continuation of the previous example.
The tasks are now shown with their earliest possible start time (ES) and cor-
responding earliest possible finish time (EF), while preserving the existing
precedence and order relationships.

In early start/early finish scheduling, a forward pass is taken through the
project tasks. All tasks are started as early as possible and thus all end as
early as possible. Table 16.2 begins by scheduling Task A, which takes 9 time
units to complete. Note that while Task B is actually completed at time unit
14 (shown with an asterisk in Table 16.2), the beginning of Task D must wait
for the completion of Task C, which is not finished until time unit 16. Thus
starting Task B later does not affect the project as a whole. Delaying Task
B’s completion by two or fewer time units will not affect this project’s
overall schedule.

The same project may be scheduled with the late start/late finish
approach, as shown in Table 16.3.

Chapter 16 Task Scheduling

Table 16.3 Late Start/Late Finish Scheduling

Task Task Late start Late finish
Tasks precedence length time (LS) time (LF)
A None 9 0 9
B A 5 11* 16
C A 7 9 16
D B,C 11 16 27
E D 8 27 35

The late finish and late start times are established by taking a backward
pass through the tasks of the project. From Table 16.2, it can be seen that the
last task, E, ends at time unit 35. One may also look at the critical path of
the project and determine the total project time; the total project time units
can also be used as the end time of the project. Working backward from that
end point, 35, Task E must start at time unit 27 because it takes 8 time units
to complete. Task D, which precedes E, thus must end at time unit 27 and
start at time unit 16. Tasks B and C must both end at time unit 16. Continu-
ing the backward tracing of the task network, Task B does not need to start
until time unit 11 (shown with an asterisk in Table 16.3), while Task C must
start at time unit 9. Finally, to start Task C at time unit 9, Task A must finish
at time unit 9 and start at time unit 0. Task A, for its LF time, chose the ear-
liest LS times of its successors. That is, when choosing between LS time unit
9 of Task C or LS time unit 11 of Task B, Task A should pick 9. In late
start/late finish scheduling, any task faced with multiple choices for its late
finish time should pick the earliest of the late start times of its successors.

Using late start/late finish scheduling, Task B, which is the noncritical
activity in this project, may start as late as time unit 11 and not affect the
overall project schedule. Compare the start time of Task B in this case, which
is at time unit 11, to that in Table 16.2, which is at time unit 9. There are two
units of time difference—the same two time units of delay discussed earlier.

@ SLACK TIMES

1017

Total Slack Time

In our example, Task B has two time units of freedom. This period is called
its total slack time. The total slack time of an activity is defined as the differ-

Slack Times

ence in start time between a noncritical task’s LS time and its ES time. It is
the difference between the latest time at which a noncritical task can start
and the earliest time at which it can start. Note that total slack time is only
applicable to noncritical activities, because there cannot be any difference in
start times for critical tasks.

The slack time of a task is defined as follows:

Total slack time of a task = LS - ES

or
Total slack time of a task = LF - EF

Total slack time of an activity The difference in start time between a
noncritical task’s late start time and its early start time or its late finish
time and early finish time.

Total slack time The maximum allowable delay that can occur for all
noncritical activities.

The difference between the LS and ES for a noncritical task is the same
as that between its LF and EF. In the current example, the only noncritical
activity is Task B. The total slack time of activity B is either LS - ES (11 - 9)
or LF - EF (16 -14). In either case, the difference is two time units.

In project scheduling, the total slack times of the various noncritical
tasks provide a certain degree of freedom in starting and completing those
tasks. Once its total slack time is used up, however, a noncritical activity will
turn into a critical activity.

Free Slack Time

Sometimes software project managers need to know whether a noncritical
task with a nonzero total slack time can actually be delayed without affect-
ing the start time of its immediate successors. Consider the case of a noncrit-
ical path that contains several tasks, whose individual total slack times are
all nonzero. Delaying a task that has a total slack time of x by x amount of
time may delay the start time of some immediate successor task, which may
in turn negate any total slack time that was available for that successor task.
Conversely, if using up the total slack time of a task by delaying that task,
does not affect the start times of its immediate successor activities, then that
total slack is considered free slack time.

Chapter 16 Task Scheduling

Free slack time of an activity Amount of time that an activity can be
delayed without affecting the start times of any of its successor activities.

To see how this works, let’s return to our example. The total slack time
of Task B is two time units. Delaying Task B by two or fewer units will not
affect the early start time of any of its successors. In this example, Task D is
the only successor, and Task D’s early start time will not be affected by B’s
two-unit delay. Thus the two time units may be considered the free slack
time for Task B.

The free slack time of a task is defined as follows:

Given a noncritical task X,
Free slack time of X = ES (of the earliest successor of X) - EF of X

The definition of free slack time of a task X requires one to pick the ear-
liest ES time from the ES times of all of the immediate successors to X. If X
had only one successor activity, then the ES time of that task would be used
in the computation of free slack time.

In the task network of Figure 16.2, the critical path includes three activi-
ties: A, C, and F. Those activities require a total of 30 time units. The two
other paths, A-B-D-F and A-B-E-F, have total times of 23 time units and
25 time units, respectively. Only Tasks B, D, and E are noncritical tasks and
may have any total slack time or free slack time.

Note: The task completion time units appear inside each circle shown in Figure 16.2.

Figure 16.2 Task network

Slack Times

Table 16.4
Early Start/Early Finish and Late Start/Late Finish Data
Corresponding to Figure 16.2

Task Task
Tasks precedence length ES EF LS LF
A None 10 0 10 0 10
B A 5 10 15 15 20
C A 15 10 25 10 25
D B 3 15 18 22 25
E B 5 15 20 20 25
F C,D,E 5 25 30 25 30

We can convert Figure 16.2 to a tabular form to show both the ES-EF
and LS-LF data. Such a table will make the computation of total slack time
and free slack time easier to comprehend.

The three noncritical tasks of B, D, and E may all have total slack time
and free slack time. Following are the computations for each of these non-
critical tasks.

For Task B:

Total slack time = LS - ES =15-10=5

Free slack time = earliest successor ES - EF of Task B = ES of Task D -
EF of Task B

15-15=0

For Task D:
Total slack time = LS - ES =22 - 15=7
Free slack time = earliest successor ES - EF of Task D
= ES of Task F - EF of Task D = 25 - 18 =7

For Task E:
Total slack time = LS - ES=20-15=5
Free slack time = earliest successor ES - EF of Task E
= ES of Task F - EF of Task E = 25 - 20 = 5

Task B has two successor tasks, D and E. In this case, both D and E have
the same ES, which is 15. Thus either Task D or Task E may be used in the

297

Chapter 16 Task Scheduling

preceding computation of Task B’s free slack time, Task D’s ES was used. If
the ES of Task D and the ES of Task E differed, then the earlier of the two
ESs would have been chosen. For Task B, even though the total slack time is
5 time units, there is no free slack time. Delaying the completion of Task B
will affect the early start time of its earliest start successor, which, in this
case, includes both Task D and Task E. Thus delaying Task B may not be a
good idea until the effects on its successor tasks are assessed.

Consider the situation in which Task B is completing a key module,
Task D is conducting a performance test, and Task E is conducting a user
interface test. Without getting into the exact time units and scheduling,
one can see that the effect of a delay to user interface testing, Task E,
will be larger because it usually involves a longer and more complex
testing effort.

Task D has a total slack time of 7 time units and a free slack time of 7
time units. Thus delaying task D’s completion by 7 or fewer time units will
not delay any of its successors’ early start times. Similarly, Task E has a total
slack time of 5 time units and a free slack time of 5 time units. Delaying the
completion of Task E by no more than 5 time units will not delay any suc-
cessor’s early start time. When the total slack time of a noncritical task is the
same as its free slack time, that activity may be delayed by the total slack
time units without further considering the effect on its successors. In this
example, both D and E have their total slack times equal to their free slack
times, so these tasks’ completion times may be delayed by their respective
free slack times.

IMPROVING ESTIMATIONS: THE PROGRAM
%" EVALUATION AND REVIEW TECHNIQUE

Each task’s estimated effort plays a crucial role in the overall task network
and scheduling. The computations of start and finish times, slack time, and
free slack time all heavily depend on the initial estimation of the effort (time
units) required to complete the tasks. The more accurate the estimation, the
more meaningful the task scheduling.

There are many ways to improve these kinds of estimates. For instance,
one can create a range of estimates for each task and then take the average
of the range estimates. This technique of averaging the ranges eliminates
some of the variability of the estimates.

Improving Estimations: The Program Review and Evaluation Technique

For example, our estimates for a Task X may be obtained by consulting
three experts. Suppose these experts give us the following three estimates: 6 time
units, 9 time units, and 3 time units. Which estimate should we use? We can
choose the middle one to minimize our risk. One way to choose the “middle”
one is to take the average of the three estimates: (3 + 6 + 9)/3, or 6 time units.

One specific averaging method is called the Program Evaluation and
Review Technique (PERT). PERT was developed as part of a U.S. government
program associated with the U.S. Navy’s Project Office in the 1950s. This
technique utilizes three estimates for a task: the most optimistic estimate, the
most pessimistic estimate, and the most likely estimate of the task. These
three estimates are then manipulated to provide an expected estimate of a
task as follows:

Expected estimate = [0 + P + (4 X A)]/6

where
O = most optimistic estimate
P = most pessimistic estimate
A = most likely to happen estimate

Program Evaluation and Review Technique (PERT) An estimating
technique that assumes each activity duration is subject to a range of
estimates and uses a weighted averaging method to arrive at a specific
duration figure.

