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Preface

Cognition-driven decision support system (DSS) has been recognized as a 
paradigm in the research and development of business intelligence (BI). Cognitive 
decision support aims to help managers in their decision making from human 
cognitive aspects, such as thinking, sensing, understanding and predicting, and 
fully reuse their experience. Among these cognitive aspects, decision makers’ 
situation awareness (SA) and mental models are considered to be two important 
prerequisites for decision making, particularly in ill-structured and dynamic 
decision situations with uncertainties, time pressure and high personal stake. In 
today’s business domain, decision making is becoming increasingly complex. To 
make a successful decision, managers’ SA about their business environments 
becomes a critical factor. 

This book presents theoretical models as well practical techniques of cognition-
driven DSS. It first introduces some important concepts of cognition orientation in 
decision making process and some techniques in related research areas including 
DSS, data warehouse and BI, offering readers a preliminary for moving forward in 
this book. It then proposes a cognition-driven decision process (CDDP) model 
which incorporates SA and experience (mental models) as its central components. 
The goal of the CDDP model is to facilitate cognitive decision support to 
managers on the basis of BI systems. It also presents relevant techniques 
developed to support the implementation of the CDDP model in a BI environment. 
Key issues addressed of a typical business decision cycle in the CDDP model 
include: 

• natural language interface for a manager’s SA input;  

• extraction of SA semantics; 

• construction of data warehouse queries based on the manger’s SA and 

experience;  

• situation information retrieval from data warehouse;  

• how the manager perceives situation information and update SA; 

• how the manager’s SA leads to a final decision.  
Finally, a cognition-driven DSS, FACETS, and two illustrative applications of 

this system are discussed.  



VI Preface 

Two important features of this book clearly distinguish itself from other books 
in similar areas: 

(1) It is the first book to systematically discuss the theories, technologies and 
applications of cognitive decision support for BI.   

(2) It reflects the latest academic research progress as well as the state-of-art BI 
technologies by combing contemporary cognitive psychology, DSS, BI, and data 
warehousing.  

This book is mainly based on our past few years’ research developments in this 
field. The technologies presented in this book is up-to-date throughout some 
results come from ours and other authors’ recent publications. 

The potential readers of this book are organizational managers and practicing 
professionals, who can use the provided methods and software to solve their real 
decision problems; researchers in the areas of decision making, DSS and BI; 
students at the advanced undergraduate or Master’s level in management or 
business administration programs; and students at the advanced undergraduate or 
Master’s level in information systems, information technology and computer 
science programs.  

This book was organized into four major parts.  
(1) Concept part (Chapters 1, 2, 3 & 4) covers concepts and frameworks of 

decision making and general decision-making techniques in DSS.  
(2) Model part (Chapter 5) presents readers with the framework of cognitive 

decision support and the model of cognition-driven decision processes.  
(3) Technique part (Chapters 6, 7 & 8) discusses the specific techniques 

(methods and algorithms) of cognitive decision support. Readers will learn how 
information technologies are combined with cognitive psychology models to solve 
business decision-making problems.  

(4) System and Application part (Chapters 9, 10 & 11) introduces a cognition-
driven DSS, FACETS. FACETS is a successful implementation of the cognition-
driven decision process model, which was developed based on the models and 
techniques presented in this book. This part also demonstrates the evaluation 
results of FACETS and its two illustrative applications in business and public 
health respectively.  

Readers can gain various advantages from this book: 
As an academic, you will know the latest research progress of cognitive DSS in 

our research laboratory. This book provides a wide range of literature in many 
related areas, such as BI, data warehousing, cognitive psychology, naturalistic 
decision making, recognition-primed decision making, and natural language 
interface to databases. It also points out some potential topics for further research. 

As an information technology practitioner, reading this book, you will stay 
abreast of BI, and knowing the new generation of BI systems. The models, 
techniques and algorithms presented in this book will help you understand how to 
better support business managers’ work using the state-of-art BI technology.  

As a business manager, you will be presented with a new methodology to 
interpret your business problems from a new perspective. The technologies 
included in this book will provide a new vision for you to understand and handle 
your business problems. After reading the book, you should be able to identify 
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decision-making problems from real practices, to build mental models, and then to 
use the cognition-driven DSS provided in the book to support your decision 
making. 

As a tertiary student, you will have a chance to touch on a wide rang of 
information technologies, which will be a starting point for your future study and 
career. You will also learn how to convert business problems into research 
projects.  

We wish to thank the Australian Research Council (ARC) as the work 
presented in this book was partially supported under ARC Discovery Projects 
DP0559213 and DP0880739; the many researchers who have worked in DSS, BI 
and related areas over the past several decades, whose significant insights we have 
drawn on in the book and whose well-known publications are included in the 
bibliography; the researchers and students in the Decision Systems & e-Service 
Intelligence (DESI) research laboratory, and from the Faculty of Engineering and 
Information Technology at the University of Technology Sydney (UTS), who 
suffered through several versions of the DSS presented in this book and whose 
comments improved it substantially; and the editors and production staff at 
Springer, who helped us to ensure the book was as good as we were capable of 
making it. 

Sydney 
May 2009 

Li Niu, 
DESI, University of Technology, Sydney 

Jie Lu, 
DESI, University of Technology, Sydney 

Guangquan Zhang, 
DESI, University of Technology, Sydney 
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Chapter 1 
Decision Making and Decision Support Systems  

 

 
 
 
 
 
 
 
 

This chapter introduces the general concepts, models and techniques of decision 
making and decision support systems.  It also gives readers an overview of the 
new models and techniques presented in the following chapters of this book. 

1.1   Decision Making and Decision Makers 

The success of business management depends on the performance of managerial 
functions such as planning, organizing, directing, and controlling (Turban et al. 
2005). To carry out these functions, business managers are engaged in a continuous 
process of making decisions such as drawing up a product plan, selecting a supplier 
and determining a product’s price. In such situations, business managers are 
decision makers.  

Decision makers may deal with various types of decision problems, from daily 
operation to long-term company strategies. Decision makers in a company act at 
various levels, from a software development project manager to a CEO of a large 
company. Therefore, different decision-making tasks have different features and 
require different decision support techniques.  

Decisions can be made by individuals or groups. Individual decisions are often 
made at low management levels and in small organizations, while group decisions 
are usually made at high management levels and in large businesses. In group 
decision making, each group member has their own understanding of the problem 
and the solution. Group members participate in decision making with different 
capabilities and action resources. Group decision making is more complex than 
individual decision making, due to the conflicts between different decision 
makers’ self-interests and preferences. Therefore, communication and interaction 
among group members are very important in group decision making. 

Decision making theory is studded by many researchers from multiple 
disciplines (Dawes 1988; Hwang & Masud 1979; Simon 1979). It includes 
classical decision making (CDM), behavioural decision theory (BDT), judgement 
and decision making (JDM), organizational decision making (ODM) and recently 
naturalistic decision making (NDM) (Lipshitz et al. 2001). Choice and input-
output orientation are the examples of CDM. Some new theories such as the use of 
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expertise in seizing up situations and generating options are examples of NDM. 
Decision making is growing increasingly complicated and difficult today due to 
information overload and fluctuated decision environments. With the modern 
information technologies and communication systems, we can find large quantities 
of information quickly and easily, and therefore generate more alternatives. 
Nevertheless, the changing decision environment impose decision making more 
uncertainties, which requires dynamic decision making and needs decisions to be 
made quickly. The cost of making errors can be very large because of the 
complexity of operations, automation, and the chain reaction that an error can 
cause in many parts of a business. For these reasons, business decision makers 
require technical support to help make quality decisions in a short timeframe.  

1.2   Decision Problem Classification 

Decision problems can be classified according to their natures. One important 
classification is based on a given problem structure: structured, semi-structured 
and unstructured (Turban et al. 2005). We use the term ill-structured decision 
problems to describe both semi-structured and unstructured decision problems.  
Different classes of decision problems require different modeling methods. 

A structured decision problem can be described by existing classic 
mathematical models, such as linear programming and statistics methods. The 
procedures for obtaining the best or the most satisfactory solution are known as 
standard solution methods. Examples of typical structured decision problems are 
selecting a product which has the lowest price among all the same type of 
products, and determining which product plan can bring the highest profit among 
a range of product plans. 

An unstructured decision problem is fuzzy, uncertain and vague, to which there 
is no standard solution method. Human intuition is often the basis for decision 
making in an unstructured problem. Typical unstructured problems include 
planning new services, hiring an executive, and choosing a set of development 
projects for a long period. 

Semi-structured decision problems fall between structured and unstructured 
problems, having both structured and unstructured factors. Solving this kind of 
decision problems involves a combination of both standard optimized solution 
procedures and human intuition or judgments. 

Experience shows that computer-based decision support techniques are more 
useful in structured decision problems than in semi-structured and unstructured 
decision problems. In an unstructured decision problem only part of the problem 
can be well-supported by computerized decision support tools. For semi-structured 
decision problems, computerized support technologies can improve the quality of 
the information on which the decision is based, increase decision makers’ situation 
awareness, or provide not only a single solution but a range of alternative 
solutions.  

Another classification of decision problems is based on decision levels as 
proposed by Anthony (1965): strategic planning, management control and 
operational control.  
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Strategic planning refers to long-range goals and policies for resource 
allocation. Such decisions are at a high management level, normally unstructured, 
and with higher degrees of uncertainty.  

Management control refers to the acquisition and efficient use of resources in 
the accomplishment of business goals, and related decisions are at a middle 
management level.   

Operational control decisions are about the efficient and effective execution of 
specific tasks. They are normally structured and are relatively easy to formulate by 
mathematical models and solved using computer-based tools.  

Decision making is a reasoning process, rational or irrational (Simon 1979, 
Simon 1993), and can be based on explicit or tacit assumptions.  

Rational decision making emphasizes fact collection and conducting research 
such as data analysis, surveys and interviews. A rational decision-making model 
involves a cognitive process (thinking through) where each step follows in a 
logical order from the one before. 

Irrational decision making makes assumptions and obtains results without 
accurate data and model analysis, and is often driven by emotions.  

1.3   Decision-Making Process 

Generally speaking, a decision-making process (or simply called decision process) 
begins with awareness of a decision problem, and ends up with a final solution 
among finite or infinite alternatives. A general decision-making process proposed 
by Simon (1977) involves three phases: Intelligence, Design, and Choice. A fourth 
phase, Implementation, has since been added. Figure 1.1 shows a conceptual 
framework of the four-phase decision-making process. This framework can be 
used as a guideline for specific decision-making development. Different decision 
makers may emphasize one phase or another. Different decision-making problems 
may require more details or sub-phases in one or more phases. We will discuss an 
extended decision-making process model (Lu et al. 2007) based on Simon (1997) 
as shown in Figure 1.1. 

The model shown in Figure 1.1 is the most typical decision-making process 
model. Its main characteristic is to establish a decision model to reflect a decision 
problem and then to solve the problem by applying a method to the decision 
model. The decision-making process can be described by nine steps. We use an 
example to explain these steps as follows: 

Example 1.1: A logistics company plans to develop an e-business system. 

Step 1: Define a decision problem 
To define a decision problem requires a good understanding of managerial 
assumptions, organizational boundaries, and any related initial and desired 
conditions. This step aims to express the decision problem in a clear way and 
prepare a clear problem statement (see Figure 1.1). This step, with Step 2, 
corresponds to the intelligent phase of the general decision-making process 
framework.  
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Fig. 1.1 The general decision-making process framework 

The decision problem defined in this step for Example 1.1 is  
 

“select an IT company for developing an e-business system for the logistics 
company”. 

Step 2: Determine requirements 
Requirements are conditions which any acceptable solution to the problem must 
meet. In a mathematical form, these requirements are the constraints describing 
the set of the feasible solutions of the decision problem such as 
cost1+cost2<$100. Requirements can be obtained by analysing the decision 
situation.  
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The requirements determined for Example 1.1 are 
 

“the cost of the e-business system development is to be <=$100,000, the 
deadline is 30 Dec 2009, and the developed e-business system must connect well 
with existing business information systems and data warehouse”. 

Step 3: Establish objectives and goals 
The design phase of the decision-making process starts here and continues through 
to Step 6. This step identifies the important objectives of the decision problem and 
the goals. When a decision problem involves multiple objectives, these objectives 
may be in conflict with each other. The goals are the statements of intent and 
desirable programmatic values. In a mathematical form, the goals are objectives 
contrary to the requirements that are constraints. Obviously, these objectives can 
have different degrees of importance. 

The objectives for Example 1.1 are 
 

“find a satisfactory IT company which meets the requirements for development 
of an e-business system and provides an excellent user interface and all required 
functions”.  

Step 4: Generate alternatives 
The objectives obtained in Step 3 are used to generate alternatives.  Each 
alternative must meet the requirements determined in Step 2. For finite number of 
the possible alternatives, they can be checked one by one against the requirements. 
The infeasible alternatives will be removed out of further consideration until we 
obtain the explicit list of alternatives. If the number of possible alternatives is 
infinite, the set of alternatives is considered to be that of the solutions fulfilling the 
constraints in the mathematical form of the requirements.  

The alternatives generated in Example 1.1 are 
 

“from all the IT companies having interest in the development of the e-business 
system, three companies (A, B, C) are selected as alternatives based on the defined 
requirements and objectives”.  

Step 5: Determine criteria if needed 
To choose the best alternative, all alternatives need to be evaluated against the 
objectives. Thus some criteria are used to compare alternatives and to discriminate 
between alternatives, based on the objectives. It is necessary to define 
discriminating criteria as objective measures to assess each alternative.  

The criteria determined for Example 1.1 are 
“the e-business system to be developed should be user-friendly, secure, and 

easy to maintain, and have excellent functions for logistics decision support, and 
ensure that the budget/cost is relatively low”. 

Step 6: Select a decision-making method  
In general, there are always several methods or tools available for solving a 
particular decision problem. The selection of an appropriate method or tool 
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depends on the characteristics of the decision problem and the preferences of the 
decision maker.  

The decision-making method selected for Example 1.1 is 
 

“as the decision is based on multiple criteria and will be made by a committee, 
an Analytic Hierarchy Process (AHP) method will be used for aggregating 
different members’ opinions under all criteria”.  

Step 7:  Evaluate alternatives  
This step corresponds to Simon’s choice phase of decision making. After applying 
the determined criteria supported by the selected method, a tentative decision is 
made in this step through the evaluation of the alternatives against the objectives. 
Using a commonly shared and understood scale of measurement and the 
subjective assessment of the evaluation, the selected decision-making tool can be 
applied to rank the alternatives or to choose a subset of the most promising 
alternatives.  

The result of alternative evaluation for Example 1.1 is 
 

“by applying the AHP method, IT company B is chosen to undertake the 
development of the e-business system for the logistics company”. 

Step 8: Validate solutions 
The tentative alternative generated in Step 7 has to be validated against the 
requirements and objectives of the decision problem, in order to determine its 
applicability. Many factors might result in an inappropriate or false choice, such as 
misapplied decision-making method or wrongly determined criteria. If the 
tentatively chosen alternative has no significant adverse consequences, the choice 
is finally made. 

The result of solution validation for Example 1.1 is 
 

“IT company B is accepted by all committee members”. 

Step 9: Implement the solution 
The final solution to the identified decision problem is implemented in this step.  

The result of solution implementation for Example 1.1 is 
 

“sign a project contract with IT Company B”.  
 
As can be seen from above process, decision making is a choice process among 

alternatives. Each decision-making task can be characterized by a problem 
statement, a set of alternatives, and related decision criteria. Decision makers go 
through all these phases and eventually reach a final solution.  

1.4   Decision Support Systems 

Decision making, by its nature, is a cognitive process, involving different cognitive 
tasks, such as collecting information, evaluating situation, generating and selecting 
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alternatives, and implementing solutions. Decision making is never error-proof, as 
decision makers are prone to their cognitive biases. Therefore, decision support 
systems (DSS) are often used by decision makers in order to minimize their 
cognitive errors and maximize the performance of actions. 

1.4.1   The Concept 

A decision support system is a computerized information system, designed to 
support business and organizational decision-making activities. The term ‘DSS’ 
was proposed in the early 1970s. After that, the topic of DSS has stimulated great 
interests in research and its applications. Gorry and Scott-Morton (1971) defined 
DSS as interactive computer-based systems which help decision makers utilize 
data and models to solve ill-structured problems. A subsequent classic definition 
of DSS, provided by Keen and Scott-Morton (1978), is that DSS couple the 
intellectual resources of individuals with the capabilities of the computer to 
improve the quality of decisions.  

A properly-designed DSS can play an important role in compiling useful 
information from raw data, documents, personal knowledge, and business models 
to solve problems. It allows decision makers to perform large numbers of 
computations very quickly. Therefore advanced models can be supported by DSS 
to solve complex decision problems, e.g., emergency situations, where quick 
responses are often required. As many business decision problems involve large 
data sets stored in different databases, data warehouses, and even possibly at 
websites outside an organization, DSS can retrieve, process and utilize data 
efficiently to assist decision making.  

A DSS is intended to support, rather than replace, decision maker’s role in 
solving problems. Decision makers’ capabilities are extended through using DSS, 
particularly in ill-structured decision situations. In this case, a satisfied solution, 
instead of the optimal one, may be the goal of decision making. Solving ill-
structured problems often relies on repeated interactions between the decision 
maker and the DSS.  

1.4.2   Characteristics 

The functions and characteristics of DSS vary significantly due to the differences 
of application domains. Turban and Aronson (1998) summarized ten 
characteristics of common DSS as follows: 

 
(1) Dealing with ill-structured decision problems; 
(2) Supporting managers at different levels; 
(3) Supporting decision groups and individual decision makers; 
(4) Supporting a variety of decision styles and processes; 
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(5) Adaptability and flexibility in carrying out a decision support task and 
approach of the users; 

(6) Interactive and user-friendly to allow non-technical decision makers to 
interact easily with it; 

(7) Combining the use of models and analytic techniques; 
(8) Combining the use of artificial intelligence and knowledge base;  
(9) Accessing a wide variety of data sources; and 
(10) Integration and Web connection. 
 
The selection of above functions depends on a user’s requirements. A DSS can 

be quite simple, e.g., a spreadsheet, or extremely complex, e.g., a data warehouse 
system.  

1.4.3   Types  

According to different criteria, DSS can be categorized into various types, such as 
personal DSS, group DSS, executive support systems, web-based DSS, desktop 
DSS, strategic DSS and financial planning DSS (Arnott & Pervan 2005). Based on 
the model of assistance, Power (2002) differentiates model-driven DSS, 
communication-driven DSS, data-driven DSS, document-driven DSS and 
knowledge-driven DSS as follows. 
 

(1) A model-driven DSS emphasizes creation and manipulation of statistical, 
financial, optimization, or simulation models (Power 2002). The linear 
programming based optimization model is one of the most wide-used DSS 
models. Model-driven DSS require users (decision makers) to specify model 
parameters according to their decision problems. The outputs of the model are 
used to assist decision makers in assessing their decision alternatives. Multi-
objective DSS (MODSS) are a typical model-driven DSS where multi-objective 
decision making models are adopted (Lu et al. 2007).  

(2) A communication-driven DSS supports decision making within a group of 
decision makers through facilitating efficient information exchange (Power 2002). 
It is also called group DSS (GDSS). Information exchange stimulates intelligence 
development and integration, which promotes decisions to be made based on the 
consensus among different decision makers. Examples of this type of DSS are 
email systems, electronic meeting systems and bulletin board systems.  

(3) A data-driven DSS focuses on access to and manipulation of a large amount 
of company data from internal and external sources (Power 2002). Decision 
making is based on perceiving and comprehending the integrated information 
output by the system. Examples of this type of DSS are statistics tools, 
management information systems and BI systems. 

(4) A document-driven DSS is concerned with managing and manipulating 
unstructured information in a variety of electronic files, such as emails and reports 
(Power 2002). Examples of this type of DSS are library management systems, 
search engines and document retrieval systems. 
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(5) A knowledge-driven DSS generates decision suggestions based on human 
expertise (knowledge) (Power 2002). Human expertise is specific to application 
domains, which can be elicited from experts. The common forms of knowledge 
are business procedures, rule and facts. Examples of this type of DSS are case-
based reasoning systems, expert systems and question-answer systems.  

 
Due to the diversity of real applications, there is no general software 

architecture for DSS in different domains. Thus, the components and functions of 
DSS vary greatly. For example, a mathematical programming model is the core 
component of a model-driven DSS, while a BI system consists of a data 
warehouse subsystem and a data analysis subsystem.  The software architecture 
and functions of a DSS are often designed based on users’ specific requirements. 

A specific DSS is usually a combination of some of the above five different 
types. However, the model-driven DSS dominates the traditional DSS research 
and applications (Arnott & Pervan 2005).  As a result, many practical DSS were 
developed with the inclusion of a model component, although they also support 
other DSS functions, e.g., group communication and data-intensive analytics. 
Thus, the decision processes in traditional DSS are essentially model-based 
(Courtney 2001). 

1.5   Decision Support Techniques 

Decision support systems are built upon various decision support techniques, 
including models, methods, algorithms and tools. Zachary (1986, 1987) proposed 
a cognition-based taxonomy for decision support techniques, including six basic 
classes as follows.  
 

Process models are computational models that assist the projection of real-
world complex processes and give assumptions about the process and a 
hypothetical decision. A typical process model is probabilistic models which 
compute a probability distribution of outcomes from a probability distribution of 
input conditions through an analytical treatment of inputs and the behavior of the 
process. Markov chains are a common example of a probabilistic process model.  

Choice models support the integration of decision criteria across alternatives to 
select the best alternative from a discrete set or continuous description space of 
decision alternatives. A typical choice model is the multi-criteria decision-making 
model.  

Information control techniques provide functions of representation, 
manipulation, access, and monitoring data and knowledge. Typical techniques 
include database management tools, data and knowledge retrieval techniques, data 
warehousing, data mining and automatic aggregation. 

Analysis and reasoning techniques support applications of problem-specific 
expert reasoning procedures, such as mathematical programming, goal-driven 
inference, process-driven inference and data-driven inference. Goal programming, 
evidential reasoning, case-based reasoning and sensitivity analysis are successful 
analysis and reasoning techniques. 
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Representation aids support the expression and manipulation of a specific 
representation of a decision problem. Typical techniques of this type include 
natural language processing, graphic user interface, and human cognitive 
processing techniques. Some examples are decision trees, decision tables, and 
cognitive mapping.  

Human judgment amplifying/refining techniques assist decision makers in 
quantification of heuristic judgments. “Decision makers are able to solve problems 
heuristically or intuitively with results that are usually quite good but almost never 
truly optimal” (Zachary 1986). Typical techniques in this class include human-
aided optimization, adaptive user modeling and prediction, as well as Bayesian 
updating. 

 
The cognition-based classification of decision support techniques provides a 

picture and guideline for decision technique selection for problem solving and 
DSS development. In practice, a DSS often uses two or more of the techniques 
mentioned above to solve a problem. We will introduce five popular decision 
support techniques under the above taxonomy. 

1.5.1   Optimization 

Optimization, also called mathematical programming, refers to the study of 
decision problems in which one seeks to minimize or maximize a function by 
systematically choosing the values of variables from an allowed set. A 
mathematical programming model includes three sets of elements: decision 
variables, objective function(s), and constraint(s), where uncontrollable variables 
or parameters are within the objective functions and constraints. Many real-world 
decision problems can be modeled by a mathematical programming model. There 
are many types of mathematical programming models such as linear programming 
(Benayoun et al. 1971), multi-objective programming (Hwang & Masud 1979), 
and bi-level/multi-level programming (Anandalingam & Friesz 1992). 

Linear programming is an important type of optimization in which the 
objective function and all constraints are linear. There are pure linear 
programming problems corresponding to specialized solution algorithms. There 
are also other types of optimization problems including a linear programming 
problem as a sub-problem. Linear programming is heavily used in various 
management activities, either to maximize profit or minimize cost.  

1.5.2   Multiple Criteria Decision Making 

Multi-criteria decision making (MCDM), also called multi-attribute decision 
making (MADM), refers to making preference decisions (e.g., evaluation, 
prioritization, and selection) in the presence of multiple and conflicting criteria 
over available alternatives. A MCDM utility model combines all criteria of a 
given alternative simultaneously through a specific utility formula or utility 
function used.  Problems for MCDM may range from those in our daily life, such 
as the purchase of a car, to those affecting entire nations, such as the judicious use 
of money for the preservation of national security. However, even with such 
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diversity, all MCDM problems share the following common characteristics 
(Hwang & Yoon 1981): 
 

A set of alternatives: there are usually a limited number of predetermined 
alternatives, such as three IT companies available to develop an e-business system 
for a logistics company. 

Multiple criteria: each problem has multiple criteria. For example, development 
cost, quality of interface, and quality of security are criteria for selecting an IT 
company. 

Conflicting criteria: there are multiple criteria conflicting with each other, For 
example, the criterion “low cost” and the criterion “high quality of security 
function” conflict. 

Incommensurable unit: criteria may have different units of measurement. For 
example, the unit of cost is the dollar, while that of interface design is the degree 
of satisfaction.  

Selection: the solution to an MCDM problem is to select the best one among 
previously specified finite alternatives. 

Mathematically, a MCDM problem can be modeled as follows: 
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where ( )mAAAA ,,, 21 …=  denotes m alternatives, and ( )nCCCC ,,, 21 …=  

represents n criteria (or attributes) for characterizing a decision situation. The 
select here is normally based on maximizing a multi-criteria value (or utility) 
function elicited from the decision makers. By mapping the alternatives onto a 
cardinal scale of value, the alternative with the highest cardinality is implicitly the 
best. 

Multi-criteria decision-making methods have been widely developed, as 
reported by Hwang and Yoon (1981) as well as Yager (2004b) and many other 
researchers. Some popular MCDM methods include the TOPSIS method (Hwang 
& Yoon 1981) and the Analytic Hierarchy Process (AHP) method (Saaty 1980). 

1.5.3   Data Mining  

Data mining is a data processing technique to extract hidden patterns from data of 
interest, in order to provide decision makers ‘knowledge’ for decision making. A 
data mining project consists of six typical stages (www.crisp-dm.org), which is 
shown in Figure 1.2. 

Stage 1. Business Understanding 
A data mining project begins with collecting and understanding business 
requirements and converting the business requirements into technical 
specifications. 
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Fig. 1.2 Phases of the CRISP-DM Process Model (www.crisp-dm.org) 

Stage 2. Data Understanding 
The data is initially analyzed in this stage, in order to detect the problems of data 
quality and prospective patterns to be exposed. 

Stage 3. Data Preparation 
Data is pre-processed to reduce or eliminate data quality problems, such as 
inconsistency and data missing. 

Stage 4. Modeling 
Specific data modeling methods are selected and applied against the cleaned data, 
such as clustering, regression and classification.  

Stage 5. Evaluation 
The created data models are evaluated in this stage from both business and 
technical perspectives.  

Stage 6. Deployment 
If the data models are considered as good enough for the business requirements, 
they are deployed in the business environment to assist decision making. 
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Data mining is usually integrated with a decision support system. A common 
practice is to develop the data mining application on the basis of a data warehouse 
system. A data warehouse is a subject oriented, time-variant, non-volatile and 
integrated data store (Inmon 1993). A data warehouse system includes not only 
data storage, but also the techniques to extract, transform and load data, and 
retrieve and analyze data, and manage the data dictionary.    

1.5.4   Case-Based Reasoning 

Fully-automated expert systems have been used as a type of decision support 
system to produce a solution for a given problem statement. Such systems have 
been highly successful in solving problems in many well-circumscribed domains. 
However, they have not been successful in support decision making which 
requires creativity, broad commonsense knowledge, or aesthetic judgment 
(Kolodneer 1991). 

Case-based reasoning (CBR) provides a methodology for decision support 
systems in solving new problems based on the solution of similar past problems. 
The core technique of CBR is to have a powerful learning ability which can use 
past experiences as a basis for dealing with novel problems. A CBR system can 
therefore facilitate the knowledge acquisition process by eliminating the time 
required to elicit solutions from experts. In dynamically changing situations where 
much is unknown and solutions are not clear cut, CBR seems to be the preferred 
method of reasoning.  

Case-based reasoning is represented by a four-stage (4Rs) cycle: retrieve, 
reuse, revise and retain (Aamodt & Plaza 1994). In the first ‘R’ stage, when a new 
problem is input, CBR retrieves the most similar case from the case base. In the 
second ‘R’ stage, the solution of the retrieved case is reused. In the third ‘R’ stage, 
the solution is revised to suit the new problem, and in the fourth ‘R’ stage, the 
revised solution and the problem are retained for future reuse. Obviously, CBR is 
naturally suitable for knowledge-based decision making. The success of a CBR 
system is subject to the suitability of knowledge and the correctness of reasoning.  

Reinartz et al. (2001) extended the standard four-stage CBR cycle with two 
additional stages: review and restore. In the review stage, the current state of a 
CBR system and its knowledge containers is monitored and judged; the system, 
including its knowledge store, is adapted in the restore stage to improve the 
system performance. Figure 1.3 shows the six-stage CBR cycle. 

CBR-based decision support systems can be passive or active. They can be 
used to aid and support novice or expert-level decision makers, and can be used to 
help a wide variety of decision-making activities. The major advantage of CBR 
methods in support decision making is that CBR is considered as a natural 
reasoning process of human beings. Normally, people are good at using cases but 
not as good at recalling the right ones. CBR can extend the decision makers’ 
memory by providing the right cases. The major disadvantage of the CBR method 
is that the solution space cannot be fully explored. As a result, there is no 
guarantee of an optimal solution for a decision problem. 
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Fig. 1.3 The Six-Step CBR Cycle (Reinartz et al. 2001) 

1.5.5   Decision Tree  

A decision tree is a graph of decisions and their possible consequences which is 
used to create a plan to reach the goal of a decision. A decision tree is a predictive 
model to map observations about an item with conclusions about the item’s target 
value. Each interior node corresponds to a variable; an arc to a child represents a 
possible value of that variable. A leaf represents the predicted value of the target 
variable given the values of the variables represented by the path from the root.  
Figure 1.4 shows an example of a decision tree used to determine the type of a 
business. It can support strategy making for medium and small businesses in 
different industries. 

Fig. 1.4 An example of a decision tree 

Whatever the decision technique, a critical issue we need to deal with is 
uncertainty. Decision environments and data sources possess various uncertain 
factors, which result in uncertain relations among decision objectives and entities. 
Meanwhile, data itself has uncertainty. For example, an individual’s preference for 
alternatives and judgment of criteria is often expressed by linguistic terms, such as 
‘low’ and ‘high’, which implies a kind of uncertainty. Precise mathematical and 
inference approaches are not efficient enough to tackle such uncertain variables. 
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Various uncertain information processing techniques have been therefore 
developed. Fuzzy decision-making theory, that is, applying fuzzy sets into 
decision-making activities, is one of these well-developed techniques (Bellman & 
Zadeh 1970; Kacprzyk et al. 1992; Zimmermann 1987 ). Research results include 
fuzzy decision models, fuzzy multi-objective decision making, fuzzy multi-criteria 
decision making, fuzzy case-based reasoning, fuzzy decision tree, fuzzy data 
retrieval, fuzzy associate rules for data mining, and their applications. 

1.6   What’s New in This Book? 

First of all, this book is not another addition to the business management 
textbooks, nor general theories or technologies of decision making. The 
information presented in the above five sections serves as a preliminary for you to 
read through the following chapters of this book, and understand its offering. 

1.6.1   The Decision Problems Oriented in This Book 

This book is mainly concerned with complex ill-structured decision problems, 
particularly those with uncertainty, time pressures and high personal stakes. New 
theoretical models and practical technologies will be introduced to help readers to 
deal with this kind of decision problems. 

There are decision situations where decision problems are perfectly structured 
and can be easily defined. However, more common decision problems in reality 
are ill-structured. Take business as an example. Today’s companies operate in an 
extremely complex business environment involving many factors interacting with 
each other. Typical internal business sectors include market research, product 
R&D, basic engineering, financial management, cost control, and operational 
efficiency; external business sectors include market, technological, competitive, 
political/legal, economic, and socio-cultural. It is crucial for today’s business 
managers to keep aware of all these business sectors in order to properly steer the 
company. 

Business decision making happens in a complex environment, and is often 
imposed with a high degree of complexity, uncertainty, dynamics, high personal 
stakes and time pressure. Business decision making grows increasingly ill-
structured and demanding of experience. Decision making for ill-structured 
business problems therefore taxes managers’ cognitive abilities to a much higher 
extent than structured ones. Furthermore, business managers need to identify 
potential threats and opportunities in advance, and respond in a timely fashion, in 
order to survive in the fierce business competition. 

The research and applications in the DSS area have yielded a wide variety of 
theories and technologies (Sections 1.3 and 1.4) to deal with different kinds of 
decision problems. Model-based DSS have been well-studied and successfully 
applied to solve the structured decision problems for decades. Nevertheless, ill-
structured decision problems still lack sufficient efficient decision aids from 
today’s DSS. This book will present readers with a set of new models and 
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techniques to explore, investigate and possibly solve ill-structured decision 
problems occurring in different domains. 

1.6.2   New Models and Techniques for Ill-Structured Decision 
Problems 

In this book, a cognition-driven decision process (CDDP) model is discussed, in 
order to handle ill-structured decision problems. Based on the CDDP model, a 
series of techniques (methods, algorithms and systems) are introduced for readers 
to develop decision support systems in their specific application domain. 

Compared to the traditional DSS-based decision process model, the major 
feature of the CDDP model is cognition oriented. In the traditional DSS-based 
decision process model, decision makers and computers are separated two parts. 
The design of DSS is mainly driven by technologies. A decision maker in a DSS 
simply acts as a user of the computer-based system. The CDDP model 
incorporates managers (decision makers) as the central part of the system as a 
whole. The managers’ cognition is represented as information objects and used for 
computer-based information processing. Decision making becomes an integral 
process comprised of the human cognitive process as well as computer-based 
information processing. The two sorts of processes are both driven by managers’ 
cognition. 

Following the CDDP model is a set of techniques including methods, data 
model and algorithms in order to implement the CDDP model in practical 
applications. The techniques included in this book are mainly of four types. 

 
(1) Techniques used to represent and process domain knowledge. According to 

the CDDP model, two kinds of domain knowledge are concerned: domain 
ontology and management experience. 

(2) Techniques used to parse managers’ natural language input. Supported by 
the new techniques, managers can interact with the system using a natural 
language (English).  

(3) Techniques used to construct data warehouse queries. Data warehouse 
queries are constructed automatically by the system according to the manager’s 
natural language input. 

(4) Techniques used to present information. The information most relevant to 
the manager’s decision problem is retrieved from the data warehouse and then 
presented to the manager. A navigation-knowledge-guided situation presentation 
method will be discussed in this book. 

 
As an integration of the above techniques, a decision support system, called 

FACETS, is discussed in details, including its architecture, functions and 
evaluation. FACETS was designed and developed totally based on the CDDP 
model, using the above techniques. To demonstrate the application of FACETS, 
two illustrative case studies, in business and public health domain respectively, are 
also discussed. 
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Chapter 2 
Business Intelligence 

 
 
 
 
 
 
 
 
 
 
 
Business intelligence (BI) systems are data-driven DSS, focusing on the 
manipulation of large volumes of company data in data warehouses. As other 
types of DSS, such as model-driven DSS, communication-driven DSS, and 
knowledge-driven DSS (Section 1.5.3), BI systems suffer from lack of cognitive 
decision support, despite their powerful data analysis functions. This chapter will 
discuss the basic BI concepts, architecture and some vendors’ BI products. The 
drawbacks of today’s BI are also analyzed in details. 

2.1   What Is Business Intelligence? 

The term business intelligence means different things in different domains. From 
technical point of view, BI refers to the process of extracting, transforming, 
managing and analyzing business data, in order to support decision making. This 
process is mainly based on large data sets, particularly data warehouse, with the 
mission of disseminating intelligence or knowledge across the whole organization, 
from strategic level to tactical and operational level. A typical BI process consists 
of five key stages (CSIRO 2003): 
 

(1) Data Sourcing 

A BI system is able to extract data from multiple data sources, representing 
different business units, such as marketing, production, human resource and 
finance. The extracted data must be cleaned, transformed and integrated for 
analysis. 

 

(2) Data Analysis 

In this stage, data is converted into information or knowledge through different 
data analysis techniques, such as reporting, modeling, visualization and data 
mining. The results of data analysis help managers to have a better understanding 
of the environment and make better decisions. 
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(3) Situation Awareness 

Situation awareness (SA) is a deep understanding of the current decision 
situation based on the results of data analysis. SA is a key prerequisite for decision 
making. BI systems should be able to aid decision makers to develop rich SA 
about their decision situations.  

 

(4) Risk Assessment 

Richer SA can help managers to make prediction about the future, identify 
threats and opportunities, and thus respond correspondingly. Today’s businesses 
are operated in an increasingly complex environment. Business decision making is 
more likely to suffer risks from the external and internal environment. Thus, risk 
assessment is an important function of a BI system. 

 

(5) Decision Support 

The ultimate goal of BI is to help managers to make decision wisely, based on 
the current business data.  

2.2   The Architecture of a Business Intelligence System 

A typical BI system consists of four levels of components and a metadata 
management module (Codd et al. 1993; Inmon 2002). The generic architecture of 
traditional BI systems is shown in Figure 2.1. These different components 
cooperate with each other to facilitate the basic BI functions: extracting data from 
company operational systems, storing the extracted data in a center data 
warehouse, and retrieving stored data for various business analysis applications. 
 

• Operational Systems Level  
 

As the data sources of a BI system, business operational systems are mainly 
online transaction processing (OLTP) systems which support daily business 
operations. Typical OLTP systems are customer order processing systems, 
financial systems, and human resource management systems.  

 

• Data Acquisition Level 
 

This level is a data pre-process component including three phases: extracting, 
transforming, and loading (ETL). A company usually has different OLTP systems 
producing huge amounts of data. This data is first extracted from OLTP systems 
by the ETL process and then transformed according to a set of transformation 
rules. Transformed data is clean, unified, and aggregated and finally loaded into a 
central data warehouse. ETL is the most fundamental component of a BI system 
because the data quality of all other components mainly relies on the ETL process. 
In the design and development of ETL, data quality, system flexibility, and 
processing speed are the major concerns. 
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Fig. 2.1 The General Architecture of Current Business Intelligence Systems 

• Data Storage Level 
 

The data processed by the ETL component is stored in a data warehouse which 
is mainly implemented using traditional relational database management systems 
(RDBMS). A RDBMS is designed to support transaction processing. By contrast, 
a data warehouse is a subject oriented, time-variant, non-volatile and integrated 
data store (Inmon 1993) 1 . Data from company OLTP systems are extracted, 
transformed, and loaded into the data warehouse based on pre-defined schemas. 
The star schema and snowflake schema are the most popular data warehouse 
schemas. No matter what kind of schema on which a data warehouse is designed, 
the data warehouse always includes two basic types of tables: fact tables and 
dimension tables.  

 

• Analytics Level 
 

Based on the data warehouse, various kinds of analytical applications are 
developed, which represent the last level: Analytics. BI systems support two basic 
types of analytical functions: reporting and online analytical processing (OLAP). 
The reporting function provides managers with different business reports, such as 
sales reports, product reports and human resource reports. Reports are generated by 
executing queries into the data warehouse (DW). The DW queries are mainly pre-
defined query sentences programmed by the DW developers. Thus, the reports 
generated by BI systems usually have static formats and contain fixed types of data. 
                                                           
1 This is the original definition of data warehouses. Today’s data warehouse systems can be 

company wide in scope and the data can be updated over time, for instance, as real-time 
BI systems. 
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The most promising BI analytics is OLAP. OLAP allows managers to 
efficiently browse their business data from different analysis dimensions through 
slicing, dicing and drilling operations at will (Codd et al. 1993).  An analysis 
dimension is a perspective through which data is presented, e.g., product type, 
sales location, time and customer. Compared to the reporting function, OLAP 
supports ad hoc data analysis, i.e. managers have full control of the data by 
selecting different analysis dimensions of interest to them. OLAP is based on 
multidimensional data models (known as the snowflake and star schema). 

