Database Management
Systems

Third
tdition

.....
Lok
n 1}

i .,-_::_..:__1-' F

--

Ramakrishnah * Gehrke

It’s your choicel

New Modular Organization!

Applications emphasis: A course that covers the principles of database systems and emphasizes
how they are used in developing data-intensive applications. '

R e %
s AL PR

x> A course that has a strong systems emphasis and assumes that students have
good programming skills in C and C++.

Hybrid course: Modular organization allows you to teach the course with the emphasis you want.
-«— = Dependencies

2
ER Model

1
Introduction

Conceptual Design

3
. . 5
Relational Model Relational Algebra
SQLDDL and Calculus SQL DML

11 6 7
Database Database-Backed
Application Internet
Development Applications
9 10 11

Data Storage

Tree Indexes Hash Indexes

13
External Sorting

15
A Typical
Relational
Optimizer

14
FEvaluation of

Relational
Operators

18
Crash Recovery

19
Schema
Refinement, FDs,
Normalization

Physical DB
Design, Tuning

ﬁ\ppiscamoﬁ

21
Security and
Authorization

Virj

Parallel and
Distributed DBs

Object-Database
Systems

Advanced 26

Data Mining

27

Infonnation Retrieval
and XML Data
Management

24
Deductive Databases

Data Warehousing and
Decision Support

28
Spatial Databases

29
Further Reading

DATABASE MANAGEMENT
SYSTEMS

DATABASE MANAGEMENT
SYSTEMS

Third Edition

Raghu Ramakrishnan
University of Wisconsin

Madison, Wisconsin, USA

Johannes Gehrke
Cornell University

Ithaca, New York, USA

G

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St Louis
Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

McGraw-Hill Higher Education 22

A Division of The McGraw-Hill Companies

DATABASE MANAGEMENT SYSTEMS, THIRD EDITION
International Edition 2003

Exclusive rights by McGraw-Hill Education (Asia), for manufacture and export. This
book cannot be re-exported from the country to which it is sold by McGraw-Hill. The
International Edition is not available in North America.

Published by McGraw-Hili, a business unit of The McGraw-Hili Companies, Inc., 1221
Avenue of the Americas, New York, NY 10020. Copyright © 2003, 2000, 1998 by The
McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written consent of The McGraw-Hill Companies, Inc.,
including, but not limited to, in any network or other electronic storage or transmission,
or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to
customers outside the United States.

10 09 08 07 06 05 04 03
20 09 08 07 06 05 04
CTF BJE

Library of Congress Catal oging-in-Publication Data
Ramakrishnan, Raghu
Database management systems / Raghu Ramakrishnan, Johannes Gehrke.—3rd ed.
p. cm.
Includes index.
ISBN 0-07-246563-8-1SBN 0-07-115110-9 (ISE)
1. Database management. 1 Gehrke, Johannes. Il. Title.
QA76.9.D3 R237 2003
005.74-—dc21 2002075205
CIP

When ordering thistitle, use ISBN 0-07-123151-X
Printed in Singapore

www.mhhe.com

To Apu, Ketan, and Vivek with love

To Keiko and Elisa

CONTENTS

PREFACE

Part]| FOUNDATIONS

1

OVERVIEW OF DATABASE SYSTEMS
1.1 Managing Data
1.2 A Historical Perspective
1.3 File Systems versus a DBMS
1.4 Advantages of a DBMS
15 Describing and Storing Data in a DBMS
151 The Relational Model
152 Levels of Abstraction in a DBMS
15.3 Data Independence
1.6 Queriesin a DBMS
1.7 Transaction Management
1.7.1 Concurrent Execution of Transactions
1.7.2 Incomplete Transactions and System Crashes
1.7.3 Points to Note
1.8 Structure of a DBMS
1.9 People Who Work with Databases
1.10 Review Questions

INTRODUCTION TO DATABASE DESIGN
21 Database Design and ER Diagrams
211 Beyond ER Design
2.2 Entities, Attributes, and Entity Sets
2.3 Relationships and Relationship Sets
2.4 Additional Features of the ER Model
2.41 Key Constraints
2.4.2 Participation Constraints
243 Weak Entities
2.4.4 Class Hierarchies
245 Aggregation

Vil

XXV

© o o » W

10
11
12
15
16
17
17
18
19
19
21

25
26
27
28

32
32
34

37
39

VIl DATABASE MANAGEMENT SYSTEMS
25 Conceptual Design With the ER Model 40
251 Entity versus Attribute 41

252 Entity versus Relationship 12

2.5.3 Binary versus Ternary Relationships 43

2.54 Aggregation versus Ternary Relationships 45

2.6 Conceptual Design for Large Enterprises 46
2.7 The Unified Modeling Language 47
28 Case Study: The Internet Shop 49
281 Requirements Analysis 49

2.8.2 Conceptual Design 50

29 Review Questions 51
3 THERELATIONAL MODEL 57
31 Introduction to the Relational Model 59
3.1.1 Creating and Modifying Relations Using SQL 62

3.2 Integrity Constraints over Relations 63
321 Key Constraints 64

3.2.2 Foreign Key Constraints 66

3.2.3 General Constraints 68

3.3 Enforcing Integrity Constraints 69
3.3.1 Transactions and Constraints 72

3.4 Querying Relational Data 73
3.5 Logica Database Design: ER to Relational 74
35.1 Entity Setsto Tables I6)

3.5.2 Relationship Sets (without Constraints) to Tables 76

3.5.3 Translating Relationship Sets with Key Constraints 78

3.5.4 Translating Relationship Sets with Participation Constraints 79

3.5.5 Translating Weak Entity Sets 82

3.5.6 Translating Class Hierarchies 83

3.5.7 Translating ER Diagrams with Aggregation %

3.5.8 ERto Relational: Additional Examples 85

:36 Introduction to Views 86
3.6.1 Views, Data Independence, Security 87

3.6.2 Updateson Views 88

37 Destroying/Altering Tables and Views 91
:38 Case Study: The Internet Store 92
:39 Review Questions 94
4 RELATIONAL ALGEBRA AND CALCULUS 100
41 Preliminaries 101
4.2 Relational Algebra 102
421 Selection and Projection 103

4.2.2 Set Operations 104

Contents

4.3

4.4
45

51

52

53
5.4

55

5.6

5.7

5.8

5.9

5.10

4.2.3 Renaming

4.2.4 Joins

425 Division

426 1lore Examples of Algebra Queries
Relational Calculus

431 Tuple Relational Calculus

4.3.2 Domain Relational Calculus
Expressive Power of Algebra and Calculus
Review Questions

SQL: QUERIES, CONSTRAINTS, TRIGGERS

Overview

5.1.1 Chapter Organization
The Form of a Basic SQL Query

5.2.1 Examples of Basic SQL Queries

5.2.2 Expressions and Strings in the SELECT Command

UNION, INTERSECT, and EXCEPT

Nested Queries

5.4.1 Introduction to Nested Queries

5.4.2 Correlated Nested Queries

5.4.3 Set-Comparison Operators

5.4.4 More Examples of Nested Queries
Aggregate Operators

551 The GROUP BY and HAVING Clauses
5.5.2 More Examples of Aggregate Queries
Null Values

5.6.1 Comparisons Using Null Values

5.6.2 Logica Connectives AND, OR, and NOT
5.6.3 Impact 011 SQL Constructs

5.6.4 Outer Joins

5.6.5 Disalowing Null Values

Complex Integrity Constraints in SQL

5.7.1 Constraints over a Single Table

5.7.2 Domain Constraints and Distinct Types
5.7.3 Assertions: ICs over Several Tables
Triggers and Active Databases

5.8.1 Examples of Triggers in SQL

Designing Active Databases

59.1 Why Triggers Can Be Hard to Understand
5.9.2 Constraints versus Triggers

5.9.3 Other Uses of Triggers

Review Questions

106
107
109
110
116
117
122
124
126

130

131
132
133
138
139
141
144
145
147
148
149
151
154
158
162
163
163
163
164
165
165
165
166
167
168
169
171
171
172
172
173

DATABASE MANAGEMENT SYSTEMS

PartIl APPLICATION DEVELOPMENT

6

DATABASE APPLICATION DEVELOPMENT

6.1 Accessing Databases from Applications
6.1.1 Embedded SQL
6.1.2 Cursors
6.1.3 Dynamic SQL
6.2 An Introduction to JDBC
6.2.1 Architecture
6.3 JDBC Classes and Interfaces
6.3.1 JDBC Driver Management
6.3.2 Connections
6.3.3 Executing SQL Statements
6.34 ResultSets
6.3.5 Exceptions and Warnings
6.3.6 Examining Database Metadata
6.4 SQLJ
6.4.1 Writing SQLJ Code
6.5 Stored Procedures
6.5.1 Creating a Simple Stored Procedure
6.5.2 Calling Stored Procedures
6.5.3 SQL/PSM
6.6 Case Study: The Internet Book Shop
6.7 Review Questions

INTERNET APPLICATIONS
7.1 Introduction
7.2 Internet Concepts
7.21 Uniform Resource ldentifiers
7.22 The Hypertext Transfer Protocol (HTTP)
7.3 HTML Documents
74 XML Documents
7.4.1 Introduction to XML
742 XML DTDs
7.4.3 Domain-Specific DTDs
75 The Three-Tier Application Architecture
751 Single-Tier and Client-Server Architectures
752 Three-Tier Architectures
7.5.3 Advantages of the Three-Tier Architecture
7.6 The Presentation Layer
76.1 HTML Forms
7.6.2 JavaScript
7.6.3 Style Sheets

183

185
187
187
189
194
194
196
197
197
198
200
201
203
204
206
207
209
209
210
212
214
216

220
220
221
221
223
226
227
228
231
234
236
236
239
241
242
242
245
247

Contents

7.7 The Middle Tier
7.71 CGIl: The Common Gateway Interface
7.7.2 Application Servers
7.7.3 Servlets
7.74 JavaServer Pages
7.75 Maintaining State
7.8 Case Study: The Internet Book Shop
7.9 Review Questions

Part Il STORAGE AND INDEXING

8

OVERVIEW OF STORAGE AND INDEXING

8.1 Dataon External Storage
8.2 File Organizations and Indexing
8.21 Clustered Indexes
8.2.2 Primary and Secondary Indexes
8.3 Index Data Structures
8.3.1 Hash-Based Indexing
8.3.2 Tree-Based Indexing
8.4 Comparison of File Organizations
84.1 Cost Model
8.4.2 Heap Files
8.4.3 Sorted Files
8.4.4 Clustered Files
8.4.5 Heap File with Unclustered Tree Index
8.4.6 Heap File With Unclustered Hash Index
8.4.7 Comparison of I/O Costs
8.5 Indexes and Performance Tuning
8.5.1 Impact of the Workload
85.2 Clustered Index Organization
8.5.3 Composite Search Keys
85.4 Index Specification in SQL:1999
8.6 Review Questions

STORING DATA: DISKSAND FILES
91 The Memory Hierarchy

9.1.1 Magnetic Disks

9.1.2 Performance Implications of Disk Structure
9.2 Redundant Arrays of Independent Disks

9.21 Data Striping

9.2.2 Redundancy

9.23 Levels of Redundancy

9.2.4 Choice of RAID Levels

x1

251
251
252
254
256
258
261
264

271

273
274
275
277
277
278
279
280
282
283
284
285
287
288
289
290
291
292
292
295
299
299

304
305
306
308
309
310
311
312
316

X1l

10

11

DATABASE MANAGEMENT SYSTEMS

9.3 Disk Space Management
9.3.1 Keeping Track of Free Blocks

9.3.2 Using AS File Systems to Manage Disk Space

9.4 Buffer Manager

9.4.1 Buffer Replacement Policies

9.4.2 Buffer Management in DBMS versus OS
9.5 Files of Records

951 Implementing Heap Files
9.6 Page Formats

9.6.1 Fixed-Length Records

9.6.2 Variable-Length Records
9.7 Record Formats

9.7.1 Fixed-Length Records

9.7.2 Variable-Length Records
9.8 Review Questions

TREE-STRUCTURED INDEXING
10.1 Intuition For Tree Indexes
10.2 Indexed Sequential Access Method (ISAM)
10.2.1 Overflow Pages, Locking Considerations
10.3 B+ Trees. A Dynamic Index Structure
10.3.1 Format of a Node
10.4 Search
10.5 Insert
10.6 Delete
10.7 Duplicates
10.8 B+ Trees in Practice
10.8.1 Key Compression
10.8.2 Bulk-Loading a B+ Tree
10.8.3 The Order Concept
10.8.4 The Effect of Inserts and Deletes on Rids
10.9 Review Questions

HASH-BASED INDEXING
111 Static Hashing

11.1.1 Notation and Conventions
11.2 Extendible Hashing
11.3 Linear Hashing
11.4 Extendible vs. Linear Hashing
n.5 Review Questions

Part IV QUERY EVALUATION

316
317
317
318
320
322
324
324
326
327
328
330
331
331
333

338
339
341
344
344
346
347
348
352
356
358
358
360
363
364
364

370
371
373
373
379
384

391

Contents

12

13

14

OVERVIEW OF QUERY EVALUATION
12.1 The System Catalog
12.1.1 Information in the Catalog
12.2 Introduction to Operator Evaluation
12.2.1 Three Common Techniques
12.2.2 Access Paths
12.3 Algorithms for Relational Operations
12.3.1 Selection
12.3.2 Projection
12.3.3 Join
12.3.4 Other Operations
12.4 Introduction to Query Optimization
12.4.1 Query Evaluation Plans
12.4.2 Multi-operator Queries: Pipelined Evaluation
12.4.3 The lterator Interface
12.5 Alternative Plans: A Motivating Example
12.5.1 Pushing Selections
12.5.2 Using Indexes
12.6 What a Typical Optimizer Does
12.6.1 Alternative Plans Considered
12.6.2 Estimating the Cost of a Plan
12.7 Review Questions

EXTERNAL SORTING
13.1 When Does a DBMS Sort Data?
13.2 A Simple Two-Way Merge Sort
13.3 External Merge Sort
13.3.1 Minimizing the Number of Runs
13.4 Minimizing I/O Cost versus Number of 1/Os
13.4.1 Blocked I/0O
13.4.2 Double Buffering
13,5 Using B+ Trees for Sorting
13.5.1 Clustered Index
1:35.2 Unclustered Index
13.6 Review Questions

EVALUATING RELATIONAL OPERATORS
141 The'Selection Operation

14.1.1 No Index, Unsorted Data

14.1.2 No Index, Sorted Data

14.1.:3 B+ Tree Index

14.1.4 Hash Index, Equality Selection
14.2 General Selection Conditions

393
34
395
397
398
398

401
401

8RR

405

B82%

a1
414
414
416
417

421
422
423
424
428

430
432
433
433
434

439
441
441
442
442

444

X1V

15

14.3

14.4

145

14.6

14.7
14.8

DATABASE MANAGEMENT SYSTEMS

14.2.1 CNF and Index Matching
14.2.2 Evaluating Selections without Disjunction
14.2.3 Selections with Disjunction
The Projection Operation
14.3.1 Projection Based on Sorting
14.3.2 Projection Based on Hashing
14.3.3 Sorting Versus Hashing for Projections
14.3.4 Use of Indexes for Projections
The Join Operation
14.4.1 Nested Loops Join
14.4.2 Sort-Merge Join
14.4.3 Hash Join
14.4.4 General Join Conditions
The Set Operations
14.5.1 Sorting for Union and Difference
14.5.2 Hashing for Union and Difference
Aggregate Operations
14.6.1 Implementing Aggregation by Using an Index
The Impact of Buffering
Review Questions

A TYPICAL RELATIONAL QUERY OPTIMIZER

151

15.2

15.3

154

IS.5
15.6
15.7
15.8

Translating SQL Queries into Algebra
15.1.1 Decomposition of a Query into Blocks
15.1.2 A Query Block as a Relational Algebra Expression
Estimating the Cost of a Plan
15.2.1 Estimating Result Sizes
Relational Algebra Equivalences
15.3.1 Selections
15.3.2 Projections
15.3.3 Cross-Products and Joins
15.3.4 Selects, Projects, and Joins
15.3.5 Other Equivalences
Enumeration of Alternative Plans
15.4.1 Single-Relation Queries
15.4.2 Multiple-Relation Queries
Nested Subqueries
The System R Optimizer
Other Approaches to Query Optimization
Review Questions

Part V. TRANSACTION MANAGEMENT

445
a45
446
447
448
449
451
452
452
454
458
463
467
468
469
469
469
an
47
472

478
479
479
481
482
483
488
488
488
489
490
491
492
492
496

506
07
507

517

Contents XN

16 OVERVIEW OF TRANSACTION MANAGEMENT 519

16.1 The ACID Properties 520
16.1.1 Consistency and Isolation 521

16.1.2 Atomicity and Durability 522

16.2 Transactions and Schedules 523
16.3 Concurrent Execution of Transactions 524
16.3.1 rvlotivation for Concurrent Execution 524

16.3.2 Serializability 525

16.3.3 Anomalies Due to Interleaved Execution 526

16.3.4 Schedules Involving Aborted Transactions 529

16.4 Lock-Based Concurrency Control 530
16.4.1 Strict Two-Phase Locking (Strict 2PL) 531

16.4.2 Deadlocks 533

16.5 Performance of Locking 533
16.6 Transaction Support in SQL 535
16.6.1 Creating and Terminating Transactions 535

16.6.2 What Should We Lock? 537

16.6.3 Transaction Characteristics in SQL 538

16.7 Introduction to Crash Recovery 540
16.7.1 Stealing Frames and Forcing Pages 541

16.7.2 Recovery-Related Steps during Normal Execution 542

16.7.3 Overview of ARIES 543

16.7.4 Atomicity: Implementing Rollback 543

16.8 Review Questions 544
17 CONCURRENCY CONTROL 549
171 2PL, Serializability, and Recoverability 550
17.1.1 View Serializability 553

17.2 Introduction to Lock Management 553
17.2.1 Implementing Lock and Unlock Requests 554

17.3 Lock Conversions 555
17.4 Dealing With Deadlocks 556
17.4.1 Deadlock Prevention 558

17.5 Specialized Locking Techniques 559
17.5.1 Dynamic Databases and the Phantom Problem 560

17.5.2 Concurrency Control in B+ Trees 561

17.5.3 Multiple-Granularity Locking 564

17.6 ConClurency Control without Locking 566
17.6.1 Optimistic Concurrency Control 566

17.6.2 Timestamp-Based Concurrency Control 569

17.6.3 Multiversion Concurrency Control 572

17.7 Review Questions 573

XVI

DATABASE MANAGEMENT SYSTEMS

18 CRASH RECOVERY

18.1
18.2
18.3
18.4
18.5
18.6

18.7
18.8
18.9

Part VI

19 SCHEMA REFINEMENT AND NORMAL FORMS

191

19.2
19.3

194

19.5

19.6

19.7

19.8

Introduction to ARIES
The Log
Other Recovery-Related Structures
The Write-Ahead Log Protocol
Checkpointing
Recovering from a System Crash
18.6.1 Analysis Phase
18.6.2 Redo Phase
18.6.3 Undo Phase
Media Recovery
Other Approaches and Interaction with Concurrency Control
Review Questions

DATABASE DESIGN AND TUNING

Introduction to Schema Refinement

19.1.1 Problems Caused by Redundancy
19.1.2 Decompositions

19.1.3 Problems Related to Decomposition
Functional Dependencies

Reasoning about FDs

19.3.1 Closure of a Set of FDs

19.3.2 Attribute Closure

Normal Forms

19.4.1 Boyce-Codd Normal Form

19.4.2 Third Normal Form

Properties of Decompositions

19.5.1 Lossless-Join Decomposition
19.5.2 Dependency-Preserving Decomposition
Normalization

19.6.1 Decomposition into BCNF

19.6.2 Decomposition into 3NF
Schema Refinement in Database Design
19.7.1 Constraints on an Entity Set
19.7.2 Constraints on a Relationship Set
19.7.3 ldentifying Attributes of Entities
19.7.4 Identifying Entity Sets
Other Kinds of Dependencies

19.8.1 Multivalued Dependencies

19.8.2 Fourth Normal Form

19.8.3 Join Dependencies

579
580
582
585
586
587
587
588
590
592
595
596
597

603

605
606
606
608
609
611
612
612
614
615
615
617
619
619
621
622
622
625
629
630
630
631
633
633
634
636
638

Contents

20

21

19.8.4 Fifth Norma Form

19.8.5 Inclusion Dependencies
19.9 Case Study: The Internet Shop
19.10 Review Questions

PHYSICAL DATABASE DESIGN AND TUNING

20.1 Introduction to Physical Database Design
20.1.1 Database Workloads
20.1.2 Physical Design and Tuning Decisions
20.1.3 Need for Database Tuning

20.2 Guidelines for Index Selection

20.3 Basic Examples of Index Selection

20.4 Clustering and Indexing
20.4.1 Co-clustering Two Relations

20.5 Indexes that Enable Index-Only Plans

20.6 Tools to Assist in Index Selection
20.6.1 Automatic Index Selection
20.6.2 How Do Index Tuning Wizards Work?

20.7 Overview of Database Tuning
20.7.1 Tuning Indexes
20.7.2 Tuning the Conceptual Schema
20.7.3 Tuning Queries and Views

20.8 Choices in Tuning the Conceptual Schema
20.8.1 Settling for a Weaker Normal Form
20.8.2 Denormalization
20.8.3 Choice of Decomposition
20.8.4 Vertical Partitioning of BCNF Relations
20.8.5 Horizontal Decomposition

20.9 Choices in Tuning Queries and Views

20.10 Impact of Concurrency
20.10.1 Reducing Lock Durations
20.10.2 Reducing Hot Spots

20.11 Case Study: The Internet Shop
20.11.11\ming the Database

20.12 DBMS Benchmarking
20.12.1 Well-Known DBM S Benchmarks
20.12.2 Using a Benchmark

20.13 Review Questions

SECURITY AND AUTHORIZATION
21.1 Introduction to Database Security

21.2 Access Control

21.3 Discretionary Access Control

638
639

642

649
650
651
652
653
653
656
658
660
662
663
663
664
667
667
669
670
671
671
672
672
674
674
675
678
678
679
680
682
682

685

692
693
694
695

Xviii

21.4

215

21.6

217
21.8

Part VII

DATABASE MANAGEMENT SYSTEMS

21.3.1 Grant and Revoke on Views and Integrity Constraints
Mandatory Access Control

21.4.1 Multilevel Relations and Polyinstantiation
21.4.2 Covert Channels, DoD Security Levels
Security for Internet Applications

2151 Encryption

21.5.2 Certifying Servers. The SSL Protocol
21.5.3 Digital Signatures
Additional Issues Related to Security

21.6.1 Role of the Database Administrator

21.6.2 Security in Statistical Databases

Design Case Study: The Internet Store

Review Questions

ADDITIONAL TOPICS

22 PARALLEL AND DISTRIBUTED DATABASES

221
222
22.3

224

225
22,6

227

22.8

229

22.10

Introduction
Architectures for Parallel Databases
Parallel Query Evaluation

22.3.1 Data Partitioning

22.3.2 Parallelizing Sequential Operator Evaluation Code
Parallelizing Individual Operations
22.4.1 Bulk Loading and Scanning
22.4.2 Sorting

22.4.3 Joins

Parallel Query Optimization
Introduction to Distributed Databases
22.6.1 Types of Distributed Databases
Distributed DBMS Architectures

22.7.1 Client-Server Systems

22.7.2 Collaborating Server Systems
22.7.3 Midclleware Systems

Storing Data in a Distributed DBMS
22.8.1 Fragmentation

22.8.2 Replication

Distributed Catalog Management

22.9.1 Naming Objects

22.9.2 Catalog Structure

22.9.3 Distributed Data Independence
Distributed Query Processing

22.1.0.1 Nonjoin Queries in a Distributed DBMS
22.10.2 Joins in a Distributed DBMS

704
705
707
708
709
709
712
713
714
714
715
716
718

723

725
726
727
728
730
730
731
731
732
732
735
736
737
737
738
738
739
739
739
741
741
741
742
743
743
744
745

Contents

22.10.3 Cost-Based Query Optimization
22.11 Updating Distributed Data
22.11.1 Synchronous Replication
22.11.2 Asynchronous Replication
22.12 Distributed Transactions
22.13 Distributed Concurrency Control
22.13.1 Distributed Deadlock
22.14 Distributed Recovery
22.14.1 Normal Execution and Commit Protocols
22.14.2 Restart after a Failure
22.14.3 Two-Phase Commit Revisited
22.14.4 Three-Phase Commit
22.15 Review Questions

23 OBJECT-DATABASE SYSTEMS
231 Motivating Example
23.1.1 New Data Types
23.1.2 Manipulating the New Data
23.2 Structured Data Types
23.2.1 Collection Types
23.3 Operations on Structured Data
23.3.1 Operations on Rows
23.3.2 Operations on Arrays
23.3.3 Operations on Other Collection Types
23.3.4 Queries Over Nested Collections
234 Encapsulation and ADTs
23.4.1 Defining Methods
235 Inheritance
23.5.1 Defining Types with Inheritance
23.5.2 Binding Methods
23.5.3 Collection Hierarchies
236 Objects, alDs, and Reference Types
23.6.1 Notions of Equality
23.6.2 Dereferencing Reference Types
23.6.3 URLs and OIDs in SQL:1999
23.7 Database Design for an ORDBMS
23.7.1 Collection Types and ADTs
23.7.2 Object ldentity
23.7.3 Extending the ER Model
23.7.4 Using Nested Collections
238 ORDBMS Implementation Challenges
23.8] Storage and Access Methods
23.8.2 Query Processing

749
750
750
751
755
755
756
758
758
760
761
762
763

772
774
775
e
779
780
781
781
781
782
783
784
785
787
787
788
789
789
790
791
791
792
792
795
796
798
799
799
801

24

25

DATABASE MANAGEMENT SYSTEMS

23.8.3 Query Optimization
239 OODBMS
239.1 The ODMG Data Model and ODL
23.9.2 OQL
23.10 Comparing RDBMS, OODBMS, and ORDBMS
23.10.1 RDBMS versus ORDBM S
23.10.2 OODBMS versus ORDBMS: Similarities
23.10.3 OODBMS versus ORDBMS: Differences
23.11 Review Questions

DEDUCTIVE DATABASES
24.1 Introduction to Recursive Queries
24.1.1 Datalog
24.2 Theoretical Foundations
24.2.1 Least Model Semantics
24.2.2 The Fixpoint Operator
24.2.3 Safe Datalog Programs
24.2.4 Least Model = Least Fixpoint
24.3 Recursive Queries with Negation
24.3.1 Stratification
24.4 From Datalog to SQL
245 Evaluating Recursive Queries
245.1 Fixpoint Evaluation without Repeated Inferences
245.2 Pushing Selections to Avoid Irrelevant Inferences
24.5.3 The Magic Sets Algorithm
24.6 Review Questions

DATA WAREHOUSING AND DECISION SUPPORT

25.1 Introduction to Decision Support
252 OLAP: Multidimensional Data Model
25.2.1 Multidimensional Database Design
25.3 Multidimensional Aggregation Queries
2531 ROLLUP and CUBE in SQL:1999
25.4 Window Queries in SQL:1999
25.4.1 Framing a Window
25.4.2 New Aggregate Functions
25,5 Findipg Answers Quickly
25.5.1 Top N Queries
25.5.2 Online Aggregation
25.6 Implementation Techniques for OLAP
25.6.1 Bitmap Indexes
25.6.2 Join Indexes
25.6.3 File Organizations

80,3
805
805
807
809
809
809
810
811

817
818
819
822
823
824
825
826
827
828
831
834
835
837
838
841

846
848
849
853
854
856
859
861
862
862
863
864
865
866
868
869

Contents

26

27

25.7 Data 'Warehousing
25.7.1 Creating and Ivlaintaining a Warehouse
25.8 Views and Decision Support
2581 Views, OLAP, and \Varehousing
25.8.2 Queries over Views
25.9 View Materialization
25.9.1 Issuesin View Materialization
25.10 Maintaining Materialized Views
2510.1 Incremental View Maintenance
25.10.2 Maintaining Warehouse Views
25.10.3 When Should We Synchronize Views?
25.11 Review Questions

DATA MINING
26.1 Introduction to Data Mining
26.1.1 The Knowledge Discovery Process
26.2 Counting Co-occurrences
26.2.1 Frequent lItemsets
26.2.2 Iceberg Queries
26.3 Mining for Rules
26.3.1 Association Rules
26.3.2 An Algorithm for Finding Association Rules
26.3.3 Association Rules and ISA Hierarchies
26.3.4 Generalized Association Rules
26.3.5 Sequential Patterns
26.3.6 The Use of Association Rules for Prediction
26.3.7 Bayesian Networks
26.3.8 Classification and Regression Rules
26.4 Tree-Structured Rules
26.4.1 Decision Trees
26.4.2 An Algorithm to Build Decision Trees
26.5 Clustering
26.5.1 A Clustering Algorithm
26.6 Similarity Search over Sequences
26.6.1 An Algorithm to Find Similar Sequences
26.7 Incremental Mining and Data Streams
26.7.1 Incremental Maintenance of Frequent Itemsets
26.8 Additional Data Mining Tasks
26.9 Review Questions

INFORMATION RETRIEVAL AND XML DATA

271 Colliding Worlds: Databases, IR, and XML
27.1.1 DBMS versus IR Systems

870
871
872
872
873
873
874
876
876
879
881
882

889
890
891
892
892
895
897
897
898
899
900
901
902
903
904
906
907
908
o911
912
913
915
916
918
920
920

926
927
928

XXii DATABASE MANAGEMENT SYSTEMS

27.2 Introduction to Information Retrieval 929
27.2.1 Vector Space Model 930

27.2.2 TFjIDF Weighting of Terms 931

27.2.3 Ranking Document Similarity 932

27.2.4 :Measuring Success. Precision and Recall 934

27.3 Indexing for Text Search 934
27.3.1 Inverted Indexes 935

27.3.2 Signature Files 937

27.4 Web Search Engines 939
27.4.1 Search Engine Architecture 939

27.4.2 Using Link Information 940

275 Managing Text in a DBMS 944
275.1 Loosely Coupled Inverted Index 945

27.6 A DataModel for XML 945
27.6.1 Motivation for Loose Structure 945

27.6.2 A Graph Model 946

27.7 XQuery: Querying XML Data 948
27.7.1 Path Expressions 948

27.7.2 FLWR Expressions 949

27.7.3 Ordering of Elements 951

27.7.4 Grouping and Generation of Collection Values 951

27.8 Efficient Evaluation of XML Queries 952
27.8.1 Storing XML in RDBMS 952

27.8.2 Indexing XML Repositories 956

27.9 Review Questions 959
28 SPATIAL DATA MANAGEMENT 968
28.1 Types of Spatial Data and Queries 969
28.2 Applications Involving Spatial Data 971
28.3 Introduction to Spatial Indexes 973
28.3.1 Overview of Proposed Index Structures 974

28.4 Indexing Based on Space-Filling Curves 975
28.4.1 Region Quad Trees and Z-Ordering: Region Data 976

28.4.2 Spatial Queries Using Z-Ordering 978

28.5 Grid Files 978
28.51 Adapting Grid Files to Handle Regions 9381

28.6 R Trees. Point and Region Data 982
28.6.1 Queries 983

28.6.2 Insert and Delete Operations 984

28.6.3 Concurrency Control 986

28.6.4 Generalized Search Trees 987

28.7 Issues in High-Dimensional Indexing 988

28.8 Review Questions 988

Contents XXm

29 FURTHER READING 992

29.1 Advanced TI"ansaction Processing 993

29.1.1 Transaction Processing Monitors 993

29.1.2 New Transaction Models 994

29.1.3 Real-Time DBMSs 994

29.2 Datalntegration 995

29.3 Mobile Databases 995

29.4 Main Memory Databases 996

29.5 Multimedia Databases 997

29.6 Geographic Information Systems 998

29.7 Temporal Databases 999

29.8 Biological Databases 999
29.9 Information Visualization 1000
29.10 Summary 1000
30 THEMINIBASE SOFTWARE 1002
30.1 What Is Available 1002
30.2 Overview of Minibase Assignments 1003
30.3 Acknowledgments 1004
REFERENCES 1005
AUTHOR INDEX 1045

SUBJECT INDEX 1054

PREFACE

The advantage of doing one's praising for oneself is that one can lay it on so thick
and exactly in the right places.

--Samuel Butler

Database management systems are now an indispensable tool for managing
information, and a course on the principles and practice of database systems
is now an integral part of computer science curricula. This book covers the
fundamental s of modern database management systems, in particular relational
database systems.

We have attempted to present the material in a clear, simple style. A quantita-
tive approach is used throughout with many detailed examples. An extensive
set of exercises (for which solutions are available online to instructors) accom-
panies each chapter and reinforces students' ability to apply the concepts to
real problems.

The book can be used with the accompanying software and programming as-
signments in two distinct kinds of introductory courses:

1. Applications Emphasis: A course that covers the principles of database
systems, and emphasizes how they are used in developing data-intensive ap-
plications. Two new chapters on application development (one on database-
backed applications, and one on Java and Internet application architec-
tures) have been added to the third edition, and the entire book has been
extensively revised and reorganized to support such a course. A running
case-study and extensive online materials (e.g., code for SQL queries and
Java applications, online databases and solutions) make it easy to teach a
hands-on application-centric course.

2. Systems Emphasis: A course that has a strong systems emphasis and
assumes that students have good programming skills in C and C++. In
this case the accompanying Minibase software can be llsed as the basis
for projects in which students are asked to implement various parts of a
relational DBMS. Several central modules in the project software (e.g.,
heap files, buffer manager, B+ trees, hash indexes, various join methods)

XXiV

PTeface XXV

are described in sufficient detail in the text to enable students to i mplement
them, given the (C++) class interfaces.

Many instructors will no doubt teach a course that falls between these two
extremes. The restructuring in the third edition offers a very modular orga-
nization that facilitates such hybrid courses. The also book contains enough
material to support advanced courses in a two-course sequence.

Organization of the Third Edition

The book is organized into six main parts plus a collection of advanced topics, as
shown in Figure 0.1. The Foundations chapters introduce database systems, the

(1) Foundations Both
(2) Application Development Applications emphasis
(3) Storage and Indexing Systems emphasis
(4) Query Evaluation Systems emphasis
(5) Transaction Management Systems emphasis
(6) Database Design and Tuning Applications emphasis
(7) Additional Topics Both

Figure 0.1 Organization of Parts in the Third Edition

ER model and the relational model. They explain how databases are created
and used, and cover the basics of database design and querying, including an
in-depth treatment of SQL queries. While an instructor can omit some of this
material at their discretion (e.g., relational calculus, some sections on the ER
model or SQL queries), this material is relevant to every student of database
systems, and we recommend that it be covered in as much detail as possible.

Each of the remaining five main parts has either an application or a systems
empha.sis. Each of the three Systems parts has an overview chapter, designed to
provide a self-contained treatment, e.g., Chapter 8 is an overview of storage and
indexing. The overview chapters can be used to provide stand-alone coverage
of the topic, or as the first chapter in a more detailed treatment. Thus, in an
application-oriented course, Chapter 8 might be the only material covered on
file organizations and indexing, whereas in a systems-oriented courseit would be
supplemented by a selection from Chapters 9 through 11. The Database Design
and Tuning part contains a discussion of performance tuning and designing for
secure access. These application topics are best covered after giving students
a good grasp of database system architecture, and are therefore placed later in
the chapter sequence.

XXVI DATABASE MANAGEMENT SYSTEMS

Suggested Cour se Outlines

The book can be used in two kinds of introductory database courses, one with
an applications emphasis and one with a systems emphasis.

The introductory applications- oriented course could cover the :Foundations chap-
ters, then the Application Development chapters, followed by the overview sys-
tems chapters, and conclude with the Database Design and Tuning material.
Chapter dependencies have been kept to a minimum, enabling instructors to
easily fine tune what material to include. The Foundations material, Part I,
should be covered first, and within Parts II1, 1V, and V, the overview chapters
should be covered first. The only remaining dependencies between chapters
in Parts | to VI are shown as arrows in Figure 0.2. The chapters in Part |
should be covered in sequence. However, the coverage of algebra and calculus
can be skipped in order to get to SQL queries sooner (although we believe this
material is important and recommend that it should be covered before SQL).

The introductory systems-oriented course would cover the Foundations chap-
ters and a selection of Applications and Systems chapters. An important point
for systems-oriented courses is that the timing of programming projects (e.g.,
using Minibase) makes it desirable to cover some systems topics early. Chap-
ter dependencies have been carefully limited to allow the Systems chapters to
be covered as soon as Chapters 1 and 3 have been covered. The remaining
Foundations chapters and Applications chapters can be covered subsequently.

The book also has ample material to support a multi-course sequence. Obvi-
ously, choosing an applications or systems emphasis in the introductory course
results in dropping certain material from the course; the material in the book
supports a comprehensive two-course sequence that covers both applications
and systems aspects. The Additional Topics range over a broad set of issues,
and can be used as the core material for an advanced course, supplemented
with further readings.

Supplementary M aterial
This book comes with extensive online supplements:

8 Online Chapter: To make space for new material such as application
development, information retrieval, and XML, we've moved the coverage
of QBE to an online chapter. Students can freely download the chapter
from the book's web site, and solutions to exercises from this chapter are
included in solutions manual.

Preface

coqo o 2 (3 4
| | Introductivoij‘*’: ERModel E<—| Relational Model | | Relational Algebra SQL DM
N i Conceptual Design 1 SQLDDL and Calculus — .
6 7
Il Database Application = Database-Backed
Development Internet Applications
8 - u
Il Overview of °] 10 1
Storage and Indexing Data Storage Tree Indexes Hash Indexes
\
12 13 14 15
v Overview of External Sorting Evaluation of * A Typical
Query Evaluation 1\ Relational Operators \ Relational Optimizer
\
16 17 18
\ Overview of Concurrency | Crash
Transaction Management 1 Control Recovery
\\
19 V' 20 2
Vi Schema Refinement, Physical DB Security and
FDs, Normalization Design, Tunin Authorization
22 23 24 25
Parallel and Object-Database Deductive Data Warehousing
Distributed DBs Systems Databases and Decision Support |
VIl
26 27 28 29
Data Information Retrieval Spatial Further
Mining and XML Data Databases Reading

Figure 0.2 Chapter Organization and Dependencies

Lecture Slides:

Postscript, and

PDF formats.

Lecture slides are freely available for all chapters in
Course instructors can also obtain these

slides in Microsoft Powerpoint format, and can adapt them to their teach-
ing needs. Instructors also have access to all figures llsed in the book (in
xfig format), and can use them to modify the slides.

XXViii DATABASE IVIANAGEMENT SYSTEMS

* Solutions to Chapter Exercises: The book has an unusually extensive
set of in-depth exercises. Students can obtain solutiolls to odd-numbered
chapter exercises and a set of lecture slides for each chapter through the
Web in Postscript and Adobe PDF formats. Course instructors can obtain
solutions to all exercises.

* Software: The book comes with two kinds of software. First, we have
Minibase, a small relational DBMS intended for use in systems-oriented
courses. Minibase comes with sample assignments and solutions, as de-
scribed in Appendix 30. Access is restricted to course instructors. Second,
we offer code for all SQL and Java application development exercises in
the book, together with scripts to create sample databases, and scripts for
setting up several commercial DBMSs. Students can only access solution
code for odd-numbered exercises, whereas instructors have access to all
solutions.

e Instructor's Manual: The book comes with an online manual that of-
fers instructors comments on the material in each chapter. It provides a
summary of each chapter and identifies choices for material to emphasize
or omit. The manual also discusses the on-line supporting material for
that chapter and offers numerous suggestions for hands-on exercises and
projects. Finally, it includes samples of examination papers from courses
taught by the authors using the book. It is restricted to course instructors.

For More Information
The home page for this book is at URL.:
http://www.cs.wisc.edu/-dbbook

It contains a list of the changes between the 2nd and 3rd editions, and a fre-
quently updated link to all known errors in the book and its accompanying
supplements. Instructors should visit this site periodically or register at this
site to be notified of important changes by email.

Acknowledgments

This book grew out of lecture notes for CS564, the introductory (senior/graduate
level) database course at UvV-Madison. David De\Vitt developed this course
and the Minirel project, in which students wrote several well-chosen parts of
a relational DBMS. My thinking about this material was shaped by teaching
CS564, and Minirel was the inspiration for Minibase, which is more compre-
hensive (eg., it has a query optimizer and includes visualization software) but

Preface XXIX

tries to retain the spirit of MinireL Mike Carey and | jointly designed much of
Minibase. My lecture notes (and in turn this book) were influenced by Mike's
lecture notes and by Yannis loannidis's lecture slides.

Joe Hellerstein used the beta edition of the book at Berkeley and provided
invaluable feedback, assistance on slides, and hilarious quotes. vVriting the
chapter on object-database systems with Joe was a lot of fun.

C. Mohan provided invaluable assistance, patiently answering a number of ques-
tions about implementation techniques used in various commercial systems, in
particular indexing, concurrency control, and recovery algorithms. Moshe Zloof
answered numerous questions about QBE semantics and commercial systems
based on QBE. Ron Fagin, Krishna Kulkarni, Len Shapiro, Jim Melton, Dennis
Shasha, and Dirk Van Gucht reviewed the book and provided detailed feedback,
greatly improving the content and presentation. Michael Goldweber at Beloit
College, Matthew Haines at Wyoming, Michael Kifer at SUNY StonyBrook,
Jeff Naughton at Wisconsin, Praveen Seshadri at Cornell, and Stan Zdonik at
Brown also used the beta edition in their database courses and offered feedback
and bug reports. In particular, Michael Kifer pointed out an error in the (old)
algorithm for computing a minimal cover and suggested covering some SQL
features in Chapter 2 to improve modularity. Gio Wiederhold's bibliography,
converted to Latex format by S. Sudarshan, and Michael Ley's online bibliogra-
phy on databases and logic programming were a great help while compiling the
chapter bibliographies. Shaun Flisakowski and Uri Shaft helped me frequently
in my never-ending battles with Latex.

lowe a special thanks to the many, many students who have contributed to
the Minibase software. Emmanuel Ackaouy, Jim Pruyne, Lee Schumacher, and
Michael Lee worked with me when | developed the first version of Minibase
(much of which was subsequently discarded, but which influenced the next
version). Emmanuel Ackaouy and Bryan So were my TAs when | taught CS564
using this version and went well beyond the limits of a TAship in their efforts
to refine the project. Paul Aoki struggled with a version of Minibase and
offered lots of useful eomments as a TA at Berkeley. An entire class of CS764
students (our graduate database course) developed much of the current version
of Minibase in alarge class project that was led and coordinated by Mike Carey
and me. Amit Shuklaand Michael Lee were my TAs when | first taught CS564
using this version of Minibase and developed the software further.

Several students worked with me on independent projects, over a long period
of time, to develop Minibase components. These include visualization packages
for the buffer manager and B+ trees (Huseyin Bektas, Harry Stavropoulos, and
Weiging Huang); a query optimizer and visualizer (Stephen Harris, Michael Lee,
and Donko Donjerkovic); an ER diagram tool based on the Opossum schema

XXX DATABASE MANAGEMENT SY STEM§

editor (Eben Haber); and a GUI-based tool for normalization (Andrew Prock
and Andy Therber). In addition, Bill Kimmel worked to integrate and fix a
large body of code (storage manager, buffer manager, files and access methods,
relational operators, and the query plan executor) produced by the CS764 class
project. Ranjani Ramamurty considerably extended Bill's work on cleaning up
and integrating the various modules. Luke Blanshard, Uri Shaft, and Shaun
Flisakowski worked on putting together the release version of the code and
developed test suites and exercises based on the Minibase software. Krishna
Kunchithapadam tested the optimizer and developed part of the Minibase GUI.

Clearly, the Minibase software would not exist without the contributions of a
great many talented people. With this software available freely in the public
domain, | hope that more instructors will be able to teach a systems-oriented
database course with a blend of implementation and experimentation to com-
plement the lecture material.

I'd like to thank the many students who helped in developing and checking
the solutions to the exercises and provided useful feedback on draft versions of
the book. In alphabetical order: X. Bao, S Biao, M. Chakrabarti, C. Chan,
W. Chen, N. Cheung, D. Colwell, C. Fritz, V. Ganti, J. Gehrke, G. Glass, V.
Gopalakrishnan, M. Higgins, T. Jasmin, M. Krishnaprasad, Y. Lin, C. Liu, M.
Lusignan, H. Modi, S. Narayanan, D. Randolph, A. Ranganathan, J. Reminga,
A. Therber, M. Thomas, Q. Wang, R. Wang, Z. Wang, and J. Yuan. Arcady
Grenadel', James Harrington, and Martin Reames at Wisconsin and Nina Tang
at Berkeley provided especially detailed feedback.

Charlie Fischer, Avi Silberschatz, and Jeff Ullman gave me invaluable advice
on working with a publisher. My editors at McGraw-Hill, Betsy Jones and Eric
Munson, obtained extensive reviews and guided this book in its early stages.
Emily Gray and Brad Kosirog were there whenever problems cropped up. At
Wisconsin, Ginny Werner really helped me to stay on top of things.

Finally, this book was a thief of time, and in many ways it was harder on my
family than on me. My sons expressed themselves forthrightly. From my (then)
five-year-old, Ketan: "Dad, stop working on that silly book. You don't have
any time for me" Two-year-old Vivek: "You working boook? No no no come
play basketball mel" All the seasons of their discontent were visited upon my
wife, and Apu nonetheless cheerfully kept the family going in its usual chaotic,
happy way dl the many evenings and weekends | was wrapped up in this book.
(Not to mention the days when | was wrapped up in being a faculty member!)
As in al things, | can trace my parents' hand in much of this; my father,
with his love of learning, and my mother, with her love of us, shaped me. My
brother Kartik's contributions to this book consisted chiefly of phone calls in
which he kept me from working, but if | don't acknowledge him, he's liable to

Preface

be annoyed. 1'd like to thank my family for being there and giving meaning to
everything | do. (There! | knew |I'd find a legitimate reason to thank Kartik.)

Acknowledgmentsfor the Second Edition

Emily Gray and Betsy Jones at McGraw-Hill obtained extensive reviews and
provided guidance and support as we prepared the second edition. Jonathan
Goldstein helped with the bibliography for spatial databases. The following
reviewers provided valuable feedback on content and organization: Liming Cai
at Ohio University, Costas Tsatsoulis at University of Kansas, Kwok-Bun Vue
at University of Houston, Clear Lake, William Grosky at Wayne State Univer-
sity, Sang H. Son at University of Virginia, James M. Slack at Minnesota State
University, Mankato, Herman Balsters at University of Twente, Netherlands,
Karen C. Davis at University of Cincinnati, Joachim Hammer at University of
Florida, Fred Petry at Tulane University, Gregory Speegle at Baylor Univer-
sity, Salih Yurttas at Texas A&M University, and David Chao at San Francisco
State University.

A number of people reported bugs in the first edition. In particular, we wish
to thank the following: Joseph Albert at Portland State University, Han-yin
Chen at University of Wisconsin, Lois Delcambre at Oregon Graduate I nstitute,
Maggie Eich at Southern Methodist University, Raj Gopalan at Curtin Univer-
sity of Technology, Davood Rafiei at University of Toronto, Michael Schrefl at
University of South Australia, Alex Thomasian at University of Connecticut,
and Scott Vandenberg at Siena College.

A special thanks to the many people who answered a detailed survey about how
commercial systems support various features. At IBM, Mike Carey, Bruce Lind-
say, C. Mohan, and James Teng; at Informix, M. Muralikrishna and Michael
Ubell; at Microsoft, David Campbell, Goetz Graefe, and Peter Spiro; at Oracle,
Hakan Jacobsson, Jonathan D. Klein, Muralidhar Krishnaprasad, and M. Zi-
auddin; and at Sybase, Marc Chanliau, Lucien Dimino, Sangeeta Doraiswamy,
Hanuma Kodavalla, Roger MacNicol, and Tirumanjanam Rengarajan.

After reading about himself in the acknowledgment to the first edition, Ketan
(now 8) had a simple question: “How come you didn't dedicate the book to us?
Why mom?" Ketan, | took care of this inexplicable oversight. Vivek (now 5)
was more concerned about the extent of his fame: “Daddy, is my name in evvy
copy of your book? Do they have it in evvy compooter science department in
the world?' Vivek, | hope s0. Finally, this revision would not have made it
without Apu's and Keiko's support.

xxxii DATABASE MANAGEMENT SYSTEMS

Acknowledgmentsfor the Third Edition

We thank Raghav Kaushik for his contribution to the discussion of XML, and
Alex Thomasian for his contribution to the coverage of concurrency control. A
special thanks to Jim JVIdton for giving us a pre-publication copy of his book
on object-oriented extensions in the SQL: 1999 standard, and catching several
bugs in a draft of this edition. Marti Hearst at Berkeley generously permitted
us to adapt some of her slides on Information Retrieval, and Alon Levy and
Dan Sueiu were kind enough to let us adapt some of their lectures on XML.
Mike Carey offered input on Web services.

Emily Lupash at McGraw-Hill has been a source of constant support and en-
couragement. She coordinated extensive reviews from Ming Wang at Embry-
Riddle Aeronautical University, Cheng Hsu at RPI, Paul Bergstein at Univ. of
Massachusetts, Archana Sathaye at SJSU, Bharat Bhargava at Purdue, John
Fendrich at Bradley, Ahmet Ugur at Central Michigan, Richard Osborne at
Univ. of Colorado, Akira Kawaguchi at CCNY, Mark Last at Ben Gurion,
Vassilis Tsotras at Univ. of California, and Ronald Eaglin at Univ. of Central
Florida. It is a pleasure to acknowledge the thoughtful input we received from
the reviewers, which greatly improved the design and content of this edition.
Gloria Schiesl and Jade Moran dealt cheerfully and efficiently with last-minute
snafus, and, with Sherry Kane, made a very tight schedule possible. Michelle
Whitaker iterated many times on the cover and end-sheet design.

On a personal note for Raghu, Ketan, following the canny example of the
camel that shared a tent, observed that “it is only fair" that Raghu dedicate
this edition solely to him and Vivek, since “mommy already had it dedicated
only to her." Despite this blatant attempt to hog the limelight, enthusiastically
supported by Vivek and viewed with the indulgent affection of a doting father,
this book is also dedicated to Apu, for being there through it all.

For Johannes, this revision would not have made it without Keiko's support
and inspiration and the motivation from looking at Elisa's peacefully sleeping
face.

PART |

FOUNDATIONS

OVERVIEW OF
DATABASE SYSTEMS

What is a DBMS, in particular, a relational DBMS?
Why should we consider a DBM S to manage data?
How is application data represented in a DBMS?
How is datain a DBMS retrieved and manipulated?

TR R

How does a DBM S support concurrent access and protect data during
system failures?

3

What are the main components of a DBMS?
Who is involved with databases in real life?

3

Y

Key concepts: database management, data independence, database
design, data model; relational databases and queries; schemas, levels
of abstraction; transactions, concurrency and locking, recovery and
logging; DBMS architecture; database administrator, application pro-
grammer, end user

Has everyone noticed that all the letters of the word database are typed with
the left hand? Now the layout of the QWEHTY typewriter keyboard was designed,
among other things, to facilitate the even use of both hands. It follows, therefore,
that writing about databases is not only unnatural, but alot harder than it appears.

---Anonymous

The alllount of information available to us is literally exploding, and the value
of data as an organizational asset is widely recognized. To get the most out of
their large and complex datasets, users require tools that simplify the tasks of

3

4 CHAPTER 1,

The area of database management systenls is a microcosm of computer sci-
ence in general. The issues addressed and the techniques used span a wide
spectrum, including languages, object-orientation and other progTamming
paradigms, compilation, operating systems, concurrent programming, data
structures, algorithms, theory, parallel and distributed systems, user inter-
faces, expert systems and artificial intelligence, statistical techniques, and
dynamic programming. We cannot go into all these aspects of database
management in one book, but we hope to give the reader a sense of the
excitement in thisrich and vibrant discipline.

managing the data and extracting useful information in a timely fashion. Oth-
erwise, data can become a liability, with the cost of acquiring it and managing
it far exceeding the value derived from it.

A database is a collection of data, typically describing the activities of one or
more related organizations. For example, a university database might contain
information about the following:

* Entities such as students, faculty, courses, and classrooms.

* Relationships between entities, such as students' enrollment in courses,
faculty teaching courses, and the use of rooms for courses.

A database management system, or DBMS, is software designed to assist
in maintaining and utilizing large collections of data. The need for such systems,
as well as their use, is growing rapidly. The alternative to using a DBMS is
to store the data in files and write application-specific code to manage it. The
use of a DBMS has several important advantages, as we will see in Section 1.4.

1.1 MANAGING DATA

The goal of this book is to present an in-depth introduction to database man-
agement systems, with an emphasis on how to design a database and use a
DBMS effectively. Not surprisingly, many decisions about how to use a DBIVIS
for a given application depend on what capabilities the DBMS supports &ffi-
ciently. Therefore, to use a DBMS well, it is necessary to also understand how
a DBMS works.

Many kinds of database management systems are in use, but this book concen-
trates on relational database systems (RDBMSs), which are by far the

dominant type of DBMS today. The following questions are addressed in the
corc chapters of this hook:

Qverview of Database Systems 5

1. Database Design and Application Development: How can a user
describe a real-world enterprise (e.g., a university) in terms of the data
stored in a DBMS? \Vhat factors must be considered in deciding how to
organize the stored data? How can ,ve develop applications that rely upon
a DBMS? (Chapters 2, 3, 6, 7, 19, 20, and 21.)

2. Data Analysis: How can a user answer questions about the enterprise by
posing queries over the data in the DBMS? (Chapters 4 and 5.)1

3. Concurrency and Robustness: How does a DBMS alow many users to
access data concurrently, and how does it protect the data in the event of
system failures? (Chapters 16, 17, and 18.)

4. Efficiency and Scalability: How does a DBMS store large datasets and
answer questions against this data efficiently? (Chapters 8, 9, la, 11, 12,
13, 14, and 15.)

Later chapters cover important and rapidly evolving topics, such as parallel and
distributed database management, data warehousing and complex queries for
decision support, datamining, databases and information retrieval, XML repos-
itories, object databases, spatial data management, and rule-oriented DBMS
extensions.

In the rest of this chapter, we introduce these issues. In Section 1.2, we be-
gin with a brief history of the field and a discussion of the role of database
management in modern information systems. We then identify the benefits of
storing data in a DBMS instead of a file system in Section 1.3, and discuss
the advantages of using a DBMS to manage data in Section 1.4. In Section
1.5, we consider how information about an enterprise should be organized and
stored in a DBMS. A user probably thinks about this information in high-level
terms that correspond to the entities in the organization and their relation-
ships, whereas the DBMS ultimately stores data in the form of (rnany, many)
bits. The gap between how users think of their data and how the data is ul-
timately stored is bridged through several levels of abstraction supported by
the DBMS. Intuitively, a user can begin by describing the data in fairly high-
level terms, then refine this description by considering additional storage and
representation details as needed.

In Section 1.6, we consider how users can retrieve data stored in a DBMS and
the need for techniques to efficiently compute answers to questions involving
such data. In Section 1.7, we provide an overview of how a DBMS supports
concurrent access to data by several users and how it protects the data in the
event of system failures.

1An online chapter on Query-by-Example (QBE) is also available.

6 CHAPTER.;1

We then briefly describe the internal structure of a DBMS in Section 1.8, and
mention various groups of people associated with the development and use of
a DBMS in Section 1.9.

12 A HISTORICAL PERSPECTIVE

From the earliest days of computers, storing and manipulating data have been a
major application focus. Thefirst general-purpose DBMS, designed by Charles
Bachman at General Electric in the early 1960s, was called the Integrated Data
Store. It formed the basis for the network data model, which was standardized
by the Conference on Data Systems Languages (CODASYL) and strongly in-
fluenced database systems through the 1960s. Bachman was the first recipient
of ACM's Turing Award (the computer science equivalent of a Nobel Prize) for
work in the database area; he received the award in 1973.

In the late 1960s, IBM developed the Information Management System (IMS)
DBMS, used even today in many major installations. IMS formed the basis for
an alternative datarepresentation framework called the hierarchical data model.
The SABRE system for making airline reservations was jointly developed by
American Airlines and IBM around the sametime, and it allowed several people
to access the same data through a computer network. Interestingly, today the
same SABRE system is used to power popular Web-based travel services such
as Travelocity.

In 1970, Edgar Codd, at IBM's San Jose Research Laboratory, proposed a new
data representation framework called the relational data model. This proved to
be a watershed in the development of database systems. It sparked the rapid
development of several DBM Ss based on the relational model, along with arich
body of theoretical results that placed the field on a firm foundation. Codd
won the 1981 Turing Award for his seminal work. Database systems matured
as an academic discipline, and the popularity of relational DBM Ss changed the
commercial landscape. Their benefits were widely recognized, and the use of
DBMSs for managing corporate data became standard practice.

In the 1980s, the relational model consolidated its position as the dominant
DBMS paradigm, and database systems continued to gain widespread use. The
SQL query language for relational databases, developed as part of IBM's Sys-
tem R project, is now the standard query language. SQL was standardized
in the late 1980s, and the current standard, SQL:1999, was adopted by the
American National Standards Institute (ANSI) and International Organization
for Standardization (1SO). Arguably, the most widely used form of concurrent
programming is the concurrent execution of database programs (called trans-
actions). Users write programs as if they are to be run by themselves, and

Overview of Database Systems 7

the responsibility for running them concurrently is given to the DBIVIS. James
Gray won the 1999 Turing award for his contributions to database transaction
management.

In the late 1980s and the 1990s, advances were made in many areas of database
systems. Considerable research was carried out into more powerful query lan-
guages and richer data models, with emphasis placed on supporting complex
analysis of data from all parts of an enterprise. Several vendors (e.g., IBM's
DB2, Oracle 8, Informix?> UDS) extended their systems with the ability to store
new datatypes such as images and text, and to ask more complex queries. Spe-
cialized systems have been developed by numerous vendors for creating data
warehouses, consolidating data from several databases, and for carrying out
specialized analysis.

An interesting phenomenon is the emergence of several enterprise resource
planning (ERP) and management resource planning (M RP) packages,
which add a substantial layer of application-oriented features on top of aDBMS.
Widely used. packages include systems from Baan, Oracle, PeopleSoft, SAP,
and Siebel. These packages identify a set of common tasks (e.g., inventory
management, human resources planning, financial analysis) encountered by a
large number of organizations and provide a general application layer to carry
out these tasks. The data is stored in a relational DBMS and the application
layer can be customized to different companies, leading to lower overall costs
for the companies, compared to the cost of building the application layer from
scratch.

Most significant, perhaps, DBMSs have entered the Internet Age. While the
first generation of websites stored their data exclusively in operating systems
files, the use of a DBMS to store data accessed through a Web browser is
becoming widespread. Queries are generated through Web-accessible forms
and answers are formatted using a markup language such as HTML to be
easily displayed in a browser. All the database vendors are adding features to
their DBMS aimed at making it more suitable for deployment over the Internet.

Database management continues to gain importance as more and more data is
brought online and made ever more accessible through computer networking.
Today thefield is being driven by exciting visions such as multimedia databases,
interactive video, streaming data, digital libraries, a host of scientific projects
such as the human genome mapping effort and NASA's Earth Observation Sys-
tem project, and the desire of companies to consolidate their decision-making
processes and mine their data repositories for useful information about their
businesses. Commercially, database management systems represent one of the

2Informix was recently acquired by I1BM.

8 CHAPTER 1

largest and most vigorous market segments. Thus the study of database sys-
tems could prove to be richly rewarding in more ways than one!

1.3 FILE SYSTEMSVERSUSA DBMS

To understand the need for a DBMS, let us consider a motivating scenario: A
company has a large collection (say, 500 GB?) of data on employees, depart-
ments, products, sales, and so on. This datais accessed concurrently by several
employees. Questions about the data must be answered quickly, changes made
to the data by different users must be applied consistently, and access to certain
parts of the data (e.g., salaries) must be restricted.

We can try to manage the data by storing it in operating system files. This
approach has many drawbacks, including the following:

* We probably do not have 500 GB of main memory to hold all the data.
We must therefore store data in a storage device such as a disk or tape and
bring relevant parts into main memory for processing as needed.

 Even if we have 500 GB of main memory, on computer systems with 32-bit
addressing, we cannot refer directly to more than about 4 GB of data. We
have to program some method of identifying all data items.

* We have to write special programsto answer each question a user may want
to ask about the data. These programs are likely to be complex because
of the large volume of data to be searched.

¢ We must protect the datafrom inconsistent changes made by different users
accessing the data concurrently. 1f applications must address the details of
such concurrent access, this adds greatly to their complexity.

e We must ensure that data is restored to a consistent state if the system
crashes while changes are being made.

e Operating systems provide only a password mechanism for security. Thisis
not sufficiently flexible to enforce security policies in which different users
have permission to access different subsets of the data.

A DBMS is a piece of software designed to make the preceding tasks easier. By
storing data in.a DBMS rather than as a collection of operating system files,
we can use the DBMS's features to manage the data in a robust and efficient
rnanner. As the volume of data and the number of users grow hundreds of
gigabytes of data and thousands of users are common in current corporate
databases DBM S support becomes indispensable.

3A kilobyte (KrB) is 1024 bytes, a megabyte (MB) is 1024 KBs, a gigabyte (GB) is 1024 MBs, a
terabyte ('1'B) is 1024 CBs, and a petabyte (PB) is 1024 terabytes.

Querview of Database Systems 9

14 ADVANTAGESOF A DBMS

Using a DBMS to manage data has many advantages:

Data Independence: Application programs should not, ideally, be ex-
posed to details of data representation and storage, The DBMS provides
an abstract view of the data that hides such details.

Efficient Data Access: A DBMS utilizes a variety of sophisticated tech-
niques to store and retrieve data efficiently. This feature is especially im-
pOl'tant if the data is stored on external storage devices.

Data Integrity and Security: If data is always accessed through the
DBMS, the DBMS can enforce integrity constraints. For example, before
inserting salary information for an employee, the DBMS can check that
the department budget is not exceeded. Also, it can enforce access controls
that govern what data is visible to different classes of users.

Data Administration: When several users share the data, centralizing
the administration of data can offer sigllificant improvements. Experienced
professionals who understand the nature of the data being managed, and
how different groups of users use it, can be responsible for organizing the
datarepresentation to minimize redundancy and for fine-tuning the storage
of the data to make retrieval efficient.

Concurrent Access and Crash Recovery: A DBMS schedules concur-
rent accesses to the data in such a manner that users can think of the data
as being accessed by only one user at a time. Further, the DBMS protects
users from the effects of system failures.

Reduced Application Development Time: Clearly, the DBMS sup-
ports important functions that are common to many applications accessing
datain the DBMS. This, in conjunction with the high-level interface to the
data, facilitates quick application development. DBMS applications are
also likely to be more robust than similar stand-alone applications because
many important tasks are handled by the DBMS (and do not have to be
debugged and tested in the application).

Given al these advantages, is there ever a reason not to use a DBMS? Some-
times, yes. A DBMS is a complex piece of software, optimized for certain kinds
of workloads (e.g., answering complex queries or handling many concurrent
requests), and its performance may not be adequate for certain specialized ap-
plications. Examples include applications with tight real-time constraints or
just a few well-defined critical operations for which efficient custom code must
be written. Another reason for not using a DBMS is that an application may
need to manipulate the data in ways not supported by the query language. In

10 CHAPTER:1

such a situation, the abstract view of the data presented by the DBIVIS does
not match the application's needs and actually gets in the way. As an exam-
ple, relational databases do not support flexible analysis of text data (although
vendors are now extending their products in this direction).

If specialized performance or data manipulation requirements are central to an
application, the application may choose not to use a DBMS, especially if the
added benefits of a DBMS (e.g., flexible querying, security, concurrent access,
and crash recovery) are not required. In most situations calling for large-scale
data management, however, DBMSs have become an indispensable tool.

1.5 DESCRIBING AND STORING DATA IN A DBMS

The user of a DBMS is ultimately concerned with some real-world enterprise,
and the data to be stored describes various aspects of this enterprise. For
example, there are students, faculty, and courses in a university, and the data
in a university database describes these entities and their relationships.

A data model is a collection of high-level data description constructs that hide
many low-level storage details. A DBMS allows a user to define the data to be
stored in terms of a data model. Most database management systems today
are based on the relational data model, which we focus on in this book.

While the data model of the DBMS hides many details, it is honetheless closer
to how the DBMS stores data than to how a user thinks about the underlying
enterprise. A semantic data model is a more abstract, high-level data model
that makes it easier for a user to come up with a good initial description of
the data in an enterprise. These models contain a wide variety of constructs
that help describe a real application scenario. A DBMS is not intended to
support all these constructs directly; it is typically built around a data model
with just a few basic constructs, such as the relational model. A database
design in terms of a semantic model serves as a useful starting point and is

subsequently translated into a database design in terms of the data model the
DBMS actually supports.

A widely used semantic data model called the entity-relationship (ER) model
allows us to pictorially denote entities and the relationships among them. We
cover the ER model in Chapter 2.

Querview of Database Systems 1

An Example of Poor Design: The relational schema for Students il-
lustrates a poor design choice; you should nevcT create a field such as age,
whose value is constantly changing. A better choice would be DOB (for
date of birth); age can be computed from this. \Ve continue to use age in
our examples, however, because it makes them easier to read.

15.1 TheRelational Model

In this section we provide a brief introduction to the relational model. The
central data description construct in this model is a relation, which can be
thought of as a set of records.

A description of data in terms of a data model is called a schema. In the
relational model, the schema for a relation specifies its name, the name of each
field (or attribute or column), and the type of each field. As an example,
student information in a university database may be stored in a relation with
the following schema:

Students(sid: string, name: string, login: string,
age integer, gpa: real)

The preceding schema says that each record in the Students relation has five
fields, with field names and types as indicated. An example instance of the
Students relation appears in Figure 1.1.

| sid [name 1Zogin age | gpa
53666 | Jones jones@cs 18 | 34
53688 | Smith smith@ee 18 | 3.2
53650 | Smith smith@math 19 | 38
53831 | Madayan | madayan@music | 11 18
53832 | Guldu guldu@music 12 | 20

Figure 1.1 An Instance of the Students Relation

Each row in the Students relation is a record that describes a student. The
description is not, completeo----for example, the student's height is not included-—
but is presumably adequate for the intended applications in the university
database. Every row follows the schema of the Students relation. The schema
call therefore be regarded as a template for describing a student.

We can make the description of a collection of students more precise by specify-
ing integrity constraints, which are conditions that the records in a relation

12 CHAPTERs 1

must satisfy. For example, we could specify that every student has a unique
sid value. Observe that we cannot capture this information by simply adding
another field to the Students schema. Thus, the ability to specify uniqueness
of the values in a field increases the accuracy with which we can describe our
data. The expressiveness of the constructs available for specifying integrity
constraints is an important aspect of a data model.

Other Data Models

In addition to the relational data model (which is used in numerous systems,
including IBM's DB2, Informix, Oracle, Sybase, Microsoft's Access, FoxBase,
Paradox, Tandem, and Teradata), other important data models include the
hierarchical model (e.g., used in IBM's IMS DBMS), the network model (e.g.,
used in IDS and IDMS), the object-oriented model (e.g., used in Objectstore
and Versant), and the object-relational model (e.g., used in DBMS products
from IBM, Informix, ObjectStore, Oracle, Versant, and others). While many
databases use the hierarchical and network models and systems based on the
object-oriented and object-relational models are gaining acceptance in the mar-
ketplace, the dominant model today is the relational model.

In this book, we focus on the relational model because of its wide use and im-
portance. Indeed, the object-relational model, which is gaining in popularity, is
an effort to combine the best features of the relational and object-oriented mod-
els, and a good grasp of the relational model is necessary to understand object-
relational concepts. (We discuss the object-oriented and object-relational mod-
els in Chapter 23.)

1.5.2 Levelsof Abstractionin aDBMS

The data in a DBMS is described at three levels of abstraction, as illustrated
in Figure 1.2. The database description consists of a schema at each of these
three levels of abstraction: the conceptual, physical, and external.

A data definition language (DDL) is used to define the external and coneep-
tual schemas. We discuss the DDL facilities of the Inost widely used database
language, SQL, in Chapter 3. All DBMS vendors also support SQL commands
to describe aspects of the physical schema, but these commands are not part of
the SQL language standard. Information about the conceptual, external, and
physical schemas is stored in the system catalogs (Section 12.1). We discuss
the three levels of abstraction in the rest of this section.

Overview of Database Systems

External Schema 1 External Schema 2 External Schéma 3

Figure 1.2 Levels of Abstraction in a DBMS

Conceptual Schema

The conceptual schema (sometimes called the logical schema) describes the
stored data in terms of the data model of the DBMS. In a relational DBMS,
the conceptual schema describes all relations that are stored in the database.
In our sample university database, these relations contain information about
entities, such as students and faculty, and about relationships, such as students'
enrollment in courses. All student entities can be described using records in
a Students relation, as we saw earlier. In fact, each collection of entities and
each collection of relationships can be described as a relation, leading to the
following conceptual schema:

Students(sid: string, name: string, login: string,

age: integer, gpa real)
Faculty(fid: string, fname: string, sa: real)
Courses(cid: string, cname: string, credits: integer)
Rooms(rno: integer, address. string, capacity: integer)
Enrolled(sd: string, cid: string, grade: string)
Teaches(fid: string, cid: string)
Meets In(cid: string, rno: integer, time: string)

The choice of relations, and the choice of fields for each relation, is not always
obvious, and the process of arriving at a good conceptual schema is called
conceptual database design. We discuss conceptual database design in
Chapters 2 and 19.

14 CHAPTER,1

Physical Schema

The physical schema specifies additional storage details. Essentially, the
physical schema summarizes how the relations described in the conceptual
schema are actually stored on secondary storage devices such as disks and

tapes.

‘We must decide what file organizations to use to store the relations and create
auxiliary datastructures, called indexes, to speed up dataretrieval operations.
A sample physical schema for the university database follows:

e Store al relations as unsorted files of records. (A file in a DBMS is either
a collection of records or a collection of pages, rather than a string of
characters as in an operating system.)

* Create indexes on the first column of the Students, Faculty, and Courses
relations, the sal column of Faculty, and the capacity column of Rooms.

Decisions about the physical schema are based on an understanding of how the
data is typically accessed. The process of arriving at a good physical schema
is called physical database design. We discuss physical database design in
Chapter 20.

External Schema

External schemas, which usually are also in terms of the data model of
the DBMS, alow data access to be customized (and authorized) at the level
of individual users or groups of users. Any given database has exactly one
conceptual schema and one physical schema because it has just one set of
stored relations, but it may have several external schemas, each tailored to a
particular group of users. Each external schema consists of a collection of one or
more views and relations from the conceptual schema. A view is conceptually
a relation, but the records in a view are not stored in the DBMS. Rather, they
are computed using a definition for the view, in terms of relations stored in the
DBMS. We discuss views in more detail in Chapters 3 and 25.

The external schema design is guided by end user requirements. For exalnple,
we might want to allow students to find out the names of faculty members
teaching courses as well as course enrollments. This can be done by defining
the following view:

Courseinfo(rid: string, fname: string, enrollment: integer)

A user can treat a view just like a relation and ask questions about the records
in the view. Even though the records in the view are not stored explicitly,

Overview of Database Systems 15

they are computed as needed. We did not include Courseinfo in the conceptual
schema because we can compute Courseinfo from the relations in the conceptual
schema, and to store it in addition would be redundant. Such redundancy, in
addition to the wasted space, could lead to inconsistencies. For example, a
tuple may be inserted into the Enrolled relation, indicating that a particular
student has enrolled in some course, without incrementing the value in the
enrollment field of the corresponding record of Courseinfo (if the latter also is
part of the conceptual schema and its tuples are stored in the DBMS).

1.5.3 Datalndependence

A very important advantage of using a DBMS is that it offers data i ndepen-
dence. That is, application programs are insulated from changes in the way
the data is structured and stored. Data independence is achieved through use
of the three levels of data abstraction; in particular, the conceptual schema and
the external schema provide distinct benefits in this area.

Relations in the external schema (view relations) are in principle generated
on demand from the relations corresponding to the conceptual schema.* If
the underlying data is reorganized, that is, the conceptual schema is changed,
the definition of a view relation can be modified so that the same relation is
computed as before. For example, suppose that the Faculty relation in our
university database is replaced by the following two relations:

Faculty public(fid: string, fname: string, office: integer)
Faculty_private(fid: string, sal: real)

Intuitively, some confidential information about faculty has been placed in a
separate relation and information about offices has been added. The Courseinfo
view relation can be redefined in terms of Faculty_public and Faculty_private,
which together contain al the information in Faculty, so that a user who queries
Courseinfo will get the same answers as before.

Thus, users can be shielded from changes in the logical structure of the data, or
changes in the choice of relations to be stored. This property is called logical
data independence.

In turn, the conceptual schemainsulates users from changes in physical storage
details. This property is referred to as physical data independence. The
conceptual schema hides details such as how the data is actually laid out on
disk, the file structure, and the choice of indexes. As long as the conceptual

4In practice, they could be precomputed and stored to speed up queries on view relations, but the
computed view relations must be updated whenever the underlying relations are updated.

16 CHAPTER 1

schema remains the same, we can change these storage details without altering
applications. (Of course, performance might be affected by such changes.)

1.6 QUERIESIN A DBMS

The ease \vith which information can be obtained from a database often de-
termines its value to a user. In contrast to older database systems, relational
database systems allow a rich class of questions to be posed easily; this feature
has contributed greatly to their popularity. Consider the sample university
database in Section 1.5.2. Here are some questions a user might ask:

What is the name of the student with student 1D 1234567
What is the average salary of professors who teach course CS5647
How many students are enrolled in CS5647

What fraction of students in CS564 received a grade better than B7

o~ W Do

Is any student with a CPA less than 3.0 enrolled in CS5647

Such questions involving the data stored in a DBMS are called queries. A
DBMS provides a specialized language, called the query language, in which
queries can be posed. A very attractive feature of the relational model is
that it supports powerful query languages. Relational calculus is a formal
query language based on mathematical logic, and queries in this language have
an intuitive, precise meaning. Relational algebra is another formal query
language, based on a collection of operators for manipulating relations, which
is equivalent in power to the calculus.

A DBMS takes great care to evaluate queries as efficiently as possible. We
discuss query optimization and evaluation in Chapters 12, 14, and 15. Of
course, the efficiency of query evaluation is determined to a large extent by
how the data is stored physically. Indexes can be used to speed up many
queries---in fact, a good choice of indexes for the underlying relations can speed
up each query in the preceding list. We discuss data storage and indexing in
Chapters 8, 9, 10, and 11.

A DBMS enables users to create, modify, and query data through a data
manipulation language (DML). Thus, the query language is only one part
of the DIIL, which also provides constructs to insert, delete, and modify data.,.
We will discuss the DML features of SQL in Chapter 5. The DML and DDL
are collectively referred to as the data sublanguage when embedded within
a host language (e.g., C or COBOL).

Overview of Database Systemns

1.7 TRANSACTION MANAGEMENT

Consider a database that holds information about airline reservations. At any
given instant, it is possible (and likely) that several travel agents are look-
ing up information about available seats on various flights and making new
seat reservations. When several users access (and possibly modify) a database
concurrently, the DBMS must order their requests carefully to avoid conflicts.
For example, when one travel agent looks up Flight 100 on some given day
and finds an empty seat, another travel agent may simultaneously be making
a reservation for that seat, thereby making the information seen by the first
agent obsolete.

Another example of concurrent use is a bank's database. While one user's
application program is computing the total deposits, another application may
transfer money from an account that the first application has just 'seen' to an
account that has not yet been seen, thereby causing the total to appear larger
than it should be. Clearly, such anomalies should not be alowed to occur.
However, disallowing concurrent access can degrade performance.

Further, the DBMS must protect users from the effects of system failures by
ensuring that all data (and the status of active applications) is restored to a
consistent state when the system is restarted after a crash. For example, if a
travel agent asks for a reservation to be made, and the DBMS responds saying
that the reservation has been made, the reservation should not be lost if the
system crashes. On the other hand, if the DBMS has not yet responded to
the request, but is making the necessary changes to the data when the crash
occurs, the partial changes should be undone when the system comes back up.

A transaction is anyone execution of a user program in a DBMS. (Executing
the same program several times will generate several transactions.) This s the
basic unit of change as seen by the DBMS: Partial transactions are not alowed,
and the effect of a group of transactions is equivalent to some serial execution
of all transactions. We briefly outline how these properties are guaranteed,
deferring a detailed discussion to later chapters.

1.7.1 Concurrent Execution of Transactions

An important task of a DBMS is to schedule concurrent accesses to data so
that each user can safely ignore the fact that others are accessing the data
concurrently. The importance of this task cannot be underestimated because
a database is typically shared by a large number of users, who submit their
requests to the DBMS independently and simply cannot be expected to deal
with arbitrary changes being made concurrently by other users. A DBMS

18 CHAPTER 4

alows users to think of their programs as if they were executing in isolation,
one after the other in some order chosen by the DBMS. For example, if a
progTam that deposits cash into an account is submitted to the DBMS at the
same time as another program that debits money from the same account, either
of these programs could be run first by the DBMS, but their steps will not be
interleaved in such a way that they interfere with each other.

A locking protocol is a set of rules to be followed by each transaction (and en-
forced by the DBMS) to ensurethat, even though actions of several transactions
might be interleaved, the net effect is identical to executing all transactions in
some serial order. A lock is a mechanism used to control access to database
objects. Two kinds of locks are commonly supported by a DBMS. shared
locks on an object can be held by two different transactions at the same time,
but an exclusive lock on an object ensures that no other transactions hold
any lock on this object.

Suppose that the following locking protocol is followed: Every transaction be-
gins by obtaining a shared lock on each data object that it needs to read and an
exclusive lock on each data object that it needs to modify, then releases all its
locks after completing all actions. Consider two transactions T1 and T2 such
that T1 wants to modify a data object and T2 wants to read the same object.
Intuitively, if T1's request for an exclusive lock on the object is granted first,
T2 cannot proceed until T1 releases this lock, because T2's request for a shared
lock will not be granted by the DBMS until then. Thus, all of T1's actions will
be completed before any of T2's actions are initiated. We consider locking in
more detail in Chapters 16 and 17.

1.7.2 Incomplete Transactions and System Crashes

Transactions can be interrupted before running to completion for a variety of
reasons, e.g., a system crash. A DBMS must ensure that the changes made by
such incomplete transactions are removed from the database. For example, if
the DBMS is in the middle of transferring money from account A to account
B and has debited the first account but not yet credited the second when the
crash occurs, the money debited from account A must be restored when the
system comes back up after the crash.

To do so, the DBMS maintains a log of all writes to the database. A crucial
property of thelog is that each write action must berecorded in the log (on disk)
before the corresponding change is reflected in the database itself--otherwise, if
the system crashes just after making the change in the database but before the
change is recorded in the log, the DBIVIS would be unable to detect and undo
this change. This property is called Write-Ahead Log, or WAL. To ensure

Ouverview of Database Systems 19

this property, the DBM S must be able to selectively force a page in memory to
disk.

The log is also used to ensure that the changes made by a successfully com-
pleted transaction are not lost due to a system crash, as explained in Chapter
18. Bringing the database to a consistent state after a system crash can be
a dow process, since the DBMS must ensure that the effects of all transac-
tions that completed prior to the crash are restored, and that the effects of
incomplete transactions are undone. The time required to recover from a crash
can be reduced by periodically forcing some information to disk; this periodic
operation is called a checkpoint.

1.7.3 Pointsto Note

In summary, there are three points to remember with respect to DBM S support
for concurrency control and recovery:

1. Every object that isread or written by atransaction is first locked in shared
or exclusive mode, respectively. Placing a lock on an object restricts its
availability to other transactions and thereby affects performance.

2. For efficient log maintenance, the DBMS must be able to selectively force
a collection of pages in main memory to disk. Operating system support
for this operation is not always satisfactory.

3. Periodic checkpointing can reduce the time needed to recover from a crash.
Of course, this must be balanced against the fact that checkpointing too
often slows down normal execution.

1.8 STRUCTURE OF A DBMS

Figure 1.3 shows the structure (with some simplification) of a typical DBMS
based on the relational data model.

The DBMS accepts SQL comma,nels generated from a variety of user interfaces,
produces query evaluation plans, executes these plans against the database, and
returnsthe answers. (Thisisasimplification: SQL commands can be embedded
in host-language application programs, e.g., Java or COBOL programs. We
ignore these issues to concentrate on the core DBMS functionality.)

When a user issues a query, the parsed query is presented to a query opti-
mizer, which uses information about how the data is stored to produce an
efficient execution plan for evaluating the query. An execution plan is a

20 CHAPTER 1

Sophisticated users. application
Unsophisticated users {customers, travel agents, etc.) programmers, DB administrators

L Web Forms] (Application Front Ends } ! SQL Interface

SdL CO’;\VJM A:’:’bS shows command flow
B : ,
: = | -
Plan Executor | [Parser I i shows interaction
Query
Operator Evaluator l i Optimizer Evaluation
T "4 Engine
Transacti }\ .| Files and Access Methods Fa-
ransaction 1
Manager |} i
¥ Recovery
—" Buffer Manager .‘*—* Manager
Lock
Manager l,
COHCW ~>| Disk Space Manager FA’
Control DBMS
T -_—
Index Files “ shows references
\ System Catal og
DataFil
artes DATABASE
—_— o .

Figure 1.3 Architecture of a DBMS

blueprint for evaluating a query, usually represented as a tree of relational op-
erators (with annotations that contain additional detailed information about
which access methods to use, etc.). We discuss query optimization in Chapters
12 and 15. Relational operators serve as the building blocks for evaluating
queries posed against the data. The implementation of these operators is dis-
cussed in Chapters 12 and 14.

The code that implements relational operators sits on top of the file and access
methods layer. This layer supports the concept of afile, which, ina DBMS, isa
collection of pages or a collection of records. Heap files, or files of unordered
pages, as well as indexes are supported. In addition to keeping track of the
pages in a file, this layer organizes the information within a page. File and
page level storage issues are considered in Chapter 9. File organizations and
indexes are cQllsidered in Chapter 8.

The files and access methods layer code sits on top of the buffer manager,
which brings pages in from disk to main memory as needed in response to read
requests. Buffer management is discussed in Chapter 9.

Overview of Database Systems 21

The lowest layer of the DBMS software deals with management of space on
disk, where the data is stored. Higher layers allocate, deallocate, read, and
write pages through (routines provided by) this layer, called the disk space
manager. This layer is discussed in Chapter 9.

The DBMS supports concurrency and crash recovery by carefully scheduling
user requests and maintaining a log of all changes to the database. DBMS com-
ponents associated with concurrency control and recovery include the trans-
action manager, which ensures that transactions request and release locks
according to a suitable locking protocol and schedules the execution transac-
tions; the lock manager, which keeps track of requests for locks and grants
locks on database objects when they become available; and the recovery man-
ager, which is responsible for maintaining a log and restoring the system to a
consistent state after a crash. The disk space manager, buffer manager, and
file and access method layers must interact with these components. We discuss
concurrency control and recovery in detail in Chapter 16.

19 PEOPLE WHO WORK WITH DATABASES

Quite a variety of people are associated with the creation and use of databases.
Obviously, there are database implementors, who build DBMS software,
and end users who wish to store and use data in a DBMS. Database imple-
mentors work for vendors such as IBM or Oracle. End users comefrom a diverse
and increasing number of fields. As data grows in complexity and volume, and
is increasingly recognized as a major asset, the importance of maintaining it
professionally in a DBMS is being widely accepted. Many end users simply use
applications written by database application programmers (see below) and so
require little technical knowledge about DBMS software. Of course, sophisti-
cated users who make more extensive use of a DBMS, such as writing their own
queries, require a deeper understanding of its features.

In addition to end users and implementors, two other classes of people are
associated with aDBMS: application programmers and database administrators.

Database application programmers develop packages that facilitate data
access for end users, who are usually not computer professionals, using the
host or data languages and software tools that DBMS vendors provide. (Such
tools include report writers, spreadsheets, statistical packages, and the like.)
Application programs should ideally access data through the external schema.
It is possible to write applications that access data at a lower level, but such
applications would comprornise data independence.

22 CHAPTER 1

A personal database is typically maintained by the individual who owns it and
uses it. However, corporate or enterprise-wide databases are typically impor-
tant enough and complex enough that the task of designing and maintaining the
database is entrusted to a professional, called the database administrator
(DBA). The DBA is responsible for many critical tasks:

m Design of the Conceptual and Physical Schemas: The DBA is re-
sponsible for interacting with the users of the system to understand what
datais to be stored in the DBMS and how it is likely to be used. Based on
this knowledge, the DBA must design the conceptual schema (decide what
relations to store) and the physical schema (decide how to store them).
The DBA may also design widely used portions of the external schema, al-
though users probably augment this schema by creating additional views.

m Security and Authorization: The DBA is responsible for ensuring that
unauthorized data access is not permitted. In general, not everyone should
be able to access all the data. In a relational DBMS, users can be granted
permission to access only certain views and relations. For example, a-
though you might allow students to find out course enrollments and who
teaches a given course, you would not want students to see faculty salaries
or each other's grade information. The DBA can enforce this policy by
giving students permission to read only the Courseinfo view.

m DataAvailability and Recovery from Failures: The DBA must take
steps to ensure that if the system fails, users can continue to access as much
of the uncorrupted data as possible. The DBA must also work to restore
the data to a consistent state. The DB.NIS provides software support for
these functions, but the DBA is responsible for implementing procedures
to back up the data periodically and maintain logs of system activity (to
facilitate recovery from a crash).

e Database Tuning: Users needs are likely to evolve with time. The DBA
is responsible for modifying the database, in particular the conceptual and
physical schemas, to ensure adequate performance as requirements change.

1.10 REVIEW QUESTIONS
Answers to the review questions can be found in the listed sections.

m What are the main benefits of using a DBMS to manage data in applica-
tions involving extensive data access? (Sections 1.1, 1.4)

= When would you store datain a DBMS instead of in operating system files
and vice-versa? (Section 1.3)

Overview of Database Systems 23

e What is a data model? \Vhat is the relational data model? What is data
independence and how does a DBMS support it? (Section 1.5)

 Explain the advantages of using a query language instead of custom pro-
grams to process data. (Section 1.6)

* What is a transaction? \Vhat guarantees does a DBMS offer with respect
to transactions? (Section 1.7)

e What are locks in a DBMS, and why are they used? What is write-ahead
logging, and why is it used? What is checkpointing and why is it used?
(Section 1.7)

¢ ldentify the main components in a DBMS and briefly explain what they
do. (Section 1.8)

« Explainthedifferent roles of database administrators, application program-
mers, and end users of a database. Who needs to know the most about
database systems? (Section 1.9)

EXERCISES

Exercise 1.1 Why would you choose a database system instead of simply storing data in
operating system files? When would it make sense not to use a database system?

Exercise 1.2 What is logical data independence and why is it important?
Exercise 1.3 Explain the difference between logical and physical data independence.

Exercise 1.4 Explain the difference between external, internal, and conceptual schemas.
How are these different schema layers related to the concepts of logica and physical data
independence?

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA is never

interested in running his or her own queries, does the DBA still need to understand query
optimization? Why?

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, descriptions
of embarrassing moments, etc.) about the many ducks on his payroll. Not surprisingly, the
volume of data compels him to buy a database system. To save money, he wants to buy one
with the fewest possible features, and he plans to run it as a stand-alone application on his
PC clone. Of course, Scrooge does not plan to share his list with anyone. Indicate which of
the following DBMS features Scrooge should pay for; in each case, also indicate why Scrooge
should (or should not) pay for that feature in the system he buys.

. A security facility.
. Concurrency control.

1

2

3. Crash recovery.

4. A view mechanism.

24 CHAPTER 1

5. A query language.

Exercise 1.7 Which of the following plays an important role in representing information
about the real world in a database'? Explain briefly.

The data definition language.
The data manipulation language.

W N e

The buffer manager.
4. The data model.

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded to
support some new functions on aS files (e.g., the ability to force some sequence of bytes to
disk), which layer(s) of the DBMS would you have to rewrite to take advantage of these new
functions?

Exercise 1.9 Answer the following questions:

1. What is a transaction?

2. Why does a DBMS interleave the actions of different transactions instead of executing
transactions one after the other?

3. What must a user guarantee with respect to a transaction and database consistency?
What should a DBMS guarantee with respect to concurrent execution of several trans-
actions and database consistency'?

4. Explain the strict two-phase locking protocol.
5. What is the WAL property, and why is it important?

PROJECT-BASED EXERCISES

Exercise 1.10 Use a Web browser to look at the HTML documentation for Minibase. Try
to get a feel for the overall architecture.

BIBLIOGRAPHIC NOTES

The evolution of database management systems is traced in [289]. The use of data models
for describing real-world data is discussed in [423], and [425] contains a taxonomy of data
models. The three levels of abstraction were introduced in [186, 712]. The network data
model is described in [186], and [775] discusses several commercial systems based on this
model. [721] contains a good annotated collection of systems-oriented papers on database
management.

Other texts covering database management systems include [204, 245, 305, 339, 475, 574,
689, 747, 762]. [204] provides a detailed discussion of the relational model from a concep-
tual standpoint and is notable for its extensive annotated bibliography. [574] presents a
performance-oriented perspective, with references to several commercial systems. [245] and
[689] offer broad coverage of databa,se system concepts, including a discussion of the hierar-
chical and network data models. [339] emphasizes the connection between database query
languages and logic programming. [762] emphasizes data models. Of these texts, [747] pro-
vides the most detailed discussion of theoretical issues. Texts devoted to theoretical aspects
include [3, 45, 501]. Handbook [744] includes a section on databases that contains introductory
survey articles on a number of topics.

INTRODUCTION TO
DATABASE DESIGN

What are the steps in designing a database?
Why is the ER model used to create an initial design?
What are the main concepts in the ER model ?

What are guidelines for using the ER model effectively?

5 4 8 8

How does database design fit within the overall design framework for
complex software within large enterprises?

What is UML and how is it related to the ER model?

§

L]

Key concepts: database design, conceptual, logical, and physical
design; entity-relationship (ER) model, entity set, relationship set,
attribute, instance, key; integrity constraints, one-to-many and many-
to-many relationships, participation constraints; weak entities, class
hierarchies, aggregation; UML, class diagrams, database diagrams,
component diagrams.

The great successful men of the world have used their imaginations. They
think ahead and create their mental picture. and then go to work materializing that
picture in all its details, filling in here, adding a little there, altering this bit and
that bit, but steadily building, steadily building.

Robert Collier

The entity-relationship (ER) data 'model allows us to describe the data involved
in a real-world enterprise in terms of objects and their relationships and is
widely used to (levelop an initial database design. It provides useful eoncepts
that allow us to move fronl an informal description of what users want 1lrorn

25

26 CHAPTER 2

their database to a more detailed, precise description that can be implemented
in a DBMS. In this chapter, we introduce the ER model and discuss how its
features allow us to model a wide range of data faithfully.

\Ve begin with an overview of database design in Section 2.1 in order to motivate
our discussion of the ER model. \Vithin the larger context of the overall design
process, the ER model is used in a phase called conceptual database design.
We then introduce the ER model in Sections 2.2, 2.3, and 2.4. In Section 2.5,
we discuss database design issues involving the ER model. We briefly discuss
conceptual database design for large enterprises in Section 2.6. In Section 2.7,
we present an overview of UML, a design and modeling approach that is more
general in its scope than the ER model.

In Section 2.8, we introduce a case study that is used as a running example
throughout the book. The case study is an end-to-end database design for an
Internet shop. Weillustrate thefirst two stepsin database design (requirements
analysis and conceptual design) in Section 2.8. In later chapters, we extend this
case study to cover the remaining steps in the design process.

We note that many variations of ER diagrams are in use and no widely accepted
standards prevail. The presentation in this chapter is representative of the
family of ER models and includes a selection of the most popular features.

2.1 DATABASE DESIGN AND ER DIAGRAMS

We begin our discussion of database design by observing that this is typically
just one part, although a central part in data-intensive applications, of a larger
software system design. Our primary focus is the design of the database, how-
ever, and we will not discuss other aspects of software design in any detail. We
revisit this point in Section 2.7.

The database design process can be divided into six steps. The ER model is
most relevant to the first three steps.

1. Requirements Analysis: The very first step in designing a database
application is to understand what data is to be stored in the database,
what applications must be built on top of it, and what operations are
most frequent and subject to performance requirements. In other words,
we must find out what the users want from the database. This is usually
an informal process that involves discussions with user groups, a study
of the current operating environment and how it is expected to change,
analysis of any available documentation on existing applications that are
expected to be replaced or complemented by the database, and so oi.

IntToduct'ion to Database Design 27

Database Design Tools: Design tools are available from RDBMS ven-
dors as well as third-party vendors. For example, see the following link for
details on design and analysis tools from Sybase:
http://www.sybase.com/products/application_tools

The following provides details on Oracle's tools:
http://www.oracle.com/tool s

Several methodologies have been proposed for organizing and presenting
the information gathered in this step, and some automated tools have been
developed to support this process.

2. Conceptual Database Design: Theinformation gathered in the require-
ments analysis step is used to develop a high-level description of the data
to be stored in the database, along with the constraints known to hold over
this data. This step is often carried out using the ER model and is dis-
cussed in the rest of this chapter. The ER model is one of several high-level,
or semantic, data models used in database design. The goal is to create
a simple description of the data that closely matches how users and devel-
opers think of the data (and the people and processes to be represented in
the data). This facilitates discussion among al the people involved in the
design process, even those who have no technical background. At the same
time, the initial design must be sufficiently precise to enable a straightfor-
ward translation into a data model supported by a commercial database
system (which, in practice, means the relational model).

3. Logical Database Design: We must choose a DBMS to implement
our database design, and convert the conceptual database design into a
database schema in the data model of the chosen DBMS. We will consider
only relational DBMSs, and therefore, the task in the logical design step
is to convert an ER schema into a relational database schema. We dis-
cuss this step in detail in Chapter 3; the result is a conceptual schema,
sometimes called the logical schema, in the relational data model.

2.1.1 Beyond ER Design

The ER diagram is just an approximate description of the data, constructed
through a subjective evaluation of the information collected during require-
ments analysis. A more careful analysis can often refine the logical schema
obtained at the end of Step 3. Once we have a good logical schema, we must
consider performance criteria and design the physical schema. Finally, we must
address security issues and ensure that users are able to access the data they
need, but not data that we wish to hide from them. The remaining three steps
of database design are briefly described next:

28 CHAPTER. 2

4. Schema Refinement: The fourth step ill database design is to analyze
the collection of relations in our relational database schema to identify po-
tential problems, and to refine it. In contrast to the requirements analysis
and conceptual design steps, which are essentially subjective, schema re-
finement can be guided by some elegant and powerful theory. We discuss
the theory of normalizing relations-restructuring them to ensure some
desirable properties-in Chapter 19.

5. Physical Database Design: In this step, we consider typical expected
workloads that our database must support and further refine the database
design to ensure that it meets desired performance criteria. This step may
simply involve building indexes on some tables and clustering some tables,
or it may involve a substantial redesign of parts of the database schema
obtained from the earlier design steps. We discuss physical design and
database tuning in Chapter 20.