Using the expected estimates of all critical path tasks, PERT will provide the
expected project time as the sum of the expected estimates of the critical tasks:

Expected project time = SUM (EE of critical task)

where
SUM = summation function
EE = expected estimate value of the task effort unit

Software project managers should keep in mind that all three of the esti-
mates used with the PERT methodology are just that—estimates. That is, they
are only as good as the Work Breakdown Structure activity performed dur-
ing the project planning phase. The final expected estimate is just a weighted
average of these component estimates.

Chapter 16 Task Scheduling

REDUCING SCHEDULES: THE CRITICAL PATH
¥ METHOD

Once the project schedule is estimated, the software project manager may be
faced with an unacceptable project end date. Because the critical path deter-
mines the project schedule, it makes sense to review the critical tasks to
determine whether any one of them might have its required time units
reduced. With software project tasks, the most popular time reduction method
is to apply more human resources to a task to trim its schedule. It is also pos-
sible that one will not find any critical task whose task length can be reduced.

A Word of Caution

Software project managers must always heed the age-old warning: Do
not blindly increase human resources in software projects. More often
than not, the introduction of new people into an ongoing software
project will actually extend the project time. As Fred Brooks has
pointed out in his book The Mythical Man-Month, the addition of new
resources to an already-delayed software project must be undertaken
with care. New personnel will often require education and information
updates from the very people whose time is most critical to the project.
To reduce the schedule for a particular activity by applying more peo-
ple to it, that task must have independent portions that may be broken
out and assigned to multiple people. In a sense, that task must be
decomposable into several independent subtasks.

Assume that there are several critical tasks whose schedules might be
shortened without incurring many negative effects to the project as a whole.
Now the software manager faces a choice: Which one should he or she pick
as a target? One strategy is to consider the cost required to reduce the task
length. Specifically, the critical path method (CPM) reviews all critical tasks
whose schedules may be reduced by comparing the cost-to-effort ratios of
those tasks.

Critical path method (CPM) A procedure for estimating the trade-offs
between project duration or schedule and project cost.

The effort will be expressed in terms of time units here. This ratio is
expressed in the form of a cost slope, which is defined for each critical task
as follows:

Reducing Schedules: The Critical Path Method

Cost slope for Task J = [C; - C)'| [| T} - Ty|

where
C,; = cost of the resource to perform Task J
C,” = cost of the resources to perform Task J with “improved” time
T, = time required to complete Task J
T," = “improved” time required to complete Task J

Here the absolute value is used so that the negative slopes will be con-
verted to positive values.

In Figure 16.3, a critical task J has its task time reduced from T, to T},
and there is a corresponding increase in cost from C; to C;". The cost slope
for Task J is depicted by the relative increase in cost, (C; - C,’), divided by
the relative decrease in time or effort, (T, - T;"). To avoid the use of negative
numbers, one may use the absolute values.

The cost-time or cost-effort relationship for all critical tasks should be
investigated if the goal is to trim the project’s schedule. The CPM technique
assesses these critical tasks and attempts to improve the overall project
schedule by following these steps:

1. Compute the cost slope for each critical task whose time needed for
completion may be reduced.

2. Pick the critical task with the lowest cost slope, as it will be the most
cost-effective to trim, and apply the necessary resources.

3. Remove the critical task picked in Step 2 from consideration as a
future pick.

A
c/ e G T
\\
Cost \\\
c e G T)
Time

Figure 16.3 Cost-time network

Chapter 16 Task Scheduling

4. Ask whether the desired project schedule is achieved with the applica-
tion of additional resources to the just-picked critical task.

5. If the desired project schedule is achieved, then stop. Otherwise, repeat
Steps 1-4 until the desired result is reached or until all critical tasks
are exhausted.

In applying the CPM, the software project manager might potentially
find a way to break a critical task down into a series of subtasks that may be
performed by multiple personnel. This change—breaking a critical task into
multiple tasks—can, in turn, cause another path to become the critical path.

@ CREATING A CALENDAR SCHEDULE

The tasks and the project schedule need to be ultimately converted into a
calendar format. This calendar schedule, which will show weekends, holi-
days, and other pertinent dates, will be the preferred form from which the
software project managers will conduct their monitoring and adjustment of
the schedule. Once the tasks are laid out in calendar form, the managers may
decide to adjust the schedule even further. For example, they might decide
that implementation of some tasks may overlap. Of course, this adjustment
must be done with a careful review and understanding of the details of each
particular task.

There are many automated calendar/schedule tools—for example,
Microsoft’s MS Project, Primavera’s SureTrak Project Manager, ProChain
Solutions’ ProChain Project Scheduling, and Smartdraw’s Business and
Charting software—that software project managers may use to facilitate cre-
ation and manipulation of the schedule. Currently, MS Project is the most
popular software tool in project management.

Each manager needs to decide how much effort he or she wants to put
into choosing/using tools and how much effort he or she wants to put into
analyzing the schedule. The analysis of the schedule is a critically important
aspect of management. The actual manipulations of databases and figures in
a timeline or calendar tool may be relegated to some administrative support
personnel, however. Certainly, the schedule adjustment process is made
much easier with an automated tool. At the same time, because these
tools facilitate making changes, software project managers must be extra
careful and thoroughly think through all consequences before tweaking
the schedule.

Creating a Calendar Schedule

Table 16.5 A Calendar Schedule

i Team
Activity member Days of Week
M|T|W|Th|F|S|S|M|T|W|Th|F|[S|S|[M|T|W|Th| F
A Tom
B Sally
C Jill
D Tom
E Sally |

Table 16.5 shows an example of a calendar. It illustrates the assignments
of tasks, people to their tasks, and planned task lengths given in days.

The calendar schedule is expressed down to the specific day of the week.
Weekends are not included as work days in the schedule. Also, any known
personal vacation day, such as the second Friday for Jill in Table 16.5, is
noted in the schedule. After looking at the people assignments, the software
project managers may further adjust the initial task length estimate to better
fit the productivity rate of each person. The supposedly “final” schedule may
still need adjustments when viewed in the calendar form, so the software
project managers should demand that the tabular and network graphical rep-
resentations of the tasks schedule be converted to this form.

B KEY CONCEPTS

The result of the Work Breakdown Structure activity is a project task net-
work, which may be depicted in either a tabular or graphical representation.
The graphical representation allows for easier viewing and spotting of differ-
ent task paths, including critical paths. The tabular representation allows for
easier representation of scheduling results.

Both forward- and backward-pass scheduling methods are employed
with software projects. Two approaches are possible, based on the task start
and end times:

e Early start and early finish
e Late start and late finish

Chapter 16 Task Scheduling

A critical path is the path—the series of tasks—that takes the most time
units to complete. A noncritical path is necessarily shorter than the critical
path. For noncritical tasks, the possibilities of schedule delay or slippage can
be examined by computing two measurements: total slack time and free
slack time. A task that has free slack time may be delayed without causing
any delays to its successor activities.

In an attempt to improve the estimation of effort for each task, the Pro-
gram Evaluation and Review Technique (PERT) was developed in the 1950s.
With PERT, one takes a weighted average of the most optimistic estimate,
the most pessimistic estimate, and the most likely estimate to develop the
expected estimate of the effort needed to complete the project as a whole.

Another technique seeks to improve the overall schedule by assigning
more resources to shorten the time required to complete critical tasks. The
critical path method (CPM) assesses the potential cost of trimming the sched-
ules for the various critical tasks (by improving the cost slope of each critical
task), enabling software project managers pick the best option. This process
continues until the desired project schedule is reached.

The project schedule should be placed into a graphical bar chart form so
that it is easier to view and any further adjustments may be easily made.

M EXERCISES

—

. Can a noncritical path include a critical task? Show an example.

2. Can a critical path include a noncritical task? Show an example.

3. For the task network shown in the diagram below, perform the following:

a. Identify the critical path.

b. Develop a table that shows the early start, early finish, late start,
and late finish for all tasks.

Task B
5 days

Suggested Reading

4. Using the diagram in Exercise 3, compute the total slack time and free
slack time for the following:
a. Task D
b. Task B
¢. Explain your answers.

5. Explain how the PERT method reduces the risk in estimation.

6. Suppose that the cost of reducing 1 day of effort from each of the tasks
in the above diagram in Exercise 3 is represented as follows:

Task A—$1,000, Task B—$1,200, Task C—$900, Task D—$500, Task E—
$850, Task F—$1,800

Based on the CPM methodology, which task will be a candidate for
first round of schedule reduction?

7. Transform the task diagram in Exercise 3 to a calendar schedule simi-
lar to that in Table 16.5 (include week ends) based on the following
Task-People assignments:

Task A-Jill, Task B—Tom, Task C—Jill, Task D—Sam, Task E—Susan,

Task F—Ken

a. Assuming that the people can be interchanged in the performance
of tasks, do you need to employ all these people?

b. Rework the calendar schedule to use the minimum number of
employees without elongating the schedule.

c. If Task B were a special task that only Tom could perform, then
what would your calendar schedule look like?

M SUGGESTED READING

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1975.

K. A. Cori, “Fundamentals of Master Scheduling for the Project Managers,”
in R. H. Thayer, ed., Software Engineering Project Management, 2nd ed.,
IEEE Computer Society, 1997, 171-182.