In addition to reporting and OLAP, there are many other types of analytical 
applications which can be built on the basis of a DW system, such as data mining, 
executive dashboards, customer relationship management, and business 
performance management. Technically, these applications are not necessarily built 
on a data warehouse.  However integrating them with DW systems has become a 
common practice in many practical BI systems.  

 

• Metadata Management 
 

Metadata are special data about other data such as data sources, data warehouse 
storage, business rules, access authorizations, and how different data is extracted 
and transformed. Metadata is crucial for producing accurate, consistent 
information and system maintenance. It affects the entire process of designing, 
developing, testing, deploying and using BI systems (Caserta 2004; Inmon 2002).  

2.3   Analytics of Business Intelligence 

The analytics are the core part of a BI system. Evelson and colleagues (2008) 
summarized BI analytics into eight categories based on a lab-based evaluation of 
popular BI tools on the market.  
 

(1) Production/operational reporting for pixel-perfect mass report distribution 

No matter how much BI self-service end users request, good old-fashioned 
report development tools, mainly used by professional programmers, remain at the 
heart of a BI product line. While these tools may also be used to analyze data and 
produce visual dashboards, they are primarily used for mass distribution of very 
sophisticated reports like customer statements. Requirements for these products 
often include pixel-perfect positioning of data and graphics, a scripting language 
equal in power to a full programming language, and the ability to handle complex 
headers, footers, nested subtotals, and multiple report bands on a single page. 

(2) Ad hoc query tools provide a quick answer to a business question 

When report formatting or distribution is not a requirement, and an information 
management professional just needs a quick answer to a business question like, 
“How many units of a product were sold yesterday across all stores and outlets?” 
or, “What were my total sales in 2007 in North America?” simple ad hoc query 
tools with an intuitive point-and-click user interface (UI) are the way to go. 
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(3) OLAP tools, when business questions are more about “whys” than “whats” 

While reporting and ad hoc query tools are typically used to answer the 
questions like “What happened?” and“When and where did it happen?”, online 
analytical processing (OLAP) tools are used to answer the questions like “Why 
did it happen?” and also to perform “What if?” analysis. Otherwise known and 
“slicing and dicing” analysis (essentially a spreadsheet pivot table on steroids), 
OLAP tools allow a power user to see any facts (numerical, typically additive 
numbers, like transaction amounts and account balances) almost instantaneously 
regrouped, re-aggregated and resorted by any dimension (descriptive elements like 
time, region, organizational unit, or product line). 

 

(4) Dashboards as an interactive, visual UI — not a reporting or analytical tool 
by itself 

Dashboards should be used as a UI to operational or analytical information. 
Designed to deliver historical, current, and predictive information typically 
represented by key performance indicators (KPIs), dashboards use visual cues to 
focus user attention on important conditions, trends, and exceptions. The term 
dashboard is often used synonymously with scorecard, but Forrester defines a 
scorecard as just one type of a dashboard that links KPIs to goals, objectives, and 
strategies. Many scorecards follow a certain methodology, such as Balanced 
Scorecard, Six Sigma, Capability Maturity Models, and others. Other dashboard 
varieties include business activity monitoring (BAM) dashboards and 
visualizations of data/text mining operations. 

 

(5) BAM will report on real-time data and process information streams 

While a dashboard can be used as a graphical user interface (GUI) component, 
BAM also captures data and process events (e.g., number of credit applications 
processed today and number still pending in a queue), correlates and aggregates 
them into business metrics (e.g., ratios of processed, approved, and rejected 
applications per hour), and displays the real-time status of the metrics and trailing 
patterns. 

 

(6) Predictive modeling answers questions about what’s likely to happen next 

Using various statistical models, these tools attempt to predict the likelihood of 
attaining certain metrics in the future, given various possible existing and future 
conditions. One typical predictive modeling class is called market basket analysis, 
which tries to predict the likelihood of a customer buying a certain product if and 
when he or she bought another product at a certain store at a certain season, date, 
and time, given certain economic conditions such as interest rates and price of gas. 

 

(7) BI workspaces enable true end user self-service 

While most BI environments attempt to address end user self-service 
requirements, they still impose many restrictions, such as fixed data models, an 
inability to add new dimensions on the fly, and sometimes restricted access to 
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production data. Forrester defines a BI workspace as a data exploration 
environment where a power user can analyze production, clean data with near 
complete freedom to modify data models, enrich data sets, and run the analysis 
whenever necessary, without much dependency on IT and production environment 
restrictions. Some examples of such workspaces are desktop-based 
multidimensional OLAP (MOLAP) cubes, in-memory data models, or BI 
software-as-aservice (SaaS). 

 

(8) Guided BI search tools support free form ad hoc queries and analysis 

While reporting, ad hoc queries, and OLAP tools work best when one knows the 
exact business question, they fall short when a user is looking for something that he 
or she is not quite sure of. A salesperson getting ready for an important client 
meeting may not know all of the information required to prepare for the meeting 
and may not be able to effectively construct the appropriate queries to pull the 
information he/she might need. What works much better is enabling this 
salesperson to simply enter a few keywords to find relevant customer dimensions in 
the database, then using a graphical interface to drill into the information he/she 
wants from a list of possibilities. This effectively solves one of the oldest dilemmas 
in BI: having to know exactly which questions to ask to get a meaningful answer. 

2.4   Commercial Tools  

2.4.1   SAS Business Intelligence  

Website: http://www.sas.com/technologies/bi/ 
SAS BI offers a full breadth of SAS Analytics capabilities, including statistics, 

predictive analytics, data and text mining, forecasting, and optimization. These 
functions are integrated within the business context for better, faster decision 
making. SAS BI has two components: Enterprise Business Intelligence and 
Business Visualization. 

The typical functions of SAS BI are as follows.  
 

• Web and desktop reporting 
 

SAS BI supports a wide variety of targeted, fit-to-task interfaces for report 
building, viewing and distribution for all levels of users across an organization. 

 

• Portal and customizable dashboards 
 

SAS BI provides users an easy-to-use, role-based Web portal, via which users 
can access aggregated information. It also includes a dashboard development 
environment, enabling users to create their own dashboards of different styles 
from virtually any data source. 

 

• Microsoft Office integration 
 

Microsoft Office can be integrated with SAS BI, bringing SAS capabilities in 
data access, reporting and analytics directly from Microsoft Office. 
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Fig. 2.2 A Screenshot of SAS BI 

• Query and Analysis 
 

SAS BI has a user-friendly interface to allow users to easily access and query 
data on their own without the help of IT staff.  

 

• Interactive business visualization 
 

SAS BI presents data in charts, graphs and geographic maps within multiple BI 
applications. 

 

• OLAP storage and OLAP data exploration interface  
 

Users can work on their Web browsers to create OLAP cubes and interact with 
SAS BI to view the multidimensional data from different business dimensions.  

 

• Integrated analytics 
 

Users can access sophisticated analyses directly from their BI interface for 
decision making. 

 

• Guided analysis. 
 

A dynamic Windows interface can guide users during model development. This 
function enables business analysts, statisticians and programmers to leverage SAS 
analytics and efficient processing across all enterprise platforms. 

A screenshot of SAS BI is shown in Figure 2.2. 
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Fig. 2.3 IBM Cognos BI 

2.4.2   IBM Cognos Business Intelligence  

Website: www.ibm.com 
IBM Cognos BI provides full breath of BI analytics, such as various styles of 

reporting, analysis, score carding, and dashboards. It has four major components: 
 

• Analysis Studio 
 

In Analysis Studio, users can explore their business data to find trends and 
comparisons that answer their business questions. The analysis in Cognos is no 
longer strictly against Cognos Power Cubes but also against relational data sources. 

 

• Report Studio 
 

Report Studio is the platform for power users and professional developers to 
create formatted reports that contains multiple charts or tabular data sets from 
multiple subject areas. Additional chart types, such as gauges and maps, that aren't 
available in Query Studio or Analysis Studio, are also supported in Report Studio. 
A screenshot of Report Studio is shown in Figure 2.3. 

 

• Query Studio 
 

Query Studio is used for ad hoc report authoring. Users can easily query any 
data sources (relational, multidimensional or planning data source) to create 
crosstabs, simple charts or detailed reports. Query Studio also provides formatted 
templates to give any report a standard corporate layout or logo. 
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• Metrics Studio 
 

Metrics Studio is used for scorecarding. Users can monitor business 
performance through different parameters. The idea behind it is to put 
performance indicators next to the organization's key performance measures (red, 
orange, green status notation).  

2.4.3   SAP BusinessObjects Business Intelligence 

Website: www.sap.com 
SAP BusinessObjects provides a full spectrum of BI functionality, ranging 

range from reporting, query, analysis, dashboards and visualization, to intuitive 
discovery and advanced predictive analytics capabilities, as well as data quality 
and extract, transform, and load functionality. The components and functions of 
SAP BusinessObjects are categorized as follows. 

 

• Information Infrastructure  
 

The information infrastructure of SAP BusinessObjects allows IT department to 
extend BI to any application or process in any environment. It provides following 
functions: Auditing, BI content search, BI widgets Central management console, 
Encyclopedia, InfoView, Java portal integration kit, Life-cycle management, 
Publishing, Process tracker, Query as a Web service, Microsoft Office SharePoint 
portal integration kit, Software development kits, and Universe designer. 

 

• Reporting  
 

SAP BusinessObjects contains a reporting tool: Crystal Reports providing users 
an interface to connect to virtually any data source, design and format interactive 
reports, and share them internally and externally. The final reports can be 
delivered via SAP BusinessObjects Enterprise, Crystal Reports Viewer, and 
Microsoft Office documents. 

 

• Query, Reporting, and Analysis 
 

There are two tools in SAP BusinessObjects, Desktop Intelligence and Web 
Intelligence, allowing users to perform ad hoc query, reporting and analysis, 
without having to understand complex database languages and underlying 
structures. Figure 2.4 is a screenshot of SAP BusinessObjects Web Intelligence. 

 

• Dashboards and Visualization 
 

SAP BusinessObjects has nine software tools to support information 
visualization, such as Xcelsius Enterprise, Dashboard Builder, and VizServer. 
This set of tools also provides professional developers a software development kit 
to customize advanced visualization interfaces.  

 

• Advanced Analytics  
 

SAP BusinessObjects Voyager is the OLAP interface through which users can 
explore multidimensional data. SAP BusinessObjects Predictive Workbench is a 



28 2   Business Intelligence
 

software tool enabling users to conduct predictive analysis. SAP BusinessObjects 
Set Analysis is a software tool enabling users to conduct clustering analysis. 

 

• Search and Navigation 
 

With SAP BusinessObjects, business users can search BI contents from internal 
and external resources, such as structured databases, business intelligence (BI) 
systems, unstructured company and text content, search engines, and the Web. 

2.5   Limitations 

Business intelligence is promising to turn ‘data’ into ‘knowledge’ and help 
managers survive data tsunami and eventually succeed in decision making. 
However, BI systems are essentially data-driven DSS. Current BI systems can 
only partially support managers’ work (Singh et al. 2002). The emphasis of BI 
analytics is manipulation of large volumes of business data, rather than supporting 
managers’ decision making from the cognitive perspective.  
 

 
Fig. 2.4 SAP BusinessObjects Web Intelligence 

A BI system is capable of providing managers with huge amounts of internal 
and external business data, but more data does not equal more valuable 
information (Endsley et al. 2003). On one hand, the reporting function is mainly 
pre-defined information representation. That is, business reports are generated in 
fixed types and formats by executing pre-defined queries into the data warehouse. 
The pre-defined reports are efficient and effective in reporting repetitive and 
structured business events, for example periodical (daily, weekly, monthly, 
quarterly and annual) product sales. However, pre-defined reports are not as 
flexible as many other ill-structured events require, for example, unpredictable 
marketing campaigns. On the other hand, OLAP-based ad hoc analysis gives 
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managers the full control of their data. Managers can easily obtain any data of 
their interest by selecting analysis objects and customizing analysis dimensions. 
Nevertheless, mangers often feel lost when confronted with a large body of 
business data concerning a decision problem (Resnick 2003). 

A recent survey by Economist Intelligence Unit (2006) shows that 73 per cent 
of senior managers agreed that it is important to have less but more timely data to 
improve the quality and speed of decision making. This result corresponds to the 
research result by Sutcliffe and Weber (2003) about knowledge accuracy. Their 
research implies that having a lot of facts about a decision situation is less 
important than having a clear and consistent overview. Resnick (2003) criticizes 
the current executive dashboard design (a type of BI application) for emphasizing 
improvement on data analysis functionality while falling short of cognitive 
engineering consideration. More recently, an industrial report from InfoWorld 
Media Group shows that ‘BI has a reputation for being a resource sink that 
delivers reports almost no one reads. It doesn't have to be that way. And you can 
no longer afford to let it be’ (Gruman 2007, p. 22).  

2.6   Summary 

The identification of the advantages and disadvantages of traditional BI system 
motivated us in this research to seek a new way to better support managers’ work, 
particularly for handling ill-structured decision problems. This book aims to 
provide models and techniques to facilitate cognitive decision support on the basis 
of BI platforms. Thus, it is necessary to look at the nature of cognitive decision 
support from the cognitive psychology perspective. In next chapter, relevant 
concepts and decision models in cognitive psychology will be reviewed. 
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Chapter 3 
Managerial Cognition 

 
 
 
 
 
 
 
 
 
 
In naturalistic decision making, successful decisions are mainly based on the 
sufficient situation awareness (SA) and mental models of decision makers. With 
rich SA and mental models, a decision maker is able to understand the current 
decision situation, identify potential threats and opportunities, and predict the 
future.  In this chapter, we will introduce the basic concepts and models of SA, 
mental models and naturalistic decision making, and the implications of them to 
investigating the problems of the decision making model of classical DSS. 

3.1   The Concept of Cognition 

In cognitive psychology, cognition refers to cognitive (mental) processes 
(functions) involving acquisition, maintenance and usage of knowledge. A 
cognitive process is considered as a process of human information processing ‘… 
by which you [an individual] take information, pick it over, play with it,  analyze 
it, put it together, reorganize it, judge and reason it, make conclusions, plans and 
decisions, and take action’ (Jaques 1996, p. 18). Cognition can take a number of 
forms such as perception, attention, pattern recognition, learning, memory, 
language processing, problem solving, thinking and reasoning (Baum 2004; Lycan 
& Prinz 2008; Sternberg 2006). 

The resultant product of cognition is knowledge, which can be of different 
types, such as beliefs, mental models and SA. Knowledge is stored and maintained 
in memory which is either long-term memory (lasting from days to a lifetime) or 
working memory (lasting around 20 seconds) (Bahrick et al. 1975). Knowledge is 
typically utilized by people to make decisions and judgments (Plous 1993). In the 
naturalistic setting, people are capable of making decisions solely based on the 
knowledge residing within their minds. How experts (proficient decision makers) 
make decisions in real-world contexts that are meaningful and familiar to them is 
the major concern of naturalistic decision making (NDM) research (Lipshitz et al. 
2001). People’s abilities to make naturalistic decisions mainly rely on two kinds of 
knowledge: SA and mental models. In this section, we will briefly review the 
existing work about SA, mental models and NDM. 



32 3   Managerial Cognition
 

3.2   Situation Awareness 

The concept of SA was initiated in the military aircraft domain and extended to air 
traffic control, nuclear power plants, and other tactical and strategic systems 
(Endsley 1995b). In aviation, SA mainly refers to the pilot’s knowledge about the 
aircraft itself and its environment (Emerson et al. 1987; Hamilton 1987; Vidulich 
1995). Sarter and Woods (Sarter & Woods 1991) describe SA as ‘the accessibility of 
a comprehensive and coherent situation representation which is continuously being 
updated in accordance with the results of recurrent situation assessments’ (p. 52). 

Endsley (1995b) proposed a generic model of SA in terms of information 
processing (Figure 3.1). She suggested that SA can be divided into three levels or 
steps of mental representation.  

 

Fig. 3.1 Endsley's Situation Awareness Model (Endsley 1995b) 

Level 1: SA is the decision maker’s perception of the status, attributes, and 
dynamics of relevant elements in the environment (the decision situation). Level 1 
SA is the lowest and most basic level of SA. Achieving Level SA involves basic 
information detection processes.  

Level 2: SA is the decision maker’s comprehension of the perceived 
information, i.e., Level 1 SA. Level 2 SA is achieved through pattern recognition, 
interpretation, and evaluation. Level 2 SA results a comprehensive picture of the 
environment.  

 

The highest level of SA is the decision maker’s projection: Level 3 SA. Level 3 
SA is the decision maker’s ability to predict the future status of the environment.  
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Endsley’s SA model also shows various internal and external factors affecting 
the process wherein SA is developed. The development process of SA is referred 
to as situation assessment. In the SA model, situation assessment is an information 
processing process within the decision maker’s mind. This process can be 
enhanced by means of appropriate technologies. For instance, a case study by 
Endsley and co-researchers (2003) demonstrates that different user interface 
designs result in different degrees of situation assessment in aviation control. In 
this research, we proposed the situation retrieval theory and developed relevant IS 
techniques to assist managers to develop SA according to their decision situations. 

Situation awareness is believed to be an essential prerequisite for people’s 
decision making in any complex and dynamic situation (Endsley 1995a; Flach 
1995; Sarter & Woods 1991; Smith & Hancock 1995). A close relationship exists 
between SA and decision making: richer SA is  more likely to lead to good 
decisions and then to good performance (Stanners & French 2005). 

Simply put, SA is about knowing what is going on around the decision maker. 
In this book, we particularize the concept of SA in business domain in that SA is a 
state of knowledge reflecting the manager’s understanding of the current decision 
situation. This understanding may include sensing and comprehending different 
business information, such as sales data, product information, emerged 
competitors, and government policies. It may also reflect the manager’s prediction 
about the potential threats, opportunities, and possible solutions. SA creates a big 
picture of the company within the manager’s mind and enables the manager to be 
capable of predicting the future and of making decisions. 

3.3   Mental Models 

Mental models are ‘psychological representations of real, hypothetical, or 
imaginary situations’ (Johnson-Laird et al. 1998). Mental models are commonly 
referred to as deeply held assumptions and beliefs that enable individuals to make 
inferences and predictions (Chen & Ge 2006; Chen & Lee 2003; Johnson-Laird et 
al.1998). Rouse and Morris (1985, p. 351) defined mental models as ‘mechanisms 
whereby humans are able to generate descriptions of system purpose and form, 
explanations of system functioning and observed system states, and predictions of 
future states’. 

A mental model is useful in that it provides (1) a mechanism for guiding 
attention to relevant aspects of the situation, (2) a means of integrating 
information perceived to form an understanding of its meaning and (3) a 
mechanism for projecting future states of the system based on its current state and 
an understanding of its dynamics   (Endsley et al. 2003).  

Mental models and SA are different in their points of reference (Sarter & 
Woods 1991). Mental models use finite number of elements and algorithms to 
represent systems or devices, whereas SA is a dynamic representation of open 
systems. Mental models reflect people’s past experience which act as the basis and 
guidance for adequate situation assessments (Endsley 1995a; Sarter & Woods 
1991). People need both rich SA and mental models to understand the decision 
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situation, to anticipate the near future status of the environment, and then to 
succeed in decision processes.  

Mental models are a type of tacit knowledge which can be elicited from 
people’s minds using cognitive mapping (Ackermann et al. 1992). Cognitive 
mapping is a technique used to structure accounts of problems. Cognitive mapping 
produces a pictorial representation of the user’s problem: cognitive maps (Eden 
1988). Users can organize their concepts (ideas), and the interrelationships 
between concepts in a cognitive map. Figure 3.2 is an example of cognitive map 
showing how the notebook sales are affected by different factors. Each node 
denotes a concept and each directed line denotes a causal relationship between two 
concepts. For instance, customer service and advertisements affect market share; 
market share affects notebook sales. 

 

Fig. 3.2 An Example of Cognitive Map 

Cognitive maps are also variously referred to as mental maps, concept maps, 
schemata, mental models or cause maps. Cognitive mapping has been studied and 
applied in different fields: operation research (Carlsson & Fuller 1996; Langfield-
Smith & Wirth 1992), software engineering (Siau & Tan 2005), accounting  (Lee 
& Kim 1997), and strategic management planning (Carlsson & Fuller 1996). 

3.4   Naturalistic Decision Making 

In the study of decision making, NDM has been receiving more interest recently 
along with other theories such as CDM, BDT, JDM, and ODM. NDM focuses on 
investigating how proficient decision makers make decisions in their familiar 
decision situations (Lipshitz et al. 2001). NDM is a descriptive decision theory. At 
the other end of the spectrum is normative decision theory, e.g., CDM. In CDM, 
decision makers are considered as rational human and the decision making is a 
‘choice’ process. Compared to CDM, NDM is based on a ‘matching model’ and 
the decision maker has only bounded rationality. NDM is shaped by five essentials  
(Lipshitz et al. 2001). 
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(1) Proficient Decision Makers 
 

NDM is concerned with the decision processes of proficient decision makers in 
their familiar decision situations. Proficient decision makers are people who have 
rich relevant knowledge or experience regarding decision making. Decision 
makers’ experience is domain specific and forms the basis of their naturalistic 
decision making. 

 
(2) Situation-Action Matching Decision Rules 
 

Proficient decision makers make decisions via matching processes, instead of 
choice processes in CDM. When presented with a decision situation, several 
options will automatically emerge in the decision maker’s mind based on his/her 
past experience. The decision maker then quickly screens most of the options by 
comparing them against a standard, rather than with one another. An option is 
selected or rejected based on its compatibility with the situation. The screening 
process relies much more on pattern matching and informal reasoning than on 
analytical reasoning. 

 
(3) Context-Bound Informal Modeling 
 

The decision models of NDM tend to be informal and context-specific, that is, 
closely related to a specific application domain. This is because NDM is mainly 
based on decision makers’ domain-specific experience. 

 
(4) Process Orientation 
 

In CDM, the major problem is how to optimize the output according to a 
specified input. Rather than the input and output of decision making, NDM is 
more concerned with the process, particularly with the information decision 
makers actually search, understand, and use during decision process. 

 
(5) Empirical-Based Prescription 
 

In normative decision models, solutions can be prescribed during decision 
processes irrespective of the intended recipient’s actual ability to perform them, 
i.e. ‘ought’ can be divorced from ‘is’. In NDM, ‘ought’ cannot be divorced from 
‘is’: prescriptions are useless if they cannot be implemented, although they are 
optimal in some formal sense. Thus, NDM researchers believe it is not necessary 
for prescriptions to be optimal, as long as they are good enough for the current 
decision situation. NDM prescriptions are derived from descriptive models of 
domain expert behavior, which are more feasible than the optimal ones from 
choice models. 

 

Among a number of NDM models, the recognition-primed decision (RPD) 
model  is the prototypical one (Lipshitz et al. 2001). The RPD was developed by 
Klein and co-researchers (1989) during a study of firefighters, which is shown in 
Figure 3.3.  
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Fig. 3.3 RPD Model  (Klein et al. 1989) 

The decision process under the RPD model is based on decision makers’ SA 
and mental models. When presented with a new decision situation, the decision 
maker will intuitively recognize the current situation through developing 
concurrent SA about it. SA provides the decision maker with an integrated overall 
picture of the current situation. This picture is a ‘pattern’ extracted from the 
current situation based on ‘SA’ and it is ‘matched’ with pre-held ‘mental models’ 
through pattern recognition. The matched mental model leads directly to a 
potential solution to the current situation. The feasibility of the potential solution 
is mentally evaluated against the current decision situation. If the decision maker 
believes the potential solution will also work in the current decision situation, the 
potential solution is then implemented. Otherwise, the decision maker will modify 
or discard the potential solution according to the degree in which it is feasible to 
the current decision situation. In the RPD model, the processes of situation 
recognition and pattern matching reply on the decision maker’s SA and mental 
models. Rich and reliable SA and mental models are direct driving forces for 
decision making. 
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As two different decision-making theories, CDM and NDM have different 
applicability for different decision situations. CDM has been successfully applied 
to solve structured decision problems with well-defined goals, conflict resolution, 
computational complexity, and requiring optimization and justification. For 
unstructured or semi-structured decision problems, particularly those with time 
pressure, uncertainty and ambiguity, NDM is more applicable if experienced 
decision makers are available. 

3.5   Summary 

A decision maker’s SA and mental models are two prerequisites for successful 
decision making. Thus, to develop relevant models and technologies to enrich 
decision makers’ SA and mental models is supposed to be a key consideration of 
designing contemporary DSS. Rich SA and mental models are not the guarantee 
of successful decision making. However, the strong relationships between SA and 
mental models and decision making indicates that the better SA and mental 
models are more likely lead to better decisions. 
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Chapter 4 
Cognition in Business Decision Support Systems 

 
 
 
 
 
 
 
 

Cognition plays a key role in decision making for complex, ill-structured 
situations. Cognitive decision support is one of the major objectives in the design 
and development of DSS. In Chapter 3, we analyzed some important concepts and 
models in managerial cognition. Managers’ rich SA and mental models are two 
prerequisites for and likely lead to successful decisions according NDM theory. In 
this chapter, we will look at the role of managers’ cognition on decision-making 
processes from an information system (IS) perspective. The first two sections of 
this chapter discuss the basic characteristics of decision-making tasks in business 
domain, and how managers’ cognition can influence on business decision making. 
The last section summarizes some typical systems that take cognition as an 
important consideration.  

4.1   Complex Nature of Business Decision Making 

Anthony (1965) categorized management activities into three levels: operational 
control, management (tactical) control, and strategic planning (Section 1.2). 
Roughly speaking, management activities of operational control, management 
control and strategic planning respectively correspond to structured, semi-
structured and unstructured problems. However, due to the complexity of business 
management, there are no definite boundaries between different management 
activities. For instance, a specific strategic planning activity might be essentially 
of unstructured nature, but with a proportion of structured characteristics.  

Structured management problems are relatively easy to define, and model-
based DSS have been well-studied and successfully applied to solve this kind of 
problems for decades (Gordon & Pinches 1984; Jensen & Bard. 2003). However, 
ill-structured (semi-structured and unstructured) management problems, 
particularly strategic planning, still lack sufficient efficient decision aids from 
today’s DSS. Singh and co-researchers (2002) found that the support scope of 
DSS is surprisingly narrow, with most of the information serving well-defined 
needs and drawing from internal databases. Much less is done to support the parts 
of strategic planning that are less structured or require data that are external or 
non-machine resident. Their research shows that no more than 40 per cent of the 
strategic management process is supported or partially supported by executive 
support systems.  
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The lack of decision support of DSS to ill-structured decision problems can be 
attributed to the complexity of managers’ roles. Managers’ specific roles include 
identifying problems and opportunities, working out appropriate solutions to react 
to problems and opportunities, developing business goals and strategies, 
establishing social networks, developing and maintaining relationships with 
different partners (Hoven 1996; Welter 1988). Managers’ roles in organizations 
were formally modeled by Jaques’s (1976) stratified systems theory. The stratified 
systems theory describes a bureaucratic system at eight strata levels corresponding 
to eight managerial roles respectively. Each organizational stratum is shaped by 
task uncertainty and time-span of discretion: the targeted completion time of the 
longest task or task sequence in a managerial role. Jaques found that the time span 
increases as one moves up the organization, such as 1 day to 3 months (Level 1), 3 
months to 1 year (Level 2), 1 year to 2 years (Level 3), 2 years to 5 years (Level 
4), 5 years to 10 years (Level 5) and so on. Level 1 tasks are mainly concrete tasks 
conducted by front line managers and they have minimal uncertainties, compared 
with Stratum 4 tasks such as corporation goal formulation and strategic planning. 
With stratum level increases, task uncertainties also increase. Managers employ 
diverse techniques to deal with uncertainties, such as trying out different ways of 
carrying out tasks (Level 1), cognitively simulating tasks in the mind (Level 2), 
using forecasting systems (Level 3), constructing portfolios of departments and 
systems (Level 4), scenario analysis (Level 5) and so on. Jaques points out tasks 
become more complex due to increased uncertainties towards higher level 
managerial strata, and the increasing task complexity demands increasingly 
complex cognitive processes.  

Regarding the complexity of ill-structured decision problems, Mintzberg and 
co-researchers (1976) described strategic planning as novelty, complexity and 
open-endedness. They refer to strategic decision making as a ‘groping process’. At 
the beginning of this process, managers usually have very little understanding of 
the decision situation with which they are confronted, and they only have a vague 
idea about the potential solution. Before a final decision is made, managers have 
to grope through ‘a recursive, discontinuous process involving many difficult 
steps and a host of dynamic factors over a considerable period of time’ (Mintzberg 
et al. 1976).  

This is not the decision making under uncertainty of the textbook, where 
alternatives are given even if their consequences are not, but decision-making 
under ambiguity, where almost nothing is given or easily determined  (Mintzberg 
et al. 1976, p. 136).  

Today’s companies operate in a turbulent business environment where different 
sectors interact with and affect each other. Walters and co-researchers (2003) 
summarize in six internal business environment sectors (market research, product 
R&D, basic engineering, financial management, cost control, and operational 
efficiency) and six external ones (market, technological, competitive, political/legal, 
economic, and socio-cultural). For the survival of a company, the executive needs to 
keep abreast of each sector of the environment. Moreover, the speed and quality 
with which business decisions must be made has increased substantially with the 
trend of the globalization of economy (Ditsa 2003; Resnick 2003).  
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The above discussion shows that today’s business decision making happens in a 
complex environment, and is often imposed with a high degree of complexity, 
uncertainty, dynamics, high personal stakes and time pressure. As Courtney 
argues ‘…organizational decision environments have always been complex and 
ill-structured, the environments of the near future will be even more so’ (Courtney 
2001, p. 18), business decision making grows increasingly ill-structured and 
demanding of experience. Decision making for ill-structured business problems 
therefore taxes managers’ cognitive abilities to a much higher extent than 
structured ones. Only with rich situation awareness and solid mental models about 
their decision situations can managers have good opportunity to be successful in 
managing their business. 

4.2   Cognition in Business Decision Making 

Managers’ cognition plays an important role in decision making, as has been 
noted by many researchers. In behavioral organization theory, managers’ 
cognition acts as a filter between inter-organizational and intra-organizational 
environments, which helps managers to search for selective information 
concerning functions of the business and certain organizational actions (March & 
Simon 1963). Similarly, based on a survey of 12 Fortune 500 companies, 
Donaldson & Lorsch (1983) concluded that senior executives simplify business 
reality by employing interrelated beliefs to filter irrelevant information. The 
simplified business environment helps executives to gain better understanding of 
their companies during strategic decision making. This conclusion was confirmed 
by Porac & Thomas (1990).  

Mintzberg (1973) categorized managers’ work into ten different roles and 
connects them with managers’ mental models. He found that managers spend most 
of their time communicating with other people and thinking, by which a series of 
mental models are built. Managers’ mental models are related to different issues, 
decision situations, problems and company internal and external environments. 
During the decision process, managers tend to use their past mental models to 
comprehend the current problem and to test alternative solutions.  

Isenberg (1984) observed that higher level decision making is mainly based on 
managers’ intuition rather than ‘choosing’ the best one from a number of 
identified alternatives. Managers are skillful at using historical experience to 
envision future scenarios of the company, by which they predict potential threats 
and possible opportunities. In dynamic, ill-structured environments, managers 
have little time to conduct thorough rational reasoning. Ironically, managers tend 
to quickly assess decision situation by comparing a current decision problem with 
their past decision scenarios, which leads to a quick, satisfying decision (Schmitt 
1997).  

Managers’ cognitive abilities are nevertheless subject to many cognitive biases. 
A cognitive bias is a distortion pattern in the human mind which leads to a 
perception, judgment, or reliability that deviates from the reality (Pohl 2004). 
Cognitive biases might be useful in certain circumstances, but they are more likely 
to cause serious mistakes in decision making. For example, people tend to accept 
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new information that confirms their preconceptions and avoid conflicting ones. 
Senge (1990) found that many good business plans failed to be carried out simply 
because of their incompatibilities with managers’ mental models. When people 
retrieve past experience, they have a tendency to overestimate recent events 
because these events are relatively easier to recall from memory. People also have 
a bias toward thinking that the more information they can obtain, the better 
decision they can make. Russo and Schoemaker (1990) described ten most 
common mistakes in decision making related to cognitive biases:  plunging in, 
frame blindness, lack of frame control, overconfidence in your judgment, 
shortsighted shortcuts, shooting from the hip, group failure, fooling yourself about 
feedback, not keeping track and failure to audit your decision process. Most 
cognitive biases are hard to avoid and they are attributed to different psychological 
biases. For example, judgmental biases are caused by judgmental rules and 
heuristics employed by people to reduce difficult mental tasks to simpler one 
(James H. Barnes 1984). However, well-designed information systems are helpful 
for people to overcome some bad cognitive biases (Chen & Lee 2003). In this 
book, a navigation-knowledge-guided situation presentation method will be 
discussed to help managers easily recall and reuse past experience and to provide 
support to their thinking process. 

4.3   Cognition Oriented Information Systems 

Theoretically and practically, the existing literature reviewed in previous sections 
of this chapter advocates a strong argument that today’s DSS should be designed 
to support managers’ work from a cognitive perspective, in order to assist decision 
makers to overcome the disadvantage of cognitive biases, reuse past experience, 
enhance mental models, develop SA, and deal with ill-structured decision 
problems. In this section, we review existing work about specific systems, related 
models and concepts for cognitive decision support in DSS. As a wider 
appreciation of previous work in this research, we also briefly review other areas 
related to supporting or utilizing human cognition in a broad sense. These areas 
include case based reasoning (Section 1.4.4) and natural language interface to 
databases (NLIDB). 

4.3.1   Cognitive Decision Support Systems 

Cognitive maps, as a knowledge representation technique of human mental 
models, have received wide research attention in DSS community. A number of 
DSS have been developed in past research projects to support manipulation of 
cognitive maps. 

An early DSS called SPRINT (Strategic Plan and Resource Integration), was 
developed to support strategic management by Carlson and Ram (1990).  SPRINT 
can be used by managers to explicitly represent planning models which are of 
implicit nature in managers’ minds. The visual representation of planning models 
is based on manages’ mental models. The concept nodes and links between 
concepts can be created by managers according to their understanding and 
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thoughts about their decision problems. SPRINT also supports heuristic rules and 
goal-oriented communication between different managers. The cognitive aspects 
of SPRINT lie in supporting the visual representation and dynamic creation of 
managers’ mental models regarding business plan formulation. Although 
managers’ cognition is supported in terms of information systems to a limited 
degree, SPRINT represents one of the early research efforts toward cognitive 
decision support in the DSS community. 

A conceptual DSS called Cognitive Lens Support System was described by 
Yadav and Khazanchi (1992). They proposed the concept cognitive lens as the 
description of mental models from an IS perspective. A cognitive lens acts a filter 
to convert information into a set of constructs and their interrelationships of the 
real world. The cognitive lens support system revolves around inquiry of cognitive 
lenses stored in a database. They proposed three categories of IS function for 
inquiry of cognitive lenses: introspective, dialectic, and eclectic. The introspective 
function allows managers to examine their past experience for a specific decision 
problem. The dialectic function allows managers to compare their own experience 
with others. The eclectic function allows managers to aggregate multiple pieces of 
experience. The major argument for the cognitive lens support system is that the 
IS functions developed based on managers’ cognitive orientation will facilitate 
better understanding of ill-structured problems. Compared to previous research, 
the cognitive lens support system illustrates a more comprehensive analysis about 
the significance and IS techniques of supporting managers’ thinking process for 
business decision making, although at a conceptual level and lacking empirical 
validation. 

Following the cognitive lens support system (Yadav & Khazanchi 1992), Chen 
and Lee  (2003) developed a cognitive DSS for strategic decision making. 
Similarly, their system also includes three supporting modules: retrospective, 
introspective, and prospective. The retrospective module provides managers with 
tools to manage business cases, experience, other people’s views, speculations, 
and even rumors. The introspective module is used to explore and represent the 
managers’ mental models. The prospective module provides managers with aids in 
forward thinking by creating and managing future business scenarios. An 
exploratory assessment was conducted to evaluate this system by interviewing real 
business executives from three different industrial sectors. The evaluation results 
show that cognitive decision support can be effectively delivered by aiding 
managers in explicitly representing and exploring their mental models. 

Cognitive maps, particularly fuzzy cognitive maps, are also employed as a 
reasoning mechanism for developing domain-specific DSS. Lee and Kim (1997) 
developed a bidirectional (downward or upward) inference system based on fuzzy 
cognitive maps to solve highly unstructured problems in stock investment domain. 
Noh and co-researchers (2000) combined cognitive map technique with case-
based reasoning to solve credit analysis problems. Konar and Chakraborty (2005) 
proposed a unsupervised learning and reasoning model based on fuzzy cognitive 
maps which is implemented with Petri nets. More recently, Stylios and co-
researchers (2008) used fuzzy cognitive map technique to assist medical 
professionals in crucial clinical judgments.  
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Recognizing the implication of managerial intuition in handling dynamic, ill-
structured business problems, Kuo (1998) proposed an ecological cognitive model 
of managerial intuition for executive support system (ESS) development. This 
model enables managers to intuitively assess the situation through perception-
action cycles. During the perception-action cycles, sensorimotor (perception and 
actions) is combined with the memory processors (mental models). Cognitive 
decision support of ESS is reflected in modeling the ecology of managers, i.e. the 
interplay between human and environment. The claimed contribution of the 
ecological cognitive model is this model can be used to guide the development of 
practical ESS with consideration of the managerial intuition.  

The impact of computerized cognitive aids was tested in the context of strategy 
execution process by Singh (1998). This research identified two sorts of specific 
cognitive requirements in strategy execution processes: memory support and 
strategy support. The former is intended for compensation for managers’ limited 
attention resources. The latter is for managers’ monitoring abilities. Positive and 
significant relationships were found between the efficiency and effectiveness of 
the strategy execution process and computerized cognitive aids.  

This research has a broader concern of cognition in addition to mental models. 
For example, the manager’s SA is represented as a set of natural language 
sentences, is analyzed using natural language processing techniques, and is 
utilized to retrieve experience. Furthermore, mental models are represented and 
used to formulate information needs. The cognitive processes, such as situation 
assessment, thinking and decision formulation are also supported by the system. 

4.3.2   Case-Based Reasoning Systems 

Case-based reasoning (CBR) has been introduced in Section 1.4.4. CBR is based 
on manipulation of cases, as the representation of historical experience of problem 
solving (Reisbeck & Schank 1989). Case reuse is the key topic in CBR. A general 
case reuse process consists of case retrieval, adaptation, reuse for solving a new 
problem, and retention as a new case (Aamodt & Plaza 1994).  

Cases are a kind of knowledge acquired by field experts during problem 
solving processes (Bergmann 2002). Problem solving is a typical cognitive 
process of a decision maker. Hence, by their nature, cases can be considered as 
human knowledge originating from decision makers’ mental constructs. In this 
sense, cognitive decision support is also reflected in CBR systems. Our research 
benefits from the CBR technique in that they are based on the similar idea: 
knowledge reuse, i.e., using past knowledge to handle new situations. However, 
the differences between this research and CBR are also evident. Instead of cases, 
we focus on other types of knowledge: mental models, SA and ontology. We also 
focus on decision support rather than solution generation. 