6. Application and Security Design: Any software project that involves
a DBMS must consider aspects of the application that go beyond the
database itself. Design methodologies like UML (Section 2.7) try to ad-
dress the complete software design and development cycle. Briefly, we must
identify the entities (e.g., users, user groups, departments) and processes
involved in the application. We must describe the role of each entity in ev-
ery process that is reflected in some application task, as part of a complete
workflow for that task. For each role, we must identify the parts of the
database that must be accessible and the parts of the database that must
not be accessible, and we must take steps to ensure that these access rules
are enforced. A DBMS provides several mechanisms to assist in this step,
and we discuss this in Chapter 21.

In the implementation phase, we must code each task in an application lan-
guage (e.g., Java), using the DBIVIS to access data. We discuss application
development in Chapters 6 and 7.

In general, our division of the design process into steps should be seen as a
classification of the kinds of steps involved in design. Realistically, although
we might begin with the six step process outlined here, a complete database
design will probably require a subsequent tuning phase in which all six kinds
of design steps are interleaved and repeated until the design is satisfactory.

22 ENTITIES, ATTRIBUTES, AND ENTITY SETS

An entity is an object in the real world that is distinguishable frQm other
objects. Examples include the following: the Green Dragonzord toy, the toy
department, the manager of the toy department, the home address of the rnan-

Introduction to Database Design

agel' of the toy department. It is often useful to identify a collection of similar
entities. Such a collection is called an entity set. Note that entity sets need
not be disjoint; the collection of toy department employees and the collection
of appliance department employees may both contain employee John Doe (who
happens to work in both departments). We could also define an entity set called
Employees that contains both the toy and appliance department employee sets.

An entity is described using a set of attributes. All entities in a given entity
set have the same attributes; this is what we mean by similar. (This statement
is an oversimplification, as we will see when we discuss inheritance hierarchies
in Section 2.4.4, but it suffices for now and highlights the main idea.) Our
choice of attributes reflects the level of detail at which we wish to represent
information about entities. For example, the Employees entity set could use
name, social security number (ssn), and parking lot (lot) as attributes. In this
case we will store the name, social security number, and lot nhumber for each
employee. However, we will not store, say, an employee's address (or gender or
age).

For each attribute associated with an entity set, we must identify a domain of
possible values. For example, the domain associated with the attribute name
of Employees might be the set of 20-character strings.! As another example, if
the company rates employees on a scale of 1 to 10 and stores ratings in a field
called mting, the associated domain consists of integers 1 through 10. Further,
for each entity set, we choose a key. A key is a minimal set of attributes whose
values uniquely identify an entity in the set. There could be more than one
candidate key; if so, we designate one of them as the primary key. For now we
assume that each entity set contains at least one set of attributes that uniquely
identifies an entity in the entity set; that is, the set of attributes contains a key.
We revisit this point in Section 2.4.3.

The Employees entity set with attributes ssn, name, and lot is shown in Figure
2.1. Anentity set is represented by a rectangle, and an attribute is represented
by an oval. Each attribute in the primary key is underlined. The domain
information could be listed along with the attribute name, but we omit this to
keep the figures compact. The key is ssn.

2.3 RELATIONSHIPS AND RELATIONSHIP SETS

A relationship is an association among two or more entities. For example, we
may have the relationship that Attishoo works in the pharmacy department.

iTo avoid confusion, we assumne that attribute names do not repeat across entity sets. This is not
a real limitation because we can always use the entity set name to resolve ambiguities if the same
attribute name is used in more than one entity set.

30 CHAPTER 2

R

Employees

Figure 2.1 The Employees Entity Set

As with entities, we may wish to collect a set of similar relationships into a
relationship set. A relationship set can be thought of as a set of n-tuples:

{(ely-“,en) l € EEly---aen € En}

Each n-tuple denotes a relationship involving n entities el through en, where
entity ei isin entity set Ej. In Figure 2.2 we show the relationship set Works _In,
in which each relationship indicates a department in which an employee works.
Note that severa relationship sets might involve the same entity sets. For
example, we could also have a Manages relationship set involving Employees
and Departments.

\/
a

Warks_In

Employees Departments

Figure 2.2 The Works_In Relationship Set

A relationship can also have descriptive attributes. Descriptive attributes
are used to record information about the relationship, rather than about any
one of the participating entities; for example, we may wish to record that At-
tishoo works in the pharmacy department as of January 1991. Thisinformation
is captured in Figure 2.2 by adding an attribute, since, to Works In. A relation-
ship must be uniquely identified by the participating entities, without reference
to the descriptive attributes. Inthe Works _In relationship set, for example, each
Works_In relationship must be uniquely identified by the combination of em-
ployee ssn and department did. Thus, for a given employee-department pair,
we cannot have more than one associated since value.

An instance of a relationship set is a set of relationships. Intuitively, an
instance can be thought of as a 'snapshot' of the relationship set at some instant

Introduction to Database Design 31

in time. An instance of the Works_In relationship set is shown in Figure 2.3.
Each Employees entity is denoted by its ssn, and each Departments entity
is denoted by its did, for simplicity. The since value is shown beside each
relationship. (The 'many-te-many' and 'total participation' comments in the
figure are discussed later, when we discuss integrity constraints.)

171/91

CTr—m S]

223-32-6316|@_/
EMPLOYEES WORKS_IN DEPARTMENTS
Tota participation Many to Many Total participation

Figure 2.3 An Instance of the Works_In Relationship Set

As another example of an ER diagram, suppose that each department has offices
in several locations and we want to record the locations at which each employee
works. This relationship is ternary because we must record an association
between an employee, a department, and a location. The ER diagram for this
variant of Works_In, which we call Works.In2, is shown in Figure 2.4.

smce

= @“ﬁ?@)

\ Employees Works In2 Departments
L

@ Locations @

Figure 2.4 A Ternary Relationship Set

Theentity sets that participate in a relationship set need not be distinct; some-
times a relationship might involve two entities in the same entity set. For ex-
ample, consider the Reports To relationship set shown in Figure 2.5. Since

32 CHAPTER 2

employees report to other employees, every relationship in Reports To is of
the form (emp;.emp2), where both empl and empz are entities in Employees.
However, they play different roles: ernpl reports to the managing employee
emp2, which is reflected in the role indicators supervisor and subordinate in
Figure 2.5. If an entity set plays more than one role, the role indicator concate-
nated with an attribute name from the entity set gives us a unique name for
each attribute in the relationship set. For example, the Reports To relation-
ship set has attributes corresponding to the ssn of the supervisor and the ssn
of the subordinate, and the names of these attributes are supervisor_ssn and

subordinate_ssn.
e
L name)
...

Employees

supervisor subordinate

<_ Reports_To

-

Figure 2.5 The Reports_To Relationship Set

24 ADDITIONAL FEATURESOF THE ER MODEL

We now look at some of the constructsin the ER model that allow us to describe
some subtle properties of the data. The expressiveness of the ER model is a
big reason for its widespread lise.

24.1 Key Constraints

Consider the Works_In relationship shown in Figure 22. An employee can
work in several departments, and a department can have several employees, as
illustrated in the vWorks In instance shown in Figure 2.3. Employee 231-31-5368
has worked in Department 51 since 3/3/93 and in Department 56 since 2/2/92.
Department 51 has two employees.

Now consider another relationship set called Manages between the Employ-
ees and Departments entity sets such that each department has at most one
manager, although a single employee is alowed to manage more than one de-
partment. The restriction that each department has at most one manager is

Introduction to Database Design 33

an example of a key constraint, and it implies that each Departments entity
appears in at most one Manages relationship in any allowable instance of Man-
ages. Thisrestriction is indicated in the ER diagram of Figure 2.6 by using an
arrow from Departments to Manages. Intuitively, the arrow states that given
a Departments entity, we can uniquely determine the Manages relationship in

which it appears.
Cam _
name e (dr@
=2 g,/ < %T Cran D
Employees Manages : Depariments

Figure 2.6 Key Constraint on Manages

An instance of the Manages relationship set is shown in Figure 2.7. While this
is also a potential instance for the Works.In relationship set, the instance of
Works_In shown in Figure 2.3 violates the key constraint on Manages.

1123-22-36661. \ / 3/3/91 \

1231-31-53681
22192
J

13124 %650\.

223-32-6316 .74 3/1/97 \(. - /

EMPLOYEES MANAGES DEPARTMENTS
Partial participation One to Many Total participation

Figure 2.7 An Instance of the Manages Relationship Set

A relationship set like Manages is sometimes said to be one-to-many, to
indicate that one employee can be associated with many departments (in the
capacity of a manager), whereas each department can be associated with at
most one employee as its manager. In contrast, the Works_In relationship set, in
which an employee is allowed to work in several departments and a department
is allowed to have several employees, is said to be many-to-many.

A CHAPTER 2

If we add the restriction that each employee can manage at most one depart-
ment to the Manages relationship set, which would be indicated by adding
an arrow from Employees to IVlanages in Figure 2.6, we have a one-to-one
relationship set.

Key Constraintsfor Ternary Relationships

We can extend this convention-and the underlying key constraint concept-to
relationship sets involving three or more entity sets. If an entity set E has a
key constraint in a relationship set R, each entity in an instance of E appears
in at most one relationship in (a corresponding instance of) R. To indicate a
key constraint on entity set E in relationship set R, we draw an arrow from E
to R.

In Figure 2.8, we show a ternary relationship with key constraints. Each em-
ployee works in at most one department and at a single location. An instance
of the Works_In3 relationship set is shown in Figure 2.9. Note that each depart-
ment can be associated with several employees and locations and each location
can be associated with several departments and employees; however, each em-
ployee is associated with a single department and location.

@) T
ST] ST

Employees — Works_In3 ——————— Departments

Figure 2.8 A Ternary Relationship Set with Key Constraints

2.4.2 Participation Constraints

The key constraint on Manages tells us that a department has at most one
manager. A natural question to ask is whether every department has a Inan-
agel'. Let us say that every department is required to have a manager. This
requirement is an example of a participation constraint; the participation of
the entity set Departments in the relationship set Manages is said to be total.
A participation that is not total is said to be partial. As an example, the

Introduction to Database Design

//
£
— e ’/”/{/‘ —
- . sy N /‘\//;’ 56 |
//;123-22-3666) QXK— . .
(! 23!—31—5368'.\\\

1131-24-36501

1223-32-63161

EMPLOYEES WORKS_IN3 . | Pais |

Key constraint
LOCATIONS

Figure 2.9 An Instance of Works_In3

participation of the entity set Employees in Manages is partial, since not every
employee gets to manage a department.

Revisiting the Works..In relationship set, it is natural to expect that each em-
ployee works in at least one department and that each department has at |east
one employee. This means that the participation of both Employees and De-
partments in Works..In is total. The ER diagram in Figure 2.10 shows both
the Manages and Works..In relationship sets and all the given constraints. If
the participation of an entity set in a relationship set is total, the two are con-
nected by a thick line; independently, the presence of an arrow indicates a key
constraint. The instances of Works In and Manages shown in Figures 2.3 and
2.7 satisfy all the constraints in Figure 2.10.

2.4.3 Weak Entities

Thus far, we have assumed that the attributes associated with an entity set
include a key. This assumption does not always hold. For example, suppose
that employees can purchase insurance policies to cover their dependents. We
wish to record information about policies, including who is covered by each
policy, but this information is really our only interest in the dependents of an
employee. If an employee quits, any policy owned by the employee is terminated
and we want to delete all the relevant policy and dependent information from
the database.

36 CHAPTER: 2

- . since /) o _\\
e e ; e —
C=m DT C « O (e DT Q‘*j@
_-< >-- ‘ ~__ i ~

\\ P o \ P e
Employees Manages Departments
o ™

{ since
e

Figure 2.10 Manages and Works_In

We might choose to identify a dependent by name alone in this situation, since
it is reasonable to expect that the dependents of a given employee have different
names. Thus the attributes of the Dependents entity set might be pname and
age. The attribute pname does not identify a dependent uniquely. Recall
that the key for Employees is s, thus we might have two employees called
Smethurst and each might have a son called Joe.

Dependents is an example of a weak entity set. A weak entity can be iden-
tified uniquely only by considering some of its attributes in conjunction with
the primary key of another entity, which is called the identifying owner.

The following restrictions must hold:

m The owner entity set and the weak entity set must participate in a one-
to-many relationship set (one owner entity is associated with one or more
weak entities, but each weak entity has a single owner). This relationship
set is called the identifying relationship set of the weak entity set.

m The weak entity set must have total participation in the identifying rela-
tionship set.

For example, a Dependents entity can be identified uniquely only if we take the
key of the owning Employees entity and the pname of the Dependents entity.
The set of attributes of a weak entity set that uniquely identify a weak entity
for a given owner entity is called a partial key of the weak entity set. In our
example, pname is a partial key for Dependents.

Introduction to Database Design

The Dependents weak entity set and its relationship to Employees is shown in
Figure 211 The total participation of Dependents in Policy is indicated by
linking them with a dark line. The arrow from Dependents to Policy indicates
that each Dependents entity appears in at most one (indeed, exactly one, be-
cause of the participation constraint) Policy relationship. To underscore the
fact that Dependents is a weak entity and Policy is its identifying relationship,
we draw both with dark lines. To indicate that pname is a partial key for
Dependents, we underline it using a broken line. This means that there may
well be two dependents with the same pname value.

ST oG cn

Employees Dependents

Figure 2.11 A Weak Entity Set

244 ClassHierarchies

Sometimes it is natural to classify the entities in an entity set into subclasses.
For example, we might want to talk about an Hourly_Emps entity set and a
ContracL Emps entity set to distinguish the basis on which they are paid. We
might have attributes hours worked and hourly wage defined for Hourly Emps
and an attribute contractid defined for ContracL Emps.

We want the semantics that every entity in one of these sets is aso an Em-
ployees entity and, as such, must have all the attributes of Employees defined.
Therefore, the attributes defined for an Hourly Emps entity are the attributes
for Employees plus Hourly Emps. We say that the attributes for the entity set
Employees areinherited by the entity set Hourly_Emps and that Hourly Emps
ISA (read is @) Employees. In addition-and in contrast to class hierarchies
in programming languages such as C+-+—-there is a constraint on queries over
instances of these entity sets: A query that asks for al Employees entities
must consider all Hourly Emps and ContracL Emps entities as well. Figure
2.12 illustrates,the class hierarchy.

The entity set Employees may also be classified using a different criterion. For
example, we might identify a subset of employees as SenioLEmps. We can
rnodify Figure 2.12 to reflect this change by adding a second ISA node as a
child of Employees and making SenioL Emps a child of this node. Each of these
entity sets might be classified further, creating a multilevel 1SA hierarchy.

38 CHAPTER 2

hours_worked contractid

hourly_wages)\

Figure 2.12 Class Hierarchy

Hourly_Emps Contract_Emps

A class hierarchy can be viewed in one of two ways:

* Employees is specialized into subclasses. Specialization is the process
of identifying subsets of an entity set (the superclass) that share some
distinguishing characteristic. Typically, the superclass is defined first, the
subclasses are defined next, and subclass-specific attributes and relation-
ship sets are then added.

* Hourly_Emps and ContracLEmps are generalized by Employees. As an-
other example, two entity sets Motorboats and Cars may be generalized
into an entity set Motor_Vehicles. Generalization consists of identifying
some common characteristics of a collection of entity sets and creating a
new entity set that contains entities possessing these common character-
istics. Typically, the subclasses are defined first, the superclass is defined
next, and any relationship sets that involve the superclass are then defined.

We can specify two kinds of constraints with respect to I SA hierarchies, namely,
overlap and covering constraints. Overlap constraints determine whether
two subclasses are allowed to contain the same entity. For example, can At-
tishoo be both an Hourly_Emps entity and a ContracL Empsentity? Intuitively,
no. Can he be both a ContracL Emps entity and a Senior_Emps entity? Intu-
itively, yes. We denote this by writing ‘Contract_Emps OVERLAPS Senior.Emps.’
In the absence of such a statement, we assume by default that entity sets are
constrained to have no overlap.

Covering constraints determine whether the entities in the subclasses collec-
tively include all entities in the superclass. For example, does every Employees

Introduction to Database Design

entity have to belong to one of its subclasses? Intuitively, no. Does every
Motor_Vehicles entity have to be either a Motorboats entity or a Cars entity?
Intuitively, yes, a characteristic property of generalization hierarchies is that
every instance of a superclass is an instance of a subclass. We denote this by
writing 'Motorboats AND Cars COVER Motor-Vehicles.' In the absence of such a
statement, we assume by default that there is no covering constraint; we can
have motor vehicles that are not motorboats or cars.

There are two basic reasons for identifying subclasses (by specialization or
generalization):

1. We might want to add descriptive attributes that make sense only for the
entities in a subclass. For example, hourly wages does not make sense for a
ContracL Emps entity, whose pay is determined by an individual contract.

2. We might want to identify the set of entities that participate in some rela-
tionship. For example, we might wish to define the Manages relationship
so that the participating entity sets are Senior_Emps and Departments,
to ensure that only senior employees can be managers. As another exam-
ple, Motorboats and Cars may have different descriptive attributes (say,
tonnage and number of doors), but as Motor_Vehicles entities, they must
be licensed. The licensing information can be captured by a Licensed To
relationship between Motor_Vehicles and an entity set called Owners.

245 Aggregation

As defined thus far, a relationship set is an association between entity sets.
Sometimes, we have to model a relationship between a collection of entities
and relationships. Suppose that we have an entity set called Projects and that
each Projects entity is sponsored by one or more departments. The Spon-
sors relationship set captures this information. A department that sponsors a
project might assign employees to monitor the sponsorship. Intuitively, Moni-
tors should be a relationship set that associates a Sponsors relationship (rather
than a Projects or Departments entity) with an Employees entity. However,
we have defined relationships to associate two or more entities.

To define a relationship set such as Monitors, we introduce a new feature of
the ER model, called aggregation. Aggregation alows us to indicate that
a relationship set (identified through a dashed box) participates in another
relationship set. This is illustrated in Figure 2.13, with a dashed box around
Sponsors (and its participating entity sets) used to denote aggregation. This
effectively allows us to treat Sponsors as an entity set for purposes of defining
the Monitors relationship set.

40 CHAPTER 2

Employees

-

i

Monitors ~__>=—<_ unti >

—_—

: Sy O

e - e S
! Q pid D ; (pbjge‘ID/J\ did ™ |
‘ — ——— T

'
Projects — Sponsors = Departments :
'

- !

Figure 2.13 Aggregation

When should we use aggregation? Intuitively, we use it when we need to ex-
press a relationship among relationships. But can we not express relationships
involving other relationships without using aggregation? In our example, why
not make Sponsors a ternary relationship? The answer is that there are really
two distinct relationships, Sponsors and Monitors, each possibly with attributes
of its own. For instance, the Monitors relationship has an attribute until that
records the date until when the employee is appointed as the sponsorship mon-
itor. Compare this attribute with the attribute since of Sponsors, which is the
date when the sponsorship took effect. The use of aggregation versus a ternary
relationship may also be guided by certain integrity constraints, as explained
in Section 2.5.4.

25 CONCEPTUAL DESIGN WITH THE ER MODEL
Developing an ER diagram presents several choices, including the following:

s Should a concept be modeled as an entity or an attribute?
= Should a concept be modeled as an entity or a relationship?

= What arc the relationship sets and their participating entity sets? Should
we use binary or ternary relationships?

® Should we use aggregation?

Introduction to Database Design 41

\WVe now discuss the issues involved in making these choices.

25.1 Entity versus Attribute

\Vhile identifying the attributes of an entity set, it is sometimes not clear
whether a property should be modeled as an attribute or as an entity set (and
related to the first entity set using a relationship set). For example, consider
adding address information to the Employees entity set. One option is to use
an attribute address. This option is appropriate if we need to record only
one address per employee, and it suffices to think of an address as a string. An
alternative isto create an entity set called Addresses and to record associations
between employees and addresses using a relationship (say, Has_Address). This
more complex alternative is necessary in two situations:

* We have to record more than one address for an employee.

« We want to capture the structure of an address in our ER diagram. For
example, we might break down an address into city, state, country, and
Zip code, in addition to a string for street information. By representing an
address as an entity with these attributes, we can support queries such as
“Find all employees with an address in Madison, WI."

For another example of when to model a concept as an entity set rather than
an attribute, consider the relationship set (called WorksJ:n4) shown in Figure

214
e < from 5 > C—\\
dname
- (/gl_d__ T /budgetw
S /

Employees Works_In4

Departments

Figure 2.14 The Works_In4 Relationship Set

It differs from the \Vorks _In relationship set of Figure 2.2 only in that it has
attributes from and to, instead of since. Intuitively, it records the interval
during which an employee works for a department. Now suppose that it is
possible for an employee to work in a given department over more than one
period.

This possibility is ruled out by the ER diagram's semantics, because a rela-
tionship is uniquely identified by the participating entities (recall from Section

42 CHAPTER 2

2.3). The problem is that we want to record several values for the descriptive
attributes for each instance of the Works_In2 relationship. (This situation is
analogous to wanting to record several addresses for each employee.) We can
address this problem by introducing an entity set called, say, Duration, with
attributes from and to, as shown in Figure 2.15.

"
dname

(o D _C)

—_ 1 -

| Employees | Works_ind Departments

.
from)*** Duration '*—< to
e

Figure 2.15 The Works_In4 Relationship Set

In some versions of the'ER model, attributes are allowed to take on sets as
values. Given this feature, we could make Duration an attribute of Works_In,
rather than an entity set; associated with each Works_In relationship, we would
have a set of intervals. This approach is perhaps more intuitive than model-
ing Duration as an entity set. Nonetheless, when such set-valued attributes
are translated into the relational model, which does not support set-valued
attributes, the resulting relational schema is very similar to what we get by
regarding Duration as an entity set.

2.5.2 Entity versus Relationship

Consider the relationship set called Manages in Figure 2.6. Suppose that each
department manager is given a discretionary budget (dbudget), as shown in
Figure 2.16, in which we have also renamed the relationship set to Manages2.

| Departments

.

P

Employees |- = Manages2 /5<__
e

-

“ O —

Figure 2.16 Entity versus Relationship

Introduction to Database Design

Given a department, we know the manager, as well as the manager's starting
date and budget for that department. This approach is natural if we assume
that a manager receives a separate discretionary budget for each department
that he or she manages.

But what if the discretionary budget is a sum that covers all departments
managed by that employee? In this case, each Manages2 relationship that
involves a given employee will have the same value in the dbudget field, leading
to redundant storage of the same information. Another problem with this
design is that it is misleading; it suggests that the budget is associated with
the relationship, when it is actually associated with the manager.

We can address these problems by introducing a new entity set called Managers
(which can be placed below Employees in an |SA hierarchy, to show that every
manager is also an employee). The attributes since and dbudget now describe
a manager entity, as intended. As a variation, while every manager has a
budget, each manager may have a different starting date (as manager) for each
department. In this case dbudget is an attribute of Managers, but since is an
attribute of the relationship set between managers and departments.

The imprecise nature of ER modeling can thus make it difficult to recognize
underlying entities, and we might associate attributes with relationships rather
than the appropriate entities. In general, such mistakes lead to redundant
storage of the same information and can cause many problems. We discuss
redundancy and its attendant problems in Chapter 19, and present a technique
called normalization to eliminate redundancies from tables.

2.5.3 Binary versus Ternary Relationships

Consider the ER diagram shown in Figure 2.17. It models a situation in which
an employee can own several policies, each policy can be owned by several
employees, and each dependent can be covered by several policies.

Suppose that we have the following additional requirements:

e A policy cannot be owned jointly by two or more employees.
» Every policy must be owned by some employee.

w Dependents is a weak entity set, and each dependent entity is uniquely
identified by taking pname in conjunction with the policyid of a policy
entity (which, intuitively, covers the given dependent).

Thefirst requirement suggests that we impose a key constraint on Policies with
respect to Covers, but this constraint has the unintended side effect that a

44 CHAPTER: 2

a5
T \‘\ - //—\
(\ ssn T < ot age
{
o>~ |
| Employees Covers —| Dependents
T
|
Policies

d s (e D

Figure 2.17 Policies as an Entity Set

policy can cover only one dependent. The second requirement suggests that we
impose a total participation constraint on Policies. This solution is acceptable
if each policy covers at least one dependent. The third requirement forces us
to introduce an identifying relationship that is binary (in our version of ER
diagrams, although there are versions in which this is not the case).

Even ignoring the third requirement, the best way to model this situation is to
use two binary relationships, as shown in Figure 2.18.

Employses

4 .
policyid " N
________/) < cos P,

Figure 2.18 Policy Revisited

Introduction 10 Database Design 45

2

This example really has two relationships involving Policies, and our attempt
to use a single ternary relationship (Figure 2.17) is inappropriate. There are
situations, however, where a relationship inherently associates more than two
entities. We have seen such an example in Figures 2.4 and 2.15.

As a typical example of a ternary relationship, consider entity sets Parts, Sup-
pliers, and Departments, and a relationship set Contracts (with descriptive
attribute qty) that involves all of them. A contract specifies that a supplier will
supply (some quantity of) a part to a department. This relationship cannot
be adequately captured by a collection of binary relationships (without the use
of aggregation). With binary relationships, we can denote that a supplier 'can
supply' certain parts, that a department 'needs' some parts, or that a depart-
ment 'deals with' a certain supplier. No combination of these relationships
expresses the meaning of a contract adequately, for at least two reasons:

m The facts that supplier S can supply part P, that department D needs part
P, and that D will buy from S do not necessarily imply that department D
indeed buys part P from supplier S

= We cannot represent the qty attribute of a contract cleanly.

2.5.4 Aggregation versus Ternary Relationships

As we noted in Section 2.4.5, the choice between using aggregation or aternary
relationship is mainly determined by the existence of a relationship that relates
a relationship set to an entity set (or second relationship set). The choice may
also be guided by certain integrity constraints that we want to express. For
example, consider the ER diagram shown in Figure 2.13. According to this dia-
gram, a project can be sponsored by any number of departments, a department
can sponsor one or more projects, and each sponsorship is monitored by one
or more employees. If we don't need to record the until attribute of Monitors,
then we might reasonably use a ternal'Y relationship, say, Sponsors2, as shown
in Figure 2.19.

Consider the constraint that each sponsorship (of a project by a department)
be monitored by at most one employee. We cannot express this constraint
in terms of the Sponsors2 relationship set. On the other hand, we can easily
express the cOnstraint by drawing an arrow from the aggregated relationship
Sponsors to the relationship Monitors in Figure 2.13. Thus, the presence of
such a constraint serves as another reason for using aggregation rather than a
ternary relationship set.

46 CHAPTERt2

name

Employees

started _on

pbudget

Projects Sponsors2 > Departments 1
| :

Figure 2.19 Using a Ternary Relationship instead of Aggregation

26 CONCEPTUAL DESIGN FOR LARGE ENTERPRISES

We have thus far concentrated on the constructs available in the ER model
for describing various application concepts and relationships. The process of
conceptual design consists of more than just describing small fragments of the
application in terms of ER diagrams. For a large enterprise, the design may re-
quire the efforts of more than one designer and span data and application code
used by a number of user groups. Using a high-level, semantic data model,
such as ER diagrams, for conceptual design in such an environment offers the
additional advantage that the high-level design can be diagrammatically rep-
resented and easily understood by the many people who must provide input to
the design process.

An important aspect of the design process is the methodology used to structure
the development of the overall design and ensure that the design takes into
account all user requirements and is consistent. The usual approach is that the
requirements of various user groups are considered, any conflicting requirements
are somehow resolved, and a single set of global requirements is generated at
the end of the.requirements analysis phase. Generating a single set of global
requirements is a difficult task, but it allows the conceptual design phase to
proceed with the development of a logical schema that spans al the data and
applications throughout the enterprise.

An alternative approach is to develop separate conceptual schemas for different
user groups and then integrate these conceptual schemas. To integrate multi-

Intmduction to Database Design 47

ple conceptual schemas, we must establish correspondences between entities,
relationships, and attributes, and we must resolve numerous kinds of conflicts
(e.g., naming conflicts, domain mismatches, differences in measurement units).
This task is difficult in its own right. In some situations, schema integration
cannot be avoided; for example, when one organization merges with another,
existing databases may have to be integrated. Schema integration is also in-
creasing in importance as users demand access to heterogeneous data sources,
often maintained by different organizations.

2.7 THEUNIFIED MODELING LANGUAGE

There are many approaches to end-to-end software system design, covering all
the steps from identifying the business requirements to the final specifications
for a complete application, including workflow, user interfaces, and many as-
pects of software systems that go well beyond databases and the data stored in
them. In this section, we briefly discuss an approach that is becoming popular,
called the unified modeling language (UML) approach.

UML, like the ER model, has the attractive feature that its constructs can be
drawn as diagrams. It encompasses a broader spectrum of the software design
process than the ER model:

m Business Modeling: In this phase, the goal is to describe the business
processes involved in the software application being devel oped.

m System Modeling: The understanding of business processes is used to
identify the requirements for the software application. One part of the
requirements is the database requirements.

m Conceptual Database Modeling: This step corresponds to the creation
of the ER design for the database. For this purpose, UML provides many
constructs that parallel the ER constructs.

s Physical Database Modeling: UML also provides pictorial represen-
tations for physical database design choices, such as the creation of table
spaces and indexes. (We discuss physical database design in later chapters,
but not the corresponding UML constructs.)

m Hardware System Modeling: UML diagrams can be used to describe
the hardware configuration used for the application.

There are many kinds of diagrams in UML. Use case diagrams describe the
actions performed by the system in response to user requests, and the people
involved in these actions. These diagrams specify the external functionality
*hat the system is expected to support.

48 CHAPTER»2

Activity diagrams show the flow of actions in a business process. Statechart
diagrams describe dynamic interactions between system objects. These dia-
grams, used in business and systern modeling, describe how the external func-
tionality is to be implemented, consistent with the business rules and processes
of the enterprise.

Class diagrams are similar to ER diagrams, although they are more general
in that they are intended to model application entities (intuitively, important
program components) and their logical relationships in addition to data entities
and their relationships.

Both entity sets and relationship sets can be represented as classes in UML,
together with key constraints, weak entities, and class hierarchies. The term
relationship is used slightly differently in UML, and UML's relationships are
binary. This sometimes leads to confusion over whether relationship sets in
an ER diagram involving three or more entity sets can be directly represented
in UML. The confusion disappears once we understand that all relationship
sets (in the ER sense) are represented as classes in UML; the binary UML
‘relationships’ are essentially just the links shown in ER diagrams between
entity sets and relationship sets.

Relationship sets with key constraints are usually omitted from UML diagrams,
and the relationship is indicated by directly linking the entity sets involved.
For example, consider Figure 2.6. A UML representation of this ER diagram
would have a class for Employees, a class for Departments, and the relationship
Manages is shown by linking these two classes. The link can be labeled with
a name and cardinality information to show that a department can have only
one manager.

As we will see in Chapter 3, ER diagrams are translated into the relational
model by mapping each entity set into a table and each relationship set into
a table. Further, as we will see in Section 3.5.3, the table corresponding to a
one-to-many relationship set is typically omitted by including some additional
information about the relationship in the table for one of the entity sets in-
volved. Thus, UML class diagrams correspond closely to the tables created by
mapping an ER diagram.

Indeed, every class in a UML class diagram is mapped into a table in the cor-
responding UML database diagram. UML's database diagrams show how
classes are represented in the database and contain additional details about
the structure of the database such as integrity constraints and indexes. Links
(UML's ‘'relationships’) between UML classes lead to various integrity con-
straints between the corresponding tables. Many details specific to the re-
lational model (e.g., views, fOTeign keys, null-allowed fields) and that reflect

Introduction to Dutaba8C Design 49

physical design choices (e.g., indexed fields) can be modeled ill UML database
diagrams.

UML's component diagrams describe storage aspects of the database, such
as tablespaces and database pa,titions), as well as interfaces to applications
that access the database. Finally, deployment diagrams show the hardware
aspects of the system.

Our objective in this book is to concentrate on the data stored in a database
and the related design issues. To this end, we deliberately take a simplified
view of the other steps involved in software design and development. Beyond
the specific discussion of UML, the material in this section is intended to place
the design issues that we cover within the context of the larger software design
process. We hope that this will assist readers interested in a more comprehen-
sive discussion of software design to complement our discussion by referring to
other material on their preferred approach to overall system design.

28 CASE STUDY: THE INTERNET SHOP

We now introduce an illustrative, 'cradle-to-grave' design case study that we
use as a running example throughout this book. DBDudes Inc., a well-known
database consulting firm, has been called in to help Barns and Nobble (B&N)
with its database design and implementation. B&N is a large bookstore special-
izing in books on horse racing, and it has decided to go online. DBDudes first
verifies that B&N is willing and able to pay its steep fees and then schedules a
lunch meeting--billed to B&N, naturally—to do requirements analysis.

2.8.1 Requirements Analysis

The owner of B&N, unlike many people who need a database, has thought
extensively about what he wants and offers a concise summary:

“I would like my customers to be able to browse my catalog of books and
place orders over the Internet. Currently, | take orders over the phone. | have
mostly corporate customers who call me and give me the ISBN number of a
book and a quantity; they often pay by credit card. | then prepare a shipment
that contains the books they ordered. If | don't have enough copies in stock,
| order additional copies and delay the shipment until the new copies arrive;
| want to ship a customer's entire order together. My catalog includes al the
books | sdl. For each book, the catalog containsits ISBN number, title, author,
purchase price, sales price, and the year the book was published. Most of my
customers are regulars, and | have records with their names and addresses.

50 CHAPTER 2

(/.. — T

order_date) cardnum J

e
~ ;l >

Csb_n) / // (year _published /\\ \ /

Books - Orders Customers

C‘
\/
/%
\

/\
i

Figure 2.20 ER Diagram of the Initial Design

New customers have to call me first and establish an account before they can
use my website.

On my new website, customers should first identify themselves by their unique
customer identification number. Then they should be able to browse my catalog
and to place orders online."

DBDudes's consultants are a little surprised by how quickly the requirements
phase is completed--it usually takes weeks of discussions (and many lunches
and dinners) to get this done-—but return to their offices to analyze this infor-
mation.

2.8.2 Conceptual Design

In the conceptual design step, DBDudes develops a high level description of
the data in terms of the ER model. The initial design is shown in Figure
2.20. Books and customers are modeled as entities and related through orders
that customers place. Orders is a relationship set connecting the Books and
Customers entity sets. For each order, the following attributes are stored:
guantity, order date, and ship date. As soon as an order is shipped, the ship
date is set; until then the ship date is set to null, indicating that this order has
not been shipped yet.

DBDudes has an internal design review at this point, and several questions are
raised. To protect their identities, we will refer to the design team leader as
Dude 1 and the design reviewer as Dude 2.

Dude 2: What if a customer places two orders for the same book in one day?
Dude 1. The first order is handlecl by creating a new Orders relationship and

Introduction to Database Design 5’1

the second order is handled by updating the value of the quantity attribute in
this relationship.

Dude 2: What if a customer places two orders for different books in one day?
Dude 1: No problem. Each instance of the Orders relationship set relates the
customer to a different book.

Dude 2. Ah, but what if a customer places two orders for the same book on
different days?

Dude 1: We can use the attribute order date of the orders relationship to
distinguish the two orders.

Dude 22 Oh no you can't. The attributes of Customers and Books must jointly
contain a key for Orders. So this design does not allow a customer to place
orders for the same book on different days.

Dude 1: Yikes, you're right. Oh well, B&N probably won't care; we'll see.

DBDudes decides to proceed with the next phase, logical database design; we
rejoin them in Section 3.8.

29 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

= Name the main steps in database design. What is the goal of each step?
In which step is the ER model mainly used? (Section 2.1)

m Define these terms. entity, entity set, attribute, key. (Section 2.2)

m Define these terms. relationship, relationship set, descriptive attributes.
(Section 2.3)

= Define the following kinds of constraints, and give an example of each: key
constraint, participation constraint. What is a weak entity? What are class
hierarchies? What is aggregation? Give an example scenario motivating
the use of each of these ER model design constructs. (Section 2.4)

s What guidelines would you use for each of these choices when doing ER
design: \Vhether to use an attribute or an entity set, an entity or arelation-
ship set, a binary or ternary relationship, or aggregation. (Section 2.5)

w Why is designing a database for a large enterprise especially hard? (Sec-
tion 2.6)

= What is UML? How does database design fit into the overall design of
a data-intensive software system? How is UML related to ER diagrams?
(Section 2.7)

52 CHAPTER 2

EXERCISES

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relationship,.
entity set, relationship set, one-to-many relationship, many-to-many relationship, participa-
tion constmint. overlap constraint, covering constraint, weak entity s&,. aggregation, and role
indicator.

Exercise 2.2 A university database contains information about professors (identified by so-
cial security number, or SSN) and courses (identified by courseid). Professors teach courses;
each of the following situations concerns the Teaches relationship set. For each situation,
draw an ER diagram that describes it (assuming no further constraints hold).

1. Professors can teach the same course in several semesters, and each offering must be
recorded.

2. Professors can teach the same course in several semesters, and only the most recent
such offering needs to be recorded. (Assume this condition applies in al subsequent
questions.)

3. Every professor must teach some course.
4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course must be
taught by some professor.

6. Now suppose that certain courses can be taught by a team of professors jointly, but it
is possible that no one professor in a team can teach the course. Model this situation,
introducing additional entity sets and relationship sets if necessary.

Exercise 2.3 Consider the following information about a university database:

L] Professors have an SSN, a name, an age, a rank, and a research specialty.

L Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending
date, and a budget.

B Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or
Ph.D.).

L] Each project is managed by one professor (known as the project's principal investigator).

B Each project isworked on by one or more professors (known as the project's co-investigators).

B Professors can manage and/or work on multiple projects.

L] Each project is worked on by one or more graduate students (known as the project's
research assistants).

® When graduate students work on a project, a professor must supervise their work on the
project. Graduate students can work on multiple projects, in which case they will have
a (potentially different) supervisor for each one.

L} Departments have a department number, a department name, and a main office.
[} Departments have a professor (known as the chairman) who runs the department.

[Professors work in one or more departments, and for each department that they work
in, a time percentage is associated with their job.

® Graduate students have one major department in which they are working o their degree.

Introduction to Database Design 53

L] Each graduate student has another, more senior graduate student (known as a student
advisor) who advises him or her ol what courses to take.

Design and dra\v an ER diagram that captures the information about the university. Use only
the basic ER model here; that is, entities, relationships, and attributes. Be sure to indicate
any key and participation constraints.

Exercise 2.4 A company database needs to store information about employees (identified
by ssn, with salary and phone as attributes), departments (identified by dna, with dname and
budget as attributes), and children of employees (with name and age as attributes). Employees
work in departments; each department is managed by an employee; a child must be identified
uniquely by name when the parent (who is an employee; assume that only one parent works
for the company) is known. We are not interested in information about a child once the
parent leaves the company.

Draw an ER diagram that captures this information.

Exercise 2.5 Notown Records has decided to store information about musicians who perform
on its albums (as well as other company data) in a database. The company has wisely chosen
to hire you as a database designer (at your usual consulting fee of $2500jday).

n Each musician that records at Notown has an SSN, a name, an address, and a phone
number. Poorly paid musicians often share the same address, and no address has more
than one phone.

n Each instrument used in songs recorded at Notown has a hame (e.g., guitar, synthesizer,
flute) and a musical key (e.g., C, B-flat, E-flat).

" Each album recorded on the Notown label has a title, a copyright date, a format (e.g.,
CD or MC), and an album identifier.

m Each song recorded at Notown has a title and an author.

] Each musician may play several instruments, and a given instrument may be played by
several musicians.

= Each album has a number of songs on it, but no song may appear on more than one
album.

| Each song is performed by one or more musicians, and a musician may perform a number
of songs.

| Each album has exactly one musician who acts as its producer. A musician may produce
several albums, of course.

Design' a conceptual schema for Notown and draw an ER diagram for your schema. The
preceding information describes the situation that the Notown database must model. Be sure
to indicate al key and cardinality constraints and any assumptions you make. ldentify any
constraints you are unable to capture in the ER diagram and briefly explain why you could
not express them.

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to Dane
County Airport officials about the poor organization at the airport. As a result, the officials
decided that all information related to the airport should be organized using a DBMS, and
you have been hired to design the database. Your first task is to organize the information
about all the airplanes stationed and maintainecl at the airport. The relevant information is
as follows:

CHAPTER 2

Every airplane has a registration number, and each airplane is of a specific model.

The airport accommodates a number of airplane models, and each model is identified by
a model number (e.g., DC-IO) and has a capacity and a weight.

A number of technicians work at the airport. You need to store the name, SSN, address,
phone number, and salary of each technician.

Each technician is an expert on one or more plane model(s), and his or her expertise may
overlap with that of other technicians. This information about technicians must also be
recorded.

Traffic controllers must have an annual medical examination. For each traffic controller,
you must store the date of the most recent exam.

All airport employees (including technicians) belong to a union. You must store the
union membership number of each employee. You can assume that each employee is
uniquely identified by a social security number.

The airport has a number of tests that are used periodically to ensure that airplanes are
still airworthy. Each test has a Federal Aviation Administration (FAA) test number, a
name, and a maximum possible score.

The FAA requires the airport to keep track of each time a given airplane is tested by a
given technician using a given test. For each testing event, the information needed is the
date, the number of hours the technician spent doing the test, and the score the airplane
received on the test.

. Draw an ER diagram for the airport database. Be sure to indicate the various attributes

of each entity and relationship set; also specify the key and participation constraints for
each relationship set. Specify any necessary overlap and covering constraints as well (in
English).

. The FAA passes a regulation that tests on a plane must be conducted by a technician

who is an expert on that model. How would you express this constraint in the ER
diagram? If you cannot express it, explain briefly.

Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a free life-
time supply of medicine if you design its database. Given the rising cost of health care, you
agree. Here's the information that you gather:

Patients are identified by an SSN, and their names, addresses, and ages must be recorded.

Doctors are identified by an SSN. For each doctor, the name, specialty, and years of
experience must be recorded.

Each pharmaceutical company is identified by name and has a phone number.

For each drug, the trade name and formula must be recorded. Each drug is sold by
a given pharmaceutical company, and the trade name identifies a drug uniquely from
among the products of that company. If a pharmaceutical company is deleted, you need
not keep track of its products any longer.

Each pharmacy has a name, address, and phone number.
Every patient has a primary physician. Every doctor has at least one patient.

Each pharmacy sells several drugs and has a price for each. A drug could be sold at
several pharmacies, and the price could vary from one pharmacy to another.

Introduction t0 Database Design 55

. Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for
several patients, and a patient could obtain prescriptions from several doctors. Each
prescription has a date and a quantity associated with it. You can assume that, if a
doctor prescribes the same drug for the same patient more than once, only the last such
prescription needs to be stored.

. Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical
company can contract with several pharmacies, and a pharmacy can contract with several
pharmaceutical companies. For each contract, you haveto store a start date, an end date,
and the text of the contract.

. Pharmacies appoint a supervisor for each contract. There must always be a supervisor
for each contract, but the contract supervisor can change over the lifetime of the contract.

1. Draw an ER diagram that captures the preceding information. ldentify any constraints
not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by al pharma-
cies?
3. How would your design change if the design requirements change as follows: If a doctor

prescribes the same drug for the same patient more than once, several such prescriptions
may have to be stored.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an expert on
databases because you love to cook data and you somehow confused database with data baste.
Your old love is still there, however, so you set up a database company, ArtBase, that builds a
product for art galleries. The core of this product is a database with a schemathat captures
al the information that galleries need to maintain. Galleries keep information about artists,
their names (which are unique), birthplaces, age, and style of art. For each piece of artwork,
the artist, the year it was made, its unique title, its type of art (e.g., painting, lithograph,
sculpture, photograph), and its price must be stored. Pieces of artwork are also classified into
groups of various kinds, for example, portraits, still lifes, works by Picasso, or works of the
19th century; a given piece may belong to more than one group. Each group is identified by
a name (like those just given) that describes the group. Finally, galleries keep information
about customers. For each customer, galleries keep that person's unique name, address, total
amount of dollars spent in the gallery (very important!), and the artists and groups of art
that the customer tends to like.

Draw the ER diagram for the database.
Exercise 2.9 Answer the following questions.

. Explain the following terms briefly: UML, use case diagrams, statechart diagrams, class
diagrams, database diagrams, component diagrams, and deployment diagrams.

. Explain the relationship between ER diagrams and UML.

BffiLIOGRAPHIC NOTES

Several books provide a good treatment of conceptual design; these include [63] (which aso
contains a survey of commercial database design tools) and [730J.

The ER model was proposed by Chen [172], and extensions have been proposed in a number
of subsequent papers. Generalization and aggregation were introduced in [693]. [390, 589]

56 CHAPTER 2

contain good surveys of semantic data models. Dynamic and temporal aspects of semantic
data models are discussed in {749].

[731] discusses a design methodology based on developing an ER diagram and then translating
it to the relational model. Markowitz considers referential integrity in the context of ER to
relational mapping and discusses the support provided in some commercia systems (as of
that date) in [513, 514].

The entity-relationship conference proceedings contain numerous papers on conceptual design,
with an emphasis on the ER model; for example, [698].

The OMG home page (www.omg. org) contains the specification for UML and related modeling
standards. Numerous good books discuss UML; for example [105, 278, 640] and there is a
yearly conference dedicated to the advancement of UML, the International Conference on the
Unified Modeling Language.

View integration is discussed in several papers, including [97, 139, 184, 244, 535, 551, 550,
685, 697, 748]. [64] is a survey of several integration approaches.

THE RELATIONAL MODEL

How is data represented in the relational model?

What integrity constraints can be expressed?

How can data be created and modified?

How can data be manipulated and queried?

How can we create, modify, and query tables using SQL?

How do we obtain a relational database design from an ER diagram?

What are views and why are they used?

T 4 8 83 8 3 & %

Key concepts: relation, schema, instance, tuple, field, domain,
degree, cardinality; SQL DDL, CREATE TABLE, INSERT, DELETE,
UPDATE; integrity constraints, domain constraints, key constraints,
PRIMARY KEY, UNIQUE, foreign key constraints, FOREIGN KEY; refer-
ential integrity maintenance, deferred and immediate constraints; re-
lational queries; logical database design, translating ER diagrams to
relations, expressing ER constraints using SQL; views, views and log-
ical independence, security; creating views in SQL, updating views,
querying views, dropping views

TABLE: An arrangement of words, numbers, or signs, or combinations of them,
as in parallel columns, to exhibit a set of facts or relations in a definite, compact,
and comprehensive form; a synopsis or scheme.

----- vVebster's Dictionary of the English Language

Codd proposed the relational data model in 1970. At that time, most database
systems were based on one of two older data models (the hierarchical model

57

58 CHAPTER 3

SQL. Originally developed as the query language of the pioneering
System-R relational DBMS at IBM, structured query language (SQL)
has become the most widely used language for creating, manipulating,
and querying relational DBMSs. Since many vendors offer SQL products,
there is a need for a standard that defines \officia SQL." The existence of
a standard alows users to measure a given vendor's version of SQL for
completeness. It also allows users to distinguish SQLfeatures specific to
one product from those that are standard; an application that relies on
nonstandard features is less portable.

The first SQL standard was developed in 1986 by the American National
Standards Institute (ANSI) and was called SQL-86. There was a minor
revision in 1989 called SQL-89 and a major revision in 1992 called SQL-
92. The International Standards Organization (1SO) collaborated with
ANSI to develop SQL-92. Most commercial DBMSs currently support (the
core subset of) SQL-92 and are working to support the recently adopted
SQL:1999 version of the standard, a major extension of SQL-92. Our
coverage of SQL is based on SQL:1999, but is applicable to SQL-92 as
well; features unique to SQL:1999 are explicitly noted.

and the network model); the relational model revolutionized the database field
and largely supplanted these earlier models. Prototype relational database
management systems were developed in pioneering research projects at IBM
and DC-Berkeley by the mid-197Gs, and several vendors were offering relational
database products shortly thereafter. Today, the relational model is by far
the dominant data model and the foundation for the leading DBMS products,
including IBM's DB2 family, Informix, Oracle, Sybase, Microsoft's Access and
SQL Server, FoxBase, and Paradox. Relational database systems are ubiquitous
in the marketplace and represent a multibillion dollar industry.

The relational model is very simple and elegant: a database is a collection of
one or more relations, where each relation is a table with rows and columns.
This simple tabular representation enables even novice users to understand the
contents of a database, and it permits the use of simple, high-level languages
to query the data. The major advantages of the relational model over the older
data models are its simple data representation and the ease with which even
complex gueries can be expressed.

While we concentrate on the underlying concepts, we aso introduce the Data
Definition Language (DDL) features of SQL, the standard language for
creating, manipulating, and querying data in a relational DBMS. This alows
us to ground the discussion firmly in terms of real database systems.

The Relational Model 59

We discuss the concept of a relation in Section 3.1 and show how to create
relations using the SQL language. An important component of a data model is
the set of constructs it provides for specifying conditions that must be satisfied
by the data. Such conditions, called 'integrity constraints (IGs), enable the
DBIviS to reject operations that might corrupt the data. We present integrity
constraints in the relational model in Section 3.2, along with a discussion of
SQL support for les. We discuss how a DBMS enforces integrity constraints
in Section 3.3.

In Section 3.4, we turn to the mechanism for accessing and retrieving data
from the database, query languages, and introduce the querying features of
SQL, which we examine in greater detail in a later chapter.

We then discuss converting an ER diagram into a relational database schema
in Section 3.5. We introduce views, or tables defined using queries, in Section
3.6. Views can be used to define the external schema for a database and thus
provide the support for logical data independence in the relational model. In
Section 3.7, we describe SQL commands to destroy and alter tables and views.

Finally, in Section 3.8 we extend our design case study, the Internet shop in-
troduced in Section 2.8, by showing how the ER diagram for its conceptual
schema can be mapped to the relational model, and how the use of views can
help in this design.

31 INTRODUCTIONTO THE RELATIONAL MODEL

The main construct for representing datain the relational model is a relation.
A relation consists of a relation schema and a relation instance. The
relation instance is a table, and the relation schema describes the column heads
for the table. We first describe the relation schema and then the relation
instance. The schema specifies the relation's name, the name of each field (or
column, or attribute), and the domain of each field. A domain is referred to
in a relation schema by the domain name and has a set of associated val ues.

\Ve use the example of student information in a university database from Chap-
ter 1to illustrate the parts of a relation schema:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

This says, for instance, that the field named sid has a domain named string.
The set of values associated with domain string is the set of all character
strings.

60 CHAPTER 3

We now turn to the instances of a relation. An instance of a relation is a set
of tuples, aso caled records, in which each tuple has the same number of
fields as the relation schema. A relation instance can be thought of as a table
in which each tupleis a row, and all rows have the same number of fields. (The
term relation instance is often abbreviated to just relation, when there is no
confusion with other aspects of a relation such as its schema.)

An instance of the Students relation appears in Figure 3.1. The instance 81

FIELDS (ATTRI BUTES, COLUM NS)

Field names

I---/0'- gz— n-- opa

Dave dave@cs 19| 33

53666 | Jones jones@cs 18| 34

TUPLES 53688 | Smith smith@ee 18| 32
(RECORDS, 53650 | Smith smith@math 19| 38
ROWS) | 53831 Madayan | madayan@music 1 | 18
53832 | Guldu guldu@music 12| 20

Figure 3.1 An Instance 81 of the Students Relation

contains six tuples and has, as we expect from the schema, five fidlds. Note that
no two rows are identical. This is a requirement of the relational model-each
relation is defined to be a set of unique tuples or rows.

In practice, commercial systems alow tables to have duplicate rows, but we
assume that a relation is indeed a set of tuples unless otherwise noted. The
order in which the rows are listed is not important. Figure 3.2 shows the same
relation instance. If the fields are named, as in our schema definitions and

| sid | name | login age | gpa
53831 | Madayan | madayan@music | 11 | 1.8
53832 | Guldu gllldll@music 12 | 20
53688 | Smith smith@ee 18 | 3.2
53650 | Smith smith@math 19 | 38
53666 | Jones jones@cs 18 | 34
50000 | Dave dave@cs 19 | 33

Figure 3.2 An Alternative Representation of Instance 81 of Students

figures depicting relation instances, the order of fields does not matter either.
However, an alternative convention is to list fields in a specific order and refer

The Relat'ional Afodd 61

5

to a field by its position. Thus, sid is field 1 of Students, login is field 3,
and so on. If this convention is used, the order of fields is significant. Most
database systems use a combination of these conventions. For example, in SQL,
the named fields convention is used in statements that retrieve tuples and the
ordered fields convention is commonly used when inserting tuples.

A relation schema specifies the domain of each field or column in the relation
instance. These domain constraints in the schema specify an important
condition that we want each instance of the relation to satisfy: The values
that appear in a column must be drawn from the domain associated with that
column. Thus, the domain of a field is essentially the type of that field, in
programming language terms, and restricts the values that can appear in the
field.

More formally, let R(f1:D1, ..., In:Dn) be a relation schema, and for each f;,
1<i <n, let Dami bethe set of values associated with the domain named Di.
‘An instance of R that satisfies the domain constraints in the schema is a set of
tuples with n fields:

{(f1:d. JIn: dn) | df E Daml' ... ,dn E Damn}

The angular brackets () identify the fields of a tuple. Using this notation,
the first Students tuple shown in Figure 3.1 is written as (sid: 50000, name:
Dave, login: dave@cs, age 19, gpa: 3.3). The curly brackets {...} denote a set
(of tuples, in this definition). The vertical bar | should be read 'such that,’ the
symbol E should be read 'in," and the expression to the right of the vertical
bar is a condition that must be satisfied by the field values of each tuple in the
set. Therefore, an instance of R is defined as a set of tuples. The fields of each
tuple must correspond to the fields in the relation schema.

Domain constraints are so fundamental in the relational model that we hence-
forth consider only relation instances that satisfy them; therefore, relation
instance means relation instance that satisfies the domain constraints in the
relation schema.

The degree, aso called arity, of a relation is the number of fields. The car-
dinality of arelation instance is the number of tuples in it. In Figure 3.1, the
degree of the relation (the number of columns) is five, and the cardinality of
this instance is six.

A relational database is a collection of relations with distinct relation names.
Therelational database schemais the collection of schemas for the relations
in the database. 'For example, in Chapter 1, we discllssed a university database
with relations called Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets_ In. An instance of a relational database is a collection of relation

62 CHAPTER 3

instances, one per relation schema in the database schema; of course, each
relation instance must satisfy the domain constraints in its schema.

3.1.1 Creating and Modifying Relations Using SQL

The SQL language standard uses the word table to denote relation, and we often
follow this convention when discussing SQL. The subset of SQL that supports
the creation, deletion, and modification of tables is called the Data Definition
Language (DDL). Further, while there is a command that lets users define new
domains, analogous to type definition commands in a programming language,
we postpone a discussion of domain definition until Section 5.7. For now, we
only consider domains that are built-in types, such as integer.

The CREATE TABLE statement is used to define a new table.! To create the
Students relation, we can use the following statement:

CREATE TABLE Students (sid CHAR(20) ,
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL)

Tuples are inserted ,using the INSERT command. We can insert a single tuple
into the Students table as follows:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, 'smith@ee', 18, 3.2)

We can optionally omit the list of column names in the INTO clause and list
the values in the appropriate order, but it is good style to be explicit about
column names.

We can delete tuples using the DELETE command. We can delete all Students
tuples with name equal to Smith using the command:

DELETE
FROM Students S
WHERE S.name = 'Smith’

1SQL also provides statements to destroy tables and to change the columns associated with a table;
we discuss these in Section 3.7.

The Relational Model

We can modify the column values in an existing row using the UPDATE com-
mand. For example, we can increment the age and decrement the gpa of the
student with sid 53688:

UPDATE Students S
SET S.age= Sage t+ 1, S.gpa= S.gpa- 1
WHERE S.sid = 53688

These examples illustrate some important points. The WHERE clause is applied
first and determines which rows are to be modified. The SET clause then
determines how these rows are to be modified. If the column being modified is
also used to determine the new value, the value used in the expression on the
right side of equals (=) is the old value, that is, before the modification. To
illustrate these points further, consider the following variation of the previous
query:

UPDATE Students S
SET S.gpa= Sgpa- 01
WHERE S.gpa >= 3.3

If this query is applied on the instance 81 of Students shown in Figure 3.1, we
obtain the instance shown in Figure 3.3.

I'sid I name [login [age | gpa
50000 | Dave dave@cs 19 | 32
53666 | Jones jones@cs 18 | 3.3
53688 | Smith smith@ee 18 | 32
53650 | Smith smith@math 19 | 37
53831 | Madayan | madayan@music | 11 | 1.8
53832 | Guldu guldu@music 12 | 20

Figure 3.3 Students Instance 81 after Update

3.2 INTEGRITY CONSTRAINTS OVER RELATIONS

A database is only as good as the information stored in it, and a DBMS must
therefore help prevent the entry of incorrect information. An integrity con-
straint (le) is a condition specified on a database schema and restricts the
data that can be stored in an instance of the database. If a database instance
satisfies all the integrity constraints specified on the database schema, it is a
legal instance. A DBMS enforces integrity constraints, inthat it permits only
legal instances to be stored in the database.

Integrity constraints are specified and enforced at different times:

64 CHAPTER 3

1. When the DBA or end user defines a database schema, he or she specifies
the I'CS that must hold on any instance of this database.

2. When a database application is run, the DBMS checks for violations and
disallows changes to the data that violate the specified ICs. (In some
situations, rather than disallow the change, the DBMS might make some
compensating changes to the data to ensure that the database instance
satisfies al ICs. In any case, changes to the database are not alowed to
create an instance that violates any IC.) It is important to specify exactly
when integrity constraints are checked relative to the statement that causes
the change in the data and the transaction that it is part of. We discuss
this aspect in Chapter 16, after presenting the transaction concept, which
we introduced in Chapter 1, in more detail.

Many kinds of integrity constraints can be specified in the relational model.
We have already seen one example of an integrity constraint in the domain
constraints associated with a relation schema (Section 3.1). In general, other
kinds of constraints can be specified as well; for example, no two students
have the same sid value. In this section we discuss the integrity constraints,
other than domain constraints, that a DBA or user can specify in the relational
model.

3.2.1 Key Constraints

Consider the Studentsrelation and the constraint that no two students have the
same student id. ThisIC is an example of a key constraint. A key constraint
is a statement that a certain minimal subset of the fields of a relation is a
unique identifier for a tuple. A set of fields that uniquely identifies a tuple
according to a key constraint is called a candidate key for the relation; we
often abbreviate this to just key. In the case of the Students relation, the (set
of fields containing just the) sid field is a candidate key.

Let us take a closer look at the above definition of a (candidate) key. There
are two parts to the definition: 2

1. Two distinct tuples in a legal instance (an instance that satisfies all |es,
including the key constraint) cannot have identical values in al the fields
of a key.

2. No subset of the set of fields in a key is a unique identifier for a tuple.

2The term key is rather overworked. In the context of access methods, we speak of search keys,
which are quite different.

The Relational Model

The first part of the definition means that, in any legal instance, the values in
the key fields uniquely identify a tuple in the instance. \Vhen specifying a key
constraint, the DBA or user must be sure that this constraint will not prevent
them from storing a ‘correct’ set of tuples. (A similar comment applies to the
specification of other kinds of les as well.) The notion of ‘correctness' here
depends on the nature of the data being stored. For example, several students
may have the same name, although each student has a unique student id. If
the name field is declared to be a key, the DBMS will not allow the Students
relation to contain two tuples describing different students with the same name!

The second part of the definition means, for example, that the set of fields
{sid, name} is not a key for Students, because this set properly contains the
key {sid}. The set {sid, name} is an example of a superkey, which is a set of
fields that contains a key.

Look again at the instance of the Students relation in Figure 3.1. Observe that
two different rows always have different sid values; sid is a key and uniquely
identifies a tuple. However, this does not hold for nonkey fields. For example,
the relation contains two rows with Smith in the name field.

Note that every relation is guaranteed to have a key. Since arelation is a set of
tuples, the set of all fields is always a superkey. If other constraints hold, some
subset of the fields may form a key, but if not, the set of al fields is a key.

A relation may have several candidate keys. For example, the login and age
fields of the Students relation may, taken together, also identify students uniquely.
That is, {login, age} is aso a key. It may seem that login is a key, since no
two rows in the example instance have the same login value. However, the key
must identify tuples uniquely in all possible legal instances of the relation. By
stating that {login, age} is a key, the user is declaring that two students may
have the same login or age, but not both.

Out of al the available candidate keys, a database designer can identify a
primary key. Intuitively, a tuple can be referred to from elsewhere in the
database by storing the values of its primary key fields. For example, we can
refer to a Students tuple by storing its sid value. As a consequence of referring
to student tuples in this manner, tuples are frequently accessed by specifying
their sid value. In principle, we can use any key, not just the primary key,
to refer to a tuple. However, using the primary key is preferable because it
is what the DBMS expects this is the significance of designating a particular
candidate key as a primary key and optimizes for. For example, the DBMS
may create an index with the primary key fields as the search key, to make the
retrieval of a tuple given its primary key value efficient. The idea of referring
to a tuple is developed further in the next section.

66 CHAPTER:+3

Specifying Key Constraintsin SQL

In SQL, we can declare that a subset of the columns of a table constitute a key
by using the UNIQUE constraint. At most one of these candidate keys can be
declared to be a primary key, using the PRIMARY KEY constraint. (SQL does
not require that such constraints be declared for a table.)

Let us revisit our example table definition and specify key information:

CREATE TABLE Students (sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL,
UNIQUE (name, age),
CONSTRAINT StudentsKey PRIMARY KEY (sid))

This definition says that sid is the primary key and the combination of name
and age is also a key. The definition of the primary key also illustrates how
we can name a constraint by preceding it with CONSTRAINT constraint-name.
If the constraint is violated, the constraint name is returned and can be used
to identify the error.

3.2.2 Foreign Key Constraints

Sometimes the information stored in a relation is linked to the information
stored in another relation. 1f one of the relations is modified, the other must be
checked, and perhaps modified, to keep the data consistent. An IC involving
both relations must be specified if a DBMS is to make such checks. The most
common IC involving two relations is a foreign key constraint.

Suppose that, in addition to Students, we have a second relation:
Enrolled(studid: string, cid: string, gTade: string)

To ensure that only bona fide students can enroll in courses, any value that

appears in the studid field of an instance of the Enrolled relation should also

appear in the sid field of some tuple in the Students relation. The studid fidd
of Enrolled is called a foreign key and refers to Students. The foreign key in

the referencing relation (Eurolled, in our. (’Xdlllp](‘) must mat h the puman ke ey
0Of the roferenced relation (Students); that s, it must, the sanie uumbu _
of cqumns and cornpatlble data types, although the column namcs can be

differeit.

The Relational Model 67

This constraint is illustrated in Figure 3.4. As the figure shows, there may well
be some Students tuples that are not referenced from Enrolled (e.g., the student
with sid=50000). However, every studid value that appears in the instance of
the Enrolled table appears in the primary key column of a row in the Students
table.

Foreign key Primary key
— e
’ cid _grade studid ~_/" ™ sid name login I age | gpa
CarnaticlOlI C : 53831,1 I 50000' Dave I dave@cs 19 | 33 ‘
Reggae203 : B 153832,'\\ 7 53666 Jones jones@cs 18| 34
Topology112 A 53650~ </ 53683 Smith smith@ee 8| 32
_ History 105 ‘ B :53666: \\: V™ 53650 Smith smith@math 19| 38
\\“ 53831 Madayan madayan@music 1| 18
N 53832 Guldu guldu@music 2] 20
Enrolled (Referencing relation) Students (Referenced relation)

Figure 3.4 Referentia Integrity

If we try to insert the tuple (55555, Artl04, A) into E1, the le is violated be-
cause there is no tuple in 51 with sid 55555; the database system should reject
such an insertion. Similarly, if we delete the tuple (53666, Jones, jones@cs, 18,
3.4) from 51, we violate the foreign key constraint because the tuple (53666,
Historyl05, B) in El contains studid value 53666, the sid of the deleted Stu-
dents tuple. The DBMS should disallow the deletion or, perhaps, also delete
the Enrolled tuple that refers to the deleted Students tuple. We discuss foreign
key constraints and their impact on updates in Section 3.3.

Finally, we note that a foreign key could refer to the same relation. For example,
we could extend the Students relation with a column called partner and declare
this column to be a foreign key referring to Students. Intuitively, every student
could then have a partner, and the partner field contains the partner's sid. The
observant reader will no doubt ask, “What if a student does not (yet) have
a partnerT' This situation is handled in SQL by using a special value called
null. The use of nullin a field of a tuple rneans that value in that field is either
unknown or not applicable (e.g., we do not know the partner yet or there is
no partner). The appearance of null in a foreign key field does not violate the
foreign key constraint. However, null values are not alowed to appear in a
primary key field (because the primary key fields are used to identify a tuple
uniquely). We discuss null values further in Chapter 5.

68 CHAPTER*3

Specifying Foreign Key Constraintsin SQL
Let us define Enrolled(studid: string, cid: string, grade: string):

CREATE TABLE Enrolled (studid CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (studid, cid),
FOREIGN KEY (studid) REFERENCES Students)

The foreign key constraint states that every st'udid value in Enrolled must also
appear in Students, that is, studidin Enrolled is a foreign key referencing Stu-
dents. Specifically, every studid value in Enrolled must appear as the value in
the primary key field, sid, of Students. Incidentally, the primary key constraint
for Enrolled states that a student has exactly one grade for each course he or
she is enrolled in. If we want to record more than one grade per student per
course, we should change the primary key constraint.

3.2.3 General Constraints

Domain, primary key, and foreign key constraints are considered to be a fun-
damental part of the relational data model and are given special attention in
most commercial systems. Sometimes, however, it is necessary to specify more
general constraints.

For example, we may require that student ages be within a certain range of
values; given such an IC specification, the DBMS rejects inserts and updates
that violate the constraint. This is very useful in preventing data entry errors.
If we specify that al students must be at least 16 years old, the instance of
Students shown in Figure 3.1 is illegal because two students are underage. If

we disallow the insertion of these two tuples, we have a legal instance, as shown
in Figure 3.5.

sid | name login | age | gpa |
53666 | Jones | jones@cs 18 | 34

53688 | Smith | smith@ee 18 | 3.2 1
53650 | Smith | smith@math | 19 | 3.8 |

Figure 3.5 An Instance 82 of the Students Relation

The IC that students must be older than 16 can be thought of as an extended
domain constraint, since we are essentially defining the set of permissible age

The Relational Model 69

values more stringently than is possible by simply using a standard domain
such as integer. In general, however, constraints that go well beyond domain,
key, or foreign key constraints can be specified. For example, we could require
that every student whose age is greater than 18 must have a gpa greater than
3.

Current relational database systems support such general constraints in the
form of table constraints and assertions. Table constraints are associated with a
single table and checked whenever that table is modified. In contrast, assertions
involve several tables and are checked whenever any of these tables is modified.
Both table constraints and assertions can use the full power of SQL queries to
specify the desired restriction. We discuss SQL support for table constraints
and assertions in Section 5.7 because a full appreciation of their power requires
a good grasp of SQL's query capabilities.

3.3 ENFORCING INTEGRITY CONSTRAINTS

As we observed earlier, |Cs are specified when arelation is created and enforced
when a relation is modified. The impact of domain, PRIMARY KEY, and UNIQUE
constraints is straightforward: If an insert, delete, or update command causes
a violation, it is rejected. Every potential I e violation is generally checked at
the end of each SQL statement execution, although it can be deferred until the
end of the transaction executing the statement, as we will see in Section 3.3.1.

Consider the instance 51 of Students shown in Figure 3.1. The following inser-
tion violates the primary key constraint because there is already a tuple with
the sid 53688, and it will be rejected by the DBMS:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, 'Mike', ‘mike@ee’, 17,3.4)

The following insertion violates the constraint that the primary key cannot
contain null:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (null, 'Mike', ‘mike@ee’, 17,3.4)

Of course, a similar problem arises whenever we try to insert a tuple with a
value in a fidd that is not in the domain associated with that field, that is,
whenever we violate a domain constraint. Deletion does not cause a violation
of clornain, primary key or unique constraints. However, an update can cause
violations, sirnilar to an insertion:

70 CHAPTER:3

UPDATE Students S
SET S.sid = 50000
WHERE S.sid = 53688

This update violates the primary key constraint because there is already atuple
with sid 50000.

The impact of foreign key constraints is more complex because SQL sometimes
tries to rectify a foreign key constraint violation instead of simply rejecting the
change. We discuss the referential integrity enforcement steps taken by
the DBMS in terms of our Enrolled and Students tables, with the foreign key
constraint that Enrolled.sid is a reference to (the primary key of) Students.

In addition to the instance 81 of Students, consider the instance of Enrolled
shown in Figure 3.4. Deletions of Enrolled tuples do not violate referential
integrity, but insertions of Enrolled tuples could. The following insertion is
illegal because there is no Students tuple with sid 51111:

INSERT
INTO Enrolled (cid, grade, studid)
VALUES ('Hindi1l01', 'B', 51111)

On the other hand, insertions of Students tuples do not violate referential
integrity, and deletions of Students tuples could cause violations. Further,
updates on either Enrolled or Students that change the studid (respectively,
sid) value could potentially violate referential integrity.

SQL provides several alternative ways to handle foreign key violations. We
must consider three basic questions:

1. What should we do if an Enrolled row is inserted, with a studid column
value that does not appear in any row of the Students table?

In this case, the INSERT command is simply rejected.

2. What should we do if a Students row is deleted?
The options are:

« Delete dl Enrolled rows that refer to the deleted Students row.

+ Disallow the deletion of the Students row if an Enrolled row refers to
it.

e Set the studid column to the sid of some (existing) 'default’ student,
for every Enrolled row that refers to the deleted Students row.

The Relational Model 7

« For every Enrolled row that refers to it, set the studid column to null.
In our example, this option conflicts with the fact that stud'id is part
of the primary key of Enrolled and therefore cannot be set to null.
Therefore, we are limited to the first three options in our example,
although this fourth option (setting the foreign key to null) is available
in general.

3. What should we do if the primary key val'ue of a Students row is updated?
The options here are similar to the previous case.

SQL allows us to choose any of the four options on DELETE and UPDATE. For
example, we can specify that when a Students row is deleted, all Enrolled rows
that refer to it are to be deleted as well, but that when the sid column of a
Students row is modified, this update is to be rejected if an Enrolled row refers
to the modified Students row:

CREATE TABLE Enrolled (studid CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (studid, dd),
FOREIGN KEY (studid) REFERENCES Students
ON DELETE CASCADE
ON UPDATE NO ACTION)

The options are specified as part of the foreign key declaration. The default
option isNO ACTION, which means that the action (DELETE or UPDATE) is to be
rejected, Thus, the ON UPDATE clause in our example could be omitted, with
the same effect. The CASCADE keyword says that, if a Students row is deleted,
al Enrolled rows that refer to it are to be deleted as well. 1f the UPDATE clause
specified CASCADE, and the sid column of a Students row is updated, this update
is also carried out in each Enrolled row that refers to the updated Students row.

If a Students row is deleted, we can switch the enrollment to a 'default’ student
by using ON DELETE SET DEFAULT. The default student is specified as part of
the definition of the sid fidd in Enrolled; for example, sid CHAR(20) DEFAULT
‘53666 Although the specification of a default value is appropriate in some
situations (eg' a default parts supplier if a particular supplier goes out of
business), it isreally not appropriate to switch enrollments to a default student.
The correct solution in this example is to also delete all enrollment tuples for
the deleted student (that is, CASCADE) or to reject the update.

SQL also alows the use of null as the default value by specifying ON DELETE
SET NULL.

72 CHAPTER"3

3.3.1 Transactionsand Constraints

As we saw in Chapter 1, a program that runs against a database is called a
transaction, and it can contain several statements (queries, inserts, updates,
etc.) that access the database. If (the execution of) a statement in a transac-
tion violates an integrity constraint, should the DBMS detect this right away
or should all constraints be checked together just before the transaction com-
pletes?

By default, a constraint is checked at the end of every SQL statement that
could lead to a violation, and if there is a violation, the statement isrejected.
Sometimes this approach is too inflexible. Consider the following variants of
the Students and Courses relations; every student is required to have an honors
course, and every course is required to have a grader, who is some student.

CREATE TABLE Students (sid CHAR(20),
name CHAR(30),
login CHAR(20),

age INTEGER,
honorsCHAR(10) NOT NULL,
gpa REAL)

PRIMARY KEY (sid),
FOREIGN KEY (honors) REFERENCES Courses (cid))

CREATE TABLE Courses (cid CHAR(10),
chame CHAR(10),
creditsINTEGER,
grader CHAR(20) NOT NULL,
PRIMARY KEY (dd)
FOREIGN KEY (grader) REFERENCES Students (sid))

vVhenever a Students tuple is inserted, a check is made to see if the"honors
course is in the Courses relation, and whenever a Courses tuple is inserted,
a check is made to see that the grader is in the Students relation. How are
we to insert the very first course or student tuple? One cannot be inserted
without the other. The only way to accomplish this insertion is to defer the
constraint checking that would normally be carried out at the end of an INSERT
statement.

SQL alows a constraint to be in DEFERRED or IMMEDIATE mode.

SET CONSTRAINT ConstraintFoo DEFERRED

The Relational Model

A constraint in deferred mode is checked at commit time. In our example,
the foreign key constraints on Boats and Sailors can both be declared to bein
deferred mode. We can then insert a boat with a nonexistent sailor as the cap-
tain (temporarily making the database inconsistent), insert the sailor (restoring
consistency), then commit and check that both constraints are satisfied.

34 QUERYING RELATIONAL DATA

A relational database query (query, for short) is a question about the data,
and the answer consists of a new relation containing the result. For example,
we might want to find all students younger than 18 or all students enrolled in
Reggae203. A query language is a specialized language for writing queries.

SQL is the most popular commercial query language for a relational DBMS.
We now present some SQL examples that illustrate how easily relations can be
queried. Consider the instance of the Students relation shown in Figure 3.1.
We can retrieve rows corresponding to students who are younger than 18 with
the following SQL query:

SELECT *
FROM Students S
WHERE S.age < 18

The symbol *, means that we retain all fields of selected tuples in the result.
Think of S as a variable that takes on the value of each tuple in Students, one
tuple after the other. The condition Sage < 18 in the WHERE clause specifies
that we want to select only tuples in which the age field has a value less than
18. This query evaluates to the relation shown in Figure 3.6.

std | name [Togin -age | gpa
53831 | Madayan | madayan@music | 11 | 1.8
53832 | Guldu guldu@music 12 120

Figure 3.6 Students with age < 18 on Instance 51

This example illustrates that the domain of a field restricts the operations
that are permitted on field values, in addition to restricting the values that can
appear in the field. The condition S age < 18involves an arithmetic comparison
of an age value with an integer and is permissible because the domain of age
is the set of integers. On the other hand, a condition such as S.age = S."id
does not make sense because it compares an integer value with a string value,
and this comparison is defined to fail in SQL; a query containing this condition
produces no answer tuples.

74 CHAPTER*3

In addition to selecting a subset of tuples, a query can extract a subset of the
fields of each selected tuple. We can compute the names and logins of students
who are younger than 18 with the following query:

SELECT S.name, S.login
FROM Students S
WHERE S.age < 18

Figure 3.7 shows the answer to this query; it is obtained by applying the se-
lection to the instance 81 of Students (to get the relation shown in Figure
3.6), followed by removing unwanted fields. Note that the order in which we
perform these operations does matter-if we remove unwanted fields first, we
cannot check the condition S age < 18, which involves one of those fields.

| name login
Madayan | madayan@music
Guldu guldu@music

Figure 3.7 Names and Logins of Students under 18

We can also combine information in the Students and Enrolled relations. If we
want to obtain the names of all students who obtained an A and the id of the
course in which they got an A, we could write the following query:

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid = E.studid AND E.grade = "A’

This query can be understood as follows: "If there is a Students tuple Sand
an Enrolled tuple E such that S.sid = E.studid (so that S describes the student
who is enrolled in E) and E.grade = 'A’, then print the student's name and
the course id." When evaluated on the instances of Students and Enrolled in
Figure 3.4, this query returns a single tuple, (Smith, Topology112).

We cover relational queries and SQL in more detail in subsequent chapters.

3.5 LOGICAL DATABASE DESIGN: ERTO
RELATIONAL

The ER model is convenient for representing an initial, high-level database
design. Given an ER diagram describing a database, a standard approach is
taken to generating a relational database schema that closely approximates

The Relational Model

the ER design. (The translation is approximate to the extent that we cannot
capture al the constraints implicit in the ER design using SQL, unless we use
certain SQL constraints that are costly to check.) We now describe how to
translate an ER diagram into a collection of tables with associated constraints,
that is, a relational database schema.

3.5.1 Entity Setsto Tables

An entity set is mapped to a relation in a straightforward way: Each attribute
of the entity set becomes an attribute of the table. Note that we know both
the domain of each attribute and the (primary) key of an entity set.

Consider the Employees entity set with attributes ssn, hame, and lot shown in
Figure 3.8. A possible instance of the Employees entity set, containing three

(= oo D

\A.__‘__._/

Employees

Figure 3.8 The Employees Entity Set

Employees entities, is shown in Figure 3.9 in a tabular format.

| ssn | name [1ot |
123-22-3666 | Attishoo 48
231-31-5368 | Smiley 22
131-24-3650 | Smethurst | 35

Figure 3.9 An Instance of the Employees Entity Set

The following SQL statement captures the preceding information, including the
domain constraints and key information:

CREATE TABLE Employees (ssn CHAR(11),
name CHAR(30),
lot INTEGER,

PRIMARY KEY (ssn))

76 CHAPTER*3

3.5.2 Reationship Sets (without Constraints) to Tables

A relationship set, like an entity set, is mapped to a relation in the relational
model. We begin by considering relationship sets without key and participa-
tion constraints, and we discuss how to handle such constraints in subsequent
sections. To represent a relationship, we must be able to identify each partic-
ipating entity and give values to the descriptive attributes of the relationship.
Thus, the attributes of the relation include;

« The primary key attributes of each participating entity set, as foreign key
fields.

* The descriptive attributes of the relationship set.

The set of nondescriptive attributes is a superkey for the relation. If there are
no key constraints (see Section 2.4.1), this set of attributes is a candidate key.

Consider the Works_In2 relationship set shown in Figure 3.10. Each department
has offices in several locations and we want to record the locations at which
each employee works.

=D ~
name
/—K\

dname

=T | GE T

| -

| Employees | Works_In2 L Departments |

address "~ Locations I~ capacity
- A

Figure 3.10 A Ternary Relationship Set

All the available information about the Works_In2 table is captured by the
following SQL definition:

CREATE TABLE Works_In2 (ssn CHAR(11),
did INTEGER,
address CHAR(20),
since DATE,

PRIMARY KEY (8sn, did, address),
FOREIGN KEY (ssn) REFERENCES Employees,

The Relational Model

FOREIGN KEY (address) REFERENCES Locations,
FOREIGN KEY (did) REFERENCES Departments)

Note that the address, did. and ssn fields cannot take on n'ull values. Because
these fields are part of the primary key for \Vorks In2, a NOT NULL constraint
is implicit for each of these fields. This constraint ensures that these fields
uniquely identify a department, an employee, and a location in each tuple
of WorksJdn. We can also specify that a particular action is desired when a
referenced Employees, Departments, or Locations tuple is deleted, as explained
in the discussion of integrity constraints in Section 3.2. In this chapter, we
assume that the default action is appropriate except for situations in which the
semantics of the ER diagram require some other action.

Finally, consider the Reports To relationship set shown in Figure 3.11. The

/__—
Employees

subordinate

supervisor

< Reports_To

Figure 3.11 The Reports.To Relationship Set

role indicators supervisor and subordinate are used to create meaningful field
names in the CREATE statement for the Reports.To table:

CREATE TABLE Reports To (
Supervisor...ssn CHAR(11),
subordinate...ssn CHAR (11) ,
PRIMARY KEY (supervisor_ssn, subordinate ssn),
FOREIGN KEY (Supervisor...ssn) REFERENCES Employees(ssh),
FOREIGN KEY (subordinate...ssn) REFERENCES Employees(ssn))

Observe that we need to explicitly name the referenced fidd of Employees
because the field name differs from the name(s) of the referring field(s).

78 CHAPTER 3

3.5.3 Trandating Relationship Setswith Key Constraints

If a relationship set involves n entity sets and somem of them are linked via
arrows in the ER diagTam, the key for anyone of these m entity sets constitutes
a key for the relation to which the relationship set is mapped. Hence we have
m candidate keys, and one of these should be designated as the primary key.
The translation discussed in Section 2.3 from relationship sets to a relation can
be used in the presence of key constraints, taking into account this point about

keys.

Consider the relationship set Manages shown in Figure 3.12. The table cor-

P
ssn > T/ < lot / did > \T/ - budget
p\ /_’/W/ P </<\\ ~)

7
Employees ———/\ Manages >——————1 Depariments

Figure 3.12 Key Constraint on Manages

responding to Manages has the attributes ssn, did, since. However, because
each department has at most one manager, no two tuples can have the same
did value but differ on the ssn value. A consequence of this observation is that
did is itself a key for Manages; indeed, the set did, ssnis not a key (because it
is not minimal). The Manages relation can be defined using the following SQL
statement:

CREATE TABLE Manages (ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

A second approach to translating a relationship set with key constraints is
often superior because it avoids creating a distinct table for the relationship
set. The idea is to include the information about the relationship set in the
table corresponding to the entity set with the key, taking adyantage of the
key constraint. In the Manages example, because a department has at most
one manager, we can add the key fields of the Employees tuple denoting the
Inanager and the since attribute to the Departments tuple.

The Relational Model 79

This approach eliminates the need for a separate Manages relation, and queries
asking for a department's manager can be answered without combining infor-
mation from two relations. The only drawback to this approach is that space
could be wasted if several departments have no managers. In this case the
added fields would have to be filled with null values. The first translation (us-
ing a separate table for Manages) avoids this inefficiency, but some important
queries require us to combine information from two relations, which can be a
slow operation.

The following SQL statement, defining a DepLMgr relation that captures the
information in both Departments and Manages, illustrates the second approach
to translating relationship sets with key constraints:

CREATE TABLE DepLMgr (did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

Note that ssn can take on null values.

This idea can be extended to deal with relationship sets involving more than
two entity sets. In general, if a relationship set involves n entity sets and some
m of them are linked via arrows in the ER diagram, the relation corresponding
to anyone of the m sets can be augmented to capture the relationship.

We discuss the relative merits of the two translation approaches further after
considering how to translate relationship sets with participation constraints
into tables.

3.5.4 Translating Relationship Sets with Participation
Constraints

Consider the ER diagram in Figure 3.13, which shows two relationship sets,
Manages and Works _In.

Every department is required to have a manager, due to the participation
constraint, and at most one manager, due to the key constraint. The following
SQL statement reflects the second translation approach discussed in Section
3.5.3, and uses the key constraint:

80 CHAPTER'3

_ ¢ since) -

/ \ \\ o

(_ rame P, — { dname

— ~
//" _j/ /’H/ 7 \\ 1 //"—_“"\ \‘“ﬁf—’ //"""\
" ssn) e J did | obudget /
- i ~—— \ - ! o
e
—_—

! 7
- e

o .
|
iﬁ Employess | —<_ Manages Depariments
/”

Works In

since)

Figure 3.13 Manages and WorksJn

CREATE TABLE Dept_-Mgr (did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE NO ACTION)

It also captures the participation constraint that every department must have
a manager: Because ssn cannot take on null values, each tuple of Dept_Mgr
identifies a tuple in Employees (who is the manager). The NO ACTION specifi-
cation, which is the default and need not be explicitly specified, ensures that
an Employees tuple cannot be deleted while it is pointed to by a Dept_-Mgr
tuple. If we wish to delete such an Employees tuple, we must first change the
Dept_Mgr tuple to have a new employee as manager. (We could have specified
CASCADE instead of NO ACTION, but deleting all information about a department
just because its manager has been fired seems a bit extremel!)

The constraint that every department must have a manager cannot be cap-
tured using the first translation approach discussed in Section 3.5.3. (Look
at the definition of Manages and think about what effect it would have if we
added NOT NULL constraints to the ssn and did fields. Hint: The constraint
would prevent the firing of a manager, but does not ensure that a manager is
initially appointed for each department!) This situation is a strong argument

The Relational Model 81

in favor of using the second approach for one-to-many relationships such as
Manages, especially when the entity set with the key constraint also has a total
participation constraint.

Unfortunately, there are many participation constraints that we cannot capture
using SQL, short of using table constraints or assertions. Table constraints and
assertions can be specified using the full power of the SQL query language
(as discussed in Section 5.7) and are very expressive but also very expensive to
check and enforce. For example, we cannot enforce the participation constraints
on the Works_In relation without using these general constraints. To see why,
consider the Works_In relation obtained by translating the ER diagram into-
relations. It contains fields ssn and did, which are foreign keys referring to
Employees and Departments. To ensure total participation of Departments in
Works In, we have to guarantee that every did value in Departments appears
in a tuple of Works_In. We could try to guarantee this condition by declaring
that did in Departments is a foreign key referring to Works_In, but this is not
a valid foreign key constraint because did is not a candidate key for Works_In.

To ensure total participation of Departments in Works_In using SQL, we need
an assertion. We have to guarantee that every did value in Departments appears
in a tuple of Works_In; further, this tuple of Works_In must also have non-null
values in the fields that are foreign keys referencing other entity sets involved in
the relationship (in this example, the ssn field). We can ensure the second part
of this constraint by imposing the stronger requirement that ssn in Works_In
cannot contain null values. (Ensuring that the participation of Employees in
Works _In is total is symmetric.)

Another constraint that requires assertions to expressin SQL is the requirement
that each Employees entity (in the context of the Manages relationship set)
must manage at least one department.

In fact, the Manages relationship set exemplifies most of the participation con-
straints that we can capture using key and foreign key constraints. Manages is
a binary relationship set in which exactly one of the entity sets (Departments)
has a key constraint, and the total participation constraint is expressed on that
entity set.

We can also capture participation constraints using key and foreign key con-
straints in one other special situation: arelationship set in which all participat-
ing entity sets have key constraints and total participation. The best translation
approach in this case is to map all the entities as well as the relationship into
a single table; the details are straightforward.

82 CHAPTER +3

3.5.5 Trandating Weak Entity Sets

A weak entity set always participates in a one-to-many binary relationship and
has a key constraint and total participation. The second translation approach
discussed in Section 3.5.3 is ideal in this case, but we must take into account
that the weak entity has only a partial key. Also, when an owner entity is
deleted, we want all owned weak entities to be deleted.

Consider the Dependents weak entity set shown in Figure 3.14, with partial
key pname. A Dependents entity can be identified uniquely only if we take the
key of the owning Employees entity and the pname of the Dependents entity,
and the Dependents entity must be deleted if the owning Employees entity is
deleted.

name —_— S
/ ¢ cost
\ ssn ot Pname age
—e L

Employees

Dependents

Figure 3.14 The Dependents Weak Entity Set

We can capture the desired semantics with the following definition of the
Dep Policy relation:

CREATE TABLE Dep Policy (pname CHAR(20),

age INTEGER,
cost REAL,
ssn CHAR(11),

PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE CASCADE)

Observe that the primary key is (pna:me, ssn), since Dependents is a weak
entity. This constraint is a change with respect to the translation discussed in
Section 3.5.3. \Ve have to ensure that every Dependents entity is associated
with an Employees entity (the owner), as per the total participation constraint
on Dependents. That is, ssn cannot be null. This is ensured because ssv, is
part of the primary key. The CASCADE option ensures that information about
an employee's policy and dependents is deleted if the corresponding Employees
tuple is deleted.

The Relational Model 83

3.5.6 Trandating ClassHierarchies

We present the two basic approaches to handling I SA hierarchies by applying
them to the ER diagram shown in Figure 3.15:

S
name

- _

Emplo)\(ee

AT ISA T

7 ™,
hours warked) Qntractld)
- /
s

\ ‘E’

Contract_Emps

(hourly_wages

™
.
\“—’/\ Hourly_Emps

Figure 3.15 Class Hierarchy

1 We can map each of the entity sets Employees, Hourly_Emps, and Con-
tracLEmps to a distinct relation. The Employees relation is created as
in Section 2.2. We discuss Hourly_Emps here; ContracLEmps is han-
dled similarly. The relation for Hourly Emps includes the hourly wages
and hours worked attributes of Hourly_Emps. It also contains the key at-
tributes of the superclass (ssn, in this example), which serve as the primary
key for Hourly_Emps, as well as a foreign key referencing the superclass
(Employees). For each Hourly Emps entity, the value of the name and
lot attributes are stored in the corresponding row of the superclass (Em-
ployees). Note that if the superclass tuple is deleted, the delete must be
cascaded to Hourly _Emps.

2. Alternatively, we can createjust two relations, correspondingto Hourly Emps
and ContracLEmps. The relation for Hourly_Emps includes al the at-
tributes of Hourly_Emps as well as al the attributes of Employees (i.e.,
ssn, name, lot, hourly wages, hours-worked).

The first approach is general and always applicable. Queries in which we want
to examine all employees and do not care about the attributes specific to the
subclasses are handled easily using the Employees relation. However, queries
in which we want to examine, say, hourly employees, may require us to com-
bine Hourly _Emps (or ContracL Emps, as the case may be) with Employees to
retrieve name and lot.

84 CHAPTER 3

The second approach is not applicable if we have employees who are neither
hourly employees nor contract employees, since there is no way to store such
employees. Also, if an employee is both an Hourly_Emps and a ContracL Emps
entity, then the name and lot values are stored twice. This duplication can lead
to some of the anomalies that we discuss in Chapter 19. A query that needs to
examine al employees must now examine two relations. On the other hand, a
query that needs to examine only hourly employees can now do so by examining
just one relation. The choice between these approaches clearly depends on the
semantics of the data and the frequency of common operations.

In general, overlap and covering constraints can be expressed in SQL only by
using assertions.

3.5.7 Trandating ER Diagrams with Aggregation

Consider the ER diagram shown in Figure 3.16. The Employees, Projects,

= e

— —
— . e T |
@ned_on) Q since > ¢ dname) !
/-, e e T —_— e —— . T
pid) K pbudget > did > & budget)
N e /\,____ I — Sy
\ - - |
Projects _ Sponsors ;> Departments
SO S~ /

Figure 3.16 Aggregation

and Departments entity sets and the Sponsors relationship set are mapped as
described in previous sections. For the Monitors relationship set, we create a
relation with the following attributes: the key attributes of Employees (88n), the
key attributes of Sponsors (did, pid), and the descriptive attributes of Monitors
(until). This translation is essentially the standard mapping for a relationship
set, as described in Section 3.5.2.

The Relational AModd 85

There is a special case in which this translation can be refined by dropping the
Sponsors relation. Consicler the Sponsors relation. It has attributes pid, did,
and since; and in general we need it (in addition to I\rlonitors) for two reasons:

1. \We have to record the descriptive attributes (in our example, since) of the
Sponsors relationship.

2. Not every sponsorship has a monitor, and thus some {pid, did) pairsin the
Sponsors relation may not appear in the Monitors relation.

However, if Sponsors has no descriptive attributes and has total participation
in Monitors, every possible instance of the Sponsors relation can be obtained
from the (pid, did) columns of Monitors; Sponsors can be dropped.

3.5.8 ERto Rdational: Additional Examples

Consider the ER diagram shown in Figure 3.17. We can use the key constraints

e)

K J o

o o Cmp o

Employees ~— Dependents
Palicies

@5 T

Figure 3.17 Policy Revisited

Purchaser

to combine Purchaser information with Policies and Beneficiary information
with Dependents, and translate it into the relational model as follows:

CREATE TABLE Policies (policyid INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policyid),
FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE CASCADE)

86 CHAPTER 3

CREATE TABLE Dependents (pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid),
FOREIGN KEY (policyid) REFERENCES Policies
ON DELETE CASCADE)

Notice how the deletion of an employee leads to the deletion of al policies
owned by the employee and all dependents who are beneficiaries of those poli-
cies. Further, each dependent is required to have a covering policy-because
policyid is part of the primary key of Dependents, there is an implicit NOT NULL
constraint. This model accurately reflects the participation constraints in the
ER diagram and the intended actions when an employee entity is deleted.

In general, there could be a chain of identifying relationships for weak entity
sets. For example, we assumed that policyid uniquely identifies a policy. Sup-
pose that policyid distinguishes only the policies owned by a given employee;
that is, policyid is only a partial key and Policies should be modeled as a weak
entity set. This new assumption about policyid does not cause much to change
in the preceding discussion. In fact, the only changes are that the primary
key of Policies becomes (policyid, ssn), and as a consequence, the definition of
Dependents changes-afield called ssn is added and becomes part of both the
primary key of Dependents and the foreign key referencing Policies:

CREATE TABLE Dependents (pname CHAR(20),
ssn CHAR(11),
age INTEGER,
policyid INTEGER NOT NULL,
PRIMARY KEY (pname, policyid, ssn),
FOREIGN KEY (policyid, ssn) REFERENCES Policies
ON DELETE CASCADE)

3.6 INTRODUCTION TO VIEWS

A view is a table whose rows are not explicitly stored in the database but
are computed as needed from a view definition. Consider the Students and
Enrolled relations. Suppose we are often interested in finding the names and
student identifiers of students who got a grade of B in some course, together
with the course identifier. We can define a view for this purpose. Using SQL
notation:

CREATE VIEW B-Students (name, sid, course)
AS SELECT S.sname, S.sid, E.cid

The Relational Mode! 87

FROM Students S, Enrolled E
WHERE S.sid = E.studid AND E.grade = ‘B’

The view B-Students has three fields called name, sid, and course with the
same domains as the fields sname and sid in Students and cid in Enrolled.
(If the optional arguments name, sid, and course are omitted from the CREATE
VIEW statement, the column names sname, sid, and cid are inherited.)

This view can be used just like a base table, or explicitly stored table, in
defining new queries or views. Given the instances of Enrolled and Students
shown in Figure 3.4, B-Students contains the tuples shown in Figure 3.18.
Conceptually, whenever B-Students is used in a query, the view definition is
first evaluated to obtain the corresponding instance of B-Students, then the rest
of the query is evaluated treating B-Students like any other relation referred
to in the query. (We discuss how queries on views are evaluated in practice in
Chapter 25.)

| name | sid course
[Jones [53666 | History105
| Guldu | 53832 | Reggae203

Figure 3.18 An Instance of the B-Students View

3.6.1 Views, Data Independence, Security

Consider the levels of abstraction we discussed in Section 1.5.2. The physical
schema for a relational database describes how the relations in the conceptual
schema are stored, in terms of the file organizations and indexes used. The
conceptual schema is the collection of schemas of the relations stored in the
database. While some relations in the conceptual schema can also be exposed to
applications, that is, be part of the exte'mal schema of the database, additional
relations in the external schema can be defined using the view mechanism.
The view mechanism thus provides the support for logical data independence
in the relational model. That is, it can be used to define relations in the
external schema that mask changes in the conceptual schema of the database
from applications. For example, if the schema of a stored relation is changed,
we can define a view with the old schema and applications that expect to see
the old schema can now use this view.

