
Li Niu, Jie Lu, and Guangquan Zhang

Cognition-Driven Decision Support for Business Intelligence

Studies in Computational Intelligence,Volume 238

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 216. Matthew Taylor
Transfer in Reinforcement Learning Domains, 2009
ISBN 978-3-642-01881-7

Vol. 217. Horia-Nicolai Teodorescu, Junzo Watada, and
Lakhmi C. Jain (Eds.)
Intelligent Systems and Technologies, 2009
ISBN 978-3-642-01884-8

Vol. 218. Maria do Carmo Nicoletti and Lakhmi C. Jain (Eds.)
Computational Intelligence Techniques for Bioprocess
Modelling, Supervision and Control, 2009
ISBN 978-3-642-01887-9

Vol. 219. Maja Hadzic, Elizabeth Chang,
Pornpit Wongthongtham, and Tharam Dillon
Ontology-Based Multi-Agent Systems, 2009
ISBN 978-3-642-01903-6

Vol. 220. Bettina Berendt, Dunja Mladenic,
Marco de de Gemmis, Giovanni Semeraro,
Myra Spiliopoulou, Gerd Stumme,Vojtech Svatek, and
Filip Zelezny (Eds.)
Knowledge Discovery Enhanced with Semantic and Social
Information, 2009
ISBN 978-3-642-01890-9

Vol. 221. Tassilo Pellegrini, Sören Auer, Klaus Tochtermann,
and Sebastian Schaffert (Eds.)
Networked Knowledge - Networked Media, 2009
ISBN 978-3-642-02183-1

Vol. 222. Elisabeth Rakus-Andersson, Ronald R.Yager,
Nikhil Ichalkaranje, and Lakhmi C. Jain (Eds.)
Recent Advances in Decision Making, 2009
ISBN 978-3-642-02186-2

Vol. 223. Zbigniew W. Ras and Agnieszka Dardzinska (Eds.)
Advances in Data Management, 2009
ISBN 978-3-642-02189-3

Vol. 224.Amandeep S. Sidhu and Tharam S. Dillon (Eds.)
Biomedical Data and Applications, 2009
ISBN 978-3-642-02192-3

Vol. 225. Danuta Zakrzewska, Ernestina Menasalvas, and
Liliana Byczkowska-Lipinska (Eds.)
Methods and Supporting Technologies for Data Analysis, 2009
ISBN 978-3-642-02195-4

Vol. 226. Ernesto Damiani, Jechang Jeong, Robert J. Howlett,
and Lakhmi C. Jain (Eds.)
New Directions in Intelligent Interactive Multimedia Systems
and Services - 2, 2009
ISBN 978-3-642-02936-3

Vol. 227. Jeng-Shyang Pan, Hsiang-Cheh Huang, and
Lakhmi C. Jain (Eds.)
Information Hiding and Applications, 2009
ISBN 978-3-642-02334-7

Vol. 228. Lidia Ogiela and Marek R. Ogiela
Cognitive Techniques in Visual Data Interpretation, 2009
ISBN 978-3-642-02692-8

Vol. 229. Giovanna Castellano, Lakhmi C. Jain, and
Anna Maria Fanelli (Eds.)
Web Personalization in Intelligent Environments, 2009
ISBN 978-3-642-02793-2

Vol. 230. Uday K. Chakraborty (Ed.)
Computational Intelligence in Flow Shop and Job Shop
Scheduling,2009
ISBN 978-3-642-02835-9

Vol. 231. Mislav Grgic, Kresimir Delac, and Mohammed
Ghanbari (Eds.)
Recent Advances in Multimedia Signal Processing and
Communications, 2009
ISBN 978-3-642-02899-1

Vol. 232. Feng-Hsing Wang, Jeng-Shyang Pan, and
Lakhmi C. Jain
Innovations in Digital Watermarking Techniques, 2009
ISBN 978-3-642-03186-1

Vol. 233. Takayuki Ito, Minjie Zhang,Valentin Robu,
Shaheen Fatima, and Tokuro Matsuo (Eds.)
Advances in Agent-Based Complex Automated Negotiations,
2009
ISBN 978-3-642-03189-2

Vol. 234.Aruna Chakraborty and Amit Konar
Emotional Intelligence, 2009
ISBN 978-3-540-68606-4

Vol. 235. Reiner Onken and Axel Schulte
System-Ergonomic Design of Cognitive Automation, 2009
ISBN 978-3-642-03134-2

Vol. 236. Natalio Krasnogor, Belén Melián-Batista, José A.
Moreno-Pérez, J. Marcos Moreno-Vega, and David Pelta
(Eds.)
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2008), 2009
ISBN 978-3-642-03210-3

Vol. 237. George A. Papadopoulos and Costin Badica (Eds.)
Intelligent Distributed Computing III, 2009
ISBN 978-3-642-03213-4

Vol. 238. Li Niu, Jie Lu, and Guangquan Zhang
Cognition-Driven Decision Support for Business Intelligence,
2009
ISBN 978-3-642-03207-3

Li Niu, Jie Lu, and Guangquan Zhang

Cognition-Driven Decision
Support for Business Intelligence

Models, Techniques, Systems and Applications

123

Li Niu
University of Technology Sydney (UTS)
Fac. Information Technology
PO BOX 123
Broadway NSW 2007
Australia
E-mail: ollien@gmx.com

Jie Lu
University of Technology Sydney (UTS)
Fac. Information Technology
PO BOX 123
Broadway NSW 2007
Australia
E-mail: jielu@it.uts.edu.au

Guangquan Zhang
University of Technology Sydney (UTS)
Fac. Information Technology
PO BOX 123
Broadway NSW 2007
Australia
E-mail: zhangg@it.uts.edu.au

ISBN 978-3-642-03207-3 e-ISBN 978-3-642-03208-0

DOI 10.1007/978-3-642-03208-0

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: Applied for

c© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Cognition-driven decision support system (DSS) has been recognized as a
paradigm in the research and development of business intelligence (BI). Cognitive
decision support aims to help managers in their decision making from human
cognitive aspects, such as thinking, sensing, understanding and predicting, and
fully reuse their experience. Among these cognitive aspects, decision makers’
situation awareness (SA) and mental models are considered to be two important
prerequisites for decision making, particularly in ill-structured and dynamic
decision situations with uncertainties, time pressure and high personal stake. In
today’s business domain, decision making is becoming increasingly complex. To
make a successful decision, managers’ SA about their business environments
becomes a critical factor.

This book presents theoretical models as well practical techniques of cognition-
driven DSS. It first introduces some important concepts of cognition orientation in
decision making process and some techniques in related research areas including
DSS, data warehouse and BI, offering readers a preliminary for moving forward in
this book. It then proposes a cognition-driven decision process (CDDP) model
which incorporates SA and experience (mental models) as its central components.
The goal of the CDDP model is to facilitate cognitive decision support to
managers on the basis of BI systems. It also presents relevant techniques
developed to support the implementation of the CDDP model in a BI environment.
Key issues addressed of a typical business decision cycle in the CDDP model
include:

• natural language interface for a manager’s SA input;

• extraction of SA semantics;

• construction of data warehouse queries based on the manger’s SA and

experience;

• situation information retrieval from data warehouse;

• how the manager perceives situation information and update SA;

• how the manager’s SA leads to a final decision.
Finally, a cognition-driven DSS, FACETS, and two illustrative applications of

this system are discussed.

VI Preface

Two important features of this book clearly distinguish itself from other books
in similar areas:

(1) It is the first book to systematically discuss the theories, technologies and
applications of cognitive decision support for BI.

(2) It reflects the latest academic research progress as well as the state-of-art BI
technologies by combing contemporary cognitive psychology, DSS, BI, and data
warehousing.

This book is mainly based on our past few years’ research developments in this
field. The technologies presented in this book is up-to-date throughout some
results come from ours and other authors’ recent publications.

The potential readers of this book are organizational managers and practicing
professionals, who can use the provided methods and software to solve their real
decision problems; researchers in the areas of decision making, DSS and BI;
students at the advanced undergraduate or Master’s level in management or
business administration programs; and students at the advanced undergraduate or
Master’s level in information systems, information technology and computer
science programs.

This book was organized into four major parts.
(1) Concept part (Chapters 1, 2, 3 & 4) covers concepts and frameworks of

decision making and general decision-making techniques in DSS.
(2) Model part (Chapter 5) presents readers with the framework of cognitive

decision support and the model of cognition-driven decision processes.
(3) Technique part (Chapters 6, 7 & 8) discusses the specific techniques

(methods and algorithms) of cognitive decision support. Readers will learn how
information technologies are combined with cognitive psychology models to solve
business decision-making problems.

(4) System and Application part (Chapters 9, 10 & 11) introduces a cognition-
driven DSS, FACETS. FACETS is a successful implementation of the cognition-
driven decision process model, which was developed based on the models and
techniques presented in this book. This part also demonstrates the evaluation
results of FACETS and its two illustrative applications in business and public
health respectively.

Readers can gain various advantages from this book:
As an academic, you will know the latest research progress of cognitive DSS in

our research laboratory. This book provides a wide range of literature in many
related areas, such as BI, data warehousing, cognitive psychology, naturalistic
decision making, recognition-primed decision making, and natural language
interface to databases. It also points out some potential topics for further research.

As an information technology practitioner, reading this book, you will stay
abreast of BI, and knowing the new generation of BI systems. The models,
techniques and algorithms presented in this book will help you understand how to
better support business managers’ work using the state-of-art BI technology.

As a business manager, you will be presented with a new methodology to
interpret your business problems from a new perspective. The technologies
included in this book will provide a new vision for you to understand and handle
your business problems. After reading the book, you should be able to identify

Preface VII

decision-making problems from real practices, to build mental models, and then to
use the cognition-driven DSS provided in the book to support your decision
making.

As a tertiary student, you will have a chance to touch on a wide rang of
information technologies, which will be a starting point for your future study and
career. You will also learn how to convert business problems into research
projects.

We wish to thank the Australian Research Council (ARC) as the work
presented in this book was partially supported under ARC Discovery Projects
DP0559213 and DP0880739; the many researchers who have worked in DSS, BI
and related areas over the past several decades, whose significant insights we have
drawn on in the book and whose well-known publications are included in the
bibliography; the researchers and students in the Decision Systems & e-Service
Intelligence (DESI) research laboratory, and from the Faculty of Engineering and
Information Technology at the University of Technology Sydney (UTS), who
suffered through several versions of the DSS presented in this book and whose
comments improved it substantially; and the editors and production staff at
Springer, who helped us to ensure the book was as good as we were capable of
making it.

Sydney
May 2009

Li Niu,
DESI, University of Technology, Sydney

Jie Lu,
DESI, University of Technology, Sydney

Guangquan Zhang,
DESI, University of Technology, Sydney

Contents

Part I: Concepts

1 Decision Making and Decision Support Systems………………………….3
1.1 Decision Making and Decision Makers…………………………………3
1.2 Decision Problem Classification..4
1.3 Decision-Making Process ..5
1.4 Decision Support Systems ...8

 1.4.1 The Concept ..9
 1.4.2 Characteristics ...9
 1.4.3 Types...10

1.5 Decision Support Techniques ..11
 1.5.1 Optimization..12
 1.5.2 Multiple Criteria Decision Making ...12
 1.5.3 Data Mining ..13
 1.5.4 Case-Based Reasoning ..15
 1.5.5 Decision Tree ..16

1.6 What’s New in This Book?..17
 1.6.1 The Decision Problems Oriented in This Book...........................17
 1.6.2 New Models and Techniques for Ill-Structured Decision

 Problems ...18

2 Business Intelligence………………………………………………………19
2.1 What Is Business Intelligence? ...19

 2.2 The Architecture of a Business Intelligence System.............................20
 2.3 Analytics of Business Intelligence..22
 2.4 Commercial Tools ..24

 2.4.1 SAS Business Intelligence ..24
 2.4.2 IBM Cognos Business Intelligence ...26
 2.4.3 SAP BusinessObjects Business Intelligence27

 2.5 Limitations..28
 2.6 Summary...29

3 Managerial Cognition……………………………………………………..31
3.1 The Concept of Cognition…………………………………………..............31

 3.2 Situation Awareness ...32

X Contents

 3.3 Mental Models ..33
 3.4 Naturalistic Decision Making ...34
 3.5 Summary...37

4 Cognition in Business Decision Support Systems……………………….39
4.1 Complex Nature of Business Decision Making.….…………………..39

 4.2 Cognition in Business Decision Making..41
 4.3 Cognition Oriented Information Systems ..42

 4.3.1 Cognitive Decision Support Systems42
 4.3.2 Case-Based Reasoning Systems...44
 4.3.3 Natural Language Interfaces to Database.................................44

 4.3.3.1 Pattern-Matching NLIDB Systems45
 4.3.3.2 Syntax-Based NLIDB Systems..................................45
 4.3.3.3 Semantic Grammar NLIDB Systems.........................48

 4.4 Summary...50

Part II: Models

5 Cognition-Driven Decision Processes…………………………………….53
 5.1 Essentials of Cognition-Driven Decision Making53

 5.1.1 The Conceptual Framework of Cognitive Decision Support ...53
 5.1.2 Cognition-Driven Decision Processes......................................55
 5.1.3 User Centered Decision Processes ...56

 5.2 The Cognition-Driven Decision Process Model57
 5.2.1 Situation Retrieval..59

 5.2.1.1 Information Retrieval and Situation Retrieval59
 5.2.1.2 Information Need and Knowledge Need62
 5.2.1.3 Situation Retrieval Process ..63

 5.2.2 Generating Navigation Knowledge ..68
 5.2.3 Situation Presentation...69
 5.2.4 Situation Awareness Updating ...69
 5.2.5 Decision Generation...70
 5.2.6 The Decision Cycle ..71

 5.3 Summary..73

Part III: Techniques

6 Domain Knowledge Representation and Processing……………………77
 6.1 Ontology ..77

 6.1.1 Basics of Ontology...77
 6.1.2 Property-Share Relationships ...78
 6.1.3 Class Tree...80
 6.1.4 Class Graph ..83
 6.1.5 Role of the Ontology..84
 6.1.6 Synonyms...84
 6.1.7 Class Similarity ..85

Contents XI

 6.2 Experience ...86
 6.2.1 Experience Representation ...87
 6.2.2 Experience Elicitation ..88
 6.2.3 Creating an Experience Base..89
 6.2.4 Cues..91
 6.2.5 Extracting Cues ..92
 6.2.6 Knowledge Retrieval..94
 6.2.7 Generating Navigation Knowledge ..95

 6.3 Summary..96

7 Natural Language Processing for Situation Awareness………………...97
 7.1 Link Grammar Parser...97
 7.2 Information Types ...99
 7.3 The Process of Situation Awareness Parsing.....................................100
 7.4 SA Plain Parsing: Instance Recognition ..101

 7.4.1 Numeric Meta Instances...102
 7.4.2 Literal Meta Instances ..103
 7.4.3 Reference Properties ..105

 7.5 SA Semantic Parsing: Class Inferring..105
 7.5.1 Class Trigger Construction...106
 7.5.2 Triggering Rules...108
 7.5.3 Reducing Uncertainties of SA Triples..112

 7.6 Local Context Determination...114
 7.6.1 Context Position Points ..114
 7.6.2 Context Coverage Points ..116
 7.6.3 Inverse Context Specificity Points ...116
 7.6.4 Local Contexts ...117

 7.7 Summary..118

8 Data Warehouse Query Construction and Situation Presentation…...119
 8.1 Query Languages for Data Warehouses………………………….....119

 8.1.1 Structured Query Language ...119
 8.1.2 Multidimensional Expressions ...121

 8.2 Framework of Query Construction and Situation Presentation124
 8.3 Determining Query Data Sources ..126
 8.4 Constructing SQL Queries...127
 8.5 Constructing MDX Queries ...131
 8.6 Navigation-Knowledge-Guided Situation Presentation136
 8.7 Data Analysis and Situation Presentation ..138
 8.8 Summary..139

Part IV: Systems and Applications

9 A Cognition-Driven Decision Support System: FACETS……………..143
 9.1 The Development Environment ...143
 9.2 The Architecture of FACETS ..143

XII Contents

 9.3 Subsystems of FACETS ..145
 9.3.1 Data Warehouse System...145
 9.3.2 Ontology Management ...145
 9.3.3 Experience Management ..146

 9.3.4 Situation Awareness Management...148
 9.3.5 Situation Awareness Parsing..149
 9.3.6 Situation Awareness Annotating..150
 9.3.7 Query Builder ..150
 9.3.8 Situation Presentation ..151
 9.4 The Cognition-Driven Decision Process Based on FACETS155
 9.5 Summary..156

10 Evaluation of Algorithms and FACETS………………………………157
 10.1 Experiment Preparation ...157

 10.1.1 Data Warehouse ..157
 10.1.2 Ontology..158
 10.1.3 Experience Base ..158
 10.1.4 Subjects ...159

 10.2 Experiment One: Algorithm Evaluation ..159
 10.2.1 Experiment Design..159
 10.2.2 Meta Instance Recognition..162
 10.2.3 Class Inferring...164
 10.2.4 Local Context Determination ..167
 10.2.5 SA Triple Generation ..169

 10.2.6 Optimization Analysis...170
 10.3 Experiment Two: System Evaluation ..171

 10.3.1 Experiment Design..171
 10.3.2 Query Construction Evaluation ...172
 10.3.3 FACETS Evaluation..173

 10.4 Summary..177

11 Application Cases of FACETS...179
 11.1 Application Case I: Business ...179

 11.1.1 Organization Background..179
 11.1.2 The Ontology ..182
 11.1.3 The Experience Base...182
 11.1.4 Decision Situation ...183
 11.1.5 Decision Process ...183
 11.1.6 Final Decision ...210

 11.2 Application Case II: Public Health ..210
 11.3 Summary..214

References………………………………………………………………………215

Abbreviations………………………………………………………………………….233

Index……...……………………………………………………………………..…………235

Part I
Concepts

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 3–18.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 1
Decision Making and Decision Support Systems

This chapter introduces the general concepts, models and techniques of decision
making and decision support systems. It also gives readers an overview of the
new models and techniques presented in the following chapters of this book.

1.1 Decision Making and Decision Makers

The success of business management depends on the performance of managerial
functions such as planning, organizing, directing, and controlling (Turban et al.
2005). To carry out these functions, business managers are engaged in a continuous
process of making decisions such as drawing up a product plan, selecting a supplier
and determining a product’s price. In such situations, business managers are
decision makers.

Decision makers may deal with various types of decision problems, from daily
operation to long-term company strategies. Decision makers in a company act at
various levels, from a software development project manager to a CEO of a large
company. Therefore, different decision-making tasks have different features and
require different decision support techniques.

Decisions can be made by individuals or groups. Individual decisions are often
made at low management levels and in small organizations, while group decisions
are usually made at high management levels and in large businesses. In group
decision making, each group member has their own understanding of the problem
and the solution. Group members participate in decision making with different
capabilities and action resources. Group decision making is more complex than
individual decision making, due to the conflicts between different decision
makers’ self-interests and preferences. Therefore, communication and interaction
among group members are very important in group decision making.

Decision making theory is studded by many researchers from multiple
disciplines (Dawes 1988; Hwang & Masud 1979; Simon 1979). It includes
classical decision making (CDM), behavioural decision theory (BDT), judgement
and decision making (JDM), organizational decision making (ODM) and recently
naturalistic decision making (NDM) (Lipshitz et al. 2001). Choice and input-
output orientation are the examples of CDM. Some new theories such as the use of

4 1 Decision Making and Decision Support Systems

expertise in seizing up situations and generating options are examples of NDM.
Decision making is growing increasingly complicated and difficult today due to
information overload and fluctuated decision environments. With the modern
information technologies and communication systems, we can find large quantities
of information quickly and easily, and therefore generate more alternatives.
Nevertheless, the changing decision environment impose decision making more
uncertainties, which requires dynamic decision making and needs decisions to be
made quickly. The cost of making errors can be very large because of the
complexity of operations, automation, and the chain reaction that an error can
cause in many parts of a business. For these reasons, business decision makers
require technical support to help make quality decisions in a short timeframe.

1.2 Decision Problem Classification

Decision problems can be classified according to their natures. One important
classification is based on a given problem structure: structured, semi-structured
and unstructured (Turban et al. 2005). We use the term ill-structured decision
problems to describe both semi-structured and unstructured decision problems.
Different classes of decision problems require different modeling methods.

A structured decision problem can be described by existing classic
mathematical models, such as linear programming and statistics methods. The
procedures for obtaining the best or the most satisfactory solution are known as
standard solution methods. Examples of typical structured decision problems are
selecting a product which has the lowest price among all the same type of
products, and determining which product plan can bring the highest profit among
a range of product plans.

An unstructured decision problem is fuzzy, uncertain and vague, to which there
is no standard solution method. Human intuition is often the basis for decision
making in an unstructured problem. Typical unstructured problems include
planning new services, hiring an executive, and choosing a set of development
projects for a long period.

Semi-structured decision problems fall between structured and unstructured
problems, having both structured and unstructured factors. Solving this kind of
decision problems involves a combination of both standard optimized solution
procedures and human intuition or judgments.

Experience shows that computer-based decision support techniques are more
useful in structured decision problems than in semi-structured and unstructured
decision problems. In an unstructured decision problem only part of the problem
can be well-supported by computerized decision support tools. For semi-structured
decision problems, computerized support technologies can improve the quality of
the information on which the decision is based, increase decision makers’ situation
awareness, or provide not only a single solution but a range of alternative
solutions.

Another classification of decision problems is based on decision levels as
proposed by Anthony (1965): strategic planning, management control and
operational control.

1.3 Decision-Making Process 5

Strategic planning refers to long-range goals and policies for resource
allocation. Such decisions are at a high management level, normally unstructured,
and with higher degrees of uncertainty.

Management control refers to the acquisition and efficient use of resources in
the accomplishment of business goals, and related decisions are at a middle
management level.

Operational control decisions are about the efficient and effective execution of
specific tasks. They are normally structured and are relatively easy to formulate by
mathematical models and solved using computer-based tools.

Decision making is a reasoning process, rational or irrational (Simon 1979,
Simon 1993), and can be based on explicit or tacit assumptions.

Rational decision making emphasizes fact collection and conducting research
such as data analysis, surveys and interviews. A rational decision-making model
involves a cognitive process (thinking through) where each step follows in a
logical order from the one before.

Irrational decision making makes assumptions and obtains results without
accurate data and model analysis, and is often driven by emotions.

1.3 Decision-Making Process

Generally speaking, a decision-making process (or simply called decision process)
begins with awareness of a decision problem, and ends up with a final solution
among finite or infinite alternatives. A general decision-making process proposed
by Simon (1977) involves three phases: Intelligence, Design, and Choice. A fourth
phase, Implementation, has since been added. Figure 1.1 shows a conceptual
framework of the four-phase decision-making process. This framework can be
used as a guideline for specific decision-making development. Different decision
makers may emphasize one phase or another. Different decision-making problems
may require more details or sub-phases in one or more phases. We will discuss an
extended decision-making process model (Lu et al. 2007) based on Simon (1997)
as shown in Figure 1.1.

The model shown in Figure 1.1 is the most typical decision-making process
model. Its main characteristic is to establish a decision model to reflect a decision
problem and then to solve the problem by applying a method to the decision
model. The decision-making process can be described by nine steps. We use an
example to explain these steps as follows:

Example 1.1: A logistics company plans to develop an e-business system.

Step 1: Define a decision problem
To define a decision problem requires a good understanding of managerial
assumptions, organizational boundaries, and any related initial and desired
conditions. This step aims to express the decision problem in a clear way and
prepare a clear problem statement (see Figure 1.1). This step, with Step 2,
corresponds to the intelligent phase of the general decision-making process
framework.

6 1 Decision Making and Decision Support Systems

Fig. 1.1 The general decision-making process framework

The decision problem defined in this step for Example 1.1 is

“select an IT company for developing an e-business system for the logistics
company”.

Step 2: Determine requirements
Requirements are conditions which any acceptable solution to the problem must
meet. In a mathematical form, these requirements are the constraints describing
the set of the feasible solutions of the decision problem such as
cost1+cost2<$100. Requirements can be obtained by analysing the decision
situation.

1.3 Decision-Making Process 7

The requirements determined for Example 1.1 are

“the cost of the e-business system development is to be <=$100,000, the
deadline is 30 Dec 2009, and the developed e-business system must connect well
with existing business information systems and data warehouse”.

Step 3: Establish objectives and goals
The design phase of the decision-making process starts here and continues through
to Step 6. This step identifies the important objectives of the decision problem and
the goals. When a decision problem involves multiple objectives, these objectives
may be in conflict with each other. The goals are the statements of intent and
desirable programmatic values. In a mathematical form, the goals are objectives
contrary to the requirements that are constraints. Obviously, these objectives can
have different degrees of importance.

The objectives for Example 1.1 are

“find a satisfactory IT company which meets the requirements for development
of an e-business system and provides an excellent user interface and all required
functions”.

Step 4: Generate alternatives
The objectives obtained in Step 3 are used to generate alternatives. Each
alternative must meet the requirements determined in Step 2. For finite number of
the possible alternatives, they can be checked one by one against the requirements.
The infeasible alternatives will be removed out of further consideration until we
obtain the explicit list of alternatives. If the number of possible alternatives is
infinite, the set of alternatives is considered to be that of the solutions fulfilling the
constraints in the mathematical form of the requirements.

The alternatives generated in Example 1.1 are

“from all the IT companies having interest in the development of the e-business
system, three companies (A, B, C) are selected as alternatives based on the defined
requirements and objectives”.

Step 5: Determine criteria if needed
To choose the best alternative, all alternatives need to be evaluated against the
objectives. Thus some criteria are used to compare alternatives and to discriminate
between alternatives, based on the objectives. It is necessary to define
discriminating criteria as objective measures to assess each alternative.

The criteria determined for Example 1.1 are
“the e-business system to be developed should be user-friendly, secure, and

easy to maintain, and have excellent functions for logistics decision support, and
ensure that the budget/cost is relatively low”.

Step 6: Select a decision-making method
In general, there are always several methods or tools available for solving a
particular decision problem. The selection of an appropriate method or tool

8 1 Decision Making and Decision Support Systems

depends on the characteristics of the decision problem and the preferences of the
decision maker.

The decision-making method selected for Example 1.1 is

“as the decision is based on multiple criteria and will be made by a committee,
an Analytic Hierarchy Process (AHP) method will be used for aggregating
different members’ opinions under all criteria”.

Step 7: Evaluate alternatives
This step corresponds to Simon’s choice phase of decision making. After applying
the determined criteria supported by the selected method, a tentative decision is
made in this step through the evaluation of the alternatives against the objectives.
Using a commonly shared and understood scale of measurement and the
subjective assessment of the evaluation, the selected decision-making tool can be
applied to rank the alternatives or to choose a subset of the most promising
alternatives.

The result of alternative evaluation for Example 1.1 is

“by applying the AHP method, IT company B is chosen to undertake the
development of the e-business system for the logistics company”.

Step 8: Validate solutions
The tentative alternative generated in Step 7 has to be validated against the
requirements and objectives of the decision problem, in order to determine its
applicability. Many factors might result in an inappropriate or false choice, such as
misapplied decision-making method or wrongly determined criteria. If the
tentatively chosen alternative has no significant adverse consequences, the choice
is finally made.

The result of solution validation for Example 1.1 is

“IT company B is accepted by all committee members”.

Step 9: Implement the solution
The final solution to the identified decision problem is implemented in this step.

The result of solution implementation for Example 1.1 is

“sign a project contract with IT Company B”.

As can be seen from above process, decision making is a choice process among

alternatives. Each decision-making task can be characterized by a problem
statement, a set of alternatives, and related decision criteria. Decision makers go
through all these phases and eventually reach a final solution.

1.4 Decision Support Systems

Decision making, by its nature, is a cognitive process, involving different cognitive
tasks, such as collecting information, evaluating situation, generating and selecting

1.4 Decision Support Systems 9

alternatives, and implementing solutions. Decision making is never error-proof, as
decision makers are prone to their cognitive biases. Therefore, decision support
systems (DSS) are often used by decision makers in order to minimize their
cognitive errors and maximize the performance of actions.

1.4.1 The Concept

A decision support system is a computerized information system, designed to
support business and organizational decision-making activities. The term ‘DSS’
was proposed in the early 1970s. After that, the topic of DSS has stimulated great
interests in research and its applications. Gorry and Scott-Morton (1971) defined
DSS as interactive computer-based systems which help decision makers utilize
data and models to solve ill-structured problems. A subsequent classic definition
of DSS, provided by Keen and Scott-Morton (1978), is that DSS couple the
intellectual resources of individuals with the capabilities of the computer to
improve the quality of decisions.

A properly-designed DSS can play an important role in compiling useful
information from raw data, documents, personal knowledge, and business models
to solve problems. It allows decision makers to perform large numbers of
computations very quickly. Therefore advanced models can be supported by DSS
to solve complex decision problems, e.g., emergency situations, where quick
responses are often required. As many business decision problems involve large
data sets stored in different databases, data warehouses, and even possibly at
websites outside an organization, DSS can retrieve, process and utilize data
efficiently to assist decision making.

A DSS is intended to support, rather than replace, decision maker’s role in
solving problems. Decision makers’ capabilities are extended through using DSS,
particularly in ill-structured decision situations. In this case, a satisfied solution,
instead of the optimal one, may be the goal of decision making. Solving ill-
structured problems often relies on repeated interactions between the decision
maker and the DSS.

1.4.2 Characteristics

The functions and characteristics of DSS vary significantly due to the differences
of application domains. Turban and Aronson (1998) summarized ten
characteristics of common DSS as follows:

(1) Dealing with ill-structured decision problems;
(2) Supporting managers at different levels;
(3) Supporting decision groups and individual decision makers;
(4) Supporting a variety of decision styles and processes;

10 1 Decision Making and Decision Support Systems

(5) Adaptability and flexibility in carrying out a decision support task and
approach of the users;

(6) Interactive and user-friendly to allow non-technical decision makers to
interact easily with it;

(7) Combining the use of models and analytic techniques;
(8) Combining the use of artificial intelligence and knowledge base;
(9) Accessing a wide variety of data sources; and
(10) Integration and Web connection.

The selection of above functions depends on a user’s requirements. A DSS can

be quite simple, e.g., a spreadsheet, or extremely complex, e.g., a data warehouse
system.

1.4.3 Types

According to different criteria, DSS can be categorized into various types, such as
personal DSS, group DSS, executive support systems, web-based DSS, desktop
DSS, strategic DSS and financial planning DSS (Arnott & Pervan 2005). Based on
the model of assistance, Power (2002) differentiates model-driven DSS,
communication-driven DSS, data-driven DSS, document-driven DSS and
knowledge-driven DSS as follows.

(1) A model-driven DSS emphasizes creation and manipulation of statistical,
financial, optimization, or simulation models (Power 2002). The linear
programming based optimization model is one of the most wide-used DSS
models. Model-driven DSS require users (decision makers) to specify model
parameters according to their decision problems. The outputs of the model are
used to assist decision makers in assessing their decision alternatives. Multi-
objective DSS (MODSS) are a typical model-driven DSS where multi-objective
decision making models are adopted (Lu et al. 2007).

(2) A communication-driven DSS supports decision making within a group of
decision makers through facilitating efficient information exchange (Power 2002).
It is also called group DSS (GDSS). Information exchange stimulates intelligence
development and integration, which promotes decisions to be made based on the
consensus among different decision makers. Examples of this type of DSS are
email systems, electronic meeting systems and bulletin board systems.

(3) A data-driven DSS focuses on access to and manipulation of a large amount
of company data from internal and external sources (Power 2002). Decision
making is based on perceiving and comprehending the integrated information
output by the system. Examples of this type of DSS are statistics tools,
management information systems and BI systems.

(4) A document-driven DSS is concerned with managing and manipulating
unstructured information in a variety of electronic files, such as emails and reports
(Power 2002). Examples of this type of DSS are library management systems,
search engines and document retrieval systems.

1.5 Decision Support Techniques 11

(5) A knowledge-driven DSS generates decision suggestions based on human
expertise (knowledge) (Power 2002). Human expertise is specific to application
domains, which can be elicited from experts. The common forms of knowledge
are business procedures, rule and facts. Examples of this type of DSS are case-
based reasoning systems, expert systems and question-answer systems.

Due to the diversity of real applications, there is no general software

architecture for DSS in different domains. Thus, the components and functions of
DSS vary greatly. For example, a mathematical programming model is the core
component of a model-driven DSS, while a BI system consists of a data
warehouse subsystem and a data analysis subsystem. The software architecture
and functions of a DSS are often designed based on users’ specific requirements.

A specific DSS is usually a combination of some of the above five different
types. However, the model-driven DSS dominates the traditional DSS research
and applications (Arnott & Pervan 2005). As a result, many practical DSS were
developed with the inclusion of a model component, although they also support
other DSS functions, e.g., group communication and data-intensive analytics.
Thus, the decision processes in traditional DSS are essentially model-based
(Courtney 2001).

1.5 Decision Support Techniques

Decision support systems are built upon various decision support techniques,
including models, methods, algorithms and tools. Zachary (1986, 1987) proposed
a cognition-based taxonomy for decision support techniques, including six basic
classes as follows.

Process models are computational models that assist the projection of real-
world complex processes and give assumptions about the process and a
hypothetical decision. A typical process model is probabilistic models which
compute a probability distribution of outcomes from a probability distribution of
input conditions through an analytical treatment of inputs and the behavior of the
process. Markov chains are a common example of a probabilistic process model.

Choice models support the integration of decision criteria across alternatives to
select the best alternative from a discrete set or continuous description space of
decision alternatives. A typical choice model is the multi-criteria decision-making
model.

Information control techniques provide functions of representation,
manipulation, access, and monitoring data and knowledge. Typical techniques
include database management tools, data and knowledge retrieval techniques, data
warehousing, data mining and automatic aggregation.

Analysis and reasoning techniques support applications of problem-specific
expert reasoning procedures, such as mathematical programming, goal-driven
inference, process-driven inference and data-driven inference. Goal programming,
evidential reasoning, case-based reasoning and sensitivity analysis are successful
analysis and reasoning techniques.

12 1 Decision Making and Decision Support Systems

Representation aids support the expression and manipulation of a specific
representation of a decision problem. Typical techniques of this type include
natural language processing, graphic user interface, and human cognitive
processing techniques. Some examples are decision trees, decision tables, and
cognitive mapping.

Human judgment amplifying/refining techniques assist decision makers in
quantification of heuristic judgments. “Decision makers are able to solve problems
heuristically or intuitively with results that are usually quite good but almost never
truly optimal” (Zachary 1986). Typical techniques in this class include human-
aided optimization, adaptive user modeling and prediction, as well as Bayesian
updating.

The cognition-based classification of decision support techniques provides a

picture and guideline for decision technique selection for problem solving and
DSS development. In practice, a DSS often uses two or more of the techniques
mentioned above to solve a problem. We will introduce five popular decision
support techniques under the above taxonomy.

1.5.1 Optimization

Optimization, also called mathematical programming, refers to the study of
decision problems in which one seeks to minimize or maximize a function by
systematically choosing the values of variables from an allowed set. A
mathematical programming model includes three sets of elements: decision
variables, objective function(s), and constraint(s), where uncontrollable variables
or parameters are within the objective functions and constraints. Many real-world
decision problems can be modeled by a mathematical programming model. There
are many types of mathematical programming models such as linear programming
(Benayoun et al. 1971), multi-objective programming (Hwang & Masud 1979),
and bi-level/multi-level programming (Anandalingam & Friesz 1992).

Linear programming is an important type of optimization in which the
objective function and all constraints are linear. There are pure linear
programming problems corresponding to specialized solution algorithms. There
are also other types of optimization problems including a linear programming
problem as a sub-problem. Linear programming is heavily used in various
management activities, either to maximize profit or minimize cost.

1.5.2 Multiple Criteria Decision Making

Multi-criteria decision making (MCDM), also called multi-attribute decision
making (MADM), refers to making preference decisions (e.g., evaluation,
prioritization, and selection) in the presence of multiple and conflicting criteria
over available alternatives. A MCDM utility model combines all criteria of a
given alternative simultaneously through a specific utility formula or utility
function used. Problems for MCDM may range from those in our daily life, such
as the purchase of a car, to those affecting entire nations, such as the judicious use
of money for the preservation of national security. However, even with such

1.5 Decision Support Techniques 13

diversity, all MCDM problems share the following common characteristics
(Hwang & Yoon 1981):

A set of alternatives: there are usually a limited number of predetermined
alternatives, such as three IT companies available to develop an e-business system
for a logistics company.

Multiple criteria: each problem has multiple criteria. For example, development
cost, quality of interface, and quality of security are criteria for selecting an IT
company.

Conflicting criteria: there are multiple criteria conflicting with each other, For
example, the criterion “low cost” and the criterion “high quality of security
function” conflict.

Incommensurable unit: criteria may have different units of measurement. For
example, the unit of cost is the dollar, while that of interface design is the degree
of satisfaction.

Selection: the solution to an MCDM problem is to select the best one among
previously specified finite alternatives.

Mathematically, a MCDM problem can be modeled as follows:

⎩
⎨
⎧

n

m

, C,, CC

AAA

…
…

21

21

 :.t.s

 ,, , :Select

where ()mAAAA ,,, 21 …= denotes m alternatives, and ()nCCCC ,,, 21 …=

represents n criteria (or attributes) for characterizing a decision situation. The
select here is normally based on maximizing a multi-criteria value (or utility)
function elicited from the decision makers. By mapping the alternatives onto a
cardinal scale of value, the alternative with the highest cardinality is implicitly the
best.

Multi-criteria decision-making methods have been widely developed, as
reported by Hwang and Yoon (1981) as well as Yager (2004b) and many other
researchers. Some popular MCDM methods include the TOPSIS method (Hwang
& Yoon 1981) and the Analytic Hierarchy Process (AHP) method (Saaty 1980).

1.5.3 Data Mining

Data mining is a data processing technique to extract hidden patterns from data of
interest, in order to provide decision makers ‘knowledge’ for decision making. A
data mining project consists of six typical stages (www.crisp-dm.org), which is
shown in Figure 1.2.

Stage 1. Business Understanding
A data mining project begins with collecting and understanding business
requirements and converting the business requirements into technical
specifications.

14 1 Decision Making and Decision Support Systems

Fig. 1.2 Phases of the CRISP-DM Process Model (www.crisp-dm.org)

Stage 2. Data Understanding
The data is initially analyzed in this stage, in order to detect the problems of data
quality and prospective patterns to be exposed.

Stage 3. Data Preparation
Data is pre-processed to reduce or eliminate data quality problems, such as
inconsistency and data missing.

Stage 4. Modeling
Specific data modeling methods are selected and applied against the cleaned data,
such as clustering, regression and classification.

Stage 5. Evaluation
The created data models are evaluated in this stage from both business and
technical perspectives.

Stage 6. Deployment
If the data models are considered as good enough for the business requirements,
they are deployed in the business environment to assist decision making.

1.5 Decision Support Techniques 15

Data mining is usually integrated with a decision support system. A common
practice is to develop the data mining application on the basis of a data warehouse
system. A data warehouse is a subject oriented, time-variant, non-volatile and
integrated data store (Inmon 1993). A data warehouse system includes not only
data storage, but also the techniques to extract, transform and load data, and
retrieve and analyze data, and manage the data dictionary.

1.5.4 Case-Based Reasoning

Fully-automated expert systems have been used as a type of decision support
system to produce a solution for a given problem statement. Such systems have
been highly successful in solving problems in many well-circumscribed domains.
However, they have not been successful in support decision making which
requires creativity, broad commonsense knowledge, or aesthetic judgment
(Kolodneer 1991).

Case-based reasoning (CBR) provides a methodology for decision support
systems in solving new problems based on the solution of similar past problems.
The core technique of CBR is to have a powerful learning ability which can use
past experiences as a basis for dealing with novel problems. A CBR system can
therefore facilitate the knowledge acquisition process by eliminating the time
required to elicit solutions from experts. In dynamically changing situations where
much is unknown and solutions are not clear cut, CBR seems to be the preferred
method of reasoning.

Case-based reasoning is represented by a four-stage (4Rs) cycle: retrieve,
reuse, revise and retain (Aamodt & Plaza 1994). In the first ‘R’ stage, when a new
problem is input, CBR retrieves the most similar case from the case base. In the
second ‘R’ stage, the solution of the retrieved case is reused. In the third ‘R’ stage,
the solution is revised to suit the new problem, and in the fourth ‘R’ stage, the
revised solution and the problem are retained for future reuse. Obviously, CBR is
naturally suitable for knowledge-based decision making. The success of a CBR
system is subject to the suitability of knowledge and the correctness of reasoning.

Reinartz et al. (2001) extended the standard four-stage CBR cycle with two
additional stages: review and restore. In the review stage, the current state of a
CBR system and its knowledge containers is monitored and judged; the system,
including its knowledge store, is adapted in the restore stage to improve the
system performance. Figure 1.3 shows the six-stage CBR cycle.

CBR-based decision support systems can be passive or active. They can be
used to aid and support novice or expert-level decision makers, and can be used to
help a wide variety of decision-making activities. The major advantage of CBR
methods in support decision making is that CBR is considered as a natural
reasoning process of human beings. Normally, people are good at using cases but
not as good at recalling the right ones. CBR can extend the decision makers’
memory by providing the right cases. The major disadvantage of the CBR method
is that the solution space cannot be fully explored. As a result, there is no
guarantee of an optimal solution for a decision problem.

16 1 Decision Making and Decision Support Systems

Fig. 1.3 The Six-Step CBR Cycle (Reinartz et al. 2001)

1.5.5 Decision Tree

A decision tree is a graph of decisions and their possible consequences which is
used to create a plan to reach the goal of a decision. A decision tree is a predictive
model to map observations about an item with conclusions about the item’s target
value. Each interior node corresponds to a variable; an arc to a child represents a
possible value of that variable. A leaf represents the predicted value of the target
variable given the values of the variables represented by the path from the root.
Figure 1.4 shows an example of a decision tree used to determine the type of a
business. It can support strategy making for medium and small businesses in
different industries.

Fig. 1.4 An example of a decision tree

Whatever the decision technique, a critical issue we need to deal with is
uncertainty. Decision environments and data sources possess various uncertain
factors, which result in uncertain relations among decision objectives and entities.
Meanwhile, data itself has uncertainty. For example, an individual’s preference for
alternatives and judgment of criteria is often expressed by linguistic terms, such as
‘low’ and ‘high’, which implies a kind of uncertainty. Precise mathematical and
inference approaches are not efficient enough to tackle such uncertain variables.

Business

size size

medium smal small mediularlarge

manufacture service firm

>=5 >20 <1<=
> >

1.6 What’s New in This Book? 17

Various uncertain information processing techniques have been therefore
developed. Fuzzy decision-making theory, that is, applying fuzzy sets into
decision-making activities, is one of these well-developed techniques (Bellman &
Zadeh 1970; Kacprzyk et al. 1992; Zimmermann 1987). Research results include
fuzzy decision models, fuzzy multi-objective decision making, fuzzy multi-criteria
decision making, fuzzy case-based reasoning, fuzzy decision tree, fuzzy data
retrieval, fuzzy associate rules for data mining, and their applications.

1.6 What’s New in This Book?

First of all, this book is not another addition to the business management
textbooks, nor general theories or technologies of decision making. The
information presented in the above five sections serves as a preliminary for you to
read through the following chapters of this book, and understand its offering.

1.6.1 The Decision Problems Oriented in This Book

This book is mainly concerned with complex ill-structured decision problems,
particularly those with uncertainty, time pressures and high personal stakes. New
theoretical models and practical technologies will be introduced to help readers to
deal with this kind of decision problems.

There are decision situations where decision problems are perfectly structured
and can be easily defined. However, more common decision problems in reality
are ill-structured. Take business as an example. Today’s companies operate in an
extremely complex business environment involving many factors interacting with
each other. Typical internal business sectors include market research, product
R&D, basic engineering, financial management, cost control, and operational
efficiency; external business sectors include market, technological, competitive,
political/legal, economic, and socio-cultural. It is crucial for today’s business
managers to keep aware of all these business sectors in order to properly steer the
company.

Business decision making happens in a complex environment, and is often
imposed with a high degree of complexity, uncertainty, dynamics, high personal
stakes and time pressure. Business decision making grows increasingly ill-
structured and demanding of experience. Decision making for ill-structured
business problems therefore taxes managers’ cognitive abilities to a much higher
extent than structured ones. Furthermore, business managers need to identify
potential threats and opportunities in advance, and respond in a timely fashion, in
order to survive in the fierce business competition.

The research and applications in the DSS area have yielded a wide variety of
theories and technologies (Sections 1.3 and 1.4) to deal with different kinds of
decision problems. Model-based DSS have been well-studied and successfully
applied to solve the structured decision problems for decades. Nevertheless, ill-
structured decision problems still lack sufficient efficient decision aids from
today’s DSS. This book will present readers with a set of new models and

18 1 Decision Making and Decision Support Systems

techniques to explore, investigate and possibly solve ill-structured decision
problems occurring in different domains.

1.6.2 New Models and Techniques for Ill-Structured Decision
Problems

In this book, a cognition-driven decision process (CDDP) model is discussed, in
order to handle ill-structured decision problems. Based on the CDDP model, a
series of techniques (methods, algorithms and systems) are introduced for readers
to develop decision support systems in their specific application domain.

Compared to the traditional DSS-based decision process model, the major
feature of the CDDP model is cognition oriented. In the traditional DSS-based
decision process model, decision makers and computers are separated two parts.
The design of DSS is mainly driven by technologies. A decision maker in a DSS
simply acts as a user of the computer-based system. The CDDP model
incorporates managers (decision makers) as the central part of the system as a
whole. The managers’ cognition is represented as information objects and used for
computer-based information processing. Decision making becomes an integral
process comprised of the human cognitive process as well as computer-based
information processing. The two sorts of processes are both driven by managers’
cognition.

Following the CDDP model is a set of techniques including methods, data
model and algorithms in order to implement the CDDP model in practical
applications. The techniques included in this book are mainly of four types.

(1) Techniques used to represent and process domain knowledge. According to

the CDDP model, two kinds of domain knowledge are concerned: domain
ontology and management experience.

(2) Techniques used to parse managers’ natural language input. Supported by
the new techniques, managers can interact with the system using a natural
language (English).

(3) Techniques used to construct data warehouse queries. Data warehouse
queries are constructed automatically by the system according to the manager’s
natural language input.

(4) Techniques used to present information. The information most relevant to
the manager’s decision problem is retrieved from the data warehouse and then
presented to the manager. A navigation-knowledge-guided situation presentation
method will be discussed in this book.

As an integration of the above techniques, a decision support system, called

FACETS, is discussed in details, including its architecture, functions and
evaluation. FACETS was designed and developed totally based on the CDDP
model, using the above techniques. To demonstrate the application of FACETS,
two illustrative case studies, in business and public health domain respectively, are
also discussed.

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 19–29.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 2
Business Intelligence

Business intelligence (BI) systems are data-driven DSS, focusing on the
manipulation of large volumes of company data in data warehouses. As other
types of DSS, such as model-driven DSS, communication-driven DSS, and
knowledge-driven DSS (Section 1.5.3), BI systems suffer from lack of cognitive
decision support, despite their powerful data analysis functions. This chapter will
discuss the basic BI concepts, architecture and some vendors’ BI products. The
drawbacks of today’s BI are also analyzed in details.

2.1 What Is Business Intelligence?

The term business intelligence means different things in different domains. From
technical point of view, BI refers to the process of extracting, transforming,
managing and analyzing business data, in order to support decision making. This
process is mainly based on large data sets, particularly data warehouse, with the
mission of disseminating intelligence or knowledge across the whole organization,
from strategic level to tactical and operational level. A typical BI process consists
of five key stages (CSIRO 2003):

(1) Data Sourcing

A BI system is able to extract data from multiple data sources, representing
different business units, such as marketing, production, human resource and
finance. The extracted data must be cleaned, transformed and integrated for
analysis.

(2) Data Analysis

In this stage, data is converted into information or knowledge through different
data analysis techniques, such as reporting, modeling, visualization and data
mining. The results of data analysis help managers to have a better understanding
of the environment and make better decisions.

20 2 Business Intelligence

(3) Situation Awareness

Situation awareness (SA) is a deep understanding of the current decision
situation based on the results of data analysis. SA is a key prerequisite for decision
making. BI systems should be able to aid decision makers to develop rich SA
about their decision situations.

(4) Risk Assessment

Richer SA can help managers to make prediction about the future, identify
threats and opportunities, and thus respond correspondingly. Today’s businesses
are operated in an increasingly complex environment. Business decision making is
more likely to suffer risks from the external and internal environment. Thus, risk
assessment is an important function of a BI system.

(5) Decision Support

The ultimate goal of BI is to help managers to make decision wisely, based on
the current business data.

2.2 The Architecture of a Business Intelligence System

A typical BI system consists of four levels of components and a metadata
management module (Codd et al. 1993; Inmon 2002). The generic architecture of
traditional BI systems is shown in Figure 2.1. These different components
cooperate with each other to facilitate the basic BI functions: extracting data from
company operational systems, storing the extracted data in a center data
warehouse, and retrieving stored data for various business analysis applications.

• Operational Systems Level

As the data sources of a BI system, business operational systems are mainly
online transaction processing (OLTP) systems which support daily business
operations. Typical OLTP systems are customer order processing systems,
financial systems, and human resource management systems.