4.3.3   Natural Language Interfaces to Database 

Another related area to this research is natural language interface to database 
(NLIDB). A NLIDB system is an information system that allows users to retrieve 
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information from a database through inputting queries in the form of a natural 
language, for example, English (Androutsopoulos et al. 1995). The research of 
NLIDB started with the progress of natural language processing (NLP) and it now 
has become one of the most successful applications of NLP. According to the 
mechanism of query construction, NLIDB systems can be classified into three 
basic types: pattern-matching systems, syntax-based systems and semantic 
grammar systems (Androutsopoulos et al. 1995). 

4.3.3.1   Pattern-Matching NLIDB Systems  
A pattern-matching NLIDB system applies a set of hard-wired rules to a natural 

language input (question) and then directly formulates a database query 

(Androutsopoulos et al. 1995). Suppose a table called T_Partners in a database 

contains contact information of business partners such as Company Name, 

President, and Telephone Number. A rule used in the NLIDB system might be as 

follows. 
A pattern:  

 “President/CEO” of  <A Company Name>” 

A query corresponding to the above pattern:  

 SELECT President FROM T_Partnter WHERE Company_Name = <A 

Company Name>  

If a user inputs into the system “What’s the CEO of ABC Ltd.?”, then the 
system will generate a query:  

SELECT President FROM T_Partnter WHERE Company_Name =  ‘ABC Ltd.’ 

The results retrieved from the database by executing the above query will be 

returned to the user. 

4.3.3.2   Syntax-Based NLIDB Systems 
A syntax-based NLIDB system employs a syntactic parser to identify the 

constituent tree of the question sentence input by a user (Androutsopoulos et al. 

1995). The constituent tree is then mapped to a database query expression based 

on pre-defined syntactic grammars. 
A syntactic parser is a software tool which can analyze natural language 

sentences syntactically. Parsers are built on the basis of a set of grammar rules and 
dictionaries. Parsers are generally language-specific due to the characteristics of 
the grammar rules and the dictionaries. The output of a parser for a sentence is the 
syntactic representation of that sentence. The syntactic representation mainly 
contains three sorts of information: part of speech (Voss & Post 1988) of each 
word, phrases and relationships between words or phrases (Roth 2004). 
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The part of speech of a word in a sentence is its linguistic category, which 
explains how a word is used in a sentence. There are eight parts of speech defined 
in traditional English grammar: the verb, the noun, the pronoun, the adjective, the 
adverb, the preposition, the conjunction, and the interjection (MacFadyen 2007).  

 
Example 4.1. A sentence 

Fat cats like fresh fish. 

With parts of speech tags:   

Fat (adjective) cats (noun) like (verb) fresh (adjective) fish (noun). 

Words form phrases. A phrase is a group of two or more words which are 
grammatically linked together without a subject and predicate (MacFadyen 2007). 
Most parsers can also extract phrases. This process is called chunking. As POS 
tags for words, phrases are also categorized according to their chunk tags 
(syntactic roles) such as noun phrase (NP), verb phrase (VP), prepositional 
phrase (PP) and adverb phrase (ADVP). For the sake of simplicity, we use term 
POS to refer to both chunks and parts of speech discussed previously. For a 
complete description of POS tags and chunk tags, please refer to Penn Treebank 
project website2.  

Parsers also generate constituent representations for sentences being analyzed. 
The constituent representation of a sentence is a tree structure called constituent 
tree. Relationships between words or phrases are represented in the constituent 
tree. The constituent tree of Example 4.1 is shown in Figure 4.1. 

 

Fig. 4.1 Constituent Tree Example 

Syntactic tags used in Figure 4.1 are S: sentence, NP: noun phrase, VP: verb 
phrase, a: adjective, n: noun and v: verb.  

                                                           
2 Information about Penn Treebank Project is accessible at  
   http://www.cis.upenn.edu/~treebank/ 
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Based on the constituent tree, parsers use a set of grammar rules to generate the 
syntactic relationships between words or phrases. For instance, in Figure 4.1, the 
parser can find a relationship: cats is the subject of like (the verb). 

Natural language parsing is a support technique for many other applications 
such as question-answering, machine translation, information extraction and 
spelling correction. However, natural language parsing is also a challenging 
research topic in natural language processing due to the ambiguity and variation 
characteristics of natural language. The research and development of syntactic 
parsers has received increasingly wide attention both in academics and in 
practitioners. Many syntactic parsers have been developed for research or 
commercial purpose. The following are some examples of syntactic parsers. 

 

• The Stanford Parser:  

http://nlp.stanford.edu/software/lex-parser.shtml 

• Robust Accurate Statistical Parsing (RASP):  

http://www.informatics.sussex.ac.uk/research/groups/nlp/rasp/project.html 

• Collins Parser: 

http://morphix-nlp.berlios.de/manual/node23.html 

• Brown parsers:  

http://bllip.cs.brown.edu/resources.shtml#software 

Once the question input by the user is parsed into a constituent tree using a 
syntactic parser, syntactic NLIDB systems use a syntactic grammar to explain 
users’ questions (natural language sentences). An example of the syntactic 
grammar is as follows (Androutsopoulos et al. 1995). 

(1) S        NP  VP 
(2) NP     Det N 
(3) Det    “what” | “which” 
(4) N       “rock” | “specimen” | “magnesium” | “radiation” | “light” 
(5) VP      V  N 
(6) V        “contains” | “emits” 

The corresponding explanation of this syntactic grammar is as follows: 

(1) A sentence consists of a noun phrase and a verb phrase; 
(2) The noun phrase consists of a determiner and a noun; 
(3) The determiner may be what or which; 
(4) The noun may be rock, specimen, magnesium, radiation or light; 
(5) The verb phrase consists of a verb and a noun; 
(6) The verb may be contains or emits. 
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Suppose a user’s question is  

Which rock contains radiation? 

According to the syntactic grammar, the NLIDB system could map this 
question to the following database query (X is a variable): 

(for_every X (is_rock X) 
(contains X magnesium) 
(printout X)) 

One of the best-known syntax-based NLIDB system is LUNAR (Woods 1973). 
LUNAR was developed to be able to answer questions about moon rock 
information stored in chemical analysis and literature references databases. 

4.3.3.3   Semantic Grammar NLIDB Systems 
 

A semantic grammar NLIDB system is similar to a syntax-based NLIDB system.  
It also needs a syntactic parser to build the constituent tree of the question 
sentence input by a user. The constituent tree is then mapped to a database query 
expression based on pre-defined grammars. The difference lies in the grammar. 
The mapping from a constituent tree to the database query is based on a semantic 
grammar in a semantic grammar NLIDB system, rather than a syntactic grammar 
in a syntax-based NLIDB system (Androutsopoulos et al. 1995). A semantic 
grammar can be defined to include any semantic concepts according to the user’s 
application. A semantic concept does not necessarily correspond to a syntactic 
concept (POS tag). An example of semantic grammars is partially shown as 
follows (Androutsopoulos et al. 1995). 

(1) S                              Specimen question | Spacecraft question 
(2) Specimen question   Specimen Emits info | Specimen Contains info 
(3) Specimen        “which rock” | “which specimen” 
(4)   … 

Compared to syntactic grammars, semantic grammars can express richer 
semantic information which extends the application scope of the system. 

We have discussed three basic types of NLIDB systems. The pattern-matching 
technique is simple and easy to be implemented. Some early NLIDB systems were 
developed based on this technique and perform well in certain applications. 
However, the linguistic shallowness of this technique limits its application. The 
other two types of NLIDB systems have the ability to express more complex 
patterns for understanding natural language and constructing database queries, but 
the mapping rules (either syntactic or semantic grammars) are difficult and tedious 
to devise, which limits the system’s flexibility (Androutsopoulos et al. 1995).  

In addition to the basic varieties, there are many other types of NLIDB systems. 
Jung and Lee (2002) developed a multilingual question/answering system using 
lexico-semantic patterns to support multi-level grammars for query construction. 
Lexico-semantic patterns are a type of prominent method in text-based question 
systems. A lexico-semantic pattern contains linguistic information, e.g. words, 
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phrases and POS tags, as well as semantic information, e.g. user-defined classes. 
Their system was claimed to have high portability of languages, domains, and 
databases. Domain-specific semantic templates are used to implement a natural 
language interface to a virtual library by Niculae and co-researchers (2005). A 
semantic template is a pre-defined pattern and used in runtime to extract the 
semantic relationships between different objects identified from the input 
question. Their system includes a pre-processor to build interpretation rules 
according to the database schema and WordNet 3. The interpretation rules and 
semantic templates are then used at run time to extract semantics of input question 
and construct database queries. More recent development of NLIDB involves a 
wide variety of other techniques to generate queries for different applications, 
such as semantically tractable questions (Ana-Maria et al. 2003), domain 
dictionary and semantic metadata of the database (Rangel et al. 2005), machine 
learning techniques (Giordani 2008), XML databases (Li et al. 2006), theater 
database (Roth 2004), video database (MacFadyen 2007) and data warehouses 
(BusinessObjects 2008; SignaText 2008). 

Essentially, the prototype system FACETS developed in this research is under 
the big umbrella of NLIDB. However, a substantial difference exists between 
FACETS and traditional NLIDB systems.  

NLIDB systems are questions oriented. The user’s inputs to a NLIDB system 
are specific questions corresponding specific answers. For example, an 
appropriate question accepted by the LUNAR system might be ‘How many 
elements does No. 12 rock include?’. Database queries are constructed based on 
parsing the user’s questions using the NLP technique. Corresponding answers are 
returned in the form of specific data retrieved from the database based on the 
constructed queries. The corresponding output of the LUNAR system might be 
‘76 elements’. NLIDB systems, in this sense, are similar to question-answering 
(Q/A) systems4.  

By contrast, FACETS is decision oriented. Instead of asking questions, 
managers (users of FACETS) describe and input their current understanding of the 
decision situation. The user of a NLIDB system usually input one question a time. 
FACETS is able to accept a complex description of a decision situation consisting 
of a number of natural language sentences. Some input examples of FACETS are 
as follows. 

 

“The sales of Mountain-100 Silver, 38 was very impressive. As the successor of 

Mountain-100 Silver, 38,Mountain-100 Silver, 42 was released in July 2007. 

Mountain-100 Silver, 42 was designed with higher performance. However, the 

internet sales of Mountain-200 Silver, 42 are going down in Germany and France 

since.” 
                                                           
3 WordNet is a large lexical database of English, which grouping meaningfully related 

words and concepts into sets of cognitive synonyms, each expressing a distinct concept. 
Refer to http://wordnet.princeton.edu/ for more information. 

4 A Q/A system is intended to answer natural language questions by mapping natural language 
questions to queries into a collection of unrestricted and unstructured texts, instead of 
queries into a structured database in NLIDB systems. 



50 4   Cognition in Business Decision Support Systems
 

Furthermore, the processing of each sentence in FACETS is not independent: a 
sentence is analyzed partially based on sentences that have already analyzed. This 
mechanism makes it possible to analyze the decision situation as a whole, rather 
than individual sentences. Instead of definite answers, FACETS presents 
managers with situation information related to the decision situation. The retrieved 
situation information is used to support managers to develop situation awareness 
for decision making. The orientation difference between FACETS and NLIDB 
demands new models and techniques to analyze the user’s natural language inputs. 

4.4   Summary 

It is a noticeable trend to design DSS with decision makers’ cognition at the center 
of the system, enabling the process of human decision making to be supported 
from the cognitive perspective. The existing literature shows that managers’ SA 
and mental models have substantial influence on managers’ behaviors. Today’s 
business is operated in a complex environment, and is often imposed with a high 
degree of complexity, uncertainty, dynamics, high personal stakes and time 
pressure. Successful business decision making heavily relies on managers’ SA and 
mental models. The complex nature of business decision making presents a great 
requirement of designing DSS in business domain from the cognitive perspective. 
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Chapter 5 
Cognition-Driven Decision Processes 

 
 
 
 
 
 
 
 
 
 
Human decision making is naturally a cognitive process conducted within a 
decision maker’s mind. However, the use of decision support systems incorporates 
IS artifacts into the human cognitive process. In this sense, decision making is an 
integral process comprised of the human cognitive process as well as IS 
functionality. We use the term cognition-driven decision process (CDDP) to 
denote such a decision making process. In this chapter, a conceptual framework is 
presented in Section 5.1, which shows high level ideas and essential 
characteristics of cognition-driven decision processes. Then the detail of the 
CDDP model is discussed in Section 5.2. 

5.1   Essentials of Cognition-Driven Decision Making  

5.1.1   The Conceptual Framework of Cognitive Decision Support 

The conceptual framework of cognitive decision support (CDS) is the high level 
‘big picture’ of this research as a whole (Figure 5.1). It represents the fundamental 
idea about cognitive decision support. The CDS framework was adopted from one 
of our recent publications (Niu et al. 2007). 

Essentially, the basic idea expressed in the CDS framework is to facilitate 
cognitive decision support to business managers (decision makers or general 
business users) through reinforcement of their situation awareness (SA) and 
mental models on the basis of information systems. According to the theory of 
naturalistic decision making (NDM), human decision making is closely related to 
the decision maker’s SA and mental models in complex situations. Richer SA and 
mental models are more likely to lead to better decisions and eventually result in 
better decision making performance. The business domain has the potential to 
apply NDM theory, as business management nowadays becomes increasingly 
complex and dynamic, with uncertainty, time pressures and high personal stakes. 

In Figure 5.1, the dark color box (including Mental Models and Situation 
Awareness) in the center denotes a business manager (decision maker). The 
manager acts as a user as well as an important component of the system. The  
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Fig. 5.1 The Conceptual Framework of Cognitive Decision Support 

manager’s SA and mental models are enriched and rendered by the Situation 
Assessment process and Thinking Support process respectively. The interaction 
between the manager’s SA and mental models is a cognitive process; the 
interaction between Thinking Support and Situation Assessment is a computerized 
process. The Situation Assessment process and Thinking Support process are based 
on environment data and domain knowledge respectively. The domain knowledge 
mainly refers to the manager’s management experience and the business ontology 
(Chapter 6). The environment data consists of internal environmental data (e.g., 
product R&D, financial, engineering, and marketing) and external data (e.g., 
technological, political, and socio-cultural).  

Decision making is problem oriented. A decision problem means something of 
interest is going wrong or is abnormal and therefore a decision is required to be 
made and carried out to solve the problem. But in some cases, problems are not 
obvious or perhaps there are no problems at all. For instance, senior managers are 
often concerned with identifying potential opportunities or threats before real 
problems appear. In this book, we use the term decision situation to represent a 
more general meaning than the term problem.   

Looking at the CDS framework as a whole, we refer to a situation (decision 
situation) as its input and a decision as its output. From the IS perspective, the 
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decision situation can be represented as a set of data or information which is 
referred to as situation information. Situation information is either a 
straightforward description of the decision situation, or indirect information, e.g., 
the background or other related objects. Generally speaking, a computer-based 
information system is made up of two basic parts: human and computer. 
Accordingly, the human-computer system based on the CDS framework receives 
situation information in two ways: via the human interface (the manager), e.g., 
participating in meetings, and via the computer interface, e.g., communicating 
with other systems. The human interface is indicated in Figure 5.1 by the dark 
color box in the center. The remainder is the computer interface including domain 
knowledge, thinking support, environment data and situation assessment. We use 
a dashed box to represent all possible touch points in the interfaces between the 
human-computer system and its input/output sources.  

5.1.2   Cognition-Driven Decision Processes 

Compared to traditional BI systems, the decision process in the CDS framework is 
driven by the decision maker’s cognition. Rather than emphasizing behavioral 
support for the manager’s work, the CDS framework focuses on two cognitive 
aspects of management activities: SA and mental model, and on related cognitive 
processes, such as thinking, situation assessment and decision formulation. 
Anthony (1965) categorized management activities into three levels: operational, 
management and strategic. Correspondingly, we group the manager’s SA into 
three categories: operational SA, management SA, and strategic SA. At the lowest 
level, operational SA looks at the most detailed data related to specific tasks 
usually conducted by frontline personnel as the basis of the operation of the 
organization. For instance, the awareness of financial transactions and product 
specifications belongs to operational SA. In the highest level is strategic SA, 
which reflects aggregated business information such as monthly sale reports and 
business policies. Management SA is in the middle level. The three levels of SA 
are relatively roughly defined and there are no absolute boundaries between 
different levels. For a specific decision making task, the manager might need one 
or two or all three levels of SA. Take sales as an example. The detailed sales data 
(reflected by the operational SA) is the major interest of the sales representative. 
The sales executive is more concerned with aggregated data in sales reports. 
However the department manager might need both types of data in order to 
finalize a marketing plan. 

The process of SA development and reinforcement is termed situation 
assessment by Endsley (1995b) in terms of cognitive psychology. Situation 
assessment is a cognitive process which happens in the decision maker’s mind. 
However, in Figure 5.1, we use this term to denote IS functionality (IS based 
situation assessment) as well as the human cognitive process (cognitive situation 
assessment). The IS based situation assessment complements and supports the 
cognitive situation assessment. They both contribute to the manager’s SA 
development and reinforcement for decision making.  

The manager’s thinking process is supported by the Thinking Support 
component. Thinking is a cognitive process, via which humans are able to recall 
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past experience, manipulate current situation information and then form concepts, 
reason and make decisions (Jaques 1996). Similar to situation assessment, in 
Figure 5.1, the manager’s thinking process consists of the cognitive process as 
well as the IS-based process. The former occurs in the managers’ mind and the 
latter is represented by the Thinking Support component.    

The meaning of thinking support here is twofold. On one hand, the manager’s 
mental models are elicited and then utilized to drive the process of situation 
information processing. The elicited mental models are stored in a knowledge 
base. Note the difference between two kinds of mental models: (a) the mental 
models stored in the knowledge base and (b) the mental models residing in the 
manager’s mind. The former are elicited from the manager, represented and stored 
as part of the domain knowledge. The latter are concurrent cognitive constructs 
within the manager’s mind regarding past and current decision situations. For the 
sake of clarity, we refer to the first kind of mental models as experience. Thus, 
experience in our research is computerized mental models. Both experience and 
mental models reflect the manager’s past management experience and they have 
important implications for handling the current decision situation. As part of the 
domain knowledge, experience drives the situation information to be analyzed and 
processed during a decision process. As cognitive constructs, mental models 
directly interact with the manager’s SA (also cognitive constructs) and drive the 
decision process to move forward.   

On the other hand, the manager’s thinking process is supported and enhanced 
by the information system. People are capable of intuitively using their past 
experience to handle new decision situations. However, people’s ability to reuse 
experience is subject to many cognitive biases. Some of the cognitive biases can 
be weakened or eliminated by IS artefacts. In this research, the manager’s thinking 
processes is supported and enhanced through offering the manager interfaces for 
experience management: input, edit, compare, aggregate, store, retrieve, and 
graphically present experience. 

5.1.3   User Centered Decision Processes 

Compared to traditional BI systems, the CDS framework is user centered. User-
centered is a design philosophy used for system design and development  (Endsley 
et al. 2003). The opposite is technology-centered design which emphasizes the 
utilities of technologies in terms of system functionality and the users are required 
to adapt to the system. User-centered design requires systems to be designed based 
on not only its fulfillment of functionality but also human factors. The CDS 
framework is centered on the manager. The major human factors in the CDS 
framework include the manager’s SA, mental models and the related cognitive 
processes. The manager is concerned with decision making in the decision 
situation. Thus, the user centered design in the CDS framework can be 
exemplified by assisting the manager to maker better decisions through facilitating 
cognitive decision support in specific tasks of the decision process. Some of these 
tasks in which cognitive decision support is considered in this framework are as 
follows. 
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• Describing the Decision Situation 
 

We developed natural language process (NLP) based techniques to offer the 
manager an interface via which the manager can describe his/her decision 
situation in the form of natural language (English) (Chapter 7). The NLP based 
techniques reduce the technical complexity of the current BI interface and aid the 
manager to more easily develop and enrich his/her SA and mental models for 
decision making. 

 

• Seeking Relevant Knowledge 
 

Successful decision making requires the manager to obtain sufficient situation 
information as well as relevant domain knowledge (Section 5.2.1). We developed 
IS techniques to aid the manager to acquire relevant domain knowledge according 
to the manager’s situation description (Chapters 6 and 7). 

 

• Recalling Past Experience 
 

According to NDM theory, people make decisions based on their past 
experience. However, the ability of people to recall past experience is subject to 
many cognitive biases. We developed IS techniques to help the manager to recall 
past experience and reduce or eliminate cognitive biases (Chapter 6 and 9).  

 

• Obtaining Situation Information 
 

Obtaining the situation information in a timely fashion is the key to situation 
assessment, during which the manager develops and enriches his/her SA. 
However, people have an inability to precisely state their information needs. We 
developed IS techniques to automatically formulate information needs and obtain 
situation information (Chapter 8). 

 

• Comprehending the Decision Situation 
 

We developed a navigation-knowledge-guided method to present situation 
information in an intuitive way. This technique is based on the manager’s mental 
models, which enables the manager to perceive and understand the decision 
situation more comfortably (Chapter 9). 

5.2   The Cognition-Driven Decision Process Model 

Based on the CDS framework, we model cognition-driven decision processes (CDDP) 
in Figure 5.2. Part of the work presented in this section has been reported in one of our 
publications (Niu & Zhang 2008). This CDDP model reflects the conceptual 
components and procedure of a manager’s cognition-driven decision process on the 
basis of a data warehouse system. Behind this model are three assumptions.  
 

 (1) Confronted with a decision situation, the manager will conduct an 
information processing process, which we called situation retrieval. Situation 
retrieval is motivated by the manager’s knowledge need and information need. 

(2) The manager is generally unable to state exact information needs for 
decision-making tasks. 

(3) It is possible to derive knowledge need from SA representation. 



58 5   Cognition-Driven Decision Processes
 

 

Fig. 5.2 The Cognition-Driven Decision Process Model 

The CDDP model is based on the NDM theory, particularly the RPD model. 
Thus, it requires the manager is an experienced decision maker. The CDDP model 
describes the cognition-driven decision processes from an IS perspective, which is 
used to design a new type of BI system with cognitive decision support. Thus, it 
also requires the acquisition of adequate domain knowledge (stored in a 
knowledge base including the manager’s experience and a domain ontology), and 
adequate business data (stored in a data warehouse including the environment 
data).  
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5.2.1   Situation Retrieval  

5.2.1.1   Information Retrieval and Situation Retrieval 
 
We proposed the situation retrieval model based on the information retrieval (IR) 
model. IR systems are concerned with representing, storing and finding 
information desired by human users (Ingwersen 1996). Traditional IR systems are 
based on best-match principle: the matching between documents and statements of 
the queries put forward by the user (Belkin et al. 1982; Newby 2001). IR systems 
cater for the users’ information needs through searching, locating and obtaining 
target information. A simplified IR model is shown in Figure 5.3 (Belkin et al. 
1982; Ingwersen 1996). With a problem, the user of an IR system will raise a need 
for relevant information which can be used to solve the problem. The information 
need motivates the user to interact with the IR system and search for the desired 
information. Once the user acquires the desired information, the user’s problem is 
solved and the user’s information need is dismissed.  

 

Fig. 5.3 Information Retrieval 

 

Fig. 5.4 Situation Retrieval 
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Note: The user is confronted with a decision situation which leads to an information 
need and a knowledge need. The user consults the system and obtains desired 
knowledge and information. The obtained information and knowledge is then used 
to make a decision for the decision situation. A satisfying decision making dismisses 
the information need and the knowledge need.  

We define situation retrieval as the process of searching for situation information 
as well as situation knowledge for the purpose of decision making. Figure 5.4 
illustrates the situation retrieval model. A situation retrieval process begins with a 
decision situation. The decision situation leads to the decision maker’s information 
need and knowledge need. Respectively, the information need and knowledge need 
motive the decision maker to seek information (situation information) and 
knowledge (situation knowledge) relevant to the decision situation for the purpose of 
decision making. Once a satisfying decision is made and implemented in the 
decision situation, the corresponding information need and knowledge need are 
dismissed. The detailed process of situation retrieval is presented in Section 5.2.1.3. 
There are connections between situation retrieval and IR. According to Figure 5.4, 
IR is one component of situation retrieval. The objective of IR in situation retrieval 
is to search for relevant situation information for decision making. Another 
component is knowledge retrieval which aims at searching for domain knowledge 
related to the current decision situation. The above discussion leads to the 
differentiation between data, information and knowledge.  

We are not attempting to re-define the concepts of data, knowledge and 
information here, as many definitions of them have resulted in strong arguments in 
current literature. However, it would be helpful to differentiate information and 
knowledge in order to clarify information retrieval and knowledge retrieval, as 
two basic components of situation retrieval. Based on other researchers’ work 
(Bellinger et al. 2004; Rouse 2002), we roughly distinguish information and 
knowledge, in that information provides answers to who, what, where, and when 
questions, whereas knowledge implies clues to how and why questions. In the 
business domain, information can be specific figures about sales, production, 
research, marketing trends, and interest rates, which tell the facts about the 
business. By contrast, knowledge inspires reasoning, explanation and projection 
based on business facts. The manager’s past management experience, business 
cases, and business procedures fall into the knowledge category.  

Information retrieval systems have been very successful in many application 
areas, such as digital libraries, information filtering and search engines, where 
users’ problems can be solved by offering information as straightforward answers. 
For example, if a cook wants to know an apple pie recipe, he/she can just simply 
input keyword ‘apple pie recipe’ into a search engine and get the desired answer 
(apple pie recipe details) directly. Therefore, it seems, in IR applications, the 
target information which users are seeking is all they need for solving their 
problems (what the cook really needs is the ingredients of apple pies and the 
cooking procedure). By contrast, knowledge in IR is not as crucial as information 
for problem-solving (once the cook successfully finds the recipe, his/her problem 
is solved and extra cognitive processes involving knowledge seem not very 
necessary).  
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Unfortunately not all problems are as straightforward as the example of the 
apple pie recipe. In real life, many problems are very subtle, unstructured and 
complex, which require extra domain knowledge in addition to sufficient 
information. In this research, we focus on ill-structured business management 
problems, e.g., strategic planning. Compared to problems in classic IR 
applications, business management problems generally require decisions to be 
made and executed. We refer to this kind of problems as decision problems, or 
more broadly as decision situations, as opposed to problems in IR which generally 
correspond to straightforward answers. In this sense, we say that situation retrieval 
is decision oriented, while IR is problem oriented. To deal with a decision 
situation, it is necessary for the decision maker to have relevant information, but 
information alone is not enough.  

Facing a decision situation, the decision maker needs both direct situation 
information as well as situation knowledge. Situation information is the starting 
point from which the decision maker develops corresponding SA. In Endsley’s SA 
model (2000), SA is divided into three levels. Seeking and sensing raw situation 
information is the first step for the decision maker to acquire deep situation 
understanding. This step results in Level 1 SA. Based on Level 1 SA, the decision 
maker can develop higher level SA using his/her past knowledge (mental models). 
However, Level 1 SA cannot guarantee higher level SA as different decision makers 
have various abilities to digest situation information. This kind of ability depends on 
decision makers’ domain knowledge and on how well they can use their knowledge. 
Domain experts are differentiated from novices based on their domain knowledge or 
experience. Mental models are a kind of domain specific knowledge. A mental 
model is useful in that it provides a mechanism for (Endsley 2000).  

 
(1) guiding attention to relevant aspects of the situation,  
(2) integrating information perceived to form an understanding of its meaning, 

and  
(3) projecting future states of the system based on its current state and an 

understanding of its dynamics.  
 
Therefore, it is possible that a decision maker fails to develop high level SA 

(Level 2 SA and Level 3 SA) and fails to make good decisions due to his/her 
limited domain knowledge; even though he/she has already obtained sufficient 
situation information. For example, many companies possess large amounts of 
data/information, but do not know (lack of relevant knowledge) how to use them 
for management. Even after they invest millions of dollars to build data 
warehouses and enable the data to be easily accessed across the company, the 
executives still feel lost when facing too many business reports generated by the 
BI reporting tools (Quinn 2007; Resnick 2003; Sheina 2007b).  

The proposed situation retrieval model is to characterize the process of seeking 
information and knowledge during decision making in a decision situation. In 
Figure 5.4, the decision maker’s knowledge need and information need are 
provoked by the decision situation. The decision maker raises needs for 
information and knowledge in order to make an appropriate decision in the current 
decision situation. Motivated by the knowledge need and information need, the 
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user interacts with the system and gains the desired knowledge and information. 
Both knowledge need and information need are initiated from the decision 
situation; however the two constructs also affect each other during the decision 
process. The more knowledge the user acquires, the more precisely the user is able 
to know what kind of information he/she actually needs. This results in more 
accurate and deeper understanding of the decision situation and richer SA of the 
user, which also positively affect the formulation of the user’s knowledge need.  

5.2.1.2 Information Need and Knowledge Need 
 

An information need is about what an individual needs to know for problem 
solving, hence the information need is about what one actually does not know. 
Confronted with a problem, what one actually knows is that his/her state of 
knowledge is insufficient (anomalous state of knowledge: ASK) for problem 
solving which underpins the information need (Belkin et al. 1982). As such, in 
some cases, although the user can precisely state his/her information need and 
then proceed to search for corresponding information, in general, the information 
need is variable, vaguely stated or ill-defined, and difficult to specify (Castells et 
al. 2007; Salton et al. 1975). Rouse (2002) in particular noticed that users have 
better abilities to recognize information needs than to specify them. How to 
support the user to formulate information needs is a classic research question in 
IR. Nevertheless, a satisfying wide-accepted solution to this question remains 
under exploration (Cole et al. 2005; Ingwersen 1994; Kuhlthau 1991; Larsen et al. 
2006). Due to the unspecifiability of information needs, in Figure 5.2, we use a 
dotted line to link Information Need and Situation Awareness to indicate that when 
the decision maker gains SA, he/she will generate information need implicitly, but 
cannot state it precisely.  

Decision makers’ knowledge needs originate from their decision situations, 
which is a cognitive process in nature. However, in the CDDP model (Figure 5.2), 
we assume that knowledge needs can be derived from managers’ SA 
representation. Thus in the CDDP model, the decision process will flow from 
Situation Awareness to Knowledge Need. The knowledge need directs the 
manager to the quest for relevant knowledge (knowledge retrieval) and powers the 
reasoning process for situation comprehension. The role of retrieved knowledge in 
our model is twofold. On one hand, it helps the formulation of information need; 
on the other hand, it is used to generate navigation knowledge for situation 
presentation. SA is the resultant product of situation assessment: the process of 
seeking, perceiving, and understanding situation information (Endsley 1995b). 
This process is also affected by SA per se. Sarter and Woods (1991) refer to SA as 
‘the accessibility of a comprehensive and coherent situation representation which 
is continuously being updated in accordance with the results of recurrent situation 
assessments’ (p. 52). SA encourages and stimulates the decision maker to actively 
acquire further situation information and knowledge during decision process 
(Bergmann 2002; Sarter & Woods 1991). In addition, SA is a state of knowledge 
(Endsley 1995b).  Therefore, it appears that a closed-loop process exists in a 
situation retrieval process, during which SA, knowledge need, knowledge, 
information need and information sequentially affect one another (Figure 5.5). 
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Thus, if we can acquire the statement of a manager’s SA, the analysis of the 
statement will yield representation of his/her knowledge need. In this sense, we set 
the assumption that knowledge needs can be derived from the SA statement. 

Once the knowledge need is derived from the manager’s SA statement, the 
knowledge required for the decision making can be retrieved from the knowledge 
base. We use the retrieved knowledge to formulate the manager’s information 
need. The formulation of information needs from the knowledge is based on a 
domain ontology. 

Information
Information
Need

Knowledge
Need

Situation
Awareness

Decision
Situation

Knowledge

 

Fig. 5.5 The Loop of Situation Retrieval 

5.2.1.3   Situation Retrieval Process 
 
Situation retrieval is a key part of the CDDP model. As Figure 5.2 shows, a 
situation retrieval process is comprised of five successive steps:  
 

(1) obtaining initial SA (Decision Situation  Situation Awareness),  
(2) extracting knowledge need (Situation Awareness  Knowledge Need),  
(3) retrieving situation knowledge (Knowledge Retrieval),  
(4) generating information need (Knowledge Fusion), and  
(5) retrieving situation information (Situation Information Retrieval).  

Step 1. Obtaining Initial Situation Awareness 
When confronted with a decision situation, the manager starts the decision process 
from becoming aware of the decision situation, which results in an initial SA. The 
manager could obtain an initial SA via conventional communication methods, e.g., 
business meetings, and the initial SA can be enriched through further 
communication. The manager’s initial SA might be sufficient for some simple 
decision situations, but complex decision situations might need richer and higher 
level SA. Hence, in Figure 5.2, following Situation Awareness are two alternative 
routes: Situation Recognition and Knowledge Need. It is possible that, after 
gaining the initial SA, the manager is already confident enough to make the final 
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decision. In this case, the decision process proceeds from the Situation Awareness 
stage directly to the decision generation stage (including Situation Recognition, 
Past Decisions, Decision Revision and Decision). However, in more common 
cases, the decision process will go through the process of situation retrieval 
instead of straightforward decision making with the initial SA. The initial SA 
works as ‘seed SA’ which triggers the decision process to move forward. 

The manager can describe and input his/her SA using natural language. A 
convenient way to represent SA in the form of natural language is plain text. Thus, 
a SA can be defined as a set of natural language sentences. 

Definition 5.1. Situation Awareness (A) 

A := (S1, S2,…Sn),  

where, n ≥ 0, Si is a natural language sentence. 
A SA5 is an n-tuple consisting of n ordered elements. Each element (Si) is 

called a SA sentence which is a natural language sentence. The following example 
is a manager’s SA consisting of three SA sentences: 

Example 5.1. A Manager's Situation Awareness 

(N02 was released in Australia in July 2007., 

 It is a very good product. , 

However, N02 has brought us 60% of notebook sales decline since its release.) 

Step 2. Extracting Knowledge Need  
By commonsense, when people are communicating with each other, they tend to 
focus on certain objects in the domain of interest and convey relevant information 
about these objects in a specific context from a particular view. Consider the 
following example of SA sentence in Example: 

Example 5.2. A SA sentence 

“N02 was released in Australia in July 2007.” 

In this SA sentence, N02 represents a notebook computer model name. From 
N02, we can infer the following information the manager is trying to deliver. 

In the context of product, the manager is talking about N02 which is a 

specific notebook model name. 

In the context of product release, the manager is talking about Australia, 

which is the release location. 

                                                           
5 According to Collins COBUILD English Dictionary, the word awareness is an uncountable 

noun. However, when a piece of (situation) awareness is represented as an information 
object, we use this word as a countable noun in this book. This convention also applies to 
experience, cue, ontology and navigation knowledge. 
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 In the context of product release, the manager is talking about July 2007, 

which is a release time. 
 

We define the elementary information units of SA sentences as SA triples.  

Definition 5.2. SA Triple (T) 

T := (c, v, w ), 

where, c, v, and w denote the context, view and wording respectively. 

 
A SA triple has three components: context (c), view (v), and wording (w). The 
wording part represents a word, phrase, or concept, which is the actual 
information content the SA triple implies. For the SA sentence in Example 5.2, 
N02, Australia and July 2007 are respectively the wording of three different SA 
triples.  

The wording of a SA triple is understandable only in a specific context. 
Ambiguity will be introduced without context specification. For instance, the 
number 2000 does not make sense unless we give it a context, e.g., sales (in this 
context, the sales amount is $2000), or product release (in this context, the release 
year is 2000). We refer to the context of a SA triple as a native context. A native 
context is applicable to the specific wording of a SA triple, i.e., different SA 
triples might have different native contexts in a SA sentence.  

A SA sentence consists of a couple of SA triples. There is also a central context 
for the entire SA sentence. We refer to the context of a SA sentence as a local 
context. A local context represents the common background where all SA triples 
in a SA sentence are communicated. For the SA sentence in Example 5.2, N02 is a 
product model name. Thus product is the native context of N02. As for the whole 
SA sentence, it is talking about a matter of product release. Thus, the local context 
of this SA sentence can be product release. Technically, the local context of a SA 
sentence should be able to cover all SA triples of this sentence. However, due to 
the uncertain nature of natural language, it is difficult or impossible to identify 
such a local context in some cases, e.g., a very vague SA sentence. The method of 
determining local contexts of SA sentences will be discussed in Chapter 7. 

A SA consists of a couple of SA sentences, each of which has a local context. 
Local contexts might be the same or different from sentence to sentence. Thus, the 
frequency of each local context can range from 0 to n in a SA with n sentences. 
We refer to the overall context of a SA as a global context. Let A = (S1, S2, …, Sn) 
be a SA. The global context of A is defined as follows. 

Definition 5.3. Global Context (cg) 

  cg(A) := { cl( Si ) | Si∈A, freq( cl ( Si ) ) > κ }, 

where Si is a SA sentence of A, cl ( Si ) is the local context of Si,  freq( cl ( Si ) ) is 
the frequency of cl ( Si ) and κ is the frequency threshold determined by domain 
experts. The frequency of cl ( Si ) is the number of SA sentences whose local 
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context is cl ( Si ). According to this definition, the global context cg of a SA is a 
set whose elements are the top frequent local contexts in SA. 

In a manager’s SA, an object of interest can be described in different ways. For 
example, product release can be described by release time, release location and 
product model. The way in which object information is exposed is referred to as 
view in Definition 5.2. 

Based on the SA triple definition (Definition 5.2), following SA triples can be 
derived from the SA sentence in Example 5.2: 

(Notebook, Product Model, N02) 

(Location, Country, Australia) 

(Time, Time Point, July 2007) 
 
By the meaning (semantic information) of the SA sentence in Example 5.2, 

product release is an appropriate local context. A native context only applies to a 
SA triple, while the local context is for the whole SA sentence. Thus, native 
contexts are narrower contexts compared to local contexts. By Definition 5.1, SA 
triples are the basic components of SA sentences. To catch the semantic 
information of a SA sentence as a whole, each SA triple of this SA sentence needs 
to be re-explained in the local context.  

We refer to the process of re-explaining SA triples in a local context as context 
propagation. The context propagation for a SA triple does two things: (a) replaces 
the native context of the SA triple with the local context; (2) correspondingly 
revises the view of the SA triple. Applying context propagation to the above three 
SA triples, three new SA triples are generated as follows:  

(Product Release, Product Model, N02) 

(Product Release, Release Location, Australia) 

(Product Release, Release Time, July 2007) 
 
The context propagation for the first two SA triples is simply replacing their 

native contexts (Notebook and Location) with the local context (Product Release). 
For the third SA triple, both its native context and its view are revised. 

Context propagation extends the semantic understanding of SA triples from 
narrower native contexts to wider local context. Thus the sentence context is 
imposed on each SA triple and richer semantic information of SA can be obtained.  

We have discussed the methods to represent SA triples, SA sentence and SA. 
Now we will look at how knowledge needs are extracted from SA. In the CDDP 
model, knowledge needs are used to retrieve relevant experience. Experience is 
elicited from the manager’s mental models. Mental models are domain specific 
and problem oriented (Bergmann 2002; Johnson-Laird et al. 1998). In the RPD 
model (Klein et al. 1989),  mental models act as a kind of pattern about past 
decision scenarios, which are then compared with the current decision situation by 
the decision maker.  
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The manager’s SA represents his/her understanding about the current decision 
situation. In the CDDP model, a SA is comprised of a number of SA sentences, 
each of which corresponds to a local context. The local context of a SA sentence 
represents the common background in which the SA sentence conveys actual 
information. Thus, a local context can be thought of as a sub-topic or sub-problem 
of the decision situation. There are similarities between local contexts and 
experience: local contexts represent a pattern of the current decision situation and 
experience is the pattern of past decision situation. The goal of knowledge 
retrieval is to get relevant past experience which can be used to aid current 
decision making. Therefore, it is reasonable to build the knowledge needs based 
on the local contexts of SA triples in a SA. The following definition shows the 
method of knowledge need extraction. 