Views are aso valuable in the context of security: We can define views that
give a group of users access to just the information they are allowed to see. For
example, we can define a view that allows students to see the other students'

88 CHAPTER 3

name and age but not their gpa, and allows all students to access this view but
not the underlying Students table (see Chapter 21).

3.6.2 Updateson Views

The motivation behind the view mechanism is to tailor how users see the data.
Users should not have to worry about the view versus base table distinction.
This goal is indeed achieved in the case of queries on views; a view can be used
just like any other relation in defining a query. However, it is natural to want to
specify updates on views as well. Here, unfortunately, the distinction between
aview and a base table must be kept in mind.

The SQL-92 standard allows updates to be specified only on views that are
defined on a single base table using just selection and projection, with no use of
aggregate operations.® Such views are called updatabl e views. This definition
is oversimplified, but it captures the spirit of the restrictions. An update on
such a restricted view can always be implemented by updating the underlying
base table in an unambiguous way. Consider the following view:

CREATE VIEW GoodStudents (sid, gpa)
AS SELECT S.sid, S.gpa
FROM Students S
WHERE S.gpa> 3.0

We can implement a command to modify the gpa of a GoodStudents row by
modifying the corresponding row in Students. We can delete a GoodStudents
row by deleting the corresponding row from Students. (In general, if the view
did not include a key for the underlying table, several rows in the table could
‘correspond' to a single row in the view. This would be the case, for example,
if we used S.sname instead of S.sid in the definition of GoodStudents. A com-
mand that affects a row in the view then affects all corresponding rows in the
underlying table.)

We can insert a GoodStudents row by inserting a row into Students, using
null values in columns of Students that do not appear in GoodStudents (e.g.,
sname, login). Note that primary key columns are not alowed to contain null
values. Therefore, if we attempt to insert rows through a view that does not
contain the primary key of the underlying table, the insertions will be rejected.
For example, if GoodStudents contained sname but not sid, we could not insert
rows into Students through insertions to Goocl Students.

3There is also the restriction that the DISTINCT operator cannot he used in updatable view defi-
nitions. By default, SQL does not eliminate duplicate copies of rows from the result of a query; the
DISTINCT operator requires duplicate elimination. We discuss t.his point further in Chapt.er 5.

The Relational Model

Updatable Views in SQL:1999 The Hew SQL standard has expanded
the class of view definitions that are updatable, taking primary key
constraints into account. In contrast to SQL-92, a view definition that
contains more than Olle table in the FROM clause may be updatable under
the new definition. Intuitively, we can update afield of a view if it is
obtained from exactly one of the underlying tables, and the primary key
of that table is included in the fields of the view.

SQL:1999 distinguishes between views whose rows can be modified (updat-
able views) and views into which new rows can be inserted (insertable-
into views): Views defined using the SQL constructs UNION, INTERSECT,
and EXCEPT (which we discuss in Chapter 5) cannot beinserted into, even
if they are updatable. Intuitively, updatability ensures that an updated
tuple in the view can be traced to exactly one tuple in one of the tables
used to define the view. The updatability property, however, may still not
enable us to decide into which table to insert a new tuple.

An important observation is that an INSERT or UPDATE may change the un-
derlying base table so that the resulting (i.e., inserted or modified) row is not
in the view! For example, if we try to insert a row (51234, 2.8) into the view,
this row can be (padded with null values in the other fields of Students and
then) added to the underlying Students table, but it will not appear in the
GoodStudents view because it does not satisfy the view condition gpa > 3.0.
The SQL default action is to alow this insertion, but we can disallow it by
adding the clause WITH CHECK OPTION to the definition of the view. In this
case, only rows that will actually appear in the view are permissible insertions.

We caution the reader, that when a view is defined in terms of another view,
the interaction between these view definitions with respect to updates and the
CHECK OPTION clause can be complex; we not go into the details.

Need to Restrict View Updates

vVhile the SQL rules on updatable views are more stringent than necessary,
there are some fundamental problems with updates specified on views and good
reason to limit the class of views that can be updated. Consider the Students
relation and a new relation called Clubs:

Clubs(cname: string, jyear: date, mname: string)

90 CHAPTER 8

{sid | name | login | age | gpa |
Jyear 50000 | Dave | dave@Qcs 19 | 3.3
Sailing | 1996 | Dave 53666 | Jones | jones@cs 18 | 3.4
Hiking | 1997 | Smith 53688 | Smith | smith@ee 18 | 3.2
Rowing | 1998 | Smith 53650 | Smith | smith@math | 19 | 3.8
Figure 3.19 An Instance C of Clubs Figure 3.20 An Instance 53 of Students
I name | login | club sinee
Dave | dave@cs Sailing | 1996

Smith | smith@ee Hiking | 1997
Smith | smith@ee Rowing | 1998
Smith | smith@math | Hiking | 1997
Smith | smith@math | Rowing | 1998

Figure 3.21 Instance of ActiveStudents

A tuple in Clubs denotes that the student called mname has been a member of
the club cname since the date jyear.* Suppose that we are often interested in
finding the names and logins of students with a gpa greater than 3 who belong
to at least one club, along with the club name and the date they joined the
club. We can define a view for this purpose:

CREATE VIEW ActiveStudents (name, login, club, since)
AS SELECT S.sname, S.login, C.cname, C.jyear
FROM Students S, Clubs C
WHERE S.sname = C.mname AND S.gpa> 3

Consider the instances of Students and Clubs shown in Figures 3.19 and 3.20.
When evaluated using the instances C and S3, ActiveStudents contains the
rows shown in Figure 3.21.

Now suppose that we want to delete the row (Smith, smith@ee, Hiking, 1997
from ActiveStudents. How are we to do this? ActiveStudents rows are not
stored explicitly but computed as needed from the Students and Clubs tables
using the view definition. So we must change either Students or Clubs (or
both) in such away that evaluating the view definition on the modified instance
does not produce the row (Smith, smith@ee, Hiking, 1997.) This task can be
accomplished in one of two ways: by either deleting the row (53688. Smith,
smith@ee, 18, 5.2) from Students or deleting the row (Hiking, 1997, Smith)

4We remark that Clubs has a poorly designed schema (chosen for the sake of our discussion of view
updates), since it identifies students by name, which is not a candidate key for Students.

The Relational Model 91

from Clubs. But neither solution is satisfactory. Removing the Students row
has the effect of also deleting the row (8mith, smith@ee, Rowing, 1998) from the
view ActiveStudents. Removing the Clubs row has the effect of also deleting the
row (Smith, smith@math, Hiking, 1997) from the view ActiveStudents. Neither
side effect is desirable. In fact, the only reasonable solution is to disallow such
updates on views.

Views involving more than one base table can, in principle, be safely updated.
The B-Students view we introduced at the beginning of this section is an ex-
ample of such a view. Consider the instance of B-Students shown in Figure
3.18 (with, of course, the corresponding instances of Students and Enrolled as
in Figure 3.4). Toinsert atuple, say (Dave, 50000, Reggae203) B-Students, we
can simply insert a tuple (Reggae203, B, 50000) into Enrolled since there is a-
ready atuple for sid 50000 in Students. To insert (John, 55000, Reggae203), on
the other hand, we have to insert (Reggae203, B, 55000) into Enrolled and also
insert (55000, John, null, null, null) into Students. Observe how null values
are used in fields of the inserted tuple whose value is not available. Fortunately,
the view schema contains the primary key fields of both underlying base tables;
otherwise, we would not be able to support insertions into this view. To delete
atuple from the view B-Students, we can simply delete the corresponding tuple
from Enrolled.

Although this example illustrates that the SQL rules on updatable views are
unnecessarily restrictive, it aso brings out the complexity of handling view
updates in the general case. For practical reasons, the SQL standard has chosen
to alow only updates on a very restricted class of views.

3.7 DESTROYING/ALTERING TABLESAND VIEWS

If we decide that we no longer need a base table and want to destroy it (i.e,
delete al the rows and remove the table definition information), we can use
the DROP TABLE command. For example, DROP TABLE Students RESTRICT de-
stroys the Students table unless some view or integrity constraint refers to
Students; if so, the command fails. If the keyword RESTRICT is replaced by
CASCADE, Studentsis dropped and any referencing views or integrity constraints
are (recursively) dropped as wdl; one of these two keywords must always be
specified. A view can be dropped using the DROP VIEW command, which isjust
like DROP TABLE.

ALTER TABLE modifies the structure of an existing table. To add a column
called maiden-name to Students, for example, we would use the following com-
mand:

92 CHAPTER 3

ALTER TABLE Students
ADD COLUMN maiden-name CHAR(10)

The definition of Students is modified to add this column, and all existing rows
are padded with null values in this column. ALTER TABLE can also be used
to delete columns and add or drop integrity constraints on a table; we do not
discuss these aspects of the command beyond remarking that dropping columns
is treated very similarly to dropping tables or views.

3.8 CASE STUDY: THE INTERNET STORE

The next design step in our running example, continued from Section 2.8, is
logical database design. Using the standard approach discussed in Chapter 3,
DBDudes maps the ER diagram shown in Figure 2.20 to the relational model,
generating the following tables:

CREATE TABLE Books (isbn CHAR(10),
title CHAR(80) ,
author CHAR(80),
gty_in_stock INTEGER,
price REAL,

yeal published INTEGER,
PRIMARY KEY (isbn))

CREATE TABLE Orders (isbn CHAR(10),
cid INTEGER,
carelnum CHAR(16),
qty INTEGER,

order.date DATE,

ship_date DATE,

PRIMARY KEY (isbn,cid),

FOREIGN KEY (isbn) REFERENCES BooKs,
FOREIGN KEY (cid) REFERENCES Customers)

CREATE TABLE Customers (cid INTEGER,
cname CHAR(80),
address CHAR(200),
PRIMARY KEY (cid)

The design team leader, who is still brooding over the fact that the review
exposed a flaw in the design, now has an inspiration. The Orders table contains
the field order_date and the key for the table contains only the fields isbn and
cid. Because of this, a customer cannot order the same book o different days,

The Relational Model 93

a restriction that was not intended. Why not add the order.date attribute to
the key for the Orders table? This would eliminate the unwanted restrietion:

CREATE TABLE Orders (isbn CHAR(10),

PRIMARY KEY (isbn,cid,ship_date),

)

The reviewer, Dude 2, is not entirely happy with this solution, which he calls
a 'hack'. He points out that no natural ER diagram reflects this design and
stresses the importance of the ER diagram as a design do-cument. Dude 1
argues that, while Dude 2 has a point, it is important to present B&N with
a preliminary design and get feedback; everyone agrees with this, and they go
back to B&N.

The owner of B&N now brings up some additional requirements he did not
mention during the initial discussions: "Customers should be able to purchase
several different books in a single order. For example, if a customer wants to
purchase three copies of 'The English Teacher' and two copies of 'The Character
of Physical Law," the customer should be able to place a single order for both
books."

The design team leader, Dude 1, asks how this affects the shippping policy.
Does B&N still want to ship all books in an order together? The owner of
B&N explains their shipping policy: "As soon as we have have enough copies
of an ordered book we ship it, even if an order contains several books. So it
could happen that the three copies of 'The English Teacher' are shipped today
because we have five copies in stock, but that 'The Character of Physical Law’
is shipped tomorrow, because we currently have only one copy in stock and
another copy arrives tomorrow. In addition, my customers could place more
than one order per day, and they want to be able to identify the orders they
placed."

The DBDudes team thinks this over and identifies two new requirements: First,
it must be possible to order several different books in a single order and sec-
ond, a customer must be able to distinguish between several orders placed the
same day. To accomodate these requirements, they introduce a new attribute
into the Orders table called ordernum, which uniquely identifies an order and
therefore the customer placing the order. However, since several books could be
purchased in a single order, ordernum and isbn are both needed to determine
gly and ship.date in the Orders table.

Orders are assigned order numbers sequentially and orders that are placed later
have higher order numbers. If several orders are placed by the same customer

94 CHAPTER. 3

on a single day, these orders have different order numbers and can thus be
distinguished. The SQL DDL statement to create the modified Orders table
follows:.

CREATE TABLE Orders (ordernum INTEGER,

isbn CHAR(10),
dd INTEGER,
cardnum CHAR(16),
qty INTEGER,

ordeLdate DATE,

ship_date DATE,

PRIMARY KEY (ordernum, isbn),

FOREIGN KEY (isbn) REFERENCES Books
FOREIGN KEY (dd) REFERENCES Customers)

The owner of B&N is quite happy with this design for Orders, but has realized
something else. (DBDudes is not surprised; customers almost always come up
with several new requirements as the design progresses.) While he wants al
his employees to be able to look at the details of an order, so that they can
respond to customer enquiries, he wants customers' credit card information to
be secure. To address this concern, DBDudes creates the following view:

CREATE VIEW OrderInfo (isbn, cid, qty, order-date, ship_date)
AS SELECT O.cid, O.qty, O.ordelLdate, O.ship_date
FROM Orders 0

The plan is to alow employees to see this table, but not Orders; the latter is
restricted to B&N's Accounting division. We'll see how this is accomplished in
Section 21.7.

3.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

« What is arelation? Differentiate between a relation schema and a relation
instance. Definethe terms arity and degree of a relation. What are domain
constraints? (Section 3.1)

« What SQL construct enables the definition of a relation? What constructs
adlow modification of relation instances? (Section 3.1.1)

 What are integrity constraints? Define the terms primary key constraint
and foreign key constraint. How are these constraints expressed in SQL?
What other kinds of constraints can we express in SQL? (Section 3.2)

The Relational Model 95

* \Vhat does the DBMS do when constraints are violated? What is referen-
tial ‘integr-ity? \Vhat options does SQL give application programmers for
dealing with violations of referential integrity? (Section 3.3)

* When are integrity constraints enforced by a DBMS? How can an appli-
cation programmer control the time that constraint violations are checked
during transaction execution? (Section 3.3.1)

 What is a relational database query? (Section 3.4)

 How can we translate an ER diagram into SQL statements to create ta-
bles? How are entity sets mapped into relations? How are relationship
sets mapped? How are constraints in the ER model, weak entity sets, class
hierarchies, and aggregation handled? (Section 3.5)

e What is a view? How do views support logical data independence? How
are views used for security? How are queries on views evaluated? Why
does SQL restrict the class of views that can be updated? (Section 3.6)

e What are the SQL constructs to modify the structure of tables and de-
stray tables and views? Discuss what happens when we destroy a view.
(Section 3.7)

EXERCISES

Exercise 3.1 Define the following terms: relation schema, relational database schema, do-
main, relation instance, relation cardinality, and relation degree.

Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 22?

Exercise 3.3 Does the relational model, as seen by an SQL query writer, provide physical
and logical data independence? Explain.

Exercise 3.4 What isthe difference between a candidate key and the primary key for a given
relation? What is a superkey?

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1.
1. Give an example of an attribute (or set of attributes) that you can deduce is not a
candidate key, based on this instance being legal

2. Is there any example of an attribute (or set of attributes) that you can deduce is a
candidate key, based on this instance being legal?

Exercise 3.6 What is a foreign key constraint? Why are such constraints important? What
is referential integrity?

Exercise 3.7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets_In defined in Section 1.5.2.

96 CHAPTER: 3

1. List all the foreign key constraints among these relations.

2. Give an example of a (plausible) constraint involving one or more of these relations that
is not a primary key or foreign key constraint.

Exercise 3.8 Answer each of the following questions briefly. The questions are based oil the
following relational schema:

Emp(eid: integer, ename: string, age integer, salary: real)
Works(eid: integer, did: integer, pct_time: integer)
Dept(did: integer, dname: string, budget: real, managerid: integer)

1. Give an example of a foreign key constraint that involves the Dept relation. What are
the options for enforcing this constraint when a user attempts to delete a Dept tuple?

2. Write the SQL statements required to create the preceding relations, including appro-
priate versions of all primary and foreign key integrity constraints.

3. Define the Dept relation in SQL so that every department is guaranteed to have a
manager.

4. Write an SQL statement to add John Doe as an employee with eid = 101, age = 32 and
salary = 15,000.

5. Write an SQL statement to give every employee a 10 percent raise.

6. Write an SQL statement to delete the Toy department. Given the referential integrity
constraints you chose for this schema, explain what happens when this statement is
executed.

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.6.

1. Modify this query so that only the login column is included in the answer.

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of tuples
in the answer?

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL definition of
the Manages relation (in Section 3.5.3) would not enforce the constraint that each department
must have a manager. What, if anything, is achieved by requiring that the san field of Manages
be non-null?

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A, B,
and C such that A has a key constraint and total participation and B has a key constraint;
these are the only constraints. A has attributes al and a2, with al being the key; Band
C are similar. R has no descriptive attributes. Write SQL statements that create tables
corresponding to this information so as to capture as many of the constraints as possible. If
you cannot capture some constraint, explain why.

Exercise 3.12 Consider the scenario from Exercise 2.2, where you designed an ER diagram
for a university database. \Vrite SQL staternents to create the corresponding relations and
capture as many of the constraints as possible. Ifyou cannot: capture some constraints, explain
why.

Exercise 3.13 Consider the university database from Exercise 2.3 and the ER diagram you
designed. Write SQL: statements to create the corresponding relations and capture as many
of the constraints as possible. If you cannot capture some constraints, explain why.

The Relational Model 97

I3

Exercise 3.14 Consider the scenario from Exercise 2.4, where you designed an ER diagram
for a company database. Write SQL statements to create the corresponding relations and
capture as many of the constraints as possible. If you cannot capture some constraints,
explain why.

Exercise 3.15 Consider the Notown database from Exercise 2.5. You have decided to rec-
ommend that Notown use a relational database system to store company data. Show the
SQL statements for creating relations corresponding to the entity sets and relationship sets
in your design. Identify any constraints in the ER diagram that you are unable to capture in
the SQL statements and briefly explain why you could not express them.

Exercise 3.16 Translate your ER diagram from Exercise 2.6 into a relational schema, and
show the SQL statements needed to create the relations, using only key and null constraints.
If your translation cannot capture any constraints in the ER diagram, explain why.

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests on a
plane must be conducted by a technician who is an expert on that model. Can you modify
the SQIL statements defining the relations obtained by mapping the ER diagram to check this
constraint?

Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X chain of
pharmacies in Exercise 2.7. Define relations corresponding to the entity sets and relationship
sets in your design using SQL.

Exercise 3.18 Write SQL statements to create the corresponding relations to the ER dia-
gram you designed for Exercise 2.8. If your translation cannot capture any constraints in the
ER diagram, explain why.

Exercise 3.19 Briefly answer the following questions based on this schema:

Emp(€e'id: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct_time: integer)
Dept(did: integer, budget: real, managerid: integer)

1. Suppose you have a view SeniorEmp defined as follows:

CREATE VIEW SeniorEmp (sname, sage, salary)
AS SELECT E.ename, Kage, E.salary
FROM EmpE
WHERE Kage > 50

Explain what the system will do to process the following query:

SELECT S.sname
FROM SeniorEmp S
WHERE S.salary > 100,000

2. Give an example of a view on Emp that could be automatically updated by updating
Emp.

3. Give an example of a view on Emp that would be impossible to update (automatically)
and explain why your example presents the update problem that it does.

Exercise 3.20 Cousider the following schema:

98 CHAPTER. 3

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers. Answer the following
questions:

. Give an example of an updatable view involving one relation.

® Give an example of an updatable view involving two relations.

. Give an example of an insertable-into view that is updatable.

. Give an example of an insertable-into view that is not updatable.

PROJECT-BASED EXERCISES

Exercise 3.21 Create the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets_In in Minibase.

Exercise 3.22 Insert the tuples shown in Figures 3.1 and 3.4 into the relations Students and
Enrolled. Create reasonable instances of the other relations.

Exercise 3.23 What integrity constraints are enforced by Minibase?

Exercise 3.24 Run the SQL queries presented in this chapter.

BIBLIOGRAPHIC NOTES

The relational model was proposed in a seminal paper by Codd [187]. Childs [176] and Kuhns
[454] foreshadowed some of these developments. Gallaire and Minker’s book [296] contains
several papers on the use of logic in the context of relational databases. A system based on a
variation of the relational model in which the entire database is regarded abstractly as a single
relation, called the universal relation, is described in [746]. Extensions of the relational model
to incorporate null values, which indicate an unknown or missing field value, are discussed by
several authors; for example, [329, 396, 622, 754, 790].

Pioneering projects include System R [40, 150] at IBM San Jose Research Laboratory (now
IBM Almaden Research Center), Ingres [717] at the University of California at Berkeley,
PRTV [737] at the IBM UK Scientific Center in Peterlee, and QBE [801] at IBM T. J.
Watson Research Center.

A rich theory underpins the field of relational databases. Texts devoted to theoretical aspects
include those by--Atzeni and DeAntonellis [45]; Maier [501]; and Abiteboul, Hull, and Vianu
[3]. [415] is an excellent survey article.

Integrity constraints in relational databases have been discussed at length. [190] addresses
semantic extensions to the relational model, and integrity, in particular referential integrity.
[360] discusses semantic integrity constraints. [203] contains papers that address various
aspects of integrity constraints, including in particular a detailed discussion of referential
integrity. A vast literature deals \vith enforcing integrity constraints. [51] compares the cost

The Relational Aodel 9

»

of enforcing integrity constraints via compile-time, run-time, and post-execution checks. [145]
presents an SQL -based language for specifying integrity constraints and identifies conditions
under which integrity rules specified in this language can be violated. [713] discusses the
technique of integrity constraint checking by query modification. [180] discusses real-time
integrity constraints. Other papers on checking integrity constraints in databases include
[82, 122, 138,517]. [681] considers the approach of verifying the correctness of programs that
access the database instead of run-time checks. Note that this list of references is far fTom
complete; in fact, it does not include any of the many papers on checking recursively specified
integrity constraints. Some early papers in this widely studied area can be found in [296] and

[295].

For references on SQL, see the bibliographic notes for Chapter 5. This book does not discuss
specific products based on the relational model, but many fine books discuss each of the major
commercial systems; for example, Chamberlin's book on DB2 [149], Date and McGoveran's
book on Sybase [206], and Koch and Loney's book on Oracle [443].

Several papers consider the problem of translating updates specified on views into updates
on the underlying table [59, 208, 422, 468, 778]. [292] is a good survey on this topic. See
the bibliographic notes for Chapter 25 for references to work querying views and maintaining
materialized views.

[731] discusses a design methodology based on developing an ER diagram and then translating
to the relational model. Markowitz considers referential integrity in the context of ER to
relational mapping and discusses the support provided in some commercial systems (as of
that date) in [513, 514].

RELATIONAL ALGEBRA
AND CALCULUS

=« \What is the foundation for relational query languages like SQL? What
is the difference between procedural and declarative languages?

w \What isrelational algebra, and why is it important?

=& \What are the basic algebra operators, and how are they combined to
write complex queries?

= \What is relational calculus, and why is it important?

& \What subset of mathematical logic is used in relational calculus, and
how is it used to write queries?

» Key concepts: relational algebra, select, project, union, intersection,
cross-product, join, division; tuple relational calculus, domain rela-
tional calculus, formulas, universal and existential quantifiers, bound
and free variables

Stand finn in your refusal to remain conscious during algebra. In real life, |
assure you, there is no such thing as algebra.

--Fran Lebowitz, Social Studies

This chapter presents two formal query languages associated with the relational
model. Query ‘languages are specialized languages for asking questions, or
queries, that involve the datain a database. After covering some preliminaries
in Section 4.1, we discuss relational algebra in Section 4.2. Queries in relational
algebra are composed using a collection of operators, and each query describes
a step-by-step procedure for computing the desired answer; that is, queries are

100

Relat'ional Algebra and Calculus 101

specified in an operational manner. In Section 4.3, we discuss relational calcu-
lus, in which a query describes the desired ans\ver without specifying how the
answer is to be computed; this nonprocedural style of querying is called declar-
ati'Ve. We usually refer to relational algebra and relational calculus as algebra
and calculus, respectively. We compare the expressive power of algebra and
calculus in Section 4.4. These formal query languages have greatly influenced
commercial query languages such as SQL, which we discuss in later chapters.

41 PRELIMINARIES

We begin by clarifying some important points about relational queries. The
inputs and outputs of aquery arerelations. A query is evaluated using instances
of each input relation and it produces an instance of the output relation. In
Section 3.4, we used field names to refer to fields because this notation makes
qgueries more readable. An alternative is to always list the fields of a given
relation in the same order and refer to fields by position rather than by field
name.

In defining relational algebra and calculus, the alternative of referring to fields
by position is more convenient than referring to fields by name: Queries often
involve the computation of intermediate results, which are themselves relation
instances; and if we use field names to refer to fields, the definition of query
language constructs must specify the names of fields for all intermediate relation
instances. This can be tedious and is really a secondary issue, because we can
refer to fields by position anyway. On the other hand, field names make queries
more readable.

Due to these considerations, we use the positional notation to formally define
relational algebra and calculus. We also introduce simple conventions that

alow intermediate relations to 'inherit' field names, for convenience.

We present a number of sample queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bnarne: string, coloT: string)
Reserves(sid: integer, bid: integer, day: date)

The key fields are underlined, and the domain of each field is listed after the
field name. Thus, s:d is the key for Sailors, bid is the key for Boats, and all
three fields together form the key for Reserves. Fields in an instance of one
of these relations are referred to by name, or positionally, using the order in
which they were just listed.

102 CHAPTER 4

In several examples illustrating the relational algebra operators, we use the
instances 81 and 82 (of Sailors) and R1 (of Reserves) shown in Figures 4.1,
4.2, and 4.3, respectively.

ooendtod Vowertavra booae o
—— ‘ 28 | yuppy | 9 35.0
22 | Dustin | 7 45.0 31 | Lubber 8 55.5
31 | Lubber | 8 55.5 44 | guppy | 5 35.0
58 | Rusty 10 35.0 58 | Rusty 10 35.0
Figure 4.1 Instance Sl of Sailors Figure 4.2 Instance S2 of Sailors

| sid | bid | day . . |
22 | 101 | 10/10/96
58 | 103 | 11/12/96

Figure 4.3 Instance RI of Reserves

4.2 RELATIONAL ALGEBRA

Relational algebrais one of the two formal query languages associated with the
relational model. Queries in algebra are composed using a collection of oper-
ators. A fundamental property is that every operator in the algebra accepts
(one or two) relation instances as arguments and returns a relation instance
as the result. This property makes it easy to compose operators to form a
complex query-arelational algebra expression is recursively defined to be
arelation, a unary algebra operator applied to a single expression, or a binary
algebra operator applied to two expressions. We describe the basic operators of
the algebra (selection, projection, union, cross-product, and difference), as well
as some additional operators that can be defined in terms of the basic opera-
tors but arise frequently enough to warrant special attention, in the following
sections.

Each relational query describes a step-by-step procedure for computing the
desired answer, based on the order in which operators are applied in the query.
The procedural nature of the algebra alows us to think of an algebra expression
as arecipe, or a plan, for evaluating a query, and relational systems in fact use
algebra expressions to represent query evaluation plans.

Relational Algebra and Calculus

421 Selection and Projection

Relational algebra includes operators to select rows from a relation (¢) and to
project columns (7). These operations allow us to manipulate datain a single
relation. Consider the instance of the Sailors relation shown in Figure 4.2,
denoted as 52. We can retrieve rows corresponding to expert sailors by using
the ¢ operator. The expression

Orating>8(52)

evaluates to the relation shown in Figure 4.4. The subscript rating> 8 specifies
the selection criterion to be applied while retrieving tuples.

sname | rating
: : yuppy | 9
| sid | sname | rating |-age | Lubber | 8
28 | yuppy | 9 35.0 guppy | 5
58 | Rusty | 10 35.0 Rusty 10
Figure 4.4 0rating>a(52) Figure 4.5 Tiname,rating(S2)

The selection operator o specifies the tuples to retain through a selection con-
dition. In general, the selection condition is a Boolean combination (i.e., an
expression using the logical connectives /\ and V) of terms that have the form
attribute op constant or attributel op attribute2, where op is one of the com-
parison operators <, <=, =, =, >=, or >. The reference to an attribute can be
by position (of the form .i or i) or by name (of the form .name or name). The
schema of the result of a selection is the schema of the input relation instance.

The projection operator 7 allows us to extract columns from a relation; for
example, we can find out all sailor names and ratings by using 1t. The expression

Tsname,rafing(52)

evaluates to the relation shown in Figure 4.5. The subscript 8na:me)rating
specifies the fields to be retained; the other fields are 'projected out." The
schema of the result of a projection is determined by thefields that are projected
in the obvious way.

Suppose that we wanted to find out only the ages of sailors. The expression
Tage(92)

evaluates to the relation shown in Figure 4.6. The irnportant point to note is
that, although three sailors are aged 35, a single tuplewith age=235.0 appearsin

104 CHAPTER 4

the result of the projection. Thisfollm\'8 from the definition of arelation as a set
of tuples. In practice, real systems often omit the expensive step of eliminating
duplicate tuples, leading to relations that are multisets. However, our discussion
of relational algebra and calculus assumes that duplicate elimination is always
done so that relations are always sets of tuples.

Since the result of a relational algebra expression is always a relation, we can
substitute an expression wherever a relation is expected. For example, we can
compute the names and ratings of highly rated sailors by combining two of the
preceding queries. The expression

Tsname, rating (O rating>8 (82))

produces the result shown in Figure 4.7. 1t is obtained by applying the selection
to 82 (to get therelation shown in Figure 4.4) and then applying the projection.

, age | " sname | rating |
35.0 | yuppy | 9
99.9 | Rusty | 10
Figure 4.6 m,4.(52) Figure 4.7 Tsname,rating(Orating>8(52))

4.2.2 Set Operations

The following standard operations on sets are also available in relational a-
gebra: un'ion (U), intersection (n), set-difference (—), and cross-product (X).

s« Union: R U 8 returns a relation instance containing aU tuples that occur
in either relation instance R or relation instance 8 (or both). Rand 8
must be union-compatible, and the schema of the result is defined to be
identical to the schema of R.

Two relation instances are said to be union-compatible if the following
conditions hold:
— they have the same number of the fields, and

- corresponding fields, taken in order from left to right, have the same
domains.
Note that field names are not used in defining union-compatibility. For
convenience, we will assume that the fields of R U S inherit names from R,
if the fields of R have names. (This assumption is implicit in defining the
schema of R U S to be identical to the schema of R, as stated earlier.)

= [Intersection: R NS returns arelation instance containing all tuples that
occur in both Rand S. The relations Rand S must be union-compatible,
and the schema of the result is defined to be identical to the schema of R.

Relational Algebra and Calculus 105

s Set-difference: R-8 returns arelation instance containing all tuples that
occur in R but not in 8. The relations Rand 8 must be union-compatible,
and the schema of the result is defined to be identical to the schema of R.

m Cross-product: R x 8 returns arelation instance whose schema contains
all the fields of R (in the same order as they appear in R) followed by all
the fields of 8 (in the same order as they appear in 8). The result of Rx 8
contains Olle tuple (I, s) (the concatenation of tuples rand s) for each pair
of tuples I E R, s E 8. The cross-product opertion is sometimes called
Cartesian product.

We use the convention that the fields of R x 8 inherit names from the
corresponding fields of Rand 8. It is possible for both Rand 8 to contain
one or more fields having the same name; this situation creates a naming
confi'ict. The corresponding fields in R x 8 are unnamed and are referred
to solely by position.

In the preceding definitions, note that each operator can be applied to relation
instances that are computed using a relational algebra (sub)expression.

We now illustrate these definitions through several examples. The union of 81
and 82 is shown in Figure 4.8. Fields are listed in order; fiedd names are also
inherited from 81. 82 has the same field names, of course, since it is also an
instance of Sailors. In general, fields of 82 may have different names; recall that
we require only domainsto match. Note that theresult is a set of tuples. TUples
that appear in both 81 and 82 appear only once in 81 U82. Also, 81 uRl is
not a valid operation because the two relations are not union-compatible. The
intersection of 81 and 82 is shown in Figure 4.9, and the set-difference 81- 82
is shown in Figure 4.10.

| sid | sname | rating | age
22 | Dustin | 7 45.0
31 | Lubber | 8 55.5
58 | Rusty 10 35.0
28 | yuppy | 9 35.0
44 | guppy | 5 35.0

Figure 4.8 31u 52

The result of the cross-product 81 x RI is shown in Figure 4.11. Because RI
and 81 both have a field named sid, by our convention on field names, the
corresponding two fields in 81 x RI are unnamed, and referred to solely by the
position in which they appear in Figure 4.11. The fidds in 81 x RI have the
same domains as the corresponding fields in Rl and 51. In Figure 4.11, sid is

106 CHAPTER 4

sid | emamn

31 | Lubber| 8 55.5 | sid | sname | rating | age |

58 | Rusty | 10 35.0 |22 | pustin | 7 [45.0
Figure 4.9 81n 82 Figure 4.10 81 - 82

listed in parentheses to emphasize that it is not an inherited field name; only
the corresponding domain is inherited.

(sid) | sname- | rating | age (sid) bid day

22 Dustin | 7 450 | 22 101 | 10/10/96
22 Dustin | 7 45.0 | 58 103 | 11/12/96
31 Lubber | 8 555 | 22 101 | 10/10/96
31 Lubber | 8 55,5 | 58 103 | 11/12/96
58 Rusty 10 350 | 22 101 | 10/10/96
58 Rusty 10 35.0 | 58 103 | 11/12/96

Figure 4.11 81 x R1

4.2.3 Renaming

We have been careful to adopt field name conventions that ensure that the result
of arelational algebra expression inherits field names from its argument (input)
relation instances in a natural way whenever possible. However, name conflicts
can arise in some cases; for example, in 81 x RI. It is therefore convenient
to be able to give names explicitly to the fields of a relation instance that is
defined by a relational algebra expression. In fact, it is often convenient to give
the instance itself a name so that we can break a large algebra expression into
smaller pieces by giving names to the results of subexpressions.

We introduce a renaming operator p for this purpose. Theexpression p(R(F), E)
takes an arbitrary relational algebra expression E and returns an instance of
a (new) relation called R. R contains the same tuples as the result of E and
has the same schema as E, but some fields are renamed. The field names in
relation R are the sarne as in E, except for fields renamed in the renaming list
E, which is a list of terms having the form oldname — newname or position —
newname. For p to be well-defined, references to fields (in the form of oldnames
or posit.ions in the renaming list) may be unarnbiguous and no two fields in the
result may have the same name. Sometimes we want to only rename fields or
(re)name the relation; we therefore treat both Rand F as optional in the use
of p. (Of course, it is meaningless to omit both.)

Relational AlgebTa and Calculus 107

For example, the expression p(C(I — s'id1,5 — sid2), 81 x R1) returns a
relation that contains the tuples shown in Figure 4.11 and has the following
schema: C(sidl: integer, sname: string, rating: integer, age real, sid2:
integer, bid: integer, day. dates).

It is customary to include some additional operators in the algebra, but all of
them can be defined in terms of the operators we have defined thus far. (In
fact, the renaming operator is needed only for syntactic convenience, and even
the N operator is redundant; RN 8 can be defined as R - (R- 8).) We consider
these additional operators and their definition in terms of the basic operators
in the next two subsections.

424 Joins

The join operation is one of the most useful operations in relational algebra
and the most commonly used way to combine information from two or more
relations. Although a join can be defined as a cross-product followed by selec-
tions and projections, joins arise much more frequently in practice than plain
cross-products. Further, the result of a cross-product is typically much larger
than the result of a join, and it is very important to recognize joins and imple-
ment them without materializing the underlying cross-product (by applying the
selections and projections 'on-the-fly'). For these reasons, joins have received
a lot of attention, and there are several variants of the join operation.?!

Condition Joins

The most general version of the join operation accepts a join condition ¢ and
a pair of relation instances as arguments and returns a relation instance. The
join condit-ion is identical to a selection condition in form. The operation is
defined as follows:

Rpa. S = 0.(R xS)

Thus > is defined to be a cross-product followed by a selection. Note that the
condition c can (and typically does) refer to attributes of both Rand S. The
reference to an attribute of a relation, say, R, can be by positioll (of the form
R.i) or by llame (of the form R.name).

As an example, the result of S| Xg1 sid<R1.sia R1 is shown in Figure 4.12.
Because sid appears in both 81 and R1, the corresponding fields in the result
of the cross-product 81 x R1 (and thereforein the result of 81 gy gid< R1.sid R1)

1Several variants of joins are not discussed in this chapter. An important clags of joins, called
outer joins, is discussed in Chapter 5.

108 CHAPTER 4

are unnamed. Domains are inherited from the corresponding fields of 81 and
RI.

| (sid) | sname | rating | age | (sid).| bid day

1 2 | Dustin | 7 450 | 58 | 103 | 11/12/96
131 | Lubber| 8 555 | 58 | 103 | 11/12/96

Figure 4.12 51 NSl.sid<Rl.sid R1

Equijoin

A common special case of the join operation R > S is when the join condition
consists solely of equalities (connected by 1)) of the form R.namel = 8.name2,
that is, equalities between two fields in Rand S. In this case, obviously, thereis
some redundancy in retaining both attributes in the result. For join conditions
that contain only such equalities, the join operation is refined by doing an
additional projection in which 8.name2 is dropped. The join operation with
this refinement is called equijoin.

The schema of the result of an equijoin contains the fields of R (with the same
names and domains as in R) followed by the fields of S that do not appear
in the join conditions. If this set of fields in the result relation includes two
fields that inherit the same name from Rand 8, they are unnamed in the result
relation.

We illustrate S1 xig sid=5.5i¢ Rl in Figure 4.13. Note that only one field called
std appears in the result.

[sid | sname L rating | age [bid-1 day
| 22 Dustin | 7 | 45.0 101 1 10/10/96 |
58 Rusty 110 1350 103 |11/12/96 |

Figure 4.13 81 Xp..id=5.5id HI

Natural Join

A further special casc of the join operation R pa4 S is an eqUlJom in which
equalities arc specified on all fields having the same name in Rand S. In
this case, we can simply omit the join condition; the default is that the join
condition is a collection of equalities on all common fields. We call this special
case a natural jo'in, and it has the nice property that the result is guaranteed
not to have two fields with the salne name.

Relai‘ional Algebra and Calculus 109

The equijoin expression 81 t<g sd=5.sid R1 is actually a natural join and can
simply be denoted as 81 > R1, since the only common field is sid. If the two
relations have no attributes in common, 81 i RI is simply the cross-product.

4,25 Division

The division operator is useful for expressing certain kinds of queries for exam-
ple, “Find the names of sailors who have reserved all boats." Understanding
how to use the basic operators of the algebra to define division is a useful exer-
cise. However, the division operator does not have the same importance as the
other operators-it is not needed as often, and database systems do not try to
exploit the semantics of division by implementing it as a distinct operator (as,
for example, is done with the join operator).

We discuss division through an example. Consider two relation instances A
and B in which A has (exactly) two fields x and y and B has just one field vy,
with the same domain as in A. We define the division operation AIB as the
set of all x values (in the form of unary tuples) such that for every y value in
(atuple of) B, thereis atuple (x,y) in A.

Another way to understand division is as follows. For each x value in (the first
column of) A, consider the set of y values that appear in (the second field of)
tuples of A with that x value. If this set contains (al y values in) B, the x
value is in the result of AlB.

An analogy with integer division may also help to understand division. For
integers A and B, AIB is the largest integer Q such that Q * B < A. :For
relation instances A and B, AIB is the largest relation instance Q such that
QxBCA.

Division isillustrated in Figure 4.14. It helps to think of A as a relation listing
the parts supplied by suppliers and of the B relations as listing parts. Al Bi
computes suppliers who supply all parts listed in relation instance Bi.

Expressing AlBin terms of the basic algebra operators is an interesting ex-
ercise, and the reader should try to do this before reading further. The basic
idea is to compute al z values in A that are not disqualified. An x value is
disqualified if by attaching a y value from B, we obtain a tuple (x,y) that is not
in A. We can compute disqualified tuples using the algebra expression

(7 (A) x B) — A)
Thus, we can define A/B as

T (A) = me((me(A) x B) — A)

110 CHAPTER.4

A I sno | pno | Bl @ AlBI V?}IE
8l | pl | E i sl
sl \ p2 | % |
sl | p3 B2 | pno] | ;
8l p p2 EI
8 i pl_] T
2 | p2 - AIB2
. .
aA | p %1-2 —

M AIB3
sl

Figure 4.14 Examples lllustrating Division

To understand the division operation in full generality, we have to consider the
case when both x and yare replaced by a set of attributes. The generalization is
straightforward and left as an exercise for the reader. We discuss two additional
examples illustrating division (Queries Q9 and Q10) later in this section.

4.2.6 MoreExamplesof Algebra Queries

We now present several examples to illustrate how to write queries in relational
algebra. We use the Sailors, Reserves, and Boats schema for all our examples
in this section. We use parentheses as needed to make our algebra expressions
unambiguous. Note that all the example queries in this chapter are given
a unique query number. The query numbers are kept unique across both this
chapter and the SQL query chapter (Chapter 5). This numbering makes it easy
to identify a query when it is revisited in the context of relational calculus and
SQL and to compare different ways of writing the same query. (All references
to a query can be found in the subject index.)

In the rest of this chapter (and in Chapter 5), we illustrate queries using the
instances 83 of Sailors, R2 of Reserves, and B1 of Boats, shown in Figures
4.15, 4.16, and 4.17, respectively.

(Q1) Find the names of sailors who have rcscT'ucd boat 103.

This query can be written as follows:

’/Tsmmm((O(,.id:logREZSGI‘UES) B 83!|0T5)

Relational Algebra and Calculus 11}

woddmn | wan Losid f b‘id’.é..day.v ___l

22 | Dustin | 7 45.0 22 101 10/10/98
29 | Brutus | 1 33.0 22 102 10/10/98
31 | Lubber | 8 55.5 22 103 10/8/98
32 | Andy 8 25.5 2 104 10/7/98
58 | Rusty 10 35.0 31 102 11/10/98
64 | Horatio | 7 35.0 31 103 11/6/98
71 | Zorba 10 16.0 31 104 11/12/98
74 | Horatio | 9 35.0 64 101 9/5/98

8 | Art 3 255 64 | 102 | 9/8/98

95 | Bob 3 63.5 74 | 103 | 9/8/98

Figure 4.15 An Instance 83 of Sailors Figure 4.16 An Instance R2 of Reserves

We first compute the set of tuples in Reserves with bid = 103 and then take the
natural join of this set with Sailors. This expression can be evaluated on in-
stances of Reserves and Sailors. Evaluated on the instances R2 and S3, it yields
arelation that contains just one field, called sname, and three tuples (Dustin),
(Horatio), and (Lubber). (Observe that two sailors are called Horatio and only
one of them has reserved a red boat.)

bid | bname | color- |
101 | Interlake | blue
102 | Interlake | red
103 | Clipper | green
104 | Marine red

Figure 4.17 An Instance HI of Boats

We can break this query into smaller pieces llsing the renaming operator p:

p(Templ, 0pid=103 ReseTves)
p(Temp2, T'empl b Sailor's)
Tsname (TBWLPQ)

Notice that because we are only lIsing p to give names to intermediate relations,
the renaming list is optional and is omitted. Templ denotes an intermediate
relation that identifies reservations of boat 103. Temp2 is another intermediate
relation, and it denotes sailors who have made a reservation in the set Templ.
The instances of these relations when evaluating this query on the instances R2
and S3 are illustrated in Figures 4.18 and 4.19. Finally, we extract the sname
column from Temp2.

112 CHAPTER 4

sid | bid L day | | sid | sname | rating ege U hid

2 103 10/8/98 1 22 | Dustin |7 45.0 | 103 | 10/8/98

31 103 11/6/98 31 Lubber 8 55.5 | 103 | 11/6/98--

74 103 9/8/98 74 Horatio 9 35.0 | 103 | 9/8/98
Figure 4.18 Instance of Templ Figure 4.19 Instance of Temp2

The version of the query using p is essentially the same as the original query;
the use of p isjust syntactic sugar. However, there are indeed several distinct
ways to write a query in relational algebra. Here is another way to write this
query:

Jraname(Cbid=103(Reserves ixt Sailors))

In this version we first compute the natural join of Reserves and Sailors and
then apply the selection and the projection.

This example offers a glimpse of the role played by algebra in a relational
DBMS. Queries are expressed by users in a language such as SQL. The DBMS
translates an SQL query into (an extended form of) relational algebra and
then looks for other algebra expressions that produce the same answers but are
cheaper to evaluate. If the user's query is first translated into the expression

Tsname (CHId=103 (Reserves 1x1 Sailors))

a good query optimizer will find the equivalent expression
mname ((CJb-id=103Reserves) ix: Sailors)

Further, the optimizer will recognize that the second expression is likely to
be less expensive to compute because the sizes of intermediate relations are
smaller, thanks to the early use of selection.

(Q2) Find the names of sailors who ha've reserved a red boat.
Tsname ((Ocolor="red' Boats) 1xi Reserves > Sailol's)

This query involves a series of two joins. First, we choose (tuples describing)
red boats. Then, we join this set with Reserves (natural join, with equality
specified on the bid column) to identify reservations of red boats. Next, we
join the resulting intermediate relation with Sailors (natural join, with equality
specified on the sid column) to retrieve the names of sailors who have rnade
reservations for red boats. Finally, we project the sailors' names. The answer,
when evaluated on the instances B1, K2, and S3, contains the names Dustin,
Horatio, and Lubber.

Relational Algebra and Calculus 143

An equivalent expression is
Tsname Tsid (TbidO color=red» Boats) 1 Reserves) o< Sailors)

The reader is invited to rewrite both of these queries by using p to make the
intermediate relations explicit and compare the schemas of the intermediate
relations. The second expression generates intermediate relations with fewer
fields (and is therefore likely to result in intermediate relation instances with
fewer tuples as well). A relational query optimizer would try to arrive at the
second expression if it is given the first.

(Q3) Find the colors of boats reserved by Lubber.

ﬂ'colm‘((O'.sname:’Lubber’ S(L‘ﬂ()?‘S) 1 Reserves b< BoatS)

This query is very similar to the query we used to compute sailors who reserved
red boats. On instances Bl, R2, and S3, the query returns the colors green
and red.

(Q4) Find the names of sailors who have reserved at least one boat.
Jrsname(Sailors o< Reserves)

Thejoin of Sailors and Reserves creates an intermediate relation in which tuples
consist of a Sailors tuple ‘attached to' a Reserves tuple. A Sailors tuple appears
in (some tuple of) this intermediate relation only if at least one Reserves tuple
has the same sid value, that is, the sailor has made some reservation. The
answer, when evaluated on the instances Bl, R2 and S3, contains the three
tuples (Dustin), (HoTatio), and (Lubber). Even though two sailors called
Horatio have reserved a boat, the answer contains only one copy of the tuple
(HoTatio), because the answer is a relation, that is, a set of tuples, with no
duplicates.

At this point it isworth remarking on how frequently the natural join operation
is used in our examples. This frequency is more than just a coincidence based
on the set of queries we have chosen to discuss; the natural join is a very
natural, widely used operation. In particular, natural join is frequently used
when joining two tables on a foreign key field. In Query Q4, for exalnple, the
join equates the sid fields of Sailors and Reserves, and the sid field of Reserves
is a foreign key that refers to the sid field of Sailors.

(Q5) Find the narnes of sailors who have reserved a Ted OT a gTeen boat.

p(Tempboats, (acoloT="rcd Boats) U (T cotor=green’ BOALS))
Tsname (L empboats a1 ReseTves pa Sailors)

114 CHAPTER *4

We identify the set of all hoats that are either red or green (Tempboats, which
contains boats \vith the dids 102, 103, and 104 on instances E1, R2, and S3).
Then we join with Reserves to identify sids of sailors who have reserved Olle of
these boats; this gives us sids 22, 31, 64, and 74 over our example instances.
Finally, wejoin (an intermediate relation containing this set of sids) with Sailors
to find the names of Sailors with these sids. This gives us the names Dustin,
Horatio, and Lubber on the instances B1, R2, and S3. Another equivalent
definition is the following:

p(Tempboats, (acolor="red'Vcolor="green' Boats))
Tfsname(Tempboats <1 Reserves < Sailors)

Let us now consider a very similar query.

(Q6) Find the names of sailors who have reserved a red and a green boat. It
is tempting to try to do this by simply replacing U by N in the definition of
Tempboats:

p(Tempboats2, (acolor="red,Eoats) n (O"color="green,Boats))
Tsname (T empboats2 <1 Reserves <1 Sailors)

However, this solution isincorrect-it instead tries to compute sailors who have
reserved a boat that is both red and green. (Since bidis a key for Boats, a boat
can be only one color; this query will always return an empty answer set.) The
correct approach is to find sailors who have reserved a red boat, then sailors
who have reserved a green hoat, and then take the intersection of these two
sets:

p(Tempred, 75:q ((acolor="red’ Eoats) > Reserves))

p(Tempgreen, 7siq((0 color='green’ Boats) 1 Reserves))

Tsname ((Tempred N Tempgreen) i Sailors)
The two temporary relations compute the sids of sailors, and their intersection
identifies sailors who have reserved both red and green boats. On instances
B1, R2, and 53, the sids of sailors who have reserved a red boat are 22, 31,
and 64. The sids of sailors who have reserved a green boat are 22, 31, and 74.

Thus, sailors 22 and 31 have reserved both a red boat and a green boat; their
names are Dustin and Lubber.

This formulation of Query Q6 can easily be adapted to find sailors who have
reserved red or green boats (Query Q5); just replace n by U:

p(Tempred, 7sq((0color=rea BOALS) I RESErVES))

p(Tempgreen, 74;4((O"color="green’ Boats) < Reserves))

Tsname ((Tempred U Tempgreen) >z Sailors)

Relational Algebra and Calculus 115

In the formulations of Queries Q5 and Q6, the fact that sid (the field over
which we compute union or intersection) is a key for Sailors is very important.
Consider the following attempt to answer Query Q6:

p(Tempred, Jrsname((Ccolor="red,Boats) i Reserves > Sailors))
p(Tempgreen,Jrsname((CJcoloT="gTeenl Boats) <1 Reserves i Sailors))
Tempred N Tempgreen

This attempt is incorrect for a rather subtle reason. Two distinct sailors with
the same name, such as Horatio in our example instances, may have reserved
red and green boats, respectively. In this case, the name Horatio (incorrectly)
is included in the answer even though no one individual called Horatio has
reserved a red boat and a green boat. The cause of this error is that sname
is used to identify sailors (while doing the intersection) in this version of the
query, but sname is not a key.

(Q7) Find the names of sailors who have reser-ved at least two boats.

p(Reser-vations, Tsid,sname,bid (Sailor s i Reserves))
p(Reservationpairs(l -» sid1, 2 — snamel, 3 — bidl, 4 — sid2,
5 — sname2, 6 — bid2), Reservations x Reservations)

Tsnamel O(sidi=sid2)A(bid1£bia2) R€Servationpair-s

First, we compute tuples of the form (sid,sname, bid) , where sailor sid has made
a reservation for boat hid; this set of tuples is the temporary relation Reserva-
tions. Next we find al pairs of Reservations tuples where the same sailor has
made both reservations and the boats involved are distinct. Here is the central
idea: To show that a sailor has reserved two boats, we must find two Reserva-
tions tuples involving the same sailor but distinct boats. Over instances B1,
R2, and S3, each of the sailors with sids 22, 31, and 64 have reserved at |east
two boats. Finally, we project the names of such sailors to obtain the answer,
containing the names Dustin, Horatio, and Lubber.

Notice that we included sid in Reservations because it is the key field identifying
sailors, and we need it to check that two Reservations tuples involve the same
sailor. As noted in the previous example, we cannot use sname for this purpose.

(Q8) Find the sids of sailors with age over 20 who have not TeseTved ¢ Ted boat.

7(6‘1:(1(0—(195’_)‘2()AS'CL'I:ZOT'S) —
790((CIco[0T="red,Boats) 1 Reserves ba Sailors)

This query illustrates the use of the set-difference operator. Again, we use the
fact that sidis the key for Sailors. We first identify sailors aged over 20 (over

116 CHAPTER 4

instances Bl, R2, and S3, sids 22, 29, 31, 32, 58, 64, 74, 85, and 95) and then
discard those who have reserved a red boat (sids 22, 31, and 64), to obtain the
answer (sids 29, 32, 58, 74, 85, and 95). If we want to compute the names of
such sailors, \ve must first compute their sids (as shown earlier) and then join
with Sailors and project the sname values.

(Q9) Find the names of sailors who have reserved all boats.

The use of theword all (or every) is a good indication that the division operation
might be applicable:

p(Tempsids, (Tsid piaReserves) (wyq Boats))
Tsname (L €mpsids < Sailors)

The intermediate relation Tempsids is defined using division and computes the
set of sids of sailors who have reserved every boat (over instances Bl, R2, and
S3, thisisjust sid 22). Note how we define the two relations that the division
operator (/) is applied to---the first relation has the schema (sid,bid) and the
second has the schema (bid). Division then returns all sids such that there is a
tuple (sid,bid) in the first relation for each bid in the second. Joining Tempsids
with Sailors is necessary to associate names with the selected dds, for sailor
22, the name is Dustin.

(Q10) Find the names of sailors who have reserved all boats called Interlake.

p(TempSi dS, (n‘—?id,bidReserves)/ ('/Tbid (Ubname:’lnterlake’ Boats)))
T sname (TempSZdS [XI Sal I or S)

The only difference with respect to the previous query is that now we apply a
selection to Boats, to ensure that we compute bids only of boats named Interlake
in defining the second argument to the division operator. Over instances El,
R2, and S3, Tempsids evaluates to sids 22 and 64, and the answer contains
their names, Dustin and Horatio.

403 RELATIONAL CALCULUS

Relational calculus is an alternative to relational algebra. In contrast to the
algebra, whichis procedural, the calculus is nonprocedural, or declarative, in
that it allows us to describe the set of answers without being explicit about
how they should be computed. Relational calculus has had a big influence on
the design of commercial query languages such as SQL and, especially, Query-
by-Example (QBE).

The variant of the calculus we present in detail is called the tuple relational
calculus (TRC). Variables in TRC take on tuples as values. In another vari-

Relational Algebra and Calculus

ant, called the domain relational calculus (DRC), the variables range over
field values. TRC has had more of an influence on SQL, \vhile DRC has strongly
influenced QBE. We discuss DRC in Section 4.3.2.2

4.3.1 TupleRelational Calculus

A tuple variable is a variable that takes on tuples of a particular relation
schema as values. That is, every value assigned to a given tuple variable has
the same number and type of fields. A tuple relational calculus query has the
form { T 1 p(T) }, whereT is atuple variable and p(T) denotes a formula that
describes T; we will shortly define formulas and queries rigorously. The result
of this query is the set of all tuplest for which the formula p(T) evaluates to
truewith T = t. The language for writing formulas p(T) is thus at the heart of
TRC and essentially a simple subset of first-order logic. As a simple example,
consider the following query.

(Q11) Find all sailors with a rating above 7.
{S|SE Sailors 1 Srating > 7}

When this query is evaluated on an instance of the Sailors relation, the tuple
variable S is instantiated successively with each tuple, and the test Srating>7
is applied. The answer contains those instances of S that pass this test. On
instance S3 of Sailors, the answer contains Sailors tuples with sid 31, 32, 58,
71, and 74.

Syntax of TRC Queries

We now define these concepts formally, beginning with the notion of a formula
Let Rel be a relation name, Rand S be tuple variables, a be an attribute of
R, and b be an attribute of S. Let op denote an operator in the set {<, >, =
.<,>,%#}. An atomic formula is one of the following:

= R E Ref
1] R.a op Sb

w R.a op constant, or constant op R.a

A formula is recursively defined to be one of the following, where p and q
are themselves formulas and p(R) denotes a formula in which the variable R
appears:

2The material on DRC is referred to in the (online) chapter on QBE; with the exception of this
chapter, the material on DRC and TRe can be omitted without loss of continuity.

118 CHAPTER 4

e any atomic formula

e “p,PNg,PVQ orp=gq

« JR(p(R)), where R is a tuple variable
« VYR(p(R)), where R is a tuple variable

In the last two clauses, the quantifiers 3 and ¥ are said to bind the variable R.
A variable is said to be free in a formula or subformuia (a formula contained
in a larger formula) if the (sub)formula does not contain an occurrence of a
quantifier that binds it.3

We observe that every variable in a TRC formula appears in a subformula
that is atomic, and every relation schema specifies a domain for each field; this
observation ensures that each variable in a TRC formula has a well-defined
domain from which values for the variable are drawn. That is, each variable
has a well-defined type, in the programming language sense. Informally, an
atomic formula R E Rei gives R the type of tuples in Rel, and comparisons
such as R.a op Sb and R.a op constant induce type restrictions on the field
R.a. Ifavariable R does not appear in an atomic formula of the form R E Rei
(Le, it appears only in atomic formulas that are comparisons), we follow the
convention that the type of R is a tuple whose fields include all (and only) fields
of R that appear in the formula.

We do not define types of variables formally, but the type of a variable should
be clear in most cases, and the important point to note is that comparisons of
values having different types should always fal. (In discussions of relational
calculus, the simplifying assumption is often made that there is a single domain
of constants and this is the domain associated with each field of each relation.)

A TRC query is defined to be expression of the form {T 1 p(T)}, where T is
the only free variable in the formula p.

Semantics of TRC Queries

What does a TRC query mean? More precisely, what is the set of answer tuples
for a given TRC query? The answer to a TRC query {T | p(T)}, as noted
earlier, is the set of al tuplest for which the formula peT) evaluates to true
with variable T assigned the tuple value t. To complete this definition, we must
state which assignments of tuple values to the free variables in a formula make
the formula evaluate to true.

3We make the assumption that each variable in a formula is either free or bound by exactly one
occurrence of a quantifier, to avoid worrying about details such as nested occurrences of quantifiers
that bind some, but not all, occurrences of variables.

Relational Algebra and Calculus 119

A query is evaluated on a given instance of the database. L et each free variable
in a formula F be bound to a tuple value. For the given assignment of tuples
to variables, with respect to the given database instance, F evaluates to (or
simply ‘is’) true if one of the following holds:

F is an atomic formula R E Rel, and R is assigned a tuple in the instance
of relation Rel.

« F isacomparison R.a op Sh, R.a op constant, or constant op R.a, and
the tuples assigned to Rand S have field values R.a and Sb that make the
comparison true.

e F isof the form —p and p is not true, or of the form p1\ g, and both p and
g are true, or of the form p v g and one of them is true, or of the form
p = g and q is true whenever? p is true.

« F isof the form 3R(p(R)), and there is some assignment of tuples to the
free variables in p(R), including the variable R5 that makes the formula
p(R) true.

« F isof the form VR(p(R)), and there is some assignment of tuples to the
free variables in p(R) that makes the formula p(R) true no matter what
tuple is assigned to R.

Examples of TRC Queries

We now illustrate the calculus through several examples, using the instances
B1 of Boats, R2 of Reserves, and S3 of Sailors shown in Figures 4.15, 4.16,
and 4.17. We use parentheses as needed to make our formulas unambiguous.
Often, a formula p(R) includes a condition R E Rel, and the meaning of the
phrases some tuple R and for all tuples R is intuitive. We use the notation
JdR E Rel(p(R)) for 3R(R E Rel 1\ p(R)). Similarly, we use the notation
VR E Rel(p(R)) for VR(RE Rel = p(R)).

(Q12) Find the names and ages of sailors with a rating above 7.
{P |35 E Sailors(S.rating > 7 11 Pname = S.sname 1 Page = S.age)}

This query illustrates a useful convention: P is considered to be a tuple variable
with exactly two fields, which are called name and age, because these are the
only fields of P mentioned and P does not range over any of the relations in
the query; that is, there is no subformula of the form P E Relname. The
result of this query is a relation with two fields, name and age. The atomic

4 WheneveT should be read more precisely as 'for all assignments of tuples to the free variables.’
5Note that some of the free variables in p(R) (e.g., the variable R itself) Illay be bound in P.

120 CHAPTER*

formulas P.name = S.sname and Page = S.age give values to the fields of an
answer tuple P. On instances E1, R2, and 53, the answer is the set of tuples
(Lubber,55.5), (Andy, 25.5), (Rusty, 35.0), (Zorba, 16.0), and (Horatio, 35.0).

(Q19) Find the sailor name, boat'id, and reservation date for each reservation.

{P I 3R E Reserves 3§ E Sailors
(R.sid = 8.sid!\ P.bid = R.bid!\ P.day = R.day '\ P.sname = S.sname)}

For each Reserves tuple, we look for a tuple in Sailors with the same sid. Given
a pair of such tuples, we construct an answer tuple P with fields sname, hid,
and day by copying the corresponding fields from these two tuples. This query
illustrates how we can combine values from different relations in each answer
tuple. The answer to this query on instances E1, R2, and 83 is shown in Figure
4.20.

sname [bid | day
Dustin | 101 | 10/10/98
Dustin | 102 | 10/10/98
Dustin | 103 | 10/8/98
Dustin | 104 | 10/7/98
Lubber | 102 | 11/10/98
Lubber | 103 | 11/6/98
Lubber | 104 | 11/12/98
Horatio | 101 | 9/5/98
Horatio | 102 | 9/8/98
Horatio | 103 | 9/8/98

Figure 4.20 Answer to Query Q13

(Q1) Find the names of sailors who have reserved boat 103.

{P 135S E Sailors 3R E Reserves(R.s'id = S.sid!\ Rb'id = 103
\Psname = 8.snarne)}
This query can be read as follows. "Retrieve all sailor tuples for which there
exists a tuple in Reserves having the same value in the sid field and with
bid = 103" That is, for each sailor tuple, we look for a tuple in Reserves that

shows that this sailor has reserved boat 103. The answer tuple P contains just
one field, sname.

(Q2) Find the names of sailors who have reserved a red boat.

{P 145 E Sailors JR E Reserves(R.sid = 5.sid !\ P.sname = S.8name

Relational Algebra and Calculus 121

ASB E Boats(B.llid = R.bid A B.color ='red"))}

This query can be read as follows. “Retrieve al sailor tuples S for which
there exist tuples R in Reserves and B in Boats such that S.sid = R.sid,
R.bid = B.bid, and B.coior ='red'." Another way to write this query, which
corresponds more closely to this reading, is as follows:

{P 135 E SailoTs JR E Reserves 1B E Boats

(R.sid = S.sid A B.bid = R.bid A B.color ='red' A P.sname = S.sname)}

(Q7) Find the names of sailors who have reserved at least two boats.

{P 135 E Sailors 3R1 E Reserves JR2 E Reserves
(S.sid = R1l.sid A Rl.sid = R2.sid A R1l.bid # R2.bid
AP.sname = S.sname)}

Contrast this query with the algebra version and see how much simpler the

calculus version is. In part, this difference is due to the cumbersome renaming
of fields in the algebra version, but the calculus version really is simpler.

(Q9) Find the narnes of sailors who have reserved all boats.

{P 135 E Sailors VB E Boats
(IR E Reserves(S.sid = R.sid A R.bid = B.bid A P.sname = S.sname))}

This query was expressed using the division operator in relational algebra. Note
how easily it is expressed in the calculus. The calculus query directly reflects
how we might express the query in English: “Find sailors S such that for all
boats B there is a Reserves tuple showing that sailor S has reserved boat B."

(Q14) Find sailors who have reserved all red boats.

{S 1 SE Sailor'sAVB E Boats
(B.color ='red' = (dR E Reserves(S.sid = R.sid A R.bid = B.bid)))}

This query can be read as follows: For each candidate (sailor), if a boat is red,
the sailor must have reserved it. That is, for a candidate sailor, a boat being
red must imply that the sailor has reserved it. Observe that since we can return
an entire sailor tuple as the ans\ver instead of just the sailor's name, we avoided
introducing a new free variable (e.g., the variable P in the previous example)
to hold the answer values. On instances Bl. R2, and S3, the answer contains
the Sailors tuples with sids 22 and 31.

We can write this query without using implication, by observing that an ex-
pression of the form p = q is logically equivalent to —p V g:

{S' S E Sailors ANVB E Boats

122 CHAPTER %4

(B.coioT #red' v (3R E ReSeTVeS(S.sid = R.sid A R.bid = B.bid)))}

This query should beread as follows. "Find sailors S such that, for all boats B,
either the boat is not red or a Reserves tuple shows that sailor S has reserved
boat B."

4.3.2 Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain
of some attribute (e.g., the variable can be assigned an integer if it appears
in an attribute whose domain is the set of integers). A DRC query has the

form {(XI1,X2, Xn) | P((XI,X2, ... ,Xn))}, Where each xi is either a domain
variable or a constant and p((XI, x2, ... ,X,)) denotes a DRC formula whose
only free variables are the variables among the xi, 1 <4 < n. Theresult of this
guery is the set of all tuples (x1, x2, ..., X,) for which the formula evaluates to
true.

A DRC formula is defined in a manner very similar to the definition of a TRC
formula. The main difference is that the variables are now domain variables.
Let op denote an operator in the set {<,>,=,<,>,#} and let X and Y be
domain variables. An atomic formula in DRC is one of the following:

n (X1, X2, ..., %,) E Rel, where Rei is a relation with n attributes; each
Xi, 1 <7< niseither avariable or a constant

1" X opY

n X op constant, or constant op X

A formula is recursively defined to be one of the following, where P and q
are themselves formulas and p(X) denotes a formula in which the variable X

appears:

nany atomic formula

= —-p,PANg PVvg orp=q

» 3X(p(X)), where X is a domain variable
n VX (p(X)),where X is a domain variable

The reader is invited to compare this definition with the definition of TRC
formulas and see how closely these two definitions correspond. We will not
define the semantics of DRC formulas formally; this is left as an exercise for
the reader.

Relat'ional Algebra and Calculus

Examples of DRC Queries

We now illustrate DRC through several examples. The reader is invited to
compare these with the TRC versions.

(Q11) Find all sailors with a rating above 7.
{(I, N,T,A) 1 (I, N, T, A) E Sailors \T > T}

This differs from the TRC version in giving each attribute a (variable) name.
The condition (I, N, T, A) E Sailors ensures that the domain variables I, N,
T, and A are restricted to be fields of the same tuple. In comparison with the
TRC query, wecansay T > 7 instead of S.rating > 7, but we must specify the
tuple (I, N, T, A) in the result, rather than just S.

(Q1) Find the names of sailors who have reserved boat 103.
{(N) 131,T, A(I,N, T, A) E Sailors
A3Ir,Br, D((11, Br, D) E Reserves/\ 11' = | \ Br = 103))}
Note that only the sname field is retained in the answer and that only N
is a free variable. We use the notation 3lr, Br,D(...) as a shorthand for
IIr(3Br(3D(...))). Very often, al the quantified variables appear in a sin-
gle relation, as in this example. An even more compact notation in this case
is 3(Ir,Br, D) E Reserves. With this notation, which we use henceforth, the
query would be as follows:
{(N) 13, T, A((I, N, T, A) E Sailors
A3{Ir,Br, D) E Reserves(Ir = | \ Br = 103))}
The comparison with the corresponding TRC formula should now be straight-
forward. This query can also be written as follows, note the repetition of
variable | and the use of the constant 103:
{(N) 131, T, A({I,N, T, A) E Sailors
A3D((1,103, D) E Reserves))}

(Q2) Find the names of sailors who have Teserved a red boat.

{(N) 137.T, A(L, N, T, A) E Sailors
A1, Br, D) E ReseTves\ 3(Br, BN,'Ted') E Boats)}

(Q7) Find the names of sailors who have TeseTved at least two boats.
{(N) 131, T, A((1, N, T, A) E Sailors\
iBrl, BT2, DI, D2((1, Brl, DI) E Reserves
N\(1, Br2, D2) E Reserves\ Brl # Br2))}

124 CHAPTER 4

Note how the repeated use of variable | ensures that the same sailor has reserved
both the boats in question.

(Q9) Find the names of sailors who have Teserved all boat8.

{(N) 131.T, A((I, N, T, A) E Sailors!\
YB,BN,C(~((B, BN,C) E Boats) V
(3(Ir,Br, D) E Reserves(l = IT!\ BT = B))))}

This query can be read as follows: “Find all values of N such that some tuple
(I, N,T, A) in Sailors satisfies the following condition: For every (B, BN, C),
either thisis not atuple in Boats or there is some tuple (IT, BT, D) in Reserves
that proves that Sailor | has reserved boat B." The V quantifier allows the
domain variables B, BN, and C to range over al values in their respective
attribute domains, and the pattern ‘—=((B, BN, C) E Boats)V' is necessary to
restrict attention to those values that appear in tuples of Boats. This pattern
is common in DRC formulas, and the notation V(B, BN, C) E Boats can be
used as a shortcut instead. This is similar to the notation introduced earlier
for 3. With this notation, the query would be written as follows:

{(N) 31, T, A((I, N, T, A) E Sailors \V(B, BN, C) E Boats
(3(Ir, BT, D) E ReseTves(l = IT!\ BT = B)))}

(Q14) Find sailoTs who have TeseTved all Ted boats.

{(0,N, T,A) (I,N, T, A) E SailoTs!\ V{B, BN, C) E Boats
(C ="red' = 3(Ir, BT, D) E Reserves(l = IT!\ Br = B))}

Here, we find all sailors such that, for every red boat, thereis atuplein Reserves
that shows the sailor has reserved it.

4.4 EXPRESSIVE POWER OF ALGEBRA AND
CALCULUS

We presented two formal query languages for the relational model. Are they
equivalent in power? Can every query that can be expressed in relational
algebra also be expressed in relational calculus? The answer is yes, it can.
Can every query that can be expressed in relational calculus also be expressed
in relational algebra? Before we answer this question, we consider a major
problem with the calculus as we presented it.

Consider the query {S | —=(S E Sailors)}. This query is syntactically correct.
However, it asks for al tuples S such that S is not in (the given instance of)

Relational Algebra and Calculus 125

Sailors. The set of such S tuples is obviously infinite, in the context of infinite
domains such as the set of al integers. This simple example illustrates an
unsafe query. It is desirable to restrict relational calculus to disallow unsafe
queries.

We now sketch how calculus queries are restricted to be safe. Consider a set |
of relation instances, with one instance per relation that appears in the query
Q. Let Dom(Q, 1) be the set of all constants that appear in these relation
instances | or in the formulation of the query Q itself. Since we alow only
finite instances I, Dom(Q, 1) is also finite.

For a calculus formula Q to be considered safe, at a minimum we want to
ensure that, for any given I, the set of answers for Q contains only values in
Dom(Q, 1). While this restriction is obviously required, it is not enough. Not
only do we want the set of answers to be composed of constants in Dom(Q, 1),
we wish to compute the set of answers by examining only tuples that contain
constants in Dom(Q, 1)! This wish leads to a subtle point associated with the
use of quantifiers vV and 3: Given a TRC formula of the form 3R(p(R)), we want
to find all values for variable R that make this formula true by checking only
tuples that contain constants in Dom(Q, 1). Similarly, given a TRC formula of
the form VR(p(R)), we want to find any values for variable R that make this
formula fal se by checking only tuples that contain constants in Dom(Q, 1).

We therefore define a safe TRC formula Q to be a formula such that:

1. For any given |, the set of answers for Q contains only values that are in
Dom(Q, 1).

2. For each subexpression of the form dR(p(R)) in Q, if a tuple r (assigned
to variable R) makes the formula true, then r contains only constants in
Dorn(Q,l).

3. For each subexpression of the form VR(p(R)) in Q, if a tuple r (assigned
to variable R) contains a constant that is not in Dom(Q, 1), then r must
make the formula true.

Note that this definition is not constructive, that is, it does not tell us how to
check if a query is sefe.

Thequery Q = {S1-(SE Sailors)} is unsafe by this definition. Dom(Q,1)
is the set of all values that appear in (an instance | of) Sailors. Consider the
instance S shown in Figure 4.1. The answer to this query obviously includes
values that do not appear in Dorn(Q,81).

126 CHAPTER: 4

Returning to the question of expressiveness, we can show that every query that
can be expressed using a safe relational calculus query can also be expressed as
a relational algebra query. The expressive power of relational algebra is often
used as a metric of how powerful a relational database query language is. If
a query language can express al the queries that we can express in relational
algebra, it is said to berelationally complete. A practical query language is
expected to be relationally complete; in addition, commercia query languages
typically support features that allow us to express some queries that cannot be
expressed in relational algebra

45 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

« What is the input to a relational query? What is the result of evaluating
a query? (Section 4.1)

« Database systems use some variant of relational algebrato represent query
evaluation plans. Explain why algebra is suitable for this purpose. (Sec-
tion 4.2)

» Describe the selection operator. What can you say about the cardinality
of the input and output tables for this operator? (That is, if the input has
k tuples, what can you say about the output?) Describe the projection
operator. What can you say about the cardinality of the input and output
tables for this operator? (Section 4.2.1)

» Describe the set operations of relational algebra, including union (U), in-
tersection (n), set-difference (-), and cross-product (x). For each, what
can you say about the cardinality of their input and output tables? (Sec-
tion 4.2.2)

« Explain how the renaming operator is used. Is it required? That is, if this
operator is not alowed, is there any query that can no longer be expressed
in algebra? (Section 4.2.3)

» Define all the variations of the join operation. Why is the join operation
given special attention? Cannot we express every join operation in terms
of cross-product, selection, and projection? (Section 4.2.4)

» Define the division operation in terms of the basic relational algebra op-
erations. Describe a typical query that calls for division. Unlike join, the
division operator is not given special treatment in database systems. Ex-
plain why. (Section 4.2.5)

Relational Algebra and Calculus 127

* Relational calculusis said to be a declarative language, in contrast to alge-
bra, which is a procedural language. Explain the distinction. (Section 4.3)

¢« How does a relational calculus query 'describe’ result tuples? Discuss the
subset of first-order predicate logic used in tuple relational calculus, with
particular attention to universal and existential quantifiers, bound and free
variables, and restrictions on the query formula. (Section 4.3.1).

* What is the difference between tuple relational calculus and domain rela-
tional calculus? (Section 4.3.2).

e What is an unsafe calculus query? Why is it important to avoid such
queries? (Section 4.4)

* Relational algebra and relational calculus are said to be equivalent in ex-
pressive power. Explain what this means, and how it is related to the
notion of relational completeness. (Section 4.4)

EXERCISES

Exercise 4.1 Explain the statement that relational algebra operators can be composed. Why
is the ability to compose operators important?

Exercise 4.2 Given two relations R1 and R2, where R1 contains N1 tuples, R2 contains N2
tuples, and N2 > N1 > O, give the minimum and maximum possible sizes (in tuples) for the
resulting relation produced by each of the following relational algebra expressions. In each
case, state any assumptions about the schemas for R1 and R2 needed to make the expression
meaningful:

(1) RLUR2, (2) RLNR2, (3) R1 - R2, (4) R1 x R2, (5) (Ta=5(R1), (6) ma(R1), and
(7) R1/R2

Exercise 4.3 Consider the following schema:

Suppliers(sid: integer, sname: string, address. string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The key fields are underlined, and the domain of each field is listed after the field name.
Therefore sid is the key for Suppliers, pid is the key for Parts, and sid and pid together form
the key for Catalog. The Catalog relation lists the prices charged for parts by Suppliers. Write
the following queries in relational algebra, tuple relational calculus, and domain relational
calculus:

1. Find the names of suppliers who supply some red part.

2. Find the sids of suppliers who supply some red or green part.

3. Find the sids of suppliers who supply some red part or are at 221 Packer Ave.
4

. Find the sids of suppliers who supply some rcd part and some green part.

128

© © N o O

10.
11
12.

CHAPTER #

Find the sids of suppliers who supply every part.

Find the sids of suppliers who supply every red part.

Find the sids of suppliers who supply every red or green part.

Find the sids of suppliers who supply every red part or supply every green part.

Find pairs of sids such that the supplier with the first sid charges more for some part
than the supplier with the second sid.

Find the pids of parts supplied by at least two different suppliers.
Find the pids of the most expensive parts supplied by suppliers named Y osemite Sham.

Find the pids of parts supplied by every supplier at less than $200. (If any supplier either
does not supply the part or charges more than $200 for it, the part is not selected.)

Exercise 4.4 Consider the Supplier-Parts-Catalog schemafrom the previous question. State
what the following queries compute:

1
2.
3.

Tsname (Tsid (T color=mear Parts) ixi (O'cost<|OoCatalog) 1xi Suppliers)
mname(msia (T color="red Parts) i (0cost<l0oCatalog) xi Suppliers))
(Tsname (O'color'="red' Parts) b4 (crcost<looCatalog) xi Suppl'iers)) n

(Fsname((Trotor=igreen’ Parts) b4 (Genst < 100Catalog) s Suppliers))
(2fsid((crcolor="red,Parts) xi (crcost<10oCatalog) b< Suppliers)) n
(Tsid ((Gcotor=1green’ Parts) » (crcost<|OoCatalog) 'xi Suppliers))
Tsname((Teid, sname (T oolor=treqr PATES) 3 (Teost<100C atalog) <1 Suppliers)) M

(Tsid,sname ((0COI07="green’ Parts) 1xi (ccost< |OoCatalog) > Suppliers)))

Exercise 4.5 Consider the following relations containing airline flight information:

Flights(fino: integer, from: string, to: string,

distance: integer, departs: time, arrives: time)
Aircraft(aid: integer, aname: string, cTuisingrange: integer)
Certified(eid: integer, aid: integer)
Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well; every
pilot is certified for some aircraft (otherwise, he or she would not qualify as a pilot), and only
pilots are certified to fly.

Write the following queries in relational algebra, tuple relational calculus, and domain rela-
tional calculus. Note that some of these queries may not be expressible in relational algebra
(and, therefore, also not expressible in tuple and domain relational calculus)! For such queries,
informally explain why they cannot be expressed. (See the exercises at the end of Chapter 5
for additional queries over the airline schenla.)

1
2.
3.

Finel the eids of pilots certified for some Boeing aircraft.
Find the names of pilots certified for some Boeing aircraft.
Find the aids of all aircraft that. can be used on non-stop flights from Bonn to Madras.

Relational Algebra and Calculus 129

4. Identify the flights that can be piloted by every pilot whose salary is more than $100,000.

o

Find the names of pilots who can operate planes with a range greater than 3,000 miles
but are not certified on any Boeing aircraft.

6. Find the eids of employees who make the highest salary.

7. Find the eids of employees who make the second highest salary.

8. Find the eids of employees who are certified for the largest number of aircraft.
9. Find the eids of employees who are certified for exactly three aircraft.
10. Find the total amount paid to employees as salaries.

11. Is there a sequence of flights from Madison to Timbuktu? Each flight in the sequence is
required to depart from the city that is the destination of the previous flight; the first
flight must leave Madison, the last flight must reach Timbuktu, and there is no restriction
on the number of intermediate flights. Your query must determine whether a sequence
of flights from Madison to Timbuktu exists for any input Flights relation instance.

Exercise 4.6 What is relational completeness? If a query language is relationally complete,
can you write any desired query in that language?

Exercise 4.7 What is an unsafe query? Give an example and explain why it is important
to disallow such queries.

BIBLIOGRAPHIC NOTES

Relational algebra was proposed by Codd in [187], and he showed the equivalence of relational
algebra and TRC in [189]. Earlier, Kuhns [454] considered the use of logic to pose queries.
LaCroix and Pirotte discussed DRC in [459]. Klug generalized the algebra and calculus to
include aggregate operations in [439]. Extensions of the algebra and calculus to deal with
aggregate functions are also discussed in [578]. Merrett proposed an extended relational
algebra with quantifiers such as the number of that go beyond just universal and existential
quantification [530]. Such generalized quantifiers are discussed at length in [52].

SQL: QUERIES,
CONSTRAINTS, TRIGGERS

« \What isincluded in the SQL language? What is SQL:1999?

How are queries expressed in SQL? How is the meaning of a query
specified in the SQL standard?

.- How does SQL build on and extend relational algebra and calculus?

L)

I"- What is grouping? How is it used with aggregate operations?
What are nested queries?
What are null values?

How can we use queries in writing complex integrity constraints?

§ 8§ 8

What are triggers, and why are they useful? How are they related to
integrity constraints?

Key concepts: SQL queries, connection to relational algebra and
calculus; features beyond algebra, DISTINCT clause and multiset se-
mantics, grouping and aggregation; nested queries, correlation; set-
comparison operators; null values, outer joins; integrity constraints
specified using queries; triggers and active databases, event-condition-
action rules.

What men or gods are these? What Inaiclens loth?
What mad pursuit? What struggle to escape?
\Vhat pipes and tilubrels? \Vhat wild ecstasy?

..John Keats, Odc on a Grecian Urn

Structured Query Language (SQL) is the most widely used conunercial rela-
tional database language. It was originally developed at IBIVI in the SEQUEL-

130

SQL: Queries, Constraints, Triggers 131

SQL Standards Conformance: SQL:1999 has a collection of features
called Core SQL that a vendor must implement to claim conformance with
the SQL:1999 standard. It is estimated that all the major vendors can
comply with Core SQL with little effort. Nllany of the remaining features
are organized into packages.

For example, packages address each of the following (with relevant chapters
in parentheses): enhanced date and time, enhanced integrity management
. and active databases (this chapter), external language 'interfaces (Chapter
), OLAP (Chapter 25), and object features (Chapter 23). The SQL/MI\JI
standard complements SQL:1999 by defining additional packages that sup-
port data mining (Chapter 26), spatial data (Chapter 28) and text docu-
ments (Chapter 27). Support for XML data and queries is forthcoming.

XRM and System-R projects (1974-1977). Almost immediately, other vendors
introduced DBMS products based on SQL, and it is now a de facto standard.
SQL continues to evolve in response to changing needs in the database area.
The current ANSI/ISO standard for SQL is called SQL:1999. While not al
DBMS products support the full SQL:1999 standard yet, vendors are working
toward this goal and most products already support the core features. The
SQL:1999 standard is very close to the previous standard, SQL-92, with re-
spect to the features discussed in this chapter. Our presentation is consistent
with both SQL-92 and SQL:1999, and we explicitly note any aspects that differ
in the two versions of the standard.

51 OVERVIEW
The SQL language has several aspects to it.

s The DataManipulation Language (DML): This subset of SQL allows
users to pose queries and to insert, delete, and modify rows. Queries are
the main focus of this chapter. We covered DML commands to insert,
delete, and modify rows in Chapter 3.

s The Data Definition Language (DDL): This subset of SQL supports
the creation, deletion, and modification of definitions for tables and views.
Integrity constraints can be defined on tables, either when the table is
created or later. We cocvered the DDL features of SQL in Chapter 3. Al-
though the standard does not discuss indexes, commercial implementations
also provide commands for creating and deleting indexes.

m Triggers and Advanced Integrity Constraints: The new SQL:1999
standard includes support for triggers, which are actions executed by the

132 CHAPTER 5

DBMS whenever changes to the database meet conditions specified in the
trigger. We cover triggers in this chapter. SQL allows the use of queries
to specify complex integrity constraint specifications. We also discuss such
constraints in this chapter.

* Embedded and Dynamic SQL: Embedded SQL features alow SQL
code to be called from a host language such as C or COBOL. Dynamic
SQL features allow a query to be constructed (and executed) at run-time.
\Ve cover these features in Chapter 6.

» Client-Server Execution and Remote Database Access. These com-
mands control how a client application program can connect to an SQL
database server, or access data from a database over a network. We cover
these commands in Chapter 7.

¢ Transaction Management: Various commands alow a user to explicitly
control aspects of how a transaction is to be executed. We cover these
commands in Chapter 21.

e Security: SQL provides mechanisms to control users access to data ob-
jects such as tables and views. We cover these in Chapter 2|.

e Advanced features: The SQL:1999 standard includes object-oriented
features (Chapter 23), recursive queries (Chapter 24), decision support
gueries (Chapter 25), and also addresses emerging areas such as data min-
ing (Chapter 26), spatial data (Chapter 28), and text and XML data man-
agement (Chapter 27).

511 Chapter Organization

The rest of this chapter is organized as follows. We present basic SQL queries
in Section 5.2 and introduce SQL's set operators in Section 5.3. We discuss
nested queries, in which a relation referred to in the query is itself defined
within the query, in Section 5.4. We cover aggregate operators, which alow us
to write SQL queries that are not expressible in relational algebra, in Section
5.5. \We discuss null values, which are special values used to indicate unknown
or nonexistent field values, in Section 5.6. We discuss complex integrity con-
straints that can be specified using the SQL DDL in Section 5.7, extending the
SQL DDL discussion from Chapter 3; the new constraint specifications allow
us to fully utilize the query language capabilities of SQL.

Finally, we discuss the concept of an active dafabase in Sections 5.8 and 5.9.
An active database has a collection of triggers, which are specified by the
DBA. A trigger describes actions to be taken when certain situations arise. The
DBMS lllonitors the database, detects these situations, and invokes the trigger.

SQL: Queries, Constraints, Triggers

The SQL:1999 standard requires support for triggers, and several relational
DBMS products already support some form of triggers.

About the Examples
We will present a number of sample queries using the following table definitions:
Sailors(sid: integer, sname: string, rating: integer, age: real)

Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: date)

We give each query a unique number, continuing with the numbering scheme
used in Chapter 4. Thefirst new query in this chapter has number Q15. Queries
Q1 through Q14 were introduced in Chapter 4.1 We illustrate queries using the
instances 83 of Sailors, R2 of Reserves, and B1 of Boats introduced in Chapter
4, which we reproduce in Figures 5.1, 5.2, and 5.3, respectively.

All the example tables and queries that appear in this chapter are available
online on the book's webpage at

http://www.cs.wisc.edu/-dbbook

The online material includes instructions on how to set up Orade, IBM DB2,
Microsoft SQL Server, and MySQL, and scripts for creating the example tables
and queries.

52 THEFORM OF A BASIC SQL QUERY

This section presents the syntax of a simple SQL query and explains its meaning
through a conceptual evaluation stralegy. A conceptual evaluation strategy is
a way to evaluate the query that is intended to be easy to understand rather
than efficient. A DBMS would typically execute a query in a different and more
efficient way.

The basic form of an SQL query is as follows:
SELECT [DISTINCT] select-list

FROM from-list
WHERE qualification

1All references to a query can be found in the subject index for the book.

134 CHAPTER 9

| sid | sname | rating | age | sid | bid | day
22 | Dustin | 7 45.0 22 | 101 | 10/10/98
29 | Brutus | 1 33.0 22 | 102 | 10/10/98
31 | Lubber | 8 55.5 22 | 103 | 10/8/98
32 | Andy 8 255 22 | 104 | 10/7/98
58 | Rusty 10 35.0 31 | 102 | 11/10/98
64 | Horatio | 7 35.0 31 | 103 | 11/6/98
71 | Zorba 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 255 64 | 102 | 9/8/98
9% | Bob 3 63.5 74 | 103 | 9/8/98
Figure 5.1 An Instance 53 of Sailors Figure 5.2 An Instance R2 of Reserves

bid | bname colorj
101 | Interlake | blue
102 | Interlake | red
103 | Clipper | green
104 | Marine red

Figure 5.3 An Instance Bl of Boats

Every query must have a SELECT clause, which specifies columns to be retained
in the result, and a FROM clause, which specifies a cross-product of tables. The
optional WHERE clause specifies selection conditions on the tables mentioned in
the FROM clause.

Such a query intuitively corresponds to a relational algebraexpression involving
selections, projections, and cross-products. The close relationship between SQL
and relational algebrais the basis for query optimization in arelational DBMS,
as we will see in Chapters 12 and 15. Indeed, execution plans for SQL queries
are represented using avariation of relational algebraexpressions (Section 15.1).

Let us consider a simple example.
(Q15) Find the names and ages of all sailors.

SELECT DISTINCT S.sname, S.age
FROM Sailors S

The answer is a set of rows, each of which is a pair (sname, age). If two or
more sailors have the same name and age, the answer still contains just one pair

SQL: Queries, Constraints, Triggers 135

with that name and age. This query is equivalent to applying the projection
operator of relational algebra.

If we omit the keyword DISTINCT, we would get a copy of the row (sa) for
each sailor with name s and age a the answer would be a multiset of rows. A
multiset is similar to a set in that it is an unordered collection of elements,
but there could be several copies of each element, and the number of copies is
significant-two multisets could have the same elements and yet be different
because the number of copies is different for some elements. For example, {a,

b, b} and {b, a, b} denote the same multiset, and differ from the multiset {a,
a, b}.

The answer to this query with and without the keyword DISTINCT on instance
53 of Sailors is shown in Figures 5.4 and 5.5. The only difference is that the
tuple for Horatio appears twice if DISTINCT is omitted; this is because there
are two sailors called Horatio and age 35.

| sname | age |
| snarne | age | Dustin | 45.0
Dustin | 45.0 Brutus | 33.0
Brutus | 33.0 Lubber | 55.5
Lubber | 55.5 Andy 255
Andy 25.5 Rusty 35.0
Rusty 35.0 Horatio | 35.0
Horatio | 35.0 Zorba 16.0
Zorba 16.0 Horatio | 35.0
Art 25.5 Art 25.5
Bob 63.5 Bob 63.5
Figure 5.4 Answer to Q15 Figure 5.5 Answer to Q15 without DISTINCT

Our next query is equivalent to an application of the selection operator of
relational algebra.

(Q11) Find all sailors with a rating above 7.
SELECT S.sid, S.sname, S.rating, S.age

FROM Sailors AS S
WHERE S.rating > 7

This query uses the optional keyword AS to introduce a range variable. Inci-
dentally, when we want to retrieve all columns, as in this query, SQL provides a

136 CHAPTER 5

convenient shorthand: We can simply write SELECT *. This notation is useful
for interactive querying, but it is poor style for queries that are intended to be
reused and maintained because the schema of the result is not clear from the
query itself; we have to refer to the schema of the underlying Sailors table.

As these two examples illustrate, the SELECT clause is actually used to do pro-
jection, whereas selections in the relational algebra sense are expressed using
the WHERE clause! This mismatch between the naming of the selection and pro-
jection operators in relational algebra and the syntax of SQL is an unfortunate
historical accident.

We now consider the syntax of a basic SQL query in more detail.

* The from-list in the FROM clause is a list of table names. A table name
can be followed by a range variable; arange variable is particularly useful
when the same table name appears more than once in the from-list.

« The select-list is alist of (expressions involving) column names of tables
named in the from-list. Column names can be prefixed by a range variable.

e The qualification in the WHERE clause is a boolean combination (i.e., an
expression using the logical connectives AND, OR, and NOT) of conditions
of the form expression op expression, where op is one of the comparison
operators {<,<=,=,<>,>=, >}2 An expression is a column name, a
constant, or an (arithmetic or string) expression.

« The DISTINCT keyword is optional. It indicates that the table computed
as an answer to this query should not contain duplicates, that is, two copies
of the same row. The default is that duplicates are not eliminated.

Although the preceding rules describe (informally) the syntax of a basic SQL
guery, they do not tell us the meaning of a query. The answer to a query is
itself a relation which is a multiset of rows in SQL!--whose contents can be
understood by considering the following conceptual evaluation strategy:

Cmnpute the cross-product of the tables in the from-list.
Delete rows in the cross-product that fail the qualification conditions.

Delete al columns that do not appear in the select-list.

e

If DISTINCT is specified, eliminate duplicate rows.

2ExpressiollS with NOT can always be replaced by equivalent expressions without NOT given the set
of comparison operators just listed.

SQL: Queries, Constraints, Triggers 137

This straightforward conceptual evaluation strategy makes explicit the rows
that must be present in the answer to the query. However, it is likely to be
quite inefficient. We will consider how a DB:MS actually evaluates queries in
later chapters; for now, our purposeis simply to explain the meaning of a query.
\Ve illustrate the conceptual evaluation strategy using the following query"

(Q1) Find the names of sailors 'Who have reseTved boat number 103.
It can be expressed in SQL as follows.

SELECT S.shame
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid=103

Let us compute the answer to this query on the instances R3 of Reserves and
84 of Sailors shown in Figures 5.6 and 5.7, since the computation on our usual
example instances (R2 and 83) would be unnecessarily tedious.

‘ std | sname | Tating | age |
| sid | bid | day 22 | dustin | 7 45.0
122 1101 10/10/96 31 | lubber | 8 55.5
1 58 1103 11/12/96 58 | rusty 10 35.0
Figure 5.6 Instance R3 of Reserves Figure 5.7 Instance 54 of Sailors

The first step is to construct the cross-product 84 x R3, which is shown in
Figure 5.8.

sid | sname-j rating | age | sid | .bid | day

22 | dustin | 7 450 | 22 | 101 | 10/10/96
22 | dustin | 7 450 | 58 | 103 | 11/12/96
31 | lubber | 8 55,5 | 22 | 101 | 10/10/96
31 | lubber | 8 55.5 | 58 | 103 | 11/12/96
58 | rusty 10 350 | 22 | 101 | 10/10/96
58 | rusty 10 35.0| 58 | 103 | 11/12/96

Figure 5.8 54 x R3

The second step is to apply the qualification S.sid = R.sid AND R.bid=103.
(Note that the first part of this qualification requires a join operation.) This
step eliminates al but the last row from the instance shown in Figure 5.8. The
third step is to eliminate unwanted columns; only sname appears in the SELECT
clause. This step leaves us with the result shown in Figure 59, which is a table
with a single column and, as it happens, just one row.

138 CHAPTER H

Figure 5.9 Answer to Query QI o1 R3 and 84

521 Examplesof Basic SQL Queries

We now present several example queries, many of which were expressed earlier
in relational algebra and calculus (Chapter 4). Our first example illustrates
that the use of range variables is optional, unless they are needed to resolve an
ambiguity. Query QI, which we discussed in the previous section, can also be
expressed as follows:

SELECT shame
FROM Sailors 5, Reserves R
WHERE S.sid = R.sid AND bid=103

Only the occurrences of sid have to be qualified, since this column appears in
both the Sailors and Reserves tables. An equivalent way to write this query is

SELECT SHame
FROM Sailors, Reserves
WHERE Sailors.sid = Reserves.sid AND bid=103

This query shows that table names can be used implicitly as row variables.
Range variables need to be introduced explicitly only when the FROM clause
contains more than one occurrence of a relation.® However, we recommend
the explicit use of range variables and full qualification of all occurrences of
columns with a range variable to improve the readability of your queries. We
will follow this convention in all our examples.

(Q16) Find the sids of sailors who have TeseTved a red boat.
SELECT R.sid

FROM Boats B, Reserves R
WHERE B.bid = R.bid AND 8.color = ‘red’

This query contains a join of two tables, followed by a selection on the color
of boats. We can think of 13 and R as rows in the corresponding tables that

3The table name cannot be used as an implicit. range variable once a range variable is introduced
for t.he relation.

SQL: Queries, Constraints, Triggers

‘prove’ that a sailor with sid R.sid reserved a red boat B.bid. On our example
instances R2 and 83 (Figures 5.1 and 5.2), the answer consists of the sids 22,
31, and 64. If we want the names of sailors in the result, we must also consider
the Sailors relation, since Reserves does not contain this information, as the
next example illustrates.

(Q2) Find the names of sailors who have reserved a Ted boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats 13
WHERE S.sid = R.sid AND R.bid = 13.bid AND B.color = 'red'

This query contains a join of three tables followed by a selection on the color
of boats. The join with Sailors allows us to find the name of the sailor who,
according to Reserves tuple R, has reserved a red boat described by tuple 13,

(Q3) Find the coloTS of boats reseTved by LubbeT.