C. F. Gray and E. W. Larson, Project Management: The Management Process,
Irwin McGraw Hill, 2000.

D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental
Algorithms, 3rd edition, Addison Wesley Longman, 1997.

J. M. Nichols, Project Management for Business and Technology: Principles
and Practice, Prentice Hall, 2001.

K. A. Smith, Project Management and Teamwork, McGraw Hill, 2000.

This page intentionally left blank

Chapter] 7

Effort Estimation

Chapter Objectives
This chapter discusses the following concepts:

e How informal effort estimation techniques are used

e How a general estimation model works

e How the original COCOMO estimation technique fits within the context
of the general estimation model

ﬁ INFORMAL EFFORT ESTIMATION

Effort estimation is an essential part of all project planning. Estimation of
any kind of work that involves some amount of design is more of an art
than a science, however, because so many parameters affect the actual esti-
mation that it is almost impossible to have considered all cases. The first
question is, “What are the relevant parameters that affect the work being
estimated?” Even if all possible parameters are considered, still more ques-
tions may remain unresolved, including the following:

e How much does each parameter contribute to the total effort estimation?

e How can the amount of each parameter’s contribution be converted into
some numerical form?

e How do the parameters affect one another?

e How would these effects be combined?

307

Chapter 17 Effort Estimation

The software industry and software project managers face this same set
of questions, all of which point to the lack of good metric definitions related
to estimations. Historically, software project managers have based many of
their estimates on some form of “consulting the expert”:

e Consult other peer managers who have past experience in the work

e Engage consultants who have experience in similar work

e Draw analogies to past projects that seem to have similar characteristics

e Break the project down into its various components and ask the compo-
nent owners to provide estimates based on their experience and knowl-
edge of their own specific work area; then combine their estimates into
an overall project estimate

For many software project managers, this practice of consulting the
experts and using past experience has worked well. These managers are for-
tunate, because in many other cases the software project lacks any clear
precedence. Also, many of the experts or people with extensive past experi-
ence are not always available to the software project managers. Experienced
managers—and especially those who are able to retain their key team players
from project to project—will continue to draw upon their past experience and
utilize this informal approach to effort estimation.

A more precarious situation arises when a particular target goal is
“handed” to the project team. This goal may come from the customers, from
the organization’s executives, or from the marketing organization. Examples
of goals include the following:

e The project must be completed by a certain date.
e The project must be completed within a certain budget.

When these types of goals are “mandated,” they often do not include
much detail. For example, the goals may not necessarily allow for variations
in the expected functionality. Thus they may be distorted forms of informal
estimations of effort that are simply handed to the software project teams.
When this happens, the result is almost predictable: The project usually
misses the goal. Alternatively, the mandated goal may be met, but the prod-
uct functionality or product quality target may be missed. In addition, some
negative project attributes, such as exhausted employees and a demoralized
team, may creep in and turn into a sudden outburst of mass team resistance.
(Readers who are interested in additional examples and deeper analysis
should refer to the Standish Group report mentioned in the Introduction or

General Estimation Model

Capers Jones’s book, Patterns of Software Systems Failure and Success,
listed in the “Suggested Reading” section at the end of this chapter.)

@ GENERAL ESTIMATION MODEL

It is important to have as accurate an estimation of effort as possible. The
effort estimate is used as the input for estimating other key project parame-
ters, such as schedule and resources. These estimates all play a vital part in
the project planning phase of POMA.

In software estimation, several models have been developed to push and
improve the state of the art. That is, several groups of software researchers
have constructed effort and cost estimation models. To date, these models
have produced mixed results and encountered mixed receptions.

Software effort estimation model A set of information and relation-
ships organized for the purpose of estimating the effort needed to com-
plete a software project. The information and the values assigned to the
information may vary from project to project. Similarly, the relation-
ships may be organized into a mathematical equation, which may vary
from project to project.

Most of the models use the following general form, or its derivative, to
estimate effort:

Effort = (a + [b X (Size®)]) X PROD(f’s)

where

a, b, ¢ = statistically derived coefficients or best approximations
Size = estimated size of the project

f’s = factors that influence the project estimates

PROD(f’s) = the product of arithmetically multiplying those factors

Many software engineers and researchers have studied a variety of proj-
ects from different disciplines in an attempt to find the best estimation
model. The coefficients a, b, and ¢ were derived by fitting the best curve
against known data for the Effort and Size parameters for those projects.
Effort is usually the amount of person-months expended on a project. Size is
usually the number of lines of code created as part of the project.

Chapter 17 Effort Estimation

<
£
7
7/
7/
7/
. \
Effort Estimating with
(person- linear equation
months) where ¢ is
equal to 1

Estimating with
nonlinear equation

Size (000 lines of code)

Figure 17.1 Effort estimation

Figure 17.1 shows two cases with the same set of data points. In one sit-
uation, the coefficient ¢ is estimated as 1, and the estimation equation
becomes a linear one. In the second situation, c is estimated to be larger than
1, and the estimation equation becomes nonlinear.

The relationship between the Size and Effort parameters was first estab-
lished without a clear understanding of the other factors that affect the effort
required to complete a project. In the early days, experienced managers
would estimate the project size from past experiences and then do a mental
calculation of effort required, based on that particular team’s productivity
history. This “mental calculation” took into account the various factors that
affect the productivity (f’s) and the a, b, and c coefficients that determine
the shape of the curve.

The Size Factor

The estimation of project size starts the process of effort estimation. This fac-
tor provides a feel for the magnitude of the product as well as the project.
Unfortunately, the size estimate continues to be a source of contention, for
several reasons.

First, the Size metric itself is a problem. If it is measured in terms of
“lines of code,” there must be a clear definition of and agreement on what a
line of code is. This topic has generated debate within the software commu-
nity for years and certainly has introduced everyone to the variations possi-
ble in the definition of a line of code.

General Estimation Model

How Do You Define Lines of Code?

Although “lines of code” as a metric for software size has spurred
many debates, it continues to be used by many software project man-
agers. This metric is also the one with the longest history, despite the
objections raised to it.

One objection focuses on whether a line of code should include only
executable code. If so, how do we handle comments included in the
code for clarity and documentation purposes? Certainly, some work is
required to write meaningful in-line documentation, and that effort
should be part of the effort estimation.

Another area of controversy centers on the programming language. Is
a line of code written in the assembler language the same as a line of
code written in C++ or JavaScript? The effort required to develop a
function with assembler language versus a high-level language is
surely different. How do we account for that difference in a line of
assembler language code and a line of code in high-level language? Is
there a convenient and acceptable conversion table?

A third debate considers whether a line of code is a physical line, like a
line of text in a book, or a logical line, where the end of the line is deter-
mined by the specific end-of-line delimiter defined by that language.

These debates have prompted software engineers to seek “better” met-
rics for software Size.

More recently, function points have been introduced as a possible alter-
native for the Size parameter. The reference materials listed at the end of this
chapter offer further discussions of lines of code and function points as met-
rics for software development effort.

How Do You Define a Function Point?

A “function point” is a metric for measuring the size of software, pro-
posed as an alternative to the lines-of-code metric. First proposed by
Allan Albrecht, it estimates the amount of functionality, as opposed to
the number of lines of code used, in the software.

Chapter 17 Effort Estimation

Briefly, the value of a function point is estimated by following this set
of guidelines:

1. A value is assigned to each of five attributes—inputs, outputs,
inquiries, master files, and interfaces—in the software. These five
attributes represent the five functional components of a software,
and each is assigned a weight. The value assigned to each attribute
is then multiplied by the respective attribute weight. The weighted
attributes are summed to give an initial estimate of function points,
called the unadjusted function point.

2. Fourteen factors related to the software are used to adjust the initial
estimate. These factors include considerations such as portability,
reusability, performance criteria, and distributed data needs. Each
factor is assigned a value ranging from O to 5. The sum of the values
of these factors multiplied by 0.01 plus a constant value of 0.65 is
used to adjust the initial estimate (i.e., the unadjusted function
point). This sum, which is called the total complexity factor, may
range from 0.65 to 1.35. The lowest value, 0.65, is the result of all
14 factors taking on the value of 0: total complexity factor = 0.65 +
[0.01 X (0 X 14)]. The highest value, 1.35, is the result of all 14 fac-
tors taking on the value of 5: total complexity factor = 0.65 + [0.01
X (5 % 14)].

3. The function point is computed by multiplying the unadjusted
function point and the total complexity factors. One may view the
function point estimate of a software as the unadjusted function
point estimate that has experienced a 14-factor adjustment. The
unadjusted function point may go through as much as a 35% up or
down swing as a result of multiplying it by a value between 0.65
and 1.35.

To promote and ensure that the function-point estimates, and espe-
cially the 14 factors, are performed with consistency and accuracy, a
nonprofit organization called International Function Point Users Group
(IFPUG) provides education about and certification of function-point
estimators. Consult the IFPUG Web site (www.ifpug.org) for further
information.

www.ifpug.org

General Estimation Model

Aside from reaching agreement on how to define Size and which metric
to use, software project managers must recognize that estimating project size
is no easy task. If the project size estimation will be performed with just a
high-level set of requirements, most software project managers will utilize
the “consult the expert” approach or depend on their own past experiences.
Most of the effort estimation takes place during the planning phase, long
before any code is actually written. Sometimes code prototypes may be cre-
ated for a small portion of the project solely for the purpose of estimating
the size of the final product. Thus estimating the size of the project for the
Size parameter in the general effort estimation equation can start to look as
difficult as estimating the effort itself.