Definition 5.4. Knowledge Need (KN) 

KN = { cl( Si ) | Si∈A }, 

where, A is a SA, Si is a sentence of A, and cl ( Si ) is the local context of Si.  
As can be seen from Definition 5.4, the knowledge need corresponding to a SA 

is a set consisting of the local contexts of all SA sentences. Thus, the knowledge 
need extracted from a SA is actually equal to the global context of this SA with 
setting the frequency threshold as zero (0). 

Step 3. Retrieving Situation Knowledge 
Situation knowledge refers to the manager’s management experience which is 
stored in an experience base. The experience base and the ontology constitute the 
domain knowledge base. Situation knowledge is retrieved from the experience 
base according to the knowledge need extracted from the SA.  

The retrieved situation knowledge, as the manager’s past experience, is reused 
in two manners. Firstly, the situation knowledge is used for the formulation of the 
information need. Due to the unspecifiability of information needs, it is difficult to 
ask the manager directly specify his/her information need. Based on the third 
assumption of the CDDP model, we use the retrieved situation knowledge to 
formulate the corresponding information need. Secondly, situation knowledge is 
used to generate navigation knowledge for situation presentation. A business 
decision situation usually involves a wide variety and large amount of related data. 
The way in which the data is presented to the manager heavily affects the process 
of situation assessment and eventually affects the entire process of decision 
making. We extract navigation knowledge from the situation knowledge and use 
the navigation knowledge to guide the process of presenting situation information.  

Step 4. Generating Information Need 
The manager’s information need reflects his/her expectation on the situation 
information. Situation information is stored in the data warehouse. Thus, 
information retrieval in our model is equivalent to data retrieval from the data 
warehouse. Consequently, the information needs can be thought of as queries into 
the data warehouse. We define information needs as follows:  
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Definition 5.5. Information Need (IN) 

IN : = {q1, q2,... , qn }, n ≥ 0, 

where, qi is  a data warehouse query and the execution of q results in an amount of 

situation information. 
According to this definition, the generation of an information need is equal to 

the construction of relevant data warehouse queries. Therefore, the main problem 
of information need generation is how to construct appropriate data warehouse 
queries which can be executed to retrieve the most relevant situation information 
from the data warehouse for decision making. We developed IS techniques to 
automatically construct data warehouse queries based on the retrieved situation 
knowledge and the domain ontology (Chapter 8). 

Step 5. Retrieving Situation Information 
Situation information is retrieved from the data warehouse according to the 
information need which is defined as data warehouse queries. Once the 
information need is generated, queries can be submitted to the data warehouse for 
execution.  

The purpose of situation information retrieval is to find appropriate information 
relevant to the current decision situation. The retrieved situation information is the 
basis on which the manager’s SA is developed and updated. Thus, it is important 
to obtain and present the right situation information in a timely fashion. The 
method of generating information needs ensures the quality of information 
retrieved from the data warehouse. The retrieved situation information is then 
presented to the manager based on navigation knowledge. 

5.2.2   Generating Navigation Knowledge 

The ultimate goal of the CDDP model is to aid managers to make decisions 
through cognitive support. The manager’s SA is developed and enriched in 
situation assessment. Situation assessment is essentially based on the presentation 
of situation information. Therefore, the content of situation information as well as 
the means of information presentation will determine the quality of situation 
assessment and thus affect the manager’s final SA. We have discussed how the 
situation information is selected and retrieved.  Now, we will look at how situation 
information is presented to the manager. 

In current BI systems, there are two basic techniques to retrieve and present 
information: pre-defined reports and ad hoc querying. Pre-defined reports are 
based on fixed queries into the data warehouse. The format and content of the 
report is determined prior to its actual application. The pre-defined reports are 
‘pushed’ to the manager during runtime. Ad hoc querying is mainly used for 
presenting cube data, where the manager is able to investigate any piece of 
information on his/her own. As discussed in Section 2.5, the two techniques of 
information presentation have limitations in that they emphasize manipulation of 
large volumes of business data, rather than supporting managers’ decision making 
from the cognitive perspective. 
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Mental models are the mechanism whereby people interact with the outside 
world. In the business domain, mental models enable managers to simplify the 
complexity of business environments. Mental models are about people’s past 
experience which are the basis and guidance for adequate SA development. Thus, 
if situation information can be delivered to the manager in a similar way as the 
mental models are organized, it might bring the manager some comfort and ease 
for perceiving and understanding situation information. We refer to the knowledge 
which can be used to guide situation information presentation as navigation 
knowledge. We developed IS techniques to extract navigation knowledge from the 
managers’ experience. 

5.2.3   Situation Presentation 

Situation presentation is the visual interface via which the manager interacts with 
the system and perceives situation information. There are two kinds of information 
to be presented in this interface: navigation knowledge and situation information.  

Navigation knowledge is the manager’s integrated experience, which has 
important implications for handling the current decision situation. People rely 
heavily on past experience to solve new problems. Therefore, if the situation 
information can be presented to the manager in the way that navigation knowledge 
is organized, it will yield a mechanism whereby the manager can perceive 
information and comprehend the decision situation in an intuitive way.  As a 
result, the manager’s cognitive load will be reduced and situation assessment will 
become an easier and more comfortable mental process.  

The navigation knowledge is visualized and presented to the manager in the 
form of maps consisting of concepts and relationships between concepts. Each 
concept represents a cue implying a possible affecting factor to the current 
decision situation. A concept is also associated with detailed situation information. 
Different factors are linked via the relationships. By the links between concepts, 
different types of situation information are also connected together.  

Based on navigation knowledge, a graphical user interface (GUI) is used to 
communicate situation information to and receive feedback from the user. On the 
GUI, the navigation knowledge is firstly displayed in the form of maps. The user 
is navigated within the map via interactive operations. For example, if the 
manager is interested in a specific concept, he/she can just click on the concept on 
the GUI and the corresponding situation information associated with this concept 
will be presented immediately. In this way, the manager can easily browse the 
situation information of his/her interest and the browsing actions are ‘navigated’ 
by the navigation knowledge. The specific technique for navigation-knowledge-
guided situation presentation will be discussed in Chapter 9. 

5.2.4   Situation Awareness Updating 

The manager’s SA is updated during the Situation Assessment stage in Figure 5.2. 
Technically, situation assessment is a cognitive process within the manager’s 
mind during which the manager’s SA is developed and enriched. However, in the 
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CDDP model, we use this term to represent IS functionality (IS based situation 
assessment) as well as the human cognitive process (cognitive situation 
assessment). The IS based situation assessment complements and supports the 
cognitive situation assessment. They both contribute to the manager’s SA 
development and reinforcement for decision making.  

Broadly speaking, the IS based situation assessment is an ongoing process 
including all the previous stages of information processing. It starts from the 
manager’s initial SA and goes through knowledge need extraction, situation 
knowledge retrieval, information need generation, situation information retrieval, 
navigation knowledge generation and situation presentation. During the IS based 
situation assessment, different IS techniques are employed to assist the manager to 
search, locate, obtain and perceive relevant information for the purpose of SA 
development and enhancement. In this sense, the Situation Assessment in Figure 
5.2 is not another independent stage of the decision process, but a status of 
information processing results. 

The IS based situation assessment directs situation information to the manager 
through situation presentation, which triggers the cognitive situation assessment. 
The cognitive situation assessment, as a cognitive activity in the manager’s mind, 
is divided into three steps (Endsley 1995b). The first step to achieve SA is to 
perceive the detailed situation information delivered by the Situation Presentation 
stage, e.g., product details, sales amount and stock price. Perceiving this kind of 
situation information will result in the manager’s Level 1 SA.  

The second step is to synthesize and comprehend different information 
perceived in the first step. The goal of decision making and the past experience 
play an important role in this step. The manager needs to put pieces of information 
together and form a holistic picture of the current decision situation. The 
navigation knowledge guided situation presentation can support the second step of 
the cognitive situation assessment. Some low level situation information has 
already been aggregated, summarized by the system which helps the manager to 
easily comprehend the situation information. Different situation information is 
well organized according to the navigation knowledge, which helps the manager 
to establish relationships among different elements of the decision situation. The 
manager’s Level 2 SA is developed in this step. 

The last step is to project the future status of the decision situation which 
results in Level 3 SA. The manager’s projection ability is based on his/her 
perception and comprehension of the decision situation (both Level 1 and Level 2 
SA). The Level 3 SA enables the manager to predict potential opportunities and 
threats in the near future, which is valuable for decision making. 

5.2.5   Decision Generation 

The process of decision generation is based on the recognition-primed decision 
(RPD) model (Klein et al. 1989) which has been presented in Figure 3.5. Situation 
assessment results in the manager’s updated SA. The updated SA is richer than the 
initial one developed at the starting point of the decision process. According to 
RPD model, the user, at this stage, has a better opportunity to recognize the 
current decision situation and match it with similar past scenarios based on his/her 
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SA and experience in the Situation Recognition stage in Figure 5.2. The past 
decisions are then mentally examined. Depending on the appropriateness, past 
decisions might be adopted directly for the current decision situation, or be revised 
accordingly. A feasible decision to the current decision situation is made through 
revising the past decisions. 

Compared to the traditional DSS-based decision process model, the final 
decision, in the CDDP model, is made by the manager him/her self, instead of a 
decision recommendation generated by the computer. In other words, only 
decision support is provided to the manager in the form of reinforcement of SA 
and mental models, and enhancement of situation assessment and thinking.  

Decision making is also a learning process, during which the decision maker 
gradually accumulates field expertise. Once a course of action is generated and 
implemented after decision making. The decision maker has opportunities to gain 
new experience from the performance of a course of action. The experience base 
will grow more reliable through constant intake of new experience.  

5.2.6   The Decision Cycle 

Subject to many factors, the manager may not make the final decision after going 
through the Situation Recognition process. For example, the manager feels his/her 
SA is not sufficient enough for decision making. In this case, the manager will go 
through another iteration of the situation assessment through re-inputting the 
updated SA. Therefore, a cognition-driven decision process might include a 
number of iterations of decision cycle. As shown in Figure 5.6, each decision 
cycle consists of a series of six consecutive steps corresponding to the different 
stages in the CDDP model. 
 

(1) SA Analysis 

The manager describes his/her SA in natural language. The SA is analyzed in 
order to extract knowledge needs. The SA being analyzed is either the manager’s 
initial SA or updated SA. The initial SA can be developed via conventional 
communication methods and the updated SA is the result of situation assessment. 

 

(2) Knowledge Retrieval 

Experience is retrieved from the experience base according to the knowledge 
needs extracted from the manager’s SA in Step (1). The retrieved past experience 
is relevant to the current decision situation.  

 

(3) Knowledge Fusion 

The retrieved knowledge is synthesized to form information needs and 
navigation knowledge. 

 

(4) Situation Information Retrieval 

Situation information retrieval is conducted based on information needs 
generated in Step (3). The goal of situation retrieval is to retrieve information 
which is relevant to the current decision situation.  
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Fig. 5.6 The Decision Cycle of Cognition-Driven Decision Processes 

(5) Situation Presentation 

The retrieved situation information is presented to the manager under the 
guidance of navigation knowledge. Situation information presentation is the basis 
of situation assessment. 

 

(6) Situation Assessment 

The manager perceives situation information through interaction with the 
system and his/her SA is eventually developed and enriched. 

The iteration of decision cycle is triggered by the manager’s initial SA. After 
that, the decision cycles iterate one after another until the final decision is worked 
out. There are two cases in which the final decision is made. First, during an 
iteration of decision cycle, the manager feels confident enough at a point in time 
to finalize a decision. The manager’s confidence mainly relies on his/her mental 
models and SA. Solid mental models and high level SA are more likely to lead to 
successfully decision making. Second, limited resources available to the manager 
might force the manager to make a decision. Examples of these resources include 
time, cost, and the manager’s cognitive load. Any resource limits may stop the 
iteration of decision cycle and trigger the production of the final decision. 
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5.3   Summary 

The CDS framework and the CDDP model are presented in this chapter. The CDS 
framework outlines two basic characteristics of a cognition-driven decision 
process: cognition oriented and user centered. According the CDS framework, the 
CDDP model was proposed based on three assumptions. The key part of the 
CDDP model is situation retrieval. The major difference between situation 
retrieval and classic information retrieval is that the former is decision oriented 
and the latter is problem oriented. The goal of a situation retrieval process is to 
seek, locate and obtain knowledge and information relevant to a decision situation. 
Situation retrieval is the fundamental part of a cognition-driven decision process 
comprised of iterations of decision cycle. During a decision cycle, the manager’s 
mental models and SA are represented as computerized information objects and 
utilized for formulation of knowledge needs and information needs, knowledge 
retrieval, situation information retrieval and situation presentation. In this sense, 
the manager’s decision process is driven by his/her cognition and cognitive 
decision support is achieved. Although the CDDP model technically is domain-
independent, the discussion of this model in this book is grounded on the business 
domain for the sake of clarity. We believe the CDDP model can be easily 
extended into other domains, such as government, medical and education.   

This chapter represents the theoretical part of this cognition decision support 
for BI. The corresponding technical part, including methods, algorithms, and 
techniques developed on the basis of the CDDP model, will be discussed in 
Chapters 6, 7, 8 and 9. 
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Chapter 6 
Domain Knowledge Representation and 
Processing   

 
 
 
 
 
 
 
From this chapter, we present the technical part of this book including Chapters 6, 
7, 8 and 9. The technical part deals with problems related to specific methods, 
algorithms, and techniques which are the implementation of the cognition-driven 
decision process (CDDP) model. This chapter discusses two kinds of domain 
knowledge used in the CDDP model: ontology and experience. A domain 
ontology is represented as a class tree and a class graph based on two types of 
relationships between classes: subsumption and property-share. Experience is 
elicited and represented as experience maps using the cognitive mapping 
technique. The domain ontology is used for extracting semantic information of 
SA. The extracted SA semantics together with experience are then used for query 
construction. This chapter will focus on domain ontology and experience. 

6.1   Ontology 

6.1.1   Basics of Ontology 

Ontologies are originally used to offer a basis for communication between 
different parties in order to dismiss ambiguities (McGuinness 2001). However, 
recent research has brought ontologies to much broader areas: battlefield (Matheus 
et al. 2003) semantic web (Rocha et al. 2004), information extraction (Boufaden 
2003; Maynard et al. 2005), business management (Missikoff & Schiappelli 
2005), and information retrieval (Castells et al. 2007). In particular, Uschold and 
colleagues (1998) developed an ontology (The Enterprise Ontology) for business 
domain. They summarized the application of the ontology into four major roles:  
 

(a) a communication medium,  
(b) acquisition, representation, and manipulation of enterprise knowledge,  
(c) structuring and organizing libraries of knowledge, and 
(d) explanation of the rationale, inputs and outputs of the software tools. 
 
In computing science, an ontology is a specification of data model about classes 

(concepts) and their relationships (Guarino 1998). In an ontology, a class is a word 
or phrase that expresses a general idea of the nature of a thing, often providing a 
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category for the classification of things (Theodorson & Theodorson. 1969). 
Classes are domain-specific. In the business management domain, examples of 
classes are STRATEGY, MARKETING, PRODUCT, SALES and CUSTOMER6. 
A class is differentiated from other classes according to their properties, i.e., 
different classes have different sets of properties. For instance, the property set of 
CUSTOMER might include Name, Age, Education, and Income.  

In an ontology, different relationships exist between classes. Subsumption is a 
very basic type of class relationship. An example of subsumption relationship is 
the one between PRODUCT and NOTEBOOK. NOTEBOOK belongs to 
PRODUCT: any individual (instance) of NOTEBOOK is also a member of 
PRODUCT. In a specific domain, additional types of relationship can be defined 
in order to meet different semantic requirements. For instance, there is wrote 
relationship between AUTHOR and BOOK, and is-topped-with relationship 
between PIZZA and TOPPING. It is noticeable that a hierarchical taxonomy can 
be defined if only subsumption relationships between ontology classes are 
depicted. In addition to the subsumption relationships, we defined a new type of 
relationship called property-share relationships for knowledge needs 
construction. 

6.1.2   Property-Share Relationships 

In real life, people learn of things via obtaining information about them. The 
information can be either direct or indirect, subject to the observation method. 
Observing a thing directly, people can obtain direct information. Indirect 
information can be obtained via intermediaries. For example, people can image 
how a child (the target) looks like according to his/her parents’ (the intermediary) 
appearance. Indirect information can be considered as a sort of relationship 
between the intermediary and the target. The information conveyed by this 
relationship is actually based on the properties of the intermediary which are 
shared with the target. This information is the intermediary’s contribution to the 
understanding of the target. In other words, we can know something about the 
target via examining the shared properties of its intermediaries. For the previous 
example, the child shares some properties (e.g., facial appearance or personal 
nature) with the father. We refer to this kind of relationships between ontology 
classes as property-share relationships.  

A property-share relationship between two classes is a relationship directed 
from the intermediary class to the target class. Let A and B be an intermediary 
class and a target class respectively. Let (a1, a2, … am) be properties of class A and 
(b1, b2, … bn) be the properties of class B. The property-share relationship from A 
to B is defined as follows:  

Definition 6.1. Property-Share Relationship (rs) 

rs (A, B) :=  { <ai, bj, fi> | ai ∈ A , bj ∈ B and fi (ai) = bj }. 

                                                           
6  In this book, ontology classes (concepts) are presented in full upper-case (e.g., 

MARKETING), while the properties of a class are only capitalized (e.g., Sales Amount). 
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In this definition, fi is a property transformation function which maps a 
property (ai) of A to a property (Carley & Palmquist 1992; Gnyawali & Tyler 
2005) of B. fi is defined according to specific application requirements. In most 
cases, f(p) = p can be adopted, i.e., the target class and the intermediary class share 
properties directly without any transformation. Let us look at an example to 
illustrate different property transformation functions. 

PRODUCT RELEASE = (Release Date, Product ID) 

SALES = (Start Date, End Date, Product Model) 

rs (PRODUCT RELEASE, SALES) = {<Release Date, Start Date, f1>, < 

Product ID, Product Model, f2>}, where f1(p) = p + N , N is a period of time, and 

f2(p) = p.  

 
With the property-share relationship rs, the Start Date of SALES can be 

obtained from Release Date of PRODUCT RELEASE by applying property 
transformation function f1.  

According to property transformation functions  

f1(p) = p + N,  

Start Date = Release Date + N.  

Suppose  

N = 5 days.  
 
Thus, given a date when a product is released, a reasonable start date of this 

product’s sales can be determined. For instance, if we know the product was 
released on 12 June 2008, then it is reasonable to examine the sales data of this 
product from 15 June 2008. The Product Model of SALES can be obtained from 
Product ID of PRODUCT RELEASE by property transformation function f2. As 
f2(p) = p, Product Model = Product ID. Thus, rs enables us to gain insights into the 
sales of a product through available data about its release, even we do not have 
direct sales data at hand. Well-defined property-share relationships have broad 
implications in business management, as they provide us with a means to perceive 
useful information indirectly. 

With reference to the definitions of ontology relationships, we defined two data 
structures to represent a domain ontology: class tree and class graph. 
Accordingly, the class tree and class graph of an ontology respectively present the 
subsumption relationships and property-share relationships between ontology 
classes. Note that the class tree and class graph are NOT two different ontologies, 
but two representations of the same ontology from two different perspectives.  
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As the proposed theory, methods and algorithms in this research are not limited 
to a specific domain, the presentation of ontology is also not domain specific. 
However, most examples (classes and relationships) used in this section are 
excerpts from the ontology developed in the application case studies of this 
research (Chapter 11).  

6.1.3   Class Tree  

The building blocks of class trees are nodes and links. A node of a class tree 
denotes a class in the ontology. The subsumption relationship between two 
ontology classes is represented as a link in the class tree. Figure 6.1 is an excerpt 
of the of class tree developed in the business application case study of this 
research (Section 11.1). The structure of a node in a class tree has seven fields. 
 

(1) Class Label 

The class label of a node is the name of the class that node represents. A class 
label is an identification of a class. Therefore, class labels are unique in a specific 
ontology (including its class tree and class graph). However, the reality is that 
there are many more classes used in an application domain than in the ontology 
defined for that domain. In addition, different classes might mean a similar thing, 
or the same class might mean different things in different contexts. In order to 
avoid ambiguity of communication, all classes in an ontology must meet the 
uniqueness requirement. Thus, the determination of all classes for an ontology is 
by no means an straightforward task. Ontology development often involves 
extensive cooperation of domain experts, technical experts and engineers. 

(2) Parent Class 

A class tree only represents the subsumption relationships between classes. 
Therefore every class (node), except for the root, has a corresponding parent class 
(node). The parent class field of a class node is also a class label. 

(3) Class Properties 

A class of an ontology is defined by a set of properties. The distinction between 
the property set of a class and a node structure should be noted. A node of a class 
tree is an artifact designed to represent a class in the form of a data structure (tree 
node). The properties of a class are the natural description of the class (existence).  

Of the property set of a class, we define a special one as taxonomy property. 
The taxonomy property of a class is used to distinguish its child classes. For 
example, Product Category is the taxonomy property of PRODUCT. PRODUCT 
has four children: BIKE, COMPONENT, CLOTHING and ACCESSORY. These 
four child classes are differentiated from each other by the Product Category 
property. Although a child class inherits all properties from its parent class, still 
the child class might have a different taxonomy property to its parent class. 
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Fig. 6.1 An Example of Class Tree 

(4) Class Type 

A class can be one of three class types: general class, abstract class and meta 
class. In the hierarchy of a class tree, general classes are the lowest level classes 
(leaf nodes). General classes can have specific instances. An instance of a general 
class can be uniquely identified by the taxonomy property of the class. Thus, a 
value of the taxonomy property of a general class implies the presence of an 
instance of this class and then implies the presence of this class itself. For 
example, English Product Name is the taxonomy property of MOUNTAIN BIKE. 
Any valid value of English Product Name, e.g., Mountain-100 Silver represents a 
specific mountain bike (an instance). This instance will imply the presence of 
class MOUNTAIN BIKE.  

Compared to general classes, abstract classes are higher level classes in a class 
tree. Abstract classes do not have direct instances. Therefore, abstract classes 
cannot be identified by instances. We use semantic parsing to deduce abstract 
classes from managers’ SA descriptions (Chapter 7). 

Meta classes are auxiliary classes which are used to characterize general classes 
and abstract classes. A meta class has only one property: value. A meta classes is 
usually a property of a general or abstract class. For example, MONEY may 
correspond to Sales Amount which is a property of SALES.  

There are two types of meta classes: basic meta classes and extended meta 
classes. The basic meta classes are pre-defined and not connected to specific 
application domains. Currently, we have defined 16 meta classes: AREA, SPEED, 
CURRENCY, TEMPERATURE, DISTANCE, TIME INTERVAL, TIME 
POINT, LENGTH, HEIGHT, VOLUME, POWER, WEIGHT, PRESSURE, 
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COUNTRY, STATE, and CITY. Clearly, the pre-defined meta classes can only 
describe a limited number of types of classes for a specific domain. Thus, it is 
reasonable to allow users to define their own meta classes according to their 
requirements. The user-defined meta classes are domain-specific and we refer to 
them as extended meta classes.  

The number of general and abstract classes in a specific domain can range from 
tens to over one thousand. Each class has a couple of properties. It might be labor-
intensive and time-consuming to manually define all classes for an application. 
Fortunately, we created a mapping relationship between the ontology and the data 
warehouse. Thus each class in the class tree is associated with a table in the data 
warehouse. The classes can be easily defined by importing data warehouse schema. 

Both general classes and meta classes can have specific instances. For the sake 
of distinction, we refer to instances of meta classes as meta instances. 

(5) Is Experience Map Concept? 

In order to apply the CDDP model in an application, an ontology and a 
corresponding experience base needs to be built. An experience base includes the 
managers’ management experience represented as experience maps. Each 
experience map consists of concepts and causal relationships. 

The fifth field of a class node indicates whether this class is also a concept in 
the experience base. We map every concept of the experience maps to a class in 
the ontology. However, not all ontology classes correspond to a concept in the 
experience maps due to the scope difference between the ontology and the 
experience maps. Theoretically, an ontology is intended to represent all classes of 
interest and their relationships in an application domain, i.e., the problem space. In 
comparison, an experience map as the representation of a manager’s experience is 
a subset of the solution space. In terms of applicability, the ontology has a wider 
scope than the experience map. Consequently, the concept set of experience maps 
is a subset of the class set of the ontology. 

(6) Data Warehouse Object Type 

This field together with the seventh field specifies an object in the data 
warehouse corresponding to this class. By this means, the mapping relationship 
between an ontology and a data warehouse is established. This mapping 
relationship is used to construct data warehouse queries (Chapter 8).  

We are concerned with three kinds of data warehouse objects: data table, 
dimension tables and cubes. Data tables contain relational data the same as tables 
in a relational database management systems (RDBMS). Cubes store 
multidimensional data which are defined by a number of dimensions. Each 
dimension is built based on a number of dimension tables. We use 0, 1, and 2 to 
denote data tables, dimension table and cubes respectively. More detailed 
discussion about data warehouse tables and cube is presented in Section 8.1.1. 

(7) Data Warehouse Object 

This field is the name of the data warehouse object mapped with this class. For 
example, in the ontology for the business application case study (Chapter 11), the 
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corresponding data warehouse objects of PRODUCT and INTERNET SALES is 
DimProduct table and Internet Sales cube respectively. Technically, all classes 
should have corresponding objects in the data warehouse. However, due to the 
limited scope of a specific application, it is not necessary to relate every class to a 
data warehouse object.  

6.1.4   Class Graph  

A class graph is another part of the representation of an ontology in addition to its 
class tree. Compared to the subsumption relationships in the class tree, property-
share relationships are represented in the class graph. The class graph is a directed 
graph representing the same set of classes as the class tree. Each vertex denotes a 
class; each directed edge denotes a property-share relationship (Figure 6.2).  

The class tree of an ontology includes all classes defined for an application 
domain, but not every class defined the class tree has property-share relationships 
with other classes. Only those class pairs involved with property-share 
relationships are represented in the class graph. In practical applications, users 
only need to define necessary property-share relationships of their interest, instead 
of all possible class pairs. 

The example in Figure 6.2 is an excerpt of the class graph for the business 
application case study of FACET (Chapter 11).  There are two types of edges in 
this class graph: monodirectional lines and bidirectional lines. A monodirectional 
edge denotes a property-share relationship, e.g., the edge from PRODUCT 
SUBCATEGORY to PRODUCT denoting rs(PRODUCT SUBCATEGORY, 
PRODUCT). A bidirectional edge denotes two property-share relationships, e.g., 
the edge between SALES and CUSTOMER denoting rs(SALES, CUSTOMER)  
and rs(CUSTOMER, SALES). As shown in Figure 6.2, most property-share  
 

 

Fig. 6.2 An Example of Class Graph 
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relationships are symmetric, i.e., both rs(A, B) and rs(B, A) are valid property-
share relationships, e.g., rs(PRODUCT, ADVERTISING) and rs(ADVERTISING, 
PRODUCT). 

6.1.5   Role of the Ontology 

The major role of the domain ontology (its class tree and class graph) in the 
CDDP model is to provide a mechanism whereby the semantic information of SA 
can be extracted. 

(1) Annotates SA terms  

In the CDDP model, managers can describe their SA using natural language. 
The SA is represented as texts, each of which includes several sentences. 
Employing a natural language parser, SA sentences are parsed into syntactic 
tokens (SA terms).  SA terms are words or phrases constituting a SA sentence. SA 
terms are annotated based on an ontology. The annotated SA terms form SA 
triples (Chapter 7).  

(2) Infers abstract classes 

In terms of subsumption relationships, abstract classes are at the higher level in 
a class tree compared to general classes (leaf nodes). General classes can be 
directly extracted from SA descriptions according to their taxonomy properties. 
Abstract classes generally need to be inferred from abstract classes and relevant 
SA terms based on the subsumption relationships (Chapter 7). 

(3) Determines class similarities 

Class similarities represent the degree to which two classes are talking about 
the same thing. Class similarities are determined by comparing classes in both the 
class tree and the class graph (Chapter 6).  

(4) Represents the relationships between objects in the data warehouse. 

Situation information is stored in the data warehouse, which can be retrieved 
according to information needs. The construction of information needs relies on a 
deep understanding of the relationships between different data objects in the data 
warehouse, such as relational tables, dimensions and cubes. We map each data 
warehouse object of interest to a class in the corresponding ontology. Thus, 
relationships between classes in the ontology can reflect the relationships between 
objects in the data warehouse. 

6.1.6   Synonyms 

The synonyms of a class are terms which have the same or very similar meanings 
as the class. Using synonyms, the communication among people or information 
systems can be based on wider vocabulary than those used in an ontology. Thus, 
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synonyms extend the applicability scope of an ontology and give practical 
applications more freedom to communicate using conventional terms. 

Synonyms can be generated automatically based on thesauruses defined in a 
specific domain. Users can also manually define as many synonyms as they want. 
In FACETS, synonyms are a list of words in a text file. Each entry in the file 
consists of all synonyms defined for the same class. For instance, the entry for 
STRATEGY is defined as follows: 

strategy, strategies, plan, plans, planning, planned, policy, policies, 

procedure, procedures 

The synonyms of a class include nouns, verbs and different forms of these 
words.  

6.1.7   Class Similarity 

Class similarities are used to retrieve an alternative class when the required class 
cannot meet the specified criteria. For example, in constructing data warehouse 
queries, a target data warehouse object corresponding to a class needs to be 
determined for a given concept in a cue. If the class matched with the concept 
does not have a corresponding data warehouse object, the most similar class with a 
data warehouse object needs to be determined. 

In an ontology, the similarity between two classes is computed based on the 
class tree and the class graph of this ontology. First, their similarity is evaluated in 
the class tree (tree similarities) and class graph (graph similarities) individually 
and then aggregated together to form the class similarity. 

 

• Tree Similarities 
 

The class tree of an ontology is a hierarchical structure. The methods to 
computing class similarities within a hierarchical ontology can be grouped into 
two basic categories: the edge based methods and the node based methods 
(Schickel-Zuber & Faltings 2007).  Schickel-Zuber & Faltings compared various 
existing methods and concluded that there are only marginal differences between 
different methods in terms of mean absolute error measure.  This conclusion 
encourages us to adopt a relatively simple similarity evaluation method as shown 
in following equation. This method was proposed by Leacock & Chodorow 
(1998). 

Equation 6.1. Tree Similarity (ts) 
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where, a and b are two nodes of a class tree and len(a, b) is the shortest length of the 
path from node a to node b in the class tree. The length of a path in the class tree is 
defined as the number of nodes in the path. D is the maximum depth of the class tree. 
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• Graph Similarities 
 

A class graph represents the property-share relationships between ontology 
classes. Let a, b be two classes in a class graph and rs(a, b) be the property-share 
relationship from a to b. The properties of a defined in rs(a, b) can be transformed 
into corresponding properties of b by a transformation function. The more 
properties of a are transformed to b, the stronger rs(a, b) is. Therefore, the 
property-share relationships, to some extent, reflect the degree to which classes 
are related to each other: the stronger a property-share relationship between two 
classes, the closer the two classes. Thus, we defined graph similarities using 
equation  
 

Equation 6.2. Graph Similarity (gs) 
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In this equation, gs(a, b) is the graph similarity from a to b. path(a, b) is the 
shortest path from vertex a to b. edge(ci, cj) is one of the series of edges in path(a, 
b). rs(ci, cj) and rs(cj, ci) is the property-share relationship from ci, to cj and from cj 
to ci, respectively.  

To combine the tree similarity and the graph similarity, the class similarity 
between two classes can be computed using the following equation. 

Equation 6.3. Class Similarity (sim) 

),(),(),()1(),(),( ssss bagsbbtsaatsbatsbasim ⋅⋅⋅−+⋅= μμ . 

In this equation, μ (0 ≤ μ ≤ 1) is the weight of the tree similarity which is 
determined by experts according to specific applications. as, bs are respectively the 
surrogate classes of a and b. In a class graph, the surrogate class of a class c is the 
one that has the greatest tree similarity with c compared to all other classes of the 
class graph. As discussed in Section 0, the class graph of an ontology only 
includes part of classes defined in the class tree. Those classes not involving in 
property-share relationships will not appear in the class graph, e.g., most meta 
classes. For each of these classes, a surrogate class is used to compute the graph 
similarities with other classes. 

6.2   Experience 

A decision maker, e.g. a business manager, acquires and accumulates relevant 
domain knowledge during decision making processes. As a kind of such domain 
knowledge, mental models play a key role for SA development (Endsley 1995b; 
Sarter & Woods 1991). Mental models can be elicited using the cognitive 
mapping technique. We refer to computerized mental models as experience. 
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6.2.1   Experience Representation 

Based on related work on cognitive mapping, we defined experience and related 
basic concepts for experience representation.  

Let C = {c1, c2, …, cn} be a concept set. Concepts ci, cj belong to C. The causal 
relationship from ci to cj  is defined as follows. 

Definition 6.2. Causal Relationship (rc) 

rc (ci, cj) := (ci, cj), where ci∈C, cj∈C, ci ≠ cj, and ci is a cause of cj. 

A causal relationship defines an ordered pair of concepts, of which the former 
concept (ci) is a cause of the latter concept (cj). We refer to ci as a cause concept 
of cj and accordingly cj as an effect concept of ci.  

In a causal relationship, the cause concept is a direct cause of the effect 
concept. The cause concept directly affects the effect concept in some ways 
without any intermediaries. Indirect causes do not guarantee causal relationships 
between concepts. For instance, if we have rc (a, b) and rc (b, c), we can conclude 
that a is a cause of c. However rc (a, c) does not necessarily exist. In this case, a is 
an indirect cause of c. We refer to indirect causal relationships as mediated causal 
relationships.  

Let C be a concept set. We give the definition of mediated causal relationships 
as follows. 

Definition 6.3. Mediated Causal Relationship (rm) 

rm(a, b) := (a, b),  

where, a∈C, b∈C, a ≠ b,  

       and, ∃C’ ⊆ C, C’  = (x0, x1, x2, …, xp, xp+1), p ≥ 1, x0 = a, xp+1 = b,   

such that ∀xi∈C’ , 0≤  i ≤ p, rc(xi, xi+1) is a causal relationship. 
According to this definition, a mediated causal relationship from one concept to 

another concept implicitly defines an ordered tuple of concepts between the two 
concepts. A valid causal relationship exists for each pair of adjacent concepts. 

Based on Definition 6.2, an experience can be defined as follows. 

Definition 6.4. Experience E 

E := ( C,  R ), 

C = { c1, c2, …, cn }, ci is a concept of concern , 

R = { rc(ci, cj) | ci ≠ cj, ci∈ C, cj ∈ C },  

where, rc(ci, cj) is a causal relationship directed from ci to cj. 
 

According to Definition 6.4, an experience can be represented by two parts: a set 
of concepts and a set of causal relationships between concepts. A concept  
represents an entity or object of an individual’s concern. Examples of concept in  
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Fig. 6.3 An Example of Experience Map 

the business domain are SALES, PRODUCT RESEARCH, MARKETING, and 
SHARE PRICE. The causal relationship between two concepts in an experience is 
required to be direct. For example, PRODUCT RESEARCH directly affects 
SALES; SHARE PRICE directly affects MARKETING. 

The representation of an experience is a directed graph which we call 
experience map. In an experience map, concepts are represented as vertexes and 
causal relationships are represented as directed edges between vertexes.  Figure 
6.3 is an example of an experience map. From this experience map, we can see 
how different factors affect each other. For instance, INTERNET SALES is 
affected by PROMOTION, PRESALE SERVICE, DELIVERY, and 
ADVERTISING. ADVERTISING is also affected by other three factors: TV, 
RADIO, and NEWSPAPER. 

6.2.2   Experience Elicitation 

In this research, experiences are computerized mental models. Thus we can 
employ cognitive mapping technique to elicit managers’ experience. Using the 
cognitive mapping technique, there are four steps to elicit experience from a 
manager (Carley & Palmquist 1992; Gnyawali & Tyler 2005). 

Step1: Collecting Data 
Experience is domain-specific human knowledge. The source data for experience 
solicitation is generally about a specific topic, e.g., notebook sales. The source 
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data can be collected via various methods such as post hoc coding of documents, 
interviews, and direct brainstorming.  

Step 2: Identifying Concepts 
Concepts can be identified from the source data manually or automatically. 
Manually extracting concepts can be done by the investigator with the help of the 
manager. The investigator reads through the texts collected in the previous step 
and highlights the important key words of interest to the theme topic. The key 
words are generalized into a set of concepts in light of the manager’s domain 
knowledge. Concept identification can also be done automatically through using 
text analysis programs, e.g., Decision Explorer (as per the web link below) 

http://www.banxia.com/dexplore/index.html. 

Step 3: Defining Causal Relationships 
The identified concepts are presented to the manager. The manager is asked to 
compare each pair of concepts and examine whether a causal relationship exists 
between them. Relationships between concepts could be strong or weak. Only 
strong relationships are kept for experience elicitation. The degree to which causal 
relationships are strong or weak can be intuitively determined based on the 
manager’s experience. There are also fuzzy cognitive maps where causal 
relationships are assigned weights (fuzzy values) to indicate the magnitude of 
causes (Kosko 1986). In this research, we only focus on non-fuzzy causal 
relationships. For example, For instance, causal relationship rc (PROMOTION, 
INTERNET SALES) indicates PROMOTIION is a cause of INTERNET SALES. 

Step 4: Validating Experience Maps 
Once all the concepts and relationships are extracted and defined, draft experience 
maps can be produced. Some errors or inappropriateness of representation might be 
introduced into the draft experience maps. The manager is presented with the 
experience maps and asked to validate them in terms of business implications. During 
validation, experience maps are analyzed and might be abandoned or aggregated. 

6.2.3   Creating an Experience Base 

Managers’ experiences are represented as experience maps and stored in an 
experience base. As experience maps are directed graphs, we need to define 
vertexes and edges of these graphs. Thus, the experience base consists of directed 
graphs representing the experience maps. 

The only information a vertex of an experience map needs to express is a concept 
label. In order to avoid ambiguities, we use the corresponding ontology defined in an 
application to limit the terms used as concept labels. Thus, the concept label of each 
vertex of an experience map is also a class label in the corresponding class tree. The 
straightforward adoption of class labels in experience maps results in greater 
simplicity and clarity for software engineering and end users.  

Class label adoption might cause the class tree to grow in a poorly managed 
manner. Theoretically, an ontology describes the general nature of an application 
domain: classes and relationships. In a class tree, different classes are well-
organized according to the subsumption relationships between them. For example, 
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MOUNTAIN BIKE, ROAD BIKE and TOURING BIKE are children of BIKE; 
BIKE (also for COMPONENT, CLOTHING and ACCESSORY) is a child of 
PRODUCT. This organization of classes is intuitive and easy to understand. 
However, in order to cater for the complete representation of experience maps, 
some extra classes might need to be added, such as PRODUCT CATEGORY and 
PRODUCT SUBCATEGORY. The supplement of these extra classes might 
damage the well-organized nature of the ontology.  