SELECT 13.color
FROM Sailors S, Reserves R, Boats 13
WHERE S.sid = R.sid AND R.bid = B.bid AND S.sname = 'L ubber’

This query is very similar to the previous one. Note that in general there may
be more than one sailor called Lubber (since sname is not a key for Sailors);
this query is still correct in that it will return the colors of boats reserved by
some Lubber, if there are several sailors called Lubber.

(Q4) Find the names of sailors who have Teserved at least one boat.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid

The join of Sailors and Reserves ensures that for each selected sname, the
sailor has made some reservation. (If a sailor has not made a reservation, the
second step in the conceptual evaluation strategy would eliminate al rows in
the cross-product that involve this sailor.)

5.2.2 Expressionsand Stringsin the SELECT Command

SQIL supports a more general version of the select-list than just a list of
colulnn8. Each item in a select-list can be of the form expression AS col-
ummn_name, wWhere expression is any arithmetic or string expression over column

140 CHAPTER ©

names (possibly prefixed by range variables) and constants, and column_name
is a new name for this column in the output of the query. It can also contain
aggregates such as sum and count, which we will discuss in Section 5.5. The
SQL standard also includes expressions over date and time values, which we will
not discuss. Although not part of the SQL standard, many implementations
also support the use of built-in functions such as sgrt, sin, and rnod.

(Q17) Compute increments for the mtings of peTsons who have sailed two dif-
ferent boats on the same day.

SELECT S.sname, S.rating+1 AS rating
FROM Sailors S, Reserves R1, Reserves R2
WHERE S.sid = R1l.sid AND S.sid = R2.sid
AND Rl.day = R2.day AND R1.bid <> R2.bid

Also, each itemin a qualification can be as general as expTessionl = expression2.

SELECT Sl.sname AS namel, S2.sname AS name2
FROM Sailors Sl, Sailors 2
WHERE 2*Sl.rating = S2.rating-1

For string comparisons, we can use the comparison operators (=, <, >, etc.)
with the ordering of strings determined alphabetically as usual. If we need
to sort strings by an order other than alphabetical (e.g., sort strings denoting
month names in the calendar order January, February, March, etc.), SQL sup-
ports a general concept of a collation, or sort order, for a character set. A
collation allows the user to specify which characters are 'less than' which others
and provides great flexibility in string manipulation.

In addition, SQL provides support for pattern matching through the LIKE op-
erator, along with the use of the wild-card symbols % (which stands for zero
or more arbitrary characters) and . (which stands for exactly one, arbitrary,
character). Thus, '_AB%' denotes a pattern matching every string that con-
tains at least three characters, with the second and third characters being A
and B respectively. Note that unlike the other comparison operators, blanks
can be significant for the LIKE operator (depending on the collation for the
underlying character set). Thus, 'Jeff' = 'Jeff' is true while 'Jeff' LIKE 'Jeff
"is fase. An example of the use of LIKE in a query is given below.

(Q18) Find the ages of sailors wh08e name begins and ends with B and has at
least three chamcters.

SELECT S.age

OL: Queries, Constraints, Triggers 141

|

| Regular Expressions in SQL: Reflecting th€ increased importance Of I
| text data, SQL:1999 includes a more powerful version of the LIKE operator |
| called SIMILAR. This operator allows a rich set of regular expressions to be |
used as patternswhile searching text. Theregular expressions are similar to

] those sUPPo.rted by the Unix operating systenifor string searches, although'
the syntax is a little different.

Relational Algebraand SQL: The set operations of SQL are availablein
relational algebra. The main difference, of course, is that they are multiset
operations in SQL, since tables are multisets of tuples.

FROM Sailors S
WHERE S.sname LIKE 'B.%B'’

The only such sailor is Bob, and his age is 63.5.

5.3 UNION, INTERSECT, AND EXCEPT

SQL provides three set-manipulation constructs that extend the basic query
form presented earlier. Since the answer to a query is a multiset of rows, it is
natural to consider the use of operations such as union, intersection, and differ-
ence. SQL supports these operations under the names UNION, INTERSECT, and
EXCEPT. 4 SQL also provides other set operations: IN (to check if an element
is in a given set), op ANY, op ALL (to compare a value with the elements in
a given set, using comparison operator op), and EXISTS (to check if a set is
empty). IN and EXISTS can be prefixed by NOT, with the obvious modification
to their meaning. We cover UNION, INTERSECT, and EXCEPT in this section,
and the other operations in Section 5.4.

Consider the following query:
(Q5) Find the names of sailors who have reserved a red or a green boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid
AND (B.color = 'red' OR B.color = 'green')

4Note that although {he SQL standard includes these operations, many systems currently support
only UNION. Also. many systems recognize the keyword MINUS for EXCEPT.

142 CHAPTER H

This query is easily expressed using the OR connective in the WHERE clause.
However, the following query, which is identical except for the use of ‘and’
rather than ‘or’ in the English version, turns out to be much more difficult:

(Q6) Find the names of sailors who have reserved both a red and a green boat.

If we were to just replace the use of OR in the previous query by AND, in analogy
to the English statements of the two queries, we would retrieve the names of
sailors who have reserved a boat that is both red and green. The integrity
constraint that bidis a key for Boats tells us that the same boat cannot have
two colors, and so the variant of the previous query with AND in place of OR will
aways return an empty answer set. A correct statement of Query Q6 using
AND is the following:

SELECT S.shame
FROM Sailors S, Reserves RI, Boats Bl, Reserves R2, Boats B2
WHERE S.sid = Rl.sid AND R1.bid = Bl.bid

AND S.sid = R2.sid AND R2.bid = B2.bid

AND Bl.color='red' AND B2.color = 'green’

We can think of Rl and Bl as rows that prove that sailor S.sid has reserved a
red boat. R2 and B2 similarly prove that the same sailor has reserved a green
boat. S.sname is not included in the result unless five such rows S, RI, Bl, R2,
and B2 are found.

The previous query is difficult to understand (and also quite inefficient to ex-
ecute, as it turns out). In particular, the similarity to the previous OR query
(Query Q5) is completely lost. A better solution for these two queries is to use
UNION and INTERSECT.

The OR query (Query Q5) can be rewritten as follows:

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = 'red

UNION

SELECT S2.shame

FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid = H2.sid AND R2.bid = B2.bicl AND B2.color = 'green’

This query says that we want the union of the set of sailors who have reserved
red boats and the set of sailors who have reserved green boats. In complete
symmetry, the AND query (Query Q6) can be rewritten as follows:

SELECT S.snarne

SQL: Queries, Constraints, Triggers 143

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
INTERSECT

SELECT S2.sname

FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

This query actually contains a subtle bug-if there are two sailors such as
Horatio in our example instances B1, R2, and 83, one of whom has reserved a
red boat and the other has reserved a green boat, the name Horatio is returned
even though no one individual called Horatio has reserved both a red and a
green boat. Thus, the query actually computes sailor names such that some
sailor with this name has reserved a red boat and some sailor with the same
name (perhaps a different sailor) has reserved a green boat.

As we observed in Chapter 4, the problem arises because we are using sname
to identify sailors, and sname is not a key for Sailors! If we select sidinstead of
sname in the previous query, we would compute the set of sids of sailors who
have reserved both red and green boats. (To compute the names of such sailors
requires a nested query; we will return to this example in Section 5.4.4.)

Our next query illustrates the set-difference operation in SQL.

(Q19) Find the sids of all sailor's who have reserved red boats but not green
boats.

SELECT S.sid

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = 'red'
EXCEPT

SELECT S2.sid

FROM Sailors S2, Reserves R2, Boats B2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

Sailors 22, 64, and 31 have reserved red boats. Sailors 22, 74, and 31 have
reserved green boats. Hence, the answer contains just the sid 64.

Indeed, since the Reserves relation contains sid information, there is no need
to look at the Sailors relation, and we can use the following simpler query:

SELECT R.sid

FROM Boats B, Reserves R

WHERE R.bicl = B.bid AND B.color = ‘red’
EXCEPT

144 CHAPTER:S

SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.bicl = B2.bid AND B2.color = :green’

Observe that this query relies on referential integrity; that is, there are no
reservations for nonexisting sailors. Note that UNION, INTERSECT, and EXCEPT
can be used on any two tables that are union-compatible, that is, have the same
number of columns and the columns, taken in order, have the same types. For
example, we can write the following query:

(Q20) Find all sids of sailors who have a rating of 10 or reserved boat 104.

SELECT S.sid

FROM Sailors S
WHERE S.rating = 10
UNION

SELECT R.sid

FROM Reserves R
WHERE R.bid = 104

The first part of the union returns the sids 58 and 71. The second part returns
22 and 31. The answer is, therefore, the set of sids 22, 31, 58, and 71. A
final point to note about UNION, INTERSECT, and EXCEPT follows. In contrast
to the default that duplicates are not eliminated unless DISTINCT is specified
in the basic query form, the default for UNION queries is that duplicates are
eliminated! To retain duplicates, UNION ALL must be used; if so, the number
of copies of a row in the result is aways m + n, where m and n are the num-
bers of times that the row appears in the two parts of the union. Similarly,
INTERSECT ALL retains cluplicates--the number of copies of a row in the result
is min(m, n)—and EXCEPT ALL also retains duplicates—the number of copies
of a row in the result is m - n, where 'm corresponds to the first relation.

54 NESTED QUERIES

One of the most powerful features of SQL is nested queries. A nested query
is a query that has another query embedded within it; the embedded query
is called a suhquery. The embedded query can of course be a nested query
itself; thus queries that have very deeply nested structures are possible. When
writing a query, we sornetimes need to express a condition that refers to a table
that must itself be computed. The query used to compute this subsidiary table
is a subquery and appears as part of the main query. A subquery typically
appears within the WHERE clause of a query. Subqueries can sometimes appear
in the FROM clause or the HAVING clause (which we present in Section 5.5).

SQL: Queries, Constraints] Triggers 145

#

— — —_— I

| Relational Algebra and SQL: Nestingof queries is a feature that is not

| available in relational algebra, but nested queriescan be translated into

| algebra, as we will see in Chapter 15. Nesting in SQL is inspired more by

~ relational calculus than algebra. In conjunction with some of SQL's other
features, such as (multi)set operators and aggregation, nesting is a very
expressive construct.

This section discusses only subqueries that appear in the WHERE clause. The
treatment of subqueries appearing elsewhere is quite similar. Some examples of
subqueries that appear in the FROM clause are discussed later in Section 5.5.1.

54.1 Introduction to Nested Queries

As an example, let us rewrite the following query, which we discussed earlier,
using a nested subquery:

(Q) Find the names of sailors who have reserved boat 103.

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid = 103)

The nested subquery computes the (multi)set of sids for sailors who have re-
served boat 103 (the set contains 22,31, and 74 on instances R2 and 83), and
the top-level query retrieves the names of sailors whose sid is in this set. The
IN operator allows us to test whether a value is in a given set of elements; an
SQL query is used to generate the set to be tested. Note that it is very easy to
modify this query to find all sailors who have not reserved boat 103-we can
just replace IN by NOT IN!

The best way to understand a nested query is to think of it in terms of a con-
ceptual evaluation strategy. In our example, the strategy consists of examining
rows in Sailors and, for each such row, evaluating the subquery over Reserves.
In general, the conceptual evaluation strategy that we presented for defining
the semantics of a query can be extended to cover nested queries as follows:
Construct the cross-product of the tables in the FROM clause of the top-level
query as hefore. For each row in the cross-product, while testing the gllaifica-

146 CHAPTER:D

tion in the WHERE clause, (re)compute the subquery.5 Of course, the subquery
might itself contain another nested subquery, in which case we apply the same

idea one more time, leading to an evaluation strategy with several levels of
nested loops.

As an example of a multiply nested query, let us rewrite the following query.
(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.shame
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid IN (SELECT B.hid
FROM Boats B
WHERE B.color = ‘red’

The innermost subquery finds the set of bids of red boats (102 and 104 on
instance E1). The subquery one level above finds the set of sids of sailors who
have reserved one of these boats. On instances E1, R2, and 83, this set of sids
contains 22, 31, and 64. The top-level query finds the names of sailors whose
sid is in this set of sids; we get Dustin, Lubber, and Horatio.

To find the names of sailors who have not reserved a red boat, wc replace the
outermost occurrence of IN by NOT IN, as illustrated in the next query.

(Q21) Find the names of sailors who have not reserved a red boat.

SELECT S.shame
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid
FROM Reserves R
WHERE R.bid IN (SELECT B.bid
FROM Boats B
WHERE B.color = ‘red’)

This qucry computes the names of sailors whose sid is not in the set 22, 31,
and 64.

In contrast to Query Q21, we can modify the previous query (the nested version
of Q2) by replacing the inner occurrence (rather than the outer occurence) of

5Since the inner subquery in our example does not depend on the 'current' row from the outer

query ill any way, you rnight wonder why we have to recompute the subquery for each outer row. For
an answer, sce Section 5.4.2.

SQL: Queries. Constraints, Triggers

IN with NOT IN. This modified query would compute the names of sailors who
have reserved a boat that is not red, that is, if they have a reservation, it is not
for a red boat. Let us consider how. In the inner query, we check that R.bid
is not either 102 or 104 (the bids of red boats). The outer query then finds the
sids in Reserves tuples where the bid is not 102 or 104. On instances Bl, R2,
and 53, the outer query computes the set of sids 22, 31, 64, and 74. Finally,
we find the names of sailors whose sid is in this set.

\We can also modify the nested query Q2 by replacing both occurrences of IN
with NOT IN. This variant finds the names of sailors who have not reserved a
boat that is not red, that is, who have reserved only red boats (if they've re-
served any boats at all). Proceeding as in the previous paragraph, on instances
E1l, R2, and 53, the outer query computes the set of sids (in Sailors) other
than 22, 31, 64, and 74. Thisisthe set 29, 32, 58, 71, 85, and 95. We then find
the names of sailors whose sid is in this set.

5.4.2 Correlated Nested Queries

In the nested queries seen thus far, the inner subquery has been completely
independent of the outer query. In general, the inner subquery could depend on
the row currently being examined in the outer query (in terms of our conceptual
evaluation strategy). Let us rewrite the following query once more.

(Q1) Find the names of sailors who have reserved boat number 103.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
FROM Reserves R
WHERE R.bid = 103
AND R.sid = S.sid)

The EXISTS operator is another set comparison operator, such as IN. It alows
us to test whether a set is nonempty, an implicit comparison with the empty
set. Thus, for each Sailor row 5, we test whether the set of Reserves rows
R such that R.bid = 103 AND S.sid = R.sid is nonempty. If so, sailor 5 has
reserved boat 103, and we retrieve the name. 'I'he subquery clearly depends
on the current row Sand IIlUS be re-evaluated for each row in Sailors. The
occurrence of S in the subquery (in the form of the literal S.sid) is called a
cOTTdation, and such queries are called correlated queries.

This query aso illustrates the use of the special symbol * in situations where
al we want to do is to check that a qualifying row exists, and do Hot really

148 CHAPTER

want to retrieve any columns from the row. This is one of the two uses of * in
the SELECT clause that is good programming style; the other is as an argument
of the COUNT aggregate operation, which we describe shortly.

As a further example, by using NOT EXISTS instead of EXISTS, we can compute
the names of sailors who have not reserved a red boat. Closely related to
EXISTS is the UNIQUE predicate. \Vhen we apply UNIQUE to a subquery, the
resulting condition returns true if no row appears twice in the answer to the
subquery, that is, there are no duplicates; in particular, it returns true if the
answer is empty. (And there is also a NOT UNI QUE version.)

54.3 Set-Comparison Operators

We have already seen the set-comparison operators EXISTS, IN, and UNIQUE,
along with their negated versions. SQL also supports op ANY and op ALL, where
op is one of the arithmetic comparison operators {<, <=, =, <>, >=, >}, (SOME
is also available, but it isjust a synonym for ANY.)

(Q22) Find sailors whose rating is better than some sailor called Horatio.

SELECT S.sid
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname = 'Horatio')

Ifthere are several sailors called Horatio, this query finds all sailors whose rating
is better than that of some sailor called Horatio. On instance 83, this computes
the sids 31, 32, 58, 71, and 74. What if there were no sailor called Horatio? In
this case the comparison S.rating > ANY ... is defined to return false, and the
guery returns an elnpty answer set. To understand comparisons involving ANY,
it is useful to think of the comparison being carried out repeatedly. In this
example, Srating is successively compared with each rating value that is an
answer to the nested query. Intuitively, the subquery must return a row that
makes the comparison true, in order for Srating > ANY ... to return true.

(Q23) Find sailors whose rating is better than every sailor' called Horat+to.

We can obtain all such queries with a simple modification to Query Q22: Just
replace ANY with ALL in the WHERE clause of the outer query. On instance S3,
we would get the sids 58 and 71. If there were no sailor called Horatio, the
comparison S.rating > ALL ... isdefined to return true! The query would then
return the names of all sailors. Again, it is useful to think of the comparison

SQL: Queries, Constraints, Triggers 149

being carried out repeatedly. Intuitively, the comparison must be true for every
returned row for Srrating> ALL ... to return true.

As another illustration of ALL, consider the following query.
(Q24J Find the sailors with the highest rating.

SELECT S.sid

FROM Sailors S

WHERE S.rating >= ALL (SELECT S2.rating
FROM Sailors 2)

The subquery computes the set of all rating values in Sailors. The outer WHERE
condition is satisfied only when S.rating is greater than or equal to each of
these rating values, that is, when it is the largest rating value. In the instance
53, the condition is satisfied only for rating 10, and the answer includes the
sids of sailors with this rating, Le, 58 and 71.

Note that IN and NOT IN are equivalent to = ANY and <> ALL, respectively.

5.4.4 More Examples of Nested Queries
Let usrevisit a query that we considered earlier using the INTERSECT operator.
(Q6) Find the names of sailors who have reserved both a red and a green boat.

SELECT S.shame
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid
AND B2.color = 'green')

This query can be understood as follows: “Find all sailors who have reserved
a red boat and, further, have sids that are included in the set of sids of sailors
who have reserved a green boat.” This formulation of the query illustrates
how queries involving INTERSECT can be rewritten using IN, which is useful to
know if your system does not support INTERSECT. Queries using EXCEPT can
be similarly rewritten by using NOT IN. To find the sids of sailors who have
reserved red boats but not green boats, we can simply replace the keyword IN
in the previous query by NOT IN.

150 CHAPTER*H

As it turns out, writing this query (Q6) using INTERSECT is more complicated
because we have to use sids to identify sailors (while intersecting) and have to
return sailor names:

SELECT S.sname
FROM Sailors S
WHERE S.sid IN ((SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = 'red')
INTERSECT
(SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid = B2.bid AND B2.color = 'green'))

Our next example illustrates how the division operation in relational algebra
can be expressed in SQL.

(Q9) Find the names of sailors who have TeseTved all boats.

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS ((SELECT B.bid
FROM BoatsB)
EXCEPT
(SELECT R.bid
FROM Reserves R
WHERE R.sid = S.sid)

Note that this query is correlated--for each sailor S, we check to see that the
set of boats reserved by S includes every boat. An alternative way to do this
query without using EXCEPT follows:

SELECT S.shame
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Intuitively, for each sailor we check that there is no boat that has not been
reserved by this sailor.

NL: Queries, Constraints, Triggers 151

SQL:1999 Aggregate Functions: The collection of aggregate functions
is greatly expanded in the new standard, including several statistical func-
tions such as standard deviation, covariance, and percentiles. However, the
new aggregate functions are in the SQLjOLAP package and may not be
supported by all vendors.

5.5 AGGREGATE OPERATORS

In addition to simply retrieving data, we often want to perform some compu-
tation or summarization. As we noted earlier in this chapter, SQL allows the
use of arithmetic expressions. We now consider a powerful class of constructs
for computing aggregate values such as MIN and SUM. These features represent
a significant extension of relational algebra. SQL supports five aggregate oper-
ations, which can be applied on any column, say A, of a relation:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.
2. UM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG (IDISTINCT] A): The average of all (unique) values in the A column.
4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Note that it does not make sense to specify DISTINCT in conjunction with MIN
or MAX (although SQL does not preclude this).

(Q25) Find the average age of all sailors.

SELECT AVG (S.age)
FROM Sailors S

On instance 53, the average age is 37.4. Of course, the WHERE clause can be
used to restrict the sailors considered in computing the average age.

(Q26) Find the average age of sailors with a rating of 10.
SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating = 10

There are two such sailors, and their average age is 25.5. MIN (or MAX) can be
used instead of AVG in the above queries to find the age of the youngest (oldest)

152 CHAPTER+5

sailor. However) finding both the name and the age of the oldest sailor is more
tricky, as the next query illustrates.

(Q27) Find the name and age of the oldest sailor.

Consider the following attempt to answer this query:

SELECT S.sname, MAX (S.age)
FROM Sailors S

The intent is for this query to return not only the maximum age but also the
name of the sailors having that age. However, this query isillegal in SQL-if
the SELECT clause uses an aggregate operation, then it must use only aggregate
operations unless the query contains a GROUP BY clause! (The intuition behind
this restriction should become clear when we discuss the GROUP BY clause in
Section 5.5.1.) Therefore, we cannot use MAX (S.age) as well as S.sname in the
SELECT clause. We have to use a nested query to compute the desired answer
to Q27:

SELECT S.shame, S.age

FROM Sailors S

WHERE S.age = (SELECT MAX (S2.age)
FROM Sailors 2)

Observe that we have used the result of an aggregate operation in the subquery
as an argument to a comparison operation. Strictly speaking, we are comparing
an age value with the result of the subquery, which is a relation. However,
because of the use of the aggregate operation, the subquery is guaranteed to
return a single tuple with a single field, and SQL ¢onverts such a relation to a
field value for the sake of the comparison. The following equivalent query for
Q27 is legal in the SQL standard but, unfortunately, is not supported in many
systems:

SELECT S.sname, S.age

FROM Sailors S

WHERE (SELECT MAX (S2.age)
FROM Sailors 2) = S.age

We can count the number of sailors using COUNT. This example illustrates the

use of * as an argument to COUNT, which is useful when \ve want to count all
rows.

(Q28) Count the number of sailors.

SELECT COUNT (*)

SQL: Queries, Constraints, Triggers

FROM Sailors S

We can think of * as shorthand for all the columns (in the cross-product of the
from-list in the FROM clause). Contrast this query with the following query,
which computes the number of distinct sailor names. (Remember that sname
is not a key!)

(Q29) Count the number of different sailor names.

SELECT COUNT (DISTINCT S.sname)
FROM Sailors S

On instance 83, the answer to Q28 is 10, whereas the answer to Q29 is 9
(because two sailors have the same name, Horatio). If DISTINCT is omitted,
the answer to Q29 is 10, because the name Horatio is counted twice. |f COUNT
does not include DISTINCT, then COUNT (*) gives the same answer as COUNT (x) ,
where x is any set of attributes. In our example, without DISTINCT Q29 is
equivalent to Q28. However, the use of COUNT (*) is better querying style,
since it is immediately clear that all records contribute to the total count.

Aggregate operations offer an alternative to the ANY and ALL constructs. For
example, consider the following query:

(Q30) Find the names of sailors who are older than the oldest sailor with a
rating of 10.

SELECT S.sname

FROM Sailors S

WHERE S.age > (SELECT MAX (S2.age)
FROM Sailors S2
WHERE S2.rating = 10)

On instance 83, the oldest sailor with rating 10 is sailor 58, whose age is 35.
The names of older sailors are Bob, Dustin, Horatio, and Lubber. Using ALL,
this query could alternatively be written as follows:

SELECT S.sname

FROM Sailors S

WHERE S.age > ALL (SELECT S2.age
FROM Sailors S2
WHERE S2.rating = 10)

However, the ALL query is more error proncone could easily (and incorrectly!)
use ANY instead of ALL, and retrieve sailors who are older than some sailor with

154 CHAPTER+H

Relational Algebra and SQL: Agegregation is a fundamental operation g
that canllot be expressed in relational algebra. Similarly, SQL’s grouping |
construct cannot be expressed in algebra.

. _

arating of 10. The use of ANY intuitively corresponds to the use of MIN, instead
of MAX, in the previous query.

551 The GROUP BY and HAVING Clauses

Thus far, we have applied aggregate operations to al (qualifying) rows in a
relation. Often we want to apply aggregate operations to each of a number
of groups of rows in a relation, where the number of groups depends on the
relation instance (i.e., is not known in advance). For example, consider the
following query.

(Q31) Find the age of the youngest sailor for each rating level.

If we know that ratings are integers in the range 1 to la, we could write 10
queries of the form:

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

wherei = 1,2,...,10. Writing 10 such queries is tedious. More important,
we may not know what rating levels exist in advance.

To write such queries, we need a major extension to the basic SQL query
form, namely, the GROUP BY clause. In fact, the extension also includes an
optional HAVING clause that can be used to specify qualificatiolls over groups
(for example, we may be interested only in rating levels> 6. The general form
of an SQL query with these extensions is

SELECT [DISTINCT] select-list
FROM from-list

WHERE ‘qualification

GROUP BY grouping-list

HAVING group-qualification

Using the GROUP BY clause, we can write Q31 as follows:

SELECT S.rating, MIN (S.age)

SQL: Queries, Constraints, Triggers

FROM Sailors S
GROUP BY S.rating

Let us consider some important points concerning the new clauses:

The select-list in the SELECT clause consists of (1) a list of column names
and (2) a list of terms having the form aggop (column-name) AS new-
name. We already saw AS used to rename output columns. Columns that
are the result of aggregate operators do not already have a column name,
and therefore giving the column a name with AS is especially useful.

Every column that appearsin (1) must also appear in grouping-list. The
reason is that each row in the result of the query corresponds to one group,
which is a collection of rows that agree on the values of columns in grouping-
list. In general, if a column appearsin list (1), but not in grouping-list,
there can be multiple rows within a group that have different values in this
column, and it is not clear what value should be assigned to this column
in an answer row.

We can sometimes use primary key information to verify that a column
has a unique value in al rows within each group. For example, if the
grouping-list contains the primary key of a table in the from-list, every
column of that table has a unique value within each group. In SQL:1999,
such columns are also allowed to appear in part (1) of the select-list.

Theexpressions appearing in the group-qualification in the HAVING clause
must have a single value per group. Theintuition isthat the HAVING clause
determines whether an answer row is to be generated for a given group.
To satisfy this requirement in SQL-92, a column appearing in the group-
qualification must appear as the argument to an aggregation operator, or
it must also appear in grouping-list. In SQL:1999, two new set functions
have been introduced that allow us to check whether every or any row in a
group satisfies a condition; this allows us to use conditions similar to those
in a WHERE clause.

If GROUP BY is omitted, the entire table is regarded as a single group.

We explain the semantics of such a query through an example.

(Q32) Find the age of the youngest sailor who is eligible to vote (i.e., is at least
18 years old) for each rating level with at least two such sailors.

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

156 CHAPTERI,5

We will evaluate this query on instance 83 of Sailors, reproduced in Figure 5.10
for convenience. The instance of Sailors on which this query isto beevaluated is
shown in Figure 5.10. Extending the conceptual evaluation strategy presented
in Section 5.2, we proceed as follows. The first step is to construct the cross-
product of tables in the from-list. Because the only relation in the from-list
in Query Q32 is Sailors, the result isjust the instance shown in Figure 5.10.

| sid | smame | rating | age
22 | Dustin | 7 45.0
29 | Brutus | 1 33.0
31 | Lubber | 8 55.5
32 | Andy 8 25.5
58 | Rusty 10 35.0
64 | Horatio | 7 35.0
71 | Zorba 10 16.0
74 | Horatio | 9 35.0
8 | Art 3 255
95 | Bob 3 63.5
9% | Frodo 3 255

Figure 5.10 Instance 53 of Sailors

The second step is to apply the qualification in the WHERE clause, S age >= 18.
This step eliminates the row (71, zorba, 10, 16). The third step is to eliminate
unwanted columns. Only columns mentioned in the SELECT clause, the GROUP
BY clause, or the HAVING clause are necessary, which means we can eliminate
sid and sname in our example. The result is shown in Figure 5.11. Observe
that there are two identical rows with rating 3 and age 25.5-SQL does not
eliminate duplicates except when required to do so by use of the DISTINCT
keyword! The number of copies of a row in the intermediate table of Figure
5.11 is determined by the number of rows in the original table that had these
values in the projected columns.

The fourth step is to sort the table according to the GROUP BY clause to identify
the groups. The result of this step is shown in Figure 5.12.

The fifth step.is to apply the group-qualification in the HAVING clause, that
is, the condition COUNT (*) > 1 This step eliminates the groups with rating
equal to 1, 9, and 10. Observe that the order in which the WHERE and GROUP
BY clauses are considered is significant: If the WHERE clause were not consid-
ered first, the group with rating=10 would have met the group-qualification
in the HAVING clause. The sixth step is to generate one answer row for each
remaining group. The answer row corresponding to a group consists of a subset

i
ing
i
g, &
i

g
e
S

;

SQL: Queries, Constraints, Triggers

raring | age | 11 | 330

7 45.0 3 255
1 33.0 3 255
8 255 = 0
10 35.0 7 30
7 35.0

9 350 8 55.5
3 255 8 25
3 63.5 9 35.0
3 255 | 10 35.0

Figure 5.11 After Evaluation Step 3 Figure 5.12 After Evaluation Step 4

of the grouping columns, plus one or more columns generated by applying an
aggregation operator. In our example, each answer row has a rating column
and a minage column, which is computed by applying MIN to the values in the
age column of the corresponding group. The result of this step is shown in

Figure 5.13.

| rating | minage |

3 255
7 35.0
8 255

Figure 5.13 Final Result in Sample Evaluation

If the query contains DISTINCT inthe SELECT clause, duplicates are eliminated
in an additional, and final, step.

SQL:1999 has introduced two new set functions, EVERY and ANY. To illustrate
these functions, we can replace the HAVING clause in our example by

HAVING COUNT (*) > 1 AND EVERY (S.age <= 60)

The fifth step of the conceptual evaluation is the one affected by the change
in the HAVING clause. Consider the result of the fourth step, shown in Figure
5.12. The EVERY keyword requires that every row in a group must satisfy the
attached condition to meet the group-qualification. The group for rating 3 does
meet this criterion and is dropped; the result is shown in Figure 5.14.

158 CHAPTER. 5

SQL:1999 Extensions: Two new set functions, EVERY and ANY, have
been added. When they are used in the HAVING clause, the basic intuition
that the clause specifies a condition to be satisfied by each group, taken as
a whole, remains unchanged. However, the condition can now involve tests
on individual tuples in the group, whereas it previously relied exclusively
on aggregate functions over the group of tuples.

It is worth contrasting the preceding query with the following query, in which
the condition on age is in the WHERE clause instead of the HAVING clause:

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S

WHERE S.age >= 18 AND S.age <= 60
GROUP BY S.rating

HAVING COUNT (*) > 1

Now, the result after the third step of conceptual evaluation no longer contains
the row with age 63.5. Nonetheless, the group for rating 3 satisfies the condition
COUNT (*) > 1, since it still has two rows, and meets the group-qualification
applied in the fifth step. Thefinal result for this query is shown in Figure 5.15.

,| rating ,| minage ,|

rating | minage 3 55
7 450 7 45.0
8 1555 8 55.5
Figure 5.14 Final Result of EVERY Query Figure 5.15 Result of Alternative Query

5.5.2 More Examples of Aggregate Queries
(Q33) For each red boat; find the number of reservations for this boat.
SELECT B.hid, COUNT (*) AS reservationcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = 'red'
GROUP BY B.bid

Oninstances B1 and R2, the answer to this query contains the two tuples (102,
3) and (104, 2).

Observe that this version of the preceding query is illegal:

SQL: Queries, Constraints. Triggers 159

SELECT B.bicl, COUNT (*) AS reservationcount
FROM Boats B, Reserves R

WHERE R.bid = B.bid

GROUP BY B.bid

HAVING B.color = ‘red’

Even though the gToup-qualification B.coloT = 'Ted'is single-valued per group,
since the grouping attribute bid is a key for Boats (and therefore determines
coloT), SQL disallows this query.6 Only columns that appear in the GROUP BY
clause can appear in the HAVING clause, unless they appear as arguments to
an aggregate operator in the HAVING clause.

(Q34) Find the avemge age of sailoTs fOT each rating level that has at least two
sailoTs.

SELECT Scrating, AVG (S.age) AS avgage
FROM Sailors S

GROUP BY S.rating

HAVING ~ COUNT (*) > 1

After identifying groups based on mting, we retain only groups with at least
two sailors. The answer to this query on instance 83 is shown in Figure 5.16.

| mting | avgage | | mting | avgage |

3 445 3 455 rating | avgage

7 20.0 7 20.0 3 455

8 405 8 405 7 40.0

10 255 10 35.0 8 40.5
Figure 5.16 Q34 Answer Figure 5.17 Q35 Answer Figure 5.18 Q36 Answer

The following alternative formulation of Query Q34 illustrates that the HAVING
clause can have a nested subquery, just like the WHERE clause. Note that we
can use S.raling inside the nested subquery in the HAVING clause because it
has a single value for the current group of sailors:

SELECT S.crating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
FROM Sailors S2
WHERE S.rating = S2.rating)

8This query can be easily rewritten to be legal in SQL:1999 using EVERY in the HAVING clause.

160 CHAPTER H

(Q35) Find the average age of sailors who aTe of voting age (i.e., at least 18
years old) for each rating level that has at least two sailors.

SELECT Swrating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S age >= 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
FROM Sailors S2
WHERE S.rating = S2.rating)

In this variant of Query Q34, we first remove tuples with age <= 18 and group
the remaining tuples by rating. For each group, the subquery in the HAVING
clause computes the number of tuples in Sailors (without applying the selection
age <= 18) with the same rating value as the current group. If a group has
less than two sailors, it is discarded. For each remaining group, we output
the average age. The answer to this query on instance 53 is shown in Figure
5.17. Note that the answer is very similar to the answer for Q34, with the only
difference being that for the group with rating 10, we now ignore the sailor
with age 16 while computing the average.

(Q36) Find the average age oj sailors who aTe of voting age (i.e., at least 18
yeaTs old) JOT each rating level that has at least two such sailors.

SELECT Swrating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age> 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
FROM Sailors 2
WHERE S.rating = S2.rating AND S2.age >= 18)

This formulation of the query reflects its similarity to Q35. The answer to Q36
on instance 53 is shown in Figure 5.18. It differs from the answer to Q35 in
that there is no tuple for rating 10, since there is only one tuple with rating 10
and age > 18.

Query Q36 is actually very similar to Q32, as the following simpler formulation
shows:

SELECT Swrating, AVG (S.age) AS avgage
FROM Sailors S

WHERE S. age> 18

GROUP BY S.rating

SQL: Queries, Constraints, Triggers

HAVING ~ COUNT (*) > 1

This formulation of Q36 takes advantage of the fact that the WHERE clause is
applied before grouping is done; thus, only sailors with age> 18 are left when
grouping is done. It is instructive to consider yet another way of writing this
query:

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage,
COUNT (*) AS ratingcount
FROM Sailors S
WHERE S age> 18
GROUP BY S.rating) AS Temp
WHERE Temp.ratingcount > 1

This alternative brings out several interesting points. First, the FROM clause
can also contain a nested subquery according to the SQL standard.” Second,
the HAVING clause is not needed at all. Any query with a HAVING clause can
be rewritten without one, but many queries are simpler to express with the
HAVING clause. Finally, when a subquery appears in the FROM clause, using
the AS keyword to give it a name is necessary (since otherwise we could not
express, for instance, the condition Temp.ratingcount > 1).

(Q37) Find those ratings for which the average age of sailors is the m'inirnum
over all ratings.

We use this query to illustrate that aggregate operations cannot be nested. One
might consider writing it as follows:

SELECT S.rating

FROM Sailors S

WHERE AVG (S.age) = (SELECT MIN (AVG (S2.age))
FROM Sailors S2
GROUP BY S2.rating)

A little thought shows that this query will not work even if the expression MIN
(AVG (S2.age)), which is illegal, were alowed. In the nested query, Sailors is
partitioned into groups by rating, and the average age is computed for each
rating value. For each group, applying MIN to this average age value for the
group will return the same value! A correct version of this query follows. It
essentially computes a temporary table containing the average age for each

rating value and then finds the rating(s) for which this average age is the
minimum.

7Not all commercial database systems currently support nested queries in the FROM clause.

162 CHAPTER,5

i The Relational Model and SQL: Null values are not part of the basic
| relational model. Like SQL’s treatment of tables as multisets of tuples,

this is a departure from the basic model.

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage,
FROM Sailors S
GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage) FROM Temp)

The answer to this query on instance 53 is (10, 25.5).

As an exercise, consider whether the following query computes the same answer.

SELECT Temp.rating, MIN (Temp.avgage)

FROM (SELECT S.rating, AVG (S.age) AS avgage,
FROM Sailors S
GROUP BY S.rating) AS Temp

GROUP BY Temp.rating

5.6 NULL VALUES

Thus far, we have assumed that column values in a row are always known. In
practice column values can be unknown. For example, when a sailor, say Dan,
joins a yacht club, he may not yet have a rating assigned. Since the definition
for the Sailors table has a rating column, what row should we insert for Dan?
What is needed hereis a special value that denotes unknown. Supposethe Sailor
table definition was modified to include a rnaiden-name column. However, only
married women who take their husband's last name have a maiden name. For
women who do not take their husband's name and for men, the maiden-name
column is inapplicable. Again, what value do we include in this column for the
row representing Dan?

SQL provides a special column value called null to use in such situations. We
use null when the column value is either unknown or inapplicable. Using our
Sailor table definition, we might enter the row (98. Dan, null, 39) to represent
Dan. The presence of null values complicates rnany issues, and we consider the
impact of null values on SQL in this section.

SQL: Queries, Constraints Triggers

56.1 Comparisons Using Null Values

Consider a comparison such as rating = 8. Ifthisis applied to the row for Dan,
is this condition true or false? Since Dan's rating is unknown, it is reasonable
to say that this comparison should evaluate to the value unknown. In fact, this
is the case for the comparisons rating> 8 and rating < 8 as well. Perhaps less
obviously, if we compare two null values using <, >, =, and so on, the result is
always unknown. For example, if we have null in two distinct rows of the sailor
relation, any comparison returns unknown.

SQL also provides a special comparison operator 1S NULL to test whether a
column value is null; for example, we can say rating IS NULL, which would
evaluate to true on the row representing Dan. We can also say rating 1S NOT
NULL, which would evaluate to fal se on the row for Dan.

5.6.2 Logical ConnectivesAND, OR, and NOT

Now, what about boolean expressions such as rating = 8 OR age < 40 and
mting = 8 AND age < 40? Considering the row for Dan again, because age
< 40, thefirst expression evaluates to true regardless of the value of rating, but
what about the second? We can only say unknown.

But this example raises an important point—once we have null values, we
must define the logical operators AND, OR, and NOT using a three-valued logic in
which expressions evaluate to true, false, or unknown. We extend the usul'll
interpretations of AND, OR, and NOT to cover the case when one of the arguments
is unknown as follows. The expression NOT unknown is defined to be unknown.
OR of two arguments evaluates to true if either argument evaluates to true,
and to unknown if one argument evaluates to fal se and the other evaluates to
unknown. (If both arguments are false, of course, OR evaluates to false.) AND
of two arguments evaluates to fal se if either argument evaluates to fal se, and
to unknown if one argument evaluates to unknown and the other evaluates to
true or unknown. (If both arguments are true, AND evaluates to true.)

5.6.3 Impact on SQL Constructs

Boolean expressions arise in many contexts in SQIL.,, and the impact of null
values must be recognized. For example, the qualification in the WHERE clause
eliminates rows (in the cross-product of tables named in the FROM clause) for
which the qualification does not evaluate to true. Therefore, in the presence
of null values, any row that evaluates to fal se or unknown is eliminated. Elim-
inating rows that evaluate to unknown has a subtle but signifieant impaet on
queries, especially nested queries involving EXISTS or UNIQUE.

164 CHAPTER,S

Another issue in the presence of null values is the definition of when two rows
in arelation instance are regarded as duplicates. The SQL definition is that two
rows are duplicates if corresponding columns are either equal, or both contain
null. Contrast this definition with the fact that if we compare two null values
using =, the result is unknown! In the context of duplicates, this comparison is
implicitly treated as true, which is an anomaly.

As expected, the arithmetic operations +, -, *, and / all return null if one of
their arguments is null. However, nulls can cause some unexpected behavior
with aggregate operations. COUNT(*) handles 'null values just like other values;
that is, they get counted. All the other aggregate operations (COUNT, SUM, AVG,
MIN, MAX, and variations using DISTINCT) simply discard null values—thus SUM
cannot be understood as just the addition of all values in the (multi)set of
values that it is applied to; a preliminary step of discarding al null values must
also be accounted for. As a special case, if one of these operators-other than
COUNT-i s applied to only null values, the result is again null.

5.6.4 OQuter Joins

Some interesting variants of the join operation that rely on null values, called
outer joins, are supported in SQL. Consider thejoin of two tables, say Sailors
<1 Reserves. Tuples of Sailors that do not match some row in Reserves accord-
ing to the join condition ¢ do not appear in the result. In an outer join, on
the other hanel, Sailor rows without a matching Reserves row appear exactly
once in the result, with the result columns inherited from Reserves assigned
null values.

In fact, there are several variants of the outer join idea. In aleft outer join,
Sailor rows without a matching Reserves row appear in the result, but not vice
versa. In aright outer join, Reserves rows without a matching Sailors row
appear in the result, but not vice versa. In a full outer join, both Sailors
and Reserves rows without a match appear in the result. (Of course, rows with
a match always appear in the result, for all these variants, just like the usual
joins, sometimes called inner joins, presented in Chapter 4.)

SQL allows the desired type of join to be specified in the FROM clause. For
example, the following query lists (sid, bid) pairs corresponding to sailors and
boats they have reserved:

SELECT S.sid, R.bid
FROM Sailors S NATURAL LEFT OUTER JOIN Reserves R

The NATURAL keyword specifies that thejoin condition is equality on all common
attributes (in this example, sid), and the WHERE clause is not required (unless

SQL: Queries, Constraints, Triggers 165

we want to specify additional, non-join conditions). On the instances of Sailors
and Reserves shown in Figure 5.6, this query computes the result shown in
Figure 5.19.

| sid | bid |
22 | 101
31 | null
58 | 103

Figure 5.19 Left Outer Join of Sailor! and Reservesl

5.6.5 Disallowing Null Values

We can disallow null values by specifying NOT NULL as part of the field def-
inition; for example, sname CHAR(20) NOT NULL. In addition, the fields in a
primary key are not allowed to take on null values. Thus, there is an implicit
NOT NULL constraint for every field listed in a PRIMARY KEY constraint.

Our coverage of null values is far from complete. The interested reader should
consult one of the many books devoted to SQL for a more detailed treatment
of the topic.

5.7 COMPLEX INTEGRITY CONSTRAINTSIN SQL

In this section we discuss the specification of complex integrity constraints that
utilize the full power of SQL queries. The features discussed in this section
complement the integrity constraint features of SQL presented in Chapter 3.

5.7.1 Constraintsover a Single Table

We can specify complex constraints over asingle table using tabl e constraints,
which have the form CHECK conditional-expression. For example, to ensure that
rating must be an integer in the range 1 to 10, we could use:

CREATE TABLE Sailors (sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10))

166 CHAPTER. %

To enforce the constraint that Interlake boats cannot be reserved, we could use:

CREATE TABLE Reserves (sid INTEGER,
bid INTEGER,
day DATE,

FOREIGN KEY (sid) REFERENCES Sailors
FOREIGN KEY (bid) REFERENCES Boats
CONSTRAINT nolnterlakeRes
CHECK ('Interlake’ <>
(SELECT B.bname
FROM Boats B
WHERE B.bid = Reserves.bid)))

When a row is inserted into Reserves or an existing row is modified, the condi-

tional expression in the CHECK constraint is evaluated. Ifit evaluates to fal se,
the command is rejected.

5.7.2 Domain Constraintsand Distinct Types

A user can define a new domain using the CREATE DOMAIN statement, which
uses CHECK constraints.

CREATE DOMAIN ratingval INTEGER DEFAULT 1
CHECK (VALUE >= 1 AND VALUE <= 10)

INTEGER is the underlying, or source, type for the domain ratingval, and
every ratingval value must be of this type. Values in ratingval are further
restricted by using a CHECK constraint; in defining this constraint, we use the
keyword VALUE to refer to a value in the domain. By using this facility, we
can constrain the values that belong to a domain using the full power of SQL
gueries. Once a domain is defined, the name of the domain can be used to
restrict column values in a table; we can use the following line in a schema
declaration, for example:

rating ratingval

The optional DEFAULT keyword is used to associate a default value with a do-
main. If the domain ratingval is used for a column in some relation and
no value is entered for this column in an inserted tuple, the default value 1
associated with ratingval is used.

SQL's support for the concept of a domain is limited in an important respect.
For example, we can define two domains called Sailorlid and Boatld, each

SQL: Queries., Constraints, Triggers 167

SQL:1999 Distinct Types: :Many systems, e.g., Informix UDS and IBM
DB2, already support this feature. With its introduction, we expect that
the support for domains will be deprecated, and eventually eliminated, in
future versions of the SQL standard. It is really just one part of a broad
set of object-oriented features in SQL:1999, which we discuss in Chapter
23.

using INTEGER as the underlying type. The intent is to force a comparison of a
Sailorld value with a Boatld value to always fail (since they are drawn from
different domains); however, since they both have the same base type, INTEGER,
the comparison will succeed in SQI. This problem is addressed through the
introduction of distinct types in SgL:1999:

CREATE TYPE ratingtype AS INTEGER

This statement defines a new distinct type called ratingtype, with INTEGER
as its source type. Values of type ratingtype can be compared with each
other, but they cannot be compared with values of other types. In particular,
ratingtype values are treated as being distinct from values of the source type,
INTEGER—we cannot compare them to integers or combine them with integers
(e.g., add an integer to a ratingtype value). If we want to define operations
on the new type, for example, an average function, we must do so explicitly;
none of the existing operations on the source type carryover. We discuss how
such functions can be defined in Section 23.4.1.

5.7.3 Assertions: |Csover Several Tables

Table constraints are associated with a single table, although the conditional
expression in the CHECK clause can refer to other tables. Table constraints
are required to hold only if the associated table is nonempty. Thus, when
a constraint involves two or more tables, the table constraint mechanism is
sometimes cumbersome and not quite what is desired. To cover such situations,
SQL supports the creation of assertions, which are constraints not associated
with anyone table.

As an example, suppose that we wish to enforce the constraint that the number
of boats plus the number of sailors should be less than 100. (This condition
Ilight be required, say, to qualify as a ‘small’ sailing club.) We could try the
following table constraint:

CREATE TABLE Sailors (sid INTEGER,
sname CHAR(10),

168 CHAPTER#S

rating INTEGER,

age REAL,

PRIMARY KEY (sid),

CHECK (rating >= 1 AND rating <= 10)

CHECK ((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B)
< 100))

This solution suffers from two drawbacks. It is associated with Sailors, al-
though it involves Boats in a completely symmetric way. More important,
if the Sailors table is empty, this constraint is defined (as per the semantics
of table constraints) to always hold, even if we have more than 100 rows in
Boats! We could extend this constraint specification to check that Sailors is
nonempty, but this approach becomes cumbersome. The best solution is to
create an assertion, as follows:

CREATE ASSERTION smallClub

CHECK ((SELECT COUNT (S.sid) FROM Sailors S)
+ (' SELECT COUNT (B.bid) FROM Boats B)
< 100)

5.8 TRIGGERSAND ACTIVE DATABASES

A trigger is a procedure that is automatically invoked by the DBMS in re-
sponse to specified changes to the database, and is typically specified by the
DBA. A database that has a set of associated triggers is called an active
database. A trigger description contains three parts:

« Event: A change to the database that activates the trigger.
m Condition: A query or test that is run when the trigger is activated.

= Action: A procedure that is executed when the trigger is activated and
its condition is true.

A trigger can be thought of as a ‘daemon’ that monitors a database, and is exe-
cuted when the database is modified in a way that matches the event specifica-
tion. An insert, delete, or update statement could activate a trigger, regardless
of which user or application invoked the activating statement; users may not
even be aware that a trigger was executed as a side effect of their program.

A condition in atrigger can be a true/fal se statement (e.g., al employee salaries
are less than $100,000) or a query. A query is interpreted as true if the answer

SQL: Queries, Constraints, Triggers 169

set is nonempty and false if the query has no answers. If the condition part
evaluates to true, the action associated with the trigger is executed.

A trigger action can examine the answers to the query in the condition part
of the trigger, refer to old and new values of tuples modified by the statement
activating the trigger, execute Hew queries, and make changes to the database.
In fact, an action can even execute a series of data-definition commands (e.g.,
create new tables, change authorizations) and transaction-oriented commands
(e.g., commit) or call host-language procedures.

An important issue is when the action part of a trigger executes in relation to
the statement that activated the trigger. For example, a statement that inserts
records into the Students table may activate a trigger that is used to maintain
statistics on how many students younger than 18 are inserted at a time by a
typical insert statement. Depending on exactly what the trigger does, we may
want its action to execute before changes are made to the Students table or
afterwards. A trigger that initializes a variable used to count the nurnber of
qualifying insertions should be executed before, and a trigger that executes once
per qualifying inserted record and increments the variable should be executed
after each record is inserted (because we may want to examine the values in
the new record to determine the action).

581 Examplesof Triggersin SQL

The examples shown in Figure 5.20, written using Oracle Server syntax for
defining triggers, illustrate the basic concepts behind triggers. (The SQL:1999
syntax for these triggers is similar; we will see an example using SQL:1999
syntax shortly.) The trigger called init_count initializes a counter variable be-
fore every execution of an INSERT statement that adds tuples to the Students
relation. The trigger called incr_count increments the counter for each inserted
tuple that satisfies the condition age < 18.

One of the example triggers in Figure 5.20 executes before the aetivating state-
ment, and the other example executes after it. A trigger can also be scheduled
to execute instead of the activating statement; or in deferred fashion, at the
end of the transaction containing the activating statement; or in asynchronous
fashion, as part of a separate transaction.

The example in Figure 5.20 illustrates another point about trigger execution:
A user must be able to specify whether a trigger is to be executed once per
modified record or once per activating statement. If the action depends on in-
dividual changed records, for example, we have to examine the age field of the
inserted Students record to decide whether to increment the count, the trigger-

170 CHAPTER 5

CREATE TRIGGER iniLeount BEFORE INSERT ON Students 1* Event *1

DECLARE
count INTEGER;

BEGIN 1* Action *I
count := O

END

CREATE TRIGGER incLcount AFTER INSERT ON Students 1* Event *1
WHEN (new.age < 18) 1* Condition; ‘new’ is just-inserted tuple *1
FOR EACH ROW
BEGIN 1* Action; a procedure in Oracle's PL/SQL syntax *1

count := count + 1;
END

Figure 5.20 Examples lllustrating Triggers

ing event should be defined to occur for each modified record; the FOR EACH
ROw clause is used to do this. Such atrigger is called a row-level trigger. On
the other hand, the iniLcount trigger is executed just once per INSERT state-
ment, regardless of the number of records inserted, because we have omitted
the FOR EACH ROW phrase. Such atrigger is called a statement-level trigger.

In Figure 5.20, the keyword new refers to the newly inserted tuple. Ifan existing
tuple were modified, the keywords old and new could be used to refer to the
values before and after the modification. SQL:1999 also allows the action part
of a trigger to refer to the set of changed records, rather than just one changed
record at a time. For example, it would be useful to be able to refer to the set
of inserted Students records in a trigger that executes once after the INSERT
statement; we could count the number of inserted records with age < 18 through
an SQL query over this set. Such a trigger is shown in Figure 5.21 and is an
alJternative to the triggers shown in Figure 5.20.

The definition in Figure 5.21 uses the syntax of SQL:1999, in order to illustrate
the similarities and differences with respect to the syntax used in a typical
current DBMS. The keyword clause NEW TABLE enables us to give a table name
(InsertedTuples) to the set of newly inserted tuples. The FOR EACH STATEMENT
clause specifies a statement-level trigger and can be omitted because it is the
default. Thisdefinition does not have a WHEN clause; if such a clause is included,
it follows the FOR EACH STATEMENT clause, just before the action specification.

The trigger is evaluated once for each SQL statement that inserts tuples into
Students, and inserts a single tuple into a table that contains statistics on mod-

SQL: Queries, Constraints, Triggers 171

ifications to database tables. The first two fields of the tuple contain constants
(identifying the modified table, Students, and the kind of modifying statement,
an INSERT), and the third field is the number of inserted Students tuples with
age < 18. (The trigger in Figure 5.20 only computes the count; an additional
trigger is required to insert the appropriate tuple into the statistics table.)

CREATE TRIGGER seL count AFTER INSERT ON Students j* Event *j
REFERENCING NEW TABLE AS InsertedTuples
FOR EACH STATEMENT
INSERT j* Action *j
INTO StatisticsTable(ModifiedTable, ModificationType, Count)
SELECT 'Students', 'Insert', COUNT *
FROM InsertedTuples |
WHERE 1.age < 18

Figure 5.21 Set-Oriented Trigger

5.9 DESIGNING ACTIVE DATABASES

Triggers offer a powerful mechanism for dealing with changes to a database,
but they must be used with caution. The effect of a collection of triggers can
be very complex, and maintaining an active database can become very difficult.
Often, a judicious use of integrity constraints can replace the use of triggers.

5.9.1 Why Triggers Can Be Hard to Understand

In an active database system, when the DBMS is about to execute a statement
that modifies the database, it checks whether some trigger is activated by the
statement. If so, the DBMS processes the trigger by evaluating its condition
part, and then (if the condition evaluates to true) executing its action part.

If a statement activates more than one trigger, the DBMS typically processes
al of them, in senne arbitrary order. An important point is that the execution
of the action part of a trigger could in turn activate another trigger. In par-
ticular, the execution of the action part of a trigger could again activate the
sarne trigger; such triggers are called recursive triggers. The potential for
such chain activations and the unpredictable order in which a DBMS processes
activated triggers can make it difficult to understand the effect of a collection
of triggers.

172 CHAPTER’S

5.9.2 Constraintsversus Triggers

A common use of triggers is to maintain database consistency, and in such
cases, we should always consider whether using an integrity constraint (e.g., a
foreign key constraint) achieves the same goals. The meaning of a constraint is
not defined operationally, unlike the effect of a trigger. This property makes a
constraint easier to understand, and also gives the DBMS more opportunities
to optimize execution. A constraint also prevents the data from being made
inconsistent by any kind of statement, whereas atrigger is activated by a specific
kind of statement (INSERT, DELETE, or UPDATE). Again, this restriction makes
a constraint easier to understand.

On the other hand, triggers allow us to maintain database integrity in more
flexible ways, as the following examples illustrate.

» Suppose that we have a table called Orders with fields iternid, quantity,
custornerid, and unitprice. When a customer places an order, the first
three field values are filled in by the user (in this example, a sales clerk).
The fourth field's value can be obtained from a table called Items, but it
is important to include it in the Orders table to have a complete record of
the order, in case the price of the item is subsequently changed. We can
define a trigger to look up this value and include it in the fourth field of
a newly inserted record. In addition to reducing the number of fields that
the clerk has to type in, this trigger eliminates the possibility of an entry
error leading to an inconsistent price in the Orders table.

e Continuing with this example, we may want to perform some additional
actions when an order is received. For example, if the purchase is being
charged to a credit line issued by the company, we may want to check
whether the total cost of the purchase is within the current credit limit.
We can use a trigger to do the check; indeed, we can even use a CHECK
constraint. Using a trigger, however, allows us to implement more sophis-
ticated policies for dealing with purchases that exceed a credit limit. For
instance, we may allow purchases that exceed the limit by no more than
10% if the customer has dealt with the company for at least a year, and
add the customer to a table of candidates for credit limit increases.

5.9.3 Other Usesof Triggers

Many potential uses of triggers go beyond integrity maintenance. Triggers can
alert users to unusual events (as reflected in updates to the database). For
example, we may want to check whether a customer placing an order has made
enough purchases in the past month to qualify for an additional discount; if
so, the sales clerk must be informed so that he (or she) can tell the customer

SQL: Queries, Constraints, Triggers

and possibly generate additional sales! \Ve can relay this information by using
a trigger that checks recent purchases and prints a message if the customer
qualifies for the discount.

Triggers can generate a log of events to support auditing and security checks.
For example, each time a customer places an order, we can create a record with
the customer's ID and current credit limit and insert this record in a customer
history table. Subsequent analysis of this table might suggest candidates for
an increased credit limit (e.g., customers who have never failed to pay a bill on
time and who have come within 10% of their credit limit at least three times
in the last month).

As the examples in Section 5.8 illustrate, we can use triggers to gather statistics
on table accesses and modifications. Some database systems even use triggers
internally as the basis for managing replicas of relations (Section 22.11.1). Our
list of potential uses of triggers is not exhaustive; for example, triggers have
also been considered for workflow management and enforcing business rules.

510 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

* What are the parts of a basic SQL query? Are the input and result tables
of an SQL query sets or multisets? How can you obtain a set of tuples as
the result of a query? (Section 5.2)

« What are range variables in SQL? How can you give names to output
columns in a query that are defined by arithmetic or string expressions?
What support does SQL offer for string pattern matching? (Section 5.2)

e What operations does SQL provide over (multi)sets of tuples, and how
would you use these in writing queries? (Section 5.3)

e What are nested queries? What is correlation in nested queries? How
would you use the operators IN, EXISTS, UNIQUE, ANY, and ALL in writing
nested queries? Why are they useful? Illustrate your answer by showing
how to write the division operator in SQL. (Section 5.4)

« What aggregate operators does SQL support? (Section 5.5)

e What is grouping? |s there a counterpart in relational algebra? Explain
this feature, and discllss the interaction of the HAVING and WHERE clauses.
Mention any restrictions that mllst be satisfied by the fields that appear in
the GROUP BY clause. (Section 5.5.1)

174 CHAPTER#D

« \Vhat are null values? Are they supported in the relational model, as
described in Chapter 31 How do they affect the meaning of queries? Can
primary key fields of a table contain null values? (Section 5.6)

* What types of SQL constraints can be specified using the query language?
Can you express primary key constraints using one of these new kinds
of constraints? If so, why does SQL provide for a separate primary key
constraint syntax? (Section 5.7)

* What is a trigger, and what are its three parts? What are the differences
between row-level and statement-level triggers? (Section 5.8)

* \Vhy can triggers be hard to understand? Explain the differences between
triggers and integrity constraints, and describe when you would use trig-
gers over integrity constrains and vice versa. What are triggers used for?
(Section 5.9)

EXERCISES

Online material is available for all exercises in this chapter on the book's webpage at
http://www.cs.wisc.edu/ dbbook

Thisincludes scripts to create tables for each exercise for use with Oracle, IBM DB2, Microsoft
SQL Server, and MySQL.

Exercise 5.1 Consider the following relations:

Student(snum: integer, sname: string, major: string, level: string, age: integer)
Class(name: string, meets at: time, room: string, fid: integer)

Enrolled(snum: integer, cname: string)

Faculty (fid: integer, fnarne: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per
student-class pair such that the student is enrolled in the class.

Write the following queries in SQL. No duplicates should be printed in any of the ans\vers.

1. Find the nariles of all Juniors (level = JR) who are enrolled in a class taught by 1. Teach.

2. Find the age of the oldest student who is either a History major or enrolled in a course
taught by I. Teach.

3. Find the names of all classes that either meet in room R128 or have five or more students
enrolled.

4. Find the llames of all students who are enrolled in two classes that meet at the same
time.

SQL: Queries, Constraints, Triggers 175

10.
11
12.

Find the names of faculty members \vho teach in every room in which some class is
taught.

Find the names of faculty members for \vhorn the combined enrollment of the courses
that they teach is less than five.

Print the level and the average age of students for that level, for each level.
Print the level and the average age of students for that level, for all levels except JR.

For each faculty member that has taught classes only in room R128, print the faculty
member's name and the total number of classes she or he has taught.

Find the names of students enrolled in the maximum number of classes.
Find the names of students not enrolled in any class.

For each age value that appears in Students, find the level value that appears most often.
For example, if there are more FR level students aged 18 than SR, JR, or SO students
aged 18, you should print the pair (18, FR).

Exercise 5.2 Consider the following schema:

Suppliers(sid: integer, sname: string, address. string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers. Write the following
queries in SQL:

g M w DN

© ® N o

10.

11

Find the pnames of parts for which there is some supplier.

Find the snames of suppliers who supply every part.

Find the snames of suppliers who supply every red part.

Find the pnamcs of parts supplied by Acme Widget Suppliers and no one else.

Find the sids of suppliers who charge more for some part than the average cost of that
part (averaged over all the suppliers who supply that part).

For each part, find the sname of the supplier who charges the most for that part.
Find the sids of suppliers who supply only red parts.

Find the sids of suppliers who supply a red part anel a green part.

Find the sids of suppliers who supply a red part or a green part.

For every supplier that only supplies green parts, print the name of the supplier and the
total number of parts that she supplies.

For every supplier that supplies a green part and a red part, print the name and price
of the most expensive part that she supplies.

Exercise 5.3 The following relations keep track of airline flight information:

Flights(.flno: integer, from: string, to: string, di8tance: integer,
departs: time, arrives: time, price: integer)

Aircraft(aid: integer, aname: string, cruisingrange: integer)

Certified(eid: integer, aid: integer)

Employees(eid: integer: ename: string, salary: integer)

176 CHAPTER: D

Note that the Employees relation describes pilots and other kinds of employees as well; every
pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the
follO\ing queries in SQL. (Additional queries using the same schema are listed in the exercises
for Chapter 4.

1. Find the names of aircraft such that all pilots certified to operate them earn more than
$80,000.

2. For each pilot who is certified for more than three aircraft, find the eid and the maximum
cruisingrange of the aircraft for which she or he is certified.

3. Find the names of pilots whose salary is less than the price of the cheapest route from
Los Angeles to Honolulu.

4. For all aircraft with cruisingrange over 1000 miles, find the name of the aircraft and the
average salary of al pilots certified for this aircraft.

Find the names of pilots certified for some Boeing aircraft.
Find the aids of al aircraft that can be used on routes from Los Angeles to Chicago.
Identify the routes that can be piloted by every pilot who makes more than $100,000.

© N o O

Print the enames of pilots who can operate planes with cruisingmnge greater than 3000
miles but are not certified on any Boeing aircraft.

9. A customer wants to travel from Madison to New York with no more than two changes
of flight. List the choice of departure times from Madison if the customer wants to arrive
in New York by 6 p.m.

10. Compute the difference between the average salary of a pilot and the average salary of
al employees (including pilots).

11. Print the name and salary of every nonpilot whose salary is more than the average salary
for pilots.

12. Print the names of employees who are certified only on aircrafts with cruising range
longer than 1000 miles.

13. Print the names of employees who are certified only on aircrafts with cruising range
longer than 1000 miles, but on at least two such aircrafts.

14. Print the names of employees who are certified only on aircrafts with cruising range
longer than 1000 miles and who are certified on some Boeing aircraft.

Exercise 5.4 Consider the following relational schema. An employee can work in more than
one department; the pct_time field of the Works relation shows the percentage of time that a
given employee works in a given department.

Emp(eid: integer, ename: string, age integer, salary: real)
Works(eid: integer, did: integer, pet_time: integer)
Dept(did.: integer, budget: real, managerid: integer)

Write the following queries in SQL:

1. Print the names and ages of each employee who works in both the Hardware department
and the Software department.

2. For each department with more than 20 full-time-equivalent employees (i.e., where the
part-time and full-time employees add up to at least that many full-time employees),
print the did together with the number of employees that work in that department.

NL: Queries, Constraints, Triggers 177

| sid | sname |mting , age |

’_}_8 jones | 3 30.0
41 | jonah | 6 56.0
22 | ahab 7 44.0
63 | moby | null 15.0

Figure 5.22 An Instance of Sailors

3. Print the name of each employee whose salary exceeds the budget of al of the depart-
ments that he or she works in.

4. Find the managerids of managers who manage only departments with budgets greater
than $1 million.

5. Find the enames of managers who manage the departments with the largest budgets.

6. If a manager manages more than one department, he or she controls the sum of al the
budgets for those departments. Find the managerids of managers who control more than
$5 million.

7. Find the managerids of managers who control the largest amounts.

8. Find the enames of managers who manage only departments with budgets larger than
$1 million, but at least one department with budget less than $5 million.

Exercise 5.5 Consider the instance of the Sailors relation shown in Figure 5.22.

1. Write SQL queries to compute the average rating, using AVGj the sum of the ratings,
using SUM; and the number of ratings, using COUNT.

2. If you divide the sum just computed by the count, would the result be the same as the
average? How would your answer change if these steps were carried out with respect to
the age field instead of rating?

3. Consider the following query: Find the names of sailors with a higher rating than all
sailors with age < 21. The following two SQL queries attempt to obtain the answer
to this question. Do they both compute the result? If not, explain why. Under what
conditions would they compute the same result?

SELECT S.shname
FROM Sailors S
WHERE NOT EXISTS (SELECT
FROM Sailors 2
WHERE S2.age < 21
AND S.rating <= S2.rating)

*

SELECT *

FROM Sailors S

WHERE ~S.rating > ANY (SELECT S2.rating
FROM Sailors 2
WHERE S2.age < 21

4. Consider the instance of Sailors shown in Figure 5.22. Let us define instance Sl of Sailors
to consist of the first two tuples, instance S2 to be the last two tuples, and S to be the
given instance.

178

CHAPTER*S

Show the left outer join of S with itself, with the join condition being sid=sid.
(b) Show the right outer join of S with itself, with the join condition being sid=sid.
(c) Show the full outer join of S with itself, with the join condition being Sid=sid.
(d) Show the left outer join of SI with S2, with the join condition being sid=sid.
(e) Show the right outer join of SI with S2, with the join condition being sid=sid.
(f) Show the full outer join of 81 with S2, with the join condition being sid=sid.

Exercise 5.6 Answer the following questions:

1

Explain the term ‘impedance mismatch in the context of embedding SQL commands in a
host language such as C.

How can the value of a host language variable be passed to an embedded SQL command?

3. Explain the WHENEVER command's use in error and exception handling.

10.

11

12.

. Explain the need for cursors.

Give an example of a situation that calls for the use of embedded SQL; that is, interactive
use of SQL commands is not enough, and some host lang;uage capabilities are needed.

Write a C program with embedded SQL commands to address your example in the
previous answer.

Write a C program with embedded SQL commands to find the standard deviation of
sailors' ages.

Extend the previous program to find all sailors whose age is within one standard deviation
of the average age of all sailors.

Explain how you would write a C program to compute the transitive closure of a graph,
represented as an 8QL relation Edges(from, to), using embedded SQL commands. (You
need not write the program, just explain the main points to be dealt with.)

Explain the following terms with respect to cursors: updatability, sens,itivity, and sciol-
lability.

Define a cursor on the Sailors relation that is updatable, scrollable, and returns answers
sorted by age. Which fields of Sailors can such a cursor not update? Why?

Give an example of a situation that calls for dynamic 8QL; that is, even embedded SQL
is not sufficient.

Exercise 5.7 Consider the following relational schema and briefly answer the questions that
follow:

Emp(eid: integer, ename: string, age: integer, salary: real)
\Vorks(eid: integer, did: integer, pci-time: integer)
Dept(did: integer, budget: real, managerid: integer)

Define a table constraint on Emp that will ensure that every employee makes at least
$10,000.

Define a table constraint on Dept that will ensure that all managers have age> 30.

. Define an assertion on Dept that will ensure that all managers have age > 30. Compare

this assertion with the equivalent table constraint. Explain which is better.

SQL: Queries, Constraints, Triggers 179

4. Write SQL statements to delete all information about employees whose salaries exceed
that of the manager of one or more departments that they work in. Be sure to ensure
that all the relevant integrity constraints are satisfied after your updates.

Exercise 5.8 Consider the following relations:

Student(snum: integer, sname: string, rnajor: string,

level: string, age: integer)

Class(narne: string, meets_at: time, roorn: string, fid: integer)

Enrolled(snwm: integer, cnarne: string)
Faculty (fid: integer, fnarne: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per
student-class pair such that the student is enrolled in the class.

1. Write the SQL statements required to create these relations, including appropriate ver-
sions of all primary and foreign key integrity constraints.

2. Express each of the following integrity constraints in SQL unless it is implied by the
primary and foreign key constraint; if so, explain how it is implied. If the constraint
cannot be expressed in SQL, say so. For each constraint, state what operations (inserts,
deletes, and updates on specific relations) must be monitored to enforce the constraint.

@)

(b)
©
(d)
©
(®

©)
(h)

0]
0)
(k)
0]
(rn)

(n)
©

Every class has a minimum enrollment of 5 students and a maximum enrollment
of 30 students.

At least one dass meets in each room.

Every faculty member must teach at least two courses.

Only faculty in the department with deptid=33 teach more than three courses.
Every student must be enrolled in the course called |VlathlOl.

The room in which the earliest scheduled class (i.e., the class with the smallest
meets.at value) meets should not be the same as the room in which the latest
scheduled class meets.

Two classes cannot meet in the same room at the same time.

The department with the most faculty members must have fewer than twice the
number of faculty members in the department with the fewest faculty members.

No department can have more than 10 faculty members.
A student cannot add more than two courses at a time (i.e,, in a single update).
The number of CS majors must be more than the number of Math majors.

The number of distinct courses in which CS majors are enrolled is greater than the
number of distinct courses in which Math majors are enrolled.

The total enrollment in courses taught by faculty in the department with deptid=33
is greater than the number of ivlath majors.

There lllUs be at least one CS major if there are any students whatsoever.
Faculty members from different departments cannot teach in the same room.

Exercise 5.9 Discuss the strengths and weaknesses of the trigger mechanism. Contrast
triggers with other integrity constraints supported by SQL.

180 CHAPTER™S

Exercise 5.10 Consider the following relational schema. An employee can work in more
than one department; the pct_timne field of the \Vorks relation shows the percentage of time
that a given employee works in a given department.

Emp(ed: integer, ename: string, age integer, salary: real)
Works(eid: integer, did: integer, pct_time: integer)
Dept(did: integer, budget: real, mana,gerid: integer)

\Vrite SQL-92 integrity constraints (domain, key, foreign key, or CHECK constraints; or asser-
bons) or SQL:1999 triggers to ensure each of the following requirements, considered indepen-
dently.

Employees must make a minimum salary of $1000.

Every manager must be also be an employee.

1

2.

3. The total percentage of aJ appointments for an employee must be under 100%.

4. A manager must always have a higher salary than any employee that he or she manages.
5

. Whenever an employee is given a raise, the manager's salary must be increased to be at
least as much.

6. Whenever an employee is given a raise, the manager's salary must be increased to be
at least as much. Further, whenever an employee is given a raise, the department's
budget must be increased to be greater than the sum of salaries of aU employees in the
department.

PROJECT-BASED EXERCISE

Exercise 5.11 ldentify the subset of SQL queries that are supported in Minibase.

BIBLIOGRAPHIC NOTES

The original version of SQL was developed as the query language for IBM's System R project,
and its early development can be traced in [107, 151]. SQL has since become the most
widely used relational query language, and its development is now subject to an international
standardization process.

A very readable and comprehensive treatment of SQL-92 is presented by Melton and Simon
in [524], and the central features of SQL:1999 are covered in [525]. We refer readers to these
two books for an authoritative treatment of SQL. A short survey of the SQL:1999 standard
is presented in [237]. Date offers an insightful critique of SQL in [202]. Although some of
the problems have been addressed in SQL-92 and later revisions, others remain. A formal
semantics for a large subset of SQL queries is presented in [560]. SQL:1999 is the current Inter-
national Organization for Standardization (1SO) and American National Standards Institute
(ANSI) standard. Melton is the editor of the ANSI and SO SQL:1999 standard, document
ANSI/ISO/IEe 9075-:1999. The corresponding 1SO document is | SO/IEe 9075-:1999. A
successor, planned for 2003, builds on SQL:1999 SQI.:2003 is close to ratification (as of June
20(2). Drafts of the SQL:2003 deliberations are available at the following URL:

ftp://sql standards.org/SC32/

SQL: Queries, Constraints, Triggers |SI

[774] contains a collection of papers that cover the active database field. [794] includes a
good in-depth introduction to active rules, covering smnantics, applications and design issues.
[251] discusses SQL extensions for specifying integrity constraint checks through triggers.
[123] also discusses a procedural mechanism, called an alerter, for monitoring a database.
[185] is a recent paper that suggests how triggers might be incorporated into SQL extensions.
Influential active database prototypes include Ariel [366], HIPAC [516J, ODE [18], Postgres
[722], RDL [690], and Sentinel [36]. [147] compares various architectures for active database
systems.

[32] considers conditions under which a collection of active rules has the same behavior,
independent of evaluation order. Semantics of active databases is also studied in [285] and
[792]. Designing and managing complex rule systems is discussed in [60, 225]. [142] discusses
rule management using Chimera, a data model and language for active database systems.

PART Il

APPLICATION DEVELOPMENT

DATABASE APPLICATION
DEVELOPMENT

How do application programs connect to a DBMS?

How can applications manipulate data retrieved from a DBMS?
How can applications modify datain a DBMS?

What are cursors?

What is JDBC and how is it used?

What is SQLJ and how is it used?

What are stored procedures?

I I N N N

Key concepts: Embedded SQL, Dynamic SQL, cursors; JDBC,
connections, drivers, ResultSets, java.sgl, SQLJ; stored procedures,
SQL/PSM

He profits most who serves best.

------ Iviotto for Rotary International

In Chapter 5, we looked at a wide range of SQL query constructs, treating SQL
as an independent language in its own right. A relational DBMS supports an
interactive SQL interface, and users can directly enter SQL commands. This
simple approach is fine as long as the task at hand can be accomplished entirely
with SQL cormnands. In practice, we often encounter situations in which we
need the greater flexibility of a general-purpose programming language in addi-
tion to the data manipulation facilities provided by SQL. For example, we rnay
want to integrate a database application with a nice graphical user interface,
or we may want to integrate with other existing applications.

185

186 CHAPTER 6

Applications that rely on the DBMS to manage data run as separate processes
that connect to the DBIVIS to interact with it. Once a connection is established,
SQL commands can be used to insert, delete, and modify data. SQL queries can
be used to retrieve desired data. but we need to bridge an important difference
in how a database system sees data and how an application program in a
language like Java or C sees data: The result of a database query is a set (or
multiset) or records, hut Java has no set or multiset data type. This mismatch
is resolved through additional SQL constructs that allow applications to obtain
a handle on a collection and iterate over the records one at a time.

‘We introduce Embedded SQL, Dynamic SQL, and cursors in Section 6.1. Em-
bedded SQL allows us to access data using static SQL queries in application
code (Section 6.1.1); with Dynamic SQL, we can create the queries at run-time
(Section 6.1.3). Cursors bridge the gap between set-valued query answers and
programming languages that do not support set-values (Section 6.1.2).

The emergence of Java as a popular application development language, espe-
cially for Internet applications, has made accessing a DBMS from Java code a
particularly important topic. Section 6.2 covers JDBC, a prograruming inter-
face that alows us to execute SQL queries from a Java program and use the
results in the Java program. JDBC provides greater portability than Embed-
ded SQL or Dynamic SQL, and offers the ability to connect to several DBM Ss
without recompiling the code. Section 6.4 covers SQLJ, which does the same
for static SQL queries, but is easier to program in than Java, with JDBC.

Often, it is useful to execute application code at the database server, rather than
just retrieve data and execute application logic in a separate process. Section
6.5 covers stored procedures, which énable application logic to be stored and
executed at the database server. We conclude the chapter by discussing our
B&N case study in Section 6.6.

While writing database applications, we must also keep in mind that typically
many application programs run concurrently. The transaction concept, intro-
duced in Chapter 1, is used to encapsulate the cffects of an application on
the database. An application can select certain transaction properties through
SQL cormnands to control the degree to which it is exposed to the changes of
other concurrently running applications. We touch on the transaction concept
at many pointsin this chapter, and, in particular, cover transaction-related as-
pects of JDBC. A full discussion of transaction properties and SQL's support
for transactions is deferred until Chapter 16.

Examnples that appear in this chapter are available online at

http://www.cs.wisc.edu/-dbbook

Database Application Development 187

6.1 ACCESSING DATABASESFROM APPLICATIONS

In this section, we cover how SQL commands can be executed from within a
program in a host language such as C or Java. The use of SQL commands
within a host language program is called Embedded SQL . Details of Embed-
ded SQI also depend on the host language. Although similar capabilities are
supported for a variety of host languages, the syntax sometimes varies.

We first cover the basics of Embedded SQL with static SQL queries in Section
6.1.1. We then introduce cursors in Section 6.1.2. We discuss Dynamic SQL,
which alows us to construct SQL queries at runtime (and execute them) in
Section 6.1.:3.

6.1.1 Embedded SQL

Conceptually, embedding SQL commands in a host language program is straight-
forward. SQL statements (i.e., not declarations) can be used wherever a state-
ment in the host language is allowed (with a few restrictions). SQL statements
must be clearly marked so that a preprocessor can deal with them before in-
voking the compiler for the host language. Also, any host language variables
used to pass arguments into an SQL command must be declared in SQL. In
particular, some special host language variables must be declared in SQL (so
that, for example, any error conditions arising during SQL execution can be
communicated back to the main application program in the host language).

There are, however, two complications to bear in mind. First, the data types
recognized by SQL may not be recognized by the host language and vice versa.
This mismatch is typically addressed by casting data values appropriately be-
fore passing them to or frorn SQL commands. (SQL, like other programming
languages, provides an operator to cast values of alle type into values of an-
other type.) The second complication has to do with SQL being set-oriented,
and is addressed using cursors (see Section 6.1.2. Commands operate on and
produce tables, which are sets

In our discussion of Embedded SQL, we assume that the host language is C
for concreteness. because minor differcnces exist in how SQL statements are
embedded in differcnt host languages.

Declaring Variables and Exceptions

SQL statements can refer to variables defined in the host program. Such host-
language variables must be prefixed by a colon (1) in SQL statements and be
declared hetween the commands EXEC SQL BEGIN DECLARE SECTION and EXEC

188 CHAPTER 6

SQL END DECLARE SECTION. The declarations are similar to how they would
look in a C program and, as usual in C. are separated by semicolons. For
example. we can declare variables c_sname, c.sid, c_rating, and c_age (with the
initial c used as a naming convention to emphasize that these are host language
variables) as follows:

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];

long c_sid,

short ¢ rating;

float c.age;

EXEC SQL END DECLARE SECTION

The first question that arises is which SQL types correspond to the various
C types, since we have just declared a collection of C variables whose val-
ues are intended to be read (and possibly set) in an SQL run-time environ-
ment when an SQL statement that refers to them is executed. The SQL-92
standard defines such a correspondence between the host language types and
SQL types for a number of host languages. In our example, c_snamc has the
type CHARACTER(20) when referred to in an SQL statement, c_std has the type
INTEGER, c_rating has the type SMALLINT, and c_age has the type REAL.

We also need some way for SQL to report what went wrong if an error condition
arises when executing an SQL statement. The SQL-92 standard recognizes
two special variables for reporting errors, SQLCODE and SQLSTATE. SQLCODE is
the older of the two and is defined to return some negative value when an
error condition arises, without specifying further just what error a particular
negative integer denotes. SQLSTATE, introduced in the SQL-92 standard for the
first time, associates predefined values with several common error conditions,
thereby introducing some uniformity to how errors are reported. One of these
two variables must be declared. The appropriate C type for SQLCODE is long
and the appropriate C type for SQLSTATE is char [6J, that is, a character string
five characters long. (Recall the null-terminator in C strings.) In this chapter,
we assume that SQLSTATE is declared.

Embedding SQL Statements

All SQL staternents embedded within a host program must be clearly marked,
with the details dependent on the host language; in C, SQL statements must be
prefixed by EXEC SQL. An SQL statement can essentially appear in any place
in the host language program where a host language statement can appear.

Database Application Development 189

As a simple example, the following Embedded' SQL statement inserts a row,
whose column values are based on the values of the host language variables
contained in it, into the Sailors relation:

EXEC SQL
INSERT INTO Sailors VALUES (:c_sname, :c_sid, :c_rating, :c_age);

Observe that a semicolon terminates the command, as per the convention for
terminating statements in C.

The SQLSTATE variable should be checked for errors and exceptions after each
Embedded SQL statement. SQL provides the WHENEVER command to simplify
this tedious task:

EXEC SQL WHENEVER [SQLERROR I NOT FOUND] [CONTINUE | coto st'mt]

Theintent is that the value of SQLSTATE should be checked after each Embedded
SQL statement is executed. |If SQLERROR is specified and the value of SQLSTATE
indicates an exception, control is transferred to stmt, which is presumably re-
sponsible for error and exception handling. Control is also transferred to stmt
if NOT FOUND is specified and the value of SQLSTATE is 02000, which denotes NO
DATA.

6.1.2 Cursors

A major problem in embedding SQL statements in a host language like C is
that an impedance mismatch occurs because SQL operates on sets of records,
whereas languages like C do not cleanly support a set-of-records abstraction.
The solution is to essentially provide a mechanism that allows us to retrieve
rows one at a time from a relation.

This mechanism is called a cursor. We can declare a cursor on any relation
or on any SQL query (because every query returns a set of rows). Once a
cursor is declared, we can open it (which positions the cursor just before the
first row); fetch the next row; move the cursor (to the next row, to the row
after the next n, to the first row, or to the previous row, etc., by specifying
additional parameters for the FETCH command); or close the cursor. Thus, a
cursor essentially allows us to retrieve the rows in a table by positioning the
cursor at a particular row and reading its contents.

Basic Cursor Definition and Usage

Tursors enable us to examine, in the host language program, a collection of
Jws computed by an Embedded SQL statement:

190 CHAPTER 6

» \Ve usually need to open a cursor if the embedded statement is a SELECT
(i.e) a query). However, we can avoid opening a cursor if the answer
contains a single row, as we see shortly.

m INSERT, DELETE, and UPDATE staternents typically require no cursor, al-
though some variants of DELETE and UPDATE use a cursor.

As an example, we can find the name and age of a sailor, specified by assigning
a value to the host variable c_szd, declared earlier, as follows:

EXEC SQL SELECT S.sname, S.age
INTO :c_sname, :C_age
FROM Sailors S
WHERE S.sid = :c_sid;

The INTO clause allows us to assign the columns of the single answer row to
the host variables c_sname and c_age. Therefore, we do not need a cursor to
embed this query in a host language program. But what about the following
query, which computes the names and ages of all sailors with a rating greater
than the current value of the host variable c_minrating?

SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c_minrating

This query returns a collection of rows, not just one row. 'When executed
interactively, the answers are printed on the screen. If we embed this query in
a C program by prefixing the cOlnmand with EXEC SQL, how can the answers
be bound to host language variables? The INTO clause is inadequate because
we must deal with several rows. The solution is to use a cursor:

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age

FROM Sailors S

WHERE S.rating > :c_minrating;

This code can be included in a C program, and once it is executed, the cursor
sinfo is defined. Subsequently, we can open the cursor:

OPEN sinfo:

The value of c_minrating in the SQL query associated with the cursor is the
value of this variable when we open the cursor. (The cursor declaration is
processed at compile-time, and the OPEN command is executed at run-time.)

Database Applicat'ion Development 1.91

A cursor can be thought of as 'pointing' to a row in the collection of answers
to the query associated with it. When a cursor is opened, it is positioned just
before the first row. We can use the FETCH command to read the first row of
cursor sinfo into host language variables:

FETCH sinfo INTO :c_sname, :c_age;

When the FETCH statement is executed, the cursor is positioned to point at
the next row (which is the first row in the table when FETCH is executed for
the first time after opening the cursor) and the column values in the row are
copied into the corresponding host variables. By repeatedly executing this
FETCH statement (say, in a while-loop in the C program), we can read all the
rows computed by the query, one row at a time. Additional parameters to the
FETCH command alow us to position a cursor in very flexible ways, but we do
not discuss them.

How do we know when we have looked at all the rows associated with the
cursor? By looking at the special variables SQLCODE or SQLSTATE, of course.
SQLSTATE, for example, is set to the value 02000, which denotes NO DATA, to
indicate that there are no more rows if the FETCH statement positions the cursor
after the last row.

When we are done with a cursor, we can close it:

CLOSE sinfo;

It can be opened again if needed, and the value of : c.minrating in the
SQL query associated with the cursor would be the value of the host variable
cominrating at that time.

Properties of Cursors
The general form of a cursor declaration is

DECLARE cursorname [INSENSITIVE] [SCROLL] CURSOR
[WITH HOLD]
FOR some query
[ORDER BY order-item-list]
[FOR READ ONLY | FOR UPDATE]

A cursor can be declared to be a read-only cursor (FOR READ ONLY) or, if
it is a cursor on a base relation or an updatable view, to be an updatable
cursor (FOR UPDATE). If it is llpdatable, simple variants of the UPDATE and

192 CHAPTER 6

DELETE commands allow us to update or delete the row on which the cursor
is positioned. For example, if sinfa is an updatable cursor and open, we can
execute the following statement:

UPDATE Sailors S
SET S.rating = S.rating - 1
WHERE CURRENT of sinfo;

This Embedded SQL statement modifies the rating value of the row currently
pointed to by cursor sinfa; similarly, we can delete this row by executing the
next statement:

DELETE Sailors S
WHERE CURRENT of sinfo;

A cursor is updatable by default unless it is a scrollable or insensitive cursor
(see below), in which case it is read-only by default.

If the keyword SCROLL is specified, the cursor is scrollable, which means that
variants of the FETCH command can be used to position the cursor in very
flexible ways; otherwise, only the basic FETCH command, which retrieves the
next row, is allowed.

If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging
over a private copy of the collection of answer rows. Otherwise, and by default,
other actions of some transaction could modify these rows, creating unpre-
dictable behavior. For example, while we are fetching rows using the sinfa
cursor, we might modify rating values in Sailor rows by concurrently executing
the command:

UPDATE Sailors S
SET S.rating = S.rating -

Consider a Sailor row such that (1) it has not yet been fetched, and (2) its
original rating value would have met the condition in the WHERE clause of the
query associated with sinfa, but the new rating value does not. Do we fetch
such a Sailor row'? If INSENSITIVE is specified, the behavior is as if all answers
were computed.and stored when sinfo was opened; thus, the update command
has no effect on the rows fetched by sinfa if it is executed after sinfo is opened.
If INSENSITIVE is not specified, the behavior is implementation dependent in
this situation.

A holdable cursor is specified using the WITH HOLD clause, and is not closed
when the transaction is conunitted. The motivation for this cornes from long

Database Application Development 193

transactions in which we access (and possibly change) a large number of rows of
atable. Ifthe transaction is aborted for any reason, the system potentially has
to redo a lot of work when the transaction is restarted. Even if the transaction
is not aborted, its locks are held for a long time and reduce the concurrency
of the system. The alternative is to break the transaction into several smaller
transactions, but remembering our position in the table between transactions
(and other similar details) is complicated and error-prone. Allowing the ap-
plication program to commit the transaction it initiated, while retaining its
handle on the active table (i.e., the cursor) solves this problem: The applica-
tion can commit its transaction and start a new transaction and thereby save
the changes it has made thus far.

Finally, in what order do FETCH commands retrieve rows? In general this order
is unspecified, but the optional ORDER BY clause can be used to specify a sort
order. Note that columns mentioned in the ORDER BY clause cannot be updated
through the cursor!

The order-item-list is alist of order-items; an order-item is a column name,
optionally followed by one of the keywords ASC or DESC. Every column men-
tioned in the ORDER BY clause must also appear in the select-list of the query
associated with the cursor; otherwise it is not clear what columns we should
sort on. The keywords ASC or DESC that follow a column control whether the
result should be sorted-with respect to that column-in ascending or descend-
ing order; the default is ASC. This clause is applied as the last step in evaluating
the query.

Consider the query discussed in Section 5.5.1, and the answer shown in Figure
5.13. Suppose that a cursor is opened on this query, with the clause:

ORDER BY minage ASC, rating DESC

The answer is sorted first in ascending order by minage, and if several rows
have the same minage value, these rows are sorted further in descending order
by rating. The cursor would fetch the rows in the order shown in Figure 6.1.

| rating | minage |

8 255
3 25.5
7 35.0

Figure 6.1 Order in which Tuples Are Fetched

194 CHAPTER 56

6.1.3 Dynamic SQL

Consider an application such as a spreadsheet or a graphical front-end that
needs to access datafrom a DBMS. Such an application must accept commands
from a user and, based on what the user needs, generate appropriate SQL
statements to retrieve the necessary data. In such situations, we may not be
able to predict in advance just what SQL statements need to be executed, even
though there is (presumably) some algorithm by which the application can
construct the necessary SQL statements once a user's command is issued.

SQL provides some facilities to deal with such situations; these are referred
to as Dynamic SQL. We illustrate the two main commands, PREPARE and
EXECUTE, through a simple example:

char c_sqglstring[] = {"DELETE FROM Sailors WHERE rating>5"};
EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;

The first statement declares the C variable c_sglstring and initializes its value to
the string representation of an SQL command. The second statement resultsin
this string being parsed and compiled as an SQL command, with the resulting
executable bound to the SQL variable readytogo. (Since readytogo is an SQL
variable, just like a cursor name, it is not prefixed by a colon.) The third
statement executes the command.

Many situations require the use of Dynamic SQL. However, note that the
preparation of a Dynamic SQL command occurs at run-time and is run-time
overhead. Interactive and Embedded SQL commands can be prepared once
at compile-time and then re-executecl as often as desired. Consequently you
should limit the use of Dynamic SQL to situations in which it is essential.

There are many more things to know about Dynamic SQL—how we can pass
parameters from the host language program to the SQL statement being pre-
parcel, for example--but we do not discuss it further.

6.2 ANINTRODUCTION TOJDBC

Embedded SQL enables the integration of SQL with a general-purpose pro-
gramming language. As described in Section 6.1.1, a DBM S-specific preproces-
sor transforms the Embedded SQL statements into function calls in the host
language. The details of this translation vary across DBMSs, and therefore
even though the source code can be cOlnpiled to work with different DBMSs,
the final executable works only with one specific DBMS.

Database Application Develop'Tnent 195

ODBC and JDBC, short for Open DataBase Connectivity and Java DataBase
Connectivity, aso enable the integration of SQL with a general-purpose pro-
gramming language. Both ODBC and JDBC expose database capabilities in
a standardized way to the application programmer through an application
programming interface (API). In contrast to Embedded SQL, ODBC and
JDBC adlow a single executable to access different DBMSs without recompi-
lation. Thus, while Embedded SQL is DBMS-independent only at the source
code level, applications using ODBC or JDBC are DBM S-independent at the
source code level and at the level of the executable. In addition, using ODBC
or JDBC, an application can access not just one DBMS but several different
ones simultaneously.

ODBC and JDBC achieve portability at the level of the executable by introduc-
ing an extra level of indirection. All direct interaction with a specific DBMS
happens through a DBMS-specific driver. A driver is a software program
that translates the ODBC or JDBC calls into DBMS-specific calls. Drivers
are loaded dynamically on demand since the DBMSs the application is going
to access are known only at run-time. Available drivers are registered with a
driver manager.

One interesting point to note is that a driver does not necessarily need to
interact with a DBMS that understands SQL. It is sufficient that the driver
translates the SQL commands from the application into equivalent commands
that the DBMS understands. Therefore, in the remainder of this section, we
refer to a data storage subsystem with which a driver interacts as a data
source.

An application that interacts with a data source through ODBC or JDBC se-
lects a data source, dynamically loads the corresponding driver, and establishes
a connection with the data source. There is no limit on the number of open
connections, and an application can have several open connections to different
data sources. Each connection has transaction semantics; that is, changes from
one connection are visible to other connections only after the connection has
committed its changes. While a connection is opcn, transactions are executed
by submitting SQL statements, retrieving results, processing errors, and finally
committing or rolling back. The application disconnects from the data source
to terminate the interaction.

In the remainder of this chapter, we concentrate on JDBC.

196 CHAPTER 6

[
| JDBC Drivers: The most up-to-date source of .IDBC drivers is the Sun
JDBC Driver page at
http://industry.java.sun.com/products/jdbc/drivers
JDBC drivers are available for all major database sytems.

6.2.1 Architecture

The architecture of JDBC has four main components: the application, the
driver manager, several data source specific drivers, and the corresponding
data SOUTces.

The application initiates and terminates the connection with a data source.
It sets transaction boundaries, submits SQL statements, and retrieves the
results----al through a well-defined interface as specified by the JIDBC API. The
primary goa of the driver manager is to load JDBC drivers and pass JDBC
function calls from the application to the correct driver. The driver manager
also handles JDBC initialization and information calls from the applications
and can log al function calls. In addition, the driver manager performs-some
rudimentary error checking. The driver establishes the connection with the
data source. In addition to submitting requests and returning request results,
the driver translates data, error formats, and error codes from a form that is
specific to the data source into the JDBC standard. The data source processes
commands from the driver and returns the results.

Depending on the relative location of the data source and the application,
several architectural scenarios are possible. Driversin JDBC are classfied into
four types depending on the architectural relationship between the application
and the data source:

m Type | Bridges: This type of driver translates JDBC function calls
into function calls of another API that is not native to the DBMS. An
example is a JDBC-ODBC bridge; an application can use JDBC calls to
access an ODBC compliant data source. The application loads only one
driver, the bridge. Bridges have the advantage that it is easy to piggy-
back the applica.tion onto an existing installation, and no new drivers have
to be installed. But using bridges has several drawbacks. The increased
number of layers between data source and application affects performance.
In addition, the user is limited to the functionality that the ODBC driver
supports.

. Type Il Direct Translation to the Native APl via Non-Java
Driver: This type of driver translates JDBC function calls directly into
method invocations of the API of one specific data source. The driver is

Database Application Development 197

usually written using a combination of C++ and Java; it is dynamically
linked and specific to the data source. This architecture performs signif-
icantly better than a JDBC-ODBC bridge. One disadvantage is that the
database driver that implements the API needs to be installed on each
computer that runs the application.

g Type IIT--Network Bridges: The driver talks over a network to a
middleware server that translates the JDBC requests into DBM S-specific
method invocations. In this case, the driver on the client site (Le, the
network bridge) is not DBMS-specific. The JDBC driver loaded by the ap-
plication can be quite small, as the only functionality it needs to implement
is sending of SQL statements to the middleware server. The middleware
server can then use a Type Il JDBC driver to connect to the data source.

m TypelV-Direct Translation to the Native API via Java Driver:
Instead of calling the DBMS API directly, the driver communicates with
the DBMS through Javasockets. In this case, the driver on the client side is
written in Java, but it is DBMS-specific. It translates JDBC calls into the
native API of the database system. This solution does not require an in-
termediate layer, and since the implementation is al Java, its performance
is usually quite good.

6.3 JDBC CLASSES AND INTERFACES

JDBC is a collection of Java classes and interfaces that enables database access
from prograrlls written in the Java language. It contains methods for con-
necting to a remote data source, executing SQL statements, examining sets
of results from SQL statements, transaction management, and exception han-
dling. The classes and interfaces are part of the java. sql package. Thus, all
code fragments in the remainder of this section should include the statement
import java. sgl .* at the beginning of the code; we omit this statement in
the remainder of this section. JDBC 2.0 also includes the javax. sql pack-
age, the JDBC Optional Package. The package j avax. sql adds, among
other things, the capability of connection pooling and the RowSet interface.
We discuss connection pooling in Section 6.3.2, and the ResultSet interface in
Section 6.3.4.