• Data Acquisition Level

This level is a data pre-process component including three phases: extracting,
transforming, and loading (ETL). A company usually has different OLTP systems
producing huge amounts of data. This data is first extracted from OLTP systems
by the ETL process and then transformed according to a set of transformation
rules. Transformed data is clean, unified, and aggregated and finally loaded into a
central data warehouse. ETL is the most fundamental component of a BI system
because the data quality of all other components mainly relies on the ETL process.
In the design and development of ETL, data quality, system flexibility, and
processing speed are the major concerns.

2.2 The Architecture of a Business Intelligence System 21

Fig. 2.1 The General Architecture of Current Business Intelligence Systems

• Data Storage Level

The data processed by the ETL component is stored in a data warehouse which
is mainly implemented using traditional relational database management systems
(RDBMS). A RDBMS is designed to support transaction processing. By contrast,
a data warehouse is a subject oriented, time-variant, non-volatile and integrated
data store (Inmon 1993) 1 . Data from company OLTP systems are extracted,
transformed, and loaded into the data warehouse based on pre-defined schemas.
The star schema and snowflake schema are the most popular data warehouse
schemas. No matter what kind of schema on which a data warehouse is designed,
the data warehouse always includes two basic types of tables: fact tables and
dimension tables.

• Analytics Level

Based on the data warehouse, various kinds of analytical applications are
developed, which represent the last level: Analytics. BI systems support two basic
types of analytical functions: reporting and online analytical processing (OLAP).
The reporting function provides managers with different business reports, such as
sales reports, product reports and human resource reports. Reports are generated by
executing queries into the data warehouse (DW). The DW queries are mainly pre-
defined query sentences programmed by the DW developers. Thus, the reports
generated by BI systems usually have static formats and contain fixed types of data.

1 This is the original definition of data warehouses. Today’s data warehouse systems can be

company wide in scope and the data can be updated over time, for instance, as real-time
BI systems.

22 2 Business Intelligence

The most promising BI analytics is OLAP. OLAP allows managers to
efficiently browse their business data from different analysis dimensions through
slicing, dicing and drilling operations at will (Codd et al. 1993). An analysis
dimension is a perspective through which data is presented, e.g., product type,
sales location, time and customer. Compared to the reporting function, OLAP
supports ad hoc data analysis, i.e. managers have full control of the data by
selecting different analysis dimensions of interest to them. OLAP is based on
multidimensional data models (known as the snowflake and star schema).

In addition to reporting and OLAP, there are many other types of analytical
applications which can be built on the basis of a DW system, such as data mining,
executive dashboards, customer relationship management, and business
performance management. Technically, these applications are not necessarily built
on a data warehouse. However integrating them with DW systems has become a
common practice in many practical BI systems.

• Metadata Management

Metadata are special data about other data such as data sources, data warehouse
storage, business rules, access authorizations, and how different data is extracted
and transformed. Metadata is crucial for producing accurate, consistent
information and system maintenance. It affects the entire process of designing,
developing, testing, deploying and using BI systems (Caserta 2004; Inmon 2002).

2.3 Analytics of Business Intelligence

The analytics are the core part of a BI system. Evelson and colleagues (2008)
summarized BI analytics into eight categories based on a lab-based evaluation of
popular BI tools on the market.

(1) Production/operational reporting for pixel-perfect mass report distribution

No matter how much BI self-service end users request, good old-fashioned
report development tools, mainly used by professional programmers, remain at the
heart of a BI product line. While these tools may also be used to analyze data and
produce visual dashboards, they are primarily used for mass distribution of very
sophisticated reports like customer statements. Requirements for these products
often include pixel-perfect positioning of data and graphics, a scripting language
equal in power to a full programming language, and the ability to handle complex
headers, footers, nested subtotals, and multiple report bands on a single page.

(2) Ad hoc query tools provide a quick answer to a business question

When report formatting or distribution is not a requirement, and an information
management professional just needs a quick answer to a business question like,
“How many units of a product were sold yesterday across all stores and outlets?”
or, “What were my total sales in 2007 in North America?” simple ad hoc query
tools with an intuitive point-and-click user interface (UI) are the way to go.

2.3 Analytics of Business Intelligence 23

(3) OLAP tools, when business questions are more about “whys” than “whats”

While reporting and ad hoc query tools are typically used to answer the
questions like “What happened?” and“When and where did it happen?”, online
analytical processing (OLAP) tools are used to answer the questions like “Why
did it happen?” and also to perform “What if?” analysis. Otherwise known and
“slicing and dicing” analysis (essentially a spreadsheet pivot table on steroids),
OLAP tools allow a power user to see any facts (numerical, typically additive
numbers, like transaction amounts and account balances) almost instantaneously
regrouped, re-aggregated and resorted by any dimension (descriptive elements like
time, region, organizational unit, or product line).

(4) Dashboards as an interactive, visual UI — not a reporting or analytical tool
by itself

Dashboards should be used as a UI to operational or analytical information.
Designed to deliver historical, current, and predictive information typically
represented by key performance indicators (KPIs), dashboards use visual cues to
focus user attention on important conditions, trends, and exceptions. The term
dashboard is often used synonymously with scorecard, but Forrester defines a
scorecard as just one type of a dashboard that links KPIs to goals, objectives, and
strategies. Many scorecards follow a certain methodology, such as Balanced
Scorecard, Six Sigma, Capability Maturity Models, and others. Other dashboard
varieties include business activity monitoring (BAM) dashboards and
visualizations of data/text mining operations.

(5) BAM will report on real-time data and process information streams

While a dashboard can be used as a graphical user interface (GUI) component,
BAM also captures data and process events (e.g., number of credit applications
processed today and number still pending in a queue), correlates and aggregates
them into business metrics (e.g., ratios of processed, approved, and rejected
applications per hour), and displays the real-time status of the metrics and trailing
patterns.

(6) Predictive modeling answers questions about what’s likely to happen next

Using various statistical models, these tools attempt to predict the likelihood of
attaining certain metrics in the future, given various possible existing and future
conditions. One typical predictive modeling class is called market basket analysis,
which tries to predict the likelihood of a customer buying a certain product if and
when he or she bought another product at a certain store at a certain season, date,
and time, given certain economic conditions such as interest rates and price of gas.

(7) BI workspaces enable true end user self-service

While most BI environments attempt to address end user self-service
requirements, they still impose many restrictions, such as fixed data models, an
inability to add new dimensions on the fly, and sometimes restricted access to

24 2 Business Intelligence

production data. Forrester defines a BI workspace as a data exploration
environment where a power user can analyze production, clean data with near
complete freedom to modify data models, enrich data sets, and run the analysis
whenever necessary, without much dependency on IT and production environment
restrictions. Some examples of such workspaces are desktop-based
multidimensional OLAP (MOLAP) cubes, in-memory data models, or BI
software-as-aservice (SaaS).

(8) Guided BI search tools support free form ad hoc queries and analysis

While reporting, ad hoc queries, and OLAP tools work best when one knows the
exact business question, they fall short when a user is looking for something that he
or she is not quite sure of. A salesperson getting ready for an important client
meeting may not know all of the information required to prepare for the meeting
and may not be able to effectively construct the appropriate queries to pull the
information he/she might need. What works much better is enabling this
salesperson to simply enter a few keywords to find relevant customer dimensions in
the database, then using a graphical interface to drill into the information he/she
wants from a list of possibilities. This effectively solves one of the oldest dilemmas
in BI: having to know exactly which questions to ask to get a meaningful answer.

2.4 Commercial Tools

2.4.1 SAS Business Intelligence

Website: http://www.sas.com/technologies/bi/
SAS BI offers a full breadth of SAS Analytics capabilities, including statistics,

predictive analytics, data and text mining, forecasting, and optimization. These
functions are integrated within the business context for better, faster decision
making. SAS BI has two components: Enterprise Business Intelligence and
Business Visualization.

The typical functions of SAS BI are as follows.

• Web and desktop reporting

SAS BI supports a wide variety of targeted, fit-to-task interfaces for report
building, viewing and distribution for all levels of users across an organization.

• Portal and customizable dashboards

SAS BI provides users an easy-to-use, role-based Web portal, via which users
can access aggregated information. It also includes a dashboard development
environment, enabling users to create their own dashboards of different styles
from virtually any data source.

• Microsoft Office integration

Microsoft Office can be integrated with SAS BI, bringing SAS capabilities in
data access, reporting and analytics directly from Microsoft Office.

2.4 Commercial Tools 25

Fig. 2.2 A Screenshot of SAS BI

• Query and Analysis

SAS BI has a user-friendly interface to allow users to easily access and query
data on their own without the help of IT staff.

• Interactive business visualization

SAS BI presents data in charts, graphs and geographic maps within multiple BI
applications.

• OLAP storage and OLAP data exploration interface

Users can work on their Web browsers to create OLAP cubes and interact with
SAS BI to view the multidimensional data from different business dimensions.

• Integrated analytics

Users can access sophisticated analyses directly from their BI interface for
decision making.

• Guided analysis.

A dynamic Windows interface can guide users during model development. This
function enables business analysts, statisticians and programmers to leverage SAS
analytics and efficient processing across all enterprise platforms.

A screenshot of SAS BI is shown in Figure 2.2.

26 2 Business Intelligence

Fig. 2.3 IBM Cognos BI

2.4.2 IBM Cognos Business Intelligence

Website: www.ibm.com
IBM Cognos BI provides full breath of BI analytics, such as various styles of

reporting, analysis, score carding, and dashboards. It has four major components:

• Analysis Studio

In Analysis Studio, users can explore their business data to find trends and
comparisons that answer their business questions. The analysis in Cognos is no
longer strictly against Cognos Power Cubes but also against relational data sources.

• Report Studio

Report Studio is the platform for power users and professional developers to
create formatted reports that contains multiple charts or tabular data sets from
multiple subject areas. Additional chart types, such as gauges and maps, that aren't
available in Query Studio or Analysis Studio, are also supported in Report Studio.
A screenshot of Report Studio is shown in Figure 2.3.

• Query Studio

Query Studio is used for ad hoc report authoring. Users can easily query any
data sources (relational, multidimensional or planning data source) to create
crosstabs, simple charts or detailed reports. Query Studio also provides formatted
templates to give any report a standard corporate layout or logo.

2.4 Commercial Tools 27

• Metrics Studio

Metrics Studio is used for scorecarding. Users can monitor business
performance through different parameters. The idea behind it is to put
performance indicators next to the organization's key performance measures (red,
orange, green status notation).

2.4.3 SAP BusinessObjects Business Intelligence

Website: www.sap.com
SAP BusinessObjects provides a full spectrum of BI functionality, ranging

range from reporting, query, analysis, dashboards and visualization, to intuitive
discovery and advanced predictive analytics capabilities, as well as data quality
and extract, transform, and load functionality. The components and functions of
SAP BusinessObjects are categorized as follows.

• Information Infrastructure

The information infrastructure of SAP BusinessObjects allows IT department to
extend BI to any application or process in any environment. It provides following
functions: Auditing, BI content search, BI widgets Central management console,
Encyclopedia, InfoView, Java portal integration kit, Life-cycle management,
Publishing, Process tracker, Query as a Web service, Microsoft Office SharePoint
portal integration kit, Software development kits, and Universe designer.

• Reporting

SAP BusinessObjects contains a reporting tool: Crystal Reports providing users
an interface to connect to virtually any data source, design and format interactive
reports, and share them internally and externally. The final reports can be
delivered via SAP BusinessObjects Enterprise, Crystal Reports Viewer, and
Microsoft Office documents.

• Query, Reporting, and Analysis

There are two tools in SAP BusinessObjects, Desktop Intelligence and Web
Intelligence, allowing users to perform ad hoc query, reporting and analysis,
without having to understand complex database languages and underlying
structures. Figure 2.4 is a screenshot of SAP BusinessObjects Web Intelligence.

• Dashboards and Visualization

SAP BusinessObjects has nine software tools to support information
visualization, such as Xcelsius Enterprise, Dashboard Builder, and VizServer.
This set of tools also provides professional developers a software development kit
to customize advanced visualization interfaces.

• Advanced Analytics

SAP BusinessObjects Voyager is the OLAP interface through which users can
explore multidimensional data. SAP BusinessObjects Predictive Workbench is a

28 2 Business Intelligence

software tool enabling users to conduct predictive analysis. SAP BusinessObjects
Set Analysis is a software tool enabling users to conduct clustering analysis.

• Search and Navigation

With SAP BusinessObjects, business users can search BI contents from internal
and external resources, such as structured databases, business intelligence (BI)
systems, unstructured company and text content, search engines, and the Web.

2.5 Limitations

Business intelligence is promising to turn ‘data’ into ‘knowledge’ and help
managers survive data tsunami and eventually succeed in decision making.
However, BI systems are essentially data-driven DSS. Current BI systems can
only partially support managers’ work (Singh et al. 2002). The emphasis of BI
analytics is manipulation of large volumes of business data, rather than supporting
managers’ decision making from the cognitive perspective.

Fig. 2.4 SAP BusinessObjects Web Intelligence

A BI system is capable of providing managers with huge amounts of internal
and external business data, but more data does not equal more valuable
information (Endsley et al. 2003). On one hand, the reporting function is mainly
pre-defined information representation. That is, business reports are generated in
fixed types and formats by executing pre-defined queries into the data warehouse.
The pre-defined reports are efficient and effective in reporting repetitive and
structured business events, for example periodical (daily, weekly, monthly,
quarterly and annual) product sales. However, pre-defined reports are not as
flexible as many other ill-structured events require, for example, unpredictable
marketing campaigns. On the other hand, OLAP-based ad hoc analysis gives

2.6 Summary 29

managers the full control of their data. Managers can easily obtain any data of
their interest by selecting analysis objects and customizing analysis dimensions.
Nevertheless, mangers often feel lost when confronted with a large body of
business data concerning a decision problem (Resnick 2003).

A recent survey by Economist Intelligence Unit (2006) shows that 73 per cent
of senior managers agreed that it is important to have less but more timely data to
improve the quality and speed of decision making. This result corresponds to the
research result by Sutcliffe and Weber (2003) about knowledge accuracy. Their
research implies that having a lot of facts about a decision situation is less
important than having a clear and consistent overview. Resnick (2003) criticizes
the current executive dashboard design (a type of BI application) for emphasizing
improvement on data analysis functionality while falling short of cognitive
engineering consideration. More recently, an industrial report from InfoWorld
Media Group shows that ‘BI has a reputation for being a resource sink that
delivers reports almost no one reads. It doesn't have to be that way. And you can
no longer afford to let it be’ (Gruman 2007, p. 22).

2.6 Summary

The identification of the advantages and disadvantages of traditional BI system
motivated us in this research to seek a new way to better support managers’ work,
particularly for handling ill-structured decision problems. This book aims to
provide models and techniques to facilitate cognitive decision support on the basis
of BI platforms. Thus, it is necessary to look at the nature of cognitive decision
support from the cognitive psychology perspective. In next chapter, relevant
concepts and decision models in cognitive psychology will be reviewed.

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 31–37.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 3
Managerial Cognition

In naturalistic decision making, successful decisions are mainly based on the
sufficient situation awareness (SA) and mental models of decision makers. With
rich SA and mental models, a decision maker is able to understand the current
decision situation, identify potential threats and opportunities, and predict the
future. In this chapter, we will introduce the basic concepts and models of SA,
mental models and naturalistic decision making, and the implications of them to
investigating the problems of the decision making model of classical DSS.

3.1 The Concept of Cognition

In cognitive psychology, cognition refers to cognitive (mental) processes
(functions) involving acquisition, maintenance and usage of knowledge. A
cognitive process is considered as a process of human information processing ‘…
by which you [an individual] take information, pick it over, play with it, analyze
it, put it together, reorganize it, judge and reason it, make conclusions, plans and
decisions, and take action’ (Jaques 1996, p. 18). Cognition can take a number of
forms such as perception, attention, pattern recognition, learning, memory,
language processing, problem solving, thinking and reasoning (Baum 2004; Lycan
& Prinz 2008; Sternberg 2006).

The resultant product of cognition is knowledge, which can be of different
types, such as beliefs, mental models and SA. Knowledge is stored and maintained
in memory which is either long-term memory (lasting from days to a lifetime) or
working memory (lasting around 20 seconds) (Bahrick et al. 1975). Knowledge is
typically utilized by people to make decisions and judgments (Plous 1993). In the
naturalistic setting, people are capable of making decisions solely based on the
knowledge residing within their minds. How experts (proficient decision makers)
make decisions in real-world contexts that are meaningful and familiar to them is
the major concern of naturalistic decision making (NDM) research (Lipshitz et al.
2001). People’s abilities to make naturalistic decisions mainly rely on two kinds of
knowledge: SA and mental models. In this section, we will briefly review the
existing work about SA, mental models and NDM.

32 3 Managerial Cognition

3.2 Situation Awareness

The concept of SA was initiated in the military aircraft domain and extended to air
traffic control, nuclear power plants, and other tactical and strategic systems
(Endsley 1995b). In aviation, SA mainly refers to the pilot’s knowledge about the
aircraft itself and its environment (Emerson et al. 1987; Hamilton 1987; Vidulich
1995). Sarter and Woods (Sarter & Woods 1991) describe SA as ‘the accessibility of
a comprehensive and coherent situation representation which is continuously being
updated in accordance with the results of recurrent situation assessments’ (p. 52).

Endsley (1995b) proposed a generic model of SA in terms of information
processing (Figure 3.1). She suggested that SA can be divided into three levels or
steps of mental representation.

Fig. 3.1 Endsley's Situation Awareness Model (Endsley 1995b)

Level 1: SA is the decision maker’s perception of the status, attributes, and
dynamics of relevant elements in the environment (the decision situation). Level 1
SA is the lowest and most basic level of SA. Achieving Level SA involves basic
information detection processes.

Level 2: SA is the decision maker’s comprehension of the perceived
information, i.e., Level 1 SA. Level 2 SA is achieved through pattern recognition,
interpretation, and evaluation. Level 2 SA results a comprehensive picture of the
environment.

The highest level of SA is the decision maker’s projection: Level 3 SA. Level 3
SA is the decision maker’s ability to predict the future status of the environment.

3.3 Mental Models 33

Endsley’s SA model also shows various internal and external factors affecting
the process wherein SA is developed. The development process of SA is referred
to as situation assessment. In the SA model, situation assessment is an information
processing process within the decision maker’s mind. This process can be
enhanced by means of appropriate technologies. For instance, a case study by
Endsley and co-researchers (2003) demonstrates that different user interface
designs result in different degrees of situation assessment in aviation control. In
this research, we proposed the situation retrieval theory and developed relevant IS
techniques to assist managers to develop SA according to their decision situations.

Situation awareness is believed to be an essential prerequisite for people’s
decision making in any complex and dynamic situation (Endsley 1995a; Flach
1995; Sarter & Woods 1991; Smith & Hancock 1995). A close relationship exists
between SA and decision making: richer SA is more likely to lead to good
decisions and then to good performance (Stanners & French 2005).

Simply put, SA is about knowing what is going on around the decision maker.
In this book, we particularize the concept of SA in business domain in that SA is a
state of knowledge reflecting the manager’s understanding of the current decision
situation. This understanding may include sensing and comprehending different
business information, such as sales data, product information, emerged
competitors, and government policies. It may also reflect the manager’s prediction
about the potential threats, opportunities, and possible solutions. SA creates a big
picture of the company within the manager’s mind and enables the manager to be
capable of predicting the future and of making decisions.

3.3 Mental Models

Mental models are ‘psychological representations of real, hypothetical, or
imaginary situations’ (Johnson-Laird et al. 1998). Mental models are commonly
referred to as deeply held assumptions and beliefs that enable individuals to make
inferences and predictions (Chen & Ge 2006; Chen & Lee 2003; Johnson-Laird et
al.1998). Rouse and Morris (1985, p. 351) defined mental models as ‘mechanisms
whereby humans are able to generate descriptions of system purpose and form,
explanations of system functioning and observed system states, and predictions of
future states’.

A mental model is useful in that it provides (1) a mechanism for guiding
attention to relevant aspects of the situation, (2) a means of integrating
information perceived to form an understanding of its meaning and (3) a
mechanism for projecting future states of the system based on its current state and
an understanding of its dynamics (Endsley et al. 2003).

Mental models and SA are different in their points of reference (Sarter &
Woods 1991). Mental models use finite number of elements and algorithms to
represent systems or devices, whereas SA is a dynamic representation of open
systems. Mental models reflect people’s past experience which act as the basis and
guidance for adequate situation assessments (Endsley 1995a; Sarter & Woods
1991). People need both rich SA and mental models to understand the decision

34 3 Managerial Cognition

situation, to anticipate the near future status of the environment, and then to
succeed in decision processes.

Mental models are a type of tacit knowledge which can be elicited from
people’s minds using cognitive mapping (Ackermann et al. 1992). Cognitive
mapping is a technique used to structure accounts of problems. Cognitive mapping
produces a pictorial representation of the user’s problem: cognitive maps (Eden
1988). Users can organize their concepts (ideas), and the interrelationships
between concepts in a cognitive map. Figure 3.2 is an example of cognitive map
showing how the notebook sales are affected by different factors. Each node
denotes a concept and each directed line denotes a causal relationship between two
concepts. For instance, customer service and advertisements affect market share;
market share affects notebook sales.

Fig. 3.2 An Example of Cognitive Map

Cognitive maps are also variously referred to as mental maps, concept maps,
schemata, mental models or cause maps. Cognitive mapping has been studied and
applied in different fields: operation research (Carlsson & Fuller 1996; Langfield-
Smith & Wirth 1992), software engineering (Siau & Tan 2005), accounting (Lee
& Kim 1997), and strategic management planning (Carlsson & Fuller 1996).

3.4 Naturalistic Decision Making

In the study of decision making, NDM has been receiving more interest recently
along with other theories such as CDM, BDT, JDM, and ODM. NDM focuses on
investigating how proficient decision makers make decisions in their familiar
decision situations (Lipshitz et al. 2001). NDM is a descriptive decision theory. At
the other end of the spectrum is normative decision theory, e.g., CDM. In CDM,
decision makers are considered as rational human and the decision making is a
‘choice’ process. Compared to CDM, NDM is based on a ‘matching model’ and
the decision maker has only bounded rationality. NDM is shaped by five essentials
(Lipshitz et al. 2001).

3.4 Naturalistic Decision Making 35

(1) Proficient Decision Makers

NDM is concerned with the decision processes of proficient decision makers in
their familiar decision situations. Proficient decision makers are people who have
rich relevant knowledge or experience regarding decision making. Decision
makers’ experience is domain specific and forms the basis of their naturalistic
decision making.

(2) Situation-Action Matching Decision Rules

Proficient decision makers make decisions via matching processes, instead of
choice processes in CDM. When presented with a decision situation, several
options will automatically emerge in the decision maker’s mind based on his/her
past experience. The decision maker then quickly screens most of the options by
comparing them against a standard, rather than with one another. An option is
selected or rejected based on its compatibility with the situation. The screening
process relies much more on pattern matching and informal reasoning than on
analytical reasoning.

(3) Context-Bound Informal Modeling

The decision models of NDM tend to be informal and context-specific, that is,
closely related to a specific application domain. This is because NDM is mainly
based on decision makers’ domain-specific experience.

(4) Process Orientation

In CDM, the major problem is how to optimize the output according to a
specified input. Rather than the input and output of decision making, NDM is
more concerned with the process, particularly with the information decision
makers actually search, understand, and use during decision process.

(5) Empirical-Based Prescription

In normative decision models, solutions can be prescribed during decision
processes irrespective of the intended recipient’s actual ability to perform them,
i.e. ‘ought’ can be divorced from ‘is’. In NDM, ‘ought’ cannot be divorced from
‘is’: prescriptions are useless if they cannot be implemented, although they are
optimal in some formal sense. Thus, NDM researchers believe it is not necessary
for prescriptions to be optimal, as long as they are good enough for the current
decision situation. NDM prescriptions are derived from descriptive models of
domain expert behavior, which are more feasible than the optimal ones from
choice models.

Among a number of NDM models, the recognition-primed decision (RPD)
model is the prototypical one (Lipshitz et al. 2001). The RPD was developed by
Klein and co-researchers (1989) during a study of firefighters, which is shown in
Figure 3.3.

36 3 Managerial Cognition

Fig. 3.3 RPD Model (Klein et al. 1989)

The decision process under the RPD model is based on decision makers’ SA
and mental models. When presented with a new decision situation, the decision
maker will intuitively recognize the current situation through developing
concurrent SA about it. SA provides the decision maker with an integrated overall
picture of the current situation. This picture is a ‘pattern’ extracted from the
current situation based on ‘SA’ and it is ‘matched’ with pre-held ‘mental models’
through pattern recognition. The matched mental model leads directly to a
potential solution to the current situation. The feasibility of the potential solution
is mentally evaluated against the current decision situation. If the decision maker
believes the potential solution will also work in the current decision situation, the
potential solution is then implemented. Otherwise, the decision maker will modify
or discard the potential solution according to the degree in which it is feasible to
the current decision situation. In the RPD model, the processes of situation
recognition and pattern matching reply on the decision maker’s SA and mental
models. Rich and reliable SA and mental models are direct driving forces for
decision making.

3.5 Summary 37

As two different decision-making theories, CDM and NDM have different
applicability for different decision situations. CDM has been successfully applied
to solve structured decision problems with well-defined goals, conflict resolution,
computational complexity, and requiring optimization and justification. For
unstructured or semi-structured decision problems, particularly those with time
pressure, uncertainty and ambiguity, NDM is more applicable if experienced
decision makers are available.

3.5 Summary

A decision maker’s SA and mental models are two prerequisites for successful
decision making. Thus, to develop relevant models and technologies to enrich
decision makers’ SA and mental models is supposed to be a key consideration of
designing contemporary DSS. Rich SA and mental models are not the guarantee
of successful decision making. However, the strong relationships between SA and
mental models and decision making indicates that the better SA and mental
models are more likely lead to better decisions.

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 39–50.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 4
Cognition in Business Decision Support Systems

Cognition plays a key role in decision making for complex, ill-structured
situations. Cognitive decision support is one of the major objectives in the design
and development of DSS. In Chapter 3, we analyzed some important concepts and
models in managerial cognition. Managers’ rich SA and mental models are two
prerequisites for and likely lead to successful decisions according NDM theory. In
this chapter, we will look at the role of managers’ cognition on decision-making
processes from an information system (IS) perspective. The first two sections of
this chapter discuss the basic characteristics of decision-making tasks in business
domain, and how managers’ cognition can influence on business decision making.
The last section summarizes some typical systems that take cognition as an
important consideration.

4.1 Complex Nature of Business Decision Making

Anthony (1965) categorized management activities into three levels: operational
control, management (tactical) control, and strategic planning (Section 1.2).
Roughly speaking, management activities of operational control, management
control and strategic planning respectively correspond to structured, semi-
structured and unstructured problems. However, due to the complexity of business
management, there are no definite boundaries between different management
activities. For instance, a specific strategic planning activity might be essentially
of unstructured nature, but with a proportion of structured characteristics.

Structured management problems are relatively easy to define, and model-
based DSS have been well-studied and successfully applied to solve this kind of
problems for decades (Gordon & Pinches 1984; Jensen & Bard. 2003). However,
ill-structured (semi-structured and unstructured) management problems,
particularly strategic planning, still lack sufficient efficient decision aids from
today’s DSS. Singh and co-researchers (2002) found that the support scope of
DSS is surprisingly narrow, with most of the information serving well-defined
needs and drawing from internal databases. Much less is done to support the parts
of strategic planning that are less structured or require data that are external or
non-machine resident. Their research shows that no more than 40 per cent of the
strategic management process is supported or partially supported by executive
support systems.

40 4 Cognition in Business Decision Support Systems

The lack of decision support of DSS to ill-structured decision problems can be
attributed to the complexity of managers’ roles. Managers’ specific roles include
identifying problems and opportunities, working out appropriate solutions to react
to problems and opportunities, developing business goals and strategies,
establishing social networks, developing and maintaining relationships with
different partners (Hoven 1996; Welter 1988). Managers’ roles in organizations
were formally modeled by Jaques’s (1976) stratified systems theory. The stratified
systems theory describes a bureaucratic system at eight strata levels corresponding
to eight managerial roles respectively. Each organizational stratum is shaped by
task uncertainty and time-span of discretion: the targeted completion time of the
longest task or task sequence in a managerial role. Jaques found that the time span
increases as one moves up the organization, such as 1 day to 3 months (Level 1), 3
months to 1 year (Level 2), 1 year to 2 years (Level 3), 2 years to 5 years (Level
4), 5 years to 10 years (Level 5) and so on. Level 1 tasks are mainly concrete tasks
conducted by front line managers and they have minimal uncertainties, compared
with Stratum 4 tasks such as corporation goal formulation and strategic planning.
With stratum level increases, task uncertainties also increase. Managers employ
diverse techniques to deal with uncertainties, such as trying out different ways of
carrying out tasks (Level 1), cognitively simulating tasks in the mind (Level 2),
using forecasting systems (Level 3), constructing portfolios of departments and
systems (Level 4), scenario analysis (Level 5) and so on. Jaques points out tasks
become more complex due to increased uncertainties towards higher level
managerial strata, and the increasing task complexity demands increasingly
complex cognitive processes.

Regarding the complexity of ill-structured decision problems, Mintzberg and
co-researchers (1976) described strategic planning as novelty, complexity and
open-endedness. They refer to strategic decision making as a ‘groping process’. At
the beginning of this process, managers usually have very little understanding of
the decision situation with which they are confronted, and they only have a vague
idea about the potential solution. Before a final decision is made, managers have
to grope through ‘a recursive, discontinuous process involving many difficult
steps and a host of dynamic factors over a considerable period of time’ (Mintzberg
et al. 1976).

This is not the decision making under uncertainty of the textbook, where
alternatives are given even if their consequences are not, but decision-making
under ambiguity, where almost nothing is given or easily determined (Mintzberg
et al. 1976, p. 136).

Today’s companies operate in a turbulent business environment where different
sectors interact with and affect each other. Walters and co-researchers (2003)
summarize in six internal business environment sectors (market research, product
R&D, basic engineering, financial management, cost control, and operational
efficiency) and six external ones (market, technological, competitive, political/legal,
economic, and socio-cultural). For the survival of a company, the executive needs to
keep abreast of each sector of the environment. Moreover, the speed and quality
with which business decisions must be made has increased substantially with the
trend of the globalization of economy (Ditsa 2003; Resnick 2003).

4.2 Cognition in Business Decision Making 41

The above discussion shows that today’s business decision making happens in a
complex environment, and is often imposed with a high degree of complexity,
uncertainty, dynamics, high personal stakes and time pressure. As Courtney
argues ‘…organizational decision environments have always been complex and
ill-structured, the environments of the near future will be even more so’ (Courtney
2001, p. 18), business decision making grows increasingly ill-structured and
demanding of experience. Decision making for ill-structured business problems
therefore taxes managers’ cognitive abilities to a much higher extent than
structured ones. Only with rich situation awareness and solid mental models about
their decision situations can managers have good opportunity to be successful in
managing their business.

4.2 Cognition in Business Decision Making

Managers’ cognition plays an important role in decision making, as has been
noted by many researchers. In behavioral organization theory, managers’
cognition acts as a filter between inter-organizational and intra-organizational
environments, which helps managers to search for selective information
concerning functions of the business and certain organizational actions (March &
Simon 1963). Similarly, based on a survey of 12 Fortune 500 companies,
Donaldson & Lorsch (1983) concluded that senior executives simplify business
reality by employing interrelated beliefs to filter irrelevant information. The
simplified business environment helps executives to gain better understanding of
their companies during strategic decision making. This conclusion was confirmed
by Porac & Thomas (1990).

Mintzberg (1973) categorized managers’ work into ten different roles and
connects them with managers’ mental models. He found that managers spend most
of their time communicating with other people and thinking, by which a series of
mental models are built. Managers’ mental models are related to different issues,
decision situations, problems and company internal and external environments.
During the decision process, managers tend to use their past mental models to
comprehend the current problem and to test alternative solutions.

Isenberg (1984) observed that higher level decision making is mainly based on
managers’ intuition rather than ‘choosing’ the best one from a number of
identified alternatives. Managers are skillful at using historical experience to
envision future scenarios of the company, by which they predict potential threats
and possible opportunities. In dynamic, ill-structured environments, managers
have little time to conduct thorough rational reasoning. Ironically, managers tend
to quickly assess decision situation by comparing a current decision problem with
their past decision scenarios, which leads to a quick, satisfying decision (Schmitt
1997).

Managers’ cognitive abilities are nevertheless subject to many cognitive biases.
A cognitive bias is a distortion pattern in the human mind which leads to a
perception, judgment, or reliability that deviates from the reality (Pohl 2004).
Cognitive biases might be useful in certain circumstances, but they are more likely
to cause serious mistakes in decision making. For example, people tend to accept

42 4 Cognition in Business Decision Support Systems

new information that confirms their preconceptions and avoid conflicting ones.
Senge (1990) found that many good business plans failed to be carried out simply
because of their incompatibilities with managers’ mental models. When people
retrieve past experience, they have a tendency to overestimate recent events
because these events are relatively easier to recall from memory. People also have
a bias toward thinking that the more information they can obtain, the better
decision they can make. Russo and Schoemaker (1990) described ten most
common mistakes in decision making related to cognitive biases: plunging in,
frame blindness, lack of frame control, overconfidence in your judgment,
shortsighted shortcuts, shooting from the hip, group failure, fooling yourself about
feedback, not keeping track and failure to audit your decision process. Most
cognitive biases are hard to avoid and they are attributed to different psychological
biases. For example, judgmental biases are caused by judgmental rules and
heuristics employed by people to reduce difficult mental tasks to simpler one
(James H. Barnes 1984). However, well-designed information systems are helpful
for people to overcome some bad cognitive biases (Chen & Lee 2003). In this
book, a navigation-knowledge-guided situation presentation method will be
discussed to help managers easily recall and reuse past experience and to provide
support to their thinking process.

4.3 Cognition Oriented Information Systems

Theoretically and practically, the existing literature reviewed in previous sections
of this chapter advocates a strong argument that today’s DSS should be designed
to support managers’ work from a cognitive perspective, in order to assist decision
makers to overcome the disadvantage of cognitive biases, reuse past experience,
enhance mental models, develop SA, and deal with ill-structured decision
problems. In this section, we review existing work about specific systems, related
models and concepts for cognitive decision support in DSS. As a wider
appreciation of previous work in this research, we also briefly review other areas
related to supporting or utilizing human cognition in a broad sense. These areas
include case based reasoning (Section 1.4.4) and natural language interface to
databases (NLIDB).

4.3.1 Cognitive Decision Support Systems

Cognitive maps, as a knowledge representation technique of human mental
models, have received wide research attention in DSS community. A number of
DSS have been developed in past research projects to support manipulation of
cognitive maps.

An early DSS called SPRINT (Strategic Plan and Resource Integration), was
developed to support strategic management by Carlson and Ram (1990). SPRINT
can be used by managers to explicitly represent planning models which are of
implicit nature in managers’ minds. The visual representation of planning models
is based on manages’ mental models. The concept nodes and links between
concepts can be created by managers according to their understanding and

4.3 Cognition Oriented Information Systems 43

thoughts about their decision problems. SPRINT also supports heuristic rules and
goal-oriented communication between different managers. The cognitive aspects
of SPRINT lie in supporting the visual representation and dynamic creation of
managers’ mental models regarding business plan formulation. Although
managers’ cognition is supported in terms of information systems to a limited
degree, SPRINT represents one of the early research efforts toward cognitive
decision support in the DSS community.

A conceptual DSS called Cognitive Lens Support System was described by
Yadav and Khazanchi (1992). They proposed the concept cognitive lens as the
description of mental models from an IS perspective. A cognitive lens acts a filter
to convert information into a set of constructs and their interrelationships of the
real world. The cognitive lens support system revolves around inquiry of cognitive
lenses stored in a database. They proposed three categories of IS function for
inquiry of cognitive lenses: introspective, dialectic, and eclectic. The introspective
function allows managers to examine their past experience for a specific decision
problem. The dialectic function allows managers to compare their own experience
with others. The eclectic function allows managers to aggregate multiple pieces of
experience. The major argument for the cognitive lens support system is that the
IS functions developed based on managers’ cognitive orientation will facilitate
better understanding of ill-structured problems. Compared to previous research,
the cognitive lens support system illustrates a more comprehensive analysis about
the significance and IS techniques of supporting managers’ thinking process for
business decision making, although at a conceptual level and lacking empirical
validation.

Following the cognitive lens support system (Yadav & Khazanchi 1992), Chen
and Lee (2003) developed a cognitive DSS for strategic decision making.
Similarly, their system also includes three supporting modules: retrospective,
introspective, and prospective. The retrospective module provides managers with
tools to manage business cases, experience, other people’s views, speculations,
and even rumors. The introspective module is used to explore and represent the
managers’ mental models. The prospective module provides managers with aids in
forward thinking by creating and managing future business scenarios. An
exploratory assessment was conducted to evaluate this system by interviewing real
business executives from three different industrial sectors. The evaluation results
show that cognitive decision support can be effectively delivered by aiding
managers in explicitly representing and exploring their mental models.

Cognitive maps, particularly fuzzy cognitive maps, are also employed as a
reasoning mechanism for developing domain-specific DSS. Lee and Kim (1997)
developed a bidirectional (downward or upward) inference system based on fuzzy
cognitive maps to solve highly unstructured problems in stock investment domain.
Noh and co-researchers (2000) combined cognitive map technique with case-
based reasoning to solve credit analysis problems. Konar and Chakraborty (2005)
proposed a unsupervised learning and reasoning model based on fuzzy cognitive
maps which is implemented with Petri nets. More recently, Stylios and co-
researchers (2008) used fuzzy cognitive map technique to assist medical
professionals in crucial clinical judgments.

44 4 Cognition in Business Decision Support Systems

Recognizing the implication of managerial intuition in handling dynamic, ill-
structured business problems, Kuo (1998) proposed an ecological cognitive model
of managerial intuition for executive support system (ESS) development. This
model enables managers to intuitively assess the situation through perception-
action cycles. During the perception-action cycles, sensorimotor (perception and
actions) is combined with the memory processors (mental models). Cognitive
decision support of ESS is reflected in modeling the ecology of managers, i.e. the
interplay between human and environment. The claimed contribution of the
ecological cognitive model is this model can be used to guide the development of
practical ESS with consideration of the managerial intuition.

The impact of computerized cognitive aids was tested in the context of strategy
execution process by Singh (1998). This research identified two sorts of specific
cognitive requirements in strategy execution processes: memory support and
strategy support. The former is intended for compensation for managers’ limited
attention resources. The latter is for managers’ monitoring abilities. Positive and
significant relationships were found between the efficiency and effectiveness of
the strategy execution process and computerized cognitive aids.

This research has a broader concern of cognition in addition to mental models.
For example, the manager’s SA is represented as a set of natural language
sentences, is analyzed using natural language processing techniques, and is
utilized to retrieve experience. Furthermore, mental models are represented and
used to formulate information needs. The cognitive processes, such as situation
assessment, thinking and decision formulation are also supported by the system.

4.3.2 Case-Based Reasoning Systems

Case-based reasoning (CBR) has been introduced in Section 1.4.4. CBR is based
on manipulation of cases, as the representation of historical experience of problem
solving (Reisbeck & Schank 1989). Case reuse is the key topic in CBR. A general
case reuse process consists of case retrieval, adaptation, reuse for solving a new
problem, and retention as a new case (Aamodt & Plaza 1994).

Cases are a kind of knowledge acquired by field experts during problem
solving processes (Bergmann 2002). Problem solving is a typical cognitive
process of a decision maker. Hence, by their nature, cases can be considered as
human knowledge originating from decision makers’ mental constructs. In this
sense, cognitive decision support is also reflected in CBR systems. Our research
benefits from the CBR technique in that they are based on the similar idea:
knowledge reuse, i.e., using past knowledge to handle new situations. However,
the differences between this research and CBR are also evident. Instead of cases,
we focus on other types of knowledge: mental models, SA and ontology. We also
focus on decision support rather than solution generation.

4.3.3 Natural Language Interfaces to Database

Another related area to this research is natural language interface to database
(NLIDB). A NLIDB system is an information system that allows users to retrieve

4.3 Cognition Oriented Information Systems 45

information from a database through inputting queries in the form of a natural
language, for example, English (Androutsopoulos et al. 1995). The research of
NLIDB started with the progress of natural language processing (NLP) and it now
has become one of the most successful applications of NLP. According to the
mechanism of query construction, NLIDB systems can be classified into three
basic types: pattern-matching systems, syntax-based systems and semantic
grammar systems (Androutsopoulos et al. 1995).

4.3.3.1 Pattern-Matching NLIDB Systems
A pattern-matching NLIDB system applies a set of hard-wired rules to a natural

language input (question) and then directly formulates a database query

(Androutsopoulos et al. 1995). Suppose a table called T_Partners in a database

contains contact information of business partners such as Company Name,

President, and Telephone Number. A rule used in the NLIDB system might be as

follows.
A pattern:

 “President/CEO” of <A Company Name>”

A query corresponding to the above pattern:

 SELECT President FROM T_Partnter WHERE Company_Name = <A

Company Name>

If a user inputs into the system “What’s the CEO of ABC Ltd.?”, then the
system will generate a query:

SELECT President FROM T_Partnter WHERE Company_Name = ‘ABC Ltd.’

The results retrieved from the database by executing the above query will be

returned to the user.

4.3.3.2 Syntax-Based NLIDB Systems
A syntax-based NLIDB system employs a syntactic parser to identify the

constituent tree of the question sentence input by a user (Androutsopoulos et al.

1995). The constituent tree is then mapped to a database query expression based

on pre-defined syntactic grammars.
A syntactic parser is a software tool which can analyze natural language

sentences syntactically. Parsers are built on the basis of a set of grammar rules and
dictionaries. Parsers are generally language-specific due to the characteristics of
the grammar rules and the dictionaries. The output of a parser for a sentence is the
syntactic representation of that sentence. The syntactic representation mainly
contains three sorts of information: part of speech (Voss & Post 1988) of each
word, phrases and relationships between words or phrases (Roth 2004).

46 4 Cognition in Business Decision Support Systems

The part of speech of a word in a sentence is its linguistic category, which
explains how a word is used in a sentence. There are eight parts of speech defined
in traditional English grammar: the verb, the noun, the pronoun, the adjective, the
adverb, the preposition, the conjunction, and the interjection (MacFadyen 2007).

Example 4.1. A sentence

Fat cats like fresh fish.

With parts of speech tags:

Fat (adjective) cats (noun) like (verb) fresh (adjective) fish (noun).

Words form phrases. A phrase is a group of two or more words which are
grammatically linked together without a subject and predicate (MacFadyen 2007).
Most parsers can also extract phrases. This process is called chunking. As POS
tags for words, phrases are also categorized according to their chunk tags
(syntactic roles) such as noun phrase (NP), verb phrase (VP), prepositional
phrase (PP) and adverb phrase (ADVP). For the sake of simplicity, we use term
POS to refer to both chunks and parts of speech discussed previously. For a
complete description of POS tags and chunk tags, please refer to Penn Treebank
project website2.

Parsers also generate constituent representations for sentences being analyzed.
The constituent representation of a sentence is a tree structure called constituent
tree. Relationships between words or phrases are represented in the constituent
tree. The constituent tree of Example 4.1 is shown in Figure 4.1.

Fig. 4.1 Constituent Tree Example

Syntactic tags used in Figure 4.1 are S: sentence, NP: noun phrase, VP: verb
phrase, a: adjective, n: noun and v: verb.

2 Information about Penn Treebank Project is accessible at
 http://www.cis.upenn.edu/~treebank/

4.3 Cognition Oriented Information Systems 47

Based on the constituent tree, parsers use a set of grammar rules to generate the
syntactic relationships between words or phrases. For instance, in Figure 4.1, the
parser can find a relationship: cats is the subject of like (the verb).

Natural language parsing is a support technique for many other applications
such as question-answering, machine translation, information extraction and
spelling correction. However, natural language parsing is also a challenging
research topic in natural language processing due to the ambiguity and variation
characteristics of natural language. The research and development of syntactic
parsers has received increasingly wide attention both in academics and in
practitioners. Many syntactic parsers have been developed for research or
commercial purpose. The following are some examples of syntactic parsers.

• The Stanford Parser:

http://nlp.stanford.edu/software/lex-parser.shtml

• Robust Accurate Statistical Parsing (RASP):

http://www.informatics.sussex.ac.uk/research/groups/nlp/rasp/project.html

• Collins Parser:

http://morphix-nlp.berlios.de/manual/node23.html

• Brown parsers:

http://bllip.cs.brown.edu/resources.shtml#software

Once the question input by the user is parsed into a constituent tree using a
syntactic parser, syntactic NLIDB systems use a syntactic grammar to explain
users’ questions (natural language sentences). An example of the syntactic
grammar is as follows (Androutsopoulos et al. 1995).

(1) S NP VP
(2) NP Det N
(3) Det “what” | “which”
(4) N “rock” | “specimen” | “magnesium” | “radiation” | “light”
(5) VP V N
(6) V “contains” | “emits”

The corresponding explanation of this syntactic grammar is as follows:

(1) A sentence consists of a noun phrase and a verb phrase;
(2) The noun phrase consists of a determiner and a noun;
(3) The determiner may be what or which;
(4) The noun may be rock, specimen, magnesium, radiation or light;
(5) The verb phrase consists of a verb and a noun;
(6) The verb may be contains or emits.

48 4 Cognition in Business Decision Support Systems

Suppose a user’s question is

Which rock contains radiation?

According to the syntactic grammar, the NLIDB system could map this
question to the following database query (X is a variable):

(for_every X (is_rock X)
(contains X magnesium)
(printout X))

One of the best-known syntax-based NLIDB system is LUNAR (Woods 1973).
LUNAR was developed to be able to answer questions about moon rock
information stored in chemical analysis and literature references databases.

4.3.3.3 Semantic Grammar NLIDB Systems

A semantic grammar NLIDB system is similar to a syntax-based NLIDB system.
It also needs a syntactic parser to build the constituent tree of the question
sentence input by a user. The constituent tree is then mapped to a database query
expression based on pre-defined grammars. The difference lies in the grammar.
The mapping from a constituent tree to the database query is based on a semantic
grammar in a semantic grammar NLIDB system, rather than a syntactic grammar
in a syntax-based NLIDB system (Androutsopoulos et al. 1995). A semantic
grammar can be defined to include any semantic concepts according to the user’s
application. A semantic concept does not necessarily correspond to a syntactic
concept (POS tag). An example of semantic grammars is partially shown as
follows (Androutsopoulos et al. 1995).

(1) S Specimen question | Spacecraft question
(2) Specimen question Specimen Emits info | Specimen Contains info
(3) Specimen “which rock” | “which specimen”
(4) …

Compared to syntactic grammars, semantic grammars can express richer
semantic information which extends the application scope of the system.

We have discussed three basic types of NLIDB systems. The pattern-matching
technique is simple and easy to be implemented. Some early NLIDB systems were
developed based on this technique and perform well in certain applications.
However, the linguistic shallowness of this technique limits its application. The
other two types of NLIDB systems have the ability to express more complex
patterns for understanding natural language and constructing database queries, but
the mapping rules (either syntactic or semantic grammars) are difficult and tedious
to devise, which limits the system’s flexibility (Androutsopoulos et al. 1995).

In addition to the basic varieties, there are many other types of NLIDB systems.
Jung and Lee (2002) developed a multilingual question/answering system using
lexico-semantic patterns to support multi-level grammars for query construction.
Lexico-semantic patterns are a type of prominent method in text-based question
systems. A lexico-semantic pattern contains linguistic information, e.g. words,

4.3 Cognition Oriented Information Systems 49

phrases and POS tags, as well as semantic information, e.g. user-defined classes.
Their system was claimed to have high portability of languages, domains, and
databases. Domain-specific semantic templates are used to implement a natural
language interface to a virtual library by Niculae and co-researchers (2005). A
semantic template is a pre-defined pattern and used in runtime to extract the
semantic relationships between different objects identified from the input
question. Their system includes a pre-processor to build interpretation rules
according to the database schema and WordNet 3. The interpretation rules and
semantic templates are then used at run time to extract semantics of input question
and construct database queries. More recent development of NLIDB involves a
wide variety of other techniques to generate queries for different applications,
such as semantically tractable questions (Ana-Maria et al. 2003), domain
dictionary and semantic metadata of the database (Rangel et al. 2005), machine
learning techniques (Giordani 2008), XML databases (Li et al. 2006), theater
database (Roth 2004), video database (MacFadyen 2007) and data warehouses
(BusinessObjects 2008; SignaText 2008).

Essentially, the prototype system FACETS developed in this research is under
the big umbrella of NLIDB. However, a substantial difference exists between
FACETS and traditional NLIDB systems.

NLIDB systems are questions oriented. The user’s inputs to a NLIDB system
are specific questions corresponding specific answers. For example, an
appropriate question accepted by the LUNAR system might be ‘How many
elements does No. 12 rock include?’. Database queries are constructed based on
parsing the user’s questions using the NLP technique. Corresponding answers are
returned in the form of specific data retrieved from the database based on the
constructed queries. The corresponding output of the LUNAR system might be
‘76 elements’. NLIDB systems, in this sense, are similar to question-answering
(Q/A) systems4.