Other Factors Affecting Project Effort

In addition to the project size factor, the effort required to accomplish a
project depends on the conditions under which the project is being under-
taken. For example, many software project managers know from experience
that programmer productivity is a key factor but can be highly variable.
Thus the team’s membership is a critical criteria. The software development
and support processes will also affect the effort. For example, a process that
includes three levels of testing (e.g., functional, component, and system test-
ing) will require more work, and therefore more effort, than a process that
includes only functional and system testing. The maturity of the organiza-
tion, as measured in terms of its working with an established process, is
another important factor. The type and amount of tools used for the project
may significantly influence the team’s productivity as well. Certainly, the
attributes of the end product, besides its size, are important. For example, if
a certain new technology must be part of the end product, then much more
risk—and possibly more effort—is involved.

All of the preceding factors—the f’s in the general effort estimation
equation—affect the project, and thus they must be considered when the
software project managers are estimating the effort required to complete that
project. Having a standard list of factors to be considered for estimation
would generally help them in this endeavor for two reasons:

e A list will serve as a reminder.
e A list will bring some consistency to what the software project managers
consider.

Chapter 17 Effort Estimation

Once the list of factors is established, the next issue is to assign values
to these factors. Unfortunately, a parameter that one manager considers to
be highly relevant may not be seen in the same way by another manager. A
particular tool may be viewed as extremely important by one manager, while
a second project manager may consider the key personnel issue to be more
important. Thus the team needs a methodical way to interpret each situation
and assign values to these factors in a consistent manner.

The influencing factors (f’s) may also be interrelated. The question of
how to account for the combined effects of all of these factors continues to
pose a perplexing challenge. Depending how we want to combine the effects,
we may assign values to the factors differently. In the general effort estima-
tion equation, the arithmetic multiplication operation is used as the integra-
tion mechanism to combine the relevant factors. If a factor is given a value
of 1 when it is considered to have only a nominal effect on the project,
given a value greater than 1 when it results in more effort, and given a posi-
tive fractional value when it saves effort, then “multiplying” the factor val-
ues may be the correct operation. Conversely, if one assigns the value 0 as
the nominal case, some positive value when the factor affects the project
negatively (more effort), and some negative value when the factor affects the
project positively (less effort), then “adding” the factor values may be the
better operation. If the multiplication operation was utilized for this second
case, then there is a chance of getting a result of zero for the effort when
only one factor is zero. That is, the combined effect of all the factors will be
deemed “nominal,” even though that most likely is not the case. The integra-
tion operation of the multiple factors and the assignment of values to these
factors must be carefully considered for one to adopt and adapt the general
effort estimation equation for a specific project.

Most of the estimation formulas follow the general equation given ear-
lier, in which the factors are multiplied. The nominal situation where the
factor is considered to be nonessential is given the value 1. The multiplica-
tive product of all influencing factors will be greater than 1 when the cumu-
lative effects of all factors are negative (more effort). In such a case, the
estimated project effort will exceed the effort in the situation in which only
the size of the project is considered. Conversely, when these factors are a
positive influence on the project, the multiplicative product of the factors
should be less than 1. In this case, the total estimated project effort, after
multiplying by a fraction, will be less than the effort in the situation in
which only the size of the project is considered.

The COCOMO Effort Estimation Model

% THE COCOMO EFFORT ESTIMATION MODEL

One specific example of the general effort estimation equation and method-
ology is Barry Boehm’s estimation technique, called the Constructive Cost
Model (COCOMO), which Boehm developed and initially tested with more
than 60 projects at TRW. COCOMO has been used by a number of software
project managers, especially those in the aerospace industry and those work-
ing on government projects. Boehm’s first model was introduced in the early
1980s, and it has since gone through several versions. The basic concept has
not changed, however, and the variations on the original model still follow
the same general formula. In this chapter, the original model will be dis-
cussed to demonstrate how it conceptually works.

COCOMO includes three levels of models: a macro estimation model, an
intermediate-level model, and a more detailed, micro estimation model. The
intermediate-level model is used as an example here.

The general process of using COCOMO is as follows:

1. Pick an estimate of what would be considered the “nominal” develop-
ment effort of the project. The “nominal” effort may be viewed as the
“typical” mode of development. Three nominal project modes are
defined: Organic, Semidetached, and Embedded. These three project
mode names were given by Boehm and are further defined and
explained in the next section and in Table 17.1.

2. Pick an estimate of the size of the project to use for the Size parameter.

3. Review the factors that influence the project, called cost drivers, and
estimate the appropriate amount of influence that each factor will have
on the chosen “nominal” case.

4. Determine the effort for the software project by inserting the estimated
values into the Effort formula.

Identify the Nominal Mode of Development

The three nominal modes of development (Organic, Semidetached, and
Embedded) are used to initially determine the type of project that is under
consideration. The following key project characteristics are used to differen-
tiate between the modes:

A: The team’s understanding of the project objective
B: The team’s experience with similar or related projects

Chapter 17 Effort Estimation

C: The project’s need to conform with the established requirements

D: The project’s need to conform with established external interfaces

E: The need to develop the project concurrently with new systems and
new operational procedures

F: The project’s need for new and innovative technology, architecture, or
other constraints

G: The project’s need to meet or beat the schedule

H: The project’s size range

One of the three modes of development is picked as the “typical” case
based on how the project matches up against this set of key characteristics.
Table 17.1 provides a guideline.

The Organic mode consists of projects that are fairly easy and familiar to
the software development team. The Semidetached mode involves projects
that are medium-sized and somewhat familiar to the software development
team. The Embedded mode consists of complex projects that may be unfa-
miliar to the project team. One must be cautious when using these summary
statements, however; they should serve as only a starting point in the deci-
sion process when choosing the most appropriate mode for the project esti-
mate. Table 17.1 provides the actual definitions for these three project

Table 17.1
Modes of Development Used in COCOMO
Key project
characteristic Organic mode Semidetached mode Embedded mode
A Detailed degree Considerable degree Only general degree
B Extensive amount Some amount None to modest amount
C Only the basic ones | Considerably more All and full conformance
than the basic ones
D Only the basic ones | Considerably more All and full conformance
than the basic ones
E Little to some Moderate amount Extensive amount
F None to minimal Some Considerable
G Low Medium Must
H Less than 50,000 50,000 to 300,000 All sizes
delivered lines delivered lines
of code of code

The COCOMO Effort Estimation Model

modes, and it should be consulted so that project managers do not just
“guess” at the project modes.

An untrained software project manager might not be able to easily pick
the correct mode. Very few projects’ characteristics will all fall neatly within
any one of the mode categories. Instead, most projects will have key charac-
teristics that will fit within different columns in Table 17.1. The software
project manager would have to do his or her best in estimating the mode of
the project, possibly by picking the column that has the most number of key
project characteristics.

A software organization or a corporation would need to establish a con-
sistent methodology for choosing what it considers the typical mode of the
project. Each key project characteristic must be interpreted in a consistent
way, and what is considered to be the minimal, moderate, or extensive level
for each characteristic needs a more detailed explanation. After a certain
amount of experience in using the definitions, the organization will gener-
ally settle into a consistent usage pattern.

For each of the three modes, a different formula is used for estimating
the Effort:

Organic: Effort (in person-months) = 3.2 X (Size)'%°
Semidetached: Effort = 3.0 X (Size)!1?
Embedded: Effort = 2.8 X (Size)!20

where Size is expressed in lines of code (loc).

One of the three formulae will be used to perform the preliminary esti-
mate of the effort in person-months. The formula employed will depend on
which mode was chosen as the typical case for the project.

Estimate the Size of the Project

The next step is to estimate the size of the project. This size has traditionally
been expressed in the form of delivered lines of code. As discussed earlier,
the metric of “lines of code” has a long history and has inspired its share of
controversy. Nevertheless, it continues to be used by many software managers.

Other managers have adopted function points as a metric. With this
metric, the coefficients used in the formula need to be modified. There is
much less history with the coefficients in the case of function points, how-
ever, because most of the COCOMO estimates have utilized lines of code.

317

Chapter 17 Effort Estimation

Nevertheless, an appropriate time to use function points as the size estimate
is when the project is at an early stage and estimating lines of code is much
more difficult.

One potential source of guidance for estimating with function points is
the new COCOMO II model, which is mentioned later in this chapter.
COCOMO II offers an estimation equation in the following form:

Effort = 2.45 X (Size)"™ PROD(f’s)

Here, the Size estimate may be in either function points or lines of code.
PROD(f’s) is a product of several factors that influence the project, and the
exponent m varies in value depending on the project situation. If the project
is large and there is a lot of communications and integration overhead, then
m > 1. If the project has a high potential for savings due to better tools, bet-
ter processes, or better people, then m < 1. If the project has neither great
overhead nor great savings, then m = 1.

Review and Assign Values to the Cost Drivers

As mentioned earlier, in the original COCOMO model, a set of 15 factors—
known as cost drivers—influences the project. These factors are assigned a
range of values, but then each specific factor needs to be assessed and
assigned a specific value. These 15 factors are listed here by category:

Product Attributes
1. RELY: Required software reliability
2. DATA: Database size
3. CPLX: Product complexity

Computer Attributes
4. TIME: Execution time constraint
5. STOR: Main memory constraint
6. VIRT: Virtual machine complexity
7. TURN: Computer turnaround time

Personnel Attributes
8. ACAP: Analyst capability
9. AEXP: Applications experience

The COCOMO Effort Estimation Model

10. PCAP: Programmer capability
11. VEXP: Virtual machine experience
12. LEXP: Programming language experience

Project Attributes
13. MODP: Use of modern programming practices
14. TOOL: Use of software tools
15. SCED: Required development schedule

These four categories of factors are considered to be vital factors that
influence the estimation of the efforts required to complete a project. Some
interesting factors, such as virtual machine complexity (VIRT), may have
been important when the COCOMO technique was first introduced but are
less important today.