We now illustrate the individual steps that are required to submit a database
query to a data source and to retrieve the results.

6.3.1 JDBC Driver Management

In JDBC, data source drivers are managed by the Drivermanager class, which
maintains a list of al currently loaded drivers. The Drivermanager clags has

198 CHAPTER 6

methods registerDriver, deregisterDriver, and getDrivers to enable dy-
namic addition and deletion of drivers.

Thefirst step in connecting to a data source is to load the corresponding JDBC
driver. This is accomplished by using the Java mechanism for dynamically
loading classes. The static method forName in the Class class returns the Java
class as specified in the argument string and executes its static constructor.
The static constructor of the dynamically loaded class loads an instance of the
Driver class, and this Driver object registers itself with the DriverManager
class.

The following Java example code explicitly loads a JDBC driver:
Class.forName("oracle/jdbc.driver.OracleDriver");

There are two other ways ofregistering a driver. We can include the driver with
-Djdbc. drivers=oracle/jdbc. driver at the command line when we start the
Java application. Alternatively, we can explicitly instantiate a driver, but this
method is used only rarely, as the name of the driver has to be specified in the
application code, and thus the application becomes sensitive to changes at the
driver level.

After registering the driver, we connect to the data source.

6.3.2 Connections

A session with a data source is started through creation of a Connection object;
A connection identifies a logical session with a data source; multiple connections
within the same Java program can refer to different data sources or the same
data source. Connections are specified through a JDBC URL, a URL that
uses the jdbc protocol. Such a URL has the form

jdbc:<subprotocol >:<otherParameters>

The code example shown in Figure 6.2 establishes a connection to an Oracle
database assuming that the strings userld and password are set to valid values.

In JDBC, connections can have different properties. For example, a connection
can specify the granularity of transactions. If autocommit is set for a con-
nection, then each SQL statement is considered to be its own transaction. If
autocommit is off, then a series of statements that compose a transaction can
be committed using the commit 0 method of the Connection class, or aborted
using the rollbackO method. The Connection class has methods to set the

Database Application Development 199

String uri = ”jdbc:oracle:www.bookstore.com:3083”
Connection connection;
try {

Connection connection =
DriverManager.getConnection(url,userld,password);

}
catch(SQLException excpt) {

System.out.printin(excpt.getM essageO);
return;

Figure 6.2 Establishing a Connection with JDBC

JDBC Connections: Remember to close connections to data sources
and return shared connections to the connection pool. Database systems
have a limited number of resources available for connections, and orphan
connections can often only be detected through time-outs-and while the
database system is waiting for the connection to time-out, the resources
used by the orphan connection are wasted.

autocommit mode (Connection. setAutoCommit) and to retrieve the current
autocommit mode (getAutoCommit). The following methods are part of the
Connection interface and permit setting and getting other properties:

¢ public int getTransactionlsolation() throws SQL Exceptionand
public void setTransactionlsolation(int 1) throws SQLException.
These two functions get and set the current level of isolation for transac-
tions handled in the current connection. All five SQL levels of isolation
(see Section 16.6 for a full discussion) are possible, and argument 1can be
set as follows:

- TRANSACTIONIJNONE
- TRANSACTIONJREAD.UNCOMMITTED
— TRANSACTIONJREAD.COMMITTED
- TRANSACTIONJREPEATABLEJREAD
- TRANSACTION.BERIALIZABLE
e« public boolean getReadOnlyO throws SQLException and
public void setReadOnly(boolean readOnly) throws SQLException.

These two functions allow the user to specify whether the transactions
executecl through this connection are rcad only.

200 CHAPTER 6

s public boolean isClosed() throws SQLException.
Checks whether the current connection has already been closed.

setAutoCommit and get AutoCommit.
We already discussed these two functions.

Establishing a connection to a data source is a costly operation since it in-
volves several steps, such as establishing a network connection to the data
source, authentication, and allocation of resources such as memory. In case an
application establishes many different connections from different parties (such
as a Web server), connections are often pooled to avoid this overhead. A con-
nection pool is a set of established connections to a data source. Whenever a
new connection is needed, one of the connections from the pool is used, instead
of creating a new connection to the data source.

Connection pooling can be handled either by specialized code in the application,
or the optional j avax. sql package, which provides functionality for connection
pooling and allows us to set different parameters, such as the capacity of the
pool, and shrinkage and growth rates. Most application servers (see Section
7.7.2) implement the j avax .sql package or a proprietary variant.

6.3.3 Executing SQL Statements

We now discuss how to create and execute SQL statements using JDBC. In the
JDBC code examples in this section, we assume that we have a Connection
object named con. JDBC supportsthree different ways of executing statements:
Statement, PreparedStatement, and CallableStatement. The Statement
class is the base class for the other two statment classes. It allows us to query
the data source with any static or dynamically generated SQL query. We cover
the PreparedStatement class here and the Call ableStatement class in Section
6.5, when we discuss stored procedures.

The PreparedStatement class dynamically generates precompiled SQL state-
ments that can be used several times; these SQL statements can have param-
eters, but their structure is fixed when the PreparedStatement object (repre-
senting the SQL statement) is created.

Consider the sample code using a PreparedStatment object shown in Figure
6.3. The SQL query specifies the query string, but uses ‘?’ for the values
of the parameters, which are set later using methods setString, setFloat,
and setlnt. The "1' placeholders can be used anywhere in SQL statements
where they can be replaced with a value. Examples of places where they can
appear include the WHERE clause (e.g., 'WHERE author=?"), or in SQL UPDATE
and INSERT statements, as in Figure 6.3. The method setString is one way

Database Application Develop'ment 201

/1 initial quantity is always zero
String sgl = "INSERT INTO Books VALUES(?, 7, 2 2, 0, 7)";
PreparedStatement pstmt = con.prepareStatement(sql);

/1 now instantiate the parameters with values

/1 assume that isbn, title, etc. are Java variables that
/1 contain the values to be inserted
pstmt.clearParameters() ;

pstmt.setString(l, isbn);

pstmt.setString(2, title);

pstmt.setString(3, author);

pstmt.setFloat(5, price);

pstmt.setint(6, year);

int numRows = pstmt.executeUpdate();

Figure 6.3 SQL Update Using a PreparedStatement Object

to set a parameter vaue, analogous methods are available for int, float,
and date. It is good style to always use clearParametersO before setting
parameter values in order to remove any old data.

There are different ways of submitting the query string to the data source. In
the example, we used the executeUpdate command, which is used if we know
that the SQL statement does not return any records (SQL UPDATE, INSERT,
ALTER, and DELETE statements). The executeUpdate method returns an inte-
ger indicating the number of rows the SQL statement modified; it returns O for
successful execution without modifying any rows.

The executeQuery method is used if the SQL statement returns data, such as
in a regular SELECT query. JDBC has its own cursor mechanism in the form
of a ResultSet object, which we discuss next. The execute method is more
general than executeQuery and executeUpdate; the references at the end of
the chapter provide pointers with more details.

6.3.4 ResultSets

As discussed in the previous section, the statement executeQuery returns a
ResultSet object, which is similar to a cursor. ResultSet cursors in JDBC
2.0 are very powerful; they allow forward and reverse scrolling and in-place
editing and insertions.

202 CHAPTER 6

In its most basic form, the ResultSet object allows us to read one row of the
output of the query at a time. Initially, the ResultSet is positioned before
the first row, and we have to retrieve the first row with an explicit call to the
next 0 method. The next method returns fal se if there are no more rows in
the query answer, and true other\vise. The code fragment shown in Figure 6.4
illustrates the basic usage of a ResultSet object.

ResultSet rs=stmt.executeQuery(sqlQuery);
/1 rsis now a cursor
/1 first call to rs.nextO moves to the first record
/1 rs.nextO moves to the next row
String sglQuery;
ResultSet rs = stmt.executeQuery(sqlQuery)
while (rs.next()) {
/] process the data

}

Figure 6.4 Using a ResultSet Object

While next () alows us to retrieve the logically next row in the query answer,
we can move about in the query answer in other ways too:

e« previousO moves back one row.
e absolute(int num) moves to the row with the specified number.

¢« relative(int num) moves forward or backward (if num is negative) rela-
tive to thecurrent position. relative(-1) hasthe same effect as previous.

e first0 moves to the first row, and last 0 moves to the last row.

Matching Java and SQL Data Types

In considering the interaction of an application with a data source, the issues
we encountered in the context of Embedded SQL (e.g., passing information
between the application and the data source through shared variables) arise
again. To deal with such issues, JDBC provides special data types and speci-
fies their relationship to corresponding SQL data types. Figure 6.5 shows the
accessor methods in a ResultSet object for the most common SQL datatypes.
With these accessor methods, we can retrieve values from the current row of
the query result referenced by the ResultSet object. There are two forms for
each accessor method: One method retrieves values by column index, starting
at one, and the other retrieves values by column name. The following exam-
ple shows how to access fields of the current ResultSet row using accesssor
methods.

Database Application Development

| sQL Type | Java class | ResultSet get method |
BIT Boolean getBooleanO
CHAR String getStringO
VARCHAR String getStringO
DOUBLE Double getDoubleO
FLOAT Double getDoubleO
INTEGER Integer getintO
REAL Double getFloatO
DATE java.sgl.Date getDateO
TIME java.sgl.Time getTimeO
TIMESTAMP | java.sgl. TimeStamp getTimestamp ()

Figure 6.5 Reading SQL Datatypes from a ResultSet Object

ResultSet rs=stmt.executeQuery(sql Query);

String sglQuerYi

ResultSet rs = stmt.executeQuery(sql Query)

while (rs.nextO) {

isbn = rs.getString(l);

title = rs.getString(" TITLE");

/1 process isbn and title

}

6.3.5 Exceptionsand Warnings

2Q3

Similar to the SQLSTATE variable, most of the methods in java. sql can throw
an exception of the type SQLException if an error occurs. The information
includes SQL State, a string that describes the error (e.g., whether the statement
contained an SQL syntax error). In addition to the standard getMessage0
method inherited from Throwable, SQL Exception has two additional methods
that provide further information, and a method to get (or chain) additional

exceptions:

= public String getSQLState0 returns an SQL State identifier based on
the SQL:1999 specification, as discussed in Section 6.1.1.

s public int getErrorCode() retrieves a vendor-specific error code.

m public SQLException getNextExceptionO gets the next exception in a

chain of exceptions associated with the current SQL Exception object.

An SQL\¥arning is a subclass of SQLException. Warnings are not as severe as
errors and the program can usually proceed without special handling of warn-
ings. \Varnings are not thrown like other exceptions, and they are not caught as

204 CHAPTER

part of the try"-catch block around a java. sql statement. We Heed to specif-
ically test whether warnings exist. Connection, Statement, and ResultSet
objects all have a getWarningsO method with which we can retrieve SQL
warnings if they exist. Duplicate retrieval of warnings can be avoided through
clearWarningsO. Statement objects clear warnings automatically on execu-
tion of the next statement; ResultSet objects clear warnings every time a new
tuple is accessed.

Typical code for obtaining SQLWarnings looks similar to the code shown in
Figure 6.6.

try {
stmt = con.createStatement();
warning = con.getWarnings();
while(warning !'= null) {
/1 handleSQLWarnings /I code to process warning
warning = warning.getNextWarningO; / /get next warning

}

con.clear\Varnings() ;

stmt.executeUpdate(queryString);
warning = stmt.getWarnings();
while(warning !'= null) {

/1 handleSQLWarnings /I code to process warning
warning = warning.getNextWarningO; / /get next warning
}
} /1 end try

catch (SQLException SQLe) {
/1 code to handle exception
} /1 end catch

Figure 6.6 Processing JDBC Warnings and Exceptions

6.3.6 Examining Database Metadata

We can use the DatabaseM etaData object to obtain information about the
database system itself, as well as information frorn the database catalog. For
example, the following code fragment shows how to obtain the name and driver
version of the JDBC driver:

DatabaseMetaData md = con.getMetaD<Lta():

System.out.printin("Driver Information:");

Database Application Developrnent 205

System.out.printin("Name:" + md.getDriverNameO
+ 7; version:" + mcl.getDriverVersion());

The DatabaseM etaData object has many more methods (in JDBC 2.0, exactly
134); we list some methods here:

m public ResultSet getCatalogsO throws SglLException. Thisfunction
returns a ResultSet that can be used to iterate over al the catalog relations.
The functions getlndexinfoQ and getTablesO work analogously.

m pUblic int getMaxConnectionsO throws SqLException. Thisfunction
returns the maximum number of connections possible.

We will conclude our discussion of JDBC with an example code fragment that
examines al database metadata shown in Figure 6.7.

DatabaseMetaData dmd = con.getMetaDataO;
ResultSet tablesRS = dmd.getTables(null,null,null,null);
string tableName;

while(tablesRS.next()) {
tableNarne = tablesRS.getString(" TABLE_NAME");

/1 print out the attributes of this table
System.out.printin(" The attributes of table"
+ tableName + " are:");
ResultSet columnsRS = dmd.getColums(null,null,tableName, null);
while (columnsRS.next()) {
System.out. print(colummsRS.getString(" COLUMN_NAME”)
+"");

}

/1 print out the primary keys of this table

System.out.printIn("The keys of table" + tableName + " are:");

ResultSet keysRS = dmd.getPrimaryKeys(null,null,tableName);

while (keysRS. next()) {
'System.out.print(keysRS.getStringC'COLUMN_NAME") +" ™);

Figure 6.7 Obtaining Infon-nation about a Data Source

206 CHAPTER+0

64 SQLJ

SQLJ (short for 'SQL-Java’) was developed by the SQLJ Group, a group of
database vendors and Sun. SQLJ was developed to complement the dynamic
way of creating queries in JDBC with a static model. It is therefore very close
to Embedded SQL. Unlike JDBC, having semi-static SQL queries allows the
compiler to perform SQL syntax checks, strong type checks of the compatibil-
ity of the host variables with the respective SQL attributes, and consistency
of the query with the database schema-tables, attributes, views, and stored
procedures—all at compilation time. For example, in both SQLJ and Embed-
ded SQL, variables in the host language aways are bound statically to the
same arguments, whereas in JDBC, we need separate statements to bind each
variable to an argument and to retrieve the result. For example, the following
SQLJ statement binds host language variables title, price, and author to the
return values of the cursor books.

#sgl books = {
SELECT title, price INTO :title, :price
FROM Books WHERE author = :author

h

In JDBC, we can dynamically decide which host language variables will hold
the query result. In the following example, we read the title of the book into
variable ftitle if the book was written by Feynman, and into variable otitle
otherwise:

/] assume we have a ResultSet cursor rs
author = rs.getString(3);

if (author=="Feynman") {
ftitle = rs.getString(2):

}
ese {

otitle = rs.getString(2);
}

When writing SQLJ applications, we just write regular Java code and embed
SQL statements according to a set of rules. SQLJ applications are pre-processed
through an SQLJ translation program that replaces the embedded SQLJ code
with calls to an SQLJ Java library. The modified program code can then be
compiled by any Java compiler. Usually the SQLJ Java library makes calls to
a JDBC driver, which handles the connection to the database system.

Database Application Development 207

An important philosophical difference exists between Embedded SQL and SQLJ
and JDBC. Since vendors provide their own proprietary versions of SQL, it is
advisable to write SQL queries according to the SQL-92 or SQL:1999 standard.
However, when using Embedded SQL, it is tempting to use vendor-specific SQL
constructs that offer functionality beyond the SQL-92 or SQL:1999 standards.
SQLJ and JDBC force adherence to the standards, and the resulting code is
much more portable across different database systems.

In the remainder of this section, we give a short introduction to SQLJ.

6.4.1 Writing SQLJ Code

We will introduce SQLJ by means of examples. Let us start with an SQLJ code
fragment that selects records from the Books table that match a given author.

String title; Float price; String atithor;
#sql iterator Books (String title, Float price);
Books books;

/1 the application sets the author
/| execute the query and open the cursor
#sql books = {
SELECT title, price INTO :title, :price
FROM Books WHERE author = :author

1

/1 retrieve results
while (books.next()) {
System.out.printin(books.titleO + ”, " + books.price());

}

books.close() ;

The corresponding JDBC code fragment looks as follows (assuming we also
declared price, name, and author:

PrcparcdStatcment stmt = connection.prepareStatement(
" SELECT title, price FROM Books WHERE author = ?");

/1 set the parameter in the query ancl execute it
stmt.setString(1, author);
ResultSet 18 = stmt.executeQuery();

/] retrieve the results
while (rs.next()) {

208 CHAPTER 6

System.out.printIn(rs.getString(l) + *, " + rs.getFloat(2));
}

Comparing the JDBC and SQLJ code, we see that the SQLJ code is much
easier to read than the JDBC code. Thus, SQLJ reduces software development
and maintenance costs.

Let us consider the individual components of the SQLJ code in more detail.
All SQLJ statements have the special prefix #sqgl. In SQLJ, we retrieve the
results of SQL queries with iterator objects, which are basically cursors. An
iterator is an instance of an iterator class. Usage of an iterator in SQLJ goes
through five steps:

*+ Declarethe lterator Class: In the preceding code, this happened through
the statement
#sql iterator Books (String title, Float price);
This statement creates a new Java class that we can use to instantiate
objects.

* Instantiate an Iterator Object from the New lterator Class: We
instantiated our iterator in the statement Books books;.

* Initialize the Iterator Using a SQL Statement: In our example, this
happens through the statement #sql books =

* lteratively, Read the Rows From the Iterator Object: This step is
very similar to reading rows through a ResultSet object in JDBC.

 Close the Iterator Object.

There are two types of iterator classes: named iterators and positional iterators.
For named iterators, we specify both the variable type and the name of each
column of the iterator. Thisallows usto retrieve individual columns by name as
in our previous example where we could retrieve the title colunm from the Books
table using the expression books. title(). For positional iterators, we need
to specify only the variable type for each column of the iterator. To access
the individual columns of the iterator, we use a FETCH ... INTO eonstruct,
similar to Embedded SQL. Both iterator types have the same performance;
which iterator to use depends on the programmer's taste.

Let us revisit our example. \Ve can make the iterator a positional iterator
through the following statement:

#sql iterator Books (String, Float);

We then retrieve the individual rows from the iterator as follows:

Database Application Development 209

while (true) {
#sql { FETCH :books INTO :title, :price, };
if (books.endFetch()) {
break:

}

/'l process the book

}
6.5 STORED PROCEDURES

It is often important to execute some parts of the application logic directly in
the process space of the database system. Running application logic directly
at the database has the advantage that the amount of data that is transferred
between the database server and the client issuing the SQL statement can be
minimized, while at the same time utilizing the full power of the database
server.

When SQL statements are issued from a remote application, the records in the
result of the query need to be transferred from the database system back to
the application. If we use a cursor to remotely access the results of an SQL
statement, the DBM S has resources such as locks and memory tied up while the
application is processing the records retrieved through the cursor. In contrast,
a stored procedure is a program that is executed through a single SQL
statement that can be locally executed and completed within the process space
of the database server. The results can be packaged into one big result and
returned to the application, or the application logic can be performed directly
at the server, without having to transmit the results to the client at aL

Stored procedures are also beneficial for software engineering reasons. Once
a stored procedure is registered with the database server, different users can
re-use the stored procedure, eliminating duplication of efforts in writing SQL
queries or application logic, and making code maintenance easy. In addition,
application programmers do not need to know the the database schema if we
encapsulate all database access into stored procedures.

Although they,are called stored procedur'es, they do not have to be procedures
in a programming language sense; they can be functions.

6.5.1 Creatinga Simple Stored Procedure

Let us look at the example stored procedure written in SQL shown in Figure
6.8. We see that stored procedures must have a name; this stored procedure

210 CHAPTER’ 6

has the name 'ShowNumberOfOrders." Otherwise, it just contains an SQL
statement that is precompiled and stored at the server.

CREATE PROCEDURE ShowNumberOfOrders
SELECT C.cid, C.cname, COUNT(*)
FROM Customers C, Orders d
WHERE C.cid = O.cid
GROUP BY C.cid, C.cname

Figure 6.8 A Stored Procedure in SQL

Stored procedures can aso have parameters. These parameters have to be
valid SQL types, and have one of three different modes: IN, OUT, or INOUT.
IN parameters are arguments to' the stored procedure. OUT parameters are
returned from the stored procedure; it assigns values to al OUT parameters
that the user can process. INOUT parameters combine the properties of IN and
OUT parameters: They contain values to be passed to the stored procedures, and
the stored procedure can set their values as return values. Stored procedures
enforce strict type conformance: If a parameter is of type INTEGER, it cannot
be called with an argument of type VARCHAR.

Let us look at an example of a stored procedure with arguments. The stored
procedure shown in Figure 6.9 has two arguments: book_isbn and addedQty.
It updates the available number of copies of a book with the quantity from a
new shipment.

CREATE PROCEDURE AddInventory (
IN book_isbn CHAR(IO),
IN addedQty INTEGER)
UPDATE Books
SET gty_in_stock = qtyjn_stock + addedQty
WHERE bookjsbn = isbn

Figure 6.9 A Stored Procedure with Arguments

Stored procedures do not have to be written in SQL; they can be written in any
host language. As an example, the stored procedure shown in Figure 6.10 is a
Java function that is dynamically executed by the database server whenever it
is called by the dient:

6.5.2 Calling Stored Procedures

Stored procedures can be called in interactive SQL with the CALL statement:

Database Application Development 211

CREATE PROCEDURE RallkCustomers(IN number INTEGER)
LANGUAGE Java
EXTERNAL NAME ‘file:// /c:/storedProcedures/rank.jar’

Figure 6.10 A Stored Procedure in Java

CALL storedProcedureName(argumentl, argument2, ..., argumentN);

In Embedded SQL, the arguments to a stored procedure are usually variables
in the host language. For example, the stored procedure Addlnventory would
be called as follows:

EXEC SQL BEGIN DECLARE SECTION
char isbn[lO];

long qty;
EXEC SQL END DECLARE SECTION

/1 set isbn and gty to some values
EXEC SQL CALL Addinventory(:isbn,:qty);

Calling Stored Proceduresfrom JDBC

We can call stored procedures from JDBC using the CallableStatment class.
CallableStatement is a subclass of PreparedStatement and provides the same
functionality. A stored procedure could contain multiple SQL staternents or a
series of SQL statements-thus, the result could be many different ResultSet
objects. We illustrate the case when the stored procedure result is a single
ResultSet.

CallableStatement cstmt=

coil.prepareCall (" {call ShowNumberOfOrders}");
ResultSet rs = cstmt.executeQueryO
while (rs.next())

Calling Stored Proceduresfrom SQLJ

The stored procedure 'ShowNumberOfOrders' is called as follows using SQLJ:

/] create the cursor class
#sql !terator Customerinfo(int cid, String cname, int count);

/| create the cursor

212 CHAPTER 6

CustomerInfo customerinfo;

/1 call the stored procedure
#sql customerinfo = {CALL ShowNumberOfOrders};
while (customerinfo.nextO) {
System.out.printin(customerinfo.cid() + "," +
customerinfo.count()) ;

}
653 SQLIPSM

All major database systems provide ways for users to write stored proceduresin
asimple, general purpose language closely aligned with SQL. In this section, we
briefly discuss the SQL/PSM standard, which is representative of most vendor-
specific languages. In PSM, we define modules, which are collections of stored
procedures, temporary relations, and other declarations.

In SQL/PSM, we declare a stored procedure as follows:

CREATE PROCEDURE name (parameterl,..., parameterN)
local variable declarations
procedure code;

We can declare a function similarly as follows:

CREATE FUNCTION name (parameterl, ..., parameterN)
RETURNS sqlDataType
local variable declarations
function code;

Each parameter is a triple consisting of the mode (IN, OUT, or INOUT as
discussed in the previous section), the parameter name, and the SQL datatype
of the parameter. We can seen very simple SQL/PSM procedures in Section
6.5.1. Inthiscase, thelocal variable declarations were empty, and the procedure
code consisted of an SQL query.

We start out with an example of a SQL/PSM function that illustrates the
main SQL/PSM constructs. The function takes as input a customer identified
by her c¢id and a year. The function returns the rating of the customer, which
is defined as follows. Customers who have bought more than ten books during
the year are rated 'two'; customer who have purchased between 5 and 10 books
arerated 'one', otherwise the customer israted 'zero'. The following SQL/PSM
code computes the rating for a given customer and year.

CREATE PROCEDURE RateCustomer

Database Application Development

Let

(IN custld INTEGER, IN year INTEGER)
RETURNS INTEGER
DECLARE rating INTEGER,;
DECLARE numOrders INTEGER,;
SET numOrders =
(SELECT COUNT(*) FROM Orders O WHERE O.tid = custld);
IF (numOrders>10) THEN rating=2;
ELSEIF (numOrders>5) THEN rating=1,;
ELSE rating=0;
END IF;
RETURN rating;

us use this example to give a short overview of some SQL/PSM constructs:

We can declare local variables using the DECLARE statement. In our exam-
ple, we declare two local variables: 'rating’, and 'numOrders'.

PSM/SQL functions return values via the RETURN statement. In our ex-
ample, we return the value of the local variable 'rating'.

We can assign values to variables with the SET statement. In our example,
we assigned the return value of a query to the variable 'numOrders'.

SQL/PSM has branches and loops. Branches have the following form:

IF (condition) THEN statements;
ELSEIF statements;

ELSEIF statements;
ELSE statements; END |IF

Loops are of the form

LOOP
staternents:
END LOOP

Queries can be used as part of expressions in branches; queries that return
a single value can be assigned to variables as in our example above.

'We can use the same cursor statements as in Embedded SQL (OPEN, FETCH,
CLOSE), but we do not need the EXEC SQL constructs, and variables do not
have to be prefixed by a colon *;’.

We only gave a very short overview of SQL/PSM; the references at the end of
the chapter provide more information.

214 CHAPTER 6

6.6 CASE STUDY: THE INTERNET BOOK SHOP

DBDudes finished logical database design, as discussed in Section 3.8, and now
consider the queries that they have to support. They expect that the applica-
tion logic will be implemented in Java, and so they consider JDBC and SQLJ as
possible candidates for interfacing the database system with application code.

Recall that DBDudes settled on the following schema:

Books(isbn: CHAR(10), title: CHAR(8), author: CHAR(80),

gty_in_stock: INTEGER, price: REAL, year_published: INTEGER)
Customers(cid: INTEGER, cname: CHAR(80), address. CHAR(200))
Orders(ordernum: INTEGER, isbn: CHAR(IO), cid: INTEGER,

cardnum: CHAR(I6), qty: INTEGER, order_date: DATE, ship_date: DATE)

Now, DBDudes considers the types of queries and updates that will arise. They
first create a list of tasks that will be performed in the application. Tasks
performed by customers include the following.

w Customers search books by author name, title, or ISBN.

m Customers register with the website. Registered customers might want
to change their contact information. DBDudes redlize that they have to
augment the Customers table with additional information to capture login
and password information for each customer; we do not discuss this aspect
any further.

m Customers check out a final shopping basket to complete a sale.
» Customers add and delete books from a 'shopping basket' at the website.

m Customers check the status of existing orders and look at old orders.
Administrative tasks performed by employees of B&N are listed next.

w Employees look up customer contact information.
s Employees add new books to the inventory.

w Employees fulfill orders, and need to update the shipping date of individual
books.

s Employees analyze the data to find profitable customers and customers
likely to respond to special marketing campaigns.

Next, DBDudes consider the types of queries that will arise out of these tasks.
To support searching for books by name, author, title, or ISBN, DBDudes
decide to write a stored procedure as follows:

Database Application Development

CREATE PROCEDURE SearchByISBN (IN book.isbn CHAR(10))
SELECT B.title, B.author, B.qty.in_stock, B.price, B.yeal published
FROM Books B
WHERE B.isbn = book.isbn

Placing an order involves inserting one or more records into the Orders table.
Since DBDudes has not yet chosen the Java-based technology to program the
application logic, they assume for now that the individual books in the order
are stored at the application layer in a Java array. To finalize the order, they
write the following JDBC code shown in Figure 6.11, which inserts the elements
from the array into the Orders table. Note that this code fragment assumes
several Java variables have been set beforehand.

String sgl = "INSERT INTO Orders VALUES(7, 7, 7, 7, 7, 7)";
PreparedStatement pstmt = con.prepareStatement(sql);
con.setAutoCommit(false);

try {
/1 orderList is a vector of Order objects

/1 ordernum is the current order number
/1 dd is the ID of the customer, cardnum is the credit card number
for (int i=0; iiorderList.lengthO; i++)
/1 now instantiate the parameters with values
Order currentOrder = orderList[i];
pstmt.clearParameters() ;
pstmt.setlnt(l, ordernum);
pstmt.setString(2, Order.getlsbnO);
pstmt.setint(3, dd);
pstmt.setString(4, creditCardNum);
pstmt.setint(5, Order.getQtyO);
pstmt.setDate(6, null);

pstmt.executeUpdate();
}

con.commit();
catch (SgLException)
con.rollbackO;
System.out. println(e.getM essage());

Figure 6.11 Inserting a Completed Order into the Database

216 CHAPTER 6

DBDudes writes other JDBC code and stored procedures for al of the remain-
ing tasks. They use code similar to some of the fragments that we have seen in
this chapter.

m Establishing a connection to a database, as shown in Figure 6.2.
» Adding new books to the inventory, as shown in Figure 6.3.
m Processing results from SQL queries as shown in Figure 6.4-

s For each customer, showing how many orders he or she has placed. We
showed a sample stored procedure for this query in Figure 6.8.

= Increasing the available number of copies of a book by adding inventory,
as shown in Figure 6.9.

= Ranking customers according to their purchases, as shown in Figure 6.10.

DBDudcs takes care to make the application robust by processing exceptions
and warnings, as shown in Figure 6.6.

DBDudes also decide to write a trigger, which is shown in Figure 6.12. When-
ever a new order is entered into the Orders table, it is inserted with ship_date
set to NULL. The trigger processes each row in the order and calls the stored
procedure 'UpdateShipDate’. This stored procedure (whose code is not shown
here) updates the (anticipated) ship_date of the new order to 'tomorrow', in
case qgtyjlLstock of the corresponding book in the Books table is greater than
zero. Otherwise, the stored procedme sets the ship_date to two weeks.

CREATE TRIGGER update_ShipDate

AFTER INSERT ON Orders 1* Event *j
FOR EACH ROW
BEGIN CALL UpdatcShipDate(new); END 1* Action *j

Figure 6.12 Trigger to Update the Shipping Date of New Orders

6.7 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

» Why is it not straightforward to integrate SQL queries with a host pro-
gramming language? (Section 6.1.1)

s How do we declare variables in Ernbcdded SQL? (Section 6.1.1)

Database Application Development 217

* How do we use SQL statements within a host langl.lage? How do we check
for errors in statement execution? (Section 6.1.1)

e Explain the impedance mismatch between host languages and SQL, and
describe how cursors address this. (Section 6.1.2)

« What properties can cursors have? (Section 6.1.2)

* What is Dynamic SQL and how is it different from Embedded SQL? (Sec-
tion 6.1.3)

* What is IDBC and what are its advantages? (Section 6.2)

* What are the components of the JDBC architecture? Describe four differ-
ent architectural alternatives for JDBC drivers. (Section 6.2.1)

* How do we load JDBC drivers in Java code? (Section 6.3.1)

* How do we manage connections to data sources? What properties can
connections have? (Section 6.3.2)

* What alternatives does JDBC provide for executing SQL DML and DDL
statements? (Section 6.3.3)

* How do we handle exceptions and warnings in JDBC? (Section 6.3.5)
e 'What functionality provides the DatabaseM etaDataclass? (Section 6.3.6)
e What is SQLJ and how is it different from JDBC? (Section 6.4)

*» Why are stored procedures important? How do we declare stored proce-
dures and how are they called from application code? (Section 6.5)

EXERCISES

Exercise 6.1 Briefly answer the following questions.

1. Explain the following terms: Cursor, Embedded SQL, JDBC, SQLJ, stored procedure.
2. What are the differences between JDBC and SQLJ? \Nhy do they both exist?

3. Explain the term stored procedure, and give examples why stored procedures are useful.
Exercise 6.2 Explain how the following steps are performed in JDBC:

1. Connect to a data source.
2. Start, commit, and abort transactions.
3. Call a stored procedure.

How are these steps performed in SQLJ?

218 CHAPTER 6

Exercise 6.3 Compare exception handling and handling of warnings ill embedded SQL, dy-
namic SQL, .IDBC, and SQL.I.

Exercise 6.4 Answer the following questions.

1. Why do we need a precompiler to translate embedded SQL and SQL.J? Why do we not
need a precompiler for .IDBC?

2. SQL.J and embedded SQL use variables in the host language to pass parameters to SQL
queries, whereas .JDBC uses placeholders marked with a ‘7. Explain the difference, and
why the different mechanisms are needed.

Exercise 6.5 A dynamic web site generates HTML pages from information stored in a
database. Whenever a page is requested, is it dynamically assembled from static data and
data in a database, resulting in a database access. Connecting to the database is usually
a time-consuming process, since resources need to be allocated, and the user needs to be
authenticated. Therefore, connection pooling--setting up a pool of persistent database
connections and then reusing them for different requests can significantly improve the per-
formance of database-backed websites. Since servlets can keep information beyond single
requests, we can create a connection pool, and allocate resources from it to new requests.

Werite a connection pool class that provides the following methods:

n Create the pool with a specified number of open connections to the database system.
L] Obtain an open connection from the pool.

n Release a connection to the pool.

n Destroy the pool and close all connections.

PROJECT-BASED EXERCISES

In the following exercises, you will create database-backed applications. In this chapter, you
will create the parts of the application that access the database. In the next chapter, you
will extend this code to other aspects of the application. Detailed information about these
exercises and material for more exercises can be found online at

http://www.cs.wisc.edu/-dbbook

Exercise 6.6 Recall the Notown Records database that you worked with in Exercise 2.5 and
Exercise 3.15. You have now been tasked with designing a website for Notown. It should
provide the following functionality:

L] Users can search for records by name of the musician, title of the album, and Bame of
the song.

L] Users can register with the site, and registered users can log on to the site. Once logged
on, users should not have to log on again unless they are inactive for a long time.

L] Users who have logged on to the site can add items to a shopping basket.

w Users with items in their shopping basket can check out and make a purchase.

Database Application Development 219

NOtOWII wants to use JDBC to access the database. Write .JDBC code that performs the
necessary data access and manipulation. You will integrate this code with application logic
and presentation in the next chapter.

If Notown had chosen SQLJ instead of JDBC, how would your code change?

Exercise 6.7 Recall the database schema for Prescriptions-R-X that you created in Exer-~
cise 2.7. The Prescriptions-R-X chain of pharmacies has now engaged you to design their
new website. The website has two different classes of users: doctors and patients. Doctors
should be able to enter new prescriptions for their patients and modify existing prescriptions.
Patients should be able to declare themselves as patients of a doctor; they should be able
to check the status of their prescriptions online; and they should be able to purchase the
prescriptions online so that the drugs can be shipped to their home address.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec-
essary data access and manipulation. You will integrate this code with application logic and
presentation in the next chapter.

Exercise 6.8 Recall the university database schema that you worked with in Exercise 5.1.
The university has decided to move enroliment to an online system. The website has two
different classes of users: faculty and students. Faculty should be able to create new courses
and delete existing courses, and students should be able to enroll in existing courses.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec-
essary data access and manipulation. You will integrate this code with application logic and
presentation in the next chapter.

Exercise 6.9 Recall the airline reservation schema that you worked on in Exercise 5.3. De-
sign an online airline reservation system. The reservation system will have two types of users:
airline employees, and airline passengers. Airline employees can schedule new flights and can-
cel existing flights. Airline passengers can book existing flights from a given destination.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec-
essary data access and manipulation. You will integrate this code with application logic and
presentation in the next chapter.

BIBLIOGRAPHIC NOTES

Information on ODBC can be found on Microsoft's web page (www.microsoft.com/data/odbc),
and information on JDBC can be found on the Javaweh page (j ava. sun. com/products/jdbc).
There exist rnany books on ODBC, for example, Sanders' ODBC Developer's Guicle [652] and
the Ivlicrosoft ODBC SDK [533]. Books on JDBC include works by Hamilton et al. [359],
Reese [621], and White et a. [773].

INTERNET APPLICATIONS

=« How do we name resources on the Internet?

§

How do Web browsers and webservers communicate?

= How do we present documents on the Internet? How do we differen-
tiate between formatting and content?

& What is a three-tier application architecture? How do we write three-
tiered applications?

w Why do we have application servers?

» Key concepts: Uniform Resource Identifiers (URI), Uniform Re-
source Locators (URL); Hypertext Transfer Protocol (HTTP), state-
less protocol; Java; HTML; XML, XML DTD; three-tier architecture,
client-server architecture; HTML forms;, JavaScript; cascading style
sheets, XSL; application server; Common Gateway Interface (CGl);
servlet; JavaServer Page (JSP); cookie

Wow! They've got the Internet on computers now!

--Homer Simpson, The Simpsons

71 INTROpUCTION

The proliferation of computer networks, including the Internet and corporate
'intranets,’ has enabled users to access a large number of data sources. This
increased access to databases is likely to have a great practical impact; data
and services can now be offered directly to customers in ways impossible until

220

Internet Applications 221

recently. Examples of such electronic commerce applications include pur-
chasing books through a \Veb retailer such as Amazon.com, engaging in online
auctions at a site such as eBay, and exchanging bids and specifications for
products between companies. The emergence of standards such as XrvIL for
describing the content of documents is likely to further accelerate electronic
commerce and other online applications.

While the first generation of Internet sites were collections of HTML files, most
major sites today store a large part (if not al) of their datain database systems.
They rely on DBM Ss to provide fast, reliable responses to user requests received
over the Internet. This is especially true of sites for electronic commerce and
other business applications.

In this chapter, we present an overview of concepts that are central to Internet
application development. We start out with a basic overview of how the Internet
works in Section 7.2. Weintroduce HTML and XML, two data formats that are
used to present data on the Internet, in Sections 7.3 and 7.4. In Section 7.5, we
introduce three-tier architectures, a way of structuring Internet applications
into different layers that encapsulate different functionality. In Sections 7.6
and 7.7, we describe the presentation layer and the middle layer in detail; the
DBMS is the third layer. We conclude the chapter by discussing our B&N case
study in Section 7.8.

Examples that appear in this chapter are available online at

http://www.cs.wisc.edu/-dbbook

7.2 INTERNET CONCEPTS

The Internet has emerged as a universal connector between globally distributed
software systems. To understand how it works, we begin by discussing two basic
issues: how sites on the Internet are identified, and how programs at one site
communicate with other sites.

We first introduce Uniform Resource Identifiers, a naming schema for locating
resources on the Internet in Section 7.2.1. \Ve then talk about the most popular
protocol for accessing resources over the Web, the hypertext transfer protocol
(HTTP) in Section 7.2.2.

7.2.1 Uniform Resource ldentifiers

Uniform Resource Identifiers (URIS), are strings that uniquely identify
resources o1 the Internet. A resource is any kind of information that can

222 CHAPTER 7,

Distributed Applications and Service-Oriented Architectures:
The advent of XML, due to its loosely-coupled nature, has made-infor-
mation exchange between different applications feasible to an extent previ-
ously unseen. By using XML for information exchange, applications can be
written in different programming languages, run on different operating sys-
tems, and yet they can still share information with each other. There are
also standards for externally describing the intended content of an XML
file or message, most notably the recently adopted W3C XML Schemas
standard.

A promising concept that has arisen out of the XML revolution is the notion
of a Web service. A Web service is an application that provides a well-
defined service, packaged as a set of remotely callable procedures accessible
through the Internet. Web services have the potential to enable powerful
new applications by composing existing Web services-all communicating
seamlessly thanks to the use of standardizedXML-based information ex-
change. Several technologies have been developed or are currently under
development that facilitate design and implementation of distributed ap-
plications. SOAP isaW3C standard for XML-based invocation of remote
services (think XML RPC) that alows distributed applications to commu-
nicate either synchronously or asynchronously via structured, typed XML
messages. SOAP calls can ride on a variety of underlying transport layers,
including HTTP (part of what is making SOAP so successful) and vari-
ous reliable messaging layers. Related to the SOAP standard are W3C's
Web Services Description Language (WSDL) for describing Web
service interfaces, and Universal Description, Discovery, and Inte-
gration (UDDI), a WSDL-based Web services registry standard (think
yellow pages for Web services).

SOAP-based Web services are the foundation for Microsoft's recently re-
leased .NET framework, their application development infrastructure and
associated run-time system for developing distributed applications, as well
as for the Web services offerings of major software vendors such as IBM,
BEA, and others. Many large software application vendors (major compa-
nies like PeopleSoft and SAP) have announced plans to provide Web service
interfaces to their products and the data that they manage, and many are
hoping that XMI. and Web services will finally provide the answer to the
long-standing problem of enterprise application integration. Web services
are also being looked to as a natural foundation for the next generation of
business process management (or workflow) systems.

Internet Applications 223

be identified by a URI, and examples include webpages, images, downloadable
files, services that can be remotely invoked, mailboxes, and so on. The most
common kind of resource is a static file (such as a HTML document), but a
resource may also be a dynamically-generated HTML file, a movie, the output
of a program, etc.

A URI has three parts:

e The (name of the) protocol used to access the resource.
e The host computer where the resource is located.

e The path name of the resource itself on the host computer.

Consider an example URI, such as http://www.bookstore.com/index .html.
This URI can be interpreted as follows. Use the HTTP protocol (explained in
the next section) to retrieve the document index. html |located at the computer
www.bookstore.com.This example URI is an instance of a Universal Re-
source Locator (URL), a subset of the more general URI naming scheme;
the distinction is not important for our purposes. As another example, the
following HTML fragment shows a URI that is an email address:

Email the webmaster.

7.2.2 TheHypertext Transfer Protocol (HTTP)

A communication protocol is a set of standards that defines the structure
of messages between two communicating parties so that they can understand
each other's messages. The Hypertext Transfer Protocol (HTTP) is the
most common communication protocol used over the Internet. It is a client-
server protocol in which aclient (usually a Web browser) sends a request to an
HTTP server, which sends a response back to the client. When a user requests
a webpage (e.g., clicks on a hyperlink), the browser sends HTTP request
messages for the objects in the page to the server. The server receives the
requests and responds with HT TP response messages, which include the
objects. It is important to recognize that HTTP is used to transmit all kinds
of resources, not just files, but most resources on the Internet today are either
static files or files output from server-side scripts.

A variant of the HTTP protocol called the Secure Sockets Layer (SSL)
protocol uses encryption to exchange information securely between client and
server. We postpone a discussion of SSL to Section 21.5.2 and present the basic
HTTP protocol in this chapter.

224 CHAPTER

As an example, consider what happens if a user clicks on the following link:
http://www.bookstore.com/index .html. We first explain the structure of an
HTTP request message and then the structure of an HT TP response message.

HTTP Requests

The client (Web browser) establishes a connection with the webserver that
hosts the resource and sends a HT TP request message. The following example
shows a sample HT TP request message:

GET index.html HTTP/I.I
User-agent: Mozilla/4.0
Accept: text/html, image/qgif, image/jpeg

The general structure of an HTTP request consists of several lines of ASCII
text, with an empty line at the end. The first line, the request line, has three
fidds the HTTP method field, the URI field, and the HTTP version
field. The method field can take on values GET and POST; in the exam-
ple the message requests the object index. html. (We discuss the differences
between HTTP GET and HTTP POST in detail in Section 7.11.) The version
field indicates which version of HTTP is used by the client and can be used
for future extensions of the protocol. The user agent indicates the type of
the client (e.g., versions of Netscape or Internet Explorer); we do not discuss
this option further. The third line, starting with Accept, indicates what types
of files the client is willing to accept. For example, if the page index. html
contains a movie file with the extension .mpg, the server will not send this file
to the client, as the client is not ready to accept it.

HTTP Responses

The server responds with an HT TP response message. It retrieves the page
index. html, uses it to assemble the HTTP response message, and sends the
message to the client. A sample HT TP response looks like this;

HTTP/I.I 200 OK

Date: Mon, 04 Mar 2002 12:00:00 GMT
Content-Length: 1024

Content-Type: text/html

Last-Modified: Mall, 22 sun 1998 09:23:24 GMT
<HTML>

<HEAD>

</HEAD>

<BODY>

Internet Applications 225

<H1>Barns and Nobble Internet Bookstore</H1>
Our inventory:

<H3>Science</H3>

The Character of Physical Law

The HTTP response message has three parts: a status line, several header
lines, and the body of the message (which contains the actual object that the
client requested). The status line has three fields (analogous to the request
line of the HTTP request message): the HTTP version (HTTP/1.1), a status
code (200), and an associated server message (OK). Common status codes and
associated messages are:

e 200 OK: The request succeeded and the object is contained in the body of
the response message”;

= 400 Bad Request: A generic error code indicating that the request could
not be fulfilled by the server.

= 404 Not Found: The requested object does not exist on the server.

m 505 HTTP Version Not Supported: The HTTP protocol version that the
client uses is not supported by the server. (Recall that the HTTP protocol
version sent in the client's request.)

Our example has three header lines: The date header line indicates the time
and date when the HT TP response was created (not that this is not the object
creation time). The Last-Modified header line indicates when the object was
created. The Content-Length header line indicates the number of bytes in the
object being sent after the last header line. The Content-Type header line
indicates that the object in the entity body is HTML text.

Theclient (the Web browser) receives the response message, extractsthe HTML
file, parses it, and displays it. In doing so, it might find additional URIs in the
file, and it then uses the HTTP protocol to retrieve each of these resources,
establishing a new connection each time.

Oneimportant issue is that the HTTP protocol is a statel ess protocol. Every
message----from, the client to the HTTP server and vice-versa-is self-contained,
and the connection established with a request is maintained only until the
response message is sent. The protocol provides no mechanism to automatically
‘'remember’ previous interactions between client and server.

The stateless nature of the HTTP protocol has a major impact on how Inter-
net applications are written. Consider a user who interacts with our exalllple

226 CHAPTER 7

bookstore application. Assume that the bookstore permits users to log into
the site and then carry out several actions, such as ordering books or changing
their address, without logging in again (until the login expires or the user logs
out). How do we keep track of whether a user is logged in or not? Since HTTP
is stateless, we cannot switch to a different state (say the 'logged in' state) at
the protocol level. Instead, for every request that the user (more precisely, his
or her Web browser) sends to the server, we must encode any state information
required by the application, such as the user's login status. Alternatively, the
server-side application code must maintain this state information and look it
up on a per-request basis. This issue is explored further in Section 7.7.5.

Note that the statelessness of HTTP is a tradeoff between ease of implementa-
tion of the HTTP protocol and ease of application development. The designers
of HTTP chose to keep the protocol itself simple, and deferred any functionality
beyond the request of objects to application layers above the HT TP protocol.

7.3 HTML DOCUMENTS

In this section and the next, we focus on introducing HTML and XML. In
Section 7.6, we consider how applications can use HTML and XML to create
forms that capture user input, communicate with an HTTP server, and convert
the results produced by the data management layer into one of these formats.

HTML is a simple language used to describe a document. It is also called a
markup language because HTML works by augmenting regular text with
‘marks' that hold special meaning for a Web browser. Commands in the lan-
guage, called tags, consist (usually) of a start tag and an end tag of the
form <TAG> and </TAG>, respectively. For example, consider the HTML frag-
ment shown in Figure 7.1. It describes a webpage that shows a list of books.
The document is enclosed by the tags <HTML> and </HTML>, marking it as an
HTML document. The remainder of the document-enclosed in <BODY> ...
</BoDY >-contains information about three books. Data about each book is
represented as an unordered list (UL) whose entries are marked with the LI
tag. HTML defines the set of valid tags as well as the meaning of the tags. :For
example, HTML specifies that the tag <TITLE> is a valid tag that denotes the
title of the document. As another example, the tag always denotes an
unordered list.

Audio, video, and even programs (written in Java, a highly portable language)
can be included in HTML documents. When a user retrieves such a document
using a suitable browser, images in the document arc displayed, audio and video
clips are played, and embedded programs are executed at the usei’s machine;
the result is a rich multimedia presentation. The ease with which HTML docu-

Internet Applications 227

<HTML>
<HEAD>
</HEAD>
<BODY>
<HI>Barns and Nobble Internet Bookstore</HI>
Our inventory:
<H3>Science</H3>
The Character of Physical Law

Author: Richard Feynman
Published 1980
Hardcover

<H3>Fiction</H3>
Waiting for the Mahatma

Author: R.K. Narayan</LI|>
Published 1981

The English Teacher
<uUL>
Author: R.K. Narayan
Published 1980</LI1>
Paperback

</BODY >
</HTML>

Figure 7.1 Book Listing in HTML

ments can be created—there are now visual editors that automatically generate
HTML----and accessed using Internet browsers has fueled the explosive growth
of the Web.

7.4 XML DOCUMENTS

In this section, we introduce XML as a document format, and consider how
applications can utilize XML. Managing XML documents in a DBMS poses
several new challenges; we discuss this aspect of XML in Chapter 27.

228 CHAPTER ;7

vWhile HTML can be used to mark up documents for display purposes, it is
not adequate to describe the structure of the content for more general applica-
tions. For example, we can send the HTML document shown in Figure 7.1 to
another application that displays it, but the second application cannot distin-
guish the first names of authors from their last names. (The application can
try to recover such information by looking at the text inside the tags, but this
defeats the purpose of using tags to describe document structure.) Therefore,
HTML is unsuitable for the exchange of complex documents containing product
specifications or bids, for example.

Extensible Markup Language (XML) is a markup language developed to
remedy the shortcomings of HTML. In contrast to a fixed set of tags whose
meaning is specified by the language (as in HTML), XML allows users to de-
fine new collections of tags that can be used to structure any type of data or
document the user wishes to transmit. XML is an important bridge between
the document-oriented view of dataimplicit in HTML and the schema-oriented
view of data that is central to a DBMS. It has the potential to make database
systems more tightly integrated into Web applications than ever before.

XML emerged from the confluence of two technologies, SGML and HTML. The
Standard Generalized Markup Language (SGML) is a metalanguage
that alows the definition of data and document interchange languages such as
HTML. The SGML standard was published in 1988, and many organizations
that rnanage a large number of complex documents have adopted it. Due to its
generality, SGML is complex and requires sophisticated programs to harness
its full potential. XML was developed to have much of the power of SGML
while remaining relatively simple. Nonetheless, XML, like SGML, alows the
definition of new document markup languages.

Although XML does not prevent a user from designing tags that encode the
display of the datain a Web browser, there is a style language for XML called
Extensible Style Language (XSL). XSL is a standard way of describing
how an XML docmnent that adheres to a certain vocabulary of tags should be
displayed.

7.4.1 Introductionto XML
We use the small XML docmnent shown in Figure 7.2 as an example.

= Elements: Elements, also called tags, arc the primary building blocks of
an XML docmnent. The start of the content of an element ELM is marked
with <ELM>, which is called the start tag, and the end of the content end
is marked with </ELM>, called the end tag. In our example document.

Internet Applications 229

The Design Goals of XML: XML was developed starting in 1996 by a
working group under guidance of the World Wide Web Consortium (W3C)
XMI, Specia Interest Group. The design goals for XML included the
following:

1. XML should be compatible with SGML.
2. It should be easy to write programs that process XML documents.

3. The design of XML should be formal and concise.

the element BOOKLIST encloses al information in the sample document.
The element BOOK demarcates all data associated with a single book.
XML elements are case sensitive: the element BOOK is different from
Book. Elements must be properly nested. Start tags that appear inside
the content of other tags must have a corresponding end tag. For example,
consider the following XML fragment:

<BOOK>
<AUTHOR>
<HRSTNAME>Richard</FIRSTNAME>
<LASTNAME>Feynluan</LASTNAME>
</AUTHOR>
</BOOK>
The element AUTHOR is completely nested inside the element BOOK, and

both the elements LASTNAME and FIRSTNAME are nested inside the element
AUTHOR.

m Attributes: An element can have descriptive attributes that provide ad-
ditional information about the element. The values of attributes are set
inside the start tag of an element. For example, let ELM denote an element
with the attribute att. We can set the value of att to value through the
following expression: <ELM att="value.> All attribute values must be
enclosed in quotes. In Figure 7.2, the element BOOK has two attributes.
The attribute GENRE indicates the genre of the book (science or fiction)
and the attribute FORMAT indicates whether the book is a hardcover or a
paperback.

s Entity References: Entities are shortcuts for portions of common text or
the content of external files, and we call the usage of an entity in the XML
document an entity reference. Wherever an entity reference appears in
the document, it is textually replaced by its content. Entity references
start with a ‘¢’ and end with a *;'. Five predefined entities in XML are
placeholders for chara.cters with special meaning in XML. For example, the

230

CHAPTER +f

<?xml version=11.0" encoding="UTF-S" standalone=IlyeslI?>
<BOOKLIST>
<BOOK GENRE="Science" FORMAT="Hardcover" >
<AUTHOR>
<FIRSTNAME>Richard</FIRSTNAME>
<LASTNAME>Feynman</LASTNAME>
</AUTHOR>
<TITLE>The Character of Physical Law</TITLE>
<PUBLISHED>1980</PUBLISHED>
</BOOK>
<BOOK> GENRE=" Fiction" >
<AUTHOR>
<FIRSTNAME>R K .</[FIRSTNAME>
<LASTNAME>Narayan</LASTNAME>
</AUTHOR>
<TITLE>Waiting for the Mahatma</TITLE>
<PUBLISHED>1981</PUBLISHED>
</BOOK>
<BOOK GENRE=" Fiction" >
<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME>
<LASTNAME>Narayan</LASTNAME>
</AUTHOR>
<TITLE>The English Teacher</TITLE>
<PUBLISHED> 1980</PUBL ISHED>
</BOOK>
</BOOKLIST>

Figure 7.2 Book Information in XML

< character that marks the beginning of an XML command is reserved and
has to be represented by the entity 1t. The other four reserved characters
are &, >, ", and '; they are represented by the entities amp, gt, quot,
and apos. For example, the text 'l < 5' has to be encoded in an XML
document as follows: ' 1&1t ;5& apos;. We can also use entities to
insert arbitrary Unicode characters into the text. Unicode is a standard
for character representations, similar to ASCII. For example, we can display
the Japanese Hiragana character a using the entity reference あ.

Comments: We can insert comments anywhere in an XML document.
Comments start with <! - and end with ->. Comments can contain arbi-
trary text except the string --.

Internet Applications

« Document Type Declarations (DTDs): In XML, we can define our
own markup language. A DTD is a set of rules that alows us to specify
our own set of elements, attributes, and entities. Thus, a DTD is basically
a grammar that indicates what tags are alowed, in what order they can
appear, and how they can be nested. We discuss DTDs in detail in the
next section.

We cal an XML document well-formed if it has no associated DTD but
follows these structural guidelines:

* The document starts with an XML declaration. An example of an XML
declaration is the first line of the XML document shown in Figure 7.2.

« A root element contains al the other elements. In our example, the root
element is the element BOOKLIST.

e All elements must be properly nested. This requirement states that start
and end tags of an element must appear within the same enclosing element.

742 XML DTDs

A DTD is a set of rules that allows us to specify our own set of elements,
attributes, and entities. A DTD specifies which elements we can use and con-
straints on these elements, for example, how elements can be nested and where
elements can appear in the document. We call a document valid if a DTD is
associated with it and the document is structured according to the rules set by
the DTD. In the remainder of this section, we use the example DTD shown in
Figure 7.3 to illustrate how to construct DTDs.

<!DOCTYPE BOOKLIST [
<! ELEMENT BOOKLIST (BOOK)*>
<! ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?»
<IELEMENT AUTHOR (FIRSTNAME,LASTNAME»
<! ELEMENT FIRSTNAME (#PCDATA»
<! ELEMENT LASTNAME (#PCDATA»
<! ELEMENT TITLE (#PCDATA»
< !ELEMENT PUBLISHED (#PCDATA»
<I ATTLIST BOOK GENRE (SciencelFiction) #REQUIRED>
<IATTLIST BOOK FORMAT (PaperbacklHardcover) "Paperback">
P>

Figure 7.3 Bookstore XML DTD

232 CHAPTER 7

A DTD is enclosed in <!DOCTYPE name [DTDdeclarationJ>, where name is

the name of the outermost enclosing tag, and DTDdeclaration is the text of

the rules of the DTD. The DTD starts with the outermost element—the root

element—which is BOOKLIST in our example. Consider the next rule:
<IELEMENT BOOKLIST (BOOK)*>

This rule tells us that the element BOOKLIST consists of zero or more BOOK
elements. The * after BOOK indicates how many BOOK elements can appear
inside the BOOKLIST element. A * denotes zero or more occurrences, a + denotes
one or more occurrences, and a? denotes zero or one occurrence. For example,
if we want to ensure that a BOOKLIST has at least one book, we could change
the rule as follows:

<IELEMENT BOOKLIST (BOOK)+>

Let us look at the next rule:

<IELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?»

This rule states that a BOOK element contains a AUTHOR element, a TITLE ele-
ment, and an optional PUBLISHED clement. Note the use of the? to indicate
that the information is optional by having zero or one occurrence of the element.
Let us move ahead to the following rule:

<IELEMENT LASTNAME #PCDATA»

Until now we considered only elements that contained other elements. This
rule states that LASTNAME is an element that does not contain other elements,
but contains actual text. Elements that only contain other elements are said
to have element content, whereas elements that also contain #PCDATA are
sald to have mixed content. In general, an element type declaration has the
following structure:

<!ELEMENT (contentType»

Five possible content types are:

s Other elements.
The special syrnbol #PCDATA, which indicates (parsed) character data.

s The special symbol EMPTY, which indicates that the element has no content.
Elements that have no content are not required to have an end tag.

m The special symbol ANY, which indicates that any content is permitted.
This content should be avoided whenever possible since it disables al check-
ing of the document structure inside the element.

Internet Applications 283

m A regular expression constructed from the preceding four choices. A
regular expression is one of the following:

- expl, exp2, exp3: A list of regular expressions.

- exp*: An optional expression (zero or more occurrences).
- exp? An optional expression (zero or one occurrences).

- exp+: A mandatory expression (one or more occurrences).
- expl 1 exp2: expl or exp2.

Attributes of elements are declared outside the element. For example, consider
the following attribute declaration from Figure 7.3:

<l ATTLIST BOOK GENRE (SciencelFiction) #REQUIRED»

This XML DTD fragment specifies the attribute GENRE, which is an attribute
of the element BOOK. The attribute can take two values: Science or Fiction.
Each BOOK element must be described in its start tag by a GENRE attribute
since the attribute is required as indicated by #REQUIRED. Let us look at the
general structure of a DTD attribute declaration:

<! ATTLIST elementName (attName attType default)+>

The keyword ATTLIST indicates the beginning of an attribute declaration. The
string elementName is the name of the element with which the following at-
tribute dcfinition is associated. What follows is the declaration of one or more
attributes. Each attribute has a name, as indicated by attName, and a type,
as indicated by attType. XML defines several possible types for an attribute.
We discuss only string types and enumerated types here. An attribute of
type string can take any string as a value. We can declare such an attribute by
setting its type field to CDATA. For example, we can declare a third attribute of
type string of the elernent BOOK as follows:

<IATTLIST BOOK edition CDATA ”1">

If an attribute has an enumerated type, we list al its possible values in the
attribute declaration. In our example, the attribute GENRE is an enumerated
attribute type; its possible attribute values are 'Science' and 'Fiction'.

The last part of an attribute declaration is called its default specification.
The DTD in Figure 7.3 shows two different default specifications: #REQUIRED
and the string ‘Paperback’. The default specification #REQUIRED indicates that
the attribute is required and whenever its associated element appears some-
where in the XML document a value for the attribute must be specified. The
default specification indicated by the string ‘Paperback’ indicates that the at-
tribute is not required; whenever its associated element appears without setting

234 CHAPTER*7

<?ml version=11.0" encoding=IUTF-8" standalone="no"?>
<!DOCTYPE BOOKLIST SYSTEM" books.dtd" >
<BOOKLIST>
<BOOK GENRE=" Science" FORMAT="Hardcover" >
<AUTHOR>

Figure 7.4 Book Information in XML

XML Schema: The DTD mechanism has several limitations, in spite of
its widespread use. For example, elements and attributes cannot be as-
signed types in a flexible way, and elements are always ordered, even if the
application does not require this. XML Schema is a hew W3C proposal
that provides a more powerful way to describe document structure than
DTDs; it is a superset of DTDs, allowing legacy data to be handled eas-
ily. An interesting aspect is that it supports uniqueness and foreign key
constraints.

a value for the attribute, the attribute automatically takes the value 'Paper-
back'. For example, we can make the attribute value 'Science' the default value
for the GENRE attribute as follows:

<l ATTLIST BOOK GENRE (SciencelFiction) "Science" >

In our bookstore example, the XML document with a reference to the DTD is
shown in Figure 7.4.

7.4.3 Domain-Specific DTDs

Recently, DTDs have been developed for several specialized domains-including
a wide range of commercial, engineering, financial, industrial, and scientific
domains----and a lot of the excitement about XML has its origins in the belief
that more and more standardized DTDs will be developed. Standardized DTDs
would enable seamless data exchange among heterogeneous sources, a problem
solved today either by implementing specialized protocols such as Electronic
Data Interchange (EDI) or by implementing ad hoc solutions.

Even in an environment where all XML data is valid, it is not possible to
straightforwardly integrate several XML documents by matching elements in
their DTDs, because even when two elements have identical names in two
different DTDs, the meaning of the elements could be completely different.
If both documents use a single, standard DTD, we avoid this problem. The

Internet Applications 235

development of standardized DTDs is more a social process than a research
problem, since the major players in a given domain or industry segment have
to collaborate.

For example, the mathematical markup language (MathML) has been
developed for encoding mathematical material on the Web. There are two
types of MathML elements. The 28 presentation elements describe the lay-
out structure of a document; examples are the mrow element, which indicates a
horizontal row of characters, and the msup element, which indicates a base and a
subscript. The 75 content elements describe mathematical concepts. An ex-
ample is the plus element, which denotes the addition operator. (A third type
of element, the math element, is used to pass parameters to the MathML pro-
cessor.) MathML allows us to encode mathematical objects in both notations
since the requirements of the user of the objects might be different. Content
elements encode the precise mathematical meaning of an object without ambi-
guity, and the description can be used by applications such as computer algebra
systems. On the other hand, good notation can suggest the logical structureto
a human and emphasize key aspects of an object; presentation elements alow
us to describe mathematical objects at this level.

For example, consider the following simple equation:
x2. 4x- R=0
Using presentation elements, the equation is represented as follows:

<mrow>
<mrow> <msup><mi>x</mi><mn>2</mn></msup>
<mo>-</mo>
<mrow><mn>4</mn>
<mo>& invisibletimes;</mo>
<mi>x</mi>
</mrow>
<mo>-</ mo><mn>32</ mn>
</mrow><mo>=</mo><mn>0</nm>
</mrow>

Using content elements, the equation is described as follows:

<reln><eq/>
<apply>
<minus/>
<apply> <power/> <ci>x</ci> <cn>2</cn> </apply>
<apply> <times/> <cn>4</cn> <ci>x</ci> </apply>
<cn>32</cn>

236 CHAPTER*7

</apply> <cn>O</cn>
<[reln>

Note the additional power that we gain from using MathML instead of en-
coding the formula in HTML. The common way of displaying mathematical
objects inside an HTML object is to include images that display the objects,
for example, as in the following code fragment:

The equation is encoded inside an IMG tag with an alternative display format
specified in the ALI tag. Using this encoding of a mathematical object leads
to the following presentation problems. First, the image is usually sized to
match a certain font size, and on systems with other font sizes the image is
either too small or too large. Second, on systems with a different background
color, the picture does not blend into the background and the resolution of the
image is usually inferior when printing the document. Apart from problems
with changing presentations, we cannot easily search for a formula or formula
fragments on a page, since there is no specific markup tag.

7.5 THE THREE-TIER APPLICATION ARCHITECTURE

In this section, we discuss the overall architecture of data-intensive Internet
applications. Data-intensive Internet applications can be understood in terms
of three different functional components: data management, application logic,
and pTesentation. The component that handles data mallgement usually utilizes
a DBMS for data storage, but application logic and presentation involve much
more than just the DBMS itself.

We start with a short overview of the history of database-backed application
architectures, and introduce single-tier and client-server architectures in Section
7.5.1. We explain the three-tier architecture in detail in Section 7.5.2, and show
its advantages in Section 7.5.3.

7.5.1 Single-Tier and Client-Server Architectures

In this section, we provide some perspective on the three-tier architecture by
discussing single-tier and client-server architectures, the predecessors of the
three-tier architecture. Initially, data-intensive applications were combined into
a single tier, including the DBMS, application logic, and user interface, as
illustrated in Figure 7.5. The application typically ran on a mainframe, and
users accessed it through dumb teT'minals that could perform only data input
and display. This approach has the benefit of being easily maintained by a
central administrator.

InteTnet Applications

H Client |

! Application Logic

<
1 .
} DBMS |

Figure 7.5 A Single-Tier Architecture

} Application Logic } / v/ Client
{ v/
| S N ! v
i |
i Network (230
e ‘ ! AN
.. DBMS ,.J \\ / N Client
R B N

Figure 7.6 A Two-Server Architecture: Thin Clients

Single-tier architectures have an important drawback: Users expect graphical
interfaces that require much more computational power than simple dumb ter-
minals. Centralized computation of the graphical displays of such interfaces
requires much more computational power than a single server has available,
and thus single-tier architectures do not scale to thousands of users. The com-
moditization of the PC and the availability of cheap client computers led to
the developlnent of the two-tier architecture.

Two-tier architectures, often also referred to as client-server architec-
tures, consist of a client computer and a server computer, which interact
through a well-defined protocol. What part of the functionality the client im-
plements, and what part is left to the server, can vary. In the traditional client-
server architecture, the client implements just the graphical user interface,
and the server. implements both the business logic and the data management;
such clients are often called thin clients, and this architecture isillustrated in
Figure 7.6.

Other divisions are possible, such as more powerful clients that implement both
user interface and business logic, or clients that implement user interface and
part of the business logic, with the remaining part being implemented at the

238 CHAPTER: 7

1\/ .
Chent 4

I \ I Application Logic |
L !

— >>>>> 3

Client

Application Logic

Figure 7.7 A Two-Tier Architecture: Thick Clients

server leve; such clients are often called thick clients, and this architecture is
illustrated in Figure 7.7.

Compared to the single-tier architecture, two-tier architectures physically sep-
arate the user interface from the data management layer. To implement two-
tier architectures, we can no longer have dumb terminals on the client side;
we require computers that run sophisticated presentation code (and possibly,
application logic).

Over the last ten years, a large number of client-server development tools such
Microsoft Visual Basic and Sybase Powerbuilder have been developed. These
tools permit rapid development of client-server software, contributing to the
success of the client-server model, especially the thin-client version.

The thick-client model has several disadvantages when compared to the thin-
client model. First, there is no central place to update and maintain the busi-
ness logic, since the application code runs at many client sites. Second, a large
amount of trust is required between the server and the clients. As an exam--
ple, the DBMS of a bank has to trust the (application executing at an) ATM
machine to leave the database in a consistent state. (One way to address this
problem is through stored procedures, trusted application code that is registered
with the DBMS and can be called from SQL statelnents. We discuss stored
procedures in detail in Section 6.5.)

A third disadvantage of the thick-client architecture is that it does not scale
with the number of clients; it typically cannot handle more than a few hundred
clients. The application logic at the client issues SQL queries to the server
and the server returns the query result to the client, where further processing
takes place. Large query results might be transferred between client and server.

Internet Applications 239

// \) //“\ —
/ \\ / \ Client
[. VT
,1 W“ Application / |

i DBMS \ Network / Logic \ Network oo
\\\ / \ Client

Figure 7.8 A Standard Three-Tier Architecture

(Stored procedures can mitigate this bottleneck.) Fourth, thick-client systems
do not scale as the application accesses more and more database systems. As
sume there are x different database systems that are accessed by y clients, then
there are x .y different connections open at any time, clearly not a scalable
solution.

These disadvantages of thick-client systems and the widespread adoption of
standard, very thin clients—notably, Web browsers—have led to the widespread
use thin-client architectures.

7.5.2 Three-Tier Architectures

The thin-client two-tier architecture essentially separates presentation issues
from the rest of the application. The three-tier architecture goes one step
further, and also separates application logic from data management:

® Presentation Tier: Users require a natural interface to make requests,
provide input, and to see results. The widespread use of the Internet has
made Web-based interfaces increasingly popular.

s Middle Tier: The application logic executes here. An enterprise-class
application reflects complex business processes, and is coded in a general
purpose language such as C++ or Java.

s DataManagement Tier: Data-intensive Web applications involve DBMSs,
which are the subject of this book.

Figure 7.8 shows a basic three-tier architecture. Different technologies have
been developed to enable distribution of the three tiers of an application across
multiple hardware platforms and different physical sites. Figure 7.9 shows the
technologies relevant to each tier.

240 CHAPTER 7

H
i
Client Program T JavaScript
Browser) Cookies ;
(Web i
HTIP
|
Application Logic Servlets !
Applicati ISP ‘I
1 (Application Server) o XSLT J
JDBe. SQLJ
DaIaSloragc XML -
(Databat® SPEEmM) "_ Stored Procedures

Figure 7.9 Technologies for the Three Tiers

Overview of the Presentation Tier

At the presentation layer, we need to provide forms through which the user
can issue requests, and display responses that the middle tier generates. The
hypertext markup language (HTML) discussed in Section 7.3 is the basic data
presentation language.

It is important that this layer of code be easy to adapt to different display
devices and formats; for example, regular desktops versus handheld devices
versus cell phones. This adaptivity can be achieved either at the middle tier
through generation of different pages for different types of client, or directly at
the client through style sheets that specify how the data should be presented.
In the latter case, the middle tier is responsible for producing the appropriate
data in response to user requests, whereas the presentation layer decides how
to display that information.

We cover presentation tier technologies, including style sheets, in Section 7.6.

Overview of the Middle Tier

The middle layer runs code that implements the business logic of the applica-
tion: It controls what data needs to be input before an action can be executed,
determines the control flow between multi-action steps, controls access to the
database layer, and often assembles dynamically generated HTML pages from
database query results.

Internet Applications 241

The middletier codeis responsible for supporting all the different roles involved
in the application. For example, in an Internet shopping site implementation,
we would like customers to be able to browse the catalog and make purchases,
administrators to be able to inspect current inventory, and possibly data ana-
lysts to ask summary queries about purchase histories. Each of these roles can
require support for several complex actions.

For example, consider the a customer who wants to buy an item (after browsing
or searching the site to find it). Before a sale can happen, the customer has
to go through a series of steps: She has to add items to her shopping basket,
she has to provide her shipping address and credit card number (unless she has
an account at the site), and she has to finally confirm the sale with tax and
shipping costs added. Controlling the flow among these steps and remembering
already executed steps is done at the middle tier of the application. The data
carried along during this series of steps might involve database accesses, but
usually it is not yet permanent (for example, a shopping basket is not stored
in the database until the sale is confirmed).

We cover the middle tier in detail in Section 7.7.

7.5.3 Advantages of the Three-Tier Architecture
The three-tier architecture has the following advantages:

v Heterogeneous Systems: Applications can utilize the strengths of dif-
ferent platforms and different software components at the different tiers.
It is easy to modify or replace the code at any tier without affecting the
other tiers.

» Thin Clients: Clients only need enough computation power for the pre-
sentation layer. Typically, clients are Web browsers.

B Integrated Data Access: In many applications, the data must be ac-
cessed from several sources. This can be handled transparently at the
middle tier, where we can centrally manage connections to al database
systems involved.

Scalabilit,y to Many Clients: Each client is lightweight and all access to
the system is through the middle tier. The middle tier can share database
connections across clients, and if the middle tier becomes the bottle-neck,
we can deploy several servers executing the middle tier code; clients can
connect to anyone of these servers, if the logic is designed appropriately.
This is illustrated in Figure 7.10, which also shows how the middle tier
accesses multiple data sources. Of course, we rely upon the DBMS for each

242 CHAPTER 7

‘ Application . —
DBMS IP\ /”\ /I Logic TN
— N \ / \ 4 Ctient
/ / / \\ /
' /4 S

/
N (
- ! i Application | L
f DBMS H Network }"“ Logic “‘\ Network fK\ e

— \
cee / \\ // \\ . v \\\v// Client

RN -
/ \| Application
DBMS | | Logic |

Figure 7.10 Middle-Tier Replication and Access to Multiple Data Sources

data source to be scalable (and this might involve additional parallelization
or replication, as discussed in Chapter 22).

« Software Development Benefits: By dividing the application cleanly
into parts that address presentation, data access, and business logic, we
gain many advantages. The business logic is centralized, and is therefore
easy to maintain, debug, and change. Interaction between tiers occurs
through well-defined, standardized APIs. Therefore, each application tier
can be built out of reusable components that can be individually developed,
debugged, and tested.

7.6 THE PRESENTATION LAYER

In this section, we describe technologies for the client side of the three-tier ar-
chitecture. We discuss HTML forms as a special means of pa.ssing arguments
from the client to the middle tier (i.e.,, from the presentation tier to the middle
tier) in Section 7.6.1. In Section 7.6.2, we introduce JavaScript, a Java-based
scripting language that can be used for light-weight computation in the client
tier (e.g., for simple animations). We conclude our discussion of client-side tech-
nologies by presenting style sheets in Section 7.6.3. Style sheets are languages
that allow us to present the same webpage with different formatting for clients
with different presentation capabilities; for example, Web browsers versus cell
phones, or even a Netscape browser versus Microsoft's Internet Explorer.

761 HTML Forms

HTML forms are a common way of communicating data from the client tier to
the middle tier. The general format of a form is the following:

<FORM ACTION="page.jsp" METHOD="GET" NAME="LoginForm">

Internet Applications 243

</FORM>

A single HTML document can contain more than one form. Inside an HTML
form, we can have any HTML tags except another FORM element.

The FORM tag has three important attributes:

e« ACTION: Specifies the URI of the page to which the form contents are
submitted; if the ACTION attribute is absent, then the URI of the current
page is used. In the sample above, the form input would be submited to
the page named page.j sp, which should provide logic for processing the
input from the form. (We will explain methods for reading form data at
the middle tier in Section 7.7.)

e METHOD: The HTTP/1.0 method used to submit the user input from the
filled-out form to the webserver. There are two choices, GET and POST; we
postpone their discussion to the next section.

« NAME This attribute gives the form a name. Although not necessary,
naming forms is good style. In Section 7.6.2, we discuss how to write
client-side programs in JavaScript that refer to forms by name and perform
checks on form fields.

Inside HTML forms, the INPUT, SELECT, and TEXTAREA tags are used to specify
user input elements; a form can have many elements of each type. The simplest
user input element is an INPUT field, a standalone tag with no terminating tag.
An example of an INPUT tag is the following:

<INPUT TY PE=Itext" NAME="title">

The INPUT tag has several attributes. The three most important ones are TYPE,
NAME, and VALUE. The TYPE attribute determines the type of the input field. If
the TYPE attribute has value text, then the fidd is a text input field. If the
TYPE attribute has value password, then the input field is a text field where the
entered characters are displayed as stars on the screen. If the TYPE attribute
has value reset, it is a simple button that resets all input fields within the
form to their default values. If the TYPE attribute has value submit, then it is
a button that sends the values of the different input fields in the form to the
server. Note that reset and submit input fields affect the entire form.

The NAME attribute of the INPUT tag specifies the symbolic name for this field
and is used to identify the value of this input fi.dd when it is sent to the server.
NAME has to be set for INPUT tags of all types except submit and reset. In the
preceding example, we specified titl e as the NAME of the input field.

244 CHAPTER' 7

The VALUE attribute of an input tag can be used for text or password fields to
specify the default contents of the field. For submit or reset buttons, VALUE
determines the label of the button.

The form in Figure 7.11 shows two text fields, one regular text input field and
one password field. It also contains two buttons, a reset button |labeled 'Reset
Values' and a submit button labeled ‘Log on." Note that the two input fields
are named, whereas the reset and submit button have no NAME attributes.

<FORM ACTION="page.jsp" METHoD="GET" NAME="LoginForm">
<INPUT TYPE="text" NAME="username" VALUE="Joe"><P>
<INPUT TYPE="password" NAME="p&ssword"><P>
<INPUT TYPE="reset" VALUE="Reset Values'><P>
<INPUT TYPE="submit" VALUE="Log on">

</FoRM>

Figure 7.11 HTI'VIL Form with Two Text Fields and Two Buttons

HTML forms have other ways of specifying user input, such as the aforemen-
tioned TEXTAREA and SELECT tags; we do not discuss them.

Passing Arguments to Server-Side Scripts

As mentioned at the beginning of Section 7.6.1, there are two different ways to
submit HTML Form data to the webserver. If the method GET is used, then
the contents of the form are assembled into a query URI (as discussed next)
and sent to the server. If the method POST is used, then the contents of the
form are encoded as in the GET method, but the contents are sent in a separate
data block instead of appending them directly to the URI. Thus, in the GET
method the form contents are directly visible to the user as the constructed
URI, whereas in the POST method, the form contents are sent inside the HTTP
request message body and are not visible to the user.

Using the GET method gives users the opportunity to bookmark the page with
the constructed URI and thus directly jump to it in subsequent sessions; this
is not possible with the POST method. The choice of GET versus POST should
be determined' by the application and its requirements.

Let us look at the encoding of the URI when the GET method is used. The
encoded URI has the following form:

action’namel =valuel&name2=value2&name3=value3

Internet Applications 245

The action is the URI specified in the ACTION attribute to the FORM tag, or the
current document URI if no ACTION attribute was specified. The 'name=value'
pairs are the user inputs from the INPUT fidlds in the form. For form INPUT
fields where the user did not input anything, the name is stil present with an
empty value (name=). As a concrete example, consider the password submission
form at the end of the previous section. Assume that the user inputs 'John
Doe' as username, and 'secret’ as password. Then the request URI is

page.jsp?username=Joi111+Doe& password=secret

The user input from forms can contain general ASCII characters, such as the
space character, but URIs have to be single, consecutive strings with no spaces.
Therefore, special characters such as spaces, '=', and other unprintable charac-
ters are encoded in a special way. To create a URI that has form fields encoded,
we perform the following three steps:

1. Convert al specia characters in the names and values to '%xyz," where
'xyz' isthe ASCII value of the character in hexadecimal. Special characters
include =, &, %, +, and other unprintable characters. Note that we could
encode all characters by their ASCII value.

2. Convert al space characters to the '+' character.

3. Glue corresponding names and values from an individual HTML INPUT tag
together with '=' and then paste name-value pairs from different HTML
INPUT tags together using'&' to create a request URI of the form:
action?namel=valuel& name2=value2& name3=value3

Note that in order to process the input elements from the HTML form at
the middle tier, we need the ACTION attribute of the FORM tag to point to a
page, script, or program that will process the values of the form fields the user
entered. We discuss ways of receiving values from form fields in Sections 7.7.1
and 7.7.3.

7.6.2 JavaScript

JavaScript is a scripting language at the client tier with which we can add
programs to webpages that run directly at the client (Le, at the machine run-
ning the Web browser). JavaScript is often used for the following types of
computation at the client:

m Browser Detection: JavaScript can be used to detect the browser type
and load a browser-specific page.

w Form Validation: JavaScript is used to perform simple consistency checks
on form fields. For example, a JavaScript program might check whether a

246 CHAPTER: 7

form input that asks for an email address contains the character “@,’ or if
al required fields have been input by the user.

* Browser Control: This includes opening pages in customized windows;
examples include the annoying pop-up advertisements that you see at many
websites, which are programmed using JavaScript.

JavaScript is usually embedded into an HTML document with a special tag,
the SCRIPT tag. The SCRIPT tag has the attribute LANGUAGE, which indicates
the language in which the script is written. For JavaScript, we set the lan-
guage attribute to JavaScript. Another attribute of the SCRIPT tag is the
SRC attribute, which specifies an external file with JavaScript code that is au-
tomatically embedded into the HTML document. Usually JavaScript source
code files use a '.js' extension. The following fragment shows a JavaScript file
included in an HTML document:

<SCRIPT LANGUAGE=" JavaScript" SRC="validateForm.js"> </SCRIPT>

The SCRIPT tag can be placed inside HTML comments so that the JavaScript
code is not displayed verbatim in Web browsers that do not recognize the
SCRIPT tag. Here is another JavaScipt code example that creates a pop-up
box with a welcoming message. We enclose the JavaScipt code inside HTML
comments for the reasons just mentioned.

<SCRIPT LANGUAGE=" JavaScript" >
<I--
alert (" Welcome to our bookstore");
//-->
</SCRIPT>

JavaScript provides two different commenting styles: single-line comments that
start with the '//* character, and multi-line comments starting with '/*' and
ending with ,*/' characters.!

JavaScript has variables that can be numbers, boolean values (true or false),
strings, and some other datatypes that we do not discuss. Global variables have
to be declared in advance of their usage with the keyword var, and they can
be used anywhere inside the HTML documents. Variables local to a JavaScript
function (explained next) need not be declared. Variables do not have a fixed
type, but implicitly have the type of the datato which they have been assigned.

1Actually, '<! --' also marks the start of a single-line comment, which is why we did not have
to mark the HTML starting cormnent '<! --' in the preceding example using JavaScript comment
notation. In contrast, the HTML closing comment “~~>" has to be commented out in JavaScript as
it is interpreted otherwise.

Internet Applications 247

JavaScript has the usual assignment operators (=, + =, etc.), the usual arith-
metic operators (+, -, *, /, %), the usual comparison operators (==, ! =,
>=, etc.), and the usual boolean operators (&& for logical AND, u for logical
OR, and! for negation). Strings can be concatenated using the ‘+’ charac-
ter. The type of an object determines the behavior of operators; for example
1+1 is 2, since we are adding numbers, whereas *1”7+"1” is "11," since we
are concatenating strings. JavaScript contains the usual types of statements,
such as assignments, conditional statements (if Condition) {statements;}
else {statements; }), and loops (for-loop, do-while, and while-loop).

JavaScript alows us to create functions using the function keyword: function
f Cargl, arg2) {statements;}. We can cal functions from JavaScript code,
and functions can return values using the keyword return.

We conclude thisintroduction to JavaScript with alarger example of a JavaScript
function that tests whether the login and password fields of a HTML form are
not empty. Figure 7.12 shows the JavaScript function and the HTML form.
The JavaScript code is a function called testL oginEmptyO that tests whether
either of the two input fields in the form named LoginForm is empty. In the
function testL oginEmpty, we first use variable loginForm to refer to the form
LoginForm using the implicitly defined variable document, which refers to the
current HTML page. (JavaScript has alibrary of objects that are implicitly de-
fined.) We then check whether either of the strings loginForm. userif. value
or loginForm. password. value is empty.

The function testLoginEmpty is checked within a form event handler. An
event handler is a function that is called if an event happens on an object in
awebpage. The event handler we use is onSubmit, which is called if the submit
button is pressed (or if the user presses return in a text field in the form). If
the event handler returns true, then the form contents are submitted to the
server, otherwise the form contents are not submitted to the server.

JavaScript has functionality that goes beyond the basics that we explained in
this section; the interested reader is referred to the bibliographic notes at the
end of this chapter.

7.6.3 Style Sheets

Different clients have different displays, and we need correspondingly different
ways of displaying the same information. For example, in the simplest case,
we might need to use different font sizes or colors that provide high-contrast
on a black-and-white screen. As a more sophisticated example, we might need
to re-arrange objects on the page to accommodate small screens in personal

248 CHAPTER 7

<SCRIPT LANGUAGE="JavaScript">

<I--
function testLoginEmpty()
{
10ginForm = document.L oginForm
if ((loginForm.userid.value == "") ||
(loginFonn. password.value == |1)) {
alert(,Please enter values for userid and password.");
return false;
}
else
return true;
}
//-->
</SCRIPT>

<Hi ALIGN = "CENTER">Barns and Nobble Internet Bookstore</Hi>
<H3 ALIGN = "CENTER">Please enter your userid and password:</H3>
<FORM NAME = "LoginForm" METHOD="POST"
ACTI ON=\ TableOf Contents.jsp"
onSubmit="return testLoginEmptyQO" >
Userid: <INPUT TYPE="TEXT" NAME=ll userid"><P>
Password: <INPUT TYPE="PASSWORD" NAME="password"'><P>
<INPUT TYPE="SUBMIT" VALUE="Login® NAME="SUBMIT">
<INPUT TYPE="RESET" VALUE=IIClear Input" NAME="RESET">
</FORM>

Figure 7.12 Form Validation with JavaScript

digital assistants (PDAs). As another example, we might highlight different
infonnation to focus on some important part of the page. A style sheet is a
method to adapt the same document contents to different presentation formats.
A style sheet contains instructions that tell a Web browser (or whatever the
client uses to display the webpage) how to translate the data of a document
into a presentation that is suitable for the client's display.

Style sheets separate the transformative aspect of the page from the ren-
dering aspects of the page. During transformation, the objects in the XML
document are rearranged to form a different structure, to omit parts of the
XML document, or to merge two different XML documents into a single docu-
ment. During rendering, we take the existing hierarchical structure of the XML
document and format the document according to the user's display device.

Internet Applications 249

BODY {BACKGROUND-COLOR: yellow}
Hi {FONT-SIZE: 36pt}

H3 {COLOR: blue}

P {MARGIN-LEFT: 50px; COLOR: red}

Figure 7.13 An Example Style sheet

The use of style sheets has many advantages. First, we can reuse the same doc-
ument many times and display it differently depending on the context. Second,
we can tailor the display to the reader's preference such as font size, color style,
and even level of detail. Third, we can deal with different output formats, such
as different output devices (laptops versus cell phones), different display sizes
(letter versus legal paper), and different display media (paper versus digital
display). Fourth, we can standardize the display format within a corporation
and thus apply style sheet conventions to documents at any time. Further,
changes and improvements to these display conventions can be managed at a
central place.

There are two style sheet languages: XSL and €SS. €SS was created for HTML
with the goal of separating the display characteristics of different formatting
tags from the tags themselves. XSL is an extension of €SS to arbitrary XML
docurnents; besides alowing us to define ways of formatting objects, XSL con-
tains a transformation language that enables us to rearrange objects. The
target files for €SS are HTML files, whereas the target files for XSL are XML
files.

Cascading Style Sheets

A Cascading Style Sheet (CSS) defines how to display HTML elements.
(In Section 7.13, we introduce a more general style sheet language designed for
XML documents.) Styles are normally stored in style sheets, which are files
that contain style definitions. Many different HTML documents, such as all
documents in a website, can refer to the same €SS. Thus, we can change the
format of a website by changing a single file. This is a very convenient way
of changing the layout of many webpages at the same time, and a first step
toward the separation of content from presentation.

An example style sheet is shown in Figure 7.13. It is included into an HTML
file with the following line:

<LINK REL="style sheet" TYPE="text/css' HREF="books.css' />

250 CHAPTER,7

Each line in a CSS sheet consists of three parts; a selector, a property, and a
value. They are syntactically arranged in the following way:

sel ector {property: value}

The sel ector isthe element or tag whose format we are defining. The property
indicates the tag's attribute whose value we want to set in the style sheet, and
the property is the actual value of the attribute. As an example, consider the
first line of the example style sheet shown in Figure 7.13:

BODY {BACKGROUND-COLOR: yellow}
This line has the same effect as changing the HTML code to the following:
<BODY BACKGROUND-COLOR="yellow" >.

The value should always be quoted, as it could consist of several words. More
than one property for the same selector can be separated by semicolons as
shown in the last line of the example in Figure 7.13:

P {MARGIN-LEFT: 50px; COLOR: red}

Cascading style sheets have an extensive syntax; the bibliographic notes at the
end of the chapter point to books and online resources on CSSs.

XS

XSL is a language for expressing style sheets. An XSL style sheet is, like CSS,
a file that describes how to display an XML document of a given type. XSL
shares the functionality of CSS and is compatible with it (although it uses a
different syntax).

The capabilities of XSL vastly exceed the functionality of CSS. XSL contains
the XSL Transformation language, or XSLT, a language that allows 1s to
transform the input XML document into a XML document with another struc-
ture. For example, with XSLT we can change the order of elements that we are
displaying (e.g.; by sorting them), process elements more than once, suppress
elements in one place and present them in another, and add generated text to
the presentation.

XSL aso contains the XML Path Language (XPath), a language that
alows us to refer to parts of an XML document. We discuss XPath in Section

Internet Applications 251

27. XSL aso contains XSL Formatting Object, a way of formatting the output
of an XSL transformation.

7.7 THE MIDDLE TIER

In this section, we discuss technologies for the middle tier. The first gen-
eration of middle-tier applications were stand-alone programs written in a
general-purpose programming language such as C, C++, and Perl. Program-
mers quickly realized that interaction with a stand-alone application was quite
costly; the overheads include starting the application every time it is invoked
and switching processes between the webserver and the application. Therefore,
such interactions do not scale to large numbers of concurrent users. This led
to the development of the application server, which provides the run-time
environment for several technologies that can be used to program middle-tier
application components. Most of today's large-scale websites use an application
server to run application code at the middle tier.

Our coverage of technologies for the middle tier mirrors this evolution. We
start in Section 7.7.1 with the Common Gateway Interface, a protocol that is
used to transmit arguments from HTML forms to application programs run-
ning at the middle tier. We introduce application servers in Section 7.7.2. We
then describe technologies for writing application logic at the middle tier: Java
servlets (Section 7.7.3) and Java Server Pages (Section 7.7.4). Another impor-
tant functionality is the maintenance of state in the middle tier component of
the application as the client component goes through a series of steps to com-
plete a transaction (for example, the purchase of a market basket of items or
the reservation of a flight). In Section 7.7.5, we discuss Cookies, one approach
to maintaining state.

7.7.1 CGI: The Common Gateway Interface

The Common Gateway Interface connects HTML forms with application pro-
grams. It is a protocol that defines how arguments from forms are passed to
programs at the server side. We do not go into the details of the actual CGI
protocol since libraries enable application programs to get arguments from the
HTML fonn; we shortly see an example in a CGI program. Programs that
communicate with the webserver via CGI are often called CGI scripts, since
many such application programs were written in a scripting language such as
Perl.

As an example of a program that interfaces with an HTML form via CGlI,
consider the sample page shown in Figure 7.14. This webpage contains a form
where a user can fill in the name of an author. If the user presses the 'Send

252 CHAPTER, 7

<HTML><HEAD><TITLE>The Database Bookstore</TITLE></HEAD>
<BODY>
<FORM ACTION="find_books.cgi« METHOD=POST>

Type an author name:

<INPUT TYPE="text: NAME=lauthorName"

SIZE=30 MAXLENGTH=50>

<INPUT TYPE="submitil value="Send it">

<INPUT TYPE=Ireset" VALUE="Clear form.,>
</FORM>
</BODY></HTML>

Figure 7.14 A Sample Web Page Where Form Input Is Sent to a CGI Script

it" button, the Perl script ‘findBooks.cgi' shown in Figure 7.14 is executed as
a separate process. The CGI protocol defines how the communication between
the form and the script is performed. Figure 7.15 illustrates the processes
created when using the CGlI protocol.

Figure 7.16 shows the example CGI script, written in Perl. We omit error-
checking code for simplicity. Perl is an interpreted language that is often used
for CGI scripting and many Perl libraries, called modules, provide high-level
interfaces to the CGI protocol. \Ve use one such library, caled the DBI li-
brary, in our example. The CGI module is a convenient collection of functions
for creating CGl scripts. In part 1 of the sample script, we extract the argument
of the HTML form that is passed along from the client as follows:

$authorName = $dataln- >paramCauthorName');

Note that the parameter name authorName was used in the form in Figure
7.14 to name the first input field. Conveniently, the CGI protocol abstracts the
actual implementation of how the webpage is returned to the Web browser; the
webpage consists simply of the output of our program, and we start assembling
the output HTML page in part 22 Everything the script writes in print-
statements is part of the dynamically constructed webpage returned to the
browser. We finish in part 3 by appending the closing format tags to the
resulting page.

7.7.2 Application Servers

Application logic can be enforced through server-side programs that are in-
voked using the CGI protocol. However, since each page request results in the
creation of a new process, this solution does not scale well to a large number
of simultaneous requests. This performance problem led to the development of

InteTnet Applications 253

;-b TTE 'I
Web Browser Web Server |
— c++
\Aw—-———— / Application
Y eer Process | }r’-
o - JDBC |
e * cal Process 2 1 DBMS

Figure 7.15 Process Structure with eGI Scripts

#!/usr/bin/perl
use CGl;

#HH part 1

$dataln = new CGI;

$dataln-; header();

$authorName = $dataln-1,param(‘authorName');

#iH part 2

print (IIKHTML><TITLE>Argument passing test</TITLE>) ;
print (Il The user passed the following argument: Il) ;

print (lauthorName: ", $authorName);

#H part 3
print ("</HTML>");
exit;

Figure 7.16 A Simple Perl Script

specialized programs called application servers. An application server main-
tains a pool of threads or processes and uses these to execute requests. Thus,
it avoids the startup cost of creating a new process for each request.

Application servers have evolved into flexible middle-tier packages that pro-
vide many functions in addition to eliminating the process-creation overhead.
They facilitate concurrent access to several heterogeneous data sources (e.g., by
providing JDBC drivers), and provide session management services. Often,
business processes involve several steps. Users expect the system to maintain
continuity during such a multistep session. Several session identifiers such as
cookies, URI extensions, and hidden fields in HTML forms can be used to
identify a session. Application servers provide functionality to detect when a
session starts and ends and keep track of the sessions of individual users. They

254 CHAPTER, 7

HTTP § Cc++
Web Browser Web Server \ Application
JavaBeans
/ Application
Application Server e I
JDBC DBMS |
[. |
1] ®*** | JDOBC/ODBC
__Pool of serviets DBMS 2

Figure 7.17 Process Structure in the Application Server Architecture

also help to ensure secure database access by supporting a general user-id mech-
anism. (For more on security, see Chapter 21.)

A possible architecture for a website with an application server is shown in Fig-
ure 7.17. The client (a Web browser) interacts with the webserver through the
HTTP protocol. The webserver delivers static HTML or XML pages directly
to the client. To assemble dynamic pages, the webserver sends a request to the
application server. The application server contacts one or more data sources to
retrieve necessary data or sends update requests to the data sources. After the
interaction with the data sources is completed, the application server assembles
the webpage and reports the result to the webserver, which retrieves the page
and delivers it to the client.

The execution of business logic at the webserver's site, server-side process-
ing, has become a standard model for implementing more complicated business
processes on the Internet. There are many different technologies for server-side
processing and we only mention a few in this section; the interested reader is
referred to the bibliographic notes at the end of the chapter.

7.7.3 Servlets

Java servlets are pieces of Java code that run on the middle tier, in either
webservers or application servers. There are special conventions on how to
read the input from the user request and how to write output generated by the
servlet. Servlets are truly platform-independent, and so they have become very
popular with Web developers.