We use adjacency lists to actually store the directed graphs of experience maps. 
Each vertex of an experience map corresponds to a list of vertexes consisting of 
this vertex and all other vertexes which have edges directed to this vertex. In 
FACETS, we use a csv file to store the adjacency lists data. This data file is input 
into the system automatically during the process of experience base creation. The 
definition file for the experience map in Figure 6.3 is shown in Figure 6.4. 

------------------------------------------------------------------------------------------------ 

Scholarship 
 

University, Scholarship, Course 
 

Course 
 

Government 
 

Channel, University, Government, Business 
 

Business 
 

Advertisement 
 

Notebook Sales, Channel, Advertisement, Notebook Specification 
 

Graph Card 
 

Notebook Specification, Graph Card, Free Game, HDD Speed, Memory 
 

Memory 
 

Free Game 
 

HDD speed 

------------------------------------------------------------------------------------------------ 

Fig. 6.4 The Definition File of an Experience Map 
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In Figure 6.4, the first concept of each list (delimited by blank lines) denotes a 
vertex; all other concepts in the list are adjacent vertexes from each of which an 
edge is directed to the first vertex. For example, in the second list, UNIVERSITY 
is a vertex; SCHOLARSHIP and COURSE are adjacent vertexes to 
UNIVERSITY. For vertexes to which there are no edges directed from other 
vertexes, the corresponding adjacency list has only one concept (itself). An 
experience base might include many experience maps. All the experience maps 
can be defined in a single csv file. 

6.2.4   Cues 

Confronted with a crime scene, it must be a thrill for detectives if they eventually 
identify a clue which implicates the true offender. As valuable clues to detectives, 
similar information and knowledge is also crucial to a business manager in 
decision making. This kind of information and knowledge might be factors, 
parameters or data about some business objects. We refer to this kind of 
information and knowledge hiding in a decision situation as the cue of the 
decision situation. Generally speaking, cue can be any information and knowledge 
which sheds light on the target decision problem of the manager’s concern.  

Let E(C, R) be an experience and c be a concept of E (c∈C). We define the 
cue Ě of c in E as follows. 

Definition 6.5. Cue (Ě) 

Ě := (Č, Ř), 

where, Č is a concept set, 

       Ř is a causal relationship set, 

 

 

and  

Ř := { rc(ci, cj) | r
c ∈ R, ci ≠ cj, ci∈Č, cj ∈Č }. 

 
According to Definition 6.5, the cue Ě of a concept c in an experience E has 

two parts: a set of concepts (Č) and a set of causal relationships (Ř) between 
concepts. The concept c per se is an element of C. Furthermore, all other related 
concepts, from each of which there is a direct or mediated causal relationship to c, 
also belong to C.  In other words, given a specific experience, the cue of a concept 
includes all factors in an experience which affect this concept no matter whether it 
is direct or indirect.  

The representation of the cue of a concept is also a directed graph, which we 
call cue maps. In a cue map, a concept is represented as a vertex and a causal 
relationship is represented as a directed edge from one vertex to another. 
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In a decision situation, a concept represents a problem or issue, e.g., sales. The 
corresponding cue of the concept implies possible factors, information or solutions 
to the problem. Cues play two roles in the process of situation retrieval. 

 

(1) The cues of all concepts extracted from managers’ SA are used to construct 
data warehouse queries (Chapter 8). This insures the information retrieved from 
the data warehouse based on the generated queries is valuable to the manager’s 
decision situation. 

(2) Cues are used to generate navigation knowledge for situation presentation. 
Navigation knowledge guides the interaction between the manager and the 
decision support system (Chapter 9). The experiment results show that 
information presentation guided by the navigation knowledge is intuitive, and 
users feel more comfortable with it.  

6.2.5   Extracting Cues  

Given an experience and a concept in this experience, the algorithm to extract cues 
is as follows: 

Algorithm 6.1. CueExtraction 

Input:  

 (1) Experience (E) 

(2) A concept (c) 

Output: 

 A cue map (Ě) 

Procedure: 

Step 1.   Find the vertex c in E. 

Step 2.  Create an empty adjacency list l. 

Step 3.  Get all cause concepts of c in E. 

Step 4.  Set c as the first concept of l and insert all cause concepts into l. 

Step 5.  Insert l into Ě. 

     Step 6.  For each cause concept ci of c, if the adjacency list of ci has not 

been created in Ě, recursively call this algorithm using E and ci 

as input. 

Step 7.  End. 

CueExtraction is a recursive algorithm. Given a concept, it firstly generates an 
adjacency list for that concept. Then the algorithm invokes itself to generate 
adjacency lists for all other concepts in the adjacency list of that concept. This 
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algorithm allows cycles in the experience maps which represent the situation that 
concepts affect each other. We use an example to illustrate Algorithm 6.1.  

An abstract experience is shown in Figure 6.5. Let this experience be E := ( C,  
R ). In experience E, all concepts, except for d, are cause concepts; Concepts c, f, 
and d are effect concepts.  

 

Fig. 6.5 An Abstract Experience Map 

The concept set 

C = {a, b, c, d, e, f, g, h}. 

The causal relationship set 

R = { rc(a, c) , rc(b, c) , rc(e, c) , rc(c, f) , rc(g, f) , rc(h, f), rc(f, d)}. 

All mediated causal relationships are  

rm(a, d) , rm(b, d) , rm(c, d) , rm(e, d), rm(a, f) , rm(b, f) and rm(e, f). 

Using Algorithm 6.1, the cues of different concepts can be extracted. 
 

Ě(a) = ({a}, ∅) 

Ě(b) = ({b}, ∅) 

Ě(c) = ({a, b, e},{ rc(a, c) , rc(b, c) , rc(e, c)}) 

Ě(f) = ({a, b, c, e,  f, g, h },{ rc(a, c) , rc(b, c) , rc(e, c) , rc(c, f) , rc(g, f) , rc(h, f) }) 

Ě(d) = ({a, b, c, d, e,  f,  g, h },{ rc(a, c) , rc(b, c) , rc(e, c) , rc(c, f) , rc(g, f) , 
rc(h, f), rc(f, d)}) 

 
Cue maps Ě(c) and Ě(f) are shown in Figure 6.6 (i) and (ii) respectively. 
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                                 (i)                                      (ii) 

Fig. 6.6 Cue Maps 

6.2.6   Knowledge Retrieval 

Knowledge retrieval is the process of searching for relevant experience in the 
experience base. Knowledge retrieval is carried out according to knowledge needs 
which are extracted from managers’ SA descriptions. 

Let EB = {E1, E2, …, En} be an experience base, KN = {c1, c2, …, cn} be a 
knowledge need. Ei is an experience; ci is a local context. We developed algorithm 
KnowledgeRetrieval for retrieving relevant experience from EB according to KN. 

Algorithm 6.2. Knowledge Retrieval 
 

Input:  

 (1) Experience base (EB ) 
(2) A knowledge need (Klein et al.) 

Output: 

 A cue set ĚS 

Procedure: 

Step 1. Get a concept ci from KN. 

Step 2. In EB, find the most similar concept c to ci based on class 

similarity.   If the class similarity sim(c, ci) is greater than a pre-

set similarity threshold, go to Step 3. Otherwise, go to Step 4. 

Step 3. Call algorithm CueExtraction to extract the cue of c. Insert this 

cue into ĚS. Go to Step 4. 

Step 4. If all concepts in KN has been processed, go to Step 5, otherwise 

go to Step 1. 

Step 5. End. 
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In Step 2, the most similar concept c to ci is searched through assessing its 
similarity with all concepts in the experience base. It is possible that c = ci, i.e., ci is 
a concept of the experience base EB. If the similarity threshold is set as 1, only 
when concept ci exists in EB, the corresponding cue will be extracted. The result of 
the knowledge retrieval for a knowledge need is a set of cues. This cue set includes 
all potential cues of the decision situation represented by the knowledge need. 

6.2.7   Generating Navigation Knowledge 
Navigation knowledge is defined as a special kind of knowledge which acts a 
mechanism for situation presentation. Navigation knowledge is generated via 
integrating relevant cues. We developed the algorithm Navigator for navigation 
knowledge generation. 

Algorithm 6.3. Navigator 

Input:  

  A set of cues ĚS = {Ě1, Ě2, …, Ěn} 

Output: 

 A navigation knowledge: N 

Procedure: 

Step 1. Let Ě0  ∅ and i 1. 

Step 2. Get a cue Ěi  from ĚS. 

Step 3. Get a causal relationship rc(c, c’) in Ěi. 

Step 4. If  rc(c, c’) ∈ Ě0, go to Step 5. Otherwise, 

 if c ∈Ě0, and c’ ∉ Ě0, add a node c’ then add a causal 

relationship rc(c, c’) into Ě0.   

If c ∉ Ě0, and c’ ∈Ě0,  add a node c then add a causal 

relationship rc(c, c’) into Ě0.  

If c ∉ Ě0, and c’ ∉ Ě0,  add two nodes c and c’, then add a 

causal relationship rc(c, c’) into Ě0. 

If c ∈ Ě0, c’ ∈ Ě0, r
c(c, c’) ∉ Ě0, add a causal relationship 

rc(c, c’) into Ě0. 

If all causal relationships in Ěi have been processed, go to 

Step 5, otherwise go to Step 3. 

Step 5. If i < n, i  i+1, go to Step 2. Otherwise, go to Step 6. 

Step 6. N  Ě0. 

Step 7. End. 
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As cues are represented as directed graphs (cue maps), the generation of 
navigation knowledge is a merge process of graphs. Algorithm Navigator first 
creates an empty cue Ě0 and then tries to insert all cues in the cue set into Ě0 one 
by one. For each cue to be inserted, Navigator gets a causal relationship (edge) of 
this cue. If either of the two concepts (the two nodes of the edge) is not in Ě0, the 
node and the corresponding causal relationship will be created in Ě0. Note that, 
causal relationships are represented as directed edges. rc(c, c’) and rc(c’, c) are 
different causal relationships. Hence, if the two concepts already exist in Ě0, but 
the causal relationship between them is rc(c’, c), a new causal relationship rc(c, c’) 
will be created.  

6.3   Summary 

Domain knowledge is the fundamental part of the CDDP model. We proposed a 
set of methods and algorithms to represent domain knowledge for business 
decision situations. Main points of the proposed methods and algorithms are as 
follows. 
 

(1) We defined property-share relationships for indirect information 
acquisition. 

(2) We defined class trees and class graphs for ontology representation. 
(3) We discussed the method of creating class trees, class graphs and 

experience base. 
(4) We proposed a method to compute class similarities based on the class tree 

and the class graph. 
(5) We defined causal relationships and experiences. 
(6) We defined the concept of cue and developed an algorithm for cue 

extraction. 
(7) We developed an algorithm for knowledge retrieval and an algorithm for 

generating navigation knowledge. 
 
According to the CDDP model, managers describe their SA in the form of 

natural language. Domain ontology is used to extract semantic information from 
managers’ SA, which is the major concern of Chapter 7.  



L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 97–118. 
springerlink.com                                                                © Springer-Verlag Berlin Heidelberg 2009 

Chapter 7 
Natural Language Processing for Situation 
Awareness 

 
 
 
 
 
 
We employ natural language processing (NLP) techniques to extract semantic 
information from SA descriptions. According to the CDDP model, managers can 
describe their SA using a natural language (English) and input SA descriptions 
into the system. This feature makes it easier for managers to interact with the 
system and develop their SA for decision making. SA descriptions are comprised 
of SA sentences. A syntactic parser is used to chunk down SA sentences into 
words and phrases, and extract syntactic relationships between words or phrases. 
Based on the results of the syntactic parser, instances, classes, SA triples and local 
contexts can be extracted or inferred. We refer to the whole process as SA parsing. 
A general English syntactic parser, Link Grammar Parser, is introduced in Section 
7.1. SA parsing is, based on the information types defined in this book, discussed 
in Section 7.2. Section 7.3 is the overview of the process of SA parsing. The 
detailed sub-processes of SA parsing are presented in Sections 7.4, 7.5 and 7.6. 

7.1   Link Grammar Parser 

Link Grammar Parser (Temperley & Sleator 1993) is an English syntactic parser. 
Given a sentence, this parser generates a syntactic structure called linkage 
consisting of a number of links. Each link represents a syntactic relationship 
between two words. An example of linkage is shown in Figure 7.1. This linkage 
consists of 12 links. A link is denoted by a dashed line connecting two words. 
Words are followed by their POS tags. Each link is labeled with a link type. For 
instance, the link type between We and need is Sp. A Sp link connects a subject-
noun (We) to a finite verb (need). Note that the Link Grammar Parser will insert 
an artificial word at the beginning and end of every sentence before it is parsed, 
known as the wall. 

Based on the linkage of a sentence, the Link Grammar Parser also chunks 
sentences into phrases and produces constituent trees. Figure 7.2 is the 
corresponding constituent tree for the linkage shown in Figure 7.1. This 
constituent tree can also be visualized as a tree-like structure shown in Figure 7.3.  

Using the Link Grammar Parser, SA sentences can be chunked down into 
words or phrases. Meanwhile, different syntactic relationships between these 
words or phrases can be identified. Based on the result of the Link Grammar  
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Fig. 7.1 A Linkage Produced by Link Grammar Parser 

 

Fig. 7.2 A Constituent Tree Produced by Link Grammar Parser 

 

Fig. 7.3 Tree-Like Presentation of a Constituent Tree Produced by Link Grammar Parser 

Parser and an ontology, relevant instances and classes of the ontology can be 
extracted or inferred. The words, phrases, instances and classes are semantically 
isolated. We refer to them as SA tokens. Thus, if we use a SA token set to collect 
all SA tokens generated in the course of SA parsing, this SA token set initially 
only contains the words and phrases output by the parser. Then instances and 
classes are gradually added into the SA token set. By annotating SA tokens based 
on the domain ontology, SA triples and local contexts can be produced. In the 
following sections, we will discuss the detailed process of SA parsing. 
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7.2   Information Types 

From an IS perspective, instances of a class are data representing low level facts. 
Data always comes with specific data types. Database management systems have a 
set of pre-defined data types. For example, in SQL Server 2005, there are such 
data types as int, money, float, datetime, nchar and nvarchar. In order to expose 
the semantic information of SA descriptions, data needs to be interpreted as 
information. Correspondingly, data types also need to be re-explained from a 
semantic perspective. We use the term information type to represent the different 
types of semantic information that SA instances carry.  

We defined 19 information types (Table 7.1) in this research, each of which 
corresponds to a meta class except general type (code: 0). Note that this definition  
 

Table 7.1 Information Types in the CDDP model 

Code Information Type Corresponding Class Example 

1  area AREA “20 acres” 

2  speed SPEED “ 60 KM/H” 

3  money CURRENCY “$26,000.00” 

4  temperature TEMPERATURE “180 ºC” 

5  distance DISTANCE “45 kilometers” 

6  time interval TIME INTERVAL “ 10 years” 

7  time point TIME POINT “2007-6-25” 

8  start time TIME POINT “8:00am” 

9  end time TIME POINT “8:00am” 

10  length LENGTH “20 cm” 

11  height HEIGHT “20 cm” 

12  volume VOLUME “45 liter” 

13  power POWER 800 KW 

14  weight WEIGHT “5 KG” 

15  pressure PRESSURE 1.02 KPa 

16  country COUNTRY “Australia” 

17  state STATE “NSW” 

18  city CITY “Sydney” 

0 general n/a “Mountain-10” 
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attempts to cover the most common information types based on our experience; it 
is by no means an exhaustive list. The defined information types can be roughly 
divided into two categories: numeric group and literal group. In Table 7.1, the 
first 15 information types (Codes 1 to 15) belong to the numeric group; others (16-
18 and 0) are in the literal group. Instances of literal types can usually be easily 
enumerated, such as company names, product models, and colors. By comparison, 
it is generally hard to enumerate numeric instances such as age, income, sales 
amount and time. 

7.3   The Process of Situation Awareness Parsing 

Theoretically, information is supposed to be communicated without semantic 
uncertainties, other than deliberate ones. Thus, every instance existing in a SA 
description is intended to belong to a unique class in the ontology from a semantic 
perspective, although syntactically it is a many-many mapping relationship 
between instances and classes.  Let us look at an example: 

Sydney is a beautiful city. 

In this SA description, the term Sydney is an instance and we can have an 
inference as follows: 

Sydney is the name of a place. 

This inference is based on the intended meaning (semantics) of this SA 
description. However, without semantic understanding, Sydney might refer to 
totally different things. For example, 

Sydney is the name of a person. 

From a syntactic perspective, this inference does not conflict with the original 
SA description. In this case, uncertainties will be introduced unless definite 
semantics can be extracted. 

The basic process of SA parsing includes four steps shown in Figure 7.4.  

Step 1. Syntactic Parsing 
The Link Grammar Parser is employed to conduct syntactic parsing on the SA. As 
discussed in Section 7.1, the Link Grammar Parser can chunk down SA sentences 
into words and phrases (initial SA tokens); it can also identify the syntactic 
relationship between words or phrases.  

Step 2. Plain Parsing 
During plain parsing, meta instances are directly extracted from the initial SA 
tokens according to simple parsing rules: regular expressions and the lexicon. 
Meta instances are the instances of meta classes defined in an ontology, such as 
July 2007, Mountain-100 Silver, $1200 and 3 weeks. Regular expressions are 
patterns for string matching. The lexicon is used to store all possible literal meta 
instances. The lexicon can be automatically created through importing relevant  
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Fig. 7.4 Situation Awareness Parsing 

meta instances from a data warehouse. Regular expressions and the lexicon are 
used to extract numeric and literal meta instances respectively. In plain parsing, 
provisional SA triples are also generated. There are uncertainties in the provisional 
SA triples, which can be reduced during semantic parsing. 

Step 3. Semantic Parsing 
Based on the results of plain parsing and the domain ontology, general and 
abstract classes are inferred, such as INTERNET SALES, PRODUCT and 
PRODUCT RELEASE. Compared to meta instances recognized by plain parsing, 
classes carry richer semantic information which can be used to re-explain 
(annotate) the recognized meta instances, for example, July 2007 is a start date of 
INTERNET SALES. We call this level of SA parsing semantic parsing.  

Step 4. Local Context Determination 
We proposed a context point schema to determine the local context for a SA 
sentence based on the results of plain parsing and semantic parsing. 

7.4   SA Plain Parsing: Instance Recognition 

Plain parsing recognizes meta instances from SA descriptions. Based on the 
definition of information types, there are two kinds of meta instances to be 
recognized: numeric meta instances and literal meta instances. 
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7.4.1   Numeric Meta Instances 

We developed an algorithm (NumericPlainParser) for the recognition of numeric 
meta instances from SA descriptions. In NumericPlainParser, numeric meta 
instances are recognized using pattern matching techniques which are based on 
regular expressions.  

Regular expressions are a very powerful pattern matching technique, 
originating from automata theory and formal language theory (Wikimedia 2008). 
In programming, pattern matching is a search process in which a source string is 
searched in order to extract specific information of interest according to pre-
defined rules. Regular expressions act as such rules for pattern matching. A 
regular expression is a search pattern which consists of a set of text strings. Each 
text string describes a matching rule. During the search process, substrings will be 
extracted if corresponding matching rules are met. Some examples of regular 
expressions defined in NumericPlainParser are as follows. 

"(19|20)[0-9][0-9]-(([1-9])|(0[1-9])|(1[0-2]))-(([1-9])|(0[1-9])|([1-2][0-9])|(3[0-1]))" 

This regular expression is used to extract date information of format YYYY-
MM-DD, where YYYY, MM, DD respectively represent a year of four digits, a 
month of two digits and a day of two digits, e.g., 2008-08-25. The information 
type of this kind of date information is time point. 

"(([1-9])|(0[1-9])|([1-2][0-9])|(3[0-1]))-(([1-9])|(0[1-9])|(1[0-2]))-(19|20)[0-9][0-9]" 

This regular expression is used to extract date information of format DD-MM-
YYYY, e.g., 20-06-1974. The information type of this kind of date information is 
time point. 

"(([1-9])|(0[1-9])|([1-2][0-9])|(3[0-1]))(,|\\s{1,}) 

(January|February|March|April|May 

|June|July|August|September|October|November|December)(,|\\s{1,})(19|20)[0-9] 

[0-9]" 
 
This regular expression is used to extract date information of the format 

YYYY-Month-DD, where Month represents a month word, e.g., 2005-July-11. 
The information type of this kind of date information is time point. 

In NumericPlainParser, we coded 29 regular expressions for date extraction. 
Thus, managers can use up to 29 kinds of date format to describe their SA. 

Based on information of time point type, date information of the start time type 
and end time type can also be extracted via checking preposition words. For 
instance, 

"from\s{1,}(19|20)[0-9][0-9]-(([1-9])|(0[1-9])|(1[0-2]))-(([1-9])|(0[1-9])|([1-2][0-

9])|(3[0-1]))(!|\(|\)|\{|\}|\[|\]|\||\:|;|"|,|\.|\?|\s{1,})" 
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This regular expression is used to extract date information which represents a 
start date, such as (from) 2003-1-12. The information type of this kind of date 
information is start time. 

"to\s{1,}(19|20)[0-9][0-9]-(([1-9])|(0[1-9])|(1[0-2]))-(([1-9])|(0[1-9])|([1-2][0-

])|(3[0-1])) (!|\(|\)|\{|\}|\[|\]|\||\:|;|"|,|\.|\?|\s{1,})" 
 
This regular expression is used to extract date information which represents an 

end date, such as (to) 2003-2-10. The information type of this kind of date 
information is end time. 

Algorithm NumericPlainParser can dynamically construct regular expressions 
during run-time to extract non-date numeric information. Some examples are as 
follows. 

"\s{1,}(\d{1}\d{1}\s{0,}[m|M]{0,1})\s{0,}\s{0,}days(!|\(|\)|\{|\}|\[|\]|\||\:|;|"|,|\.|\?| 

\s{1,})" 
 
This regular expression is used to extract time interval information of the 

format DD days, e.g., 20 days. The information type of this kind of date 
information is time interval. 

"\s{1,}( \d{1}\d{1}\d{1}\d{1}\s{0,}[m|M]{0,1})\s{0,}\s{0,}cm(!|\(|\)|\{|\}|\[|\]|\||\:|; 

|"|,|\.|\?|\s{1,})" 
 
This regular expression is used to extract distance information of format DDDD 

cm, e.g., 1512 cm. The information type of this kind of date information is 
distance. 

"\s{1,}( \d{1}\d{1}\d{1}\s{0,}[m|M]{0,1})\s{0,}\s{0,}meters(!|\(|\)|\{|\}|\[|\]|\||\:|;|"|,| 

\.|\?|\s{1,})" 
 
This regular expression is used to extract distance information, e.g., 115 meters. 

The information type of this kind of date information is distance. 
As can be seen from the above examples, the length of the digits in regular 

expressions is dynamic in order to match numbers of different lengths in SA 
tokens. NumericPlainParser permits users to set the maximum length of digits 
according to their specific applications. 

7.4.2   Literal Meta Instances 

We developed an algorithm (LiteralPlainParser) for the recognition of literal 
meta instances from SA. Generally speaking, literal instances are enumerable 
information. Thus, a domain-specific lexicon can be pre-created to cover all 
possible literal meta instances. As the total number of possible meta instances in 
an application ranges quite widely from a few to hundreds, it might be very labor-
intensive and time-consuming to define the lexicon. In this research, we created 
mapping relationships between an ontology and a data warehouse system. The 
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domain-specific lexicon can be easily populated through importing instances from 
the data warehouse.  

An item (entry) in the lexicon contains four kinds of information: the value of a 
meta instance, the corresponding property, the corresponding class and 
information type. The information type for literal meta instances is general (code: 
0). The following is an example of lexicon item.  

Lexicon item: Mountain-100 Silver/EnglishProductName/Mountain 

Bike/0 

where, 

Instance value: Mountain-100 Silver 

Property:              EnglishProductName 

Class:             Mountain Bike 

Information Type: 0 

Excepting literal meta instances, the lexicon also contains information about 
numeric meta instances. As numeric meta instances are generally non-numerable, 
for each type of numeric meta instance there is only one corresponding lexicon 
item with the instance value being empty. For example, null/Price/Mountain 
Bike/3 is a lexicon item, where the information type of Price is money. 

LiteralPlainParser uses the lexicon to search for literal meta instances existing 
in SA descriptions. The searching for literal meta instances in the lexicon is a 
straightforward boolean matching process. If a match is found between a SA token 
and the instance value of an item in the lexicon, this lexicon item is exported as a 
SA triple. The corresponding SA triple is created by setting its context, view and 
wording as the class, property and value of the lexicon item respectively. 

When a numeric meta instance is extracted from a SA description, the lexicon 
will also be searched for matched items with this numeric meta instance. The 
matching rule is that both the lexicon item and the numeric meta instance have the 
same information type.  If a match is found, this lexicon item is exported as a SA 
triple. The corresponding SA triple is created by setting its context and view as the 
class and property of the lexicon item respectively. The numeric meta instance 
goes into the wording part of the SA triple. 

It is possible that multiple matches for the same numeric or literal meta instance 
are found in the lexicon. For example, the following lexicon items will result in 
two matches for Sydney (a literal meta instance) and two matches for $1299.00 (a 
numeric meta instance): 

Sydney/City/Internet Sales/0 

Sydney/Surname/Customer/0 
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null/Retail Price/Mountain Bike/3 

null/Cost/Mountain Bike/3 

If multiple lexicon items are found, all the matched lexicon items will be 
exported as SA triples. In this case, uncertainties of SA triples will be introduced. 
These uncertainties will be reduced or eliminated during the process of semantic 
parsing. 

7.4.3   Reference Properties 

In plain parsing, SA tokens are also compared to the properties of lexicon items. If 
a SA token is matched with a lexicon item, (i.e., the token is equal to the property 
of this lexicon item), the property of the lexicon item (the SA token) will be 
output. This kind of property will be used to reduce the uncertainties of SA triples. 
We refer to these properties as reference properties. 

For example, suppose a SA token is retail price. During the search of the 
lexicon, this SA token will be matched with the following lexicon item: 

null/Retail Price/Mountain Bike/3. 

The property Retail Price will be output as a reference property.  

7.5   SA Semantic Parsing: Class Inferring 

Semantic parsing is the process of inferring classes. We developed an algorithm 
(SemanticParser) for semantic parsing. The inputs of SemanticParser include the 
ontology, the SA tokens, the lexicon, the SA triples produced in plain parsing, and 
the linkage generated by the Link Grammar Parser. SemanticParser infers 
ontology classes (both general and abstract classes) from SA and uses these 
classes to reduce the uncertainties of SA triples. 

Algorithm SemanticParser infers classes based on class triggers. A class 
trigger is associated with a specific class. The presence of a class trigger in a SA 
sentence and/or SA tokens might result in the presence of this class. However, a 
class trigger does not guarantee that a class will be successfully inferred, unless 
pre-defined rules are met at the same time. Examples of class trigger for 
PRODUCT RELEASE are as follows. 

{ product, release } 

{ product release } 

{ product, announcement } 
 
As can be seen from the above examples, a class trigger is a term set consisting 

of a number of terms, each of which can be a class, a word or a phrase. A class can 
be triggered by any of its valid class triggers under a triggering rule.  
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7.5.1   Class Trigger Construction 

Let C be a class in a class tree. We proposed four methods to construct class 
triggers for class C. 
 

(1) Taxonomy-Property-Based Method 

Every instance of the taxonomy property of C is a complete class trigger. This 
method is only applicable to general classes. For example, English Product Name 
is the taxonomy property of class MOUNTAIN BIKE. Some valid class triggers 
of MOUNTAIN BIKE are as follows: 

{Mountain-100 Silver}, {Mountain-80 Silver}, {Mountain-100 Black}. 

The element of each class trigger is a meta instance of English Product Name. 
 

(2) Child-Class-Based Method 

Every child class of C in the class tree is a complete class trigger of C. This 
method is only applicable to general classes. For instance, classes BIKE, 
COMPONENT, CLOTHING and ACCESSORY are child classes of PRODUCT. 
Thus, the following are valid class triggers of PRODUCT: 

{bike}, {component}, {clothing} {accessory}. 

(3) Synonym-Based Method 

Every synonym of C is a complete class trigger of C. Class synonyms are 
defined during ontology development. For example, the synonyms of 
CUSTOMER are defined as follows: 

customers, patron, patrons, buyer, buyers, client, clients, shopper, shoppers. 

Thus, each of these synonyms is a class trigger of CUSTOMER. 
 

(4) Semantic-Extension-Based Method 

Class triggers constructed using the previous three methods consist of only one 
element: a meta instance, a child class, or a synonym of the target class. The 
semantic-extension-based method extends the semantic information of the target 
class through partial replacement, that is, only part of the class label is replaced by 
a term each time. A term can be a word or a phrase. Therefore, the semantics 
extension method only applies to multi-word classes and the constructed class 
triggers consist of two or more terms. In comparison, the previous three methods 
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can be used both for single-word classes as well as multi-word classes and the 
constructed trigger classes consist of a single term. 

We developed the algorithm SemanticExtension to implement this method. 

Algorithm 7.1. SemanticExtension 

Input:  

 A class (C) 

Output: 

 A set of class triggers for C 

Procedure: 

Step 1. Determine the head noun of the class label of C. 

Step 2. Within the class label of C, search for the longest term t (a sub-
term) which is also a class. If t exists, create an empty trigger 
member set and insert t into this set. If t is the head noun, tag this 
set as head trigger member set. In the class label of C, replace t 
with a dummy string, e.g. ‘%%%%’. Repeat Step 2, until no more 
classes can be extracted. 

Step 3. Get a word w from the reminder of the class label of C (all classes 
have been taken out at this stage). 

Step 4. Create an empty trigger member set and insert all synonyms of w 
into this set. If w is a noun and it has a corresponding verb form, 
insert the verb and all synonyms of this verb into the trigger 
member set. If w is the head noun, tag this set as head trigger 
member set. If all words in C have been processed, go to Step 5, 
otherwise go to Step 3. 

Step 5. Collect a term from each of the trigger member sets which have 
been created and construct a class trigger. Tag the term taken from 
the head trigger member set as the head of this class trigger. Repeat 
this step until all combinations are generated. 

Step 6. End. 

The label of a multi-word class might include other classes which have shorter 
labels. For example, in class MARKETING STRATEGY MANAGEMENT, both 
MARKETING and STRATEGY are also classes. As each class in the ontology 
has its own class triggers, it is unnecessary for a multi-word class to import  
the class triggers of its subclasses. Therefore, in Step 2 of algorithm 
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SemanticExtension, sub-terms are not further extended if they are also classes; 
they are simply treated as a term. 

In Step 4, SemanticExtension uses a thesaurus to handle non-class words. For a 
multi-word class, although its class label as a whole is usually a noun phrase, each 
individual word of the class label might be of different types of POS. For each 
non-class word, regardless of the type, SemanticExtension firstly gets its all 
synonyms from the thesaurus. If this word is a noun and it has a corresponding 
verb form, the verb and all the synonyms of the verb will be retrieved from the 
thesaurus. For example, in PRODUCT RELEASE, release is a non-class word and 
also a noun. The verb form of release is also release. Thus, the synonyms of 
release (noun) together with the synonyms of release (verb) are retrieved from the 
thesaurus. The trigger member set for release is as follows: 

{release, announcement, releases, releasing, released, announces, announcing, 

announced}. 

Once all trigger member sets are created, class triggers can be constructed. A 
class trigger is composed through taking a member out of each trigger member set. 
The final class triggers will be all possible combinations based on the trigger 
member sets. 

If a trigger member set is generated based on the head noun of the class label of 
C, this set will be tagged as the head trigger member set. Accordingly, the trigger 
member taken from this set will be tagged as the head of a trigger. 

Using SemanticExtension, class triggers for PRODUCT RELEASE are 
generated as follows: 

{product, release}, {product, announcement}, {product, releases}, {product, 

releasing}, {product, released}, {product, announces}, {product, announcing}, 

{product, announced}. 

Note that, if a class trigger has a head noun, the head noun is printed in bold 
font in the above example. In real systems, there will need  to define extra data 
structure to indicate the head noun information of class triggers. 

7.5.2   Triggering Rules 

The presence of a class trigger is likely to trigger a class, but does not guarantee. 
Whether or not a class can be triggered is also subject to triggering rules. We 
have discussed four methods for constructing class triggers. Accordingly, there 
are four types of class triggers. The class triggers of the first three types contain 
only a single element. The fourth type of class triggers contains multiple 
elements. Note that an element in a class trigger can be a word or a phrase. There 
are different triggering rules for single-element class triggers and multi-element 
class triggers. 
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Fig. 7.5 An Example of Ontology 

• Single-Element Class Triggers 
 

The triggering rule for single-element class triggers is as follows. 

Triggering Rule 7.1 

The element of a class trigger can be matched with one of the SA tokens. 

This triggering rule is very simple: as long as a class trigger can be found 
among the SA tokens, the corresponding class can be inferred. Let us look at some 
examples. 

Suppose an ontology is shown in Figure 7.5 and a SA sentence is as follows: 

We released Mountain-100 Silver in Australia in 2005. 

Algorithm LiteralPlainParser can generate a SA triple from this SA sentence: 

(MOUNTAIN BIKE, English Product Name, Mountain-100 Silver). 

The SA token Mountain-100 Silver, is a meta instance of the taxonomy property 
of MOUNTAIN BIKE. According to the taxonomy-property-based method for 
class trigger construction, {Mountain-100 Silver} is a class trigger of MOUNTAIN 
BIKE and it is also a single-element class trigger. Thus, class MOUNTAIN BIKE 
can be triggered (inferred) by SA token Mountain-100 Silver, i.e., 

Mountain-100 Silver  MOUNTAIN BIKE. 

In Figure 7.5, class MOUNTAIN BIKE is a child class of BIKE; BIKE is a 
child class of PRODUCT. According to the child class based method, {mountain 
bike} is a class trigger of BIKE; {bike} is a class trigger of PRODUCT. Thus, 
classes BIKE and PRODUCT can also be inferred via 

MOUNTAIN BIKE  BIKE,  

                                 and   BIKE  PRODUCT. 
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• Multi-Element Class Triggers 
 

Multi-element class triggers have two basic varieties and they correspond to 
different triggering rules. 

(a)  Noun-Noun Class Triggers 
This type of class triggers consist of two elements, both of which are nouns, for 
example, {marketing, strategy} and {internet, sales}. The corresponding 
triggering rule is as follows. 

Triggering Rule 7.2 
The two nouns of a class trigger appear in a noun phrase which has the same 
head noun as the class trigger. 

We use an example to illustrate this triggering rule. 
Suppose a SA sentence is as follows: 

The release of Mountain-100 Silver increased our market share by 45%. 

The triggering process is as follows: 
 
Step 1. Triggering Rule 7.1: Mountain-100 Silver  MOUNTAIN BIKE 
Step 2. Triggering Rule 7.1: MOUNTAIN BIKE  BIKE 
Step 3. Triggering Rule 7.1: BIKE  PRODUCT 
Step 4. Triggering Rule 7.2: release, PRODUCT  PRODUCT RELEASE 
 
The first three steps are based on Triggering Rule 7.1. In Step 4, PRODUCT is 

not actually present in the SA sentence. However, looking back at the process of 
how PRODUCT is triggered, algorithm SemanticParser will replace Mountain-
100 Silver in the SA sentence with PRODUCT. This replacement makes 
Triggering Rule 7.2 is met: (1) release of product will be output as a noun phrase 
by the Link Grammar Parser, (2) release is the head noun of this noun phrase and 
the class trigger {product, release}. Therefore, class PRODUCT RELEASE will 
be successfully triggered by class trigger {product, release}. 

(b) Verb-Noun Class Triggers 
This type of class triggers consist of two elements: a verb and a noun, for 
example, {release, product} and {improve, sales}. There are two corresponding 
triggering rules as follows. 

Triggering Rule 7.3 
The noun is the direct object of the verb. 

Triggering Rule 7.4 
The noun is the subject and the verb is a passive participle.  

We use an example to illustrate Triggering Rule 7.3. 
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Suppose a SA sentence is as follows: 

We released Mountain-100 Silver in Australia in 2005. 

The triggering process is as follows: 

     Step 1. Triggering Rule 7.1: Mountain-100 Silver  MOUNTAIN BIKE 
Step 2. Triggering Rule 7.1: MOUNTAIN BIKE  BIKE 
Step 3. Triggering Rule 7.1: BIKE  PRODUCT 
Step 4. Triggering Rule 7.3: released, PRODUCT  PRODUCT RELEASE 
 
In Step 4, Mountain-100 Silver is replaced by PRODUCT, such that 

PRODUCT is the direct object of released. Thus, Triggering Rule 7.3 is met and 
class PRODUCT RELEASE is triggered. 

The triggering process for Triggering Rule 7.4 is similar to Triggering Rule 7.3. 
Based on this rule, class PRODUCT RELEASE can be triggered from the 
following SA sentence. 

Mountain-100 Silver was released in Australia in 2005. 

The presence of a class trigger will not trigger the class if the corresponding 
triggering rule is not met. Look at the following two SA sentences, 

 

Another marketing campaign was released after the sales of Mountain-100 
Silver went down. 

Occasionally, Mountain-100 Silver releases oil when climbing steep ramps. 
 
As none of triggering rules can be met, class PRODUCT RELEASE cannot be 

triggered, although the class triggers {released, product} and {product, releases} 
are present. 

The single-element and two-element class triggers correspond to single-word 
and two-word classes respectively. In an ontology, one-word classes are generally 
the most common type. Of multi-word classes, two-word classes are the most 
common type. There are very few classes with the number of words over three. 
For example, the maximum length (the number of words in class labels) in the 
Enterprise Ontology (Uschold et al. 1998) is three. There are 62 single-word 
classes (63%), 34 two-word classes (34%) and 3 three-word classes (3%). Of 
multi-word classes, 92% are two-word classes and only 8% are three-word 
classes. In the ontology developed in the application case study I, there are 69 
single-word classes (63%), 36 two-word classes (33%) and 5 three-word classes 
(less than 5%). Therefore, the four triggering rules which have been discussed can 
deal with about 96% cases of class triggering (in both ontologies). For class 
triggers whose lengths are three or longer, the corresponding triggering rules 
become more complex. For example, a class trigger might consist of a verb and a 
number of nouns. One corresponding triggering rule is as follows: 

All nouns appear in a noun phrase and one of them is the head of this phrase. 
This noun phrase is the direct object of the verb. 
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7.5.3   Reducing Uncertainties of SA Triples 

In plain parsing, uncertainties of SA triples will be generated if multiple lexicon 
items are matched with a SA token. All the matched lexicon items will be 
exported as provisional SA triples. However, only of one of the exported SA 
triples is appropriate in terms the semantics of the SA sentence. Hence, within the 
uncertain SA triples, it is necessary to determine the rightful one which is best 
matched with the original SA token. This process is based on reference properties 
and inferred classes. We will discuss two kinds of uncertainties of SA triples: view 
uncertainties and context uncertainties. 

 
• View Uncertainties 
 
The view of a SA triple corresponds to a property of a class or the property of a 

lexicon item. A view uncertainty between two SA triples is the difference between 
their views. Let T1 and T2 be two SA triples. The view uncertainty between T1 and 
T2 is shown as follows. 

T1 = (c, v1, w), 

T2 = (c, v2, w). 

SA triples T1 and T2 have the same context and wording, but different view. 
View uncertainties can be reduced by applying reference properties generated 
during plain parsing. Let p be a reference property. The rightful SA triple is the 
one with its view equal to p.  Suppose v2 = p. Thus, T2 will be the rightful SA 
triple. 