By contrast, FACETS is decision oriented. Instead of asking questions,
managers (users of FACETS) describe and input their current understanding of the
decision situation. The user of a NLIDB system usually input one question a time.
FACETS is able to accept a complex description of a decision situation consisting
of a number of natural language sentences. Some input examples of FACETS are
as follows.

“The sales of Mountain-100 Silver, 38 was very impressive. As the successor of

Mountain-100 Silver, 38,Mountain-100 Silver, 42 was released in July 2007.

Mountain-100 Silver, 42 was designed with higher performance. However, the

internet sales of Mountain-200 Silver, 42 are going down in Germany and France

since.”

3 WordNet is a large lexical database of English, which grouping meaningfully related

words and concepts into sets of cognitive synonyms, each expressing a distinct concept.
Refer to http://wordnet.princeton.edu/ for more information.

4 A Q/A system is intended to answer natural language questions by mapping natural language
questions to queries into a collection of unrestricted and unstructured texts, instead of
queries into a structured database in NLIDB systems.

50 4 Cognition in Business Decision Support Systems

Furthermore, the processing of each sentence in FACETS is not independent: a
sentence is analyzed partially based on sentences that have already analyzed. This
mechanism makes it possible to analyze the decision situation as a whole, rather
than individual sentences. Instead of definite answers, FACETS presents
managers with situation information related to the decision situation. The retrieved
situation information is used to support managers to develop situation awareness
for decision making. The orientation difference between FACETS and NLIDB
demands new models and techniques to analyze the user’s natural language inputs.

4.4 Summary

It is a noticeable trend to design DSS with decision makers’ cognition at the center
of the system, enabling the process of human decision making to be supported
from the cognitive perspective. The existing literature shows that managers’ SA
and mental models have substantial influence on managers’ behaviors. Today’s
business is operated in a complex environment, and is often imposed with a high
degree of complexity, uncertainty, dynamics, high personal stakes and time
pressure. Successful business decision making heavily relies on managers’ SA and
mental models. The complex nature of business decision making presents a great
requirement of designing DSS in business domain from the cognitive perspective.

Part II
Models

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 53–73.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 5
Cognition-Driven Decision Processes

Human decision making is naturally a cognitive process conducted within a
decision maker’s mind. However, the use of decision support systems incorporates
IS artifacts into the human cognitive process. In this sense, decision making is an
integral process comprised of the human cognitive process as well as IS
functionality. We use the term cognition-driven decision process (CDDP) to
denote such a decision making process. In this chapter, a conceptual framework is
presented in Section 5.1, which shows high level ideas and essential
characteristics of cognition-driven decision processes. Then the detail of the
CDDP model is discussed in Section 5.2.

5.1 Essentials of Cognition-Driven Decision Making

5.1.1 The Conceptual Framework of Cognitive Decision Support

The conceptual framework of cognitive decision support (CDS) is the high level
‘big picture’ of this research as a whole (Figure 5.1). It represents the fundamental
idea about cognitive decision support. The CDS framework was adopted from one
of our recent publications (Niu et al. 2007).

Essentially, the basic idea expressed in the CDS framework is to facilitate
cognitive decision support to business managers (decision makers or general
business users) through reinforcement of their situation awareness (SA) and
mental models on the basis of information systems. According to the theory of
naturalistic decision making (NDM), human decision making is closely related to
the decision maker’s SA and mental models in complex situations. Richer SA and
mental models are more likely to lead to better decisions and eventually result in
better decision making performance. The business domain has the potential to
apply NDM theory, as business management nowadays becomes increasingly
complex and dynamic, with uncertainty, time pressures and high personal stakes.

In Figure 5.1, the dark color box (including Mental Models and Situation
Awareness) in the center denotes a business manager (decision maker). The
manager acts as a user as well as an important component of the system. The

54 5 Cognition-Driven Decision Processes

Fig. 5.1 The Conceptual Framework of Cognitive Decision Support

manager’s SA and mental models are enriched and rendered by the Situation
Assessment process and Thinking Support process respectively. The interaction
between the manager’s SA and mental models is a cognitive process; the
interaction between Thinking Support and Situation Assessment is a computerized
process. The Situation Assessment process and Thinking Support process are based
on environment data and domain knowledge respectively. The domain knowledge
mainly refers to the manager’s management experience and the business ontology
(Chapter 6). The environment data consists of internal environmental data (e.g.,
product R&D, financial, engineering, and marketing) and external data (e.g.,
technological, political, and socio-cultural).

Decision making is problem oriented. A decision problem means something of
interest is going wrong or is abnormal and therefore a decision is required to be
made and carried out to solve the problem. But in some cases, problems are not
obvious or perhaps there are no problems at all. For instance, senior managers are
often concerned with identifying potential opportunities or threats before real
problems appear. In this book, we use the term decision situation to represent a
more general meaning than the term problem.

Looking at the CDS framework as a whole, we refer to a situation (decision
situation) as its input and a decision as its output. From the IS perspective, the

5.1 Essentials of Cognition-Driven Decision Making 55

decision situation can be represented as a set of data or information which is
referred to as situation information. Situation information is either a
straightforward description of the decision situation, or indirect information, e.g.,
the background or other related objects. Generally speaking, a computer-based
information system is made up of two basic parts: human and computer.
Accordingly, the human-computer system based on the CDS framework receives
situation information in two ways: via the human interface (the manager), e.g.,
participating in meetings, and via the computer interface, e.g., communicating
with other systems. The human interface is indicated in Figure 5.1 by the dark
color box in the center. The remainder is the computer interface including domain
knowledge, thinking support, environment data and situation assessment. We use
a dashed box to represent all possible touch points in the interfaces between the
human-computer system and its input/output sources.

5.1.2 Cognition-Driven Decision Processes

Compared to traditional BI systems, the decision process in the CDS framework is
driven by the decision maker’s cognition. Rather than emphasizing behavioral
support for the manager’s work, the CDS framework focuses on two cognitive
aspects of management activities: SA and mental model, and on related cognitive
processes, such as thinking, situation assessment and decision formulation.
Anthony (1965) categorized management activities into three levels: operational,
management and strategic. Correspondingly, we group the manager’s SA into
three categories: operational SA, management SA, and strategic SA. At the lowest
level, operational SA looks at the most detailed data related to specific tasks
usually conducted by frontline personnel as the basis of the operation of the
organization. For instance, the awareness of financial transactions and product
specifications belongs to operational SA. In the highest level is strategic SA,
which reflects aggregated business information such as monthly sale reports and
business policies. Management SA is in the middle level. The three levels of SA
are relatively roughly defined and there are no absolute boundaries between
different levels. For a specific decision making task, the manager might need one
or two or all three levels of SA. Take sales as an example. The detailed sales data
(reflected by the operational SA) is the major interest of the sales representative.
The sales executive is more concerned with aggregated data in sales reports.
However the department manager might need both types of data in order to
finalize a marketing plan.

The process of SA development and reinforcement is termed situation
assessment by Endsley (1995b) in terms of cognitive psychology. Situation
assessment is a cognitive process which happens in the decision maker’s mind.
However, in Figure 5.1, we use this term to denote IS functionality (IS based
situation assessment) as well as the human cognitive process (cognitive situation
assessment). The IS based situation assessment complements and supports the
cognitive situation assessment. They both contribute to the manager’s SA
development and reinforcement for decision making.

The manager’s thinking process is supported by the Thinking Support
component. Thinking is a cognitive process, via which humans are able to recall

56 5 Cognition-Driven Decision Processes

past experience, manipulate current situation information and then form concepts,
reason and make decisions (Jaques 1996). Similar to situation assessment, in
Figure 5.1, the manager’s thinking process consists of the cognitive process as
well as the IS-based process. The former occurs in the managers’ mind and the
latter is represented by the Thinking Support component.

The meaning of thinking support here is twofold. On one hand, the manager’s
mental models are elicited and then utilized to drive the process of situation
information processing. The elicited mental models are stored in a knowledge
base. Note the difference between two kinds of mental models: (a) the mental
models stored in the knowledge base and (b) the mental models residing in the
manager’s mind. The former are elicited from the manager, represented and stored
as part of the domain knowledge. The latter are concurrent cognitive constructs
within the manager’s mind regarding past and current decision situations. For the
sake of clarity, we refer to the first kind of mental models as experience. Thus,
experience in our research is computerized mental models. Both experience and
mental models reflect the manager’s past management experience and they have
important implications for handling the current decision situation. As part of the
domain knowledge, experience drives the situation information to be analyzed and
processed during a decision process. As cognitive constructs, mental models
directly interact with the manager’s SA (also cognitive constructs) and drive the
decision process to move forward.

On the other hand, the manager’s thinking process is supported and enhanced
by the information system. People are capable of intuitively using their past
experience to handle new decision situations. However, people’s ability to reuse
experience is subject to many cognitive biases. Some of the cognitive biases can
be weakened or eliminated by IS artefacts. In this research, the manager’s thinking
processes is supported and enhanced through offering the manager interfaces for
experience management: input, edit, compare, aggregate, store, retrieve, and
graphically present experience.

5.1.3 User Centered Decision Processes

Compared to traditional BI systems, the CDS framework is user centered. User-
centered is a design philosophy used for system design and development (Endsley
et al. 2003). The opposite is technology-centered design which emphasizes the
utilities of technologies in terms of system functionality and the users are required
to adapt to the system. User-centered design requires systems to be designed based
on not only its fulfillment of functionality but also human factors. The CDS
framework is centered on the manager. The major human factors in the CDS
framework include the manager’s SA, mental models and the related cognitive
processes. The manager is concerned with decision making in the decision
situation. Thus, the user centered design in the CDS framework can be
exemplified by assisting the manager to maker better decisions through facilitating
cognitive decision support in specific tasks of the decision process. Some of these
tasks in which cognitive decision support is considered in this framework are as
follows.

5.2 The Cognition-Driven Decision Process Model 57

• Describing the Decision Situation

We developed natural language process (NLP) based techniques to offer the
manager an interface via which the manager can describe his/her decision
situation in the form of natural language (English) (Chapter 7). The NLP based
techniques reduce the technical complexity of the current BI interface and aid the
manager to more easily develop and enrich his/her SA and mental models for
decision making.

• Seeking Relevant Knowledge

Successful decision making requires the manager to obtain sufficient situation
information as well as relevant domain knowledge (Section 5.2.1). We developed
IS techniques to aid the manager to acquire relevant domain knowledge according
to the manager’s situation description (Chapters 6 and 7).

• Recalling Past Experience

According to NDM theory, people make decisions based on their past
experience. However, the ability of people to recall past experience is subject to
many cognitive biases. We developed IS techniques to help the manager to recall
past experience and reduce or eliminate cognitive biases (Chapter 6 and 9).

• Obtaining Situation Information

Obtaining the situation information in a timely fashion is the key to situation
assessment, during which the manager develops and enriches his/her SA.
However, people have an inability to precisely state their information needs. We
developed IS techniques to automatically formulate information needs and obtain
situation information (Chapter 8).

• Comprehending the Decision Situation

We developed a navigation-knowledge-guided method to present situation
information in an intuitive way. This technique is based on the manager’s mental
models, which enables the manager to perceive and understand the decision
situation more comfortably (Chapter 9).

5.2 The Cognition-Driven Decision Process Model

Based on the CDS framework, we model cognition-driven decision processes (CDDP)
in Figure 5.2. Part of the work presented in this section has been reported in one of our
publications (Niu & Zhang 2008). This CDDP model reflects the conceptual
components and procedure of a manager’s cognition-driven decision process on the
basis of a data warehouse system. Behind this model are three assumptions.

 (1) Confronted with a decision situation, the manager will conduct an
information processing process, which we called situation retrieval. Situation
retrieval is motivated by the manager’s knowledge need and information need.

(2) The manager is generally unable to state exact information needs for
decision-making tasks.

(3) It is possible to derive knowledge need from SA representation.

58 5 Cognition-Driven Decision Processes

Fig. 5.2 The Cognition-Driven Decision Process Model

The CDDP model is based on the NDM theory, particularly the RPD model.
Thus, it requires the manager is an experienced decision maker. The CDDP model
describes the cognition-driven decision processes from an IS perspective, which is
used to design a new type of BI system with cognitive decision support. Thus, it
also requires the acquisition of adequate domain knowledge (stored in a
knowledge base including the manager’s experience and a domain ontology), and
adequate business data (stored in a data warehouse including the environment
data).

5.2 The Cognition-Driven Decision Process Model 59

5.2.1 Situation Retrieval

5.2.1.1 Information Retrieval and Situation Retrieval

We proposed the situation retrieval model based on the information retrieval (IR)
model. IR systems are concerned with representing, storing and finding
information desired by human users (Ingwersen 1996). Traditional IR systems are
based on best-match principle: the matching between documents and statements of
the queries put forward by the user (Belkin et al. 1982; Newby 2001). IR systems
cater for the users’ information needs through searching, locating and obtaining
target information. A simplified IR model is shown in Figure 5.3 (Belkin et al.
1982; Ingwersen 1996). With a problem, the user of an IR system will raise a need
for relevant information which can be used to solve the problem. The information
need motivates the user to interact with the IR system and search for the desired
information. Once the user acquires the desired information, the user’s problem is
solved and the user’s information need is dismissed.

Fig. 5.3 Information Retrieval

Fig. 5.4 Situation Retrieval

60 5 Cognition-Driven Decision Processes

Note: The user is confronted with a decision situation which leads to an information
need and a knowledge need. The user consults the system and obtains desired
knowledge and information. The obtained information and knowledge is then used
to make a decision for the decision situation. A satisfying decision making dismisses
the information need and the knowledge need.

We define situation retrieval as the process of searching for situation information
as well as situation knowledge for the purpose of decision making. Figure 5.4
illustrates the situation retrieval model. A situation retrieval process begins with a
decision situation. The decision situation leads to the decision maker’s information
need and knowledge need. Respectively, the information need and knowledge need
motive the decision maker to seek information (situation information) and
knowledge (situation knowledge) relevant to the decision situation for the purpose of
decision making. Once a satisfying decision is made and implemented in the
decision situation, the corresponding information need and knowledge need are
dismissed. The detailed process of situation retrieval is presented in Section 5.2.1.3.
There are connections between situation retrieval and IR. According to Figure 5.4,
IR is one component of situation retrieval. The objective of IR in situation retrieval
is to search for relevant situation information for decision making. Another
component is knowledge retrieval which aims at searching for domain knowledge
related to the current decision situation. The above discussion leads to the
differentiation between data, information and knowledge.

We are not attempting to re-define the concepts of data, knowledge and
information here, as many definitions of them have resulted in strong arguments in
current literature. However, it would be helpful to differentiate information and
knowledge in order to clarify information retrieval and knowledge retrieval, as
two basic components of situation retrieval. Based on other researchers’ work
(Bellinger et al. 2004; Rouse 2002), we roughly distinguish information and
knowledge, in that information provides answers to who, what, where, and when
questions, whereas knowledge implies clues to how and why questions. In the
business domain, information can be specific figures about sales, production,
research, marketing trends, and interest rates, which tell the facts about the
business. By contrast, knowledge inspires reasoning, explanation and projection
based on business facts. The manager’s past management experience, business
cases, and business procedures fall into the knowledge category.

Information retrieval systems have been very successful in many application
areas, such as digital libraries, information filtering and search engines, where
users’ problems can be solved by offering information as straightforward answers.
For example, if a cook wants to know an apple pie recipe, he/she can just simply
input keyword ‘apple pie recipe’ into a search engine and get the desired answer
(apple pie recipe details) directly. Therefore, it seems, in IR applications, the
target information which users are seeking is all they need for solving their
problems (what the cook really needs is the ingredients of apple pies and the
cooking procedure). By contrast, knowledge in IR is not as crucial as information
for problem-solving (once the cook successfully finds the recipe, his/her problem
is solved and extra cognitive processes involving knowledge seem not very
necessary).

5.2 The Cognition-Driven Decision Process Model 61

Unfortunately not all problems are as straightforward as the example of the
apple pie recipe. In real life, many problems are very subtle, unstructured and
complex, which require extra domain knowledge in addition to sufficient
information. In this research, we focus on ill-structured business management
problems, e.g., strategic planning. Compared to problems in classic IR
applications, business management problems generally require decisions to be
made and executed. We refer to this kind of problems as decision problems, or
more broadly as decision situations, as opposed to problems in IR which generally
correspond to straightforward answers. In this sense, we say that situation retrieval
is decision oriented, while IR is problem oriented. To deal with a decision
situation, it is necessary for the decision maker to have relevant information, but
information alone is not enough.

Facing a decision situation, the decision maker needs both direct situation
information as well as situation knowledge. Situation information is the starting
point from which the decision maker develops corresponding SA. In Endsley’s SA
model (2000), SA is divided into three levels. Seeking and sensing raw situation
information is the first step for the decision maker to acquire deep situation
understanding. This step results in Level 1 SA. Based on Level 1 SA, the decision
maker can develop higher level SA using his/her past knowledge (mental models).
However, Level 1 SA cannot guarantee higher level SA as different decision makers
have various abilities to digest situation information. This kind of ability depends on
decision makers’ domain knowledge and on how well they can use their knowledge.
Domain experts are differentiated from novices based on their domain knowledge or
experience. Mental models are a kind of domain specific knowledge. A mental
model is useful in that it provides a mechanism for (Endsley 2000).

(1) guiding attention to relevant aspects of the situation,
(2) integrating information perceived to form an understanding of its meaning,

and
(3) projecting future states of the system based on its current state and an

understanding of its dynamics.

Therefore, it is possible that a decision maker fails to develop high level SA

(Level 2 SA and Level 3 SA) and fails to make good decisions due to his/her
limited domain knowledge; even though he/she has already obtained sufficient
situation information. For example, many companies possess large amounts of
data/information, but do not know (lack of relevant knowledge) how to use them
for management. Even after they invest millions of dollars to build data
warehouses and enable the data to be easily accessed across the company, the
executives still feel lost when facing too many business reports generated by the
BI reporting tools (Quinn 2007; Resnick 2003; Sheina 2007b).

The proposed situation retrieval model is to characterize the process of seeking
information and knowledge during decision making in a decision situation. In
Figure 5.4, the decision maker’s knowledge need and information need are
provoked by the decision situation. The decision maker raises needs for
information and knowledge in order to make an appropriate decision in the current
decision situation. Motivated by the knowledge need and information need, the

62 5 Cognition-Driven Decision Processes

user interacts with the system and gains the desired knowledge and information.
Both knowledge need and information need are initiated from the decision
situation; however the two constructs also affect each other during the decision
process. The more knowledge the user acquires, the more precisely the user is able
to know what kind of information he/she actually needs. This results in more
accurate and deeper understanding of the decision situation and richer SA of the
user, which also positively affect the formulation of the user’s knowledge need.

5.2.1.2 Information Need and Knowledge Need

An information need is about what an individual needs to know for problem
solving, hence the information need is about what one actually does not know.
Confronted with a problem, what one actually knows is that his/her state of
knowledge is insufficient (anomalous state of knowledge: ASK) for problem
solving which underpins the information need (Belkin et al. 1982). As such, in
some cases, although the user can precisely state his/her information need and
then proceed to search for corresponding information, in general, the information
need is variable, vaguely stated or ill-defined, and difficult to specify (Castells et
al. 2007; Salton et al. 1975). Rouse (2002) in particular noticed that users have
better abilities to recognize information needs than to specify them. How to
support the user to formulate information needs is a classic research question in
IR. Nevertheless, a satisfying wide-accepted solution to this question remains
under exploration (Cole et al. 2005; Ingwersen 1994; Kuhlthau 1991; Larsen et al.
2006). Due to the unspecifiability of information needs, in Figure 5.2, we use a
dotted line to link Information Need and Situation Awareness to indicate that when
the decision maker gains SA, he/she will generate information need implicitly, but
cannot state it precisely.

Decision makers’ knowledge needs originate from their decision situations,
which is a cognitive process in nature. However, in the CDDP model (Figure 5.2),
we assume that knowledge needs can be derived from managers’ SA
representation. Thus in the CDDP model, the decision process will flow from
Situation Awareness to Knowledge Need. The knowledge need directs the
manager to the quest for relevant knowledge (knowledge retrieval) and powers the
reasoning process for situation comprehension. The role of retrieved knowledge in
our model is twofold. On one hand, it helps the formulation of information need;
on the other hand, it is used to generate navigation knowledge for situation
presentation. SA is the resultant product of situation assessment: the process of
seeking, perceiving, and understanding situation information (Endsley 1995b).
This process is also affected by SA per se. Sarter and Woods (1991) refer to SA as
‘the accessibility of a comprehensive and coherent situation representation which
is continuously being updated in accordance with the results of recurrent situation
assessments’ (p. 52). SA encourages and stimulates the decision maker to actively
acquire further situation information and knowledge during decision process
(Bergmann 2002; Sarter & Woods 1991). In addition, SA is a state of knowledge
(Endsley 1995b). Therefore, it appears that a closed-loop process exists in a
situation retrieval process, during which SA, knowledge need, knowledge,
information need and information sequentially affect one another (Figure 5.5).

5.2 The Cognition-Driven Decision Process Model 63

Thus, if we can acquire the statement of a manager’s SA, the analysis of the
statement will yield representation of his/her knowledge need. In this sense, we set
the assumption that knowledge needs can be derived from the SA statement.

Once the knowledge need is derived from the manager’s SA statement, the
knowledge required for the decision making can be retrieved from the knowledge
base. We use the retrieved knowledge to formulate the manager’s information
need. The formulation of information needs from the knowledge is based on a
domain ontology.

Information
Information
Need

Knowledge
Need

Situation
Awareness

Decision
Situation

Knowledge

Fig. 5.5 The Loop of Situation Retrieval

5.2.1.3 Situation Retrieval Process

Situation retrieval is a key part of the CDDP model. As Figure 5.2 shows, a
situation retrieval process is comprised of five successive steps:

(1) obtaining initial SA (Decision Situation Situation Awareness),
(2) extracting knowledge need (Situation Awareness Knowledge Need),
(3) retrieving situation knowledge (Knowledge Retrieval),
(4) generating information need (Knowledge Fusion), and
(5) retrieving situation information (Situation Information Retrieval).

Step 1. Obtaining Initial Situation Awareness
When confronted with a decision situation, the manager starts the decision process
from becoming aware of the decision situation, which results in an initial SA. The
manager could obtain an initial SA via conventional communication methods, e.g.,
business meetings, and the initial SA can be enriched through further
communication. The manager’s initial SA might be sufficient for some simple
decision situations, but complex decision situations might need richer and higher
level SA. Hence, in Figure 5.2, following Situation Awareness are two alternative
routes: Situation Recognition and Knowledge Need. It is possible that, after
gaining the initial SA, the manager is already confident enough to make the final

64 5 Cognition-Driven Decision Processes

decision. In this case, the decision process proceeds from the Situation Awareness
stage directly to the decision generation stage (including Situation Recognition,
Past Decisions, Decision Revision and Decision). However, in more common
cases, the decision process will go through the process of situation retrieval
instead of straightforward decision making with the initial SA. The initial SA
works as ‘seed SA’ which triggers the decision process to move forward.

The manager can describe and input his/her SA using natural language. A
convenient way to represent SA in the form of natural language is plain text. Thus,
a SA can be defined as a set of natural language sentences.

Definition 5.1. Situation Awareness (A)

A := (S1, S2,…Sn),

where, n ≥ 0, Si is a natural language sentence.
A SA5 is an n-tuple consisting of n ordered elements. Each element (Si) is

called a SA sentence which is a natural language sentence. The following example
is a manager’s SA consisting of three SA sentences:

Example 5.1. A Manager's Situation Awareness

(N02 was released in Australia in July 2007.,

 It is a very good product. ,

However, N02 has brought us 60% of notebook sales decline since its release.)

Step 2. Extracting Knowledge Need
By commonsense, when people are communicating with each other, they tend to
focus on certain objects in the domain of interest and convey relevant information
about these objects in a specific context from a particular view. Consider the
following example of SA sentence in Example:

Example 5.2. A SA sentence

“N02 was released in Australia in July 2007.”

In this SA sentence, N02 represents a notebook computer model name. From
N02, we can infer the following information the manager is trying to deliver.

In the context of product, the manager is talking about N02 which is a

specific notebook model name.

In the context of product release, the manager is talking about Australia,

which is the release location.

5 According to Collins COBUILD English Dictionary, the word awareness is an uncountable

noun. However, when a piece of (situation) awareness is represented as an information
object, we use this word as a countable noun in this book. This convention also applies to
experience, cue, ontology and navigation knowledge.

5.2 The Cognition-Driven Decision Process Model 65

 In the context of product release, the manager is talking about July 2007,

which is a release time.

We define the elementary information units of SA sentences as SA triples.

Definition 5.2. SA Triple (T)

T := (c, v, w),

where, c, v, and w denote the context, view and wording respectively.

A SA triple has three components: context (c), view (v), and wording (w). The
wording part represents a word, phrase, or concept, which is the actual
information content the SA triple implies. For the SA sentence in Example 5.2,
N02, Australia and July 2007 are respectively the wording of three different SA
triples.

The wording of a SA triple is understandable only in a specific context.
Ambiguity will be introduced without context specification. For instance, the
number 2000 does not make sense unless we give it a context, e.g., sales (in this
context, the sales amount is $2000), or product release (in this context, the release
year is 2000). We refer to the context of a SA triple as a native context. A native
context is applicable to the specific wording of a SA triple, i.e., different SA
triples might have different native contexts in a SA sentence.

A SA sentence consists of a couple of SA triples. There is also a central context
for the entire SA sentence. We refer to the context of a SA sentence as a local
context. A local context represents the common background where all SA triples
in a SA sentence are communicated. For the SA sentence in Example 5.2, N02 is a
product model name. Thus product is the native context of N02. As for the whole
SA sentence, it is talking about a matter of product release. Thus, the local context
of this SA sentence can be product release. Technically, the local context of a SA
sentence should be able to cover all SA triples of this sentence. However, due to
the uncertain nature of natural language, it is difficult or impossible to identify
such a local context in some cases, e.g., a very vague SA sentence. The method of
determining local contexts of SA sentences will be discussed in Chapter 7.

A SA consists of a couple of SA sentences, each of which has a local context.
Local contexts might be the same or different from sentence to sentence. Thus, the
frequency of each local context can range from 0 to n in a SA with n sentences.
We refer to the overall context of a SA as a global context. Let A = (S1, S2, …, Sn)
be a SA. The global context of A is defined as follows.

Definition 5.3. Global Context (cg)

 cg(A) := { cl(Si) | Si∈A, freq(cl (Si)) > κ },

where Si is a SA sentence of A, cl (Si) is the local context of Si, freq(cl (Si)) is
the frequency of cl (Si) and κ is the frequency threshold determined by domain
experts. The frequency of cl (Si) is the number of SA sentences whose local

66 5 Cognition-Driven Decision Processes

context is cl (Si). According to this definition, the global context cg of a SA is a
set whose elements are the top frequent local contexts in SA.

In a manager’s SA, an object of interest can be described in different ways. For
example, product release can be described by release time, release location and
product model. The way in which object information is exposed is referred to as
view in Definition 5.2.

Based on the SA triple definition (Definition 5.2), following SA triples can be
derived from the SA sentence in Example 5.2:

(Notebook, Product Model, N02)

(Location, Country, Australia)

(Time, Time Point, July 2007)

By the meaning (semantic information) of the SA sentence in Example 5.2,

product release is an appropriate local context. A native context only applies to a
SA triple, while the local context is for the whole SA sentence. Thus, native
contexts are narrower contexts compared to local contexts. By Definition 5.1, SA
triples are the basic components of SA sentences. To catch the semantic
information of a SA sentence as a whole, each SA triple of this SA sentence needs
to be re-explained in the local context.

We refer to the process of re-explaining SA triples in a local context as context
propagation. The context propagation for a SA triple does two things: (a) replaces
the native context of the SA triple with the local context; (2) correspondingly
revises the view of the SA triple. Applying context propagation to the above three
SA triples, three new SA triples are generated as follows:

(Product Release, Product Model, N02)

(Product Release, Release Location, Australia)

(Product Release, Release Time, July 2007)

The context propagation for the first two SA triples is simply replacing their

native contexts (Notebook and Location) with the local context (Product Release).
For the third SA triple, both its native context and its view are revised.

Context propagation extends the semantic understanding of SA triples from
narrower native contexts to wider local context. Thus the sentence context is
imposed on each SA triple and richer semantic information of SA can be obtained.

We have discussed the methods to represent SA triples, SA sentence and SA.
Now we will look at how knowledge needs are extracted from SA. In the CDDP
model, knowledge needs are used to retrieve relevant experience. Experience is
elicited from the manager’s mental models. Mental models are domain specific
and problem oriented (Bergmann 2002; Johnson-Laird et al. 1998). In the RPD
model (Klein et al. 1989), mental models act as a kind of pattern about past
decision scenarios, which are then compared with the current decision situation by
the decision maker.

5.2 The Cognition-Driven Decision Process Model 67

The manager’s SA represents his/her understanding about the current decision
situation. In the CDDP model, a SA is comprised of a number of SA sentences,
each of which corresponds to a local context. The local context of a SA sentence
represents the common background in which the SA sentence conveys actual
information. Thus, a local context can be thought of as a sub-topic or sub-problem
of the decision situation. There are similarities between local contexts and
experience: local contexts represent a pattern of the current decision situation and
experience is the pattern of past decision situation. The goal of knowledge
retrieval is to get relevant past experience which can be used to aid current
decision making. Therefore, it is reasonable to build the knowledge needs based
on the local contexts of SA triples in a SA. The following definition shows the
method of knowledge need extraction.

Definition 5.4. Knowledge Need (KN)

KN = { cl(Si) | Si∈A },

where, A is a SA, Si is a sentence of A, and cl (Si) is the local context of Si.
As can be seen from Definition 5.4, the knowledge need corresponding to a SA

is a set consisting of the local contexts of all SA sentences. Thus, the knowledge
need extracted from a SA is actually equal to the global context of this SA with
setting the frequency threshold as zero (0).

Step 3. Retrieving Situation Knowledge
Situation knowledge refers to the manager’s management experience which is
stored in an experience base. The experience base and the ontology constitute the
domain knowledge base. Situation knowledge is retrieved from the experience
base according to the knowledge need extracted from the SA.

The retrieved situation knowledge, as the manager’s past experience, is reused
in two manners. Firstly, the situation knowledge is used for the formulation of the
information need. Due to the unspecifiability of information needs, it is difficult to
ask the manager directly specify his/her information need. Based on the third
assumption of the CDDP model, we use the retrieved situation knowledge to
formulate the corresponding information need. Secondly, situation knowledge is
used to generate navigation knowledge for situation presentation. A business
decision situation usually involves a wide variety and large amount of related data.
The way in which the data is presented to the manager heavily affects the process
of situation assessment and eventually affects the entire process of decision
making. We extract navigation knowledge from the situation knowledge and use
the navigation knowledge to guide the process of presenting situation information.

Step 4. Generating Information Need
The manager’s information need reflects his/her expectation on the situation
information. Situation information is stored in the data warehouse. Thus,
information retrieval in our model is equivalent to data retrieval from the data
warehouse. Consequently, the information needs can be thought of as queries into
the data warehouse. We define information needs as follows:

68 5 Cognition-Driven Decision Processes

Definition 5.5. Information Need (IN)

IN : = {q1, q2,... , qn }, n ≥ 0,

where, qi is a data warehouse query and the execution of q results in an amount of

situation information.
According to this definition, the generation of an information need is equal to

the construction of relevant data warehouse queries. Therefore, the main problem
of information need generation is how to construct appropriate data warehouse
queries which can be executed to retrieve the most relevant situation information
from the data warehouse for decision making. We developed IS techniques to
automatically construct data warehouse queries based on the retrieved situation
knowledge and the domain ontology (Chapter 8).

Step 5. Retrieving Situation Information
Situation information is retrieved from the data warehouse according to the
information need which is defined as data warehouse queries. Once the
information need is generated, queries can be submitted to the data warehouse for
execution.

The purpose of situation information retrieval is to find appropriate information
relevant to the current decision situation. The retrieved situation information is the
basis on which the manager’s SA is developed and updated. Thus, it is important
to obtain and present the right situation information in a timely fashion. The
method of generating information needs ensures the quality of information
retrieved from the data warehouse. The retrieved situation information is then
presented to the manager based on navigation knowledge.

5.2.2 Generating Navigation Knowledge

The ultimate goal of the CDDP model is to aid managers to make decisions
through cognitive support. The manager’s SA is developed and enriched in
situation assessment. Situation assessment is essentially based on the presentation
of situation information. Therefore, the content of situation information as well as
the means of information presentation will determine the quality of situation
assessment and thus affect the manager’s final SA. We have discussed how the
situation information is selected and retrieved. Now, we will look at how situation
information is presented to the manager.

In current BI systems, there are two basic techniques to retrieve and present
information: pre-defined reports and ad hoc querying. Pre-defined reports are
based on fixed queries into the data warehouse. The format and content of the
report is determined prior to its actual application. The pre-defined reports are
‘pushed’ to the manager during runtime. Ad hoc querying is mainly used for
presenting cube data, where the manager is able to investigate any piece of
information on his/her own. As discussed in Section 2.5, the two techniques of
information presentation have limitations in that they emphasize manipulation of
large volumes of business data, rather than supporting managers’ decision making
from the cognitive perspective.

5.2 The Cognition-Driven Decision Process Model 69

Mental models are the mechanism whereby people interact with the outside
world. In the business domain, mental models enable managers to simplify the
complexity of business environments. Mental models are about people’s past
experience which are the basis and guidance for adequate SA development. Thus,
if situation information can be delivered to the manager in a similar way as the
mental models are organized, it might bring the manager some comfort and ease
for perceiving and understanding situation information. We refer to the knowledge
which can be used to guide situation information presentation as navigation
knowledge. We developed IS techniques to extract navigation knowledge from the
managers’ experience.

5.2.3 Situation Presentation

Situation presentation is the visual interface via which the manager interacts with
the system and perceives situation information. There are two kinds of information
to be presented in this interface: navigation knowledge and situation information.

Navigation knowledge is the manager’s integrated experience, which has
important implications for handling the current decision situation. People rely
heavily on past experience to solve new problems. Therefore, if the situation
information can be presented to the manager in the way that navigation knowledge
is organized, it will yield a mechanism whereby the manager can perceive
information and comprehend the decision situation in an intuitive way. As a
result, the manager’s cognitive load will be reduced and situation assessment will
become an easier and more comfortable mental process.

The navigation knowledge is visualized and presented to the manager in the
form of maps consisting of concepts and relationships between concepts. Each
concept represents a cue implying a possible affecting factor to the current
decision situation. A concept is also associated with detailed situation information.
Different factors are linked via the relationships. By the links between concepts,
different types of situation information are also connected together.

Based on navigation knowledge, a graphical user interface (GUI) is used to
communicate situation information to and receive feedback from the user. On the
GUI, the navigation knowledge is firstly displayed in the form of maps. The user
is navigated within the map via interactive operations. For example, if the
manager is interested in a specific concept, he/she can just click on the concept on
the GUI and the corresponding situation information associated with this concept
will be presented immediately. In this way, the manager can easily browse the
situation information of his/her interest and the browsing actions are ‘navigated’
by the navigation knowledge. The specific technique for navigation-knowledge-
guided situation presentation will be discussed in Chapter 9.

5.2.4 Situation Awareness Updating

The manager’s SA is updated during the Situation Assessment stage in Figure 5.2.
Technically, situation assessment is a cognitive process within the manager’s
mind during which the manager’s SA is developed and enriched. However, in the

70 5 Cognition-Driven Decision Processes

CDDP model, we use this term to represent IS functionality (IS based situation
assessment) as well as the human cognitive process (cognitive situation
assessment). The IS based situation assessment complements and supports the
cognitive situation assessment. They both contribute to the manager’s SA
development and reinforcement for decision making.

Broadly speaking, the IS based situation assessment is an ongoing process
including all the previous stages of information processing. It starts from the
manager’s initial SA and goes through knowledge need extraction, situation
knowledge retrieval, information need generation, situation information retrieval,
navigation knowledge generation and situation presentation. During the IS based
situation assessment, different IS techniques are employed to assist the manager to
search, locate, obtain and perceive relevant information for the purpose of SA
development and enhancement. In this sense, the Situation Assessment in Figure
5.2 is not another independent stage of the decision process, but a status of
information processing results.

The IS based situation assessment directs situation information to the manager
through situation presentation, which triggers the cognitive situation assessment.
The cognitive situation assessment, as a cognitive activity in the manager’s mind,
is divided into three steps (Endsley 1995b). The first step to achieve SA is to
perceive the detailed situation information delivered by the Situation Presentation
stage, e.g., product details, sales amount and stock price. Perceiving this kind of
situation information will result in the manager’s Level 1 SA.

The second step is to synthesize and comprehend different information
perceived in the first step. The goal of decision making and the past experience
play an important role in this step. The manager needs to put pieces of information
together and form a holistic picture of the current decision situation. The
navigation knowledge guided situation presentation can support the second step of
the cognitive situation assessment. Some low level situation information has
already been aggregated, summarized by the system which helps the manager to
easily comprehend the situation information. Different situation information is
well organized according to the navigation knowledge, which helps the manager
to establish relationships among different elements of the decision situation. The
manager’s Level 2 SA is developed in this step.

The last step is to project the future status of the decision situation which
results in Level 3 SA. The manager’s projection ability is based on his/her
perception and comprehension of the decision situation (both Level 1 and Level 2
SA). The Level 3 SA enables the manager to predict potential opportunities and
threats in the near future, which is valuable for decision making.

5.2.5 Decision Generation

The process of decision generation is based on the recognition-primed decision
(RPD) model (Klein et al. 1989) which has been presented in Figure 3.5. Situation
assessment results in the manager’s updated SA. The updated SA is richer than the
initial one developed at the starting point of the decision process. According to
RPD model, the user, at this stage, has a better opportunity to recognize the
current decision situation and match it with similar past scenarios based on his/her

5.2 The Cognition-Driven Decision Process Model 71

SA and experience in the Situation Recognition stage in Figure 5.2. The past
decisions are then mentally examined. Depending on the appropriateness, past
decisions might be adopted directly for the current decision situation, or be revised
accordingly. A feasible decision to the current decision situation is made through
revising the past decisions.

Compared to the traditional DSS-based decision process model, the final
decision, in the CDDP model, is made by the manager him/her self, instead of a
decision recommendation generated by the computer. In other words, only
decision support is provided to the manager in the form of reinforcement of SA
and mental models, and enhancement of situation assessment and thinking.

Decision making is also a learning process, during which the decision maker
gradually accumulates field expertise. Once a course of action is generated and
implemented after decision making. The decision maker has opportunities to gain
new experience from the performance of a course of action. The experience base
will grow more reliable through constant intake of new experience.

5.2.6 The Decision Cycle

Subject to many factors, the manager may not make the final decision after going
through the Situation Recognition process. For example, the manager feels his/her
SA is not sufficient enough for decision making. In this case, the manager will go
through another iteration of the situation assessment through re-inputting the
updated SA. Therefore, a cognition-driven decision process might include a
number of iterations of decision cycle. As shown in Figure 5.6, each decision
cycle consists of a series of six consecutive steps corresponding to the different
stages in the CDDP model.

(1) SA Analysis

The manager describes his/her SA in natural language. The SA is analyzed in
order to extract knowledge needs. The SA being analyzed is either the manager’s
initial SA or updated SA. The initial SA can be developed via conventional
communication methods and the updated SA is the result of situation assessment.

(2) Knowledge Retrieval

Experience is retrieved from the experience base according to the knowledge
needs extracted from the manager’s SA in Step (1). The retrieved past experience
is relevant to the current decision situation.

(3) Knowledge Fusion

The retrieved knowledge is synthesized to form information needs and
navigation knowledge.

(4) Situation Information Retrieval

Situation information retrieval is conducted based on information needs
generated in Step (3). The goal of situation retrieval is to retrieve information
which is relevant to the current decision situation.

72 5 Cognition-Driven Decision Processes

Fig. 5.6 The Decision Cycle of Cognition-Driven Decision Processes

(5) Situation Presentation

The retrieved situation information is presented to the manager under the
guidance of navigation knowledge. Situation information presentation is the basis
of situation assessment.

(6) Situation Assessment

The manager perceives situation information through interaction with the
system and his/her SA is eventually developed and enriched.

The iteration of decision cycle is triggered by the manager’s initial SA. After
that, the decision cycles iterate one after another until the final decision is worked
out. There are two cases in which the final decision is made. First, during an
iteration of decision cycle, the manager feels confident enough at a point in time
to finalize a decision. The manager’s confidence mainly relies on his/her mental
models and SA. Solid mental models and high level SA are more likely to lead to
successfully decision making. Second, limited resources available to the manager
might force the manager to make a decision. Examples of these resources include
time, cost, and the manager’s cognitive load. Any resource limits may stop the
iteration of decision cycle and trigger the production of the final decision.

5.3 Summary 73

5.3 Summary

The CDS framework and the CDDP model are presented in this chapter. The CDS
framework outlines two basic characteristics of a cognition-driven decision
process: cognition oriented and user centered. According the CDS framework, the
CDDP model was proposed based on three assumptions. The key part of the
CDDP model is situation retrieval. The major difference between situation
retrieval and classic information retrieval is that the former is decision oriented
and the latter is problem oriented. The goal of a situation retrieval process is to
seek, locate and obtain knowledge and information relevant to a decision situation.
Situation retrieval is the fundamental part of a cognition-driven decision process
comprised of iterations of decision cycle. During a decision cycle, the manager’s
mental models and SA are represented as computerized information objects and
utilized for formulation of knowledge needs and information needs, knowledge
retrieval, situation information retrieval and situation presentation. In this sense,
the manager’s decision process is driven by his/her cognition and cognitive
decision support is achieved. Although the CDDP model technically is domain-
independent, the discussion of this model in this book is grounded on the business
domain for the sake of clarity. We believe the CDDP model can be easily
extended into other domains, such as government, medical and education.

This chapter represents the theoretical part of this cognition decision support
for BI. The corresponding technical part, including methods, algorithms, and
techniques developed on the basis of the CDDP model, will be discussed in
Chapters 6, 7, 8 and 9.

Part III
Techniques

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 77–96.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 6
Domain Knowledge Representation and
Processing

From this chapter, we present the technical part of this book including Chapters 6,
7, 8 and 9. The technical part deals with problems related to specific methods,
algorithms, and techniques which are the implementation of the cognition-driven
decision process (CDDP) model. This chapter discusses two kinds of domain
knowledge used in the CDDP model: ontology and experience. A domain
ontology is represented as a class tree and a class graph based on two types of
relationships between classes: subsumption and property-share. Experience is
elicited and represented as experience maps using the cognitive mapping
technique. The domain ontology is used for extracting semantic information of
SA. The extracted SA semantics together with experience are then used for query
construction. This chapter will focus on domain ontology and experience.

6.1 Ontology

6.1.1 Basics of Ontology

Ontologies are originally used to offer a basis for communication between
different parties in order to dismiss ambiguities (McGuinness 2001). However,
recent research has brought ontologies to much broader areas: battlefield (Matheus
et al. 2003) semantic web (Rocha et al. 2004), information extraction (Boufaden
2003; Maynard et al. 2005), business management (Missikoff & Schiappelli
2005), and information retrieval (Castells et al. 2007). In particular, Uschold and
colleagues (1998) developed an ontology (The Enterprise Ontology) for business
domain. They summarized the application of the ontology into four major roles:

(a) a communication medium,
(b) acquisition, representation, and manipulation of enterprise knowledge,
(c) structuring and organizing libraries of knowledge, and
(d) explanation of the rationale, inputs and outputs of the software tools.

In computing science, an ontology is a specification of data model about classes

(concepts) and their relationships (Guarino 1998). In an ontology, a class is a word
or phrase that expresses a general idea of the nature of a thing, often providing a

78 6 Domain Knowledge Representation and Processing

category for the classification of things (Theodorson & Theodorson. 1969).
Classes are domain-specific. In the business management domain, examples of
classes are STRATEGY, MARKETING, PRODUCT, SALES and CUSTOMER6.
A class is differentiated from other classes according to their properties, i.e.,
different classes have different sets of properties. For instance, the property set of
CUSTOMER might include Name, Age, Education, and Income.

In an ontology, different relationships exist between classes. Subsumption is a
very basic type of class relationship. An example of subsumption relationship is
the one between PRODUCT and NOTEBOOK. NOTEBOOK belongs to
PRODUCT: any individual (instance) of NOTEBOOK is also a member of
PRODUCT. In a specific domain, additional types of relationship can be defined
in order to meet different semantic requirements. For instance, there is wrote
relationship between AUTHOR and BOOK, and is-topped-with relationship
between PIZZA and TOPPING. It is noticeable that a hierarchical taxonomy can
be defined if only subsumption relationships between ontology classes are
depicted. In addition to the subsumption relationships, we defined a new type of
relationship called property-share relationships for knowledge needs
construction.

6.1.2 Property-Share Relationships

In real life, people learn of things via obtaining information about them. The
information can be either direct or indirect, subject to the observation method.
Observing a thing directly, people can obtain direct information. Indirect
information can be obtained via intermediaries. For example, people can image
how a child (the target) looks like according to his/her parents’ (the intermediary)
appearance. Indirect information can be considered as a sort of relationship
between the intermediary and the target. The information conveyed by this
relationship is actually based on the properties of the intermediary which are
shared with the target. This information is the intermediary’s contribution to the
understanding of the target. In other words, we can know something about the
target via examining the shared properties of its intermediaries. For the previous
example, the child shares some properties (e.g., facial appearance or personal
nature) with the father. We refer to this kind of relationships between ontology
classes as property-share relationships.

A property-share relationship between two classes is a relationship directed
from the intermediary class to the target class. Let A and B be an intermediary
class and a target class respectively. Let (a1, a2, … am) be properties of class A and
(b1, b2, … bn) be the properties of class B. The property-share relationship from A
to B is defined as follows:

Definition 6.1. Property-Share Relationship (rs)

rs (A, B) := { <ai, bj, fi> | ai ∈ A , bj ∈ B and fi (ai) = bj }.

6 In this book, ontology classes (concepts) are presented in full upper-case (e.g.,

MARKETING), while the properties of a class are only capitalized (e.g., Sales Amount).

6.1 Ontology 79

In this definition, fi is a property transformation function which maps a
property (ai) of A to a property (Carley & Palmquist 1992; Gnyawali & Tyler
2005) of B. fi is defined according to specific application requirements. In most
cases, f(p) = p can be adopted, i.e., the target class and the intermediary class share
properties directly without any transformation. Let us look at an example to
illustrate different property transformation functions.

PRODUCT RELEASE = (Release Date, Product ID)

SALES = (Start Date, End Date, Product Model)

rs (PRODUCT RELEASE, SALES) = {<Release Date, Start Date, f1>, <

Product ID, Product Model, f2>}, where f1(p) = p + N , N is a period of time, and

f2(p) = p.

With the property-share relationship rs, the Start Date of SALES can be

obtained from Release Date of PRODUCT RELEASE by applying property
transformation function f1.

According to property transformation functions

f1(p) = p + N,

Start Date = Release Date + N.

Suppose

N = 5 days.

Thus, given a date when a product is released, a reasonable start date of this

product’s sales can be determined. For instance, if we know the product was
released on 12 June 2008, then it is reasonable to examine the sales data of this
product from 15 June 2008. The Product Model of SALES can be obtained from
Product ID of PRODUCT RELEASE by property transformation function f2. As
f2(p) = p, Product Model = Product ID. Thus, rs enables us to gain insights into the
sales of a product through available data about its release, even we do not have
direct sales data at hand. Well-defined property-share relationships have broad
implications in business management, as they provide us with a means to perceive
useful information indirectly.

With reference to the definitions of ontology relationships, we defined two data
structures to represent a domain ontology: class tree and class graph.
Accordingly, the class tree and class graph of an ontology respectively present the
subsumption relationships and property-share relationships between ontology
classes. Note that the class tree and class graph are NOT two different ontologies,
but two representations of the same ontology from two different perspectives.

80 6 Domain Knowledge Representation and Processing

As the proposed theory, methods and algorithms in this research are not limited
to a specific domain, the presentation of ontology is also not domain specific.
However, most examples (classes and relationships) used in this section are
excerpts from the ontology developed in the application case studies of this
research (Chapter 11).

6.1.3 Class Tree

The building blocks of class trees are nodes and links. A node of a class tree
denotes a class in the ontology. The subsumption relationship between two
ontology classes is represented as a link in the class tree. Figure 6.1 is an excerpt
of the of class tree developed in the business application case study of this
research (Section 11.1). The structure of a node in a class tree has seven fields.

(1) Class Label

The class label of a node is the name of the class that node represents. A class
label is an identification of a class. Therefore, class labels are unique in a specific
ontology (including its class tree and class graph). However, the reality is that
there are many more classes used in an application domain than in the ontology
defined for that domain. In addition, different classes might mean a similar thing,
or the same class might mean different things in different contexts. In order to
avoid ambiguity of communication, all classes in an ontology must meet the
uniqueness requirement. Thus, the determination of all classes for an ontology is
by no means an straightforward task. Ontology development often involves
extensive cooperation of domain experts, technical experts and engineers.

(2) Parent Class

A class tree only represents the subsumption relationships between classes.
Therefore every class (node), except for the root, has a corresponding parent class
(node). The parent class field of a class node is also a class label.

(3) Class Properties

A class of an ontology is defined by a set of properties. The distinction between
the property set of a class and a node structure should be noted. A node of a class
tree is an artifact designed to represent a class in the form of a data structure (tree
node). The properties of a class are the natural description of the class (existence).