Since servlets are Java programs, they are very versatile. For example, servlets
can build webpages, access databases, and maintain state. Servlets have access

Internet Applications 255

import java.io.*;
import javax.serviet.*;
import javax.servlet.http.*;

pUblic class ServletTemplate extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, |OException {
PrintWriter out = response.getWriter();
/1 Use 'out' to send content to browser
out.printin("Hello World");

Figure 7.18 Servlet Template

to al Java APIs, including JDBC. All servlets must implement the Servlet
interface. In most cases, servlets extend the specific HttpServlet class for
servers that communicate with clients viaHTTP. The HttpServlet class pro-
vides methods such as doGet and doPost to receive arguments from HTML
forms, and it sends its output back to the elient via HTTP. Servlets that
communicate through other protocols (such as ftp) need to extend the class
GenericServlet.

Servlets are compiled Java classes executed and maintained by a servlet con-
tainer. The servlet container manages the lifespan of individual servlets by
creating and destroying them. Although servlets can respond to any type of re-
quest, they are commonly used to extend the applications hosted by webservers.
For such applications, there is a useful library of HTTP-specific servlet classes.

Servlets usually handle requests from HTML forms and maintain state between
the client and the server. We discuss how to maintain state in Section 7.7.5.
A template of a generic servlet structure is shown in Figure 7.18. This simple
servlet just outputs the two words "Hello World," but it shows the general
structure of a full-fledged serviet. The request object is used to read HTML
form data. Theresponse object is used to specify the HT TP response status
code and headers of the HTTP response. The object out is used to compose
the content that is returned to the client.

Recall that HTTP sends back the status line, a header, a blank line, and then
the context. Right now our servlet just returns plain text. We can extend our
servlet by setting the content type to HTML, generating HTML as follows:

256 CHAPTER 7

PrinfWriter out = response.get\Vriter();
String docType =
"<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 " +
"Transitional//EN"> \n";
out.printin(docType +
"<SHTML>\n" +
"<HEAD><TITLE>Hello WWW</TITLE></HEAD>\n" +
"<BODY>\n" +
"<HI>Hello WWW</HI>\n" +
"</BODY></HTML>");

What happens during the life of a servlet? Several methods are called at
different stages in the development of a serviet. When a requested page is
a servlet, the webserver forwards the request to the servlet container, which
creates an instance of the servlet if necessary. At servlet creation time, the
servlet container calls the init () method, and before deallocating the servlet,
the servlet container calls the servlet's destroyO method.

When a servlet container calls a servlet because of a requested page, it starts
with the service() method, whose default behavior is to call one of the follow-
ing methods based on the HTTP transfer method: service() calls doGet O
for a HTTP GET request, and it calls doPost () for a HTTP POST request.
This automatic dispatching allows the servlet to perform different tasks on the
request data depending on the HT TP transfer method. Usually, we do not over-
ride the service() method, unless we want to program a servlet that handles
both HTTP POST and HTTP GET requests identically.

We conclude our discussion of servlets with an example, shown in Figure 7.19,
that illustrates how to pass arguments from an HTML form to a servlet.

7.7.4 JavaServer Pages

In the previous section, we saw how to use Java programs in the middle tier
to encode application logic and dynamically generate webpages. 1f we needed
to generate HTML output, we wrote it to the out object. Thus, we can think
about servlets as Java code embodying application logic, with embedded HTML
for output.

JavaServer pages (J3Ps) interchange the roles of output and application logic.
JavaServer pages are written in HTML with serviet-like code embedded in
special HT1VIL tags. Thus, in comparison to servlets, JavaServer pages are
better suited to quickly building interfaces that have some logic inside, whereas
servlets are better suited for complex application logic.

Internet Applications 257

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class ReadUserName extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, |OException {

response.setContentType('j textjhtml'j);
PrintWriter out = response.getWriter();

out.printin("<BODY>\n" +
"<Hi ALIGN=CENTER> Username: </Hi>\n" +
"\n" +
" title: "
+ request.getParameter("userid") + "\n" +
+ request.getParameter("password’j) + "\n” +
1\n" +
1</BODY></HTML>")]

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, |OException {
doGet(request, response);

Figure 7.19 Extracting the User Name and Password From a Form

258 CHAPTER,7

While there is a big difference for the programmer, the middle tier handles
JavaServer pagesina very simpleway: They are usually compiled into a servlet,
which is then handled by a servlet container analogous to other servlets.

The code fragment in Figure 7.20 shows a simple JSP example. In the middle
of the HTML code, we access information that was passed from a form.

<!DOCTYPE HTML PUBLIC 11 //W3C//DTD HTML 4.0
Transitional//EN'>
<HTML>
<HEAD><TITLE>Wecome to Barnes and Naobble</TITLE></HEAD>
<BODY>
<HI>Welcome back!</HI>
<% String name="NewUser
it (request.getParameter(llusernamell) '= null) {
name=request.getParameter (" username");

}
%>
You are logged on as user <%=name¥c>
<P>
Regular HTML for all the rest of the on-line store's webpage.
</BODY>
</HTML>

Figure 7.20 Reading Form Parameters in JSP

7.7.5 Maintaining State

As discussed in previous sections, there is a need to maintain a user's state
across different pages. As an example, consider a user who wants to make a
purchase at the Barnes and Nobble website. The user must first add items
into her shopping basket, which persists while she navigates through the site.
Thus, we use the notion of state mainly to remember information as the user
navigates through the site.

The HTTP protocol is stateless. We call an interaction with awebserver state-
less if no inforination is retained from one request to the next request. We call
an interaction with a webserver stateful, or we say that state is maintained,
if some memory is stored between requests to the server, and different actions
are taken depending on the contents stored.

Internet Applications 259

H

In our example of Barnes and Nobble, we need to maintain the shopping basket
of a user. Since state is not encapsulated in the HTTP protocol, it has to be
maintained either at the server or at the client. Since the HTTP protocol
is stateless by design, let us review the advantages and disadvantages of this
design decision. First, a stateless protocol is easy to program and use, and
it is great for applications that require just retrieval of static information. In
addition, no extra memory is used to maintain state, and thus the protocol
itself is very efficient. On the other hand, without some additional mechanism
at the presentation tier and the middle tier, we have no record of previous
requests, and we cannot program shopping baskets or user logins.

Since we cannot maintain state in the HTTP protocol, where should we mtain-
tain state? There are basically two choices. We can maintain state in the
middle tier, by storing information in the local main memory of the applica-
tion logic, or even in a database system. Alternatively, we can maintain state
on the client side by storing data in the form of a cookie. We discuss these two
ways of maintaining state in the next two sections.

Maintaining State at the Middle Tier

At the middle tier, we have several choices as to where we maintain state.
First, we could store the state at the bottom tier, in the database server. The
state survives crashes of the system, but a database access is required to query
or update the state, a potential performance bottleneck. An alternative is to
store state in main memory at the middle tier. The drawbacks are that this
information is volatile and that it might take up a lot of main memory. We
can also store state in local files at the middle tier, as a compromise between
the first two approaches.

A rule of thumb is to use state maintenance at the middle tier or database tier
only for data that needs to persist over many different user sessions. Examples
of such data are past customer orders, click-stream data recording a user's
movement through the website, or other permanent choices that a user makes,
such as decisions about personalized site layout, types of messages the user is
willing to receive, and o0 on. As these examples illustrate, state information is
often centered around users who interact with the website.

Maintaining State at the Presentation Tier: Cookies

Another possibility is to store state at the presentation tier and pass it to the
middle tier with every HTTP request. We essentially work around around
the statelessness of the HT TP protocol by sending additional information with
every request. Such information is called a cookie.

260 CHAPTER, 7

A cookie is a collection of (name, wvalue)-pairs that can be manipulated at
the presentation and middle tiers. Cookies are easy to use in Java servlets
and Java8erver Pages and provide a simple way to make non-essential data
persistent at the client. They survive several client sessions because they persist
in the browser cache even after the browser is closed.

One disadvantage of cookiesis that they are often perceived as as being invasive,
and many users disable cookies in their Web browser; browsers allow users to
prevent cookies from being saved on their machines. Another disadvantage is
that the datain a cookie is currently limited to 4KB, but for most applications
this is not a bad limit.

We can use cookies to store information such as the user's shopping basket, login
information, and other non-permanent choices made in the current session.

Next, we discuss how cookies can be manipulated from servlets at the middle
tier.

The Servlet Cookie API

A cookie is stored. in a small text file at the client and. contains (name, value)—
pairs, where both name and value are strings. We create a new cookie through
the Java Cookie class in the middle tier application code:

Cookie cookie = new Cookie(username" ,"guest");
cookie.setDomain(" www.bookstore.com..);

cookie.set8ecure(fal se); /1 no 88L required
cookie.setMaxAge(60* 60* 24* 7* 31); /1 one month lifetime
response.addCookie(cookie);

Let uslook at each part of this code. First, we create a new Cookie object with
the specified (name, value)-pair. Then we set attributes of the cookie; we list
some of the most common attributes below:

m setDomain and getDomain: The domain specifies the website that will
receive the cookie. The default value for this attribute is the domain that
created the cookie.

m setSecure and getSecure: If this flag is true, then the cookie is sent only
if we are llsing a secure version of the HTTP protocol, such as 88L.

m setMaxAge and getMaxAge: The MaxAge attribute determines the lifetime
of the cookie in seconds. If the value of MaxAge is less than or equal to
zero, the cookie is deleted when the browser is closed.

Internet Applications 261

» setName and getName: We did not use these functions in our code fragment;
they allow us to Ilame the cookie.

 setValue and getValue: These functions allow us to set and read the
value of the cookie.

The cookie is added to the request object within the Java servlet to be sent
to the client. Once a cookie is received from a site (www.bookstore.comin this
example), the client's Web browser appends it to all HTTP requests it sends
to this site, until the cookie expires.

We can access the contents of a cookie in the middle-tier code through the
request object getCookiesO method, which returns an array of Cookie ob-
jects. The following code fragment reads the array and looks for the cookie
with name 'username.’

Cookie[] cookies = request.getCookiesO;
String theUser;
for(int i=0; i < cookies.length; i++) {
Cookie cookie = cookieq[i];
it (cookie.getNameO.equal s("username"))
theUser = cookie.getValueO;

}

A simple test can be used to check whether the user has turned off cookies:
Send a cookie to the user, and then check whether the request object that
is returned still contains the cookie. Note that a cookie should never contain
an unencrypted password or other private, unencrypted data, as the user can
easily inspect, modify, and erase any cookie at any time, including in the middle
of a session. The application logic needs to have sufficient consistency checks
to ensure that the datain the cookie is valid.

7.8 CASE STUDY: THE INTERNET BOOK SHOP

DBDudes now moves on to the implementation of the application layer and
considers alternatives for connecting the DBMS to the World Wide Web.

DBDudes begifls by considering session management. For example, users who
log in to the site, browse the catalog, and select books to buy do not want
to re-enter their cllstomer identification numbers. Session management has to
extend to the whole process of selecting books, adding them to a shopping cart,
possibly removing books from the cart, and checking out and paying for the
books.

262 CHAPTER* 7

DBDudes then considers whether webpages for books should be static or dy-
namic. If there is a static webpage for each book, then we need an extra
database field in the Books relation that points to the location of the file
Even though this enables special page designs for different books, it is a very
labor-intensive solution. DBDudes convinces B&N to dynamically assemble
the webpage for a book from a standard template instantiated with informa-
tion about the book in the Books relation. Thus, DBDudes do not use static
HTML pages, such as the one shown in Figure 7.1, to display the inventory.

DBDudes considers the use of XML as a data exchange format between the
database server and the middle tier, or the middle tier and the client tier.
Representation of the datain XML at the middle tier as shown in Figures 7.2
and 7.3 would allow easier integration of other data sources in the future, but
B&N decides that they do not anticipate a need for such integration, and so
DBDudes decide not to use XML data exchange at this time.

DBDudes designs the application logic as follows. They think that there will
be four different webpages:

* index.jsp: The home page of Barns and Nobble. Thisis the main entry
point for the shop. This page has search text fields and buttons that allow
the user to search by author name, ISBN, or title of the book. There is
aso alink to the page that shows the shopping cart, cart. j sp.

 login.jsp: Allows registered users to log in. Here DBDudes use an
HTML form similar to the one displayed in Figure 7.11. At the middle
tier, they use a code fragment similar to the piece shown in Figure 7.19
and JavaServerPages as shown in Figure 7.20.

+ search.jsp: Lists al books in the database that match the search condi-
tion specified by the user. The user can add listed items to the shopping
basket; each book has a button next to it that adds it. (If the item is
already in the shopping basket, it increments the quantity by one.) There
is also a counter that shows the total number of items currently in the
shopping basket. (DBDucles makes a note that that a quantity of five for a
single item in the shopping basket should indicate atotal purchase quantity
of five as well.) The search. j sp page also contains a button that directs
the user to cart. j sp.

m cart.jsp: Lists dl the books currently in the shopping basket. The list-
ing should include al items in the shopping basket with the product name,
price, atext box for the quantity (which the user can use to change quanti-
ties of items), and a button to remove the item from the shopping basket.
This page has three other buttons: one button to continue shopping (which
returns the user to page index. j sp), a second button to update the shop-

Internet Applications

ping basket with the altered quantities from the text boxes, and a third
button to place the order, which directs the user to the page confirm.jsp.

m coniirm.jsp: Lists the complete order so far and allows the user to enter
his or her contact information or customer ID. There are two buttons on
this page: one button to cancel the order and a second button to submit
the final order. The cancel button ernpties the shopping basket and returns
the user to the home page. The submit button updates the database with
the new order, empties the shopping basket, and returns the user to the
home page.

DBDudes also considers the use of JavaScript at the presentation tier to check
user input before it is sent to the middle tier. For example, in the page
login. j sp, DBDudes is likely to write JavaScript code similar to that shown
in Figure 7.12.

This leaves DBDudes with one final decision: how to connect applications to
the DBMS. They consider the two main alternatives presented in Section 7.7:
CGI scripts versus using an application server infrastructure. If they use CGI
scripts, they would have to encode session management |ogic-not an easy task.
If they use an application server, they can make use of al the functionality
that the application server provides. Therefore, they recommend that B&N
implement server-side processing using an application server.

B&N accepts the decision to use an application server, but decides that no
code should be specific to any particular application server, since B& N does
not want to lock itself into one vendor. DBDudes agrees proceeds to build the
following pieces:

m DBDudes designs top level pages that allow customers to navigate the
website as well as various search forms and result presentations.

= Assuming that DBDudes selects a Java-based application server, they have
to write Java servlets to process form-generated requests. Potentially, they
could reuse existing (possibly commercially available) JavaBeans. They
can use JDBC as a database interface; exarnples of JDBC code can be
found in Section 6.2. Instead of prograrnming servlets, they could resort
to Java Server Pages and annotate pages with special .JSP markup tags.

= DBDudes select an application server that uses proprietary markup tags,
but due to their arrangement with B&N, they are not alowed to use such
tags in their code.

For completeness, we remark that if DBDudes and B& N had agreed to use CGr
scripts, DBDucles would have had the following tasks:

264 CHAPTER: 7

n Create the top level HTML pages that allow users to navigate the site and
various forms that allow users to search the catalog by ISBN, author name,
or title. An example page containing a search form is shown in Figure
7.1. In addition to the input forms, DBDudes must develop appropriate
presentations for the results.

n Develop thelogic to track a customer session. Relevant information must be
stored either at the server side or in the customer's browser using cookies.

n Write the scripts that process user requests. For example, a customer can
use a form called 'Search books by title' to type in a title and search for
books with that title. The CGI interface communicates with a script that
processes the request. An example of such a script written in Perl using
the DBI library for data access is shown in Figure 7.16.

Our discussion thus far covers only the customer interface, the part of the
website that is exposed to B&N's customers. DBDudes also needs to add
applications that alow the employees and the shop owner to query and access
the database and to generate summary reports of business activities.

Complete files for the case study can be found on the webpage for this book.

7.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

n What are URIs and URLS? (Section 7.2.1)

n How does the HTTP protocol work? What is a stateless protocol? (Sec-
tion 7.2.2)

n Explain the main concepts of HTML. Why is it used only for data presen-
tation and not data exchange? (Section 7.3)

n What are some shortcomings of HTML, and how does XML address them?
(Section 7.4)

n What are the main components of an XML document? (Section 7.4.1)

n Why do we have XML DTDs? What is a well-formed XML document?
What is avalid XML document? Give an example of an XML document
that is valid but not well-formed, and vice versa. (Section 7.4.2)

n 'What is the role of domain-specific DTDs? (Section 7.4.3)

n What isa three-tier architecture? 'What advantages does it offer over single-
tier and two-tier architectures? Give a short overview of the functionality
at each of the three tiers. (Section 7.5)

Internet Applications 265

Explain how three-tier architectures address each of the following issues
of database-backed Internet applications: heterogeneity, thin clients, data
integration, scalability, software development. (Section 7.5.3)

Write an HTML form. Describe all the components of an HTML form.
(Section 7.6.1)

What is the difference between the HTML GET and POST methods? How
does URI encoding of an HTML form work? (Section 7.11)

What is JavaScript used for? Write a JavaScipt function that checks
whether an HTML form element contains a syntactically valid email ad-
dress. (Section 7.6.2)

What problem do style sheets address? What are the advantages of using
style sheets? (Section 7.6.3)

What are Cascading Style Sheets? Explain the components of Cascading
Style Sheets. What is XSL and how it is different from CSS? (Sections
7.6.3 and 7.13)

What is CGI and what problem does it address? (Section 7.7.1)

What are application servers and how are they different from webservers?
(Section 7.7.2)

What are servlets? How do servlets handle data from HTML forms? Ex-
plain what happens during the lifetime of a serviet. (Section 7.7.3)

What is the difference between serviets and JSP? When should we use
servlets and when should we use JSP? (Section 7.7.4)

Why do we need to maintain state at the middle tier? What are cookies?
How does a browser handle cookies? How can we access the data in cookies
from servlets? (Section 7.7.5)

EXERCISES

Exercise 7.1 Briefly answer the following questions:

1

4.

Explain the following terms and describe what they are used for: HTML, URL, XML,
Java, JSP, XSL, XSLT, servlet, cookie, HTTP, €SS, DTD.

What is eGIl? Why was eGl introduced? What are the disadvantages of an architecture
using €€l scripts?

\Vhat is the difference between a webserver and an application server? What fUl1cionality
do typical application servers provide?

When is an XML document well-formed? When is an XML document valid?

Exercise 7.2 Briefly answer the following questions about the HTTP protocol:

266 CHAPTER 7

1. What is a communication protocol ?

2. "What is the structure of an HT TP request message? What is the structure of an HTTP
response message? Why do HTTP messages carry a version field?

3. What is a stateless protocol? Why was HTTP designed to be stateless?

4. Show the HTTP request message generated when you request the home page of this
book (http://www.cs.wisc.edu/ dbbook). Show the HTTP response message that the
server generates for that page.

Exercise 7.3 In this exercise, you are asked to write the functionality of a generic shopping
basket; you will use this in several subsequent project exercises. Write a set of JSP pages that
displays a shopping basket of items and allows users to add, remove, and change the quantity
of items. To do this, use a cookie storage scheme that stores the following information:

. The Userld of the user who owns the shopping basket.
. The number of products stored in the shopping basket.

I A product id and a quantity for each product.

When manipulating cookies, remember to set the Expires property such that the cookie can
persist for a session or indefinitely. Experiment with cookies using JSP and make sure you
know how to retrieve, set values, and delete the cookie.

You need to create five JSP pages to make your prototype complete:

] Index Page (index.j sp): This is the main entry point. It has a link that directs the
user to the Products page so they can start shopping.

I Products Page (products.j sp): Shows a listing of al products in the database with
their descriptions and prices. This is the main page where the user fills out the shopping
basket. Each listed product should have a button next to it, which adds it to the shopping
basket. (If the item is already in the shopping basket, it increments the quantity by
one.) There should aso be a counter to show the total number of items currently in the
shopping basket. Note that if a user has a quantity of five of a single item in the shopping
basket, the counter should indicate a total quantity of five The page also contains a
button that directs the user to the Cart page.

I Cart Page (cart. jsp): Shows a listing of all items in the shopping basket cookie. The
listing for each item should include the product name, price, a text box for the quantity
(the user can changc the quantity of items here), and a button to remove the item from
the shopping basket. This page has three other buttons: one button to continue shopping
(which returns the user to the Products page), a second button to update the cookie
with the altered quantities from the text boxes, and a third button to place or confirm
the order, which directs the user to the Confirm page.

1t Confirm Page (confirm.jsp): Lists the final order. There are two but.tons on this
page. One button cancels the order and the other submits the completed order. The
cancel button just deletes the cookie and returns the llser to the Index page. The submit
button updates the database with the new order, deletes the cookie, and returns the llser
to the Index page.

Exercise 7.4 In the previous exercise, replace the page products. jsp with the follmving
search page search.jsp. 'This page allows users to search products by name or descrip-
tion. There should be both a text box for the search text and radio buttons to allow the

Internet Applications 267

user to choose between search-by-name and search-by-description (as well as a submit but-
ton to retrieve the results). The page that handles search results should be modeled after
products.jsp (as described in the previous exercise) and be called products.jsp. It should
retrieve all records where the search text is a substring of the name or description (as chosen
by the user). To integrate this with the previous exercise, simply replace all the links to
products. j sp with search. j sp.

Exercise 7.5 'Write a simple authentication mechanism (without using encrypted transfer of
passwords, for simplicity). We say a user is authenticated if she has provided a valid username-
password combination to the system; otherwise, we say the user is not authenticated. Assume
for simplicity that you have a database schemathat stores only a customer id and a password:

Passwords(cid: integer, username: string, password: string)

1. How and where are you going to track when a user is 'logged on' to the system?
2. Design a page that allows a registered user to log on to the system.
3. Design a page header that checks whether the user visiting this page is logged in.

Exercise 7.6 (Due to Jeff Derstadt) TechnoBooks.com is in the process of reorganizing its
website. A major issue is how to efficiently handle a large number of search results. In a
human interaction study, it found that modem users typically like to view 20 search results at
atime, and it would like to program this logic into the system. Queries that return batches of
sorted results are called top N queries. (See Section 25.5 for a discussion of database support
for top N queries.) For example, results 1-20 are returned, then results 21-40, then 41-60,
and so on. Different techniques are used for performing top N queries and TechnoBooks.com
would like you to implement two of them.

Infrastructure: Create a database with a table called Books and populate it with some
books, using the format that follows. This gives you 111 books in your database with a title
of AAA, BBB, CCC, DDD, or EEE, but the keys are not sequential for books with the same
title.

Books(bookid: INTEGER, title; CHAR(80), author: CHAR(80), price: REAL)

Fori = 1to 111 {
Insert the tuple (i, "AAA", "AAA Author", 5.99)

i=i—+lI
Insert the tuple (i, "BBB", "BBB Author", 5.99)
i=i+1
Insert the tuple (i, "CCC", "CCC Author", 5.99)
i=i+1
Insert the tuple (i, "DDD", "DDD Author", 5.99)
1=i+I

Insert the tuple (i, "EEE", “EEE Author", 5.99)

Placeholder Technique: The simplest approach to top N queries is to store a placeholder
for the first and last result tuples, and then perform the same query. When the new query
results are returned, you can iterate to the placeholders and return the previous or next 20
results.

268 CHAPTER*T

| Tuples Shown Lower Placeholder Previous Set Upper Placeholder Next Set |

1-20 1 None 20 21-40
21-40 21 1-20 40 41-60
41-60 41 21-40 60 61-80

Write a webpage in JSP that displays the contents of the Books table, sorted by the Title and
Bookld, and showing the results 20 at a time. There should be a link (where appropriate) to
get the previous 20 results or the next 20 results. To do this, you can encode the placeholders
in the Previous or Next Links as follows. Assume that you are displaying records 21-40. Then
the previous link is display. j sp?lower=21 and the next link is display.j sp?upper=40.

You should not display a previous link when there are no previous results; nor should you
show a Next link if there are no more results. When your page is called again to get another
batch of results, you can perform the same query to get all the records, iterate through the
result set until you are at the proper starting point, then display 20 more results.

What are the advantages and disadvantages of this technique?

Query Constraints Technique: A second technique for performing top N queries is to
push boundary constraints into the query (in the WHERE clause) so that the query returns only
results that have not yet been displayed. Although this changes the query, fewer results are
returned and it saves the cost of iterating up to the boundary. For example, consider the
following table, sorted by (title, primary key).

| Batch | Result Number Title | Primary Key

1 1 AAA 105
1 2 BBB 13
1 3 eee 48
1 4 DDD 52
1 5 DDD 101
2 6 DDD 121
2 7 EEE 19
2 8 EEE 68
2 9 FFF 2
2 10 FEE 33
3 11 FFF 58 |
3 12 FFF 59
3 13 GGG 93
3 14 EHH 132
3 15 HHH 135

In batch 1, rows 1 t.hrough 5 are displayed, in batch 2 rows 6 through 10 are displayed, and so
on. Using the placeholder technique, all 15 results would be returned for each batch. Using
the constraint technique, batch 1 displays results 1-5 but returns results 1-15, batch 2 will
display results 6-10 but returns only results 6-15, and batch 3 will display results 11-15 but
return only results 11-15.

Internet Applications 269

The constraint can be pushed into the query because of the sorting of this table. Consider
the following query for batch 2 (displaying results 6-10):

EXEC SQL SELECT B.Title

FROM Books B

WHERE (B.Title = 'DDD' AND B.Bookld > 101) OR (B.Title > 'DDD')
ORDER BY B.Title, B.Bookld

This query first selects al books with the title 'DDD," but with a primary key that is greater
than that of record 5 (record 5 has a primary key of 101). This returns record 6. Also, any
book that has a title after 'DDD' alphabetically is returned. You can then display the first
five results.

The following information needs to be retained to have Previous and Next buttons that return
more results:

. Previous: The title of the first record in the previous set, and the primary key of the
first record in the previous set.

. Next: The title of the first record in the next set; the primary key of the first record in
the next set.

These four pieces of information can be encoded into the Previous and Next buttons as in the
previous part. Using your database table from the first part, write a JavaServer Page that
displays the book information 20 records at a time. The page should include Previous and
Next buttons to show the previous or next record set if there is one. Use the constraint query
to get the Previous and Next record sets.

PROJECT-BASED EXERCISES

In this chapter, you continue the exercises from the previous chapter and create the parts of
the application that reside at the middle tier and at the presentation tier. More information
about these exercises and material for more exercises can be found online at

http://www.cs.wisc.edu/ dbbook

Exercise 7.7 Recall the Notown Records website that you worked on in Exercise 6.6. Next,
you are asked to develop the actual pages for the Notown Records website. Design the part
of the website that involves the presentation tier and the middle tier, and integrate the code
that you wrote in Exercise 6.6 to access the database.

I. Describe in detail the set of webpages that users can access. Keep the following issues
in mind:
. All users start at a common page.

. For each action, what input does the user provide? How will the user provideit -by
clicking on a link or through an HTML form?

. What sequence of steps does a user go through to purchase a record? Describe the
high-level application flow by showing how each llser action is handled.

270 CHAPTER 7

2. Write the webpages in HTML without dynamic content.

3. Write a page that allows users to log on to the site. Use cookies to store the information
permanently at the user's browser.

4. Augment the log-on page with JavaScript code that checks that the username consists
only of the characters from a to z

5. Augment the pages that allow users to store items in a shopping basket with a condition
that checks whether the user has logged on to the site. Ifthe user has not yet logged on,
there should be no way to add items to the shopping cart. Implement this functionality
using JSP by checking cookie information from the user.

6. Create the remaining pages to finish the website.

Exercise 7.8 Recall the online pharmacy project that you worked on in Exercise 6.7 in
Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and
presentation layer and finish the website.

Exercise 7.9 Recall the university database project that you worked on in Exercise 6.8 in
Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and
presentation layer and finish the website.

Exercise 7.10 Recall the airline reservation project that you worked on in Exercise 6.9 in
Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and
presentation layer and finish the website.

BIBLIOGRAPHIC NOTES

The latest version of the standards mentioned in this chapter can be found at the website
of the World Wide Web Consortium (www.w3.0rg). It contains links to information about
I-ITML, cascading style sheets, XlviL, XSL, and much more. The book by Hall is a gen-
eral introduction to Web programming technologies [357]; a good starting point on the Web
is www.Webdeveloper.com. There are many introductory books on CGI progranuning, for
example [210, 198]. The JavaSoft (java.sun.com) home page is a good starting point for
Servlets, .JSP, and al other Java-related technologies. The book by Hunter [3%4] is a good
introduction to Java Servlets. Microsoft supports Active Server Pages (ASP), a comparable
tedmology to .ISI'. More information about ASP can be found on the Microsoft Developer’s
Network horne page (msdn. microsoft. com).

There are excellent websites devoted to the advancement of XML, for example www.xml. com
and www.ibm.com/xml. that also contain a plethora of links with information about the other
standards. There are good introductory books on many diflerent aspects of XML, for example
[195, 158,597,474, 381, 320]. Information about UNICODE can be found on its home page
http://www.unicode.org.

Inforrnation about .lavaServer Pages anel servlets can be found on the JavaSoft home page at
java. sun. com at java. sun. com/products/j sp and at java. sun. com/products/servlet.

PART Il

STORAGE AND INDEXING

OVERVIEW'OF STORAGE
AND INDEXING

How does a DBMS store and access persistent data?

3

Why is I/O cost so important for database operations?

¥

How does a DBMS organize files of data records on disk to minimize
I/0O costs?

What is an index, and why is it used?

Y

3

What is the relationship between a file of datarecords and any indexes
on this file of records?

What are important properties of indexes?
How does a hash-based index work, and when is it most effective?
How does a tree-based index work, and when is it most effective?

How can we use indexes to optimize performance for a given workload?

T 8§ 83

Key concepts: external storage, buffer manager, page |/0O; file orga-
nization, heap files, sorted files, indexes, dataentries, search keys, clus-
tered index, clustered file, primary index; index organization, hash-
based and tree-based indexes; cost comparison, file organizations and
common operations; performance tuning, workload, composite search
keys, use of clustering,

If you don't find it in the index, look very carefully through the entire catalog.

--Sears, Roebuck, and Co., Consumers' Guide, 1897

The basic abstraction of data in a DBMS is a collection of records, or a filg,
and each file consists of one or more pages. The files and access methods

274 CHAPTER 8

software layer organizes data carefully to support fast access to desired subsets
of records. Understanding how records are organized is essential to using a
database system effectively, and it is the main topic of this chapter.

A file organization is a method of arranging the records in a file when the
file is stored on disk. Each file organization makes certain operations efficient
but other operations expensive.

Consider a file of employee records, each containing age, name, and sal fields,
which we use as a running example in this chapter. If we want to retrieve
employee records in order of increasing age, sorting the file by age is a good file
organization, but the sort order is expensive to maintain if the file is frequently
modified. Further, we are often interested in supporting more than one oper-
ation on a given collection of records. In our example, we may also want to
retrieve all employees who make more than $5000. We have to scan the entire
file to find such employee records.

A technique called indexing can help when we have to access a collection of
records in multiple ways, in addition to efficiently supporting various kinds of
selection. Section 8.2 introduces indexing, an important aspect of file organi-
zation in a DBMS. We present an overview of index data structures in Section
8.3; a more detailed discussion is included in Chapters 10 and 11.

We illustrate the importance of choosing an appropriate file organization in
Section 8.4 through asimplified analysis of several alternative file organizations.
The cost model used in this analysis, presented in Section 8.4.1, is used in
later chapters as welL In Section 8.5, we highlight some important choices to
be made in creating indexes. Choosing a good collection of indexes to build
is arguably the single most powerful tool a database administrator has for
improving performance.

81 DATA ON EXTERNAL STORAGE

A DBMS stores vast quantities of data, and the data must persist across pro-
gram executions. Therefore, data is stored on external storage devices such as
disks and tapes, and fetched into main memory as needed for processing. The
unit of information read from or written to disk is a page. The size of a page
is a DBMS parameter, and typical values are 4KB or 8KB.

The cost of page /O (input from disk to main Inemory and output from mem-
ory to disk) dominates the cost of typical database operations, and database
systems are carefully optimized to rninimize this cost. While the details of how

Storage and Indexing 275

files of records are physically stored on disk and how main memory is utilized
are covered in Chapter 9, the following points are important to keep in mind:

» Disks are the most important external storage devices. They alow us to
retrieve any page at a (more or less) fixed cost per page. However, if we
read several pages in the order that they are stored physically, the cost can
be much less than the cost of reading the same pages in a random order.

* Tapes are sequential access devices and force us to read data one page after
the other. They are mostly used to archive data that is not needed on a
regular basis.

e Each record in a file has a unique identifier called a record id, or rid for
short. An rid has the property that we can identify the disk address of the
page containing the record by using the rid.

Data is read into memory for processing, and written to disk for persistent
storage, by a layer of software called the buffer manager. When the files and
access methods layer (which we often refer to as just the file layer) needs to
process a page, it asks the buffer manager to fetch the page, specifying the
page's rid. The buffer manager fetches the page from disk if it is not already
in memory.

Space on disk is managed by the disk space m,anager, according to the DBMS
software architecture described in Section 1.8. When the files and access meth-
ods layer needs additional space to hold new records in a file, it asks the disk
space manager to allocate an additional disk page for the file; it aso informs
the disk space manager when it no longer needs one of its disk pages. The disk
space manager keeps track of the pages in use by the file layer; if a page is freed
by the file layer, the space rnanager tracks this, and reuses the space if the file
layer requests a new page later on.

In the rest of this chapter, we focus on the files and access methods layer.

82 FILE ORGANIZATIONS AND INDEXING

The file of records is an important abstraction in a DBMS, and is imple-
mented by the files and access methods layer of the code. A file can be created,
destroyed, and have records inserted into and deleted from it. It aso supports
scdlS; a scan operation alows us to step through all the records in the file one
at atime. A relatioll is typically stored as a file of records.

The file layer stores the records in a file in a collection of disk pages. It keeps
track of pages allocated to each file, and as records are inserted into and deleted
from the file, it also tracks available space within pages allocated to the file

276 CHAPTER 8

The simplest file structure is an unordered file, or heap file. Records in a
heap file are stored in random order across the pages of the file. A heap file
organization supports retrieval of al records, or retrieval of a particular record
specified by its rid; the file manager must keep track of the pages allocated for
the file. (We defer the details of how a heap file is implemented to Chapter 9.)

An index is a data structure that organizes data records on disk to optimize
certain kinds of retrieval operations. An index allows us to efficiently retrieve
all records that satisfy search conditions on the search key fields of the index.
We can also create additional indexes on a given collection of data records,
each with a different search key, to speed up search operations that are not
efficiently supported by the file organization used to store the data records.

Consider our example of employee records. We can store the records in a file
organized as an index on employee age; this is an alternative to sorting the file
by age. Additionally, we can create an auxiliary index file based on salary, to
speed up queries involving salary. The first file contains employee records, and
the second contains records that allow us to locate employee records satisfying
a query on salary.

We use the term data entry to refer to the records stored in an index file. A
data entry with search key value &, denoted as kx*, contains enough information
to locate (one or more) data records with search key value k. We can efficiently
search an index to find the desired data entries, and then use these to obtain
data records (if these are distinct from data entries).

There are three main alternatives for what to store as a data entry in an index:

1 A dataentry kx* is an actual data record (with search key value k).

2. A dataentry isa (k, rid) pair, whererid is the record id of a data record
with search key value k.

3. A dataentry is a (k, rid-list) pair, where rid-list is a list of record ids of
data records with search key value k.

Of course, if the index is used to store actual data records, Alternative (1),
each entry k=* is a data record with search key value k. We can think of such an
index as a special file organization. Such an indexed file organization can
be used instead of, for exarnple, a sorted file or an unordered file of records.

Alternatives (2) and (3), which contain data entries that point to data records,
are independent of the file organization that is used for the indexed file (i.e.,

Storage and Indexing 277

2

the file that contains the data records). Alternative (3) offers better space uti-
lization than Alternative (2), but dataentries are variable in length, depending
on the number of data records with a given search key value.

If we want to build more than one index on a collection of data records-for
example, we want to build indexes on both the age and the sal fields for a col-
lection of employee records-—at most one of the indexes should use Alternative
(1) because we should avoid storing data records multiple times.

821 Clustered Indexes

When a file is organized so that the ordering of data records is the same as
or close to the ordering of data entries in some index, we say that the index
is clustered; otherwise, it clustered is an unclustered index. An index that
uses Alternative (1) is clustered, by definition. An index that uses Alternative
(2) or (3) can be a clustered index only if the data records are sorted on the
search key field. Otherwise, the order of the data records is random, defined
purely by their physical order, and there is no reasonable way to arrange the
data entries in the index in the same order.

In practice, files are rarely kept sorted since this is too expensive to maintain
when the dataisupdated. So, in practice, aclustered index is an index that uses
Alternative (1), and indexes that use Alternatives (2) or (3) are unclustered.
We sometimes refer to an index using Alternative (1) as a clustered file,
because the data entries are actual data records, and the index is therefore a
file of datarecords. (As observed earlier, searches and scans on an index return
only its data entries, even if it contains additional information to organize the
data entries.)

The cost of using an index to answer a range search query can vary tremen-
dously based on whether the index is clustered. If the index is clustered, i.e,
we are using the search key of a clustered file, therids in qualifying data entries
point to a contiguous collection of records, and we need to retrieve only a few
data pages. Iftheindex is unclustered, each qualifying dataentry could contain
a rid that points to a distinct data page, leading to as many data page 1/Os
as the number of data entries that match the range selection, as illustrated in
Figure 8.1. This point is discussed further in Chapter 13.

8.2.2 Primary and Secondary Indexes

An index on a set of fields that includes the primary key (see Chapter 3) is
called a primary index; other indexes are called secondary indexes. (The
terms primary indeT and secondaTy index are sometimes used with a different

278 CHAPTER 3

Index entries

(Direct search for
data enrries)

Index file

Dataentries

——

) Data
Datafile
records

Figure 8.1 Uuelllst.ered Index Using Alternative (2)

meaning: An index that uses Alternative (1) is called a primary index, and
one that uses Alternatives (2) or (3) is called a secondary index. We will be
consistent with the definitions presented earlier, but the reader should be aware
of this lack of standard terminology in the literature.)

Two dataentries are said to be duplicates if they have the same value for the
search key field associated with the index. A primary index is guaranteed not
to contain duplicates, but an index on other (collections of) fields can contain
duplicates. In general, a secondary index contains duplicates. If we know
thatt no duplicates exist, that is, we know that the search key contains some
candidate key, we call the index a unique index.

An important issue is how data eutries in an index are organized to support
cfficient retrieval of data entries.vVe discuss this next.

8.3 INDEX DATA STRUCTURES

One way to organize data entries is to hash data entries on the search key.
Another way to organize data entries is to build a tree-like data structure that
directs a search for data entries. We introduce these two basic approaches ill
this section. We study tree-based indexing in more detail in Chapter 10 and
hash-based indexing in Chapter 11.

We note that the choice of hash or tree indexing techniques can be combined
with any of the three alternatives for data entries.

Storage and Indexing 279

8.3.1 Hash-Based Indexing

We can organize records using a technique called hashing to quickly find records
that have a given search key value. For example, if the file of employee records
is hashed on the name field, we can retrieve all records about Joe.

In this approach, the records in a file are grouped in buckets, where a bucket
consists of a primary page and, possibly, additional pages linked in a chain.
The bucket to which a record belongs can be determined by applying a special
function, called a hash function, to the search key. Given a bucket number,
a hash-based index structure allows us to retrieve the primary page for the
bucket in one or two disk |/Os.

On inserts, the record is inserted into the appropriate bucket, with 'overflow'
pages allocated as necessary. To search for a record with a given search key
value, we apply the hash function to identify the bucket to which such records
belong and look at all pages in that bucket. If we do not have the search key
value for the record, for example, the index is based on sal and we want records
with a given age value, we have to scan all pages in the file

In this chapter, we assume that applying the hash function to (the search key
of) a record alows us to identify and retrieve the page containing the record
with one I/0. In practice, hash-based index structures that adjust gracefully
to inserts and deletes and allow us to retrieve the page containing a record in
one to two I/Os (see Chapter 11) are known.

Hash indexing is illustrated in Figure 8.2, where the data is stored in a file that
is hashed on age; the data entries in this first index file are the actual data
records. Applying the hash function to the age field identifies the page that
the record belongs to. The hash function h for this example is quite simple;
it converts the search key value to its binary representation and uses the two
least significant bits as the bucket identifier.

Figure 8.2 also shows an index with search key sal that contains (sal, rid) pairs
as data entries. The rid (short for record id) component of a data entry in this
second index is a pointer to a record with search key value sal (and is shown
in the figure as an arrow pointing to the data record).

Using the terminology introduced in Section 8.2, Figure 8.2 illustrates Alter-
natives (1) and (2) for data entries. The file of employee records is hashed on
age, and Alternative (1) is used for for data entries. The second index, on s,
also uses hashing to locate data entries, which are now (sal, »d of employee
record) pairs, that is, Alternative (2) is used for data entries.

280 CHAPTER 8

i Smith, 44, 3000
h(age)=00 .7 j————
L Jones, 40, 6003

i Tracy, 44, 5004

\'/ h(age) = U1
/

h(age)=I0

File of <sal, rid> pairs
Employees file hashed on age hashed on sa

Figure 8.2 Index-Organized File Hashed on age, with Auxiliary Index on sal

Note that the search key for an index can be any sequence of one or more
fields, and it need not uniquely identify records. For example, in the salary
index, two data entries have the same search key value 6003. (There is an
unfortunate overloading of the term key in the database literature. A primary
key or candidate key-fields that uniquely identify a record; see Chapter 3—is
unrelated to the concept of a search key.)

8.3.2 Tree-Based Indexing

An alternative to hash-based indexing is to organize records using a tree-
like data structure. The data entries are arranged in sorted order by search
key value, and a hierarchical search data structure is maintained that directs
searches to the correct page of data entries.

Figure 8.3 shows the employee records from Figure 8.2, this time organized in a
tree-structured index with search keyage. Each node in this figure (e.g., nodes
labeled A, B, L1, L2) is a physical page, and retrieving a node involves a disk
I/0.

The lowest level of the tree, called the leaf level, contains the data entries;
in our example, these are employee records. To illustrate the ideas better, we
have drawn Figure 8.3 as if there were additional employee records, some with
age less than 22 and some with age greater than 50 (the lowest and highest
age values that appear in Figure 8.2). Additional records with age less than
22 would appear in leaf pages to the left page L1, and records with age greater
than 50 would appear in leaf pages to the right of page L3.

Storage and Indel:ing 281

Start search: —.__

.

(T2l Tgsld
EREIRELIE
O S et N
age<l.?///' T
e 12<=age<78 A
_— — X
{ H TS
Jrcacin AENE:
y | \\ rd
/ | \ /
/ { % v B X ' ')
{144l
e v 33‘1 s . LI
F; T
LEAF LEVEL L1 / ¥ L2 L3
Daniels. 22. 6003 Basu, 33, 4003 Smith, 44, 3000
_=| Ashby, 25, 3000 | .| Jones, 40, 6003 = Tracy, 44, 5004
- ; 4
7 \-Bristowsg 2007 [ler | Cass, 50, 5004
it Al o

Figure 8.3 Tree-Structured Index

This structure alows us to efficiently locate al data entries with search key
values in a desired range. All searches begin at the topmost node, called the
root, and the contents of pages in non-leaf levels direct searches to the correct
leaf page. Non-leaf pages contain node pointers separated by search key values.
The node pointer to the left of a key value k points to a subtree that contains
only data entries less than k. The node pointer to the right of a key value k
points to a subtree that contains only data entries greater than or equal to k.

In our example, suppose we want to find al data entries with 24 < age < 50.
Each edge from the root node to a child node in Figure 8.2 has a label that
explains what the corresponding subtree contains. (Although the labels for the
remaining edges in the figure are not shown, they should be easy to deduce.)
In our example search, we look for data entries with search key value > 24,
and get directed to the middle child, node A. Again, examining the contents
of this node, we are directed to node B. Examining the contents of node B, we
are directed to leaf node LI, which contains data entries we are looking for.

Observe that leaf nodes L2 and L3 also contain data entries that satisfy our
search criterion. To facilitate retrieval of such qualifying entries during search,
al leaf pages are maintained in a doubly-linked list. Thus, we can fetch page
L2 using the 'next’ pointer on page LI, and then fetch page L3 using the 'next’
pointer on L2.

Thus, the number of disk 1/Os incurred during a search is equal to the length
of a path from the root to a leaf, plus the number of leaf pages with qualifying
data entries. The B+ tree is an index structure that ensures that al paths
from the root to a leaf in a given tree are of the same length, that is, the
structure is always balanced in height. Finding the correct leaf page is faster

282 CHAPTER §

than binary search of the pages in a sorted file because each non-leaf node can
accommodate a very large number of node-pointers, and the height of the tree
is rarely more than three or four in practice. The height of a balanced tree is
the length of a path from root to leaf; in Figure 8.3, the height is three. The
number of 1/Os to retrieve a desired leaf page is four, including the root and
the leaf page. (In practice, the root is typically in the buffer pool because it
is frequently accessed, and we really incur just three 1/Os for a tree of height
three.)

The average number of children for a non-leaf node is called the fan-out of
the tree. If every non-leaf node has n children, a tree of height h has n" leaf
pages. In practice, nodes do not have the same number of children, but using
the average value F for n, we still get a good approximation to the number of
leaf pages, F". In practice, F is at least 100, which means a tree of height four
contains 100 million leaf pages. Thus, we can search a file with 100 million |eaf
pages and find the page we want using four 1/Os; in contrast, binary search of
the same file would take 10g2100,000,000 (over 25) 1/Os.

84 COMPARISON OF FILE ORGANIZATIONS

We now compare the costs of some simple operations for several basic file
organizations on a collection of employee records. We assume that the files and
indexes are organized according to the composite search key (age, sal), and that
all selection operations are specified on these fields. The organizations that we
consider are the following:

» File of randomly ordered employee records, or heap file.

» File of employee records sorted on (age, sal).

e Clustered B+ tree file with search key (age, sal).

e Heap file with an unclustered B+ tree index on (age, sal).

e Heap file with an unclustered hash index on (age, sal).

Our goal is to emphasize the importance of the choice of an appropriate file
organization, and the above list includes the main alternatives to consider in
practice. Obviously, we can keep the records unsorted or sort them. We can
also choose to build an index on the data file Note that even if the data file
is sorted, an index whose search key differs from the sort order behaves like an
index on a heap file!

The operations we consider are these:

Storage and Indexing 283

e Scan: Fetch al records in the file. The pages in the file must be fetched
from disk into the buffer pool. There is also a CPU overhead per record
for locating the record on the page (in the pool).

e Search with Equality Selection: Fetch all records that satisfy an equal-
ity selection; for example, "Find the employee record for the employee with
age 23 and sal 50.” Pages that contain qualifying records must be fetched
from disk, and qualifying records must be located within retrieved pages.

¢ Search with Range Selection: Fetch al records that satisfy a range
selection; for example, “Find all employee records with age greater than
35."

* Insert a Record: Insert agiven record into the file. We must identify the
page in the file into which the new record must be inserted, fetch that page
from disk, modify it to include the new record, and then write back the
modified page. Depending on the file organization, we may have to fetch,
modify, and write back other pages as well.

e Delete a Record: Delete arecord that is specified using its rid. We must
identify the page that contains the record, fetch itfrom disk, modify it, and
write it back. Depending on the file organization, we may have to fetch,
modify, and write back other pages as well.

84.1 Cost Modd

In our comparison of file organizations, and in later chapters, we use a simple
cost model that alows us to estimate the cost (in terms of execution time) of
different database operations. We use B to denote the number of data pages
when records are packed onto pages with no wasted space, and R to denote
the number of records per page. The average time to read or write a disk
page is D, and the average time to process a record (e.g., to compare a field
value to a selection constant) is C. In the hashed file organization, we use a
function, called a hash function, to map a record into a range of numbers; the
time required to apply the hash function to a record is H. For tree indexes, we
will use F to denote the fan-out, which typically is at least 100 as mentioned
in Section 8.3.2.

Typical values today are D = 15 milliseconds, C and H = 100 nanoseconds; we
therefore expect the cost of 1/0O to dominate. I/0 is often (even typically) the
dominant component of the cost of database operations, and so considering 1/0O
costs gives us a good first approximation to the true costs. Further, CPU speeds
are steadily rising, whereas disk speeds are not increasing at asimilar pace. (On
the other hand, as main memory sizes increase, a much larger fraction of the
needed pages are likely to fit in memory, leading to fewer 1/O requests!) We

284 CHAPTER,8

have chosen to concentrate on the 1/O component of the cost model, and we
assume the simple constant C for in-memory per-record processing cost. Bear
the follO\ing observations in mind:

Real systems must consider other aspects of cost, such as CPU costs (and
network transmission costs in a distributed database).

Even with our decision to focus on I/O costs, an accurate model would be
too complex for our purposes of conveying the essential ideas in a simple
way. We therefore use asimplistic model in which we just count the number
of pages read from or written to disk as a measure of 1/0. We ignore the
important issue of blocked access in our analysis-typically, disk systems
allow us to read a block of contiguous pages in a single I/O request. The
cost is equal to the time required to seek the first page in the block and
transfer all pages in the block. Such blocked access can be much cheaper
than issuing one 1/O request per page in the block, especially if these
requests do not follow consecutively, because we would have an additional
seek cost for each page in the block.

We discuss the implications of the cost model whenever our simplifying as-
sumptions are likely to affect our conclusions in an important way.

8.4.2 Heap Files

Scan: The cost is B(D +RC) because we must retrieve each of B pages taking
time D per page, and for each page, process R records taking time C per record.

Search with Equality Selection: Suppose that we know in advance that
exactly one record matches the desired equality selection, that is, the selection
is specified on a candidate key. On average, we must scan half the file, assuming
that the record exists and the distribution of values in the search field is uniform.
For each retrieved data page, we must check all records on the page to see if
it is the desired record. The cost is O.5B(D + RC). If no record satisfies the
selection, however, we must scan the entire file to verify this.

If the selection is not on a candidate key field (e.g., "Find employees aged 18"),
we always have to scan the entire file because records with age = 18 could be
dispersed al over the file, and we have no idea how many such records exist.

Search with Range Selection: The entire file must be scanned because
qualifying records could appear anywhere in the file, and we do not know how
many qualifying records exist. The cost is B(D + RC).

Sorage and Indezing 285

Insert: We assume that records are always inserted at the end of the file. We
must fetch the last page in the file, add the record, and write the page back.
The cost is 2D + C.

Delete: We must find the record, remove the record from the page, and write
the modified page back. We assume that no attempt is made to compact the
file to reclaim the free space created by deletions, for simplicity.? The cost is
the cost of searching plus C + D.

We assume that the record to be deleted is specified using the record id. Since
the page id can easily be obtained from the record id, we can directly read in
the page. The cost of searching is therefore D.

If the record to be deleted is specified using an equality or range condition
on some fields, the cost of searching is given in our discussion of equality and
range selections. The cost of deletion is also affected by the number of qualifying
records, since all pages containing such records must be modified.

8.4.3 Sorted Files

Scan: The cost is B(D *+ RC) because al pages must be examined. Note that
this case is no better or worse than the case of unordered files. However, the
order in which records are retrieved corresponds to the sort order, that is, all
records in age order, and for a given age, by sal order.

Search with Equality Selection: We assume that the equality selection
matches the sort order (age, sal). In other words, we assume that a selection
condition is specified on at least the first field in the composite key (e.g., age =
30). If not (e.g., selection sal = 50 or department = "Toy"), the sort order
does not help us and the cost is identical to that for a heap file

We can locate the first page containing the desired record or records, should
any qualifying records exist, with a binary search in [0g2B steps. (This analysis
assumes that the pages in the sorted file are stored sequentially, and we can
retrieve the ith page on the file directly in one disk 1/0.) Each step requires
a disk 1/O and two cornparisons. Once the page is known, the first qualifying
record can again be located by a binary search of the page at a cost of Clog,R.
The cost is Dlogs B+ Clog2R, which is a significant improvement over searching
heap files.

]In practice, a directory or other data structure is used to keep track of free space, and records are
inserted into the first available free slot. as discussed in Chapter 9. This increases the cost of insertion
and deletion a little, but not enough to affect our comparison.

286 CHAPTER ;8

If several records qualify (e.g., “Find all employees aged 18"), they are guar-
anteed to be adjacent to each other due to the sorting on age, and so the
cost of retrieving al such records is the cost of locating the first such record
(Dlog,B+ Clog,R) plusthe cost ofreading all the qualifying records in sequen-
tial order. Typicaly, al qualifying records fit on a single page. If no records
qualify, this is established by the search for the first qualifying record, which
finds the page that would have contained a qualifying record, had one existed,
and searches that page.

Search with Range Selection: Again assuming that the range selection
matches the composite key, the first record that satisfies the selection is located
as for search with equality. Subsequently, data pages are sequentially retrieved
until a record is found that does not satisfy the range selection; this is similar
to an equality search with many qualifying records.

The cost is the cost of search plus the cost of retrieving the set of records that
satisfy the search. The cost of the search includes the cost of fetching the first
page containing qualifying, or matching, records. For small range selections,
al qualifying records appear on this page. For larger range selections, we have
to fetch additional pages containing matching records.

Insert: To insert a record while preserving the sort order, we must first find
the correct position in the file, add the record, and then fetch and rewrite all
subsequent pages (because all the old records are shifted by one slot, assuming
that the file has no empty slots). On average, we can assume that the inserted
record belongs in the middle of the file. Therefore, we must read the latter half
of the file and then write it back after adding the new record. The cost is that
of searching to find the position of the new record plus 2. (0.5B(D + RC)),
that is, search cost plus B(D + RC).

Delete: We must search for the record, remove the record from the page, and
write the modified page back. We must also read and write al subsequent
pages because al records that follow the deleted record must be moved up to
cornpact the free space.? The cost is the same as for an insert, that is, search
cost plus B(D + RC). Given the rid of the record to delete, we can fetch the
page containing the record directly.

If records to be deleted are specified by an equality or range condition, the cost
of deletion depends on the number of qualifying records. If the condition is
specified on the sort field, qualifying records are guaranteed to be contiguous,
and the first qualifying record can be located using binary search.

2Unlike a heap file, there is no inexpensive way to manage free space, so we account for the cost
of compacting a file when a record is deleted.

Storage and Indezing

8.4.4 Clustered Files

In a clustered file, extensive empirical study has shown that pages are usually
at about 67 percent occupancy. Thus, the Humber of physical data pages is
about 1.5B, and we use this observation in the following analysis.

Scan: The cost of a scan is 1.5B(D + RC) because all data pages must be
examined; this is similar to sorted files, with the obvious adjustment for the
increased number of data pages. Note that our cost metric does not capture
potential differences in cost due to sequential I/0. We would expect sorted files
to be superior in this regard, although a clustered file using ISAM (rather than
B+ trees) would be close.

Search with Equality Selection: We assume that the equality selection
matches the search key (age sal). We can locate the first page containing
the desired record or records, should any qualifying records exist, in logF1.5B
steps, that is, by fetching all pages from the root to the appropriate leaf. In
practice, the root page is likely to be in the buffer pool and we save an I/0O,
but we ignore this in our simplified analysis. Each step requires a disk 1/0
and two comparisons. Once the page is known, the first qualifying record can
again be located by a binary search of the page at a cost of Clog2R. The cost
is DlogF1.5B + Clog; R, which is a significant improvement over searching even
sorted files.

If several records qualify (e.g., “Find all employees aged 18"), they are guar-
anteed to be adjacent to each other due to the sorting on age, and so the
cost of retrieving all such records is the cost of locating the first such record
(Dlogpl.5B + ClogzR) plus the cost of reading all the qualifying records in
sequential order.

Search with Range Selection: Again assuming that the range selection
matches the composite key, the first record that satisfies the selection is located
as it is for search with equality. Subsequently, data pages are sequentially
retrieved (using the next and previous links at the leaf level) until a record is
found that does not satisfy the range selection; this is similar to an equality
search with many qualifying records.

Insert: To insert arecord, we must first find the correct leaf page in the index,
reading every page from root to leaf. Then, we must add the Ilew record. Most
of the time, the leaf page has sufficient space for the new record, and al we
need to do is to write out the modified leaf page. Occasionaly, the leaf is full
and we need to retrieve and modify other pages, but this is sufficiently rare

288 CHAPTER &

that we can ignore it in this simplified analysis. The cost is therefore the cost
of search plus one write, Dlogg L5B + ClogsR + D.

Delete: We must search for the record, remove the record from the page,
and write the modified page back. The discussion and cost analysis for insert
applies here as well.

8.4.5 Heap File with Unclustered Tree Index

The number of leaf pages in an index depends on the size of a data entry.
We assume that each data entry in the index is a tenth the size of an em-
ployee data record, which is typical. The number of leaf pages in the index is
0.1(L5B) = 0.15B, if we take into account the 67 percent occupancy of index
pages. Similarly, the number of data entries on a page 10(0.67R) = 6.7R,
taking into account the relative size and occupancy.

Scan: Consider Figure 8.1, which illustrates an unclustered index. To do a full
scan of the file of employee records, we can scan the leaf level of the index and
for each data entry, fetch the corresponding data record from the underlying
file, obtaining data records in the sort order (age, sal).

We can read all data entries at a cost of O.15B(D + 6.7RC) I/Os. Now comes
the expensive part: We have to fetch the employee record for each data entry
in the index. The cost of fetching the employee records is one 1/O per record,
since the index is unclustered and each data entry on a leaf page of the index
could point to a different page in the employee file. The cost of this step is
BR(D + C), which is prohibitively high. If we want the employee records
in sorted order, we would be better off ignoring the index and scanning the
employee file directly, and then sorting it. A simple rule of thumb is that a file
can be sorted by a two-pass algorithm in which each pass requires reading and
writing the entire file. Thus, the 1/O cost of sorting a file with B pages is 4B,
which is much less than the cost of using an unclustered index.

Search with Equality Selection: We assume that the egualit.y selection
matches the sort order (age, sal). We can locate the first page containing the
desired data entry or entries, should any qualifying entries exist, in lagrO.15B
steps, that is, by fetching all pages from the root to the appropriate leaf. Each
step requires a disk 1/0O and two comparisons. Once the page is known, the
first qualifying data entry can again be located by a binary search of the page
at a cost of Clog26.7R. The first qualifying data record can he fetched fronl
the employce file with another 1/0. The cost is Dlogp0.15B + Clag26.7R + D,
which is a significant improvement over searching sorted files.

Storage and Indezing 289

If several records qualify (eg., “Find al employees aged 18"), they are not
guaranteed to be adjacent to each other. The cost of retrieving al such records
is the cost oflocating the first qualifying data entry (Dlo9p0.15B + Cl0926.7R)
plus one 1/O per qualifying record. The cost of using an unclustered index is
therefore very dependent on the number of qualifying records.

Search with Range Selection: Again assuming that the range selection
matches the composite key, the first record that satisfies the selection is located
as it is for search with equality. Subsequently, data entries are sequentially
retrieved (using the next and previous links at the leaf level of the index)
until a data entry is found that does not satisfy the range selection. For each
qualifying data entry, we incur one 1/O to fetch the corresponding employee
records. The cost can quickly become prohibitive as the number of records that
satisfy the range selection increases. As a rule of thumb, if 10 percent of data
records satisfy the selection condition, we are better off retrieving al employee
records, sorting them, and then retaining those that satisfy the selection.

Insert: We must first insert the record in the employee heap file, at a cost of
2D + C. In addition, we must insert the corresponding data entry in the index.
Finding the right leaf page costs DI09p0O.15B + CI0926.7R, and writing it out
after adding the new data entry costs another D.

Delete: We need to locate the data record in the employee file and the data
entry in the index, and this search step costs DIO9FO.15B + CI0926.7R + D.
Now, we need to write out the modified pages in the index and the data file,
at a cost of 2D.

8.4.6 Heap File With Unclustered Hash Index

As for unclustered tree indexes, we assume that each data entry is one tenth
the size of a data record. We consider only static hashing in our analysis, and
for simplicity we assume that there are no overflow chains.?

In a static hashed file, pages are kept at about SO percent occupancy (to leave
space for future insertions and minimize overflows as the file expands). This is
achieved by adding & new page to a bucket when each existing page is SO percent
full, when records are initially loaded into a hashed file structure. The number
of pages required to store data entries is therefore 1.25 times the number of
pages when the entries are densely packed, that is, 1.25(0.10B) = 0.125B.
The number of data entries that fit on a page is 10(0.80R) = 8R, taking into
account the relative size and occupancy.

3The dynamic variants of hashing are less susceptible to the problem of overflow chains, and have
a slight.ly higher average cost per search, but are otherwise similar to the static version.

290 CHAPTER 8

Scan: As for an unclustered tree index, al data entries can be retrieved in-
expensively, at a cost of 0.125B(D + 8RC) 1/0s. However, for each entry, we
incur the additional cost of one /O to fetch the corresponding data record; the
cost of this step is BR(D + C). This is prohibitively expensive, and further,
results are unordered. So no one ever scans a hash index.

Search with Equality Selection: This operation is supported very efficiently
for matching selections, that is, equality conditions are specified for each field
in the composite search key (age, sal). The cost of identifying the page that
contains qualifying data entries is H. Assuming that this bucket consists of
just one page (i.e., no overflow pages), retrieving it costs D. If we assume that
we find the data entry after scanning half the records on the page, the cost of
scanning the page is O.5(8R)C = 4RC. Finally, we have to fetch the data
record from the employee file, which is another D. The total cost is therefore
H + 2D + 4RC, which is even lower than the cost for a tree index.

If several records qualify, they are not guaranteed to be adjacent to each other.
The cost of retrieving all such records is the cost of locating the first qualifying
dataentry (H+D +4RC) plusone /O per qualifying record. The cost of using
an unclustered index therefore depends heavily on the number of qualifying
records.

Search with Range Selection: The hash structure offers no help, and the
entire heap file of employee records must be scanned at a cost of B(D + RC).

Insert: We must first insert the record in the employee heap file, at a cost
of 2D + C. In addition, the appropriate page in the index must be located,
modified to insert a new data entry, and then written back. The additional
cost isH +2D + C.

Delete: We need to locate the data record in the employee file and the data
entry in the index; this search step costs H + 2D + 4RC. Now, we need to
write out the modified pages in the index and the datafile, at a cost of 2D.

8.4.7 Comparison of I/0 Costs

Figure 8.4 compares 1/O costs for the various file organizations that we dis-
cussed. A heap file has good storage efficiency and supports fast scanning and
insertion of records. However, it is slow for searches and deletions.

A sorted file also offers good storage efficiency. but insertion and deletion of
records is slow. Searches are faster than in heap files. It is worth noting that,
in a real DBMS, a file is aimost never kept fully sorted.

Sorage and Indezing 29)
File - Scan Equality | Range dnsert .| Delete
cType il - Search .. Search :
Heap BD 0.5BD BD | 2D | Search+
D
Sorted BD Dlog2B Dlog2B + # Search + Search+
matching pages BD BD
Clustered 1.5BD DlogF1.5B| DIo9F1.5B+# Search + Search+
matching pages D D
Unclustered BD(R + | D(l + | D(I09FO.15B+# D(3 + Search+
tree index 0.15) logFO.15B) | matching records) logFO.15B) 2D
Unclustered BD(R + | 2D BD 4D Search+
hash index 0.125) 2D

Figure 8.4 A Comparison of I1/O Costs

A clustered file offers all the advantages of a sorted file and supports inserts
and deletes efficiently. (There is a space overhead for these benefits, relative to
a sorted file, but the trade-off is well worth it.) Searches are even faster than in
sorted files, although a sorted file can be faster when a large number of records
are retrieved sequentially, because of blocked I/O efficiencies.

Unclustered tree and hash indexes offer fast searches, insertion, and deletion,
but scans and range searches with many matches are sow. Hash indexes are a
little faster on equality searches, but they do not support range searches.

In summary, Figure 8.4 demonstrates that no one file organization is uniformly
superior in all situations.

85 INDEXESAND PERFORMANCE TUNING

In this section, we present an overview of choices that arise when using indexes
to improve performance in a database system. The choice of indexes has a
tremendous impact on system performance, and must be made in the context
of the expected workload, or typical mix of queries and update operations.

A full discussion of indexes and performance requires an understanding of
database query evaluation and concurrency control. We therefore return to
this topic in Chapter 20, where we build on the discussion in this section. In
particular, we discuss examples involving multiple tables in Chapter 20 because
they require an understanding of join algorithms and query evaluation plans.

292 CHAPTER: 8

85.1 Impact of the Workload

The first thing to consider is the expected workload and the common opera-
tions. Different file organizations and indexes, as we have seen, support different
operations well.

In general an index supports efficient retrieval of data entries that satisfy a
given selection condition. Recall from the previous section that there are two
important kinds of selections: equality selection and range selection. Hash-
based indexing techniques are optimized only for equality selections and fare
poorly on range selections. where they are typically worse than scanning the
entire file of records. Tree-based indexing techniques support both kinds of
selection conditions efficiently, explaining their widespread use.

Both tree and hash indexes can support inserts, deletes, and updates quite
efficiently. Tree-based indexes, in particular, offer a superior alternative to
maintaining fully sorted files of records. In contrast to simply maintaining the
data entries in a sorted file, our discussion of (B+ tree) tree-structured indexes
in Section 8.3.2 highlights two important advantages over sorted files:

1. We can handle inserts and deletes of data entries efficiently.

2. Finding the correct leaf page when searching for a record by search key
value is much faster than binary search of the pages in a sorted file.

The one relative disadvantage is that the pages in a sorted file can be allocated
in physical order on disk, making it much faster to retrieve several pages in
sequential order. Of course. inserts and deletes on a sorted file are extremely
expensive. A variant of B+ trees, called Indexed Sequential Access Method
(ISAM), offers the benefit of sequential allocation of leaf pages, plus the benefit
of fast searches. Inserts and deletes are not handled as well as in B+ trees, but
are rnuch better than in a sorted file. \Ve will study tree-structured indexing
in detail in Chapter 10.

8.5.2 Clustered Index Organization

As we saw in Section 8.2.1, a clustered index is really a file organization for
the underlying data records. Data records can be large, and we should avoid
replicating them; so there can be at most one clustered index on a given collec-
tion of records. On the other hand, we can build several unclustered indexes
on a datafile. Suppose that employee records are sorted by age, or stored in a
clustered file with search keyage. If. in addition. we have an index on the sal
field, the latter nlUst be an lIncllistered index. We can also build an unclustered
index on. say, department, if there is such a field.

Storage and Indexring 293

Clustered indexes, while less expensive to maintain than a fully sorted file, are
nonetheless expensive to maintain. When a new record has to be inserted into
a full leaf page, a new leaf page must be allocated and sorne existing records
have to be moved to the new page. Ifrecords are identified by a combination of
page id and slot, as is typically the case in current database systems, all places
in the database that point to a moved record (typically, entries in other indexes
for the same collection of records) must also be updated to point to the new
location. Locating all such places and making these additional updates can
involve several disk 1/0Os. Clustering must be used sparingly and only when
justified by frequent queries that benefit from clustering. In particular, there
is no good reason to build a clustered file using hashing, since range queries
cannot be answered using hash-indexes.

In dealing with the limitation that at most one index can be clustered, it is
often useful to consider whether the information in an index's search key is
sufficient to answer the query. If so, modern database systems are intelligent
enough to avoid fetching the actual data records. For example, if we have
an index on age, and we want to compute the average age of employees, the
DBMS can do this by simply examining the data entries in the index. Thisisan
example of an index-only evaluation. In an index-only evaluation of a query
we need not access the data records in the files that contain the relations in the
guery; we can evaluate the query completely through indexes on the files. An
important benefit of index-only evaluation is that it works equally efficiently
with only unclustered indexes, as only the data entries of the index are used in
the queries. Thus, unclustered indexes can be used to speed up certain queries
if we recognize that the DBMS will exploit index-only evaluation.

Design Examples Illustrating Clustered Indexes

To illustrate the use of a clustered index o11 a range query, consider the following
example:

SELECT E.dno
FROM Employees E
WHERE E.age > 40

If we have a H+ tree index on age, we can use it to retrieve only tuples that
satisfy the sclection E.age> 40. Whether such an index is worthwhile depends
first of al on the selectivity of the condition. What fraction of the employees are
older than 401 If virtually everyone is older than 40, we gain little by using an
index o11 age: a sequential scan of therelation would do almost as well. However,
suppose that only 10 percent of the employees are older than 40. Now, is an
index useful? The answer depends on whether the index is clustered. If the

294 CHAPTER: 8

index is unclustered, we could have one page |/O per qualifying employee, and
this could be more expensive than a sequential scan, even if only 10 percent
of the employees qualify! On the other hand, a clustered B+ tree index on
age requires only 10 percent of the I/Os for a sequential scan (ignoring the few
I1/Os needed to traverse from the root to the first retrieved leaf page and the
I/Os for the relevant index leaf pages).

As another example, consider the following refinement of the previous query:

SELECT Kdno, COUNT(*)
FROM Employees E
WHERE E.age> 10
GROUP BY E.dno

If a B+ tree index is available on age, we could retrieve tuples using it, sort
the retrieved tuples on dna, and so answer the query. However, this may not
be a good plan if virtually al employees are more than 10 years old. This plan
is especially bad if the index is not clustered.

Let us consider whether an index on dna might suit our purposes better. We
could use the index to retrieve all tuples, grouped by dna, and for each dna
count the number of tuples with age> 10. (This strategy can be used with
both hash and B+ tree indexes; we only require the tuples to be grouped, not
necessarily sorted, by dna.) Again, the efficiency depends crucially on whether
the index is clustered. Ifit is this plan is likely to be the best if the condition
on age is not very selective. (Even if we have a clustered index on age, if the
condition on age is not selective, the cost of sorting qualifying tuples on dna is
likely to be high.) If the index is not clustered, we could perform one page 1/0O
per tuple in Employees, and this plan would be terrible. Indeed, if the index
is not clustered, the optimizer will choose the straightforward plan based on
sorting on dna. Therefore, this query suggests that we build a clustered index
on dna if the condition on age is not very selective. If the condition is very
selective, we should consider building an index (not necessarily clustered) on
age instead.

Clustering is also important for an index on a search key that does not include
a candidate key, that is, an index in which several data entries can have the
same key valué. To illustrate this point, we present the following query:

SELECT E.dno
FROM Employees E
WHERE E.hobby='Stamps'

Stomge and Indexing

If many people collect stamps, retrieving tuples through an unclustered index
on hobby can be very inefficient. It may be cheaper to simply scan the relation
to retrieve all tuples and to apply the selection on-the-fly to the retrieved tuples.
Therefore, if such a query is important, we should consider making the index
on hobby a clustered index. On the other hand, if we assume that eid is a key
for Employees, and replace the condition E.hobby="'Stamps' by E.eid=552, we
know that at most one Employees tuple will satisfy this selection condition. In
this case, there is no advantage to making the index clustered.

The next query shows how aggregate operations can influence the choice of
indexes:

SELECT E.dno, COUNT(*)
FROM Employees E
GROUP BY E.dno

A straightforward plan for this query is to sort Employees on dno to compute
the count of employees for each dno. However, if an index-hash or B+ tree---
on dno is available, we can answer this query by scanning only the index. For
each dno value, we simply count the number of data entries in the index with
this value for the search key. Note that it does not matter whether the index
is clustered because we never retrieve tuples of Employees.

8.5.3 Composite Search Keys

The search key for an index can contain several fields, such keys are called
composite search keys or concatenated keys. As an example, consider a
collection of employee records, with fields name, age, and sal, stored in sorted
order by name. Figure 8.5 illustrates the difference between a composite index
with key (age, sal), a composite index with key (sal, age), an index with key
age, and an index with key sal. All indexes shown in the figure use Alternative
(2) for data entries.

If the search key is composite, an equality query is one in which each field in
the search key is bound to a constant. For example, we can ask to retrieve al
dataentries with age = 20 and sal = 10. The hashed file organization supports
only equality queries, since a hash function identifies the bucket containing
desired records only if a value is specified for each field in the search key.

With respect to a composite key index, in a range query not al fields in the
search key are bound to constants. For example, we can ask to retrieve al data
entries with age = 20; this query implies that any value is acceptable for the
sal field. As another example of a range query, we can ask to retrieve all data
entries with age < 30 and sal> 40.

296 CHAPTER, 8

<age, sal>
| E@ \i Index
12,10 J}»\
L1230 T~
! I
s N
AN e
<sal, age> / i
1012 7] -
e e
//
75,13
80.11 Index

Figure 8.5 Composite Key Indexes

Nate that the index cannot help on the query sal > 40, because, intuitively,
the index organizes records by age first and then sal. If age is left unspeci-
fied, qualifying records could be spread across the entire index. We say that
an index matches a selection condition if the index can be used to retrieve
just the tuples that satisf:y the condition. For selections of the form condition
A ... A condition, we can define when an index matches the selection as 101-
lows:* For a hash index, a selection matches the index if it includes an equality
condition (‘field = constant') on every field in the composite search key for the
index. For a tree index, a selection matches the index if it includes an equal-
ity or range condition on a prefiz of the composite search key. (As examples,
(age) and (age. sal, department) are prefixes of key (age, sal, department), but
(age, department) and (sal, department) are not.)

Trade-offsin Choosing Composite Keys

A composite key index can support a broader range of queries because it
matches more selection conditions. Further, since data entries in a composite
index contain more information about the data record (i.e,, more fields than
a single-attribute index), the opportunities for index-only evaluation strategies
are increased. (Recall from Section 8.5.2 that an index-only evaluation does
not need to access data records, but finds all required field values in the data
entries of indexes.)

On the negative side, a composite index must be updated in response to any
operation (insert, delete, or update) that modifies any field in the search key.
A composite index is also likely to be larger than a single-attribute search key

4For a more general discussion, see Section 14.2.)

StoTage and /ndering

index because the size of entries is larger. For a composite B+ tree index, this
also means a potential increase in the number of levels, although key COInpres-
sion can be used to alleviate this problem (see Section 10.8.1).

Design Examples of Composite Keys

Consider the following query, which returns al employees with 20 < age < 30
and 3000 < sal < 5000:

SELECT E.eid
FROM Employees E
WHERE E.age BETWEEN 20 AND 30
AND E.sal BETWEEN 3000 AND 5000

A composite index on (age, sal) could help if the conditions in the WHERE clause
are fairly selective. Obviously, a hash index will not help; a B+ tree (or ISAM)
index is required. It is also clear that a clustered index is likely to be superior
to an unclustered index. For this query, in which the conditions on age and sal
are equally selective, a composite, clustered B+ tree index on (age, sal) is as
effective as a composite, clustered B+ tree index on (sal, age). However, the
order of search key attributes can sometimes make a big difference, as the next
query illustrates:

SELECT E.eid
FROM Employees E
WHERE E.age = 25
AND E.sal BETWEEN 3000 AND 5000

In this query a composite, clustered B+ tree index on (age, sal) will give good
performance because records are sorted by age first and then (if two records
have the same age value) by sal. Thus, al records with age = 25 are clustered
together. On the other hand, a composite, clustered B+ tree index on (sal, age)
will not perform as well. In this case, records are sorted by sal first, and there-
fore two records with the same age value (in particular, with age = 25) may be
quite far apart. In effect, this index allows us to use the range selection on sal,
but not the equality selection on age to retrieve tuples. (Good performance
on both variants of the query can be achieved using a single spatial index. \:Ye
discuss spatial indexes in Chapter 28.)

Composite indexes are aso useful in dealing with many aggregate queries. Con-
sider:

SELECT AVG (E.sal)

298 CHAPTER: 8

FROM Employees E
WHERE E.age= 25
AND Ksal BETWEEN 3000 AND 5000

A composite B+ tree index on (age, sal) allows us to answer the query with
an index-only scan. A composite B+ tree index on (sal, age) also allows us
to answer the query with an index-only scan, although more index entries are
retrieved in this case than with an index on (age, sal).

Here is a variation of an earlier example:

SELECT Kdno, COUNT(*)
FROM Employees E
WHERE E.sd=10,000
GROUP BY Kdno

An index on dna alone does not alow us to evaluate this query with an index-
only scan, because we need to look at the sal field of each tuple to verify that
sal = 10,000. However, we can use an index-only plan if we have a composite
B+ tree index on (sal, dna) or (dna, sal). In an index with key (sal, dno), all
data entries with sal = 10,000 are arranged contiguously (whether or not the
index is clustered). Further, these entries are sorted by dna, making it easy to
obtain a count for each dna group. Note that we need to retrieve only data
entries with sal = 10, 000.

It is worth observing that this strategy does not work if the WHERE clause is
modified to use sal> 10,000. Although it suffices to retrieve only index data
entries-that is, an index-only strategy still applies-these entries must now
be sorted by dna to identify the groups (because, for example, two entries with
the same dna but different sal values may not be contiguous). An index with
key (dna, sal) is better for this query: Data entries with a given dna value are
stored together, and each such group of entries is itself sorted by sal. For each
dna group, we can eliminate the entries with sal not greater than 10,000 and
count the rest. (Using this index is less efficient than an index-only scan with
key (sal, dna) for the query with sal = 10,000, because we must read all data
entries. Thus, the choice between these indexes is influenced by which query is
more common.)

As another example, suppose we want to find the minimum sal for each dna:
SELECT Kdno, MIN(E.sa)

FROM Employees E
GROUP BY E.dno

Stomge and Indezing 299

An index on dna alone does not alow us to evaluate this query with an index-
only scan. However, we can use an index-only plan if we have a composite B+
tree index on (dno, sal). Note that all data entries in the index with a given
dna value are stored together (whether or not the index is clustered). Further,
this group of entries is itself sorted by 8a. An index on (sal, dna) enables us
to avoid retrieving data records, but the index data entries must be sorted on
dno.

8.5.4 Index Specification in SQL: 1999

A natural question to ask at this point is how we can create indexes using
SQL. The SQL:1999 standard does not include any statement for creating or
dropping index structures. In fact, th.e standard does not even require SQL
implementations to support indexes! In practice, of course, every commercial
relational DBMS supports one or more kinds of indexes. The following com-
mand to create a B+ tree index-we discuss B+ tree indexes in Chapter 10—is
illustrative:

CREATE INDEX IndAgeRating ON Students
WITH STRUCTURE = BTREE,

KEY = (age, gpa)

This specifies that a B+ tree index is to be created on the Students table using
the concatenation of the age and gpa columns as the key. Thus, key values are
pairs of the form (age, gpa), and there is a distinct entry for each such pair.
Once created, the index is automatically maintained by the DBMS adding or
removing dataentries in response to inserts or deletes of records on the Students
relation.

8.6 REVIEW QUESTIONS
Answers to the review questions can be found in the listed sections.

8 'Where does a DBMS store persistent data? How does it bring data into
main memory for processing? What DBMS component reads and writes
data from main memory, and what is the unit of 1/0O? (Section 8.1)

w 'What is a file organization? What is an index? What is the relationship
between files and indexes? Can we have several indexes on a single file
of records? Can an index itself store data records (i.e,, act as a file)?
(Section 8.2)

= What is the search key for an index? What is a data entry in an index?
(Section 8.2)

300 CHAPTER 8

* What is a clustered index? What is a primary index? How many clustered
indexes can you build on a file? How many unclustered indexes can you
build? (Section 8.2.1)

* How is data organized in a hash-based index? \Vhen would you use a
hash-based index? (Section 8.3.1)

* How is data organized in a tree-based index? When would you use a tree-
based index? (Section 8.3.2)

e« Consider the following operations: scans, equality and range selections,
inserts, and deletes, and the following file organizations: heap files, sorted
files, clustered files, heap files with an unclustered tree index on the search
key, and heap files with an unclusteTed hash index. Which file organization
is best suited for each operation? (Section 8.4)

* What are the main contributors to the cost of database operations? Discuss
a simple cost model that reflects this. (Section 8.4.1)

* How does the expected workload influence physical database design deci-
siems such as what indexes to build? Why is the choice of indexes a central
aspect of physical database design? (Section 8.5)

* What issues are considered in using clustered indexes? What is an indcl;-
only evaluation method? What is its primary advantage? (Section 8.5.2)

* What is a composite 8earch key? What are the pros and cons of composite
search keys? (Section 8.5.3)

« What SQL commands support index creation? (Section 8.5.4)

EXERCISES

Exercise 8.1 Answer the following questions about data on external storage in a DBMS:

1. \Vhy does a DBMS store data on external storage?
2. Why are I/O costs important in a DBMS?

3. What is a record id? Given a record's id, how many 1/Os are needed to fetch it into
main memory?

4. \Vhat is the role of the buffer manager in « DBMS? What is the role of the disk space
manager? How do these layers interact with the file and access methods layer?

Exercise 8.2 Answer the following questions about files and indexes:

1. What operations arc supported by the file of records abstraction?

2. \Vhat is an index on a file of records? \Nhat is a search key for an index? Why do we
need indexes?

Storage and Indexing 301

name) age | gpal
53831 | Madayan | madayvan@music | 11 1.8
53832 | Gulclu guldu@music 12 2.0
53666 | Jones jonestcs 18 | 34
53688 | Smith smith@ee 19 32
53650 | Smith smith@math 19 3.8

Figure 8.6 An Instance of the St.udents Relation, Sorted by age

3. What alternatives are available for the data entries in an index?

4. What is the difference between a primary index and a secondary index? \Vhat is a
duplicate data entry in an index? Can a primary index contain duplicates?

5. What is the difference between a clustered index and an unclustered index? If an index
contains data records as 'data entries," can it be unclustered?

6. How many clustered indexes can you create on a file? Woule! you always create at |east
one clustered index for a file?

7. Consider Alternatives (1), (2) and (3) for 'data entries' in an index, as discussed in
Section 8.2 . Are adl of them suitable for secondary indexes? Explain.

Exercise 8.3 Consider a relation stored as a randomly ordered file for which the only index
is an unclustered index on a field called sal. If you want to retrieve all records with sal> 20,
is using the index always the best alternative? Explain.

Exercise 8.4 Consider the instance of the Students relation shown in Figure 8.6, sorted by
age: For the purposes of this question, assume that these tuples are stored in a sorted file in
the order shown; the first tuple is on page 1 the second tuple is also on page 1, and so on.
Each page can store up to three data records; so the fourth tuple is on page 2.

Explain what the data entries in each of the following indexes contain. If the order of entries
is significant, say so and explain why. If such all index cannot be constructeel, say so and
explain why.
1. An unclustereel index on age using Alternative (1).
2. An unclusterecl index on age using Alternative (2).
3. An unclustered index on age using Alternative (3).
4. A clustered index on age using Alternative (1).
5. A clustered index on age using Alt.ernative (2).
6. A clustered index on age using Alternative (3).
7. An unc:lustered index on gpa using Alternative (1).
8. An unclustered index on gpa using Alternative (2).
9. An unclustered index on gpa using Alternative (3).
10. A clustered index on gpa using Alternative (1).
11. A clustered index on gpa using Alternative (2).
12. A clustered index on gpa using Alternative (3).

302 CHAPTER: 8

Pile Secan | Eguality | Range | Inseri | Delete
Tipe Sl Senrch [Seareh 1
Heap file
Sorted file
Clustered file
Unclustered tree index
Unclustered hash index

Figure 8.7 1/0O Cost Comparison

Exercise 8.5 Explain the difference between Hash indexes and B+-tree indexes. In partic-
ular, discuss how equality and range searches work, using an example.

Exercise 8.6 Fill inthe 1/O costs in Figure 8.7.

Exercise 8.7 If you were about to create an index on a relation, what considerations would
guide your choice? Discuss:

1. The choice of primary index.

. Clustered versus unclustered indexes.

2

3. Hash versus tree indexes.

4. The use of a sorted file rather than a tree-based index.
5

, Choice of search key for the index. What is a composite search key, and what consid-
erations are made in choosing composite search keys? What are index-only plans, and
what is the influence of potential index-only evaluation plans on the choice of search key
for an index?

Exercise 8.8 Consider a delete specified using an equality condition. For each of the five
file organizations, what is the cost if no record qualifies? What is the cost if the condition is
not on a key?

Exercise 8.9 What main conclusions can you draw from the discussion of the five basic file
organizations discussed in Section 8.4? Which of the five organizations would you choose for
a file where the most frequent operations are as follows?

1. Search for records based on a range of field values.
2. Perform inserts and scans, where the order of records docs not matter.

3. Search for a record based on a particular field value.
Exercise 8.10 Consider the following relation:
Emp(eid: integer, sal: integer age: real, did: integer)
There is a clustered index on cid and an IInclustered index on age.

1. How would you use the indexes to enforce the constraint that eid is a key?

2. Give an example of an update that is definitely speeded up because of the available
indexes. (English description is sufficient.)

Sorage and Indexing 303

3. Give an example of an update that is definitely slowed doum because of the indexes.
(English description is sufficient.)

4. Can you give an example of an update that is neither speeded up nor slowed down by
the indexes?

Exercise 8.11 Consider the following relations:

Emp(eid: integer, ename: varchar, sal: integer, age integer, did: integer)
Dept(did: integer, budget: integer, floor: integer, mgr_eid: integer)

Salaries range from $10,000 to $100,000, ages vary from 20 to 80, each department has about
five employees on average, there are 10 floors, and budgets vary from $10,000 to $1 million.
You can assume uniform distributions of values.

For each of the following queries, which of the listed index choices would you choose to speed
up the query? If your database system does not consider index-only plans (i.e.,, data records
are always retrieved even if enough information is available in the index entry), how would
your answer change? Explain briefly.

1. Query: Print ename, age, and sal for all employees.
(a) Clustered hash index on (ename, age, sal) fields of Emp.
(b) Unclustered hash index on (ename, age, sal) fields of Emp.
(c) Clustered B+ tree index on (ename, age, sal) fields of Emp.
(d) Unclustered hash index on (eid, did) fields of Emp.
(&) No index.

2. Query: Find the dids of departments that are on the 10th floor and have a budget of less
than $15,000.

(a) Clustered hash index on the floor field of Dept.

(b) Unclustered hash index on the floor' field of Dept.

(c) Clustered B+ tree index on (floor, budget) fields of Dept.
(d) Clustered B+ tree index on the budget field of Dept.

(e) No index.

PROJECT-BASED EXERCISES

Exercise 8.12 Answer the following questions:

1. What indexing techniques are supported in Minibase?
2. What alternatives for data entries are supported'?
3. Are clustered indexes supported?

BIBLIOGRAPHIC NOTES
Several books discuss file organization in detail [29, 312, 442, 531, 648, 695, 775].

Bibliographic: notes for hash-indexes and B+-trees arc included in Chapters 10 and 11.

STORING DATA:
DISKS AND FILES

= \What are the different kinds of memory in a computer system?

=« \What are the physical characteristics of disks and tapes, and how do
they affect the design of database systems?

= \What are RAID storage systems, and what are their advantages?

= How does a DBMS keep track of space on disks? How does a DBMS
access and modify data on disks? What is the significance of pages as
a unit of storage and transfer?

w How does a DBMS create and maintain files of records? How are
records arranged on pages, and how are pages organized within a file?

» Key concepts: memory hierarchy, persistent storage, random versus
sequential devices; physical disk architecture, disk characteristics, seek
time, rotational delay, transfer time; RAID, striping, mirroring, RAID
levels; disk space manager; buffer manager, buffer pool, replacement
policy, prefetching, forcing; file implementation, page organization,
record organization

A memory is what is left when something happens and does not cornpletely
unhappen.

. Edward DeBono

This chapter initiates a study of the internals of an RDBIivIS. In terms of the
DBMS architecture presented in Section 1.8, it covers the disk space manager,

304

Bto'ring Data: Disks and Files

the buffer manager, and implementation-oriented aspects of the Jiles and access
methods layer.

Section 9.1 introduces disks and tapes. Section 9.2 describes RAID disk sys-
tems. Section 9.3 discusses how a DBMS manages disk space, and Section 9.4
explains how a. DBMS fetches data from disk into main memory. Section 9.5
discusses how a collection of pages is organized into a file and how auxiliary
data structures can be built to speed up retrieval of records from a file. Sec-
tion 9.6 covers different ways to arrange a collection of records on a page, and
Section 9.7 covers alternative formats for storing individual records.

91 THE MEMORY HIERARCHY

Memory in a computer system is arranged in a hierarchy, as shown in Fig-
ure 9.1. At the top, we have primary storage, which consists of cache and
main memory and provides very fast access to data. Then comes secondary
storage, which consists of slower devices, such as magnetic disks. Tertiary
storage is the slowest class of storage devices, for example, optical disks and
tapes. Currently, the cost of a given amount of main memory is about 100 times

CPU

CACHE

~ -
y Primary storage

.
MAIN MEMORY E\

/

MAGNETIC DISK ~ Secondary storage
/

Request for data

Data satisfying request | TAPE Tertiary storage

Figure 9.1 The Ivlemory Hierarchy

the cost of the same amount of disk space, and tapes are even less expensive
than disks. Slower storage devices such as tapes and disks play an important
role in database systems because the amount of data is typically very large.
Since buying enough main memory to store all data is prohibitively expensive,
we must store data on tapes and disks and build database systems that can
retrieve data from lower levels of the memory hierarchy into main mernory as
needed for processing.

306 CHAPTER 9,

There are reasons other than cost for storing data on secondary and tertiary
storage. On systems with 32-bit addressing, only 2% bytes can be directly ref-
erenced in main memory; the number of data objects may exceed this number!
Further, data must be maintained across program executions. This requires
storage devices that retain information when the computer is restarted (after
a shutdown or a crash); we call such storage nonvolatile. Primary storage is
usually volatile (although it is possible to make it nonvolatile by adding a bat-
tery backup feature), whereas secondary and tertiary storage are nonvolatile.

Tapes arerelatively inexpensive and can store very large amounts of data. They
are a good choice for archival storage, that is, when we need to maintain data
for a long period but do not expect to access it very often. A Quantum DLT
4000 drive is a typical tape device; it stores 20 GB of data and can store about
twice as much by compressing the data. It records data on 128 tape tracks,
which can be thought of as a linear sequence of adjacent bytes, and supports
a sustained transfer rate of 1.5 MB/sec with uncompressed data (typically 3.0
MB/sec with compressed data). A single DLT 4000 tape drive can be used to
access up to seven tapes in a stacked configuration, for a maximum compressed
data capacity of about 280 GB.

The main drawback of tapes is that they are sequential access devices. We must
essentially step through all the data in order and cannot directly access a given
location on tape. For example, to access the last byte on a tape, we would have
to wind through the entire tape first. This makes tapes unsuitable for storing
operational data, or data that is frequently accessed. Tapes are mostly used to
back up operational data periodically.

9.1.1 Magnetic Disks

Magnetic disks support direct access to a desired location and are widely used
for database applications. A DBMS provides seamless access to data on disk;
applications need not worry about whether data is in main memory or disk.
To understand how disks work, eonsider Figure 9.2, which shows the structure
of adisk in simplified form.

Data is stored on disk in units called disk blocks. A disk block is a contiguous
sequence of bytes and is the unit in which data is written to a disk and read
from a disk. Blocks are arranged in concentric rings called tracks, on one or
more platters. Tracks can be recorded on one or both surfaces of a platter;
we refer to platters as single-sided or double-sided, accordingly. The set of all
tracks with the same diameter is called a cylinder, because the space occupied
by these tracks is shaped like a cylinder; a cylinder contains one track per
platter surface. Each track is divided into arcs, called sectors, whose size is a

Storing Data: Disks and Files 307

Disk ann Dis&(head

\

= Spindle Block
el

e

\m@ Cylinder

- Tracks
o

_ ' ===k
- = Platter
e

Arm movement \)l

Rotation
Figure 9.2 Structure of a Disk

characteristic of the disk and cannot be changed. The size of a disk block can
be set when the disk is initialized as a multiple of the sector size.

An array of disk heads, one per recorded surface, is moved as a unit; when
one head is positioned over a block, the other heads are in identical positions
with respect to their platters. To read or write a block, a disk head must be
positioned on top of the block.

Current systems typically alow at most one disk head to read or write at any
one time. All the disk heads cannot read or write in parallel—this technique
would increase data transfer rates by a factor equal to the number of disk
heads and considerably speed up sequential scans. The reason they cannot is
that it is very difficult to ensure that all the heads are perfectly aligned on the
corresponding tracks. Current approaches are both expensive and more prone
to faults than disks with a single active heacl. In practice, very few commercial
products support this capability and then only in a limited way; for example,
two disk heads may be able to operate in parallel.

A disk controller interfaces a disk drive to the computer. It implements com-
mands to read or write a sector by moving the arm assembly and transferring
data to and from the disk surfaces. A checksum is computed for when data
is written to a sector and stored with the sector. The checksum is computed
again when the data on the sector is read back. Ifthe sector is corrupted or the

308 CHAPTER 9

An Example of a Current Disk: The IBM Deskstar 14GPX. The
IBM Deskstar 14GPX is a 3.5 inch;:14.4 GB hard disk with an average
seek time of 9.1 milliseconds (msec) and an average rotational delay of
4.17 msec. However, the time to seek from one track to the next is just 2.2
msec, the maximum seek time is 15.5 :msec. The disk has five double-sided
plattersthat spin at 7200 rotations per minute. Each platter holds 3.35 GB
of data, with a density of 2.6 gigabit per square inch. The data transfer
rate is about 13 MB per second. To put these numbers in perspective,
observe that a disk access takes about 10 msecs, whereas accessing a main
memory location typically takes less than 60 nanoseconds!

read is faulty for some reason, it is very unlikely that the checksum computed
when the sector is read matches the checksum computed when the sector was
written. The controller computes checksums, and if it detects an error, it tries
to read the sector again. (Of course, it signals a failure if the sector is corrupted
and read fails repeatedly.)

While direct access to any desired location in main memory takes approxi-
mately the same time, determining the time to access a location on disk is
more complicated. The time to access a disk block has several components.
Seek time is the time taken to move the disk heads to the track on which
a desired block is located. As the size of a platter decreases, seek times also
decrease, since we have to move a disk head a shorter distance. Typical platter
diameters are 3.5 inches and 5.25 inches. Rotational delay is the waiting
time for the desired block to rotate under the disk head; it is the time required
for half a rotation all average and is usually less than seek time. Transfer
time is the time to actually read or write the data in the block once the head
is positioned, that is, the time for the disk to rotate over the block.

9.1.2 Performance Implications of Disk Structure

1. Data must be in mernory for the DBMS to operate on it.

2. The unit for data transfer between disk and main memory is a block; if a
single item on a block is needed, the entire block is transferred. Reading
or writing a disk block is called an 1/O (for input/output) operation.

3. Thetime to read or write a block varies, depending on the location of the
data:
access time = seek time + rotational delay + transfer time

These observations imply that the time taken for database operations is affected
significantly by how data is stored on disks. The time for moving blocks to

Storing Data: Disks and Files 309

or from disk usually dOlninates the time taken for database operations. To
minimize this time, it is necessary to locate data records strategically on disk
because of the geometry and mechanics of disks. In essence, if two records are
frequently used together, we should place them close together. The 'closest’
that two records can be on a disk is to be on the same block. In decreasing
order of closeness, they could be on the same track, the same cylinder, or an
adjacent cylinder.

Two records on the same block are obviously as close together as possible,
because they are read or written as part of the same block. As the platter
spins, other blocks on the track being read or written rotate under the active
head. In current disk designs, al the data on a track can be read or written
in one revolution. After a track is read or written, another disk head becomes
active, and another track in the same cylinder is read or written. This process
continues until all tracks in the current cylinder are read or written, and then
the arm assembly moves (in or out) to an adjacent cylinder. Thus, we have a
natural notion of 'closeness' for blocks, which we can extend to a notion of next
and previous blocks.