 
• Context Uncertainties 
 

The context uncertainty between two SA triples is the difference between their 
contexts. Let T1 and T2 be SA triples. The view uncertainty is shown as follows. 

T1 = (c1, v, w), 

T2 = (c2, v, w). 

Context uncertainties can be reduced by applying inferred classes which are 
generated during semantic parsing. These inferred classes are referred to as 
reference classes. Let c be a reference class. The rightful SA triple is the one with 
its context equal to c.  Suppose c1 = c. Thus, T1 will be the rightful SA triple. 

There are hybrid uncertainties which are the combination of view uncertainties 
and context uncertainties, meaning that differences exist in both the contexts and 
views. Hybrid uncertainties can be reduced by respectively applying reference 
classes and reference properties. 
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• Syntactic Distance 
 

The above two methods to reduce SA triple uncertainties directly utilize either 
a reference property or reference class. However, it is not that straightforward in 
some cases. For example, if two reference properties/classes are applicable to a 
view/context uncertainty at the same time, there will be a problem of how to 
choose the rightful one. The solution to this problem is using syntactic distance. A 
syntactic distance between two words/phrases in a SA sentence is defined as their 
shortest path length in the corresponding constituent tree of this SA sentence. 
Thus the syntactic distance between two SA tokens is evaluated based on the 
constituent tree of the SA sentence. 

According to the processes of SA parsing, a SA token can always be tracked 
back to the original words in the SA sentence, no matter this SA token is an 
instance, property or class. In order to compute the syntactic distance between a 
SA token and a reference property/class, they need to be tracked back to the 
original word/words in the SA sentence. We use the following example to 
illustrate this process. 

Let S be a SA sentence, T be a SA token and R1 and R2 be reference 
properties/classes. Suppose there are the following inferring relationships: 

S = (w1, w2, …, w10), wi is a word. 

w1  T  multiple SA triples 

(w2, w4, w6) …  R1 

(w3, w5, w7) …  R2 

The SA sentence S consists of ten words. SA token T is inferred from w1. T 
results in multiple SA triples (uncertainty). Reference property/class R1 is inferred 
from some classes which are originally inferred from words w2, w4, w6. R2 is 
inferred from some classes which are originally inferred from words w3, w5, w7.  

The syntactic distance (sd) between R1 and T can be computed using equation  

sd(R1, T) = 
3

1
 (len(w1, w2) + len(w1, w4) + len(w1, w6)), 

where, len(wi, wj) is the shortest path length from node wi to node wj b in the 
constituent tree. 

The syntactic distance (sd) between R2 and T can be computed using equation  

sd(R2, T) = 
3

1
 (len(w1, w3) + len(w1, w5) + len(w1, w7)). 

The reference property/class syntactically closer (smaller sd) to T will be 
selected. Thus, if multiple reference properties/classes are found, the closest one to 
the target SA token will be used to reduce the uncertainty of SA triples. 
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Uncertainties of SA triples cannot be eliminated completely in some cases, due 
to the complexity, dynamics and uncertainties of natural language expressions. For 
example, if the SA description per se is vague, it will be extremely difficult, even 
impossible, to remove the uncertainties of SA triples.  In this situation, managers 
will be questioned to make the final choice of rightful SA triples or rephrase their 
SA descriptions. 

7.6   Local Context Determination 

A local context of a SA sentence represents the common background where the 
majority of SA triples are communicated. All classes which are inferred during 
semantic parsing are alternatives for the local context.  

We developed the algorithm (LocalContextDetermination) to determine local 
contexts for SA sentences. In this algorithm, we use a point system to select the 
local context from these alternatives. 

In this point system, the points of an alternative context reflect its 
competitiveness to be selected as the local context. We refer to theses points as its 
context points (CP). We defined three metrics to evaluate the context points of an 
alternative context from three aspects: context coverage point (CCP), context 
position point (CPP) and inverse context specificity point (ICSP).  

7.6.1   Context Position Points 

The CPP points of an alternative context are related to its position in the SA 
sentence. A complete English sentence is made up of a number of POS, each of 
which has a specific position in the sentence. Different positions imply different 
significances of information expression. For example, the subject of a sentence is 
usually more significant than an adverb. We assume that an alternative context 
falling in a more important position in a sentence will be more competitive to be 
the local context of this sentence. We defined a point schema in Table 7.2 to 
assess the CPP points for alternative contexts. 

The point schema divides a complete sentence into a number of POS. Different 
POS are positioned differently within the sentence. The points that a POS in a 
specific position can earn are specified accordingly in the schema. For example, 
the first POS (at Position 1) represents a pre-subject adjective modifier which is 
assigned 2 CPP points. If a term of a SA sentence is at this position, it will earn 2 
CPP points. The position of a term in a sentence is determined by algorithm 
LocalContextDetermination based on the links produced by the Link Grammar 
Parser. 

Example. Sentence: Knowledgeable university graduates in Australia have better 

employment opportunities in industry. 
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Table 7.2 Point Schemas for Context Position and Context Coverage 

Position Part of Speech CPP CCP Example 

1.  pre-subject adjective 
modifier 

2 1 knowledgeable 

2.  pre-subject noun modifier 3 1 university 

3.  head noun (subject) 5 1 graduates 

4.  post-subject modifier 
(prepositional 
phrase/relative clause) 

3 1 in Australia 

5.  head verb (predicator) 4 1 have 

6.  verb modifier 1 1 - 

7.  pre-object adjective 
modifier 

1 1 better 

8.  pre-object noun modifier 2 1 employment 

9.  direct/indirect object 3 1 opportunities 

10.  post-noun modifier 
(prepositional 
phrase/relative clause) 

2 1 in industry 

 
 
If a term falls in the first two POS, it will earn another 3 CPP points. The final 

CPP points of an alternative context are the sum of points it earns across the 
whole sentence. Let us look at an example. 

SA Sentence: We released Mountain-100 Silver in Australia in 2005 

Alternative Contexts: PRODUCT, PRODUCT RELEASE 
 

The inferring process for class PRODUCT is 
 
Mountain-100 Silver  MOUNTAIN BIKE  BIKE  PRODUCTThus, 

PRODUCT can be tracked back to Mountain-100 Silver falling in Position 8 
(direct/indirect object). Thus, the PRODUCT earns 3 CPP points. Similarly, 
PRODUCT RELEASE falls in Position 5 (head verb (predicator)) and Position 8 
(direct/indirect object). Thus PRODUCT RELEASE has 7 CPP (4 + 3) points. 

The points assigned to different positions in Table 7.2 are on scale of 1 to 5, 
which were determined by language experts in this research. We have conducted 
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experiments to testify the validity of this schema (Chapter 10). Another method to 
create the point schema is through machine learning. We are currently working on 
the neutral network technique to automatically create the point schema. 

7.6.2   Context Coverage Points 

The CCP points of an alternative context are related to its coverage across the SA 
sentence. We assume that an alternative context with wider coverage in a sentence 
is more competitive to be the local context of this sentence. A complete English 
sentence is made up of a number of POS, each of which has a specific position in 
the sentence. Each POS in the sentence is assigned one CCP point (Table 7.2). 
The more POS an alternative context covers, the more points it can earn. For 
example, 

A SA Sentence:  

We released Mountain-100 Silver in Australia in 2005. 

Alternative Contexts:  

PRODUCT, PRODUCT RELEASE 

According to CCP schema, PRODUCT covers only one POS (Position 8). It 
earns 1 CCP point. PRODUCT RELEASE earns 2 CCP points. 

7.6.3   Inverse Context Specificity Points 

The ICSP points of an alternative context are related to its relative position in a 
class tree. We use term class specificity to describe the degree to which a class 
conveys detailed information. We assume that an alternative context with lower 
specificity (more abstract) in the ontology is more competitive to be the local 
context of this sentence. Thus the ICSP points of a class are inversely proportional 
to its class specificity. 

Classes in different positions in a class tree correspond to different class 
specificities. Classes become more specific as one moves toward the leaf nodes in 
a class tree. The class specificity of a class is determined by its distance to the 
nearest leaf node in the class tree.  

Let c be a class and DTL be the proportion of ICSP points attributed to the 
position of c in the class tree. We use the following equation to compute the DTL 
of c: 

DTL = d + 1, 

where, d is the distance from class c to the nearest leaf node. 
For the example in Section 7.6.2, the DTL values for PRODUCT and 

PRODUCT RELEASE can be calculated as follows, based on the ontology used 
in application case 1, Chapter 11. 

DT L (PRODUCT) = 3 

DTL (PRODUCT RELEASE) = 1. 
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The specificity of a class is also related to the semantic parsing level. As 
discussed in Section 7.5, semantic parsing has two varieties: inferring general 
classes and inferring abstract classes. A general class is inferred by the meta 
instances of its taxonomy property. We refer to the semantic parsing to infer 
general classes as Level 1 parsing. On the basis of general classes, abstract classes 
can be inferred, which we call Level 2 parsing. Similarly, classes inferred at Level 
2 parsing lead to Level 3 classes, and so on. There are situations where an abstract 
class is inferred from a number of classes which are not at the same level in the 
class tree, i.e., the trigger elements are distributed in different positions in the class 
tree. In this case, we assess the parsing level of this class by averaging all the 
corresponding lower parsing levels. We use class abstract level (Microsoft 2007b) 
to refer to the proportion of ICSP points attributed to this kind of class specificity.  

The ICSP of a class are computed by the following equation 

ICSP = DTL + CAL. 

For the example in Section 7.6.2, the CAL values of classes PRODUCT and 
PRODUCT RELEASE calculated by algorithm LocalContextDetermination are as 
follows. 

 

CAL (PRODUCT) = 3 

CAL (PRODUCT RELEASE) = 4 
 
Thus, the ICSP values are as follows. 
 

ICSP (PRODUCT) = 3+3 = 6 

ICSP (PRODUCT RELEASE) = 1+ 4 = 5. 

7.6.4   Local Contexts  

The CP points of an alternative context are the sum of its CPP points, CCP points 
and ICSP points, i.e., 

CP = CPP + CCP + ICSP. 

Based on this equation, the local context of a SA sentence can be determined as 
the alternative context with the highest CP points.  

For the example in Section 7.6.2, the CP values of classes PRODUCT and 
PRODUCT RELEASE calculated by algorithm LocalContextDetermination are as 
follows. 

 

CP (PRODUCT) = 3 + 1 + 6 = 10 

CP (PRODUCT RELEASE) = 7 + 2 + 5 = 14 
 

The local context of SA sentence 

We released Mountain-100 Silver in Australia in 2005 

is PRODUCT RELEASE. 
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7.7   Summary 

Based on NLP technologies, we proposed a set of methods and algorithms to parse 
managers’ SA. The main points of the proposed methods and algorithms are as 
follows. 
 

(1) We proposed the concept of information type and defined 19 information 
types. Compared to data types, information types expose richer semantic 
information of data, which form one of the important bases for parsing managers’ 
SA. 

(2) We developed algorithms to recognize meta instances from SA, which we 
call plain parsing. Meta instances are the lowest information in SA, based on 
which high level classes are inferred. 

(3) We developed algorithms to infer general classes and abstract classes. 
Being able to infer classes from instances is the key to obtaining rich semantic 
information about SA, as classes act as the contexts in which detailed meta 
instances can be explained in terms of their semantics. 

(4) We proposed a method to reduce the uncertainties of SA triple. This 
method is based on the deep analysis of the syntactic relationships between 
words/phrases in SA sentences. 

(5) We proposed an algorithm to determine the local context of a SA 
sentence. The local context of a SA sentence represents the general background 
where most meta instances are understood. Local contexts are the basis for 
building knowledge needs. 

 
The final product of SA parsing includes SA triples and local contexts of SA 

sentences, which are the key ‘ingredients’ of query construction discussed in 
Chapter 8.  
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Chapter 8 
Data Warehouse Query Construction and Situation 
Presentation 

 
 
 
 
 
 
 
 
 
Data warehouse (DW) queries represent the information need of a manager in the 
CDDP model. DW queries are constructed based on the mapping relationships 
between the manager’s SA, the experience base, the ontology and the data 
warehouse. Once DW queries are constructed, situation information can be 
retrieved from the data warehouse through executing the queries. The retrieved 
situation information is presented to the manager for SA development. Part of the 
work presented in this chapter has been reported in one of our publications (Niu et 
al. 2008). Section 8.1 introduces the basic grammar of DW query languages. 
Section 8.2 outlines the process of query construction. The detailed processes of 
query construction are discussed in Sections 8.3 and 8.4. The method of 
presenting situation information is discussed in Sections 8.6 and 8.7. 

8.1   Query Languages for Data Warehouses 

Today’s data warehouses can accept two types of queries: structured query 
language (SQL) queries, and Multidimensional Expressions (MDX) queries. SQL 
is the standard interactive and programming language for accessing relational 
data, e.g., relational tables, while MDX is for manipulation of multidimensional 
data, e.g., cubes. This section very briefly introduces the essentials of SQL and 
MDX to provide the preliminary knowledge for understanding the process of 
query construction. 

8.1.1   Structured Query Language 

There are three basic types of SQL statements: data statements for querying and 
modifying tables and columns, transaction statements for controlling transactions, 
and schema statements for maintaining database schema. The queries to be 
constructed in this research are used to retrieve situation information from data 
warehouses. Hence, we are only concerned with data statements for querying 
tables.  
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A SQL query retrieves rows from the database tables under specified search 
conditions. A basic SQL query (statement) has three clauses: SELECT clause, 
FROM clause, and WHERE clause  (Microsoft 2007c) with the following format: 

SELECT column_list FROM table_name WHERE search_condition 

where, table_name is the source table from which data will be retrieved; 
column_list is a list of columns to be selected for the result set; and  
search_condition  specifies the criteria of selecting rows.   

Suppose we have a relational database containing a table called 
EmployeeAddressTable  (Hoffman 2001). This table has six columns: SSN 
(Social Security Number), FirstName, LastName, Address, City and State. The 
records of EmployeeAddressTable are list in Table 8.1. 

Table 8.1 Employee Address Table 

SSN 
First 

Name 

Last 

Name 
Address City State 

512687458 Joe Smith  
83 First 

Street 
Howard Ohio  

758420012 Mary Scott  
842 Vine 

Ave. 
Losant Ohio  

102254896 Sam Jones  
33 Elm 

St. 
Paris New York  

876512563 Sarah Ackerman  
440 U.S. 

110 
Upton Michigan  

Some example queries based on this table are as follows. 

SELECT Address, City FROM EmployeeAddressTable WHERE FirstName = ‘Joe’ 

This query retrieves the address and City information of an employee called Joe. 

SELECT * FROM EmployeeAddressTable WHERE FirstName = ‘Joe’ 

This query retrieves all information of an employee called Joe. 

SELECT City FROM EmployeeAddressTable 

This query retrieves City information of all employees. 
These SQL queries are the most basic type. There are more complex queries, 

for example, queries retrieving data from multiple source tables, queries with 
JOIN or UNION operations, and queries containing aggregate functions. This 
book mainly discusses the basic query type in our algorithms and systems. 



8.1   Query Languages for Data Warehouses 121
 

8.1.2   Multidimensional Expressions 

Some key concepts about MDX are as follows (Microsoft 2007b). 
 

• Dimensions 
 

A dimension is a perspective from which data of interest is viewed, such as 
products, locations and years. In data warehouses, dimensions are used to organize 
data with relation to different perspectives. Dimensions are constructed based on 
dimension tables. A dimension table is a relational table containing columns and 
rows. A dimension contains attributes that correspond to columns in dimension 
tables. The specific values of attributes in a dimension are called members. In 
MDX, members are defined by member expressions. A member expression 
contains at least two fields: the dimension name and the member name, optionally 
containing the attribute name. A member expression uniquely identifies a member. 
Some examples of member expressions are as follows.  

[Product].[Color].[Black] 

[Product].[Color].[Silver] 

[Location].[Country].[Australia] 

[Location].[Country].[China] 

Where, each member expression consists of three fields: dimension name, 
attribute and member name. 
 

• Measures 
 

Measures are measurable (numeric) columns defined in fact tables, for example 
sales, order quantity and profit. Fact tables are also relational tables, which contain 
the measurements, metrics or facts of business operation. In MDX, values of 
measures are members of a special dimension called Measures. The corresponding 
member expressions do not contain attribute field, for example, 

[Measures].[Sales Amount]. 

• Cubes 
 

A cube is a set of related measures and dimensions defined by multidimensional 

data schema, for example, star schema and snow-flake schema. Thus, cubes are 

multidimensional data used to support online analytical processing (OLAP). An 

example of cube is shown in Figure 8.1.  
This cube is defined by three dimensions: Location, Period and Customer.. 

Suppose the measures of this cube are Sales Amount, and Order Quantity. Then, 
each cell in Figure 8.1 contains a number representing the specific sales amount 
with relation to specific dimension members, for example, the sales amount from  
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Fig. 8.1 A Cube 

male customers, in 2006, in Australia. In MDX, this cell can be specified by four 
member expressions: 

[Customer].[Gender].[Male] 

[Period].[Year].[2006] 

[Location].[Country].[Australia] 

[Measures].[Sales Amount]. 

• Tuples 

A tuple is a group of member expressions which uniquely identifies a cell. An 
example of a tuple is as follows. 

([Customer].[Gender].[Male], [Period].[Year].[2006],  

[Location].[Country].[Australia], [Measures].[Sales Amount]) 

• Sets 

A set is an ordered set of tuples with the same dimensionality. An example of a 
set is as follows.  

{ 

([Customer].[Gender].[Male], [Period].[Year].[2006], 
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[Location].[Country].[Australia], [Measures].[Sales Amount]), 

([Customer].[Gender].[Male], [Period].[Year].[2007], 

[Location].[Country].[Australia],[Measures].[Sales Amount]) 

}  

 
This set contains two tuples. The difference between the two tuples is the 

Period dimension: one for 2006 and another for 2007. Thus it can specify two 
cells in the cube shown in Figure 8.1. 

 
• Axes 

 
In a MDX statement, multiple sets can be organized along different axes. Each 

query axis has a number: zero (0) for the x-axis, 1 for the y-axis, 2 for the z-axis, 
and so on. The following is an example of sets organized along two axes. 

{([Customer].[Gender].[Male], [Period].[Year].[2006],  

[Measures].[Sales Amount]), 

([Customer].[Gender].[Male],[Period].[Year].[2007],  

[Measures].[Sales Amount])} ON 0,  

{([Location].[Country].[Australia], [Location].[Country].[China])} ON 1 

We have discussed the necessary concepts of MDX queries. Now let us look at 
a complete example of a MDX query as follows. 

SELECT 

{([Customer].[Gender].[Male], [Period].[Year].[2006], [Measures].[Sales 

Amount]), 

([Customer].[Gender].[Male],[Period].[Year].[2007],[Measures].[Sales 

Amount])} ON 0,  

{([Location].[Country].[Australia], [Location].[Country].[China])} ON 1 
FROM [Adventure Works] 

 
Where, Adventure Works is the name of a cube. The result returned by this MDX 
query will be something as follows: 
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  Male Male 

  2006 2007 

  Sales Amount Sales Amount 

Australia $448,525  $949,370  

China $555,071  $858,565  

8.2   Framework of Query Construction and Situation 
Presentation  

The process of query construction and situation presentation is based on the 

mapping relationships between SA, experience base, ontology, data warehouse 

and situation, which are illustrated in Figure 8.2.  
There are five layers in this figure separated by horizontal lines.  
 

(1) Situation Awareness  
 

In the SA layer, the manager describes his/her SA about the current decision 
situation and inputs into the system in the form of natural language. Each SA 
description is comprised of a number of SA sentences. Employing the Link 
Grammar Parser and relevant techniques discussed in Chapter 7, SA sentences are 
parsed into SA tokens. Finally, SA triples are generated by annotating the SA 
tokens, and local contexts of SA sentences are also determined. The SA triples and 
local contexts and are mapped into the ontology and the experience base.  

 

(2) Experience Base 
 

In this layer, the manager’s experiences are represented as experience maps. An 
experience map consists of two sorts of concepts (cause concepts and effect 
concepts) and the causal relationships between them.  

The local contexts of SA sentences are used to generate a knowledge need, 
which are then used to extract cues from the experience base. The extracted cues 
represent a fragment of the entire experiences, which imply potential solutions, 
ideas or relevant situation information. In the process of knowledge retrieval, a 
local context in the SA layer is directly mapped to an effect concept in the 
experience base layer. 

 

(3) Ontology 
 

Classes are defined in the ontology layer. Each class is described by a set of 
properties. Classes are associated with each other via two sorts of relationships: 
subsumption relationships and property-share relationships.  
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Fig. 8.2 Framework of Query Construction and Situation Presentation 

A SA triple in the SA layer is mapped to a combination of a class, a property of 
this class and a meta instance of this property, in the ontology layer. A property-
share relationship enables semantic information expressed by SA triples to be 
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transferred from a class to another class. By this way, those classes, which do not 
have direct mapping relationships with SA triples, can also be indirectly mapped. 

 

(4) Data Warehouse 
 

In the data warehouse layer, situation information is hiding in either data tables 
(relational data) and/or cubes (multidimensional data). The objective of query 
construction is to find the situation information for situation presentation. A cube 
is defined by a number of dimensions and measures. Dimensions are derived from 
dimension tables. 

A class in the ontology layer can be mapped to a data table, a cube or a 
dimension table in the data warehouse layer. The mapping relationship is defined 
during the development of the ontology. 

Queries are constructed and executed against the data warehouse. During the 
execution of the queries, situation information is retrieved from data tables or 
cubes. The retrieved situation information is transferred to the situation layer for 
situation presentation. 

 

(5) Situation 
 

In this layer, the original decision situation is presented to the manager through 
displaying the retrieved situation information. Situation presentation is 
implemented in the form of different data visualization techniques, such as graphs, 
charts and tables. When the manager perceives and understands the presented 
situation information, his/her SA is developed and enriched. 

8.3   Determining Query Data Sources  

The process of query construction includes two basic tasks: determining query 
data sources and constructing query clauses. A query data source is a table (query 
table) or cube (query cube) from which situation information will be retrieved.  

Query tables/cubes are determined according to the cues extracted from the 
experience base during knowledge retrieval. The extracted cues are related to the 
current decision situation and the manager’s past experience. Cues prompt 
potential solutions, ideas, or information relevant to the current decision situation.   

A cue consists of an effect concept and a number of cause concepts. The effect 

concept of a cue is considered as a subtopic of the current decision situation, while 

the cause concepts represent different factors affecting the subtopic. Exploring the 

factors of the subtopic will help the manager to gain insights into the decision 

situation. Thus, the data/information related to each concept in a cue should be 

retrieved and presented to the manager in terms decision support. 
The concepts of cues are indirectly mapped to DW objects via the ontology. 

According the relationships between the experience base, the ontology and the 
data warehouse, each concept of a cue is also a class in the ontology which is 
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further mapped to a DW object in the data warehouse.  The DW object mapped 
with an ontology class can be of three types: a data table, dimension table or cube. 
Of them, only data tables and cubes are qualified query data sources. 

In an application, not all ontology classes are mapped with a DW object. If a 
concept of a cue is mapped to a class which does not have available associated 
DW object, we use class similarities to search for the nearest qualified class with 
an associated DW object. By this way, all cue concepts can be indirectly mapped 
to DW objects.  

For a decision situation, a number of cues might be extracted from the 
experience base. All these cues will be merged as a navigation knowledge. The 
data source for a query is determined based on the navigation knowledge. The 
procedure of determining the data source for a query has four steps: 

 

Step 1. The navigation knowledge is visualized as a map and presented to the 
manager. 

Step 2. The manager browses the navigation knowledge map and expresses 
interest in a specific concept. 

Step 3. A class which is matched with the concept of the manager’s interest is 
found in the class tree of the ontology. 

Step 4. If the class found in Step 3 has an associated qualified DW object (data 
table or cube), output this DW object as the query data source. Otherwise, find the 
most similar qualified class through assessing class similarities and output the DW 
object of this new class as the query data source. 

8.4   Constructing SQL Queries 

We developed the algorithm SqlBuilder to construct SQL queries. SqlBuilder 
intakes a concept of the navigation knowledge and outputs the corresponding SQL 
query for this concept. 

Algorithm  8.1. SqlBuilder 

Input:  

(1) A navigation knowledge concept: c 

(2) A set of SA triples: SATripleSet 
(3) An ontology 

Output: 

 A SQL query for concept c 

Procedure: 

 See Figure 8.3. 

 
One of the theoretical bases of SqlBuilder is the concept of property-share 

relationship. A property-share relationship between two classes enables 
information about one class to be transformed to another class. The information 
about classes here mainly refers to SA triples. The concept c in the navigation  
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Fig. 8.3 Algorithm SQLBuilder 

knowledge is also a class in the ontology. Thus, the information about c can be 
obtained from two sources. First, those SA triples whose contexts are c provide 
direct information about c. Second, some SA triples whose contexts are not c can 
provide indirect information about c through property-share relationships. 
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As shown in Figure 8.3, the process of constructing a SQL query can be 
divided into four stages. In Stage 1, all neighbor classes of concept c are retrieved 
in the class graph. Concept c is first mapped to a class in the class tree and then 
mapped to a class in the class graph. In the class graph, a neighbor class of c is one 
from which a property-share relationship is directed to c. 

In Stage 2, shared SA triples from neighbor classes of c are determined. A 
shared SA triple is one whose view part is a shared property. Given a neighbor 
class n, there are two ways to determine the SA triples which n shares with c. 
First, the shared SA triples can be selected directly from the SATripleSet. A SA 
triple in SATripleSet is a shared one as long as its context is n and its view is 
defined in a property-share relationship from n to c. Second, new shared SA 
triples can be created according to those selected from SATripleSet. Let st = (n, p, 
i) be a shared SA triple selected from SATripleSet, and tn be the associated DW 
data table of n. If p (the view of st) is unique in table tn, p will be used to retrieve a 
new meta instance in tn for other shared properties of n. The retrieved new meta 
instance is then used to created new shared SA triples for c. 

The SA triples that the neighbor classes share with c are transformed using the 
corresponding property transformation functions in Stage 3. Property 
transformation functions revise the wording part of each shared SA triple and 
replace the context with c. By this means, SA triples of neighbor classes are 
transferred to class c, which can provide indirect information about c. 

A SQL query is composed according to the transformed SA triples 
(SaTrippleSetForC) in Stage 4. The associated DW table tc is used as the query 
table (query data source), such that a FROM clause can be constructed: 

FROM tc 

All columns of tc are considered to be of interest to the current decision. Thus 
SELECT clause can be constructed: 

SELECT * 

The remaining work of the SQL query construction is to compose query 
criteria, i.e., WHERE clauses. The transformed SA triples in the 
SaTrippleSetForC are grouped by their view parts. Thus a number of SA triple 
groups are generated, in each of which SA triples have the same view. For each 
group of SA triples, a number of query predicates (query criteria) can be created. 
For example, based on SA triple the following SA triple group 

{(Mountain Bike, EnglishProductName, Mountain-100 Silver), 

(Mountain Bike, EnglishProductName, Mountain-100 Black)}, 

Two predicates are created as follows. 

EnglishProductName = Mountain-100 Silver 

EnglishProductName = Mountain-100 Black 
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The two predicates are connected using the logical operator OR. 

EnglishProductName = Mountain-100 Silver OR EnglishProductName = 

Mountain-100 Black 

Predicates created based on different SA triple groups are connected using the 
logical operator AND. For example, based on SA triple 

(Mountain Bike, color, red)}, 

A predicate is created as follows. 

Color = red 

Connected with the previous two predicates using AND, 

(EnglishProductName = Mountain-100 Silver OR EnglishProductName = 

Mountain-100 Black) AND Color = red 

Thus, a WHERE clause can be composed as follows. 

WHERE (EnglishProductName = Mountain-100 Silver OR  

EnglishProductName = Mountain-100 Black) AND Color = red 

Finally, a provisional SQL query is constructed as follows. 

SELECT * FROM tc  WHERE (EnglishProductName = Mountain-100 Silver OR 

EnglishProductName = Mountain-100 Black) AND Color = red 

In an application, the provisional query which has been composed in Stage 4 
might not be fully compatible with the specific data warehouse system. Thus, 
Algorithm SqlBuilder will post-process the provisional query through tuning each 
clause of the query statement. The post process includes the following tasks: 

 
• Adjust the formats of clauses. For example, data of char string type will be 

enclosed with quotation marks.  
• Resolve conflicts between different query criteria. For example, if two AND-

connected predicates contain columns with a unique constraint, either the 
provisional query will be split into two queries, or the AND operator will be 
changed to OR.  

• Predict the number of rows which will be retrieved. The objective of 
constructing DW queries is to retrieve a reasonable amount of situation 
information for decision support. In some cases, e.g., bad-constructed queries due 
to poor SA descriptions, the provisional query might return much more data than 
the manager would expect. In these cases, the provisional query will be attached a 
tag which will be used to inform the manager to input more SA descriptions. The 
provisional query could also return empty data set. In this case, this query will be 



8.5   Constructing MDX Queries 131
 

removed. In order to predict the number of rows, the provisional query will be 
submitted to the data warehouse for execution. 

• Remove duplicate queries.  
 

After post-process, SqlBuilder will output the following query.  

SELECT * FROM tc  WHERE (EnglishProductName =’ Mountain-100 Silver’ OR 

EnglishProductName = ‘Mountain-100 Black’) AND Color = ‘red’ 

Note that Mountain-100 Silver and Mountain-100 Black are enclosed with 
quotation marks according to their data type (nvarchar) in the definition of tc. 

In the current version, SqlBuilder can generate the basic type of query. We are 
currently working to enhance the function of SqlBuilder. The new version will be 
able to construct more complex queries, e.g., supporting JOIN of multiple tables. 

8.5   Constructing MDX Queries 

We developed the algorithm MdxBuilder to construct MDX queries. MdxBuilder 
intakes a concept of a navigation knowledge and outputs the corresponding MDX 
query. 
 

Algorithm  8.2. MdxBuilder 

Input:  

(1) A navigation knowledge concept: c 

(2) A set of SA triples: SATripleSet 
(3) An ontology 

Output: 

 A MDX query for concept c 

Procedure: 

 See Figure 8.4. 

 
As shown in Figure 8.4, the process of constructing a MDX query can be 

divided into four stages. 
 
• Stage 1 
 

Given a navigation knowledge concept c, the corresponding DW cube m is 
determined and all dimensions of m are retrieved. 

 
• Stage 2 

 

A sub-algorithm CreateMemberExpression is called to create member 

expressions for every dimension of m.  
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Fig. 8.4 Algorithm MDXBuilder 

Algorithm 8.3. CreateMemberExpression 

Input:  

(1) A dimension d 

(2) A set of SA triples: SATripleSet 
Output: 

 A set of member expressions of d 

Procedure: 

 See Figure 8.5. 
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Fig. 8.5 Algorithm CreateMemberExpression 
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The algorithm CreateMemberExpression is also based on the concept of the 
property-share relationship. In the data warehouse, dimensions are related to 
dimension tables. Dimension tables are mapped to classes in the ontology 
according to the mapping relationships between the ontology and the data 
warehouse (Figure 8.2).  

A dimension table dt, corresponds one or more classes in the ontology. Let dc 
be a corresponding ontology class of dt. Just as algorithm SqlBuilder, 
CreateMemberExpression retrieves the shared SA triples in SATripleSet and 
creates new shared SA triples based on retrieved meta instances for class dc. 
CreateMemberExpression collects all shared SA triples into set 
SaTrippleSetForD for all corresponding classes of dt and for all corresponding 
dimensional tables of d.  

The member expressions of dimension d are composed based on SA triples in 
SaTrippleSetForD. The relationships between the dimension attributes and the 
columns of dimension tables can be extracted from the schema of the data 
warehouse. Thus, properties of classes are mapped to attributes of dimensions 
according to the mapping relationships between ontology classes and the DW 
dimension tables. The mapping relationships between dimension attributes and 
class properties enable each SA triple in SaTrippleSetForD to be transformed into 
a member expression of dimension d. Let us look at an example. 

Example 8.1. Constructing Member Expression 

SA Triples: 

(Mountain Bike, EnglishProductName, Mountain-100 Silver) 

(Road Bike, EnglishProductName, Road--30 Black) 

(Mountain Bike, Color, Blue) 

(Customer, Location, France) 

(Customer, Location, Canada) 

Member Expressions which are composed based on the above SA triples: 

[Product].[Model Name].[Mountain-100 Silver] 

[Product].[Model Name].[Road--30 Black] 

[Product].[Product Color].[Blue] 

[Customer].[Country].[France] 

[Customer].[Country].[Canada] 

• Stage 3 
 

MDX tuples and sets are generated in this stage. Each MDX set is comprised of 
a number of tuples with the same dimensionality. Tuples are constructed using 
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member expressions created in Stage 2 and then evenly distributed into the two 
sets. 

Based on the member expressions generated in Example 8.1, two MDX sets 
can be constructed as follows. 

Axis 0 set: 

{([Product].[Model Name].[Mountain-100 Silver], [Product].[Product 

Color].[Blue]), ([Product].[Model Name].[Road--30 Black], [Product].[Product 

Color].[Blue]) } 

Axis 1 set: 

{([Customer].[Country].[France]), ([Customer].[Country].[Canada])} 

Based on the same collection of tuples, different MDX sets can be constructed 
which are equally reasonable in terms of MDX syntax. For example, based on the 
member expressions generated in Example 8.1, the following MDX sets can also 
be constructed. 

Axis 0 set: 

{([Product].[Model Name].[Mountain-100 Silver]),  

([Product].[Model Name].[Road--30 Black]) } 

Axis 1 set: 

{([Customer].[Country].[France], [Product].[Product Color].[Blue]),  

([Customer].[Country].[Canada], [Product].[Product Color].[Blue])} 

Based on a collection of member expressions, there are many ways to generate 
the corresponding MDX sets. Different MDX sets will results in different MDX 
queries which will return different information. There are no formal rules which 
can be used to determine the number of MDX sets and the dimensionality of 
tuples. Algorithm MdxBuilder will initially generates two sets for a MDX query: 
axis 0 set (columns) and axes 1 set (rows), and randomly generate a 
dimensionality of tuples. However, in the prototype FACETS, the manager are 
allowed to use up to three axes and customize the dimensionality according to 
his/her requirements. 

 
• Stage 4 
 

This is the final stage where a complete MDX query is constructed by 
assembling tuples, the query cube and measure. MdxBuilder constructs a MDX 
query for every measure of a cube. Let r be a measure of cube m. The following is 
an example of a finished MDX query. 
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SELECT  

{([Product].[Model Name].[Mountain-100 Silver], [Product].[Product 

Color].[Blue]),    ([Product].[Model Name].[Road--30 Black], [Product].[Product 

Color].[Blue]) } ON 0, 

{([Customer].[Country].[France]), ([Customer].[Country].[Canada])} ON 1 

FROM [m]  

WHERE [r] 
 
Note that in the above MDX query, measure r is used as a WHERE clause, 

instead of the member of the special dimension Measure. 

8.6   Navigation-Knowledge-Guided Situation Presentation 

We use navigation knowledge to guide the process of situation presentation. This 
method is depicted in Figure 8.6. The relationships between situation information 
and environment data are established by DW queries. When DW queries are 
executed against the DW, corresponding situation information can be retrieved. A 
piece of situation information might correspond to different data in the DW. In 
Figure 8.6, solid directed lines are used to denote these direct relationships. 

Navigation 
Knowledge

Environment
Data

Situation
Information

 

Fig. 8.6 Navigation-knowledge-guided Situation Presentation 
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The dashed directed lines denote indirect relationships between situation 
information and navigation knowledge. Navigation knowledge is visualized as 
maps on a graphical user interface (GUI). The representation of navigation 
knowledge also consists of concepts and causal relationships. Each concept 
implies a kind of information which reflects an aspect of the decision situation. If 
the manager is interested in a specific concept in the navigation knowledge, he/she 
can request the system to show related situation information. For example, the 
request can be made by mouse-clicking onto a concept on the navigation 
knowledge map. When the system receives an information request, the 
corresponding queries will be triggered and executed against the data warehouse. 
Relevant data is then retrieved from the data warehouse (environment data). The 
retrieved data is processed using data analysis techniques and then presented to the 
manager on the GUI.  

The general pattern of human-machine interaction in the navigation-knowledge 
guided situation presentation is as follows. 

A navigation knowledge map is presented  

(The manager) Browse the experience  

Find a concept interesting   

Click this concept for associated information   

Detailed information is presented   

Perceive the detailed information   

Return back the navigation knowledge map   

Browse the experience   

Find another concept interesting   

… 

 
The navigation knowledge is the combination of all cues relevant the current 

decision situation. Cues prompt possible ideas, clues or solutions to current 
decision situation. A cue is retrieved according to a concept (an element of the 
knowledge needs related to the current decision situation) from the experience 
base. A decision situation might have many related concepts. A cue is generated 
only based on one concept. Hence, a cue can only reflect part of the decision 
situation. The navigation knowledge is the integration of all related cues of a 
decision situation. Therefore, the visualization of navigation knowledge presents a 
complete big picture of the current decision situation to the manager. 

The navigation-knowledge-guided situation presentation also allows managers 
to add extra concepts and causal relationships to the generated navigation 
knowledge. For example, suppose the navigation knowledge shows that 
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PRODUCT and ADVERTISEMENT are the key factors to SALES. If a manager 
thinks GOVERNMENT POLICY is also playing a role, he/she can supply this 
new concept and the relationship with SALES to the system. The navigation 
knowledge map and the corresponding DW queries will be updated accordingly. 
The navigation-knowledge-guided situation presentation is implemented in 
FACETS (Chapter 7). 

8.7   Data Analysis and Situation Presentation 

The retrieved data is not always easily understood by managers. For instance, a 
DW query might return many sales data across different locations, products and 
time periods. Thus, it is necessary to perform data analysis on the retrieved data 
before presenting to the manager.  

The data analysis techniques discussed in this section are not basic components 
of the CDDP model. However, in terms of application, they are a substantial part 
of the integral system built based on the CDDP model. Thus, we briefly discuss 
each of them as follows. 

There are three basic categories of data analysis techniques in today’s BI 
applications. 

 

(1) Relational Data Reporting 
 

Relational data reporting (RDR) is the most well-developed and widely-used 
data analysis technique in the BI area. RDR is based on executing SQL queries 
against OLTP systems. The data being reported by RDR has a very simple 
structure: relational tables. The visual forms which are used to present data are 
very varied, such as list tables, cross tables, bar graphs, line graphs, pie charts, pie 
slices and divided bars. RDR is one of the most basic analysis functions of most 
commercial BI tools such as BO, Cognos, Hyperion, Microstrategy, SAS, SAP, 
Microsoft and ORACLE. 

 

(2) Multidimensional Data Reporting 

Multidimensional data reporting (MDR) was born with the development of 
OLAP systems. The structure of multidimensional data (cubes) can be star 
schema, snowflake schema or hybrid schema, which are more complex than 
relational tables. MDR tools usually support ad hoc data analysis whereby users 
can undertake customized analytics such as dicing, slicing, drilling down, drilling 
up and drilling through. 

 

(3) Intelligent Data Analysis 

Intelligence data analysis (Chidambaram 1996) refers to data analysis methods 
which involve artificial intelligence techniques. Examples of these techniques are 
data mining, data fusion, evolutionary algorithms, machine learning, neural nets, 
fuzzy logic and pattern recognition. In practical BI applications, data mining is 
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growing as one of the most significant IDA techniques. Data mining is integrated 
with many commercial BI products, such as Intelligent Miner in DB2, ODM in 
Oracle, Enterprise Miner in SAS and Teradata Warehouse Miner in Teradata. 