Cost drivers A set of influential factors used in the cost estimation or
effort estimation of software projects. These factors are usually attributes
that characterize the project team’s expertise and experience; the project
environment such as the process and tools utilized in the project; and
product characteristics such as complexity.

Once the 15 factors are reviewed, there remains the task of assigning a
value to each one of them. The value assignment is based on what type of
influence and how much influence the software project estimator believes each
factor will exert in the typical project case. For example, if the factor is
believed to be neutral, the value assignment is 1. If the factor is believed to
increase the effort required, the value assignment is greater than 1. If the fac-
tor is believed to lessen the effort required, the assigned value is less than 1.
Table 17.2 shows the value assignments for the 15 factors, as made by Boehm.

The ranges of potential values are different for different factors. Like-
wise, the gradations of values are not constant from Very Low to Extra High.
Note that the Nominal column is filled with the value 1. Consider the relia-
bility factor (RELY). If the reliability requirement is Very Low, then it lessens
the effort. Thus the Very Low value for RELY is 0.75. It may be viewed as
75% of the nominal case. Conversely, if the reliability requirement were
High, then that factor would increase the needed effort, so it has a value
assignment of 1.15. This value means that the nominal-case effort would be
increased by 15%. The key point is that assignments of values to the 15 fac-
tors must be consistent within an organization.

Chapter 17 Effort Estimation

Table 17.2

Value Assignments for the 15 COCOMO Factors
Factor Range of values

Very low Low Nominal High Very high | Extra high
RELY 0.75 0.98 1.0 1.15 1.40 —
DATA — 0.94 1.0 1.08 1.16 —
CPLX 0.70 0.85 1.0 1.15 1.30 1.65
TIME — — 1.0 1.1 1.30 1.66
STOR — — 1.0 1.06 1.21 1.56
VIRT — 0.87 1.0 1.15 1.30 —
TURN — 0.87 1.0 1.07 1.15 —
ACAP 1.46 1.19 1.0 0.86 0.71 —
AEXP 1.29 1.13 1.0 0.91 0.82 —
PCAP 1.42 1.17 1.0 0.86 0.70 —
VEXP 1.21 1.10 1.0 0.90 — —
LEXP 1.14 1.07 1.0 0.95 — —
MODP 1.24 1.10 1.0 0.91 0.82 —
TOOL 1.24 1.10 1.0 0.91 0.83 —
SCED 1.23 1.08 1.0 1.04 1.10 —

Calculate the Effort Estimate

After considering all 15 factors and assigning them the appropriate values,
the factors are multiplied together and then multiplied by the initial Effort
estimate, whether it is Organic, Semidetached, or Embedded. The intermedi-
ate-level COCOMO formula is expressed as follows for the three modes,
where PROD(f’s) is the product of the 15 factors:

Organic: Effort = [3.2 X (Size)'°>] x PROD(f’s)
Semidetached: Effort = [3.0 X (Size)!'?] x PROD(f’s)
Embedded: Effort = [2.0 X (Size)!?°] x PROD(f’s)

After some experience with using the COCOMO formula and comparing
its results with real data, the software project managers may decide to adjust

The COCOMO Effort Estimation Model

their valuation techniques to improve the accuracy of their estimates.
Experts who have used the COCOMO formulas found the effort estimates to
be less than 90% accurate at times. Project estimates that are the outcome of
the COCOMO formula should never be used without some further manage-
ment buffering, because once an estimate is given, it is difficult to change
it—especially if the change involves asking for more time or resources.

The Continuing Evolution of COCOMO

As noted earlier, COCOMO has evolved significantly since its introduction in
the early 1980s. One newer version, called COCOMO II, is targeted at the
software engineering practices of the 1990s and 2000s. During this time, the
development process moved from the traditional waterfall process to a more
iterative process, the development technology moved from structured pro-
gramming to object-oriented programming, and the user operational envi-
ronment moved from transactional to Web-based. To keep pace with these
trends, the development tools have improved to become toolkits of inte-
grated tools, which combine application programming logic, database, com-
munications middleware, and screen development.

COCOMO II recognizes that the estimation model itself should take these
factors into account. For this reason, it includes three models: one for creat-
ing early estimates during the prototyping stage, one for making estimates
during the project design stage, and one for developing post-architectural
estimates after the design is set and development has commenced. A differ-
ent set of cost drivers, or PROD(f’s), is used for each model, reflecting the
new software development environment and the new software technologies.

Despite the introduction of shiny new models, the fundamental concept
underlying project effort estimation remains valid. Future software project
managers simply need to realize that change is inevitable in the software
industry and, therefore, that critical cost drivers for software projects must
be modified to respond to these changes. The value assignment process will
also change as technology continues to improve and as software engineers
gain more and broader experience with various types of projects. What was
once considered difficult may not seem very hard in the future. What was
once considered highly reliable may evolve into a standard expectation. In
the future, software project managers will be asked to be more accurate in
their planning. The effort estimation equation represents just a starting point
for achieving more accurate planning of efforts and cost.

Chapter 17 Effort Estimation

B KEY CONCEPTS

Software effort estimation has traditionally depended on the past experi-
ences of managers and team members, with planning taking advantage of
their expertise through an informal estimation strategy. Today, as part of an
attempt to both formalize and improve the effort or cost estimation for soft-
ware projects, a variety of new estimation techniques, involving several fac-
tors and drivers, have emerged. One such general formula is as follows:

Effort = (a + [b X (Size®)]) X PROD(fs)

where a, b, and c are statistically derived coefficients or best approxima-
tions; Size is the estimated size of the project; f’s comprise factors that influ-
ence the project estimates; and PROD(f’s) is the product of arithmetically
multiplying those factors. This general equation still requires the project man-
ager to estimate the project size and the key factors influencing the project.

Barry Boehm’s COCOMO technique is one specific example of a general
effort estimation model. It involves four steps:

Estimate the nominal development effort of the project.

Estimate the size of the project.

Review the factors that influence the project and assign values to them.
Calculate the effort for the software project by inserting the estimated
values into the effort estimation formula.

Wb

Since COCOMO was introduced in the early 1980s, there have been
numerous changes to the software industry and software engineering disci-
plines. The newer COCOMO II model reflects those trends to improve the
effort estimation process.

M EXERCISES

1. Explain the PROD function in the general effort estimation equation.
What other integration or aggregation operator may be employed
instead of PROD? Explain how.

2. We are often asked to provide a “quick” effort estimate in planning. If
we were to use any of the effort estimation formulae discussed in this
chapter, what element do we need to estimate first? How accurate is
that estimate, and how do we obtain such an estimate?

Suggested Reading

3. Discuss the pros and cons of consulting an experienced “expert” in
estimating project efforts.

4. Are there factors that you would include today that are not among the
15 original COCOMO factors? (Note: You may want to consult the liter-
ature on COCOMO 1II in the “Suggested Reading” section.)

5. Take a small program that you have completed. Count the lines of
code. Generate the effort estimate by assuming the Organic mode. Use
the COCOMO estimation technique without the 15 factors and compare
this estimate with your actual effort. Include the 15 factors and recal-
culate the estimate. Compare the new estimate with your actual effort.

6. Compare and contrast lines of code and function points as metrics and
describe what attribute, you believe, they measure. What would you
use the metrics lines of code and function points for?

M SUGGESTED READING

A. J. Albrecht and J. Gaffney, “Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation,” IEEE
Transactions on Software Engineering, November 1983, 639-648.

J. Baik, B. Boehm, and B. Steece, “Disaggregating and Calibrating the CASE
Tool Variable in COCOMO II,” IEEE Transactions on Software Engineering,
November 2002, 1009-1022.

B. Boehm, Software Engineering Economics, Prentice Hall, 1981.

B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowits, R.
Madachy, D. Reifer, and B. Steece, Software Cost Estimation with
COCOMO 1II, Prentice Hall, 2000.

C. Jones, Applied Software Measurement, McGraw Hill, 1996.

C. Jones, Patterns of Software Systems Failure and Success, International
Thompson Computer Press, 1996.

C. F. Kemerer, Software Project Management Readings and Cases, Irwin
McGraw Hill, 1997.

M. Morisio, D. Romano, and I. Stamelos, “Quality, Productivity, and Learning
in Framework-Based Development: An Exploratory Case Study,” IEEE
Transactions on Software Engineering, September 2002, 876-888.