Exploiting this notion of next by arranging records so they are read or written
sequentially is very important in reducing the time spent in disk 1/Os. Sequen-
tial access minimizes seek time and rotational delay and is much faster than
random access. (This observation is reinforced and elaborated in Exercises 9.5
and 9.6, and the reader is urged to work through them.)

9.2 REDUNDANT ARRAYS OF INDEPENDENT DISKS

Disks are potential bottlenecks for system performance and storage system re-
liability. Even though disk performance has been improving continuously, mi-
croprocessor performance has advanced much more rapidly. The performance
of microprocessors has improved at about 50 percent or more per year, but
disk access times have improved at a rate of about 10 percent per year and
disk transfer rates at a rate of about 20 percent per year. In addition, since
disks contain mechanical elements, they have much higher failure rates than
electronic parts of a computer system. If a disk fails, al the data stored on it
is lost.

A disk array is an arrangement of several disks, organized to increase per-
formance and improve reliability of the resulting storage system. Performance
is increased through data striping. Data striping distributes data over several
disks to give the impression of having a single large, very fast disk. Reliabil-
ity is improved through redundancy. Instead of having a single copy of the
data. redundant information is maintained. The redundant information is care-

310 CHAPTER. 9

fully organized so that, in case of a disk failure, it can be used to reconstruct
the contents of the failed disk. Disk arrays that implement a combination of
data striping and redundancy are called redundant arrays of independent
disks, or in short, RAID.! Several RAID organizations, referred to as RAID
levels, have been proposed. Each RAID level represents a different trade-off
between reliability and performance.

In the remainder of this section, we first discuss data striping and redundancy
and then introduce the RAID levels that have become industry standards.

9.2.1 Data Striping

A disk array gives the user the abstraction of having a single, very large disk.
If the user issues an 1/0O request, we first identify the set of physical disk blocks
that store the data requested. These disk blocks may reside on a single disk in
the array or may be distributed over several disks in the array. Then the set
of blocks is retrieved from the disk(s) involved. Thus, how we distribute the
data over the disks in the array influences how many disks are involved when
an 1/O request is processed.

In data striping, the data is segmented into equal-size partitions distributed
over multiple disks. The size of the partition is called the striping unit. The
partitions are usually distributed using a round-robin algorithm: If the disk
array consists of D disks, then partition i is written onto disk i mod D.

As an example, consider a striping unit of one bit. Since any D successive data
bits are spread over all D data disks in the array, al 1/0O requests involve dl
disks in the array. Since the smallest unit of transfer from a disk is a block,
each 1/0 request involves transfer of at least D blocks. Since we can read the D
blocks from the D disks in parallel, the transfer rate of each request is D times
the transfer rate of a single disk; each request uses the aggregated bandwidth
of al disks in the array. But the disk access time of the array is basically the
access time of a single disk, since all disk heads have to move for" all requests.
Therefore, for a disk array with a striping unit of a single bit, the number of
requests per time unit that the array can process and the average response time
for each individual request are similar to that of a single disk.

As another exarhple, consider a striping unit of a disk block. In this case, 1/0
requests of the size of a disk block are processed by one disk in the array. If
rnany 1/O requests of the size of a disk block are made, and the requested

1Historically, the Jin RAID stood for inexpensive, as a large number of small disks was much more
econornical than a single very large disk. Today, such very large disks are not even manufactured.-a
sign of the impact of RAID.

Storing Data: Disks and Files

Redundancy Schemes: Alternatives to the parity scheme include
schemes based on Hamming codes and Reed-Solomon codes. In ad-
dition to recovery from single disk failures, Hamming codes can identify
which disk failed. Reed-Solomon codes can recover from up t0 two simul-
taneous disk failures. A detailed discussion of these schemes is beyond
the scope of our discussion here; the bibliography provides pointersfor the
interested reader.

blocks reside on different disks, we can process al requests in parallel and thus
reduce the average response time of an 1/0O request. Since we distributed the
striping partitions round-robin, large requests of the size of many contiguous
blocks involve al disks. We can process the request by all disks in parallel and
thus increase the transfer rate to the aggregated bandwidth of all D disks.

9.2.2 Redundancy

While having more disks increases storage system performance, it aso low-
ers overall storage system reliability. Assume that the mean-time-to-failure
(MTTF), of asingle disk is 50, 000 hours (about 5.7 years). Then, the MTTF
of an array of 100 disks is only 50,000/100 = 500 hours or about 21 days,
assuming that failures occur independently and the failure probability of a disk
does not change over time. (Actually, disks have a higher failure probability
early and late in their lifetimes. Early failures are often due to undetected
manufacturing defects; late failures occur since the disk wears out. Failures do
not occur independently either: consider a fire in the building, an earthquake,
or purchase of a set of disks that come from a 'bad' manufacturing batch.)

Reliability of a disk array can be increased by storing redundant information.
If a disk fails, the redundant information is used to reconstruct the data on the
failed disk. Redundancy can immensely increase the MTTF of a disk array.
When incorporating redundancy into a disk array design, we have to make two
choices. First, we have to decide where to store the redundant information. We
can either store the redundant information on a small number of check disks
or distribute the redundant information uniformly over all disks.

The second choice we have to make is how to compute the redundant infor-
mation. Most disk arrays store parity information: In the parity scheme, an
extra check disk contains information that can be used to recover from failure
of anyone disk in the array. Assume that we have a disk array with D disks
and consider the first bit on each data disk. Suppose that i of the D data bits
are 1. Thefirst bit on the check disk is set to 1ifi is odd; otherwise, it is set to

312 CHAPTER 9

0. This bit on the check disk is called the parity of the data bits. The check
disk contains parity information for each set of corresponding D data bits.

To recover the value of the first bit of a failed disk we first count the number
of bits that are 1 on the D - 1 nonfailed disks; let this number be j. Ifj isodd
and the parity bit is 1, or if j is even and the parity bit is 0, then the value
of the bit on the failed disk must have been 0. Otherwise, the value of the bit
on the failed disk must have been 1. Thus, with parity we can recover from
failure of anyone disk. Reconstruction of the lost information involves reading
all data disks and the check disk.

For example, with an additional 10 disks with redundant information, the
MTTF of our example storage system with 100 data disks can be increased
to more than 250 years! "What is more important, a large MTTF implies a
small failure probability during the actual usage time of the storage system,
which is usually much smaller than the reported lifetime or the MTTF. (Who
actually uses 10-year-old disks?)

In a RAID system, the disk array is partitioned into reliability groups, where
a reliability group consists of a set of data disks and a set of check disks. A
common 7'cdundancy scheme (see box) is applied to each group. The number
of check disks depends on the RAID level chosen. In the remainder of this
section, we assume for ease of explanation that there is only one reliability
group. The reader should keep in mind that actual RAID implementations
consist of several reliability groups, and the number of groups plays a role in
the overall reliability of the resulting storage system.

9.2.3 Levels of Redundancy

Throughout the discussion of the different RAID levels, we consider sample
data that would just fit on four disks. That is, with no RAID technology our
storage system would consist of exactly four data disks. Depending on the
RAID level chosen, the number of additional disks varies from zero to four.

Level §: Nonredundant

A RAID Level 0 system uses data striping to increase the maximum bandwidth
available. No redundant information is maintained. While being the solution
with the lowest cost, reliability is a problem, since the MTTF decreases linearly
with the number of disk drives in the array. RAID Level 0 has the best write
performance of al RAID levels, because absence of redundant information im-
plies that no redundant information needs to be updated! Interestingly, RAID
Level O docs not have the best read perfonnancc of al RAID levels, since sys-

StoTing Data: Disks and Files 313

tems with redundancy have a choice of scheduling disk accesses, as explained
in the next section.

In our example, the RAID Level asolution consists of only four data disks.
Independent of the number of data disks, the effective space utilization for a
RAID Level asystem is always 100 percent.

Levell: Mirrored

A RAID Level 1 system is the most expensive solution. Instead of having
one copy of the data, two identical copies of the data on two different disks are
Inaintained. Thistype of redundancy is often called mirroring. Every write of
a disk block involves a write on both disks. These writes may not be performed
simultaneously, since a global system failure (e.g., due to a power outage) could
occur while writing the blocks and then leave both copies in an inconsistent
state. Therefore, we always write a block on one disk first and then write the
other copy on the mirror disk. Since two copies of each block exist on different
disks, we can distribute reads between the two disks and allow parallel reads
of different disk blocks that conceptually reside on the same disk. A read of a
block can be scheduled to the disk that has the smaller expected access time.
RAID Level 1 does not stripe the data over different disks, so the transfer rate
for a single request is comparable to the transfer rate of a single disk.

In our example, we need four data and four check disks with mirrored data for
a RAID Levell implementation. The effective space utilization is 50 percent,
independent of the number of data disks.

Level 0+1: Stripingand Mirroring

RAID Level O+I1---sometimes also referred to as RAID Lewvel 10- -combines
striping and mirroring. As in RAID Level 1. read requests of the size of a disk
block can be scheduled both to a disk and its mirror image. In addition, read
requests of the size of several contiguous blocks benefit frolll the aggregated
bandwidth of all disks. Thc cost for writes is analogous to RAID LevellL

As in RAID Level 1, our example with four data disks requires four check disks
and the effective space utilization is always 50 percent.

Level 2: Error-Correcting Codes

In RAID Level 2, the striping unit is a single bit. The redundancy scheme used
is Hamming code. In our example with four data disks, only three check disks

314 CHAPTER 9

are needed. In general, the number of check disks grows logarithmically with
the number of data disks.

Striping at the bit level has the implication that in a disk array with D data
disks, the smallest unit of transfer for a read is a set of D blocks. Therefore,
Level 2is good for workloads with many large requests, since for each request,
the aggregated bandwidth of all data disks is used. But RAID Level 2 is bad
for small requests of the size of an individual block for the same reason. (See
the example in Section 9.2.1.) A write of a block involves reading D blocks
into main memory, modifying D + C blocks, and writing D + C blocks to
disk, where C is the number of check disks. This sequence of steps is called a
read-modify-write cycle.

For a RAID Level 2 implementation with four data disks, three check disks
are needed. In our example, the effective space utilization is about 57 percent.
The effective space utilization increases with the number of data disks. For
example, in a setup with 10 data disks, four check disks are needed and the
effective space utilization is 71 percent. In a setup with 25 data disks, five
check disks are required and the effective space utilization grows to 83 percent.

Level 3: Bit-Interleaved Parity

While the redundancy schema used in RAID Level 2 improves in terms of cost
over RAID Level 1, it keeps more redundant information than is necessary.
Hamming code, as used in RAID Level 2, has the advantage of being able to
identify which disk has failed. But disk controllers can easily detect which
disk has failed. Therefore, the check disks do not need to contain information
to identify the failed disk. Information to recover the lost data is sufficient.
Instead of using several disks to store Hamming code, RAID Level 3 has a
single check disk with parity information. Thus, the reliability overhead for
RAID Level 3 is asingle disk, the lowest overhead possible.

The performance characteristics of RAID Levels 2and 3 are very similar. RAID
Level 3 can aso process only one I/O at a time, the minimum transfer unit is
D blocks, and a write requires a read-modify-write cycle.

Level 4: Block-Interleaved Parity

RAID Level 4 has a striping unit of a disk block, instead of a single bit as in
RAID Level 3. Block-level striping has the advantage that read requests of
the size of a disk block can be served entirely by the disk where the requested
block resides. Large read requests of several disk blocks can still utilize the
aggregated bandwidth of the D disks.

So'ring Data: Disks and Files 315

The \vrite of a single block still requires a read-modify-write cycle, but only
one data disk and the check disk are involved. The parity on the check disk
can be updated without reading all D disk blocks, because the new parity can
be obtained by noticing the differences between the old data block and the new
data block and then applying the difference to the parity block on the check
disk:

NewParity = (OldData XOR NewData) XOR OldParity

The read-modify-write cycle involves reading of the old data block and the old
parity block, modifying the two blocks, and writing them back to disk, resulting
in four disk accesses per write. Since the check disk is involved in each write,
it can easily become the bottleneck.

RAID Level 3 and 4 configurations with four data disks require just a single
check disk. In our example, the effective space utilization is 80 percent. The
effective space utilization increases with the number of data disks, since always
only one check disk is necessary.

Level 5: Block-Interleaved Distributed Parity

RAID Level 5improves on Level 4 by distributing the parity blocks uniformly
over all disks, instead of storing them on a single check disk. This distribution
has two advantages. First, several write requests could be processed in parallel,
since the bottleneck of a unique check disk has been eliminated. Second, read
requests have a higher level of parallelism. Since the data is distributed over
al disks, read requests involve all disks, whereas in systems with a dedicated
check disk the check disk never participates in reads.

A RAID Level 5 system has the best performance of al RAID levels with
redundancy for small and large read ancllarge write requests. Small writes still
require a read-modify-write cycle and are thus less efficient than in RAID Level
1

In our example, the corresponding RAID Level 5 system has five disks overall
and thus the effective spa,ce utilization is the same as in RAID Levels 3 and 4.

Level 6: P+Q Redundancy

The motivation for RAID Level 6 is the observation that recovery from failure
of a single disk is not sufficient in very large disk arrays. First, in large disk
arrays, a second disk Illight fail before replacement of an already failed disk

316 CHAPTER, 9

could take place. In addition, the probability of a disk failure during recovery
of a failed disk is not negligible.

A RAID Level 6 system uses Reed-Solomon codes to be able to recover from
up to two simultaneous disk failures. RAID Level 6 requires (conceptually)
two check disks, but it aso uniformly distributes redundant information at the
block level asin RAID Leve 5. Thus. the performance characteristics for small
and large read requests and for large write requests are analogous to RAID
Level 5. For small writes, the read-modify-write procedure involves six instead
of four disks as compared to RAID Level 5, since two blocks with redundant
information need to be updated.

For a RAID Level 6 system with storage capacity equal to four data disks, six
disks are required. In our example, the effective space utilization is 66 percent.

9.2.4 Choiceof RAID Levels

If data loss is not an issue, RAID Level 0 improves overall system performance
at the lowest cost. RAID Level O+1 is superior to RAID Level 1. The main
application areas for RAID Level O+1 systems are small storage subsystems
where the cost of mirroring is moderate. Sometimes, RAID Level 0+1 is used
for applications that have a high percentage of writes in their workload, since
RAID Level O+1 provides the best write performance. RAID Levels 2 and
4 are aways inferior to RAID Levels 3 and 5, respectively. RAID Level 3 is
appropriate for workloads consisting mainly of large transfer requests of several
contiguous blocks. The performance of a RAID Level 3 system is bad for
workloads with many small requests of a single disk block. RAID Level 5is a
good general-purpose solution. It provides high performance for large as well
as small requests. RAID Level 6 is appropriate if a higher level of reliability is
required.

9.3 DISK SPACE MANAGEMENT
|

The lowest level of software in the DB.VIS architecture discussed in Section 1.8,
caled the disk space manager, manages space on disk. Abstractly, the disk
space manager supports the concept of a page as a unit of data and provides
cOlmnands to allocate or deallocate a page and read or write a page. The size
of a page is chosen to be the size of a disk block and pages are stored as disk
blocks so that reading or writing a page can be done in one disk /0.

It is often useful to allocate a sequence of pages as a contiguous sequence of
blocks to hold data frequently accessed in sequential order. This capability
is essential for exploiting the advantages of sequentially accessing disk blocks,

Storing Data: Disks and Files 317

which we discussed earlier in this chapter. Such a capability, if desired, must
be provided by the disk space manager to higher-level layers of the DBMS.

The disk space manager hides details of the underlying hardware (and possibly
the operating system) and alows higher levels of the software to think of the
data as a collection of pages.

9.3.1 Keeping Track of Free Blocks

A database grows and shrinks as records are inserted and deleted over time.
The disk space manager keeps track of which disk blocks are in usc, in addition
to keeping track of which pages are on which disk blocks. Although it is likely
that blocks are initially allocated sequentially on disk, subsequent allocations
and deallocations could in general create ‘holes.’

One way to keep track of block usage is to maintain a list of free blocks. As
blocks are deallocated (by the higher-level software that requests and uses these
blocks), we can add them to the free list for future use. A pointer to the first
block on the free block list is stored in a known location on disk.

A second way is to maintain a bitmap with one bit for each disk block, which
indicates whether a block is in use or not. A bitmap aso alows very fast
identification and allocation of contiguous areas on disk. This is difficult to
accomplish with a linked list approach.

9.3.2 Using OS File Systems to Manage Disk Space

Operating systems also manage space on disk. Typically, an operating system
supports the abstraction of a file as a sequence of bytes. The @S manages
space on the disk and translates requests, such as “Read byte i of file f, into
corresponding low-level instructions: “Read block m of track t of cylinder ¢
of disk d" A database disk space manager could he built using OS files. For
example, the entire database could reside in one or more @S files for which
a number of blocks are allocated (by the aS) and initialized. The disk space
manager is then responsible for managing the space in these OS files.

Many database systems do not rely on the &S file system and instead do their
own disk management, either from scratch or by extending @S facilities. The
reasons are practical as well as technical One practical reason is that a DBMS
vendor who wishes to support several @S platfonns cannot assume features
specific to any OS, for portability, and would therefore try to make the DBMS
code as self-contained as possible. A techuical reason is that on a :32-bit systern,
the largest file size is 4 GB. whereas a DBMS may want to access a single file

318 CHAPTER 9

larger than that. A related problem is that typical aS files cannot span disk
devices, which is often desirable or even necessary in a DBMS. Additional
technical reasons why a DBMS does not rely on the @S file system are outlined
in Section 9.4.2.

94 BUFFER MANAGER

To understand the role of the buffer manager, consider a simple example. Sup-
pose that the database contains 1 million pages, but only 1000 pages of main
memory are available for holding data. Consider a query that requires a scan
of the entire file. Because al the data cannot be brought into main memory at
one time, the DBMS must bring pages into main memory as they are needed
and, in the process, decide what existing page in main memory to replace to
make space for the new page. The policy used to decide which page to replace
is called the replacement policy.

In terms of the DBMS architecture presented in Section 1.8, the buffer man-
ager is the software layer responsible for bringing pages from disk to main
memory as needed. The buffer manager manages the available main memory
by partitioning it into a collection of pages, which we collectively refer to as the
buffer pool. The main memory pages in the buffer pool are called frames;
it is convenient to think of them as slots that can hold a page (which usually
resides on disk or other secondary storage media).

Higher levels of the DBMS code can be written without worrying about whether
data pages are in memory or not; they ask the buffer manager for the page,
and it is brought into a frame in the buffer pool if it is not already there.
Of course, the higher-level code that requests a page must also release the
page when it is no longer needed, by informing the buffer manager, so that
the frame containing the page can be reused. The higher-level code must also
inform the buffer manager if it modifies the requested page; the buffer manager
then makes sure that the change is propagated to the copy of the page on disk.
Buffer management is illustrated in Figure 9.3.

In addition to the buffer pool itself, the buffer manager maintains some book-
keeping information and two variables for each frame in the pool: pirLcount
and dirty. The number of times that the page currently in a given frame has
been requested but not released—the number of current users of the page--is
recorded in the pin_count variable for that frame. The Boolean variable dirty
indicates whether the page has been modified since it was brought into the
buffer pool from disk.

Storing Data: Disks and Files 319
Page requests from higher-level code

BUFFER POOL $

disk page
/—\/”
free frame

MAIN MEMORY

If a requested page is not in the .
pool and the pool is full, the)
buffer manager's replacement

policy controls which existing

page is replaced. DB DISK

N

Figure 9.3 The Buffer Pool

Initially, the pin_count for every frame is set to 0, and the dirty bits are turned
off. When a page is requested the buffer manager does the following:

1. Checks the buffer pool to see if some frame contains the requested page
and, if so, increments the pin_count of that frame. If the page is not in the
pool, the buffer manager brings it in as follows:

(@) Chooses a frame for replacement, using the replacement policy, and
increments its pin_count.

(b) If the dirty bit for the replacement frame is on, writes the page it
contains to disk (that is, the disk copy of the page is overwritten with
the contents of the frame).

(©) Reads the requested page into the replacement frame.

2. Returns the (main memory) address of the frame containing the requested
page to the requestor.

Incrementing pin_count is often called pinning the requested page in its frame.
When the code that calls the buffer manager and requests the page subsequently
cals the buffer manager and releases the page, the pin_count of the frame
containing the requested page is decremented. This is called unpinning the
page. Iftherequestor has modified the page, it also informs the buffer manager
of this at the time that it unpins the page, and the dirty bit for the frame is set.

320 CHAPTER 9

The buffer manager will not read another page into a frame until its pin_count
becomes 0, that is, until all requestors of the page have unpinned it.

If a requested page is not in the buffer pool and a free frame is not available
in the buffer pool, a frame with pin_count 0 is chosen for replacement. If there
are many such frames, a frame is chosen according to the buffer manager's
replacement policy. We discuss various replacement policies in Section 9.4.1.

When a page is eventually chosen for replacement, if the dirty bit is not set,
it means that the page has not been modified since being brought into main
memory. Hence, there is no need to write the page back to disk; the copy
on disk is identical to the copy in the frame, and the frame can simply be
overwritten by the newly requested page. Otherwise, the modifications to the
page must be propagated to the copy on disk. (The crash recovery protocol
may impose further restrictions, as we saw in Section 1.7. For example, in the
Write-Ahead Log (WAL) protocol, special log records are used to describe the
changes made to a page. The log records pertaining to the page to be replaced
may well be in the buffer; if so, the protocol requires that they be written to
disk before the page is written to disk.)

If no page in the buffer pool has pin.count 0 and a page that is not in the pool
is requested, the buffer manager must wait until some page is released before
responding to the page request. In practice, the transaction requesting the page
may simply be aborted in this situation! So pages should be released—by the
code that calls the buffer manager to request the page- as soon as possible.

A good question to ask at this point is, "What if a page is requested by several
different transactions?" That is, what if the page is requested by programs
executing independently on behalf of different users? Such programs could
make conflicting changes to the page. Thelocking protocol (enforced by higher-
level DBMS code, in particular the transaction manager) ensures that each
transaction obtains a shared or exclusive lock before requesting a page to read
or rnodify. Two different transactions cannot hold an exclusive lock on the
same page at the same time; this is how conflicting changes are prevented. The
buffer rnanager simply assumes that the appropriate lock has been obtained
before a page is requested.

9.4.1 Buffer Replacement Policies

The policy used to choose an unpinned page for replacement can affect the time
taken for database operations considerably. Of the man)Y alternative policies,
each is suitable in different situations.

Storing Data: Disks and Files 321

The best-known replacement policy is least recently used (LRU). This can
be implemented in the buffer manager using a queue of pointers to frames with
pin_count 0. A frame is added to the end of the queue when it becomes a
candidate for replacement (that is, when the pin_count goes to 0). The page
chosen for replacement is the one in the frame at the head of the queue.

A variant of LRU, called clock replacement, has similar behavior but less
overhead. Theideais to choose a page for replacement using a current variable
that takes on values 1 through N, where N is the number of buffer frames, in
circular order. We can think of the frames being arranged in a circle, like a
clock's face, and current as a clock hand moving across the face. To approximate
LRU behavior, each frame also has an associated referenced bit, which is turned
on when the page pin.count goes to O.

The current frame is considered for replacement. If the frame is not chosen for
replacement, current is incremented and the next frame is considered; this pro-
cess is repeated until some frame is chosen. If the current frame has pin_count
greater than 0, then it is not a candidate for replacement and current is in-
cremented. If the current frame has the referenced bit turned on, the clock
algorithm turns the referenced bit off and increments current—this way, a re-
cently referenced page is less likely to be replaced. If the current frame has
pin_count 0 and its referenced bit is off, then the page in it is chosen for re-
placement. If all frames are pinned in some sweep of the clock hand (that is,
the value of current is incremented until it repeats), this means that no page
in the buffer pool is a replacement candidate.

The LRU and clock policies are not always the best replacement strategies for a
database system, particularly if many user requests require sequential scans of
the data. Consider the following illustrative situation. Suppose the buffer pool
has 10 frames, and the file to be scanned has 10 or fewer pages. Assuming,
for simplicity, that there are no competing requests for pages, only the first
scan of the file does any 1/0. Page requests in subsequent scans always find the
desired page in the buffer pool. On the other hand, suppose that the file to be
scanned has 11 pages (which is one more than the number of available pages
in the buffer pool). Using LRU, every scan of the file will result in reading
every page of the fild In this situation, called sequential flooding, LRU is
the worst possible replacement strategy.

Other replacement policies include first in first out (FIFO) and most re-
cently used (MRU), which also entail overhead similar to LRU, and random,
arnong others. The details of these policies should be evident from their names
and the preceding discussion of LRU and clock.

322 CHAPTER, 9

s —
Buffer Management in Practice: IBM DB2 and Sybase ASE alow |
buffers to be partitioned into named pools. Each database, table, or in- |
dex can be bound to one of these pools. Each pool can be configured to
use either LRU or clock replacement in ASE; DB2 uses a variant of clock
replacement, with the initial clock value based on the nature of the page
(e.g., index non-leaves get a higher starting clock value, which delays their
replacement). Interestingly, a buffer pool client in DB2 can explicitly indi-
cate that it hates a page, making the page the next choice for replacement.
As a special case, DB2 applies MRU for the pages fetched in some utility
operations (e.g., RUNSTATS), and DB2 V6 also supports FIFO. Informix
and Oracle 7 both maintain a single global buffer pool using LRU; Mi-
crosoft SQL Server has a single pool using clock replacement. In Oracle
8, tables can be bound to one of two pools; one has high priority, and the
system attempts to keep pages in this pool in memory.

Beyond setting a maximum number of pins for a given transaction, there
are typically no features for controlling buffer pool usage on a per-
transaction basis. Microsoft SQL Server, however, supports a reservation of
buffer pages by queries that require large amounts of memory (e.g., queries
involving sorting or hashing).

9.4.2 Buffer Managementin DBMS versus OS

Obvious similarities exist between virtual memory in operating systems and
buffer management in database management systems. In both cases, the goal
is to provide access to more data than will fit in main memory, and the basic
idea is to bring in pages from disk to main memory as needed, replacing pages
no longer needed in main memory. Why can't we build a DBMS using the
virtual memory capability of an OS? A DBMS can often predict the order
in which pages will be accessed, or page reference patterns, much more
accurately than is typical in an @S environment, and it is desirable to utilize
this property. Further, aDBMS needs more control over when a page is written
to disk than an &S typically provides.

A DBMS can often predict reference patterns because most page references
are generated by higher-level operations (such as sequential scans or particular
implementations of various relational algebra operators) with a known pattern
of page accesses. This ability to predict reference patterns alows for a better
choice of pages to replace and makes the idea of specialized buffer replacement,
policies more attractive in the DBMS environment.

Even more important, being able to predict reference patterns enables the use
of a simple and very effective strategy called prefetching of pages. The

StoTing Data: Disks and Files 323

Prefetching: IBM DB2 supports both sequential alld list prefeteh
(prefetching a list of pages). In general, the prefeteh size is 32 4KB pages,
but this can be set by the user. For some sequential type datahaseutilities
(e.g.,, COPY, RUNSTATS), DB2 prefetches up to 64 4KB pages. For a
smaller buffer pool (i.e, less than 1000 buffers), the prefetch quantity is
adjusted downward to 16 or 8 pages. The prefetch size can be configured by
the user; for certain environments, it may be best to prefetch 1000 pages at
atime! Sybase ASE supports asynchronous prefetching of up to 256 pages,
and uses this capability to reduce latency during indexed access to a table
in a range scan. Oracle 8 uses prefetching for sequential scan, retrieving
large objects, and certain index scans. Microsoft SQL Server supports
prefetching for sequential scan and for scans along the leaf level ofa B+
tree index, and the prefetch size can be adjusted as a scan progresses. SQL
Server also uses asynchronous prefetching extensively. Informix supports
prefetching with a user-defined prefetch size.

buffer manager can anticipate the next several page requests and fetch the
corresponding pages into memory before the pages are requested. This strategy
has two benefits. First, the pages are available in the buffer pool when they
are requested. Second, reading in a contiguous block of pages is much faster
than reading the same pages at different times in response to distinct requests.
(Review the discussion of disk geometry to appreciate why this is so.) If the
pages to be prcfetched are not contiguous, recognizing that several pages need
to be fetched can nonetheless lead to faster 1/O because an order of retrieval
can be chosen for these pages that minimizes seek times and rotational delays.

Incidentally, note that the 1/O can typically be done concurrently with CPU
computation. Once the prefetch request is issued to the disk, the disk is re-
sponsible for reading the requested pages into memory pages and the CPU can
continue to do other work.

A DBMS also requires the ability to explicitly force a page to disk, that is, to
ensure that the copy of the page on disk is updated with the copy in memory.
As a related point, a DBMS must be able to ensure that certain pages in the
buffer pool are written to disk before certain other pages to implement the WAL
protocol for crash recovery, as we saw in Section 1.7. Virtual memory imple-
mentations in operating systems cannot be relied on to provide such control
over when pages are written to disk; the OS command to write a page to disk
may be implemented by essentially recording the write request and deferring
the actual modification of the disk copy. If the systern crashes in the interim,
the effects can be catastrophic for a DBMS. (Crash recovery is discllssed further
in Chapter 18.)

324 CHAPTER. 9

Indexes as Files: In Chapter 8, we presented indexes as a way Of organiz-
ing data records for efficient search. From an implementation standpoint,
indexes are just another kind of file, containing records that dil'ect traffic
on requests for data records. For example, a tree index is a collection of
records organized into one page per node in the tree. It is convenient to
actually think of a tree index as two files, because it contains two kinds
of records: (1) a file of index entries, which are records with fields for the
index's search key, and fields pointing to a child node, and (2) a file of data
entries, whose structure depends on the choice of data entry alternative.

95 FILESOF RECORDS

We now turn our attention from the way pages are stored on disk and brought
into main memory to the way pages are used to store records and organized
into logical collections or files. Higher levels of the DBMS code treat a page as
effectively being a collection of records, ignoring the representation and storage
details. In fact, the concept of a collection of records is not limited to the
contents of a single page; a file can span several pages. In this section, we
consider how a collection of pages can be organized as a file. We discuss how
the space on a page can be organized to store a collection of records in Sections
9.6 and 9.7.

95.1 ImplementingHeap Files

The data in the pages of a heap file is not ordered in any way, and the only
guarantee is that one can retrieve al records in the file by repeated requests
for the next record. Every record in the file has a unique rid, and every page
in a file is of the same size.

Supported operations on a heap file include CTeatc and destroy files, insert a
record, delete a record with a given rid, get a record with a given rid, and scan
al records in the file. To get or delete a record with a given rid, note that we
must be able to find the id of the page containing the record, given the id of
the record.

We must keep track of the pages in each heap file to support scans, and we must
keep track of pages that contain free space to implement insertion efficiently.
\Ve discuss two alternative ways to rnaintain this information. In each of these
alternatives, pages must hold two pointers (which are page ids) for file-level
bookkeeping in addition to the data.

Storing Data: Disks and Files 325

Linked List of Pages

One possibility is to maintain a heap file as a doubly linked list of pages. The
DBMS can remember where the first page is located by maintaining a table
containing pairs of (heap_file_name, page_Laddr) in a known location on disk.
We call the first page of the file the header page.

An important task is to maintain information about empty slots created by
deleting a record from the heap file. This task has two distinct parts: how to
keep track of free space within a page and how to keep track of pages that have
some free space. We consider the first part in Section 9.6. The second part can
be addressed by maintaining a doubly linked list of pages with free space and
a doubly linked list of full pages; together, these lists contain all pages in the
heap file. This organization is illustrated in Figure 9.4; note that each pointer
is really a page id.

~ TN /’A_[l
Data Data ‘ Linked list of pages

 page page | with free space

Header =~
page |z

TN I P W %
.| Daa Data Linked list of
_page | page full pages
¥/ \/1

Figure 9.4 Heap File Organization with a Linked List

If a new page is required, it is obtained by making a request to the disk space
manager and then added to the list of pages in the file (probably as a page
with free space, because it is unlikely that the new record will take up all the
space on the page). If a page is to be deleted from the heap file, it is removed
from the list and the disk space Inanager is told to deallocate it. (Note that the
scheme can easily be generalized to allocate or deallocate a sequence of several
pages and maintain a doubly linked list of these page sequences.)

One disadvantage of this schelue is that virtually al pages in a file will be on
the free list if records are of variable length, because it is likely that every page
has at least a few free bytes. To insert a typical record, we must retrieve and
exalnine several pages on the free list before we find one with enough free space.
The directory-based heap file organization that we discuss next addresses this
problem.

326 CHAPTER»9

Directory of Pages

An alternative to a linked list of pages is to maintain a directory of pages.
The DBMS must remember where the first directory page of each heap file is
located. The directory is itself a collection of pages and is shown as a linked
list in Figure 9.5. (Other organizations are possible for the directory itself, of
course.)

Data
page 1

Header page

Data
page 2

Data
page N

DIRECTORY

Figure 9.5 Heap File Organization with a Directory

Each directory entry identifies a page (or a sequence of pages) in the heap file
As the heap file grows or shrinks, the number of entries in the directory-and
possibly the number of pages in the directory itself--grows or shrinks corre-
spondingly. Note that since each directory entry is quite small in comparison to
a typical page, the size of the directory is likely to be very small in comparison
to the size of the heap file.

Free space can be managed by maintaining a bit per entry, indicating whether
the corresponding page has any free space, or a count per entry, indicating the
amount of free space on the page. If the file contains variable-length records,
we can examine the free space count for an entry to determine if the record
fits on the page pointed to by the entry. Since several entries fit on a directory
page, we can efficiently search for a data page with enough space to hold a
record to be inserted.

9.6 PAGE FORMATS

The page abstraction is appropriate when dealing with 1/0 issues, but higher
levels of the DBMS see data as a collection of records. In this section, we

SoTing Data: Disks and Files 327

2

Rids in COlnmercial Systems: IBM DB2, Informix, Microsoft SQL
Server, Oracle 8, and Sybase ASE all implement record ids as a page id
and slot number. Sybase ASE uses the following page organization, which
is typical: Pages contain a header followed by the rows and a slot array.
The header contains the page identity, its allocation state, page free space
state, and a timestamp. The slot array is simply a mapping of slot humber
to page offset.

Oracle 8 and SQL Server use logical record ids rather than page id and slot
number in one special case: Ifatable has a clustered index, then recordsin
thetable are identified using the key value for the clustered index. This has
the advantage that secondary indexes need not be reorganized if records
are moved across pages.

consider how a collection of records can be arranged on a page. We can think
of a page as a collection of slots, each of which contains a record. A record is
identified by using the pair (page id, slot number); this is the record id (rid).
(We remark that an alternative way to identify records is to assign each record
a unique integer as its rid and maintain a table that lists the page and slot of
the corresponding record for each rid. Due to the overhead of maintaining this
table, the approach of using (page id, slot number) as an rid is more common.)

We now consider some alternative approaches to managing slots on a page.
The main considerations are how these approaches support operations such as
searching, inserting, or deleting records on a page.

9.6.1 Fixed-Length Records

If all records on the page are guaranteed to be of the same length, record slots
arc uniform and can be arranged consecutively within a page. At any instant,
some slots are occupied by records and others are unoccupied. When a record
is inserted into the page, we must locate an empty slot and place the record
there. The main issues are how we keep track of empty slots and how we locate
all records on & page. The alternatives hinge on how we handle the deletion of
a record.

The first alternative is to store records in the first N slots (where N is the
number of records on the page); whenever a record is deleted, we move the last
record on the page into the vacated slot. This format allows us to locate the
ith record on a page by a simple offset calculation, and all empty slots appear
together at the end of the page. However, this approach docs not work if there

328 CHAPTER9

are external references to the record that is moved (because the rid contains
the slot number, which is now changed).

The second alternative is to handle deletions by using an array of bits, one per
slot, to keep track of free slot information. Locating records on the page requires
scanning the bit array to find slots whose hit is on; when a record is deleted,
its bit is turned off. The two alternatives for storing fixed-length records are
illustrated in Figure 9.6. Note that in addition to the information about records
on the page, a page usually contains additional file-level information (e.g., the
id of the next page in the file). The figure does not show this additional
information.

Packed Unpacked, Bitmap
Slot 1 siot 1
Slot 2 Slot 2
Slot 3/
0O 0 0 F
eV |
Slot N ‘// L
Slot M
N, Page — 1 | 1010\
\f\ 177 N
J Header L7 M 32 1J
Number of records Number of slots

Figure 9.6 Alternative Page Organizations for Fixed-Length Recorcls

The slotted page organization described for variable-length records in Section
9.6.2 can also be used for fixed-length records. It becomes attractive if we need
to move records around on a page for reasons other than keeping track of space
freed by deletions. A typical example is that we want to keep the records on a
page sorted (according to the value in some field).

9.6.2 Variable-Length Records

If records are of variable length, then we cannot divide the page into a fixed
collection of slots. The problem is that, when a new record is to be inserted,
we have to find an empty slot of just the right length----if we use a slot that
is too big, we waste space, ancl obviously we cannot use a slot that is smaller
than the record length. Therefore, when a record is inserted, we must allocate
just the right amount of space for it, and when a record is deleted, we must
move records to fill the hole created by the deletion, to ensure that al the free
space on the page is contiguous. Therefore, the ability to move records on a
page becomes very important.

Storing Data: Disks (I'nd Files 329

The most flexible organization for variable-length records is to maintain a di-
rectory of slots for each page, with a (record offset, record length) pair per
slot. The first component (record offset) is a 'pointer' to the record, as shown
in Figure 9.7; it is the offset in bytes from the start of the data area on the
page to the start of the record, Deletion is readily accomplished by setting the
record offset to -1. Records can be moved around on the page because the rid,
which is the page number and slot number (that is, position in the directory),
does not change when the record is moved; only the record offset stored in the
slot changes.

DATA AREA PAGE i

| offset of record from
/ start of data area

Pointer to st
of free space
7 \

with rid = (i,1)

\ -
length =24

FREE SPACE

AN

\l
|L20| 000 IL 16“24']“’1
N R

— —

Number of entries
SLOT DIRECTORY i slot directory

Figure 9.7 Page Organization for Variable-Length R.ecords

Thespace available for new records must be managed carefully because the page
is not preformatted into slots. One way to manage free space is to maintain a
pointer (that is, offset from the start of the data area on the page) that indicates
the start of the free space area. When a new record is too large to fit into the
remaining free space, we have to move records on the page to reclairn the space
freed by records deleted earlier. Theidea isto ensure that, after reorganization,
al records appear in contiguous order, followed by the available free space.

A subtle point to be noted is that the slot for a deleted record cannot aways
be removed from the slot directory, because slot numbers are used to identify
records-—by deleting a slot, we change (decrement) the slot number of subse-
quent slots in the slot directory, and thereby change the rid of records pointed
to by subsequent slots. The only way to remove slots from the slot directory is
to remove the last slot if the record that it points to is deleted. However, when

330 CHAPTER 9

a record is inserted, the slot directory should be scanned for an element that
currently does not point to any record, and this slot should be used for the new
record. A new slot is added to the slot directory only if all existing slots point
to records. If inserts are much more common than deletes (as is typically the
case), the number of entries in the slot directory is likely to be very close to
the actual number of records on the page.

This organization is also useful for fixed-length records if we need to move
them around frequently; for example, when we want to maintain them in some
sorted order. Indeed, when all records are the same length, instead of storing
this common length information in the slot for each record, we can store it once
in the system catalog.

In some special situations (e.g., the internal pages of a B+ tree, which we
discuss in Chapter 10), we lllay not care about changing the rid of a record. In
this case, the slot directory can be compacted after every record deletion; this
strategy guarantees that the number of entries in the slot directory is the same
as the number of records on the page. If we do not care about modifying rids,
we can also sort records on a page in an efficient manner by simply moving slot
entries rather than actual records, which are likely to be much larger than slot
entries.

A simple variation on the slotted organization is to maintain only record offsets
in the slots. For variable-length records, the length is then stored with the
record (say, in thefirst bytes). Thisvariation makes the slot directory structure
for pages with fixed-length records the sallle as for pages with variable-length
records.

9.7 RECORD FORMATS

In this section, we discuss how to organize fields within arecord. While choosing
a way to organize the fields of a record, we must take into account whether the
fields of the record are of fixed or variable length and consider the cost of various
operations on the record, including retrieval and modification of fields.

Before discussing record fonnats, we note that in addition to storing individual
records, inforination conlinon to al records of a given record type (such as the
number of fields and field types) is stored in the system catalog, which can
be thought of as a description of the contents of a database, maintained by the
DBMS (Section 12.1). This avoids repeated storage of the same information
with each record of a given type.

Storing Data: Disks and Files 1331

Record Formats in Commercial Aystems: In IBM DB2, fixed-length
fields are at fixed offsets from the beginning of the record. Variable-length
fields have offset and length in the fixed offset part of the record, and
the fields themselves follow the fixed-length part of the record. Informix,
Microsoft SQL Server, and Sybase ASE use the same organization with
minor variations. In Oracle 8, records are structured as if al fields are
potentially of variable length; a record is a sequence of length-data pairs,
with a special length value used to denote a null value.

9.7.1 Fixed-Length Records

In a fixed-length record, each field has a fixed length (that is, the value in this
field is of the same length in all records), and the number of fields is also fixed.
Thefields of such arecord can be stored consecutively, and, given the address of
the record, the address of a particular field can be calculated using information
about the lengths of preceding fields, which is available in the system catal og.
This record organization is illustrated in Figure 9.8.

(F1 \ F2 ‘ F3 i F4W Fi = Field i

K

\{ L Lz—zi} L3 L4 Li = Length of
\ field i

Base address (B) Address =B+L1+L2

Figure 9.8 Organization of Records with Fixed-Length Fields

9.7.2 Variable-Length Records

In the relational model, every record in a relation contains the same number
of fields. If the number of fields is fixed, a record is of variable length only
because some of its fields are of variable length.

One possible organizatioll is to store fields consecutively, separated by delim-
iters (which are special characters that do not appear in the data itself). This
organization requires a scan of the record to locate a desired field.

An alternative is to reserve some space at the beginning of a record for use as
an array of integer offsets—the ith integer in this array is the starting address
of the ith field value relative to the start of the record. Note that we also store
an offset to the end of the record; this offset is needed to recognize where the
last field ends. Both alternatives are illustrated in Figure 9.9.

332 CHAPTER 9

J

T P !
§ F1 {s F2 |s| F3 isi F4 si Fi = Field i
Fields delimited by special symbol $
| Fi F2 F3 F4
NANN)lL ‘
:K___.;_..._————-—""/

Array of field offsets

Figure 9.9 Alternative Record Organizations for Variable-Length Fields

The second approach is typically superior. For the overhead of the offset array,
we get direct access to any field. We also get a clean way to deal with null
values. A null value is a special value used to denote that the value for a field
is unavailable or inapplicable. If a field contains a null value, the pointer to the
end of the field is set to be the same as the pointer to the beginning of the field.
That is, no space is used for representing the null value, and a comparison of
the pointers to the beginning and the end of the field is used to determine that
the value in the field is null.

Variable-length record formats can obviously be used to store fixed-length
records as well; sometimes, the extra overhead is justified by the added flexibil-
ity, because issues such as supporting n'ull values and adding fields to a recorcl
type arise with fixed-length records as well.

I-laving variable-length fields in a record can raise some subtle issues, especially
when a record is modified.

w Modifying a field may cause it to grow, which requires us to shift all subse-
guent fields to make space for the modification in all three record formats
just presentcel.

m A modified record inay no longer fit into the space remaining on its page.
If so, it may have to be moved to another page. If riels, which are used
to ‘point’ to a record, include the page number (see Section 9.6), moving
a record to'another page causes a problem. We may have to leave a ‘for-
warding address' on this page identifying the ne'v location of the record.
And to ensure that space is ahvays available for this forwarding address,
we would have to allocate some minimum space for each record, regardless
of its length.

Storing Data: Disks and Files

Large Records in Real Systems: In Sybase ASE, a record can be at
most 1962 bytes. This limit is set by the 2KB log page size, since records
are not alowed to be larger than a page. The exceptions to this rule. are
BLOBs and CLOBSs, which consist of a set of bidirectionally linked pages.
IBM DB2 and Microsoft SQL Server also do not alow records to span
pages, although large objects are alowed to span pages and are handled
separately from other data types. In DB2, record size islimited only by
the page size; in SQL Server, a record can be at most 8KB, excluding
LOBs. Informix and Oracle 8 alow records to span pages. Informix alows
records to be at most 32KB, while Oracle has no maximum record size;
large records are organized as a singly directed list.

= A record may grow so large that it no longer fits on anyone page. We have
to deal with this condition by breaking a record into smaller records. The
smaller records could be chained together-part of each smaller record is
a pointer to the next record in the chain---to enable retrieval of the entire
original record.

9.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Explain the term memory hierarchy. What are the differences between
primary, secondary, and tertiary storage? Give examples of each. Which
of these is wolatile, and which are persistent? Why is persistent storage
more important for a DBMS than, say, a program that generates prime
numbers? (Section 9.1)

B Why are disks used so widely in a DBMS? What are their advantages
over main memory and tapes? What are their relative disadvantages?
(Section 9.1.1)

¥ What is a disk block or page? How are blocks arranged in a disk? How
does this affect the time to access a block? Discuss seek time, rotational
delay, and transfer time. (Section 9.1.1)

m Explain how careful placement of pages on the disk to exploit the geometry
of a disk can minimize the seek time and rotational delay when pages are
read sequentially. (Section 9.1.2)

s Explain what a RAID systenl is and how it improves performance and
reliability. Discuss striping and its impact on performance and redundancy
and its irnpact on reliability. What are the trade-offs between reliability

334 CHAPTER O

and performance in the different RAID organizations called RAID levels?
(Section 9.2)

® What is the role of the DBMS disk space manager? Why do database
systems not rely on the operating system instead? (Section 9.3)

= Why does every page request in a DBMS go through the buffer manager?
What is the buffer poor? What is the difference between a frame in a buffer
pool, a page in afile, and a block on a disk? (Section 9.4)

m What information does the buffer manager maintain for each page in the
buffer pool? -What information is maintained for each frame? What is
the significance of pin.count and the dirty flag for a page? Under what
conditions can a page in the pool be replaced? Under what conditions
must a replaced page be written back to disk? (Section 9.4)

m Why does the buffer manager have to replace pages in the buffer pool?
How is a page chosen for replacement? What is sequential flooding, and
what replacement policy causes it? (Section 9.4.1)

= A DBMS buffer manager can often predict the access pattern for disk pages.
How does it utilize this ability to minimize 1/O costs? Discuss prefetch-
ing. What is forcing, and why is it required to support the write-ahead
log protocol in a DBMS? In light of these points, explain why database
systems reimplement many services provided by operating systems. (Sec-
tion 9.4.2)

m Why is the abstraction of a file of records important? How is the software
in a DBMS layered to take advantage of this? (Section 9.5)

. What is a heap file? How are pages organized in a heap file? Discuss list
versus directory organizations. (Section 9.5.1)

m Describe how records are arranged on a page. What is a slof, and how
are slots used to identify records? How do slots enable us to move records
on a page withont altering the record's identifier? -What arc the differ-
ences in page organizations for fixed-length and variable-length records?
(Section 9.6)

m What are the differences in how fields are arranged within fixed-length and
variable-length records? For variable-length records, explain how the array
of offsets organization provides direct access to a specific field and supports
null values. (Section 9.7)

Storing Data: Disks and Files 335

EXERCISES

Exercise 9.1 What is the most important difference between a disk and a tape?
Exercise 9.2 Explain the terms seek time, rotational delay, and transfer time.

Exercise 9.3 Both disks and main memory support direct access to any desired location
(page). On average, main memory accesses are faster, of course. What is the other important
difference (from the perspective of the time required to access a desired page)?

Exercise 9.4 Ifyou have a large file that is frequently scanned sequentially, explain how you
would store the pages in the file on a disk.

Exercise 9.5 Consider a disk with a sector size of 512 bytes, 2000 tracks per surface, 50
sectors per track, five double-sided platters, and average seek time of 10 msec.

1. What is the capacity of a track in bytes? What is the capacity of each surface? What is
the capacity of the disk?

2. How many cylinders does the disk have?

3. Give examples of valid block sizes. |s 256 bytes a valid block size? 2048? 51,2007

4. 1f the disk platters rotate at 5400 rpm (revolutions per minute), what is the maximum
rotational delay?

5. If one track of data can be transferred per revolution, what is the transfer rate?

Exercise 9.6 Consider again the disk specifications from Exercise 9.5 and suppose that a
block size of 1024 bytes is chosen. Suppose that a file containing 100,000 records of 100 bytes
each is to be stored on such a disk and that no record is alowed to span two blocks.

I. How many records fit. onto a block?

2. How many blocks are required to store the entire file? If the file is arranged sequentially
on disk, how llldlY surfaces are needed?

3. How many records of 100 bytes each can be stored using this disk?

4. 1f pages are stored sequentially on disk, with page 1 on block 1 of track 1, what page is
stored on block 1 of track 1 on the next disk surface? How would your answer change if
the disk were capable of reading and writing from all heads in parallel?

<

What titne is required to read a file containing 100,000 records of 100 bytes each sequen-
tially? Again, how \vould your answer change if the disk were capable of reading/writing
from al heads in parallel (and the data was arranged optimally)?

6. What is the time required to read a file containing 100,000 records of 100 bytes each in a
random order? To read a record, the block containing the recOl'd has to be fetched from
disk. Assume that each block request incurs the average seek time and rotational delay.

Exercise 9.7 Explain what the buffer manager Jmsl do to process a read request for a page.
\Vhat happens if the requested page is in the pool but not pinned?

Exercise 9.8 When does a buffer manager write a page to disk?

Exercise 9.9 What does it mean to say that a page is pinned in the buffer pool? Who is
responsible for pinning pages? \Vho is responsible for unpinning pages?

CHAPTER» 9

Exercise 9.10 'When a page in the bulTer pool is modified, how does the DBMS ensure that
this change is propagated to disk? (Explain the role of the buffer manager as well as the
modifier of the page.)

Exercise 9.11 \Vhat happens if a page is requested when all pages in the buffer pool are
dirty?

Exercise 9.12 \Vhat is sequential flooding of the buffer pool?

Exercise 9.13 Name an important capability of a DBMS buffer manager that is not sup-
ported by a typical operating system's buffer manager.

Exercise 9.14 Explain the term prefetching. Why is it important?

Exercise 9.15 Modern disks often have their own main memory caches, typically about
1 MB, and use this to prefetch pages. The rationale for this technique is the empirical
observation that, if a disk page is requested by some (not necessarily database!) application,
80% of the time the next page is requested as well. So the disk gambles by reading ahead.

1. Give a nontechnical reason that a DBMS may not want to rely on prefetching controlled
by the disk.

2. Explain the impact on the disk's cache of several queries running concurrently, each
scanning a different file.

3. Is this problem addressed by the DBMS buffer manager prefetching pages? Explain.

4. Modern disks support segmented caches, with about four to six segments, each of which
is used to cache pages from a different file. Does this technique help, with respect to
the preceding problem? Given this technique, does it matter whether the DBM S buffer
manager also does prefetching?

Exercise 9.16 Describe two possible record formats. What are the trade-offs between them?
Exercise 9.17 Describe two possible page formats. What are the trade-offs between them?

Exercise 9.18 Consider the page format for variable-length records that uses a slot directory.

1. One approach to managing the slot directory is to use a maximum size (i.e.,, a maximum
number of slots) and allocate the directory array when the page is created. Discuss the
pros and cons of this approach with respect to the approach discussed in the text.

2. Suggest a modification to this page format that would allow us to sort records (according
to the value in some field) without moving records and without changing the record ids.

Exercise 9.19 Consider the two internal organizations for heap files (using lists of pages and
a directory of pages) discussed in the text.

1. Describe them briefly and explain the trade-offs. Which organization would you choose
if records are variable in length?

2. Can you suggest a single page format to implement both internal file organizations'?

Exercise 9.20 Consider a list-based organizat.ion of the pages in a heap file in which two
lists are maintained: a list of all pages in the file and a list of al pages with free space. In
contrast, the list-based organizatioll discussed in the text maintains a list of full pages and a
list of pages with free space.

Storing Data: Disks and Files 337

1. What are the trade-offs, if any'? Is one of them clearly superior?

2. For each of these organizations, describe a suitable page format.
Exercise 9.21 Modern disk drives store more sectors on the outer tracks than the inner
tracks. Since the rotation speed is constant, the sequential data transfer rate is also higher on
the outer tracks. The seek time and rotational delay are unchanged. Given this information,
explain good strategies for placing files with the following kinds of access patterns:

1. Frequent, random accesses to a small file (e.g., catalog relations).

2. Sequential scans of a large file (e.g., selection from a relation with no index).

3. Random accesses to alarge file viaan index (e.g., selection from arelation viathe index).

4. Sequential scans of a small file

Exercise 9.22 Why do frames in the buffer pool have a pin count instead of a pin flag?

PROJECT-BASED EXERCISES

Exercise 9.23 Study the public interfaces for the disk space manager, the buffer manager,
and the heap file layer in Minibase.

Are heap files with variable-length records supported?
What page format is used in Minibase heap files?

What happens if you insert a record whose length is greater than the page size?
How is free space handled in Minibase?

A w D

BIBLIOGRAPHIC NOTES

Salzberg [648] and Wiederhold [776] discuss secondary storage devices and file organizations
in detail.

RAID was originally proposed by Patterson, Gibson, and Katz [587]. The article by Chen
et al. provides an excellent survey of RAID [17]] . Books about RAID include Gibson's
dissertation [.317] and the publications from the RAID Advisory Board [605].

The design and implementation of storage managers is discussed in [65, 133, 219, 477, 718].
With the exception of [219], these systems emphasize eztensibility, anel the papers contain
much of interest from that stanelpoint as well. Other papers that cover storage management
issues in the context of significant implemented prototype systems are [480] and [588]. The
Dali storage Inanager, which is optimized for main memory databases, is described in [406].
Three techniques for ilnplementing long fields are compared in [96]. The impact of processor
cache misses o011 DBMS performallce has received attention lately, as complex queries have
become increasingly CPU-intensive. [33] studies thisissue, and shows that performance can be
significantly improved by using a new arrangement of records within a page, in which records
on a page are stored in a column-oriented format (all field values for the first attribute followed
by values for the second attribute, etc.).

Stonebraker discusses operating systems issues in the context of databases in [715]. Several
buffer management policies for database systems are compared in [181]. Buffer management
is also studied in [119, 169, 2G1, 235].

A
g

%ﬁ”g o
£

TREE-STRUCTURED
INDEXING

@ \What is the intuition behind tree-structured indexes? Why are they
good for range selections?

w How does an ISAM index handle search, insert, and delete?

& How does a B+ tree index handle search, insert, and delete?

= \What is the impact of duplicate key values on index implementation'?

\What is key compression, and why is it important?

& \What is bulk-loading, and why is it important?

@« \What happens to record identifiers when dynamic indexes are up-
dated? How does this affect clustered indexes?

B Key concepts: ISAM, static indexes, overflow pages, locking issues;

B+ trees, dynamic indexes, balance, sequence sets, node format; B+
tree insert operation, node splits, delete operation, merge versus redis-
tribution, minimum occupancy; duplicates, overflow pages, including
rids in search keys; key compression; bulk-loading; effects of splits on
rids in clustered indexes.

One that would have the fruit must climb the tree.

Thormas Fuller

We now consider two index data structures, called ISAM and B+ trees, based
on tree organizations. These structures provide efficient support for range
searches. including sorted file scans as a special case. Unlike sorted files, these

Tree-Structured 1ndel:ing

index structures support efficient insertion and deletion. They also provide
support for equality selections, although they are not as efficient in this case as
hash-based indexes, which are discussed in Chapter 11.

An ISAWVI! tree is a static index structure that is effective when the file is
not frequently updated, but it is unsuitable for files that grow and shrink a
lot. \Ve discuss ISAM in Section 10.2. The B+ tree is a dynamic structure
that adjusts to changes in the file gracefully. It is the most widely used index
structure because it adjusts well to changes and supports both equality and
range queries. We introduce B+ trees in Section 10.3. We cover B+ trees in
detail in the remaining sections. Section 10.3.1 describes the format of a tree
node. Section IOA considers how to search for records by using a B+ tree
index. Section 10.5 presents the algorithm for inserting records into a B+ tree,
and Section 10.6 presents the deletion algorithm. Section 10.7 discusses how
duplicates are handled. We conclude with a discussion of some practical issues
concerning B+ trees in Section 10.8.

Notation: InthelSAM and B+ tree structures, |eaf pages contain data eniries,
according to the terminology introduced in Chapter 8 For convenience, we
denote a data entry with search key value k as kx. Non-leaf pages contain
index entries of the form (search key walue, page id) and are used to direct the
search for a desired data entry (which is stored in some leaf). We often simply
use entr'Y where the context makes the nature of the entry (index or data) clear.

101 INTUITION FOR TREE INDEXES

Consider a file of Students recorcls sorted by gpa. To answer a range selection
such as "Find all students with a gpa higher than 3.0, we must identify the
first such student by doing a binary search of the file and then scan the file
from that point on. If the file is large, the initial binary search can be quite
expensive, since cost is proportional to the number of pages fetched; can we
improve upon this method?

Olle idea is to create a second file with Olle record per page in the original
(data) file, of the form (first key on page, pointer to page), again sortecl by the
key attribute (which is gpa in our example). The format of a page in the second
index file is illustrated in Figure 10.1.

We refer to pairs of the form (key, pointer) as index entries or just entries when
the context is clear. Note that each index page contains Olle pointer more than

1 1SAM stands for Indexed Sequential Access Method.

340 CHAPTER 10»

index entry
o s

i
[Pl KyiPyi Kgp

i
{

' v v ¥

FigUl'e 10.1 Format of an Index Page

the number of keys—each key serves as a separator for the contents of the pages
pointed to by the pointers to its left and right.

The simple index file data structure is illustrated in Figure 10.2.

k1 k2 Index file

, Page1 ., Page2 , Page ﬂ_ Page N Datafile

Figure 10.2 One-Level Index Structure

We can do a binary search of the index file to identify the page containing the
first key (gpo.) value that satisfies the range selection (in our example, the first
student with gpa over 3.0) and follow the pointer to the page containing the first
data. record with that key value. We can then scan the data file sequentially
from that point on to retrieve other qualifying records. This example uses the
index to find the first data page containing a Students record with gpa greater
than 3.0, and the data file is scanned from that point on to retrieve other such
Students records.

Because the size of an entry in the index file (key value and page id) is likely
to be much smaller than the size of a page, and only one such entry exists per
page of the data file, the index file is likely to be much smaller than the data
file therefore, a binary search of the index file is much faster than a binary
search of the data file. However, a binary search of the index file could still
be fairly expensive, and the index file is typically still large enough to make
inserts and deletes expensive.

The potential large size of the index file motivates the tree indexing idea: Why
not apply the previous step of building an auxiliary structure all the collection
of wndea records and so on recursively until the smallest auxiliary structure fits
ol one page? This repeated construction of a one-level index leads to a tree
structure with several levels of non-leaf pages.

Tree-Structured Indering 341

?

As we observed in Section 8.3.2, the power of the approach comes from the fact
that locating a record (given a search key value) involves a traversal from the
root to a leaf, with one I/O (at most; some pages, e.g.) the root, are likely to be
in the buffer pool) per level. Given the typical fan-out value (over 100), trees
rarely have more than 3-4 levels.

The next issue to consider is how the tree structure can handle inserts and
deletes of data entries. Two distinct approaches have been used, leading to the
ISAM and B+ tree data structures, which we discuss in subsequent sections.

10.2 INDEXED SEQUENTIAL ACCESSMETHOD (ISAM)

The ISAM data structure is illustrated in Figure 10.3. The data entries of the
ISAM index are in the leaf pages of the tree and additional overflow pages
chained to some leaf page. Database systems carefully organize the layout of
pages so that page boundaries correspond closely to the physical characteristics
of the underlying storage device. The ISAM structure is completely static
(except for the overflow pages, of which it is hoped, there will be few) and
facilitates such low-level optimizations.

Non-leaf T

pages | /\I%{\
=
| |

Py 7 7y 7
vedd - N R S A S O ---
I:] Overjlow page > Primary pages

Figure 10.3 ISAM Index Structure

Each tree node is a disk page, and all the data resides in the leaf pages. This
corresponds to an index that uses Alternative (1) for data entries, in terms of
the alternatives described in Chapter 8, we can create an index with Alternative
(2) by storing the datarecords in a separate file and storing {(key, rid) pairs in
the leaf pages of the ISAM index. When the file is created, al leaf pages are
allocated sequentially and sorted on the search key value. (If Alternative (2)
or (3) is used, the data records are created and sorted before allocating the leaf
pages of the ISAM index.) The non-leaf level pages are then allocated. If there
are several inserts to the file subsequently, so that more entries are inserted into
a leaf than will fit onto a single page, additional pages are needed because the

342 CHAPTER 10

index structure is static. These additional pages are allocated from an overflow
area. The allocation of pages is illustrated in Figure 10.4.

Data Pages

Index Pages

Overflow Pages

Figure 10.4 Page Allocation in ISAM

The basic operations of insertion, deletion, and search are al quite straightfor-
ward. For an equality selection search, we start at the root node and determine
which subtree to search by comparing the value in the search field of the given
record with the key values in the node. (The search algorithm is identical to
that for a B+ tree; we present this algorithm in more detail later.) For a range
query, the starting point in the data (or leaf) level is determined similarly, and
data pages are then retrieved sequentially. For inserts and deletes, the appro-
priate page is determined as for a search, and the record is inserted or deleted
with overflow pages added if necessary.

The following example illustrates the ISAM index structure. Consider the tree
shown in Figure 10.5. All searches begin at the root. For example, to locate a
record with the key value 27, we start at the root and follow the left pointer,
since 27 < 40. We then follow the middle pointer, since 20 <= 27 < 33. For a
range sea,rch, we find the first qualifying data entry ag for an equality selection
and then retrieve primary leaf pages sequentially (also retrieving overflow pages
as needed by following pointers from the primary pages). The primary leaf
pages are assumed to be allocated sequentially this assumption is reasonable
because the number of such pages is known when the tree is created and does
not change subsequently under inserts and del etes-and so no 'next leaf page'
pointers are needed.

We assume that each leaf page can contain two entries. If we now insert a
record with key value 23, the entry 23* belongs in the second data page, which
already contains 20* and 27* and has no more space. We deal with this situation
by adding an owverflow page and putting 23* in.the overflow page. Chains of
overflow pages can easily develop. For instance, inserting 48*, 41*, and 42*
leads to an overflow chain of two pages. The tree of Figure 10.5 with all these
insertions is shown ill Figure 10.6.

Tree-Structured Inderi:ng 343

Root T

40

.

51/

f

a |
10*115*] 20% | 27* 73* 37*J];0*1 46*11 51*! @ h 9':'

Figure 10.5 Sample ISAM Tree

Root ~_

Non-|eaf 40 1

pages ..

)

Primary /

\
|eaf [10*| 15*

N /SN
= B J:

46': (51*L5\5* [53* g7*
Overflow E* 7 ~ agw 41*]
_ L
pages C
a2+ '

Figure 10.6 [SAM Tree after Inserts

20% | 27*

344 CHAPTER 10

The deletion of an entry kx is handled by simply removing the entry. If this
entry is on an overflow page and the overflow page becomes empty, the page can
be removed. If the entry is on a primary page and deletion makes the primary
page empty, the simplest approach is to simply leave the empty primary page
as it is it serves as a placeholder for future insertions (and possibly lloll-empty
overflow pages, because we do not move records from the overflow pages to the
primary page when deletions on the primary page create space). Thus, the
number of primary leaf pages is fixed at file creation time.

10.2.1 Overflow Pages, Locking Considerations

Note that, once the ISAM file is created, inserts and deletes affect only the
contents of |leaf pages. A consequence of this design is that long overflow chains
could develop if a number of inserts are made to the same leaf. These chains
can significantly affect the time to retrieve a record because the overflow chain
has to be searched as well when the search gets to this leaf. (Although datain
the overflow chain can be kept sorted, it usually is not, to make inserts fast.) To
alleviate this problem, the tree is initially created so that about 20 percent of
each page is free. However, once the free space is filled in with inserted records,
unless space is freed again through deletes, overflow chains can be eliminated
only by a complete reorganization of the file

Thefact that only leaf pages are modified also has an important advantage with
respect to concurrent access. When a page is accessed, it is typically 'locked'
by the requestor to ensure that it is not concurrently modified by other users
of the page. To modify a page, it must be locked in 'exclusive’ mode, which is
permitted only when no one else holds a lock on the page. Locking can lead
to queues of users (transactions, to be more precise) waiting to get access to a
page. Queues can be a significant performance bottleneck, especially for heavily
accessed pages near the root of an index structure. In the ISAM structure,
since we know that index-level pages are never modified, we can safely omit
the locking step. Not locking index-level pages is an important advantage of
ISAM over a dynamic structure like a B+ tree. If the data distribution and
size are relatively static, which means overflow chains are rare, ISAM might be
preferable to B+ trees due to this advantage.

103 B+ TREES: ADYNAMIC INDEX STRUCTURE

A static structure such as the ISAM index suffers from the problem that long
overflow chains can develop as thefile grows, leading to poor performance. This
problem motivated the development of more flexible, dynamic structures that
adjust gracefully to inserts and deletes. The B+ tree search structure, which
is widely llsed, is a balanced tree in which the internal nodes direct the search

Tree-Structured Indexing 345

and the leaf nodes contain the data entries. Since the tree structure grows and
shrinks dynamically, it is not feasible to allocate the leaf pages sequentially asin
ISAM, where the set of primary leaf pages was static. To retrieve all leaf pages
efficiently, we have to link them using page pointers. By organizing them into a
doubly linked list, we can easily traverse the sequence of leaf pages (sometimes
called the sequence set) in either direction. This structure is illustrated in
Figure 10.7.2

Index entries

(To direct search)

Index
file

Data entries
("Sequence set")

Figure 10.7 Structure of a B+ Tree

The following are some of the main characteristics of a B+ tree:

e Operations (insert, delete) on the tree keep it balanced.

A minimum occupancy of 50 percent is guaranteed for each node except
the root if the deletion algorithm discussed in Section 10.6 is implemented.
However, deletion is often implemented by simply locating the data entry
and removing it, without adjusting the tree as needed to guarantee the 50
percent occupancy, because files typically grow rather than shrink.

w Searching for a record requires just a traversal from the root to the appro-
priate lesf. We refer to the length of a path from the root to a leaf any
leaf, because the tree is balanced as the height of the tree. For example,
a tree with only a leaf level and a single index level, such as the tree shown
in Figure 10.9, has height 1, and a tree that has only the root node has
height 0. Because of high fan-out, the height of a B+ tree is rarely more
than 3 or 4.

We will study B+ trees in which every node contains m entries, where d <
m < 2d. The value d is a parameter of the B+ tree, called the order of the

2If the tree is created by hulk.looding (see Section 10.8.2) an existing data set, the sequence set
can be made physically sequential, but this physical ordering is gradually destroyed as new data is
added and delet.ed over time.

346 CHAPTER 10

tree, and is a measure of the capacity of a tree node. The root node is the
only exception to this requirement on the number of entries; for the root, it is
simply required that 1 < m < 2d.

If a file of records is updated frequently and sorted access is important, main-
taining a B+ tree index with data records stored as data entries is almost
always superior to maintaining a sorted file. For the space overhead of storing
the index entries, we obtain all the advantages of a sorted file plus efficient in-
sertion and deletion algorithms. B+ trees typically maintain 67 percent space
occupancy. B+ trees are usually also preferable to ISAM indexing because in-
serts are handled gracefully without overflow chains. However, if the dataset
size and distribution remain fairly static, overflow chains may not be a major
problem. In this case, two factors favor ISAM: the leaf pages are allocated in
sequence (making scans over a large range more efficient than in a B+ tree, in
which pages are likely to get out of sequence on disk over time, even if they were
in sequence after bulk-loading), and the locking overhead of ISAM is lower than
that for B+ trees. As a general rule, however, B+ trees are likely to perform
better than ISAM.

10.3.1 Format of a Node

The format of a node is the same as for ISAM and is shown in Figure 10.1.
Non-leaf nodes with m index entries contain m+ 1 pointers to children. Pointer
Pi points to a subtree in which all key values K are such that K; < K < Kj+1.
As special cases, Po points to a tree in which all key values are less than KI'
and F,, points to a tree in which al key values are greater than or equal to
K,,. For leaf nodes, entries arc denoted as k*, as usual. Just as in ISAM, |leaf
nodes (and only leaf nodes!) contain data entries. In the common case that
Alternative (2) or (3) is used, leaf entries are (K,I(K)) pairs, just like non-leaf
entries. Regardless of the alternative chosen for leaf entries, the leaf pages are
chained together in a doubly linked list. Thus, the leaves form a sequence,
which can be used to answer range queries efficiently.

The reader should carefully consider how such a node organization can be
achieved using the record formats presented in Section 9.7; after al, each key
pointer pair can be thought of as a record. If the field being indexed is of
fixed length, these index entries will be of fixed length; otherwise, we have
variable-length records. In either case the B+ tree can itself be viewed as a file
of records. If the leaf pages do not contain the actual data records, then the
13+ tree is indeed a file of records that is distinct from the file that contains the
data. If the leaf pages contain data records, then a file contains the 13+ tree as
well as the data.

Tree-Structured Indering 347

104 SEARCH

The algorithm for search finds the leaf node in which a given data entry belongs.
A pseudocode sketch of the algorithm is given in Figure 10.8. We use the
notation *ptr to denote the value pointed to by a pointer variable ptr and &
(value) to denote the address of walue. Note that finding ¢ in tTcc_seaTch requires
us to search within the node, which can be done with either a linear search or
a binary search (e.g., depending on the number of entries in the node).

In discussing the search, insertion, and deletion algorithms for B+ trees, we
assume that there are no duplicates. That is, no two data entries are allowed
to have the same key value. Of course, duplicates arise whenever the search
key does not contain a candidate key and must be dealt with in practice. We
consider how duplicates can be handled in Section 10.7.

fune find (search key value K) returns nodepointer

/1 Given a search key value, finds its leaf node

return tree_search(root, K); /| searches from root
endfune

fune tree_search (nodepointer, search key value K) returns nodepointer
/| Searches tree for entry
if *nodepointer is a leaf, return nodepointer;
else,
if K < K then return tree_search(Po, K);
else,
if X > K,, then return tree_search(Ry, K); // m = # entries
else,
find i such that K; < K < K;;1;
return tree_search(R, K)
endfune

Figure 10.8 Algorithm for Search

Consider the sample B+ tree shown in Figure 10.9. This B+ tree is of order
d=2. That is, each node contains between 2 and 4 entries. Each non--leaf entry
is a {key value, nodepointer) pair; at the leaf level, the entries are data records
that we denote by kx. To search for entry 5*, we follow the left-most child
pointer, since 5 < 13. To search for the entries 14* or 15*, we follow the second
pointer, since 13 < 14 < 17, and 13 < 15 < 17. (We do not find 15* on the
appropriate leaf and can conclude that it is not present in the tree.) To find
24*, we follow the fourth child pointer, since 24 < 24 < 30.

348 CHAPTER 10

Root \‘“\\
.,
Y
i ; 7
o1 Y 24 i a0]
Pkl L
T /‘/ N \\\\\
/// ,.f// \\
7 // — — /\\\
e VIN # Y 5 N 3 N _
Lz, 3% | 5+ | 7w in. 15ai ! ’ 119*[20+] 22% i :
L [1

é 24+

27*;29*% “ [33*“, 34*[38*
i -

-
3 Sj

Figure 10.9 Example of a B+ Tree, Order d=2

10.5 [INSERT

The algorithm for insertion takes an entry, finds the leaf node where it belongs,
and inserts it there. Pseudocode for the B+ tree insertion algorithm is given
in Figure HUG. The basic idea behind the algorithm is that we recursively
insert the entry by calling the insert algorithm on the appropriate child node.
Usually, this procedure results in going down to the leaf node where the entry
belongs, placing the entry there, and returning all the way back to the root
node. Occasionally a node is full and it must be split. When the node is split,
an entry pointing to the node created by the split must be inserted into its
parent; this entry is pointed to by the pointer variable newchildentry. If the
(old) root is split, a new root node s created and the height of the tree increases
by 1.

To illustrate insertion, let us continue with the sample tree shown in Figure
10.9. If we insert entry 8*, it belongs in the left-most leaf, which is already
full. This insertion causes a split of the leaf page; the split pages are shown in
Figure 10.11. The tree must now be adjusted to take the new leaf page into
account, so we insert an entry consisting of the pair (5, pointer to new page)
into the parent node. Note how the key 5, which discriminates between the
split leaf page and its newly created sibling, is 'copied up." We cannot just
'push up' 5, because every data entry must appear in a leaf page.

Since the parent node is also full, another split occurs. In general we have to
split a non-leaf node when it is full, containing 2d keys and 2d+ 1 pointers, and
we have to add another index entry to account for a child split. We now have
2d+ 1 keys and 2d+ 2 pointers, yielding two minimally full non-leaf nodes, each
containing d keys and d + 1 pointers, and an extra key, which we choose to be
the 'middle’ key. This key and a pointer to the second non-leaf node constitute
an index entry that must be inserted into the parent of the split non-leaf node.
The middle key is thus 'pushed up' the tree, in contrast to the case for a split
of a leaf page.

Tree-Structured Indexving 349

proc inseTt (nodepointel', entry, newchildentry)
/'l InseTts entry into subtree with TOot '*nodepointer’; degree is d;
|'/*newchildentry’ null initially, and null on return unless child is split

if *nodepointer is a non-leaf node, say N,
find'i such that K; < entry's key value < J(i+l; /1 choose subtree
insert(F;, entry, newchildentry); /'l recursively, insert entry
if newchildentry is null, return; /1 usual case; didn't split child
else, /1 we split child, must insert *newchildentry in N
if N has space, /] usual case
put *newchildentry on it, set newchildentry to null, return;
else, /I note difference wrt splitting of leaf page!
split N: /1 2d + 1 key values and 2d + 2 nodepointers
first d key values and d + 1 nodepointers stay,
last d keys and d + 1 pointers move to new node, N2;
/1 *newchildentry set to guide searches between Nand N2
newchildentry = & ((smallest key value on N2,
pointer to N2));
if N is the root, /1 root node was just split
create new node with (pointer to N, *newchildentry);
make the tree's root-node pointer point to the new node;
return;

if *nodepointer is a leaf node, say L,

if L has space, /1 usual case
put entry on it, set newchildentry to null, and return;
else, /1 once in a while, the leaf is full

split L: first d entries stay, rest move to brand new node L2,
newchildentry = & ((smallest key value on L2, pointer to L2));
set sibling pointers in Land L2,
return;

endproc

Figure 10.1.0 Algorithrn for Insertion into B+ Tree of Order d

350 CHAPTER 10

. -~ Entry to be inserted in parent n¢de.
b (Note that 5 is 'copied up' and
continues 4, appear in o Ienf)

2% [3% 5% 7*T8*

Figure 10.11 Split Leaf Pages during Insert of Entry 8*

The split pages in our example are shown in Figure 10.12. The index entry
pointing to the new non-leaf node is the pair {17, pointer to new index-level
page); note that the key value 17 is 'pushed up' the tree, in contrast to the
splitting key value 5 in the leaf split, which was 'copied up.'

_ _ Entry to beinserted in parent node.
17 | |e--" (Note that 17 is 'pushed up' and
and appears once in the index. Contrast

\ thiS with aleaf splLt.)

T
13 | ‘ 24 30 . }

Figure 10.12 Split Index Pages during Insert of Entry 8*

The difference in handling leaf-level and index-level splits arises from the B+
tree requirement that all data entries k* must reside in the leaves. This re-
quirement prevents us from 'pushing up' 5 and leads to the slight redundancy
of having some key values appearing in the leaf level as well as in some index
level However, range queries can be efficiently answered by just retrieving the
sequence of leaf pages; the redundancy is a small price to pay for efficiency. In
dealing with the index levels, we have more flexibility, and we 'push up' 17 to
avoid having two copies of 17 in the index levels.

Now, since the split node was the old root, we need to create a new root node
to hold the entry that distinguishes the two split index pages. The tree after
completing the insertion of the entry 8* is shown in Figure 10.13.

One variation of the insert algorithm tries to redistribute entries of a node N
with a sibling before splitting the node; this improves average occupancy. The
sibling of a node N, in this context, is a node that is immediately to the left
or right of N and has the same pare'nt as N.

Tree-Structured Index'ing 351

5 Vni !1 \‘5 WH an“ | !E
l ES .‘ e ;

~ A

X N P S 27N £ N g T

Hss'

I

24w AT

29»

34.138- [250
I

Figure 10.13 B+ Tree after Inserting Entry 8*

To illustrate redistribution, reconsider insertion of entry 8% into the tree shown
in Figure 10.9. The entry belongs in the left-most leaf, which is full. However,
the (only) sibling of this leaf node contains only two entries and can thus
accommodate more entries. We can therefore handle the insertion of 8 with a
redistribution. Note how the entry in the parent node that points to the second
leaf has a new key value; we 'copy up' the new low key value on the second
leaf. This process is illustrated in Figure 10.14.

Root T
N\
g 17 24 30
= TN £ TN ¥ N Y N e

N B

20*

14+ 1l6*

22~

5-l7.J

Figure 10.14 B+ Tree after Inserting Entry 8¢ Using Redistribution

27+

\ ‘19'

l »24" 29+ 34%|38%|39%

| [

To determine whether redistribution is possible, we have to retrieve the sibling.
If the sibling happens to be full, we have to split the node anyway. On average,
checking whether redistribution is possible increases 1/0O for index node splits,
especially if we check both siblings. (Checking whether redistribution is possible
may reduce 1/0O if the redistribution succeeds whereas a split propagates up the
tree, but this case is very infrequent.) If the file is growing, average occupancy
will probably not be affected much even if we do not redistribute. Taking these
considerations into account, not redistributing entries at non-leaf levels usually
pays off.

If a split occurs at the leaf level, however, we have to retrieve a neighbor
to adjust the previous and next-neighbor pointers with respect to the newly
created leaf node. Therefore, a limited form of redistribution makes sense: If a
leaf node is full, fetch a neighbor node; if it has space and has the same parent,

3K2 CHAPTER 10

redistribute the entries. Othenvise (the neighbor has different parent, Le, it is
not a sibling, or it is also full) split the leaf node and a,djust the previous and
next-neighbor pointers in the split node, the newly created neighbor, and the
old neighbor.

106 DELETE

The algorithm for deletion takes an entry, finds the leaf node where it belongs,
and deletes it. Pseudocode for the B+ tree deletion algorithm is given in
Figure 10.15. The basic idea behind the algorithm is that we recursively delete
the entry by calling the delete algorithm on the appropriate child node. We
usually go down to the leaf node where the entry belongs, remove the entry
from there, and return al the way back to the root node. Occasionally a
node is at minimum occupancy before the deletion, and the deletion causes
it to go below the occupancy threshold. When this happens, we must either
redistribute entries from an adjacent sibling or merge the node with a sibling to
maintain minimum occupancy. If entries are redistributed between two nodes,
their parent node must be updated to reflect this; the key value in the index
entry pointing to the second node must be changed to be the lowest search key
in the second node. Iftwo nodes are merged, their parent must be updated to
reflect this by deleting the index entry for the second node; this index entry is
pointed to by the pointer variable oldchildentry when the delete call returns to
the parent node. If the last entry in the root node is deleted in this manner
because one of its children was deleted, the height of the tree decreases by 1.

To illustrate deletion, let us consider the sample tree shown in Figure 10.13. To
delete entry 19*, we simply remove it from the leaf page on which it appears,
and we are done because the leaf still contains two entries. 1f we subsequently
delete 20*, however, the leaf contains only one entry after the deletion. The
(only) sibling of the leaf node that contained 20* has three entries, and we can
therefore deal with the situation by redistribution; we move entry 24* to the
leaf page that contained 20* and copy up the new splitting key (27, which is
the new low key value of the leaf from which we borrowed 24*) into the parent.
This process is illustrated in Figure 10.16.

Suppose that we now delete entry 24*. The affected leaf contains only one entry
(22*) after the deletion, and the (only) sibling contains just two entries (27*
and 29*). Therefore, we cannot redistribute entries. However, these two |eaf
nodes together contain only three entries and can be merged. \Vhile merging,
we can ‘toss’ the entry ({27, pointer' to second leaf page)) in the parent, which
pointed to the second leaf page, because the second leaf page is elnpty after the
merge and can be discarded. The right subtree of Figure 10.16 after this step
in the deletion of entry 24* is shown in Figure 10.17.

Tree-Structured Indel:ing 353

proc delete (parentpointer, nodepointer, entry, oldchildentry)
/1 Deletes entry from subtree with TOot "*nodepointer’; degree is d;
/1 ‘oldchildentry' null initially, and null upon return unless child deleted
if *nodepointer is a non-leaf node, say N,
find i such that K; < entry's key value < K+I; /'l choose subtree
delete(nodepointer, Pi, entry, oldchildentry); /'l recursive delete
if oldchildentry is null, return; /1 usual case: child not deleted
dse, /1 we discarded child node (see discussion)
remove *oldchildentry from N, /1 next, check for underflow
if N has entries to spare, /1 usual case
set oldchildentry to null, return; // delete doesn't go further
else, /1 note difference wrt merging of leaf pages!
get asibling S of N: /'l parentpointer arg used to find S
if S has extraentries,
redistribute evenly between Nand S through parent;
set oldchildentry to null, return;
else, merge Nand S /1 cal node on rhs M
oldchildentry = & (current entry in parent for M);
pull splitting key from parent down into node on left;
move all entries from M to node on left;
discard empty node M, return;

if *nodepointer is a leaf node, say L,
if L has entries to spare, /1 usual case
remove entry, set oldchildentry to null, and return;
else, /1 once in a while, the leaf becomes underfull
get a sibling S of L; /| parentpointer used to find S
if S has extra entries,
redistribute evenly between Land §
find entry in parent for node on right; /] cal it M
replace key value in parent entry by new low-key value in M
set oldchildentry to null, return;
ese, merge Land S /1 call node on rhs M
oldchildentry = & (current entry in parent for M);
move al entries from M to node on |eft;
discard empty node M, adjust sibling pointers, return;
endproc

Figure 10.15 Algorithm for Deletion from B+ Tree of Order 1

354 CHAPTER 10

e - - - -
Ly \{ L WY o ¥ v N o Wl
i z-’ 3 ! i 5-t 7¢] gx ‘ ?14-;15-' l ‘ 224 24+ Flazela0s] 1 T330] 3as 3aat9'1
L i ! Ao R S J B

3x] 34| 38*|33%

AN
|

,,,,, L
[22* 27%| 29+

Figure 10.17 Partial B+ Tree during Deletion of Entry 24*

Deleting the entry (27, pointer to second leaf page) has created a non-leaf-level
page with just one entry, which is below the minimum of d = 2. To fix this
problem, we must either redistribute or merge. In either case, we must fetch a
sibling. The only sibling of this node contains just two entries (with key values
5 and 13), and so redistribution is not possible; we must therefore merge.

The situation when we have to merge two non-leaf nodes is exactly the opposite
of the situation when we have to split a non-leaf node. We have to split a non-
leaf node when it contains 2d keys and 2d + 1 pointers, and we have to add
another key--pointer pair. Since we resort to merging two non-leaf nodes only
when we cannot redistribute entries between them, the two nodes must be
minimally full; that is, each must contain d keys and d + 1 pointers prior to
the deletion. After merging the two nodes and removing the key--pointer pair
to be deleted, we have 2d - 1 keys and 2d + 1 pointers: Intuitively, the left-
most pointer on the second merged node lacks a key value. To see what key
value must be combined with this pointer to create a complete index entry,
consider the parent of the two nodes being merged. The index entry pointing
to one of the merged nodes must be deleted from the parent because the node
is about to be discarded. The key value in this index entry is precisely the key
value we need to complete the new merged node: The entries in the first node
being merged, followed by the splitting key value that is 'pulled down' from the
parent, followed by the entries in the second non-leaf node gives us a total of 2d
keys and 2d + 1 pointers, which is a full non-leaf node. Note how the splitting

Tree-Structured Indexing 355

key value in the parent is pulled down, in contrast to the case of merging two
leaf nodes.

Consider the merging of two non-leaf nodes in our example. Together, the non-
leaf node and the sibling to be merged contain only three entries, and they have
a total of five pointers to leaf nodes. To merge the two nodes, we also need to
pull down the index entry in their parent that currently discriminates between
these nodes. This index entry has key value 17, and so we create a new entry
(17, left-most child pointer in sibling). Now we have a total of four entries and
five child pointers, which can fit on one page in a tree of order d = 2. Note that
pulling down the splitting key 17 means that it will no longer appear in the
parent node following the merge. After we merge the affected non-leaf node
and its sibling by putting all the entries on one page and discarding the empty
sibling page, the new node is the only child of the old root, which can therefore
be discarded. The tree after completing all these steps in the deletion of entry
24* is shown in Figure 10.18.

——
Root \H 5 13
— p

17 30 |]

]

7 VA2 SN B W N T
E L ! 5% | 7% | 8% ll;|_4* 16* ‘ J 22%; 27%| 29% l 33%| 34% [38%|35%
[

Figure 10.18 B+ Tree after Deleting Entry 24*

The previous examples illustrated redistribution of entries across leaves and
merging of both leaf-level and non-leaf-level pages. The remaining case is that
of redistribution of entries between non-leaf-level pages. To understand this
case, consider the intermediate right subtree shown in Figure 10.17. We would
arrive at the same intermediate right subtree if we try to delete 24* from a
tree similar to the one shown in Figure 10.16 but with the left subtree and
root key value as shown in Figure 10.19. The tree in Figure 10.19 illustrates
an intermediate stage during the deletion of 24*. (Try to construct the initial
tree.)

In contrast to the case when we deleted 24* from the tree of Figure 10.16, the
non-leaf level node containing key value :30 now has a sibling that can spare
entries (the entries with key values 17 and 20). We move these entries® over
from the sibling. Note that, in doing so, we essentially push them through the

31t is sufficient to move over just the entry with key value 20, hut we are moving over two entries
o illustrate what happens when several entries are redistributed.

356 CHAPTER 10

Figure 10.19 A B+ Tree during a Deletion

splitting entry in their parent node (the root), which takes care of the fact that
17 becomes the new low key value on the right and therefore must replace the
old splitting key in the root (the key value 22). The tree with all these changes
is shown in Figure 10.20.

g

// T
,// ‘\\
e &// . \\3
H s H 1 . ﬂ 20 22 30
—— I . E——
P — = — / e o / \\ "-\
i | a ¥ £ Pl AN b e Cn NN
2 l 3 ‘ | ' 5 ‘ 7. s-] F. 16+ {17- 18+ J 20% | 21% i 22¢| 27| 25+ ‘}33-134138' A9
- — - H S— — S | S—

Figure 10.20 B+ Tree after Deletion

In concluding our discussion of deletion, we note that we retrieve only one
sibling of a node. Ifthis node has spare entries, we use redistribution; otherwise,
we merge. |If the node has a second sibling, it may be worth retrieving that
sibling as well to check for the possibility of redistribution. Chances are high
that redistribution is possible, and unlike merging, redistribution is guaranteed
to propagate no further than the parent node. Also, the pages have more
space on them, which reduces the likelihood of a split on subsequent insertions.
(Remember, files typically grow, not shrink!) However, the number of times
that this case arises (the node becomes less than half-full and the first sibling
cannot spare an entry) is not very high, so it is not essential to implement this
refinement of the basic algorithm that we presented.

10.7 DUPLICATES

The search, insertion, and deletion algorithms that we presented ignore the
issue of duplicate keys, that is, several data entries with the same key value.
We now discuss how duplicates can be handled.

Tree-Structured Indezing 35

1

Duplicate Handling in Commercial Systems: |n a clustered index in
Sybase ASE, the datarows are maintained in sorted order onthe page and
in the eollection of data pages. The data pages are bidireetionally linked
in sort order. Rows with duplicate keys are inserted into {or deleted from)
the ordered set of rows. This may result in overflow pages of rows with
duplieate keys being inserted into the page chain or empty overflow pages
removed from the page chain. Insertion or deletion of a duplicate key does
not affect the higher index levels unless a split or merge of a non.-overflow
page occurs. In IBM DB2, Oracle 8, and Microsoft' SQI.*Server; duplicates
are handled by adding a row id if necessary to eliminate duplicate key
values.

The basic search algorithm assumes that all entries with a given key value reside
on a single leaf page. One way to satisfy this assumption is to use overflow
pages to deal with duplicates. (In ISAM, of course, we have overflow pages in
any case, and duplicates are easily handled.)

Typically, however, we use an alternative approach for duplicates. We handle
them just like any other entries and several leaf pages may contain entries with
a given key value. To retrieve al data entries with a given key value, we must
search for the left-most data entry with the given key value and then possibly
retrieve more than one leaf page (using the leaf sequence pointers). Modifying
the search algorithm to find the left-most dataentry in an index with duplicates
is an interesting exercise (in fact, it is Exercise 10.11).

One problem with this approach is that, when a record is deleted, if we use
Alternative (2) for data entries, finding the corresponding data entry to delete
in the B+ tree index could be inefficient because we may have to check several
duplicate entries (key, rid) with the same key value. This problem can be
addressed by considering the rid value in the data entry to be part of the
search key, for purposes of positioning the data entry in the tree. This solution
effectively turns the index into a unique index (i.€' no duplicates), Remember
that a search key can be any sequence of fields in this variant, the rid of the
data record is essentially treated as another field while constructing the search

key.

Alternative (3) for data entries leads to a natural solution for duplicates, but if
we have a large number of duplicates, a single data entry could span multiple
pages. And of course, when a data record is deleted, finding the rid to delete
from the corresponding data entry can be inefficient, The solution to this
problem is similar to the one discussed previously for Alternative (2): We can

358 CHAPTER 10

maintain the list of rids within each data entry in sorted order (say, by page
number and then slot number if a rid consists of a page id and a slot id).

10.8 B+ TREESIN PRACTICE

In this section we discuss several important pragmatic issues.

108.1 Key Compression

The height of a B+ tree depends on the number of data entries and the size of
index entries. The size of index entries determines the number of index entries
that will fit on a page and, therefore, the fan-out of the tree. Since the height
of the tree is proportional to logfan-oud# of data entries), and the number of
disk I/Os to retrieve a data entry is equal to the height (unless some pages are
found in the buffer pool), it is clearly important to maximize the fan-out to
minimize the height.

An index entry contains a search key value and a page pointer. Hence the
size depends primarily on the size of the search key value. If search key
values are very long (for instance, the name Devarakonda Venkataramana
Sathyanarayana Seshasayee Y ellamanchali Murthy, or Donaudampfschifffahrts-
kapitansanwiirtersmiitze), not many index entries will fit on a page: Fan-out is
low, and the height of the tree is large.

On the other hand, search key values in index entries are used only to direct
traffic to the appropriate leaf. When we want to locate data entries with a
given search key value, we compare this search key value with the search key
values of index entries (on a path from the root to the desired leaf). During
the comparison at an index-level node, we want to identify two index entries
with search key values kl and k, such that the desired search key value k fals
between k; and k2. To accomplish this, we need not store search key values in
their entirety in index entries.

For example, suppose we have two adjacent index entries in a node, with search
key values 'David Smith' and 'Devarakonda ... ' To discriminate between these
two values, it is sufficient to store the abbreviated forms 'Da’ and 'De." More
generally, the Ineaning of the entry 'David Smith' in the B+ tree is that every
value in the subtree pointed to by the pointer to the left of 'David Smith' is less
than 'David Smith," and every value in the subtree pointed to by the pointer
to the right of 'David Smith' is (greater than or equal to 'David Smith' and)
less than 'Devarakonda. ... "

Tree-Structured Indexing 359

B+ Treesin Real Systems: IBM DB2, Informix, Microsoft SQL Server,
Oracle 8, and Sybase ASE all support clustered and unclustered B+ tree
indexes, with some differencesi n how they handle deletions and duplicate
key values. In Sybase ASE, depending on the concurrency control schelne
being used for-the index, the deleted row is removed (with merging if
the page occupancy goes below threshold) or simply marked as deleted; a
garbage collection scheme is used to recover space in the latter case. In
Oracle 8, deletions are handled by marking the row as deleted. To reclaim
the space occupied by deleted records, we can rebuild the index online (i.e,
while users continue to use the index) or coalesce underfull pages (which
does not reduce tree height). Coalesce is in-place, rebuild creates a copy.
Informix handles deletions by simply marking records as deleted. DB2 and
SQL Server remove deleted records and merge pages when occupancy goes
below threshold.

Oracle 8 also allows records from multiple relations to be co-clustered on
the same page. The co-clustering can be based on a B+ tree search key or
static hashing and up to 32 relations can be stored together.

To ensure such semantics for an entry is preserved, while compressing the entry
with key 'David Smith," we must examine the largest key value in the subtree to
the left of 'David Smith' and the smallest key value in the subtree to the right
of 'David Smith," not just the index entries ('Daniel Lee' and 'Devarakonda
...”) that are its neighbors. This point is illustrated in Figure 10.21; the value
‘Davey Jones' is greater than 'Dav,' and thus, 'David Smith' can be abbreviated
only to 'Davi,' not to 'Dav.’'

‘ .
eleole] M Daniel Lee) David Smith L Devarakonda ... [elele]

R . _ ‘
00 O ' Dante Wu | Darius Rexp' 0 0 o Davey Jones & ooo
I

Figure 10.21 Example Illustrating Prefix Key Compression

This technique. called prefix key compression or simply key compres-
sion, is supported in many commercial implementations of B+ trees. It can
substantially increase the fan-out of a tree. We do not discuss the details of
the insertion and deletion algorithms in the presence of key compression.

360 CHAPTER 10

10.8.2 Bulk-LoadingaB+ Tree

Entries are added to a B+ tree in two ways. First, we may have an existing
collection of data records with a B+ tree index on it; whenever a record is
added to the collection, a corresponding entry must be added to the B+ tree
as well. (Of course, a similar comment applies to deletions.) Second, we may
have a collection of data records for which we want to create a B+ tree index
on some key field(s). In this situation, we can start with an empty tree and
insert an entry for each datarecord, one at a time, using the standard insertion
algorithm. However, this approach is likely to be quite expensive because each
entry requires us to start from the root and go down to the appropriate |eaf
page. Even though the index-level pages are likely to stay in the buffer pool
between successive requests, the overhead is still considerable.

For this reason many systems provide a bulk-loading utility for creating a B+
tree index on an existing collection of data records. The first step is to sort
the data entries k* to be inserted into the (to be created) B+ tree according to
the search key k. (If the entries are key-pointer pairs, sorting them does not
mean sorting the data records that are pointed to, of course.) We use a running
example to illustrate the bulk-loading algorithm. We assume that each data
page can hold only two entries, and that each index page can hold two entries
and an additional pointer (i.e., the B+ tree is assumed to be of order d = 1).

After the data entries have been sorted, we allocate an empty page to serve as
the root and insert a pointer to the first page of (sorted) entries into it. We
illustrate this process in Figure 10.22, using a sample set of nine sorted pages
of data entries.