Of the property set of a class, we define a special one as taxonomy property.
The taxonomy property of a class is used to distinguish its child classes. For
example, Product Category is the taxonomy property of PRODUCT. PRODUCT
has four children: BIKE, COMPONENT, CLOTHING and ACCESSORY. These
four child classes are differentiated from each other by the Product Category
property. Although a child class inherits all properties from its parent class, still
the child class might have a different taxonomy property to its parent class.

6.1 Ontology 81

Fig. 6.1 An Example of Class Tree

(4) Class Type

A class can be one of three class types: general class, abstract class and meta
class. In the hierarchy of a class tree, general classes are the lowest level classes
(leaf nodes). General classes can have specific instances. An instance of a general
class can be uniquely identified by the taxonomy property of the class. Thus, a
value of the taxonomy property of a general class implies the presence of an
instance of this class and then implies the presence of this class itself. For
example, English Product Name is the taxonomy property of MOUNTAIN BIKE.
Any valid value of English Product Name, e.g., Mountain-100 Silver represents a
specific mountain bike (an instance). This instance will imply the presence of
class MOUNTAIN BIKE.

Compared to general classes, abstract classes are higher level classes in a class
tree. Abstract classes do not have direct instances. Therefore, abstract classes
cannot be identified by instances. We use semantic parsing to deduce abstract
classes from managers’ SA descriptions (Chapter 7).

Meta classes are auxiliary classes which are used to characterize general classes
and abstract classes. A meta class has only one property: value. A meta classes is
usually a property of a general or abstract class. For example, MONEY may
correspond to Sales Amount which is a property of SALES.

There are two types of meta classes: basic meta classes and extended meta
classes. The basic meta classes are pre-defined and not connected to specific
application domains. Currently, we have defined 16 meta classes: AREA, SPEED,
CURRENCY, TEMPERATURE, DISTANCE, TIME INTERVAL, TIME
POINT, LENGTH, HEIGHT, VOLUME, POWER, WEIGHT, PRESSURE,

82 6 Domain Knowledge Representation and Processing

COUNTRY, STATE, and CITY. Clearly, the pre-defined meta classes can only
describe a limited number of types of classes for a specific domain. Thus, it is
reasonable to allow users to define their own meta classes according to their
requirements. The user-defined meta classes are domain-specific and we refer to
them as extended meta classes.

The number of general and abstract classes in a specific domain can range from
tens to over one thousand. Each class has a couple of properties. It might be labor-
intensive and time-consuming to manually define all classes for an application.
Fortunately, we created a mapping relationship between the ontology and the data
warehouse. Thus each class in the class tree is associated with a table in the data
warehouse. The classes can be easily defined by importing data warehouse schema.

Both general classes and meta classes can have specific instances. For the sake
of distinction, we refer to instances of meta classes as meta instances.

(5) Is Experience Map Concept?

In order to apply the CDDP model in an application, an ontology and a
corresponding experience base needs to be built. An experience base includes the
managers’ management experience represented as experience maps. Each
experience map consists of concepts and causal relationships.

The fifth field of a class node indicates whether this class is also a concept in
the experience base. We map every concept of the experience maps to a class in
the ontology. However, not all ontology classes correspond to a concept in the
experience maps due to the scope difference between the ontology and the
experience maps. Theoretically, an ontology is intended to represent all classes of
interest and their relationships in an application domain, i.e., the problem space. In
comparison, an experience map as the representation of a manager’s experience is
a subset of the solution space. In terms of applicability, the ontology has a wider
scope than the experience map. Consequently, the concept set of experience maps
is a subset of the class set of the ontology.

(6) Data Warehouse Object Type

This field together with the seventh field specifies an object in the data
warehouse corresponding to this class. By this means, the mapping relationship
between an ontology and a data warehouse is established. This mapping
relationship is used to construct data warehouse queries (Chapter 8).

We are concerned with three kinds of data warehouse objects: data table,
dimension tables and cubes. Data tables contain relational data the same as tables
in a relational database management systems (RDBMS). Cubes store
multidimensional data which are defined by a number of dimensions. Each
dimension is built based on a number of dimension tables. We use 0, 1, and 2 to
denote data tables, dimension table and cubes respectively. More detailed
discussion about data warehouse tables and cube is presented in Section 8.1.1.

(7) Data Warehouse Object

This field is the name of the data warehouse object mapped with this class. For
example, in the ontology for the business application case study (Chapter 11), the

6.1 Ontology 83

corresponding data warehouse objects of PRODUCT and INTERNET SALES is
DimProduct table and Internet Sales cube respectively. Technically, all classes
should have corresponding objects in the data warehouse. However, due to the
limited scope of a specific application, it is not necessary to relate every class to a
data warehouse object.

6.1.4 Class Graph

A class graph is another part of the representation of an ontology in addition to its
class tree. Compared to the subsumption relationships in the class tree, property-
share relationships are represented in the class graph. The class graph is a directed
graph representing the same set of classes as the class tree. Each vertex denotes a
class; each directed edge denotes a property-share relationship (Figure 6.2).

The class tree of an ontology includes all classes defined for an application
domain, but not every class defined the class tree has property-share relationships
with other classes. Only those class pairs involved with property-share
relationships are represented in the class graph. In practical applications, users
only need to define necessary property-share relationships of their interest, instead
of all possible class pairs.

The example in Figure 6.2 is an excerpt of the class graph for the business
application case study of FACET (Chapter 11). There are two types of edges in
this class graph: monodirectional lines and bidirectional lines. A monodirectional
edge denotes a property-share relationship, e.g., the edge from PRODUCT
SUBCATEGORY to PRODUCT denoting rs(PRODUCT SUBCATEGORY,
PRODUCT). A bidirectional edge denotes two property-share relationships, e.g.,
the edge between SALES and CUSTOMER denoting rs(SALES, CUSTOMER)
and rs(CUSTOMER, SALES). As shown in Figure 6.2, most property-share

Fig. 6.2 An Example of Class Graph

84 6 Domain Knowledge Representation and Processing

relationships are symmetric, i.e., both rs(A, B) and rs(B, A) are valid property-
share relationships, e.g., rs(PRODUCT, ADVERTISING) and rs(ADVERTISING,
PRODUCT).

6.1.5 Role of the Ontology

The major role of the domain ontology (its class tree and class graph) in the
CDDP model is to provide a mechanism whereby the semantic information of SA
can be extracted.

(1) Annotates SA terms

In the CDDP model, managers can describe their SA using natural language.
The SA is represented as texts, each of which includes several sentences.
Employing a natural language parser, SA sentences are parsed into syntactic
tokens (SA terms). SA terms are words or phrases constituting a SA sentence. SA
terms are annotated based on an ontology. The annotated SA terms form SA
triples (Chapter 7).

(2) Infers abstract classes

In terms of subsumption relationships, abstract classes are at the higher level in
a class tree compared to general classes (leaf nodes). General classes can be
directly extracted from SA descriptions according to their taxonomy properties.
Abstract classes generally need to be inferred from abstract classes and relevant
SA terms based on the subsumption relationships (Chapter 7).

(3) Determines class similarities

Class similarities represent the degree to which two classes are talking about
the same thing. Class similarities are determined by comparing classes in both the
class tree and the class graph (Chapter 6).

(4) Represents the relationships between objects in the data warehouse.

Situation information is stored in the data warehouse, which can be retrieved
according to information needs. The construction of information needs relies on a
deep understanding of the relationships between different data objects in the data
warehouse, such as relational tables, dimensions and cubes. We map each data
warehouse object of interest to a class in the corresponding ontology. Thus,
relationships between classes in the ontology can reflect the relationships between
objects in the data warehouse.

6.1.6 Synonyms

The synonyms of a class are terms which have the same or very similar meanings
as the class. Using synonyms, the communication among people or information
systems can be based on wider vocabulary than those used in an ontology. Thus,

6.1 Ontology 85

synonyms extend the applicability scope of an ontology and give practical
applications more freedom to communicate using conventional terms.

Synonyms can be generated automatically based on thesauruses defined in a
specific domain. Users can also manually define as many synonyms as they want.
In FACETS, synonyms are a list of words in a text file. Each entry in the file
consists of all synonyms defined for the same class. For instance, the entry for
STRATEGY is defined as follows:

strategy, strategies, plan, plans, planning, planned, policy, policies,

procedure, procedures

The synonyms of a class include nouns, verbs and different forms of these
words.

6.1.7 Class Similarity

Class similarities are used to retrieve an alternative class when the required class
cannot meet the specified criteria. For example, in constructing data warehouse
queries, a target data warehouse object corresponding to a class needs to be
determined for a given concept in a cue. If the class matched with the concept
does not have a corresponding data warehouse object, the most similar class with a
data warehouse object needs to be determined.

In an ontology, the similarity between two classes is computed based on the
class tree and the class graph of this ontology. First, their similarity is evaluated in
the class tree (tree similarities) and class graph (graph similarities) individually
and then aggregated together to form the class similarity.

• Tree Similarities

The class tree of an ontology is a hierarchical structure. The methods to
computing class similarities within a hierarchical ontology can be grouped into
two basic categories: the edge based methods and the node based methods
(Schickel-Zuber & Faltings 2007). Schickel-Zuber & Faltings compared various
existing methods and concluded that there are only marginal differences between
different methods in terms of mean absolute error measure. This conclusion
encourages us to adopt a relatively simple similarity evaluation method as shown
in following equation. This method was proposed by Leacock & Chodorow
(1998).

Equation 6.1. Tree Similarity (ts)

,
2

),(
lg),(⎟

⎠
⎞

⎜
⎝
⎛−=

D

balen
bats

where, a and b are two nodes of a class tree and len(a, b) is the shortest length of the
path from node a to node b in the class tree. The length of a path in the class tree is
defined as the number of nodes in the path. D is the maximum depth of the class tree.

86 6 Domain Knowledge Representation and Processing

• Graph Similarities

A class graph represents the property-share relationships between ontology
classes. Let a, b be two classes in a class graph and rs(a, b) be the property-share
relationship from a to b. The properties of a defined in rs(a, b) can be transformed
into corresponding properties of b by a transformation function. The more
properties of a are transformed to b, the stronger rs(a, b) is. Therefore, the
property-share relationships, to some extent, reflect the degree to which classes
are related to each other: the stronger a property-share relationship between two
classes, the closer the two classes. Thus, we defined graph similarities using
equation

Equation 6.2. Graph Similarity (gs)

.
||2

|),(r||),(r|
),(

),(),(

ss

∏
∈ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
=

bapathccedge i

ijji

ji
c

cccc
bags

In this equation, gs(a, b) is the graph similarity from a to b. path(a, b) is the
shortest path from vertex a to b. edge(ci, cj) is one of the series of edges in path(a,
b). rs(ci, cj) and rs(cj, ci) is the property-share relationship from ci, to cj and from cj
to ci, respectively.

To combine the tree similarity and the graph similarity, the class similarity
between two classes can be computed using the following equation.

Equation 6.3. Class Similarity (sim)

),(),(),()1(),(),(ssss bagsbbtsaatsbatsbasim ⋅⋅⋅−+⋅= μμ .

In this equation, μ (0 ≤ μ ≤ 1) is the weight of the tree similarity which is
determined by experts according to specific applications. as, bs are respectively the
surrogate classes of a and b. In a class graph, the surrogate class of a class c is the
one that has the greatest tree similarity with c compared to all other classes of the
class graph. As discussed in Section 0, the class graph of an ontology only
includes part of classes defined in the class tree. Those classes not involving in
property-share relationships will not appear in the class graph, e.g., most meta
classes. For each of these classes, a surrogate class is used to compute the graph
similarities with other classes.

6.2 Experience

A decision maker, e.g. a business manager, acquires and accumulates relevant
domain knowledge during decision making processes. As a kind of such domain
knowledge, mental models play a key role for SA development (Endsley 1995b;
Sarter & Woods 1991). Mental models can be elicited using the cognitive
mapping technique. We refer to computerized mental models as experience.

6.2 Experience 87

6.2.1 Experience Representation

Based on related work on cognitive mapping, we defined experience and related
basic concepts for experience representation.

Let C = {c1, c2, …, cn} be a concept set. Concepts ci, cj belong to C. The causal
relationship from ci to cj is defined as follows.

Definition 6.2. Causal Relationship (rc)

rc (ci, cj) := (ci, cj), where ci∈C, cj∈C, ci ≠ cj, and ci is a cause of cj.

A causal relationship defines an ordered pair of concepts, of which the former
concept (ci) is a cause of the latter concept (cj). We refer to ci as a cause concept
of cj and accordingly cj as an effect concept of ci.

In a causal relationship, the cause concept is a direct cause of the effect
concept. The cause concept directly affects the effect concept in some ways
without any intermediaries. Indirect causes do not guarantee causal relationships
between concepts. For instance, if we have rc (a, b) and rc (b, c), we can conclude
that a is a cause of c. However rc (a, c) does not necessarily exist. In this case, a is
an indirect cause of c. We refer to indirect causal relationships as mediated causal
relationships.

Let C be a concept set. We give the definition of mediated causal relationships
as follows.

Definition 6.3. Mediated Causal Relationship (rm)

rm(a, b) := (a, b),

where, a∈C, b∈C, a ≠ b,

 and, ∃C’ ⊆ C, C’ = (x0, x1, x2, …, xp, xp+1), p ≥ 1, x0 = a, xp+1 = b,

such that ∀xi∈C’ , 0≤ i ≤ p, rc(xi, xi+1) is a causal relationship.
According to this definition, a mediated causal relationship from one concept to

another concept implicitly defines an ordered tuple of concepts between the two
concepts. A valid causal relationship exists for each pair of adjacent concepts.

Based on Definition 6.2, an experience can be defined as follows.

Definition 6.4. Experience E

E := (C, R),

C = { c1, c2, …, cn }, ci is a concept of concern ,

R = { rc(ci, cj) | ci ≠ cj, ci∈ C, cj ∈ C },

where, rc(ci, cj) is a causal relationship directed from ci to cj.

According to Definition 6.4, an experience can be represented by two parts: a set
of concepts and a set of causal relationships between concepts. A concept
represents an entity or object of an individual’s concern. Examples of concept in

88 6 Domain Knowledge Representation and Processing

SALES

GOVERNMENT
POLICY

CURRENCY
RATE

PRODUCT

INTERNET
SALES

RESELLER
SALES

ADVERTISING

DELIVERY

PRESALE
SERVICE

PROMOTION

COMPETITOR

TECHNOLOG
Y RESEARCH

FINANCE

NEWSPAPERRADIO
TV

RESELLER

PRODUCT
RELEASE

Fig. 6.3 An Example of Experience Map

the business domain are SALES, PRODUCT RESEARCH, MARKETING, and
SHARE PRICE. The causal relationship between two concepts in an experience is
required to be direct. For example, PRODUCT RESEARCH directly affects
SALES; SHARE PRICE directly affects MARKETING.

The representation of an experience is a directed graph which we call
experience map. In an experience map, concepts are represented as vertexes and
causal relationships are represented as directed edges between vertexes. Figure
6.3 is an example of an experience map. From this experience map, we can see
how different factors affect each other. For instance, INTERNET SALES is
affected by PROMOTION, PRESALE SERVICE, DELIVERY, and
ADVERTISING. ADVERTISING is also affected by other three factors: TV,
RADIO, and NEWSPAPER.

6.2.2 Experience Elicitation

In this research, experiences are computerized mental models. Thus we can
employ cognitive mapping technique to elicit managers’ experience. Using the
cognitive mapping technique, there are four steps to elicit experience from a
manager (Carley & Palmquist 1992; Gnyawali & Tyler 2005).

Step1: Collecting Data
Experience is domain-specific human knowledge. The source data for experience
solicitation is generally about a specific topic, e.g., notebook sales. The source

6.2 Experience 89

data can be collected via various methods such as post hoc coding of documents,
interviews, and direct brainstorming.

Step 2: Identifying Concepts
Concepts can be identified from the source data manually or automatically.
Manually extracting concepts can be done by the investigator with the help of the
manager. The investigator reads through the texts collected in the previous step
and highlights the important key words of interest to the theme topic. The key
words are generalized into a set of concepts in light of the manager’s domain
knowledge. Concept identification can also be done automatically through using
text analysis programs, e.g., Decision Explorer (as per the web link below)

http://www.banxia.com/dexplore/index.html.

Step 3: Defining Causal Relationships
The identified concepts are presented to the manager. The manager is asked to
compare each pair of concepts and examine whether a causal relationship exists
between them. Relationships between concepts could be strong or weak. Only
strong relationships are kept for experience elicitation. The degree to which causal
relationships are strong or weak can be intuitively determined based on the
manager’s experience. There are also fuzzy cognitive maps where causal
relationships are assigned weights (fuzzy values) to indicate the magnitude of
causes (Kosko 1986). In this research, we only focus on non-fuzzy causal
relationships. For example, For instance, causal relationship rc (PROMOTION,
INTERNET SALES) indicates PROMOTIION is a cause of INTERNET SALES.

Step 4: Validating Experience Maps
Once all the concepts and relationships are extracted and defined, draft experience
maps can be produced. Some errors or inappropriateness of representation might be
introduced into the draft experience maps. The manager is presented with the
experience maps and asked to validate them in terms of business implications. During
validation, experience maps are analyzed and might be abandoned or aggregated.

6.2.3 Creating an Experience Base

Managers’ experiences are represented as experience maps and stored in an
experience base. As experience maps are directed graphs, we need to define
vertexes and edges of these graphs. Thus, the experience base consists of directed
graphs representing the experience maps.

The only information a vertex of an experience map needs to express is a concept
label. In order to avoid ambiguities, we use the corresponding ontology defined in an
application to limit the terms used as concept labels. Thus, the concept label of each
vertex of an experience map is also a class label in the corresponding class tree. The
straightforward adoption of class labels in experience maps results in greater
simplicity and clarity for software engineering and end users.

Class label adoption might cause the class tree to grow in a poorly managed
manner. Theoretically, an ontology describes the general nature of an application
domain: classes and relationships. In a class tree, different classes are well-
organized according to the subsumption relationships between them. For example,

90 6 Domain Knowledge Representation and Processing

MOUNTAIN BIKE, ROAD BIKE and TOURING BIKE are children of BIKE;
BIKE (also for COMPONENT, CLOTHING and ACCESSORY) is a child of
PRODUCT. This organization of classes is intuitive and easy to understand.
However, in order to cater for the complete representation of experience maps,
some extra classes might need to be added, such as PRODUCT CATEGORY and
PRODUCT SUBCATEGORY. The supplement of these extra classes might
damage the well-organized nature of the ontology.

We use adjacency lists to actually store the directed graphs of experience maps.
Each vertex of an experience map corresponds to a list of vertexes consisting of
this vertex and all other vertexes which have edges directed to this vertex. In
FACETS, we use a csv file to store the adjacency lists data. This data file is input
into the system automatically during the process of experience base creation. The
definition file for the experience map in Figure 6.3 is shown in Figure 6.4.

--

Scholarship

University, Scholarship, Course

Course

Government

Channel, University, Government, Business

Business

Advertisement

Notebook Sales, Channel, Advertisement, Notebook Specification

Graph Card

Notebook Specification, Graph Card, Free Game, HDD Speed, Memory

Memory

Free Game

HDD speed

--

Fig. 6.4 The Definition File of an Experience Map

6.2 Experience 91

In Figure 6.4, the first concept of each list (delimited by blank lines) denotes a
vertex; all other concepts in the list are adjacent vertexes from each of which an
edge is directed to the first vertex. For example, in the second list, UNIVERSITY
is a vertex; SCHOLARSHIP and COURSE are adjacent vertexes to
UNIVERSITY. For vertexes to which there are no edges directed from other
vertexes, the corresponding adjacency list has only one concept (itself). An
experience base might include many experience maps. All the experience maps
can be defined in a single csv file.

6.2.4 Cues

Confronted with a crime scene, it must be a thrill for detectives if they eventually
identify a clue which implicates the true offender. As valuable clues to detectives,
similar information and knowledge is also crucial to a business manager in
decision making. This kind of information and knowledge might be factors,
parameters or data about some business objects. We refer to this kind of
information and knowledge hiding in a decision situation as the cue of the
decision situation. Generally speaking, cue can be any information and knowledge
which sheds light on the target decision problem of the manager’s concern.

Let E(C, R) be an experience and c be a concept of E (c∈C). We define the
cue Ě of c in E as follows.

Definition 6.5. Cue (Ě)

Ě := (Č, Ř),

where, Č is a concept set,

 Ř is a causal relationship set,

and

Ř := { rc(ci, cj) | r
c ∈ R, ci ≠ cj, ci∈Č, cj ∈Č }.

According to Definition 6.5, the cue Ě of a concept c in an experience E has

two parts: a set of concepts (Č) and a set of causal relationships (Ř) between
concepts. The concept c per se is an element of C. Furthermore, all other related
concepts, from each of which there is a direct or mediated causal relationship to c,
also belong to C. In other words, given a specific experience, the cue of a concept
includes all factors in an experience which affect this concept no matter whether it
is direct or indirect.

The representation of the cue of a concept is also a directed graph, which we
call cue maps. In a cue map, a concept is represented as a vertex and a causal
relationship is represented as a directed edge from one vertex to another.

⎪⎩

⎪
⎨
⎧

∉
∈∈∀

ise otherw

,c) exists(c r,c) (c , if r
 c C c i

m
i

c

ii
or

,
Č

Č

92 6 Domain Knowledge Representation and Processing

In a decision situation, a concept represents a problem or issue, e.g., sales. The
corresponding cue of the concept implies possible factors, information or solutions
to the problem. Cues play two roles in the process of situation retrieval.

(1) The cues of all concepts extracted from managers’ SA are used to construct
data warehouse queries (Chapter 8). This insures the information retrieved from
the data warehouse based on the generated queries is valuable to the manager’s
decision situation.

(2) Cues are used to generate navigation knowledge for situation presentation.
Navigation knowledge guides the interaction between the manager and the
decision support system (Chapter 9). The experiment results show that
information presentation guided by the navigation knowledge is intuitive, and
users feel more comfortable with it.

6.2.5 Extracting Cues

Given an experience and a concept in this experience, the algorithm to extract cues
is as follows:

Algorithm 6.1. CueExtraction

Input:

 (1) Experience (E)

(2) A concept (c)

Output:

 A cue map (Ě)

Procedure:

Step 1. Find the vertex c in E.

Step 2. Create an empty adjacency list l.

Step 3. Get all cause concepts of c in E.

Step 4. Set c as the first concept of l and insert all cause concepts into l.

Step 5. Insert l into Ě.

 Step 6. For each cause concept ci of c, if the adjacency list of ci has not

been created in Ě, recursively call this algorithm using E and ci

as input.

Step 7. End.

CueExtraction is a recursive algorithm. Given a concept, it firstly generates an
adjacency list for that concept. Then the algorithm invokes itself to generate
adjacency lists for all other concepts in the adjacency list of that concept. This

6.2 Experience 93

algorithm allows cycles in the experience maps which represent the situation that
concepts affect each other. We use an example to illustrate Algorithm 6.1.

An abstract experience is shown in Figure 6.5. Let this experience be E := (C,
R). In experience E, all concepts, except for d, are cause concepts; Concepts c, f,
and d are effect concepts.

Fig. 6.5 An Abstract Experience Map

The concept set

C = {a, b, c, d, e, f, g, h}.

The causal relationship set

R = { rc(a, c) , rc(b, c) , rc(e, c) , rc(c, f) , rc(g, f) , rc(h, f), rc(f, d)}.

All mediated causal relationships are

rm(a, d) , rm(b, d) , rm(c, d) , rm(e, d), rm(a, f) , rm(b, f) and rm(e, f).

Using Algorithm 6.1, the cues of different concepts can be extracted.

Ě(a) = ({a}, ∅)

Ě(b) = ({b}, ∅)

Ě(c) = ({a, b, e},{ rc(a, c) , rc(b, c) , rc(e, c)})

Ě(f) = ({a, b, c, e, f, g, h },{ rc(a, c) , rc(b, c) , rc(e, c) , rc(c, f) , rc(g, f) , rc(h, f) })

Ě(d) = ({a, b, c, d, e, f, g, h },{ rc(a, c) , rc(b, c) , rc(e, c) , rc(c, f) , rc(g, f) ,
rc(h, f), rc(f, d)})

Cue maps Ě(c) and Ě(f) are shown in Figure 6.6 (i) and (ii) respectively.

94 6 Domain Knowledge Representation and Processing

 (i) (ii)

Fig. 6.6 Cue Maps

6.2.6 Knowledge Retrieval

Knowledge retrieval is the process of searching for relevant experience in the
experience base. Knowledge retrieval is carried out according to knowledge needs
which are extracted from managers’ SA descriptions.

Let EB = {E1, E2, …, En} be an experience base, KN = {c1, c2, …, cn} be a
knowledge need. Ei is an experience; ci is a local context. We developed algorithm
KnowledgeRetrieval for retrieving relevant experience from EB according to KN.

Algorithm 6.2. Knowledge Retrieval

Input:

 (1) Experience base (EB)
(2) A knowledge need (Klein et al.)

Output:

 A cue set ĚS

Procedure:

Step 1. Get a concept ci from KN.

Step 2. In EB, find the most similar concept c to ci based on class

similarity. If the class similarity sim(c, ci) is greater than a pre-

set similarity threshold, go to Step 3. Otherwise, go to Step 4.

Step 3. Call algorithm CueExtraction to extract the cue of c. Insert this

cue into ĚS. Go to Step 4.

Step 4. If all concepts in KN has been processed, go to Step 5, otherwise

go to Step 1.

Step 5. End.

6.2 Experience 95

In Step 2, the most similar concept c to ci is searched through assessing its
similarity with all concepts in the experience base. It is possible that c = ci, i.e., ci is
a concept of the experience base EB. If the similarity threshold is set as 1, only
when concept ci exists in EB, the corresponding cue will be extracted. The result of
the knowledge retrieval for a knowledge need is a set of cues. This cue set includes
all potential cues of the decision situation represented by the knowledge need.

6.2.7 Generating Navigation Knowledge
Navigation knowledge is defined as a special kind of knowledge which acts a
mechanism for situation presentation. Navigation knowledge is generated via
integrating relevant cues. We developed the algorithm Navigator for navigation
knowledge generation.

Algorithm 6.3. Navigator

Input:

 A set of cues ĚS = {Ě1, Ě2, …, Ěn}

Output:

 A navigation knowledge: N

Procedure:

Step 1. Let Ě0 ∅ and i 1.

Step 2. Get a cue Ěi from ĚS.

Step 3. Get a causal relationship rc(c, c’) in Ěi.

Step 4. If rc(c, c’) ∈ Ě0, go to Step 5. Otherwise,

 if c ∈Ě0, and c’ ∉ Ě0, add a node c’ then add a causal

relationship rc(c, c’) into Ě0.

If c ∉ Ě0, and c’ ∈Ě0, add a node c then add a causal

relationship rc(c, c’) into Ě0.

If c ∉ Ě0, and c’ ∉ Ě0, add two nodes c and c’, then add a

causal relationship rc(c, c’) into Ě0.

If c ∈ Ě0, c’ ∈ Ě0, r
c(c, c’) ∉ Ě0, add a causal relationship

rc(c, c’) into Ě0.

If all causal relationships in Ěi have been processed, go to

Step 5, otherwise go to Step 3.

Step 5. If i < n, i i+1, go to Step 2. Otherwise, go to Step 6.

Step 6. N Ě0.

Step 7. End.

96 6 Domain Knowledge Representation and Processing

As cues are represented as directed graphs (cue maps), the generation of
navigation knowledge is a merge process of graphs. Algorithm Navigator first
creates an empty cue Ě0 and then tries to insert all cues in the cue set into Ě0 one
by one. For each cue to be inserted, Navigator gets a causal relationship (edge) of
this cue. If either of the two concepts (the two nodes of the edge) is not in Ě0, the
node and the corresponding causal relationship will be created in Ě0. Note that,
causal relationships are represented as directed edges. rc(c, c’) and rc(c’, c) are
different causal relationships. Hence, if the two concepts already exist in Ě0, but
the causal relationship between them is rc(c’, c), a new causal relationship rc(c, c’)
will be created.

6.3 Summary

Domain knowledge is the fundamental part of the CDDP model. We proposed a
set of methods and algorithms to represent domain knowledge for business
decision situations. Main points of the proposed methods and algorithms are as
follows.

(1) We defined property-share relationships for indirect information
acquisition.

(2) We defined class trees and class graphs for ontology representation.
(3) We discussed the method of creating class trees, class graphs and

experience base.
(4) We proposed a method to compute class similarities based on the class tree

and the class graph.
(5) We defined causal relationships and experiences.
(6) We defined the concept of cue and developed an algorithm for cue

extraction.
(7) We developed an algorithm for knowledge retrieval and an algorithm for

generating navigation knowledge.

According to the CDDP model, managers describe their SA in the form of

natural language. Domain ontology is used to extract semantic information from
managers’ SA, which is the major concern of Chapter 7.

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 97–118.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 7
Natural Language Processing for Situation
Awareness

We employ natural language processing (NLP) techniques to extract semantic
information from SA descriptions. According to the CDDP model, managers can
describe their SA using a natural language (English) and input SA descriptions
into the system. This feature makes it easier for managers to interact with the
system and develop their SA for decision making. SA descriptions are comprised
of SA sentences. A syntactic parser is used to chunk down SA sentences into
words and phrases, and extract syntactic relationships between words or phrases.
Based on the results of the syntactic parser, instances, classes, SA triples and local
contexts can be extracted or inferred. We refer to the whole process as SA parsing.
A general English syntactic parser, Link Grammar Parser, is introduced in Section
7.1. SA parsing is, based on the information types defined in this book, discussed
in Section 7.2. Section 7.3 is the overview of the process of SA parsing. The
detailed sub-processes of SA parsing are presented in Sections 7.4, 7.5 and 7.6.

7.1 Link Grammar Parser

Link Grammar Parser (Temperley & Sleator 1993) is an English syntactic parser.
Given a sentence, this parser generates a syntactic structure called linkage
consisting of a number of links. Each link represents a syntactic relationship
between two words. An example of linkage is shown in Figure 7.1. This linkage
consists of 12 links. A link is denoted by a dashed line connecting two words.
Words are followed by their POS tags. Each link is labeled with a link type. For
instance, the link type between We and need is Sp. A Sp link connects a subject-
noun (We) to a finite verb (need). Note that the Link Grammar Parser will insert
an artificial word at the beginning and end of every sentence before it is parsed,
known as the wall.

Based on the linkage of a sentence, the Link Grammar Parser also chunks
sentences into phrases and produces constituent trees. Figure 7.2 is the
corresponding constituent tree for the linkage shown in Figure 7.1. This
constituent tree can also be visualized as a tree-like structure shown in Figure 7.3.

Using the Link Grammar Parser, SA sentences can be chunked down into
words or phrases. Meanwhile, different syntactic relationships between these
words or phrases can be identified. Based on the result of the Link Grammar

98 7 Natural Language Processing for Situation Awareness

Fig. 7.1 A Linkage Produced by Link Grammar Parser

Fig. 7.2 A Constituent Tree Produced by Link Grammar Parser

Fig. 7.3 Tree-Like Presentation of a Constituent Tree Produced by Link Grammar Parser

Parser and an ontology, relevant instances and classes of the ontology can be
extracted or inferred. The words, phrases, instances and classes are semantically
isolated. We refer to them as SA tokens. Thus, if we use a SA token set to collect
all SA tokens generated in the course of SA parsing, this SA token set initially
only contains the words and phrases output by the parser. Then instances and
classes are gradually added into the SA token set. By annotating SA tokens based
on the domain ontology, SA triples and local contexts can be produced. In the
following sections, we will discuss the detailed process of SA parsing.

7.2 Information Types 99

7.2 Information Types

From an IS perspective, instances of a class are data representing low level facts.
Data always comes with specific data types. Database management systems have a
set of pre-defined data types. For example, in SQL Server 2005, there are such
data types as int, money, float, datetime, nchar and nvarchar. In order to expose
the semantic information of SA descriptions, data needs to be interpreted as
information. Correspondingly, data types also need to be re-explained from a
semantic perspective. We use the term information type to represent the different
types of semantic information that SA instances carry.

We defined 19 information types (Table 7.1) in this research, each of which
corresponds to a meta class except general type (code: 0). Note that this definition

Table 7.1 Information Types in the CDDP model

Code Information Type Corresponding Class Example

1 area AREA “20 acres”

2 speed SPEED “ 60 KM/H”

3 money CURRENCY “$26,000.00”

4 temperature TEMPERATURE “180 ºC”

5 distance DISTANCE “45 kilometers”

6 time interval TIME INTERVAL “ 10 years”

7 time point TIME POINT “2007-6-25”

8 start time TIME POINT “8:00am”

9 end time TIME POINT “8:00am”

10 length LENGTH “20 cm”

11 height HEIGHT “20 cm”

12 volume VOLUME “45 liter”

13 power POWER 800 KW

14 weight WEIGHT “5 KG”

15 pressure PRESSURE 1.02 KPa

16 country COUNTRY “Australia”

17 state STATE “NSW”

18 city CITY “Sydney”

0 general n/a “Mountain-10”

100 7 Natural Language Processing for Situation Awareness

attempts to cover the most common information types based on our experience; it
is by no means an exhaustive list. The defined information types can be roughly
divided into two categories: numeric group and literal group. In Table 7.1, the
first 15 information types (Codes 1 to 15) belong to the numeric group; others (16-
18 and 0) are in the literal group. Instances of literal types can usually be easily
enumerated, such as company names, product models, and colors. By comparison,
it is generally hard to enumerate numeric instances such as age, income, sales
amount and time.

7.3 The Process of Situation Awareness Parsing

Theoretically, information is supposed to be communicated without semantic
uncertainties, other than deliberate ones. Thus, every instance existing in a SA
description is intended to belong to a unique class in the ontology from a semantic
perspective, although syntactically it is a many-many mapping relationship
between instances and classes. Let us look at an example:

Sydney is a beautiful city.

In this SA description, the term Sydney is an instance and we can have an
inference as follows:

Sydney is the name of a place.

This inference is based on the intended meaning (semantics) of this SA
description. However, without semantic understanding, Sydney might refer to
totally different things. For example,

Sydney is the name of a person.

From a syntactic perspective, this inference does not conflict with the original
SA description. In this case, uncertainties will be introduced unless definite
semantics can be extracted.

The basic process of SA parsing includes four steps shown in Figure 7.4.

Step 1. Syntactic Parsing
The Link Grammar Parser is employed to conduct syntactic parsing on the SA. As
discussed in Section 7.1, the Link Grammar Parser can chunk down SA sentences
into words and phrases (initial SA tokens); it can also identify the syntactic
relationship between words or phrases.

Step 2. Plain Parsing
During plain parsing, meta instances are directly extracted from the initial SA
tokens according to simple parsing rules: regular expressions and the lexicon.
Meta instances are the instances of meta classes defined in an ontology, such as
July 2007, Mountain-100 Silver, $1200 and 3 weeks. Regular expressions are
patterns for string matching. The lexicon is used to store all possible literal meta
instances. The lexicon can be automatically created through importing relevant

7.4 SA Plain Parsing: Instance Recognition 101

Fig. 7.4 Situation Awareness Parsing

meta instances from a data warehouse. Regular expressions and the lexicon are
used to extract numeric and literal meta instances respectively. In plain parsing,
provisional SA triples are also generated. There are uncertainties in the provisional
SA triples, which can be reduced during semantic parsing.

Step 3. Semantic Parsing
Based on the results of plain parsing and the domain ontology, general and
abstract classes are inferred, such as INTERNET SALES, PRODUCT and
PRODUCT RELEASE. Compared to meta instances recognized by plain parsing,
classes carry richer semantic information which can be used to re-explain
(annotate) the recognized meta instances, for example, July 2007 is a start date of
INTERNET SALES. We call this level of SA parsing semantic parsing.

Step 4. Local Context Determination
We proposed a context point schema to determine the local context for a SA
sentence based on the results of plain parsing and semantic parsing.

7.4 SA Plain Parsing: Instance Recognition

Plain parsing recognizes meta instances from SA descriptions. Based on the
definition of information types, there are two kinds of meta instances to be
recognized: numeric meta instances and literal meta instances.

102 7 Natural Language Processing for Situation Awareness

7.4.1 Numeric Meta Instances

We developed an algorithm (NumericPlainParser) for the recognition of numeric
meta instances from SA descriptions. In NumericPlainParser, numeric meta
instances are recognized using pattern matching techniques which are based on
regular expressions.

Regular expressions are a very powerful pattern matching technique,
originating from automata theory and formal language theory (Wikimedia 2008).
In programming, pattern matching is a search process in which a source string is
searched in order to extract specific information of interest according to pre-
defined rules. Regular expressions act as such rules for pattern matching. A
regular expression is a search pattern which consists of a set of text strings. Each
text string describes a matching rule. During the search process, substrings will be
extracted if corresponding matching rules are met. Some examples of regular
expressions defined in NumericPlainParser are as follows.

"(19|20)[0-9][0-9]-(([1-9])|(0[1-9])|(1[0-2]))-(([1-9])|(0[1-9])|([1-2][0-9])|(3[0-1]))"

This regular expression is used to extract date information of format YYYY-
MM-DD, where YYYY, MM, DD respectively represent a year of four digits, a
month of two digits and a day of two digits, e.g., 2008-08-25. The information
type of this kind of date information is time point.

"(([1-9])|(0[1-9])|([1-2][0-9])|(3[0-1]))-(([1-9])|(0[1-9])|(1[0-2]))-(19|20)[0-9][0-9]"

This regular expression is used to extract date information of format DD-MM-
YYYY, e.g., 20-06-1974. The information type of this kind of date information is
time point.

"(([1-9])|(0[1-9])|([1-2][0-9])|(3[0-1]))(,|\\s{1,})

(January|February|March|April|May

|June|July|August|September|October|November|December)(,|\\s{1,})(19|20)[0-9]

[0-9]"

This regular expression is used to extract date information of the format

YYYY-Month-DD, where Month represents a month word, e.g., 2005-July-11.
The information type of this kind of date information is time point.

In NumericPlainParser, we coded 29 regular expressions for date extraction.
Thus, managers can use up to 29 kinds of date format to describe their SA.

Based on information of time point type, date information of the start time type
and end time type can also be extracted via checking preposition words. For
instance,

"from\s{1,}(19|20)[0-9][0-9]-(([1-9])|(0[1-9])|(1[0-2]))-(([1-9])|(0[1-9])|([1-2][0-

9])|(3[0-1]))(!|\(|\)|\{|\}|\[|\]|\||\:|;|"|,|\.|\?|\s{1,})"

7.4 SA Plain Parsing: Instance Recognition 103

This regular expression is used to extract date information which represents a
start date, such as (from) 2003-1-12. The information type of this kind of date
information is start time.

"to\s{1,}(19|20)[0-9][0-9]-(([1-9])|(0[1-9])|(1[0-2]))-(([1-9])|(0[1-9])|([1-2][0-

])|(3[0-1])) (!|\(|\)|\{|\}|\[|\]|\||\:|;|"|,|\.|\?|\s{1,})"

This regular expression is used to extract date information which represents an

end date, such as (to) 2003-2-10. The information type of this kind of date
information is end time.

Algorithm NumericPlainParser can dynamically construct regular expressions
during run-time to extract non-date numeric information. Some examples are as
follows.

"\s{1,}(\d{1}\d{1}\s{0,}[m|M]{0,1})\s{0,}\s{0,}days(!|\(|\)|\{|\}|\[|\]|\||\:|;|"|,|\.|\?|

\s{1,})"

This regular expression is used to extract time interval information of the

format DD days, e.g., 20 days. The information type of this kind of date
information is time interval.

"\s{1,}(\d{1}\d{1}\d{1}\d{1}\s{0,}[m|M]{0,1})\s{0,}\s{0,}cm(!|\(|\)|\{|\}|\[|\]|\||\:|;

|"|,|\.|\?|\s{1,})"

This regular expression is used to extract distance information of format DDDD

cm, e.g., 1512 cm. The information type of this kind of date information is
distance.

"\s{1,}(\d{1}\d{1}\d{1}\s{0,}[m|M]{0,1})\s{0,}\s{0,}meters(!|\(|\)|\{|\}|\[|\]|\||\:|;|"|,|

\.|\?|\s{1,})"

This regular expression is used to extract distance information, e.g., 115 meters.

The information type of this kind of date information is distance.
As can be seen from the above examples, the length of the digits in regular

expressions is dynamic in order to match numbers of different lengths in SA
tokens. NumericPlainParser permits users to set the maximum length of digits
according to their specific applications.

7.4.2 Literal Meta Instances

We developed an algorithm (LiteralPlainParser) for the recognition of literal
meta instances from SA. Generally speaking, literal instances are enumerable
information. Thus, a domain-specific lexicon can be pre-created to cover all
possible literal meta instances. As the total number of possible meta instances in
an application ranges quite widely from a few to hundreds, it might be very labor-
intensive and time-consuming to define the lexicon. In this research, we created
mapping relationships between an ontology and a data warehouse system. The

104 7 Natural Language Processing for Situation Awareness

domain-specific lexicon can be easily populated through importing instances from
the data warehouse.

An item (entry) in the lexicon contains four kinds of information: the value of a
meta instance, the corresponding property, the corresponding class and
information type. The information type for literal meta instances is general (code:
0). The following is an example of lexicon item.

Lexicon item: Mountain-100 Silver/EnglishProductName/Mountain

Bike/0

where,

Instance value: Mountain-100 Silver

Property: EnglishProductName

Class: Mountain Bike

Information Type: 0

Excepting literal meta instances, the lexicon also contains information about
numeric meta instances. As numeric meta instances are generally non-numerable,
for each type of numeric meta instance there is only one corresponding lexicon
item with the instance value being empty. For example, null/Price/Mountain
Bike/3 is a lexicon item, where the information type of Price is money.

LiteralPlainParser uses the lexicon to search for literal meta instances existing
in SA descriptions. The searching for literal meta instances in the lexicon is a
straightforward boolean matching process. If a match is found between a SA token
and the instance value of an item in the lexicon, this lexicon item is exported as a
SA triple. The corresponding SA triple is created by setting its context, view and
wording as the class, property and value of the lexicon item respectively.

When a numeric meta instance is extracted from a SA description, the lexicon
will also be searched for matched items with this numeric meta instance. The
matching rule is that both the lexicon item and the numeric meta instance have the
same information type. If a match is found, this lexicon item is exported as a SA
triple. The corresponding SA triple is created by setting its context and view as the
class and property of the lexicon item respectively. The numeric meta instance
goes into the wording part of the SA triple.

It is possible that multiple matches for the same numeric or literal meta instance
are found in the lexicon. For example, the following lexicon items will result in
two matches for Sydney (a literal meta instance) and two matches for $1299.00 (a
numeric meta instance):

Sydney/City/Internet Sales/0

Sydney/Surname/Customer/0

7.5 SA Semantic Parsing: Class Inferring 105

null/Retail Price/Mountain Bike/3

null/Cost/Mountain Bike/3

If multiple lexicon items are found, all the matched lexicon items will be
exported as SA triples. In this case, uncertainties of SA triples will be introduced.
These uncertainties will be reduced or eliminated during the process of semantic
parsing.

7.4.3 Reference Properties

In plain parsing, SA tokens are also compared to the properties of lexicon items. If
a SA token is matched with a lexicon item, (i.e., the token is equal to the property
of this lexicon item), the property of the lexicon item (the SA token) will be
output. This kind of property will be used to reduce the uncertainties of SA triples.
We refer to these properties as reference properties.

For example, suppose a SA token is retail price. During the search of the
lexicon, this SA token will be matched with the following lexicon item:

null/Retail Price/Mountain Bike/3.

The property Retail Price will be output as a reference property.

7.5 SA Semantic Parsing: Class Inferring

Semantic parsing is the process of inferring classes. We developed an algorithm
(SemanticParser) for semantic parsing. The inputs of SemanticParser include the
ontology, the SA tokens, the lexicon, the SA triples produced in plain parsing, and
the linkage generated by the Link Grammar Parser. SemanticParser infers
ontology classes (both general and abstract classes) from SA and uses these
classes to reduce the uncertainties of SA triples.

Algorithm SemanticParser infers classes based on class triggers. A class
trigger is associated with a specific class. The presence of a class trigger in a SA
sentence and/or SA tokens might result in the presence of this class. However, a
class trigger does not guarantee that a class will be successfully inferred, unless
pre-defined rules are met at the same time. Examples of class trigger for
PRODUCT RELEASE are as follows.

{ product, release }

{ product release }

{ product, announcement }

As can be seen from the above examples, a class trigger is a term set consisting

of a number of terms, each of which can be a class, a word or a phrase. A class can
be triggered by any of its valid class triggers under a triggering rule.

106 7 Natural Language Processing for Situation Awareness

7.5.1 Class Trigger Construction

Let C be a class in a class tree. We proposed four methods to construct class
triggers for class C.

(1) Taxonomy-Property-Based Method

Every instance of the taxonomy property of C is a complete class trigger. This
method is only applicable to general classes. For example, English Product Name
is the taxonomy property of class MOUNTAIN BIKE. Some valid class triggers
of MOUNTAIN BIKE are as follows:

{Mountain-100 Silver}, {Mountain-80 Silver}, {Mountain-100 Black}.

The element of each class trigger is a meta instance of English Product Name.

(2) Child-Class-Based Method

Every child class of C in the class tree is a complete class trigger of C. This
method is only applicable to general classes. For instance, classes BIKE,
COMPONENT, CLOTHING and ACCESSORY are child classes of PRODUCT.
Thus, the following are valid class triggers of PRODUCT:

{bike}, {component}, {clothing} {accessory}.

(3) Synonym-Based Method

Every synonym of C is a complete class trigger of C. Class synonyms are
defined during ontology development. For example, the synonyms of
CUSTOMER are defined as follows:

customers, patron, patrons, buyer, buyers, client, clients, shopper, shoppers.

Thus, each of these synonyms is a class trigger of CUSTOMER.

(4) Semantic-Extension-Based Method

Class triggers constructed using the previous three methods consist of only one
element: a meta instance, a child class, or a synonym of the target class. The
semantic-extension-based method extends the semantic information of the target
class through partial replacement, that is, only part of the class label is replaced by
a term each time. A term can be a word or a phrase. Therefore, the semantics
extension method only applies to multi-word classes and the constructed class
triggers consist of two or more terms. In comparison, the previous three methods

7.5 SA Semantic Parsing: Class Inferring 107

can be used both for single-word classes as well as multi-word classes and the
constructed trigger classes consist of a single term.

We developed the algorithm SemanticExtension to implement this method.

Algorithm 7.1. SemanticExtension

Input:

 A class (C)

Output:

 A set of class triggers for C

Procedure:

Step 1. Determine the head noun of the class label of C.

Step 2. Within the class label of C, search for the longest term t (a sub-
term) which is also a class. If t exists, create an empty trigger
member set and insert t into this set. If t is the head noun, tag this
set as head trigger member set. In the class label of C, replace t
with a dummy string, e.g. ‘%%%%’. Repeat Step 2, until no more
classes can be extracted.

Step 3. Get a word w from the reminder of the class label of C (all classes
have been taken out at this stage).

Step 4. Create an empty trigger member set and insert all synonyms of w
into this set. If w is a noun and it has a corresponding verb form,
insert the verb and all synonyms of this verb into the trigger
member set. If w is the head noun, tag this set as head trigger
member set. If all words in C have been processed, go to Step 5,
otherwise go to Step 3.

Step 5. Collect a term from each of the trigger member sets which have
been created and construct a class trigger. Tag the term taken from
the head trigger member set as the head of this class trigger. Repeat
this step until all combinations are generated.

Step 6. End.

The label of a multi-word class might include other classes which have shorter
labels. For example, in class MARKETING STRATEGY MANAGEMENT, both
MARKETING and STRATEGY are also classes. As each class in the ontology
has its own class triggers, it is unnecessary for a multi-word class to import
the class triggers of its subclasses. Therefore, in Step 2 of algorithm

108 7 Natural Language Processing for Situation Awareness

SemanticExtension, sub-terms are not further extended if they are also classes;
they are simply treated as a term.

In Step 4, SemanticExtension uses a thesaurus to handle non-class words. For a
multi-word class, although its class label as a whole is usually a noun phrase, each
individual word of the class label might be of different types of POS. For each
non-class word, regardless of the type, SemanticExtension firstly gets its all
synonyms from the thesaurus. If this word is a noun and it has a corresponding
verb form, the verb and all the synonyms of the verb will be retrieved from the
thesaurus. For example, in PRODUCT RELEASE, release is a non-class word and
also a noun. The verb form of release is also release. Thus, the synonyms of
release (noun) together with the synonyms of release (verb) are retrieved from the
thesaurus. The trigger member set for release is as follows:

{release, announcement, releases, releasing, released, announces, announcing,

announced}.

Once all trigger member sets are created, class triggers can be constructed. A
class trigger is composed through taking a member out of each trigger member set.
The final class triggers will be all possible combinations based on the trigger
member sets.

If a trigger member set is generated based on the head noun of the class label of
C, this set will be tagged as the head trigger member set. Accordingly, the trigger
member taken from this set will be tagged as the head of a trigger.

Using SemanticExtension, class triggers for PRODUCT RELEASE are
generated as follows:

{product, release}, {product, announcement}, {product, releases}, {product,

releasing}, {product, released}, {product, announces}, {product, announcing},

{product, announced}.