C. Stevenson, Software Engineering Productivity, Chapman & Hall, 1995.

This page intentionally left blank

Index

Abstraction, 5
Accurate data, 204
Adjusting, 13
Adjustments and Actions
exercises, 251
introduction, 233-235
approach to making unplanned project
adjustments, 234-235
fear of change, 233-234
possible outcomes from lack of action, 234
key concepts, 250
planned adjustments, 241-245
decision-making process and targets,
241-242
key project parameters, 242
unadjustable parameters, 242
making adjustments to functionality,
resources, and schedule, 243-245
fixed-fee project, 244
project cost, 243-244
time and expense billing, 244
writing off the costs, 244-245
taking actions with urgency, 237-241
change management, 239-241
communicating often to dispel the
unknowns, 240-241
consulting the customer, 240-241

defined, 240
immediate implementation, 241
potential targets for change, 240
dealing with immediate problems, 238
steps in taking urgent action, 238-239
“tolerable case,” 237-238
unplanned adjustments, 245-250
functionality changes, 245-247
adjustments to other parameters, 246
cumulative effect of, 246
scope creep, 247
resource changes, 247-248
schedule changes, 248-250
Analysis and evaluation of information,
203-232
accurate data, 204
average problem level computed, 204-205
centrality and dispersion
average value, 208-209
centrality analysis defined, 208
control charts, 212-214
median value, 209-210
standard deviation, 211-212
chapter objectives, 203
data correlation, 216-219
defined, 216
linear regression, 217-219

INDEX

linear relationship, 219
pre-release and post-release problems,
217-219
data smoothing: moving averages, 214-216
data smoothing defined, 215
moving average defined, 214
distribution of data
data trends, 207-208
defined, 205
range of data values, 206-207
skew of the distribution, 205-206
exercises, 221-222
key concepts, 221
normalization of data, 219-221
reliable data, 203-204
valid data, 204

Application testing, recruiting for, 137
Applications designer, recruiting for, 137
Applications developer, recruiting for, 137
Art and Science of Negotiation, 198
Artifacts, software

code vs. noncode software artifacts, 3-4
defined, 3

examples, 27

introduction to, 2-3

Atria Software, 284
Attribute

complex attribute, 64-66
defined, 65
deliverable, 58-59
project- and process related
interrelated attributes, 74-76
employee morale, 75
possible combinations, 75-76
schedule and cost, 74
nondeliverable project-related attributes,
66-67

schedule integrity attribute: example, 67-74

buffer days, 72

buffer size, 71-72
immediate-recoverable goal setting, 72
metric and reporting format, 68-70
milestones, 67-68

requirements phase, 69-70
schedule integrity goal, 72-74
task overlap, 70-71
project attributes
measurable, trackable, validatable, and
verifiable goals
G/Q/M paradigm, 54-55
measurable attribute defined, 55
tracking defined, 55
validation of goal defined, 55
verification of measurement defined,
55-56
preliminary goals, 53-54
quality attribute, 59-64
errors vs. defects, 60-61
high-severity defect defined, 61
incremental goals, 61-62
low-severity defect defined, 62
measurement process, 63
medium-severity defect defined, 61
metric definition, 62
minor-severity defect defined, 62
problems found vs. quality, 60
quantitative subgoals, 62
reporting format, 63-64
software defect defined, 60
software error defined, 60
simple attribute, defined, 65
Authority, project team, 254
Average problem level computed, 204-205
Average value, 208-209

Baggage handling software project, 1
Bar-charts, 226-227

activity status in bar chart form, 227t
Boehm, Barry, 6, 246, 315
Booch, Grady, 5
Boolean algebra, 6
Borland, 29, 196
“Bottom-up” estimating, 46
Brooks, Fred, 74, 128, 249, 300
Budget monitoring

activity-based, 194-195

INDEX

attribute-based, 192-194
goals, 191-192
for resources, 193
software budget defined, 191
Buffers, 33
Business Intelligence Tool, 195

CaliberRM, 29, 196
Capability Maturity Model for Software (CMM
for SW), 58, 98-99, 144-145
Centrality and dispersion
average value, 208-209
centrality analysis defined, 208
control charts, 212-214
median value, 209-210
standard deviation, 211-212
Change control, 279-287
change control process defined, 279
change impact analysis, 281-282
cost impact, 282
personnel impact, 282
schedule impact, 282
chapter objectives, 279
cumulative effects of changes, 284-286
example change request process, 279-280
areas of consideration, 280
change request form, 279-280
submit to “catcher,” 280
exercises, 286-287
key concepts, 286
psychological effects of change requests,
285-286
request denial or acceptance, 283-284
simple changes, unexpected complications, 285
Change management process, 33
Chart Fx tool, 231
Clear Case, 284
CMM for SW. See Capability Maturity Model
for Software (CMM for SW)
COCOMO. See Constructive Cost Model (COCOMO)
Code
code vs. noncode software artifacts, 3-4
defined, 2

Combined resource matrix, 101t
Communicating and presenting data, 223-232
communicating control-related status
bar-chart formats, 226-227
activity status in bar chart form, 227t
tabular formats, 224-226
assessment column, 225
response to receipt of status data, 226
schedule status, 223, 225
summary message from project
managers, 226
data representation formats
histograms, 229-230
Pareto diagram, 230
pie charts, 228-229
exercises, 231-232
key concepts, 231
selecting a format, 230-231
sharing information, 223-224
Computer Associates, 98
Constructive Cost Model (COCOMO), 315-321
calculate effort estimate, 321-322
COCOMO 11, 321
continuing evolution of COCOMO, 321
estimate size of project, 317-318
general process, 315
identify the nominal mode of development
choosing the correct mode, 317
key project characteristics, 315-316
modes of development used in COCOMO,
316-317
review and assign values to cost drivers,
318-320
computer attributes, 318
cost drivers defined, 319
personnel attributes, 318-319
product attributes, 318
project attributes, 319
value assignments for COCOMO factors,
319-320
Control charts, 212-214
Costs, defined, 20
Critical path method (CPM)

327

INDEX

critical vs. noncritical paths
critical path, 291-292
critical task (critical activity), 292
noncritical path, 292-293
noncritical task (noncritical activity), 292
reducing schedules, 300-302
cost slope for each critical task, 300-301
CPM defined, 301
steps to follow, 301-302

Data collecting. See Analysis and evaluation
of information; Communicating and
presenting data; Information collecting

Data correlation

linear regression, 217-219

linear relationship, 219

pre-release and post-release problems, 217-219
Data distribution

data trends, 207-208

defined, 205

range of data values, 206-207

skew of the distribution, 205-206
Data smoothing: moving averages, 214-216

data smoothing defined, 215

moving average defined, 214

Database design and administration personnel,
recruiting, 136-137

Decomposition, 5

Defects, quality attribute

errors vs. defects, 60-61
high-severity defect defined, 61
low-severity defect defined, 62
medium-severity defect defined, 61
minor-severity defect defined, 62
software defect defined, 60

Design process planning, 92-93

Early start (ES) and early finish (EF) task
scheduling, 293
Eastman Kodak, 104
Effort estimation, 307-323
Constructive Cost Model (COCOMO), 315-321
calculate effort estimate, 321-322
continuing evolution of COCOMO, 321

estimate size of project, 317-318
general process, 315
identify the nominal mode of development
choosing the correct mode, 317
key project characteristics, 315-316
modes of development used in
COCOMO, 316-317
review and assign values to cost drivers,
318-320
computer attributes, 318
cost drivers defined, 319
personnel attributes, 318-319
product attributes, 318
project attributes, 319
value assignments for COCOMO factors,
319-320
exercises, 322-323
general estimation model, 309-314
effort estimation, 310
estimation equation, 309
other factors affecting project effort,
313-314
size factor, 310-313
function point, defining, 311-312
lines of code, defining, 311
software effort estimation model defined,
309
informal, 307-309
consulting with experts, 308
examples of “mandated” goals, 308-309
unresolved questions, 307
key concepts, 322
Employee morale, 75, 88
Equifax, 104
Equipment. See Tools and equipment
Ernest and Young, 98
Express Delivery, 98

Fagan, Mike, 90
Function point, defining, 311-312

Goals and measurements, 53-78. See also
Goals and measurements: preparations
and costs

INDEX

deliverable-related metrics and measurements
complex attribute, 64-66
defined, 65
deliverable attributes, 58-59
quality attribute, 59-64
errors vs. defects, 60-61
high-severity defect defined, 61
incremental goals, 61-62
low-severity defect defined, 62
measurement process, 63
medium-severity defect defined, 61
metric definition, 62
minor-severity defect defined, 62
problems found vs. quality, 60
quantitative subgoals, 62
reporting format, 63-64
software defect defined, 60
software error defined, 60
simple attribute, defined, 65
software deliverable attributes, 58-59
exercises, 76-77
influencing downstream phases, 76
key concepts, 76
metrics and measurements: overview, 56-58
Capability Maturity Model for Software
(CMM for SW), 58
measurement defined, 56
metric defined, 56
organizing and preparing, 125
process and project attributes, difference
between, 57
project- and process related, 66-76
interrelated attributes, 74-76
employee morale, 75
possible combinations, 75-76
schedule and cost, 74
nondeliverable project-related attributes,
66-67
schedule integrity attribute: example, 67-74
buffer days, 72
buffer size, 71-72
immediate-recoverable goal setting, 72
metric and reporting format, 68-70
milestones, 67-68

requirements phase, 69-70
schedule integrity goal, 72-74
task overlap, 70-71
project attributes
measurable, trackable, validatable, and
verifiable goals
G/Q/M paradigm, 54-55
measurable attribute defined, 55
tracking defined, 55
validation of goal defined, 55
verification of measurement defined,
55-56
preliminary goals, 53-54
Goals and measurements: preparations and
costs, 165-176
building a measurement operational plan,
169-171
defined, 170
items to be considered, 170-171
sequence of refinement steps, 170
clarifying definitions of goals and measure-
ments
alleviate confusion, 166
decomposing the ease-of-use example,
166-167
embracing the measurement scheme
goal attainability, 172-174
participating in goal and measurement
preparations, 171-172
exercises, 176
key concepts, 175-176
measurement costs, 174-175
measurement resources: how to find an
expert, 173-174
potentially misleading measurements, 167-169
effect of varying assigned values, 169
mostly completable, 168
not completable, 168
partially completable, 168
totally completable, 167, 168
transforming goals and measurements,
165-166
G/Q/M (goal/question/metric) paradigm, 54-55
Graphical tools, WBS, 38