T
Root &))
. Sorted pages of data entries not vet in B+ tree

/ - -
6%| 9% | [10%[11% 12;\1?;] zo*lzz* 234314 35jis*

Figure 10.22 Initial Step in B+ Tree Bulk-Loading

44*

38% 41*]

We then add one entry to the root page for each page of the sorted data entries.
The new entry consists of {low key value on page, pointer' to page). We proceed
until the root page is full; see Figure 10.23.

To insert the entry for the next page of data entries, we must split the root and
create a new root page. We show this step in Figure 10.24.

Tree-Structured Indexing 361

1
Root ‘ 6 10 Data entry pages not yet in B+ tree

&

En EE 10*11*{‘ 12:|13* (204224] [234314 [354l36x l38*i41* 24% 1

Figure 10.23 Root Page Fills up in B+ Tree Bulk-Loading

Root 10

=

Data entry pages llot yet ill B+ tree

‘)]

i

s

SN V/ £ y_ T
i) P i s o) o o |

Figure 10.24 Page Split during B+ Tree Bulk-Loading

362 CHAPTER }0

"We have redistributed the entries evenly between the two children of the root,
in anticipation of the fact that the B+ tree is likely to grow. Although it is
difficult (!) to illustrate these options when at most two entries fit on a page,
we could also have just left al the entries on the old page or filled up some
desired fraction of that page (say, 80 percent). These alternatives are simple
variants of the basic idea

To continue with the bulk-loading example, entries for the leaf pages are always
inserted into the right-most index pagejust above the leaf level. "When the right-
most index page above the leaf level fills up, it is split. This action may cause
a split of the right-most index page one step closer to the root, as illustrated
in Figures 10.25 and 10.26.

—

Root 11 Tac
2 .

/

Data entry pages

not yetin B+ tree

§\
)
>
,

3| g%| | 6% 9% ’10*11* 12413%

Figure 10.25 Before Adding Entry for Leaf Page Containing 38*

Root ' 20
4 N
10 ’ J 35 Data entry pages
J\¥‘ ; not yet in B+ tree

1
[+
[
[)
A
pN
L
—
(1)
o«
-
o

A\

L] =] ,
ANA By,
et et et [ot d o] oo Bt

Figure 10.26 After Adding Entry for Leaf Page Containing 38*

Tiee-Structured Indeiring 363

Note that splits occur only on the right-most path from the root to the leaf
level. We leave the completion of the bulk-loading example as a simple exercise.

Let us consider the cost of creating an index on an existing collection of records.
This operation consists of three steps: (1) creating the data entries to insert
in the index, (2) sorting the data entries, and (3) building the index from the
sorted entries. The first step involves scanning the records and writing out the
corresponding data entries; the cost is (R + E) 1/0s, where R is the number of
pages containing records and E is the number of pages containing data entries.
Sorting is discussed in Chapter 13; you will see that the index entries can be
generated in sorted order at a cost of about 3E 1/0Os. These entries can then be
inserted into the index as they are generated, using the bulk-loading algorithm
discussed in this section. The cost of the third step, that is, inserting the entries
into the index, is then just the cost of writing out all index pages.

10.8.3 TheOrder Concept

We presented B+ trees using the parameter d to denote minimum occupancy. It
is worth noting that the concept of order (i.e., the parameter d), while useful for
teaching B+ tree concepts, must usually be relaxed in practice and replaced
by a physical space criterion; for example, that nodes must be kept at least
half-full.

One reason for this is that leaf nodes and non-leaf nodes can usually hold
different numbers of entries. Recall that B+ tree nodes are disk pages and
non-leaf nodes contain only search keys and node pointers, while leaf hodes can
contain the actual data records. Obviously, the size of a data record is likely
to be quite a bit larger than the size of a search entry, so many more search
entries than records fit on a disk page.

A second reason for relaxing the order concept is that the search key may
contain a character string field (e.g., the name field of Students) whose size
varies from record to record; such a search key leads to variable-size data entries
and index entries, and the number of entries that will fit on a disk page becomes
variable.

Finally, even if the index is built on a fixed-size field, several records may still
have the same search key value (e.g., several Students records may have the
same gpa or name value). Thissituation can also lead to variable-size | eaf entries
(if we use Alternative (3) for data entries). Because of all these complications,
the concept of order is typically replaced by a simple physical criterion (eg.,
merge if possible when more than half of the space in the node is unused).

364 CHAPTER 10

10.8.4 The Effect of Inserts and Deletes on Rids

Ifthe leaf pages contain datarecords-that is, the B+ treeis aclustered i ndex-
then operations such as splits, merges, and redistributions can change rids.
Recall that a typical representation for arid is some combination of (physical)
page number and slot number. This scheme allows us to move records within
a page if an appropriate page format is chosen but not across pages, as is the
case with operations such as splits. So unless rids are chosen to be independent
of page numbers, an operation such as split or merge in a clustered B+ tree
may require compensating updates to other indexes on the same data.

A similar comment holds for any dynamic clustered index, regardless of whether
it is tree-based or hash-based. Of course, the problem does not arise with
nonclustered indexes, because only index entries are moved around.

109 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

* Why are tree-structured indexes good for searches, especially range selec-
tions? (Section 10.1)

« Describe how search, insert, and delete operations work in ISAM indexes.
Discuss the need for overflow pages, and their potential impact on perfor-
mance. What kinds of update workloads are ISAM indexes most vulnerable
to, and what kinds of workloads do they handle well? (Section 10.2)

e Only leaf pages are affected in updates in ISAM indexes. Discuss the
implications for locking and concurrent access. Compare ISAM and B+
trees in this regard. (Section 10.2.1)

« What are the main differences between ISAM and B+ tree indexes? (Sec-
tion 10.3)

* What is the order of a B+ tree? Describe the format of nodes in a B+
tree. Why are nodes at the leaf level linked? (Section 10.3)

¢ How rnany nodes must be examined for equality search in a B+ tree? How
many for a range selection? Compare this with ISAM. (Section 10.4)

e Describe the B+ tree insertion algorithm, and explain how it eliminates
overflow pages. Under what conditions can an insert increase the height of
the tree? (Section 10.5)

e During deletion, a node might go below the minimum occupancy threshold.
How is this handled? Under what conditions could a deletion decrease the
height of the tree? (Section 10.6)

Tree-Structured Indexing

I jaaxase

Figure 10.27 Tree for Exercise 10.1

Why do duplicate search keys require modifications to the implementation
of the basic B+ tree operations? (Section 10.7)

\Vhat is key compression, and why is it important? (Section 10.8.1)

How can a new B+ tree index be efficiently constructed for a set of records?
Describe the bulk-loading algorithm. (Section 10.8.2)

Discuss the impact of splitsin clustered B+ treeindexes. (Section 10.8.4)

EXERCISES

Exercise 10.1 Consider the B+ tree index of order d = 2 shown in Figure 10.27.

1
2

Show the tree that would result from inserting a data entry with key 9 into this tree.

Show the B+ tree that would result from inserting a data entry with key 3 into the
original tree. How many page reads and page writes does the insertion require?

Show the B+ tree that would result from deleting the data entry with key 8 from the
original tree, assuming that the left sibling is checked for possible redistribution.

Show the B+ tree that would result from deleting the data entry with key 8 from the
original tree, assuming that the right sibling is checked for possible redistribution.

Show the B+ tree that would result from starting with the original tree, inserting a data
entry with key 46 and then deleting the data entry with key 52.

Show the B+ tree that would result from deleting the data entry with key 91 from the
original tree.

Show the B+ tree that would result from starting with the original tree, inserting a data
entry with key 59, and then deleting the data entry with key 91.

Show the B+ tree that \vould result from successively deleting the data entries with keys
32, 39, 41, 45, and 73 from the original tree.

Exercise 10.2 Consider the B+ tree index shown in Figure 10.28, which uses Alternative
(1) for data entries. Each intermediate node can hold up to five pointers and four key values.
Each leaf can hold up to four records, and leaf nodes are doubly linked as usual, although
these links are not shown in the figure. Answer the following questions.

1

Name all the tree nodes that mllst be fetched to answer the following query: “Get all
records with search key greater than 38.”

366 CHAPTER 10

[ssh [} [s0) [esy]
p: / -

e) 7
CEn®

L1 L8
[wj 38f| A 604 954 964 974
L2 L7
B [#{s2]

L3 L6

Figure 10.28 Tree for Exercise 10.2

2. Insert a record with search key 109 into the tree.
3. Delete the record with search key 81 from the (original) tree.

4. Name a search key value such that inserting it into the (original) tree would cause an
increase in the height of the tree.

5. Note that subtrees A, B, and C are not fully specified. Nonetheless, what can you infer
about the contents and the shape of these trees?

6. How would your answers to the preceding questions change if this were an ISAM index?
7. Suppose that thisis an ISAM index. What is the minimum number of insertions needed
to create a chain of three overflow pages?
Exercise 10.3 Answer the following questions:

1. What is the minimum space utilization for a B+ tree index?
2. What is the minimum space utilization for an ISAM index?

3. Ifyour database system supported both a static and a dynamic tree index (say, ISAM and
B+ trees), would you ever consider using the static index in preference to the dynamic
index?

Exercise 10.4 Suppose that a page can contain at most four data values and that aJ data
values are integers. Using only B+ trees of order 2, give examples of each of the following:

1. A B+ tree whose height changes from 2 to 3 when the value 25 is inserted. Show your
structure before and after the insertion.

2. A B+ tree in which the deletion of the value 25 leads to a redistribution. Show your
structure before and aft.er the deletion.

3. A B+ tree in which the delet.ion of the value 25 causes a merge of two nodes but without.
altering the height of the tree.

4. An ISAM structure with four buckets, none of which has an overflow page. Further,
every bucket has space for exactly one more entry. Show your structure before and aft.er
inserting two additional values, chosen so that. an overflow page is created.

Tree-Structured Index'ing 367

| ™
/L 13 | 17 24 30 |
\\\
7 e ™
£y \

\\
e TN / N § PN T
LT el T (AT] (e] (Sl
A
Figure 10.29 Tree for Exercise 10.5

27

Exercise 10.5 Consider the B+ tree shown in Figure 10.29.

1. Identify alist of five data entries such that:

(@) Inserting the entries in the order shown and then deleting them in the opposite
order (e.g., insert a, insert b, delete b, delete @) results in the original tree.

(b) Inserting the entries in the order shown and then deleting them in the opposite
order (e.g., insert a, insert b, delete b, delete a) results in a different tree.

2. What is the minimum number of insertions of data entries with distinct keys that will
cause the height of the (original) tree to change from its current value (of 1) to 3?

3. Would the minimum number of insertions that will cause the original tree to increase to
height 3 change if you were allowed to insert duplicates (multiple data entries with the
same key), assuming that overflow pages are not used for handling duplicates?

Exercise 10.6 Answer Exercise 10.5 assuming that the tree is an ISAM tree! (Some of the
examples asked for may not exist-if so, explain briefly.)

Exercise 10.7 Suppose that you have a sorted file and want to construct a dense primary
B+ tree index on this file.

1. One way to accomplish this task is to scan the file, record by record, inserting each
one using the B+ tree insertion procedure. What performance and storage utilization
problems are there with this approach?

2. Explain how the bulk-loading algorithm described in the text improves upon this scheme.

Exercise 10.8 Assume that you have just built a dense B+ tree index using Alternative (2)
on a heap file containing 20,000 records. The key field for this B+ tree index is a 40-byte
string, and it is a candidate key. Pointers (Le., record ids and page ids) are (at most) 10-
byte values. The size of one disk page is 1000 bytes. The index was built in a bottom-up
fashion using the bulk-loading algorithm, and the nodes at each level were filled up as much
as possible.

1. Holv many levels does the resulting tree have?

2. For each level of the trec, how many nodes are at that level?

3. How many levels would the resulting tree have if key compression is llsed and it reduces
the average size of each key in an entry to 10 bytes?

368 CHAPTER 10

sid name login age gpa
53831 | Maclayall | maclayan@music | 11 | 1.8
53832 | Guldu guldu@music 12 | 38
53666 | Jones jonesQcs 18 | 34
53901 | Jones jones@toy 18 | 3.4
53902 | Jones jones@physics 18 | 34
53903 | Jones jones@english 18 | 34
53904 | Jones jones(ggenetics 18 | 34

53905 | Jones jones@astro 18 | 34
53906 | Jones jones@chem 18 | 34
53902 | Jones jones@sanitation | 18 | 3.8
53688 | Smith smith@ee 19 | 32
53650 | Smith smith@math 19 | 38
54001 | Smith smith@ee 19 | 35
54005 | Smith smith@cs 19 | 38
54009 | Smith smith@astro 19 | 22

Figure 10.30 An Instance of the Students Relation

4. How many levels would the resulting tree have without key compression but with all
pages 70 percent full?

Exercise 10.9 The algorithms for insertion and deletion into a B+ tree are presented as
recursive algorithms. In the code for insert, for instance, a call is made at the parent of a
node N to insert into (the subtree rooted at) node N, and when this call returns, the current
node is the parent of N. Thus, we do not maintain any 'parent pointers' in nodes of B+
tree. Such pointers are not part of the B+ tree structure for a good reason, as this exercise
demonstrates. An alternative approach that uses parent pointers--again, remember that such
pointers are not part of the standard B+ tree structure!-in each node appears to be simpler:

Search to the appropriate leaf using the search algorithm; then insert the entry and
split if necessary, with splits propagated to parents if necessary (using the parent
pointers to find the parents).

Consider this (unsatisfactory) alternative approach:

I. Suppose that an internal node N is split into nodes Nand N2. What can you say about
the parent pointers in the children of the original node N?

2. Suggest two ways of dealing with the inconsistent parent pointers in the children of node
N.

3. For each of these suggestions, identify a potential (major) disadvantage.
4. What conclusions can you draw from this exercise?
Exercise 10.10 Consider the instance of the Students relation shown in Figure 10.30. Show

a B+ tree of order 2 in each of these cases, assuming that duplicates are handled using overflow
pages. Clearly indicate what the data entries are (i.e., do not use the k* convention).

Tree-Structured Indexing 369

1. A B+ tree index on age using Alternative (1) for data entries.

2. A dense B+ tree index on gpa using Alternative (2) for data entries. For this question,
assume that these tuples are stored in a sorted file in the order shown in the figure: The
first tuple isin page 1, slot 1; the second tupleisin page 1, slot 2, and so on. Each page
can store up to three data records. You can use {page-id, slot) to identify a tuple.

Exercise 10.11 Suppose that duplicates are handled using the approach without overflow
pages discussed in Section 10.7. Describe an algorithm to search for the left-most occurrence
of a data entry with search key value K.

Exercise 10.12 Answer Exercise 10.10 assuming that duplicates are handled without using
overflow pages, using the alternative approach suggested in Section 9.7.

PROJECT-BASED EXERCISES

Exercise 10.13 Compare the public interfaces for heap files, B+ tree indexes, and linear
hashed indexes. What are the similarities and differences? Explain why these similarities and
differences exist.

Exercise 10.14 This exercise involves using Minibase to explore the earlier (non-project)
exercises further.

1. Create the trees shown in earlier exercises and visualize them using the B+ tree visualizer
in Minibase.

2. Verify your answers to exercises that require insertion and deletion of data entries by
doing the insertions and deletions in Minibase and looking at the resulting trees using
the visualizer.

Exercise 10.15 (Note to instructors: Additional details must be provided if this exercise is
assigned; see Appendix 30.) Implement B+ trees on top of the lower-level code in Minibase.

BIBLIOGRAPHIC NOTES

The original version of the B+ tree was presented by Bayer and McCreight [69]. The B+
tree is described in [442] and [194]. B tree indexes for skewed data distributions are studied
in [260]. The VSAM indexing structure is described in [764]. Various tree structures for
supporting range queries are surveyed in [79]. An early paper on multiattribute search keys
is [498].

References for concurrent access to B+ trees are in the bibliography for Chapter 17.

11

HASH-BASED INDEXING

w# What is the intuition behind hash-structured indexes? Why are they
especially good for equality searches but useless for range selections?

= \What is Extendible Hashing? How does it handle search, insert, and
delete?

@ What is Linear Hashing? How does it handle search, insert, and
delete?

w \What are the similarities and differences between Extendible and Lin-
ear Hashing?

® Key concepts: hash function, bucket, primary and overflow pages,
static versus dynamic hash indexes, Extendible Hashing, directory of
buckets, splitting a bucket, global and local depth, directory doubling,
collisions and overflow pages; Linear Hashing, roundsof splitting, fam-
ily of hash functions, overflow pages, choice of bucket to split and time
to split; relationship between Extendible Hashing's directory and Lin-
ear Hashing's family of hash functiolis, need for overflow pages in both
schemes in practice, use of a directory for Linear Hashing.

Not chaos-like, together crushed and bruised,
But, as the world harmoniously confused:
Where order in variety we see.

Alexander Pope, Windsor Forest

In this chapter we consider file organizations that are excellent for equality
selections. The basic idea is to use a hashing function, which maps values

370

Hash-Based Indexing 371

in a search field into a range of b'ucket numbers to find the page on which a
desired data entry belongs. We use a simple scheme called Static Hashing to
introduce the idea. This scheme, like ISAM, suffers from the problem of long
overflow chains, which can affect performance. Two solutions to the problem
are presented. The Extendible Hashing scheme uses a directory to support
inserts and deletes efficiently with no overflow pages. The Linear Hashing
scheme uses a clever policy for creating new buckets and supports inserts and
deletes efficiently without the use of a directory. Although overflow pages are
used, the length of overflow chains is rarely more than two.

Hash-based indexing techniques cannot support range searches, unfortunately.
n'ee-based indexing techniques, discussed in Chapter 10, can support range
searches efficiently and are almost as good as hash-based indexing for equality
selections. Thus, many commercial systems choose to support only tree-based
indexes. Nonetheless, hashing techniques prove to be very useful in imple-
menting relational operations such as joins, as we will see in Chapter 14. In
particular, the Index Nested Loops join method generates many equality se-
lection queries, and the difference in cost between a hash-based index and a
tree-based index can become significant in this context.

The rest of this chapter is organized as follows. Section 11.1 presents Static
Hashing. Like ISAM, its drawback is that performance degrades as the data
grows and shrinks. We discuss a dynamic hashing technique, called Extendible
Hashing, in Section 11.2 and another dynamic technique, called Linear Hashing,
in Section 11.3. We compare Extendible and Linear Hashing in Section 11.4.

111 STATIC HASHING

The Static Hashing scheme is illustrated in Figure 11.1. The pages containing
the data can be viewed as a collection of buckets, with one primary page
and possibly additional overflow pages per bucket. A file consists of buckets
athrough N - 1, with one primary page per bucket initially. Buckets contain
data entTies, which can be any of the three alternatives discussed in Chapter
8.

To search for a data entry, we apply a hash function h to identify the bucket
to which it belongs and then search this bucket. To speed the search of a
bucket, we can maintain data entries in sorted order by search key value; in
this chapter, we do not sort entries, and the order of entries within a bucket
has no significance. To insert a data entry, we use the hash function to identify
the correct bucket and then put the data entry there. If there is no space for
this data entry, we allocate a new overflow page, put the data entry on this
page, and add the page to the overflow chain of the bucket. To delete a data

372 CHAPTER 11°

h(key) mod N / 0 7 o
ey) mo .
l — =l - -
/ T
key . ——
—_—
111
Nt

Primary bucket pages Overflow pages

Figure 11.1 Static Hashing

entry, we use the hashing function to identify the correct bucket, locate the
data entry by searching the bucket, and then remove it. If this data entry is
the last in an overflow page, the overflow page is removed from the overflow
chain of the bucket and added to a list of free pages.

The hash function is an important component of the hashing approach. It must
distribute values in the domain of the search field uniformly over the collection
of buckets. If we have N buckets, numbered athrough N — 1, a hash function
h of the form h(value) = (a *value +b) works well in practice. (The bucket
identified is h(value) mod N.) The constants a and b can be chosen to 'tune'
the hash function.

Since the number of buckets in a Static Hashing file is known when the file
is created, the primary pages can be stored on successive disk pages. Hence,
a search ideally requires just one disk 1/0, and insert and delete operations
require two 1/Os (read and write the page), although the cost could be higher
in the presence of overflow pages. As the file grows, long overflow chains can
develop. Since searching a bucket requires us to search (in general) all pages
in its overflow chain, it is easy to see how performance can deteriorate. By
initially keeping pages 80 percent full, we can avoid overflow pages if the file
does not grow too llluch, but in general the only way to get rid of overflow
chains is to create a new file with more buckets.

The main problem with Static Hashing is that the number of buckets is fixed.
If a file shrinks greatly, a lot of space is wasted; more important, if a file grows
alot, long overflow chains develop, resulting in poor performance. Therefore,
Static Hashing can be compared to the ISAM structure (Section 10.2), which
can also develop long overflow chains in case of insertions to the same leaf.
Static Hashing also has the same advantages as ISAM with respect to concur-
rent access (see Section 10.2.1).

Hash-Based Indering 373

One simple alternative to Static Hashing is to periodically ‘rehash’ the file to
restore the ideal situation (no overflow chains, about 80 percent occupancy).
However, rehashing takes time and the index cannot be used while rehashing
is in progress. Another alternative is to use dynamic hashing techniques
such as Extendible and Linear Hashing, which deal with inserts and deletes
gracefully. We consider these techniques in the rest of this chapter.

11.1.1 Notation and Conventions

In the rest of this chapter, we use the following conventions. As in the previous
chapter, record with search key k, we denote the index data entry by k*. For
hash-based indexes, the first step in searching for, inserting, or deleting a data
entry with search key k is to apply a hash function h to k; we denote this
operation by h(k), and the value h(k) identifies the bucket for the data entry
k+. Note that two different search keys can have the same hash value.

112 EXTENDIBLE HASHING

To understand Extendible Hashing, let us begin by considering a Static Hashing
file. 1f we have to insert a new data entry into a full bucket, we need to add
an overflow page. If we do not want to add overflow pages, one solution is
to reorganize the file at this point by doubling the number of buckets and
redistributing the entries across the new set of buckets. This solution suffers
from one major defect--the entire file has to be read, and twice as many pages
have to be written to achieve the reorganization. This problem, however, can
be overcome by a simple ideaz Use a directory of pointers to bucket.s, and
double t.he size of the number of buckets by doubling just the directory and
splitting only the bucket that overflowed.

To understand the idea, consider the sample file shown in Figure 11.2. The
directory consists of an array of size 4, with each element being a point.er to
a bucket.. (The global depth and local depth fields are discussed shortly, ignore
them for now.) To locat.e a data entry, we apply a hash funct.ion to the search
field and take the lagt. 2 hit.s of its binary represent.ation to ge. a number
between 0 and 3. The pointer in this array position gives us t.he desired bucket.;
we assume that each bucket can hold four data ent.ries. Therefore, to locate a
data entry with hash value 5 (binary 101), we look at directory element 01 and
follow the pointer to the data page (bucket B in the figure).

To insert. a dat.a entry, we search to find the appropriate bucket.. For example,
to insert adata entry with hash value 13 (denoted as 13*), we examine directory
element 01 and go to the page containing data ent.ries 1*, 5%, and 21*. Since

374 CHAPTER 11

LOCAL DEPTE™ """

GLOBAL DEPTH Bucket A
\/\ Data entry r
with h(r)=32
00 Bucket B
01
10
11 BucketC
DIRECTORY
Bucket D

DATA PAGES

Figure 11.2 Example of an Extendible Hashed File

the page has space for an additional data entry, we are done after we insert the
entry (Figure 11.3).

LOCAL pEPTE” Lrm—?"

. Bucket A
GLOBAL DEPTH P ucke
N

00 Bucket B
01
10

1 Bucket C

DIRECTORY
BucketD

DATA PAGES

Figure 11.3 After Inserting Entry T with h(T) = 13

Next, let us consider insertion of a data entry into a full bucket. The essence
of the Extcndible Hashing idea lies in how we deal with this case. Consider the
insertion of data entry 20* (binary 10100). Looking at directory clement 0O,
we arc led to bucket A, which is already full. We 111Ug first split the bucket

Hash-Based Indexing 3715

by allocating a new bucket' and redistributing the contents (including the new
entry to be inserted) across the old bucket and its 'split image." To redistribute
entries across the old bucket and its split image, we consider the last three bits
of h(T); the last two bits are 00, indicating a data entry that belongs to one of
these two buckets, and the third bit discriminates between these buckets. The
redistribution of entries is illustrated in Figure 11.4.

LOCAL DEPTH ™ """

GLOBAL DEPTH

=

00
01
10
11

. Bucket A2 (splitimage of bucket A)

Figure 11.4 While Inserting Entry r with h(r}=20

Note a problem that we must now resolve- -we need three bits to discriminate
between two of our data pages (A and A2), but the directory has only enough
slots to store all two-bit patterns. The solution is to double the directory. El-
ements that differ only in the third bit from the end are said to 'correspond':
COT-r'esponding elements of the directory point to the same bucket with the
exception of the elements corresponding to the split bucket. In our example,
bucket awas split; so, new directory element 000 points to one of the split ver-
sions and new element 100 points to the other. The sample file after completing
al steps in the insertion of 20* is shown in Figure 11.5.

Therefore, doubling the file requires allocating a new bucket page, writing both
this page and the old bucket page that is being split, and doubling the directory
array. The directory is likely to be much smaller than the file itself because
each element is just a page-id, and can be doubled by simply copying it over

ISince there are 'no overflow pages in Extendible Hashing, a bucket can be thought of as a single
page.

376 CHAPTER 11

LOCAL DEPTH ™ 2"

GLOBAL DEPTH Bucket A
Sz A

000 Bucket B
001 —
010 —
011 '&_‘ Bucket C
100 ‘
101 /
110 Bucket 0
111 T

Bucket A2 (split image of bucket A)

Figure 11.5 After Inserting Entry r with h(r) = 20

(and adjusting the elements for the split buckets). The cost of doubling is now
quite acceptable.

We observe that the basic technique used in Extendible Hashing is to treat the
result of applying a hash function h as a binary number and interpret the last d
bits, where d depends on the size of the directory, as an offset into the directory.
In our example, d is originally 2 because we only have four buckets; after the
split, d becomes 3 because we now have eight buckets. A corollary is that,
when distributing entries across a bucket and its split image, we should do so
on the basis of the dth bit. (Note how entries are redistributed in our example;
see Figure 11.5.) The number d, called the global depth of the hashed file, is
kept as part of the header of the file. It is used every time we need to locate a
data entry.

An important point that arises is whether splitting a bucket necessitates a
directory doubling. Consider our example, as shown in Figure 11.5. If we now
insert 9%, it belongs in bucket B; this bucket is already full. We can deal with
this situation by splitting the bucket and using directory elements 001 and 10]
to point to the bucket and its split image, as shown in Figure 11.6.

Hence, a bucket split does not necessarily require a directory doubling. How-
ever, if either bucket A or A2 grows full and an insert then forces a bucket split,
we are forced to double the directory again.

Hash-Based Indexing 377

- o5
LOCAL pEeTH Lo il

GLOBAL DEPTH Bucket A

000 Bucket B
001
010
011 Bucket C
100
101
110 Bucket 0
m
Bucket A2 (split image of bucket A)
DIRECTORY

Bucket B2 (split image of bucket B)

Figure 11.6 After Inserting Entry r with h(r) =9

To differentiate between these cases and determine whether a directory doubling
is needed, we maintain a local depth for each bucket. If a bucket whose local
depth is equal to the global depth is split, the directory must be doubled. Going
back to the example, when we inserted 9* into the index shown in Figure 11.5,
it belonged to bucket B with local depth 2, whereas the global depth was 3.
Even though the bucket was split, the directory did not have to be doubled.
Buckets A and A2, on the other hand, have local depth equal to the global
depth, and, if they grow full and are split, the directory must then be doubled.

Initially, all local depths are equal to the global depth (which is the number of
bits needed to express the total number of buckets). We increment the global
depth by 1 each time the directory doubles, of course. Also, whenever a bucket
is split (whether or not the split leads to a directory doubling), we increment
by 1 the local depth of the split bucket and assign this same (incremented)
local depth to its (newly created) split image. Intuitively, if a bucket has local
depth |, the hash values of data entries in it agree on the last | bits; further, no
data entry in any other bucket of the file has a hash value with the same last |
bits. A total of 29! directory elernents point to a bucket with local depth I; if
d =1, exactly one directory element points to the bucket and splitting such a
bucket requires directory doubling.

378 CHAPTER Id

A final point to note is that we can also use the first d bits (the most significant
bits) instead of the last d (least significant bits), but in practice the last d bits
are used. Thereason is that a directory can then be doubled simply by copying
it.

In summary, a data entry can be located by computing its hash value, taking
the last d bits, and looking in the bucket pointed to by this directory element.
For inserts, the data entry is placed in the bucket to which it belongs and the
bucket is split if necessary to make space. A bucket split leads to an increase in
the local depth and, if the local depth becomes greater than the global depth
as a result, to a directory doubling (and an increase in the global depth) as
well.

For deletes, the data entry is located and removed. If the delete leaves the
bucket empty, it can be merged with its split image, although this step is
often omitted in practice. Merging buckets decreases the local depth. If each
directory element points to the same bucket as its split image (i.e., 0 and 24!
point to the same bucket, namely, A; 1 and 2°- * + 1 point to the same bucket,
namely, B, which mayor may not be identical to A; etc.), we can halve the
directory and reduce the global depth, although this step is not necessary for
correctness.

The insertion examples can be worked out backwards as examples of deletion.
(Start with the structure shown after an insertion and delete the inserted ele-
ment. In each case the original structure should be the result.)

If the directory fits in memory, an equality selection can be answered in a
single disk access, as for Static Hashing (in the absence of overflow pages), but
otherwise, two disk 1/Os are needed. As a typical example, a 100MB file with
100 bytes per data entry and a page size of 4KB contains 1 million data entries
and only about 25,000 elements in the directory. (Each page/bucket contains
roughly 40 data entries, and we have one directory element per bucket.) Thus,
although equality selections can be twice as sow as for Static Hashing files,
chances are high that the directory will fit in memory and performance is the
same as for Static Hashing files.

On the other hand, the directory grows in spurts and can become large for
skewed data distributions (where our assumption that data pages contain roughly
equal numbers of data entries is not valid). In the context of hashed files, in a
skewed data distribution the distribution of hash values of search field values
(rather than the distribution of search field values themselves) is skewed (very
‘bursty’ or nonuniform). Even if the distribution of search values is skewed, the
choice of a good hashing function typically yields a fairly uniform distribution
of hash values, skew is therefore not a problem in practice,

Hash-Based Indezing 379

F\Irther, collisions, or data entries with the same hash value, cause a problem
and must be handled specially: \Vhen more data entries than \ill fit on a page
have the same hash value, we need overflow pages.

11.3 LINEAR HASHING

Linear Hashing is a dynamic hashing technique, like Extendible Hashing, ad-
justing gracefully to inserts and deletes. In contrast to Extendible Hashing,
it does not require a directory, deals naturally with collisions, and offers a lot
of flexibility with respect to the timing of bucket splits (allowing us to trade
off slightly greater overflow chains for higher average space utilization). Ifthe
data distribution is very skewed, however, overflow chains could cause Linear
Hashing performance to be worse than that of Extendible Hashing.

The scheme utilizes a family of hash functions hg, hl, h2, ..., with the property
that each function's range is twice that of its predecessor. That is, if hi maps
a data entry into one of M buckets, hj+1 maps a data entry into one of 2M
buckets. Such a family is typically obtained by choosing a hash function hand
an initial number N ofbuckets,2 and defining hi(value) = h(value) mod (2' N).
If N is chosen to be a power of 2, then we apply h and look at the last d; bits;
do is the number of bits needed to represent N, and d; = da+i. Typically we
choose h to be a function that maps a data entry to some integer. Suppose
that we set the initial number N of buckets to be 32. In this case do is 5, and
ha is therefore h mod 32, that is, a number in the range 0 to 31. The value of
disdo+1=6, and hl is h mod (2 *32), that is, a number in the range 0 to
63. Then h, yields a number in the range 0 to 127, and so ou.

The idea is best understood in terms of rounds of splitting. During round
number Level, only hash functions hLeud and hrevel+1 are in use. The buckets
in the file at the beginning of the round are split, one by one from the first to
the last bucket, thereby doubling the number of buckets. At any given point
within a round, therefore, we have buckets that have been split, buckets that
are yet to be split, and buckets created by splits in this round, as illustrated in
Figure 11.7.

Consider how we search for a data entry with a given search key value. \Ve
apply hash function hj...;, and if this leads us to one of the unsplit buckets,
we simply look there. If it leads us to one of the split buckets, the entry may
be there or it may have been moved to the new bucket created earlier in this
round by splitting this bucket; to determine which of the two buckets contains
the entry, we apply hrevers1-

2Note that 0to IV - 11is not the range of fi!

380 CHAPTER 11

Buckets split in this round:
Bucket to be split Next If hievel (searchkeyvalue

isin this range, must use
hLevel+1 (search key value

Buckets that existed at the o B
beginning of this round: to decideif entry isin

this is the range of h Level split image bucket.

-1 ‘splitimage' buckets:
created (through splitting
1 of other buckets) in this round

-

Figure 11.7 Buckets during a Round in Linear Hashing

Unlike Extendible Hashing, when an insert triggers a split, the bucket into
which the data entry is inserted is not necessarily the bucket that is split. An
overflow page is added to store the newly inserted data entry (which triggered
the split), as in Static Hashing. However, since the bucket to split is chosen
in round-robin fashion, eventually all buckets are split, thereby redistributing
the data entries in overflow chains before the chains get to be more than one
or two pages long.

We now describe Linear Hashing in more detail. A counter Level is used to
indicate the current round number and is igitialized to 0. The bucket to split
is denoted by Next and is initially bucket (the first bucket). We denote the
number of buckets in the file at the beginning of round Level by NLevel. We
can easily verify that NLevel = N *2Level. Let the number of buckets at the
beginning of round 0, denoted by No, be N. We show a small linear hashed
file in Figure 11.8. Each bucket can hold four dataentries, and the file initially
contains four buckets, as shown in the figure.

We have considerable flexibility in how to trigger a split, thanks to the use of
overflow pages. We can split whenever a new overflow page is added, or we can
impose additional conditions based all conditions such as space utilization. For
our examples, a split is 'triggered' when inserting a new data entry causes the
creation of an Qverftow page.

\Vhenever a split is triggered the Next bucket is split, and hash function hLevel+1
redistributes entries between this bucket (say bucket number b) and its split
image; the split image is therefore bucket number b+ NLever/. After splitting a
bucket, the value of Next is incremented by 1. In the example file, insertion of

Hash-Based Indexing 381

Level=0. N=4
PRIMARY
PAGES
Next=0
w o | NalyE]
oL | o1 -

=
-
g
)

1 ‘

Data entry r
with h(r)=5

010 10 :. o] a0e]
I m 10 | 30 Primary

bucket page
01 | 1 31' 7

This information is The actual contelJts
for illustratiolJ only ofthe linear hashedjile

Figure 11.8 Example of a Linear Hashed File

dataentry 43* triggers a split. The file after completing the insertion is shown
in Figure 11.9.

Level=O
PRIMARY OVERFLOW

hy ho PAGES PAGES
000 | 00 a2

Next=1
001 01 Y 25'
010 | 10 W
om | n Ll 7] e T
100 | o0 e

Figure 11.9 After Inserting Record r with h(T) = 43

At any time in .the middle of a round Level, all buckets above bucket Next have
been split, and the file contains buckets that are their split images, asillustrated
in Figure 11.7. Buckets Next through NLevcl have not yet been split. If we use
hLevel on a data entry and obtain a number bin the range Next through NLevel,
the data entry belongs to bucket b. For example, ho(18) is 2 (binary 10); since
this value is between the current values of Ner:t (= 1) and N, (= 4), this bucket
has not been split. However, if we obtain a number b in the range 0 through

382 CHAPTER 11

Next, the data entry may be in this bucket or in its split image (which is bucket
number b+ Npe.er); We have to use hLevel+1 to determine to which of these two
buckets the data entry belongs. In other words, we have to look at one more
bit of the data entry's hash value. For example, ho(32) and hp(44) are both a
(binary 00). Since Next is currently equal to 1, which indicates a bucket that
has been split, we have to apply hl* We have hl(32) = 0 (binary 000) and
h,(44) = 4 (binary 100). Therefore, 32 belongs in bucket A and 44 belongs in
its split image, bucket A2

Not all insertions trigger a split, of course. If we insert 37* into the file shown
in Figure 11.9, the appropriate bucket has space for the new data entry. The
file after the insertion is shown in Figure 11.10.

Level=0
PRIMARY OVERFLOW
hl hO PAGES PAGES
Next=1 -
w | o | NEEE]
010 10

;

o011 1 ..
w0 o0 [EE]

Figure 11.10 After Inserting Record r with h(r) = 37

Sometimes the bucket pointed to by Next (the current candidate for splitting)
is full, and a new data entry should be inserted in this bucket. In this case, a
split is triggered, of course, but we do not need a new overflow bucket. This
situation is illustrated by inserting 29* into the file shown in Figure 11.10. The
result is shown in Figure 11.11.

When Next is equal to NLevel - 1 and a split is triggered, we split the last of
the buckets present in the file at the beginning of round Level. The number
of buckets after the split is twice the number at the beginning of the round,
and we start a new round with Level incremented by 1 and Next reset to O.
Incrementing Level amounts to doubling the effective range into which keys are
hashed. Consider the examplefile in Figure 11.12, which was obtained from the
file of Figure 11.11 by inserting 22*, 66*, and 34*. (The reader is encouraged to
try to work out the details of these insertions.) Inserting 50* causes a split that

Hash-Based Indexing 383

Level=O

PRIMARY OVERFLOW
hi ho PAGES PAGES
000 00
001 01
010 10
011 1 43!
o | w| [
101 01 37| 29"

Figure 11.11 After Inserting Record r with h(r") = 29

leads to incrementing Level, as discussed previously; the file after this insertion
is shown in Figure 11.13.

Level=0

PRIMARY OVERFLOW
hq ho PAGES PAGES

001 01 n 257 .

010 | 10 P PP v

Next=3

o | u N 11'¥WT N l

100 | oo M
01 | o1 B@Eﬂ
—————e

10 | 10 ar| 22

Figure 11.12 After Inserting Records with h(r) = 22,66,and34

In summary, an equality selection costs just one disk 1/O unless the bucket has
overflow pages; in practice, the cost on average is about 1.2 disk accesses for

384 CHAPTER 11

Level:1l

PRIMARY OVERFLOW
hy hg PAGES PAGES
Next=0

000 00 EEC A

oL o i ﬂ'_-L_‘mi
I L I

1 10 el ape | e . T
010 ool o] [|]
1
o1 1 PREIE
R
100 00 e | |

101 11

110 10

111 1

Figure 11.13 After Inserting Record » with h(r) = 50

reasonably uniform data distributions. (The cost can be considerably worse--
linear in the number of data entries in the file---if the distribution is very skewed.
The space utilization is also very poor with skewed data distributions.) Inserts
require reading and writing a single page, unless a split is triggered.

‘We not discuss deletion in detail, but it is essentially the inverse of insertion.
If the last bucket in the file is empty, it can be removed and Next can be
decremented. (If Next is 0 and the last bucket becomes empty, Next is made to
point to bucket (A/2) -- 1, where vl is the current number of buckets, Level is
decremented, and the empty bucket is removed.) 1fwe wish, we can combine the
last bucket with its split image even when it is not empty, using some criterion
to trigger this merging in essentially the same way. The criterion is typically
based on the occupancy of the file, and merging can be done to improve space
utilization.

114 EXTENDIBLE VS LINEARHASHING

To understand the relationship between Linear Hashing and Extendible Hash-
ing, imagine that we also have a directory in Linear Hashing with elements O
to N — 1 The first split is at bucket 0, and so we add directory element N. In
principle, we may imagine that the entire directory has been doubled at this
point; however, because element 1 is the same as element N + 1, elernent 2 is

Huash-Based Indexing 38?

the same as element N + 2, and so on, we can avoid the actual copying for
the rest of the directory. The second split occurs at bucket 1; now directory
element N + 1 becomes significant and is added. At the end of the round, all
the original N buckets are split, and the directory is doubled in size (because
al elements point to distinct buckets).

We observe that the choice of hashing functions is actually very similar to
what goes on in Extendible Hashing---in effect, moving from h; to hj+; in
Linear Hashing corresponds to doubling the directory in Extendible Hashing.
Both operations double the effective range into which key values are hashed,;
but whereas the directory is doubled in a single step of Extendible Hashing,
moving from h; to hj+l, along with a corresponding doubling in the number
of buckets, occurs gradually over the course of a round in Linear Hashing.
The new idea behind Linear Hashing is that a directory can be avoided by a
clever choice of the bucket to split. On the other hand, by always splitting the
appropriate bucket, Extendible Hashing may lead to a reduced number of splits
and higher bucket occupancy.

The directory analogy is useful for understanding the ideas behind Extendible
and Linear Hashing. However, the directory structure can be avoided for Linear
Hashing (but not for Extendible Hashing) by allocating primary bucket pages
consecutively, which would allow us to locate the page for bucket i by a simple
offset calculation. For uniform distributions, this implementation of Linear
Hashing has a lower average cost for equality selections (because the directory
level is eliminated). For skewed distributions, this implementation could result
in any empty or nearly empty buckets, each of which is allocated at least one
page, leading to poor performance relative to Extendible Hashing, which is
likely to have higher bucket occupancy.

A different implementation of Linear Hashing, in which a directory is actually
maintained, offers the flexibility of not allocating one page per bucket; null
directory elements can be used as in Extendible Hashing. However, this imple-
mentation introduces the overhead of a directory level and could prove costly
for large, uniformly distributed files. (Also, although this implementation alle-
viates the potential problem of low bucket occupancy by not allocating pages
for empty buckets, it is not a complete solution because we can still have many
pages with very few entries.)

11.5 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

386 CHAPTER 11

¢ How does a hash-based index handle an equality query? Discuss the use of
the hash function in identifying a bucket to search. Given a bucket number,
explain how the record is located on disk.

« Explain how insert and delete operations are handled in a static hash index.
Discuss how overflow pages are used, and their impact on performance.
How many disk 1/Os does an equality search require, in the absence of
overflow chains? What kinds of workload does a static hash index handle
well, and when it is especially poor? (Section 11.1)

« How does Extendible Hashing use a directory of buckets? How does Ex-
tendible Hashing handle an equality query? How does it handle insert and
delete operations? Discuss the global depth of the index and local depth of
a bucket in your answer. Under what conditions can the directory can get
large? (Section 11.2)

e What are collisions? Why do we need overflow pages to handle them?
(Section 11.2)

e How does Linear Hashing avoid a directory? Discuss the round-robin split-
ting of buckets. Explain how the split bucket is chosen, and what triggers
a split. Explain the role of the family of hash functions, and the role of
the Level and Next counters. When does a round of splitting end? (Sec-
tion 11.3)

» Discuss the relationship between Extendible and Linear Hashing. What are
their relative merits? Consider space utilization for skewed distributions,
the use of overflow pages to handle collisions in Extendible Hashing, and
the use of a directory in Linear Hashing. (Section 11.4)

EXERCISES

Exercise 11.1 Consider the Extendible Hashing index shown in Figure 11.14. Answer the
following questions about this index:

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you know that
there have been no deletions from this index so far?

3. Suppose you are told that there have been no deletions from this index so far. What can
you say about the last entry whose insertion into the index caused a split?

4. Show the index after inserting an entry with hash value 68.
5. Show the original index after inserting entries with hash values 17 and 69.

6. Show the original index after deleting the entry with hash value 21. (Assume that the
full deletion algorithm is used.)

7. Show the original index after deleting the entry with hash value 10. |s a merge triggered
by this deletion? If not, explain why. (Assume that the full deletion algorithm is used.)

Hash-Based Indexing

010
011
100
101
110
111

DIRECTORY

387

Bucket A

Bucket B

BucketC

Bucket 0

BucketA2

Figure 11.14 Figure for Exercise 11.1

h(l)

001

010

011

100

h(©)

01

10

Level=O
PRIMARY
PAGES
EIDIEN
Next=1 -

|51 35] / []_]:\

OVERFLOW
PAGES

Figure 11.15 Figure for Exercise 11.2

Exercise 11.2 Consider the Linear Hashing index shown in Figure 11.15. Assume that we
split whenever an overflow page is created. Answer the following questions about this index:

1
2

What can you say about the last entry that was inserted into the index?

What can you say about the last entry that was inserted into the index if you know that

there llave been no deletions from this index so far?

Suppose you know that there have been no deletions from this index so far. What can
you say about the last entry whose insertion into the index caused a split?

Show the index after inserting an entry with hash value 4.

388 CHAPTER 11

5. Show the original index after inserting an entry with hash value 15.

6. Show the original index after deleting the entries with hash values 36 and 44. (Assume
that the full deletion algorithm is used.)

7. Find a list of entries whose insertion into the original index would lead to a bucket with
two overflow pages. Use as few entries as possible to accomplish this. What is the
maximum number of entries that can be inserted into this bucket before a split occurs
that reduces the length of this overflow chain?

Exercise 11.3 Answer the following questions about Extendible Hashing:

1. Explain why local depth and global depth are needed.

2. After an insertion that causes the directory size to double, how many buckets have
exactly one directory entry pointing to them? If an entry is then deleted from one of
these buckets, what happens to the directory size? Explain your answers briefly.

3. Does Extendible I-lashing guarantee at most one disk access to retrieve a record with a
given key value?

4. If the hash function distributes data entries over the space of bucket numbers in a very
skewed (non-uniform) way, what can you say about the size of the directory? What can
you say about the space utilization in data pages (i.e., non-directory pages)?

5. Does doubling the directory require us to examine al buckets with local depth equal to
global depth?

6. Why is handling duplicate key values in Extendible Hashing harder than in ISAM?
Exercise 11.4 Answer the following questions about Linear Hashing:

1. How does Linear Hashing provide an average-case search cost of only slightly more than
one disk 1/0, given that overflow buckets are part of its data structure?

2. Does Linear Hashing guarantee at most one disk access to retrieve a record with a given
key value?

3. IfaLinear Hashing index using Alternative (1) for dataentries contains N records, with
P records per page and an average storage utilization of 80 percent, what is the worst-
case cost for an equality search? Under what conditions would this cost be the actual
search cost?

4. 1If the hash function distributes data entries over the space of bucket numbers in a very
skewed (non-uniform) way, what can you say about thc space utilization in data pages?

Exercise 11.5 Give an example of when you would use each element (A or B) for each of
the following ‘A versus B' pairs:
1. A hashed index using Alternative (1) versus heap file organization.
Extendible Hashing versus Linear Hashing.
Static Hashing versus Linear Hashing.
Static Hashing versus ISAIVI.

a &~ WD

Linear Hashing versus B+ trees.
Exercise 11.6 Give examples of the following:

1. A Linear Hashing index and an Extendible Hashing index with the same data entries,
such that the Linear Hashing index has more pages.

Hash-Based Indezing 339

Level=0O, N=4
h PRIMARY
1 ho PAGES
Next=0
000 00 \! o e] 1
001 o1 EREIER

1

010 10 .

Figure 11.16 Figure for Exercise 11.9

2. A Linear Hashing index and an Extendible Hashing index with the same data entries,
such that the Extendible Hashing index has more pages.

Exercise 11.7 Consider arelation R(w. b, ¢, d) containing 1 million records, where each page
of the relation holds 10 records. R is organized as a heap file with unclustered indexes, and
therecords in R are randomly ordered. Assume that attribute a is a candidate key for R, with
values lying in the range 0 to 999,999. For each of the following queries, name the approach
that would most likely require the fewest 1/Os for processing the query. The approaches to
consider follow:

. Scanning through the whole heap file for R.

. Using a B+ tree index on attribute R.a.
. Using a hash index on attribute R.a.

The queries are:

Find al R tuples.

Find al R tuples such that a < 50.

Find al R tuples such that a= 50.

Find al R tuples such that a > 50 and a < 100.

RN

Exercise 11.8 How would your answers to Exercise 11.7 change if a is not a candidate key
for R? How would thcy change if we assume that records in R are sorted on a»

Exercise 11.9 Consider the snapshot of the Linear Hashing index shown in Figure 11.16.
Assume that a bucket split occurs whcnever an overflow page is created.

1 What is the mazimum number of dataentries that call be inserted (given the best possible
distribution of keys) before you have to split a bucket? Explain very briefly.

2. Show the file after inserting a single record whose insertion causes a bucket split.

390 CHAPTER 11

3. (&) What is the minimum number of record insertions that will cause a split of all four
buckets? Explain very briefly.

(b) What is the value of Next after making these insertions?

(c) What can you say about the number of pages in the fourth bucket shown after this
series of record insertions?

Exercise 11.10 Consider the data entries in the Linear Hashing index for Exercise 11.9.

1. Show an Extendible Hashing index with the same data entries.

2. Answer the questions in Exercise 11.9 with respect to this index.

Exercise 11.11 In answering the following questions, assume that the full deletion algorithm
is used. Assume that merging is done when a bucket becomes empty.

1. Give an example of Extendible Hashing where deleting an entry reduces global depth.

2. Give an example of Linear Hashing in which deleting an entry decrements Next but leaves
Level unchanged. Show the file before and after the deletion.

3. Give an example of Linear Hashing in which deleting an entry decrements Level. Show
the file before and after the deletion.

4. Give an example of Extendible Hashing and a list of entries el, e2, e3 such that inserting
the entries in order leads to three splits and deleting them in the reverse order yields the
original index. If such an example does not exist, explain.

5. Give an example of a Linear Hashing index and a list of entries el, e2, e3 such that
inserting the entries in order leads to three splits and deleting them in the reverse order
yields the original index. If such an example does not exist, explain.

PROJECT-BASED EXERCISES

Exercise 11.12 (Note to instructors: Additional details must be provided if this question is
assigned. See Appendi:c 30.) Implement Linear Hashing or Extendible Hashing in Minibase.

BIBLIOGRAPHIC NOTES

Hashing is discussed in detail in [442]. Extendible Hashing is proposed in [256]. Litwin
proposed Linear Hashing in [483]. A generalization of Linear Hashing for distributed envi-
ronments is described in [487]. There has been extensive research into hash-based indexing
techniques. Larson describes two variations of Linear Hashing in [469] and [470]. Ramakr-
ishna presents an analysis of hashing techniques in [607]. Hash functions that do not produce
bucket overflows are studied in [608]. Order-preserving hashing techniques are discussed in
[484] and [308]. Partitioned-hashing, in which each field is hashed to obtain some bits of
the bucket address, extends hashing for the case of queries in which equality conditions are
specified only for some of the key fields. This approach was proposed by Rivest [628] and is
discussed in [747]; a further development is described in [616].

PARTN

QUERY EVALUATION

12

OVERVIEW OF QUERY
EVALUATION

= \What descriptive information does a DBMS store in its catalog?

3

What alternatives are considered for retrieving rows from a table?

o Why does a DBMS implement several algorithms for each algebra
operation? What factors affect the relative performance of different
algorithms?

w \What are query evaluation plans and how are they represented?

« \Why isit important to find a good evaluation plan for a query? How
is this done in a relational DBM S?

B Key concepts: catalog, system statistics; fundamental techniques,
indexing, iteration, and partitioning; access paths, matching indexes
and selection conditions; selection operator, indexes versus scans, im-
pact of clustering; projection operator, duplicate elimination; join op-
erator, index nested-loopsjoin, sort-mergejoin; query evaluation plan;
materialization vs. pipelinining; iterator interface; query optimiza-
tion, algebra equivalences, plan enumeration; cost estimation

This very remarkable man, commends a most practical plan:
You can do what you want, if you don't think you can't,
So clon't think you can't if you can.

...... Charles Inge

In this chapter, we present an overview of how queries are evaluated in a rela-
tional DBMS. We begin with a discussion of how a DBMS describes the data

393

394 CHAPTER 12

that it manages, including tables and indexes, in Section 12.1. This descriptive
data, or metadata, stored in special tables called the system catalogs, is
used to find the best way to evaluate a query.

SQL queries are translated into an extended form of relational algebra, and
query evaluation plans are represented as trees of relational operators, along
with labels that identify the algorithm to use at each node. Thus, relational op-
erators serve as building blocks for evaluating queries, and the implementation
of these operators is carefully optimized for good performance. We introduce
operator evaluation in Section 12.2 and describe evaluation algorithms for var-
ious operators in Section 12.3.

In general, queries are composed of several operators, and the algorithms for
individual operators can be combined in many ways to evaluate a query. The
process of finding a good evaluation plan is called query optimization. We intro-
duce query optimization in Section 12.4. The basic task in query optimization,
which is to consider several alternative evaluation plans for a query, is moti-
vated through examples in Section 12.5. In Section 12.6, we describe the space
of plans considered by a typical relational optimizer.

The ideas are presented in sufficient detail to alow readers to understand
how current database systems evaluate typical queries. This chapter provides
the necessary background in query evaluation for the discussion of physical
database design and tuning in Chapter 20. Relational operator implementa-
tion and query optimization are discussed further in Chapters 13, 14, and 15;
this in-depth coverage describes how current systems are implemented.

We consider a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age real)
Reserves(sid: integer, bid: integer, day: dates, marne: string)

We aSSUIne that each tuple of Reserves is 40 bytes long, that a page can hold
100 Reserves tuples, and that we have 1000 pages of such tuples. Similarly,
we assume that each tuple of Sailors is 50 bytes long, that a page can hold 80
Sailors tuples, and that we have 500 pages of such tuples.

121 THE SYSTEM CATALOG

We can store a table using one of several alternative file structures, and we can
create one or more indexes -each stored as a file o11 every tal)le. Conversely,
in a relational DBMS, every file contains either the tuples in a table or the

Overview of Query Evaluation 395

entries in an index. The collection of files corresponding to users' tables and
indexes represents the data in the database.

A relational DBMS maintains information about every table and index that it
contains. The descriptive information is itself stored in a collection of special
tables called the catalog tables. An example of a catalog table is shown
in Figure 12.1. The catalog tables are also called the data dictionary, the
system catalog, or simply the catalog.

12.1.1 Information in the Catalog

Let us consider what is stored in the system catalog. At a minimum, we"have
system-wide information, such as the size of the buffer pool and the page size,
and the following information about individual tables, indexes, and views:

» For each table:

— Its table name, the file name (or some identifier), and the file structure
(e.g., heap file) of the file in which it is stored.

- The attribute name and type of each of its attributes.
— The index name of each index on the table.

- Theintegrity constmints (e.g., primary key and foreign key constraints)
on the table.

. For each index:

- The indez name and the structure (e.g., B+ tree) of the index.
- The search key attributes.

. For each view:

- Its view name and definition.

In addition, statistics about tables and indexes are stored in the system catal ogs
and updated periodically (not every time the underlying tables are modified).
The following information is commonly stored:

e Cardinality: The number of tuples NTuples(R) for each table R.
e« Size: The number of pages NPages(R) for each table R.

* Index Cardinality: The number of distinct key values NKeys(!I) for each
index I.

¢« Index Size: The nUluber of pages INPages(l) for each index I. (For a B+
tree index I, we take INPagcs to be the number of leaf pages.)

396 CHAPTER 12

* Index Height: The number of nonleaf levels IHe'ight(l) for each tree index
l.

* Index Range: The minimum present key value ILow(l) and the maximum
present key value IHigh(I) for each index I.

We assume that the database architecture presented in Chapter 1 is used.
Further, we assume that each file of records is implemented as a separate file of
pages. Other file organizations are possible, of course. For example, a page file
can contain pages that store records from more than one record file. If such a
file organization is used, additional statistics must be maintained, such as the
fraction of pages in afile that contain records from a given collection of records.

The catalogs aso contain information about users, such as accounting infor-
mation and authorization information (e.g., Joe User can modify the Reserves
table but only read the Sailors table).

How Catalogs are Stor ed

An elegant aspect of a relational DBMS is that the system catalog is itself
a collection of tables. For example, we might store information about the
attributes of tables in a catalog table called Attribute Cat:

Attribute_Cat(attr_name: string, rel_nameé: string,
type: string, position: integer)

Suppose that the database contains the two tables that we introduced at the
begining of this chapter:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Reserves(sid: integer, hid: integer, day: dates, mame: string)

Figure 12.1 shows the tuples in the Attribute_Cat table that describe the a-
tributes of these two tables. Note that in addition to the tuples describing
Sailors and Reserves, other tuples (the first four listed) describe the four at-
tributes of the Attribute_Cat table itself! These other tuples illustrate an im-
portant Point: the catalog tables describe all the tables in the database, includ-
ing the catalog tables themselves. When information about a table is needed,
it is obtained from the system catalog. Of course, at the implementation level,
whenever the DBMS needs to find the schema of a catalog table, the code
that retrieves this information must be handled specially. (Otherwise, the code
has to retrieve this information from the catalog tables without, presumably,
knowing the schema of the catalog tables.)

Overview of Query Evaluation 397

attr_name | rel S Hype s

attr_name | Attribute Cat | string | 1
reLname | Attribute_Cat | string | 2
type Attribute_Cat | string | 3
position Attribute_Cat | integer | 4
sid Sailors integer | 1
shame Sailors string | 2
rating Sailors integer | 3
age Sailors real 4
sid Reserves integer | 1
bid Reserves integer | 2
day Reserves dates 3
rname Reserves string | 4

Figure 12.1 An Instance of the Attribute_Cat Relation

The fact that the system catalog is also a collection of tables is very useful. For
example, catalog tables can be queried just like any other table, using the query
language of the DBMS! Further, all the techniques available for implementing
and managing tables apply directly to catalog tables. The choice of catalog
tables and their schemas is not unique and is made by the implementor of the
DBMS. Real systems vary in their catalog schema design, but the catalog is
always implemented as a collection of tables, and it essentially describes all the
data stored in the database.!

122 INTRODUCTION TO OPERATOR EVALUATION

Several alternative algorithms are available for implementing each relational
operator, and for most operators no algorithm is universally superior. Several
factors influence which algorithm performs best, including the sizes of the tables
involved, existing indexes and sort orders, the size of the available buffer pool,
and the buffer replacement policy.

In this section, we describe some common techniques used in developing eval-
uation algorithms for relational operators, and introduce the concept of access
paths, which are the different ways in which rows of a table can be retrieved.

ISome systems may store additional information in a non-relational form. For example, a system
with a sophisticated query optimizer may maintain histograms or other statistical information about
the distribution of values in certain attributes of a table. \WVe can think of such information, when it
is maintained, as a supplement to the catalog tables.

398 CHAPTER 12

12.2.1 Three Common Techniques

The algorithms for various relational operators actually have a lot in common.
A few simple techniques are used to develop algorithms for each operator:

w Indexing: If a selection or join condition is specified, use an index to
examine just the tuples that satisfy the condition.

w lteration: Examine al tuples in an input table, one after the other. If
we need only a few fields from each tuple and there is an index whose key
contains all these fields, instead of examining data tuples, we can scan all
index data entries. (Scanning all data entries sequentially makes no use
of the index's ha8h- or tree-based search structure; in a tree index, for
example, we would simply examine all leaf pages in sequence.)

w Partitioning: By partitioning tuples on a sort key, we can often decom-
pose an operation into a less expensive collection of operations on parti-
tions. Sorting and hashing are two commonly used partitioning techniques.

We discuss the role of indexing in Section 12.2.2. The iteration and partitioning
techniques are seen in Section 12.3.

12.2.2 Access Paths

An access path is a way of retrieving tuples from a table and consists of
either (1) afile scan or (2) an index plus a matching selection condition. Every
relational operator accepts one or more tables as input, and the access methods
used to retrieve tuples contribute significantly to the cost of the operator.

Consider a simple selection that is a conjunction of conditions of the form
attr op value, where op is one of the comparison operators <, <, =, #, >,
or >. Such selections are said to be in conjunctive normal form (CNF),
and each condition is called a conjunct.? Intuitively, an index matches a
selection condition if the index can be used to retrieve just the tuples that

satisfy the condition.

m A hash index matches a CNF selection if there is a term of the form
attribute=yalue in the selection for each attribute in the index's search key.

m A tree index matches a CNF selection if there is a term of the form
attribute op wvalue for each attribute in a prefiz of the index's search key.
({a) and {a,b) are prefixes of key (a,b,e), but {a,c) and {(b,c) are not.)

2We consider more complex selection conditions in Section 14.2.

Overview of Query Evaluation 399

Note that op can be any comparison; it is not restricted to he equality as
it is for matching selections on a hash index.

An index can match some subset of the conjuncts in a selection condition (in
CNP), even though it does not match the entire condition. We refer to the
conjuncts that the index matches as the primary conjuncts in the selection.

The following examples illustrate access paths.

= If we have a hash index H on the search key (rname, bid.sid), we can
use the index to retrieve just the Sailors tuples that satisfy the condition
rnarne="Joe'l\ bid=5 1\ sid=3. The index matches the entire condition
rname="Joe' 1\ bid=5 A sid= 3. On the other hand, if the selection con-
dition is rname='Joe' 1\ bid=5, or some condition on date, this index does
not match. That is, it cannot be used to retrieve just the tuples that satisfy
these conditions.

In contrast, if the index were a B+ tree, it would match both rname="Joe'
1\ bid=51\ 8id=3 and mame="Joe' 1\ bid=5. However, it would not match
bid=5 1\ sid=3 (since tuples are sorted primarily by rnarne).

s If we have an index (hash or tree) on the search key {bid,sid) and the se-
lection condition rname="Joe" 1\ bid=5 1\ sid=3, we can use the index to
retrieve tuples that satisfy bid=51\ sid=3; these are the primary conjuncts.
The fraction of tuples that satisfy these conjuncts (and whether the index
is clustered) determines the number of pages that are retrieved. The ad-
ditional condition on Tna7ne must then be applied to each retrieved tuple
and will eliminate some of the retrieved tuples from the result.

= If we have an index on the search key (bid, sid) and we also have a B+ tree
index on day, the selection condition day < 8/9/2002 1\ hid=5 A sid=3
offers us a choice. Both indexes match (part of) the selection condition,
and we can use either to retrieve Reserves tuples. \Vhichever index we use,
the conjuncts in the selection condition that are not matched by the index
(e.g., bid=51\ sid=3 if we use the B+ tree index on day) must be checked
for each retrieved tuple.

Selectivity of Access Paths

The selectivity of an access path isthe number of pages retrieved (index pages
plus data pages) if we usc this access path to retrieve al desired tuples. If a
table contains an index that matches a given selection, there are at least two
access paths: the index and a scan of the data file Sometimes, of course, we
can scan the index itself (rather than scanning the data file or using the index
to probe the file), giving us a third access path.

400 CHAPTER 12

The most selective access path is the one that retrieves the fewest pages;
using the most selective access path minimizes the cost of data retrieval. The
selectivity of an access path depends on the primary conjuncts in the selection
condition (with respect to the index involved). Each conjunct acts as a filter
on the table. The fraction of tuples in the table that satisfy a given conjunct is
called the reduction factor. 'When there are several primary conjuncts, the
fraction of tuples that satisfy all of them can be approximated by the product
of their reduction factors; this effectively treats them as independent filters,
and while they may not actually be independent, the approximation is widely
used in practice.

Supose we have a hash index H on Sailors with search key {rname,bid,sid), and
we are given the selection condition rname='Joe" 1\ bid=5 1\ sid=3. We can
use the index to retrieve tuples that satisfy all three conjuncts. The catalog
contains the number of distinct key values, N K eys(H), in the hash index, as
well as the number of pages, N Pages, in the Sailors table. The fraction of
pages satisfying the primary conjuncts is Npages(Sailors) . —""__Mpzlg;r;-

If the index has search key (bid,sid), the primary conjuncts are bid=51\ sid=3.
If we know the number of distinct values in the bid column, we can estimate
the reduction factor for the first conjunct. This information is available in
the catalog if there is an index with bid as the search key; if not, optimizers
typically use a default value such as 1/10. Multiplying the reduction factors
for bid=5 and sid=3 gives us (under the simplifying independence assumption)
the fraction of tuples retrieved; if the index is clustered, this is also the fraction
of pages retrieved. If the index is not clustered, each retrieved tuple could be
on a different page. (Review Section 8.4 at this time.)

We estimate the reduction factor for a range condition such as day> 8/9/2002
by assuming that values in the column are uniformly distributed. If there is a

B+ tree T with Key day, thie reduction Bc®ris HHigh] ~valys).

Tagh Low

123 ALGORITHMS FOR RELATIONAL OPERATIONS

‘We now briefly discuss evaluation algorithms for the main relational operators.
While the important ideas are introduced here, a more in-depth treatment is
deferred to Chapter 14. As in Chapter 8 we consider only I/O costs and
measure /O costs in terms of the number of page 1/0s. In this chapter, we
use detailed examples to illustrate how to compute the cost of an algorithm.
Although we do not present rigorous cost formulas in this chapter, the reader
should be able to apply the underlying icleas to do cost calculations on other
similar examples.

Overview of Query Evaluation 40)

12.3.1 Selection

The selection operation is a simple retrieval of tuples from a table, and its
implementation is essentially covered in our discussion of access paths. To
summarize, given a selection of the form o g attr OP vatue(R), if there is no index
on R.attr, we have to scan R.

If one or more indexes on R match the selection, we can use the index to re-
trieve matching tuples, and apply any remaining selection conditions to further
restrict the result set. As an example, consider a selection of the form rname
< 'C%' on the Reserves table. Assuming that names are uniformly distributed
with respect to the initial letter, for simplicity, we estimate that roughly 10%
of Reserves tuples are in the result. This is a total of 10,000 tuples, or 100
pages. If we have a clustered B+ tree index on the rname field of Reserves, we
can retrieve the qualifying tuples with 100 1/Os (plus a few 1/Os to traverse
from the root to the appropriate leaf page to start the scan). However, if the
index is unclustered, we could have up to 10,000 I/Os in the worst case, since
each tuple could cause us to read a page.

As a rule of thumb, it is probably cheaper to simply scan the entire table
(instead of using an unclustered index) if over 5% of the tuples are to be
retrieved.

Sec Section 14.1 for more details on implementation of selections.

12.3.2 Projection

The projection operation requires us to drop certain fields of the input, which
is easy to do. The expensive aspect of the operation is to ensure that no
duplicates appear in the result. For example, if we only want the sid and bid
fields from Reserves, we could have duplicates if a sailor has reserved a given
boat on several days.

If duplicates need not be eliminated (e.g., the DISTINCT keyword is not in-
cluded in the SELECT clause), projection consists of simply retrieving a subset
of fields from each tuple of the input table. This can be accomplished by simple
iteration on either the table or an index whose key contains all necessary fields.
(Note that we do not care whether the index is clustered, since the values we
want are in the data entries of the index itself!)

If we have to eliminate duplicates, we typically have to use partitioning. Sup-
pose we want to obtain {sid, hid) by projecting from Reserves. We can partition
by (1) scanning H.eserves to obtain (sid, bid) pairs and (2) sorting these pairs

402 CHAPTER 12

using (sid, bid) as the sort key. We can then scan the sorted pairs and easily
discard duplicates, which are now adjacent.

Sorting large disk-resident datasets is a very important operation in database
systems, and is discussed in Chapter 13. Sorting a table typically requires two
or three passes, each of which reads and writes the entire table.

The projection operation can be optimized by combining the initial scan of
Reserves with the scan in the first pass of sorting. Similarly, the scanning
of sorted pairs can be combined with the last pass of sorting. With such an
optimized implemention, projection with duplicate elimination requires (1) a
first pass in which the entire table is scanned, and only pairs (sid, bid) are
written out, and (2) a final pass in which all pairs are scanned, but only one
copy of each pair is written out. In addition, there might be an intermediate
pass in which all pairs are read from and written to disk.

The availability of appropriate indexes can lead to less expensive plans than
sorting for duplicate elimination. Ifwe have an index whose search key contains
al the fields retained by the projection, we can sort the data entries in the
index, rather than the data records themselves. If al the retained attributes
appear in a prefix of the search key for a clustered index, we can do even
better; we can simply retrieve data entries using the index, and duplicates are
easily detected since they are adjacent. These plans are further examples of*
index-only evaluation strategies, which we discussed in Section 8.5.2.

See Section 14.3 for more details on implementation of projections.

12.3.3 Join

Joins are expensive operations and very common. Therefore, they have been
widely studied, and systems typically support several algorithms to carry out
joins.

Consider thejoin of Reserves and Sailors, with thejoin conclition Reserves.sid =
Sailors.sid. Suppose that one of the tables, say Sailors, has an index on the
sid column. We can scan Reserves and, for each tuple, use the index to pTObe
Sailors for matching tuples. This approach is called index nested loops join.

Suppose that we have a hash-based index using Alternative (2) on the sid
attribute of Sailors and that it takes about 1.2 1/0s on average® to retrieve
the appropriate page of the index. Since sid is a key for Sailors, we have at

AIThis is a typical cost for hash-based indexes.

Overview of Query Evaluation 403

most one matching tuple, Indeed, sid in Reserves is a foreign key referring
to Sailors, and therefore we have exactly one matching Sailors tuple for each
Reserves tuple, Let us consider the cost of scanning Reserves and using the
index to retrieve the matching Sailors tuple for each Reserves tuple, The cost of
scanning Reserves is 1000. There are 100 * 1000 tuples in Reserves. For each of
these tuples, retrieving the index page containing the rid of the matching Sailors
tuple costs 1.2 1/Os (on average); in addition, we have to retrieve the Sailors
page containing the qualifying tuple, Therefore, we have 100,000 * (1+12)
I/Os to retrieve matching Sailors tuples. The total cost is 221,000 1/Os.4

If we do not have an index that matches the join condition on either table, we
cannot use index nested loops, In this case, we can sort both tables on thejoin
column, and then scan them to find matches. This is called sort-merge join..
Assuming that we can sort Reserves in two passes, and Sailors in two passes
as well, let us consider the cost of sort-merge join. Consider the join of the
tables Reserves and Sailors. Because we read and write Reserves in each pass,
the sorting cost is 2*2* 1000 = 4000 I1/Os. Similarly, we can sort Sailors at a
cost of 2*¥2*500 = 2000 I1/Os. In addition, the second phase of the sort-merge
join algorithm requires an additional scan of both tables. Thus the total cost
is 4000 + 2000 + 1000 + 500 = 7500 1/Os.

Observe that the cost of sort-merge join, which does not require a pre-existing
index, is lower than the cost of index nested loops join, In addition, the result
of the sort-merge join is sorted on the join column(s). Other join algorithms
that do not rely on an existing index and are often cheaper than index nested
loops join are aso known (block nested loops and hash joins, see Chapter 14).
Given this, why consider index nested loops at al?

Index nested loops has the nice property that it isincremental. The cost of our
example join is incremental in the number of Reserves tuples that we process.
Therefore, if some additional selection in the query alows us to consider only
a small subset of Reserves tuples, we can avoid computing the join of Reserves
and Sailors in its entirety. For instance, suppose that we only want the result
of the join for boat 101, and there are very few such reservations. For each
such Reserves tuple, we probe Sailors, and we are clone. If we use sort-merge
join, on the other hand, we have to scan the entire Sailors table at least once,
and the cost of this step alone is likely to be much higher than the entire cost
of index nested loops join.

Observe that the choice of index nested loops join is based on considering the
query as a whole, including the extra selection all Reserves, rather than just

1A an exercise, the reader should write formulas for the cost estimates in this example in terms
of the properties e.g., NPages-of the tables and indexes involved.

404 CHAPTER 12

thejoin operation by itself. Thisleads usto our next topic, query optimization,
which is the process of finding a good plan for an entire query.

See Section 14.4 for more details.

12.3.4 Other Operations

A SQL query contains group-by and aggregation in addition to the basic re-
lational operations. Different query blocks can be combined with union, set-
difference, and set-intersection.

The expensive aspect of set operations such as union and intersection is du-
plicate elimination, just like for projection. The approach used to implement
projection is easily adapted for these operations as well. See Section 14.5 for
more details.

Group-by is typically implemented through sorting. Sometimes, the input table
has a tree index with a search key that matches the grouping attributes. In this
case, we can retrieve tuples using the index in the appropriate order without
an explicit sorting step. Aggregate operations are carried out using temporary
counters in main memory as tuples are retrieved. See Section 14.6 for more
details.

124 INTRODUCTION TO QUERY OPTIMIZATION

Query optimization is one of the most important tasks of a relational DBMS.
One of the strengths of relational query languages is the wide variety of ways in
which a user can express and thus the system can evaluate a query. Although
this flexibility makes it easy to write queries, good performance relies greatly
on the quality of the query optimizer-—a given query can be evaluated in many
ways, and the difference in cost between the best and worst plans may be
several orders of magnitude. Realistically, we cannot exped to always find the
best plan, but we expect to consistently find a plan that is quite good.

A more detailed view of the query optimization and execution layer in the
DBMS architecture from Section 1.8 is shown in Figure 12.2. Queries are
parsed and then presented to a query optimizer, which is responsible for
identifying an efficient execution plan. The optimizer generates alternative
plans and chooses the plan wit.h the least estimated cost.

The space of plans considered by a typical relational query optimizer can be
understood by recognizing that a guery is essentially treated as a o - T— <
algebra expression, with the remaining operations (if any, in a given query)

Querview of Query Fvaluation 405

* Query

Queryparser |

‘ Parsed query

Query Optimizer]-

-
Plan Plan Cost I Catalog

’ k Generator Estimator ﬂ | Manager
l Evaluation plan

Query Plan Evaluator

Figure 12.2 Query Parsing, Optimization, and Execution

Commercial Optimizers: Current relational DBMS optimizers are very
complex pieces of software with many closely guarded details, and they
typically represent 40 to 50 man-years of development effort!

carried out on the result of the ¢ . w— i expression. Optimizing such a
relational algebra expression involves two basic steps:

* Enumerating alternative plans for evaluating the expression. Typically, an
optimizer considers a subset of al possible plans because the number of
possible plans is very large.

« Estimating the cost of each enumerated plan and choosing the plan with
the lowest estimated cost.

In this section we lay the foundation for our discussion of query optimization
by introducing evaluation plans.

12.4.1 Query Evaluation Plans

A query evaluation plan (or simply plan) consists of an extended relational
algebra tree, with additional annotations at each node indicating the access
methods to use for each table and the implementation method to use for each
relational operator.

Consider the following SQL query:

406 CHAPTER 412

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
AND R.bid = 100 AND S.rating > 5

This query can be expressed in relational algebra as follows:

TAME(Cbid=100Arating>5 (Reservest<iyj_iqSailors))

This expression is shown in the form of a tree in Figure 12.3. The algebra
expression partially specifies how to evaluate the query-owe first compute the

natural join of Reserves and Sailors, then perform the selections, and finally
project the snarne field.

‘ ‘ shame

I
T bid=100 A rating> 5

1
D><]
sid=sid
/’/’ \\\.

Reserves Sailors

Figure 12.3 Query Expressed as a Relational Algebra Tree

To obtain a fully specified evaluation plan, we must decide on an implemen-
tation for each of the algebra operations involved. For example, we can use
a page-oriented simple nested loops join with Reserves as the outer table and
apply selections and projections to each tuple in the result of the join as it is
produced; the result of the join before the selections and projections is never
stored in its entirety. This query evaluation plan is shown in Figure 12.4.

TTsname (Orl-lhe-}7y)

|
|
O'bid=100 A rating>5 (Oll-lhe-fly)

[ed (Simple nested loops)
sid=sid
g
o

~
(File scan) Reserves Sailors (File scan)

Figure 12.4 Query Evaluation Plan for Sample Query

Overview of Query Fvaluation 407

In drawing the query evaluation plan, we have used the convention that the
outer table is the left child of the join operator. We adopt this convention
henceforth.

12.4.2 Multi-operator Queries. Pipelined Evaluation

When a query is composed of several operators, the result of one operator is
sometimes pipelined to another operator without creating a temporary table
to hold the intermediate result. The plan in Figure 12.4 pipelines the output of
the join of Sailors and Reserves into the selections and projections that follow.
Pipelining the output of an operator into the next operator saves the cost of
writing out the intermediate result and reading it back in, and the cost sav-
ings can be significant. If the output of an operator is saved in a temporary
table for processing by the next operator, we say that the tuples are material -
ized. Pipelined evaluation has lower overhead costs than materialization and
is chosen whenever the algorithm for the operator evaluation permits it.

There are many opportunities for pipelining in typical query plans, even simple
plans that involve only selections.. Consider a selection query in which only
part of the selection condition matches an index. We can think of such a query
as containing two instances of the selection operator: The first contains the
primary, or matching, part of the original selection condition, and the second
contains the rest of the selection condition. We can evaluate such a query
by applying the primary selection and writing the result to a temporary table
and then applying the second selection to the temporary table. In contrast,
a pipelined evaluation consists of applying the second selection to each tuple
in the result of the primary selection as it is produced and adding tuples that
qualify to the fina result. When the input table to a unary operator (eg.,
selection or projection) is pipelined into it, we sometimes say that the operator
is applied on-the-fly.

As a second and more general example, consider ajoin of the form (A 1 B)
C, shown in Figure 12.5 as a tree of join operations.

Result tuples /l><]
of first join // \\
pipelined into [C
joinwith C /\

A B

Figure 12.5 A Query Tree Illustrating Pipelilling

408 CHAPTER 12

Both joins can be evaluated in pipelined fashion using some version of a nested
loopsjoin. Conceptually, the evaluation isinitiated from the root, and the node
joining A and B produces tuples as and when they are requested by its parent
node. 'When the root node gets a page of tuples from its left child (the outer
table), al the matching inner tuples are retrieved (using either an index or a
scan) and joined with matching outer tuples; the current page of outer tuples
is then discarded. A request is then made to the left child for the next page
of tuples, and the process is repeated. Pipelined evaluation is thus a control
strategy governing the rate at which different joins in the plan proceed. It has
the great virtue of not writing the result of intermediate joins to a temporary
file because the results are produced, consumed, and discarded one page at a
time.

12.4.3 Thelterator Interface

A query evaluation plan is a tree of relational operators and is executed by
calling the operators in some (possibly interleaved) order. Each operator has
one or more inputs and an output, which are also nodes in the plan, and tuples
must be passed between operators according to the plan's tree structure.

To simplify the code responsible for coordinating the execution of a plan, the
relational operators that form the nodes of a plan tree (which is to be evaluated
using pipelining) typically support a uniform iterator interface, hiding the
internal implementation details of each operator. The iterator interface for
an operator includes the functions open, gelL next, and close. The open
function initializes the state of the iterator by allocating buffers for its inputs
and output, and is also used to pass in arguments such as selection conditions
that modify the behavior of the operator. The code for the get_next function
calls the get_next function on each input node and calls operator-specific code
to process the input tuples. The output tuples generated by the processing
are placed in the output buffer of the operator, and the state of the iterator is
updated to keep track of how much input has been consumed. When all output
tuples have been produced through repeated calls to get_nezt, the close function
is called (by the code that initiated execution of this operator) to deallocate
state information.

The iterator interface supports pipelining of results naturally: the decision to
pipeline or materialize input tuples is encapsulated in the operator-specific code
that processes input tuples. If the algorithm implemented for the operator
alows input tuples to be processed completely when they are received, input
tuples are not Inaterialized and the evaluation is pipelined. If the algorithm
examines the same input tuples several times, they are materialized. This

Querview of Query Evaluation 409

decision, like other details of the operator's implementation, is hidden by the
iterator interface for the operator.

The iterator interface is aso used to encapsulate access methods such as B+
trees and hash-based indexes. Externally, access methods can be viewed simply
as operators that produce a stream of output tuples. In this case, the open
function can be used to pass the selection conditions that match the access
path.

125 ALTERNATIVE PLANS: A MOTIVATING EXAMPLE

Consider the example query from Section 12.4. Let us consider the cost of
evaluating the plan shown in Figure 12.4. We ignore the cost of writing out
the final result since this is common to all algorithms, and does not affect
their relative costs. The cost of the join is 1000 + 1000 * 500 = 501,000 page
I/0s. The selections and the projection are done on-the-fly and do not incur
additional 1/0s. The total cost of this plan is therefore 501,000 page |/Os.
This plan is admittedly naive; however, it is possible to be even more naive by
treating the join as a cross-product followed by a selection.

We now consider several alternative plans for evaluating this query. Each al-
ternative improves on the original plan in a different way and introduces some
optimization ideas that are examined in more detail in the rest of this chapter.

12.5.1 Pushing Selections

A join is a relatively expensive operation, and a good heuristic is to reduce
the sizes of the tables to be joined as much as possible. One approach is to
apply selections early; if a selection operator appears after ajoin operator, it is
worth examining whether the selection can be 'pushed’ ahead of the join. As
an example, the selection bid=1()} involves only the attributes of Reserves and
can be applied to Reserves before the join. Similarly, the selection rating> 5
involves only attributes of Sailors and can be applied to Sailors before the join.
Let us suppose that the selections are performed using a simple file scan, that
the result of each selection is written to a temporary table on disk, and that
the temporary tables are then joined using a sort-merge join. The resulting
query evaluation plan is shown in Figure 12.6.

Let us assume that five buffer pages are available and estimate the cost of
this query evaluation plan. (It is likely that more buffer pages are available
in practice. We chose a small number simply for illustration in this example.)
The cost of applying #id=100 to Reserves is the cost of scanning Reserves
(1000 pages) plus the cost of writing the result to a temporary table, say TI.

410 CHAPTER .12

TTsname (On-the-fly)

> (Sort-mergejoin)

sid=sid
/
- \\\
(Scan;) (Scan;
witeto T hid=100 Urating>5 writeto
temp TI) temp 12)
, I . .
File scan Reserves Sailors File scan

Figure 12.6 A Second Query Evaluation Plan

(Note that the cost of writing the temporary table cannot be ignored-we can
ignore only the cost of writing out the final result of the query, which is the
only component of the cost that is the same for-al plans.) To estimate the
size of T1, we require additional information. For example, if we assume that
the maximum number of reservations of a given boat is one, just one tuple
appears in the result. Alternatively, if we know that there are 100 boats, we
can assume that reservations are spread out uniformly across al boats and
estimate the number of pages in Tl to be 10. For concreteness, assume that
the number of pagesin Tl is indeed 10.

The cost of applying rafing > 5 to Sailors is the cost of scanning Sailors (500
pages) plus the cost of writing out the result to a temporary table, say, T2. If
we assume that ratings are uniformly distributed over the range 1 to 10, we
can approximately estimate the size of T2 as 250 pages.

To do a sort-merge join of Tl and T2, let us assume that a straightforward
implementation is used in which the two tables are first completely sorted and
then merged. Since five buffer pages are available, we can sort T1 (which has
10 pages) in two passes. Two runs of five pages each are produced in the first
pass and these are merged in the second pass. In each pass, we read and write
10 pages; thus, the cost of sorting T is 2%2%10= 40 page 1/0s. We need
four passes to sort T2, which has 250 pages. The cost is 2* 4* 250 = 2000
page 1/Os. To, merge the sorted versions of Tl and T2, we need to scan these
tables, and the cost of this step is 10 + 250 = 260. The final projection is done
on-the-fly, and by convention we ignore the cost of writing the final result.

The total cost of the plan shown in Figure 12.6 is the sum of the cost of the
selection (1000+10+500+250 = 1760) and the cost of thejoin (40+2000+260 =
23(0), that is, 4060 page |/Os.

Overview of Query Evaluation 411

Sort-merge join is one of several join methods. We may be able to reduce the
cost of this plan by choosing a different join method. As an alternative, suppose
that we used block nested loops join instead of sort-merge join. .Using T1 as
the outer table, for every three-page block of T1, we scan all of T2; thus, we
scan T2 four times. The cost of the join is therefore the cost of scanning T1
(10) plus the cost of scanning T2 (4 *250 = 1000). The cost of the plan is now
1760 + 1010 = 2770 page |/Os.

A further refinement is to push the projection, just like we pushed the selec-
tions past the join. Observe that only the sid attribute of T1 and the sid and
shame attributes of T2 are really required. As we scan Reserves and Sailors to
do the selections, we could also eliminate unwanted columns. This on-the-fly
projection reduces the sizes of the temporary tables T1 and T2. The reduction
in the size of T1 is substantial because only an integer field is retained. In fact,
T1 now fits within three buffer pages, and we can perform a block nested loops
join with a single scan of T2. The cost of thejoin step drops to under 250 page
1/0s, and the total cost of the plan drops to about 2000 |/Os.

1252 Using Indexes

If indexes are available on the Reserves and Sailors tables, even better query
evaluation plans may be available. For example, suppose that we have a clus-
tered static hash index on the bid field of Reserves and another hash index on
the sid field of Sailors. We can then use the query evaluation plan shown in
Figure 12.7.

T (Cil-the-fly)
sname

(Jrating >5 (Oll-the-f1y)

(lldex Ilested loops.

with pipelillin
sid=sid ‘ pip 9)
/// \\\
T T
(Use hash 8 . . .
index; do O pig=t00 Sailors Hash illdex ail sid
not write
result 10
Temp) |
Hash index on bid Reserves

Figure 12.7 A Query Evaluation Plan Using Indexes

The selection bid=100 is performed on Reserves by using the hash index on
bid to retrieve only matching tuples. As before, if we know that 100 boats are
available and assume that reservations are spread out uniformly across all boats,

412 CHAPTER 12

we can estimate the number of selected tuples to be 100, 000/100 = 1000. Since
the index on bid is clustered, these 1000 tuples appear consecutively within the
same bucket; therefore, the cost is 10 page |/Os.

:For each selected tuple, we retrieve matching Sailors tuples using the hash index
on the sid field; selected Reserves tuples are not materialized and the join is
pipelined. For each tuple in the result of the join, we perform the selection
rating>5 and the projection of sname on-the-fly. There are several important
points to note here:

1. Since the result of the selection on Reserves is not materialized, the opti-
mization of projecting out fields that are not needed subsequently is un-
necessary (and is not used in the plan shown in Figure 12.7).

2. Thejoin field sid is a key for Sailors. Therefore, at most one Sailors tuple
matches a given Reserves tuple. The cost of retrieving this matching tuple
depends on whether the directory of the hash index on the sid column of
Sailors fits in memory and on the presence of overflow pages (if any). How-
ever, the cost does not depend on whether this index is clustered because
there is at most one matching Sailors tuple and requests for Sailors tuples
are made in random order by sid (because Reserves tuples are retrieved by
bid and are therefore considered in random order by sid). For a hash index,
1.2 page 1/Os (on average) is a good estimate of the cost for retrieving a
data entry. Assuming that the sid hash index on Sailors uses Alternative
(1) for data entries, 1.2 I/Os is the cost to retrieve a matching Sailors tu-
ple (and if one of the other two alternatives is used, the cost would be 2,2
[/Os).

3. We have chosen not to push the selection rating>5 ahead of the join, and
there is an important reason for this decision. 1fwe performed the selection
before the join, the selection would involve scanning Sailors, assuming that
no index is available on the rating field of Sailors. Further, whether or
not such an index is available, once we apply such a selection, we have
no index on the sid field of the result of the selection (unless we choose
to build such an index solely for the sake of the subsequent join). Thus,
pushing selections ahead of joins is a good heuristic, but not always the
best strategy. Typically, as in this example, the existence of useful indexes
is the reason a selection is not pushed. (Otherwise, selections are pushed.)

Let us estimate the cost of the plan shown in Figure 12.7. The selection of
Reserves tuples costs 10 1/Os, as we saw earlier. There are 1000 such tuples,
and for each, the cost of finding the matching Sailors tuple is 1.2 1/0s, on
average. The cost of this step (the join) is therefore 1200 1/Os. All remaining
selections and projections are performed on-the-fly. The total cost of the plan
is 1210 1/Os.

Overview of Query Fvaluation 413

As noted earlier, this plan does not utilize clustering of the Sailors index. The
plan can be further refined if the index on the sid field of Sailors is clustered.
Suppose we materialize the result of performing the selection bid=100 on Re-
serves and sort this temporary table. This table contains 10 pages. Selecting
the tuples costs 10 page |/Os (as before), writing out the result to a temporary
table costs another 10 I/Os, and with five buffer pages, sorting this temporary
costs 2*2%10 = 40 1/Os. (The cost of this step is reduced if we push the
projection on sid. The sid column of materialized Reserves tuples requires only
three pages and can be sorted in memory with five buffer pages.) The selected
Reserves tuples can now be retrieved in order by sid.

If a sailor has reserved the same boat many times, al corresponding Reserves
tuples are now retrieved consecutively; the matching Sailors tuple will be found
in the buffer pool on all but the first request for it. This improved plan also
demonstrates that pipelining is not always the best strategy.

The combination of pushing selections and using indexes illustrated by this
plan is very powerful. If the selected tuples from the outer table join with a
single inner tuple, the join operation may become trivial, and the performance
gains with respect to the naive plan in Figure 12.6 are even more dramatic.
The following variant of our example query illustrates this situation:

SELECT S.sname

FROM Reserves R, Sailors S

WHERE Rsid = S.sid
AND R.bid = 100 AND S.rating > 5
AND Rday = '8/9/2002'

A slight variant of the plan shown in Figure 12.7, designed to answer this query,
is shown in Figure 12.8. The selection day="'8/9/2002" is applied on-the-fly to
the result of the selection bid=100 on the Reserves table.

Suppose that bid and day form a key for Reserves. (Note that this assumption
differs from the schema presented earlier in this chapter.) Let us estimate the
cost of the plan shown in Figure 12.8. The selection bid=100 costs 10 page
I/Os, as before, and the additional selection day=°8/9/2002" is applied on-the-
fly, eliminating al but (at most) one Reserves tuple. There is at most one
rnatching Sailors tuple, and this is retrieved in 1.2 |/Os (an average value).
The selection on rating and the projection on sname are then applied on-the-
fly at no additional cost. Thetotal cost of the plan in Figure 12.8 is thus about
11 1/0s. In contrast, if we modify the naive plan in Figure 12.6 to perform
the additional selection on day together with the selection bid=100, the cost
remains at 501,000 |/Os.

414 CHAPTER 12

1 10"-the-jly)
' sname
10n-lhe-jlyj
|Index llested loaps,
?ﬁd with pipelining)
sid=sif
// \
7 S~
(On-the-fly) Uday='819194' Sailors Hash index (' sid
(Use hash \
index; da
f10twrite O
result to bid=100

temp)

Hash illdex o bid ~ Reserves

Figure 12.8 A Query Evaluation Plan for the Second Example

126 WHAT ATYPICAL OPTIMIZER DOES

A relational query optimizer uses relational algebra equivalences to identify
many equivalent expressions for a given query. For each such equivalent ver-
sion of the query, al available implementation techniques are considered for the
relational operators involved, thereby generating several alternative queryeval-
uation plans. The optimizer estimates the cost of each such plan and chooses
the one with the lowest estimated cost.

12.6.1 Alternative Plans Considered

Two relational algebra expressions over the same set of input tables are said
to be equivalent if they produce the same result on all instances of the in-
put tables. Relational algebra equivalences playa central role in identifying
alternative plans.

Consider a basic SQL query consisting of a SELECT clause, a FROM clause, and
a WHERE clause, This is easily represented as an algebra expression; the fields
mentioned in the SELECT are projected from the cross-product of tables in
the FROM clause, after applying the selections in the WHERE clause. The use
of equivalences enable us to convert this initial representation into equivalent
expressions. In particular:

» Selections and cross-products can be combined into joins.

e Joins can be extensively reordered.

Overview of Query Evaluation

» Selections and projections, which reduce the size of the input, can be
“pushed” ahead of joins.

The query discussed in Section 12.5 illustrates these points; pushing the selec-
tion in that query ahead of the join yielded a dramatically better evaluation
plan. \Ve discuss relational algebra equivalences in detail in Section 15.3.

L eft-Deep Plans

Consider a query of the form A a B ¢ C i D; that is, the natural join of
four tables. Three relational algebra operator trees that are equivalent to this
query (based on algebra equivalences) are shown in Figure 12.9. By convention,
the left child of a join node is the outer table and the right child is the inner
table. By adding details such as the join method for each join node, it is
straightforward to obtain several query evaluation plans from these trees.

- e \\ e s \
=<3 D /Et‘fi D Eﬁ
%</\C C/ - \j < |><J/ \J><{
/ \ P N / \ P e .
A B A B N = < D

Figure 12.9 Three Join Trees

Thefirst two trees in Figure 12.9 are examples of linear trees. In a linear tree,
at least one child of ajoin node is a base table. The first tree is an example of
a left-deep tree-the right child of each join node is a base table. The third
tree is an example of a non-linear or bushy tree.

Optimizers typically use a dynamic-programming approach (see Section 15.4.2)
to efficiently search the class of aU left-deep plans. The second and third kinds
of trees are therefore never considered. Intuitively, the first tree represents a
plan in which we join A and B first, then join the result with C, then join
the result with D. There are 23° other left-deep plans that differ only in the
order that tables are joined. If any of these plans has selection and projection
conditions other than thejoins themselves, these conditions are applied as early
as possible (consitent with algebra equivalences) given the choice of a join order
for the tables.

Of course, this decision rules out many alternative plans that may cost less
than the best plan using a left-deep tree; we have to live with the fact that

5The reader should think through the number 23 in this example.

416 CHAPTER 12

the optimizer will never find such plans. There are two main reasons for this
decision to concentrate on left-deep plans, or plans based on left-deep trees:

1. As the number of joins increases, the number of alternative plans increases
rapidly and it becomes necessary to prune the space of alternative plans.

2. Left-deep trees allow us to generate all fully pipelined plans; that is,
plans in which all joins are evaluated using pipelining. (Inner tables must
always be materialized because we must examine the entire inner table for
each tuple of the outer table. So, a plan in which an inner table is the
result of a join forces us to materialize the result of that join.)

12.6.2 Estimating the Cost of a Plan

The cost of a plan is the sum of costs for the operators it contains. The cost
of individual relational operators in the plan is estimated using information,
obtained from the system catalog, about properties (e.g., size, sort order) of
their input tables. We illustrated how to estimate the cost of single-operator
plans in Sections 12.2 and 12.3, and how to estimate the cost of multi-operator
plans in Section 12.5.

If we focus on the metric of 1/O costs, the cost of a plan can be broken down
into three parts: (1) reading the input tables (possibly rnultiple times in the
case of some join and sorting algorithms), (2) writing intermediate tables, and
(possibly) (3) sorting the final result (if the query specifies duplicate elimination
or an output order). The third part is common to all plans (unless one of the
plans happens to produce output in the required order), and, in the common
case that a fully-pipelined plan is chosen, no intermediate tables are written.

Thus, the cost for a fully-pipelined plan is dominated by part (1). This cost
depends greatly on the access paths used to read input tables; of course, access
paths that are used repeatedly to retrieve matching tuples in a join algorithm
are especially important.

For plansthat are not fully pipelined, the cost of rnaterializing temporary tables
can be significant. The cost of materializing an intermediate result depends
on its size, and the size also infiuences the cost of the operator for which the
temporary isan input table. The number of tuplesin the result of a selection is
estimated by multiplying the input size by the reduction factor for the selection
conditions. The number of tuples in the result of a projection is the same as
the input, assuming that duplicates are not eliminated; of course, each result
tuple is smaller since it contains fewer fields.

Querview of Query Fvaluation 4¥7

The result size for a join can be estimated by multiplying the maximum result
size, which is the product of the input table sizes, by the reduction factor of the
join condition. The reduction factor for join condition columni = column2 can
be approximated by the formula grg—rwg glug.mo i3y