8.8   Summary 

This chapter presents the methods and algorithms used for query construction and 
situation presentation. The main points of the proposed methods and algorithms 
are as follows. 
 

(1) A framework for query construction and situation presentation was 
proposed. This framework establishes the mapping relationships between 
SA, experience base, ontology, data warehouse and situation. 

(2) Based on the proposed framework, the algorithm SqlBuilder was 
developed to construct SQL queries. 

(3) Based on the proposed framework, the algorithm MdxBuilder was 
developed to construct MDX queries. 

(4) A method of situation presentation guided by navigation knowledge was 
discussed. 

 
This chapter together with Chapters 6 and 7 are the technical part of this 

research. The technical part consists of different algorithms and methods which 
are developed according the CDDP model proposed in the theoretical part 
(Chapter 5). In the next chapter, we will report on the prototype system developed 
to evaluate the proposed techniques. 
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Chapter 9 
A Cognition-Driven Decision Support System: 
FACETS 

 
 
 
 
 
 
 
 

 
Using the techniques discussed in Chapters 6, 7 and 8, we developed a prototype 
system, FACETS, as an implementation of the CDDP model. It allows a manager 
to describe his/her SA in the form of English. Based on the domain knowledge, 
FACETS parses the manager’s SA and constructs data warehouse queries. Queries 
are submitted to the data warehouse for retrieving relevant situation information. 
The retrieved situation information is presented to managers according to the 
navigation knowledge extracted from the manager’s experience. The goal of 
FACETS is to assist managers to develop and enrich their SA for decision making. 

9.1   The Development Environment 

We developed FACETS on a desktop computer with an AMD Athlon 64 2GHz 
Processor and 1 G RAM. The software environment is as follows. 
 

• Operating System: Microsoft Windows XP Professional Version 2002 with 

Service Pack 2 

• Programming Tool: Microsoft Visual Studio 2005 Professional Edition 

• Programming Language: C/C++ 

• Database Server: SQL Server 2005 Enterprise Edition 

• OLAP Server: Microsoft Analysis Service 2005 

9.2   The Architecture of FACETS 

The prototype FACETS is comprised of eight subsystems: Data Warehouse 
System, Ontology Management, Experience Management, Situation Awareness 
Management, Situation Awareness Parsing, Situation Awareness Annotating, 
Query Builder and Situation Presentation. Each subsystem includes a number of 
components which are shown in Figure 9.1.  



144 9   A Cognition-Driven Decision Support System: FACETS
 

 

Fig. 9.1 The Architecture of FACETS 

FACETS was built on the platform of a data warehouse, which includes a 
central data warehouse and other components for extracting data from business 
operational systems, managing meta data and analyzing data. 

The functions of FACETS are based on an ontology and manager’s 
experiences. Users (business managers or IT engineers) use the Ontology 
Management subsystem to create and edit the ontology. The data of the ontology 
is stored in the Ontology Base. The Ontology Management subsystem also 
provides a set of functions for operating the ontology, such as traversal, editing 
and computing class similarities. The Experience Management subsystem 
provides functions for creating, storing, editing managers’ experience and 
extracting navigation knowledge for the Situation Presentation subsystem. 

The Situation Awareness Management subsystem is the interface via which 
managers input their SA. SA is stored in form of persistent hard disk files and then 
sent to the Situation Awareness Parsing subsystem for extracting SA tokens. SA 
tokens are the inputs of the Situation Awareness Annotating subsystem responsible 
for generating SA triples. SA triples are the basis of query construction which is 
done by the Query Builder subsystem. The processes of parsing, annotating SA, 
and constructing queries are based on the domain ontology. Thus, Situation 
Awareness Parsing, Situation Awareness Annotating and Query Builder have 
inputs from the Ontology Management subsystem. In addition, constructing 
queries also relies on experience which comes from the Experience Management 
subsystem. The constructed queries are executed in the Situation Presentation 
subsystem for the retrieval of situation information. The retrieved situation 
information is finally presented to managers.  
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9.3   Subsystems of FACETS 

9.3.1   Data Warehouse System 

The role of the Data Warehouse subsystem is three-fold. First, it stores all 
business data which is the data source of situation information retrieval. Second, 
the business data is used for creating the ontology. Last, FACETS uses the DW 
subsystem to store some configuration information. 

The major tasks of developing the DW subsystem include designing the data 
warehouse model and populating DW tables, dimensions and cubes. FACETS is 
not domain-specific and can be configured to be used in any decision-making 
domain. Thus, in this chapter, we will not report on the technical details of 
building up a data warehouse. A specific data warehouse (about a manufacture 
company) was implemented in the experiment part of this research.  

9.3.2   Ontology Management 

The Ontology Management (OM) subsystem provides a graphical interface for users 
(mainly IT engineers) to create ontology structures, edit classes and relationships. It 
also opens an application programming interface (API) for other subsystems 
(Situation Awareness Parsing, Situation Awareness Annotating and Query Builder) 
to access ontology manipulation functions. OM stores ontology data in an Ontology 
Base which is based on comma-separated-values files. Figure 9.2 is a screenshot of 
the OM subsystem.  

Using the OM subsystem, users can build ontologies from scratch. That means 
all terms which represent classes as well as the definitions of classes are coded 
manually. This method is appropriate for small scale ontologies, for example, 
those with twenty or less classes.  

It would be very time-consuming to define every class for large ontologies. The 
OM subsystem therefore offers an import utility to assist users to create ontologies 
efficiently. Using this utility, users can firstly import relevant meta data (tables 
and their definitions) from a data warehouse. The imported meta data are the 
initial class definitions which act as the roughcast for fine class defining. Users 
can explore the initial class definitions and make appropriate revisions. Based on 
our experience, the revisions/changes are mainly made on class names. Most table 
definitions can be retained as class definitions. This method speeds up the 
engineering process of ontology development. There are also widely used tools for 
ontology development, for example Protégé 7, which support standard ontology 
language, such as RDF and OWL. However, in the current version of FACETS, it 
does not support ontologies created based on other tools. 

The OM subsystem also provides functions for Situation Awareness Parsing, 
Situation Awareness Annotating and Query Builder. Examples of these functions 
are as follows. 

 

• Check if a term is a valid class label 

• Obtain the parent class for a given class 
                                                           
7 More detailed  website of Protégé is at http://protege.stanford.edu/ 
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Fig. 9.2 Ontology Management 

• Obtain all child classes for a given classes 

• Compute the similarities between the two classes 

• Obtain the associated DW object for a given class 

• Determine the depth of the class tree 

• Obtain the neighbor classes for a given class 

• Compute the distance to the nearest leaf node for a given class 
 
Some of these functions are implemented based on a C++ tree class called 

tree.hh8.  

9.3.3   Experience Management 

The Experience Management (EM) subsystem has a graphical interface for users 
(mainly IT engineers) to create the structure of experience, edit experiences and 
relationships. It also opens an API for subsystems Query Builder and Situation 
Presentation to access relevant experience manipulation functions. EM stores the 
data of experiences in the Experience Base which is based on comma-separated-
values files.  

Figure 9.3 is a screenshot of the EM subsystem.EM is not a tool intended for 
eliciting fresh experience (mental models) from managers. Experience elicitation  
 

                                                           
8 Tree.hh is available at http://www.aei.mpg.de/~peekas/tree/ 
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Fig. 9.3 Experience Management 

is a survey process during which managers are interviewed by answering 
questions or describing concepts. Experience elicitation is essentially a manual 
process. Therefore, to build the experience base for FACETS, the experience, as a 
kind of knowledge, must have been already elicited and recorded. The function of 
EM is intended for the transformation of the form of experience, for example, 
from manuscripts to computer files, which then becomes understandable for 
FACETS. 

Experiences can be visualized as experience maps in EM as shown in Figure 
9.3. Users can click onto a concept and select the causal relationships related to 
this concept. Users can then edit this concept and relationships. Typical operations 
for creating experience are as follows. 

 

• Create new concepts 

• Change names of concepts 

• Create new causal relationships 

• Delete concepts and causal relationships 

• Visualize experience 
 
The EM subsystem also implements APIs for other subsystems. The algorithm 

CueExtraction is implemented in EM, which extracts cues for the Query Builder 
subsystem on the basis of the output of the Situation Awareness Annotating 
subsystem. The algorithm Navigator is implemented in EM, which generates 
navigation knowledge for the Situation Presentation subsystem on the basis of the 
extracted cues. 
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Fig. 9.4 Situation Awareness Management 

9.3.4   Situation Awareness Management 

The Situation Awareness Management (SAM) subsystem is one of the two major 
interfaces (another is the Situation Presentation subsystem) open to managers for 
interaction during decision making, e.g., describing SA and receiving situation 
information (Figure 9.4). Interfaces of Data Warehouse, Ontology Management 
and Experience Management are mainly for IT engineers to maintain FACETS. 

Managers can input their SA via SAM. SAM stores the data of SA in the 
computer memory; however managers can save SA as a persistent file on the hard 
disk and load it for reuse. The APIs provided by SAM are open to the Situation 
Awareness Parsing subsystem, via which managers’ SA descriptions are 
transferred for parsing using the Link Grammar Parser. 

As shown in the screen shot of SAM (Figure 9.4), a number of editing 
functions are provided for managers to describe their SA, as follows. 

 

• Add a new SA sentence 

• Modify a SA sentence 

• Delete a SA sentence 

• Empty current SA 

• Save all SA sentences onto hard disk file 

• Load a saved SA file 
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Generally speaking, a complete decision process is comprised of a number of 
decision cycles. At the beginning of each decision cycle, managers will describe 
and input their current SA. Based on managers’ SA, FACETS seeks and retrieves 
relevant knowledge and situation information, and then presents situation 
information back to managers. At the end of a decision cycle, managers’ SA is 
developed or enriched when situation information is perceived and understood. 
During the iteration of decision cycles, SAM accumulates managers’ SA by 
keeping historical SA inputs. However, if circumstances change, managers are 
allowed to modify, replace or discard the past SA. 

9.3.5   Situation Awareness Parsing 

The Situation Awareness Parsing (SAP) subsystem intakes SA sentences  
from Situation Awareness Management and parses them into SA tokens. 
Algorithms NumericPlainParser, LiteralPlainParser, SemanticParser and 
LocalContextDetermination are implemented in SAP. SAP is mainly for internal 
call by the Situation Awareness Annotating subsystem. However, we also 
developed a GUI in SAP for managers to monitor and control the parsing process 
(Figure 9.5).  

On the GUI of SAP, all new SA sentences waiting to be parsed are listed. The 
SA sentences being parsed and the overall progress of the parsing task are 
dynamically updated. The SA tokens are output as parsing results. Managers can 
start or abort a parsing task in progress; they can also re-do the whole parsing task. 
In Figure 9.5, a SA sentence is being parsed: “BK-M82S-38 was designed with 
higher performance and lower price.” 

 

 

Fig. 9.5 Situation Awareness Parsing 
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Fig. 9.6 Situation Awareness Annotation 

9.3.6   Situation Awareness Annotating 

The output of Situation Awareness Parsing is input into the Situation Awareness 
Annotating (SAA) subsystem. In SAA, SA tokens are further processed. SAA is 
mainly for internal call by subsystems Query Builder and Experience 
Management, but it also has a GUI for managers to amend SA annotation when 
necessary (Figure 9.6). 

SAA annotates SA tokens and then generates SA triples. The uncertainties of 
SA triples are also reduced by SAA. However, if the uncertainty of a SA triple 
cannot be eliminated completely, managers have opportunities to participate in the 
process of annotating via the SAA GUI. For example, managers can delete 
inappropriate SA triples or modify the context, view and wording of a SA triple. 
Figure 9.6 shows all generated SA triples, each of which has four fields: context, 
property (view), instance (wording) and information type. 

Subsystem SAA sends the generated SA triples to Query Builder for query 
construction, and sends local contexts to Experience Management for knowledge 
retrieval. 

9.3.7   Query Builder 

The Query Builder (QB) subsystem takes SA triples from Situation Awareness 
Annotating, meta data from the Data Warehouse system, classes information from 
Ontology Management and cues from Experiment Management. Based on these 
inputs, data warehouse queries are constructed. The constructed queries are then 
fed to the Situation Presentation subsystem for retrieving situation information. 

Query building is a completely automatic process, but for the purpose of 
illustrating research, QB also has a GUI for users (Figure 9.7). On this GUI, users can 
control the process of query construction. They can also edit the generated queries. 
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Queries are attached to specific cue concepts. QB has a list of all concepts. For 
each concept, the attached queries are also shown in the GUI. For example, in 
Figure 9.7, the concept MOUNTAIN BIKE is selected from the concept list. 
There is only one query (shown in left box) related to this concept. The detail of 
this query is shown in the right box. 

 

Fig. 9.7 Query Builder 

9.3.8   Situation Presentation 

The Situation Presentation (SP) subsystem is another GUI intended for managers’ 
use in addition to Situation Awareness Management. SP presents situation 
information to managers for situation assessment. Behind the GUI is the 
implementation of two reporting technologies: SQL reporting and MDX reporting. 

In the SP subsystem, managers will be firstly presented with a navigation 
knowledge map regarding their experience and the current SA description. An 
example of a navigation knowledge map is shown in Figure 9.8. In the navigation 
knowledge map, circles denote concepts and directed lines denote causal 
relationships. Managers can browse the whole map, which can help them recall 
past experience and correlate past experience with the current decision situation. 
The examination of navigation knowledge maps stimulates managers to identify 
possible ideas, factors or solutions for the current decision situation. 

If managers are interested in a concept in the navigation knowledge map, they 
can have instant access to the related data behind this concept by simply clicking 
on the concept (visualized as a circular button). When a concept is clicked, SP will 
evoke the appropriate reporting module (SQL or MDX) to retrieve situation 
information relevant to this concept and generate a report for presentation. If the 
concept being clicked corresponds to a relational table, the SQL reporting module  
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Fig. 9.8 Navigation Knowledge Map 

 

Fig. 9.9 SQL Reporting 

will be called. Accordingly, a SQL report is generated and presented. Figure 9.9 
shows a SQL report generated by the SQL reporting module for the concept 
MOUNTAIN BIKE. 
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Fig. 9.10 MDX Analysis Condition Customization 

If the concept being clicked corresponds to a cube, the MDX reporting module 
will be called.  The MDX reporting module will firstly require managers to choose 
the analysis condition. Analysis conditions consist of dimensions, attributes, 
members and measures. As shown in Figure 9.10, a number of relevant 
dimensions such as RESELLER, SALES TERRITORY, PRODUCT and DATE 
are available for selection. Under each dimension are a number of attributes; under 
each attribute are a number of members. For example, Sales Territory Country is 
an attribute for dimension SALES TERRITORY; United Kingdom and Germany 
are members for attribute Sales Territory Country.  

Managers can organize the analysis conditions of their selection along three 
axes (X, Y and Z) displayed as the top box, middle box and bottom box under 
label Selected Analysis Dimensions in Figure 9.10. The available measures defined 
with the corresponding cube are also shown in the GUI, such as Average Rate, 
Internet Order Quantity and Internet Sales Amount.  

A finished analysis condition customization is shown in Figure 9.11, which 
results in a MDX query as follows. 

SELECT  

{([PRODUCT].[PRODUCT].[Mountain-100 Silver, 38]),  

([PRODUCT].[PRODUCT].[Mountain-100 Black, 38]) 

} ON 0, 

{([SALES TERRITORY].[ SALES TERRITORY COUNTRY].[United 
Kingdom]),    

([SALES TERRITORY].[ SALES TERRITORY COUNTRY].[Germany]) 

} ON 1, 
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{([Date].[ Calendar Year].[2001]), ([Date].[ Calendar Year].[2002]) 

} ON 2 

FROM [Adventure Works]  

WHERE [Internet Sales Amount] 
 

This MDX query has there axes: 0, 1 and 2. 

 

Fig. 9.11 Finished MDX Analysis Condition Customization 

 

Fig. 9.12 A MDX Report 
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When the manager finishes customizing the analysis conditions, the 
corresponding MDX query will be generated and submitted to the data warehouse 
to retrieve relevant situation information. The retrieved situation information is 
presented to the manager in the form of MDX report. Figure 9.12 shows a MDX 
report generated by the MDX reporting module according to the analysis 
condition defined in Figure 9.11. This MDX report shows the internet sales 
amount across the United Kingdom and Germany for different product models in 
the year 2002. There are two pages of reports generated for 2002 and 2001 
respectively. Managers can click on the Next Report button to see different pages. 

9.4   The Cognition-Driven Decision Process Based on FACETS 

FACETS has eight subsystems in total. However, in terms of decision support, 
only two of them are interfaces for managers to interact with the system for 
decision making: Situation Awareness Management and Situation Presentation 
(Figure 9.13). Other subsystems are mainly for IT engineers to manage and 
configure the system. In real applications, the whole process of SA parsing, 
annotating, constructing queries and retrieving situation information can be fully 
automatized without managers’ manual intervention.  

 
Note: 

i --denotes a piece of information/knowledge 

?--denotes a question. 

Fig. 9.13 The Cognition-Driven Decision Process Based on FACETS 
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Confronted a decision situation, the decision process a manager would go 
through is show in Figure 9.13. At the beginning of the decision process, the 
manager has little SA about the current decision situation (indicated by four 
question marks). Mangers describe the initial SA in natural language and input SA 
into FACETS through Situation Awareness Management. FACETS analyzes 
managers’ SA and searches for relevant situation information based on the stored 
domain knowledge: mental models (management experience) and domain 
ontology. Situation information is then output and presented to the manager for 
situation assessment. This presentation of situation is also based on managers’ 
mental models (navigation knowledge). Managers develop new SA based on the 
perceived and understood situation information (indicated by reduced number of 
question marks and increased number of information marks). The improved SA 
creates more opportunities for managers to make the right decisions or seek more 
relevant information. At this point, a decision cycle has been completed according 
to the CDDP model. This decision cycle can be iterated by the manager until 
he/she feels confident enough to make reasonable decisions, or he/she is forced to 
make the final decisions due to limited resources, such as time, money and 
cognitive load. 

9.5   Summary 

The prototype system FACETS is reported in this chapter, including its 
development environment, architecture and functions of subsystems. FACETS is 
the implementation of the CDDP model. Thus, the major intention of FACETS is 
to support the cognition-driven decision processes using IS techniques. 

FACETS will be used as the test bed to evaluate the IS techniques proposed 
according the CDDP model. We will present the experiment details for this 
evaluation in Chapter 10.  Three application cases will be presented in Chapter 11. 
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Chapter 10 
Evaluation of Algorithms and FACETS 

 
 
 
 
 
 
 

 
 
 
 
This chapter reports on the experiments conducted to evaluate the techniques 
(algorithms) and system (FACETS) developed in this research. Based on a 
fictitious manufacture company, a data warehouse, an ontology and an experience 
base were developed and linked with FACETS. Students and professors were 
invited to the experiments. The FACETS and the major algorithms for SA parsing 
and query construction were evaluated based on the interaction between subjects 
and FACETS. 

10.1   Experiment Preparation 

10.1.1   Data Warehouse 

In order to practically evaluate the algorithms, we applied FACETS in an 
illustrative company, called Adventure Works Cycles Ltd, which is a fictitious 
organization described in the manual of SQL Server 2005 (Microsoft 2007a). 
Adventure Works (AW) is a large, multinational manufacturing company. The 
company manufactures and sells bicycles and relevant accessories to commercial 
markets in North America, Europe and Asia. Adventure Works is headquartered in 
Bothell, Washington with 290 employees and several regional sales teams located 
throughout their market base.  

We developed a data warehouse called Adventure Works Data Warehouse 
(AWDW) for this company based on a sample database in SQL Server 2005. In the 
sample database, there are twenty-nine tables including seven fact tables and 
twenty-two dimension tables. The data stored in the sample database covers a 
wide variety of business sectors such as product, account, customer, geography, 
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reseller and sales. In order to make the sample database suitable for this 
experiment, e.g., creating appropriate business scenarios (decision situations), we 
extended the sample database in two ways. First, some table definitions were 
modified. Second, new tables were defined and populated with relevant data. 
Based on the extended sample database, we developed AWDW which represents 
75 tables in total with more business sectors covered, such as advertisement, 
research, government policy, competitors and product delivery. Based on the 
amended tables, we created six cubes: internet sales, reseller sales, sales orders, 
finance, exchange rates and delivery. 

10.1.2   Ontology 

The data warehouse AWDW presents a business application domain. Accordingly, 
we developed an ontology called Adventure Works Ontology (AWO) for this 
application domain using the Ontology Management subsystem of FACETS. In 
AWO, 111 classes are defined which correspond to 111 subsumption relationships 
in the class tree. Among these classes, 80 classes are correlated to tables or cubes 
in AWDW. We also defined over 1000 property-share relationships across these 
classes. The excerpt of the class tree and the class graph is shown in Figure 6.1 
and Figure 6.2 respectively. 

10.1.3   Experience Base 

We used the method of experience elicitation discussed in Section 6.2.2 to produce 
a set of experiences and stored them in the experience base. This experience base is 
used for all subjects. Experience per se is individual-specific, that is, experience is 
different from person to person even within the same domain. However, it is also 
common that people might share the same opinions in some situations, or are able 
to eventually come up with a consensus after communication. In this sense, it was 
appropriate to create common experiences for all subjects in this experiment. The 
advantages of using the same experience base for all subjects are twofold. Firstly, 
much engineering time in eliciting the experience of every subject was saved. 
Secondly, the experience base provided a common basis for every subject in the 
experiments to formulate his/her subjective rating, which might be able to reduce 
the negative effect of subjective data.  

We conducted two experiments to respectively evaluate the related algorithms 
and the prototype system FACETS. In Experiment one, the following algorithms 
were evaluated: NumericPlainParser, LiteralPlainParser, SemanticParser, 
LocalContextDetermination, SqlBuilder and MdxBuilder (Chapter 7). These 
algorithms represent the major points of the technical part of this research. In 
Experiment two FACETS, which represents the combination of all related 
algorithms, was evaluated based on a decision scenario. 
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10.1.4   Subjects 

We invited 22 subjects who have three to five years of working experience in 
different organizations to conduct the evaluation experiments. Before the 
experiment, we gave a tutorial to all subjects on the functions and operation of 
FACETS.  

In the experiments, we mainly focused upon the evaluation of relevant IS 
techniques developed for the situation assessment. The key factors for situation 
assessment include the usefulness and usability of information presented to the 
decision maker, such as the quality and quantity of situation information and the 
method of information presentation.  

10.2   Experiment One: Algorithm Evaluation 

10.2.1   Experiment Design 

We used two basic metrics to measure the performance of algorithms to be 
evaluated: precision and recall. Precision and recall are proposed for evaluating 
the quality of search results returned by information retrieval systems in terms of 
information relevance . Precision is defined as the fraction of the relevant 
documents within the collection of all retrieved documents. Recall is the fraction 
of the documents within the collection of all relevant documents in the data 
source.  

Let r be the number of relevant documents returned by the system, i be the 
number of irrelevant documents returned by the system, and m be the number of 
relevant documents in the data source that are not found by the system. The 
formulas for computing precision and recall are as follows . 

Precision = 
ir

r

+
, 

Recall = 
mr

r

+
. 

In this research, the algorithms to be evaluated are the fundamental techniques 
of situation retrieval. As discussed in Section 5.2, situation retrieval has close 
relationships with information retrieval. During situation retrieval, different 
information objects including meta instances (both numeric and literal), classes, 
native contexts and local contexts are extracted from SA sentences. These 
information objects can also be judged either relevant or irrelevant to the 
manager’s knowledge need. Therefore, it is reasonable to employ the metrics 
precision and recall to measure the performance of related algorithms in this 
research. 

In evaluating information retrieval based on precision and recall, a collection of 
documents needs to be created, and each document needs to be labeled as either 
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relevant or irrelevant. In this experiment, each subject was asked to input 15~20 
sentences in English into FACETS. The sentences could be about any topic of the 
subject’s interest within the scope of the AWO. For example, subjects could 
describe products, sales, customer services and government policies, which were 
defined in the ontology and in the data warehouse. Meanwhile, each subject was 
asked to specify all the numeric and literal meta instances implied in their SA 
sentences. By this means, a collection of labeled SA sentences for experiments 
was created, which was used to evaluate the algorithms NumericPlainParser and 
LiteralPlainParser.  

Relatively speaking, meta instances are easier to specify due to their simplicity 
and obviousness. However, SA triples, local contexts and classes, particularly 
abstract classes, which can be inferred based on meta instances, might be too 
subtle to be specified by subjects. Thus, in this experiment, subjects were not 
asked to label these sorts of information, but to judge the outputs of the algorithms 
by giving 1 (accept) or 0 (reject). Based on the judgments of subjects, precisions 
of algorithms were calculated. This method was used to evaluate the algorithms 
SemanticParser and LocalContextDetermination.  

The evaluation of SA triple generation and DW query construction was more 
complex than the other algorithms, because SA triples and DW queries are very 
difficult to be explained to subjects, as the end users of the system. However, SA 
triples, particularly the wording parts, are directly used to construct DW queries 
which are used to retrieve information from the DW. Thus, analyzing the retrieved 
information would help us to gain insight into the quality of the underlying DW 
queries and SA triples. Information evaluation was conducted in Experiment two. 
In Experiment one, we assessed how parsing length and parsing level affected the 
average number of SA triples generated. Part of Experiment two can be 
considered as indirect evaluation of DW query construction and other aspects of 
SA triple generation, such as information usefulness and information usability. 

In Experiment one, we evaluated algorithms LiteralPlainParser, 
NumericPlainParser, SemanticParser and LocalContextDetermination. As these 
algorithms have already been implemented in FACETS, we set up twenty-two 
computers with FACETS and relevant databases for the twenty-two subjects. Each 
subject was able to interact with a FACETS system independently on a computer. 
The initial data we collected during Experiment one is shown in Table 10.1. 

There are 10 columns in Table 10.1. Column semantic parsing level is the 
maximum level at which classes are able to be inferred. parsing length is the 
maximum length of meta instances which can be recognized during plain parsing. 
The length of a term is the number of words it contains. Experiment one was 
conducted at four parsing levels (1, 2, 3 and 4) and with different parsing length (1 
to 10). For numeric and literal meta instances, metrics precision and recall are 
used. For classes and local contexts, precision is used. The metric average number 
is also used for classes and SA triples. All other graphs in this section are 
generated based on Table 10.1. 
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Table 10.1 Initial Experiment Data of Experiment One 

Numeric Meta 

Instance 

Literal Meta 

Instance Class 

Local 

Context SA Triple 

Parsing 

Level 

Parsing 

Length p r p r 

Average 

Number p p 

Average 

Number 

1  0.929 0.813 0.731 0.704 2.320 0.753 0.440 1.520 

2  0.929 0.813 0.867 0.963 2.320 0.734 0.640 1.720 

3  0.929 0.813 0.844 1.000 2.360 0.738 0.680 1.760 

4  0.929 0.813 0.871 1.000 2.400 0.741 0.640 1.760 

5  0.929 0.813 0.871 1.000 2.400 0.741 0.640 1.760 

6  0.929 0.813 0.871 1.000 2.400 0.741 0.680 1.760 

7  0.929 0.813 0.844 1.000 2.400 0.750 0.680 1.760 

8  0.929 0.813 0.871 1.000 2.400 0.741 0.640 1.760 

9  0.929 0.813 0.871 1.000 2.400 0.741 0.680 1.760 

1 

10  0.929 0.813 0.871 1.000 2.400 0.741 0.640 1.760 

1  0.929 0.813 0.731 0.704 3.000 0.789 0.480 2.080 

2  0.929 0.813 0.839 0.963 2.960 0.771 0.680 2.240 

3  0.929 0.813 0.844 1.000 3.040 0.776 0.720 2.280 

4  0.929 0.813 0.844 1.000 3.040 0.776 0.680 2.280 

5  0.929 0.813 0.871 1.000 3.080 0.778 0.720 2.280 

6  0.929 0.813 0.871 1.000 3.080 0.778 0.680 2.280 

7  0.929 0.813 0.871 1.000 3.080 0.778 0.640 2.280 

8  0.929 0.813 0.871 1.000 3.080 0.778 0.680 2.280 

9  0.929 0.813 0.844 1.000 3.040 0.776 0.720 2.280 

2 

10  0.929 0.813 0.844 1.000 3.040 0.776 0.720 2.280 

1  0.929 0.813 0.704 0.704 3.200 0.792 0.560 2.080 

2  0.929 0.813 0.867 0.963 3.240 0.779 0.720 2.240 

3  0.929 0.813 0.871 1.000 3.280 0.774 0.760 2.280 

4  0.929 0.813 0.844 1.000 3.240 0.771 0.760 2.280 

5  0.929 0.813 0.871 1.000 3.280 0.774 0.760 2.280 

6  0.929 0.813 0.871 1.000 3.280 0.774 0.720 2.280 

7  0.929 0.813 0.844 1.000 3.240 0.771 0.720 2.280 

8  0.929 0.813 0.871 1.000 3.280 0.774 0.760 2.280 

9  0.929 0.813 0.844 1.000 3.240 0.771 0.720 2.280 

3 

10  0.929 0.813 0.844 1.000 3.240 0.771 0.760 2.280 
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Table 10.1 (continued) 

1  0.929 0.813 0.731 0.704 3.360 0.778 0.560 2.080 

2  0.929 0.813 0.839 0.963 3.320 0.761 0.640 2.240 

3  0.929 0.813 0.871 1.000 3.400 0.766 0.720 2.280 

4  0.929 0.813 0.871 1.000 3.400 0.766 0.680 2.280 

5  0.929 0.813 0.844 1.000 3.360 0.764 0.720 2.280 

6  0.929 0.813 0.871 1.000 3.400 0.766 0.720 2.280 

7  0.929 0.813 0.871 1.000 3.400 0.766 0.680 2.280 

8  0.929 0.813 0.844 1.000 3.360 0.764 0.720 2.280 

9  0.929 0.813 0.844 1.000 3.360 0.764 0.720 2.280 

4 

10  0.929 0.813 0.871 1.000 3.400 0.766 0.680 2.280 

Note: p denotes precision; r denotes recall. 

10.2.2   Meta Instance Recognition 

Meta instances are recognized during plain parsing. We use two metrics to 
evaluate the process of meta instance recognition: precision and recall. 
 

• Numeric Meta Instance Recognition 
 

Numeric meta instances are recognized by algorithm NumericPlainParser. As 
can be seen from Table 10.1, the precision and recall of numeric meta instance 
recognition remain unchanged across all parsing lengths and parsing levels. 
Numeric meta instances are mainly fixed-length (one) terms in SA sentences. 
Thus, the recognition of numeric meta instances is not sensitive to parsing lengths. 
In the class tree, parsing levels is related to the maximum length of path along 
which classes are searched, starting from meta instances of taxonomy properties 
up to higher level abstract classes. Parsing levels do not affect the process of 
recognizing numeric meta instances. 

According to Table 10.1, NumericPlainParser is able to recognize numeric 
meta instances at a precision of 92.9% and a recall of 81.3%. 

 
• Literal Meta Instance Recognition 
 

Literal meta instances are recognized by algorithm LiteralPlainParser. The effect 
of parsing lengths on literal meta instance recognition is shown in Figure 10.1. As 
each of these four graphs (corresponding to four parsing levels) shows, both 
precision and recall are affected by parsing length. For example, in Figure 10.1 (a), 
when parsing length = 1, LiteralPlainParser has the lowest precision and recall. 
With the increase of parsing length from 1 to 2, precision and recall rise quickly 
from 0.731 to 0.867 and from 0.704 to 0.963 respectively. However, the tendency of  
 



10.2   Experiment One: Algorithm Evaluation 163
 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

M
ea

su
re

Precision

Recall(a) Parsing Level: 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

M
ea

su
re

Precision

Recall(b) Parsing Level: 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

M
ea

su
re

Precision

Recall(c) Parsing Level: 3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

M
ea

su
re

Precision

Recall(d) Parsing Level: 4  

Fig. 10.1 Impact of Parsing Length on Precision and Recall of Literal Meta Instance 
Recognition 

precision and recall to rise quickly does not persist. When parsing length is 
increased to 3 or greater, recall stays firmly at 100% across the four parsing levels. 
The turning points of precision are slightly different at different parsing levels. In  
Figure (a) (parsing level = 1), precision reaches the maximum at parsing length = 4 
and then fluctuates slightly around 0.87.  For parsing levels 2, 3 and 4, the turning 
point is respectively at parsing length = 5, 3, and 3.  

In SA sentences, different literal instances might have different length. The 
greater the parsing length, the longer literal instances LiteralPlainParser can 
recognize. For a given parsing length, say n, those literal instances whose length is 
greater than n cannot be recognized. This is why precision and recall go up when 
parsing length increases from 1 to 3. Technically, if parsing length is equal to or 
greater than the length of the longest literal meta instance in a SA sentence, all 
literal meta instances can be recognized by LiteralPlainParser, which leads to a 
recall of 100%. Continuous increases of parsing length over the longest literal 
meta instance, will no longer be able to improve the recall and precision. 
According to Figure 10.1, it can be inferred that the length of the longest literal 
meta instance in this experiment is 3, because the recall reaches 100% at a parsing 
length of 3 or over in four graphs. 

Similar to numeric meta instance recognition, Figure 10.2 reflects that parsing 
level does not significant affect the precision and recall of literal meta instance 
recognition. 
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Fig. 10.2 Impact of Parsing Level on Precision and Recall of Literal Meta Instance 
Recognition 

10.2.3   Class Inferring 

Classes are inferred by algorithm SemanticParser. We used two metrics to 
evaluate the process of class inferring: average number of classes inferred and 
precision. 
 

(1) Average Number of Classes Inferred 

Figure 10.3 shows there is a clear positive relationship between the parsing 
level and the average of average number of classes inferred: the higher the parsing 
level, the more classes inferred. The parsing level limits the maximum path length  
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Fig. 10.3 Impact of Parsing Level on Average Number of Classes Inferred 

along which algorithm SemanticParser searches the class tree. A higher parsing 
level allows more classes to be searched, which therefore increases the possibility 
of triggered more appropriate classes. 

The impact of parsing length on the average number of classes inferred has 
different magnitude at different parsing levels (Figure 10.4). The overall pattern 
demonstrated by the four graphs in Figure 10.4 is that the initial increase of 
parsing length generally causes a slight increase in the average number of classes 
inferred. For example, in Figure 10.4 (a), the average number of classes rises from 
2.32 to 2.40 when parsing length is increased from 1 to 4. After the initial increase 
in the average number of classes, no more classes can be inferred with the 
continuous increase of parsing length. For example, the average number of classes 
remains 2.400 when parsing length ≥ 4 in Figure 10.4 (a). This pattern becomes 
unapparent in Figure 10.4 (b), (c) and (d), which correspond to higher parsing 
levels. 

The pattern shown in Figure 10.4 is understandable if we link it to Figure 10.1. 
According to the algorithm SemanticParser, general classes are inferred based on 
meta instances of their taxonomy properties, which are mainly literal meta 
instances. The initial increase of parsing length leads to the increase of precision 
and recall of literal meta instances. In other words, more ‘right’ literal meta 
instances are recognized. Consequently, more general classes are triggered by the 
meta instances. When parsing length rises to 3 or over, the precision and recall of 
literal meta instance recognition reach the maximum, which also leads to the 
maximum of the average number of classes. 

Exceptional changes are also found in Figure 10.4 (b) and (d). Both graphs 
show a slight decrease in the average number of classes when parsing length  
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(b) Parsing Level: 2
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Fig. 10.4 Impact of Parsing Length on Average Number of Classes Inferred 

increases from 1 to 2. This might be the impact of other uncontrolled parameters, 
for example, the subjectivity of experiment data. 

(2) Precision of Class Inferring 

The precision of class inferring is computed based on subjects’ judgments on 
the output of FACETS. According to Table 10.1, precision of class inferring does 
not change significantly with the increase of parsing length within each parsing 
level. The impact of parsing level on precision of class inferring is shown in 
Figure 10.5. The increase of parsing level from 1 to 2 results in an increase of 
0.035 on the precision. However, the precision falls marginally with the 
continuous increase of the parsing level after 2. The precision change over parsing 
level is related to the impact of the parsing level on the average number of classes 
inferred. According to Figure 10.3, the initial increase of parsing level from 1 to 2 
results in more classes inferred. The newly inferred ‘right’ classes out of the all 
inferred classes make a positive contribution to the improvement of precision. 
This leads to the initial increase of precision in Figure 10.5. However, the average 
number of classes inferred keeps going up when the parsing level rises over 2. The 
higher the parsing level, the more high level classes in the class tree are inferred. 
Compared to general classes, it is more difficult for subjects to judge if abstract 
classes, particularly high level abstract classes, produced by the system are right or 
wrong. This might be the reason why the precision of class inferring changes only 
slightly over higher parsing levels. 
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Fig. 10.5 Impact of Parsing Level on Precision of Class Inferring 

10.2.4   Local Context Determination 

The impact of parsing length on the precision of local context determination is 
shown in Figure 10.6. With the initial increase of the parsing length from 1 to 3, a 
rapid increase of precision of local context determination can be seen, followed by 
fluctuations of precision when parsing length is greater than 3.  

Algorithm LocalContextDetermination determines the local context for a SA 
sentence by comparing the context points of alternative classes inferred by 
algorithm SemanticParser. The class with the highest context points will be 
selected as the local context. Note that there is only one local context for a SA 
sentence. Thus, as long as the class representing the true local context is inferred, 
algorithm LocalContextDetermination will be likely to find it. According to 
Figure 10.4, the initial increase of parsing length results in more classes inferred. 
The increased population of classes will improve the possibility for algorithm 
LocalContextDetermination to find the true local context (in terms of user) out of 
all inferred classes. As a result, the precision of local context determination goes 
up with the initial increase of parsing length, and fluctuates with the over increase 
of parsing length.  

Parsing level also has an impact on the precision of local context determination. 
In Figure 10.7, each average precision is computed at a parsing level across 
different parsing lengths (from 1 to 10). The corresponding maximum precision is 
determined by comparing the 10 values of precision. As shown Figure 10.7, both 
average precision and maximum precision peak at parsing level of 3. This pattern 
conforms to the impact of parsing level on the precision of classes inferring which 
is shown in Figure 10.5.  
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Fig. 10.6 Impact of Parsing Length on Precision of Local Context Determination 
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Fig. 10.7 Impact of Parsing Level on Precision of Local Context Determination 

The increase of parsing level from 1 to 3 results in more classes inferred which 
consequently improves the precision of local context determination. However, the over 
increased number of classes might ‘puzzle’ the algorithm LocalContextDetermination, 
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once the class representing the true local context has been inferred. As a result, the 
precision of local context determination falls. 

10.2.5   SA Triple Generation 

The provisional SA triples are generated with uncertainties by algorithms 
LiteralPlainParser and NumericPlainParser. The uncertainties are reduced or 
removed by algorithm SemanticParser. Thus, the experiment on SA triple 
generation reflects the overall performance of these three algorithms. We use 
metric average number of SA triples to evaluate the process of SA triple 
generation. 

Both parsing length and parsing level have a positive impact on the average 
number of SA triples generated (Figure 10.8). Again, the positive relationship 
between parsing length and the average number of SA triples lasts only for the 
initial stage: parsing length rising from 1 to 3. Once parsing length is over 3, no 
further increase of the average number of SA triples can be seen.  

Another noticeable pattern is that, for parsing levels 2, 3, and 4, the average 
number of SA triples changes in exactly the same way with the increase of parsing 
length. Comparing the average number of SA triples at each parsing length, a 
substantial difference exists between parsing level 1 and other three levels.  