Note that, if a class trigger has a head noun, the head noun is printed in bold
font in the above example. In real systems, there will need to define extra data
structure to indicate the head noun information of class triggers.

7.5.2 Triggering Rules

The presence of a class trigger is likely to trigger a class, but does not guarantee.
Whether or not a class can be triggered is also subject to triggering rules. We
have discussed four methods for constructing class triggers. Accordingly, there
are four types of class triggers. The class triggers of the first three types contain
only a single element. The fourth type of class triggers contains multiple
elements. Note that an element in a class trigger can be a word or a phrase. There
are different triggering rules for single-element class triggers and multi-element
class triggers.

7.5 SA Semantic Parsing: Class Inferring 109

Fig. 7.5 An Example of Ontology

• Single-Element Class Triggers

The triggering rule for single-element class triggers is as follows.

Triggering Rule 7.1

The element of a class trigger can be matched with one of the SA tokens.

This triggering rule is very simple: as long as a class trigger can be found
among the SA tokens, the corresponding class can be inferred. Let us look at some
examples.

Suppose an ontology is shown in Figure 7.5 and a SA sentence is as follows:

We released Mountain-100 Silver in Australia in 2005.

Algorithm LiteralPlainParser can generate a SA triple from this SA sentence:

(MOUNTAIN BIKE, English Product Name, Mountain-100 Silver).

The SA token Mountain-100 Silver, is a meta instance of the taxonomy property
of MOUNTAIN BIKE. According to the taxonomy-property-based method for
class trigger construction, {Mountain-100 Silver} is a class trigger of MOUNTAIN
BIKE and it is also a single-element class trigger. Thus, class MOUNTAIN BIKE
can be triggered (inferred) by SA token Mountain-100 Silver, i.e.,

Mountain-100 Silver MOUNTAIN BIKE.

In Figure 7.5, class MOUNTAIN BIKE is a child class of BIKE; BIKE is a
child class of PRODUCT. According to the child class based method, {mountain
bike} is a class trigger of BIKE; {bike} is a class trigger of PRODUCT. Thus,
classes BIKE and PRODUCT can also be inferred via

MOUNTAIN BIKE BIKE,

 and BIKE PRODUCT.

110 7 Natural Language Processing for Situation Awareness

• Multi-Element Class Triggers

Multi-element class triggers have two basic varieties and they correspond to
different triggering rules.

(a) Noun-Noun Class Triggers
This type of class triggers consist of two elements, both of which are nouns, for
example, {marketing, strategy} and {internet, sales}. The corresponding
triggering rule is as follows.

Triggering Rule 7.2
The two nouns of a class trigger appear in a noun phrase which has the same
head noun as the class trigger.

We use an example to illustrate this triggering rule.
Suppose a SA sentence is as follows:

The release of Mountain-100 Silver increased our market share by 45%.

The triggering process is as follows:

Step 1. Triggering Rule 7.1: Mountain-100 Silver MOUNTAIN BIKE
Step 2. Triggering Rule 7.1: MOUNTAIN BIKE BIKE
Step 3. Triggering Rule 7.1: BIKE PRODUCT
Step 4. Triggering Rule 7.2: release, PRODUCT PRODUCT RELEASE

The first three steps are based on Triggering Rule 7.1. In Step 4, PRODUCT is

not actually present in the SA sentence. However, looking back at the process of
how PRODUCT is triggered, algorithm SemanticParser will replace Mountain-
100 Silver in the SA sentence with PRODUCT. This replacement makes
Triggering Rule 7.2 is met: (1) release of product will be output as a noun phrase
by the Link Grammar Parser, (2) release is the head noun of this noun phrase and
the class trigger {product, release}. Therefore, class PRODUCT RELEASE will
be successfully triggered by class trigger {product, release}.

(b) Verb-Noun Class Triggers
This type of class triggers consist of two elements: a verb and a noun, for
example, {release, product} and {improve, sales}. There are two corresponding
triggering rules as follows.

Triggering Rule 7.3
The noun is the direct object of the verb.

Triggering Rule 7.4
The noun is the subject and the verb is a passive participle.

We use an example to illustrate Triggering Rule 7.3.

7.5 SA Semantic Parsing: Class Inferring 111

Suppose a SA sentence is as follows:

We released Mountain-100 Silver in Australia in 2005.

The triggering process is as follows:

 Step 1. Triggering Rule 7.1: Mountain-100 Silver MOUNTAIN BIKE
Step 2. Triggering Rule 7.1: MOUNTAIN BIKE BIKE
Step 3. Triggering Rule 7.1: BIKE PRODUCT
Step 4. Triggering Rule 7.3: released, PRODUCT PRODUCT RELEASE

In Step 4, Mountain-100 Silver is replaced by PRODUCT, such that

PRODUCT is the direct object of released. Thus, Triggering Rule 7.3 is met and
class PRODUCT RELEASE is triggered.

The triggering process for Triggering Rule 7.4 is similar to Triggering Rule 7.3.
Based on this rule, class PRODUCT RELEASE can be triggered from the
following SA sentence.

Mountain-100 Silver was released in Australia in 2005.

The presence of a class trigger will not trigger the class if the corresponding
triggering rule is not met. Look at the following two SA sentences,

Another marketing campaign was released after the sales of Mountain-100
Silver went down.

Occasionally, Mountain-100 Silver releases oil when climbing steep ramps.

As none of triggering rules can be met, class PRODUCT RELEASE cannot be

triggered, although the class triggers {released, product} and {product, releases}
are present.

The single-element and two-element class triggers correspond to single-word
and two-word classes respectively. In an ontology, one-word classes are generally
the most common type. Of multi-word classes, two-word classes are the most
common type. There are very few classes with the number of words over three.
For example, the maximum length (the number of words in class labels) in the
Enterprise Ontology (Uschold et al. 1998) is three. There are 62 single-word
classes (63%), 34 two-word classes (34%) and 3 three-word classes (3%). Of
multi-word classes, 92% are two-word classes and only 8% are three-word
classes. In the ontology developed in the application case study I, there are 69
single-word classes (63%), 36 two-word classes (33%) and 5 three-word classes
(less than 5%). Therefore, the four triggering rules which have been discussed can
deal with about 96% cases of class triggering (in both ontologies). For class
triggers whose lengths are three or longer, the corresponding triggering rules
become more complex. For example, a class trigger might consist of a verb and a
number of nouns. One corresponding triggering rule is as follows:

All nouns appear in a noun phrase and one of them is the head of this phrase.
This noun phrase is the direct object of the verb.

112 7 Natural Language Processing for Situation Awareness

7.5.3 Reducing Uncertainties of SA Triples

In plain parsing, uncertainties of SA triples will be generated if multiple lexicon
items are matched with a SA token. All the matched lexicon items will be
exported as provisional SA triples. However, only of one of the exported SA
triples is appropriate in terms the semantics of the SA sentence. Hence, within the
uncertain SA triples, it is necessary to determine the rightful one which is best
matched with the original SA token. This process is based on reference properties
and inferred classes. We will discuss two kinds of uncertainties of SA triples: view
uncertainties and context uncertainties.

• View Uncertainties

The view of a SA triple corresponds to a property of a class or the property of a

lexicon item. A view uncertainty between two SA triples is the difference between
their views. Let T1 and T2 be two SA triples. The view uncertainty between T1 and
T2 is shown as follows.

T1 = (c, v1, w),

T2 = (c, v2, w).

SA triples T1 and T2 have the same context and wording, but different view.
View uncertainties can be reduced by applying reference properties generated
during plain parsing. Let p be a reference property. The rightful SA triple is the
one with its view equal to p. Suppose v2 = p. Thus, T2 will be the rightful SA
triple.

• Context Uncertainties

The context uncertainty between two SA triples is the difference between their
contexts. Let T1 and T2 be SA triples. The view uncertainty is shown as follows.

T1 = (c1, v, w),

T2 = (c2, v, w).

Context uncertainties can be reduced by applying inferred classes which are
generated during semantic parsing. These inferred classes are referred to as
reference classes. Let c be a reference class. The rightful SA triple is the one with
its context equal to c. Suppose c1 = c. Thus, T1 will be the rightful SA triple.

There are hybrid uncertainties which are the combination of view uncertainties
and context uncertainties, meaning that differences exist in both the contexts and
views. Hybrid uncertainties can be reduced by respectively applying reference
classes and reference properties.

7.5 SA Semantic Parsing: Class Inferring 113

• Syntactic Distance

The above two methods to reduce SA triple uncertainties directly utilize either
a reference property or reference class. However, it is not that straightforward in
some cases. For example, if two reference properties/classes are applicable to a
view/context uncertainty at the same time, there will be a problem of how to
choose the rightful one. The solution to this problem is using syntactic distance. A
syntactic distance between two words/phrases in a SA sentence is defined as their
shortest path length in the corresponding constituent tree of this SA sentence.
Thus the syntactic distance between two SA tokens is evaluated based on the
constituent tree of the SA sentence.

According to the processes of SA parsing, a SA token can always be tracked
back to the original words in the SA sentence, no matter this SA token is an
instance, property or class. In order to compute the syntactic distance between a
SA token and a reference property/class, they need to be tracked back to the
original word/words in the SA sentence. We use the following example to
illustrate this process.

Let S be a SA sentence, T be a SA token and R1 and R2 be reference
properties/classes. Suppose there are the following inferring relationships:

S = (w1, w2, …, w10), wi is a word.

w1 T multiple SA triples

(w2, w4, w6) … R1

(w3, w5, w7) … R2

The SA sentence S consists of ten words. SA token T is inferred from w1. T
results in multiple SA triples (uncertainty). Reference property/class R1 is inferred
from some classes which are originally inferred from words w2, w4, w6. R2 is
inferred from some classes which are originally inferred from words w3, w5, w7.

The syntactic distance (sd) between R1 and T can be computed using equation

sd(R1, T) =
3

1
 (len(w1, w2) + len(w1, w4) + len(w1, w6)),

where, len(wi, wj) is the shortest path length from node wi to node wj b in the
constituent tree.

The syntactic distance (sd) between R2 and T can be computed using equation

sd(R2, T) =
3

1
 (len(w1, w3) + len(w1, w5) + len(w1, w7)).

The reference property/class syntactically closer (smaller sd) to T will be
selected. Thus, if multiple reference properties/classes are found, the closest one to
the target SA token will be used to reduce the uncertainty of SA triples.

114 7 Natural Language Processing for Situation Awareness

Uncertainties of SA triples cannot be eliminated completely in some cases, due
to the complexity, dynamics and uncertainties of natural language expressions. For
example, if the SA description per se is vague, it will be extremely difficult, even
impossible, to remove the uncertainties of SA triples. In this situation, managers
will be questioned to make the final choice of rightful SA triples or rephrase their
SA descriptions.

7.6 Local Context Determination

A local context of a SA sentence represents the common background where the
majority of SA triples are communicated. All classes which are inferred during
semantic parsing are alternatives for the local context.

We developed the algorithm (LocalContextDetermination) to determine local
contexts for SA sentences. In this algorithm, we use a point system to select the
local context from these alternatives.

In this point system, the points of an alternative context reflect its
competitiveness to be selected as the local context. We refer to theses points as its
context points (CP). We defined three metrics to evaluate the context points of an
alternative context from three aspects: context coverage point (CCP), context
position point (CPP) and inverse context specificity point (ICSP).

7.6.1 Context Position Points

The CPP points of an alternative context are related to its position in the SA
sentence. A complete English sentence is made up of a number of POS, each of
which has a specific position in the sentence. Different positions imply different
significances of information expression. For example, the subject of a sentence is
usually more significant than an adverb. We assume that an alternative context
falling in a more important position in a sentence will be more competitive to be
the local context of this sentence. We defined a point schema in Table 7.2 to
assess the CPP points for alternative contexts.

The point schema divides a complete sentence into a number of POS. Different
POS are positioned differently within the sentence. The points that a POS in a
specific position can earn are specified accordingly in the schema. For example,
the first POS (at Position 1) represents a pre-subject adjective modifier which is
assigned 2 CPP points. If a term of a SA sentence is at this position, it will earn 2
CPP points. The position of a term in a sentence is determined by algorithm
LocalContextDetermination based on the links produced by the Link Grammar
Parser.

Example. Sentence: Knowledgeable university graduates in Australia have better

employment opportunities in industry.

7.6 Local Context Determination 115

Table 7.2 Point Schemas for Context Position and Context Coverage

Position Part of Speech CPP CCP Example

1. pre-subject adjective
modifier

2 1 knowledgeable

2. pre-subject noun modifier 3 1 university

3. head noun (subject) 5 1 graduates

4. post-subject modifier
(prepositional
phrase/relative clause)

3 1 in Australia

5. head verb (predicator) 4 1 have

6. verb modifier 1 1 -

7. pre-object adjective
modifier

1 1 better

8. pre-object noun modifier 2 1 employment

9. direct/indirect object 3 1 opportunities

10. post-noun modifier
(prepositional
phrase/relative clause)

2 1 in industry

If a term falls in the first two POS, it will earn another 3 CPP points. The final

CPP points of an alternative context are the sum of points it earns across the
whole sentence. Let us look at an example.

SA Sentence: We released Mountain-100 Silver in Australia in 2005

Alternative Contexts: PRODUCT, PRODUCT RELEASE

The inferring process for class PRODUCT is

Mountain-100 Silver MOUNTAIN BIKE BIKE PRODUCTThus,

PRODUCT can be tracked back to Mountain-100 Silver falling in Position 8
(direct/indirect object). Thus, the PRODUCT earns 3 CPP points. Similarly,
PRODUCT RELEASE falls in Position 5 (head verb (predicator)) and Position 8
(direct/indirect object). Thus PRODUCT RELEASE has 7 CPP (4 + 3) points.

The points assigned to different positions in Table 7.2 are on scale of 1 to 5,
which were determined by language experts in this research. We have conducted

116 7 Natural Language Processing for Situation Awareness

experiments to testify the validity of this schema (Chapter 10). Another method to
create the point schema is through machine learning. We are currently working on
the neutral network technique to automatically create the point schema.

7.6.2 Context Coverage Points

The CCP points of an alternative context are related to its coverage across the SA
sentence. We assume that an alternative context with wider coverage in a sentence
is more competitive to be the local context of this sentence. A complete English
sentence is made up of a number of POS, each of which has a specific position in
the sentence. Each POS in the sentence is assigned one CCP point (Table 7.2).
The more POS an alternative context covers, the more points it can earn. For
example,

A SA Sentence:

We released Mountain-100 Silver in Australia in 2005.

Alternative Contexts:

PRODUCT, PRODUCT RELEASE

According to CCP schema, PRODUCT covers only one POS (Position 8). It
earns 1 CCP point. PRODUCT RELEASE earns 2 CCP points.

7.6.3 Inverse Context Specificity Points

The ICSP points of an alternative context are related to its relative position in a
class tree. We use term class specificity to describe the degree to which a class
conveys detailed information. We assume that an alternative context with lower
specificity (more abstract) in the ontology is more competitive to be the local
context of this sentence. Thus the ICSP points of a class are inversely proportional
to its class specificity.

Classes in different positions in a class tree correspond to different class
specificities. Classes become more specific as one moves toward the leaf nodes in
a class tree. The class specificity of a class is determined by its distance to the
nearest leaf node in the class tree.

Let c be a class and DTL be the proportion of ICSP points attributed to the
position of c in the class tree. We use the following equation to compute the DTL
of c:

DTL = d + 1,

where, d is the distance from class c to the nearest leaf node.
For the example in Section 7.6.2, the DTL values for PRODUCT and

PRODUCT RELEASE can be calculated as follows, based on the ontology used
in application case 1, Chapter 11.

DT L (PRODUCT) = 3

DTL (PRODUCT RELEASE) = 1.

7.6 Local Context Determination 117

The specificity of a class is also related to the semantic parsing level. As
discussed in Section 7.5, semantic parsing has two varieties: inferring general
classes and inferring abstract classes. A general class is inferred by the meta
instances of its taxonomy property. We refer to the semantic parsing to infer
general classes as Level 1 parsing. On the basis of general classes, abstract classes
can be inferred, which we call Level 2 parsing. Similarly, classes inferred at Level
2 parsing lead to Level 3 classes, and so on. There are situations where an abstract
class is inferred from a number of classes which are not at the same level in the
class tree, i.e., the trigger elements are distributed in different positions in the class
tree. In this case, we assess the parsing level of this class by averaging all the
corresponding lower parsing levels. We use class abstract level (Microsoft 2007b)
to refer to the proportion of ICSP points attributed to this kind of class specificity.

The ICSP of a class are computed by the following equation

ICSP = DTL + CAL.

For the example in Section 7.6.2, the CAL values of classes PRODUCT and
PRODUCT RELEASE calculated by algorithm LocalContextDetermination are as
follows.

CAL (PRODUCT) = 3

CAL (PRODUCT RELEASE) = 4

Thus, the ICSP values are as follows.

ICSP (PRODUCT) = 3+3 = 6

ICSP (PRODUCT RELEASE) = 1+ 4 = 5.

7.6.4 Local Contexts

The CP points of an alternative context are the sum of its CPP points, CCP points
and ICSP points, i.e.,

CP = CPP + CCP + ICSP.

Based on this equation, the local context of a SA sentence can be determined as
the alternative context with the highest CP points.

For the example in Section 7.6.2, the CP values of classes PRODUCT and
PRODUCT RELEASE calculated by algorithm LocalContextDetermination are as
follows.

CP (PRODUCT) = 3 + 1 + 6 = 10

CP (PRODUCT RELEASE) = 7 + 2 + 5 = 14

The local context of SA sentence

We released Mountain-100 Silver in Australia in 2005

is PRODUCT RELEASE.

118 7 Natural Language Processing for Situation Awareness

7.7 Summary

Based on NLP technologies, we proposed a set of methods and algorithms to parse
managers’ SA. The main points of the proposed methods and algorithms are as
follows.

(1) We proposed the concept of information type and defined 19 information
types. Compared to data types, information types expose richer semantic
information of data, which form one of the important bases for parsing managers’
SA.

(2) We developed algorithms to recognize meta instances from SA, which we
call plain parsing. Meta instances are the lowest information in SA, based on
which high level classes are inferred.

(3) We developed algorithms to infer general classes and abstract classes.
Being able to infer classes from instances is the key to obtaining rich semantic
information about SA, as classes act as the contexts in which detailed meta
instances can be explained in terms of their semantics.

(4) We proposed a method to reduce the uncertainties of SA triple. This
method is based on the deep analysis of the syntactic relationships between
words/phrases in SA sentences.

(5) We proposed an algorithm to determine the local context of a SA
sentence. The local context of a SA sentence represents the general background
where most meta instances are understood. Local contexts are the basis for
building knowledge needs.

The final product of SA parsing includes SA triples and local contexts of SA

sentences, which are the key ‘ingredients’ of query construction discussed in
Chapter 8.

Part IV
Systems and Applications

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 119–139.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 8
Data Warehouse Query Construction and Situation
Presentation

Data warehouse (DW) queries represent the information need of a manager in the
CDDP model. DW queries are constructed based on the mapping relationships
between the manager’s SA, the experience base, the ontology and the data
warehouse. Once DW queries are constructed, situation information can be
retrieved from the data warehouse through executing the queries. The retrieved
situation information is presented to the manager for SA development. Part of the
work presented in this chapter has been reported in one of our publications (Niu et
al. 2008). Section 8.1 introduces the basic grammar of DW query languages.
Section 8.2 outlines the process of query construction. The detailed processes of
query construction are discussed in Sections 8.3 and 8.4. The method of
presenting situation information is discussed in Sections 8.6 and 8.7.

8.1 Query Languages for Data Warehouses

Today’s data warehouses can accept two types of queries: structured query
language (SQL) queries, and Multidimensional Expressions (MDX) queries. SQL
is the standard interactive and programming language for accessing relational
data, e.g., relational tables, while MDX is for manipulation of multidimensional
data, e.g., cubes. This section very briefly introduces the essentials of SQL and
MDX to provide the preliminary knowledge for understanding the process of
query construction.

8.1.1 Structured Query Language

There are three basic types of SQL statements: data statements for querying and
modifying tables and columns, transaction statements for controlling transactions,
and schema statements for maintaining database schema. The queries to be
constructed in this research are used to retrieve situation information from data
warehouses. Hence, we are only concerned with data statements for querying
tables.

120 8 Data Warehouse Query Construction and Situation Presentation

A SQL query retrieves rows from the database tables under specified search
conditions. A basic SQL query (statement) has three clauses: SELECT clause,
FROM clause, and WHERE clause (Microsoft 2007c) with the following format:

SELECT column_list FROM table_name WHERE search_condition

where, table_name is the source table from which data will be retrieved;
column_list is a list of columns to be selected for the result set; and
search_condition specifies the criteria of selecting rows.

Suppose we have a relational database containing a table called
EmployeeAddressTable (Hoffman 2001). This table has six columns: SSN
(Social Security Number), FirstName, LastName, Address, City and State. The
records of EmployeeAddressTable are list in Table 8.1.

Table 8.1 Employee Address Table

SSN
First

Name

Last

Name
Address City State

512687458 Joe Smith
83 First

Street
Howard Ohio

758420012 Mary Scott
842 Vine

Ave.
Losant Ohio

102254896 Sam Jones
33 Elm

St.
Paris New York

876512563 Sarah Ackerman
440 U.S.

110
Upton Michigan

Some example queries based on this table are as follows.

SELECT Address, City FROM EmployeeAddressTable WHERE FirstName = ‘Joe’

This query retrieves the address and City information of an employee called Joe.

SELECT * FROM EmployeeAddressTable WHERE FirstName = ‘Joe’

This query retrieves all information of an employee called Joe.

SELECT City FROM EmployeeAddressTable

This query retrieves City information of all employees.
These SQL queries are the most basic type. There are more complex queries,

for example, queries retrieving data from multiple source tables, queries with
JOIN or UNION operations, and queries containing aggregate functions. This
book mainly discusses the basic query type in our algorithms and systems.

8.1 Query Languages for Data Warehouses 121

8.1.2 Multidimensional Expressions

Some key concepts about MDX are as follows (Microsoft 2007b).

• Dimensions

A dimension is a perspective from which data of interest is viewed, such as
products, locations and years. In data warehouses, dimensions are used to organize
data with relation to different perspectives. Dimensions are constructed based on
dimension tables. A dimension table is a relational table containing columns and
rows. A dimension contains attributes that correspond to columns in dimension
tables. The specific values of attributes in a dimension are called members. In
MDX, members are defined by member expressions. A member expression
contains at least two fields: the dimension name and the member name, optionally
containing the attribute name. A member expression uniquely identifies a member.
Some examples of member expressions are as follows.

[Product].[Color].[Black]

[Product].[Color].[Silver]

[Location].[Country].[Australia]

[Location].[Country].[China]

Where, each member expression consists of three fields: dimension name,
attribute and member name.

• Measures

Measures are measurable (numeric) columns defined in fact tables, for example
sales, order quantity and profit. Fact tables are also relational tables, which contain
the measurements, metrics or facts of business operation. In MDX, values of
measures are members of a special dimension called Measures. The corresponding
member expressions do not contain attribute field, for example,

[Measures].[Sales Amount].

• Cubes

A cube is a set of related measures and dimensions defined by multidimensional

data schema, for example, star schema and snow-flake schema. Thus, cubes are

multidimensional data used to support online analytical processing (OLAP). An

example of cube is shown in Figure 8.1.
This cube is defined by three dimensions: Location, Period and Customer..

Suppose the measures of this cube are Sales Amount, and Order Quantity. Then,
each cell in Figure 8.1 contains a number representing the specific sales amount
with relation to specific dimension members, for example, the sales amount from

122 8 Data Warehouse Query Construction and Situation Presentation

Fig. 8.1 A Cube

male customers, in 2006, in Australia. In MDX, this cell can be specified by four
member expressions:

[Customer].[Gender].[Male]

[Period].[Year].[2006]

[Location].[Country].[Australia]

[Measures].[Sales Amount].

• Tuples

A tuple is a group of member expressions which uniquely identifies a cell. An
example of a tuple is as follows.

([Customer].[Gender].[Male], [Period].[Year].[2006],

[Location].[Country].[Australia], [Measures].[Sales Amount])

• Sets

A set is an ordered set of tuples with the same dimensionality. An example of a
set is as follows.

{

([Customer].[Gender].[Male], [Period].[Year].[2006],

8.1 Query Languages for Data Warehouses 123

[Location].[Country].[Australia], [Measures].[Sales Amount]),

([Customer].[Gender].[Male], [Period].[Year].[2007],

[Location].[Country].[Australia],[Measures].[Sales Amount])

}

This set contains two tuples. The difference between the two tuples is the

Period dimension: one for 2006 and another for 2007. Thus it can specify two
cells in the cube shown in Figure 8.1.

• Axes

In a MDX statement, multiple sets can be organized along different axes. Each

query axis has a number: zero (0) for the x-axis, 1 for the y-axis, 2 for the z-axis,
and so on. The following is an example of sets organized along two axes.

{([Customer].[Gender].[Male], [Period].[Year].[2006],

[Measures].[Sales Amount]),

([Customer].[Gender].[Male],[Period].[Year].[2007],

[Measures].[Sales Amount])} ON 0,

{([Location].[Country].[Australia], [Location].[Country].[China])} ON 1

We have discussed the necessary concepts of MDX queries. Now let us look at
a complete example of a MDX query as follows.

SELECT

{([Customer].[Gender].[Male], [Period].[Year].[2006], [Measures].[Sales

Amount]),

([Customer].[Gender].[Male],[Period].[Year].[2007],[Measures].[Sales

Amount])} ON 0,

{([Location].[Country].[Australia], [Location].[Country].[China])} ON 1
FROM [Adventure Works]

Where, Adventure Works is the name of a cube. The result returned by this MDX
query will be something as follows:

124 8 Data Warehouse Query Construction and Situation Presentation

 Male Male

 2006 2007

 Sales Amount Sales Amount

Australia $448,525 $949,370

China $555,071 $858,565

8.2 Framework of Query Construction and Situation
Presentation

The process of query construction and situation presentation is based on the

mapping relationships between SA, experience base, ontology, data warehouse

and situation, which are illustrated in Figure 8.2.
There are five layers in this figure separated by horizontal lines.

(1) Situation Awareness

In the SA layer, the manager describes his/her SA about the current decision
situation and inputs into the system in the form of natural language. Each SA
description is comprised of a number of SA sentences. Employing the Link
Grammar Parser and relevant techniques discussed in Chapter 7, SA sentences are
parsed into SA tokens. Finally, SA triples are generated by annotating the SA
tokens, and local contexts of SA sentences are also determined. The SA triples and
local contexts and are mapped into the ontology and the experience base.

(2) Experience Base

In this layer, the manager’s experiences are represented as experience maps. An
experience map consists of two sorts of concepts (cause concepts and effect
concepts) and the causal relationships between them.

The local contexts of SA sentences are used to generate a knowledge need,
which are then used to extract cues from the experience base. The extracted cues
represent a fragment of the entire experiences, which imply potential solutions,
ideas or relevant situation information. In the process of knowledge retrieval, a
local context in the SA layer is directly mapped to an effect concept in the
experience base layer.

(3) Ontology

Classes are defined in the ontology layer. Each class is described by a set of
properties. Classes are associated with each other via two sorts of relationships:
subsumption relationships and property-share relationships.

8.2 Framework of Query Construction and Situation Presentation 125

Fig. 8.2 Framework of Query Construction and Situation Presentation

A SA triple in the SA layer is mapped to a combination of a class, a property of
this class and a meta instance of this property, in the ontology layer. A property-
share relationship enables semantic information expressed by SA triples to be

126 8 Data Warehouse Query Construction and Situation Presentation

transferred from a class to another class. By this way, those classes, which do not
have direct mapping relationships with SA triples, can also be indirectly mapped.

(4) Data Warehouse

In the data warehouse layer, situation information is hiding in either data tables
(relational data) and/or cubes (multidimensional data). The objective of query
construction is to find the situation information for situation presentation. A cube
is defined by a number of dimensions and measures. Dimensions are derived from
dimension tables.

A class in the ontology layer can be mapped to a data table, a cube or a
dimension table in the data warehouse layer. The mapping relationship is defined
during the development of the ontology.

Queries are constructed and executed against the data warehouse. During the
execution of the queries, situation information is retrieved from data tables or
cubes. The retrieved situation information is transferred to the situation layer for
situation presentation.

(5) Situation

In this layer, the original decision situation is presented to the manager through
displaying the retrieved situation information. Situation presentation is
implemented in the form of different data visualization techniques, such as graphs,
charts and tables. When the manager perceives and understands the presented
situation information, his/her SA is developed and enriched.

8.3 Determining Query Data Sources

The process of query construction includes two basic tasks: determining query
data sources and constructing query clauses. A query data source is a table (query
table) or cube (query cube) from which situation information will be retrieved.

Query tables/cubes are determined according to the cues extracted from the
experience base during knowledge retrieval. The extracted cues are related to the
current decision situation and the manager’s past experience. Cues prompt
potential solutions, ideas, or information relevant to the current decision situation.

A cue consists of an effect concept and a number of cause concepts. The effect

concept of a cue is considered as a subtopic of the current decision situation, while

the cause concepts represent different factors affecting the subtopic. Exploring the

factors of the subtopic will help the manager to gain insights into the decision

situation. Thus, the data/information related to each concept in a cue should be

retrieved and presented to the manager in terms decision support.
The concepts of cues are indirectly mapped to DW objects via the ontology.

According the relationships between the experience base, the ontology and the
data warehouse, each concept of a cue is also a class in the ontology which is

8.4 Constructing SQL Queries 127

further mapped to a DW object in the data warehouse. The DW object mapped
with an ontology class can be of three types: a data table, dimension table or cube.
Of them, only data tables and cubes are qualified query data sources.

In an application, not all ontology classes are mapped with a DW object. If a
concept of a cue is mapped to a class which does not have available associated
DW object, we use class similarities to search for the nearest qualified class with
an associated DW object. By this way, all cue concepts can be indirectly mapped
to DW objects.

For a decision situation, a number of cues might be extracted from the
experience base. All these cues will be merged as a navigation knowledge. The
data source for a query is determined based on the navigation knowledge. The
procedure of determining the data source for a query has four steps:

Step 1. The navigation knowledge is visualized as a map and presented to the
manager.

Step 2. The manager browses the navigation knowledge map and expresses
interest in a specific concept.

Step 3. A class which is matched with the concept of the manager’s interest is
found in the class tree of the ontology.

Step 4. If the class found in Step 3 has an associated qualified DW object (data
table or cube), output this DW object as the query data source. Otherwise, find the
most similar qualified class through assessing class similarities and output the DW
object of this new class as the query data source.

8.4 Constructing SQL Queries

We developed the algorithm SqlBuilder to construct SQL queries. SqlBuilder
intakes a concept of the navigation knowledge and outputs the corresponding SQL
query for this concept.

Algorithm 8.1. SqlBuilder

Input:

(1) A navigation knowledge concept: c

(2) A set of SA triples: SATripleSet
(3) An ontology

Output:

 A SQL query for concept c

Procedure:

 See Figure 8.3.

One of the theoretical bases of SqlBuilder is the concept of property-share

relationship. A property-share relationship between two classes enables
information about one class to be transformed to another class. The information
about classes here mainly refers to SA triples. The concept c in the navigation

128 8 Data Warehouse Query Construction and Situation Presentation

Fig. 8.3 Algorithm SQLBuilder

knowledge is also a class in the ontology. Thus, the information about c can be
obtained from two sources. First, those SA triples whose contexts are c provide
direct information about c. Second, some SA triples whose contexts are not c can
provide indirect information about c through property-share relationships.

8.4 Constructing SQL Queries 129

As shown in Figure 8.3, the process of constructing a SQL query can be
divided into four stages. In Stage 1, all neighbor classes of concept c are retrieved
in the class graph. Concept c is first mapped to a class in the class tree and then
mapped to a class in the class graph. In the class graph, a neighbor class of c is one
from which a property-share relationship is directed to c.

In Stage 2, shared SA triples from neighbor classes of c are determined. A
shared SA triple is one whose view part is a shared property. Given a neighbor
class n, there are two ways to determine the SA triples which n shares with c.
First, the shared SA triples can be selected directly from the SATripleSet. A SA
triple in SATripleSet is a shared one as long as its context is n and its view is
defined in a property-share relationship from n to c. Second, new shared SA
triples can be created according to those selected from SATripleSet. Let st = (n, p,
i) be a shared SA triple selected from SATripleSet, and tn be the associated DW
data table of n. If p (the view of st) is unique in table tn, p will be used to retrieve a
new meta instance in tn for other shared properties of n. The retrieved new meta
instance is then used to created new shared SA triples for c.

The SA triples that the neighbor classes share with c are transformed using the
corresponding property transformation functions in Stage 3. Property
transformation functions revise the wording part of each shared SA triple and
replace the context with c. By this means, SA triples of neighbor classes are
transferred to class c, which can provide indirect information about c.

A SQL query is composed according to the transformed SA triples
(SaTrippleSetForC) in Stage 4. The associated DW table tc is used as the query
table (query data source), such that a FROM clause can be constructed:

FROM tc

All columns of tc are considered to be of interest to the current decision. Thus
SELECT clause can be constructed:

SELECT *

The remaining work of the SQL query construction is to compose query
criteria, i.e., WHERE clauses. The transformed SA triples in the
SaTrippleSetForC are grouped by their view parts. Thus a number of SA triple
groups are generated, in each of which SA triples have the same view. For each
group of SA triples, a number of query predicates (query criteria) can be created.
For example, based on SA triple the following SA triple group

{(Mountain Bike, EnglishProductName, Mountain-100 Silver),

(Mountain Bike, EnglishProductName, Mountain-100 Black)},

Two predicates are created as follows.

EnglishProductName = Mountain-100 Silver

EnglishProductName = Mountain-100 Black

130 8 Data Warehouse Query Construction and Situation Presentation

The two predicates are connected using the logical operator OR.

EnglishProductName = Mountain-100 Silver OR EnglishProductName =

Mountain-100 Black

Predicates created based on different SA triple groups are connected using the
logical operator AND. For example, based on SA triple

(Mountain Bike, color, red)},

A predicate is created as follows.

Color = red

Connected with the previous two predicates using AND,

(EnglishProductName = Mountain-100 Silver OR EnglishProductName =

Mountain-100 Black) AND Color = red

Thus, a WHERE clause can be composed as follows.

WHERE (EnglishProductName = Mountain-100 Silver OR

EnglishProductName = Mountain-100 Black) AND Color = red

Finally, a provisional SQL query is constructed as follows.

SELECT * FROM tc WHERE (EnglishProductName = Mountain-100 Silver OR

EnglishProductName = Mountain-100 Black) AND Color = red

In an application, the provisional query which has been composed in Stage 4
might not be fully compatible with the specific data warehouse system. Thus,
Algorithm SqlBuilder will post-process the provisional query through tuning each
clause of the query statement. The post process includes the following tasks:

• Adjust the formats of clauses. For example, data of char string type will be

enclosed with quotation marks.
• Resolve conflicts between different query criteria. For example, if two AND-

connected predicates contain columns with a unique constraint, either the
provisional query will be split into two queries, or the AND operator will be
changed to OR.

• Predict the number of rows which will be retrieved. The objective of
constructing DW queries is to retrieve a reasonable amount of situation
information for decision support. In some cases, e.g., bad-constructed queries due
to poor SA descriptions, the provisional query might return much more data than
the manager would expect. In these cases, the provisional query will be attached a
tag which will be used to inform the manager to input more SA descriptions. The
provisional query could also return empty data set. In this case, this query will be

8.5 Constructing MDX Queries 131

removed. In order to predict the number of rows, the provisional query will be
submitted to the data warehouse for execution.

• Remove duplicate queries.

After post-process, SqlBuilder will output the following query.

SELECT * FROM tc WHERE (EnglishProductName =’ Mountain-100 Silver’ OR

EnglishProductName = ‘Mountain-100 Black’) AND Color = ‘red’

Note that Mountain-100 Silver and Mountain-100 Black are enclosed with
quotation marks according to their data type (nvarchar) in the definition of tc.

In the current version, SqlBuilder can generate the basic type of query. We are
currently working to enhance the function of SqlBuilder. The new version will be
able to construct more complex queries, e.g., supporting JOIN of multiple tables.

8.5 Constructing MDX Queries

We developed the algorithm MdxBuilder to construct MDX queries. MdxBuilder
intakes a concept of a navigation knowledge and outputs the corresponding MDX
query.

Algorithm 8.2. MdxBuilder

Input:

(1) A navigation knowledge concept: c

(2) A set of SA triples: SATripleSet
(3) An ontology

Output:

 A MDX query for concept c

Procedure:

 See Figure 8.4.

As shown in Figure 8.4, the process of constructing a MDX query can be

divided into four stages.

• Stage 1

Given a navigation knowledge concept c, the corresponding DW cube m is
determined and all dimensions of m are retrieved.

• Stage 2

A sub-algorithm CreateMemberExpression is called to create member

expressions for every dimension of m.

132 8 Data Warehouse Query Construction and Situation Presentation

Fig. 8.4 Algorithm MDXBuilder

Algorithm 8.3. CreateMemberExpression

Input:

(1) A dimension d

(2) A set of SA triples: SATripleSet
Output:

 A set of member expressions of d

Procedure:

 See Figure 8.5.

8.5 Constructing MDX Queries 133

Fig. 8.5 Algorithm CreateMemberExpression

134 8 Data Warehouse Query Construction and Situation Presentation

The algorithm CreateMemberExpression is also based on the concept of the
property-share relationship. In the data warehouse, dimensions are related to
dimension tables. Dimension tables are mapped to classes in the ontology
according to the mapping relationships between the ontology and the data
warehouse (Figure 8.2).

A dimension table dt, corresponds one or more classes in the ontology. Let dc
be a corresponding ontology class of dt. Just as algorithm SqlBuilder,
CreateMemberExpression retrieves the shared SA triples in SATripleSet and
creates new shared SA triples based on retrieved meta instances for class dc.
CreateMemberExpression collects all shared SA triples into set
SaTrippleSetForD for all corresponding classes of dt and for all corresponding
dimensional tables of d.

The member expressions of dimension d are composed based on SA triples in
SaTrippleSetForD. The relationships between the dimension attributes and the
columns of dimension tables can be extracted from the schema of the data
warehouse. Thus, properties of classes are mapped to attributes of dimensions
according to the mapping relationships between ontology classes and the DW
dimension tables. The mapping relationships between dimension attributes and
class properties enable each SA triple in SaTrippleSetForD to be transformed into
a member expression of dimension d. Let us look at an example.

Example 8.1. Constructing Member Expression

SA Triples:

(Mountain Bike, EnglishProductName, Mountain-100 Silver)

(Road Bike, EnglishProductName, Road--30 Black)

(Mountain Bike, Color, Blue)

(Customer, Location, France)

(Customer, Location, Canada)

Member Expressions which are composed based on the above SA triples:

[Product].[Model Name].[Mountain-100 Silver]

[Product].[Model Name].[Road--30 Black]

[Product].[Product Color].[Blue]

[Customer].[Country].[France]

[Customer].[Country].[Canada]

• Stage 3

MDX tuples and sets are generated in this stage. Each MDX set is comprised of
a number of tuples with the same dimensionality. Tuples are constructed using

8.5 Constructing MDX Queries 135

member expressions created in Stage 2 and then evenly distributed into the two
sets.

Based on the member expressions generated in Example 8.1, two MDX sets
can be constructed as follows.

Axis 0 set:

{([Product].[Model Name].[Mountain-100 Silver], [Product].[Product

Color].[Blue]), ([Product].[Model Name].[Road--30 Black], [Product].[Product

Color].[Blue]) }

Axis 1 set:

{([Customer].[Country].[France]), ([Customer].[Country].[Canada])}

Based on the same collection of tuples, different MDX sets can be constructed
which are equally reasonable in terms of MDX syntax. For example, based on the
member expressions generated in Example 8.1, the following MDX sets can also
be constructed.

Axis 0 set:

{([Product].[Model Name].[Mountain-100 Silver]),

([Product].[Model Name].[Road--30 Black]) }

Axis 1 set:

{([Customer].[Country].[France], [Product].[Product Color].[Blue]),

([Customer].[Country].[Canada], [Product].[Product Color].[Blue])}

Based on a collection of member expressions, there are many ways to generate
the corresponding MDX sets. Different MDX sets will results in different MDX
queries which will return different information. There are no formal rules which
can be used to determine the number of MDX sets and the dimensionality of
tuples. Algorithm MdxBuilder will initially generates two sets for a MDX query:
axis 0 set (columns) and axes 1 set (rows), and randomly generate a
dimensionality of tuples. However, in the prototype FACETS, the manager are
allowed to use up to three axes and customize the dimensionality according to
his/her requirements.

• Stage 4

This is the final stage where a complete MDX query is constructed by
assembling tuples, the query cube and measure. MdxBuilder constructs a MDX
query for every measure of a cube. Let r be a measure of cube m. The following is
an example of a finished MDX query.

136 8 Data Warehouse Query Construction and Situation Presentation

SELECT

{([Product].[Model Name].[Mountain-100 Silver], [Product].[Product

Color].[Blue]), ([Product].[Model Name].[Road--30 Black], [Product].[Product

Color].[Blue]) } ON 0,

{([Customer].[Country].[France]), ([Customer].[Country].[Canada])} ON 1

FROM [m]

WHERE [r]

Note that in the above MDX query, measure r is used as a WHERE clause,

instead of the member of the special dimension Measure.

8.6 Navigation-Knowledge-Guided Situation Presentation

We use navigation knowledge to guide the process of situation presentation. This
method is depicted in Figure 8.6. The relationships between situation information
and environment data are established by DW queries. When DW queries are
executed against the DW, corresponding situation information can be retrieved. A
piece of situation information might correspond to different data in the DW. In
Figure 8.6, solid directed lines are used to denote these direct relationships.

Navigation
Knowledge

Environment
Data

Situation
Information

Fig. 8.6 Navigation-knowledge-guided Situation Presentation

8.6 Navigation-Knowledge-Guided Situation Presentation 137

The dashed directed lines denote indirect relationships between situation
information and navigation knowledge. Navigation knowledge is visualized as
maps on a graphical user interface (GUI). The representation of navigation
knowledge also consists of concepts and causal relationships. Each concept
implies a kind of information which reflects an aspect of the decision situation. If
the manager is interested in a specific concept in the navigation knowledge, he/she
can request the system to show related situation information. For example, the
request can be made by mouse-clicking onto a concept on the navigation
knowledge map. When the system receives an information request, the
corresponding queries will be triggered and executed against the data warehouse.
Relevant data is then retrieved from the data warehouse (environment data). The
retrieved data is processed using data analysis techniques and then presented to the
manager on the GUI.

The general pattern of human-machine interaction in the navigation-knowledge
guided situation presentation is as follows.

A navigation knowledge map is presented

(The manager) Browse the experience

Find a concept interesting

Click this concept for associated information

Detailed information is presented

Perceive the detailed information

Return back the navigation knowledge map

Browse the experience

Find another concept interesting

…

The navigation knowledge is the combination of all cues relevant the current

decision situation. Cues prompt possible ideas, clues or solutions to current
decision situation. A cue is retrieved according to a concept (an element of the
knowledge needs related to the current decision situation) from the experience
base. A decision situation might have many related concepts. A cue is generated
only based on one concept. Hence, a cue can only reflect part of the decision
situation. The navigation knowledge is the integration of all related cues of a
decision situation. Therefore, the visualization of navigation knowledge presents a
complete big picture of the current decision situation to the manager.

The navigation-knowledge-guided situation presentation also allows managers
to add extra concepts and causal relationships to the generated navigation
knowledge. For example, suppose the navigation knowledge shows that

138 8 Data Warehouse Query Construction and Situation Presentation

PRODUCT and ADVERTISEMENT are the key factors to SALES. If a manager
thinks GOVERNMENT POLICY is also playing a role, he/she can supply this
new concept and the relationship with SALES to the system. The navigation
knowledge map and the corresponding DW queries will be updated accordingly.
The navigation-knowledge-guided situation presentation is implemented in
FACETS (Chapter 7).

8.7 Data Analysis and Situation Presentation

The retrieved data is not always easily understood by managers. For instance, a
DW query might return many sales data across different locations, products and
time periods. Thus, it is necessary to perform data analysis on the retrieved data
before presenting to the manager.

The data analysis techniques discussed in this section are not basic components
of the CDDP model. However, in terms of application, they are a substantial part
of the integral system built based on the CDDP model. Thus, we briefly discuss
each of them as follows.

There are three basic categories of data analysis techniques in today’s BI
applications.

(1) Relational Data Reporting

Relational data reporting (RDR) is the most well-developed and widely-used
data analysis technique in the BI area. RDR is based on executing SQL queries
against OLTP systems. The data being reported by RDR has a very simple
structure: relational tables. The visual forms which are used to present data are
very varied, such as list tables, cross tables, bar graphs, line graphs, pie charts, pie
slices and divided bars. RDR is one of the most basic analysis functions of most
commercial BI tools such as BO, Cognos, Hyperion, Microstrategy, SAS, SAP,
Microsoft and ORACLE.

(2) Multidimensional Data Reporting

Multidimensional data reporting (MDR) was born with the development of
OLAP systems. The structure of multidimensional data (cubes) can be star
schema, snowflake schema or hybrid schema, which are more complex than
relational tables. MDR tools usually support ad hoc data analysis whereby users
can undertake customized analytics such as dicing, slicing, drilling down, drilling
up and drilling through.

(3) Intelligent Data Analysis

Intelligence data analysis (Chidambaram 1996) refers to data analysis methods
which involve artificial intelligence techniques. Examples of these techniques are
data mining, data fusion, evolutionary algorithms, machine learning, neural nets,
fuzzy logic and pattern recognition. In practical BI applications, data mining is

8.8 Summary 139

growing as one of the most significant IDA techniques. Data mining is integrated
with many commercial BI products, such as Intelligent Miner in DB2, ODM in
Oracle, Enterprise Miner in SAS and Teradata Warehouse Miner in Teradata.

8.8 Summary

This chapter presents the methods and algorithms used for query construction and
situation presentation. The main points of the proposed methods and algorithms
are as follows.

(1) A framework for query construction and situation presentation was
proposed. This framework establishes the mapping relationships between
SA, experience base, ontology, data warehouse and situation.

(2) Based on the proposed framework, the algorithm SqlBuilder was
developed to construct SQL queries.

(3) Based on the proposed framework, the algorithm MdxBuilder was
developed to construct MDX queries.

(4) A method of situation presentation guided by navigation knowledge was
discussed.

This chapter together with Chapters 6 and 7 are the technical part of this

research. The technical part consists of different algorithms and methods which
are developed according the CDDP model proposed in the theoretical part
(Chapter 5). In the next chapter, we will report on the prototype system developed
to evaluate the proposed techniques.

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 143 – 156.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 9
A Cognition-Driven Decision Support System:
FACETS

Using the techniques discussed in Chapters 6, 7 and 8, we developed a prototype
system, FACETS, as an implementation of the CDDP model. It allows a manager
to describe his/her SA in the form of English. Based on the domain knowledge,
FACETS parses the manager’s SA and constructs data warehouse queries. Queries
are submitted to the data warehouse for retrieving relevant situation information.
The retrieved situation information is presented to managers according to the
navigation knowledge extracted from the manager’s experience. The goal of
FACETS is to assist managers to develop and enrich their SA for decision making.

9.1 The Development Environment

We developed FACETS on a desktop computer with an AMD Athlon 64 2GHz
Processor and 1 G RAM. The software environment is as follows.

• Operating System: Microsoft Windows XP Professional Version 2002 with

Service Pack 2

• Programming Tool: Microsoft Visual Studio 2005 Professional Edition

• Programming Language: C/C++

• Database Server: SQL Server 2005 Enterprise Edition

• OLAP Server: Microsoft Analysis Service 2005

9.2 The Architecture of FACETS

The prototype FACETS is comprised of eight subsystems: Data Warehouse
System, Ontology Management, Experience Management, Situation Awareness
Management, Situation Awareness Parsing, Situation Awareness Annotating,
Query Builder and Situation Presentation. Each subsystem includes a number of
components which are shown in Figure 9.1.

144 9 A Cognition-Driven Decision Support System: FACETS

Fig. 9.1 The Architecture of FACETS

FACETS was built on the platform of a data warehouse, which includes a
central data warehouse and other components for extracting data from business
operational systems, managing meta data and analyzing data.

The functions of FACETS are based on an ontology and manager’s
experiences. Users (business managers or IT engineers) use the Ontology
Management subsystem to create and edit the ontology. The data of the ontology
is stored in the Ontology Base. The Ontology Management subsystem also
provides a set of functions for operating the ontology, such as traversal, editing
and computing class similarities. The Experience Management subsystem
provides functions for creating, storing, editing managers’ experience and
extracting navigation knowledge for the Situation Presentation subsystem.

The Situation Awareness Management subsystem is the interface via which
managers input their SA. SA is stored in form of persistent hard disk files and then
sent to the Situation Awareness Parsing subsystem for extracting SA tokens. SA
tokens are the inputs of the Situation Awareness Annotating subsystem responsible
for generating SA triples. SA triples are the basis of query construction which is
done by the Query Builder subsystem. The processes of parsing, annotating SA,
and constructing queries are based on the domain ontology. Thus, Situation
Awareness Parsing, Situation Awareness Annotating and Query Builder have
inputs from the Ontology Management subsystem. In addition, constructing
queries also relies on experience which comes from the Experience Management
subsystem. The constructed queries are executed in the Situation Presentation
subsystem for the retrieval of situation information. The retrieved situation
information is finally presented to managers.