INDEX

Hardware requirements, 99 IBM, 103-104, 283

Help text, creating, 40 IFPUG, 312

Hewlett-Packard, 98 India, outsourcing companies, 99
Histograms, 229-230 Information collecting, 183-202. See also

Human resources management
adding new resources to an ongoing project,
300
hiring plan, 84-85
initial offer package, 88
people as human capital, 87-88
people hiring matrix, 85-87

Analysis and evaluation of informa-
tion; Communicating and presenting
data

chapter objectives, 183-184

data collection automation/tools, 196

data collection schedule, 195

exercises, 201-202

defined, 86 formal data gathering and monitoring
direct management involvement in recruit- activity-based monitoring, 185
ing, 87 attribute-based monitoring, 186

recruiting plan, 86-87
skills matrix, 80-84
description of personnel required, 81t
direct project activities, defined, 81
gradual hiring pattern, 82
indirect project activities, defined, 81
initial skills matrix, 82t, 83
when the project ends, 83-84
Human resources organization, 124
bringing people on board, 140-141
exercises, 141-142
hiring software personnel, 138-140
key concepts, 141
recruiting software personnel, 136-138
software development structures
functional orientation, 132-133
general software development organization,
128-129
hierarchical organization defined, 130
highly specialized organization, 133-134
matrix organization defined, 130
matrix vs. hierarchical orientation,
130-131
virtual organization defined, 131
software project organization, 127-128
software support structures, 134-136
customer management defined, 135
software support and service defined, 134
Humphrey, W.S., 58

frequency of, 184-185
formal project status meetings, 195-198
length of, 196
moderating the meetings, 198
poor attendance problem, 197
predefined agenda, 197
purposes of, 195-196
sources of meeting-related information, 198
unexpected information or negative data,
196-197
informal conscientious socialization data
collection, 184
informal data gathering and monitoring,
198-200
establishing trust, 200
physically co-located environment, 199
physically remote environment, 199-200
key concepts, 201
macro and micro levels of monitoring,
186-195
completeness of function
activity-based, 188-189
attribute-based, 187-188
defined, 187
quality
activity-based, 190-191
attribute-based, 189-190
software quality defined, 189
monitoring the budget

INDEX

activity-based, 194-195
attribute-based, 192-194
goals, 191-192
for resources, 193
software budget defined, 191
“Initial Requirements and Business Case,”
146-147
Insourcing
defined, 102
vs. outsourcing, 102-104
Intellectual capital, 98-99
International Function Point Users Group
(IFPUG), 312
International Organization for Standardization
(IS0), 144
Iteration and acceptance, WBS, 50-51
Iterative prototype, 26

Jacobson, Ivar, 5
Knuth, Donald, 290

Late start (LS) and late finish (LF) task schedul-
ing, 293-294

Lines of code, defining, 311

London Ambulance Service project, 1

Lotus Workflow, 283

Measurable attribute, defined, 55
Measurement. See Goals and measurements
Median value, 209-210
Meetings, formal project status meetings, 195-198
length of, 196
moderating the meetings, 198
poor attendance problem, 197
predefined agenda, 197
purposes of, 195-196
sources of meeting-related information, 198
unexpected information or negative data,
196-197
Merant, 284
Methodologies. See also Processes and method-
ologies planning

organizing and preparing, 153-157
aspect-oriented programming (AOP), 156
definition

black-box testing, 155
high-level fashion, 154
predicate, 154
white-box testing, 155
describing a particular methodology,
153-154
exercises, 162
key concepts, 161-162
object-oriented, 153-154
planning and organizing, preparation,
156-157
Metric, defined, 56
Microsoft, 38, 302
Microsoft Excel, 231
Milestones, WBS, 49-50
project milestone, defined, 49
MinuteMan Project Management, 38
Monitoring, 12-13. See also Analysis and eval-
uation of information; Communicating
and presenting data; Information
collecting
recasting of goals and, 54
role of in software project management,
179-180
Morale, employee, 75, 88
MS Project, 38, 302
Mythical Man-Month, The, 74, 128, 249, 300

Navigator, 98

Object-oriented (00) methodology, 6

Oracle, 195

Organizing and preparing, 12, 123-125
goals and measurements, 125, 165-177
human resources, 124, 127-142
processes, methodologies, and tools,

124-125, 143-163

Outsourcing
defined, 102
vs. insourcing, 102-104

INDEX

Pareto, Vilfredo, 230
Pareto diagram, 230
PERT, 298-299
Pie charts, 228-229
Planning, 79-106
combined resource matrix, 101t
combining the resources, 100-102
described, 11
levels of planning
comprehensive plan, 20
quick estimate, 19
plan content, 18-19
as a team effort, 17-18
exercises, 105-106
human resources management (See Human
resources management)
insourcing defined, 102
key concepts, 104-105
outsourcing defined, 102
outsourcing vs. insourcing, 102-104
processes and methodologies
configuration management, 97
cross-functional process planning, 96-98
design process planning, 92-93
identifying which to use, 90
implementation and programming process
planning, 93-95
“methodology wars,” 90
object-oriented, 90
process as intellectual capital, 98-99
product release process planning, 96
project change management, 97-98
requirements process planning, 91-92
reuse goals, focusing on, 93-94, 95
software development process defined, 89
software methodology, defined, 89, 90
software project phases, 90-96
test process planning, 95-96
test case, 95
test scenario, 95
test script, 95
tools and equipment, organizing and prepar-
ing, 124-125

POMA management process. See also under
specific processes
at all management levels, 13-14
introduction to, 10-11
Primavera, 38, 302
Problem, defined, 20, 108
Process Assessment Working Group of ISO, 144
Processes. See also Processes and methodologies
planning
defined, 20
organizing and preparing, 143-152
configuration management, 149-150
exercises, 162
factors to consider, 144
high-level process plan to project-specific
model, 151
“Initial Requirements and Business Case,”
146-147
key concepts, 161
overall project process map, 146, 147, 148
process flow, 147-149
exit criteria, 147-148
reverse sequence, 147
process introduction and education
1. process introduction, 151-152
2. feedback and modifications, 152
3. acceptance, 152
4, reinforcement, 152
process map, 145-147
processes and subprocesses, 150-151
setting software standards: 1SO, SPICE,
and SEI, 144-145
Processes and methodologies planning
configuration management, 97
cross-functional process planning, 96-98
design process planning, 92-93
identifying which to use, 90
implementation and programming process
planning, 93-95
“methodology wars,” 90
object-oriented, 90
process as intellectual capital, 98-99
product release process planning, 96

INDEX

project change management, 97-98
requirements process planning, 91-92
reuse goals, focusing on, 93-94, 95
software development process defined, 89
software methodology, defined, 89, 90
software project phases, 90-96
test process planning, 95-96
test case, 95
test scenario, 95
test script, 95
Prochain Project Scheduling, 302
Product/Project attribute, defined, 20
Product/Project description, defined, 20
Program evaluation and review technique
(PERT), 298-299
Project content and deliverables
exercises, 35
gathering and analyzing project requirements,
21-24
completing requirements specification as a
separate project, 23-24
potential pitfalls, 22-23
requirements providers, 22-23
software requirements, defined, 22
solution providers, 23
general requirements management activities,
24-26
entrance criteria, 26
exit criteria, 25
goals to be met, 25
knowledgeable people, shortage of, 24-25
software prototype
defined, 24
iterative, 26
rapid, 26
internal requirements generation and priori-
tization, 29-32
prioritization process, 29-30
role of the software product management
board, 30-32
composition and size of group, 31
Release Management Council, 32
key concepts, 34-35

quick estimates and high-level requirements,
33-34
types of requirements
project deliverables, 26-27
project needs and their characterization,
27-28
review and approval of requirements,
28-29
Project milestone, defined, 49
Project team, 265-277
exercises, 276
key concepts, 275-276
life cycle, 265
management effort needed at various stages,
266
team development, 269-272
continuous monitoring and adjustments,
272
key activities of project managers, 270
monitoring behavior of team members,
270-271
problem-action handling matrix, 271-272
team formation
having the “best,” 266-267
soft skills and personal traits, 268-269
technical software skills, 267-268
conflicts, 268
skill areas, 267-268
technical skill defined, 267
team maintenance
handling team attrition, 274
punishing team members, 273-274
rewarding team members, 273
team member growth, 275
Prototype, software
defined, 24
iterative, 26
rapid, 26
PVCS, 284