SA triples generating is based on three algorithms LiteralPlainParser, 
NumericPlainParser, and SemanticParser. The pattern of SA Triple generation is 
attributed to the impact combination of parsing length and parsing level on the 
three algorithms. 
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Fig. 10.8 Impact of Parsing Level and Parsing Length on Average Number of SA Triples 
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10.2.6   Optimization Analysis 

Based on the evaluation of algorithms, the optimization values of parsing length 
and parsing level for SA parsing can be determined (Table 10.2).  

Table 10.2 Optimization Parsing Length and Parsing Level 

Major Tasks in 
SA Parsing 

Metrics Optimization 
Parsing Length 

Optimization 
Parsing Level 

Precision any any Numeric Meta 

Instance 

Recognition 
Recall any any 

Precision 

≥4 ,  ≥5,  ≥3,  ≥3 

(respectively for 

parsing level 1, 

2, 3 and 4) 

any 
Literal Meta 

Instance 

Recognition 

Recall >=3 any 

Average 

Number 

≥4,  ≥5,  ≥3,  ≥3 

(respectively for 

parsing level 1, 

2, 3 and 4) 

4 
Class Inferring 

Precision any 2 or 3 

Local Context 

Determination 
Precision 3 3 

SA Triple 

generation 

Average 

Number 
≥3 ≥2 

Note: any refers to any valid values within 1~4 for parsing level, and 1~10 for 

parsing length. 

 
In Table 10.2, the optimization parsing lengths and optimization parsing levels 

refer to the values at which corresponding metrics reach maximum values. The 
ultimate goal for algorithms NumericPlainParser, LiteralPlainParser, 
SemanticParser, LocalContextDetermination is generating appropriate SA triples 
and local contexts for query construction. Thus, priority should be given to local 
context determination and SA triple generation, in determining the optimization 
values. According to Table 10.2, the optimization parsing level for SA parsing can 
be roughly determined as 3.  

With the determined optimization parsing level, the optimization parsing length 
for SA parsing can also be identified. Let parsing level = 3, the optimization 
parsing length for precision of literal meta instance recognition and average 
number of class inferring is 3. This parsing length (3) agrees to the optimization 
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parsing length for local context determination and SA triple generation (also 3). 
Thus, the overall optimization parsing length for SA parsing can be roughly 
determined as 3. 

According to Experiment one, for all algorithms, the optimization parsing 
length = 3 and the optimization parsing level = 3. These optimization values will 
be used in Experiment two. 

10.3   Experiment Two: System Evaluation 

10.3.1   Experiment Design 

We evaluated FACETS in terms of its usefulness and usability. Usefulness and 
usability are two dimensions of information value defined by Rouse. The 
usefulness of a decision support system refers to the extent to which information 
produced by the system can help users make decisions. The usability is the extent 
to which information can be easily accessed, understood and applied for decision 
making. We used a scenario-based experiment to evaluate the usefulness and 
usability of FACETS. 

A decision scenario was created for this experiment based on the ontology, 
experience base and data warehouse discussed in Section 11.1. The decision 
scenario set up a decision situation where each subject in the experiment 
participated in a decision-making process based on FACETS. Subjects described 
their SA using English and input into FACETS. FACETS called corresponding 
algorithms to analyze SA, generate DW queries, retrieve relevant situation 
information and present situation information to the subjects. Perceiving situation 
information, the subjects updated their SA and re-input into FACETS. In this way, 
each subject went through up to five decision cycles with the purpose of working 
out an appropriate decision for the business problem presented in the decision 
scenario. However, the goal of Experiment two was not to evaluate the outcome of 
decision generation during a cognition-driven decision process, but to collect 
subjective data about their decision-making processes. The subjective data was 
used to evaluate the usefulness and usability of FACETS. During decision cycles, 
subjects were requested to fill out an evaluation form about the quality of the 
constructed queries.  

During the experiment, each subject ran through up to five decision cycles one 
by one. During each decision cycle, FACETS generated SQL/MDX reports to 
present situation information. A SQL report contained data retrieved from a 
relational table. Subjects browsed the report and judged its usefulness in terms of 
decision making. A MDX report contained data retrieved from a cube which 
included a number of dimensions. Subjects also judged the usefulness of 
dimensions in term of decision making. At the end of each decision cycle, subjects 
were required to answer three questions: 

 

(1) How many relational tables/dimensions did FACETS output which 

you think are useful for your decision situation? The answer is the 

number of accepted tables/dimensions. 
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(2) How many relational tables/dimensions did FACETS output which 

you think are useless for your decision situation? The answer is the 

number of rejected tables/dimensions. 

(3) How many relational tables/dimensions did FACETS miss (fail to 

find) which you think are useful for your decision situation? The answer 

is the number of missed tables/dimensions. 
 
At the end of the decision process, subjects filled out a survey form to give an 

overall rating on FACETS.  The survey form included twenty-four questions 
which were designed to elicit subjects’ opinions about FACETS as shown in Table 
10.4. These questions could be divided into two categories: usefulness evaluation 
and usability evaluation. Subjects were asked to give their subjective ratings for 
each question on a scale of five values (1: strongly disagree, 2: disagree 3: 
neutral, 4: agree, 5: strongly agree). 

According to the results of Experiment one, the parsing length was set at 3 and 
the parsing level was set at 3 for all related algorithms in Experiment two.  

10.3.2   Query Construction Evaluation 

Based on the evaluation forms of query construction that subjects filled out during 
Experiment two, the performance of query construction was evaluated and is 
shown in Table 10.3. The precision and recall for each decision cycle were 
calculated based on the same methods as those in Experiment one. 

Table 10.3 Query Construction Performance 

Decision Cycles 1 2 3 4 5 

Average # of Accepted 

Tables/Dimensions 

0.9  4.0  8.5  9.2  9.5  

Average # of Rejected 

Tables/Dimensions 

1.7  3.1  3.4  3.3  3.6  

Average # of Missed 

Tables/Dimensions 

6.7  5.9  4.4  2.1  1.1  

Precision 0.35 0.56 0.71 0.74 0.73  

Recall 0.12 0.40 0.66 0.81 0.90  

Table 10.3 shows that the average number of tables/dimensions accepted by 
subjects jumps up rapidly from 0.9 to 8.5 over the first three decision cycles. SA is 
accumulated over decision cycles. The more iterations of decision cycle, the more 
SA that subjects input into FACETS and consequently FACETS found more 
relevant situation information. In this sense, the iteration of decision cycles is 
valuable for decision making. However, the speed of increase in the average 
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number of accepted tables/dimensions slows after a number of decision cycles. For 
example, there is only marginal increase of the average number of accepted 
tables/dimensions during decision cycles 4 and 5. Note that SA was accumulated in 
FACETS over decision cycles. The information retrieved by FACETS based on SA 
in a decision cycle might be repeatedly retrieved and presented in a later decision 
cycle as long as the subject did not change or delete the corresponding SA.  

Accompanying the increase of accepted tables/dimensions over decision cycles, 
the average number of rejected tables/dimensions also goes up, although a slight 
fall can be seen in decision cycle 4. This means that noise information always 
comes with valuable situation information in FACETS. In decision cycle 1, there 
are more tables/dimensions rejected than accepted. After that, accepted 
tables/dimensions always outnumber the rejected ones. The gap in the quantity of 
the two sorts of data widens over the decision cycles. This shows that FACETS is 
able to quickly locate much relevant information and filter noise data for decision 
making, which can also be seen from the trend of precision change. Precision goes 
up over the decision cycles. From decision cycle 1 to decision cycle 5, the 
precision is increased by 0.38. 

Over the decision cycles, there are also noticeable changes in the average 
number of missed tables/dimensions. Less tables/dimensions relevant to decision 
making were missed by FACETS when it took more SA input. This pattern is also 
reflected by recall which rises continuously from 0.12 in decision cycle 1 to 0.9 in 
decision cycle 5. 

Based on the above analysis, both the quantity (accepted tables/dimensions) 
and quality (precision and recall) of information output by FACETS increase 
significantly over decision cycles. Different stages (decision cycles) of the 
decision process have various growing speeds: higher in the initial stage, e.g., the 
first three decision cycles in this experiment, and lower in the latter stage. Possible 
reasons for the quantity and quality of situation information to stop rising over the 
decision cycles are (1) newly input SA does not make a significant difference to 
existing SA; (2) the limitation of knowledge base or the DW is reached. In the 
case of the reason (1), the decision maker needs to revise the SA description to 
stimulate FACETS to search for new information. For reason (2), either the 
knowledge base or the DW needs to be extended by feeding fresh data. The 
growing speed of information quantity and quality can also act as a type of 
resource limit discussed in Section 5.2.6, which triggers a final decision to be 
made. That is to say, if no more new situation information can be found, then 
probably it is the time to make the final decision. 

10.3.3   FACETS Evaluation 

Based on the survey forms that subjects filled out during the decision process, the 
performance of FACETS as a whole was evaluated (Table 10.4). In Table 10.4, the 
mean rating and standard deviation (SD) for each question (statement) in the survey 
form were calculated. Questions were grouped into four categories: situation 
awareness, navigation knowledge map, situation information presentation and  
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Table 10.4 FACETS Performance 

STATEMENTS 
Evaluation 

Category 9 

Mean 

Rating 

Standard  

Deviation 

SITUATION AWARENESS 

1. Given a decision situation, I can 

precisely describe my SA on it 

using natural language. 

2 4.10 0.67 

2. I can easily input my SA into the 

system. 

2 4.92 0.32 

NAVIGATION KNOWLEDGE MAPS 

3. Navigation knowledge maps reflect 

my past thinking (reasoning) 

processes in decision processes. 

1 4.41 0.53 

4. Concepts in the navigation 

knowledge maps are related to my 

current SA. 

1 3.87 0.82 

5. Navigation knowledge maps help 

me to understand the current 

decision situation. 

1 3.35 0.65 

6. Navigation knowledge maps have 

implications for seeking relevant 

situation information. 

1 4.56 0.54 

7. Navigation knowledge maps have 

implications for making decisions 

in the current decision situation. 

1 4.01 0.63 

8. I can intuitively make sense of the 

presentation of a navigation 

knowledge map (understand its 

concepts and relationships). 

2 4.79 0.51 

SITUATION INFORMATION PRESENTATION 

9. The generated reports help me to 

understand the basic characteristics 

of the current decision situation. 

1 4.68 0.34 

10. The generated reports help me to 

gain in-depth insights into the 

current decision situation. 

1 4.69 0.79 

                                                           
9 Usefulness:1; Usability: 2. 
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Table 10.4 (continued) 

11. The generated reports help me to 

develop richer SA. 

1 3.77 0.81 

12. The generated reports help me to 

seek further situation knowledge. 

1 3.01 0.45 

13. The generated reports help me to 

seek further situation information. 

1 4.75 0.66 

14. The generated report helps me to 

make final decisions. 

1 2.01 0.80 

15. The navigation from the 

presentation of navigation 

knowledge maps to corresponding 

reports can be easily followed. 

2 4.72 0.30 

16. The reports can be easily 

understood. 

2 4.89 0.33 

OVERALL 

17. The user interface of FACETS is 

user friendly. 

2 5.00 0.29 

18. FACETS helps me to reduce 

mental workload during the 

decision process. 

1 4.61 1.46 

19. FACETS helps me to reuse my 

past management experience. 

1 4.50 0.54 

20. FACETS helps me to digest 

information more easily. 

1 3.97 0.42 

21. FACETS helps me to obtain 

valuable information more 

efficiently. 

1 4.03 1.03 

22. FACETS helps me to obtain 

valuable information more 

effectively. 

1 4.67 0.87 

23. FACETS helps me to make 

decisions more rapidly. 

1 2.56 0.80 

24. FACETS helps me to make 

decisions more confidently. 

1 3.00 0.64 

 
 



176 10   Evaluation of Algorithms and FACETS
 

overall. Each question evaluates FACETS from either an information usefulness 
perspective or from an information usability perspective. 

In questions (Q) 1 and 2 of Table 10.4, subjects agreed, using natural language, 
that they could easily describe their SA and input into FACETS. The natural 
language interface is important for cognitive decision support. Instead of asking 
for specific key words in traditional information retrieval systems, FACETS 
allows managers to describe their SA using natural language. The natural language 
description of SA can be abstract or very specific. Using natural language, 
managers can very freely describe and input whatever they think is of significance 
to their decision making. This might encourage elicitation of valuable information 
from managers’ cognitive processes, which is important to facilitate cognitive 
decision support. 

The overall rating of FACETS in navigation knowledge map evaluation is 4.17. 
This reflects that the navigation knowledge map is an effective way to present 
experience for knowledge reuse in decision making. In particularly, navigation 
knowledge could reflect subjects’ past thinking processes (Q3 with average rating 
of 4.41), and the presentation of navigation knowledge maps is easily to be 
followed (Q8 with average rating of 4.79). FACETS presents situation information 
with the guidance of navigation knowledge. Complex decision situations often 
involve a large quantity of relevant information. Faced with large amount of 
information, managers are vulnerable to missing their clues without navigation. In 
FACETS, concepts of interest to decision situations are connected with situation 
information in navigation knowledge maps. Managers can always re-orientate 
themselves in the light of the navigation knowledge. 

FACETS received an overall rating of 4.07 in situation information 
presentation evaluation. Subjects agreed that the situation information retrieved by 
FACETS was of high usefulness in other aspects (Q9 – Q13) and of high usability 
in Q15 and Q16. However, Subjects in the experiment did not think that the 
situation information retrieved by FACETS could really help them work out a 
final decision, for example, Q14 was only scored an average of 2.01, which is the 
lowest rating in this survey. The possible explanation is that the decision scenario 
was created based entirely on fictitious business data which lack the sufficient 
ability to imply real business patterns. Some data might be conflict with the 
subjects’ commonsense and existing knowledge about business.  

In the overall evaluation of FACETS, Q17 received the highest rating (5.0): all 
subjects were fond of the interface of FACETS. Subjects thought their mental 
workload in decision making were reduced by using FACETS (Q18/4.61). FACETS 
helped subjects to reuse historical experience in the current decision situation 
(Q19/4.5). FACETS also improved the efficiency and effectiveness of obtaining 
valuable situation information (Q21/4.03 and Q22/4.67). Again, FACETS was rated 
lowly in questions related to actual decision results (Q23 and Q24).  

In terms of usefulness, the overall rating of FACETS is 3.91. Thus, the 
information presented by FACETS is helpful for decision makers to develop 
relevant SA for decision making. In terms of usability, the overall rating of 
FACETS is 4.74, which reflects the information generated by FACETS is easy to 
use for decision making. 
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FACETS is an implementation of the CDDP model. The performance of 
FACETS, to some extent, supports our initial expectation on the CDDP model: 
cognitive decision support. In FACETS, the decision maker’s cognitive constructs 
(mental models and situation awareness) are computerized and represented as 
information objects, and used to support the process of seeking relevant 
knowledge and information (situation retrieval) (Q1 and 2 ). The presentation of 
the acquired information is also guided by the decision maker’s mental models. In 
this sense, the computerized information processing process is driven by the 
decision maker’s cognition. The ultimate goal of the cognition-driven information 
processing process is to support the decision maker’s cognitive processes for 
decision making, such as recalling and examining past experience (Q3), 
perceiving and understanding situation information (Q4, Q5 and Q6), developing 
situation awareness (Q9, Q10 and Q11), and formulating solutions (Q7) for the 
current decision situation. In this sense, the argument of cognitive decision 
support in FACETS is made.  

10.4   Summary 

This chapter reports the experiments on the major algorithms and the prototype 
system developed in this research. The key results of the experiments are as 
follows. 
 

(1) As the support techniques for the CDDP model, the algorithms developed in 
this research are significantly affected by two factors: parsing length and parsing 
level.  Taking all factors into account, the best parsing length and parsing level are 
both 3, at which the process of SA parsing reaches the optimization performance.  

(2) As the implementation of the CDDP model, the information generated by 
FACETS has high usefulness and usability. The usefulness evaluation reflects the 
information generated by FACETS can act as an important utility for decision 
making. The usability evaluation reflects the information generated by FACETS 
can be easily accessed, understood and applied for decision making. The 
evaluation results reflect FACETS is able to support decision making from 
cognitive aspects. 
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Chapter 11 
Application Cases of FACETS 

     

 
 
 
 
 

FACETS was designed and developed using a generic architecture, allowing it to 
be used for decision support in different domains. We created two fictitious 
organizations in business (Section 11.1) and public health (Section 11.2) 
respectively, for illustration of applying FACETS to support decision making. For 
each specific application of FACETS, three components need to be instantiated: a 
data warehouse, an ontology, and an experience base.  

11.1   Application CaseⅠ: Business 

11.1.1   Organization Background 

Adventure Works (AW) is an international company specialized in manufacturing 
and selling bikes, bike accessories and related clothing. AW has subsidiaries in 
Australia, Canada, France, Germany, United Kingdom, and United States. AW 
markets their products via traditional resellers and internet outlets.  

We developed a data warehouse called AWDW for this company, based on a 
sample database in SQL Server 2005. In the sample database, there are twenty-
nine tables including seven fact tables and twenty-two dimension tables. The data 
stored in the sample database covers a wide variety of business sectors such as 
product, account, customer, geography, reseller and sales. In order to make the 
sample database suitable for this experiment, e.g., creating appropriate business 
scenarios (decision situations), we extended the sample database in two ways. 
First, some table definitions were modified. Second, new tables were defined and 
populated with relevant data.  

AWDW represents 75 tables in total with more business sectors covered, such as 
advertisement, research, government policy, competitors and product delivery. 
Based on the amended tables, we created six cubes: internet sales, reseller sales, 
sales orders, finance, exchange rates and delivery. 
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11.1.2   The Ontology       

According to the technical specification of FACETS, we developed an ontology 
called Adventure Works Ontology (AWO) in order to apply FACETS in the 
context of this company (AW). In AWO, totally 116 classes are defined, 
corresponding to 115 subsumption relationships in the class tree. Among these 
classes, 80 classes are correlated to tables or cubes in AWDW. For example, class 
PROMOTION has a correlated table t_promotion in the AWDW. Class 
INTERNET SALES has a correlated cube InternetSales in the AWDW. The class 
tree of AWO is shown in Figure 11.1. 

We defined over 1000 property-share relationships across the classes in AWO. 
Some examples of property-share relationship are: rs (PRODUCT RELEASE, 
SALES), rs (PRODUCT RELEASE, MOUNTAIN BIKE), and rs (SALES, 
PROMOTION). 

11.1.3   The Experience Base 

The experience base was created using the method of experience elicitation discussed 
in Section 6.2.2. Part of the experience base is visually shown in Figure 11.2. 

 

 

Fig. 11.2  An Excerpt of the Experience Base of Application Case I 

The experience map shown in Figure 11.2 represents how PRODUCT SALES 
are affected by different factors from different business units. This experience map 
will help a manager to approach the right business information regarding his/her 
current decision situation. For example, PROMOTION is one of the identified 
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contributors to INTERNET SALES. During a decision process, FACETS might 
retrieve the data related to the promotion campaigns of BIKES in the market 
department (stored in the data warehouse), and present the retrieved data to the 
manager. 

11.1.4   Decision Situation 

We use a decision situation to illustrate how FACETS can support decision 
making in the context of AW. This decision situation is described as follows. 
 

AW has been dominating the market for over 10 years. However, a big 

challenge is coming… 

Time: 9:00 AM 

Date: 24 December 2003 

Mr. Cobarol is the chief executive officer of Adventure Works. Mr. 

Cobarol has been sleepless for days, because he got a very bad news 

from the marketing department: the sales of their newly released bike 

model (BK-M82S-38) have dropped over 40% over the past two weeks. 

So, with FACETS, how should Mr. Cobarol response appropriately, and 

reverse the tough situation? 

11.1.5   Decision Process 

A complete decision process consists of a number of decision cycles. In each 
decision cycle, the manager inputs into FACETS a description of the current  
decision situation in form of natural language. The corresponding output of 
FACETS is the situation information retrieved from the data warehouse 
according to the situation description. The manager’s SA is developed and/or 
enriched through perceiving the situation information. The improved SA helps 
the manager to work out a better decision to the current decision situation. There 
are four decision cycles in the decision process of the decision situation given in 
Section 11.1.4. 

FACETS can be started up through double-clicking the FACETS executable 
main file under the installation folder. During starting up, FACETS will check all 
system configuration parameters. If no error is found, the main interface will 
present to the manager, shown in Figure 11.3. 

 

11.1.5.1   Decision Cycle Ⅰ 

(1) The Initial Situation Awareness 

A new decision process begins with inputting the initial SA of the manager.  
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Fig. 11.3 The Main Interface of FACETS 
 
The manager selects the New Situation option under menu Situation 

Awareness (Figure 11.4) to open the Situation Awareness Management dialog 
(Figure 11.5). 

 

 

Fig. 11.4 The Menu of Start a New Decision Making Task 
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Fig. 11.5 Situation Awareness Management 

In the Situation Awareness Management dialog, the manager inputs a SA 
sentence as bellows (Figure 11.6). 

 

 

Fig. 11.6 The Initial Situation Awareness 
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BK-M82B-38 was a very good product. 

 
This sentence represents the manager’s initial SA about the current decision 

situation. An initial SA can be more complex than the above one, consisting of a 
number of sentences.  

(2) Situation Awareness Parsing 

The manager selects the Parse SA option under menu Parse (Figure 11.7) to 
open the SA Parser dialog (Figure 11.8). 

 

Fig. 11.7 The Menu of SA Parsing 

 

Fig. 11.8 Situation Parser in Decision Cycle Ⅰ 
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The manager’s initial SA is displayed in the Situation Parser dialog and ready 
to be parsed by FACETS (Figure 11.8). Figure 11.9 shows the process of SA parsing 
under progress. Figure 11.10 shows the final results of SA parsing, which are 
instances or classes inferred by FACETS from the initial SA. The presentation of 
SA parsing results is mainly for the purpose of research demonstration. As a 
decision maker, the manager does not need to understand the parsing results.  

 

 

Fig. 11.9 Parse SA Sentences in Decision Cycle Ⅰ 

 

Fig. 11.10 The Results of SA Parsing in Decision Cycle Ⅰ 

(3) Situation Awareness Annotating 

The manager selects the Annotate Current Parse option under menu Annotation 
(Figure 11.11) to open the Situation Annotation dialog (Figure 11.12). The manager  
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clicks on the Annotate button, the current SA parsing results are annotated by 
FACETS, as shown in Figure 11.13. The presentation of SA annotating results is 
mainly for the sake of research demonstration. 
 

 

 

Fig. 11.11 The Menu of Annotate SA Parsing 

 

Fig. 11.12 Situation Annotation 
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Fig. 11.13 The Results of SA Annotating in Decision Cycle Ⅰ 

(4) Query Generating 

The manager selects the Generate New Query option under menu Query (Figure 
11.14) to open the Query Builder dialog (Figure 11.15).  

The manager clicks on the Build Queries button, the corresponding data 
warehouse queries are generated by FACETS, as shown in Figure 11.16. The 
presentation of generated queries is mainly for the purpose of research demonstration. 

 

Fig. 11.14 Query Menu 
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Fig. 11.15 Query Builder 

 

Fig. 11.16 Queries Built by FACETS in Decision Cycle Ⅰ 

(5) Situation Presentation 

The manager selects the Open Cuemap option under menu Presentation (Figure 
11.17) to open the corresponding Cuemap (Figure 11.18).  
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Fig. 11.17 Presentation Menu 

 

Fig. 11.18 Cuemap in Decision Cycle Ⅰ 

 
The cuemap is extracted by FACETS from the experience base, according to 

the manager’s input. A node (Figure 11.18) in the cuemap represents a concept of 
the manager’s interest in terms of decision making.  
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Hovering above a concept icon will activate the corresponding concept. For 
example, TECHNOLOGY RESEARCH becomes active in Figure 11.19 and 
MOUNTAIN BIKE active in Figure 11.20.  

 

 
Fig. 11.19 Active Concept: TECHNOLOGY RESEARCH in Decision Cycle Ⅰ 

 
Fig. 11.20 Active Concept: MOUNTAIN BIKES in Decision Cycle Ⅰ 

(6) Reports 

Clicking on an active concept will open up the report containing information 
related to current decision situation. The corresponding report of concept 
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MOUNTAIN BIKES and TECHNOLOGY RESEARCH in this decision cycle is 
shown Figure 11.21 and Figure 11.22 respectively. 

 

 
Fig. 11.21 The MOUNTAIN BIKES Report in Decision Cycle Ⅰ 

 
Fig. 11.22 The TECHNOLOGY RESEARCH Report in Decision Cycle Ⅰ 

(7) Situation Assessment 

The manager perceives situation information presented in the reports and 
develops a deeper understanding of the decision situation. As such, the manager’s 
SA is eventually developed and enriched in this decision cycle. 

In the end of decision cycle I, the manager found himself not confident enough 
to make a final decision. Then he chose to proceed to another decision cycle in 
order to develop richer SA through acquiring more situation information. 
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11.1.5.2   Decision Cycle Ⅱ 

(1) Situation Awareness Updating  

Following the first decision cycle, decision cycleⅡ begins with updating the 
acquired SA stored in FACETS. The manager selects the Update SA option under 
menu Situation Awareness (Figure 11.23) to open the Situation Awareness 
Management dialog (Figure 11.24).  

 

Fig. 11.23 Situation Awareness Menu 

 

Fig. 11.24 Situation Awareness Update in Decision Cycle Ⅱ 
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After reading through the reports presented by FACETS in the first decision 
cycle, the manager has some updates on his understanding of the decision 
situation. He updates his SA by inputting the following sentence (Figure 11.24): 

 

 As the successor of BK-M82B-38, BK-M82S-38 was released in 2001. 

(2) Situation Awareness Parsing 

Again, the new SA sentence is parsed by the Situation Parser (Figure 11.25). 

 

Fig. 11.25 Situation Parser in Decision Cycle Ⅱ 

(3) Situation Awareness Annotating 

The manager’s new situation awareness is annotated (Figure 11.26). 

 

Fig. 11.26 Situation Annotation in Decision Cycle Ⅱ 
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(4) Query Generating 

The data warehouse queries are re-generated according to the current SA 
(Figure 11.27 and Figure 11.28). 

 

 

Fig. 11.27 Query Builder in Decision Cycle Ⅱ 

 

Fig. 11.28 Query Builder in Decision Cycle Ⅱ 
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(5) Situation Presentation: Refresh Cuemap 

The manager selects the Refresh Cuemap option under menu Presentation 

(Figure 11.29) to open the corresponding Cuemap (Figure 11.30). 

 
Fig. 11.29 Presentation Menu in Decision Cycle Ⅱ 

 
Fig. 11.30 Cuemap in Decision Cycle Ⅱ 
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(6) Reports 

Clicking on an active concept will open up the report containing information 
related to current decision situation. The corresponding report of concept 
MOUNTAIN BIKES and TECHNOLOGY RESEARCH in this decision cycle are 
shown Figure 11.31 and Figure 11.32 respectively. 

 

 

Fig. 11.31 The MOUNTAIN BIKES Report in Decision Cycle Ⅱ 

 

Fig. 11.32 The TECHNOLOGY RESEARCH Report in Decision Cycle Ⅱ 
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(7) Situation Assessment 

The manager perceives situation information presented in the reports and 
develops a deeper understanding of the decision situation. As such, the manager’s 
SA is eventually developed and enriched in this decision cycle. 

In the end of decision cycleⅡ , the manager found himself not confident 
enough to make a final decision. Then he chose to proceed to another decision 
cycle in order to develop richer SA through acquiring more situation 
information. 

11.1.5.3   Decision Cycle Ⅲ  

(1) Situation Awareness Updating 

Following the second decision cycle, decision cycle Ⅲ begins with updating 
the acquired SA stored in FACETS. The manager selects the Update SA option 
under menu Situation Awareness (Figure 11.23) to open the Situation Awareness 
Management dialog (Figure 11.24).  

After reading through the reports presented by FACETS in the past decision 
cycles, the manager has some updates on his understanding of the decision 
situation. He updates his SA by inputting the following sentence (Figure 11.33): 

 

BK-M82S-38 was designed with higher performance and lower price. 
 

 

Fig. 11.33 Situation Awareness Update in Decision Cycle Ⅲ 
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(2) Situation Awareness Parsing 

The new SA sentence is parsed by the Situation Parser (Figure 11.34). 

 

Fig. 11.34 Situation Parser in Decision Cycle Ⅲ 

(3) Situation Awareness Annotating 

The manager’s new situation awareness is annotated (Figure 11.35). 

 

Fig. 11.35 Situation Annotation in Decision Cycle Ⅲ 

(4) Query Generating 

The data warehouse queries are re-generated according to the current SA 
(Figure 11.36 and Figure 11.37). 
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Fig. 11.36 Query Builder in Decision Cycle Ⅲ 

 

Fig. 11.37 Query Builder in Decision Cycle Ⅲ 

(5) Situation Presentation: Refresh Cuemap 

The manager selects the Refresh Cuemap option under menu Presentation to 
open the corresponding Cuemap (Figure 11.38). 
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Fig. 11.38 Cuemap in Decision Cycle Ⅲ 

(6) Reports 

Clicking on an active concept will open up the report containing information 
related to current decision situation. The corresponding report of concept 
MOUNTAIN BIKES and TECHNOLOGY RESEARCH in this decision cycle are 
shown Figure 11.39 and Figure 11.40 respectively. 

 

 

Fig. 11.39 The MOUNTAIN BIKES Report in Decision Cycle Ⅲ 
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Fig. 11.40 The TECHNOLOGY RESEARCH Report in Decision Cycle Ⅲ 

Within the context of the domain knowledge, FACETS does not detect updates 
of the manager’s input, which is significant enough to retrieve new situation 
information. Thus, the reports in Decision Cycle Ⅲ are the same as those in 
Decision Cycle Ⅱ. 

(7) Situation Assessment 

As there is no any new information related to current decision situation, 
presented by FACETS in this decision cycle, the manager’s SA remains the same 
as the previous decision cycle. 

In the end of decision cycleⅡ, the manager found himself not confident enough 
to make a final decision. Then he chose to proceed to another decision cycle in 
order to develop richer SA through acquiring more situation information. 

11.1.5.4   Decision Cycle IV 

(1) Situation Awareness Updating 

Following the previous decision cycle, decision cycle Ⅳ begins with updating 
the acquired SA stored in FACETS. The manager selects the Update SA option 
under menu Situation Awareness (Figure 11.23) to open the Situation Awareness 
Management dialog (Figure 11.24).  

After reading through the reports presented by FACETS in the past decision 
cycles, the manager has some updates on his understanding of the decision 
situation. He updates his SA by inputting the following sentence (Figure 11.41): 

 

However, the internet sales of BK-M82S-38 went down in Germany and United 

Kingdom in 2001 and 2002. 
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Fig. 11.41 Situation Awareness Update in Decision Cycle Ⅳ 

(2) Situation Awareness Parsing 

The new SA sentence is parsed by the Situation Parser (Figure 11.42). 
 

 

Fig. 11.42 Situation Parser in Decision Cycle Ⅳ 

(3) Situation Awareness Annotating 

The manager’s new situation awareness is annotated (Figure 11.43). 
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Fig. 11.43 Situation Annotation in Decision Cycle Ⅳ 

(4) Query Generating 

The data warehouse queries are re-generated according to the current SA 
(Figure 11.44). 

 

 

Fig. 11.44 Query Builder in Decision Cycle Ⅳ 

(5) Situation Presentation: Refresh Cuemap 

The manager selects the Refresh Cuemap option under menu Presentation to 
open the corresponding Cuemap (Figure 11.45). 
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Fig. 11.45 Cuemap in Decision Cycle Ⅳ 

(6) Reports 

Clicking on an active concept will open up the report containing information 
related to current decision situation. The reports shown in Figure 11.46, 
 

 

 

Fig. 11.46 The COMPETITOR Report in Decision Cycle Ⅳ 
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Figure 11.47 and Figure 11.48 are respectively connected to concepts 
COMPETITOR, PROMOTION, and DELIVERY. 

 

Fig. 11.47 The PROMOTIION Report in Decision Cycle Ⅳ 

 

 

Fig. 11.48 The DELIVERY Report in Decision Cycle Ⅳ 

If the concept being clicked corresponds to a cube, the MDX reporting module 
will be called.  The MDX reporting module requires managers to choose firstly the 
analysis condition. Analysis conditions consist of dimensions, attributes, members 
and measures. As shown in Figure 11.49, a number of relevant dimensions such as 
RESELLER, SALES TERRITORY, PRODUCT and DATE are available for 
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selection. Under each dimension are a number of attributes; under each attribute 
are a number of members. For example, Sales Territory Country is an attribute for 
dimension SALES TERRITORY; United Kingdom and Germany are members for 
attribute Sales Territory Country.  

Managers can organize the analysis conditions of their selection along three 
axes (X, Y and Z) displayed as the top box, middle box and bottom box under 
label Selected Analysis Dimensions in Figure 11.49. The available measures 
defined with the corresponding cube are also shown in the GUI, such as Average 
Rate, Internet Order Quantity and Internet Sales Amount.  

 

 

Fig. 11.49 MDX Analysis Condition Customization in Decision Cycle Ⅳ 

A finished analysis condition customization is shown in Figure 11.50, which 
results in a MDX query as follows. 

SELECT  

{([PRODUCT].[PRODUCT].[Mountain-100 Silver, 38]),  

([PRODUCT].[PRODUCT].[Mountain-100 Black, 38]) 

} ON 0, 

{([SALES TERRITORY].[ SALES TERRITORY COUNTRY].[United 

Kingdom]),    
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([SALES TERRITORY].[ SALES TERRITORY COUNTRY].[Germany]) 

} ON 1, 

{([Date].[ Calendar Year].[2001]), ([Date].[ Calendar Year].[2002]) 

} ON 2 

FROM [Adventure Works]  

WHERE [Internet Sales Amount] 

This MDX query has there axes: 0, 1 and 2. 

 

Fig. 11.50 Finished MDX Analysis Condition Customization in Decision Cycle Ⅳ 

When the manager finishes customizing the analysis conditions, the 
corresponding MDX query will be generated and submitted to the data warehouse 
to retrieve relevant situation information. The retrieved situation information is 
presented to the manager in the form of MDX report. Figure 11.51 shows a MDX 
report generated by the MDX reporting module according to the analysis 
condition defined in Figure 11.50. This MDX report shows the Internet sales 
amount across the United Kingdom and Germany for different product models in 
the year 2002. There are two pages of reports generated for 2002 and 2001 
respectively. Managers can click on the Next Report button to see different pages. 
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Fig. 11.51 A MDX Report in Decision Cycle Ⅳ 

(7) Situation Assessment 

The manager perceives situation information presented in the reports and 
develops a deeper understanding of the decision situation. As such, the manager’s 
SA is eventually developed and enriched in this decision cycle. 

11.1.6   Final Decision 

In the end of decision cycle Ⅳ, the manager carefully read through all the relevant 
reports related to the current decision situation and found himself confident 
enough to make a final decision as follows. 
 
 

Federal Express (FE) is one of the most important business partners. We 

have been using FE to deliver our products in Europe for over 10 years. 

However, things just changed. FE has outsourced his European operation 

to some local logistics companies due to the petrol price rise. The 

outsourced operation keeps the cost down, however product delivery has 

become very inefficient. Consequently, the average delivery time of BK-

M82S-42 has risen from 3 business days to over 1 week. The over slow 

delivery service has discouraged our old customers and potential buyers. 

Therefore, urgently we need create new partnerships for product delivery 

in order to increase the sales of BK-M82S-42. 

11.2   Application Case II: Public Health 

In this section, we will briefly report a research project, conducted by a Master 
student (Alam 2009), in which FACETS was integrated into an early warning  
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system (EWS) in public health. The early warning system is used to support 
decision making for prediction, prevention and response to future pandemics.  

Early warning systems are considered as effective tools to give prediction 
before the real problems occur. The EWS in pandemic control are complex and 
difficult to develop, due to some real issues, such as detecting the future 
pandemic, controlling all disease, late disease prevention, measuring all levels of 
disease, monitoring drug’s stock and vaccine’s stock, and predicting disease 
behaviors. In this project, FACETS was incorporated into an EWS as its key part 
for decision support. 

According to the technical specification of FACETS, an ontology called EWSO 
was developed in order to apply FACETS in the context of pandemic early 
warning. In EWSO, 64 classes were defined, corresponding to 63 subsumption 
relationships in the class tree. Among these classes, 51 classes are correlated to 
tables or cubes in the data warehouse. Over 300 property-share relationships 
across these classes were also defined. Part of the class tree of EWSO is shown in 
Figure 11.52. 

The experience base was created using the method of experience elicitation 
discussed in Section 6.2.2. Part of the experience base is shown in Figure 11.53, 
which represents how FLU is affected by different factors from different factors.  

Human 
Resources

Human 
socialisation

human 
population

Flu

News 
Distribution

Medicine 
Production

Air 
Pollution

Human 
Interaction

Bad 
Weather Disease 

Advertising

City Habit

City 
Condition

Technolog
y

Product 
Delivery

Dust

Human 
Resources

animal 
population

Chemical 
Factory

Winds
 

Fig. 11.53 The Mental Models of the EWS 

This experience map will help a decision maker to approach the right disease 
information regarding his/her current decision situation. For example, for the issue 
of NEWS DISTRIBUTION, the relevant information that should be examined 
includes HUMAN RESOURCES, DISEASE ADVERTISING, and HUMAN 
SOCIALISATION. FACETS will utilize these causal relationships between 
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different issues to assist the decision makers to expose valuable information for 
decision making.  

A decision making problem supported by the EWS is described as follow: 

How to catch up Flu Pandemic before it happen in Sydney? 
 
Some situation descriptions of the decision maker when using FACETS in the 

decision process are as follows: 
 

Influenza epidemics of type C in occurred twice in Broken Valley in 2001 

and 2003. 

We always see strong storms in the metropolitan areas of Broken Valley.  

A newly constructed chemistry plant is causing serve air pollution in that 

area. 

 

 

Fig. 11.54 A Cuemap Generated by FACETS in the EWS 

The decision maker describes the decision situation in form of natural 
language, and inputs these descriptions into FACETS. The descriptions are 
analyzed according to the domain ontology and experiences. Corresponding data 
warehouse queries are constructed to retrieve situation information and present it 
to the decision maker according to the cue map. One of the cue maps generated by 
FACETS is shown in Figure 11.54. The decision maker browses the cue map and 
examines the situation information connected to different concepts. By this way, 
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the decision maker is able to develop his/her SA about the current decision 
situation. The final solution in this application case is as follows. 

 
(1) We need to plant more trees in Sydney. 
(2) We need to give vaccines to all people. 
(3) We need to spread the appropriate information to protect them from Flu. 
(4) We need to manage the operation standard for all chemical factories. 
(5) We need to manage all medicines stock. 

11.3   Summary 

FACETS is a decision support system, particularly for dealing with ill-structured 
problems in complex decision situations. This chapter presents two application 
cases of FACETS in two different domains: business and public health. No matter 
what decision situation, FACETS is an effective tool which assists the decision 
maker to approach the most relevant information to the decision situation. The 
basic methodology of decision support in FACETS is to seek and present useful 
situation information for the decision maker, and help the decision maker to 
develop rich situation awareness about the decision situation. Better situation 
awareness is more likely lead to better decisions, which is theoretical basis of 
FACETS. 

As can be seen from the two application cases, the application of FACETS 
requires three components: a domain ontology, an experience base and a data 
warehouse, which are customized according to the application domain. 
Technically, FACETS can be used for decision support in any domain, as long as 
the appropriate domain ontology, experience base and data warehouse can be 
constructed. 
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