9.3 Subsystems of FACETS 145

9.3 Subsystems of FACETS

9.3.1 Data Warehouse System

The role of the Data Warehouse subsystem is three-fold. First, it stores all
business data which is the data source of situation information retrieval. Second,
the business data is used for creating the ontology. Last, FACETS uses the DW
subsystem to store some configuration information.

The major tasks of developing the DW subsystem include designing the data
warehouse model and populating DW tables, dimensions and cubes. FACETS is
not domain-specific and can be configured to be used in any decision-making
domain. Thus, in this chapter, we will not report on the technical details of
building up a data warehouse. A specific data warehouse (about a manufacture
company) was implemented in the experiment part of this research.

9.3.2 Ontology Management

The Ontology Management (OM) subsystem provides a graphical interface for users
(mainly IT engineers) to create ontology structures, edit classes and relationships. It
also opens an application programming interface (API) for other subsystems
(Situation Awareness Parsing, Situation Awareness Annotating and Query Builder)
to access ontology manipulation functions. OM stores ontology data in an Ontology
Base which is based on comma-separated-values files. Figure 9.2 is a screenshot of
the OM subsystem.

Using the OM subsystem, users can build ontologies from scratch. That means
all terms which represent classes as well as the definitions of classes are coded
manually. This method is appropriate for small scale ontologies, for example,
those with twenty or less classes.

It would be very time-consuming to define every class for large ontologies. The
OM subsystem therefore offers an import utility to assist users to create ontologies
efficiently. Using this utility, users can firstly import relevant meta data (tables
and their definitions) from a data warehouse. The imported meta data are the
initial class definitions which act as the roughcast for fine class defining. Users
can explore the initial class definitions and make appropriate revisions. Based on
our experience, the revisions/changes are mainly made on class names. Most table
definitions can be retained as class definitions. This method speeds up the
engineering process of ontology development. There are also widely used tools for
ontology development, for example Protégé 7, which support standard ontology
language, such as RDF and OWL. However, in the current version of FACETS, it
does not support ontologies created based on other tools.

The OM subsystem also provides functions for Situation Awareness Parsing,
Situation Awareness Annotating and Query Builder. Examples of these functions
are as follows.

• Check if a term is a valid class label

• Obtain the parent class for a given class

7 More detailed website of Protégé is at http://protege.stanford.edu/

146 9 A Cognition-Driven Decision Support System: FACETS

Fig. 9.2 Ontology Management

• Obtain all child classes for a given classes

• Compute the similarities between the two classes

• Obtain the associated DW object for a given class

• Determine the depth of the class tree

• Obtain the neighbor classes for a given class

• Compute the distance to the nearest leaf node for a given class

Some of these functions are implemented based on a C++ tree class called

tree.hh8.

9.3.3 Experience Management

The Experience Management (EM) subsystem has a graphical interface for users
(mainly IT engineers) to create the structure of experience, edit experiences and
relationships. It also opens an API for subsystems Query Builder and Situation
Presentation to access relevant experience manipulation functions. EM stores the
data of experiences in the Experience Base which is based on comma-separated-
values files.

Figure 9.3 is a screenshot of the EM subsystem.EM is not a tool intended for
eliciting fresh experience (mental models) from managers. Experience elicitation

8 Tree.hh is available at http://www.aei.mpg.de/~peekas/tree/

9.3 Subsystems of FACETS 147

Fig. 9.3 Experience Management

is a survey process during which managers are interviewed by answering
questions or describing concepts. Experience elicitation is essentially a manual
process. Therefore, to build the experience base for FACETS, the experience, as a
kind of knowledge, must have been already elicited and recorded. The function of
EM is intended for the transformation of the form of experience, for example,
from manuscripts to computer files, which then becomes understandable for
FACETS.

Experiences can be visualized as experience maps in EM as shown in Figure
9.3. Users can click onto a concept and select the causal relationships related to
this concept. Users can then edit this concept and relationships. Typical operations
for creating experience are as follows.

• Create new concepts

• Change names of concepts

• Create new causal relationships

• Delete concepts and causal relationships

• Visualize experience

The EM subsystem also implements APIs for other subsystems. The algorithm

CueExtraction is implemented in EM, which extracts cues for the Query Builder
subsystem on the basis of the output of the Situation Awareness Annotating
subsystem. The algorithm Navigator is implemented in EM, which generates
navigation knowledge for the Situation Presentation subsystem on the basis of the
extracted cues.

148 9 A Cognition-Driven Decision Support System: FACETS

Fig. 9.4 Situation Awareness Management

9.3.4 Situation Awareness Management

The Situation Awareness Management (SAM) subsystem is one of the two major
interfaces (another is the Situation Presentation subsystem) open to managers for
interaction during decision making, e.g., describing SA and receiving situation
information (Figure 9.4). Interfaces of Data Warehouse, Ontology Management
and Experience Management are mainly for IT engineers to maintain FACETS.

Managers can input their SA via SAM. SAM stores the data of SA in the
computer memory; however managers can save SA as a persistent file on the hard
disk and load it for reuse. The APIs provided by SAM are open to the Situation
Awareness Parsing subsystem, via which managers’ SA descriptions are
transferred for parsing using the Link Grammar Parser.

As shown in the screen shot of SAM (Figure 9.4), a number of editing
functions are provided for managers to describe their SA, as follows.

• Add a new SA sentence

• Modify a SA sentence

• Delete a SA sentence

• Empty current SA

• Save all SA sentences onto hard disk file

• Load a saved SA file

9.3.5 Situation Awareness Parsing 149

Generally speaking, a complete decision process is comprised of a number of
decision cycles. At the beginning of each decision cycle, managers will describe
and input their current SA. Based on managers’ SA, FACETS seeks and retrieves
relevant knowledge and situation information, and then presents situation
information back to managers. At the end of a decision cycle, managers’ SA is
developed or enriched when situation information is perceived and understood.
During the iteration of decision cycles, SAM accumulates managers’ SA by
keeping historical SA inputs. However, if circumstances change, managers are
allowed to modify, replace or discard the past SA.

9.3.5 Situation Awareness Parsing

The Situation Awareness Parsing (SAP) subsystem intakes SA sentences
from Situation Awareness Management and parses them into SA tokens.
Algorithms NumericPlainParser, LiteralPlainParser, SemanticParser and
LocalContextDetermination are implemented in SAP. SAP is mainly for internal
call by the Situation Awareness Annotating subsystem. However, we also
developed a GUI in SAP for managers to monitor and control the parsing process
(Figure 9.5).

On the GUI of SAP, all new SA sentences waiting to be parsed are listed. The
SA sentences being parsed and the overall progress of the parsing task are
dynamically updated. The SA tokens are output as parsing results. Managers can
start or abort a parsing task in progress; they can also re-do the whole parsing task.
In Figure 9.5, a SA sentence is being parsed: “BK-M82S-38 was designed with
higher performance and lower price.”

Fig. 9.5 Situation Awareness Parsing

150 9 A Cognition-Driven Decision Support System: FACETS

Fig. 9.6 Situation Awareness Annotation

9.3.6 Situation Awareness Annotating

The output of Situation Awareness Parsing is input into the Situation Awareness
Annotating (SAA) subsystem. In SAA, SA tokens are further processed. SAA is
mainly for internal call by subsystems Query Builder and Experience
Management, but it also has a GUI for managers to amend SA annotation when
necessary (Figure 9.6).

SAA annotates SA tokens and then generates SA triples. The uncertainties of
SA triples are also reduced by SAA. However, if the uncertainty of a SA triple
cannot be eliminated completely, managers have opportunities to participate in the
process of annotating via the SAA GUI. For example, managers can delete
inappropriate SA triples or modify the context, view and wording of a SA triple.
Figure 9.6 shows all generated SA triples, each of which has four fields: context,
property (view), instance (wording) and information type.

Subsystem SAA sends the generated SA triples to Query Builder for query
construction, and sends local contexts to Experience Management for knowledge
retrieval.

9.3.7 Query Builder

The Query Builder (QB) subsystem takes SA triples from Situation Awareness
Annotating, meta data from the Data Warehouse system, classes information from
Ontology Management and cues from Experiment Management. Based on these
inputs, data warehouse queries are constructed. The constructed queries are then
fed to the Situation Presentation subsystem for retrieving situation information.

Query building is a completely automatic process, but for the purpose of
illustrating research, QB also has a GUI for users (Figure 9.7). On this GUI, users can
control the process of query construction. They can also edit the generated queries.

9.3.8 Situation Presentation 151

Queries are attached to specific cue concepts. QB has a list of all concepts. For
each concept, the attached queries are also shown in the GUI. For example, in
Figure 9.7, the concept MOUNTAIN BIKE is selected from the concept list.
There is only one query (shown in left box) related to this concept. The detail of
this query is shown in the right box.

Fig. 9.7 Query Builder

9.3.8 Situation Presentation

The Situation Presentation (SP) subsystem is another GUI intended for managers’
use in addition to Situation Awareness Management. SP presents situation
information to managers for situation assessment. Behind the GUI is the
implementation of two reporting technologies: SQL reporting and MDX reporting.

In the SP subsystem, managers will be firstly presented with a navigation
knowledge map regarding their experience and the current SA description. An
example of a navigation knowledge map is shown in Figure 9.8. In the navigation
knowledge map, circles denote concepts and directed lines denote causal
relationships. Managers can browse the whole map, which can help them recall
past experience and correlate past experience with the current decision situation.
The examination of navigation knowledge maps stimulates managers to identify
possible ideas, factors or solutions for the current decision situation.

If managers are interested in a concept in the navigation knowledge map, they
can have instant access to the related data behind this concept by simply clicking
on the concept (visualized as a circular button). When a concept is clicked, SP will
evoke the appropriate reporting module (SQL or MDX) to retrieve situation
information relevant to this concept and generate a report for presentation. If the
concept being clicked corresponds to a relational table, the SQL reporting module

152 9 A Cognition-Driven Decision Support System: FACETS

Fig. 9.8 Navigation Knowledge Map

Fig. 9.9 SQL Reporting

will be called. Accordingly, a SQL report is generated and presented. Figure 9.9
shows a SQL report generated by the SQL reporting module for the concept
MOUNTAIN BIKE.

9.3.8 Situation Presentation 153

Fig. 9.10 MDX Analysis Condition Customization

If the concept being clicked corresponds to a cube, the MDX reporting module
will be called. The MDX reporting module will firstly require managers to choose
the analysis condition. Analysis conditions consist of dimensions, attributes,
members and measures. As shown in Figure 9.10, a number of relevant
dimensions such as RESELLER, SALES TERRITORY, PRODUCT and DATE
are available for selection. Under each dimension are a number of attributes; under
each attribute are a number of members. For example, Sales Territory Country is
an attribute for dimension SALES TERRITORY; United Kingdom and Germany
are members for attribute Sales Territory Country.

Managers can organize the analysis conditions of their selection along three
axes (X, Y and Z) displayed as the top box, middle box and bottom box under
label Selected Analysis Dimensions in Figure 9.10. The available measures defined
with the corresponding cube are also shown in the GUI, such as Average Rate,
Internet Order Quantity and Internet Sales Amount.

A finished analysis condition customization is shown in Figure 9.11, which
results in a MDX query as follows.

SELECT

{([PRODUCT].[PRODUCT].[Mountain-100 Silver, 38]),

([PRODUCT].[PRODUCT].[Mountain-100 Black, 38])

} ON 0,

{([SALES TERRITORY].[SALES TERRITORY COUNTRY].[United
Kingdom]),

([SALES TERRITORY].[SALES TERRITORY COUNTRY].[Germany])

} ON 1,

154 9 A Cognition-Driven Decision Support System: FACETS

{([Date].[Calendar Year].[2001]), ([Date].[Calendar Year].[2002])

} ON 2

FROM [Adventure Works]

WHERE [Internet Sales Amount]

This MDX query has there axes: 0, 1 and 2.

Fig. 9.11 Finished MDX Analysis Condition Customization

Fig. 9.12 A MDX Report

9.4 The Cognition-Driven Decision Process Based on FACETS 155

When the manager finishes customizing the analysis conditions, the
corresponding MDX query will be generated and submitted to the data warehouse
to retrieve relevant situation information. The retrieved situation information is
presented to the manager in the form of MDX report. Figure 9.12 shows a MDX
report generated by the MDX reporting module according to the analysis
condition defined in Figure 9.11. This MDX report shows the internet sales
amount across the United Kingdom and Germany for different product models in
the year 2002. There are two pages of reports generated for 2002 and 2001
respectively. Managers can click on the Next Report button to see different pages.

9.4 The Cognition-Driven Decision Process Based on FACETS

FACETS has eight subsystems in total. However, in terms of decision support,
only two of them are interfaces for managers to interact with the system for
decision making: Situation Awareness Management and Situation Presentation
(Figure 9.13). Other subsystems are mainly for IT engineers to manage and
configure the system. In real applications, the whole process of SA parsing,
annotating, constructing queries and retrieving situation information can be fully
automatized without managers’ manual intervention.

Note:

i --denotes a piece of information/knowledge

?--denotes a question.

Fig. 9.13 The Cognition-Driven Decision Process Based on FACETS

156 9 A Cognition-Driven Decision Support System: FACETS

Confronted a decision situation, the decision process a manager would go
through is show in Figure 9.13. At the beginning of the decision process, the
manager has little SA about the current decision situation (indicated by four
question marks). Mangers describe the initial SA in natural language and input SA
into FACETS through Situation Awareness Management. FACETS analyzes
managers’ SA and searches for relevant situation information based on the stored
domain knowledge: mental models (management experience) and domain
ontology. Situation information is then output and presented to the manager for
situation assessment. This presentation of situation is also based on managers’
mental models (navigation knowledge). Managers develop new SA based on the
perceived and understood situation information (indicated by reduced number of
question marks and increased number of information marks). The improved SA
creates more opportunities for managers to make the right decisions or seek more
relevant information. At this point, a decision cycle has been completed according
to the CDDP model. This decision cycle can be iterated by the manager until
he/she feels confident enough to make reasonable decisions, or he/she is forced to
make the final decisions due to limited resources, such as time, money and
cognitive load.

9.5 Summary

The prototype system FACETS is reported in this chapter, including its
development environment, architecture and functions of subsystems. FACETS is
the implementation of the CDDP model. Thus, the major intention of FACETS is
to support the cognition-driven decision processes using IS techniques.

FACETS will be used as the test bed to evaluate the IS techniques proposed
according the CDDP model. We will present the experiment details for this
evaluation in Chapter 10. Three application cases will be presented in Chapter 11.

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 157–177.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 10
Evaluation of Algorithms and FACETS

This chapter reports on the experiments conducted to evaluate the techniques
(algorithms) and system (FACETS) developed in this research. Based on a
fictitious manufacture company, a data warehouse, an ontology and an experience
base were developed and linked with FACETS. Students and professors were
invited to the experiments. The FACETS and the major algorithms for SA parsing
and query construction were evaluated based on the interaction between subjects
and FACETS.

10.1 Experiment Preparation

10.1.1 Data Warehouse

In order to practically evaluate the algorithms, we applied FACETS in an
illustrative company, called Adventure Works Cycles Ltd, which is a fictitious
organization described in the manual of SQL Server 2005 (Microsoft 2007a).
Adventure Works (AW) is a large, multinational manufacturing company. The
company manufactures and sells bicycles and relevant accessories to commercial
markets in North America, Europe and Asia. Adventure Works is headquartered in
Bothell, Washington with 290 employees and several regional sales teams located
throughout their market base.

We developed a data warehouse called Adventure Works Data Warehouse
(AWDW) for this company based on a sample database in SQL Server 2005. In the
sample database, there are twenty-nine tables including seven fact tables and
twenty-two dimension tables. The data stored in the sample database covers a
wide variety of business sectors such as product, account, customer, geography,

158 10 Evaluation of Algorithms and FACETS

reseller and sales. In order to make the sample database suitable for this
experiment, e.g., creating appropriate business scenarios (decision situations), we
extended the sample database in two ways. First, some table definitions were
modified. Second, new tables were defined and populated with relevant data.
Based on the extended sample database, we developed AWDW which represents
75 tables in total with more business sectors covered, such as advertisement,
research, government policy, competitors and product delivery. Based on the
amended tables, we created six cubes: internet sales, reseller sales, sales orders,
finance, exchange rates and delivery.

10.1.2 Ontology

The data warehouse AWDW presents a business application domain. Accordingly,
we developed an ontology called Adventure Works Ontology (AWO) for this
application domain using the Ontology Management subsystem of FACETS. In
AWO, 111 classes are defined which correspond to 111 subsumption relationships
in the class tree. Among these classes, 80 classes are correlated to tables or cubes
in AWDW. We also defined over 1000 property-share relationships across these
classes. The excerpt of the class tree and the class graph is shown in Figure 6.1
and Figure 6.2 respectively.

10.1.3 Experience Base

We used the method of experience elicitation discussed in Section 6.2.2 to produce
a set of experiences and stored them in the experience base. This experience base is
used for all subjects. Experience per se is individual-specific, that is, experience is
different from person to person even within the same domain. However, it is also
common that people might share the same opinions in some situations, or are able
to eventually come up with a consensus after communication. In this sense, it was
appropriate to create common experiences for all subjects in this experiment. The
advantages of using the same experience base for all subjects are twofold. Firstly,
much engineering time in eliciting the experience of every subject was saved.
Secondly, the experience base provided a common basis for every subject in the
experiments to formulate his/her subjective rating, which might be able to reduce
the negative effect of subjective data.

We conducted two experiments to respectively evaluate the related algorithms
and the prototype system FACETS. In Experiment one, the following algorithms
were evaluated: NumericPlainParser, LiteralPlainParser, SemanticParser,
LocalContextDetermination, SqlBuilder and MdxBuilder (Chapter 7). These
algorithms represent the major points of the technical part of this research. In
Experiment two FACETS, which represents the combination of all related
algorithms, was evaluated based on a decision scenario.

10.2 Experiment One: Algorithm Evaluation 159

10.1.4 Subjects

We invited 22 subjects who have three to five years of working experience in
different organizations to conduct the evaluation experiments. Before the
experiment, we gave a tutorial to all subjects on the functions and operation of
FACETS.

In the experiments, we mainly focused upon the evaluation of relevant IS
techniques developed for the situation assessment. The key factors for situation
assessment include the usefulness and usability of information presented to the
decision maker, such as the quality and quantity of situation information and the
method of information presentation.

10.2 Experiment One: Algorithm Evaluation

10.2.1 Experiment Design

We used two basic metrics to measure the performance of algorithms to be
evaluated: precision and recall. Precision and recall are proposed for evaluating
the quality of search results returned by information retrieval systems in terms of
information relevance . Precision is defined as the fraction of the relevant
documents within the collection of all retrieved documents. Recall is the fraction
of the documents within the collection of all relevant documents in the data
source.

Let r be the number of relevant documents returned by the system, i be the
number of irrelevant documents returned by the system, and m be the number of
relevant documents in the data source that are not found by the system. The
formulas for computing precision and recall are as follows .

Precision =
ir

r

+
,

Recall =
mr

r

+
.

In this research, the algorithms to be evaluated are the fundamental techniques
of situation retrieval. As discussed in Section 5.2, situation retrieval has close
relationships with information retrieval. During situation retrieval, different
information objects including meta instances (both numeric and literal), classes,
native contexts and local contexts are extracted from SA sentences. These
information objects can also be judged either relevant or irrelevant to the
manager’s knowledge need. Therefore, it is reasonable to employ the metrics
precision and recall to measure the performance of related algorithms in this
research.

In evaluating information retrieval based on precision and recall, a collection of
documents needs to be created, and each document needs to be labeled as either

160 10 Evaluation of Algorithms and FACETS

relevant or irrelevant. In this experiment, each subject was asked to input 15~20
sentences in English into FACETS. The sentences could be about any topic of the
subject’s interest within the scope of the AWO. For example, subjects could
describe products, sales, customer services and government policies, which were
defined in the ontology and in the data warehouse. Meanwhile, each subject was
asked to specify all the numeric and literal meta instances implied in their SA
sentences. By this means, a collection of labeled SA sentences for experiments
was created, which was used to evaluate the algorithms NumericPlainParser and
LiteralPlainParser.

Relatively speaking, meta instances are easier to specify due to their simplicity
and obviousness. However, SA triples, local contexts and classes, particularly
abstract classes, which can be inferred based on meta instances, might be too
subtle to be specified by subjects. Thus, in this experiment, subjects were not
asked to label these sorts of information, but to judge the outputs of the algorithms
by giving 1 (accept) or 0 (reject). Based on the judgments of subjects, precisions
of algorithms were calculated. This method was used to evaluate the algorithms
SemanticParser and LocalContextDetermination.

The evaluation of SA triple generation and DW query construction was more
complex than the other algorithms, because SA triples and DW queries are very
difficult to be explained to subjects, as the end users of the system. However, SA
triples, particularly the wording parts, are directly used to construct DW queries
which are used to retrieve information from the DW. Thus, analyzing the retrieved
information would help us to gain insight into the quality of the underlying DW
queries and SA triples. Information evaluation was conducted in Experiment two.
In Experiment one, we assessed how parsing length and parsing level affected the
average number of SA triples generated. Part of Experiment two can be
considered as indirect evaluation of DW query construction and other aspects of
SA triple generation, such as information usefulness and information usability.

In Experiment one, we evaluated algorithms LiteralPlainParser,
NumericPlainParser, SemanticParser and LocalContextDetermination. As these
algorithms have already been implemented in FACETS, we set up twenty-two
computers with FACETS and relevant databases for the twenty-two subjects. Each
subject was able to interact with a FACETS system independently on a computer.
The initial data we collected during Experiment one is shown in Table 10.1.

There are 10 columns in Table 10.1. Column semantic parsing level is the
maximum level at which classes are able to be inferred. parsing length is the
maximum length of meta instances which can be recognized during plain parsing.
The length of a term is the number of words it contains. Experiment one was
conducted at four parsing levels (1, 2, 3 and 4) and with different parsing length (1
to 10). For numeric and literal meta instances, metrics precision and recall are
used. For classes and local contexts, precision is used. The metric average number
is also used for classes and SA triples. All other graphs in this section are
generated based on Table 10.1.

10.2 Experiment One: Algorithm Evaluation 161

Table 10.1 Initial Experiment Data of Experiment One

Numeric Meta

Instance

Literal Meta

Instance Class

Local

Context SA Triple

Parsing

Level

Parsing

Length p r p r

Average

Number p p

Average

Number

1 0.929 0.813 0.731 0.704 2.320 0.753 0.440 1.520

2 0.929 0.813 0.867 0.963 2.320 0.734 0.640 1.720

3 0.929 0.813 0.844 1.000 2.360 0.738 0.680 1.760

4 0.929 0.813 0.871 1.000 2.400 0.741 0.640 1.760

5 0.929 0.813 0.871 1.000 2.400 0.741 0.640 1.760

6 0.929 0.813 0.871 1.000 2.400 0.741 0.680 1.760

7 0.929 0.813 0.844 1.000 2.400 0.750 0.680 1.760

8 0.929 0.813 0.871 1.000 2.400 0.741 0.640 1.760

9 0.929 0.813 0.871 1.000 2.400 0.741 0.680 1.760

1

10 0.929 0.813 0.871 1.000 2.400 0.741 0.640 1.760

1 0.929 0.813 0.731 0.704 3.000 0.789 0.480 2.080

2 0.929 0.813 0.839 0.963 2.960 0.771 0.680 2.240

3 0.929 0.813 0.844 1.000 3.040 0.776 0.720 2.280

4 0.929 0.813 0.844 1.000 3.040 0.776 0.680 2.280

5 0.929 0.813 0.871 1.000 3.080 0.778 0.720 2.280

6 0.929 0.813 0.871 1.000 3.080 0.778 0.680 2.280

7 0.929 0.813 0.871 1.000 3.080 0.778 0.640 2.280

8 0.929 0.813 0.871 1.000 3.080 0.778 0.680 2.280

9 0.929 0.813 0.844 1.000 3.040 0.776 0.720 2.280

2

10 0.929 0.813 0.844 1.000 3.040 0.776 0.720 2.280

1 0.929 0.813 0.704 0.704 3.200 0.792 0.560 2.080

2 0.929 0.813 0.867 0.963 3.240 0.779 0.720 2.240

3 0.929 0.813 0.871 1.000 3.280 0.774 0.760 2.280

4 0.929 0.813 0.844 1.000 3.240 0.771 0.760 2.280

5 0.929 0.813 0.871 1.000 3.280 0.774 0.760 2.280

6 0.929 0.813 0.871 1.000 3.280 0.774 0.720 2.280

7 0.929 0.813 0.844 1.000 3.240 0.771 0.720 2.280

8 0.929 0.813 0.871 1.000 3.280 0.774 0.760 2.280

9 0.929 0.813 0.844 1.000 3.240 0.771 0.720 2.280

3

10 0.929 0.813 0.844 1.000 3.240 0.771 0.760 2.280

162 10 Evaluation of Algorithms and FACETS

Table 10.1 (continued)

1 0.929 0.813 0.731 0.704 3.360 0.778 0.560 2.080

2 0.929 0.813 0.839 0.963 3.320 0.761 0.640 2.240

3 0.929 0.813 0.871 1.000 3.400 0.766 0.720 2.280

4 0.929 0.813 0.871 1.000 3.400 0.766 0.680 2.280

5 0.929 0.813 0.844 1.000 3.360 0.764 0.720 2.280

6 0.929 0.813 0.871 1.000 3.400 0.766 0.720 2.280

7 0.929 0.813 0.871 1.000 3.400 0.766 0.680 2.280

8 0.929 0.813 0.844 1.000 3.360 0.764 0.720 2.280

9 0.929 0.813 0.844 1.000 3.360 0.764 0.720 2.280

4

10 0.929 0.813 0.871 1.000 3.400 0.766 0.680 2.280

Note: p denotes precision; r denotes recall.

10.2.2 Meta Instance Recognition

Meta instances are recognized during plain parsing. We use two metrics to
evaluate the process of meta instance recognition: precision and recall.

• Numeric Meta Instance Recognition

Numeric meta instances are recognized by algorithm NumericPlainParser. As
can be seen from Table 10.1, the precision and recall of numeric meta instance
recognition remain unchanged across all parsing lengths and parsing levels.
Numeric meta instances are mainly fixed-length (one) terms in SA sentences.
Thus, the recognition of numeric meta instances is not sensitive to parsing lengths.
In the class tree, parsing levels is related to the maximum length of path along
which classes are searched, starting from meta instances of taxonomy properties
up to higher level abstract classes. Parsing levels do not affect the process of
recognizing numeric meta instances.

According to Table 10.1, NumericPlainParser is able to recognize numeric
meta instances at a precision of 92.9% and a recall of 81.3%.

• Literal Meta Instance Recognition

Literal meta instances are recognized by algorithm LiteralPlainParser. The effect
of parsing lengths on literal meta instance recognition is shown in Figure 10.1. As
each of these four graphs (corresponding to four parsing levels) shows, both
precision and recall are affected by parsing length. For example, in Figure 10.1 (a),
when parsing length = 1, LiteralPlainParser has the lowest precision and recall.
With the increase of parsing length from 1 to 2, precision and recall rise quickly
from 0.731 to 0.867 and from 0.704 to 0.963 respectively. However, the tendency of

10.2 Experiment One: Algorithm Evaluation 163

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

M
ea

su
re

Precision

Recall(a) Parsing Level: 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

M
ea

su
re

Precision

Recall(b) Parsing Level: 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

M
ea

su
re

Precision

Recall(c) Parsing Level: 3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

M
ea

su
re

Precision

Recall(d) Parsing Level: 4

Fig. 10.1 Impact of Parsing Length on Precision and Recall of Literal Meta Instance
Recognition

precision and recall to rise quickly does not persist. When parsing length is
increased to 3 or greater, recall stays firmly at 100% across the four parsing levels.
The turning points of precision are slightly different at different parsing levels. In
Figure (a) (parsing level = 1), precision reaches the maximum at parsing length = 4
and then fluctuates slightly around 0.87. For parsing levels 2, 3 and 4, the turning
point is respectively at parsing length = 5, 3, and 3.

In SA sentences, different literal instances might have different length. The
greater the parsing length, the longer literal instances LiteralPlainParser can
recognize. For a given parsing length, say n, those literal instances whose length is
greater than n cannot be recognized. This is why precision and recall go up when
parsing length increases from 1 to 3. Technically, if parsing length is equal to or
greater than the length of the longest literal meta instance in a SA sentence, all
literal meta instances can be recognized by LiteralPlainParser, which leads to a
recall of 100%. Continuous increases of parsing length over the longest literal
meta instance, will no longer be able to improve the recall and precision.
According to Figure 10.1, it can be inferred that the length of the longest literal
meta instance in this experiment is 3, because the recall reaches 100% at a parsing
length of 3 or over in four graphs.

Similar to numeric meta instance recognition, Figure 10.2 reflects that parsing
level does not significant affect the precision and recall of literal meta instance
recognition.

164 10 Evaluation of Algorithms and FACETS

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4
Parsing Level

P
re

ci
si

on

Average Precision
Maximum Precision

(a) Precision

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4
Parsing Level

R
ec

al
l

Average Recall
Maximum Recall

(b) Recall

Fig. 10.2 Impact of Parsing Level on Precision and Recall of Literal Meta Instance
Recognition

10.2.3 Class Inferring

Classes are inferred by algorithm SemanticParser. We used two metrics to
evaluate the process of class inferring: average number of classes inferred and
precision.

(1) Average Number of Classes Inferred

Figure 10.3 shows there is a clear positive relationship between the parsing
level and the average of average number of classes inferred: the higher the parsing
level, the more classes inferred. The parsing level limits the maximum path length

10.2 Experiment One: Algorithm Evaluation 165

2.380

3.044

3.252
3.376

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

1 2 3 4

Parsing Level

A
ve

ra
ge

 o
f a

ve
ra

ge
 n

um
be

r o
f

cl
as

se
s

in
fe

rr
ed

Fig. 10.3 Impact of Parsing Level on Average Number of Classes Inferred

along which algorithm SemanticParser searches the class tree. A higher parsing
level allows more classes to be searched, which therefore increases the possibility
of triggered more appropriate classes.

The impact of parsing length on the average number of classes inferred has
different magnitude at different parsing levels (Figure 10.4). The overall pattern
demonstrated by the four graphs in Figure 10.4 is that the initial increase of
parsing length generally causes a slight increase in the average number of classes
inferred. For example, in Figure 10.4 (a), the average number of classes rises from
2.32 to 2.40 when parsing length is increased from 1 to 4. After the initial increase
in the average number of classes, no more classes can be inferred with the
continuous increase of parsing length. For example, the average number of classes
remains 2.400 when parsing length ≥ 4 in Figure 10.4 (a). This pattern becomes
unapparent in Figure 10.4 (b), (c) and (d), which correspond to higher parsing
levels.

The pattern shown in Figure 10.4 is understandable if we link it to Figure 10.1.
According to the algorithm SemanticParser, general classes are inferred based on
meta instances of their taxonomy properties, which are mainly literal meta
instances. The initial increase of parsing length leads to the increase of precision
and recall of literal meta instances. In other words, more ‘right’ literal meta
instances are recognized. Consequently, more general classes are triggered by the
meta instances. When parsing length rises to 3 or over, the precision and recall of
literal meta instance recognition reach the maximum, which also leads to the
maximum of the average number of classes.

Exceptional changes are also found in Figure 10.4 (b) and (d). Both graphs
show a slight decrease in the average number of classes when parsing length

166 10 Evaluation of Algorithms and FACETS

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

1 2 3 4 5 6 7 8 9 10
Parsing Length

A
ve

ra
ge

 N
um

be
r

of
 C

la
ss

es

(a) Parsing Level: 1

2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

1 2 3 4 5 6 7 8 9 10
Parsing Length

A
ve

ra
ge

 N
um

be
r

of
 C

la
ss

es

(b) Parsing Level: 2

2.0
2.2

2.4
2.6
2.8

3.0
3.2
3.4

1 2 3 4 5 6 7 8 9 10
Parsing Length

A
ve

ra
ge

 N
um

be
r

of
 C

la
ss

es

(c) Parsing Level: 3

2.0
2.2
2.4

2.6
2.8
3.0
3.2
3.4

1 2 3 4 5 6 7 8 9 10
Parsing Length

A
ve

ra
ge

 N
um

be
r

of
 C

la
ss

es

(d) Parsing Level: 4

Fig. 10.4 Impact of Parsing Length on Average Number of Classes Inferred

increases from 1 to 2. This might be the impact of other uncontrolled parameters,
for example, the subjectivity of experiment data.

(2) Precision of Class Inferring

The precision of class inferring is computed based on subjects’ judgments on
the output of FACETS. According to Table 10.1, precision of class inferring does
not change significantly with the increase of parsing length within each parsing
level. The impact of parsing level on precision of class inferring is shown in
Figure 10.5. The increase of parsing level from 1 to 2 results in an increase of
0.035 on the precision. However, the precision falls marginally with the
continuous increase of the parsing level after 2. The precision change over parsing
level is related to the impact of the parsing level on the average number of classes
inferred. According to Figure 10.3, the initial increase of parsing level from 1 to 2
results in more classes inferred. The newly inferred ‘right’ classes out of the all
inferred classes make a positive contribution to the improvement of precision.
This leads to the initial increase of precision in Figure 10.5. However, the average
number of classes inferred keeps going up when the parsing level rises over 2. The
higher the parsing level, the more high level classes in the class tree are inferred.
Compared to general classes, it is more difficult for subjects to judge if abstract
classes, particularly high level abstract classes, produced by the system are right or
wrong. This might be the reason why the precision of class inferring changes only
slightly over higher parsing levels.

10.2 Experiment One: Algorithm Evaluation 167

0.742
0.777 0.775 0.766

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4

Parsing Level

P
re

ci
si

on

Fig. 10.5 Impact of Parsing Level on Precision of Class Inferring

10.2.4 Local Context Determination

The impact of parsing length on the precision of local context determination is
shown in Figure 10.6. With the initial increase of the parsing length from 1 to 3, a
rapid increase of precision of local context determination can be seen, followed by
fluctuations of precision when parsing length is greater than 3.

Algorithm LocalContextDetermination determines the local context for a SA
sentence by comparing the context points of alternative classes inferred by
algorithm SemanticParser. The class with the highest context points will be
selected as the local context. Note that there is only one local context for a SA
sentence. Thus, as long as the class representing the true local context is inferred,
algorithm LocalContextDetermination will be likely to find it. According to
Figure 10.4, the initial increase of parsing length results in more classes inferred.
The increased population of classes will improve the possibility for algorithm
LocalContextDetermination to find the true local context (in terms of user) out of
all inferred classes. As a result, the precision of local context determination goes
up with the initial increase of parsing length, and fluctuates with the over increase
of parsing length.

Parsing level also has an impact on the precision of local context determination.
In Figure 10.7, each average precision is computed at a parsing level across
different parsing lengths (from 1 to 10). The corresponding maximum precision is
determined by comparing the 10 values of precision. As shown Figure 10.7, both
average precision and maximum precision peak at parsing level of 3. This pattern
conforms to the impact of parsing level on the precision of classes inferring which
is shown in Figure 10.5.

168 10 Evaluation of Algorithms and FACETS

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

P
re

ci
si

on

(a) Parsing Level: 1

0.3

0.4

0.5

0.6
0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

P
re

ci
si

on

(b) Parsing Level: 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

P
re

ci
si

on

(c) Parsing Level: 3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10
Parsing Length

P
re

ci
si

on

(d) Parsing Level: 4

Fig. 10.6 Impact of Parsing Length on Precision of Local Context Determination

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4
Parsing Level

P
re

ci
si

on

Average Precision
Maximun Precision

Fig. 10.7 Impact of Parsing Level on Precision of Local Context Determination

The increase of parsing level from 1 to 3 results in more classes inferred which
consequently improves the precision of local context determination. However, the over
increased number of classes might ‘puzzle’ the algorithm LocalContextDetermination,

10.2 Experiment One: Algorithm Evaluation 169

once the class representing the true local context has been inferred. As a result, the
precision of local context determination falls.

10.2.5 SA Triple Generation

The provisional SA triples are generated with uncertainties by algorithms
LiteralPlainParser and NumericPlainParser. The uncertainties are reduced or
removed by algorithm SemanticParser. Thus, the experiment on SA triple
generation reflects the overall performance of these three algorithms. We use
metric average number of SA triples to evaluate the process of SA triple
generation.

Both parsing length and parsing level have a positive impact on the average
number of SA triples generated (Figure 10.8). Again, the positive relationship
between parsing length and the average number of SA triples lasts only for the
initial stage: parsing length rising from 1 to 3. Once parsing length is over 3, no
further increase of the average number of SA triples can be seen.

Another noticeable pattern is that, for parsing levels 2, 3, and 4, the average
number of SA triples changes in exactly the same way with the increase of parsing
length. Comparing the average number of SA triples at each parsing length, a
substantial difference exists between parsing level 1 and other three levels.

SA triples generating is based on three algorithms LiteralPlainParser,
NumericPlainParser, and SemanticParser. The pattern of SA Triple generation is
attributed to the impact combination of parsing length and parsing level on the
three algorithms.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 1

Parsing Length

A
ve

ra
ge

 N
um

be
r

of
 S

A
 T

rip
le

s

Parsing Level = 1

Parsing Level =2, 3, 4

Fig. 10.8 Impact of Parsing Level and Parsing Length on Average Number of SA Triples

170 10 Evaluation of Algorithms and FACETS

10.2.6 Optimization Analysis

Based on the evaluation of algorithms, the optimization values of parsing length
and parsing level for SA parsing can be determined (Table 10.2).

Table 10.2 Optimization Parsing Length and Parsing Level

Major Tasks in
SA Parsing

Metrics Optimization
Parsing Length

Optimization
Parsing Level

Precision any any Numeric Meta

Instance

Recognition
Recall any any

Precision

≥4 , ≥5, ≥3, ≥3

(respectively for

parsing level 1,

2, 3 and 4)

any
Literal Meta

Instance

Recognition

Recall >=3 any

Average

Number

≥4, ≥5, ≥3, ≥3

(respectively for

parsing level 1,

2, 3 and 4)

4
Class Inferring

Precision any 2 or 3

Local Context

Determination
Precision 3 3

SA Triple

generation

Average

Number
≥3 ≥2

Note: any refers to any valid values within 1~4 for parsing level, and 1~10 for

parsing length.

In Table 10.2, the optimization parsing lengths and optimization parsing levels

refer to the values at which corresponding metrics reach maximum values. The
ultimate goal for algorithms NumericPlainParser, LiteralPlainParser,
SemanticParser, LocalContextDetermination is generating appropriate SA triples
and local contexts for query construction. Thus, priority should be given to local
context determination and SA triple generation, in determining the optimization
values. According to Table 10.2, the optimization parsing level for SA parsing can
be roughly determined as 3.

With the determined optimization parsing level, the optimization parsing length
for SA parsing can also be identified. Let parsing level = 3, the optimization
parsing length for precision of literal meta instance recognition and average
number of class inferring is 3. This parsing length (3) agrees to the optimization

10.3 Experiment Two: System Evaluation 171

parsing length for local context determination and SA triple generation (also 3).
Thus, the overall optimization parsing length for SA parsing can be roughly
determined as 3.

According to Experiment one, for all algorithms, the optimization parsing
length = 3 and the optimization parsing level = 3. These optimization values will
be used in Experiment two.

10.3 Experiment Two: System Evaluation

10.3.1 Experiment Design

We evaluated FACETS in terms of its usefulness and usability. Usefulness and
usability are two dimensions of information value defined by Rouse. The
usefulness of a decision support system refers to the extent to which information
produced by the system can help users make decisions. The usability is the extent
to which information can be easily accessed, understood and applied for decision
making. We used a scenario-based experiment to evaluate the usefulness and
usability of FACETS.

A decision scenario was created for this experiment based on the ontology,
experience base and data warehouse discussed in Section 11.1. The decision
scenario set up a decision situation where each subject in the experiment
participated in a decision-making process based on FACETS. Subjects described
their SA using English and input into FACETS. FACETS called corresponding
algorithms to analyze SA, generate DW queries, retrieve relevant situation
information and present situation information to the subjects. Perceiving situation
information, the subjects updated their SA and re-input into FACETS. In this way,
each subject went through up to five decision cycles with the purpose of working
out an appropriate decision for the business problem presented in the decision
scenario. However, the goal of Experiment two was not to evaluate the outcome of
decision generation during a cognition-driven decision process, but to collect
subjective data about their decision-making processes. The subjective data was
used to evaluate the usefulness and usability of FACETS. During decision cycles,
subjects were requested to fill out an evaluation form about the quality of the
constructed queries.

During the experiment, each subject ran through up to five decision cycles one
by one. During each decision cycle, FACETS generated SQL/MDX reports to
present situation information. A SQL report contained data retrieved from a
relational table. Subjects browsed the report and judged its usefulness in terms of
decision making. A MDX report contained data retrieved from a cube which
included a number of dimensions. Subjects also judged the usefulness of
dimensions in term of decision making. At the end of each decision cycle, subjects
were required to answer three questions:

(1) How many relational tables/dimensions did FACETS output which

you think are useful for your decision situation? The answer is the

number of accepted tables/dimensions.

172 10 Evaluation of Algorithms and FACETS

(2) How many relational tables/dimensions did FACETS output which

you think are useless for your decision situation? The answer is the

number of rejected tables/dimensions.

(3) How many relational tables/dimensions did FACETS miss (fail to

find) which you think are useful for your decision situation? The answer

is the number of missed tables/dimensions.

At the end of the decision process, subjects filled out a survey form to give an

overall rating on FACETS. The survey form included twenty-four questions
which were designed to elicit subjects’ opinions about FACETS as shown in Table
10.4. These questions could be divided into two categories: usefulness evaluation
and usability evaluation. Subjects were asked to give their subjective ratings for
each question on a scale of five values (1: strongly disagree, 2: disagree 3:
neutral, 4: agree, 5: strongly agree).

According to the results of Experiment one, the parsing length was set at 3 and
the parsing level was set at 3 for all related algorithms in Experiment two.

10.3.2 Query Construction Evaluation

Based on the evaluation forms of query construction that subjects filled out during
Experiment two, the performance of query construction was evaluated and is
shown in Table 10.3. The precision and recall for each decision cycle were
calculated based on the same methods as those in Experiment one.

Table 10.3 Query Construction Performance

Decision Cycles 1 2 3 4 5

Average # of Accepted

Tables/Dimensions

0.9 4.0 8.5 9.2 9.5

Average # of Rejected

Tables/Dimensions

1.7 3.1 3.4 3.3 3.6

Average # of Missed

Tables/Dimensions

6.7 5.9 4.4 2.1 1.1

Precision 0.35 0.56 0.71 0.74 0.73

Recall 0.12 0.40 0.66 0.81 0.90

Table 10.3 shows that the average number of tables/dimensions accepted by
subjects jumps up rapidly from 0.9 to 8.5 over the first three decision cycles. SA is
accumulated over decision cycles. The more iterations of decision cycle, the more
SA that subjects input into FACETS and consequently FACETS found more
relevant situation information. In this sense, the iteration of decision cycles is
valuable for decision making. However, the speed of increase in the average

10.3 Experiment Two: System Evaluation 173

number of accepted tables/dimensions slows after a number of decision cycles. For
example, there is only marginal increase of the average number of accepted
tables/dimensions during decision cycles 4 and 5. Note that SA was accumulated in
FACETS over decision cycles. The information retrieved by FACETS based on SA
in a decision cycle might be repeatedly retrieved and presented in a later decision
cycle as long as the subject did not change or delete the corresponding SA.

Accompanying the increase of accepted tables/dimensions over decision cycles,
the average number of rejected tables/dimensions also goes up, although a slight
fall can be seen in decision cycle 4. This means that noise information always
comes with valuable situation information in FACETS. In decision cycle 1, there
are more tables/dimensions rejected than accepted. After that, accepted
tables/dimensions always outnumber the rejected ones. The gap in the quantity of
the two sorts of data widens over the decision cycles. This shows that FACETS is
able to quickly locate much relevant information and filter noise data for decision
making, which can also be seen from the trend of precision change. Precision goes
up over the decision cycles. From decision cycle 1 to decision cycle 5, the
precision is increased by 0.38.

Over the decision cycles, there are also noticeable changes in the average
number of missed tables/dimensions. Less tables/dimensions relevant to decision
making were missed by FACETS when it took more SA input. This pattern is also
reflected by recall which rises continuously from 0.12 in decision cycle 1 to 0.9 in
decision cycle 5.

Based on the above analysis, both the quantity (accepted tables/dimensions)
and quality (precision and recall) of information output by FACETS increase
significantly over decision cycles. Different stages (decision cycles) of the
decision process have various growing speeds: higher in the initial stage, e.g., the
first three decision cycles in this experiment, and lower in the latter stage. Possible
reasons for the quantity and quality of situation information to stop rising over the
decision cycles are (1) newly input SA does not make a significant difference to
existing SA; (2) the limitation of knowledge base or the DW is reached. In the
case of the reason (1), the decision maker needs to revise the SA description to
stimulate FACETS to search for new information. For reason (2), either the
knowledge base or the DW needs to be extended by feeding fresh data. The
growing speed of information quantity and quality can also act as a type of
resource limit discussed in Section 5.2.6, which triggers a final decision to be
made. That is to say, if no more new situation information can be found, then
probably it is the time to make the final decision.

10.3.3 FACETS Evaluation

Based on the survey forms that subjects filled out during the decision process, the
performance of FACETS as a whole was evaluated (Table 10.4). In Table 10.4, the
mean rating and standard deviation (SD) for each question (statement) in the survey
form were calculated. Questions were grouped into four categories: situation
awareness, navigation knowledge map, situation information presentation and

174 10 Evaluation of Algorithms and FACETS

Table 10.4 FACETS Performance

STATEMENTS
Evaluation

Category 9

Mean

Rating

Standard

Deviation

SITUATION AWARENESS

1. Given a decision situation, I can

precisely describe my SA on it

using natural language.

2 4.10 0.67

2. I can easily input my SA into the

system.

2 4.92 0.32

NAVIGATION KNOWLEDGE MAPS

3. Navigation knowledge maps reflect

my past thinking (reasoning)

processes in decision processes.

1 4.41 0.53

4. Concepts in the navigation

knowledge maps are related to my

current SA.

1 3.87 0.82

5. Navigation knowledge maps help

me to understand the current

decision situation.

1 3.35 0.65

6. Navigation knowledge maps have

implications for seeking relevant

situation information.

1 4.56 0.54

7. Navigation knowledge maps have

implications for making decisions

in the current decision situation.

1 4.01 0.63

8. I can intuitively make sense of the

presentation of a navigation

knowledge map (understand its

concepts and relationships).

2 4.79 0.51

SITUATION INFORMATION PRESENTATION

9. The generated reports help me to

understand the basic characteristics

of the current decision situation.

1 4.68 0.34

10. The generated reports help me to

gain in-depth insights into the

current decision situation.

1 4.69 0.79

9 Usefulness:1; Usability: 2.

10.3 Experiment Two: System Evaluation 175

Table 10.4 (continued)

11. The generated reports help me to

develop richer SA.

1 3.77 0.81

12. The generated reports help me to

seek further situation knowledge.

1 3.01 0.45

13. The generated reports help me to

seek further situation information.

1 4.75 0.66

14. The generated report helps me to

make final decisions.

1 2.01 0.80

15. The navigation from the

presentation of navigation

knowledge maps to corresponding

reports can be easily followed.

2 4.72 0.30

16. The reports can be easily

understood.

2 4.89 0.33

OVERALL

17. The user interface of FACETS is

user friendly.

2 5.00 0.29

18. FACETS helps me to reduce

mental workload during the

decision process.

1 4.61 1.46

19. FACETS helps me to reuse my

past management experience.

1 4.50 0.54

20. FACETS helps me to digest

information more easily.

1 3.97 0.42

21. FACETS helps me to obtain

valuable information more

efficiently.

1 4.03 1.03

22. FACETS helps me to obtain

valuable information more

effectively.

1 4.67 0.87

23. FACETS helps me to make

decisions more rapidly.

1 2.56 0.80

24. FACETS helps me to make

decisions more confidently.

1 3.00 0.64

176 10 Evaluation of Algorithms and FACETS

overall. Each question evaluates FACETS from either an information usefulness
perspective or from an information usability perspective.

In questions (Q) 1 and 2 of Table 10.4, subjects agreed, using natural language,
that they could easily describe their SA and input into FACETS. The natural
language interface is important for cognitive decision support. Instead of asking
for specific key words in traditional information retrieval systems, FACETS
allows managers to describe their SA using natural language. The natural language
description of SA can be abstract or very specific. Using natural language,
managers can very freely describe and input whatever they think is of significance
to their decision making. This might encourage elicitation of valuable information
from managers’ cognitive processes, which is important to facilitate cognitive
decision support.

The overall rating of FACETS in navigation knowledge map evaluation is 4.17.
This reflects that the navigation knowledge map is an effective way to present
experience for knowledge reuse in decision making. In particularly, navigation
knowledge could reflect subjects’ past thinking processes (Q3 with average rating
of 4.41), and the presentation of navigation knowledge maps is easily to be
followed (Q8 with average rating of 4.79). FACETS presents situation information
with the guidance of navigation knowledge. Complex decision situations often
involve a large quantity of relevant information. Faced with large amount of
information, managers are vulnerable to missing their clues without navigation. In
FACETS, concepts of interest to decision situations are connected with situation
information in navigation knowledge maps. Managers can always re-orientate
themselves in the light of the navigation knowledge.