Raiffa, Howard, 198
Rapid prototype, 26
Rational Software, 5, 29

INDEX

Reference information, developing, 40
Rejuvenation Through IT Services, 103-104
Release Management Council, 32, 253-262
authority, 254
defined, 255
exercises, 261
formulating, 255-257
choosing members, 255
duties of, 254-255
full-time members, 256
introducing the concept, 256-257
part-time members, 255-256
skills needed, 257
key concepts, 260-261
mode of operation
conducting council meetings, 257-259
activities for participation in, 257
agenda, 258
minutes of the meetings, 258
status of open issues, 258
who conducts the meetings, 258-259
decisions about product release, 259-260
responsibility, 254
team management approach, 253-254
Reporting format, defined attributes and metrics,
63-64
Requirements. See Project content and deliver-
ables
RequisitePro, 29
Resources, defined, 20
Responsibility, project team, 254
Reuse goals, focusing on, 93-94, 95
Risk analysis and planning, 107-122
exercises, 122
key concepts, 121
problem, defined, 108
risk definition, 20, 107-108
risk identification, 108-109
identifying and listing anticipatable risks,
109-111
availability of tools involved, 110
hardware and software systems, 110
human resources, 110-111

major planning categories, 111
management of resources, 110
“unclear items,” 109
unresolved issues, 109-110
risk mitigation
cost of mitigation, 116-117
cost-based mitigation, 116
defined, 116
fixed budget for, 118-120
mitigation value cost, 117-118, 118
probability of success, 117
risk prioritization, 111-116
defined, 112
by recovery cost, 112-114
defined, 113
types of, 114
by risk value, 114-116
risk removal plan, 120-121
Royce, Winston, 6
Rumbaugh, James, 5

SAS tools, 195
Schedule, defined, 20
Scheduling tasks. See Task scheduling
“Scope creep” phenomenon, 22, 109, 247
SEI, 58, 98, 144-145
Sequence diagram, 42-44
Size factor, effort estimation, 310-313
function point, defining, 311-312
lines of code, defining, 311
Slack times, task scheduling
free slack time, 295-298
free slack time of an activity defined, 296
free slack time of X defined, 296
task network, 296
tabular form, 297-298
total slack time, 294-295
total slack time of an activity defined, 295
Smartdraw Business and Charting Software, 38,
302
Software development life cycle, defined, 9
Software development process, defined, 89
Software development structures

INDEX

functional orientation, 132-133
general software development organization,
128-129
hierarchical organization defined, 130
highly specialized organization, 133-134
matrix organization defined, 130
matrix vs. hierarchical orientation, 130-131
virtual organization defined, 131
Software effort estimation model, defined, 309
Software engineering
components, 7-8
defined, 5
introduction to, 5-9
software development life cycle, 9
software process and methodology, 6-7
spiral process, 6
user interface (UI) design method, 7
waterfall process, 6
software product life cycle, 8-9
Unified Modeling Language (UML), 5
Software Engineering Institute (SEI), 58, 98,
144-145
Software Fx, 231
Software methodology, defined, 89, 90
Software Process Improvement and Capability
determination (SPICE), 144-145
Software product life cycle, 8-9
Software Product Management Board, 30-32, 286
Software project
artifacts, 2-3
code, defined, 2
code vs. noncode software artifacts, 3-4
introduction to, 2-4
software, defined, 3
Software project management
adjusting, 13
introduction to, 9-14
monitoring, 12-13
organizing, 12
planning, 11
POMA management process, 10-11
POMA management process at all manage-
ment levels, 13-14

Software project phases, 90-96

Software requirements, 99

Software support structures, 134-136
customer management defined, 135
software support and service defined, 134

Solution providers, 23

Southern Pacific, 104

Spiral process, 6

Standard deviation, 211-212

Standish Group report, 1

SureTrak Project Manager, 302

Synthesis, 5

Tabular formats, 224-226
assessment column, 225
response to receipt of status data, 226
schedule status, 223, 225
summary message from project managers,
226
Task analysis. See Work Breakdown Structure
(WBS)
Task refinement, WBS
activities and subdeliverables for deliverable
1, 41-42
task sequencing and sequence diagram,42-44
Task scheduling, 289-305
chapter objectives, 289
creating a calendar schedule, 302-303
critical vs. noncritical paths
critical path, 291-292
critical task (critical activity), 292
noncritical path, 292-293
noncritical task (noncritical activity), 292
exercises, 304-305
forward- and backward-pass scheduling
early start (ES) and early finish (EF), 293
late start (LS) and late finish (LF), 293-294
key concepts, 303-304
program evaluation and review technique
(PERT), 298-299
defined, 299
reducing schedules: critical path method
(CPM), 300-302

INDEX

cost slope for each critical task, 300-301
CPM defined, 301
steps to follow, 301-302
slack times
free slack time, 295-298
free slack time of an activity defined, 296
free slack time of X defined, 296
task network, 296
tabular form, 297-298
total slack time, 294-295
defined, 295
total slack time of an activity defined, 295
task sequence and effort representation,
289-291
graphical representation, 290-291
shared characteristics of all tasks, 289
tabular representation, 290
Task sequencing, 42-44
Team Fusion Object Oriented, 98
Team management approach, 253-254. See
also Project team
TeamPlay, 38
Technical software skills, 267-268
conflicts, 268
skill areas, 267-268
technical skill defined, 267
Test process planning, 95-96
test case, 95
test scenario, 95
test script, 95
Time and resource assignments, WBS
defining a “satisfied” level of refinement,
44-45
task estimates and task assignments, 47-48
units of task management, 45-47
historical information, 46
subtasks with estimated times, 46-47
Togethersoft, 196
Tools and equipment, 99-100, 124-125
data collection automation/tools, 196
organizing and preparing, 157-161

exercises, 162

false claims, 158

key concepts, 162

tool identification and preparation,

158-159

tool selection, 159-160

tool usage preparation, 160-161
Tracking, defined, 55
Trust, establishing, 200

Unified Modeling Language (UML), 5, 89
Usage information, developing, 40

Use Case Diagram, 89

User interface (UI) design method, 7

Validation of goal, defined, 55

Verification of measurement, defined, 55-56
Virtual organization, defined, 131

Visio, 38

Waterfall process, 6
Work Breakdown Structure (WBS), 37-52, 128
defined, 37
example
deliverable 1: executable code, 39, 40
deliverable 2: help text, usage, and reference
information, 40-41
exercises, 51-52
flow of WBS to schedule, 39
graphical tools, 38
iteration and acceptance, 50-51
key concepts, 51
milestones, 49-50
participants, 37
project milestone, defined, 49
steps in the WBS, 38-39
task refinement
activities and subdeliverables for deliver-
able 1, 41-42
task sequencing and sequence diagram,
42-44

INDEX

time and resource assignments units of task management, 45-47
defining a “satisfied” level of refinement, historical information, 46
44-45 subtasks with estimated times, 46-47

task estimates and task assignments, 47-48

337

This page intentionally left blank

Outstanding New Titles:

Computer Science llluminated,
S == Second Edition

, Nell Dale and John Lewis
y 4 ISBN: 0-7637-0799-6
/‘ ©2004

A iy

Programming and Problem Solving
with Java
2 = Nell Dale, Chip Weems,
= J Yle and Mark R. Headington
i d ISBN: 0-7637-0490-3
©2003

Databases llluminated
Catherine Ricardo
ISBN: 0-7637-3314-8
©2004

Databases
Muminated

Foundations of Algorithms Using Java
Pseudocode

Richard Neapolitan

and Kumarss Naimipour

ISBN: 0-7637-2129-8

©2004

Foundations of

ALGORITHMS

Artificial Intelligence llluminated
Ben Coppin

ISBN: 0-7637-3230-3

©2004

Artificial Intelligence
Muminated

The Essentials of Computer Organization
and Architecture

Linda Null and Julia Lobur

ISBN: 0-7637-0444-X

d ©2003

A Complete Guide to C#
David Bishop
ISBN: 0-7637-2249-9

A Complete Guide to ©2004

David Bishop

A First Gourse in Complex Analysis
with Applications

Dennis G. Zill and Patrick Shanahan
ISBN: 0-7637-1437-2

©2003

VAAA

http://www.jbpub.com/

Programming and Problem Solving with
C++, Fourth Edition

Nell Dale and Chip Weems

ISBN: 0-7637-0798-8

©2004

C++ Plus Data Structures, Third Edition
Nell Dale
ISBN: 0-7637-0481-4

& ©2003

== Applied Data Structures with C++

Software

Project Management

Peter Smith

" ISBN: 0-7637-2562-5

©2004

Foundations of Algorithms Using C++
Pseudocode, Third Edition

Richard Neapolitan

and Kumarss Naimipour

g ISBN: 0-7637-2387-8

©2004

Managing Software Projects
Frank Tsui
ISBN: 0-7637-2546-3

w ©2004

JONES AND BARTLETT

Readings in CyberEthics, Second Edition
Richard Spinello and Herman Tavani
ISBN: 0-7637-2410-6

©2004

C#.NET llluminated
Art Gittleman

ISBN: 0-7637-2593-5
©2004

Discrete Mathematics, Second Edition
James L. Hein

ISBN: 0-7637-2210-3
©2003

1.800.832.0034

PUBLISHERS

http://www.jbpub.com/

Take Your Courses to the Next Level

Turn the page to preview new and
forthcoming titles in Computer Science and
Math from Jones and Bartlett...

Providing solutions for students and educators in the
following disciplines:

¢ Introductory Computer Science e Algorithms

® Java e Network Security

e C™ e Software Engineering

® Databases e Discrete Mathematics

o C# ¢ Engineering Mathematics
e Data Structures e Complex Analysis

Please visit http://computerscience.jbpub.com/ and
http://math.jbpub.com/ to learn more about our exciting
publishing programs in these disciplines.

Mathematics

http://www.jbpub.com/ ® PUBTISHERS 1.800.832.0034

http://www.jbpub.com/
http://computerscience.jbpub.com/
http://math.jbpub.com/