FACETS received an overall rating of 4.07 in situation information
presentation evaluation. Subjects agreed that the situation information retrieved by
FACETS was of high usefulness in other aspects (Q9 – Q13) and of high usability
in Q15 and Q16. However, Subjects in the experiment did not think that the
situation information retrieved by FACETS could really help them work out a
final decision, for example, Q14 was only scored an average of 2.01, which is the
lowest rating in this survey. The possible explanation is that the decision scenario
was created based entirely on fictitious business data which lack the sufficient
ability to imply real business patterns. Some data might be conflict with the
subjects’ commonsense and existing knowledge about business.

In the overall evaluation of FACETS, Q17 received the highest rating (5.0): all
subjects were fond of the interface of FACETS. Subjects thought their mental
workload in decision making were reduced by using FACETS (Q18/4.61). FACETS
helped subjects to reuse historical experience in the current decision situation
(Q19/4.5). FACETS also improved the efficiency and effectiveness of obtaining
valuable situation information (Q21/4.03 and Q22/4.67). Again, FACETS was rated
lowly in questions related to actual decision results (Q23 and Q24).

In terms of usefulness, the overall rating of FACETS is 3.91. Thus, the
information presented by FACETS is helpful for decision makers to develop
relevant SA for decision making. In terms of usability, the overall rating of
FACETS is 4.74, which reflects the information generated by FACETS is easy to
use for decision making.

10.4 Summary 177

FACETS is an implementation of the CDDP model. The performance of
FACETS, to some extent, supports our initial expectation on the CDDP model:
cognitive decision support. In FACETS, the decision maker’s cognitive constructs
(mental models and situation awareness) are computerized and represented as
information objects, and used to support the process of seeking relevant
knowledge and information (situation retrieval) (Q1 and 2). The presentation of
the acquired information is also guided by the decision maker’s mental models. In
this sense, the computerized information processing process is driven by the
decision maker’s cognition. The ultimate goal of the cognition-driven information
processing process is to support the decision maker’s cognitive processes for
decision making, such as recalling and examining past experience (Q3),
perceiving and understanding situation information (Q4, Q5 and Q6), developing
situation awareness (Q9, Q10 and Q11), and formulating solutions (Q7) for the
current decision situation. In this sense, the argument of cognitive decision
support in FACETS is made.

10.4 Summary

This chapter reports the experiments on the major algorithms and the prototype
system developed in this research. The key results of the experiments are as
follows.

(1) As the support techniques for the CDDP model, the algorithms developed in
this research are significantly affected by two factors: parsing length and parsing
level. Taking all factors into account, the best parsing length and parsing level are
both 3, at which the process of SA parsing reaches the optimization performance.

(2) As the implementation of the CDDP model, the information generated by
FACETS has high usefulness and usability. The usefulness evaluation reflects the
information generated by FACETS can act as an important utility for decision
making. The usability evaluation reflects the information generated by FACETS
can be easily accessed, understood and applied for decision making. The
evaluation results reflect FACETS is able to support decision making from
cognitive aspects.

L. Niu, J. Lu, and G. Zhang: Cognition-Driven Dec. Supp. for Business Intel., SCI 238, pp. 179–214.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Chapter 11
Application Cases of FACETS

FACETS was designed and developed using a generic architecture, allowing it to
be used for decision support in different domains. We created two fictitious
organizations in business (Section 11.1) and public health (Section 11.2)
respectively, for illustration of applying FACETS to support decision making. For
each specific application of FACETS, three components need to be instantiated: a
data warehouse, an ontology, and an experience base.

11.1 Application CaseⅠ: Business

11.1.1 Organization Background

Adventure Works (AW) is an international company specialized in manufacturing
and selling bikes, bike accessories and related clothing. AW has subsidiaries in
Australia, Canada, France, Germany, United Kingdom, and United States. AW
markets their products via traditional resellers and internet outlets.

We developed a data warehouse called AWDW for this company, based on a
sample database in SQL Server 2005. In the sample database, there are twenty-
nine tables including seven fact tables and twenty-two dimension tables. The data
stored in the sample database covers a wide variety of business sectors such as
product, account, customer, geography, reseller and sales. In order to make the
sample database suitable for this experiment, e.g., creating appropriate business
scenarios (decision situations), we extended the sample database in two ways.
First, some table definitions were modified. Second, new tables were defined and
populated with relevant data.

AWDW represents 75 tables in total with more business sectors covered, such as
advertisement, research, government policy, competitors and product delivery.
Based on the amended tables, we created six cubes: internet sales, reseller sales,
sales orders, finance, exchange rates and delivery.

180 11 Application Cases of FACETS

F
ig

. 1
1.

1
T

he
 C

la
ss

T
re

e
of

 A
W

O

11.1 Application CaseⅠ: Business 181

F
ig

. 1
1.

1
(c

on
ti

nu
ed

)

182 11 Application Cases of FACETS

11.1.2 The Ontology

According to the technical specification of FACETS, we developed an ontology
called Adventure Works Ontology (AWO) in order to apply FACETS in the
context of this company (AW). In AWO, totally 116 classes are defined,
corresponding to 115 subsumption relationships in the class tree. Among these
classes, 80 classes are correlated to tables or cubes in AWDW. For example, class
PROMOTION has a correlated table t_promotion in the AWDW. Class
INTERNET SALES has a correlated cube InternetSales in the AWDW. The class
tree of AWO is shown in Figure 11.1.

We defined over 1000 property-share relationships across the classes in AWO.
Some examples of property-share relationship are: rs (PRODUCT RELEASE,
SALES), rs (PRODUCT RELEASE, MOUNTAIN BIKE), and rs (SALES,
PROMOTION).

11.1.3 The Experience Base

The experience base was created using the method of experience elicitation discussed
in Section 6.2.2. Part of the experience base is visually shown in Figure 11.2.

Fig. 11.2 An Excerpt of the Experience Base of Application Case I

The experience map shown in Figure 11.2 represents how PRODUCT SALES
are affected by different factors from different business units. This experience map
will help a manager to approach the right business information regarding his/her
current decision situation. For example, PROMOTION is one of the identified

11.1 Application CaseⅠ: Business 183

contributors to INTERNET SALES. During a decision process, FACETS might
retrieve the data related to the promotion campaigns of BIKES in the market
department (stored in the data warehouse), and present the retrieved data to the
manager.

11.1.4 Decision Situation

We use a decision situation to illustrate how FACETS can support decision
making in the context of AW. This decision situation is described as follows.

AW has been dominating the market for over 10 years. However, a big

challenge is coming…

Time: 9:00 AM

Date: 24 December 2003

Mr. Cobarol is the chief executive officer of Adventure Works. Mr.

Cobarol has been sleepless for days, because he got a very bad news

from the marketing department: the sales of their newly released bike

model (BK-M82S-38) have dropped over 40% over the past two weeks.

So, with FACETS, how should Mr. Cobarol response appropriately, and

reverse the tough situation?

11.1.5 Decision Process

A complete decision process consists of a number of decision cycles. In each
decision cycle, the manager inputs into FACETS a description of the current
decision situation in form of natural language. The corresponding output of
FACETS is the situation information retrieved from the data warehouse
according to the situation description. The manager’s SA is developed and/or
enriched through perceiving the situation information. The improved SA helps
the manager to work out a better decision to the current decision situation. There
are four decision cycles in the decision process of the decision situation given in
Section 11.1.4.

FACETS can be started up through double-clicking the FACETS executable
main file under the installation folder. During starting up, FACETS will check all
system configuration parameters. If no error is found, the main interface will
present to the manager, shown in Figure 11.3.

11.1.5.1 Decision Cycle Ⅰ

(1) The Initial Situation Awareness

A new decision process begins with inputting the initial SA of the manager.

184 11 Application Cases of FACETS

Fig. 11.3 The Main Interface of FACETS

The manager selects the New Situation option under menu Situation

Awareness (Figure 11.4) to open the Situation Awareness Management dialog
(Figure 11.5).

Fig. 11.4 The Menu of Start a New Decision Making Task

11.1 Application CaseⅠ: Business 185

Fig. 11.5 Situation Awareness Management

In the Situation Awareness Management dialog, the manager inputs a SA
sentence as bellows (Figure 11.6).

Fig. 11.6 The Initial Situation Awareness

186 11 Application Cases of FACETS

BK-M82B-38 was a very good product.

This sentence represents the manager’s initial SA about the current decision

situation. An initial SA can be more complex than the above one, consisting of a
number of sentences.

(2) Situation Awareness Parsing

The manager selects the Parse SA option under menu Parse (Figure 11.7) to
open the SA Parser dialog (Figure 11.8).

Fig. 11.7 The Menu of SA Parsing

Fig. 11.8 Situation Parser in Decision Cycle Ⅰ

11.1 Application CaseⅠ: Business 187

The manager’s initial SA is displayed in the Situation Parser dialog and ready
to be parsed by FACETS (Figure 11.8). Figure 11.9 shows the process of SA parsing
under progress. Figure 11.10 shows the final results of SA parsing, which are
instances or classes inferred by FACETS from the initial SA. The presentation of
SA parsing results is mainly for the purpose of research demonstration. As a
decision maker, the manager does not need to understand the parsing results.

Fig. 11.9 Parse SA Sentences in Decision Cycle Ⅰ

Fig. 11.10 The Results of SA Parsing in Decision Cycle Ⅰ

(3) Situation Awareness Annotating

The manager selects the Annotate Current Parse option under menu Annotation
(Figure 11.11) to open the Situation Annotation dialog (Figure 11.12). The manager

188 11 Application Cases of FACETS

clicks on the Annotate button, the current SA parsing results are annotated by
FACETS, as shown in Figure 11.13. The presentation of SA annotating results is
mainly for the sake of research demonstration.

Fig. 11.11 The Menu of Annotate SA Parsing

Fig. 11.12 Situation Annotation

11.1 Application CaseⅠ: Business 189

Fig. 11.13 The Results of SA Annotating in Decision Cycle Ⅰ

(4) Query Generating

The manager selects the Generate New Query option under menu Query (Figure
11.14) to open the Query Builder dialog (Figure 11.15).

The manager clicks on the Build Queries button, the corresponding data
warehouse queries are generated by FACETS, as shown in Figure 11.16. The
presentation of generated queries is mainly for the purpose of research demonstration.

Fig. 11.14 Query Menu

190 11 Application Cases of FACETS

Fig. 11.15 Query Builder

Fig. 11.16 Queries Built by FACETS in Decision Cycle Ⅰ

(5) Situation Presentation

The manager selects the Open Cuemap option under menu Presentation (Figure
11.17) to open the corresponding Cuemap (Figure 11.18).

11.1 Application CaseⅠ: Business 191

Fig. 11.17 Presentation Menu

Fig. 11.18 Cuemap in Decision Cycle Ⅰ

The cuemap is extracted by FACETS from the experience base, according to

the manager’s input. A node (Figure 11.18) in the cuemap represents a concept of
the manager’s interest in terms of decision making.

192 11 Application Cases of FACETS

Hovering above a concept icon will activate the corresponding concept. For
example, TECHNOLOGY RESEARCH becomes active in Figure 11.19 and
MOUNTAIN BIKE active in Figure 11.20.

Fig. 11.19 Active Concept: TECHNOLOGY RESEARCH in Decision Cycle Ⅰ

Fig. 11.20 Active Concept: MOUNTAIN BIKES in Decision Cycle Ⅰ

(6) Reports

Clicking on an active concept will open up the report containing information
related to current decision situation. The corresponding report of concept

11.1 Application CaseⅠ: Business 193

MOUNTAIN BIKES and TECHNOLOGY RESEARCH in this decision cycle is
shown Figure 11.21 and Figure 11.22 respectively.

Fig. 11.21 The MOUNTAIN BIKES Report in Decision Cycle Ⅰ

Fig. 11.22 The TECHNOLOGY RESEARCH Report in Decision Cycle Ⅰ

(7) Situation Assessment

The manager perceives situation information presented in the reports and
develops a deeper understanding of the decision situation. As such, the manager’s
SA is eventually developed and enriched in this decision cycle.

In the end of decision cycle I, the manager found himself not confident enough
to make a final decision. Then he chose to proceed to another decision cycle in
order to develop richer SA through acquiring more situation information.

194 11 Application Cases of FACETS

11.1.5.2 Decision Cycle Ⅱ

(1) Situation Awareness Updating

Following the first decision cycle, decision cycleⅡ begins with updating the
acquired SA stored in FACETS. The manager selects the Update SA option under
menu Situation Awareness (Figure 11.23) to open the Situation Awareness
Management dialog (Figure 11.24).

Fig. 11.23 Situation Awareness Menu

Fig. 11.24 Situation Awareness Update in Decision Cycle Ⅱ

11.1 Application CaseⅠ: Business 195

After reading through the reports presented by FACETS in the first decision
cycle, the manager has some updates on his understanding of the decision
situation. He updates his SA by inputting the following sentence (Figure 11.24):

 As the successor of BK-M82B-38, BK-M82S-38 was released in 2001.

(2) Situation Awareness Parsing

Again, the new SA sentence is parsed by the Situation Parser (Figure 11.25).

Fig. 11.25 Situation Parser in Decision Cycle Ⅱ

(3) Situation Awareness Annotating

The manager’s new situation awareness is annotated (Figure 11.26).

Fig. 11.26 Situation Annotation in Decision Cycle Ⅱ

196 11 Application Cases of FACETS

(4) Query Generating

The data warehouse queries are re-generated according to the current SA
(Figure 11.27 and Figure 11.28).

Fig. 11.27 Query Builder in Decision Cycle Ⅱ

Fig. 11.28 Query Builder in Decision Cycle Ⅱ

11.1 Application CaseⅠ: Business 197

(5) Situation Presentation: Refresh Cuemap

The manager selects the Refresh Cuemap option under menu Presentation

(Figure 11.29) to open the corresponding Cuemap (Figure 11.30).

Fig. 11.29 Presentation Menu in Decision Cycle Ⅱ

Fig. 11.30 Cuemap in Decision Cycle Ⅱ

198 11 Application Cases of FACETS

(6) Reports

Clicking on an active concept will open up the report containing information
related to current decision situation. The corresponding report of concept
MOUNTAIN BIKES and TECHNOLOGY RESEARCH in this decision cycle are
shown Figure 11.31 and Figure 11.32 respectively.

Fig. 11.31 The MOUNTAIN BIKES Report in Decision Cycle Ⅱ

Fig. 11.32 The TECHNOLOGY RESEARCH Report in Decision Cycle Ⅱ

11.1 Application CaseⅠ: Business 199

(7) Situation Assessment

The manager perceives situation information presented in the reports and
develops a deeper understanding of the decision situation. As such, the manager’s
SA is eventually developed and enriched in this decision cycle.

In the end of decision cycleⅡ , the manager found himself not confident
enough to make a final decision. Then he chose to proceed to another decision
cycle in order to develop richer SA through acquiring more situation
information.

11.1.5.3 Decision Cycle Ⅲ

(1) Situation Awareness Updating

Following the second decision cycle, decision cycle Ⅲ begins with updating
the acquired SA stored in FACETS. The manager selects the Update SA option
under menu Situation Awareness (Figure 11.23) to open the Situation Awareness
Management dialog (Figure 11.24).

After reading through the reports presented by FACETS in the past decision
cycles, the manager has some updates on his understanding of the decision
situation. He updates his SA by inputting the following sentence (Figure 11.33):

BK-M82S-38 was designed with higher performance and lower price.

Fig. 11.33 Situation Awareness Update in Decision Cycle Ⅲ

200 11 Application Cases of FACETS

(2) Situation Awareness Parsing

The new SA sentence is parsed by the Situation Parser (Figure 11.34).

Fig. 11.34 Situation Parser in Decision Cycle Ⅲ

(3) Situation Awareness Annotating

The manager’s new situation awareness is annotated (Figure 11.35).

Fig. 11.35 Situation Annotation in Decision Cycle Ⅲ

(4) Query Generating

The data warehouse queries are re-generated according to the current SA
(Figure 11.36 and Figure 11.37).

11.1 Application CaseⅠ: Business 201

Fig. 11.36 Query Builder in Decision Cycle Ⅲ

Fig. 11.37 Query Builder in Decision Cycle Ⅲ

(5) Situation Presentation: Refresh Cuemap

The manager selects the Refresh Cuemap option under menu Presentation to
open the corresponding Cuemap (Figure 11.38).

202 11 Application Cases of FACETS

Fig. 11.38 Cuemap in Decision Cycle Ⅲ

(6) Reports

Clicking on an active concept will open up the report containing information
related to current decision situation. The corresponding report of concept
MOUNTAIN BIKES and TECHNOLOGY RESEARCH in this decision cycle are
shown Figure 11.39 and Figure 11.40 respectively.

Fig. 11.39 The MOUNTAIN BIKES Report in Decision Cycle Ⅲ

11.1 Application CaseⅠ: Business 203

Fig. 11.40 The TECHNOLOGY RESEARCH Report in Decision Cycle Ⅲ

Within the context of the domain knowledge, FACETS does not detect updates
of the manager’s input, which is significant enough to retrieve new situation
information. Thus, the reports in Decision Cycle Ⅲ are the same as those in
Decision Cycle Ⅱ.

(7) Situation Assessment

As there is no any new information related to current decision situation,
presented by FACETS in this decision cycle, the manager’s SA remains the same
as the previous decision cycle.

In the end of decision cycleⅡ, the manager found himself not confident enough
to make a final decision. Then he chose to proceed to another decision cycle in
order to develop richer SA through acquiring more situation information.

11.1.5.4 Decision Cycle IV

(1) Situation Awareness Updating

Following the previous decision cycle, decision cycle Ⅳ begins with updating
the acquired SA stored in FACETS. The manager selects the Update SA option
under menu Situation Awareness (Figure 11.23) to open the Situation Awareness
Management dialog (Figure 11.24).

After reading through the reports presented by FACETS in the past decision
cycles, the manager has some updates on his understanding of the decision
situation. He updates his SA by inputting the following sentence (Figure 11.41):

However, the internet sales of BK-M82S-38 went down in Germany and United

Kingdom in 2001 and 2002.

204 11 Application Cases of FACETS

Fig. 11.41 Situation Awareness Update in Decision Cycle Ⅳ

(2) Situation Awareness Parsing

The new SA sentence is parsed by the Situation Parser (Figure 11.42).

Fig. 11.42 Situation Parser in Decision Cycle Ⅳ

(3) Situation Awareness Annotating

The manager’s new situation awareness is annotated (Figure 11.43).

11.1 Application CaseⅠ: Business 205

Fig. 11.43 Situation Annotation in Decision Cycle Ⅳ

(4) Query Generating

The data warehouse queries are re-generated according to the current SA
(Figure 11.44).

Fig. 11.44 Query Builder in Decision Cycle Ⅳ

(5) Situation Presentation: Refresh Cuemap

The manager selects the Refresh Cuemap option under menu Presentation to
open the corresponding Cuemap (Figure 11.45).

206 11 Application Cases of FACETS

Fig. 11.45 Cuemap in Decision Cycle Ⅳ

(6) Reports

Clicking on an active concept will open up the report containing information
related to current decision situation. The reports shown in Figure 11.46,

Fig. 11.46 The COMPETITOR Report in Decision Cycle Ⅳ

11.1 Application CaseⅠ: Business 207

Figure 11.47 and Figure 11.48 are respectively connected to concepts
COMPETITOR, PROMOTION, and DELIVERY.

Fig. 11.47 The PROMOTIION Report in Decision Cycle Ⅳ

Fig. 11.48 The DELIVERY Report in Decision Cycle Ⅳ

If the concept being clicked corresponds to a cube, the MDX reporting module
will be called. The MDX reporting module requires managers to choose firstly the
analysis condition. Analysis conditions consist of dimensions, attributes, members
and measures. As shown in Figure 11.49, a number of relevant dimensions such as
RESELLER, SALES TERRITORY, PRODUCT and DATE are available for

208 11 Application Cases of FACETS

selection. Under each dimension are a number of attributes; under each attribute
are a number of members. For example, Sales Territory Country is an attribute for
dimension SALES TERRITORY; United Kingdom and Germany are members for
attribute Sales Territory Country.

Managers can organize the analysis conditions of their selection along three
axes (X, Y and Z) displayed as the top box, middle box and bottom box under
label Selected Analysis Dimensions in Figure 11.49. The available measures
defined with the corresponding cube are also shown in the GUI, such as Average
Rate, Internet Order Quantity and Internet Sales Amount.

Fig. 11.49 MDX Analysis Condition Customization in Decision Cycle Ⅳ

A finished analysis condition customization is shown in Figure 11.50, which
results in a MDX query as follows.

SELECT

{([PRODUCT].[PRODUCT].[Mountain-100 Silver, 38]),

([PRODUCT].[PRODUCT].[Mountain-100 Black, 38])

} ON 0,

{([SALES TERRITORY].[SALES TERRITORY COUNTRY].[United

Kingdom]),

11.1 Application CaseⅠ: Business 209

([SALES TERRITORY].[SALES TERRITORY COUNTRY].[Germany])

} ON 1,

{([Date].[Calendar Year].[2001]), ([Date].[Calendar Year].[2002])

} ON 2

FROM [Adventure Works]

WHERE [Internet Sales Amount]

This MDX query has there axes: 0, 1 and 2.

Fig. 11.50 Finished MDX Analysis Condition Customization in Decision Cycle Ⅳ

When the manager finishes customizing the analysis conditions, the
corresponding MDX query will be generated and submitted to the data warehouse
to retrieve relevant situation information. The retrieved situation information is
presented to the manager in the form of MDX report. Figure 11.51 shows a MDX
report generated by the MDX reporting module according to the analysis
condition defined in Figure 11.50. This MDX report shows the Internet sales
amount across the United Kingdom and Germany for different product models in
the year 2002. There are two pages of reports generated for 2002 and 2001
respectively. Managers can click on the Next Report button to see different pages.

210 11 Application Cases of FACETS

Fig. 11.51 A MDX Report in Decision Cycle Ⅳ

(7) Situation Assessment

The manager perceives situation information presented in the reports and
develops a deeper understanding of the decision situation. As such, the manager’s
SA is eventually developed and enriched in this decision cycle.

11.1.6 Final Decision

In the end of decision cycle Ⅳ, the manager carefully read through all the relevant
reports related to the current decision situation and found himself confident
enough to make a final decision as follows.

Federal Express (FE) is one of the most important business partners. We

have been using FE to deliver our products in Europe for over 10 years.

However, things just changed. FE has outsourced his European operation

to some local logistics companies due to the petrol price rise. The

outsourced operation keeps the cost down, however product delivery has

become very inefficient. Consequently, the average delivery time of BK-

M82S-42 has risen from 3 business days to over 1 week. The over slow

delivery service has discouraged our old customers and potential buyers.

Therefore, urgently we need create new partnerships for product delivery

in order to increase the sales of BK-M82S-42.

11.2 Application Case II: Public Health

In this section, we will briefly report a research project, conducted by a Master
student (Alam 2009), in which FACETS was integrated into an early warning

11.1 Application CaseⅠ: Business 211

F
ig

. 1
1.

52
 T

he
 C

la
ss

 T
re

e
of

 th
e

E
W

S
 O

nt
ol

og
y

212 11 Application Cases of FACETS

system (EWS) in public health. The early warning system is used to support
decision making for prediction, prevention and response to future pandemics.

Early warning systems are considered as effective tools to give prediction
before the real problems occur. The EWS in pandemic control are complex and
difficult to develop, due to some real issues, such as detecting the future
pandemic, controlling all disease, late disease prevention, measuring all levels of
disease, monitoring drug’s stock and vaccine’s stock, and predicting disease
behaviors. In this project, FACETS was incorporated into an EWS as its key part
for decision support.

According to the technical specification of FACETS, an ontology called EWSO
was developed in order to apply FACETS in the context of pandemic early
warning. In EWSO, 64 classes were defined, corresponding to 63 subsumption
relationships in the class tree. Among these classes, 51 classes are correlated to
tables or cubes in the data warehouse. Over 300 property-share relationships
across these classes were also defined. Part of the class tree of EWSO is shown in
Figure 11.52.

The experience base was created using the method of experience elicitation
discussed in Section 6.2.2. Part of the experience base is shown in Figure 11.53,
which represents how FLU is affected by different factors from different factors.

Human
Resources

Human
socialisation

human
population

Flu

News
Distribution

Medicine
Production

Air
Pollution

Human
Interaction

Bad
Weather Disease

Advertising

City Habit

City
Condition

Technolog
y

Product
Delivery

Dust

Human
Resources

animal
population

Chemical
Factory

Winds

Fig. 11.53 The Mental Models of the EWS

This experience map will help a decision maker to approach the right disease
information regarding his/her current decision situation. For example, for the issue
of NEWS DISTRIBUTION, the relevant information that should be examined
includes HUMAN RESOURCES, DISEASE ADVERTISING, and HUMAN
SOCIALISATION. FACETS will utilize these causal relationships between

11.1 Application CaseⅠ: Business 213

different issues to assist the decision makers to expose valuable information for
decision making.

A decision making problem supported by the EWS is described as follow:

How to catch up Flu Pandemic before it happen in Sydney?

Some situation descriptions of the decision maker when using FACETS in the

decision process are as follows:

Influenza epidemics of type C in occurred twice in Broken Valley in 2001

and 2003.

We always see strong storms in the metropolitan areas of Broken Valley.

A newly constructed chemistry plant is causing serve air pollution in that

area.

Fig. 11.54 A Cuemap Generated by FACETS in the EWS

The decision maker describes the decision situation in form of natural
language, and inputs these descriptions into FACETS. The descriptions are
analyzed according to the domain ontology and experiences. Corresponding data
warehouse queries are constructed to retrieve situation information and present it
to the decision maker according to the cue map. One of the cue maps generated by
FACETS is shown in Figure 11.54. The decision maker browses the cue map and
examines the situation information connected to different concepts. By this way,

214 11 Application Cases of FACETS

the decision maker is able to develop his/her SA about the current decision
situation. The final solution in this application case is as follows.

(1) We need to plant more trees in Sydney.
(2) We need to give vaccines to all people.
(3) We need to spread the appropriate information to protect them from Flu.
(4) We need to manage the operation standard for all chemical factories.
(5) We need to manage all medicines stock.

11.3 Summary

FACETS is a decision support system, particularly for dealing with ill-structured
problems in complex decision situations. This chapter presents two application
cases of FACETS in two different domains: business and public health. No matter
what decision situation, FACETS is an effective tool which assists the decision
maker to approach the most relevant information to the decision situation. The
basic methodology of decision support in FACETS is to seek and present useful
situation information for the decision maker, and help the decision maker to
develop rich situation awareness about the decision situation. Better situation
awareness is more likely lead to better decisions, which is theoretical basis of
FACETS.

As can be seen from the two application cases, the application of FACETS
requires three components: a domain ontology, an experience base and a data
warehouse, which are customized according to the application domain.
Technically, FACETS can be used for decision support in any domain, as long as
the appropriate domain ontology, experience base and data warehouse can be
constructed.

References

Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI Communications 7(1), 39–59 (1994)

Ackermann, F., Eden, C., Cropper, S.: Getting started with cognitive mapping. In: The 7th
Young OR Conference, University of Warwick. Coventry CV4 7AL, UK (1992)

Adler, M., Ziglio, E.: Gazing into the Oracle: The Delphi Method and Its Application to
Social Policy and Public Health. Jessica Kingsley Publishers, London (1996)

Agrell, P.J.: A multicriteria framework for inventory control. International Journal of
Production Economics 41, 59–70 (1995)

Alam, D.M.: Implementation of the ontology and mental model for hospital early warning
systems (HEWS). University of Technology, Sydney (2009)

Alavi, M., Keen, P.G.W.: Business teams in an information age. The Information
Society 64, 179–195 (1989)

Alter, S.: Decision Support Systems: Current Practice and Continuing Challenges.
Addison-Wesley Pub., Reading (1980)

Amgoud, L., Belabbes, S., Prade, H.: Towards a formal framework for the search of a
consensus between autonomous agents. In: Parsons, S., Maudet, N. (eds.)
Argumentation in Multi-Agent Systems, pp. 264–278. Springer, Rahwan (2006)

Amgoud, L., Bonnefon, J.-F., Prade, H.: An argumentation-based approach to multiple
criteria decision. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 269–280.
Springer, Heidelberg (2005)

Amgoud, L., Prade, H.: Handling threats, rewards and explanatory arguments in a unified
setting. International Journal of Intelligent Systems 20, 1195–1218 (2005)

Amgoud, L., Prade, H.: Explaining qualitative decision under uncertainty by
argumentation. In: Proc. Twenty-First National Conference on Artificial Intelligence
(AAAI 2006), Boston, pp. 219–224 (2006)

Ana-Maria, P., Oren, E., Henry, K.: Towards a theory of natural language interfaces to
databases. In: Proceedings of the 8th international conference on Intelligent user
interfaces. ACM, Miami (2003)

Anandalingam, G., Friesz, T.: Hierarchical optimization: An introduction. Annals of
Operations Research 34, 1–11 (1992)

Androutsopoulos, I., Ritchie, G., Thanisch, P.: Natural language interfaces to databases–an
introduction. Journal of Language Engineering 1(1), 29–81 (1995)

216 References

Angehrn, A.A., Jelassi, T.: DSS research and practice in perspective. Decision Support
Systems 12, 267–275 (1994)

Anthony, R.N.: Planning and control systems: a framework for analysis. Harvard
University, Cambridge (1965)

Antunes, C.H., Almeida, L.A., Lopes, V., Climaco, J.N.: A decision support system
dedicated to discrete multiple criteria problems. Decision Support Systems 12, 327–335
(1994)

Arnott, D., Pervan, G.: A critical analysis of decision support systems research. Journal of
Information Technology 20(2), 67–87 (2005)

Ba, S., Kalakota, R., Whinston, A.B.: Using client-broker-server architecture for intranet
decision support. Decision Support Systems 19, 171–192 (1997)

Bahrick, H.P., Bahrick, P.E., Wittlinger, R.P.: Fifty years of names and faces: A cross
sectional approach. Journal of Experimental Psychology: General 104, 54–75 (1975)

Ballou, R.: Business Logistics/Supply Chain Management. Pearson Prentice Hall, London
(2004)

Barclay, S.: A User’s Manual to HIVIEW. London School of Economics, London (1987)
Barclay, S.: A User’s Manual to EQUITY. London School of Economics, London (1988)
Barr, S., Sharda, R.: Effectiveness of decision support systems - development or reliance

effect. Decision Support Systems 21, 133–146 (1997)
Baum, E.: What is thought. MIT Press, Cambridge (2004)
Bazerman, M.H.: Judgment in Managerial Decision Making, 6th edn. Wiley, New York

(2005)
Belkin, N.J., Oddy, R.N., Brooks, H.M.: Ask for information-retrieval. 1. Background and

theory. Journal of Documentation 38(2), 61–71 (1982)
Bellinger, G., Castro, D., Mills, A.: Data, Information, Knowledge, and Wisdom (2004),

http://www.systems-thinking.org/dikw/dikw.htm (retrieved July 14,
2007)

Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy Environment. Management
Science 17, B141–B164 (1970)

Belton, V., Vickers, S.P.: Visual Interactive Sensitivity Analyses for Multiple Criteria
Decision Analysis: User Manual, SPV Software Products, UK (1989)

Benayoun, R., Montogolfier, J., Tergny, J., Larichev, O.: Linear programming with
multiple objective functions: step method (STEM). Mathematical Programming 1, 366–
375 (1971)

Bergmann, R.: Experience management: Foundations, development methodology, and
internet-based applications. Springer, Berlin (2002)

Berry, M.J.A., Linoff, G.: Data Mining Techniques. John Wiley & Sons, New York (1997)
Bhargava, H., Krishnan, R., Muller, R.: Decision support on demanded: emerging

electronic markets for decision technologies. Decision Support Systems 19, 193–214
(1997)

Bidgoli, H.: Decision Support Systems: Principles and Practice. West Pub. Co., St. Paul
(1989)

Bois, P.D., Brans, J.P., Cantraine, F., Mareschal, B.: Medics: an expert system for
computer-aided diagnosis using the PROMETHEE multicriteria method. European
Journal of Operational Research 39, 284–292 (1989)

Bonczek, R.H., Holsapple, C.W., Whinston, A.B.: Foundations of Decision Support
Systems. Academic Press, New York (1981)

Borenstein, D.: Idssflex - an intelligent DSS for the design and evaluation of flexible
manufacturing systems. Journal of the Operational Research Society 49, 734–744 (1998)

References 217

Bose, U., Davey, A.M., Olson, D.L.: Multi-attribute utility methods in group decision
making: past applications and potential for inclusion in GDSS. Omega 25, 691–706
(1997)

Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A.: Information, Uncertainty, Fusion. Kluwer
Academic Publishers, Norwell (2000a)

Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A.: Uncertainty in Intelligent and Information
Systems. World Scientific Publishers, Singapore (2000b)

Boufaden, N.: An ontology-based semantic tagger for IE system. In: The 41st Annual
Meeting on Association for Computational Linguistics. Association for Computational
Linguistics, Sapporo (2003)

Brito, M.P.D., Dekker, R.: Reverse Logistics - A Framework, Econometric Institute Report
290, Erasmus University Rotterdam, Econometric Institute (2002)

Bubnicki, Z.: Uncertain Logics, Variables and Systems. Springer, Berlin (2002)
Budgen, D., Marashi, M.: MDSE advisor: knowledge-based techniques applied to software

design assessment. Knowledge-Based Systems 1, 235–239 (1988)
Bui, T.: Co-oP: A Group Decision Support System for Cooperative Multiple Criteria Group

Decision-Making. Springer, Berlin (1989)
Bui, T.X., Jelassi, T.M., Shakun, M.F.: Group decision and negotiation support systems

(GDNSS). European Journal of Operational Research 46, 141–142 (1990)
BusinessObjects, BusinessObjects Polestar (2008),

http://www.businessobjects.com/product/catalog/polestar/
(retrieved August 15, 2008)

Calpine, H.C., Golding, A.: Some properties of Pareto-optimal choices in decision
problems. Omega 4, 141–147 (1976)

Carley, K., Palmquist, M.: Extracting, representing and analyzing mental models. Social
Forces 70(3), 601–636 (1992)

Carlson, D.A., Ram, S.: HyperIntelligence: the next frontier. Communications of the
ACM 33(3), 311–321 (1990)

Carlsson, C., Fuller, R.: Adaptive fuzzy cognitive maps for hyperknowledge representation
in strategy formation process. Paper presented at the International Panel Conference on
Soft and Intelligent Computing, Budapest, Hungary (1996)

Caserta, J.: Practical techniques for extracting, cleaning, conforming, and delivering data.
John Wiley & Sons, Chichester (2004)

Castells, P., Fernández, M., Vallet, D.: An adaptation of the vector-space model for
ontology-based information retrieval. IEEE Transactions on Knowledge and Data
Engineering 17(2), 261–272 (2007)

Chan, F.T.S., Chan, M.H., Tang, N.K.H.: Evaluation methodologies for technology
selection. Journal of Materials Processing Technology 107, 330–337 (2000)

Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology.
North-Holland, Amsterdam (1983)

Charnes, A., Cooper, W.W.: Management Models and Industrial Applications of Linear
Programming, vol. I and II. Wiley, Chichester (1961)

Charnes, A., Cooper, W.W.: Goal programming and multiple objective optimizations.
European Journal of Operational Research 1, 39–54 (1977)

Chaudhry, S.S., Salchenberger, L., Beheshtian, M.: A small business inventory DSS -
design, development, and implementation issues. Computers & Operations Research 23,
63–72 (1996)

Chen, J.Q., Lee, S.M.: An exploratory cognitive DSS for strategic decision making.
Decision support systems 36, 147–160 (2003)

218 References

Chen, T.: Decision Analysis. Science Press, Beijing (1987)
Chen, Z.X.: Computational Intelligence Decision Support System. University of Nebraska,

Omaha (2000)
Cheng, C.-H., Yang, K.-L., Hwang, C.-L.: Evaluating attack helicopters by AHP based on

linguistic variable weight. European Journal of Operational Research 116, 423–435
(1999)

Chidambaram, L.: Relational development in computer-supported groups. MIS
Quarterly 20, 143–163 (1996)

Chuang, T.T., Yadav, S.B.: The development of an adaptive decision support system.
Decision Support Systems 24, 73–87 (1998)

Clarke, S.J., Willett, P.: Estimating the recall performance of Web search engines. Aslib
Proceedings 49(7), 184–189 (1997)

Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (On-line Analytical Processing) to
user-analysts: An IT mandate (1993),
http://www.fpm.com/refer/codd.html (retrieved June 6, 2008)

Cohon, J.L.: Multiobjective Programming and Planning. Academic Press, New York (1978)
Colson, G., Mareschal, B.: JUDGES: a descriptive group decision support system for the

ranking of items. Decision Support Systems 12, 391–404 (1994)
Connell, N.A.D., Powell, P.L.: A comparison of potential applications of expert systems

and decision support systems. Journal of the Operational Research Society 41, 431–439
(1990)

Cook, W.D., Kress, M.: Ordinal ranking with intensity of preference. Management
science 31, 26–32 (1985)

Courtney, J.F.: Decision making and knowledge management in inquiring organizations:
toward a new decision-making paradigm for DSS. Decision Support Systems 31, 17–38
(2001)

Csaki, P., Rapcsak, T., Turchanyi, P., Vermes, M.: R and D for group decision aid in
Hungary by WINGDSS, a Microsoft Windows based group decision support system.
Decision Support Systems 14, 205–217 (1995)

CSIRO. Business intelligence - What is it? (2003, May 28, 2008),
http://www.cmis.csiro.au/bi/what-is-BI.htm (retrieved April 8, 2009)

Daily, B., Whatley, A., Ash, S.R., Steiner, R.L.: The effects of a group decision support
system on culturally diverse and culturally homogeneous group decision making.
Information and Management 30, 281–289 (1996)

Damousis, I.G., Bakirtzis, A.G., Dokopoulos, P.S.: Network-constrained economic dispatch
using real-coded genetic algorithm. IEEE Transactions on Power Systems 18, 198–205
(2003)

Davey, A., Olson, D.: Multiple criteria decision making models in group decision support.
Group Decision and Negotiation 7, 55–75 (1998)

Dawes, R.M.: Social selection based on multidimentional criteria. Journal of Abnormal and
Social Psychology 68, 104–109 (1964)

Dawes, R.M.: Rational choice in a uncertain world. Harcourt Brace Jovanoich, New York
(1988)

Degoulet, P., Fieschi, M., Chatellier, G.: Decision support systems from the standpoint of
knowledge representation. Methods of Information in Medicine 34, 202–208 (1995)

Dennis, A.R.: Information exchange and use in group decision making: you can lead a
group to information, but you can’t make it think. MIS Quarterly 20, 433–457 (1996)

References 219

Department of Communicable Disease (Who), WHO guidelines for the global surveillance
of severe acute respiratory syndrome, SARS (2004), http://www.who.int/csr/
resources/publications/WHO_CDS_CSR_ARO_2004_1/en/index.html

Despres, S., Rosenthal, S.C.: Designing decision support systems and expert systems with a
better end-use involvement: a promising approach. European Journal of Operational
Research 61, 145–153 (1992)

Ditsa, G.: Executive information systems use in organisational contexts: an explanatory
user behaviour testing. In: Ditsa, G. (ed.) Information management: support systems &
multimedia technology, pp. 109–155. USA Idea Group Publishing, Hershey (2003)

Donaldson, G., Lorsch, J.W.: Decision making at the top: The shaping of strategic
direction. Basic Books, New York (1983)

Downing, C.E., Ringuest, J.L.: Implementing and testing a complex interactive MOLP
algorithm. Decision Support Systems 33, 363–374 (2002)

Dubois, D., Fargier, H.: Qualitative decision rules under uncertainty. In: Della Riccia, G.,
Dubois, D., Kruse, R., Lenz, H.-J. (eds.) Planning Based on Decision Theory, pp. 3–26.
Springer, Wien (2004)

Dubois, D., Fargier, H., Perny, P.: Qualitative decision theory with preference relations and
comparative uncertainty: an axiomatic approach. Artificial Intelligence 148, 219–260
(2003)

Dubois, D., Fargier, H., Perny, P., Prade, H.: A characterization of generalized concordance
rules in multicriteria decision making. International Journal of Intelligent Systems 18,
751–774 (2003)

Dubois, D., Fargier, H., Prade, H., Perny, P.: Qualitative decision theory: from savage’s
axioms to nonmonotonic reasoning. Journal of the ACM 49, 455–495 (2002)

Dubois, D., Fortemps, P.: Computing improved optimal solutions to max-min flexible
constraint satisfaction problems. European Journal of Operational Research 118, 95–126
(1999)

Dubois, D., Fortemps, P.: Selecting preferred solutions in the minimax approach to
dynamic programming problems under flexible constraints. European Journal of
Operational Research 160, 582–598 (2005)

Dubois, D., Hüllermeier, E., Prade, H.: Fuzzy methods for case-based recommendation and
decision support. Journal of Intelligent Information Systems 27, 95–115 (2006)

Dunham, M.: Data Mining. Prentice Hall, Upper Saddle River (2003)
Dyer, J.S.: Interactive goal programming. Management Science 19, 62–70 (1972)
EconomistIntelligenceUnit, What do companies want from business intelligence? (Vol

2006): Economist Intelligence Unit (2006)
Eden, C.: Cognitive mapping. European Journal of Operational Research 36(1), 1–13

(1988)
Eden, C., Ackermann, F.: Horses for courses - a stakeholder approach to the evaluation of

GDSS. Group Decision and Negotiation 5, 501–519 (1996)
Edwards, J.S.: Expert systems in management and administration - are they really different

from decision support systems? European Journal of Operational Research 61, 114–121
(1992)

Emerson, T.J., Reising, J.M., Britten-Austin, H.G.: Workload and situation awareness in
future aircraft. SAE Technical Paper, No. 871803 (1987)

Endsley, M.R.: Measurement of situation awareness in dynamic systems. Human
Factors 37(1), 65–84 (1995a)

Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human
Factors 37, 32–64 (1995b)

220 References

Endsley, M.R.: Theoretical underpinnings of situation awareness: a critical review. In:
Endsley, M.R., Garland, D.J. (eds.) Situation Awareness Analysis and Measurement.
Lawrence Erlbaum Associates, Mahwah (2000)

Endsley, M.R., Garland, D.: Situation Awareness Analysis and Measurement. Lawrence
Erlbaum Associates, Publishers, Mahway (2000)

Endsley, M.R., Bolte, B., Jones, D.G.: Designing for situation awareness: an approach to
user-centered design, 1st edn. Taylor&Francis, London (2003)

Engemann, K.J., Holmes, M.E., Yager, R.R.: Decision making with attitudinal expected
values. International Journal of Technology, Policy and Managemant 4, 353–364 (2004)

Eom, S.B.: Relationships between the decision support system subspecialties and reference
disciplines: an empirical investigation. European Journal of Operational Research 104,
31–45 (1998)

Er, M.C., Ng, A.C.: The anonymity and proximity factors in group decision support
systems. Decision Support Systems 14, 75–83 (1995)

Ertay, T., Ruan, D.: Data envelopment analysis based decision model for optimal operator
allocation in CMS. European Journal of Operational Research 164, 800–810 (2005)

Ertay, T., Ruan, D., Tuzkaya, U.R.: Integrating data envelopment analysis and analytic
hierarchy for the facility layout design in manufacturing systems. Information
Sciences 176, 237–262 (2006)

Evelson, B., Moore, C., Kobielus, J., Karel, R., Nicolson, N.: The Forrester wave:
Enterprise business intelligence platforms, Q3 (2008)

Expert-Choice-Inc, Expert Choice: Walk-through, Pittsburgh, USA (1992)
Farmer, T.A.: Testing the robustness of multiattribute utility theory in an applied setting.

Decision Sciences 18, 178–193 (1987)
Fetzer, J.H.: People are not computers: (most) though processes are not computational

procedures. Journal of Experimental and Theoretical Artificial Intelligence 10, 371–391
(1998)

Finlay, P.N.: Decision support systems and expert systems: a comparison of their
components and design methodologies. Computers and Operations Research 17, 535–
543 (1990)

Giaglis, G.M., Paul, R.J., Doukidis, G.I.: Dynamic modelling to assess the business value
of electronic commerce. International Journal of Electronic Commerce 3, 35–51 (1999)

Giordani, A.: Mapping natural language into SQL in a NLIDB. In: Kapetanios, E.,
Sugumaran, V., Spiliopoulou, M. (eds.) Natural Language and Information Systems, pp.
367–371. Springer, Heidelberg (2008)

Giuntini, R., Andel, T.: Advance with reverse logistics. Transportation and Distribution,
Part 1 36, 93–98 (1995a)

Giuntini, R., Andel, T.: Reverse logistics role models. Transportation and Distribution, Part
3 36, 97–98 (1995b)

Gnyawali, D.R., Tyler, B.B.: Cause mapping in strategic management research: processes,
issues, and observations. In: David, J., Ketchen, J., Bergh, D.D. (eds.) Research
methodology in strategic and management, vol. 2, pp. 225–257. Elsevier, San Diego
(2005)

Gordon, L.A., Pinches, G.E.: Improving capital budgeting: a decision support system
approach (1984)

Gorry, G.A., Morton, M.S.S.: A framework for management information systems. Sloan
Management Review 13(1), 50–70 (1971)

Gomez-Perez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering. Springer,
Heidelberg (2004)

References 221

Gooley, T.B.: Reverse logistics: five steps to success. Logistics Management and
Distribution Report 37, 49–55 (1998)

Gorry, G.A., Scott-Morton, M.S.: A framework for management information system. Sloan
Management Review 13, 55–70 (1971)

Gottinger, H.W., Weimann, P.: Intelligent decision support systems. Decision Support
Systems 8, 317–332 (1992)

Gray, P.: Group decision support systems. Decision Support Systems 3, 233–242 (1987)
Gray, P., Mandviwalla, M.: New direction for GDSS. Group Decision and Negotiation 8,

77–83 (1999)
Gruman, G.: Rethinking business intelligence. InfoWorld 29(14), 22–27 (2007)
Guarino, N.: Formal ontology in Information Systems. Paper presented at the the 1st

International Conference on Formal Ontologies in Information Systems, Trento, Italy
(1998)

Guerlian, S., Brown, C.E., Mastrangelo, C.: Intelligent decision support systems. In: Proc.
IEEE International Conference on Systems, Man, and Cybernetics, pp. 1934–1938
(2000)

Guyonnet, D., Bourgine, B., Dubois, D., Fargier, H., Côme, B., Chilès, J.-P.: Hybrid
approach for addressing uncertainty in risk assessments. Journal of Environmental
Engineering 129, 68–78 (2003)

Hamilton, W.L.: Situation awareness metrics program. SAE Technical Paper(871767)
(1987)

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San
Francisco (2001)

Haseman, W.D., Nazareth, D.L., Paul, S.: Implementation of a group decision support
system utilizing collective memory. Information & Management 42, 591–605 (2005)

Herrera, F., Herrera-Viedma, E.: Choice functions and mechanisms for linguistic preference
relations. European Journal of Operational Research 120, 144–161 (2000)

Hipel, K.: Multiple objective decision making in water resources. Water Resources
Bulletin 28, 3–12 (1992)

Hoffman, J.: Introduction to Structured Query Language (2001, 4-9-2001),
http://riki-lb1.vet.ohio-state.edu/mqlin/computec/

 tutorials/SQLTutorial.htm (retrieved September 11, 2008)
Holsapple, C.W., Whinston, A.B.: Decision Support Systems: A Knowledge-Based

Approach. West Pub. Co., Minneapolis, St. Paul (1996)
Hoven, J.V.D.: Executive support systems & decision making. Journal of Systems

Management 47(2), 48–55 (1996)
Hu, T.L., Sheu, J.B., Huang, K.H.: A reverse logistics cost minimization model for the

treatment of hazardous wastes. Transportation Research, Part E 38, 457–473 (2002)
Hwang, C.L., Lai, Y.J., Liu, D.R.: A new approach for multiple objective decision making.

Computer & Operations Research 20, 889–899 (1993)
Hwang, C.L., Masud, A.S.: Multiple Objective Decision Making: Methods and

Applications. Springer, Berlin (1979)
Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications -

A State of the Art Survey. Springer, Berlin (1981)
Ignizio, J.P.: Goal Programming and Extensions. Lexington Books, Massachusetts (1976)
Ignizio, J.P.: The determination of a subset of efficient solutions via goal programming.

Computer and Operations Research 8, 9–16 (1981)
Ignizio, J.P.: Generalized goal programming: an overview. Computer & Operations

Research 10, 277–289 (1983)

222 References

Ingwersen, P.: Information retrieval interaction. Tayor Graham, London (1996)
Inmon, W.H.: What is a data warehouse. PRISM Newsletter 1(1) (1993)
Inmon, W.H.: Building the data warehouse, 3rd edn. Wiley, New York (2002)
Isenberg, D.J.: How senior manager think. Harvard Business Review, 82–90 (November –

December 1984)
Iz, P.H.: Two multiple criteria group decision support systems based on mathematical

programming and ranking methods. European Journal of Operational Research 61, 245–
253 (1992)

Iz, P.H., Gardiner, L.R.: Analysis of multiple criteria decision support systems for
cooperative groups. Group Decision and Negotiation 2, 61–79 (1993)

Jacob, V.S., Pirkul, H.: Organizational decision support systems. International Journal of
Man-Machine Studies 36, 817–832 (1992)

Barnes, J.H.: Cognitive biases and their impact on strategic planning. Strategic
Management Journal 5(2), 129–137 (1984)

Jaques, E.: A general theory of bureaucracy. Gower Publishing, Hampshire (1976)
Jaques, E.: Requisite organization. Cason Hall, Virginia (1996)
Jayabarath, T., Jayaprakash, K., Jeyakumar, D.N., Raghunathan, T.: Evolutionary

programming techniques for different kinds of economic dispatch problems. Electric
Power Systems Research 73, 169–176 (2005)

Jelassi, M.T., Beauclair, R.A.: An integrated framework for group decision support design.
Information & Management 13, 143–153 (1987)

Jelassi, M.T., Jarke, M., Stohr, E.A.: Designing a generalized multiple criteria decision
support system. Journal of Management Information Systems 1, 24–43 (1985)

Jensen, P.A., Bard, J.F.: Operations research: models and methods Hoboken. Wiley, New
Jersey (2003)

Johnson-Laird, P.N., Girotto, V., Legrenzi, P.: Mental models: a gentle guide for outsiders.
Sistemi Intelligenti 9, 68–33 (1998)

Juhani, I.: An empirical test of the DeLone-McLean model of information system success.
SIGMIS Database 36, 8–27 (2005)

Jung, H., Lee, G.G.: Multilingual Question Answering with High Portability on Relational
Databases. In: The 19th International Conference on Computational Linguistics, Taipei
(2002)

Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decision making and consensus under fuzzy
preference and fuzzy majority. Fuzzy Sets and Systems 49, 21–31 (1992)

Kasper, G.M.: A theory of decision support system design for user calibration. Information
Systems Research 7, 215–232 (1996)

Keen, P.G.W.: Interactive computer systems for managers: a modest proposal. Sloan
Management Review 18, 1–17 (1976)

Keen, P.G.W., Scott Morton, M.S.: Decision Support Systems: An Organizational
Perspective. Addison-Wesley Pub. Co., Reading (1978)

Kepner, C.H., Tregoe, B.B.: Problem Analysis and Decision Making. Kepner-Tregoe Ltd.,
Princeton (1973)

Kersten, G.E.: NEGO - Group decision support system. Information & Management 8,
237–246 (1985)

Klein, G.A., Calderwook, R., Macgregor, D.: Critical decision method for eliciting
knowledge. IEEE Transactions on Systems, Man, and Cybernetics - Part A: System and
Humans 19, 462–472 (1989)

Klein, M.R., Methlie, L.B.: Knowledge-Based Decision Support Systems with Applications
in Business. John Wiley & Sons, Chichester (1995)

References 223

Klimberg, R.: GRADS: A new graphical display system for visualizing multiple criteria
solutions. Computers and Operations Research 19, 707–711 (1992)

Knoblock, C.A., Lerman, K., Minton, S., Muslea, I.: Accurately and reliably extracting data
from the web: A machine learning approach. IEEE Data Engineering Bulletin 23(4), 33–
41 (2000)

Kolodneer, J.L.: Improving human decision making through case-based decision aiding. AI
Magazine 12, 52–68 (1991)

Konar, A., Chakraborty, U.K.: Reasoning and unsupervised learning in a fuzzy cognitive
map. Information Sciences 170, 419–441 (2005)

Korhonen, P., Lewandowski, A., Wallenius, J.: Multiple Criteria Decision Support. Lecture
Notes in Economics and Mathematical Systems, vol. 356. Springer, Berlin (1991)

Korhonen, P., Wallenius, J.: A Multiple objective linear programming decision support
system. Decision Support Systems 6, 243–251 (1990)

Kosko, B.: Fuzzy cognitive maps. International Journal of Man-Machine Studies 24, 65–75
(1986)

Kuo, F.-Y.: Managerial intuition and the development of executive support systems.
Decision Support Systems 24, 89–103 (1998)

Lagreze, E.J., Shakun, M.F.: Decision support systems for semi-structured buying
decisions. European Journal of Operational Research 16, 48–58 (1984)

Lahti, R.K.: Group decision making within the organization: can models help? CSWT
paper, http://www.eorkteams.unt.edu/reports/lahti.htm

Lai, Y.J.: Imost - interactive multiple objective system technique. Journal of the
Operational Research Society 46, 958–976 (1995)

Lai, Y.J., Liu, T.Y., Hwang, C.L.: Topsis for MODM. European Journal of Operational
Research 76, 486–500 (1994)

Lambert, D.M., Cooper, M.C.: Issues in supply chain management. Industrial marketing
Management 29, 65–83 (2000)

Langfield-Smith, K., Wirth, A.: Measuring differences between cognitive maps. The
Journal of the Operational Research Society 43(12), 1135–1150 (1992)

Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word
sense identification. In: Fellbaum, C. (ed.) Wordnet: an electronic lexical database, pp.
265–283. MIT Press, Cambridge (1998)

Lee, K.C., Kim, H.S.: A fuzzy cognitive map-based bi-directional inference mechanism: an
application to stock investment analysis. International Journal of Intelligent Systems in
Accounting, Finance & Management 6, 41–57 (1997)

Lee, M., Pham, H., Zhang, X.: A methodology for priority setting with application to
software development process. European Journal of Operational Research 118, 375–389
(1999)

Lee, S.M.: Goal Programming for Decision Analysis. Auerbach Publishers, Philadelphia
(1972)

Li, Y., Yang, H., Jagadish, H.V.: Constructing a generic natural language interface for an
XML database. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F.,
Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006.
LNCS, vol. 3896, pp. 737–754. Springer, Heidelberg (2006)

Liberatore, M., Nydick, R.: Decision Technology: Modeling, Software, and Applications.
Wiley, New Jersey (2003)

Lin, T.S., Yao, Y.Y., Zadeh, L.A.: Data Mining, Rough Sets and Granular Computing.
Physica-Verlag, Heidelberg (2002)

224 References

Lipshitz, R., Klein, G., Orasanu, J., Salas, E.: Taking stock of naturalistic decision making.
Journal of Behavioral Decision Making 14, 331–352 (2001)

Liu, J., Ruan, D., Carchon, R.: Synthesis and evaluation analysis of the indicator
information in nuclear safeguards applications by computing with words. Int. J. Appl.
Math. Comput. Sci. 12, 449–462 (2002)

Lu, J.: A Framework and Prototype for Intelligent Multiple Objectives Group Decision
Support Systems, PhD Thesis, Curtin University of Technology, Australia (2000)

Lu, J., Lu, Z.: Development, distribution and evaluation for online tourism services in
China. Electronic Commerce Research Journal 4, 221–239 (2004)

Lu, J., Quaddus, M.A.: An intelligence-based multi-objective group decision support
system and its application. In: Proc. Information Technology for Business Management,
16th World Computer Congress (WCC 2000), Beijing, China, pp. 744–751 (2000)

Lu, J., Quaddus, M.A.: Integrating a knowledge based guidance system with multiple
objective decision making. The New Zealand Journal of Applied Computer and
Information Technology (NZJACIT) 5, 53–59 (2001a)

Lu, J., Quaddus, M.A.: A prototype of multi-objective group decision support systems with
a group aggregation method base. In: Proc. the Twelfth Australasian Conference on
Information Systems (ACIS), Coffs Harbour, Australia, pp. 378–394 (2001b)

Lu, J., Quaddus, M.A.: Experimental evaluation of an intelligent multiple objective group
decision support system (IMOGDSS). In: Proc. the 9th European conference on IT
evaluation, Paris, France, pp. 273–279 (2002)

Lu, J., Ruan, D., Zhang, G.: E-Service Intelligence: Methodologies, Technologies and
Applications. Springer, Heidelberg (2006)

Lu, J., Ruan, D., Zhang, G., Zimmermann, H.J.: Editorial Preface: Special Issue on E-
Service Intelligence. International Journal of Intelligent Systems 22, 397–400 (2006)

Lu, J., Tang, S., Mccullough, G.: An assessment for internet-based electronic commerce
development in businesses of New Zealand. Electronic Markets: International Journal of
Electronic Commerce and Business Media 11, 107–115 (2001)

Lu, J., Zhang, G.: Cost benefit factor analysis in e-services. International Journal of Service
Industry Management (IJSIM) 14, 570–595 (2003a)

Lu, J., Zhang, G.: A model for evaluating e-commerce based on cost/benefit and customer
satisfaction. Journal of Information Systems Frontiers 5, 265–277 (2003b)

Lu, J., Zhang, G., Ruan, D., Wu, F.: Multi-objective group decision making: Methods,
software and applications with fuzzy set technology. Imperial College Press, London
(2007)

Lu, J., Zhang, G., Shi, C.: Framework and implementation of a web-based WMODSS. In:
Proc. The Workshop on Applications, Products and Services of Web-based Support
Systems, in conjunction with the 2003 IEEE/WIC International Conference on Web
Intelligence, Halifax, Canada, pp. 7–11 (2003)

Lu, J., Zhang, G., Wu, F.: Web-based multi-criteria group decision support system with
linguistic term processing function. The IEEE Intelligent Informatics Bulletin 5, 35–43
(2005)

Lycan, W.G., Prinz, J.J.: Mind and cognition: An anthology, 3rd edn. Blackwell Publishers,
Inc., Malden (2008)

Lyles, M.A., Thomas, H.: Strategic problem formulation: biases and assumptions
embedded in alternative decision-making models. Journal of Management Studies 25,
131–145 (1988)

References 225

MacFadyen, H.: The parts of speech (2007, 2007.08.16), http://www.uottawa.ca/
academic/arts/writcent/hypergrammar/partsp.html (retrieved
January 12, 2008)

Mallach, E.G.: Decision Support and Data Warehouse Systems. McGraw Hill Higher
Education, New York (2000)

Management, A.F.N.: Gathering Perceptions about the Organization Evaluation of
Programs,
http://www.allianceonline.org/FAQ/strategic_planning/

 what_is_situation_assessment.faq
March, J.G., Simon, H.: Organizations, 4th edn. Wiley, New York (1963)
Matheus, C.J., Kokar, M.M., Baclawski, K.: A core ontology for situation awareness. Paper

presented at The 6th International Conference on Information Fusion, Cairns,
Queensland, Australia (2003)

Maynard, D., Yankova, M., Kourakis, A., Kokossis, A.: Ontology-based information
extraction for market monitoring and technology watch. Paper presented at the ESWC
Workshop “End User Apects of the Semantic Web”, Heraklion, Crete (2005)

McBride, N.: The rise and fall of an executive information system: a case study.
Information Systems Journal 7, 4 (1997)

Mccarthy, J.: Applications of circumscription to formalizing common sense knowledge.
Artificial Intelligence 28, 89–116 (1986)

McGuinness, D.: Ontologies and online commerce. IEEE Intelligent Systems 16, 8–14
(2001)

Microsoft, Adventure Works Cycles business scenarios (2007a),
http://msdn.microsoft.com/en-us/library/ms124825.aspx
(retrieved September 6, 2007)

Microsoft, Multidimensional Expressions (MDX) reference (2007b),
http://msdn.microsoft.com/en-us/library/ms145506SQL.90.aspx
(retrieved September 11, 2008)

Microsoft, Transact-SQL reference (2007c), http://msdn.microsoft.com/en-
us/library/ms189826SQL.90.aspx (retrieved September 11, 2008)

Minch, R.P., Sanders, G.L.: Computerized information systems supporting multicriteria
decision making. Decision Sciences 17, 395–413 (1986)

Mintzberg: The nature of managerial work. Harper & Row, New York (1973)
Mintzberg, H., Raisinghani, D., Théorêt, A.: The structure of “unstructured” decision

processes. Administrative Science Quarterly 21, 246–275 (1976)
Missikoff, M., Schiappelli, F.: A method for ontology modeling in the business domain.

Enterprise Modelling and Ontologies for Interoperability, Porto, Portugal (2005)
Mitra, S., Acharya, T.: Data Mining: Multimedia, Soft Computing and Bioinformatics.

Wiley, New York (2003)
Moore, C.M.: Group Techniques for Ideal Building. Sage Publications, Newbury Park

(1987)
Moreau, E.M.F.: The impact of intelligent decision support systems on intellectual task

success: an empirical investigation. Decision Support Systems 42, 593–607 (2006)
Morehouse, B. Group systems corporation: corporate overview,

http://www.groupsystems.com
Nazareth, D.L.: Integrating MCDM and DSS: barriers and counter strategies. Infor. 31, 1–

15 (1993)
Nelder, J.A., Mead, R.: A simplex method for function minimization. The computer

Journal 7, 308–313 (1965)

226 References

Newby, G.B.: Cognitive space and information space. Journal of the American Society for
Information Science and Technology 52, 1026–1048 (2001)

Niculae, S., Leila, K., Bipin, C.D.: Using semantic templates for a natural language
interface to the CINDI virtual library. Data Knowl. Eng. 55, 4–19 (2005)

Niu, L., Lu, J., Zhang, G.: Cognition-driven decision support system framework. In: The
First International Conference on Risk Analysis and Crisis Response Shanghai. Atlantis
Press, China (2007)

Niu, L., Lu, J., Zhang, G.: Improved business intelligence analytics on manager’s
experience. In: 2008 IEEE Congress on Evolutionary Computation, Hong Kong (2008)

Niu, L., Zhang, G.: A model of cognition-driven decision process for business intelligence.
In: The 2008 IEE/WIC/ACM International Conference on Web Intelligence, Sydney,
Australia (2008)

Noh, J.B., et al.: A case-based reasoning approach to cognitive map-driven tacit knowledge
management. Expert Systems with Applications 19(4), 249–259 (2000)

O’keefe, Mceachern: Web-based customer decision support systems. ACM Transactions on
Internet Technology 41, 71–78 (1998)

Ogryczak, W., Studzinski, K., Zorychta, K.: A solver for the multi-objective transshipment
problem with facility location. European Journal of Operational Research 43, 53–64
(1989)

Owens, H.D., Philippakis, A.S.: Inductive consistency in knowledge-based decision support
systems. Decision Support Systems 13, 167–181 (1995)

Paige, G.B., Stone, J.J., Lane, L.J., Hakonson, T.E.: Calibration and testing of simulation
models for evaluation of trench cap designs. Journal of Environmental Quality 25, 136–
144 (1996)

Paige, G.B., Stone, J.J., Lane, L.J., Yakowitz, D.S., Hakonson, T.E.: Evaluation of a
prototype decision support system for selecting trench cap designs. Journal of
Environmental Quality 25, 127–135 (1996)

Pasi, G., Yager, R.R.: Modeling the concept of majority opinion in group decision making.
Information Sciences 176, 390–414 (2006)

Plous, S.: The psychology of judgment and decision making. McGraw-Hill, Humanities
(1993)

Pogorelec, J.: Reverse logistics is doable, important. Frontline Solutions 1, 68–69 (1998)
Poh, K.: Knowledge-based guidance system for multi-attribute decision making. Artificial

Intelligence in Engineering 12, 315–326 (1998)
Poh, K., Quaddus, M.A.: A hybrid approach to multiobjective linear optimization. Journal

of Operational Research Society 41, 1037–1048 (1990)
Poh, K., Quaddus, M.A., Chin, K.L.: MOLP-PC: an interactive decision support

environment for multiple objective linear optimization. In: Goh, M.C.T.L. (ed.) OR
Applications in Singapore. Operational Research Society of Singapore, pp. 25–39
(1995)

Pohl, R.F.: Cognitive illusions. Psychology Press, New York (2004)
Porac, J.F., Thomas, H.: Taxonomic mental models in competitor definition. Academy of

Management Review 15, 224–240 (1990)
Power, D.J.: Decision Support Systems Glossary. DSS Resources, World Wide Web

(1999), http://www.DSSResources.COM/glossary/
Power, D.J.: Decision support systems: concepts and resources for managers. Quorum

Books division Greenwood Publishing, Westport (2002)
Power, D.J., Kaparthi, S.: Building web-based decision support systems. Studies in

Informatics and Control 11, 291–302 (2002)

References 227

Quaddus, M.A.: Computer aided learning of multiple criteria decision making: an
integrated system and its effectiveness. Computers and Education 28, 103–111 (1997)

Quaddus, M.A., Holzman, A.G.: IMOLP: an interactive method for multiple objective
linear programs. IEEE Transactions on Systems, Man, and Cybernetics SMC-16, 462–
468 (1986)

Quaddus, M.A., Klass, D.: ALLOCATE: an interactive system for multi-criteria resource
allocation. In: Teo, L.C.K.L., Siew, P.F., Leung, Y.H., Jennings, L.S., Rehbock, V.
(eds.) Optimization Techniques and Application, Perth, Australia, pp. 471–478 (1998)

Radermacher, F.J.: Decision support systems - scope and potential. Decision Support
Systems 12, 257–265 (1994)

Rangel, R.A.P., Joaquin Pérez, O., Juan Javier González, B., Gelbukh, A., Sidorov, G.,
Myriam, J.R.M.: A domain independent natural language interface to databases capable
of processing complex queries. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H.
(eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 833–842. Springer, Heidelberg
(2005)

Rao, H.R., Lingaraj, B.P.: Expert systems in production and operations management:
classification and prospects. Interfaces 18, 80–91 (1988)

Rao, H.R., Sridhar, R., Narain, S.: An active intelligent decision support system -
architecture and simulation. Decision Support Systems 12, 79–91 (1994)

Reinartz, T., Iglezakis, I., Roth-Berghofer, T.: Review and restore for case-base
maintenance. Computational Intelligence 17, 214 (2001)

Reisbeck, C.K., Schank, R.C.: Inside case-based reasoning. Lawrence Erlbaum Associates,
Hillsdale (1989)

Reisman, S., Johnson, T.W., Mayes, B.T.: Group decision program: a videodisc-based
group decision support system. Decision Support Systems 8, 169–180 (1992)

Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
Resnick, M.L.: Situation awareness applications to executive dashboard design. Paper

presented at the Human Factors and Ergonomics Society 47th Annual Conference
(2003)

Rice, D.: Reverse logistics presents opportunities. Challenges, Services News 1, 1–13
(2002)

Richardson, H.L.: Logistics in reverse. Industry Week 4/16/2001 250, 37 (2001)
Rocha, C., Schwabe, D., Aragao, M.P.: A hybrid approach for searching in the semantic

web. In: Proceedings of the 13th international conference on World Wide Web, pp. 374–
383 (2004)

Rogers, D.S., Lambert, D.M., Croxton, K.L., Garcia-Dastugue, S.: The returns management
process. The International Journal of Logistics Management 13, 1–18 (2002)

Roth, D.: Introduction to syntactic parsing, November 18 (2004), http://l2r.cs.
uiuc.edu/~danr/Teaching/CS598-05/Lectures/Roxana.pdf (retrieved
November 20, 2007)

Rouse, W.B.: Need to know-information, knowledge, and decision making. IEEE
Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews 32,
282–292 (2002)

Rouse, W.B., Morris, N.M.: On looking into the black box: Prospects and limits in the
search for mental models. Georgia Institute of Technology, Center for Man-Machine
Systems Research, Atlanta (1985)

Rowley, J.: The reverse supply-chain impact of current trends. Logistics and Transport
Focus 2, 27–31 (2000)

228 References

Roy, R.: Problems and methods with multiple objective functions. Mathematical
Programming 1, 239–266 (1971)

Ruan, D., Liu, J., Carchon, R.: Linguistic assessment approach for managing nuclear
safeguards indicator information. Int. J. of Logistics Information Management 16, 401–
419 (2003)

Rughooputh, H.C.S., Ah King, R.T.F.: Environmental/economic dispatch of thermal units
using an elitist multi-objective evolutionary algorithm. Industrial Technology 1, 48–53
(2003)

Russo, E., Schoemaker, P.J.H.: Decision traps: The ten barriers to decision-making and
how to overcome them. Simon And Schuster, New York (1990)

Saaty, T.: The analytic hierarchy process. McGraw-Hill, New York (1980)
Sage, A.P.: Decision support systems engineering. Wiley, New York (1991)
Sakawa, M.: Interactive multiobjective decision making by the sequential proxy

optimization technique: SPOT. European Journal of Operational Research 9, 386–396
(1982)

Salas, E., Prince, C., Baker, D.P., Shrestha, L.: Situation awareness in team performance:
implications for measurements and training. Human Factors 37, 123–136 (1995)

Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Communications of the ACM 18, 613–620 (1975)

Salukvadze, M.: On the extension of solutions in problems of optimization under vector
valued criteria. Journal of Optimization Theory and Application 13, 203–217 (1974)

Sarter, N.B., Woods, D.D.: Situation awareness: a critical but ill-defined phenomenon. The
International Journal of Aviation Psychology 1(1), 45–57 (1991)

Sauter, V.L.: Decision Support Systems: An Applied Managerial Approach. John Wiley,
New York (1997)

Schickel-Zuber, V., Faltings, B.: OSS: a semantic similarity function based on hierarchical
ontologies. Paper presented at the International Joint Conference on Artificial
Intelligence, Hyderabad, India (2007)

Schmitt, N.: Naturalistic decision making in business and industrial organizations. In:
Klein, G. (ed.) Naturalistic decision making. Lawrence Erlbaum Associates, Mahwah
(1997)

Schubert, P., Dettling, W.: Extended web assessment method (EWAM) - evaluation of e-
commerce applications from the customer’s view-point. In: Proc. the 35th Annual
Hawaii International Conference on System Sciences (HICSS 2002), pp. 175–184
(2002)

Schwartz, A.E.: Group decision-making. The CPA Journal 64, 60–64 (1994)
Senge, P.M.: The fifth discipline. DouleDay and Currency, New York (1990)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton

(1976)
Shan, F., Xu, L.D.: A hybrid knowledge-based system for urban development. Expert

Systems with Applications 10, 157–163 (1996)
Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.: Past,

present, and future of decision support technology. Decision Support Systems 33, 111–
126 (2002)

Shin, W., Ravindran, A.: Interactive multiple objective optimization: survey I - continuous
case. Computers and Operations Research 18, 97–114 (1991)

Siau, K., Tan, X.: Improving the quality of conceptual modeling using cognitive mapping
techniques. Data & Knowledge Engineering 55, 343–365 (2005)

References 229

SignaText, Report builder (2008), http://www.signatext.com/products.html
(retrieved August 15, 2008)

Sikder, I.U., Gangopadhyay, A.: Design and implementation of a web-based collaborative
spatial decision support system: organizational and managerial implications. Information
Resources Management Journal 15, 33–47 (2002)

Simon, H.A.: The new science of management decision. Prentice-Hail, Englewood Cliffs
(1977)

Simon, H.A.: Rational decision making in business organizations. American Economic
Review 69, 493–513 (1979)

Singh, D.T.: Incorporating cognitive aids into decision support systems: the case of the
strategy execution process. Decision Support Systems 24, 145–163 (1998)

Singh, S.K., Watson, H.J., Watson, R.T.: EIS support for the strategic management process.
Decision Support Systems 33, 71–85 (2002)

Sol, H.G.: DSS: buzz word or OR challenge. European Journal of Operational Research 22,
1–8 (1985)

Sol, H.G.: Conflicting experiences with DSS. Decision Support Systems 3, 203–211 (1987)
Sonnenwald, D.H., Maglaughlin, K.L., Whitton, M.C.: Designing to support situation

awareness across distances: an example from a scientific collaboratory. Information
Processing & Management 40, 989–1011 (2004)

Spangler, W.: The role of artificial intelligence in understanding the strategic decision-
making process. IEEE Transaction on Knowledge and Data Engineering 3, 145–159
(1991)

Sprague, R.H.: A framework for the development of decision support systems.
Management Information System Quarterly 4, 1–26 (1980)

Sprague, R.H.: DSS in context. Decision Support Systems 3, 197–202 (1987)
Sprague, R.H., Watson, H.J.: Decision Support Systems: Putting Theory into Practice, 3rd

edn. Prentice-Hall, London (1993)
Sridhar, S.: Decision support using the intranet. Decision Support Systems 23, 19–28

(1998)
Stanners, M., French, H.T.: An empirical study of the relationship between situation

awareness and decision making: DSTO Systems Sciences Laboratory (2005)
Sternberg, R.J.: Cognitive psychology Belmont. Thomson/Wadsworth, CA (2006)
Steuer, R.E.: An interactive multiple objective linear programming procedure. TIMS

Studies in the Management Sciences 6, 225–239 (1977)
Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Application. John

Willy and Sons, New York (1986)
Steuer, R.E., Choo, E.U.: An interactive weighted Tchebycheff procedure for multiple

objective programming. Mathematical Programming 26, 326–344 (1983)
Stewart, T.J.: A multi-criteria decision support system for R&D project selection. Journal

of the Operational Research Society 42, 17–26 (1991)
Stylios, C.D., Georgopoulos, V.C., Malandraki, G.A., Chouliara, S.: Fuzzy cognitive map

architectures for medical decision support systems. Applied Soft Computing 8, 1243–
1251 (2008)

Sun, M., Steuer, R.E.: InterQuad: an interactive quad tree based procedure for solving the
discrete alternative multiple criteria. European Journal of Operational Research 89, 462–
472 (1996)

Sutcliffe, K.M., Weber, K.: The high cost of accurate knowledge. Harvard Business
Review 81, 74–82 (2003)

230 References

Te’eni, D., Ginzberg, M.J.: Human-computer decision systems: the multiple roles of DSS.
European Journal of Operational Research 50, 127–139 (1991)

Tecle, A., Duckstein, L.: A Procedure for Selecting MCDM Techniques for Forest
Resource Management. Springer, New York (1992)

Tecle, A., Shrestha, B.P., Duckstein, L.: A multiobjective decision support system for
multiresource forest management. Group Decision and Negotiation 7, 23–40 (1998)

Temperley, D., Sleator, D.: Parsing English with a link grammar. In: Third International
Workshop on Parsing Technologies (1993)

Theodorson, G.A., Theodorson, A.G.: A Modern Dictionary of Sociology. Harper and
Row, New York (1969)

Teodorescu, H.N., Mlynek, D., Kandel, A., Zimmermann, H.J.: Intelligent Systems and
Interfaces. Springer, Boston (2000)

Travica, B., Cronin, B.: The ARgo: a strategic information system for group decision
making. International Journal of Information Management 15, 223–236 (1995)

Turban, E.: Implementing decision support system: a survey. In: Proc. The 1996 IEEE
International Conference on Systems, Man and Cybernetics, Beijing, China (1996)

Turban, E., Aronson, J.E.: Decision Support Systems and Intelligent Systems. Pearson
Education India, London (1998)

Turban, E., Aronson, J.E., Liang, T.P.: Decision support systems and intelligent systems,
7th edn. Pearson prentice Hall, New Jersey (2005)

Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. The Knowledge
Engineering Review 13, 31–89 (1998)

Venkatachalam, A.R., Sohl, J.E.: An intelligent model selection and forecasting system.
Journal of Forecasting 18, 167–180 (1999)

Venkatesh, P., Gnanadass, R., Padhy, N.P.: Comparison and application of evolutionary
programming techniques to combined economic emission dispatch with line flow
constraints. IEEE Transactions on Power Systems 18, 688–697 (2003)

Vetschera, R.: MCView: an integrated graphical system to support multi-attribute decision.
Decision Support Systems 11, 363–371 (1994)

Vidulich, M.A.: The role of scope as a feature of situation awareness metrics. In:
International Conference on Experimental Analysis and Measurement of Situation
Awareness. Embry-Riddle Aeronautical University Press, FL (1995)

Vogel, D.R., Nunamaker, J.F.: Group decision support system impact: multi-
methodological exploration. Information and Management 18, 15–28 (1990)

Voogd, H.: Multicriteria Evaluation for Urban and Regional Planning, Pion, London (1983)
Voss, J.F., Post, T.A.: On the solving of ill-structured problems. In: Chi, M., Glaser, R.,

Farr, M. (eds.) The nature of expertise, pp. 271–295. Lawrence Erlbaum Associates,
New Jersey (1988)

Walters, B.A., Jiang, J.J., Klein, G.: Strategic information and strategic decision making.
In: The EIS/CEO interface in smaller manufacturing companies Information &
Management, vol. 40, pp. 487–495 (2003)

Wang, H.F., Shen, S.Y.: Group decision support with MOLP applications. IEEE
Transactions on Systems, Man, and Cybernatics 19, 143–153 (1989)

Wang, K.J., Chien, C.F.: Designing an internet-based group decision support system.
Robotics and Computer-Integrated Manufacturing 19, 65–77 (2003)

Watson, S.R., Buede, D.M.: Decision Synthesis: The Principles and Practice of Decision
Analysis. Cambridge University Press, Cambridge (1987)

References 231

Weck, M., Klocke, F., Schell, H., Rüenauver, E.: Evaluating alternative production cycles
using the extended fuzzy AHP method. European Journal of Operational Research 100,
351–366 (1997)

Weistroffer, H.R.: An interactive goal-programming method for nonlinear multiple-criteria
decision-making problems. Computers & Operations Research 10, 311–320 (1983)

Welter, T.R.: Tools at the top. Industry Week 237, 41–44 (1988)
Wikimedia. Regular expression (2008, July 24, 2008), http://en.wikipedia.org/

wiki/Regular_expression (retrieved July 25, 2008)
Wong, Z., Aiken, M.: Automated facilitation of electronic meetings. Information &

Management 41, 125–134 (2003)
Woods, W.A.: Progress in natural language understanding: An application to Lunar

geology. In: AFIPS Conference 1973, Arlington (1973)
Yadav, S.B., Khazanchi, D.: Subjective understanding in strategic decision making: An

information systems perspective. Decision Support Systems 8(1), 55–71 (1992)
Yager, R.R.: Higher structures in multi-criteria decision making. International Journal of

Man-Machine Studies 36, 553–570 (1992)
Yager, R.R.: Non-numeric multi-criteria multi-person decision making. International

Journal of Group Decision Making and Negotiation 2, 81–93 (1993)
Yager, R.R.: Decision making under uncertainty with ordinal information. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 7, 483–500 (1999a)
Yager, R.R.: A game theoretic approach to decision making under uncertainty. International

Journal of Intelligent Systems in Accounting, Finance and Management 8, 131–143
(1999b)

Yager, R.R.: Including decision attitude in probabilistic decision making. International
Journal of Approximate Reasoning 21, 1–21 (1999c)

Yager, R.R.: On the valuation of alternatives for decision making under uncertainty.
International Journal of Intelligent Systems 17, 687–707 (2002)

Yager, R.R.: A framework for multi-source data fusion. Information Sciences 163, 175–200
(2004a)

Yager, R.R.: Modeling prioritzed multi-criteria decision making. IEEE Transactions on
Systems, Man and Cybernetics Part B 34, 2386–2404 (2004b)

Yager, R.R., Kikuchi, S.: On the role of anxiety in decisions under possibilistic uncertainty.
IEEE Transactions on Systems, Man and Cybernetics. PartB: Cybernetics 34, 1224–
1234 (2004)

Yakowitz, D.S., Hipel, K.W.: Multiple objective decision making for lokahi (balance) in
environmental management. Applied Mathematics and Computation 83, 97–115 (1997)

Yakowitz, D.S., Stone, J.J., Lane, L.J., Heilman, P., Masterson, J., Abolt, J., Imam, B.: A
decision support system for evaluating the effects of alternative farm management
systems on water quality and economics. Water Science & Technology 28, 47–54
(1993)

Yau, C., Davis, T.: Using multi-criteria analysis for tenant selection. Decision Support
Systems 12, 233–244 (1994)

Yoon, K., Hwang, C.L.: Multiple Attribute Decision Making: An Introduction. Sage
Publications, London (1995)

You, Y., Pekkola, S.: Meeting others - supporting situation awareness on the WWW.
Decision Support Systems 32, 71–82 (2001)

Zachary, W.: A cognitively based functional taxonomy of decision support techniques.
Human-Computer Interaction 2, 25–63 (1986)

232 References

Zachary, W.: A cognitively-based functional taxonomy of decision support techniques.
ACM SIGCHI Bulletin 19, 72–73 (1987)

Zadeh, L.A.: A contribution to the theory of nonlinear systems. J. Franklin Institute 255,
387–408 (1953)

Zadeh, L.A.: A theory of approximate reasoning. In: Hayes, J., Michie, D., Mikulich, L.I.
(eds.) Machine Intelligence 9, pp. 149–194. Halstead Press, New York (1979b)

Zadeh, L.A.: Knowledge representation in fuzzy logic. IEEE Trans. on Knowledge and
Data Engineering 1, 89–100 (1989)

Zadeh, L.A., Desoer, C.A.: Linear System Theory-The State Space Approach. McGraw-
Hill Book Co., New York (1963)

Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill, New York (1982)
Zhang, W., Hill, R.: A template-based and pattern-driven approach to situation awareness

and assessment in virtual humans. In: Proc. the Fourth International Conference on
Autonomous Agents, Spain, pp. 116–123 (2000)

Zimmermann, H.-J.: Fuzzy sets, decision making and expert systems. Kluwer Academic
Publishers, Boston (1987)

Zimmermann, H.J.: Interactive decision support for semi-structured mathematical
programming models. In: Mitra, G. (ed.) Mathematical Models for Decision Support,
pp. 307–319. Springer, Heidelberg (1988)

Zimmermann, H.J., Witte, E.: Empirical Research on Organisational Decision Making.
North Holland, Amsterdam (1986)

Ziont, S., Wallenius, J.: An interactive programming method for solving the multiple
criteria problem. Management Science 22, 652–663 (1975)

Abbreviations

ADVP Adverb Phrase
AHP Analytic Hierarchy Process
API Application Programming Interface
AW Adventure Works
AWDW Adventure Works Data Warehouse
AWO Adventure Works Ontology
BAM Business Activity Monitoring
BDT Behavioral Decision Theory
BI Business Intelligence
CAL Class Abstract Level
CBR Case Based Reasoning
CCP Context Coverage Point
CDDP Cognition-Driven Decision Process
CDM Classical Decision Making
CDS Cognitive Decision Support
CIO Chief Information Officer
CP Context Point
CPP Context Position Point
DBMS Database Management System
DSS Decision Support System
DW Data Warehouse
EB Experience Base
EM Experience Management
ESS Executive Support System
ETL Extracting Transforming Loading
EWS Early Warning System
GDSS Group Decision Support System
GSS Group Support System
GUI Graphical User Interface
ICSP Inverse Context Specificity Point
IDA Intelligence Data Analysis
IDC International Data Corporation
IDSS Intelligent Decision Support System
IN Information Need

234 Abbreviations

IR Information Retrieval
IS Information System
JDM Judgment (and) Decision Making
KN Knowledge Need
KPIs Key Performance Indicators
MADM Multi Attribute Decision Making
MBMS Model-base Management System
MCDM Multi-Criteria Decision Making
MDR Multidimensional Data Reporting
MDX Multidimensional Expressions
MODSS Multi-Objective Decision Support System
MOLAP Multidimensional Online Analytical

 Processing
NDM Naturalistic Decision Making
NLIDB Natural Language Interface to Data Base
NLP Natural Language Processing
NP Noun Phrase
ODM Organizational Decision Making
OLAP Online Analytical Processing
OLTP Online Transaction Processing
OM Ontology Management
POS Part of Speech
PP Prepositional Phrase
Q/A Question-Answering
QB Query Builder
RASP Robust Accurate Statistical Parsing
RDBMS Relational Database Management System
RDR Relational Data Reporting
RPD Recognition-Primed Decision
SA Situation Awareness
SAA Situation Awareness Annotating
SAM Situation Awareness Management
SAP Situation Awareness Parsing
SD Standard Deviation
SP Situation Presentation
SPRINT Strategic Plan and Resource Integration
SQL Structured Query Language
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
UI User Interface
VP Verb Phrase

Index

abstract class 81, 82, 84, 101, 105, 117,
118, 160, 162, 166

axis 123, 135

business intelligence 19, 28

case-based reasoning 11, 17, 43
causal relationship 34, 82, 87, 88, 89, 91,

93, 95, 96, 124, 137, 147, 151, 212
cause concept 87, 92, 93, 124, 126
child class 80, 106, 109, 146
chunking 46
class abstract level 117
class graph 77, 79, 80, 83, 84, 85, 86, 96,

129, 158
class label 80, 89, 106, 107, 108, 111, 145
class similarity 85, 86, 94
class tree 77, 79, 80, 81, 82, 83, 84, 85, 86,

89, 96, 106, 116, 117, 127, 129,
146, 158, 162, 165, 166, 182, 212

class trigger 105, 106, 107, 108, 109, 110,
111

class type 81
classical decision making 3
cognition 11, 12, 18, 31, 32, 35, 36, 39, 41,

42, 43, 44, 50, 53, 55, 57, 58, 63,
70, 71, 73, 77, 101, 102, 103, 138,
156, 162, 163, 164, 165, 170, 171,
177

cognition-driven decision process 18, 53,
57, 58, 71, 73, 77, 156, 171

cognitive decision support 19, 29, 42, 43,
44, 53, 56, 58, 73, 176, 177

cognitive lens support system 43
cognitive map 12, 34, 42, 43, 77, 86, 87,

88, 89

cognitive process 5, 8, 12, 18, 31, 40, 44,
53, 54, 55, 56, 60, 62, 69, 176, 177

cognitive psychology 29, 31, 55
context coverage point 114
context point 101, 114, 167
context position point 114
context uncertainty 112, 113
cube 24, 25, 68, 82, 83, 84, 119, 121, 123,

126, 127, 131, 135, 138, 145, 153,
158, 171, 179, 182, 207, 208, 212

cue 23, 64, 69, 85, 91, 92, 93, 94, 95, 96,
124, 126, 127, 137, 147, 150, 151,
191, 213

cue map 91, 96, 213

data warehouse 7, 9, 10, 11, 15, 18, 19, 20,

21, 22, 28, 49, 57, 58, 61, 67, 68,
82, 84, 85, 92, 101, 103, 119, 121,
124, 126, 130, 131, 134, 137, 139,
143, 144, 145, 150, 155, 157, 158,
160, 171, 179, 183, 189, 196, 200,
205, 209, 212, 213, 214

data warehouse object 83, 84, 85
data warehouse system 15, 21
decision cycle 71, 72, 73, 149, 156, 171,

172, 173, 183, 193, 194, 195, 198,
199, 202, 203, 210

decision making model 10, 31
decision situation 6, 9, 13, 17, 20, 29, 31, 32,

33, 34, 35, 36, 37, 40, 41, 49, 50,
54, 56, 57, 60, 61, 62, 63, 66, 67,
68, 69, 70, 71, 73, 91, 92, 95, 96,
124, 126, 127, 137, 151, 156, 158,
171, 172, 174, 176, 177, 179, 182,
183, 186, 192, 193, 195, 198, 199,
202, 203, 206, 210, 212, 213, 214

236 Index

decision support system 3, 9, 15, 18, 53,
92, 171, 214

dimension 21, 22, 23, 24, 25, 26, 27, 29, 82,
84, 119, 121, 122, 123, 126, 127,
131, 132, 134, 135, 136, 138, 145,
153, 157, 171, 172, 173, 179, 207

dimension table 21, 82, 121, 126, 127,
134, 157, 179

domain ontology 18, 58, 63, 68, 77, 79, 84,
98, 101, 144, 156, 213, 214

effect concept 87, 93, 124, 126
executive support system 10, 39, 44
experience base 67, 71, 82, 89, 90, 91, 94,

95, 96, 119, 124, 126, 127, 137,
139, 147, 157, 158, 171, 179, 182,
191, 212, 214

experience management 56
experience map 77, 82, 88, 89, 90, 91, 93,

124, 147, 182, 212

FACETS 18, 49, 50, 85, 90, 135, 138, 143,
144, 145, 147, 148, 149, 155, 156,
157, 158, 159, 160, 166, 171, 172,
173, 174, 175, 176, 177, 179, 182,
183, 184, 187, 188, 189, 190, 191,
194, 195, 199, 203, 210, 212, 213,
214

fuzzy cognitive map 43

general class 81, 82, 84, 106, 117, 118,
165, 166

global context 65, 66, 67
graph similarity 86
graphical user interface 23, 69, 137

ill-structured decision problems 4, 9, 17,
18, 29, 40, 42

indirect cause 87
information need 44, 57, 59, 60, 61, 62,

63, 67, 68, 70, 71, 73, 84, 119
information retrieval 59, 60, 67, 68, 70, 71,

73, 77, 145, 159, 176
information type 97, 99, 101, 102, 103,

104, 118, 150
inverse context specificity point 114

key performance indicator 23
knowledge need 57, 60, 61, 62, 63, 66, 67,

70, 71, 73, 78, 94, 95, 118, 124,
137, 159

knowledge retrieval 11, 60, 62, 67, 70, 73,
95, 96, 124, 126, 150

knowledge reuse 44, 176

linkage 97, 105
literal group 100
local context 65, 66, 67, 94, 97, 98, 101,

114, 116, 117, 118, 124, 150, 159,
160, 167, 168, 170, 171

management SA 55
mediated causal relationship 87, 91
member expression 121, 122, 131, 132,

134, 135
mental model 31, 33, 34, 36, 37, 39, 41,

42, 43, 44, 50, 53, 54, 55, 56, 57,
61, 66, 69, 71, 72, 73, 86, 88, 146,
156, 177

meta class 81, 82, 86, 99, 100
meta instance 82, 100, 101, 102, 103, 104,

106, 109, 117, 118, 125, 129, 134,
159, 160, 162, 163, 165, 170

metadata management 20

native context 65, 66, 114, 115, 116, 117,

159
natural language interface to database 42,

44
natural language parsing 47
natural language processing 12, 44, 45,

47, 97
naturalistic decision making 3, 31, 35, 53
navigation knowledge 62, 64, 67, 68, 69,

70, 71, 72, 92, 95, 96, 127, 128,
131, 136, 137, 139, 143, 144,
147, 151, 156, 173, 174, 175,
176

numeric group 100

online analytical processing 21, 23 121
online transaction processing 20
ontology 44, 54, 64, 67, 77, 78, 79, 80, 82,

83, 84, 85, 86, 89, 96, 98, 100,
103, 105, 106, 107, 109, 111, 116,
119, 124, 125, 126, 127, 128, 131,
134, 139, 144, 145, 157, 158, 160,
171, 179, 182, 212, 214

operational SA 55

Index 237

parent class 80, 145
part of speech 45, 46
pattern matching 35, 36, 102
plain parsing 100, 101, 105, 112, 118, 160,

162
precision 159, 160, 162, 163, 164, 165,

166, 167, 168, 170, 172, 173
property-share relationship 78, 79, 83, 86,

96, 124, 125, 127, 129, 134, 158,
182, 212

recall 15, 42, 55, 57, 151, 159, 160, 162,

163, 165, 172, 173, 177
reference class 112, 113
reference property 105, 112, 113
regular expression 100, 102, 103
relational database management system

21, 82
risk assessment 20

SA sentence 64, 65, 66, 67, 84, 97, 100,

101, 105, 109, 110, 111, 112, 113,
114, 116, 117, 118, 124, 148, 149,
159, 160, 162, 163, 167, 185, 195,
200, 204

SA triple 65, 66, 67, 84, 97, 98, 101, 104,
105, 109, 112, 113, 114, 118, 124,
125, 127, 129, 130, 131, 132, 134,
144, 150, 160, 161, 169, 170, 171

scorecard 23, 27
semantic parsing 81, 101, 105, 112, 114,

117, 160
semantics extension 106
semi-structured decision problem 4, 37
set 4, 6, 7, 8, 9, 11, 12, 13, 17, 18, 19, 20,

24, 26, 27, 31, 43, 44, 45, 47, 49,
55, 63, 64, 66, 67, 78, 80, 82, 83,
87, 89, 91, 93, 94, 95, 96, 98, 99,
102, 103, 104, 105, 107, 108, 118,
120, 121, 122, 123, 124, 127, 130,
131, 132, 134, 135, 144, 158, 160,
171, 172

situation assessment 32, 33, 44, 55, 56, 57,
62, 67, 68, 69, 70, 71, 72, 151,
156, 159

situation awareness 4, 31, 41, 50, 53, 173,
177, 195, 200, 204, 214

situation information 50, 55, 56, 57, 60,
61, 62, 63, 67, 68, 69, 70, 72, 73,
119, 124, 126, 130, 136, 137, 143,
144, 145, 148, 149, 150, 151, 155,
156, 159, 171, 172, 173, 174, 175,
176, 177, 183, 193, 199, 203, 209,
210, 213, 214

situation knowledge 60, 61, 63, 67, 68, 70,
175

situation presentation 18, 42, 62, 67, 69,
70, 73, 92, 95, 124, 126, 136, 137,
139

situation recognition 36
situation retrieval 33, 57, 59, 60, 61, 62,

63, 64, 71, 73, 92, 159, 177
strategic SA 55
structured decision problem 4, 9, 17, 18,

29, 37, 40, 42
structured query language 119
syntactic distance 113
syntactic parser 45, 47, 48, 97
syntactic parsing 100

thinking support 55, 56
tree similarity 86
triggering rule 105, 108, 109, 110, 111
tuple 64, 87, 122, 123, 134, 135

uncertainties of SA triple 105, 112, 114,

150
unstructured decision problem 4

view 3, 5, 15, 19, 24, 25, 29, 31, 42, 43,

64, 65, 66, 89, 97, 104, 112, 113,
121, 129, 147, 150

view uncertainty 112

wording 65, 104, 112, 129, 150, 160

	Part I Concepts
	Decision Making and Decision Support Systems
	Decision Making and Decision Makers
	Decision Problem Classification
	Decision-Making Process
	Decision Support Systems
	The Concept
	Characteristics
	Types

	Decision Support Techniques
	Optimization
	Multiple Criteria Decision Making
	Data Mining
	Case-Based Reasoning
	Decision Tree

	What’s New in This Book?
	The Decision Problems Oriented in This Book
	New Models and Techniques for Ill-Structured Decision Problems

	Business Intelligence
	What Is Business Intelligence?
	The Architecture of a Business Intelligence System
	Analytics of Business Intelligence
	Commercial Tools
	SAS Business Intelligence
	IBM Cognos Business Intelligence
	SAP BusinessObjects Business Intelligence

	Limitations
	Summary

	Managerial Cognition
	The Concept of Cognition
	Situation Awareness
	Mental Models
	Naturalistic Decision Making
	Summary

	Cognition in Business Decision Support Systems
	Complex Nature of Business Decision Making
	Cognition in Business Decision Making
	Cognition Oriented Information Systems
	Cognitive Decision Support Systems
	Case-Based Reasoning Systems
	Natural Language Interfaces to Database
	Summary

	Part II Models
	Cognition-Driven Decision Processes
	Essentials of Cognition-Driven Decision Making
	The Conceptual Framework of Cognitive Decision Support
	Cognition-Driven Decision Processes
	User Centered Decision Processes

	The Cognition-Driven Decision Process Model
	Situation Retrieval
	Generating Navigation Knowledge
	Situation Presentation
	Situation Awareness Updating
	Decision Generation
	The Decision Cycle

	Summary

	Part III Techniques
	Domain Knowledge Representation and Processing
	Ontology
	Basics of Ontology
	Property-Share Relationships
	Class Tree
	Class Graph
	Role of the Ontology
	Synonyms
	Class Similarity

	Experience
	Experience Representation
	Experience Elicitation
	Creating an Experience Base
	Cues
	Extracting Cues
	Knowledge Retrieval
	Generating Navigation Knowledge

	Summary

	Natural Language Processing for Situation Awareness
	Link Grammar Parser
	Information Types
	The Process of Situation Awareness Parsing
	SA Plain Parsing: Instance Recognition
	Numeric Meta Instances
	Literal Meta Instances
	Reference Properties

	SA Semantic Parsing: Class Inferring
	Class Trigger Construction
	Triggering Rules
	Reducing Uncertainties of SA Triples

	Local Context Determination
	Context Position Points
	Context Coverage Points
	Inverse Context Specificity Points
	Local Contexts

	Summary

	Part IV Systems and Applications
	Data Warehouse Query Construction and Situation Presentation
	Query Languages for Data Warehouses
	Structured Query Language
	Multidimensional Expressions

	Framework of Query Construction and Situation Presentation
	Determining Query Data Sources
	Constructing SQL Queries
	Constructing MDX Queries
	Navigation-Knowledge-Guided Situation Presentation
	Data Analysis and Situation Presentation
	Summary

	A Cognition-Driven Decision Support System: FACETS
	The Development Environment
	The Architecture of FACETS
	Subsystems of FACETS
	Data Warehouse System
	Ontology Management
	Experience Management
	Situation Awareness Management
	Situation Awareness Parsing
	Situation Awareness Annotating
	Query Builder
	Situation Presentation

	The Cognition-Driven Decision Process Based on FACETS
	Summary

	Evaluation of Algorithms and FACETS
	Experiment Preparation
	Data Warehouse
	Ontology
	Experience Base
	Subjects

	Experiment One: Algorithm Evaluation
	Experiment Design
	Meta Instance Recognition
	Class Inferring
	Local Context Determination
	SA Triple Generation
	Optimization Analysis

	Experiment Two: System Evaluation
	Experiment Design
	Query Construction Evaluation
	FACETS Evaluation

	Summary

	Application Cases of FACETS
	Application CaseⅠ: Business
	Organization Background
	The Ontology
	The Experience Base
	Decision Situation
	Decision Process
	Final Decision

	Application Case II: Public Health
	Summary

